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Abstract

We consider some basic features of quantum hydrodynamics near simple fold and cusp caustics.
We show that the initial value problem for the Bohmian trajectories is not well posed, since the
quantum potential and the derivatives of the phase of the wave function are too singular. These
observations imply, that in the classical limit, the Bohmian trajectories do not converge to the
geometric rays because caustics onset at t = 0+.

Key Words. quantum hydrodynamics, Bohm equations, Bohm trajectories, geometrical optics,
Wigner transform, caustics, Burger’s equation, quantum potential.
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Περίληψη

Εξετάζουμε κάποια βασικά χαρακτηριστικά της κβαντικής υδροδυναμικής κοντά στις καυστικές fold και
cusp. Επίσης, αποδεικνύουμε ότι το πρόβλημα αρχικών τιμών για τις Bohm τροχιές δεν είναι καλά ορι-
σμένο, αφού το κβαντικό δυναμικό και οι παράγωγοι της φάσης της κυματοσυνάρτησης παρουσιάζουν

κάποιες ιδιομορφίες. Αυτές οι παρατηρήσεις, υποδεικνύουν, ότι στο κλασσικό όριο, οι Bohm τροχιές
δεν συγκλίνουν στα γεωμετρικά rays, επειδή οι καυστικές ξεκινούν σε χρόνο t = 0+.

Λέξεις κλειδιά. κβαντική υδροδυναμική, εξισώσεις Bohm, τροχιές Bohm, γεωμετρική οπτική,
μετασχηματισμός Wigner, καυστικές, εξίσωση Burger’s, κβαντικό δυναμικό.
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Chapter 1

Introduction

Semiclassical approximations for the Schrödinger equation

iε∂tψ
ε(x, t) =

(
−ε

2

2
∂2
x + V (x)

)
ψε(x, t) , x ∈ R, t > 0 ,

are important in quantum mechanics [Gr] and high-frequency paraxial wave propagation in in-
homogeneous media [Tap]. Traditionally, such approximations have been constructed by the WKB
method (or “geometrical optics” method) which is based on the approximation

ψε(x, t) ≈ A(x, t)e
i
ε
Φ(x,t) ,

where the amplitude and the phase satisfy the equations

∂tΦ +
1

2

(
∂xΦ

)2
+ V = 0 ,

∂tA
2 + ∂x

(
A2∂xΦ

)
= 0 .

This is a very powerful method not only to draw a qualitative picture of how the energy propagates
along the rays, but also to evaluate the wave fields quantitatively. However, WKB approximation
fails either on caustics and focal points where it predicts infinite wave amplitudes, or in shadow
regions (i.e. regions devoid of rays) where it yields zero fields. On the other hand, formation of
caustics is a typical situation in quantum mechanics [BM], [Haa], optics [BU], underwater acoustics
[TC] and seismology [Ce], as a result of multiple path propagation.

1.1 Caustics and phase-space methods

Geometrically, caustic surfaces are envelopes of rays. Physically, these surfaces are distinctive in
that the field intensity increases on them sharply as compared with the adjacent regions. The rise
of field is best of all seen at the focal points where all the rays corresponding to the converging wave
front intersect. Moving across a caustic gives birth or annihilation of a pair of rays at a time, and this
discontinuous variation of the number of rays across a caustic is qualified as a catastrophe. This new
and fruitful approach to caustics, developed only in the recent years, allows a universal classification
of the typical caustics (see, e.g., [KO]). From specific examples allowing exact solutions, it has been
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known that the phase of the wave fields change by −π/2 upon touching a smooth (nonsingular)
caustic, and by −π after passing a three-dimensional focus. However, a universal rule on the
additional phase shift at a caustic has been formulated only in the comparative recent works of
Maslov [MA1], [MA2], although the germ of the idea goes back to Keller [KEL]. The formulation is
based on the stationary-phase approximation of certain diffraction integrals, and it finally leads to
the notion of the so-called KMAH (Keller-Maslov-Arnold-Hormander) index, in the general case of
multiple caustic reflections. Because the wave amplitude predicted by geometrical optics is infinite
on the caustics, as a result of ray convergence, geometrical optics is inapplicable within a close
neighborhood of the caustic, as actual wave fields are always finite. However, available exact and
approximate solutions for certain canonical wave problems involving caustics in the high-frequency
limit, indicate a substantial concentration of energy near a caustic. This phenomenon is more
profound within a finite region which is usually referred as caustic zone or caustic volume. The
rigorous estimation of the size of this zone should rely upon delicate uniform asymptotic expansions
of certain canonical diffraction integrals associated with the particular caustic, but for the moment
only heuristic estimations leading rather to qualitative than to fully quantitative results exist. A
very important feature is that the rays cannot be adequately resolved in the caustic zone, and
therefore we can draw the general conclusion that within any caustic zone, no physical device
is capable of separate determination of ray parameters. In this sense, in that caustic zone, rays
loose their physical individual properties, though they continue to play the role of the geometric
framework for the wave field.

From the mathematical point of view, formation of caustics and the related multivaluedness of
the phase function, is the main obstacle in constructing global high-frequency solutions of the wave
equation. The problem of obtaining the multivalued phase function is traditionally handled by
resolving numerically the characteristic field related to the eikonal equation (ray tracing methods).
Given the geometry of the multivalued phase function, a number of local and uniform methods
to describe wave fields near caustics have been proposed. The local methods are essentially based
on boundary layer techniques as they were developed by Babich, Keller, et.al. (see, e.g., [BAKI],
[BB]). The uniform are those which exploit the fact that even if the family of rays has caustics,
there are no such singularities for the family of the bicharacteristics in the phase space. This basic
fact allows the construction of formal asymptotic solutions (FAS) which are valid also near and on
the caustics. For this purpose two main asymptotic techniques have been developed. The first one
is theKravtsov-Ludwig method (sometimes called the method of relevant functions). This method
starts with a modified FAS involving Airy-type integrals, the phase functions of which take account
of the particular type of caustics. The second one is the method of the canonical operator developed
by Maslov. The construction of the canonical operator exploits the fact that the Hamiltonian flow
associated with the bicharacteristics generates a Lagrangian submanifold in the phase space, on
which we can “lift” the phase function in a unique way [MF].

1.2 The Wigner-function approach

A relatively new technique to treat high frequency dispersive problems is based on the Wigner
transform

W ε(x, k, t) =
1

πε

∫ +∞

−∞
e−i

2k
ε
σψε(x+ σ, t)ψ̄ε(x− σ, t)dσ ,
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whose basic properties (i.e. the relation of its moments with important physical quantities, as
energy density, current density, et.al.), make it a proper and extremely useful tool for the study of
the wavefield. Wigner function is a phase space object satisfying an integro-differential equation
(Wigner equation), which for smooth medium properties can be expressed as an infinite order
singular perturbation (with dispersion terms with respect to the momentum of the phase space)of
the classical Liouville equation. At the high frequency limit, the solution of the Wigner equation
converges weakly to the so called Wigner measure [LP] governed by the classical Liouville equation,
and this measure, in general, reproduces the solution of single phase geometrical optics.

We should note at this point that there does not exist, up to now, either some systematic
theoretical study of the Wigner integro-differential equation (except the results of Markowich [Mar]
for the equivalence of Wigner and Schrödinger equations). This is due to fundamental difficulties
of this equation, which is an equation with non-constant coefficients, that combines at least two
different characters, that of transport and that of dispersive equations. The first character is
correlated with the Hamiltonian system of the Liouville equation (and the classical mechanics
of the problem), and the second with the quantum energy transfer away from the Lagrangian
manifold of the Hamiltonian system, but mainly inside a boundary layer around it, the width of
which depends on the smoothness of the manifold and the presence or not of caustics.

Moreover, in the case of multi-phase optics and caustic formation, Wigner measure is not the
appropriate tool for the study of the semi-classical limit. In fact, it has been shown by Filippas
& Makrakis [FM] through examples in the case of time-dependent Schrödinger equation that the
Wigner measure (a) it cannot be expressed as a distribution with respect to the momentum for a
fixed space-time point, and thus cannot produce the amplitude of the wavefunction, and (b) it is
unable to “recognize” the correct frequency dependencies of the wavefield near caustics. However, it
was explained, that the solutions of the integro-differential Wigner equation do have the capability
to capture the correct frequency scales. It must be said here, that a numerical approach based
on classical Liouville equation has been developed, as an alternative to WKB method, in order
to capture the multivalued solutions far from the caustic. This technique is based on a closure
assumption for a system of equations for the moments of the Wigner measure (essentially by
assuming a fixed number of rays passing through a particular point) [JL].

1.3 Bohm equations and Quantum Hydrodynamics

A fluid dynamical formulation of the Schrödinger equation is known since the early years of quantum
mechanics. A year after Schrödinger published his celebrated equation, Erwin Madelung showed (in
1927) that it can be written in a hydrodynamic form [Mad]. Madelung’s representation has a seem-
ingly major disadvantage by transforming the single linear Schrödinger equation into two nonlinear
ones. Nonetheless, despite of its additional complexity, the hydrodynamic analogy provides import-
ant insights with regard to the Schrödinger equation. The Madelung equations (ME) describe a
compressible fluid, and compressibility yields a linkage between hydrodynamic and thermodynamic
effects. A simple derivation uses the polar decomposition of the wave function

ψε(x, t) = Rε(x, t)e
i
ε
Sε(x,t) .



Separating the real and the imaginary part of the single-state Schrödinger equation gives the system
of Bohm equations

∂tS
ε +

1

2

(
∂xSε

)2
+ V +Qε = 0 ,

∂t
(
Rε
)2

+ ∂x ·
((

Rε
)2
∂xSε

)
= 0 ,

where Qε is the quantum potential

Qε = −ε
2

2

∂2
xRε

Rε
,

which is a nonlocal perturbation of the external potential V and, formally, it vanishes in the classical
limit.

The hydrodynamic formulation follows by considering a ”quantum fluid” that has density ρε = |Rε|2
and moves with Eulerian velocity zε = ∂xSε. It turns out that the motion of the fluid satisfies the
Euler equations

∂tρ
ε + ∂x(ρεzε) = 0 ,

ρε(∂tz
ε + zε∂xzε) = −∂xpε + ρεbε ,

with pressure pε = − ε2

4 ρ
ε∂2
xρ
ε and body force bε = −∂xV

ρε .

Moreover, it turns out that zε satisfies the inhomogeneous Burgers equation

∂tz
ε + zε∂xz

ε = −∂x(Qε + V ) .

In Bohmian mechanics a particle is not simply described by its wave function ψε as in the
standard interpretation of quantum mechanics. Rather, the wave function, called by de Broglie
the pilot-wave [Bro], drives the motion of the particle and it is used to compute the velocity (or
momentum) of the particle, whose dynamics is consequently given by the characteristics of the
Burgers equation.

The above description of the particle’s dynamics can be considered as the Eulerian approach to
Bohmian mechanics since zε is the associated Eulerian velocity. While it is certainly interesting
to directly study their limits as ε → 0, this problem seems to be out of reach so far and hence
will not be the object of this paper. Instead, Markowich and his collaborators [MPS1], [MPS2]
have described how to pass to the corresponding Lagrangian point of view of Bohmain dynamics
and argued that this viewpoint naturally leads to the introduction of a certain class of probability
measures on phase space, which they call Bohmian measures. These measures concentrate on
Lagrangian sub-manifolds in phase space induced by the graph of the initial velocity ψε(x, 0).
They consequently proceeded via the (Lagrangian version of the) Bohmian dynamics and they
showed to be equivariant with respect to this phase space flow. Moreover they showed that before
the onset of caustics, the Bohmian trajectories converge to the rays of geometrical optics.

In this work, we compute the quantum potential in certain simple examples where caustics onset
at t = 0+, and we show that, in this case, Bohmian trajectories cannot be defined because someone
cannot compute initial data for the Burgers equation. This observation implies the conjecture that
Bohmian mechanics does not converge to classical mechanics after caustics onset.
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Chapter 2

Geometrical optics-WKB method,
caustics

In this chapter we are concerned with the Wentzel-Kramers-Brillouin (WKB) method, which shows
the correspondence between classical and quantum mechanics by considering the behavior of the
wave function ψε(x, t), and also provides useful approximations to the solutions of the Schrödinger
equation describing the state of a non-relativistic quantum particle. [MG] The WKB method, also
known as WKB approximation, is a semiclassical calculation in quantum mechanics, based on the
exponential function which is semiclassically expanded, and then either the amplitude or the phase
is taken to be slowly varying.

We consider the Cauchy problem for the time-dependent one-dimensional Schrödinger equation
with fast temporal and spatial scales, and highly oscillatory initial data

iε∂tψ
ε(x, t) =

(
− ε2

2 ∂
2
x + V (x)

)
ψε(x, t), x ∈ R , t > 0 ,

ψε(x, 0) = ψε0(x) = A0(x)e
i
ε
S0(x) x ∈ R ,

(2.1)

where i is the imaginary unit, ε is the semiclassical parameter (scaled Planck constant), V (x)
is its potential energy, and ψε is the wave function (more precisely, in this context, it is called

the “position-space wave function”). The operator
(
− ε2

2 ∂
2
x + V (x)

)
is the quantization of the

Hamiltonian function, that is the total energy, equals kinetic energy plus potential energy, of the
corresponding classical particle.

Moreover, the parameter ε respesents the space-time scales, as well as the typical wave length of
oscillations of the initial data.

We are interested in the high-frequency solution of (2.1), that is the expansion of ψε in the regime
ε � 1 , which will be referred to as the the semi-classical limit. The limit case when we consider
that ε → 0 will be referred to as the the classical limit (or the geometrical-optics solution). The
mode of transition form the semiclassical regime to the classical limit. It is a very delicate problem
because the Schrödinger equation propagates oscillations of wave lengths ε which inhibit ψε from
converging strongly in a suitable sense.
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2.1 The WKB ansatz

In order to apply the geometrical optics technique [BLP, Ra], one seeks for an approximating WKB
solution of the form

ψε(x, t) = Aε(x, t)e
i
ε
Φε(x,t) , (2.2)

where the amplitude Aε and the phase Φε, are real valued functions, and they admit of the regular
perturbation expansions

Aε(x, t) = A(x, t) + εA1(x, t) + ε2A2(x, t) + . . . . . . (2.3)

and
Φε(x, t) = Φ(x, t) + εΦ1(x, t) + ε2Φ2(x, t) + . . . . . . (2.4)

Then, the derivatives of the wave function are given by

∂tψ
ε =

(
∂tA

ε +
i

ε
Aε∂tΦ

ε
)
e
i
ε
Φε , (2.5)

∂xψ
ε =

(
∂xA

ε +
i

ε
Aε∂xΦε

)
e
i
ε
Φε , (2.6)

∂xψ
ε = ∂x

(
∂xψ

ε
)

=
(
∂xA

ε − 1

ε2
Aε
(
∂xΦε

)2
+

1

ε

(
Aε∂2

xΦε + 2∂xΦε∂xA
ε
))
e
i
ε
Φε . (2.7)

By substituting (2.5) , (2.6) , (2.7) into (2.1) we rewrite the Schrödinger equation in the form

iε
(
∂tA

ε +
i

ε
Aε∂tΦ

ε
)

= −ε
2

2

(
∂xA

ε − 1

ε2
Aε
(
∂xΦε

)2
+

1

ε

(
Aε∂xΦε + 2∂xΦε∂xA

ε
))

+ V Aε . (2.8)

We further substitute the expansions (2.3) , (2.4) into (2.8), and we get the asymptotic equation

ε0A

(
∂tΦ +

1

2

(
∂xΦ

)2
+ V

)
− iε

(
∂tA+

1

2

(
A∂2

xΦ + 2∂xΦ∂xA
))
− ε2

2
∂2
xA+ · · · = 0 . (2.9)

If we assume that A ,Φ are smooth functions, equation (2.9) is satisfied to order O(ε2), if the phase
Φ satisfies the Hamilton-Jacobi equation

∂tΦ +
1

2

(
∂xΦ

)2
+ V = 0 , (2.10)

and the amplitude A satisfies the transport equation

∂tA
2 + ∂x

(
A2∂xΦ

)
= 0 . (2.11)

Remark. The equations (2.10) , (2.11) are the fundamental equations of geometrical optics, and

they define the principal term ψε(x, t) ≈ A(x, t)e
i
ε
Φ(x,t) in the asymptotic expansion of the wave

function. It is remarkable that the Hamilton-Jacobi equation for the phase Φ is the same with the
equation governing the phase in classical mechanics, while the transport equation for the amplitude
A expresses the conservation of particles moving under the action of the potential V . These two
facts, express the well-known analogy between classical mechanics and geometrical optics (see, e.g.,
[Gold], [Arn]).
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2.2 Hamiltonian system and rays

The Hamilton-Jabobi and the transport equations are partial differential equations of the first
order, and their solution can be constructed by reduction to ordinary differential equations along
the rays as follows [Ev]. Let

H(x, k) =
1

2
k2 + V (x) , (2.12)

be the Hamiltonian function. We consider the Hamiltonian system [BLP]

dx(t;q,p)
dt = k(t; q, p) ,

dk(t;q,p)
dt = −V ′

(
x(t; q, p)

)
,

x(0; q, p) = q, k(0; q, p) = p .

(2.13)

The trajectories of this system are the bicharacteristics in the phase space R2
xk. When the initial

momentum is given by p = S′0(q), then, the projections of the bicharacteristics on to the R2
xt space

are the rays of geometrical optics. In order to distinguish between the rays and the bicharacteristics
we denote the rays by x̄ = x̄(t; q), and it turns out that they are solutions of the system

dx̄(t;q)
dt = k̄(t; q) ,

dk̄(t;q)
dt = −V ′

(
x̄(t; q)

)
,

x̄(0; q) = q , k̄(0; q) = S′0(q) .

(2.14)

Therefore the rays are the projections on to the physical space of the bicharacteristics emanating
from the initial Lagrangian manifold (curve) Λ0 = {(q, p)|p = S′0(q)} in phase space.

Note that for the free Schrödinger equation, that is V (x) = 0, the rays are given by
x̄(t; q) = S′0(q)t+ q ,

k̄(t; q) = k̄(0; q) = S′0(q) ,
(2.15)

that is, they are the straight lines in the space-time R2
xt emanating at (x = q , t = 0) with constant

slope S′0(q).

The Jacobian of the ray transformation q 7→ x̄(t; q) is given by

J(t; q) =
∂x̄(t; q)

∂q
. (2.16)

Whenever the Jacobian (2.16) vanishes, the ray transformation is multi-valued, and a caustic
appears. Near the caustic the rays may cross and have other complicated singularities. The sin-
gularities depend on the particular form of the initial data. If t = tc(q) are the solutions of the
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equation J(t; q) = 0, then the caustic has the parametric equations
t = tc(q) ,

x̄c(q) = x̄
(
tc(q); q

)
.

(2.17)

2.3 Integration of Hamilton-Jacobi equation

By the identification k = ∂xΦ(x, t), the initial value problem for the Hamilton-Jacobi equation
(2.10) is written in the form

∂tΦ(x, t) +H(x, ∂xΦ(x, t)) = 0 , x ∈ R, t > 0 ,

Φ(x, t = 0) = S0(x) . x ∈ R .
(2.18)

This form of the Hamilton-Jacobi equation, suggests that the equation can be reduced to an ordinary
differential equation along the rays (see, [Ev], Sec. 3.2.5 , 3.3.1 for a rigorous explanation). In fact,
by differentiating along the ray x̄ = x̄(t; q), and using the equations (2.14), we have

d

dt
Φ
(
x̄(t; q), t

)
= ∂tΦ

(
x̄(t; q), t

)
+ ∂xΦ

(
x̄(t; q), t

)dx̄(t; q)

dt

= −

(
1

2

(
∂xΦ

(
x̄(t; q), t

))2
+ V

(
x̄(t, q)

))
+ ∂xΦ

(
x̄(t; q), t

)
k̄(t; q)

= −1

2
k̄2(t; q)− V

(
x̄(t; q)

)
+ k̄2(t; q)

=
1

2
k̄2(t; q)− V

(
x̄(t; q)

)
. (2.19)

We integrate (2.19) on the internal (0, t), we immediately derive the phase

Φ(x̄, t) = S0(q) +

∫ t

0

(
1

2
k̄2(τ ; q)− V

(
x̄(τ ; q)

))
dτ . (2.20)

2.4 Integration of the transport equation

We solve now the initial value problem for the transport equation
∂tA

2(x, t) + ∂x
(
A2(x, t)∂xΦ(x, t)

)
= 0, x ∈ R, t > 0 ,

A(x, t = 0) = A0(x) , x ∈ R .
(2.21)
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First, we differentiate lnA2 along the rays, and we get

d

dt
ln A2

(
x̄(t, α), t

)
=

1

A2
(
x̄(t, α), t

) d
dt

A2
(
x̄(t, α), t

)
=

(
∂tA

2 + ∂xA2∂xΦ
)(
x̄(t, α), t

)
A2
(
x̄(t, α), t

)
= −∂2

xΦ
(
x̄(t, α), t

)
. (2.22)

Then, by Liouville’s formula (see Appendix 1) for the equation

dx̄

dt
= k̄ = ∂xΦ

(
x̄(t, q) ,

we get
d

dt
ln J(t, q) = ∂xk̄(t, q) = ∂x

(
∂xΦ

(
x̄(t, q), t

))
= ∂2

xΦ
(
x̄(t, q), t

)
. (2.23)

Thus, we obtain
d

dt
ln A2

(
x̄(t, α), t

)
= − d

dt
ln J(t, q) . (2.24)

Finally, by assuming that J(t, q) 6= 0 on the internal (0, t), we integrate the last equation, and we
derive

A
(
x̄(t, q), t

)
=

A0(q)√
J(t, q)

. (2.25)

Remark. Note that J(t = 0, q) = 1, since for t = 0, the ray map is the identity, and J(t, q) > 0
as long as caustics do not appear. However, for the critical caustic time t = tc(q), the Jacobian
vanishes and the geometrical amplitude (2.25) becomes infinite on the caustic. Therefore, when
caustics appear the WKB method fails to predict the amplitude of the wave function, and other
techniques must be applied (see, e.g., [FM] for a concise review of such methods).
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Chapter 3

Quantum Hydrodynamics

3.1 Bohm equations and quantum potential

In order to motivate the introduction of the particle concept into quantum mechanics, Erwin
Madelung decomposed the Schrödinger equation into two real equations, in a particular way, by
expressing the complex-valued time-dependent wave function in polar form

ψε(x, t) = Rε(x, t)e
i
ε
Sε(x,t) , (3.1)

where
Rε(x, t) = |ψε(x, t)|2 (3.2)

is the amplitude and
Sε(x, t) = ε argψε (3.3)

is the phase of the wavefunction, both depending of ε.

Substituting (3.1) into the Schrödinger equation (2.1) we obtain

iε
(
∂tR

ε +
i

ε
Rε∂tS

ε
)

= −ε
2

2

[
∂2
xRε − 1

ε2
Rε
(
∂xSε

)2
+

1

ε

(
Rε∂2

xSε + 2∂xSε∂xRε
)]

+ V Rε.

Then, seperating into real and imaginary parts yields respectively the following equations

− Rε∂tS
ε =

1

2
Rε
(
Sε
)2 − ε2

2
∂2
xRε + V Rε , (3.4)

and

∂tR
ε = −1

2

(
Rε∂2

xSε + 2∂xSε∂xRε
)
, (3.5)

respectively. Assuming that Rε 6= 0 we get the equations

∂tS
ε +

1

2

(
∂xSε

)2
+ V +Qε = 0 , (3.6)

∂t
(
Rε
)2

+ ∂x ·
((

Rε
)2
∂xSε

)
= 0 , (3.7)
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where we have defined the quantum potential Qε as:

Qε = −ε
2

2

∂2
xRε

Rε
. (3.8)

The initial data for (2.1) imply the initial data

Rε
0(x) = Rε(x, 0) ≡ A0(x) , Sε0(x) = Sε(x, 0) ≡ S0(x) . (3.9)

The system (3.7), (3.6) is usually referred to as the Bohm equations or the equations of quantum
hydrodynamics, and they form the basis of the so called Bohmian mechanics. By their derivation,
these equations are equivalent to the Schrödinger equation. However, they have used as the basis
for various approaches in quantum mechanics, as hidden variable theory [B] and de Broglie’s pilot
wave theory [Hol], [DT], but also for computational purposes in quantum chemistry [Wy].

Although the quantum potential formally appears in the equation (3.6) that suggests a dynamical
origin, a closer examination reveals a conceptual structure that is radically different from that used
in classical physics. For example, it carries nonlocal features which seem to be essential for a
proper description of some quantum effects and it appears to have no well-defined source, so that
its interpretation as a dynamical field is inappropriate. Bohm [B] originally considered this to be a
weakness of the model and thought it was a temporary feature of the unrefined theory. No doubt,
it is the nondynamical nature of the quantum potential that has generated a different attitude.

It is interesting to observe, that from the definition (3.8) of the quantum potential, it follows
that the amplitude Rε satisfies the equation

ε2

2

∂2Rε

∂x2
+Qε(x, t)Rε = 0 . (3.10)

The character of this equation may change from elliptic to hyperbolic since the quantum potential
changes sign. See, e.g., [Car1], [Car2] for various mathematical aspects of this equation and the
role of quantum potential. We must also note that, at least qualitatively, the behaviour of the
equation can be related to the properties of the geometrical optics’ rays and the behaviour of the
WKB solution.

We rewrite Qε as follows

Qε =
Rε∂2

xRε

(Rε)2
= −ε

2

2

∂x(Rε∂xRε)− (∂xRε)2

(Rε)2

= −ε
2

2

1

2

∂2
x(Rε)2 − (∂xRε)2

(Rε)2

= −ε
2

2

(
1

2

∂2
x(Rε)2

(Rε)2
−
(
∂xln(Rε)

)2)
= −ε

2

2

(
1

2

∂2
x(Rε)2

(Rε)2
−
(
∂x

1

2
ln(Rε)2

)2
)
.

Thus, the quantum potential is expressed in terms of the energy density

ηε = (Rε)2 , (3.11)

in the form

Qε(x, t) = −ε
2

2

(
1

2

∂2
xη

ε

ηε
−
(

1

2
∂x ln ηε

)2
)
. (3.12)
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3.2 Hydrodynamic variables and the role of quantum potential

We recall now that Euler equations

∂tρ+ ∂x(ρu) = 0 ( conservation of mass) , (3.13)

ρ(∂tu+ u∂xu) = −∂xp+ ρb, ( conservation of momentum) , (3.14)

where ρ is the density, u is the Eulerian velocity, p is the pressure and b is the acceleration due to
body forces.

We consider now a fluid with density

ρε = ηε = (Rε)2, (3.15)

and Eulerian velocity
zε = ∂xSε . (3.16)

For brevity, we refer to this fluid as the quantum fluid, but someone should be very careful to avoid
confusion with real fluids where quantum effects are important for the flow. Then, the transport
equation (3.7) is written in the form

∂tρ
ε + ∂x(ρεzε) = 0 , (3.17)

By the identification
ρ = ρε , u = zε , (3.18)

we see that equation (3.17) coincides with the continuity equation (3.13).

Furthermore, by differentiating (3.6) with respect to x, and using the definition (3.16) of the
fluid velocity, we derive the following inhomogeneous Burgers equation for the velocity

dzε

dt
= ∂tz

ε + zε∂xz
ε = −∂x(Qε + V ) . (3.19)

We again use the identification (3.18) and we compare (3.19) with (3.14). It turns out that the
pressure pε of the quantum fluid must satisfy

∂xp
ε = ηε∂xQ

ε , (3.20)

and bε = −∂xV
ηε . We rewrite the quantum potential (3.12) in the form

Qε = −ε
2

4

(
1

2
(∂xlnη

ε)2 + ∂2
xlnη

ε

)
, (3.21)

we differentiate the last equation with respect to x, and we compare the resulting equation with
(3.20). It follows that the quantum pressure is given by the formula

pε = −ε
2

4
ηε∂2

xη
ε = −ε

2

4
ρε∂2

xρ
ε . (3.22)

The quantum pressure depends explicitly on the amplitude ηε = (Rε)2 and only implicitly on the
phase Sε.

The above explained analogy of quantum mechanics hydrodynamics (hence the term quantum
hydrodynamics) was introduced first by Madelung [Mad], and its consequences to quantum the-
ory has been exploited by de Broglie (pilot wave theory) [Bro] and Bohm (“hidden variables”
interpretation)[B]. See also [DT] for a detailed mathematical exposition of Bohmian mechanics
and quantum potentials, and [Wy] for an exposition of quantum hydrodynamics from the point of
view of quantum chemistry.
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3.3 Bohm trajectories

The characteristics of this equation

dzε

dt
= ∂tz

ε + zε∂xz
ε = −∂xQε , (3.23)

are the so called Bohmian trajectories. They satisfy the system

dxε(t;q,p)
dt = kε(t; q, p) ,

dkε(t;q,p)
dt = −∂xQε

(
xε(t; q, p), t

)
,

xε(0; q) = q, kε(0; q) = zε(q, 0) = S′0(q) .

(3.24)

When the ray field is smooth and there are no caustics, it has been shown the Bohm trajectories
exist globally in time [TT], and they converge to the rays as ε→ 0, and the solution of the Burgers
equation (3.23) to converge to the derivative of the solution of the Hamilton-Jacobi equation (2.10)
[FKMS], [MPS1], [MPS2] (see also [Bo] for the physical content of this convergence). However, this
convergence cannot be proved when caustics have been appeared and as we will shown by specific
examples in the next chapter even the Bohmian trajectories may be not well defined.
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Chapter 4

Quantum potential near caustics

In this chapter, we study a couple of examples in order to get a sense how quantum hydrodynamics
works near caustics, and what kind of difficulties someone can face. More precisely, we evaluate
the quantum potential and the Bohm trajectories near a fold and the potential near a cusp. For
this we need to compute the energy density ηε(x, t) = (Rε(x, t))2 and the gradient of the phase

zε(x, t) = ∂xSε(x, t) of the wave function ψε(x, t) = Rε(x, t)e
i
ε
Sε(x,t). Uniform approximations of ηε

near fold and cusp caustics have been constructed in [FM], by using the Wigner transform. The
same method provides zε through the energy flux F ε(x, t) = ε

2i

(
ψ̄ε∂xψ

ε − ψε∂xψ̄ε
)
.

The Wigner transform of the wavefunction ψε(x, t) is defined by

W ε(x, k, t) = W ε[ψε](x, k, t) =
1

πε

∫ +∞

−∞
e−i

2k
ε
σψε(x+ σ, t)ψ̄ε(x− σ, t)dσ . (4.1)

In the case of free Schrödinger equation V (x) ≡ 0, W ε satisfies the Liouville equation

∂tW
ε + k∂xW

ε = 0 , W ε(x, k, t = 0) = W ε
0 (q, p) , (4.2)

where

W ε
0 (q, p) ≡W ε[ψε0](q, p) =

1

πε

∫ +∞

−∞
e−i

2ρ
ε
σψε0(q + σ)ψ̄ε0(q − σ)dσ , (4.3)

is the Wigner transform of the initial wave function ψε0.

Then, since, for V ≡ 0, the solution of the Hamiltonian system (2.12) is given by
x = pt+ q ,

k = p ,
(4.4)

the elementary transport equation (4.2) has the solution

W ε(x, k, t) = W ε
0 (x− kt, k) , (4.5)

By integration of the Wigner function, it follows that

ηε(x, t) = |ψε|2 =

∫ +∞

−∞
W ε(x, k, t)dk ,
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and

F ε(x, t) =
ε

2i

(
ψ̄ε∂xψ

ε − ψε∂xψ̄ε
)

= (Rε)2∂xSε =

∫
R
kW ε(x, k, t)dk .

Therefore

(Rε(x, t))2 =

∫ +∞

−∞
W ε(x, k, t)dk , (4.6)

zε(x, t) = ∂xSε(x, t) =
1

(Rε(x, t))2

∫
R
kW ε(x, k, t)dk . (4.7)

4.1 Example 1: Focal point

4.1.1 Rays and caustic

Recall that we deal only with the free Schrödinger equation, that is V (x) ≡ 0. First, we construct
the WKB with initial data

A0(q) ≡ 1 , S0(q) = −q
2

2
. (4.8)

In this case, the rays are emanating from the solution of the system (2.15) and they have the form

x̄(t; r) = r(1− t) . (4.9)

Also, the momentum is given by

k̄(t; r) = k̄(0; q) = S′0(r) = −r . (4.10)

According to the equation (2.16) the Jacobian is J(t; r) = 1 − t and vanishes at time tc = 1.
Therefore, the caustic is the focal point

t = tc = 1 , x = xc = x̄(tc(r); r) = 0 , for any r ,

and we observe that for t = 1, all rays pass through the focal point. However, there is not a shadow
zone.

4.1.2 Calculation of ηε = (Rε)2

The Wigner transform of the initial wave function is given by substituting the initial wave function

ψε0(q) = e−
i
ε
q2

2 into (4.3),

W ε
0 (q, p) := W ε[ψε0](q, p) =

1

πε

∫ +∞

−∞
e

(
i
2(p+q)
ε

σ

)
dσ = δ(p+ q) , (4.11)

where δ(x) is the Dirac’s delta function. Then, by (4.5) we find

W ε(x, k, t) = δ(k + (x− kt)) = | 1

t− 1
|δ
(
k − x

t− 1

)
. (4.12)
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We proceed now to calculate the amplitude Rε by using equation (4.6). We have

(Rε(x, t))2 =
∣∣ 1

t− 1

∣∣ . (4.13)

The amplitude satisfies the correct initial data (Rε(q, 0))2 = 1 = A2
0(q). By the definition (3.8) of

the quantum potential it follows that Qε(x, t) = 0 for all x ∈ R, , t > 0, and therefore the Bohmian
trajectories coincide with the rays.

4.1.3 Calculation of zε = ∂xS
ε

We proceed to calculate zε by substituting (4.25) and (4.12) into (4.7). We easily derive

zε(x, t) =
x

t− 1
, (4.14)

and it is easy to check that zε satisfies the homogeneous Burgers equation (3.19) since Qε and V
vanish identically. Also, it satisfies the correct initial data zε(q, 0) = −q = S′0(q).

Remark. Similar results are derived for the initial phase S0(q) = + q2

2 , by formally substituting
(t + 1) in place of (t − 1) in the above formulas for J and zε. In this case, the rays diverge and
there is not any focal point

(
the focal point is moved to the non physical point (x = 0 , t = −1)

)
.

In the following examples, we will see that in the case of fold and cusp caustics that both the
amplitude and the derivative of the phase do not satisfy the initial data and the corresponding
problems for the Burgers equation and the Bohmian trajectories are not well posed.

4.2 Example 2: Fold

4.2.1 Rays and caustic

Recall that we deal only with the free Schrödinger equation, that is V (x) ≡ 0. First, we construct
the WKB with initial data

A0(q) ≡ 1 , S0(q) = −q
3

3
. (4.15)

In this case, the rays are given by the solution of the system

dx̄(t;r)
dt = k̄(t; r) ,

dk̄(t;r)
dt = 0 ,

x̄(0; r) = r , k̄(0; r) = S′0(r) = −r2 .

(4.16)

Obviously, the momentum is given by

k̄(t; r) = k̄(0; r) = S′0(r) = −r2 ,
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and the rays are the straight lines

x̄(t; r) = S′0(r)t+ r = −r2t+ r . (4.17)

By (2.16), the Jacobian is given by

J(t; r) =
∂x̄(t; r)

∂r
= −2rt+ 1 = 0 . (4.18)

Eliminating the initial position r from the equations (4.17), (4.18), we find that the caustic is the
hyperbola xt = 1

4 in space-time R2
xt.

In order to describe the geometry of the rays near the caustics, we argue as follows. From the ray
equation (4.17) we have tr2− r+ x̄ = 0 . The discriminant ∆ = 1−4x̄t of this equation vanishes on

the caustic, and it has two real roots r1,2 = r±(x̄, t) = 1∓
√

1−4x̄t
2t in the illuminated zone 4x̄t ≤ 1 .

This means that, from each point (x̄, t) in the illuminated zone pass two rays, which emanate from
the points r1,2 on the x− axis. On the other hand, there are not any rays that penetrate the shadow
zone 4x̄t > 1 . Such an arrangement of rays characterises the caustics as fold.

By the equations (2.25), (2.20), we find that the amplitudes and the phases along the rays in the
illuminated zone are given by

A2
±(x̄, t) =

A2
0

(
q(x̄, t)

)
J±(t; r±)

=
1

±
√

1− 4x̄t
. (4.19)

and

∂xΦ±(x, t) =
−1 + 2xt±

√
1− 4xt

2t2
. (4.20)

where the indices ± correspond to the rays emanating from the initial positions ±r.

The amplitude along the ray emanating from r− is obviously complex. This means that the wave
associated with this ray suffers a phase jump equals to π

2 , when the rays touches the fold.

4.2.2 Calculation of ηε = (Rε)2

The Wigner transform of the initial wave function is given by substituting the initial wave function

ψε0(q) = e
i
ε
q3

3 into (4.3),

W ε
0 (q, p) := W ε[ψε0](q, p) =

1

πε

∫ +∞

−∞
e

[
−i
(

2
3ε
σ3+ 2

ε
(p+q2)σ

)]
dσ , (4.21)

and it is expressed explicitly in terms of the Airy function

W ε[ψε0](q, p) =
2

2
3

ε
2
3

Ai

(
2

2
3 (p+ q2)

ε
2
3

)
. (4.22)

Then, by (4.5) we find

W ε(x, k, t) =
2

2
3

ε
2
3

Ai

(
2

2
3

(
k2t2 + (1− 2xt)k + x2

)
ε

2
3

)
. (4.23)
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It can be shown that as ε→ 0, W ε trends to a Dirac function “concentrated” on the Lagrangian
manifold (parabola) Λt = {(x, k) : k2t2 + (1 − 2xt)k + x2 = 0}. We observe that for any t > 0, in
opposite to the single-phase optics, Λt is no longer the graph of a single-valued function k = Φx(x, t).
Instead, it consists of two single (real-valued) branches k = Φ+

x (x, t) and k = Φ−x (x, t), which exist
only in the illuminated zone (xt < 1

4) Thus, W ε can be written as

W ε(x, k, t) =
2

2
3

ε
2
3

Ai

(
2

2
3

ε
2
3

t2
(
k − Φ−x (x, t)

)(
k − Φ+

x (x, t)
))

. (4.24)

On the caustic xf = 1
4t , we observe that Φ+

x (xf , t) = Φ−x (xf , t) = − 1
4t2
≡ kf , and the expression

defining Λt becomes a perfect square in k, which is the typical behavior of Lagrangian manifolds
near folds. Clearly, at these points, dx

dk = 0 and the manifold Λt turns vertically.

We proceed now to calculate the amplitude Rε by using equation (4.6). This calculation can be
explicitly computed by means of the following “projection identity”,∫ +∞

−∞
Ai(αk2 + bk + c)dk =

2π

2
1
3
√
α
Ai2
(
− b2 − 4ac

4
5
3α

)
, α > 0 .

with α =
(

2
ε

) 2
3 t2, b =

(
2
ε

) 2
3 (1− 2xt), c =

(
2
ε

) 2
3x2, and it leads to

(Rε(x, t))2 =
2π

ε
1
3 t
Ai2

(
− 1

ε
2
3 t2

1− 4xt

4

)
, t > 0 . (4.25)

We note that in the illuminated zone xt < 1
4 , the argument of Ai2(·) is negative, and therefore, as

ε → 0, Rε is rapidly oscillating away from the caustic, while in the shadow zone the argument of
Ai2(·) is positive and Rε is exponentially decreasing. This picture is qualitatively and quantitatively
compatible with the predictions of the WKB solution.

4.2.3 Calculation of zε = ∂xS
ε

We proceed to calculate zε by substituting (4.25) and (4.24) into (4.7).

The computation of the energy flux, and other higher order moments of the Wigner function has
been done in [KM], and it is based on the integration formula [VS]∫ +∞

−∞
Ai(u2 − λ)umdu = (−1)mim

(
∂mF(λ, ξ)

∂ξm

)
ξ=0

, (4.26)

where

F(λ, ξ) =

∫ +∞

−∞
eiξuAi(u2 − λ)du = 2

2
3πAi

(
− 2−

2
3 (λ+ ξ)

)
Ai
(
− 2−

2
3 (λ− ξ)

)
. (4.27)

By these results, we derive

zε(x, t) =
2xt− 1

2t2
, (4.28)

and it is easy to check that zε satisfies the Burgers equation (3.19).
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4.2.4 Calculation of Quantum Potential

We proceed to the calculation of quantum potential, by using (3.12) with (eq. (4.25))

ηε = (Rε)2 =
2π

ε
1
3 t
Ai2
(
− 1

ε
2
3 t2

1− 4xt

4

)
.

We set

ω = − 1

ε
2
3 t2

1− 4xt

4
.

The first derivative of ηε with respect to x is

∂ηε

∂x
=

4π

εt2
Ai(ω)Ai′(ω) . (4.29)

We differentiate the last equation again with respect to x, and using the Airy differential equation
Ai′′(u)− uAi(u) = 0, we get

∂2ηε

∂x2
=

4π

ε
5
3 t3

((
Ai′(ω)

)2
+ uAi2(ω)

)
. (4.30)

By substituting (4.29), (4.30) into the definition of the quantum potential (eq. (3.8)), we have

Qε = −ε
2

4

1
2π

e
1
3 t
Ai2(ω)

(
∂2ηε

∂2
x

)
+
ε2

8

1
4π2

ε
2
3 t2
Ai4(ω)

(
∂ηε

∂x

)2

= − ε
2
3

2t2

[(
Ai′(ω)

)2
Ai2(ω)

+ ω

]
+
ε

2
3

2t2

(
Ai′(ω)

)2
Ai2(ω)

= − ε
2
3

2t2
ω .

Thus, the quantum potential for our particular problem is given by the simple formula

Qε =
1− 4xt

8t4
. (4.31)

We observe that Qε is independent of ε, and therefore it does not vanish when ε → 0 as someone
might expect to happen (compare with the case of the cusp in Example 3 in the next section).
Moreover, it is zero on the fold, and it is positive in the illuminated zone. Then, equation (3.10)
shows that the amplitude is rapidly oscillating away from the caustic in the illuminated zone.

4.2.5 The Bohmian trajectories

We observe that (4.28), (4.31) satisfy the Burgers equation (3.23). However, zε is not defined
for t = 0 (actually it goes to infinity), and it is therefore impossible to prescribe initial data for
the Burgers equation. The same difficulty arises in solving the system (3.24) for the Bohmian
trajectories, because (4.28) is incompatible with the initial data kε(0; q) = zε(q, 0) = S′0(q) = −q2.
Therefore, it seems that it is impossible to solve the initial value problems for the Burgers equation
and for the Bohmian trajectories. We think that this difficulty comes from the fact that the caustics
onsets at t = 0.
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In order to exploit the structure of the Bohmian trajectories, we will consider three particular
cases. The general form of the trajectories is (actually they are independent of ε since the quantum
potential is independent of ε in this case)

xε(t;α , β) =
1

4t
+ αt+ β , kε(t;α) = − 1

4t2
+ α . (4.32)

Case 1: Since kε = zε(x, t) = 2xt−1
2t2

= 0 on the curve (x = q , t = 1
2q ) , q > 0, we easily find that

the trajectories passing from these points are given by

xε(t; q) =
1

4t
+ q2t , kε(t; q) = − 1

4t2
+ q2 . (4.33)

It is easy to check that they remain in the shadow zone for all time.
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Figure 4.1: Bohmian trajectories near the fold.

Case 2: If we consider the trajectories passing from the points (x = q , t = 1
4q ) , q > 0 which are

on the caustic, we find

xε(t; q) =
1

4t
, kε(t; q) = − 1

4t2
. (4.34)

Consequently, these particular trajectories remain on the caustic for all time.

Case 3: In order to exploit the trajectories in the illuminated zone, we consider the trajectories
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passing from the points (x = 0 , t = τ) , τ > 0. These trajectories are given by

xε(t; q) =
1

4t
− t

4τ2
, kε(t; q) = − 1

4t2
− 1

4τ2
. (4.35)

It is easy to check that they remain in the illuminated zone for all time.

In all cases, the trajectories move out towards x = +∞ as t → 0+ approaching indefinitely the
caustic, and they never cross.

4.3 Example 3: Cusp

In this case, we calculate only the quantum potential, but we do not derive zε and we do not
deal with the Bohmian trajectories. An analysis similar to that we did for the fold is in principle
possible, but the completion of the calculations requires much more effort and time because they
involve the Pearcey integral, and it goes beyond the scope of an undergraduate diploma thesis.

4.3.1 Rays and caustic

Now we construct the WKB of the free Schrödinger equation with initial data

A0 ≡ 1 , S0(q) = −q
4

4
− αq2 + bq, α > 0, b > 0 . (4.36)

In this case the rays are deare given by the system

dx̄(t;r)
dt = k̄(t; r) ,

dk̄(t;r)
dt = 0 ,

x̄(0; r) = r , k̄(0; r) = S′0(r) = −r2 .

(4.37)

Obviously the momentum is given by k̄(t; r) = k̄(0; r) = S′0(r) = −r3 − 2αr + b, α , b > 0 , and
the rays are the straight lines

x̄(t; r) = S′0(r)t+ r = −r3t+ (1− 2αt)r + bt . (4.38)

By (2.16), the caustic is given by

J(t; r) =
∂x̄(t; r)

∂r
= −3r2t+ 1− 2αt = 0 . (4.39)

Eliminating the initial position r from the equations (4.38), (4.39), we find that the caustic is given
by the cusp curve

27u2 = 4v3 , u =
x

t
− b, v =

1

t
− 2α . (4.40)

The beak of the cusp is the point u = v = 0, that is
(
xb = b

2α , tb = 1
2α

)
.
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4.3.2 Calculation of Rε

The Wigner transform of the initial wave function is calculated by substituting the initial wave func-

tion ψε0(q) = e
i
ε
(− q

4

4
−αq2+bq) into (4.3), and using the integral representation of the Airy function.

For q 6= 0 we get

W ε[ψε0](q, p) =

(
2

ε

) 2
3 1

|3q|
1
3

Ai

(
2

2
3 (q3 + 2αq + p− b)

ε
2
3 (3q)

1
3

)
, (4.41a)

while for q = 0 we get a Dirac mass,

W ε[ψε0](q, p) = δ(p− b) . (4.41b)

Although q = 0 is a singular point of the initial Wigner function W ε
0 (q, p), using the distributional

formula
1

ε
Ai

(
y

ε

)
→ δ(y) , ε→ 0 ,

we see that
W ε

0 (q, p)→W ε
0 (0, p), q → 0 .

Then, by (4.5) we find

W ε(x, k, t) = W ε
0 (x− kt, k) =


(

2
ε

) 2
3 1

|3(x−kt)|
1
3
Ai

(
2
2
3

[
(x−kt)3+2α(x−kt)+k−b

]
ε
2
3

[
3(x−kt)

] 1
3

)
, x 6= kt,

δ(k − b), x = kt.

(4.42)

As ε→ 0, we see that W ε is an Airy function “concentrated” on the Lagrangian manifold

Λt = {(x, k) : k3t3 − 3xt2k2 − (1− 3tx2 − 2αt)k − x3 − 2αx+ b = 0)}.

We note that for 0 < t < 1
2α , there is a region

(
x1(t) < x < x2(t)

)
where this manifold consists of

three branches. Notice that points x1(t) and x2(t) trace the fold sides of the cusp. At t = 1
2α , this

region degenerates to the point B =
(
x = b

2α , k = b
)

which is an inflection point of Λt with vertical
tangent. Point B projects onto the beak of the cusp. For t > 1

2α the manifold becomes and stays
thereafter single-valued.

We proceed now to calculate the amplitude Rε by using equation (4.6). This calculation can be
explicitly computed by means of the following “projection identity”[FM]∫ +∞

−∞

1

|ξ|
1
3

Ai

(
λ

ξ
1
3

(ξ3 − vξ + u)

)
dξ =

3
1
4

2π
√

2λ
1
4

|P (V,U)|2, λ > 0 , (4.43)

where P (V,U) denotes the Pearcey integral [Kam], [Wo]

P (V,U) =

∫
R
e

[
i
(
t4

4
+V t2

2
+Ut
)]
dt , (4.44)

with

V = − 1√
2
λ

3
4 3

1
4 v , U =

1

2
3
4

λ
9
8 3

3
8u .



23 4.3. Example 3: Cusp

Thus, we obtain

(Rε(x, t))2 =
1

2πt

(
2

ε

) 1
2

|P (r, s)|2 , (4.45)

where

r = − 1

ε
1
2

v , s =
1

ε
3
4

u . (4.46)

and

u =
x

t
− b , v =

1

t
− 2α . (4.47)

Calculation of quantum potential

We proceed to calculate the quantum potential by (3.12). First we compute the derivatives

∂x|P (r, s)|2 = 2Re(P̄ ∂xP ) , ∂2
x|P (r, s)|2 = 2Re(P̄ ∂2

xP ) + 2|∂xP |2

and

∂xP (r, s) =
1

ε
3
4 t
∂sP (r, s) , ∂2

xP (r, s) =
1

ε
3
2 t2

∂2
sP (r, s)

we get

∂xη
ε =

1

πt2
2

1
2

ε
5
4

Re(P̄ ∂sP ) , (4.48)

∂2
xη

ε =
2

1
2

πt3ε2

(
Re(P̄ ∂2

sP ) + |∂sP |2
)
. (4.49)

Thus, we write the quantum potential in the form

Qε(x, t) =
1

2ε
3
2 t2

|P |2∂2
s |P |2 − 1

2(∂s|P |2)2

|P |4
. (4.50)

Now, we introduce the new variables

r = −ξ , s = µξ
3
2 , (4.51)

and we rewrite the Pearcey integral P (r, s) in the form

P (r, s) = Y (ξ, µ) :=

∫ +∞

−∞
ei
(
t4

4
−ξ t

2

2
+µξ

3
2 t
)
dt . (4.52)

Note that by eliminating ξ in (4.51), and using the (4.47), we get u2 = µ2v3. For µ = 2√
27

, the last

equation represents the cusp in the caustic coordinates (u , v).

In new variables we have

∂|P |2

∂s
=

2

3µ
2
3

s−
1
3
∂

∂ξ
|Y |2 , ∂2|P |2

∂s2
=

4

9µ
4
3

s−
2
3
∂2

∂ξ2
|Y |2 . (4.53)

Unfortunately, we cannot proceed in a way similar to that we followed for the fold and we are not
able to derive a closed form of the quantum potential. The difficulty comes from the fact that we
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do not have appropriate differential equations governing the Pearcey integral in order to eliminate
the denominator in (4.50). Thus, we are obliged to derive an asymptotic expansion of Qε.

For this purpose, we employ the uniform asymptotic expansion [Kam]

Y (ξ, µ) = exp
(
iξ2

2

(
f(t2;µ) + f(t3;µ)

))
×

[
p0(ν) 2π

ξ
1
6
Ai
(
− ξ

4
3 ζ
) (

1 +O
(

1
ξ2

))
+ q0(ν) 2π

iξ
5
6
Ai′
(
− ξ

4
3 ζ
) (

1 +O
(

1
ξ2

))]
+

+eiξ
2f(t1;µ)

(
π

3t21−1

) 1
2 1+i
ξ1/2

(
1 +O

(
1
ξ2

))
, ξ →∞ , 0 ≤ µ ≤ 2√

27
, (4.54)

where

f(t;µ) =
t4

4
− t2

2
+ µt ,

and

t1 = − 2√
3

sin(
π

3
+ σ) , t2 =

2√
3

sinσ , t3 =
2√
3

sin(
π

3
− σ) ,

with

3σ = arcsin

(
1−
√

27

2
ν

)
, ν =

2√
27
− µ ,

are the roots of the cubic equation ∂tf(t;µ) = 0.

Note that the uniformity parameter µ, measures the “distance” from the cusp, and the expansion
is valid even for µ = 2√

27
.

The functions p0 and q0 are defined by the formulas

p0(σ) =
1

2

(√
2ζ1/2

2
√

3z3 + 3z2
3

+

√
−2ζ1/2

2
√

3z2 + 3z2
2

)
,

and

q0(σ) =
1

2ζ
1
2

(√
2ζ1/2

2
√

3z3 + 3z2
3

−

√
−2ζ1/2

2
√

3z2 + 3z2
2

)
,

where z1(σ), z2(σ), z3(σ) are given by

z1(σ) = − 2√
3

sin

(
ψ +

π

3

)
− 1√

3
, z2(σ) =

2√
3

sinψ − 1√
3
,

z3(σ) =
2√
3

sin

(
π

3
− ψ

)
− 1√

3
, 3ψ = arcsin

(
1− σ

√
27

2

)
, |ψ| ≤ π

6
.

The quantities zi, i = 1, 2, 3 are the roots of ∂zg(z; s) = 0 with

g(z; s) = −σz +
z3

√
3

+
z4

4
,

and

ζ
3
2 (σ) =

3

4

(
g(z2;σ)− g(z3;σ)

)
.
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We observe that ζ = 0 when z2 = z3 which happens on the cusp.

We combine (4.50), (4.53), (4.54), and after some cumbersome asymptotic algebra, we obtain
the expansion

Qε(x, t) = −32

81
ζ3ε1/2 +O(ε3/2) , ε� 1 , (4.55)

We observe that the quantum potential goes to zero as ε → 0, and that it vanishes on the
cusp, since ζ(σ = 2√

27
) vanishes on the cusp. This asymptotic behaviour is completely different

than the behaviour of the quantum potential near the fold. We may conjecture that the difference
comes from the fact that in the case of the cusp we do not have a shadow zone. On the other
hand, preliminary calculations show that the momentum is again too singular at t = 0+ and the
initial value problem for the Bohmian trajectories is not compatible. These observations imply
that although the quantum potential vanishes at the classical limit, the Bohmian trajectories do
not converge to the geometrical rays.
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Chapter 5

Discussion

We have studied the quantum hydrodynamics for the free Schrödinger near three elementary
caustics: the focal point, the fold and the cusp. We have shown that in the case of the focal
point the Bohmian trajectories coincide with the geometric rays, since the quantum potential is
identically zero. In the case of the fold, we found that the quantum potential is independent of
the semiclassical parameter ε and it vanishes on the caustic. We have faced a major difficulty:
the Bohmian trajectories and the corresponding Burgers equation fail to satisfy the initial data
since the caustics onsets at t = 0+ at infinity. In order to identify the origin of this difficulty,
we employed the Wigner transform in order to compute the derivative of the phase of the wave
function and to trace the Bohmian trajectories. It turned out, that the trajectories never cross
and trajectories starting on the caustic remain on the caustic forever. In the case of the cusp, the
quantum potential depends on the semiclassical parameter and we have only calculated the main
asymptotic term in its expansion for small ε. The approximate potential vanishes on the cusp.
Preliminary calculations imply that higher order terms also vanish on the caustic, and that the
initial value problem for the Bohmian trajectories is not well posed in this case too. The tracing
of Bohmian trajectories is open interesting question, because in the case of the cusp there is not a
shadow zone (but only a less illuminated single-phase zone), and we would like to understand how
Bohmian trajectories escape from the beak of the caustic.
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Appendix A

The Liouville formula

Lemma A.0.1. [Har] Consider the autonomous system of n equations

dx(t)

dt
= f(x), x ∈ Rn (A.1)

with f(x) ∈ C∞(Rnx). Let x(t, q) ∈ C∞
(
I×V

)
, an (n− 1)-parameter family of solutions,

α = (α1, . . . , αn−1) ∈ Rn−1
α , V ⊆ Rn−1

α , I = {|t| < δ} for some δ > 0. Set

J(t, α) = det
∂x(t, α)

∂(t, α)
, (A.2)

and assume that J(t, α) 6= 0 for (t, α) ∈
(
I×V

)
. Then the Liouville formula

d

dt
ln J(t, α) = tr

(
∇xf

(
x(t, α)

))
= ∇x · f

(
x(t, α)

)
, (A.3)

holds for (t, α) ∈
(
I×V

)
.

Proof. For matrix A(t) ∈ C1(I), det A(t) 6= 0, t ∈ I, the Jacobi formula

d

dt
ln
(

det A(t)
)

= tr

(
A−1(t)

dA(t)

dt

)
, (A.4)

holds: From (2.22) we have
dx(t, α)

dt
= f

(
x(t, α)

)
=⇒

∂

∂t

(
∂x(t, α)

∂(t, α)

)
= ∇xf

(
x(t, α)

)∂x(t, α)

∂(t, α)
. (A.5)

We apply formula (2.25) with A = ∂x(t,α)
∂(t,α) , α = q. Then by using (2.25) we have

∂

∂t
ln
(

det
∂x(t, α)

∂(t, α)

)
= tr

((∂x(t, α)

∂(t, α)

)−1 ∂

∂t

(∂x(t, α)

∂(t, α)

))
=⇒

∂

∂t
ln J(t, α) = tr

[(∂x(t, α)

∂(t, α)

)−1
∇xf

(
x(t, α)

)(∂x(t, α)

∂(t, α)

)]
=

tr

[(∂x(t, α)

∂(t, α)

)−1(∂x(t, α)

∂(t, α)

)
∇xf

(
x(t, α)

]
= tr

(
∇xf

(
x(t, α)

))
= ∇ · f

(
x(t, α)

)
, (A.6)
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since tr(BC) = tr(CB) .

• Now we consider the Hamiltonian system for the rays


dx̄
dt = k̄(t, α) ,

dk̄(t,α
dt = −V′

(
x̄(t, α)

)
.
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