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“If life seems jolly rotten

There's something you've forgotten

And that's to laugh and smile and dance and sing
When you're feeling in the dumps

Don't be silly chumps

Just purse your lips and whistle, that's the thing”

Monty Python
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Euxaplotiec

Me tnv oAOKANPWON AUTHE TG Epyaciag, OAOKANPWVETAL TEPOV TWV OTIOUSWV HOU
Kall VOl LEYAAO KOUUATL TNG {wn¢ pou. H Sladpopn Hou TO00 oTa TPOTITUXLOKA aAAQ
KOl OTQL LETATITUXLAKA POLTNTIKA XPOVLO LOU XAPLOE EUTELPLEG Kal dihoug Ttou Ba pe
kaBopillouv, WG MPOCWTILKOTNTA Kal wG avBpwrto, kat Ba pe ocuvtpodelouv kab’ 0An
v Slapkela g Lwng pou. AKOun, SnULolPyNnoe TNV LEYAAN LOU aydrtn yLo TNV TTOAN
Tou HpoakAeiou, mou map’ otL Sev eival afloBavpaoctn ek MPWING OPewg, eival
olyoupa povadikn kat onwe oAa ta aAnBwva ouopda mpdayuata EXeL TNV KA TG
Slaitepn ko povadikn opopdLa.

H aAAnAenidpaor), autd ta Suduol xpovia, pe Stadopoug avBpwrmoug kabdplos o€
pHeyalo Babuod téoo TNV mopeia mPog TNV 0OAOKARPWON TNG MOPoUoaCS EpYAciag Kal
KOT EMEKTAON TWV OTOUSWV HOU, 0G0 Kal 0TNV SLopopdwaon TS MPOCWITLKOTNTAC
pHou. Oa ntav, Aoutov, mapdAndn va pnv ekppAcw TIC EUXAPLOTIEG MOU OTOUC
avBpwroug mou cuvéBahayv og autod, o KaBEvag e Tov §IKO Tou HovadLko TPOTo.

Apxka, Ba nBsAa va euxaplotiiow tov emBAEnovTa NG epyaociog pou, Kabnyntn
Anuntplo AyyAo, yla tnv duvatdtnta mou pou £6woe va efepeuvrow Eva Tedio
HOKPLA aTto Ta LEXPL TOTE evladEpovTa Hou, KABWE KoL yLal TLG TIOAUTLUEG CUBOUAEC
TIoU pou mapeixe ka®’ 0An tnv Stdpkela twv ornoudwv pou. Emiong, Ba nbela va
guxaplotiow to 16pupa Texvoloyiag kKLEpeuva KAl GUYKEKPLUEVA TO IVOTITOUTO AOWNG
Kol A€Lep yLa TNV UALKOTEXVLKN UTIOSOWN TTou Iapeixe kKabwg Kat tTnv xpnuatodotnon
NG EPEVVNTIKAG HoU SOUAELAC. AKOUN, Ba NBeAa va EUXAPLOTHOW T UTIOAOLTTAL LEAN
NG TPLUEAOUG EMITPOTNC €EETOIONG TNC EPyaOiag Hou, Toug AvamAnpwtr Kabnyntn
Anéotolo Inupo kat Koplo Epeuvnti MavAo NauAidn, mou 6€xOnkav va eéetdoouy
™V S0UAELd Ttou ekmovnoa. Tov teAeutaio ek Twv dUo Ba NBsAa va Tov euXopLOTHoOW
WSLaLtépw  yla TNV cUVOALKN Ttapouasia Tou Ko’ 6An Tnv ekmovnon tng pyaciag, Tig
TIOAUTLUEG CUMPBOUAEG TOU Kal TV kKaBodynon mou Hou TapEixe.

Oa nbela, emiong, va otabw laitepa otV Mopoucia TPLWV OTOUWV TIOU HE
BonBnoav ce peydho Babud otnv ekmoOvnon TNG EpyAciog Kal xwpig tnv mapoucia
Toug Ba Ntav moAv Siadopetikn n mopeia TnG SoUAELAg pou. MpodkeLtal yia toug Ap.
MNavaywtn Zwlo, Ap. Ayyeho DWutnidn kat Ayyelo KopomouUAn, mou He TNV
kaBodnynon, Tic cuBoUAEG alAa Kal KABOe péow to omoio StEBetav, pe BorOnoav kot
ue didacav.

MNpoxwpwvtag, Oa nBeha va otabw og 6AoUG TOUC avOPWITOUC TTOU HE TNV TOPOUCLA
Touc Bondnoav Kol £Kavav TPAYUATIKO EUXAPLOTO KOl QTOAQUOTIKO TO EPYOOLOKO
nieplBailov Tou gpyaotnpiou. Euxaplotw toug Elprivn MaAeylavvakn, Avtwvia Ivtlg,
Map\éva Kwvotavtivou, Anuiten Xat{nylavvn, Kwota Xat{nytavvakn, Ap. Nwpyo
ToepeBelakn kat Ap. OAya Kokkivakn, toco yla tnv Bornbela mou pou mapeixav 6co
KOL yla TNV €uxaplotn kat Gpulikn atpdéodalpa mou pou xaploav. Akoun, dev Ba
umopovoa va apaAeiPpw ta LEAN Tou gpyaoctnpiov «Dwtovikng pue Edapuoyeg otnv
Aypodiatpodn kat to MeptBaiiovy», MNwpyo Itavpakakn, Mavo Opdpavakn kot Niko
OpaykoUAN yLa TV cUUPBOAN TOUG OTO EUXAPLOTO EPyAoLako TepIBAAlov kabBwg Kat
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TIC TOAUTIUEG CUUPBOUAEG TTou pou mapeixav. Evw, ev Ba émpemne va Eexdow tov Ap.
Inupidwv XauAn yia tnv apéplotn BonBeld tou Kal TG cUPBOUAEC Kol SLEUKPLVAOELG
TIoU Hou £8woe otav 0Aa Seiyvave va pnv Byalouv vonua.

H Wlatepdtnta ¢ nmapolvoag epyaciag evtomiletal oTo yeEYovog MwE ylol TV
Tipaypatomnoinon tng ATav anapaitntn n cuUAAoyr okeAETIKWY Selypdtwy. NMavw oto
KOUMATL auto, Ba nbeha va suxaplotriow toug Mavo TowAn, KéAu TowAn, Mnva
Aollou kalt ZoUAa KouAoutumadvn yla tTnv avidloteAr] mopayxwpnon mARBoug
Selypatwy mpog e€€taon, SLOTL wpic TNV cuBoAn Toug n Mapovaoa epyacia dev Ba
elxe mpayuparonownBei. Eniong, Ba nBela va suxaplotriow tig ABavacia Mamouton
kat lwavva Mavén ya ta dslypata mou pou mpocedepav, map’ OtL autd Oev
Xpnotpomnoténkav oto mAaiolo Tn¢ mapovuoag epyaciac.

KAeivovtag, Ba nBela va avadpepbw Kal oe EexwploTOUC avOPWIOUG OV UE TNV
otAPLEN TouC Kal TNV KaAn toug cuvtpodld Bonbnoav kat Bonbouv oxL pévo otnv
mapovoa gpyocia, aAAd Kal cUVOALKA oTo va Stapopdwbw Kal va yalouxnbw cav
AvBpwWMOoC Kal va €lval amoAauoTIKOTEPN, XOPOUUEVN Kal Opopdn N KaBnuepvotnta
Hou. ApxLK@, Ba NBeAa va EuXAPLOTOW TNV OLKOYEVELA o, Toug ZaBBa Inavo, KEAu
Mapouton, Afuntpa Mapouton kat Kwvotavtivo Zmavo, ylo T apépLotn ayarnn Kot
BonBeLa mou pou €xouv poodEpeL OAa aUTA Ta Xpovia. Emiong, Eexwplotn avadopd
odellw va kAvw otnv Mapio ZUOKAKN, TIOU PE TO EKPNKTLKO TNG TOMEPAUEVTO
dpovrtileL va pnv ival Bapetn Kapia oty Tng NUEPAG Lou. TéEAog, Sev Ba pmopovoa
va napoAeiPpw toug didoucg pou, Niko, Ntwtogp, MixaAlakn, Mavaywtn, Mapla,
Mnwpyo Kat OxL povo, mou PBpiokovtav kal Bpiokovtal avra kel ywa va pe Bonbouv
Kal va pe otnpilouv, o kaBévag pe tov 61ko Tou EEXWPLOTO TPOTO.
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Abstract

The excavation of mass graves and sites of accidents or natural disasters, which reveal
numbers of hard tissue remains originating from multiple individuals, is usual in
archaeology and forensic science. The discrimination of the individuals and the
classification of their remains is useful for revealing the identity, as well as information
about life and death of those individuals. However, poor preservation makes the task
of discrimination/classification extremely difficult and time consuming, using
conventional methods based on morphological characteristics or DNA analysis. Thus,
the need for simple, direct and cost-effective analysis of hard tissue remains, with
minimal damage to the artifacts, has emerged.

In the current work, Laser Induce Breakdown Spectroscopy (LIBS), combined with
Machine Learning algorithms and a simple Artificial Neural Network, were employed
for the discrimination and classification of hard tissue remains. Several bone
fragments and teeth were studied, using a LIBS microscopy setup (micro-LIBS) for data
collection, while Machine Learning algorithms and a Neural Network were used for
data analysis.

Micro-LIBS is a micro-destructive, fast and transferable method, with high spatial
resolution (around 50um/spot) that enables analysis of the surface or the cross-
section of samples, with little or no sample preparation, providing massive amounts
of data in little time. Thus, it is a suitable technique to be combined with machine
learning algorithms for the analysis of the collected data.

Hydroxyapatite (Cas(POa4)30H) is the main component of both bones and teeth, while
proteinaceous materials (mainly collagen) and water, in different ratios, complete the
hard tissue matrix. Magnesium (Mg), Strontium (Sr) and Barium (Ba) can replace
Calcium (Ca) in metabolic processes and thus can replace it in hydroxyapatite’s crystal.
Spectral emission lines from biogenic elements in the remains are observed across the
spectral range used (200 - 660 nm). Hence, the data collected provide significant
information to the algorithms employed.

Machine Learning and Neural Networks enable computers to learn from experience
following a similar process with several living organisms. This process is based on
pattern recognition on given data, improving future decisions and giving computers
the ability to learn without being explicitly programmed. This pattern recognition on
LIBS data is the aim of this work. The comparison of four different methods (k-Nearest
Neighbors, Random Forest, Support Vector Machine, Artificial Neural Network) with
gradual complexity, after parameter tuning and feature selection, provided the best
behaved model to achieve the requested task.

Artificial Neural Network had significantly better results compared to the rest of the
models used, while the selection of specific spectral areas corresponding in spectral
lines from biogenic elements increased the resulting classification accuracy. The
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achieved classification varied from decent to excellent, giving a good classification
accuracy regardless of the used data.

Concluding, the present work is an attempt for development of a fast, accurate and
easily accessible and applicable methodology for the discrimination and classification
of hard tissue remains, based on the analysis of LIBS data using machine learning
models.

Key words: Laser Induce Breakdown Spectroscopy (LIBS), micro-LIBS, Machine
Learning, Neural Networks, Hard Tissue Remains, Archaeology, Forensic Science
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MepiAnyn

AlaXpOVIKA N apXOLOAOYLKH Kol EYKANUATOAOYLKN €PEUVA, EPXOVTOL AVTIUETWIIECG LE
Vv avaokadn kKot anokGAuvyn pallkwv TopLKWY XWPWV TIoU TEPLEXOUV TIARBOG
OOTIKWV KOl O8OVTIKWV UTIOAELUUATWY HEYAAOU aplOUOU UTOKELWWEVWY. la Tn
BEATloTn Suvatr) UEAETN TWV EUPNUATWY QUTWV KAl TNV €aywyr] CUUMEPACUATWY
TO00 yla TNV {wr 600 Kal yla ta aitia BavATou Twv UTOKELLEVWY Elval avayKaiog o
SLoXWPLOUOC KAl N KATNYOPLOTOiNoN TwV UTIOAELUUATWY OE UTIOKELHEVA, Yl TNV
OVOKQATAOKEUT TUNUATWYV 1} Kol OAOKANPOU ToU okeAETOU. H cUyxpovn ooteoloyia Kal
ooteoapyaloloyia Sdivouv cuxvd AUon, xpnolponolwwvtag pebodoug Baollopeveg oe
HOPdOAOYLKA XAPOKTNPLOTIKA TwV 00Twv. H taxvtnta Kat n akpifela Twv pebodwv
QUTWV €lval Apeca eEAPTWUEVEG Ao TNV KAtaotaon Slatnpenong Twv EUPNUATWY UE
OUVETELA N SLadlkacio XapaKTNPLOMOoU va €lval, 0 OPKETEC MEPUTTWOELS, XpovoRopa
KalL TO armoTtéAeopa avakplBEG. MNa tov Adyo autod, n avantuén eVAAANOKTIKWY, EUKOA
epapuooilpwy peBddwv mou avéavouv TO00 TNV TaxUTNTA 0G0 Kal TNV akpipela tou
Slaxwplopovu, amlomowwvtag T mopandavw Swadilkacieg, Ba ntav Sduvatd va
AELTOUPYNOEL EVEPYETIKA TOGO OTNV OPXULOAOYLIKI) OCO KOL OTNV EYKANUOTOAOYIKN
ETLOTNHOVLKH €pEUVA.

Itnv mapouoa epyaocia, HEAETNONKE n epappoyn TNG GACUATOOKOTING TTAACUATOC
emayopevou amnd AéwWep (Laser Induced Breakdown Spectroscopy, LIBS), oe
ouvbuaouo pe tnv enefepyaoio Twv Sedopévwy pe HEBOSOUC UNXAVIKAG HaBnong
(Machine Learning) kat pe texvntd veupwvika diktua (Artificial Neural Networks) pe
OKOTIO TO OLOXWPLOMO KAl TNV KOTNYOPLOTIOinon O€ UTIOKELUEVA, OOTIKWV Kol
060VTIKWV UTOAELPUATWY. MeAetiBnkav avBpwriva kot {wika Selypata, He xpAon
Suataéng uwkpookomiag LIBS (micro-LIBS) ywa tn ouMoyn Twv ACHATIKWY
6ebopévwy, evw n enefepyacia Kol avaAuon auTwV MPAYLATONOONKE LECW TWV
HEBOSWV HNXAVIKAG HABNnong kabwg Kal PE TN XPHON €vOo¢ amAoU TexvnTtou
VEUPWVLKOU SLKTUOU.

Me tn 6uatagén micro-LIBS mpaypatonoleitol ovAaAucon O TOUEG OKEAETIKWV
UTIOAELUHATWY, SLOTACEWV HEPIKWY cm?, He uPnAn xwpik avaluon (repimou 50
um/onuelo) evw emttuyxavetol toxsia ouAloyr peydAou oplOpol GaoUOTIKWY
6ebopévwy, anapaitntn npodmoéBeon yla tn BEéAtotn edpapuoyr Twv aAyopiBuwv
TIOU XpnoLuomnol)énkav yla tnv availuon twv dedopévwy. Emtiong n texvikn LIBS sivat
HULKPOKATAOTPEMTIKN, Sle€dyetal ameuBelag otnv emupdvela Tou TMPOG avaluon
OVTIKELLEVOU Kol dev amaltel mpoemefepyaoia Tou Selypatog, yeyovog mou tnv
KaOlotd KatdAAnAn vyl Tn OTOLXElOK avaAuon evaliobntwv Selypdtwv Kot
OVTIKELUEVWV TIOALTLOTIKAC KAnpovouiag.

Tol 00TA KOL TAL SOVTLO TWV OPYAVIOUWY, £XOUV WE KUPLO CUCTATLKO ToVv udpouamatitn
(Cas(P0Oa4)30H), evw mepPLEXOUV KAl HLKPO TTOCOOTA OPYOVLKWV EVWOEWV, OMWC TO
KoA\ayovo, kabwg kat vepd. MapdAAnAa, otolyeia Onwg to payviow (Mg), to
otpovtio (Sr) kot to PBapo (Ba) svowpotwvovtol OTo TALYHO WG TIPOCHIEELS,
avtikaBlotwvtag to acPéotio (Ca). Itn ¢oopaTIKA TEPLOX OTNV  omola
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nmpayuatonoionkav ot petprioelg LIBS (200 -660 nm) mapoatnpouvtol KopudEg
EKTIOUTIAG OAWV TwV TpoavadePBEVIWY OTOLXEIWY, YEYOVOC TTOU CUVETAYETAL TNV
unapén emapkolG MAnpodoplag yLa TN OTOLXELAKT) CUOTOON TWV LEAETWUEVWY LOTWV.
AuTO kaBlota ta dedopéva mou cuAEyovTal KATAAANAQ yLa TNV AVTANON AUENUEVNG
TAnpodopiag amno toug adyopiBuoug mou xpnoLonotnénkay yo tTnv avaiuon.

H unxoavikn paénon kat ta TtexvnNTa veupwvikd biktua, Bacilovtal otn xpron
OAyopiOUWVY KOl OTATIOTIKWY HOVTEAWV yla TNV eKmaibevon/ekuadnon evog
umoAoylotr PBacel mopadelypdTwy Kal tnv eUpeon potifwy, xwpl¢ avBpwrivn
napéupaon, Ue TPOMO eKUABNONG MAPOUOLO E QUTOV TOU avBOpwrivou eyKePpAAou
KaBwg kal aAMwv Iwviwv opyaviopwv. H avalitnon avaloywv potiBwv ota
KataypadOopeva GACHOTO OKEAETIKWY UTIOAELUUATWY, TIOU Umopouv va BonBricouv
Of€ LKOVOTIOLNTLKI) KATNYOPLOTIOINOT TOUG, OmMOTEAEL KAl TOV BOOIKO OKOTO TNG
epyaoiag. OL uéBodol mou SiepeuvnBnkav (k-Nearest Neighbors, Random Forest,
Support Vector Machine, Artificial Neural Network) &laBétouv KAlHakoUpEvN
TIOAUTIAOKOTNTA KOl Qmattouv SLadopeTIKr) UTIOAOYLOTIKA WoxU. Mpayuatonoltnonke
OUYKPLTLIKN OVAAUCN TWV AMOTEAECUATWY HETAEY TWV TECOAPWV HEBOSWVY pE OKOTIO
NV €UPeCn TwV PBEATIOTWV TMOPAUETPWY UE TIC OMOLeC pmopel va emtevxBel n
ovATTuén evog aLOTILOTOU LOVTEAOU SLOXWPLOMOU KOl KOTNYOPLOTIOiNoNG OKEAETIKWV
UTIOAELUMATWY. Toutoxpova €PeUVAONKE O TEPLOPLOUOG TWV XPNOLUOTIOLOUUEVWY
GACUATIKWV TIEPLOXWV VLA TNV €K VEOU BeATIoTOMOINON KABWCE KOl TNV EMLTAXUVON TNG
avaAuong twv deSopévwv.

Ao Ta AMOTEAECUOTO TNG AVAAUONG TIPOEKUYE N UTIEPOXN TOU VEUPWVIKOU SLKTUOU,
OUYKPLTIKA PE TouG UTtoAotoug adyopiBuoug, kabwg Kal n emAoyr CUYKEKPLUEVWV
daoUATIKWY TEPLOXWV yla TNV emitevuén Ttou PEATIOTOU SloXWPLOMOU  Kal
Katnyoplomoinong twv dedopévwy. Me tnv xprion tTwv nipoavadepbéviwy, N akpifela
Katnyoplomoinong Twv Ttecodpwv OSladopeTtikwy oUVOAwWV Sebouévwv  Tou
€€ETAOTNKOV KUPAVONKE OO LKAVOTIOWNTIKY €WwC €EQLPETIKN, EMITUYXAVOVTAC €va
TOUAQXLOTOV ETIAPKEC TTOCOOTO SLOXWPLOUOU OVEEXPTATWE OLUTWV.

Zuvoyilovtag, oto mAaiolo ¢ mapovoag epyaociag HEAETAONKE N avamtuén HLog
ToxElOG, TPOOBACIUNG KOL LE LKOVOTIOLNTLKH akpiBela peBodoloyiag StaxwpLlopou Kot
To€LVOUNONC OOTIKWVY KAl 080OVTLIKWY UTIOAELUUATWY, Baollopevn otnv enetepyacia
daopaATIKWV SE6OUEVWY EKTIOUTC TTAACLOTOC EMOYOLEVOU OO AEWEP, LE TN XPHoNn
HEBGSWY HUNXaVIKAG HABnong Kal veupwvika Oiktua, pe mBavr edapuoyn o€
OPXOALOAOYLKEG LEAETEG.

Nééeic kAeldia: Oaopatookormiag MAdopatog Emayopevou amd Aélep, Mnyxovikn
Madnon, Nevpwvika Aiktia, ZkeAetika YrnoAsiuuata, Ootikd YrnoAsiuuata, OSoviika
YroAeiuuata, Apxatodoyia, EykAnuatoAoyio
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1 Hard Tissue Remains

1.1 Excavations and Hard Tissues in Archaeology

Archaeology and forensic science are both well-established disciplines, focusing,
among others, on the scientific study of remains of past human lives and activities and
the investigation of crime scenes, respectively. (Darvill, 2019; Daniel, 2019; Giannelli,
2006) Their common ground is found in forensic archaeology and anthropology that
investigate archaeological and forensic excavations. (Hunter, 2009) Hard tissue
remains (e. g. bones, teeth) from animals and/or humans constitute important and
often key findings in many excavation sites. Considering the large number of
excavations going on all around the globe every year, studying and analyzing biological
remains can provide useful information. (Villagran et al., 2009; Samek et al., 2001;
Darvill, 2019) For example, excavated hard tissue remains may be useful for revealing
the identity, as well as the way of life and death of individuals they belong to and as a
result they are important not only in the scientific and humanitarian context but also
they may have legal implications. (Moncayo et al., 2014; Hunter et al., 2001,
Pietrusewsky, 2007, Kumar & Sharma, 2018) Thus, the discrimination among
individuals and the identification of the remains, is very important for the progress of
scientific research, especially in forensic archaeological studies, which face the task of
excavating sites of accidents, natural disasters and mass graves, with remains by
multiple individuals (Figure 1.1). (Moncayo et al., 2014; Crossland, 2000, Samek et al.,
2001; Lindley, 1977)

Figure 1.1: Hard tissue remains of multiple individuals in Igreja de SGo Jodo Evangelista - Igreja
dos Loios, Evora, Portugal.

In addition to the large amounts of hard tissue remains that can be found in an
excavation, it is also their condition that can vary greatly due to a number of reasons,
which adds to the complexity of the problem. Individuals can be found either as
complete skeletons, or as dismembered assemblages or even fragmented and poorly
preserved as a consequence of several factors, for example, scavenging animals,
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scattering and burial because of agricultural activity or downslides, or disturbance by
local foot traffic. In particular, in the case of mass graves, victims may have been
intentionally incinerated or dismembered by use of explosives to prevent
identification. (Haglund, Connor & Scott, 2001; Hunter et al., 2001)

In order to achieve identification, discrimination between individuals and
classification of the fragmented hard tissues, is necessary and several methods are
used, relying on multidisciplinary expertise and various techniques of physical and
chemical analysis. (Moncayo et al., 2014; Hunter et al., 1994) Some of the most
frequently used techniques are forensic pathology, forensic odontology and DNA
analysis, while micromorphology of the tissues can be very useful, too. (Moncayo et
al., 2014; Villagran et al., 2009, Samek et al., 2001) Considering that health and dental
records may not exist and DNA availability might be limited, especially for
archaeological researches, those methods are unable to provide clear information.
(Moncayo et al., 2014) Thus, the need for simple, direct and cost-effective analysis of
hard tissue remains, preferably with non- or minimally invasive means, is obvious. In
recent years, several projects based on the analysis of hard tissue remains using laser
sampling techniques have been reported. For example, LA-ICP-MS and LIBS combined
with chemometrics and machine learning algorithms, are the most commonly non-
DNA analytical techniques used for supplementing forensic archaeological studies.
(Moncayo et al., 2014; Kumar & Sharma, 2018; Rehse, Salimnia & Miziolek, 2012;
Siozos et al., 2021, Samek et al., 2001, Castro et al., 2010)

1.2 Structural and Chemical Characteristics of Hard Tissues

Structural characteristics of bones and teeth are quite different. Both of them consist
of several types of tissues that differ from one another, either in morphology and/or
in chemical composition. Almost all types of bones consist of two different tissue types
(Figure 1.2). On the external layers, a lamellar tissue forms a smooth surface, which is
called cortical bone and it is compact and bulky, giving the bone its shape. On the inner
part, a spongy or cancellous tissue type, called trabecular bone, forms a fine network
of thin bone beams. This spongy and flimsy tissue fills the inner parts of the bone,
allowing blood and bone marrow to flow while it also reduces the total mass of the
bone. The surface of trabecular bone is significantly larger and its regeneration is much
faster, than that of the cortical bone. (Castro et al., 2010; Lynnerup & Klaus, 2019) As
a result, trabecular bone is more sensitive to diagenetic changes and burial
contamination, hence it is less valuable especially in archaeological research which
deals with samples that are long buried even for centuries. (Castro et al., 2010)
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_ Trabecular Bone

Figure 1.2: The outside surface in bones is covered by a compact and bulky tissue, the cortical
bone, which gives the shape and strength to the bones. The inner part of each bone consists of a
spongy fine network of thin bone beams that allow blood to flow and minimizes bone mass. This
tissue form is called trabecular bone. (Lynnerup & Klaus, 2019)

Teeth consist of two different sections, the crown and the root, and four distinct
tissues, enamel, dentine, cementum and plum (Figure 1.3). The crown of a tooth is the
exposed part of it, outside of the dental arch, while the root is inside the dental arch.
Plum is the only non-calcified tissue of a tooth, occupying the plum cavity and contains
cells, nerves fibers, blood and lymph vessels. The plum cavity is encircled by a calcified
tissue which is called dentine, forming the main body of the tooth. Surrounding
dentine, the two different areas of the tooth, crown and root, differ in their
composition. The outer layers of the crown are mainly formed by enamel, the hardest
calcified tissue in the human body with high concentration of mineral matter,
protecting the inner layers of the tooth. On the other hand, the outer layers of the
root are formed by cementum, a hard tissue very similar to dentine. (Tlrp & Alt, 1998;
Castro et al., 2010) Because of their excess, dentine and enamel are the calcified
tissues that are used for analytical purposes. The regeneration dentine is subject to
makes it useful for probing more recent exposure in environmental changes. At the
same time, its less mineralized and softer structure makes it vulnerable in degradation
and burial contamination. (Castro et al., 2010) Enamel is the tissue most resistant to
diagenesis, compared with the rest of the body’s hard tissues, reflecting more
accurately the elemental composition for the studied organism. (Klepinger, 1984,
Castro et al., 2010) Thus, in archaeological studies enamel is the preferable tissue for
determining elemental and isotopic composition, because of its hardness and its
reduced probability for being affected by diagenesis and burial contamination,
followed by the cortical bone tissue. (Castro et al., 2010)
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Figure 1.3: The main body of the tooth is formed by dentine. Inside dentine is the plum cavity,
where the non-calcified tissue of the tooth, nerves and organic matter, is well protected. The
outer surface of it is separated in two different parts. In the crown, the hardest tissue of the body,
enamel, forms protective layers on the surface of the tooth, giving to it its remarkable strength.
In the root, a softer and very similar with dentine tissue, cementum, covers the outer layer of it.
(Tiirp & Alt, 1998)

The chemical characteristics of bones and teeth are very similar. The inorganic
component in both hard tissues is mainly hydroxyapatite (Cas(PO4)3s0H), a calcium
phosphate biomineral, which is more frequently encountered in its hexagonal crystal
structure form. (Castro et al., 2010; Ma & Liu, 2009) Other elements that can be found
in those tissues in minor and trace concentration levels, include Magnesium (Mg),
Strontium (Sr), Sodium (Na), Barium (Ba), Iron (Fe), Zinc (Zn), Copper (Cu), Manganese
(Mn), Lead (Pb) and many more. (Castro et al., 2010; Kasem et al., 2014). Magnesium
and strontium are above and below calcium in group 2 of the periodic table, sharing
many of its chemical properties and having the ability to replace it in the course of the
metabolic processes occurring in living organisms and thus to replace it in the
hydroxyapatite crystal. (Klepinger, 1984) The majority of magnesium and strontium in
animal bodies are located in the hard tissues. In particular, 99% of strontium and 60-
65% of magnesium are located in the animals’ skeleton. The higher levels of Sr and Mg
in plants result in differences in the values of concentration ratios such as Sr/Ca and
Mg/Ca between herbivores and carnivores. Furthermore, differences can be observed
either in omnivorous organisms depending on the availability of meat and vegetation
in their diet, or in herbivores depending on the vegetation that is preferred for
consumption. Thus, studying the Sr/Ca and Mg/Ca ratios can facilitate the
reconstruction of dietary habits of several organisms. (Klepinger, 1984; Kasem et al.,
2014) Similarly with the inorganic phase, the organic phase of both bones and teeth is
very similar, mainly consists of type | collagen. The combination of those two materials
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with the presence of water, forms a composite with remarkable mechanical
properties. (Samek, 2001; Currey, 2008)

In particular, the composition of bones varies according to their type. Hydroxyapatite
constitutes 50% to 60% of the bone, collagen 20% and water 15% to 20%. Other
components of the bone matrix include carbonates, phosphates and proteins
amounting to approximately 7% of the total bone mass. Teeth differ significantly as
regards the percentage of hydroxyapatite they contain. (Samek, 2001) As already
mentioned, enamel is the hardest calcified tissue in the human body composed of
approximately 95% of hydroxyapatite, 4% of water and just 1% of organic matter.
Dentine and cementum are much softer than enamel having a significantly lower
fraction of hydroxyapatite. Dentine consists of approximately 70% of hydroxyapatite
and 20% of organic matter, mostly collagen fibers. The remaining 10% of dentine is
water. (Castro et al., 2010; Samek, 2001; Tiurp & Alt, 1998) Cementum is similar to
dentine, with very small changes differentiating those tissues. Cementum’s main
component is hydroxyapatite that constitutes 61% of it, while the rest is formed by
27% of organic matter and 12% of water. (Tlrp & Alt, 1998)

1.3 Samples and Sample Sets
In the present work, two main categories of samples were used. The first one was
archaeological bone fragments and the other one was modern teeth.

1.3.1 Archaeological Bone Fragments

This sample set has already been described and analyzed in previous works (Siozos et
al., 2021). The bone fragments originate from archaeological excavations of burials at
the Cross Street Unitarian Chapel in Manchester (United Kingdom) and the burial
period is considered to have been between the 18™" and 19t century. All skeletons
were at least 50% complete and their state of preservation ranged from “good” to
“extremely poor”. The sample set consisted of seven bone fragments originating from
five different human individuals. Two of them were assigned two bone fragments
each, while the rest just one. (Table 1.1) Each sample had been washed with water to
remove dirt and impurities and air dried following excavation.

Table 1.1: Archaeological bone fragments. Individuals and samples

Individual Number of Name of Samples Figure 1.4
Samples
SK 3.25 Femur a
(el 2 SK 3.25 Scapula b
SK 3.50 Clavicle C
Ind_2 2 SK 3.50 Femur d
Ind_3 1 SK 4.36 llium e
Ind_4 1 SK 4.37 Tibia f
Ind_5 1 SK 4.45 Humerus g
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Figure 1.4: a) SK 3.25 Femur, b) SK 3.25 Scapula, c) SK 3.50 Clavicle, d) SK 3.50 Femur, e) SK 4.36 Ilium,
f) SK 4.37 Tibia, g) SK 4.45 Humerus. (Siozos et al., 2021)

1.3.2 Modern Teeth Samples

Two different teeth sample sets were collected and tested for the purposes of this
work. A set of adult and baby human teeth composed of 20 samples coming from 16
different individuals and a set of domestic sheep teeth composed of 11 samples from
5 individuals. Each individual in the human set was represented by at least one tooth,
two of them were assigned two teeth each, while for one individual three different
teeth samples were available (Table 1.2). The majority of samples were collected from
dentists in Attica and Crete (Greece) and the rest were donated directly by their
owners. Most of the teeth had been previously soaked in an agueous bleach solution
in order to be cleaned from any remains of soft tissue and blood. After cleaning, each
sample was washed with water and air dried. The second sample set consisted of teeth
coming from 5 different domestic sheep individuals. Only one individual had just one
sample, while the rest had two or three samples each. (Table 1.3) All samples had been
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collected from already cooked animals and they had been washed with water and air
dried, prior to analysis.

All samples from both domestic sheep and human sets were cut with a low speed saw
(Buehler Isomet Low Speed Saw) and the cross sections were evened to sleek using
sandpapers, for the improvement of the experimental process. Measurements for
each sample were taken in the enamel’s cross section, avoiding any contamination
and impurities of the outer surface.

Table 1.2: Human modern teeth. Individuals and samples.

Individual Age Number of Name of Figure 1.5
Samples Samples
Ds_1_tooth_1 a
Do EE15Y 2 Ds_1 tooth 2 b
Dx_1 Adult 1 Dx_1 tooth 1 C
Gr_1_tooth_1 d
Sl Akl 2 Gr_1 tooth 2 e
Kg 1 Adult 1 Kg_1 tooth 1 f
Ko 1 Baby 1 Ko 1 tooth 1 g
Ls_1 tooth 3 h
Ls 1 Baby 3 Ls_1 tooth 4 i
Ls_1 tooth 5 j
Mn_1 Adult 1 Mn_1 tooth_1 k
Mn_2 Adult 1 Mn_2 tooth_1 I
Mn_3 Adult 1 Mn_3 tooth_1 m
Mn_4 Adult 1 Mn_4 tooth_1 n
Mn_5 Adult 1 Mn_5 tooth_1 o
Mn_6 Adult 1 Mn_6_tooth_1 p
Mn_7 Adult 1 Mn_7 tooth_1 q
Mn_8 Adult 1 Mn_8 tooth_1 r
Sl 1 Adult 1 SI_ 1 tooth_1 3
SI 2 Adult 1 SI_2 tooth_1 t
Table 1.3: Domestic sheep cooked teeth. Individuals and samples.
Number Figure
Individual of Name of Samples 16
Samples
Lmp_1 tooth 2 uj 1
Lmp_1 2 Lmp_1 tooth 3 uj_1 @
Lmp_2 1 Lmp_2 tooth_3 Ij_1 b
Lmp_3_tooth_2 1j_2
Lmp_3 2 Lmp_3_tooth 3_lj_2 ¢
Lmp_4 tooth_2 1j_2 d
Lmp_4 3 Lmp_4 tooth_2 1j_1 e
Lmp_4 tooth_3 1j_1 f
Lmp_5 tooth 2 1j 1
Lmp_5 3 Lmp_5 tooth 3 Ij 1 g
Lmp_5 tooth 4 1j 1
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Figure 1.5: Modern Human teeth samples. a) Ds_1_tooth_1, b) Ds_1_tooth_2, c) Dx_1_tooth_1, d)
Gr_1_tooth_1, e) Gr_1_tooth_2, f) Kg_1_tooth_1, g) Ko_1_tooth_1, h) Ls_1_tooth_3, i) Ls_1_tooth 4,
j) Ls_1_tooth_5, k) Mn_1_tooth_1, |) Mn_2 tooth_1, m) Mn_3_tooth_1, n) Mn_4 tooth_1, o)
Mn_5 tooth_1, p) Mn_6_tooth_1, q) Mn_7 tooth_1, r) Mn_8 tooth 1, s) S| 1 tooth_1, t)
Sl 2 tooth_1.
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Figure 1.6: Domestic Sheep teeth samples. a) Lmp_1_tooth 2 uj 1 and Lmp_1_tooth 3 _uj 1, b)
Lmp_2 tooth_3 Ij 1, ¢) Lmp_3 tooth 2 Ij 2 and Lmp_3 tooth 3 Ij 2, d) Lmp_4 tooth_ 2 Ilj 2, e)
Lmp_4 tooth 2 I|j 1, f) Lmp_4 tooth 3 lj 1, g) Lmp_5 tooth 2 Ij 1, Lmp 5 tooth 3 |i 1 and
Lmp_5 tooth_ 2 Ij 1.
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2 Laser Induced Breakdown Spectroscopy

2.1 LIBS History and Development

Plasma generation and its use for spectroscopic purposes was a field of interest at
least since the late 1900s but the origins of Laser Induced Breakdown (or Plasma)
Spectroscopy lie several decades later, in the 1960s, following the construction of the
first pulsed laser. (Cremers, Radziemski & Loree, 1984; Cremers & Radziemski, 2013)
The development of the first pulsed ruby laser in 1960 led to the systematic
observation of laser-induced plasma during the following years and the development
of further instrumentation led to the systematic use of Laser Induced Plasma
Spectroscopy for obtaining qualitative and quantitative information on a variety of
samples and materials. The strong interest of Los Alamos Laboratory led to extensive
research and development of the technique during the 1980s, increasing the use and
the applications of it. (Cremers & Radziemski, 2013) The following two decades faced
a dramatic increase, year by year, on the research around LIBS and extensive increase
in its applications with a wide range of them extending from Industry, to Cultural
Heritage, Archaeology and Forensic science, to Medical science and Space exploration.
(Cremers & Radziemski, 2013; Cremers, Multari & Knight, 2016)

2.2 LIBS Fundamentals

Laser Induced Breakdown Spectroscopy is an analytical technique based on the
principles of atomic emission spectroscopy. In particular, this method is based on the
formation of plasma, within the focus of a laser pulse directly onto the surface of a
solid material. Plasma formation is accompanied by a bright flash of light that provides
substantial information about the tested material (Cremers & Radziemski, 2013;
Cremers, Multari & Knight, 2016) A short-duration (5 ns - 20 ns) and low-energy laser
pulse, typically tens to hundreds of millijoules, is focused on the surface of a material
with the use of a focusing lens, leading to material breakdown and plasma formation.
(Cremers & Radziemski, 2013) The created plasma, which can be seen as a highly
ionized gas is a local assembly of three different entities. Atoms, ions and free
electrons coexist in the plasma creating an electrically neutral assemblage. (Cremers
& Radziemski, 2013) The light emitted from the plasma depends on the unique
spectral emission of atoms and ions of the elements in the ablated material, providing
fingerprint spectra of the material’s elemental components. (Cremers, Multari &
Knight, 2016) LIBS has several advantages over other analytical techniques. A wide
range of samples can be analyzed with it, plasma creation can be induced on the
surface or within (in transparent materials) any type of sample, gases, liquids or solids,
with little or no sample preparation prior to the analysis. Additionally, the technique
is able for in situ analysis, since only optical access to the sample is required, providing
simultaneous multielement detection and sustaining good sensitivity for many
elements, too. (Cremers, Multari & Knight, 2016)
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2.3 Plasma Formation

During the interaction of light and matter, atoms can typically absorb a single photon
of radiation for each transition, with energy either equal to the transition’s energy or
equal to (or higher than) the ionization energy. The first consideration of a different
behavior was made in the early 1930s, when a two-photon transition was considered
possible. The invention of the first laser in the early 1960s led, among others, to the
observation of the multiphoton excitation and multiphoton ionization phenomenon
that was introduced in the second half of the same decade. (Mainfray & Manus, 1991;
Agostini et al., 1968) Thus, it became clear that electrons in atoms are able to absorb
more than one photon through nonlinear processes.

M +nhv > M +e”

This phenomenon is widely observed during the interaction of matter with high power
density radiation (>1 GW/cm?), for example a laser pulse. (Mainfray & Manus, 1991;
Agostini et al., 1968; Cremers & Radziemski, 2013) After the production of the first
few free electrons, through the multiphoton ionization process, their energy and
velocity are increased by the inverse-Bremsstralung effect (free-free absorption),
during their interaction with the electric field of the laser pulse. (Cremers &
Radziemski, 2013; Bloembergen, 1997; Geltman, 1973)

*

e t+thvee”

This leads to the production of free electrons capable of ionizing neutral atoms by
collisions.

M+e™ > M+ 2e”

In a dense material, the increasing number of electrons, ions and collisions, leads to
further free electron multiplication. This phenomenon is called avalanche or cascade
ionization and creates a growing number of free electrons and ions in the surface of
the material. (Cremers & Radziemski, 2013; Bloembergen, 1997) These two ionization
approaches balance each other. In standard conditions of pressure and for radiance
values that typically used by LIBS, avalanche ionization dominates the electron
multiplication, but for higher radiance values there is multiphoton ionization that
prevails the ionization of neutral atoms, leading to plasma formation. (Cremers &
Radziemski, 2013)

In solids the arrival of a nanosecond laser pulse is followed, as was mentioned above,
by the excitation of the free electrons in the lattice and their acceleration. The excited
free electrons increase the collision rate, transferring energy to the lattice phonons.
This leads to a significant increase of the local temperature that, first, gives rise to
melting and then evaporation of the material. After evaporation of the material, the
incoming laser pulse leads to bond breaking and ionization along with free electrons
generation resulting in the formation of a weakly ionized plasma in the surface of the
material (Figure 2.1). (Cremers & Radziemski, 2013; Chaudhary, Rizvi & Ali, 2016)
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Figure 2.1: lllustration of the main events occurring in interaction of a nanosecond laser pulse
with a solid surface. The arrival of the pulse, the creation, expansion and cooling of the plasma
and the formation of a crater in the surface of the material, can be seen. (Cremers, Multari &
Knight, 2016)

2.4 Plasma Expansion and Cooling

lonization degree, temperature and electron density are the main parameters for the
characterization of a plasma. LIBS plasma falls typically in the range of weakly ionized
plasmas with the ratio of the electrons over the other species being below 10%. At the
same time, plasma temperature on LIBS varies between 6000 and 10000 K. (Cremers
& Radziemski, 2013; Cremers, Multari & Knight, 2016)

Following generation of the first few free electrons the interaction of them with the
electric field of the ongoing laser pulse accelerates them, leading to the avalanche
ionization phenomenon and the creation of plasma. Within the duration of the laser
pulse, the plasma created continues to expand because of the energy supplied by the
light electric field, reaching its full expansion at the end of the laser pulse. At this point,
plasma is in its highest energy state with extensive ionization of its species and the
highest temperature. Following interruption of the supplied energy, the plasma
gradually starts cooling via loss of energy in the form of emitted radiation. An
illustration of plasma generation, expansion and cooling can be seen in Figure 2.2, as
a proportion of the optical signal intensity through time. At the first stages of plasma
cooling, free electrons decelerate by the Bremsstralung effect producing continuum
radiation (Figure 2.3). During the deceleration of the free electrons, collisions with the
existing ions lead to formation of neutral atoms and the decrease of the free electrons
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in the plasma. At that point, the emitted radiation from the transition on the existing
ions, dominates the light produced by the plasma. As energy decreases and the
collisions between free electrons and ions continue, the ion population decreases and
so does the intensity of the corresponding ion emission spectral lines. Then radiation
coming from transition between energy levels of neutral atoms dominates the range
of the emitted light. In the final stages of the plasma, the energy reduction is extensive
that collisions between atoms result in the formation of small molecules. (Cremers &
Radziemski, 2013)
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Figure 2.2: Optical signal intensity of the plasma through its lifetime. The arrival of the laser pulse
generates the creation of a plasma, which reaches the maximum of its expansion at the end of
the laser pulse. A cooling process starts soon after termination of the pulse and interruption of
the supplied energy, during which the plasma emits radiation. tqd represents the delay time for
the beginning of the collection of the emitted radiation, while ty4 represents the gate time, the
time period that the spectrometers collects the emitted radiation. Time delay can be hundreds
of nanoseconds, to avoid the continuum radiation of the existing free electrons, while gate time
can be several microseconds to maximize the collected radiation from the plasma. (Cremers &
Radziemski, 2013)

As a result, the first stages of plasma cooling are dominated by the existence of a
continuum radiation in the form of background signal, masking any atomic and ionic
spectral lines and preventing the extraction of useful information concerning
spectrochemical analysis. The continuum background decays with time along with the
reduction of the free electron density, revealing the ionic and atomic spectral lines in
the form of sharp emission peaks. The gradual cooling of the plasma leads to the
creation of small molecules during the final stages of plasma’s existence that can be
observed in the form of vibronic bands in the LIBS spectrum. Considering that the
continuum radiation on the first stages of the plasma cooling cannot provide any
important information, the collection of the emitted radiation starts hundreds of
nanoseconds after the arrival of the laser pulse. The time period that the emitted
radiation is not collected is called “Delay Time” and can vary according to the needs
of the measurements and the used instrumentation. The time period that the emitted
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light is collected from the spectrometer is called “Gate Time” (Figure 2.2). (Cremers &
Radziemski, 2013)
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Figure 2.3: Typical transitions in an atom or an ion. On the right side the ionization from the
ground and an excited state can be seen. On the left side, the transitions of the free electrons
are illustrated by the red arrow, while with blue arrows are illustrated the transition for bond
creation and for the decay in lower excitation states. (Cremers & Radziemski, 2013)

2.5 Line Shape and Broadening

The shape of spectral lines in LIBS plasma is a well-studied topic, even from the very
first appearance of the technique in the early 1960s. (Gornushkin et al., 1999) This line
broadening can be caused by two major mechanisms. Doppler broadening and
pressure broadening. The first one is caused by the Doppler effect due to velocity
distribution of the emitters, while pressure broadening comes from the interactions
of the emitter with the surrounding atomic and molecular species. (Gigosos, 2014) The
second mechanism can be further categorized in resonance pressure broadening, that
results from interactions between identical atoms in the form of a dipole-dipole
interaction, and Stark broadening which occurs with the interaction between charged
species in the plasma. (Gornushkin et al., 1999; Gigosos, 2014) Due to the high
electron density of the plasma, Stark broadening dominates over the rest of the
broadenings in LIBS, giving a typical Lorentzian profile in the observed spectral lines.
(Harilal et al., 1997; Cremers & Radziemski, 2013)

2.6 Matrix Effect

In many analytical techniques, including LIBS, the elemental composition of the
sample can affect the observed elemental signal. This effect is known as matrix effect.
In particular, matrix effect results in the modification of the produced signal of
elemental components with constant concentration after changes in the
concentration of one or more components forming the sample matrix. There are two
different categories of matrix effects based on the physical and chemical properties of
the samples. Physical matrix effect depends on the physical properties of the samples
that affect the conversion of the ablated mass into plasma. Such properties are heat
of vaporization, thermal conductivity, absorption coefficient and water content of
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samples. On the other hand, chemical matrix effect occurs when the presence of one
element affects the emission characteristics of another. (Cremers, Multari & Knight,
2016; Takahashi & Thornton, 2017)

2.7 Sample Damage

The formation of plasma on the surface of samples indicates the degradation of the
material in the focal point of the laser pulse. The amount of degradation depends on
the energy and time width of the laser pulse. Shorter duration indicates lower
damage. When a nanosecond laser pulse interacts with a solid sample the dominant
mechanism for plasma ignition is thermal vaporization. This leads to a significant and
unsymmetrical crater reaming, due to the meltdown of the material (Figure 2.4). The
damage by a nanosecond laser in hard tissues, can be seen in Figure 2.5. By contrast,
a laser that produces pulses with a shorter time, for example a femtosecond laser,
concentrates energy in much less time. In these conditions the interaction between
light and matter differs significantly. Instead of thermal vaporization, the main bond-
breaking mechanism is non-thermal. Because of the amount of energy in a shorter
period of time, the material cannot transfer energy to the lattice or melt and thus
evaporates instantly. During the interaction of laser pulse with the sample, extreme
multiphoton ionization takes place resulting in the required conditions for plasma
formation through Coulomb’s explosion, leading to a more precise drilling and more
well-shaped craters (Figure 2.4). (Cremers & Radziemski, 2013; Chaudhary, Rizvi & Ali,
2016)

Nanosecond Pulse Femtosecond Pulse

Figure 2.4: lllustration of crater creation for two different types of laser pulses. On the left, an
unsymmetrical crater is created after the interaction of the material with a nanosecond laser
pulse, while on the right side, a well-shaped crater is created after the interaction of the material
with a femtosecond laser pulse. (Cremers & Radziemski, 2013)
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Figure 2.5: Craters produced by a Nd:YAG laser after 10 consecutive pulses of 6 mJ each, on the
same area, as they appear under an optical microscope. a) Several craters after mapping in the
enamel of a tooth. b) One of the previously shown craters in magnification. The diameter of the
crater is around 50 um.

2.8 Laser Fundamentals

To understand better the properties and applications of LIBS it would be necessary to
briefly overview the theory of lasers. The term laser originates from the combination
of the first letter in each word of the phrase “Light Amplification by the Stimulated
Emission of Radiation”. This explains the basic idea of a laser, which is the
amplification of the emitted radiation of a medium, through the phenomenon of
stimulated emission. Each laser consists of the same parts. A resonant cavity contains
a lasing material, which allocates the appropriate energy levels to achieve the
population inversion between an upper and a lower level of a transition, during a
sufficiently strong pumping excitation by an external source. The external source that
can provide the appropriate excitation of the lasing medium can be a flash lamp, a
diode stack or even another laser. When the population inversion is achieved, photons
produced by spontaneous emission between the previously mentioned upper and
lower energy levels, can initiate an avalanche of emitted photons with equal energy
through stimulated emission. This leads to a rapid amplification of the emitted
radiation (Figure 2.6). Most common laser systems are three and four-level laser
systems (Figure 2.7). In both cases, pumping excitation leads to the transition of the
system (atom, ion, molecule) from a lower (normally the ground state) to a higher
energy level, via which the upper level of the lasing transition is populated. A long
lifetime of this level favors population inversion which eventually leads to a fast and
rapid decay via stimulated emission producing laser radiation. A typical example of a
four-level-system laser is the Nd:YAG laser. (Cremers & Radziemski, 2013; Hecht,
2019; Thyagarajan, & Ghatak, 2010)
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Figure 2.6: a) Initial spontaneous emission. b) Stimulated emission of another photon shearing
the same frequency. c) Stimulated emission of several photons with the same frequency after the
creation of the first one. (Hecht, 2019)
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Figure 2.7: a) Three-level laser system. The pumping energy leads to the excitation of an electron
from the Ei1 energy state to the Es energy state followed by a rapid decay from Es to Ez. The
transition between E2 and E1 has low probability, increasing the population of Ez and resulting in
the population inversion between Ezand Ei. Through stimulated emission the population of E:
rapidly decays to Ei, producing the lasing radiation. b) Four-level laser system. As in the three
level system, the pumping is followed by a rapid decay in a lower energy state. Population
inversion takes place in Ez energy level and through the decay to E: energy level by stimulated
emission, the creation of lasing radiation can be achieved. A rapid decay to the lowest level
follows the lasing transition. (Thyagarajan, & Ghatak, 2010)

The majority of LIBS measurements are performed by using Neodymium-doped

Yttrium Aluminum Garnet laser or Nd:YAG laser. In a Nd:YAG laser the lasing material
is made by an Yttrium Aluminum Garnet doped by Nd3* ions. A flashlamp irradiates

the crystal, producing excitation on the lasing material by the absorption of a small

percentage of the pumping light from the Nd3* ions (Figure 2.8). Due to the electronic

energy levels of the Nd3* ions the intended population inversion can be achieved,
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leading in a highly populated upper level of the lasing atomic transition between *F3/»
and %112 energy states (Figure 2.9). To achieve the high powers needed for the
ablation of a material, it is necessary to use an electro-optic Q switched shutter to
create a short and high-power pulse. The Q switch is placed in the cavity to prevent
photons, with the lasing frequency, to complete the path through the cavity and
induce random stimulated emission from the lasing medium (relaxation oscillations),
increasing the population inversion. At a certain time, the Q switch becomes
transparent allowing photons to complete their path and induce stimulated emission,
resulting in a short and high-power pulse. (Cremers & Radziemski, 2013; Stafe, Marcu
& Puscas, 2014)

Figure 2.8: Q switch laser cavity and flashlamp schematic. In a Nd:YAG laser, a mirror cavity
contains the laser rod made by an Y and Al garnet doped with Nd** ions. Flashlamp light leads to
the excitation of Nd** ions resulting in the population inversion of the lasing material. An ‘opaque’
switch prevents stimulated emission until a certain point that becomes transparent allowing a
rapid decay and an instant emission of radiation (Cremers & Radziemski, 2013).
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Figure 2.9: The Nd:YAG laser is a typical example of a four level laser system. A flashlamp pumps
the electrons to *Fss2 or a higher energy level. After a non-radiative transition from the high
energy level to the “Fs/2 energy state the population inversion is achieved. Stimulated emission
through the transition to *l11/2 energy level produces the lasing radiation, followed by relaxation
to lower energy levels. (Stafe, Marcu & Puscas, 2014)

2.9 Experimental Setup

Data collection was performed by the use of a customized LIBS microspectrometer,
which has been previously described in several publications. (Hausmann et al., 2017,
2019; Siozos, Philippidis & Anglos, 2017) The LIBS system was combined with a XYZ
transition stage that could be either computer-controlled or manually controlled by
the user and enabled scanning of the sample in a linear fashion or a 2D mapping. An
infrared (1064) Q-switched Nd:YAG laser (Spectron Laser Systems), with a 10 ns pulse
duration, was focused directly onto the sample surface using an objective lens (10x
magnification, 28 mm focal length, LMH-10x -1064, Thorlabs) with infrared anti-
reflection coating. Additionally, a clear image of the sampling area was formed, using
another lens (f = +120 mm), on the sensor of a camera (2736 x 2192 pixels) at a
magnification of 4.2 : 1, providing an overview of the sampling area. (Figure 2.10)
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Figure 2.10: Schematic of the LIBS microspectrometer. A Nd:YAG laser is used as a radiation source and
the produced beam is focused on the surface of the sample using an infrared anti-reflection coating and
an objective lens. Each pulse results in the creation of a plasma plume and the emitted light is collected
by an optical fiber and transmitted into a Czerny Turner spectrometer unit. The LIBS system is combined
with a XYZ transition stage, allowing the movement of the samples in space depending on the needs for
each measurement. Sample movement and sampling area can be observed by a camera at a
magnification of 4.2 : 1.

A luminous plume of ionized material was created on the focal point of the laser beam
onto the surface of the sample. The light emitted by the plasma plume was collected
by a quartz fiber and transmitted into a Czerny Turner spectrometer unit (Avaspec-
2048-2-USB2, Avantes), that records emission spectra across a wavelength range
extending from 200 to 466 nm, with resolution of 0.2 nm. The delay time applied on
the CCD was 7, = 1.28 us and the integrational time was t; = 1.05 ms.

2.10 Experimental Procedure
The experimental procedure that was followed, was slightly different for each
different dataset.

2.10.1 Archaeological Bone Fragments

The size and the texture of the archaeological bone fragments, combined with their
cultural importance, prevent a potential smooth cut. The samples were placed
without any preparation on the XYZ stage. The laser was focused directly onto the
surface of the sample with an energy of 10 mJ/ pulse. Fifty five to sixty (55-60) points
were analyzed on the surface of each sample, moving the stage manually to each point
and correcting, if needed, samples position in agreement with the focal point of the
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laser beam. At each point on the sample, the first 5 pulses were used to remove
superficial dirt and dust, revealing a clean surface, while the next 5 produced an
averaged LIBS spectrum per each sampling point. (Siozos et al., 2021)

2.10.2 Modern Domestic Sheep Teeth

Considering that the samples of this dataset had not had any historical or medical
importance they were sectioned and evened, creating a sleek cross section in which
the measurements could be performed easily and efficiently. The samples were placed
one at a time on the XYZ stage with the cross section surface parallel to the stage
surface and the laser was focused directly to the surface of the sample with an energy
of 6 mJ/ pulse. Twenty five (25) points were analyzed in the enamel surface of each
sample moving the stage manually to each point. In each point, the first 5 pulses were
used to remove superficial dirt and dust, as previously mentioned, while the next 5
produced an averaged LIBS spectrum per each sampling point.

2.10.3 Modern Human Teeth

As mentioned above, considering the low historical and medical importance, each
sample of this set was cut and evened, creating a sleek cross. The samples were placed
one at a time on the XYZ stage with the cross section surface parallel to the stage
surface. The laser was focused directly to the surface of the sample with an energy of
6 ml/ pulse. More than sixty (60) preselected points were analyzed in the enamel
surface of each sample using the auto-controlled mode for the stage movement. In
each point the first 5 pulses were used to remove superficial dirt and dust, revealing
a clean surface, while the next 5 produced an averaged LIBS spectrum per each
sampling point.

2.11 Data Sets/ Data Form

After the formation of the plasma plume, the emitted light was collected by a quartz
fiber and transmitted into a Czerny Turner spectrometer unit (Avaspec-2048-2-USB2,
Avantes).The spectrometer was recording emission spectra from 195,117 to 465.855
nm, with resolution of 0.2 nm and the CCD detector comprised 2048 pixels, resulting
to a sequence of 2048 intensity values matched with specific wavelength values. Every
point on each sample was represented by a spectrum, originating from the
accumulation of five single-shot spectra. As a result, data for each sample set are
stored in a matrix of 2048 columns and as many rows as the points in each sample.
Data matrices of samples are combined to create the final data matrices for the three
different datasets, one for the Modern Human Teeth Samples, one for the Domestic
Sheep Teeth samples and one for the Archaeological Human Bone Fragments. (Siozos
et al., 2021) Additionally, an extra dataset consisted of both Modern Human Teeth
data and Domestic Sheep Teeth data was created, with the combination of the already
existing data from the previously created datasets.

2.12 Elemental Analysis and Spectra
LIBS can provide information on the elemental composition of the samples.
Considering that the hard tissue remains mainly consist of hydroxyapatite, the
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resulting spectra would contain emission lines mainly from calcium (Ca), along with
minor emissions from other biogenic elements and impurities.

2.12.1 Modern Domestic Sheep Teeth

The spectrum for the domestic sheep teeth samples mainly consist of calcium spectral
lines all across the spectral range investigated. However, spectral lines for other
elements can be seen in the spectra. At A <300 nm, four different spectral lines coming
from phosphorus emission can be seen, while several spectral lines coming from
magnesium are spread across the spectrum. Additionally, two emission lines of
Strontium can be seen at A > 400 nm and a tiny spectral line coming from sodium (the
well-known yellow doublet) appears, too. The resulted average spectrum for the
Domestic Sheep samples can be seen in Figure 2.11.
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Figure 2.11: Average spectrum using all the retrieved data from the Modern Domestic Sheep dataset.
Several spectral lines can be seen, coming from the emission of Ca and P, which are the main elements
on the hydroxyapatite, as well as Mg, Sr and Na that can replace Ca in hydroxyapatite crystal.

2.12.2 Modern Human Teeth

The resulted spectra from the human teeth samples are quite similar to those of the
domestic sheep teeth. In Figure 2.12, the average spectrum from all the human teeth
samples and the elemental composition of them, can be seen. Comparing it with the
spectrum for the domestic sheep teeth it is easily observed that are almost identical.
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Figure 2.12: Average spectrum using all the retrieved data from the Modern Human dataset. Similarly
to the Domestic Sheep spectrum, spectral lines coming from the emission of Ca, P, Mg, Sr and Na can
be seen. The spectrum is very similar to the one in Figure 2.11.

2.12.3 Archaeological Human Bone Fragments

In contrast to the similarities observed in the spectra of the previously mentioned
modern samples, the spectrum for the archaeological bone fragments is quite
different. This spectrum is richer, consisting of spectral lines from several elements.
Besides the spectral lines coming from Ca, Mg, P, Sr and Na, the spectra of the
archaeological samples contained also spectral lines from iron (Fe), magnesium (Mn),
aluminum (Al), copper (Cu) and barium (Ba), resulting in a richer spectrum as can be
seen in Figure 2.13. The existence of these elements is attributed to potential burial
contamination from the surrounding area that were excavated. Further analysis for
the spectral characteristics of those samples has been presented in previous works.
(Siozos et al., 2021)
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Figure 2.13: Average spectrum using all the retrieved data from the Archaeological dataset. Several
spectral lines can be seen, coming from the emission of both biogenic and non-biogenic elements of the
hard tissues. Ca and P, which are the main elements on the hydroxyapatite, as well as Mg, Sr and Na
that can replace Ca in hydroxyapatite crystal, can be seen in the spectrum, similarly with the spectra
from the other datasets. On the contrary, in the current spectrum several new spectral lines can be
observed, coming from the emission of non-biogenic element as Fe, Al, Cu and Mn.
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3 Machine Learning and Neural Networks

3.1 Machine Learning Fundamentals

The branch of artificial intelligence in which the main goal is the recognition of hardly
visible patterns by an algorithm, was the inspiration behind machine learning.
Machine learning is defined as the field of study that gives computers the ability to
achieve specific tasks without being explicitly programmed, based on given examples.
This process starts by the observation of hidden patterns in data and the attempt to
improve future decisions. Hence, the main goal for computers is to learn or be trained
in a way similar with the one that living organisms learn from experience. Machine
learning is divided in three main branches that differentiate on the learning process
and provided data’s nature. In supervised learning the computer is fed with labeled
input data and the main goal is the learning of general rules that map input, to the
desirable output. In unsupervised learning no labeling for the input data is given to
the algorithm, leaving it to discover itself hidden patterns. The last of the three
categories is called reinforcement learning and is strongly linked with Al and game
theory. In this approach the algorithm interacts dynamically with the environment by
making discussions and discovering errors without given instructions whether it has
come close to its goal or not. A further categorization of supervised learning can
provide two different categories, classification and regression. Those categories differ
on the nature of the desirable output. On classification the output variable takes
discrete values, in the form of class labels, identifying a group membership, while on
regression the output variables are continues. (Koropoulis, Alachiotis & Pavlidis, 2020;
Alpaydin, 2010; Venables & Ripley, 2010)

In current work, different open-access supervised machine learning algorithms were
used for classification tasks. In particular, the algorithms that were used are K Nearest
Neighbors, Support Vector Machine using a polynomial and a radial kernel, Random
Forest and a relatively simple Artificial Neural Network. Principal Components Analysis
were used only for visualization of the data in 2D. All the algorithms were developed
and performed in R programming language using a variety of already developed
packages. (Wickham, 2011; Wickham, 2016; Meyer et al., 2015; Liaw & Wiener, 2002)

3.2 Principal Components Analysis

Principal Components Analysis is a commonly used unsupervised machine learning
method based on coordination transformation, preserving as much of the relevant
information as possible in the newly formed coordination system. The method firstly
introduced by Pearson, back in 1901 and by Hotelling in 1933 (Pearson, 1901;
Hotelling, 1933), as a method for dimensional reduction by the variance on the data
and found its use among several applications in a variety of fields (Pearson, 1901;
Jolliffe, 2002). PCA is the linear transformation of the original coordinate system to a
newly formed, with the new set of variables being called principal components and
maximize the variance among data. This result can be achieved by fitting the best
fitted lines on the data that reduce the sum of squared distances of the data points
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(Pearson, 1901; Jolliffe, 2002). The newly formed variables can be sorted from first to
last following the decrease in variance of the data, creating the Principal Components.
The use of principal components is widely spread considering that can be used for
dimensional reduction and data visualization, lossy data compression, as well as
feature selection and feature extraction. (Jolliffe, 2002; Bishop, 2006)

Hotelling’s approach differs from that of Pearson’s (Hotelling, 1933; Jolliffe, 2002;
Bishop, 2006). PCA seeks for desirable linear combinations of the n dimensions of the
initial dataset x to maximize the variance (Hotelling, 1933; Jolliffe, 2002; Jolliffe &
Cadima, 2016). This linear combination can be given by the equation:

n
E Ujx; = xu
i=1

Where u is a vector of constants uj, ..., un. For any of these linear combinations the
variance can be computed by the equation:

var(xu) = u'Au
Where A is the covariance matrix of the whole dataset and ' denotes transpose.

For the computation of the covariance matrix, the use of two different equations is
necessary. To compute the covariance between two variables, the equation:

1 n
cov(xy,x;) = mz 1(x1i — %) (xg — %)
l:

is used. However, the computation of the variance of each variable is necessary, too.
This is achieved using the following equation:

1 on i
var(x) = mzizl(xi — %)?

With respect to the previous two equations the covariance matrix
(n x n) can be computed.

X1 X2 Xn
X var(x;)  cov(xy,xy) ... cov(xy,X,)
x, cov(xy,x,)  wvar(xy) v cov(xy,X,)
X, cov(xy,x,) cov(xy, x,) .. var(x,)

Continuing, identifying the linear combination that maximizes the variance for xu
(var(xu)), it is equivalent to obtain a vector which maximizes u’Au. For achieving the
maximization without turn on infinite, it is necessary to impose a normalization
constraint in which u'u = 1, or that the sum of squares of elements for u equals 1. To
maximize u’'Au, considering u’u = 1, the standard approach is the use of Lagrange
Multipliers:
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uwAu —A(u'u—1)
where A is a Lagrange Multiplier. Differentiation with respect to u gives:
Au—Au =20
or
A-AL)u =0

where I, is the (n x n) identity matrix. As it is easily observed, 4 is the eigenvalue of
A and u is any corresponding eigenvector. Solving the equation results in n x A4
eigenvalues (A4, 4,,...,4,), corresponding in n xu eigenvectors (ug, Uy, ..., Uy,).
Sorting the eigenvalues from greatest to least, the corresponding eigenvectors can be
sorted, too, with respect to the variance reduction. (Jolliffe, 2002; Jolliffe & Cadima,
2016)

Finally, after sorting the eigenvectors, they are used to transform the original data into
new data

xu=x'

with a new coordination system and increased variance in the first few axis.

Considering the simplicity and the low computational time that requires, PCA is an
easily applicable machine learning technique capable to resolve the dimensionality
problems of high dimensional data, like spectra. For those reasons is one of the first
techniques that are used for the classification of samples using spectral data and the
first that was used in the current study searching for possible clusters among data and
later for their visualization.

3.3 K Nearest Neighbors

K nearest neighbors or KNN was firstly introduced by Fix and Hodges in 1951 as a
nonparametric discrimination analysis (Fix & Hodges, 1989) and established as a
pattern recognition classifier by Cover and Hart in 1967 (Cover & Hart, 1967). This
algorithm is a rather simple, yet widely used machine learning method with its basic
principle based on finding the nearest neighbors of a data point in a dataset. Then, the
data point can be classified by the majority of its nearest neighbors’ class labels (Figure
3.1). Because of its simplicity the algorithm is used in a variety of fields not only for
classification tasks, but also for feature selection, pattern recognition and clustering.
(Xia et al., 2015)
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Figure 3.1: K nearest neighbors representation in a two dimensional space, using two different K
values. The red circles and the green crosses represent data points of two different class labels,
while the blue question mark represents the unknown data point, which needs to be classified.

The main idea behind this machine learning method is the calculation of the distances
between an unknown sample and the training data points. Using majority voting of
the class labels, for the K closest training data points, the unknown sample is assigned
in one of the existing classes. The most commonly used methods for distance
calculation are Euclidean distance, Manhattan distance, Chebychev distance and
Minkowski distance. (Mulak & Talhar, 2015; Ooi, Ng & Lim, 2013) For the current work
Euclidean distance was used. Assuming that arbitrary data correspond in a N-
dimensional space R" and an unknown sample is represented by the feature vector
U = (Xqy, X2q > XNy), Where x,, donates the value of the kth dimension of the
unknown sample. The Euclidian distance between U and a known sample A =
(X14) X2, -+ XNg) is given by the equation:

N
WA = ) (50’

The number of distances that will be calculated each time, equals the number of the
training data points. The closest K training data points are identified as the K nearest
neighbors and their class labels will attribute to the assignment of the unknown
sample, in the major class (Figure 3.2). (Sarkar & Leong, 2000; Mitchell, 1997)
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Figure 3.2: Representation of K nearest neighbors algorithm in a two dimensional space. The red
circles and the green crosses represent data points of two different class labels. The algorithm
calculates all the distances between the unlabeled sample (black x) and the training data points.
Following the calculations of the distances, the algorithms sorts them from least to greatest
(d, < d, =d; <d, <dg). Finally, the model classifies through majority voting the unknown
data point. The number of nearest neighbors that are taken into consideration is very important
for the result, since it can drastically change the class label of the unknown samples. Considering
K =1, the unknown samples would be assigned as green cross, however changing K value in
K = 3, results in a different assignment of the unknown sample, as a red circle.

As it is easily observed, KNN is not strictly a learning classifier but rather a memory-
based classifier. (Koropoulis, Alachiotis & Pavlidis, 2020) Its simplicity makes it a
popular choice for use, among machine learning methods, but its low accuracy in
complex datasets limits its usefulness.

3.4 Support Vector Machine

Support vector machine is a machine learning algorithm, firstly introduced back in
1992 and 1995, based on the use of the best fitted hyperplane on the closest data
points between the different classes for the classification of unknown data. (Boser,
Guyon & Vapnik, 1992; Cortez & Vapnik, 1995) This algorithm uses the marginal data
points from each class as support vectors for the desirable hyperplane that separates
the samples. (Figure 3.3) The distance of those marginal data points from the
hyperplane is called margin and the main goal of the algorithm is to maximize it, to
increase the probability for sufficient classification of unknown samples in the correct
class. (Koropoulis, Alachiotis & Pavlidis, 2020)
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Figure 3.3: Best fitting hyperplane, based on the support vectors of the different classes. (Boser,
Guyon & Vapnik, 1992; Cortez & Vapnik, 1995)

The hyperplane that separates the classes is defined by the equation:
fX)=w-x+b=0

where W is the perpendicular vector to the hyperplane, bis abiasand X = (xy, ..., xy)
is the random N dimensional vector on the hyperplane. The hyperplanes on which the
support vectors lay, are given by the equations:

ffx)=w-x+b=1
f'(x)y=w-¥+b=-1

Therefore, the areas outside of the gutter that is defined by the support vectors are
given by:

w-x+b>1 w-x+b<-1
Considering two support vectors and calculating there difference, it can easily be
shown that maximizing the margin equals to maximize the value of i (Figure 3.4) In
other words, to maximize the margin equals to minimize the ||w||. (Boser, Guyon, &
Vapnik, 1992; Cortez, Vapnik, 1995)

Xn

-x;n
Figure 3.4: Distance between the marginal values.
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The minimization of [|w|| should be performed honoring the constraint:
yw-X+b)=>1

wherey = —1forw-x+b <—-1andy = 1for w-X + b = 1. (Boser, Guyon, &
Vapnik, 1992; Cortez, Vapnik, 1995)

When two classes are not linearly separable, the use of kernel functions that
transform the data into a more convenient/separable form is needed. (Figure 3.5)
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Figure 3.5: Data transformation in a linearly separable form. This transformation is achieved by the
use of a kernel functions.

Popular kernel functions are:

il
Kr(xl-,xj) =e 20°

Kp(xi,xj) = (xi . x] + 1)q

K, is the Radial kernel function with & > 0 as a free parameter determining the width
of the Gaussian function and K, is the Polynomial kernel function with g as the
polynomial degree. (Boser, Guyon & Vapnik, 1992; Miiller, et al, 1997; Vapnik, 1998;
Cristianini, & Ricci, 2008)

The example that has been previously mentioned is called hard margin SVM and it is
applicable when the used data are separable. For non-separable data it is necessary
to penalize errors during training, resulting in a different form of SVM called Soft
Margin. In this case a loss function is applied to the algorithm in order to penalize
wrong classification during the training process. Most commonly used loss function in
SVM is Hinge Loss. Using this function, the maximization of the margin is achieved by
minimizing:

1 N
[NZ max(0,1 — y, (W, - % + b))] + Allwl?

L
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where the first part refers to the summation of the penalty values for each mistakenly
classified data point, while the second part refers to the margin value, with A being a
free value to weight the impact of ||w|| to the final result. (Vapnik, Guyon & Hastie,
1995)

As it is observed, SVM is a machine learning method that can be easily applied in
various situations. It can be used for regression problems, as well as binary and
multiclass classification problems, while using the kernel trick can be applied in non-
linearly separable data, too. (Bishop, 2006; Boser, Guyon & Vapnik, 1992)
Furthermore, it is able to solve the “curse of dimensionality” by having the ability to
work with high dimensional datasets. (Koropoulis, Alachiotis & Pavlidis, 2020) Those
characteristics make this classifier capable of solving a variety of classification or
regression problems, making it a powerful tool with many applications.

3.5 Random Forest

According to Leo Breiman, who introduced the idea in 2001, a Random Forest is
defined as a classifier consisting of a large ensemble of tree-structured classifiers
{h(x,0,),k =1,..,n}, where the {0,} are independent identically distributed
random vectors and each tree casts a unit vote for the most popular class at input x.
(Breiman, 2001b) This classifier has been used in a variety of fields and it is widely
spread due to its accuracy and its ability to highly perform for both small and large,
high-dimensional data sets. (Biau & Scornet, 2016) The building block of the random
forest, decisional tree, is a conceptually simple classifier that can be used for
classification, as well as regression and is based on space separation in regions using
specific features or a linear combination of them. Each tree consists of decision nodes
which split the data and the space in separate areas, resulting in a tree structure model
(Figure 3.6). As a result, while growing a tree the algorithm needs to decide on the
splitting variables, splitting points and also the topology of it. To find best partitioning,
is necessary to evaluate the best splitting criteria, scanning through all the possible
inputs. This evaluation is performed by measuring the node impurity for each possible
leaf and split. In classification trees, node impurity can be measured in three different
ways, by Misclassification error, Gini index and Cross-entropy (or deviance). (Hastie,
Tibshirani & Friedman, 2009)
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Figure 3.6: Decisional tree representation and space partition. On the left side, is the
representation of a classification tree using binary splitting. The root of the tree is colored red,
while the nodes are colored green. Leafs or terminal nodes are colored blue. On the right side,
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the representation of the space partition by the tree, can be seen. (Hastie, Tibshirani & Friedman,
2009)

In an arbitrary node m, representing a region R,, with N,, observations, the
proportion of the observations of a class k is given by:

1 xm
Pmk Nm zi (yl k)

The impurity of that node could be measure by the previously mentioned ways as
follows:

Misclassification error > Q= ﬁzliv’”l(yi k) =1—pnx

Gini index > Q = Yer' PmiPmr’ = 2k P (1 — Pmic)
Cross — entropy > Q = — XX pmrlogPmx
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Figure 3.7: Node impurity in a two-class classification model, as a function of the proportion of
one of the two classes, measured by the three different values (Misclassification error, Gini index
and Cross — entropy). Cross - entropy is scaled to pass through the point (0.5, 0.5). (Hastie,
Tibshirani & Friedman, 2009)

For a two-class classification problem, the values of the three measures for the node
impurity are 1—max(p,1—-p), 2p(1—p), —plogp— (1—p)log(l—p),
respectively, considering p as the proportion for one of the two classes. A typical
representation of the values can be seen in (Figure 3.7). (Hastie, Tibshirani &
Friedman, 2009)

Cross — entropy and Gini index are the most popular, out of the three, values that are
used in random forest’s building blocks. (Koropoulis, Alachiotis & Pavlidis, 2020;
"Random forests - classification description", 2021; Breiman, 1996b)

The impurity values of the descendants are weighted averaged for the calculation of
the overall impurity for each split and the final value is compared with the impurity
value of the parent node. Thus,
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1
Qspuie = E n;0Q;
l

where Qgpy;¢ is the final impurity value of the split, while Q; and n; are the impurity
value and the sample size of each descendant, respectively. The split takes place only
if the averaged impurity value is lower than the parent node impurity (Qparent >
Qsplit), or until reaching the minimum growth of the tree, that has been previously
set. When the stopping criteria is met, unsplit nodes are called “terminal nodes”.
Following this splitting process, the ending leafs or terminal nodes are, eventually,
used for classification. Each of the terminal nodes is assigned to a specific class, by
computing the most frequently appeared class on its representative space (Figure
3.8). (Culter, A., Culter, D.R. & Stevens, 2012) The discussion above is focused on the
method named CART (Classification & Regression Trees) for the growth of decisional
trees.
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Figure 3.8: Representation of a classification tree and the space partition that it provides. Each
terminal node is assigned to the most frequently appeared class in its corresponding space
section. (Hastie, Tibshirani & Friedman, 2009)

Despite their advantages, decisional trees suffer from low accuracy because of their
dependence from the data used to create them. (Hastie, Tibshirani & Friedman, 2009)
Random forest bypasses this problem by creating a large number of independent tree-
structured classifiers, which are taken into consideration for the final result of the
classification or regression task. For the creation of this large amount of trees by a
single dataset, a procedure called “bootstrap aggregating”, or in one word “bagging”,
is used. Using this approach, several bootstrapped datasets are generated by the
original dataset and are used for creating different trees. For further randomization
on each tree, the best split in each node is chosen by a randomly selected subset of
the initial features. This parameter is called mg., and typically is the \/5, for
classification and p/3, for regression trees, where p is the total number of features.
The ensemble of the created trees predict unknown data by aggregating the final
prediction of each decisional tree (Figure 3.9). Thus, in a classification task the
prediction is achieved by majority voting, while in a regression task is achieved by
averaging the predicted values. (Liaw, & Wiener, 2002; Breiman, 1996a)
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Figure 3.9: Random forest sematic representation consisting of three tree-structured classifiers,
voting equally for the final class. Nodes colored green are the representation of the path that the
model follows in each tree for a hypothetical unknown sample. The roots of the trees are colored
red, while the nodes that are out of use are colored blue. (Liaw & Wiener, 2002; Breiman, 1996a)

Random forest is considered as one of the most useful and powerful machine learning
methods reaching excellent performances in classification tasks, comparable to
Support Vector Machine. (Diaz-Uriarte & Alvarez de Andrés, 2006)

3.6 Artificial Neural Networks

In the 1940s, McCulloch and Pitts introduced the idea of an algorithm that could
complete computational tasks, inspired by biological neuros. (McCulloch & Pitts, 1943;
Bishop, 2006; Hassabis et al., 2017) Since then, the research on the development of
artificial neural network models has been very wide, leading to their use in a variety
of fields and applications, like image and speech recognition, predictions on the
activity of potential drug molecules, speech transcription into text and relevant results
selection on search. (LeCun, Bengio & Hinton, 2015; Ma et al., 2015) Despite their
recent success, neural networks suffered from lack of accuracy over other machine
learning methods, through the years. The recent success can be explained by the
increased data availability and the high computational power of modern computers.
This plethora of data and computational power has outgrown the limits of traditional
machine learning algorithms (Figure 3.10), while neural networks can handle that
amount of information easier. (Aggarwal, 2018)
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Figure 3.10: lllustrative comparison between the accuracy of a traditional machine learning
algorithm and the accuracy of a deep neural network. Increasing the computational power and
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consequently the amount of data that can be handled, neural network algorithms have become
more attractive than conventional machine learning methods. (Aggarwal, 2018)

An artificial neural network consists of several layers of neurons. Each neuron is
connected with all the neurons of the previous and the next layer, forming a network.
Each path is a sequence of computational operations depending on the input values.
The first layer of neurons is called input layer and represents the layer that feeds the
model with the data, while the last layer of neurons is called output layer and provides
the final results of the model. In between those extremum levels, lays a number of
different layers of neurons, which are called hidden layers (Figure 3.11). The number
of those layers combined with the number of nodes on each one affect the complexity
of the model and determine the depth and the width of it. (Rumelhart, Hinton &
Williams, 1986; LeCun, Bengio & Hinton, 2015; Aggarwal, 2018) For the purpose of this
work, models with only one hidden layer were used for classification tasks and for that
reason, only single-layer neural networks will be discussed. Neural network models
with multiple hidden layers appertain to deep learning, following almost the same
principals, but will be out of interest for the current work.

Output ‘

layer

\ ‘ Hidden |

layer

Figure 3.11: lllustration of a single-layer neural network. Disks represent neurons on each layer,
while the black lines represent the connections between the neurons. The different width of the
lines represent the differences in the weight values. Input layer is colored red and is the only layer
that neurons do not represent a computational operation. The hidden layer is colored blue and
the output layer green. (Bishop, 1994; LeCun, Bengio & Hinton, 2015; Aggarwal, 2018)

The nodes of a network are the representation of a computational operation, the
transformation of the input value by an activation function, which provides the output
value of the node. Sigmoid and tanh functions, were the most commonly used
activation functions throughout the evolution of the neural networks (Figure 3.12).

1

d(u) = = (Sigmoid function)
d(u) = :Z—: (Tanh function)
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However, in recent years the ReLU (®(u) = max{u, 0}) and the hard tanh functions
(max{min[u, 1], —1}) have heavily replaced the previously used functions on the
modern neural network models (Figure 3.12). (LeCun, Bengio & Hinton, 2015;
Krizhevsky, Sutskever & Hinton, 2017; Aggarwal, 2018)

®(u) = max{u, 0} (ReLu function)

®(u) = max{minfu, 1], -1} (Hard tanh function)

0

a) Sigmoid function b) Tanh function
1,
-1 0 1
71,
0
c) ReLU function d) Hard tanh function

Figure 3.12: Activation functions. (Aggarwal, 2018)

The input value of the activation function in each node is provided by an additive
contribution of each connected node’s output. In other words, the input to a node is
the weighted sum of the outputs from each of the connected nodes from the previous
layer, added in a bias or offset term. (Bishop, 1994; Aggarwal, 2018)

n
(D0 wip)+
i=1

where i = 1, ...,n is the number of the node on the previous layer, j = 1, ..., k is the

number of the node in the current layer, L = 1, ...,7 is the number of the current
@
l

is the weighted value for each computational path and bj(L) is the offset term. In

layer, x
@
ij
Figure 3.13, a mathematical and a graphical representation between the connections
of a node with its previous layer can be seen. (Bishop, 1994; Aggarwal, 2018)

represents the initial input of the model or the output of a previous node,

w
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Figure 3.13: lllustration of the connection between a node and the previous layer of nodes. In the
upper half of the image the sequence of computational operations that take place during the
connection of a node with the previous layer of nodes, can be seen. In the lower half of the image,
a schematic representation of this procedure is illustrated. The differences in the width of the
connecting lines represent the different weight values. Inside of each node a typical
representation of an activation function can be seen. (Bishop, 1994; Aggarwal, 2018)

During the training process of an artificial neural network, the aim is to find the proper
set of weights and biases ensuring that the predicted result will be sufficiently close
to the desired output, for any input vector. (Rumelhart, Hinton & Williams, 1986) The
evaluation of the model’s result is given by a loss function (L;) that evaluates the
agreement between the given and the expected value. Choosing the most suitable
loss function in each application is crucial for the correct defining of the outputs. For
regression tasks, squared loss and hinge loss are the most commonly used loss
functions.

Ly = Zle(yj - dj)z (Squared loss)
Le = Z;zimax{o,l —yj-d;} (Hinge loss)

where j = 1, ..., ] is the number of training vectors, y; is the desirable output vector
and d; is the predicted output vector. However, for classification tasks in which
softmax output is probabilistic, cross-entropy loss is preferred.

Ly =— Zle yjlog p(dj) (Cross — entropy)

where j = 1, ..., ] is the number of training vectors, y; is the desirable output vector,
d; is the predicted output vector and p(d;) is predicted output vector of probabilities.
(Rumelhart, Hinton & Williams, 1986; Bishop, 2006; Janocha & Czarnecki, 2017;
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Aggarwal, 2018) For the optimization of a neural network it is necessary to minimize
the value of L; (L; — 0). The minimization of L; (Figure 3.14) is performed by gradient
descent algorithm, which requires the calculation of the partial derivatives of the loss
value for all weight and bias variables in the network (VL;). This optimization can be
performed simultaneously for all the variables. A small sift is calculated for each
different variable by the value of the VL,, for the current variable, weighted by a
learning rate. The extraction of that sifts gives the new values for the variables:

Onew =0 — 1 - VL(0)

where 6 is a random weight or bias value and 7 is the learning rate. (Rumelhart, Hinton
& Williams, 1986; Ketkar, 2017; Jurafsky & Martin, 2009)
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Figure 3.14: lllustration of the Loss function L, for a parameter 0. The algorithm performs
changes in the value of 8, for each iteration, to move the value of the Loss function closer to the
total minimum (L, ). The changes are based on the value of the slope for tangent line in each
point. After the calculation of the derivative for a point (green), a new value for 8 with reduced
derivative (red) is calculated using gradient descent. Ly, represents the total minimum of the
Loss function and Ly,,;,, represents a local minimum of it. (Bishop, 1994; Jurafsky & Martin, 2009)

Consequently, calculating the loss value for every training vector, starting with
random weight and threshold values and using the results for the correction of each
variant, can gradually decrease the error and increase the accuracy of the model. This
method is called Error Backpropagation and it is the main learning process of the
neural networks. (Rumelhart, Hinton & Williams, 1986) Summing up, the model
evaluates the results for the training vectors using random variables and then
correcting those variables reevaluates the results. This process continues until
reaching a minimum value for the Loss function or reaching the maximum value of
iterations. (Rumelhart, Hinton & Williams, 1986; Bishop, 2006) Using gradient descent
approach, the model has to perform a great amount of computations, especially for
large datasets, leading to significantly high training time and demanding memory.
Another, common problem is the potential assumption of local minima as the total
minimum of the loss function. To overcome those problems, most of neural network
models use stochastic gradient descent. In this approach, a randomly selected subset
of the training vectors is used for each iteration of the Backpropagation method,
significantly reducing the impact of the training data on the Loss value. (Ketkar, 2017)
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Artificial neural networks are currently the edge of machine learning research, finding
use in many different fields, from scientific tasks, to business and everyday life
technology. The evolution of computer science and computer hardware, combined
with the availability of data and information have renewed the interest in that branch
of artificial intelligence and have turned neural networks into the potentially most
powerful tool for data analysis, in the present and possibly in the near future ,too.
(LeCun, Bengio & Hinton, 2015; Ma et al., 2015)

3.7 Overfitting and Stratified Nested Cross-Validation

It has been widely noted that supervised machine learning algorithms suffer from an
inadequacy to generalize from observed data to unseen data, because of overfitting.
A machine learning model, which is trained using a finite number of data, can perform
perfectly on training data but poorly on unknown samples, which are used as testing
data. The cause of this phenomenon is the dependence of the optimization process of
the model from the data that have been used for training. The noise of the training
data can be considered as an existing pattern by the model and act as a basis of
predictions, leading to biased models that are unable to correctly perform unknown
data (Figure 3.15). (Ying, 2019; Lever, Krzywinski & Altman, 2016)

Figure 3.15: |llustration of the fitting line of an arbitrary model in arbitrary training data. On the left
side, the representation of the best fitted line that separates the training data sufficiently, while
retaining a high probability to separate unknown data, can be seen. On the middle, is the representation
of an overfitted line which perfectly separates the training data, while on the right side, the comparison
between the two lines can be seen.

Considering that real life data always occur many biases, to secure an unbiased result
of a machine learning algorithm, avoiding overfitting, it is necessary to remove the
impact that the training and testing data have on the final algorithm. The most
commonly used method to achieve that is k-fold cross validation and it is based on
developing several models each one trained and tested by different subsets from the
original data. (Lever, Krzywinski & Altman, 2016; Hastie, Tibshirani & Friedman, 2009)
To achieve that a partition of the data in a number of subsets m is performed. Those
subsets are kept one at a time as validation sets (y;, j € m), while the training of the
model is performed using the rest of the data (y — y;,j € m). The accuracy of each
model is estimated each time by the remaining data and the final accuracy is
estimated by averaging the accuracies of all the developed models (Figure 3.16).
(Hastie, Tibshirani & Friedman, 2009)
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Figure 3.16: Schematic representation of cross-validation process.

Another use of the k fold cross-validation technique is during the parameters selection
process that is necessary for the optimal performance of the algorithms. The optimal
values of the parameters for each algorithm can be found by performing the cross-
validation method using different values in each iteration and then selecting those
created the highest performing model for use in the final trained model. For more
robust outcomes the process can be repeated for several times. (Tsamardinos,
Rakhashani & Lagani, 2014)

However, it is corroborated that cross-validation overestimates performance when it
is used during parameter selection. (Tsamardinos, Rakhashani & Lagani, 2014) To
overcome this problem, a method called nested cross-validation is recommended. In
this method a new outer loop is introduced, working similarly with the cross-validation
method. The previously mentioned parameter selection remains as an inner loop in
the process. As a result, using this method the original data set is split in n different
subsets. Each subset is kept as a testing set, while the rest of the data are used as the
dataset for training and validation in the inner cross-validation process. After the
selection of the optimal values for the parameters, the final model is tested using the
data that have been kept previously, as a test set. The training-testing process of the
algorithm is performed n times, each time using a different subset (x;,i € n) as
testing set and the rest of the subset as training set (x — x;,i € n), resulting in n
different outcomes (Figure 3.17). (Tsamardinos, Rakhashani & Lagani, 2014) The
estimation of the final model’s results is achieved by averaging the n different
outcomes.

The training process and the result of a model can be affected by the partition of the
initial dataset in subsets. To avoid the effects of biased partitioning, on the training
model, an approach called stratification is recommended. Stratification forces the
created subsets to have the same distribution of samples from each category with the
initial data set. Using this technique is secured that each fold has a representative
number of samples from each different class. (Tsamardinos, Rakhashani & Lagani,
2014)

[71]



(. h

Fold x, Fold x,| Fold x| Fold xi‘FoId xn‘ [ >

‘Fold X, Fold xz‘ Fold xa‘ Fold x; | Fold x,, \; Tuning for best parameters

Foldx, Foldx, Fold x, Fold x, Fold x, C T T 1T

‘Fold xl‘FoId xz‘Fold x5 Fold x;| Fold x;, ‘ ‘ ‘ ‘ | ‘ | > | ‘ Trc|nn | ‘

‘Fold X, |Fold x, Fold xs‘ Fold x; Fold x,, ‘ ‘ ‘ ‘ | ‘ B x3
LT T T [ ] \ 4 xm
‘ ‘ ‘ ‘ | ‘ Validate x N

Best Parameters Selection

Train using best parameters Test

- R -

Figure 3.17: Schematic representation of nested cross-validation process.

3.8 Feature Selection and Extraction

As it has been discussed already in section 2.11, each data point consists of a spectrum
and each spectrum consists of a sequence of 2048 intensity values. That number of
dimensions is quite large, even for a machine learning problem. Considering the
enormous computational time is needed for the processing of that amount of
information and the fact that the majority of those values coming from spectral
background, providing not useful information, it is imperative to reduce the number
of dimensions for the optimal performance of the algorithms. (Guyon & Elisseeff,
2003) For that reason, several approaches for feature selection and feature extraction
were employed.

Firstly, a feature selection function was developed, based on the feature variance of
each class. The main idea was to isolate the features with the lowest in-class variance
and the greatest among-classes variance. In order to achieve this selection, a new
function was developed in which the ratio between the product of the in-class
variances and the among-classes variance was calculated and sorted from the least to
the greatest.

vary - vary * -+ var,
k =

n
vary

where var; is the variance of the it" class for a specific feature (pixel) k, vary is the
variance among different classes for a previously mentioned feature (pixel) and n is
the number of the different classes. The K features (pixels) with the lowest values
given by the previously mentioned function were considered important, as features,
for classification using the machine learning algorithms, with K being an arbitrary
number defined by the analyst.

A different methodology for feature selection was followed as well, based on a
previous work (Siozos et al., 2021), targeting specific areas of the spectrum with
characteristic emission spectral lines chosen directly from the analyst. Trimming the
spectrum by targeting areas with emission lines coming from biogenic elements of the
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sample, results in a significantly decreased number of features, followed by a desirable
increase on the models accuracy and reducing the impact of potential contamination
on the samples.

The last feature selection method used was based on the spectral lines intensities.
Similarly with the previously mentioned method, specific spectral lines were targeted,
but in this particular case only the pixels with the highest intensity were considered
important as features. A function that isolates the pixel with the highest intensity for
each given peak was developed.

In a different approach for solving the high dimensionality problem, instead of
reducing the number of features by targeting only a small number of them, it is
possible to extract newly formed features using the already existing. By this approach
the information from the parental features is incorporated in the newly formed.
(Guyon & Elisseeff, 2003) Based on this idea, a new function that calculates the
integral for several specific spectral lines was developed. The calculated integrals for
specific biogenic spectral lines were used as new features for feeding the models,
significantly reducing the computational time.

3.9 Metrics

The resulting output of machine learning models can be evaluated by a variety of
different metrics. The use of each different metric depend on the question that needs
to be answered, as well as the nature of the problem itself. Some commonly used
metrics are Accuracy, Area Under Curve (AUC), Choen’s Kappa, Sensitivity, Specificity,
F1 score, Mean Absolute Error, Mean Squared Error and many more. In the current
work, Accuracy, alongside Sensitivity and Choen’s Kappa were considered the most
suitable metrics for the evaluation of this particular classification problem.

3.9.1 Accuracy

Accuracy is the most commonly used metric for the evaluation of many statistical
techniques and machine learning methods. It is defined as the closeness of agreement
between a test result and the accepted reference value, while it is calculated by the
sum of the correctly predicted values divided by the number of total predictions.
(Miller & Miller, 2014; Veropoulos, Campbell & Cristianini, 1999) Accuracy is given by
the equation:

Y.(Correctly Predicted Valeus)
Total Predicted Valeus

Accuracy =

3.9.2 Sensitivity

This metric calculates the proportion between the correctly predicted values in each
group of samples and the total number of values in the same group. Alternatively, it
is a way to compare the correctly predicted values with the values that had to be
predicted correctly for the different categories of samples, if the rater was performing
perfectly. (Lee et al., 2001; Veropoulos, Campbell & Cristianini, 1999)
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Table 3.1: Representation of the predicted values of the rater considering the
reference values. True Positive represents the correctly predicted A values, while
True Negative the correctly predicted B values. . On the other hand, False Positive
and False Negative represent the incorrect A and B values, respectively (Lee et al.,
2001; Veropoulos, Campbell & Cristianini, 1999).

Reference
A B
A True False
L Positive Positive
g
B False True
MNegative MNegative

Sensitivity is given by the equation:
True Positive
True Positive + False Negative

Sensitivity =

3.9.3 Choen’s Kappa

Kappa or Choen’s Kappa was introduced by Jacob Choen back in 1960 and it refers to
the proportion of agreement between two raters, after chance agreement has been
removed from consideration (Cohen, 1960). In this particular work, Kappa refers to
the agreement of each rater with the reference, after the subtraction of chance

agreement.

Table 3.2: Representation of a matrix of probabilities for each different case of
prediction by the rater. Paais the probability of agreement between rater and reference
for A. Similarly, Pss, Pasand Pgaare the probability of agreement between the rater and
the reference for B and the probability of disagreement for B and A, respectively. The
addition values are the overall probabilities of the rater to predict A and B and the
overall probability of the reference to be A and B (Cohen, 1960).

Reference Rater
A B AB
- A Paa Pea PuatPes
g
b
[
B Pag Pes PastPes
L1}
=
Ej AB PaatPap PeatPeg
&

Kappa is given by the following equation:
PO - PE

K =2 £
appa =<4
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Where Porepresents the probability of the correct predictions of the rater, according
to the reference and Pt represents the probability of agreement by chance between
the rater and the reference.

Po =Pys+ Ppp

P = (PA,A +PA,B) * (PA,A +PB,A) + (PB,A +PB,B) * (PA,B +PB,B)

As can it be easily seen, the value of Kappa is the difference between the Po and Pg,
divided by the difference of 1 and Pg, which refers to the maximum value that the
numerator can achieve, resulting in the normalization of the metric by max.
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4 Results and Discussion

4.1 Models’ Evaluation

The aim of this work was the use of different machine learning methods for the
discrimination of LIBS spectra originate from hard tissue remains of several
individuals, with a potential use in the classification of entire samples to the
individuals that they belong. This approach in the classification of hard tissues can
potentially speed up the archaeological and forensic studies, overcoming the
difficulties of classifying huge numbers of excavated hard tissue remains.

After the collection of an adequate number of hard tissue remains, forming three main
datasets, the first step was the development of the machine learning models. Four
different algorithms were employed and tested. In particular, k Nearest Neighbors
(KNN), Support Vector Machine using a polynomial (SYMP) and a radial (SVMR) kernel,
Random Forest (RF) and an Artificial Neural Network (ANN) were used. The results
from every algorithm were compared for the selection of the most suitable model for
each task. Principal Components Analysis (PCA) was considered non-suitable for the
current task considering that its use requires the standardization of data by feature.
That type of normalization would equalize the background signal with the spectral
lines that appear in the LIBS spectra, leading to potentially false results based on
differences in background noise. (Pofizka et al., 2017) Thus, PCA has been used in
current work in a non-typical way, just for the visualization of the data in space, after
the unit vector normalization of them.

Following the development of the models, a series of testing processes has been
performed for the evaluation of their functionality and their robustness, prior to the
analysis of the hard tissue datasets. The evaluation was performed using the well-
known Iris dataset because of the extensive work with it in bibliography, its well
separated classes and its small size. This dataset was created back in 1936 by Ronald
Fisher and it consists of the measurement of petal and sepal length and width, in
centimeters, from three different types of iris flowers (Iris setosa, Iris versicolor and
Iris virginica). The data have been retrieved from measuring fifty plants from each of
the three different types. This particular dataset is often referred as “Fisher’s Iris
Data”, too. (Andrews & Herzberg, 1985)

As it was expected, three clearly separated clusters appeared in the PCA score plot
(Figure 4.1), each one for a different class of the flower, while all the algorithms had
excellent results for all the used metrics revealing that the developed models work
sufficiently well (Figure 4.3, Table 4.1). Despite that first evidence, a second test was
performed in order to evaluate the validity of the first result. In this second evaluation
process, the labels of classes in the Iris dataset were disarranged prior to the analysis.
This major change on the data, created a non-separable dataset, as it was verified by
the PCA score plot, too, (Figure 4.2). The analysis of this newly formed dataset
revealed that classification could not be achieved by any of the algorithms. The values
of Kappa for every algorithm were defining for that failure of achieving sufficient
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classification. The fact that the values of Kappa laid below zero reveals that the
classification results were not better than the random labeling of unknown data
(Figure 4.4, Table 4.2). The failure of the algorithms to achieve classification using the
class-reassigned Iris data, combined with the excellent results of the original Iris data
leads to the evaluation of the initial hypothesis that the developed models sufficient
classification power.

Class setosa + wversicolor = virginica Class setosa + versicolor + virginica
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Figure 4.1: PCA score plots for the Iris dataset. a) The data have been normalized by standardization, b)
the data have been normalized by unit vector normalization.
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Figure 4.2: PCA score plots for the Iris dataset with rearranged class labels. a) The data have been
normalized by standardization, b) the data have been normalized by unit vector normalization.
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Figure 4.3: Irish dataset, using all four features. The values of the three different metrics that
were used, for each of the algorithms, along with the standard deviation for each value, can
be seen. All the algorithms have excellent classification results.

Table 4.1: Iris dataset results, using all four features.

KNN

SVMR

SVMP

RF

ANN

Accuracy SD Sensitivity SD Kappa SD
0.967 0.041 0.967 0.041 0.95 0.061
0.953 0.038 0.953 0.038 0.93 0.057
0.96 0.037 0.96 0.037 0.94 0.055
0.967 0.024 0.967 0.024 0.95 0.035

0.96 0.055 0.96 0.055 0.94 0.082
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Figure 4.4: Irish dataset, with rearranged class labels. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. Kappa values are lower than zero, revealing the inability of the models to
perform better classification than the random selection.
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Table 4.2: Iris dataset results, with rearranged class labels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.3 0.094 0.3 0.094 -0.05 0.141
SVMR 0.26 0.043 0.26 0.043 -0.11 0.065
SVMP 0.26 0.049 0.26 0.049 -0.11 0.074
RF 0.32 0.056 0.32 0.056 -0.02 0.084
ANN 0.307 0.083 0.307 0.083 -0.04 0.124

4.2 Manual Feature Selection

4.2.1 Selection of 258 Pixels

After the evaluation of the correct behavior for the developed machine learning
models, the Archaeological and Modern datasets were analyzed. The large number of
pixels on each spectrum and thus the large amount of information to be processed by
the classification models leads to a big amount of computational time and
computational power needed. As a result, the reduction of the initial features prior to
the analysis was considered necessary. Based on prior work (Siozos et al., 2021), the
initial reduction was focused on specific spectral areas that correspond to specific
spectral lines from biogenic elements of the hard tissues, leading to a significant
reduction of the pixels/features(from 2048 to 258). Characteristic lines for calcium
(Ca) and phosphorus (P), which are the building stones of hydroxyapatite and
magnesium (Mg), sodium (Na) and strontium (Sr), which are the main elements that
replace calcium in hydroxyapatite, have been chosen for the feature selection that
was performed (Figure 4.5). This reduction on the number of the used features
reduces the running time from several minutes to a couple of hours, depending on the
size of the analyzed data and the algorithms that are used.
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Figure 4.5: Selected spectral areas with characteristic spectral lines from biogenic elements. The
combined number of pixels from these areas was 258. Those areas were used for the initial manual
feature selection, as they have been used in previous work, too. (Siozos et al., 2021)

Firstly, the Archaeological dataset was tested (Figure 4.6) in order to compare the
behavior of the models with a previous work (Siozos et al., 2021). The results from the
algorithms showed a very good behavior of the Artificial Neural Network reaching a
value over 0.85 in Accuracy, with the other two metrics reaching values over 0.8
supporting the achieved accuracy. These results showed a sufficiently good
classification for this dataset, despite its lower values compared to earlier works
(Figure 4.7, Table 4.3). The random forest reached almost an Accuracy value of 0.8
giving a sufficiently good result, while the rest of the algorithms resulted in metric
values below 0.7, thus they consider unable to achieve a sufficient classification.
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Figure 4.6: PCA score plot for Archaeological Human Bones selecting 258 pixels and using unit
vector normalization.
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Figure 4.7: Archaeological Human dataset, selecting spectral areas with biogenic spectral
lines, corresponding in 258 pixels. The values of the three different metrics that were used,
for each of the algorithms, along with the standard deviation for each value, can be seen. The
Artificial Neural network has significantly better results than any of the other algorithms.

Table 4.3: Metric values for the Archaeological Human data, using spectral areas with biogenic
spectral lines, corresponding in 258 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.669 0.058 0.632 0.065 0.566 0.08
SVMR 0.637 0.063 0.532 0.065 0.508 0.09
SVmMpP 0.671 0.066 0.62 0.072 0.571 0.084
RF 0.791 0.026 0.744 0.031 0.725 0.035
ANN 0.863 0.052 0.854 0.055 0.823 0.067

Following the promising results from the Archaeological data, the algorithms were
used for the analysis of the remaining datasets, under the same conditions. As it can
be seen in Figure 4.9 and in Table 4.4, using the Domestic Sheep data (Figure 4.8) and
the spectral areas that correspond to the previously mentioned 258 pixels as input
vector for the algorithms, the machine learning algorithms gave lower results than
expected, being unable to reach more than 0.5 Accuracy. Random Forest was the only
machine learning algorithm able to reach almost 0.6. On the other hand, the result of
the Artificial Neural Network was quite promising, with its Accuracy reaching a value
more than 0.7, while Kappa value was almost 0.65 revealing the sufficient behavior of
the model compared to the random labeling. Despite the fact that the developed
models using these data were not able to achieve high results, the ANN algorithm was
very promising for a potential successful classification using a most suitable feature
selection. When the Modern Human data (Figure 4.10) were used under the same
conditions (Figure 4.11, Table 4.5) the results were almost identical with those of the
Domestic Sheep dataset. ANN had promising results with all the metric values
reaching at least 0.7, while the rest of the algorithms had significantly lower results,
with the two SVM algorithms having the lowest.
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Figure 4.8: PCA score plot for Modern Domestic Sheep Teeth, selecting 258 pixels and unit
vector normalization.
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Figure 4.9: Domestic Sheep dataset, using spectral areas with biogenic spectral lines,
corresponding in 258 pixels. The values of the three different metrics that were used, for each
of the algorithms, along with the standard deviation for each value, can be seen. The Artificial
Neural network has significantly better results than any of the other algorithms.

Table 4.4: Metric values for the Domestic Sheep data, selecting spectral areas with biogenic
spectral lines, corresponding in 258 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.509 0.064 0.432 0.053 0.353 0.079
SVMR 0.458 0.035 0.372 0.031 0.279 0.044
SVmMP 0.476 0.055 0.377 0.045 0.297 0.073
RF 0.567 0.033 0.465 0.028 0.423 0.042
ANN 0.72 0.06 0.696 0.089 0.64 0.077
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Figure 4.10: PCA score plot for Modern Human Teeth, using 258 pixels and unit vector
normalization.
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Figure 4.11: Modern Human dataset, selecting spectral areas with biogenic spectral lines,
corresponding in 258 pixels. The values of the three different metrics that were used, for each
of the algorithms, along with the standard deviation for each value, can be seen. The Artificial
Neural network has significantly better results than any of the other algorithms.

Table 4.5: Metric values for the Modern Human data, selecting spectral areas with biogenic
spectral lines, corresponding in 258 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.522 0.031 0.485 0.041 0.483 0.035
SVMR 0.285 0.031 0.212 0.024 0.226 0.032
Svmp 0.306 0.016 0.301 0.016 0.259 0.016
RF 0.599 0.014 0.517 0.022 0.56 0.017
ANN 0.727 0.014 0.71 0.02 0.705 0.015

The inability for sufficient discrimination in different individuals analyzing the two
modern datasets raised the question whether the discrimination between species
could be achieved easier. For that reason, the two modern datasets were combined
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to each other in an attempt to create a larger dataset in which on the different samples
to be grouped in the different species instead of individuals (Figure 4.12). Using the
newly formed combined dataset, retaining the equal proportion of the two different
classes, the analysis of those data with the developed algorithms had significantly
good results, regardless of the algorithm that was used (Figure 4.13, Table 4.6). Once
again, KNN and the SVM algorithms had lower results compared to RF and especially
ANN. Accuracy value for Random Forest was almost 0.9, revealing a very good
discrimination using this algorithm, while all the metric values for the ANN exceeded
0.9, revealing an excellent performance of the model in the discrimination between
species.
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Figure 4.12: PCA score plot for Modern Domestic Sheep and Human Teeth, using 258 pixels
and unit vector normalization.

1.0-
0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1-
0.0- Accuracy Sensitivity Kappa

ANN  KNN RF  SVMP SVMR

Figure 4.13: Domestic Sheep and Human dataset, selecting spectral areas with biogenic
spectral lines, corresponding in 258 pixels. The values of the three different metrics that were
used, for each of the algorithms, along with the standard deviation for each value, can be
seen. The Artificial Neural network has significantly better results than any of the other
algorithms.
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Table 4.6: Metric values for the Domestic Sheep and Human data, selecting spectral areas with
biogenic spectral lines, corresponding in 258 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.852 0.022 0.804 0.075 0.703 0.045
SVMR 0.838 0.047 0.869 0.027 0.677 0.093
SVMP 0.856 0.017 0.851 0.035 0.711 0.034
RF 0.897 0.038 0.916 0.062 0.795 0.076
ANN 0.965 0.024 0.964 0.034 0.93 0.048

4.2.2 Selection of 100 Pixels

The promising above results combined with the significant amount of running time led
to a further manually feature reduction, for maximizing the resulted classification and
minimizing the used features. The features from the background signal of the
previously used areas, were discarded and resulting in narrower spectral areas as
initial features. After the further feature reduction only 100 pixels/features from each

spectrum were used (Figure 4.14).

3

Intensity

Pl

2125

2150

‘Wavelength (nm)

Se-04

de-04

g
2

Intensity

¥
2

2175

1.0e-02

7.5e-03

ty

5.0e-03

Intensi

2 5e-03

0.0e+00
2775

Na |

2800 F:

2825
‘Wavelength (nm)

1.5e-02

1.0e-02

Intensity

Mg Il r

Be-02

Vig|

5.0 287

nz

34

Sr

316
‘Wavelength (nm)

EiE]

320

5.0e-03

2

.

0.0e+00

am 458

480 462
Wavelength (nm)

3300 3310

330.5
Wavelength {nmj

Figure 4.14: Newly selected spectral areas. The background signal has been discarded, leading to a
significant pixel reduction to 100, from the initial 258.

Feature reduction significantly reduced the running time of the analysis. At the same
time, the resulted classification either increased or remained the same depending on
the used dataset. In particular, the already excellent classification to species (Figure
4.15) remained almost intact, resulting in excellent classification Accuracy values
regardless the used algorithm (Figure 4.16, Table 4.7). ANN retained the higher results,
with its three metric values exceeding 0.9 and Accuracy value exceeding even 0.95.
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Figure 4.15: PCA score plot for Modern Domestic Sheep and Human Teeth, using 100 pixels
and unit vector normalization.
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Figure 4.16: Domestic Sheep and Human dataset, using further reduced biogenic spectral
areas, corresponding in 100 pixels. The values of the three different metrics that were used,
for each of the algorithms, along with the standard deviation for each value, can be seen.
Artificial Neural Network has slightly higher results, while all the algorithms except K Nearest
Neighbors have accuracy higher than 0.9.

Table 4.7: Metric values for the Domestic Sheep and Human data, selecting further reduced
biogenic spectral areas, corresponding in 100 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.868 0.01 0.847 0.069 0.735 0.019
SVMR 0.937 0.019 0.953 0.024 0.875 0.038
SVMP 0.923 0.023 0.924 0.024 0.847 0.045
RF 0.915 0.032 0.938 0.042 0.83 0.064
ANN 0.963 0.016 0.949 0.033 0.927 0.031
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Two of the three remaining datasets, the Archaeological (Figure 4.17) and the Modern
Domestic Sheep dataset (Figure 4.19), retain their results even after a similar
reduction. For the Archaeological data ANN and RF have significantly higher results
than the rest of the algorithms. Random Forest achieved an Accuracy value over 0.75
while the remaining metric values were around 0.7. ANN achieved an Accuracy value
higher than 0.85 and while the remaining metric values exceeded 0.8 (Figure 4.18,
Table 4.8). Using the Modern Domestic Sheep data an agreement of the produced
results with those of the 258 pixels was observed. Once again, the ANN had the higher
results, with its Accuracy and Sensitivity exceeding 0.7, followed by RF with an
Accuracy value around 0.6. Those results remained close to the resulted values using
258 pixels (Figure 4.20, Table 4.9).
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Figure 4.17: PCA score plot for Archaeological Human Bones, using 100 pixels and unit vector
normalization.
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Figure 4.18: Archaeological Human dataset, selecting further reduced biogenic spectral
areas, corresponding in 100 pixels. The values of the three different metrics that were used,
for each of the algorithms, along with the standard deviation for each value, can be seen. The
Artificial Neural network has significantly better results than any of the other algorithms.
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Table 4.8: Metric values for the Archaeological Human data, with further reduced biogenic
spectral areas, corresponding in 100 pixels.

KNN

SVMR

SVMP

RF

ANN

Accuracy SD Sensitivity SD Kappa SD
0.631 0.036 0.608 0.035 0.519 0.043
0.663 0.033 0.576 0.036 0.548 0.046
0.646 0.053 0.576 0.042 0.531 0.065
0.769 0.055 0.724 0.038 0.696 0.069
0.866 0.028 0.852 0.03 0.827 0.036
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Figure 4.19: PCA score plot for Modern Domestic Sheep Teeth, selecting 100 pixels and unit
vector normalization.
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Figure 4.20: Domestic Sheep dataset, selecting further reduced biogenic spectral areas,
corresponding in 100 pixels. The values of the three different metrics that were used, for each
of the algorithms, along with the standard deviation for each value, can be seen. The Artificial
Neural network has significantly better results than any of the other algorithms.
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Table 4.9: Metric values for the Domestic Sheep data, selecting further reduced biogenic
spectral areas, corresponding in 100 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.516 0.086 0.437 0.072 0.364 0.111
SVMR 0.476 0.047 0.401 0.035 0.308 0.06
Svmp 0.433 0.035 0.367 0.041 0.251 0.045
RF 0.622 0.054 0.54 0.067 0.502 0.071
ANN 0.724 0.072 0.721 0.092 0.644 0.095

The remaining Human Modern data (Figure 4.21) had a small but important increase
in the resulted Accuracy value, exceeding 0.75 with the use of the ANN, while the rest
of the metric values increased, as well. Random Forest followed ANN, with the
remaining algorithms achieving insufficient results (Figure 4.22, Table 4.10).
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Figure 4.21: PCA score plot for Modern Human Teeth, using 100 pixels and unit vector
normalization.
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Figure 4.22: Modern Human dataset, selecting further reduced biogenic spectral areas,
corresponding in 100 pixels. The values of the three different metrics that were used, for each
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of the algorithms, along with the standard deviation for each value, can be seen. The Artificial
Neural network has significantly better results than any of the other algorithms.

Table 4.10: Metric values for the Modern Human data, selecting further reduced biogenic
spectral areas, corresponding in 100 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.556 0.011 0.528 0.008 0.52 0.011
SVMR 0.332 0.043 0.271 0.017 0.276 0.036
SVMP 0.351 0.011 0.351 0.01 0.308 0.012
RF 0.665 0.037 0.601 0.037 0.634 0.041
ANN 0.755 0.026 0.735 0.032 0.735 0.028

4.2.3 Selection of 130 Pixels

The significantly reduced running time, selecting only 100 pixels, created the
opportunity to increase the inserted information to the models by adding new spectral
areas to the already used. For that reason, combined with the already selected
spectral areas, three more spectral areas were used (Figure 4.23). All the new areas
corresponded in spectral lines from biogenic elements. In particular, the spectral lines
of Cain 370.6 nm and in 373.7 nm and the spectral line of Sr in 407.8 nm.
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Figure 4.23: Three more spectral areas were added in the previously selected (Figure 4.14),
adding 30 more features.

Thirty (30) new pixels were added in total in the previous 100 pixels, leading to
performing models, using the Modern Domestic Sheep and the Modern Human data.
In particular, using the Domestic Sheep dataset (Figure 4.24) the Accuracy values for
all the models increased up to 0.1 (Figure 4.25, Table 4.11), depending on the
algorithm, with the Artificial Neural Network reaching 0.8 and thus reached the limit
for an efficient classification that has been set by previous works. Additionally,
Sensitivity value for the ANN reached 0.8, too. Random Forest followed, reaching
more than an Accuracy value of 0.65, with the rest of the model significantly improving
their performance but retaining their insufficient behavior. Following this
improvement, analyzing the Modern human data (Figure 4.26) the accuracy value for
the ANN was increased by 0.07 exceeding 0.8, while the rest of its metric values
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exceeded 0.8, as well. Exceeding the lowest threshold for an efficient classification for
both Modern datasets was a key step for achieving the main aim of the project.
Despite thee sufficiently good result of the ANN, the metric values for the remaining
algorithms were significantly lower (Figure 4.27, Table 4.12).
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Figure 4.24: PCA score plot for Modern Domestic Sheep Teeth, selecting 130 pixels and using
unit vector normalization.
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Figure 4.25: Domestic Sheep dataset, selecting 130 pixels. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network has significantly better results than any of
the other algorithms, followed by Random Forest.
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Table 4.11: Metric values for the Domestic Sheep data, selecting 130 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.502 0.062 0.439 0.073 0.349 0.086
SVMR 0.56 0.071 0.484 0.081 0.419 0.095
SVMP 0.495 0.076 0.465 0.103 0.343 0.102
RF 0.673 0.075 0.623 0.077 0.574 0.097
ANN 0.8 0.029 0.799 0.031 0.742 0.037
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Figure 4.26: PCA score plot for Modern Human Teeth, selecting 130 pixels and using unit
vector normalization.
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Figure 4.27: Modern Human dataset, selecting 130 pixels. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network has significantly better results than any of
the other algorithms.
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Table 4.12: Metric values for the Modern Human data, selecting 130 pixels.

KNN

SVMR

SVMP

RF

ANN

Furthermore, using the combined data (Figure 4.28) the models had excellent results
with Accuracy values exceeding 0.94 (Figure 4.29, Table 4.13). The highest of the
Accuracy values was achieved by ANN, which remained the best behaved algorithm
reaching 0.97. On the other hand, the selection of the 130 pixels for the Archaeological
data (Figure 4.30) occurred the impact of spectral lines by non-biogenic elements on
the final results. It can be seen that adding the extra spectral areas for the analysis of
the Archaeological data a small increase in the metric values of all used algorithms is
revealed (Figure 4.31, Table 4.14). SVM and KNN had Accuracy values around 0.7,
while the resulted Accuracy by using the Random Forest exceeded 0.8, providing a
very good classification result. As it was expected, the ANN achieved a classification
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Figure 4.28: PCA score plot for Domestic Sheep and Human Teeth, selecting 130 pixels and
using unit vector normalization.
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Figure 4.29: Domestic Sheep and Human dataset, selecting 130 pixels. The values of the three
different metrics that were used, for each of the algorithms, along with the standard
deviation for each value, can be seen. Artificial Neural Network has slightly higher results,
while remaining algorithms give almost the same results.

Table 4.13: Metric values for the Domestic Sheep and Human data, selecting 130 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.946 0.014 0.938 0.016 0.892 0.029
SVMR 0.958 0.023 0.975 0.021 0.917 0.045
SVMP 0.943 0.013 0.942 0.015 0.885 0.026
RF 0.95 0.027 0.975 0.016 0.899 0.054
ANN 0.97 0.01 0.96 0.024 0.941 0.02
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Figure 4.30: PCA score plot for Archaeological Human Bones, selecting 130 pixels and using
unit vector normalization.
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Figure 4.31: Archaeological Human dataset, selecting 130 pixels. The values of the three
different metrics that were used, for each of the algorithms, along with the standard
deviation for each value, can be seen. The Artificial Neural Network and Random Forest have
significantly better results than any of the other algorithms, with the ANN having slightly
higher results than RF.

Table 4.14: Metric values for the Archaeological Human data, using 130 pixels.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.711 0.027 0.674 0.038 0.625 0.035
SVMR 0.717 0.044 0.656 0.065 0.628 0.063
SVMP 0.686 0.047 0.634 0.057 0.588 0.062
RF 0.831 0.056 0.794 0.065 0.779 0.074
ANN 0.874 0.042 0.874 0.038 0.838 0.053

4.3 Feature Selection by Variance

After achieving a good classification Accuracy for all datasets, using the 130 selected
pixels, further feature selection and further reduction of running time was attempted.
As it was already discussed in the section 3.8, a feature selection function using
variance as the selection factor was developed, in order to perform a drastic feature
reduction to 10 final features. Two different approaches were examined. Firstly, the
further feature reduction was performed starting from the 100 pixels and then
starting from the 130 pixels that had been previously used.

4.3.1 Feature Selection by Variance on 100 Pixels

The heavy feature reduction, from 100 to 10, by using the newly developed feature
selection function, neither improved nor retained the sufficient results of the
algorithms by using the 100 preselected pixels. The results for the three datasets that
were tested for discrimination between individuals had been drastically reduced. The
Archaeological dataset (Figure 4.32) had the lowest results since none of the models
achieved classification Accuracy over 0.55 (Figure 4.33, Table 4.15). The highest
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Accuracy values were achieved by the Artificial Neural Network and the Random
Forest, reaching slightly lower than 0.55. The remaining algorithms reached even
lower Accuracy values. The ANN for the Modern Domestic Sheep dataset (Figure 4.34)
managed to keep a sufficient Accuracy value, slightly lower than 0.7, but much
reduced compared to the value of the model using all the 100 pixels. The rest of the
algorithms achieved Accuracy values lower than 0.65 and some even lower than 0.6
(Figure 4.35, Table 4.16). For the Modern Human dataset (Figure 4.36), the results
were equally low than the previous two datasets (Figure 4.37, Table 4.17). Once again,
the ANN and the RF reached the highest Accuracy values, slightly over 0.6, but without
reaching the previously achieved values using 100 pixels. The remaining algorithms
had quite low results.
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Figure 4.32: PCA score plot for Archaeological Human Bones, selecting 10 from 100 pixels
with the lowest in-class variance and the highest among classes variance.
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Figure 4.33: Archaeological Human dataset, selecting 10 from 100 pixels with the lowest in-
class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network and the Random Forest have slightly better
results than any of the other algorithms.

[97]



Table 4.15: Metric values for the Archaeological Human data, selecting 10 from 100 pixels
with the lowest in-class variance and the highest among classes variance.

Sensitivity SD Kappa SD
0.422 0.092 0.32 0.091
0.406 0.077 0.329 0.068
0.39 0.076 0.31 0.072
0.482 0.112 0.393 0.103
0.464 0.116 0.392 0.122

Lmp_2 = Lmp_3 * Lmp_4 Lmp_5

Accuracy
KNN 0.486
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Figure 4.34: PCA score plot for Modern Domestic Sheep Teeth, selecting 10 from 100 pixels
with the lowest in-class variance and the highest among classes variance.
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Figure 4.35: Modern Domestic Sheep dataset, selecting 10 from 100 pixels with the lowest
in-class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network has significantly better results than any of

the other algorithms.
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Table 4.16: Metric values for the Modern Domestic Sheep data, selecting 10 from 100 pixels
with the lowest in-class variance and the highest among classes variance.

KNN

SVMR

SVMP

RF

ANN

Accuracy SD Sensitivity SD Kappa SD
0.615 0.062 0.536 0.076 0.494 0.086
0.549 0.065 0.456 0.053 0.405 0.085
0.527 0.063 0.432 0.048 0.375 0.078
0.622 0.049 0.545 0.05 0.507 0.059
0.68 0.111 0.612 0.085 0.588 0.138
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Figure 4.36: PCA score plot for Modern Human Teeth, selected 10 from 100 pixels with the
lowest in-class variance and the highest among classes variance.
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Figure 4.37: Modern Human dataset, selected 10 from 100 pixels with the lowest in-class
variance and the highest among classes variance. The values of the three different metrics
that were used, for each of the algorithms, along with the standard deviation for each value,
can be seen. The Artificial Neural Network and Random forest have slightly better results than
any of the other algorithms.
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Table 4.17: Metric values for the Modern Human data, selected 10 from 100 pixels with the
lowest in-class variance and the highest among classes variance.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.561 0.024 0.499 0.032 0.522 0.026
SVMR 0.299 0.02 0.306 0.027 0.254 0.022
SVMP 0.303 0.019 0.311 0.025 0.258 0.021
RF 0.62 0.027 0.574 0.027 0.588 0.029
ANN 0.614 0.035 0.562 0.055 0.581 0.038

The combined dataset (Figure 4.38) was the only dataset that maintained sufficient
results regardless of the model that was used for its analysis. Its results were
significantly lower than the previously achieved (using 100 pixels), but all the
algorithms exceeded the threshold of 0.8 (Figure 4.39, Table 4.18). ANN had the
highest performance with an Accuracy value of 0.87, while the rest of the algorithms
had Accuracy values lower than 0.85.
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Figure 4.38: PCA score plot for Domestic Sheep and Human Teeth, selecting 10 from 100
pixels with the lowest in-class variance and the highest among classes variance.
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Figure 4.39: Domestic Sheep and Human dataset, selecting 10 from 100 pixels with the lowest
in-class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network has slightly better results than any of the
other algorithms.

Table 4.18: Metric values for the Domestic Sheep and Human data, selecting 10 from 100
pixels with the lowest in-class variance and the highest among classes variance.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.838 0.069 0.789 0.111 0.674 0.139
SVMR 0.835 0.046 0.847 0.079 0.669 0.094
SVmMP 0.823 0.049 0.815 0.089 0.644 0.098
RF 0.823 0.058 0.84 0.054 0.645 0.115
ANN 0.873 0.095 0.873 0.082 0.746 0.19

4.3.2 Feature Selection by Variance on 130 Pixels

The further feature selection starting from 130 resulted in lower metric values than
using all the 130 pixels. The three datasets that were tested for discrimination
between individuals, could not achieve reliable classification by any of the used
algorithms. In particular, for the Archaeological dataset (Figure 4.40) the Random
Forest reached the higher classification Accuracy with a value slightly lower than 0.55,
while ANN and KNN followed with Accuracy values slightly lower than that of the RF
(Figure 4.41, Table 4.19). For the Modern datasets, the results were higher than that
of the Archaeological dataset but were lower than using the 130 pixels. Analyzing the
Modern Domestic Sheep data (Figure 4.42) the higher Accuracy value was 0.68 by the
ANN, while Random Forest had almost the same value. The rest of the algorithms
achieved classification values lower than 0.6 (Figure 4.43, Table 4.20). In a similar
situation, for the Modern Human dataset (Figure 4.44) none of the algorithms achieve
a reliable classification (Figure 4.45, Table 4.21). The ANN had the higher Accuracy
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value, almost 0.65, followed by the RF and KNN with 0.6. The SVM algorithm had
significantly lower results.
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Figure 4.40: PCA score plot for Archaeological Human Bones, selecting 10 from 130 pixels
with the lowest in-class variance and the highest among classes variance.
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Figure 4.41: Archaeological Human dataset, selecting 10 from 130 pixels with the lowest in-
class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Random Forest has slightly better results than the other algorithms.
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Table 4.19: Metric values for the Archaeological Human data, selecting 10 from 130 pixels with
the lowest in-class variance and the highest among classes variance.

KNN

SVMR

SVMP

RF

ANN

Accuracy SD Sensitivity SD Kappa SD
0.523 0.124 0.442 0.162 0.358 0.173
0.506 0.091 0.412 0.13 0.333 0.135
0.494 0.089 0.404 0.126 0.318 0.133
0.546 0.168 0.486 0.201 0.397 0.227
0.52 0.171 0.446 0.197 0.358 0.231
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Figure 4.42: PCA score plot for Modern Domestic Sheep Teeth, selecting 10 from 130 pixels
with the lowest in-class variance and the highest among classes variance.
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Figure 4.43: Modern Domestic Sheep dataset, selecting 10 from 130 pixels with the lowest
in-class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Artificial Neural Network and the Random Forest have slightly better
results than the other algorithms.
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Table 4.20: Metric values for the Modern Domestic Sheep data, selecting 10 from 130 pixels

with the lowest in-class variance and the highest among classes variance.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.644 0.069 0.559 0.063 0.532 0.09
SVMR 0.6 0.046 0.513 0.059 0.473 0.063
SVMP 0.571 0.049 0.489 0.059 0.435 0.063
RF 0.676 0.05 0.596 0.046 0.579 0.062
ANN 0.684 0.068 0.621 0.052 0.592 0.083
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Figure 4.44: PCA score plot for Modern Human Teeth, selecting 10 from 130 pixels with the
lowest in-class variance and the highest among classes variance.
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Figure 4.45: Modern Human dataset, selecting 10 from 130 pixels with the lowest in-class
variance and the highest among classes variance. The values of the three different metrics
that were used, for each of the algorithms, along with the standard deviation for each value,
can be seen. The Artificial Neural Network has slightly better results than the other
algorithms.
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Table 4.21: Metric values for the Modern Human data, selecting 10 from 130 pixels with the
lowest in-class variance and the highest among classes variance.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.597 0.04 0.543 0.044 0.563 0.044
SVMR 0.319 0.025 0.291 0.014 0.271 0.025
SVMP 0.29 0.017 0.302 0.022 0.246 0.018
RF 0.602 0.04 0.551 0.039 0.568 0.043
ANN 0.644 0.026 0.596 0.03 0.613 0.029

On the contrary, the behavior of the models for the discrimination between species
on the combined dataset (Figure 4.46) was very good. All the models achieved
Accuracy values between 0.89 and 0.93, with the RF achieving the higher results
followed by the ANN and the KNN (Figure 4.47, Table 4.22). Despite the fact that the
resulted classification was sufficiently good, the resulted metric values were
significantly lower than those achieved by using 130 pixels.
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Figure 4.46: PCA score plot for Domestic Sheep and Human Teeth, selecting 10 from 130
pixels with the lowest in-class variance and the highest among classes variance.
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Figure 4.47: Domestic Sheep and Human dataset, selecting 10 from 130 pixels with the lowest
in-class variance and the highest among classes variance. The values of the three different
metrics that were used, for each of the algorithms, along with the standard deviation for each
value, can be seen. The Random Forest has slightly better results than any of the other
algorithms.

Table 4.22: Metric values for the Domestic Sheep and Human data selecting 10 from 130 pixels
with the lowest in-class variance and the highest among classes variance.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.917 0.032 0.931 0.015 0.833 0.063
SVMR 0.91 0.033 0.931 0.035 0.819 0.065
SVMP 0.894 0.028 0.913 0.057 0.788 0.056
RF 0.929 0.034 0.96 0.015 0.858 0.068
ANN 0.913 0.064 0.931 0.057 0.826 0.127

4.4 Spectral Line Intensities

Following a different approach for a drastic feature selection, than the previously
used, targeting a classification results for all four datasets, only the pixels with the
maximum intensity from specific spectral lines were selected as important features
(Figure 4.48). This feature selection has been already discussed in section 3.8. In
particular, the spectral lines that were selected corresponded in spectral areas that
were determined by the 258 and 100 pixels. Na’s spectral line was excluded because
of its low intensity.
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Figure 4.48: Selecting only pixel with the highest intensity values from each spectral line.

By using this feature selection, the classification results for all datasets were
significantly decreased with the models failing to reach Accuracy values over 0.55 for
classification in the different individuals. Using the Archaeological data (Figure 4.49),
the highest Accuracy value of 0.55 was achieved by the ANN, while the rest of the
models failed to achieve higher values than 0.5 (Figure 4.50, Table 4.23). Because of
the low Accuracy values, the Kappa values were significantly low, as well. All the
algorithms had Accuracy values lower than 0.6 during the analysis of the Domestic
Sheep data (Figure 4.51, Figure 4.52, Table 4.24). The ANN was the highest scored
algorithm having an Accuracy value slightly higher than 0.55, while the rest of the
algorithms achieved Accuracy values lower than 0.55. In a similar situation, the
Modern Human data (Figure 4.53) had the highest Accuracy value slightly over 0.45,
using the ANN that was closely followed by the RF. The remaining algorithms scored
very low results (Figure 4.54, Table 4.25). As a result, none of the algorithms was able
for a dissent classification regardless the used data.
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Figure 4.49: PCA score plot for Archaeological Human Bones, selecting only the pixel with the
highest intensity for specific biogenic spectral lines.
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Figure 4.50: Archaeological Human dataset, selecting only the pixel with the highest intensity
for specific biogenic spectral lines. The values of the three different metrics that were used,
for each of the algorithms, along with the standard deviation for each value, can be seen. The
Artificial Neural Network has significantly better results than any of the other algorithms.

Table 4.23: Metric values for the Archaeological Human data, selecting only the pixel with the
highest intensity for specific biogenic spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.409 0.056 0.344 0.054 0.21 0.076
SVMR 0.463 0.062 0.374 0.061 0.265 0.087
SVMP 0.471 0.032 0.372 0.04 0.271 0.048
RF 0.494 0.064 0.46 0.077 0.332 0.092
ANN 0.557 0.054 0.556 0.074 0.423 0.074
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Figure 4.51: PCA score plot for Modern Domestic Sheep Teeth, selecting only the pixel with
the highest intensity for specific biogenic spectral lines.
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Figure 4.52: Domestic Sheep dataset, selecting only the pixel with the highest intensity for
specific biogenic spectral lines. The values of the three different metrics that were used, for
each of the algorithms, along with the standard deviation for each value, can be seen. The
Artificial Neural Network has slightly better results than the other algorithms.

Table 4.24: Metric values for the Domestic Sheep data, selecting only the pixel with the

highest intensity for specific biogenic spectral lines.

Accuracy SD Sensitivity SD
KNN 0.36 0.03 0.279 0.032
SVMR 0.524 0.02 0.459 0.025
SVMP 0.52 0.049 0.437 0.041
RF 0.48 0.094 0.457 0.116
ANN 0.564 0.081 0.553 0.103
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Figure 4.53: PCA score plot for Modern Human Teeth, selecting only the pixel with the highest

intensity for specific biogenic spectral lines.
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Figure 4.54: Modern Human dataset, selecting only the pixel with the highest intensity for
specific biogenic spectral lines. The values of the three different metrics that were used, for
each of the algorithms, along with the standard deviation for each value, can be seen. The

Artificial Neural Network has slightly better results than the other algorithms.

Table 4.25: Metric values for the Modern Human data, selecting only the pixel with the
highest intensity for specific biogenic spectral lines.

Accuracy
KNN 0.307
SVMR 0.282
SVMP 0.285
RF 0.464
ANN 0.487

Using the combined dataset (Figure 4.55), all the metric values were significantly
lower than those of the previous approaches (Figure 4.56, Table 4.26). The Accuracy
values were slightly lower than 0.8 for all algorithms apart from ANN that slightly
exceeded this value. This significantly decrease in the Accuracy values indicates that
the created models have very low classification abilities, using this particular feature

selection.
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Figure 4.55: PCA score plot for Domestic Sheep and Human Teeth, selecting only the pixel
with the highest intensity for specific biogenic spectral lines.
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Figure 4.56: Domestic Sheep and Human dataset, selecting only the pixel with the highest
intensity for specific biogenic spectral lines. The values of the three different metrics that were
used, for each of the algorithms, along with the standard deviation for each value, can be
seen. The Artificial Neural Network has slightly better results than any of the other
algorithms.

Table 4.26: Metric values for the Domestic Sheep and Human data, selecting only the pixel
with the highest intensity for specific biogenic spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.68 0.022 0.582 0.053 0.354 0.044
SVMR 0.786 0.032 0.742 0.067 0.57 0.064
SVYmMP 0.77 0.023 0.724 0.101 0.538 0.048
RF 0.767 0.036 0.742 0.066 0.532 0.072
ANN 0.824 0.025 0.844 0.07 0.649 0.048
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4.5 Feature Extraction by Calculating Integrals

In a different approach, a feature extraction technique was used. This method has
already been discussed in section 3.8 and the resulting features were 10 integral
values calculated by the same spectral lines that had been used (Figure 4.57) in section
4.4. The classification results were even lower than the previous case, resulting in
algorithms that could not be used for the desirable task.
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Figure 4.57: Extracted features by the calculation of the integrals for biogenic spectral lines.

All the Accuracy values were lower than 0.6 for the Archaeological (Figure 4.58, Figure
4.59, Table 4.27) and the Modern Domestic Sheep (Figure 4.60, Figure 4.61, Table
4.28) datasets, with the ANN achieving the higher values of 0.59 and 0.53,
respectively. The results for the Modern Human dataset were even lower, considering
that the highest Accuracy value was slightly higher than 0.4 (Figure 4.62, Figure 4.63,
Table 4.29), achieved by ANN. Even the results for the combined data were
significantly lower than the previous approaches, with all the algorithms except KNN
achieving Accuracy values between 0.75 and 0.8 (Figure 4.64, Figure 4.65, Table 4.30).
Those results proved the inability of the algorithms, using those extracted features, to
create appropriate models that could achieve any reliable classification.
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Figure 4.58: PCA score plot for Archaeological Human Bones, using the integrals of specific
biogenic spectral lines.

1.0-
0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3- +
0.2-
0.1-
0.0- Accuracy Sensitivity Kappa

ANN  KNN RF  SVMP SVMR

Figure 4.59: Archaeological Human dataset, using the integrals of specific biogenic spectral
lines. The values of the three different metrics that were used, for each of the algorithms,
along with the standard deviation for each value, can be seen. The Artificial Neural Network
has significantly better results than any of the other algorithms.

Table 4.27: Metric values for the Archaeological Human data, using the integrals of specific
biogenic spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.406 0.068 0.328 0.081 0.204 0.096
SVMR 0.483 0.059 0.386 0.059 0.295 0.083
SVMP 0.471 0.079 0.368 0.071 0.279 0.108
RF 0.511 0.106 0.468 0.099 0.358 0.138
ANN 0.591 0.077 0.564 0.095 0.466 0.103
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Figure 4.60: PCA score plot for Modern Domestic Sheep Teeth, using the integrals of specific
biogenic spectral lines.
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Figure 4.61: Domestic Sheep dataset, using the integrals of specific biogenic spectral lines.
The values of the three different metrics that were used, for each of the algorithms, along
with the standard deviation for each value, can be seen. The Artificial Neural Network has
slightly better results than any of the other algorithms.

Table 4.28: Metric values for the Domestic Sheep data, using the integrals of specific biogenic
spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.385 0.05 0.296 0.04 0.169 0.067
SVMR 0.491 0.022 0.373 0.019 0.306 0.03
SVMP 0.491 0.031 0.377 0.031 0.307 0.043
RF 0.451 0.039 0.376 0.032 0.274 0.048
ANN 0.535 0.115 0.508 0.129 0.395 0.15
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Figure 4.62: PCA score plot for Modern Human Teeth, using the integrals of specific biogenic
spectral lines.
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Figure 4.63: Modern Human dataset, using the integrals of specific biogenic spectral lines.
The values of the three different metrics that were used, for each of the algorithms, along
with the standard deviation for each value, can be seen. The Artificial Neural Network has
significantly better results than any of the other algorithms.

Table 4.29: Metric values for the Modern Human data, using the integrals of specific
biogenic spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.227 0.02 0.162 0.02 0.149 0.024
SVMR 0.238 0.007 0.182 0.012 0.166 0.009
SVYmMP 0.235 0.017 0.179 0.019 0.163 0.018
RF 0.319 0.018 0.276 0.023 0.255 0.019
ANN 0.415 0.023 0.362 0.012 0.362 0.022
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Figure 4.64: PCA score plot for Domestic Sheep and Human Teeth, using the integrals of
specific biogenic spectral lines.
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Figure 4.65: Domestic Sheep and Human dataset, using the integrals of specific biogenic
spectral lines. The values of the three different metrics that were used, for each of the
algorithms, along with the standard deviation for each value, can be seen. The k Nearest
Neighbors algorithm has lower metric values, while the rest of the algorithms give almost the
same results for the three metric values.

Table 4.30: Metric values for the Domestic Sheep and Human data, using the integrals of
specific biogenic spectral lines.

Accuracy SD Sensitivity SD Kappa SD
KNN 0.654 0.025 0.535 0.033 0.3 0.05
SVMR 0.777 0.044 0.731 0.047 0.553 0.087
SVYmMP 0.774 0.038 0.72 0.028 0.545 0.075
RF 0.772 0.064 0.749 0.075 0.543 0.127
ANN 0.784 0.026 0.738 0.055 0.566 0.054
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4.6 Results’ Discussion

The different models that were used for the classification of hard tissue remains,
under many circumstances and using several datasets, provided the opportunity for a
comparison among them to identify the best fitted model for this particular
classification task. Simultaneously, a comparison among the different feature sets that
were used for each classification approach, resulted in the best feature selection
procedure and the best set of features for the current work.

Among the three different metrics that were used for this work, Accuracy considered
the most characteristic metric value for the evaluation of the results. For that reason
and considering that the rest of the metric values consistently followed the same
pattern, the comparison of the Accuracy values of the different classification
approaches can provide a sufficient interpretation for the differences among the
results. Thus, the Artificial Neural Network consistently appeared having better
classification ability than the rest of the algorithms, scoring the highest results in the
majority of the different approaches. Thus, ANN was considered the best possible
choice for a decent classification result, among the used algorithms. The only
approaches in which the ANN failed to reach the highest classification, for some of the
datasets, were either in the feature selection by variance or when the Accuracy values
were so low for all models that could not lead to a sufficient classification result. The
ANN was systematically followed by the Random Forest algorithm that stood out as
the best of the rest, showing great consistency but with lower results than those of
the ANN.

Following the selection of ANN as the best classification algorithm for the current task,
the comparison of the results for the different feature reduction approaches revealed
that the Accuracy of the models can significantly vary depending on the features that
are taken into consideration. The use of the newly built functions for feature selection
and extraction resulted in models that failed to perform classification of unknown
samples. Hence, the feature selection by the maximum intensity on specific spectral
lines or by the variance, alongside the feature extraction by the calculation of the
integrals for specific spectral lines, are unsuitable for feature reduction on the
classification problems of the current work. On the other hand, the manual feature
selection targeting specific spectral areas, with spectral lines that correspond in
biogenic elements of hard tissues, works sufficiently well, as it was expected by a
previous work in the field. (Siozos et al., 2021) The initial approach of 258 pixels, was
suffered by lack of accuracy for the two modern datasets (Domestic Sheep dataset
and Human dataset), during the classification on individuals, with the accuracy values
of those two datasets lying slightly above 0.7. With a further significant feature
reduction to 100 pixels of the initial 258, the classification results were increased but
remained under the threshold of 0.8, for a sufficient classification. This threshold was
reached and surpassed by the addition of 30 extra pixels, on the 100 previously
mentioned pixels, with the accuracy values reaching 0.8 and 0.83, for the Modern
Domestic Sheep and the Modern Human dataset, respectively. Additionally, the
accuracy values of the ANN algorithm for the Archaeological and the Combined
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Modern datasets, exceeding 0.85 and 0.95 respectively, remained almost the same
despite the number of pixels that were used each time. Resulting to the best
classification accuracy values for all datasets, the selection of the 130 pixels was
considered better than the rest of the feature selection approaches and the one that
could provide the most accurate and robust classification models (Figure 4.66, Figure
4.67, Figure 4.68, Figure 4.69).
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Figure 4.66: Comparison of the Accuracy values among different used features using the
Artificial Neural Network. These results refer to the discrimination of individuals using the
Archaeological Human data. The Accuracy values of the manually selected features are
significantly higher, with the one for the 130 pixels being the highest of all with a low standard
deviation, too. On the contrary, the Accuracy value for the 100 pixels has the lowest standard
deviation, achieving a very good classification behavior, as well.
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Figure 4.67: Comparison of the Accuracy values among different used features using the
Artificial Neural Network. These results refer to the discrimination of individuals using the
Modern Domestic Sheep data. The Accuracy value of the 130 manually selected features is

significantly higher than the rest, with the lowest value of standard deviation, too.
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Figure 4.68: Comparison of the Accuracy values among different used features using the
Artificial Neural Network. These results refer to the discrimination of individuals using the
Modern Human dataset. The Accuracy values of the manually selected features are
significantly higher than the rest, with the 130 pixels reaching the highest value, by far. Using
258 pixels, the lowest standard deviation is achieved, but the Accuracy value is significantly

lower than the one for the 130 pixels.
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Figure 4.69: Comparison of the Accuracy values among different used features using the
Artificial Neural Network. These results refer to the discrimination between species using the
combined (Domestic Sheep and Human) dataset. The Accuracy values of the manually
selected features are significantly higher, with the one for the 130 pixels being the highest of

all with the lowest standard deviation, too.

Using the Artificial Neural Network and taking into consideration only the 130 pixels
that were previously mentioned, the classification of LIBS spectra, coming from hard
tissue remains of different individuals and species, was achieved. Depending on the
dataset that was used, the classification could vary from sufficient to excellent. The
classification of LIBS spectra on individuals for both Modern Domestic Sheep and
Modern Human dataset was sufficient, exceeding the threshold of 0.8 on Accuracy
that has been set from earlier works. Good classification on individuals was achieved
in Archaeological data, even though the 30 extra pixels come from spectral areas with
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many impurities and thus the results might not come strictly from biogenic elements.
In addition, a very similar classification result was achieved without taking into
consideration these extra spectral areas, for this particular dataset. Finally, the
classification on LIBS spectra in different species, using the combined modern dataset,
was excellent. The classification ability of the model for this specific task was great,
reaching accuracy values exceeding 0.96, making it the best classification result that
was achieved in the current work. Additionally, the feature selection processes
resulted in a significant time reduction, with the running time varying from 30 min
(Modern Domestic Sheep dataset) to 60 min (Modern Human dataset), depending on
the dataset and the amount of data that the model had to proceed.

4.7 Conclusion

Archaeological and forensic excavations frequently reveal large numbers of hard
tissue remains of animal or human origins. The discrimination between individuals and
the classification of the remains in the individuals that they belong, especially in cases
that the remains are severally fragmented and disarranged, can be very useful for the
proper study of the artifacts, revealing information about the identity, life and death
of each individual. The difficulty of the discrimination and classification task can vary
depending on the condition of the biological remains and the excavation site. Thus,
several methods are used to help archaeologist and forensic scientists to achieve their
goal. Laser Induced Breakdown Spectroscopy is a micro-destructive, fast and
transferable technique that can provide useful information about the elemental
composition of the samples, with no prior treatment and minimal damage of them.
LIBS can provide massive amounts of data in a very short time and thus is a suitable
technique to be combined with machine learning methods. LIBS combined with
machine learning and artificial neural networks can be a useful tool for archaeologist
or forensic scientist, speeding up the process of discrimination/classification.

In the current work, LIBS data collected from four different sample sets were analyzed
using several, widely used, machine learning algorithms implemented in the open
source Programming Language R. Three sample sets consisted of modern human
or/and animal teeth and one sample set consisted of archaeological bone fragments,
were measured with the use of a customized LIBS microspectrometer. K Nearest
Neighbors, Support Vector Machine using a polynomial and a radial kernel, Random
Forest and a relatively simple Artificial Neural Network were used for the analysis of
the collected data. Comparing the used algorithms, the results of ANN were
significantly higher than the rest of the algorithms, in all the tested situations. RF
followed with significantly lower results while the remaining algorithms were
considered unable to provide a sufficient classification for the majority of classification
tasks. Thus, the ANN was considered the most suitable algorithm to achieve the
desirable classification. Because of the huge number of features resulting from the
structure of the LIBS spectrum, several feature selection processes were tested for
minimizing the computational time and maximizing the results. Seven different
approaches were examined, with the one using 130 manually selected pixels provided
the best results for the classification task. In particular, using the ANN algorithm and
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the 130 selected features, an excellent classification accuracy on species was achieved
for the dataset of Modern Human combined with Modern Domestic Sheep teeth,
exceeding 95%, while the classification accuracies on individuals were reached and
exceeded the threshold of 80% for the Modern Domestic Sheep teeth and the Modern
Human teeth datasets, respectively, resulting in a decent classification for those two
datasets. Furthermore, a very good classification was achieved for the Archaeological
dataset, with the classification accuracy exceeding 85%, using the ANN algorithm and
the 130 selected features. Hence, for the current work a robust and accurate
classification model was developed, based on the comparison of several classification
algorithms and many feature selection approaches. The model was tested in several
situations for four different datasets and for two different tasks, successfully achieving
the classification of LIBS spectra in the correct individual or species, with a
classification accuracy varying from decently good to excellent.

Those promising results, combined with other familiar studies, can be used as starting
point for further research on the development of a LIBS based combined with machine
learning methods for the classification of hard tissue remains. The use of more
advanced computer hardware will allow to test more parameters during the
parameter selection and further increase the accuracy of the models. Increasing the
number of testing samples, creating huge data sets, is another key point that can
significantly improve the ability of the models to correctly discriminate individuals and
classify samples. The fact that LIBS provides the opportunity for fast and accurate
analysis resulting in a significant amount of data in a short period of time, makes it
one of the most suitable techniques for creating huge datasets. Training the models
with more and more data can potentially result in a major increase in their
classification accuracy, especially for the ANN, providing the opportunity for potential
classification of entire samples in the correct individual.
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