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Abstract 

The excavation of mass graves and sites of accidents or natural disasters, which reveal 

numbers of hard tissue remains originating from multiple individuals, is usual in 

archaeology and forensic science. The discrimination of the individuals and the 

classification of their remains is useful for revealing the identity, as well as information 

about life and death of those individuals. However, poor preservation makes the task 

of discrimination/classification extremely difficult and time consuming, using 

conventional methods based on morphological characteristics or DNA analysis. Thus, 

the need for simple, direct and cost-effective analysis of hard tissue remains, with 

minimal damage to the artifacts, has emerged. 

In the current work, Laser Induce Breakdown Spectroscopy (LIBS), combined with 

Machine Learning algorithms and a simple Artificial Neural Network, were employed 

for the discrimination and classification of hard tissue remains. Several bone 

fragments and teeth were studied, using a LIBS microscopy setup (micro-LIBS) for data 

collection, while Machine Learning algorithms and a Neural Network were used for 

data analysis. 

Micro-LIBS is a micro-destructive, fast and transferable method, with high spatial 

resolution (around 50μm/spot) that enables analysis of the surface or the cross-

section of samples, with little or no sample preparation, providing massive amounts 

of data in little time. Thus, it is a suitable technique to be combined with machine 

learning algorithms for the analysis of the collected data. 

Hydroxyapatite (Ca5(PO4)3OH) is the main component of both bones and teeth, while 

proteinaceous materials (mainly collagen) and water, in different ratios, complete the 

hard tissue matrix. Magnesium (Mg), Strontium (Sr) and Barium (Ba) can replace 

Calcium (Ca) in metabolic processes and thus can replace it in hydroxyapatite’s crystal. 

Spectral emission lines from biogenic elements in the remains are observed across the 

spectral range used (200 - 660 nm). Hence, the data collected provide significant 

information to the algorithms employed. 

Machine Learning and Neural Networks enable computers to learn from experience 

following a similar process with several living organisms. This process is based on 

pattern recognition on given data, improving future decisions and giving computers 

the ability to learn without being explicitly programmed. This pattern recognition on 

LIBS data is the aim of this work. The comparison of four different methods (k-Nearest 

Neighbors, Random Forest, Support Vector Machine, Artificial Neural Network) with 

gradual complexity, after parameter tuning and feature selection, provided the best 

behaved model to achieve the requested task. 

Artificial Neural Network had significantly better results compared to the rest of the 

models used, while the selection of specific spectral areas corresponding in spectral 

lines from biogenic elements increased the resulting classification accuracy. The 
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achieved classification varied from decent to excellent, giving a good classification 

accuracy regardless of the used data. 

Concluding, the present work is an attempt for development of a fast, accurate and 

easily accessible and applicable methodology for the discrimination and classification 

of hard tissue remains, based on the analysis of LIBS data using machine learning 

models. 

Key words: Laser Induce Breakdown Spectroscopy (LIBS), micro-LIBS, Machine 

Learning, Neural Networks, Hard Tissue Remains, Archaeology, Forensic Science 
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Περίληψη 

Διαχρονικά η αρχαιολογική και εγκληματολογική έρευνα, έρχονται αντιμέτωπες με 

την ανασκαφή και αποκάλυψη μαζικών ταφικών χώρων που περιέχουν πλήθος 

οστικών και οδοντικών υπολειμμάτων μεγάλου αριθμού υποκειμένων. Για τη 

βέλτιστη δυνατή μελέτη των ευρημάτων αυτών και την εξαγωγή συμπερασμάτων 

τόσο για την ζωή όσο και για τα αίτια θανάτου των υποκειμένων είναι αναγκαίος ο 

διαχωρισμός και η κατηγοριοποίηση των υπολειμμάτων σε υποκείμενα, για την 

ανακατασκευή τμημάτων ή και ολόκληρου του σκελετού. Η σύγχρονη οστεολογία και 

οστεοαρχαιολογία δίνουν συχνά λύση, χρησιμοποιώντας μεθόδους βασιζόμενες σε 

μορφολογικά χαρακτηριστικά των οστών. Η ταχύτητα και η ακρίβεια των μεθόδων 

αυτών είναι άμεσα εξαρτώμενες από την κατάσταση διατήρησης των ευρημάτων με 

συνέπεια η διαδικασία χαρακτηρισμού να είναι, σε αρκετές περιπτώσεις, χρονοβόρα 

και το αποτέλεσμα ανακριβές. Για τον λόγο αυτό, η ανάπτυξη εναλλακτικών, εύκολα 

εφαρμόσιμων μεθόδων που αυξάνουν τόσο την ταχύτητα όσο και την ακρίβεια του 

διαχωρισμού, απλοποιώντας τις παραπάνω διαδικασίες, θα ήταν δυνατό να 

λειτουργήσει ευεργετικά τόσο στην αρχαιολογική όσο και στην εγκληματολογική 

επιστημονική έρευνα. 

Στην παρούσα εργασία, μελετήθηκε η εφαρμογή της φασματοσκοπίας πλάσματος 

επαγόμενου από λέιζερ (Laser Induced Breakdown Spectroscopy, LIBS), σε 

συνδυασμό με την επεξεργασία των δεδομένων με μεθόδους μηχανικής μάθησης 

(Machine Learning) και με τεχνητά νευρωνικά δίκτυα (Artificial Neural Networks) με 

σκοπό το διαχωρισμό και την κατηγοριοποίηση σε υποκείμενα, οστικών και 

οδοντικών υπολειμμάτων. Μελετήθηκαν ανθρώπινα και ζωικά δείγματα, με χρήση 

διάταξης μικροσκοπίας LIBS (micro-LIBS) για τη συλλογή των φασματικών 

δεδομένων, ενώ η επεξεργασία και ανάλυση αυτών πραγματοποιήθηκε μέσω των 

μεθόδων μηχανικής μάθησης καθώς και με τη χρήση ενός απλού τεχνητού 

νευρωνικού δικτύου.  

Με τη διάταξη micro-LIBS πραγματοποιείται ανάλυση σε τομές σκελετικών 

υπολειμμάτων, διαστάσεων μερικών cm2, με υψηλή χωρική ανάλυση (περίπου 50 

μm/σημείο) ενώ επιτυγχάνεται ταχεία συλλογή μεγάλου αριθμού φασματικών 

δεδομένων, απαραίτητη προϋπόθεση για τη βέλτιστη εφαρμογή των αλγορίθμων 

που χρησιμοποιήθηκαν για την ανάλυση των δεδομένων. Επίσης η τεχνική LIBS είναι 

μικροκαταστρεπτική, διεξάγεται απευθείας στην επιφάνεια του προς ανάλυση 

αντικειμένου και δεν απαιτεί προεπεξεργασία του δείγματος, γεγονός που την 

καθιστά κατάλληλη για τη στοιχειακή ανάλυση ευαίσθητων δειγμάτων και 

αντικειμένων πολιτιστικής κληρονομίας. 

Τα οστά και τα δόντια των οργανισμών, έχουν ως κύριο συστατικό τον υδροξυαπατίτη 

(Ca5(PO4)3OH), ενώ περιέχουν και μικρά ποσοστά οργανικών ενώσεων, όπως το 

κολλαγόνο, καθώς και νερό. Παράλληλα, στοιχεία όπως το μαγνήσιο (Mg), το 

στρόντιο (Sr) και το βάριο (Ba) ενσωματώνονται στο πλέγμα ως προσμίξεις, 

αντικαθιστώντας το ασβέστιο (Ca). Στη φασματική περιοχή στην οποία 
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πραγματοποιήθηκαν οι μετρήσεις LIBS (200 -660 nm) παρατηρούνται κορυφές 

εκπομπής όλων των προαναφερθέντων στοιχείων, γεγονός που συνεπάγεται την 

ύπαρξη επαρκούς πληροφορίας για τη στοιχειακή σύσταση των μελετώμενων ιστών. 

Αυτό καθιστά τα δεδομένα που συλλέγονται κατάλληλα για την άντληση αυξημένης 

πληροφορίας από τους αλγορίθμους που χρησιμοποιήθηκαν για την ανάλυση. 

Η μηχανική μάθηση και τα τεχνητά vευρωνικά δίκτυα, βασίζονται στη χρήση 

αλγορίθμων και στατιστικών μοντέλων για την εκπαίδευση/εκμάθηση ενός 

υπολογιστή βάσει παραδειγμάτων και την εύρεση μοτίβων, χωρίς ανθρώπινη 

παρέμβαση, με τρόπο εκμάθησης παρόμοιο με αυτόν του ανθρώπινου εγκεφάλου 

καθώς και άλλων ζώντων οργανισμών. Η αναζήτηση ανάλογων μοτίβων στα 

καταγραφόμενα φάσματα σκελετικών υπολειμμάτων, που μπορούν να βοηθήσουν 

σε ικανοποιητική κατηγοριοποίησή τους, αποτελεί και τον βασικό σκοπό της 

εργασίας. Οι μέθοδοι που διερευνήθηκαν (k-Nearest Neighbors, Random Forest, 

Support Vector Machine, Artificial Neural Network) διαθέτουν κλιμακούμενη 

πολυπλοκότητα και απαιτούν διαφορετική υπολογιστική ισχύ. Πραγματοποιήθηκε 

συγκριτική ανάλυση των αποτελεσμάτων μεταξύ των τεσσάρων μεθόδων με σκοπό 

την εύρεση των βέλτιστων παραμέτρων με τις οποίες μπορεί να επιτευχθεί η 

ανάπτυξη ενός αξιόπιστου μοντέλου διαχωρισμού και κατηγοριοποίησης σκελετικών 

υπολειμμάτων. Ταυτόχρονα ερευνήθηκε ο περιορισμός των χρησιμοποιούμενων 

φασματικών περιοχών για την εκ νέου βελτιστοποίηση καθώς και την επιτάχυνση της 

ανάλυσης των δεδομένων. 

Από τα αποτελέσματα της ανάλυσης προέκυψε η υπεροχή του νευρωνικού δικτύου, 

συγκριτικά με τους υπόλοιπους αλγορίθμους, καθώς και η επιλογή συγκεκριμένων 

φασματικών περιοχών για την επίτευξη του βέλτιστου διαχωρισμού και 

κατηγοριοποίησής των δεδομένων. Με την χρήση των προαναφερθέντων, η ακρίβεια 

κατηγοριοποίησης των τεσσάρων διαφορετικών συνόλων δεδομένων που 

εξετάστηκαν κυμάνθηκε από ικανοποιητική έως εξαιρετική, επιτυγχάνοντας ένα 

τουλάχιστον επαρκές ποσοστό διαχωρισμού ανεξαρτήτως αυτών. 

Συνοψίζοντας, στο πλαίσιο της παρούσας εργασίας μελετήθηκε η ανάπτυξη μιας 

ταχείας, προσβάσιμης και με ικανοποιητική ακρίβεια μεθοδολογίας διαχωρισμού και 

ταξινόμησης οστικών και οδοντικών υπολειμμάτων, βασιζόμενη στην επεξεργασία 

φασματικών δεδομένων εκπομπής πλάσματος επαγόμενου από λέιζερ, με τη χρήση 

μεθόδων μηχανικής μάθησης και νευρωνικά δίκτυα, με πιθανή εφαρμογή σε 

αρχαιολογικές μελέτες. 

Λέξεις κλειδιά: Φασματοσκοπίας Πλάσματος Επαγόμενου από Λέιζερ, Μηχανική 

Μάθηση, Νευρωνικά Δίκτια, Σκελετικά Υπολείμματα, Οστικά Υπολείμματα, Οδοντικά 

Υπολείμματα, Αρχαιολογία, Εγκληματολογία 
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1 Hard Tissue Remains 

1.1 Excavations and Hard Tissues in Archaeology 
Archaeology and forensic science are both well-established disciplines, focusing, 

among others, on the scientific study of remains of past human lives and activities and 

the investigation of crime scenes, respectively. (Darvill, 2019; Daniel, 2019; Giannelli, 

2006) Their common ground is found in forensic archaeology and anthropology that 

investigate archaeological and forensic excavations. (Hunter, 2009) Hard tissue 

remains (e. g. bones, teeth) from animals and/or humans constitute important and 

often key findings in many excavation sites. Considering the large number of 

excavations going on all around the globe every year, studying and analyzing biological 

remains can provide useful information. (Villagran et al., 2009; Samek et al., 2001; 

Darvill, 2019) For example, excavated hard tissue remains may be useful for revealing 

the identity, as well as the way of life and death of individuals they belong to and as a 

result they are important not only in the scientific and humanitarian context but also 

they may have legal implications. (Moncayo et al., 2014; Hunter et al., 2001, 

Pietrusewsky, 2007, Kumar & Sharma, 2018) Thus, the discrimination among 

individuals and the identification of the remains, is very important for the progress of 

scientific research, especially in forensic archaeological studies, which face the task of 

excavating sites of accidents, natural disasters and mass graves, with remains by 

multiple individuals (Figure 1.1). (Moncayo et al., 2014; Crossland, 2000, Samek et al., 

2001; Lindley, 1977)  

 

Figure 1.1: Hard tissue remains of multiple individuals in Igreja de São João Evangelista - Igreja 
dos Lóios, Evora, Portugal. 

In addition to the large amounts of hard tissue remains that can be found in an 

excavation, it is also their condition that can vary greatly due to a number of reasons, 

which adds to the complexity of the problem. Individuals can be found either as 

complete skeletons, or as dismembered assemblages or even fragmented and poorly 

preserved as a consequence of several factors, for example, scavenging animals, 
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scattering and burial because of agricultural activity or downslides, or disturbance by 

local foot traffic. In particular, in the case of mass graves, victims may have been 

intentionally incinerated or dismembered by use of explosives to prevent 

identification. (Haglund, Connor & Scott, 2001; Hunter et al., 2001)  

In order to achieve identification, discrimination between individuals and 

classification of the fragmented hard tissues, is necessary and several methods are 

used, relying on multidisciplinary expertise and various techniques of physical and 

chemical analysis. (Moncayo et al., 2014; Hunter et al., 1994) Some of the most 

frequently used techniques are forensic pathology, forensic odontology and DNA 

analysis, while micromorphology of the tissues can be very useful, too. (Moncayo et 

al., 2014; Villagran et al., 2009, Samek et al., 2001) Considering that health and dental 

records may not exist and DNA availability might be limited, especially for 

archaeological researches, those methods are unable to provide clear information. 

(Moncayo et al., 2014) Thus, the need for simple, direct and cost-effective analysis of 

hard tissue remains, preferably with non- or minimally invasive means, is obvious. In 

recent years, several projects based on the analysis of hard tissue remains using laser 

sampling techniques have been reported. For example, LA-ICP-MS and LIBS combined 

with chemometrics and machine learning algorithms, are the most commonly non-

DNA analytical techniques used for supplementing forensic archaeological studies. 

(Moncayo et al., 2014; Kumar & Sharma, 2018; Rehse, Salimnia & Miziolek, 2012; 

Siozos et al., 2021, Samek et al., 2001, Castro et al., 2010) 

1.2 Structural and Chemical Characteristics of Hard Tissues 
Structural characteristics of bones and teeth are quite different. Both of them consist 

of several types of tissues that differ from one another, either in morphology and/or 

in chemical composition. Almost all types of bones consist of two different tissue types 

(Figure 1.2). On the external layers, a lamellar tissue forms a smooth surface, which is 

called cortical bone and it is compact and bulky, giving the bone its shape. On the inner 

part, a spongy or cancellous tissue type, called trabecular bone, forms a fine network 

of thin bone beams. This spongy and flimsy tissue fills the inner parts of the bone, 

allowing blood and bone marrow to flow while it also reduces the total mass of the 

bone. The surface of trabecular bone is significantly larger and its regeneration is much 

faster, than that of the cortical bone. (Castro et al., 2010; Lynnerup & Klaus, 2019) As 

a result, trabecular bone is more sensitive to diagenetic changes and burial 

contamination, hence it is less valuable especially in archaeological research which 

deals with samples that are long buried even for centuries. (Castro et al., 2010) 
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Figure 1.2: The outside surface in bones is covered by a compact and bulky tissue, the cortical 
bone, which gives the shape and strength to the bones. The inner part of each bone consists of a 
spongy fine network of thin bone beams that allow blood to flow and minimizes bone mass. This 
tissue form is called trabecular bone. (Lynnerup & Klaus, 2019) 

Teeth consist of two different sections, the crown and the root, and four distinct 

tissues, enamel, dentine, cementum and plum (Figure 1.3). The crown of a tooth is the 

exposed part of it, outside of the dental arch, while the root is inside the dental arch. 

Plum is the only non-calcified tissue of a tooth, occupying the plum cavity and contains 

cells, nerves fibers, blood and lymph vessels. The plum cavity is encircled by a calcified 

tissue which is called dentine, forming the main body of the tooth. Surrounding 

dentine, the two different areas of the tooth, crown and root, differ in their 

composition. The outer layers of the crown are mainly formed by enamel, the hardest 

calcified tissue in the human body with high concentration of mineral matter, 

protecting the inner layers of the tooth. On the other hand, the outer layers of the 

root are formed by cementum, a hard tissue very similar to dentine. (Türp & Alt, 1998; 

Castro et al., 2010) Because of their excess, dentine and enamel are the calcified 

tissues that are used for analytical purposes. The regeneration dentine is subject to 

makes it useful for probing more recent exposure in environmental changes. At the 

same time, its less mineralized and softer structure makes it vulnerable in degradation 

and burial contamination. (Castro et al., 2010) Enamel is the tissue most resistant to 

diagenesis, compared with the rest of the body’s hard tissues, reflecting more 

accurately the elemental composition for the studied organism. (Klepinger, 1984, 

Castro et al., 2010) Thus, in archaeological studies enamel is the preferable tissue for 

determining elemental and isotopic composition, because of its hardness and its 

reduced probability for being affected by diagenesis and burial contamination, 

followed by the cortical bone tissue. (Castro et al., 2010) 
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Figure 1.3: The main body of the tooth is formed by dentine. Inside dentine is the plum cavity, 

where the non-calcified tissue of the tooth, nerves and organic matter, is well protected. The 

outer surface of it is separated in two different parts. In the crown, the hardest tissue of the body, 

enamel, forms protective layers on the surface of the tooth, giving to it its remarkable strength. 

In the root, a softer and very similar with dentine tissue, cementum, covers the outer layer of it.  

(Türp & Alt, 1998) 

The chemical characteristics of bones and teeth are very similar. The inorganic 

component in both hard tissues is mainly hydroxyapatite (Ca5(PO4)3OH), a calcium 

phosphate biomineral, which is more frequently encountered in its hexagonal crystal 

structure form. (Castro et al., 2010; Ma & Liu, 2009) Other elements that can be found 

in those tissues in minor and trace concentration levels, include Magnesium (Mg), 

Strontium (Sr), Sodium (Na), Barium (Ba), Iron (Fe), Zinc (Zn), Copper (Cu), Manganese 

(Mn), Lead (Pb) and many more. (Castro et al., 2010; Kasem et al., 2014). Magnesium 

and strontium are above and below calcium in group 2 of the periodic table, sharing 

many of its chemical properties and having the ability to replace it in the course of the 

metabolic processes occurring in living organisms and thus to replace it in the 

hydroxyapatite crystal. (Klepinger, 1984) The majority of magnesium and strontium in 

animal bodies are located in the hard tissues. In particular, 99% of strontium and 60-

65% of magnesium are located in the animals’ skeleton. The higher levels of Sr and Mg 

in plants result in differences in the values of concentration ratios such as Sr/Ca and 

Mg/Ca between herbivores and carnivores. Furthermore, differences can be observed 

either in omnivorous organisms depending on the availability of meat and vegetation 

in their diet, or in herbivores depending on the vegetation that is preferred for 

consumption. Thus, studying the Sr/Ca and Mg/Ca ratios can facilitate the 

reconstruction of dietary habits of several organisms. (Klepinger, 1984; Kasem et al., 

2014) Similarly with the inorganic phase, the organic phase of both bones and teeth is 

very similar, mainly consists of type I collagen. The combination of those two materials 
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with the presence of water, forms a composite with remarkable mechanical 

properties. (Samek, 2001; Currey, 2008) 

In particular, the composition of bones varies according to their type. Hydroxyapatite 

constitutes 50% to 60% of the bone, collagen 20% and water 15% to 20%. Other 

components of the bone matrix include carbonates, phosphates and proteins 

amounting to approximately 7% of the total bone mass. Teeth differ significantly as 

regards the percentage of hydroxyapatite they contain. (Samek, 2001) As already 

mentioned, enamel is the hardest calcified tissue in the human body composed of 

approximately 95% of hydroxyapatite, 4% of water and just 1% of organic matter. 

Dentine and cementum are much softer than enamel having a significantly lower 

fraction of hydroxyapatite. Dentine consists of approximately 70% of hydroxyapatite 

and 20% of organic matter, mostly collagen fibers. The remaining 10% of dentine is 

water. (Castro et al., 2010; Samek, 2001; Türp & Alt, 1998) Cementum is similar to 

dentine, with very small changes differentiating those tissues. Cementum’s main 

component is hydroxyapatite that constitutes 61% of it, while the rest is formed by 

27% of organic matter and 12% of water. (Türp & Alt, 1998) 

1.3 Samples and Sample Sets 
In the present work, two main categories of samples were used. The first one was 

archaeological bone fragments and the other one was modern teeth. 

1.3.1 Archaeological Bone Fragments 

This sample set has already been described and analyzed in previous works (Siozos et 

al., 2021). The bone fragments originate from archaeological excavations of burials at 

the Cross Street Unitarian Chapel in Manchester (United Kingdom) and the burial 

period is considered to have been between the 18th and 19th century. All skeletons 

were at least 50% complete and their state of preservation ranged from “good” to 

“extremely poor”. The sample set consisted of seven bone fragments originating from 

five different human individuals. Two of them were assigned two bone fragments 

each, while the rest just one. (Table 1.1) Each sample had been washed with water to 

remove dirt and impurities and air dried following excavation. 

Table 1.1: Archaeological bone fragments. Individuals and samples 

Individual 
Number of 

Samples 
Name of Samples 

Figure 1.4 

Ind_1 2 
SK 3.25 Femur 

SK 3.25 Scapula 
a 
b 

Ind_2 2 
SK 3.50 Clavicle 
SK 3.50 Femur 

c 
d 

Ind_3 1 SK 4.36 Ilium e 

Ind_4 1 SK 4.37 Tibia f 

Ind_5 1 SK 4.45 Humerus g 
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Figure 1.4: a) SK 3.25 Femur, b) SK 3.25 Scapula, c) SK 3.50 Clavicle, d) SK 3.50 Femur, e) SK 4.36 Ilium, 
f) SK 4.37 Tibia, g) SK 4.45 Humerus. (Siozos et al., 2021) 

1.3.2 Modern Teeth Samples 

Two different teeth sample sets were collected and tested for the purposes of this 

work. A set of adult and baby human teeth composed of 20 samples coming from 16 

different individuals and a set of domestic sheep teeth composed of 11 samples from 

5 individuals. Each individual in the human set was represented by at least one tooth, 

two of them were assigned two teeth each, while for one individual three different 

teeth samples were available (Table 1.2). The majority of samples were collected from 

dentists in Attica and Crete (Greece) and the rest were donated directly by their 

owners. Most of the teeth had been previously soaked in an aqueous bleach solution 

in order to be cleaned from any remains of soft tissue and blood. After cleaning, each 

sample was washed with water and air dried. The second sample set consisted of teeth 

coming from 5 different domestic sheep individuals. Only one individual had just one 

sample, while the rest had two or three samples each. (Table 1.3) All samples had been 
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collected from already cooked animals and they had been washed with water and air 

dried, prior to analysis. 

All samples from both domestic sheep and human sets were cut with a low speed saw 

(Buehler Isomet Low Speed Saw) and the cross sections were evened to sleek using 

sandpapers, for the improvement of the experimental process. Measurements for 

each sample were taken in the enamel’s cross section, avoiding any contamination 

and impurities of the outer surface. 

Table 1.2: Human modern teeth. Individuals and samples. 

Individual Age 
Number of 

Samples 
Name of 
Samples 

Figure 1.5 

Ds_1 Baby 2 
Ds_1_tooth_1 
Ds_1_tooth_2 

a 
b 

Dx_1 Adult 1 Dx_1_tooth_1 c 

Gr_1 Adult 2 
Gr_1_tooth_1 
Gr_1_tooth_2 

d 
e 

Kg_1 Adult 1 Kg_1_tooth_1 f 

Ko_1 Baby 1 Ko_1_tooth_1 g 

Ls_1 Baby 3 
Ls_1_tooth_3 
Ls_1_tooth_4 
Ls_1_tooth_5 

h 
i 
j 

Mn_1 Adult 1 Mn_1_tooth_1 k 

Mn_2 Adult 1 Mn_2_tooth_1 l 

Mn_3 Adult 1 Mn_3_tooth_1 m 

Mn_4 Adult 1 Mn_4_tooth_1 n 

Mn_5 Adult 1 Mn_5_tooth_1 o 

Mn_6 Adult 1 Mn_6_tooth_1 p 

Mn_7 Adult 1 Mn_7_tooth_1 q 

Mn_8 Adult 1 Mn_8_tooth_1 r 

Sl_1 Adult 1 Sl_1_tooth_1 s 

Sl_2 Adult 1 Sl_2_tooth_1 t 

 

Table 1.3: Domestic sheep cooked teeth. Individuals and samples. 

Individual 
Number 

of 
Samples 

Name of Samples 
Figure 

1.6 

Lmp_1 2 
Lmp_1_tooth_2_uj_1 
Lmp_1_tooth_3_uj_1 

a 

Lmp_2 1 Lmp_2_tooth_3_lj_1 b 

Lmp_3 2 
Lmp_3_tooth_2_lj_2 
Lmp_3_tooth_3_lj_2 

c 

Lmp_4 3 
Lmp_4_tooth_2_lj_2 
Lmp_4_tooth_2_lj_1 
Lmp_4_tooth_3_lj_1 

d 
e 
f 

Lmp_5 3 
Lmp_5_tooth_2_lj_1 
Lmp_5_tooth_3_lj_1 
Lmp_5_tooth_4_lj_1 

g 
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Figure 1.5: Modern Human teeth samples. a) Ds_1_tooth_1, b) Ds_1_tooth_2, c) Dx_1_tooth_1, d) 
Gr_1_tooth_1, e) Gr_1_tooth_2, f) Kg_1_tooth_1, g) Ko_1_tooth_1, h) Ls_1_tooth_3, i) Ls_1_tooth_4, 
j) Ls_1_tooth_5, k) Mn_1_tooth_1, l) Mn_2_tooth_1, m) Mn_3_tooth_1, n) Mn_4_tooth_1, o) 
Mn_5_tooth_1, p) Mn_6_tooth_1, q) Mn_7_tooth_1, r) Mn_8_tooth_1, s) Sl_1_tooth_1, t) 
Sl_2_tooth_1. 
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Figure 1.6: Domestic Sheep teeth samples. a) Lmp_1_tooth_2_uj_1 and Lmp_1_tooth_3_uj_1, b) 
Lmp_2_tooth_3_lj_1, c) Lmp_3_tooth_2_lj_2 and Lmp_3_tooth_3_lj_2, d) Lmp_4_tooth_2_lj_2, e) 
Lmp_4_tooth_2_lj_1, f) Lmp_4_tooth_3_lj_1, g) Lmp_5_tooth_2_lj_1, Lmp_5_tooth_3_lj_1 and 
Lmp_5_tooth_2_lj_1. 
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2 Laser Induced Breakdown Spectroscopy 

2.1 LIBS History and Development 
Plasma generation and its use for spectroscopic purposes was a field of interest at 

least since the late 1900s but the origins of Laser Induced Breakdown (or Plasma) 

Spectroscopy lie several decades later, in the 1960s, following the construction of the 

first pulsed laser. (Cremers, Radziemski & Loree, 1984; Cremers & Radziemski, 2013) 

The development of the first pulsed ruby laser in 1960 led to the systematic 

observation of laser-induced plasma during the following years and the development 

of further instrumentation led to the systematic use of Laser Induced Plasma 

Spectroscopy for obtaining qualitative and quantitative information on a variety of 

samples and materials. The strong interest of Los Alamos Laboratory led to extensive 

research and development of the technique during the 1980s, increasing the use and 

the applications of it. (Cremers & Radziemski, 2013) The following two decades faced 

a dramatic increase, year by year, on the research around LIBS and extensive increase 

in its applications with a wide range of them extending from Industry, to Cultural 

Heritage, Archaeology and Forensic science, to Medical science and Space exploration. 

(Cremers & Radziemski, 2013; Cremers, Multari & Knight, 2016) 

2.2 LIBS Fundamentals 
Laser Induced Breakdown Spectroscopy is an analytical technique based on the 

principles of atomic emission spectroscopy. In particular, this method is based on the 

formation of plasma, within the focus of a laser pulse directly onto the surface of a 

solid material. Plasma formation is accompanied by a bright flash of light that provides 

substantial information about the tested material (Cremers & Radziemski, 2013; 

Cremers, Multari & Knight, 2016) A short-duration (5 ns - 20 ns) and low-energy laser 

pulse, typically tens to hundreds of millijoules, is focused on the surface of a material 

with the use of a focusing lens, leading to material breakdown and plasma formation. 

(Cremers & Radziemski, 2013) The created plasma, which can be seen as a highly 

ionized gas is a local assembly of three different entities. Atoms, ions and free 

electrons coexist in the plasma creating an electrically neutral assemblage. (Cremers 

& Radziemski, 2013) The light emitted from the plasma depends on the unique 

spectral emission of atoms and ions of the elements in the ablated material, providing 

fingerprint spectra of the material’s elemental components. (Cremers, Multari & 

Knight, 2016) LIBS has several advantages over other analytical techniques. A wide 

range of samples can be analyzed with it, plasma creation can be induced on the 

surface or within (in transparent materials) any type of sample, gases, liquids or solids, 

with little or no sample preparation prior to the analysis. Additionally, the technique 

is able for in situ analysis, since only optical access to the sample is required, providing 

simultaneous multielement detection and sustaining good sensitivity for many 

elements, too. (Cremers, Multari & Knight, 2016) 
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2.3 Plasma Formation 

During the interaction of light and matter, atoms can typically absorb a single photon 

of radiation for each transition, with energy either equal to the transition’s energy or 

equal to (or higher than) the ionization energy. The first consideration of a different 

behavior was made in the early 1930s, when a two-photon transition was considered 

possible. The invention of the first laser in the early 1960s led, among others, to the 

observation of the multiphoton excitation and multiphoton ionization phenomenon 

that was introduced in the second half of the same decade. (Mainfray & Manus, 1991; 

Agostini et al., 1968) Thus, it became clear that electrons in atoms are able to absorb 

more than one photon through nonlinear processes. 

𝑀 + 𝑛ℎ𝑣 → 𝑀+ + 𝑒− 

This phenomenon is widely observed during the interaction of matter with high power 

density radiation (>1 GW/cm2), for example a laser pulse. (Mainfray & Manus, 1991; 

Agostini et al., 1968; Cremers & Radziemski, 2013) After the production of the first 

few free electrons, through the multiphoton ionization process, their energy and 

velocity are increased by the inverse-Bremsstralung effect (free-free absorption), 

during their interaction with the electric field of the laser pulse. (Cremers & 

Radziemski, 2013; Bloembergen, 1997; Geltman, 1973) 

𝑒− + ℎ𝑣 ↔ 𝑒−∗ 

This leads to the production of free electrons capable of ionizing neutral atoms by 

collisions.  

𝑀 + 𝑒−∗ → 𝑀+ + 2𝑒− 

In a dense material, the increasing number of electrons, ions and collisions, leads to 

further free electron multiplication. This phenomenon is called avalanche or cascade 

ionization and creates a growing number of free electrons and ions in the surface of 

the material. (Cremers & Radziemski, 2013; Bloembergen, 1997) These two ionization 

approaches balance each other. In standard conditions of pressure and for radiance 

values that typically used by LIBS, avalanche ionization dominates the electron 

multiplication, but for higher radiance values there is multiphoton ionization that 

prevails the ionization of neutral atoms, leading to plasma formation. (Cremers & 

Radziemski, 2013) 

In solids the arrival of a nanosecond laser pulse is followed, as was mentioned above, 

by the excitation of the free electrons in the lattice and their acceleration. The excited 

free electrons increase the collision rate, transferring energy to the lattice phonons. 

This leads to a significant increase of the local temperature that, first, gives rise to 

melting and then evaporation of the material. After evaporation of the material, the 

incoming laser pulse leads to bond breaking and ionization along with free electrons 

generation resulting in the formation of a weakly ionized plasma in the surface of the 

material (Figure 2.1). (Cremers & Radziemski, 2013; Chaudhary, Rizvi & Ali, 2016) 
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Figure 2.1: Illustration of the main events occurring in interaction of a nanosecond laser pulse 
with a solid surface. The arrival of the pulse, the creation, expansion and cooling of the plasma 
and the formation of a crater in the surface of the material, can be seen. (Cremers, Multari & 
Knight, 2016) 

2.4 Plasma Expansion and Cooling 
Ionization degree, temperature and electron density are the main parameters for the 

characterization of a plasma. LIBS plasma falls typically in the range of weakly ionized 

plasmas with the ratio of the electrons over the other species being below 10%. At the 

same time, plasma temperature on LIBS varies between 6000 and 10000 K. (Cremers 

& Radziemski, 2013; Cremers, Multari & Knight, 2016) 

Following generation of the first few free electrons the interaction of them with the 

electric field of the ongoing laser pulse accelerates them, leading to the avalanche 

ionization phenomenon and the creation of plasma. Within the duration of the laser 

pulse, the plasma created continues to expand because of the energy supplied by the 

light electric field, reaching its full expansion at the end of the laser pulse. At this point, 

plasma is in its highest energy state with extensive ionization of its species and the 

highest temperature. Following interruption of the supplied energy, the plasma 

gradually starts cooling via loss of energy in the form of emitted radiation. An 

illustration of plasma generation, expansion and cooling can be seen in Figure 2.2, as 

a proportion of the optical signal intensity through time. At the first stages of plasma 

cooling, free electrons decelerate by the Bremsstralung effect producing continuum 

radiation (Figure 2.3). During the deceleration of the free electrons, collisions with the 

existing ions lead to formation of neutral atoms and the decrease of the free electrons 
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in the plasma. At that point, the emitted radiation from the transition on the existing 

ions, dominates the light produced by the plasma. As energy decreases and the 

collisions between free electrons and ions continue, the ion population decreases and 

so does the intensity of the corresponding ion emission spectral lines. Then radiation 

coming from transition between energy levels of neutral atoms dominates the range 

of the emitted light. In the final stages of the plasma, the energy reduction is extensive 

that collisions between atoms result in the formation of small molecules. (Cremers & 

Radziemski, 2013) 

 

Figure 2.2: Optical signal intensity of the plasma through its lifetime. The arrival of the laser pulse 
generates the creation of a plasma, which reaches the maximum of its expansion at the end of 
the laser pulse. A cooling process starts soon after termination of the pulse and interruption of 
the supplied energy, during which the plasma emits radiation. td represents the delay time for 
the beginning of the collection of the emitted radiation, while tg represents the gate time, the 
time period that the spectrometers collects the emitted radiation. Time delay can be hundreds 
of nanoseconds, to avoid the continuum radiation of the existing free electrons, while gate time 
can be several microseconds to maximize the collected radiation from the plasma. (Cremers & 
Radziemski, 2013) 

As a result, the first stages of plasma cooling are dominated by the existence of a 

continuum radiation in the form of background signal, masking any atomic and ionic 

spectral lines and preventing the extraction of useful information concerning 

spectrochemical analysis. The continuum background decays with time along with the 

reduction of the free electron density, revealing the ionic and atomic spectral lines in 

the form of sharp emission peaks. The gradual cooling of the plasma leads to the 

creation of small molecules during the final stages of plasma’s existence that can be 

observed in the form of vibronic bands in the LIBS spectrum. Considering that the 

continuum radiation on the first stages of the plasma cooling cannot provide any 

important information, the collection of the emitted radiation starts hundreds of 

nanoseconds after the arrival of the laser pulse. The time period that the emitted 

radiation is not collected is called “Delay Time” and can vary according to the needs 

of the measurements and the used instrumentation. The time period that the emitted 
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light is collected from the spectrometer is called “Gate Time” (Figure 2.2). (Cremers & 

Radziemski, 2013)  

 

Figure 2.3: Typical transitions in an atom or an ion. On the right side the ionization from the 
ground and an excited state can be seen. On the left side, the transitions of the free electrons 
are illustrated by the red arrow, while with blue arrows are illustrated the transition for bond 
creation and for the decay in lower excitation states. (Cremers & Radziemski, 2013) 

2.5 Line Shape and Broadening 
The shape of spectral lines in LIBS plasma is a well-studied topic, even from the very 

first appearance of the technique in the early 1960s. (Gornushkin et al., 1999) This line 

broadening can be caused by two major mechanisms. Doppler broadening and 

pressure broadening. The first one is caused by the Doppler effect due to velocity 

distribution of the emitters, while pressure broadening comes from the interactions 

of the emitter with the surrounding atomic and molecular species. (Gigosos, 2014) The 

second mechanism can be further categorized in resonance pressure broadening, that 

results from interactions between identical atoms in the form of a dipole-dipole 

interaction, and Stark broadening which occurs with the interaction between charged 

species in the plasma. (Gornushkin et al., 1999; Gigosos, 2014) Due to the high 

electron density of the plasma, Stark broadening dominates over the rest of the 

broadenings in LIBS, giving a typical Lorentzian profile in the observed spectral lines. 

(Harilal et al., 1997; Cremers & Radziemski, 2013) 

2.6 Matrix Effect 
In many analytical techniques, including LIBS, the elemental composition of the 

sample can affect the observed elemental signal. This effect is known as matrix effect. 

In particular, matrix effect results in the modification of the produced signal of 

elemental components with constant concentration after changes in the 

concentration of one or more components forming the sample matrix. There are two 

different categories of matrix effects based on the physical and chemical properties of 

the samples. Physical matrix effect depends on the physical properties of the samples 

that affect the conversion of the ablated mass into plasma. Such properties are heat 

of vaporization, thermal conductivity, absorption coefficient and water content of 
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samples. On the other hand, chemical matrix effect occurs when the presence of one 

element affects the emission characteristics of another. (Cremers, Multari & Knight, 

2016; Takahashi & Thornton, 2017) 

2.7 Sample Damage 
The formation of plasma on the surface of samples indicates the degradation of the 

material in the focal point of the laser pulse. The amount of degradation depends on 

the energy and time width of the laser pulse. Shorter duration indicates lower 

damage. When a nanosecond laser pulse interacts with a solid sample the dominant 

mechanism for plasma ignition is thermal vaporization. This leads to a significant and 

unsymmetrical crater reaming, due to the meltdown of the material (Figure 2.4). The 

damage by a nanosecond laser in hard tissues, can be seen in Figure 2.5. By contrast, 

a laser that produces pulses with a shorter time, for example a femtosecond laser, 

concentrates energy in much less time. In these conditions the interaction between 

light and matter differs significantly. Instead of thermal vaporization, the main bond-

breaking mechanism is non-thermal. Because of the amount of energy in a shorter 

period of time, the material cannot transfer energy to the lattice or melt and thus 

evaporates instantly. During the interaction of laser pulse with the sample, extreme 

multiphoton ionization takes place resulting in the required conditions for plasma 

formation through Coulomb’s explosion, leading to a more precise drilling and more 

well-shaped craters (Figure 2.4). (Cremers & Radziemski, 2013; Chaudhary, Rizvi & Ali, 

2016) 

 

Figure 2.4: Illustration of crater creation for two different types of laser pulses. On the left, an 
unsymmetrical crater is created after the interaction of the material with a nanosecond laser 
pulse, while on the right side, a well-shaped crater is created after the interaction of the material 
with a femtosecond laser pulse. (Cremers & Radziemski, 2013) 
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Figure 2.5: Craters produced by a Nd:YAG laser after 10 consecutive pulses of 6 mJ each, on the 
same area, as they appear under an optical microscope. a) Several craters after mapping in the 
enamel of a tooth. b) One of the previously shown craters in magnification. The diameter of the 
crater is around 50 μm. 

2.8 Laser Fundamentals 
To understand better the properties and applications of LIBS it would be necessary to 

briefly overview the theory of lasers. The term laser originates from the combination 

of the first letter in each word of the phrase “Light Amplification by the Stimulated 

Emission of Radiation”. This explains the basic idea of a laser, which is the 

amplification of the emitted radiation of a medium, through the phenomenon of 

stimulated emission. Each laser consists of the same parts. A resonant cavity contains 

a lasing material, which allocates the appropriate energy levels to achieve the 

population inversion between an upper and a lower level of a transition, during a 

sufficiently strong pumping excitation by an external source. The external source that 

can provide the appropriate excitation of the lasing medium can be a flash lamp, a 

diode stack or even another laser. When the population inversion is achieved, photons 

produced by spontaneous emission between the previously mentioned upper and 

lower energy levels, can initiate an avalanche of emitted photons with equal energy 

through stimulated emission. This leads to a rapid amplification of the emitted 

radiation (Figure 2.6). Most common laser systems are three and four-level laser 

systems (Figure 2.7). In both cases, pumping excitation leads to the transition of the 

system (atom, ion, molecule) from a lower (normally the ground state) to a higher 

energy level, via which the upper level of the lasing transition is populated. A long 

lifetime of this level favors population inversion which eventually leads to a fast and 

rapid decay via stimulated emission producing laser radiation. A typical example of a 

four-level-system laser is the Nd:YAG laser. (Cremers & Radziemski, 2013; Hecht, 

2019; Thyagarajan, & Ghatak, 2010) 
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Figure 2.6: a) Initial spontaneous emission. b) Stimulated emission of another photon shearing 

the same frequency. c) Stimulated emission of several photons with the same frequency after the 

creation of the first one. (Hecht, 2019) 

 

Figure 2.7: a) Three-level laser system. The pumping energy leads to the excitation of an electron 

from the E1 energy state to the E3 energy state followed by a rapid decay from E3 to E2. The 

transition between E2 and E1 has low probability, increasing the population of E2 and resulting in 

the population inversion between E2 and E1. Through stimulated emission the population of E2 

rapidly decays to E1, producing the lasing radiation. b) Four-level laser system. As in the three 

level system, the pumping is followed by a rapid decay in a lower energy state. Population 

inversion takes place in E3 energy level and through the decay to E2 energy level by stimulated 

emission, the creation of lasing radiation can be achieved. A rapid decay to the lowest level 

follows the lasing transition. (Thyagarajan, & Ghatak, 2010) 

The majority of LIBS measurements are performed by using Neodymium-doped 

Yttrium Aluminum Garnet laser or Nd:YAG laser. In a Nd:YAG laser the lasing material 

is made by an Yttrium Aluminum Garnet doped by Nd3+ ions. A flashlamp irradiates 

the crystal, producing excitation on the lasing material by the absorption of a small 

percentage of the pumping light from the Nd3+ ions (Figure 2.8). Due to the electronic 

energy levels of the Nd3+ ions the intended population inversion can be achieved, 
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leading in a highly populated upper level of the lasing atomic transition between 4F3/2 

and 4I11/2 energy states (Figure 2.9). To achieve the high powers needed for the 

ablation of a material, it is necessary to use an electro-optic Q switched shutter to 

create a short and high-power pulse. The Q switch is placed in the cavity to prevent 

photons, with the lasing frequency, to complete the path through the cavity and 

induce random stimulated emission from the lasing medium (relaxation oscillations), 

increasing the population inversion. At a certain time, the Q switch becomes 

transparent allowing photons to complete their path and induce stimulated emission, 

resulting in a short and high-power pulse. (Cremers & Radziemski, 2013; Stafe, Marcu 

& Puscas, 2014) 

 

Figure 2.8: Q switch laser cavity and flashlamp schematic. In a Nd:YAG laser, a mirror cavity 

contains the laser rod made by an Y and Al garnet doped with Nd3+ ions. Flashlamp light leads to 

the excitation of Nd3+ ions resulting in the population inversion of the lasing material. An ‘opaque’ 

switch prevents stimulated emission until a certain point that becomes transparent allowing a 

rapid decay and an instant emission of radiation (Cremers & Radziemski, 2013). 



[48] 
 

 

Figure 2.9: The Nd:YAG laser is a typical example of a four level laser system. A flashlamp pumps 
the electrons to 4F5/2 or a higher energy level. After a non-radiative transition from the high 
energy level to the 4F3/2 energy state the population inversion is achieved. Stimulated emission 
through the transition to 4I11/2 energy level produces the lasing radiation, followed by relaxation 
to lower energy levels. (Stafe, Marcu & Puscas, 2014) 

2.9 Experimental Setup 
Data collection was performed by the use of a customized LIBS microspectrometer, 

which has been previously described in several publications. (Hausmann et al., 2017, 

2019; Siozos, Philippidis & Anglos, 2017) The LIBS system was combined with a XYZ 

transition stage that could be either computer-controlled or manually controlled by 

the user and enabled scanning of the sample in a linear fashion or a 2D mapping. An 

infrared (1064) Q-switched Nd:YAG laser (Spectron Laser Systems), with a 10 ns pulse 

duration, was focused directly onto the sample surface using an objective lens (10x 

magnification, 28 mm focal length, LMH-10× −1064, Thorlabs) with infrared anti-

reflection coating. Additionally, a clear image of the sampling area was formed, using 

another lens (f = +120 mm), on the sensor of a camera (2736 × 2192 pixels) at a 

magnification of 4.2 : 1, providing an overview of the sampling area. (Figure 2.10) 
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Figure 2.10: Schematic of the LIBS microspectrometer. A Nd:YAG laser is used as a radiation source and 

the produced beam is focused on the surface of the sample using an infrared anti-reflection coating and 

an objective lens. Each pulse results in the creation of a plasma plume and the emitted light is collected 

by an optical fiber and transmitted into a Czerny Turner spectrometer unit. The LIBS system is combined 

with a XYZ transition stage, allowing the movement of the samples in space depending on the needs for 

each measurement. Sample movement and sampling area can be observed by a camera at a 

magnification of 4.2 : 1. 

A luminous plume of ionized material was created on the focal point of the laser beam 

onto the surface of the sample. The light emitted by the plasma plume was collected 

by a quartz fiber and transmitted into a Czerny Turner spectrometer unit (Avaspec-

2048-2-USB2, Avantes), that records emission spectra across a wavelength range 

extending from 200 to 466 nm, with resolution of 0.2 nm. The delay time applied on 

the CCD was 𝜏𝐷  = 1.28 𝜇𝑠 and the integrational time was 𝜏𝐺  =  1.05 𝑚𝑠. 

2.10 Experimental Procedure 
The experimental procedure that was followed, was slightly different for each 

different dataset.  

2.10.1 Archaeological Bone Fragments 

The size and the texture of the archaeological bone fragments, combined with their 

cultural importance, prevent a potential smooth cut. The samples were placed 

without any preparation on the XYZ stage. The laser was focused directly onto the 

surface of the sample with an energy of 10 mJ/ pulse. Fifty five to sixty (55-60) points 

were analyzed on the surface of each sample, moving the stage manually to each point 

and correcting, if needed, samples position in agreement with the focal point of the 
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laser beam. At each point on the sample, the first 5 pulses were used to remove 

superficial dirt and dust, revealing a clean surface, while the next 5 produced an 

averaged LIBS spectrum per each sampling point. (Siozos et al., 2021) 

2.10.2 Modern Domestic Sheep Teeth 

Considering that the samples of this dataset had not had any historical or medical 

importance they were sectioned and evened, creating a sleek cross section in which 

the measurements could be performed easily and efficiently. The samples were placed 

one at a time on the XYZ stage with the cross section surface parallel to the stage 

surface and the laser was focused directly to the surface of the sample with an energy 

of 6 mJ/ pulse. Twenty five (25) points were analyzed in the enamel surface of each 

sample moving the stage manually to each point. In each point, the first 5 pulses were 

used to remove superficial dirt and dust, as previously mentioned, while the next 5 

produced an averaged LIBS spectrum per each sampling point. 

2.10.3 Modern Human Teeth 

As mentioned above, considering the low historical and medical importance, each 

sample of this set was cut and evened, creating a sleek cross. The samples were placed 

one at a time on the XYZ stage with the cross section surface parallel to the stage 

surface. The laser was focused directly to the surface of the sample with an energy of 

6 mJ/ pulse. More than sixty (60) preselected points were analyzed in the enamel 

surface of each sample using the auto-controlled mode for the stage movement. In 

each point the first 5 pulses were used to remove superficial dirt and dust, revealing 

a clean surface, while the next 5 produced an averaged LIBS spectrum per each 

sampling point. 

2.11 Data Sets/ Data Form 
After the formation of the plasma plume, the emitted light was collected by a quartz 

fiber and transmitted into a Czerny Turner spectrometer unit (Avaspec-2048-2-USB2, 

Avantes).The spectrometer was recording emission spectra from 195,117 to 465.855 

nm, with resolution of 0.2 nm and the CCD detector comprised 2048 pixels, resulting 

to a sequence of 2048 intensity values matched with specific wavelength values. Every 

point on each sample was represented by a spectrum, originating from the 

accumulation of five single-shot spectra. As a result, data for each sample set are 

stored in a matrix of 2048 columns and as many rows as the points in each sample. 

Data matrices of samples are combined to create the final data matrices for the three 

different datasets, one for the Modern Human Teeth Samples, one for the Domestic 

Sheep Teeth samples and one for the Archaeological Human Bone Fragments. (Siozos 

et al., 2021) Additionally, an extra dataset consisted of both Modern Human Teeth 

data and Domestic Sheep Teeth data was created, with the combination of the already 

existing data from the previously created datasets. 

2.12 Elemental Analysis and Spectra 
LIBS can provide information on the elemental composition of the samples. 

Considering that the hard tissue remains mainly consist of hydroxyapatite, the 
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resulting spectra would contain emission lines mainly from calcium (Ca), along with 

minor emissions from other biogenic elements and impurities. 

2.12.1 Modern Domestic Sheep Teeth 

The spectrum for the domestic sheep teeth samples mainly consist of calcium spectral 

lines all across the spectral range investigated. However, spectral lines for other 

elements can be seen in the spectra. At λ < 300 nm, four different spectral lines coming 

from phosphorus emission can be seen, while several spectral lines coming from 

magnesium are spread across the spectrum. Additionally, two emission lines of 

Strontium can be seen at λ > 400 nm and a tiny spectral line coming from sodium (the 

well-known yellow doublet) appears, too. The resulted average spectrum for the 

Domestic Sheep samples can be seen in Figure 2.11. 

 

Figure 2.11: Average spectrum using all the retrieved data from the Modern Domestic Sheep dataset. 
Several spectral lines can be seen, coming from the emission of Ca and P, which are the main elements 
on the hydroxyapatite, as well as Mg, Sr and Na that can replace Ca in hydroxyapatite crystal. 

2.12.2 Modern Human Teeth 

The resulted spectra from the human teeth samples are quite similar to those of the 

domestic sheep teeth. In Figure 2.12, the average spectrum from all the human teeth 

samples and the elemental composition of them, can be seen. Comparing it with the 

spectrum for the domestic sheep teeth it is easily observed that are almost identical. 
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Figure 2.12: Average spectrum using all the retrieved data from the Modern Human dataset. Similarly 
to the Domestic Sheep spectrum, spectral lines coming from the emission of Ca, P, Mg, Sr and Na can 
be seen. The spectrum is very similar to the one in Figure 2.11. 

2.12.3 Archaeological Human Bone Fragments 

In contrast to the similarities observed in the spectra of the previously mentioned 

modern samples, the spectrum for the archaeological bone fragments is quite 

different. This spectrum is richer, consisting of spectral lines from several elements. 

Besides the spectral lines coming from Ca, Mg, P, Sr and Na, the spectra of the 

archaeological samples contained also spectral lines from iron (Fe), magnesium (Mn), 

aluminum (Al), copper (Cu) and barium (Ba), resulting in a richer spectrum as can be 

seen in Figure 2.13. The existence of these elements is attributed to potential burial 

contamination from the surrounding area that were excavated. Further analysis for 

the spectral characteristics of those samples has been presented in previous works. 

(Siozos et al., 2021) 
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Figure 2.13: Average spectrum using all the retrieved data from the Archaeological dataset. Several 
spectral lines can be seen, coming from the emission of both biogenic and non-biogenic elements of the 
hard tissues. Ca and P, which are the main elements on the hydroxyapatite, as well as Mg, Sr and Na 
that can replace Ca in hydroxyapatite crystal, can be seen in the spectrum, similarly with the spectra 
from the other datasets. On the contrary, in the current spectrum several new spectral lines can be 
observed, coming from the emission of non-biogenic element as Fe, Al, Cu and Mn. 
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3 Machine Learning and Neural Networks 

3.1 Machine Learning Fundamentals 
The branch of artificial intelligence in which the main goal is the recognition of hardly 

visible patterns by an algorithm, was the inspiration behind machine learning. 

Machine learning is defined as the field of study that gives computers the ability to 

achieve specific tasks without being explicitly programmed, based on given examples. 

This process starts by the observation of hidden patterns in data and the attempt to 

improve future decisions. Hence, the main goal for computers is to learn or be trained 

in a way similar with the one that living organisms learn from experience. Machine 

learning is divided in three main branches that differentiate on the learning process 

and provided data’s nature. In supervised learning the computer is fed with labeled 

input data and the main goal is the learning of general rules that map input, to the 

desirable output. In unsupervised learning no labeling for the input data is given to 

the algorithm, leaving it to discover itself hidden patterns. The last of the three 

categories is called reinforcement learning and is strongly linked with AI and game 

theory. In this approach the algorithm interacts dynamically with the environment by 

making discussions and discovering errors without given instructions whether it has 

come close to its goal or not. A further categorization of supervised learning can 

provide two different categories, classification and regression. Those categories differ 

on the nature of the desirable output. On classification the output variable takes 

discrete values, in the form of class labels, identifying a group membership, while on 

regression the output variables are continues. (Koropoulis, Alachiotis & Pavlidis, 2020; 

Alpaydin, 2010; Venables & Ripley, 2010) 

In current work, different open-access supervised machine learning algorithms were 

used for classification tasks. In particular, the algorithms that were used are K Nearest 

Neighbors, Support Vector Machine using a polynomial and a radial kernel, Random 

Forest and a relatively simple Artificial Neural Network. Principal Components Analysis 

were used only for visualization of the data in 2D. All the algorithms were developed 

and performed in R programming language using a variety of already developed 

packages. (Wickham, 2011; Wickham, 2016; Meyer et al., 2015; Liaw & Wiener, 2002) 

3.2 Principal Components Analysis 
Principal Components Analysis is a commonly used unsupervised machine learning 

method based on coordination transformation, preserving as much of the relevant 

information as possible in the newly formed coordination system. The method firstly 

introduced by Pearson, back in 1901 and by Hotelling in 1933 (Pearson, 1901; 

Hotelling, 1933), as a method for dimensional reduction by the variance on the data 

and found its use among several applications in a variety of fields (Pearson, 1901; 

Jolliffe, 2002). PCA is the linear transformation of the original coordinate system to a 

newly formed, with the new set of variables being called principal components and 

maximize the variance among data. This result can be achieved by fitting the best 

fitted lines on the data that reduce the sum of squared distances of the data points 



[56] 
 

(Pearson, 1901; Jolliffe, 2002). The newly formed variables can be sorted from first to 

last following the decrease in variance of the data, creating the Principal Components. 

The use of principal components is widely spread considering that can be used for 

dimensional reduction and data visualization, lossy data compression, as well as 

feature selection and feature extraction. (Jolliffe, 2002; Bishop, 2006)  

Hotelling’s approach differs from that of Pearson’s (Hotelling, 1933; Jolliffe, 2002; 

Bishop, 2006). PCA seeks for desirable linear combinations of the n dimensions of the 

initial dataset 𝑥 to maximize the variance (Hotelling, 1933; Jolliffe, 2002; Jolliffe & 

Cadima, 2016). This linear combination can be given by the equation: 

∑ 𝑢𝑖𝑥𝑖 =
𝑛

𝑖=1
 𝑥𝑢 

Where u is a vector of constants u1, …, un. For any of these linear combinations the 

variance can be computed by the equation: 

𝑣𝑎𝑟(𝑥𝑢) = 𝑢′𝐴𝑢 

Where 𝐴 is the covariance matrix of the whole dataset and ′ denotes transpose. 

For the computation of the covariance matrix, the use of two different equations is 

necessary. To compute the covariance between two variables, the equation: 

𝑐𝑜𝑣(𝑥1, 𝑥2) =
1

𝑛 − 1
∑ (𝑥1𝑖 − 𝑥̅1)(𝑥2𝑖 − 𝑥̅2)

𝑛

𝑖=1
 

is used. However, the computation of the variance of each variable is necessary, too. 

This is achieved using the following equation: 

𝑣𝑎𝑟(𝑥) =
1

𝑛 − 1
∑ (𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1
 

With respect to the previous two equations the covariance matrix 

(𝑛 𝘹 𝑛) can be computed. 

 𝑥1 𝑥2 … 𝑥𝑛 

𝑥1 𝑣𝑎𝑟(𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) … 𝑐𝑜𝑣(𝑥1, 𝑥𝑛) 

𝑥2 𝑐𝑜𝑣(𝑥1, 𝑥2) 𝑣𝑎𝑟(𝑥2) … 𝑐𝑜𝑣(𝑥2, 𝑥𝑛) 

… … … … … 

𝑥𝑛 𝑐𝑜𝑣(𝑥1, 𝑥𝑛) 𝑐𝑜𝑣(𝑥2, 𝑥𝑛) … 𝑣𝑎𝑟(𝑥𝑛) 

Continuing, identifying the linear combination that maximizes the variance for 𝑥𝑢 

(𝑣𝑎𝑟(𝑥𝑢)), it is equivalent to obtain a vector which maximizes 𝑢′𝐴𝑢. For achieving the 

maximization without turn on infinite, it is necessary to impose a normalization 

constraint in which 𝑢′𝑢 = 1, or that the sum of squares of elements for u equals 1. To 

maximize 𝑢′𝐴𝑢, considering 𝑢′𝑢 = 1, the standard approach is the use of Lagrange 

Multipliers: 
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𝑢′𝐴𝑢 − 𝜆(𝑢′𝑢 − 1) 

where 𝜆 is a Lagrange Multiplier. Differentiation with respect to 𝑢 gives: 

𝐴𝑢 − 𝜆𝑢 = 0 

or 

(𝐴 − 𝜆𝐼𝑛)𝑢 = 0 

where 𝐼𝑛 is the (𝑛 𝘹 𝑛) identity matrix. As it is easily observed, 𝜆 is the eigenvalue of 

𝐴 and 𝑢 is any corresponding eigenvector. Solving the equation results in 𝑛 𝘹 𝜆 

eigenvalues (𝜆1, 𝜆2, … , 𝜆𝑛), corresponding in  𝑛 𝘹 𝑢 eigenvectors (𝑢1, 𝑢2, … , 𝑢𝑛). 

Sorting the eigenvalues from greatest to least, the corresponding eigenvectors can be 

sorted, too, with respect to the variance reduction. (Jolliffe, 2002; Jolliffe & Cadima, 

2016) 

Finally, after sorting the eigenvectors, they are used to transform the original data into 

new data 

𝑥 𝑢 = 𝑥′ 

with a new coordination system and increased variance in the first few axis. 

Considering the simplicity and the low computational time that requires, PCA is an 

easily applicable machine learning technique capable to resolve the dimensionality 

problems of high dimensional data, like spectra. For those reasons is one of the first 

techniques that are used for the classification of samples using spectral data and the 

first that was used in the current study searching for possible clusters among data and 

later for their visualization. 

3.3 K Nearest Neighbors 
K nearest neighbors or KNN was firstly introduced by Fix and Hodges in 1951 as a 

nonparametric discrimination analysis (Fix & Hodges, 1989) and established as a 

pattern recognition classifier by Cover and Hart in 1967 (Cover & Hart, 1967). This 

algorithm is a rather simple, yet widely used machine learning method with its basic 

principle based on finding the nearest neighbors of a data point in a dataset. Then, the 

data point can be classified by the majority of its nearest neighbors’ class labels (Figure 

3.1). Because of its simplicity the algorithm is used in a variety of fields not only for 

classification tasks, but also for feature selection, pattern recognition and clustering. 

(Xia et al., 2015)  
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Figure 3.1: K nearest neighbors representation in a two dimensional space, using two different K 

values. The red circles and the green crosses represent data points of two different class labels, 

while the blue question mark represents the unknown data point, which needs to be classified. 

The main idea behind this machine learning method is the calculation of the distances 

between an unknown sample and the training data points. Using majority voting of 

the class labels, for the K closest training data points, the unknown sample is assigned 

in one of the existing classes. The most commonly used methods for distance 

calculation are Euclidean distance, Manhattan distance, Chebychev distance and 

Minkowski distance. (Mulak & Talhar, 2015; Ooi, Ng & Lim, 2013) For the current work 

Euclidean distance was used. Assuming that arbitrary data correspond in a 𝑁-

dimensional space 𝑅𝑁 and an unknown sample is represented by the feature vector 

𝑈 = (𝑥1𝑢, 𝑥2𝑢, … , 𝑥𝑁𝑢), where 𝑥𝑘𝑢 donates the value of the kth dimension of the 

unknown sample. The Euclidian distance between 𝑈 and a known sample 𝐴 =

(𝑥1𝑎, 𝑥2𝑎, … , 𝑥𝑁𝑎) is given by the equation: 

𝑑(𝑈, 𝐴) = √∑ (𝑥𝑘𝑢 − 𝑥𝑘𝑎)2
𝑁

𝑘=1
 

The number of distances that will be calculated each time, equals the number of the 

training data points. The closest K training data points are identified as the K nearest 

neighbors and their class labels will attribute to the assignment of the unknown 

sample, in the major class (Figure 3.2). (Sarkar & Leong, 2000; Mitchell, 1997) 
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Figure 3.2: Representation of K nearest neighbors algorithm in a two dimensional space. The red 

circles and the green crosses represent data points of two different class labels. The algorithm 

calculates all the distances between the unlabeled sample (black x) and the training data points. 

Following the calculations of the distances, the algorithms sorts them from least to greatest 

(𝑑1 < 𝑑2 = 𝑑3 < 𝑑4 < 𝑑5). Finally, the model classifies through majority voting the unknown 

data point. The number of nearest neighbors that are taken into consideration is very important 

for the result, since it can drastically change the class label of the unknown samples. Considering 

𝐾 = 1, the unknown samples would be assigned as green cross, however changing K value in 

𝐾 = 3, results in a different assignment of the unknown sample, as a red circle. 

As it is easily observed, KNN is not strictly a learning classifier but rather a memory-

based classifier. (Koropoulis, Alachiotis & Pavlidis, 2020) Its simplicity makes it a 

popular choice for use, among machine learning methods, but its low accuracy in 

complex datasets limits its usefulness. 

3.4 Support Vector Machine 
Support vector machine is a machine learning algorithm, firstly introduced back in 

1992 and 1995, based on the use of the best fitted hyperplane on the closest data 

points between the different classes for the classification of unknown data. (Boser, 

Guyon & Vapnik, 1992; Cortez & Vapnik, 1995) This algorithm uses the marginal data 

points from each class as support vectors for the desirable hyperplane that separates 

the samples. (Figure 3.3) The distance of those marginal data points from the 

hyperplane is called margin and the main goal of the algorithm is to maximize it, to 

increase the probability for sufficient classification of unknown samples in the correct 

class. (Koropoulis, Alachiotis & Pavlidis, 2020) 
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Figure 3.3: Best fitting hyperplane, based on the support vectors of the different classes. (Boser, 

Guyon & Vapnik, 1992; Cortez & Vapnik, 1995) 

The hyperplane that separates the classes is defined by the equation: 

𝑓(𝑥) =  𝑤⃗⃗⃗⃗ · 𝑥 + 𝑏 = 0 

where 𝑤⃗⃗  is the perpendicular vector to the hyperplane, b is a bias and 𝑥 =  (𝑥1, … , 𝑥𝑁) 

is the random N dimensional vector on the hyperplane. The hyperplanes on which the 

support vectors lay, are given by the equations: 

𝑓′(𝑥) =  𝑤⃗⃗⃗⃗ · 𝑥 + 𝑏 = 1 

𝑓′′(𝑥) =  𝑤⃗⃗⃗⃗ · 𝑥 + 𝑏 = −1 

Therefore, the areas outside of the gutter that is defined by the support vectors are 

given by: 

𝑤⃗⃗ · 𝑥 + 𝑏 ≥ 1,     𝑤⃗⃗ · 𝑥 + 𝑏 ≤ −1 

Considering two support vectors and calculating there difference, it can easily be 

shown that maximizing the margin equals to maximize the value of 
2

‖𝑤‖
. (Figure 3.4) In 

other words, to maximize the margin equals to minimize the ‖𝑤‖. (Boser, Guyon, & 

Vapnik, 1992; Cortez, Vapnik, 1995) 

 

Figure 3.4: Distance between the marginal values. 
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The minimization of ‖𝑤‖ should be performed honoring the constraint: 

𝑦(𝑤⃗⃗ · 𝑥 + 𝑏) ≥ 1 

where 𝑦 =  −1 for  𝑤⃗⃗⃗⃗ · 𝑥 + 𝑏 ≤ −1 and 𝑦 = 1 for  𝑤⃗⃗⃗⃗ · 𝑥 + 𝑏 ≥ 1. (Boser, Guyon, & 

Vapnik, 1992; Cortez, Vapnik, 1995) 

When two classes are not linearly separable, the use of kernel functions that 

transform the data into a more convenient/separable form is needed. (Figure 3.5) 

 

Figure 3.5: Data transformation in a linearly separable form. This transformation is achieved by the 

use of a kernel functions. 

Popular kernel functions are: 

𝐾𝑟(𝑥𝑖, 𝑥𝑗) =  𝑒
−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2  

𝐾𝑝(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 · 𝑥𝑗 + 1)
𝑞

 

𝐾𝑟 is the Radial kernel function with 𝜎 > 0 as a free parameter determining the width 

of the Gaussian function and 𝐾𝑝 is the Polynomial kernel function with 𝑞 as the 

polynomial degree. (Boser, Guyon & Vapnik, 1992; Müller, et al, 1997; Vapnik, 1998; 

Cristianini, & Ricci, 2008) 

The example that has been previously mentioned is called hard margin SVM and it is 

applicable when the used data are separable. For non-separable data it is necessary 

to penalize errors during training, resulting in a different form of SVM called Soft 

Margin. In this case a loss function is applied to the algorithm in order to penalize 

wrong classification during the training process. Most commonly used loss function in 

SVM is Hinge Loss. Using this function, the maximization of the margin is achieved by 

minimizing: 

[
1

𝑁
∑ 𝑚𝑎𝑥(0, 1 − 𝑦𝑖(𝑤⃗⃗ 𝑖 · 𝑥 𝑖 + 𝑏))

𝑁

𝑖
] + 𝜆‖𝑤‖2 
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where the first part refers to the summation of the penalty values for each mistakenly 

classified data point, while the second part refers to the margin value, with λ being a 

free value to weight the impact of ‖𝑤‖ to the final result. (Vapnik, Guyon & Hastie, 

1995) 

As it is observed, SVM is a machine learning method that can be easily applied in 

various situations. It can be used for regression problems, as well as binary and 

multiclass classification problems, while using the kernel trick can be applied in non-

linearly separable data, too. (Bishop, 2006; Boser, Guyon & Vapnik, 1992) 

Furthermore, it is able to solve the “curse of dimensionality” by having the ability to 

work with high dimensional datasets. (Koropoulis, Alachiotis & Pavlidis, 2020) Those 

characteristics make this classifier capable of solving a variety of classification or 

regression problems, making it a powerful tool with many applications. 

3.5 Random Forest 
According to Leo Breiman, who introduced the idea in 2001, a Random Forest is 

defined as a classifier consisting of a large ensemble of tree-structured classifiers 

{ℎ(𝑥, 𝛩𝑘), 𝑘 = 1,… , 𝑛}, where the {𝛩𝑘} are independent identically distributed 

random vectors and each tree casts a unit vote for the most popular class at input x. 

(Breiman, 2001b) This classifier has been used in a variety of fields and it is widely 

spread due to its accuracy and its ability to highly perform for both small and large, 

high-dimensional data sets. (Biau & Scornet, 2016) The building block of the random 

forest, decisional tree, is a conceptually simple classifier that can be used for 

classification, as well as regression and is based on space separation in regions using 

specific features or a linear combination of them. Each tree consists of decision nodes 

which split the data and the space in separate areas, resulting in a tree structure model 

(Figure 3.6). As a result, while growing a tree the algorithm needs to decide on the 

splitting variables, splitting points and also the topology of it. To find best partitioning, 

is necessary to evaluate the best splitting criteria, scanning through all the possible 

inputs. This evaluation is performed by measuring the node impurity for each possible 

leaf and split. In classification trees, node impurity can be measured in three different 

ways, by Misclassification error, Gini index and Cross-entropy (or deviance). (Hastie, 

Tibshirani & Friedman, 2009) 

 

Figure 3.6: Decisional tree representation and space partition. On the left side, is the 

representation of a classification tree using binary splitting. The root of the tree is colored red, 

while the nodes are colored green. Leafs or terminal nodes are colored blue. On the right side, 
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the representation of the space partition by the tree, can be seen. (Hastie, Tibshirani & Friedman, 

2009) 

In an arbitrary node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚 observations, the 

proportion of the observations of a class 𝑘 is given by: 

𝑝𝑚𝑘 =
1

𝑁𝑚
∑ 𝐼(𝑦𝑖 = 𝑘)

𝑁𝑚

𝑖
 

The impurity of that node could be measure by the previously mentioned ways as 

follows: 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟  𝑄 =
1

𝑁𝑚
∑ 𝐼(𝑦𝑖 ≠ 𝑘)𝑁𝑚

𝑖 = 1 − 𝑝𝑚𝑘 

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥    𝑄 = ∑ 𝑝𝑚𝑘𝑝𝑚𝑘′𝑘≠𝑘′ = ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)
𝐾
𝑘  

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦   𝑄 = −∑ 𝑝𝑚𝑘 log 𝑝𝑚𝑘
𝐾
𝑘  

 

Figure 3.7: Node impurity in a two-class classification model, as a function of the proportion of 

one of the two classes, measured by the three different values (Misclassification error, Gini index 

and Cross – entropy). Cross - entropy is scaled to pass through the point (0.5, 0.5). (Hastie, 

Tibshirani & Friedman, 2009) 

For a two-class classification problem, the values of the three measures for the node 

impurity are 1 − max(𝑝, 1 − 𝑝), 2𝑝(1 − 𝑝), −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝), 

respectively, considering 𝑝 as the proportion for one of the two classes. A typical 

representation of the values can be seen in (Figure 3.7). (Hastie, Tibshirani & 

Friedman, 2009) 

Cross – entropy and Gini index are the most popular, out of the three, values that are 

used in random forest’s building blocks. (Koropoulis, Alachiotis & Pavlidis, 2020; 

"Random forests - classification description", 2021; Breiman, 1996b) 

The impurity values of the descendants are weighted averaged for the calculation of 

the overall impurity for each split and the final value is compared with the impurity 

value of the parent node. Thus, 
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𝑄𝑠𝑝𝑙𝑖𝑡 = ∑ 𝑛𝑖𝑄𝑖

𝐼

𝑖
 

where 𝑄𝑠𝑝𝑙𝑖𝑡 is the final impurity value of the split, while 𝑄𝑖 and 𝑛𝑖  are the impurity 

value and the sample size of each descendant, respectively. The split takes place only 

if the averaged impurity value is lower than the parent node impurity (𝑄𝑝𝑎𝑟𝑒𝑛𝑡 >

𝑄𝑠𝑝𝑙𝑖𝑡), or until reaching the minimum growth of the tree, that has been previously 

set. When the stopping criteria is met, unsplit nodes are called “terminal nodes”. 

Following this splitting process, the ending leafs or terminal nodes are, eventually, 

used for classification. Each of the terminal nodes is assigned to a specific class, by 

computing the most frequently appeared class on its representative space (Figure 

3.8). (Culter, A., Culter, D.R. & Stevens, 2012) The discussion above is focused on the 

method named CART (Classification & Regression Trees) for the growth of decisional 

trees. 

 

Figure 3.8: Representation of a classification tree and the space partition that it provides. Each 

terminal node is assigned to the most frequently appeared class in its corresponding space 

section. (Hastie, Tibshirani & Friedman, 2009) 

Despite their advantages, decisional trees suffer from low accuracy because of their 

dependence from the data used to create them. (Hastie, Tibshirani & Friedman, 2009) 

Random forest bypasses this problem by creating a large number of independent tree-

structured classifiers, which are taken into consideration for the final result of the 

classification or regression task. For the creation of this large amount of trees by a 

single dataset, a procedure called “bootstrap aggregating”, or in one word “bagging”, 

is used. Using this approach, several bootstrapped datasets are generated by the 

original dataset and are used for creating different trees. For further randomization 

on each tree, the best split in each node is chosen by a randomly selected subset of 

the initial features. This parameter is called 𝑚𝑡𝑟𝑦 and typically is the √𝑝, for 

classification and 𝑝 3⁄ , for regression trees, where p is the total number of features. 

The ensemble of the created trees predict unknown data by aggregating the final 

prediction of each decisional tree (Figure 3.9). Thus, in a classification task the 

prediction is achieved by majority voting, while in a regression task is achieved by 

averaging the predicted values. (Liaw, & Wiener, 2002; Breiman, 1996a) 
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Figure 3.9: Random forest sematic representation consisting of three tree-structured classifiers, 

voting equally for the final class. Nodes colored green are the representation of the path that the 

model follows in each tree for a hypothetical unknown sample. The roots of the trees are colored 

red, while the nodes that are out of use are colored blue. (Liaw & Wiener, 2002; Breiman, 1996a) 

Random forest is considered as one of the most useful and powerful machine learning 

methods reaching excellent performances in classification tasks, comparable to 

Support Vector Machine. (Díaz-Uriarte & Alvarez de Andrés, 2006) 

3.6 Artificial Neural Networks 
In the 1940s, McCulloch and Pitts introduced the idea of an algorithm that could 

complete computational tasks, inspired by biological neuros. (McCulloch & Pitts, 1943; 

Bishop, 2006; Hassabis et al., 2017) Since then, the research on the development of 

artificial neural network models has been very wide, leading to their use in a variety 

of fields and applications, like image and speech recognition, predictions on the 

activity of potential drug molecules, speech transcription into text and relevant results 

selection on search. (LeCun, Bengio & Hinton, 2015; Ma et al., 2015) Despite their 

recent success, neural networks suffered from lack of accuracy over other machine 

learning methods, through the years. The recent success can be explained by the 

increased data availability and the high computational power of modern computers. 

This plethora of data and computational power has outgrown the limits of traditional 

machine learning algorithms (Figure 3.10), while neural networks can handle that 

amount of information easier. (Aggarwal, 2018) 

 

Figure 3.10: Illustrative comparison between the accuracy of a traditional machine learning 

algorithm and the accuracy of a deep neural network. Increasing the computational power and 
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consequently the amount of data that can be handled, neural network algorithms have become 

more attractive than conventional machine learning methods. (Aggarwal, 2018) 

An artificial neural network consists of several layers of neurons. Each neuron is 

connected with all the neurons of the previous and the next layer, forming a network. 

Each path is a sequence of computational operations depending on the input values. 

The first layer of neurons is called input layer and represents the layer that feeds the 

model with the data, while the last layer of neurons is called output layer and provides 

the final results of the model. In between those extremum levels, lays a number of 

different layers of neurons, which are called hidden layers (Figure 3.11). The number 

of those layers combined with the number of nodes on each one affect the complexity 

of the model and determine the depth and the width of it. (Rumelhart, Hinton & 

Williams, 1986; LeCun, Bengio & Hinton, 2015; Aggarwal, 2018) For the purpose of this 

work, models with only one hidden layer were used for classification tasks and for that 

reason, only single-layer neural networks will be discussed. Neural network models 

with multiple hidden layers appertain to deep learning, following almost the same 

principals, but will be out of interest for the current work. 

 

Figure 3.11: Illustration of a single-layer neural network. Disks represent neurons on each layer, 

while the black lines represent the connections between the neurons. The different width of the 

lines represent the differences in the weight values. Input layer is colored red and is the only layer 

that neurons do not represent a computational operation. The hidden layer is colored blue and 

the output layer green. (Bishop, 1994; LeCun, Bengio & Hinton, 2015; Aggarwal, 2018) 

The nodes of a network are the representation of a computational operation, the 

transformation of the input value by an activation function, which provides the output 

value of the node. Sigmoid and tanh functions, were the most commonly used 

activation functions throughout the evolution of the neural networks (Figure 3.12). 

𝛷(𝑢) =
1

1+𝑒−𝑢    (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝛷(𝑢) =
𝑒2𝑢−1

𝑒2𝑢+1
    (𝑇𝑎𝑛ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 
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However, in recent years the ReLU (𝛷(𝑢) = max{𝑢, 0}) and the hard tanh functions 

(𝑚𝑎𝑥{𝑚𝑖𝑛[𝑢, 1], −1}) have heavily replaced the previously used functions on the 

modern neural network models (Figure 3.12). (LeCun, Bengio & Hinton, 2015; 

Krizhevsky, Sutskever & Hinton, 2017; Aggarwal, 2018) 

𝛷(𝑢) = max{𝑢, 0}   (𝑅𝑒𝐿𝑢 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝛷(𝑢) = 𝑚𝑎𝑥{𝑚𝑖𝑛[𝑢, 1], −1}  (𝐻𝑎𝑟𝑑 tanh 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

 

Figure 3.12: Activation functions. (Aggarwal, 2018) 

The input value of the activation function in each node is provided by an additive 

contribution of each connected node’s output. In other words, the input to a node is 

the weighted sum of the outputs from each of the connected nodes from the previous 

layer, added in a bias or offset term. (Bishop, 1994; Aggarwal, 2018) 

(∑ 𝑥𝑖
(𝐿)

∙ 𝑤𝑖𝑗
(𝐿)

𝑛

𝑖=1
) + 𝑏𝑗

(𝐿)
 

where 𝑖 = 1,… , 𝑛 is the number of the node on the previous layer, 𝑗 = 1,… , 𝑘 is the 

number of the node in the current layer, 𝐿 = 1,… , 𝑟 is the number of the current 

layer, 𝑥𝑖
(𝐿)

 represents the initial input of the model or the output of a previous node, 

𝑤𝑖𝑗
(𝐿)

 is the weighted value for each computational path and 𝑏𝑗
(𝐿)

 is the offset term. In 

Figure 3.13, a mathematical and a graphical representation between the connections 

of a node with its previous layer can be seen. (Bishop, 1994; Aggarwal, 2018) 
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Figure 3.13: Illustration of the connection between a node and the previous layer of nodes. In the 

upper half of the image the sequence of computational operations that take place during the 

connection of a node with the previous layer of nodes, can be seen. In the lower half of the image, 

a schematic representation of this procedure is illustrated. The differences in the width of the 

connecting lines represent the different weight values. Inside of each node a typical 

representation of an activation function can be seen. (Bishop, 1994; Aggarwal, 2018) 

During the training process of an artificial neural network, the aim is to find the proper 

set of weights and biases ensuring that the predicted result will be sufficiently close 

to the desired output, for any input vector. (Rumelhart, Hinton & Williams, 1986) The 

evaluation of the model’s result is given by a loss function (𝐿𝑡) that evaluates the 

agreement between the given and the expected value. Choosing the most suitable 

loss function in each application is crucial for the correct defining of the outputs. For 

regression tasks, squared loss and hinge loss are the most commonly used loss 

functions. 

𝐿𝑡 = ∑ (𝑦𝑗 − 𝑑𝑗)
2𝐽

𝑗=1    (𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑙𝑜𝑠𝑠) 

𝐿𝑡 = ∑ 𝑚𝑎𝑥{0,1 − 𝑦𝑗 ∙ 𝑑𝑗}
𝐽
𝑗=𝑖   (𝐻𝑖𝑛𝑔𝑒 𝑙𝑜𝑠𝑠) 

where 𝑗 = 1,… , 𝐽 is the number of training vectors, 𝑦𝑗 is the desirable output vector 

and 𝑑𝑗 is the predicted output vector. However, for classification tasks in which 

softmax output is probabilistic, cross-entropy loss is preferred.  

𝐿𝑡 = −∑ 𝑦𝑗 log 𝑝(𝑑𝑗)
𝐽
𝑗=1   (𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 

where 𝑗 = 1,… , 𝐽 is the number of training vectors, 𝑦𝑗 is the desirable output vector, 

𝑑𝑗 is the predicted output vector and 𝑝(𝑑𝑗) is predicted output vector of probabilities. 

(Rumelhart, Hinton & Williams, 1986; Bishop, 2006; Janocha & Czarnecki, 2017; 
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Aggarwal, 2018) For the optimization of a neural network it is necessary to minimize 

the value of 𝐿𝑡 (𝐿𝑡 → 0). The minimization of 𝐿𝑡 (Figure 3.14) is performed by gradient 

descent algorithm, which requires the calculation of the partial derivatives of the loss 

value for all weight and bias variables in the network (∇𝐿𝑡). This optimization can be 

performed simultaneously for all the variables. A small sift is calculated for each 

different variable by the value of the ∇𝐿𝑡, for the current variable, weighted by a 

learning rate. The extraction of that sifts gives the new values for the variables: 

𝜃𝑛𝑒𝑤 = 𝜃 − 𝜂 ∙ ∇𝐿𝑡(𝜃) 

where 𝜃 is a random weight or bias value and 𝜂 is the learning rate. (Rumelhart, Hinton 

& Williams, 1986; Ketkar, 2017; Jurafsky & Martin, 2009) 

 

Figure 3.14: Illustration of the Loss function 𝐿𝑡 for a parameter 𝜃. The algorithm performs 

changes in the value of 𝜃, for each iteration, to move the value of the Loss function closer to the 

total minimum (𝐿𝑡𝑚𝑖𝑛). The changes are based on the value of the slope for tangent line in each 

point. After the calculation of the derivative for a point (green), a new value for 𝜃 with reduced 

derivative (red) is calculated using gradient descent. 𝐿𝑡𝑚𝑖𝑛 represents the total minimum of the 

Loss function and 𝐿𝑡𝑚𝑖𝑛
′  represents a local minimum of it. (Bishop, 1994; Jurafsky & Martin, 2009) 

Consequently, calculating the loss value for every training vector, starting with 

random weight and threshold values and using the results for the correction of each 

variant, can gradually decrease the error and increase the accuracy of the model. This 

method is called Error Backpropagation and it is the main learning process of the 

neural networks. (Rumelhart, Hinton & Williams, 1986) Summing up, the model 

evaluates the results for the training vectors using random variables and then 

correcting those variables reevaluates the results. This process continues until 

reaching a minimum value for the Loss function or reaching the maximum value of 

iterations. (Rumelhart, Hinton & Williams, 1986; Bishop, 2006) Using gradient descent 

approach, the model has to perform a great amount of computations, especially for 

large datasets, leading to significantly high training time and demanding memory. 

Another, common problem is the potential assumption of local minima as the total 

minimum of the loss function. To overcome those problems, most of neural network 

models use stochastic gradient descent. In this approach, a randomly selected subset 

of the training vectors is used for each iteration of the Backpropagation method, 

significantly reducing the impact of the training data on the Loss value. (Ketkar, 2017) 
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Artificial neural networks are currently the edge of machine learning research, finding 

use in many different fields, from scientific tasks, to business and everyday life 

technology. The evolution of computer science and computer hardware, combined 

with the availability of data and information have renewed the interest in that branch 

of artificial intelligence and have turned neural networks into the potentially most 

powerful tool for data analysis, in the present and possibly in the near future ,too. 

(LeCun, Bengio & Hinton, 2015; Ma et al., 2015) 

3.7 Overfitting and Stratified Nested Cross-Validation 
It has been widely noted that supervised machine learning algorithms suffer from an 

inadequacy to generalize from observed data to unseen data, because of overfitting. 

A machine learning model, which is trained using a finite number of data, can perform 

perfectly on training data but poorly on unknown samples, which are used as testing 

data. The cause of this phenomenon is the dependence of the optimization process of 

the model from the data that have been used for training. The noise of the training 

data can be considered as an existing pattern by the model and act as a basis of 

predictions, leading to biased models that are unable to correctly perform unknown 

data (Figure 3.15). (Ying, 2019; Lever, Krzywinski & Altman, 2016) 

 

Figure 3.15: Illustration of the fitting line of an arbitrary model in arbitrary training data. On the left 

side, the representation of the best fitted line that separates the training data sufficiently, while 

retaining a high probability to separate unknown data, can be seen. On the middle, is the representation 

of an overfitted line which perfectly separates the training data, while on the right side, the comparison 

between the two lines can be seen. 

Considering that real life data always occur many biases, to secure an unbiased result 

of a machine learning algorithm, avoiding overfitting, it is necessary to remove the 

impact that the training and testing data have on the final algorithm. The most 

commonly used method to achieve that is k-fold cross validation and it is based on 

developing several models each one trained and tested by different subsets from the 

original data. (Lever, Krzywinski & Altman, 2016; Hastie, Tibshirani & Friedman, 2009) 

To achieve that a partition of the data in a number of subsets 𝑚 is performed. Those 

subsets are kept one at a time as validation sets (𝑦𝑖, 𝑗 ∈ 𝑚), while the training of the 

model is performed using the rest of the data (𝑦 − 𝑦𝑖 , 𝑗 ∈ 𝑚). The accuracy of each 

model is estimated each time by the remaining data and the final accuracy is 

estimated by averaging the accuracies of all the developed models (Figure 3.16). 

(Hastie, Tibshirani & Friedman, 2009) 
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Figure 3.16: Schematic representation of cross-validation process. 

Another use of the k fold cross-validation technique is during the parameters selection 

process that is necessary for the optimal performance of the algorithms. The optimal 

values of the parameters for each algorithm can be found by performing the cross-

validation method using different values in each iteration and then selecting those 

created the highest performing model for use in the final trained model. For more 

robust outcomes the process can be repeated for several times. (Tsamardinos, 

Rakhashani & Lagani, 2014) 

However, it is corroborated that cross-validation overestimates performance when it 

is used during parameter selection. (Tsamardinos, Rakhashani & Lagani, 2014) To 

overcome this problem, a method called nested cross-validation is recommended. In 

this method a new outer loop is introduced, working similarly with the cross-validation 

method. The previously mentioned parameter selection remains as an inner loop in 

the process. As a result, using this method the original data set is split in 𝑛 different 

subsets. Each subset is kept as a testing set, while the rest of the data are used as the 

dataset for training and validation in the inner cross-validation process. After the 

selection of the optimal values for the parameters, the final model is tested using the 

data that have been kept previously, as a test set. The training-testing process of the 

algorithm is performed 𝑛 times, each time using a different subset (𝑥𝑖, 𝑖 ∈ 𝑛)  as 

testing set and the rest of the subset as training set (𝑥 − 𝑥𝑖, 𝑖 ∈ 𝑛), resulting in 𝑛 

different outcomes (Figure 3.17). (Tsamardinos, Rakhashani & Lagani, 2014) The 

estimation of the final model’s results is achieved by averaging the 𝑛 different 

outcomes. 

The training process and the result of a model can be affected by the partition of the 

initial dataset in subsets. To avoid the effects of biased partitioning, on the training 

model, an approach called stratification is recommended. Stratification forces the 

created subsets to have the same distribution of samples from each category with the 

initial data set. Using this technique is secured that each fold has a representative 

number of samples from each different class. (Tsamardinos, Rakhashani & Lagani, 

2014) 
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Figure 3.17: Schematic representation of nested cross-validation process. 

3.8 Feature Selection and Extraction 
As it has been discussed already in section 2.11, each data point consists of a spectrum 

and each spectrum consists of a sequence of 2048 intensity values. That number of 

dimensions is quite large, even for a machine learning problem. Considering the 

enormous computational time is needed for the processing of that amount of 

information and the fact that the majority of those values coming from spectral 

background, providing not useful information, it is imperative to reduce the number 

of dimensions for the optimal performance of the algorithms. (Guyon & Elisseeff, 

2003) For that reason, several approaches for feature selection and feature extraction 

were employed. 

Firstly, a feature selection function was developed, based on the feature variance of 

each class. The main idea was to isolate the features with the lowest in-class variance 

and the greatest among-classes variance. In order to achieve this selection, a new 

function was developed in which the ratio between the product of the in-class 

variances and the among-classes variance was calculated and sorted from the least to 

the greatest. 

𝐹𝑘 =
𝑣𝑎𝑟1 ∙ 𝑣𝑎𝑟2 ∙ ⋯ ∙ 𝑣𝑎𝑟𝑛

𝑣𝑎𝑟𝑇
𝑛  

where 𝑣𝑎𝑟𝑖 is the variance of the 𝑖𝑡ℎ class for a specific feature (pixel) 𝑘, 𝑣𝑎𝑟𝑇 is the 

variance among different classes for a previously mentioned feature (pixel) and 𝑛 is 

the number of the different classes. The 𝐾 features (pixels) with the lowest values 

given by the previously mentioned function were considered important, as features, 

for classification using the machine learning algorithms, with 𝐾 being an arbitrary 

number defined by the analyst. 

A different methodology for feature selection was followed as well, based on a 

previous work (Siozos et al., 2021), targeting specific areas of the spectrum with 

characteristic emission spectral lines chosen directly from the analyst. Trimming the 

spectrum by targeting areas with emission lines coming from biogenic elements of the 
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sample, results in a significantly decreased number of features, followed by a desirable 

increase on the models accuracy and reducing the impact of potential contamination 

on the samples. 

The last feature selection method used was based on the spectral lines intensities. 

Similarly with the previously mentioned method, specific spectral lines were targeted, 

but in this particular case only the pixels with the highest intensity were considered 

important as features. A function that isolates the pixel with the highest intensity for 

each given peak was developed. 

In a different approach for solving the high dimensionality problem, instead of 

reducing the number of features by targeting only a small number of them, it is 

possible to extract newly formed features using the already existing. By this approach 

the information from the parental features is incorporated in the newly formed. 

(Guyon & Elisseeff, 2003) Based on this idea, a new function that calculates the 

integral for several specific spectral lines was developed. The calculated integrals for 

specific biogenic spectral lines were used as new features for feeding the models, 

significantly reducing the computational time. 

3.9 Metrics 
The resulting output of machine learning models can be evaluated by a variety of 

different metrics. The use of each different metric depend on the question that needs 

to be answered, as well as the nature of the problem itself. Some commonly used 

metrics are Accuracy, Area Under Curve (AUC), Choen’s Kappa, Sensitivity, Specificity, 

F1 score, Mean Absolute Error, Mean Squared Error and many more. In the current 

work, Accuracy, alongside Sensitivity and Choen’s Kappa were considered the most 

suitable metrics for the evaluation of this particular classification problem. 

3.9.1 Accuracy  

Accuracy is the most commonly used metric for the evaluation of many statistical 

techniques and machine learning methods. It is defined as the closeness of agreement 

between a test result and the accepted reference value, while it is calculated by the 

sum of the correctly predicted values divided by the number of total predictions. 

(Miller & Miller, 2014; Veropoulos, Campbell & Cristianini, 1999) Accuracy is given by 

the equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑒𝑢𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑒𝑢𝑠
 

3.9.2 Sensitivity 

This metric calculates the proportion between the correctly predicted values in each 

group of samples and the total number of values in the same group. Alternatively, it 

is a way to compare the correctly predicted values with the values that had to be 

predicted correctly for the different categories of samples, if the rater was performing 

perfectly. (Lee et al., 2001; Veropoulos, Campbell & Cristianini, 1999) 



[74] 
 

Table 3.1: Representation of the predicted values of the rater considering the 

reference values. True Positive represents the correctly predicted A values, while 

True Negative the correctly predicted B values. . On the other hand, False Positive 

and False Negative represent the incorrect A and B values, respectively (Lee et al., 

2001; Veropoulos, Campbell & Cristianini, 1999). 

 

Sensitivity is given by the equation: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

3.9.3 Choen’s Kappa 

Kappa or Choen’s Kappa was introduced by Jacob Choen back in 1960 and it refers to 

the proportion of agreement between two raters, after chance agreement has been 

removed from consideration (Cohen, 1960). In this particular work, Kappa refers to 

the agreement of each rater with the reference, after the subtraction of chance 

agreement. 

Table 3.2: Representation of a matrix of probabilities for each different case of 

prediction by the rater. PA,A is the probability of agreement between rater and reference 

for A. Similarly, PB,B , PA,B and PB,A are the probability of agreement between the rater and 

the reference for B and the probability of disagreement for B and A, respectively. The 

addition values are the overall probabilities of the rater to predict A and B and the 

overall probability of the reference to be A and B (Cohen, 1960). 

 

Kappa is given by the following equation: 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝑂 − 𝑃𝐸

1 − 𝑃𝐸
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Where PO represents the probability of the correct predictions of the rater, according 

to the reference and PE represents the probability of agreement by chance between 

the rater and the reference.  

𝑃𝑂 = 𝑃𝐴,𝐴 + 𝑃𝐵,𝐵 

𝑃𝐸 = (𝑃𝐴,𝐴 + 𝑃𝐴,𝐵) ∗ (𝑃𝐴,𝐴 + 𝑃𝐵,𝐴) + (𝑃𝐵,𝐴 + 𝑃𝐵,𝐵) ∗ (𝑃𝐴,𝐵 + 𝑃𝐵,𝐵) 

As can it be easily seen, the value of Kappa is the difference between the PO and PE, 

divided by the difference of 1 and PE, which refers to the maximum value that the 

numerator can achieve, resulting in the normalization of the metric by max. 
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4 Results and Discussion 

4.1 Models’ Evaluation 
The aim of this work was the use of different machine learning methods for the 

discrimination of LIBS spectra originate from hard tissue remains of several 

individuals, with a potential use in the classification of entire samples to the 

individuals that they belong. This approach in the classification of hard tissues can 

potentially speed up the archaeological and forensic studies, overcoming the 

difficulties of classifying huge numbers of excavated hard tissue remains. 

After the collection of an adequate number of hard tissue remains, forming three main 

datasets, the first step was the development of the machine learning models. Four 

different algorithms were employed and tested. In particular, k Nearest Neighbors 

(KNN), Support Vector Machine using a polynomial (SVMP) and a radial (SVMR) kernel, 

Random Forest (RF) and an Artificial Neural Network (ANN) were used. The results 

from every algorithm were compared for the selection of the most suitable model for 

each task. Principal Components Analysis (PCA) was considered non-suitable for the 

current task considering that its use requires the standardization of data by feature. 

That type of normalization would equalize the background signal with the spectral 

lines that appear in the LIBS spectra, leading to potentially false results based on 

differences in background noise. (Pořízka et al., 2017) Thus, PCA has been used in 

current work in a non-typical way, just for the visualization of the data in space, after 

the unit vector normalization of them. 

Following the development of the models, a series of testing processes has been 

performed for the evaluation of their functionality and their robustness, prior to the 

analysis of the hard tissue datasets. The evaluation was performed using the well-

known Iris dataset because of the extensive work with it in bibliography, its well 

separated classes and its small size. This dataset was created back in 1936 by Ronald 

Fisher and it consists of the measurement of petal and sepal length and width, in 

centimeters, from three different types of iris flowers (Iris setosa, Iris versicolor and 

Iris virginica). The data have been retrieved from measuring fifty plants from each of 

the three different types. This particular dataset is often referred as “Fisher’s Iris 

Data”, too. (Andrews & Herzberg, 1985) 

As it was expected, three clearly separated clusters appeared in the PCA score plot 

(Figure 4.1), each one for a different class of the flower, while all the algorithms had 

excellent results for all the used metrics revealing that the developed models work 

sufficiently well (Figure 4.3, Table 4.1). Despite that first evidence, a second test was 

performed in order to evaluate the validity of the first result. In this second evaluation 

process, the labels of classes in the Iris dataset were disarranged prior to the analysis. 

This major change on the data, created a non-separable dataset, as it was verified by 

the PCA score plot, too, (Figure 4.2). The analysis of this newly formed dataset 

revealed that classification could not be achieved by any of the algorithms. The values 

of Kappa for every algorithm were defining for that failure of achieving sufficient 
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classification. The fact that the values of Kappa laid below zero reveals that the 

classification results were not better than the random labeling of unknown data 

(Figure 4.4, Table 4.2). The failure of the algorithms to achieve classification using the 

class-reassigned Iris data, combined with the excellent results of the original Iris data 

leads to the evaluation of the initial hypothesis that the developed models sufficient 

classification power. 

 

Figure 4.1: PCA score plots for the Iris dataset. a) The data have been normalized by standardization, b) 

the data have been normalized by unit vector normalization. 

 

 

Figure 4.2: PCA score plots for the Iris dataset with rearranged class labels. a) The data have been 

normalized by standardization, b) the data have been normalized by unit vector normalization. 
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Figure 4.3: Irish dataset, using all four features. The values of the three different metrics that 

were used, for each of the algorithms, along with the standard deviation for each value, can 

be seen. All the algorithms have excellent classification results. 

Table 4.1: Iris dataset results, using all four features. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.967 0.041 0.967 0.041 0.95 0.061 

SVMR 0.953 0.038 0.953 0.038 0.93 0.057 

SVMP 0.96 0.037 0.96 0.037 0.94 0.055 

RF 0.967 0.024 0.967 0.024 0.95 0.035 

ANN 0.96 0.055 0.96 0.055 0.94 0.082 

 

Figure 4.4: Irish dataset, with rearranged class labels. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. Kappa values are lower than zero, revealing the inability of the models to 

perform better classification than the random selection. 
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Table 4.2: Iris dataset results, with rearranged class labels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.3 0.094 0.3 0.094 -0.05 0.141 

SVMR 0.26 0.043 0.26 0.043 -0.11 0.065 

SVMP 0.26 0.049 0.26 0.049 -0.11 0.074 

RF 0.32 0.056 0.32 0.056 -0.02 0.084 

ANN 0.307 0.083 0.307 0.083 -0.04 0.124 

4.2 Manual Feature Selection 

4.2.1 Selection of 258 Pixels 
After the evaluation of the correct behavior for the developed machine learning 

models, the Archaeological and Modern datasets were analyzed. The large number of 

pixels on each spectrum and thus the large amount of information to be processed by 

the classification models leads to a big amount of computational time and 

computational power needed. As a result, the reduction of the initial features prior to 

the analysis was considered necessary. Based on prior work (Siozos et al., 2021), the 

initial reduction was focused on specific spectral areas that correspond to specific 

spectral lines from biogenic elements of the hard tissues, leading to a significant 

reduction of the pixels/features(from 2048 to 258). Characteristic lines for calcium 

(Ca) and phosphorus (P), which are the building stones of hydroxyapatite and 

magnesium (Mg), sodium (Na) and strontium (Sr), which are the main elements that 

replace calcium in hydroxyapatite, have been chosen for the feature selection that 

was performed (Figure 4.5). This reduction on the number of the used features 

reduces the running time from several minutes to a couple of hours, depending on the 

size of the analyzed data and the algorithms that are used. 
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Figure 4.5: Selected spectral areas with characteristic spectral lines from biogenic elements. The 

combined number of pixels from these areas was 258. Those areas were used for the initial manual 

feature selection, as they have been used in previous work, too. (Siozos et al., 2021) 

Firstly, the Archaeological dataset was tested (Figure 4.6) in order to compare the 

behavior of the models with a previous work (Siozos et al., 2021). The results from the 

algorithms showed a very good behavior of the Artificial Neural Network reaching a 

value over 0.85 in Accuracy, with the other two metrics reaching values over 0.8 

supporting the achieved accuracy. These results showed a sufficiently good 

classification for this dataset, despite its lower values compared to earlier works 

(Figure 4.7, Table 4.3). The random forest reached almost an Accuracy value of 0.8 

giving a sufficiently good result, while the rest of the algorithms resulted in metric 

values below 0.7, thus they consider unable to achieve a sufficient classification. 

 

Figure 4.6: PCA score plot for Archaeological Human Bones selecting 258 pixels and using unit 

vector normalization. 
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Figure 4.7: Archaeological Human dataset, selecting spectral areas with biogenic spectral 

lines, corresponding in 258 pixels. The values of the three different metrics that were used, 

for each of the algorithms, along with the standard deviation for each value, can be seen. The 

Artificial Neural network has significantly better results than any of the other algorithms. 

Table 4.3: Metric values for the Archaeological Human data, using spectral areas with biogenic 

spectral lines, corresponding in 258 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.669 0.058 0.632 0.065 0.566 0.08 

SVMR 0.637 0.063 0.532 0.065 0.508 0.09 

SVMP 0.671 0.066 0.62 0.072 0.571 0.084 

RF 0.791 0.026 0.744 0.031 0.725 0.035 

ANN 0.863 0.052 0.854 0.055 0.823 0.067 

Following the promising results from the Archaeological data, the algorithms were 

used for the analysis of the remaining datasets, under the same conditions. As it can 

be seen in Figure 4.9 and in Table 4.4, using the Domestic Sheep data (Figure 4.8) and 

the spectral areas that correspond to the previously mentioned 258 pixels as input 

vector for the algorithms, the machine learning algorithms gave lower results than 

expected, being unable to reach more than 0.5 Accuracy. Random Forest was the only 

machine learning algorithm able to reach almost 0.6. On the other hand, the result of 

the Artificial Neural Network was quite promising, with its Accuracy reaching a value 

more than 0.7, while Kappa value was almost 0.65 revealing the sufficient behavior of 

the model compared to the random labeling. Despite the fact that the developed 

models using these data were not able to achieve high results, the ANN algorithm was 

very promising for a potential successful classification using a most suitable feature 

selection. When the Modern Human data (Figure 4.10) were used under the same 

conditions (Figure 4.11, Table 4.5) the results were almost identical with those of the 

Domestic Sheep dataset. ANN had promising results with all the metric values 

reaching at least 0.7, while the rest of the algorithms had significantly lower results, 

with the two SVM algorithms having the lowest. 
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Figure 4.8: PCA score plot for Modern Domestic Sheep Teeth, selecting 258 pixels and unit 

vector normalization. 

 

Figure 4.9: Domestic Sheep dataset, using spectral areas with biogenic spectral lines, 

corresponding in 258 pixels. The values of the three different metrics that were used, for each 

of the algorithms, along with the standard deviation for each value, can be seen. The Artificial 

Neural network has significantly better results than any of the other algorithms. 

Table 4.4: Metric values for the Domestic Sheep data, selecting spectral areas with biogenic 

spectral lines, corresponding in 258 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.509 0.064 0.432 0.053 0.353 0.079 

SVMR 0.458 0.035 0.372 0.031 0.279 0.044 

SVMP 0.476 0.055 0.377 0.045 0.297 0.073 

RF 0.567 0.033 0.465 0.028 0.423 0.042 

ANN 0.72 0.06 0.696 0.089 0.64 0.077 
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Figure 4.10: PCA score plot for Modern Human Teeth, using 258 pixels and unit vector 
normalization. 

 

Figure 4.11: Modern Human dataset, selecting spectral areas with biogenic spectral lines, 

corresponding in 258 pixels. The values of the three different metrics that were used, for each 

of the algorithms, along with the standard deviation for each value, can be seen. The Artificial 

Neural network has significantly better results than any of the other algorithms. 

Table 4.5: Metric values for the Modern Human data, selecting spectral areas with biogenic 

spectral lines, corresponding in 258 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.522 0.031 0.485 0.041 0.483 0.035 

SVMR 0.285 0.031 0.212 0.024 0.226 0.032 

SVMP 0.306 0.016 0.301 0.016 0.259 0.016 

RF 0.599 0.014 0.517 0.022 0.56 0.017 

ANN 0.727 0.014 0.71 0.02 0.705 0.015 

The inability for sufficient discrimination in different individuals analyzing the two 

modern datasets raised the question whether the discrimination between species 

could be achieved easier. For that reason, the two modern datasets were combined 
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to each other in an attempt to create a larger dataset in which on the different samples 

to be grouped in the different species instead of individuals (Figure 4.12). Using the 

newly formed combined dataset, retaining the equal proportion of the two different 

classes, the analysis of those data with the developed algorithms had significantly 

good results, regardless of the algorithm that was used (Figure 4.13, Table 4.6). Once 

again, KNN and the SVM algorithms had lower results compared to RF and especially 

ANN. Accuracy value for Random Forest was almost 0.9, revealing a very good 

discrimination using this algorithm, while all the metric values for the ANN exceeded 

0.9, revealing an excellent performance of the model in the discrimination between 

species. 

 

Figure 4.12: PCA score plot for Modern Domestic Sheep and Human Teeth, using 258 pixels 

and unit vector normalization. 

 

Figure 4.13: Domestic Sheep and Human dataset, selecting spectral areas with biogenic 

spectral lines, corresponding in 258 pixels. The values of the three different metrics that were 

used, for each of the algorithms, along with the standard deviation for each value, can be 

seen. The Artificial Neural network has significantly better results than any of the other 

algorithms. 
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Table 4.6: Metric values for the Domestic Sheep and Human data, selecting spectral areas with 

biogenic spectral lines, corresponding in 258 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.852 0.022 0.804 0.075 0.703 0.045 

SVMR 0.838 0.047 0.869 0.027 0.677 0.093 

SVMP 0.856 0.017 0.851 0.035 0.711 0.034 

RF 0.897 0.038 0.916 0.062 0.795 0.076 

ANN 0.965 0.024 0.964 0.034 0.93 0.048 

4.2.2 Selection of 100 Pixels 

The promising above results combined with the significant amount of running time led 

to a further manually feature reduction, for maximizing the resulted classification and 

minimizing the used features. The features from the background signal of the 

previously used areas, were discarded and resulting in narrower spectral areas as 

initial features. After the further feature reduction only 100 pixels/features from each 

spectrum were used (Figure 4.14). 

 

Figure 4.14: Newly selected spectral areas. The background signal has been discarded, leading to a 

significant pixel reduction to 100, from the initial 258. 

Feature reduction significantly reduced the running time of the analysis. At the same 

time, the resulted classification either increased or remained the same depending on 

the used dataset. In particular, the already excellent classification to species (Figure 

4.15) remained almost intact, resulting in excellent classification Accuracy values 

regardless the used algorithm (Figure 4.16, Table 4.7). ANN retained the higher results, 

with its three metric values exceeding 0.9 and Accuracy value exceeding even 0.95. 
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Figure 4.15: PCA score plot for Modern Domestic Sheep and Human Teeth, using 100 pixels 

and unit vector normalization. 

 

Figure 4.16: Domestic Sheep and Human dataset, using further reduced biogenic spectral 

areas, corresponding in 100 pixels. The values of the three different metrics that were used, 

for each of the algorithms, along with the standard deviation for each value, can be seen. 

Artificial Neural Network has slightly higher results, while all the algorithms except K Nearest 

Neighbors have accuracy higher than 0.9. 

Table 4.7: Metric values for the Domestic Sheep and Human data, selecting further reduced 

biogenic spectral areas, corresponding in 100 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.868 0.01 0.847 0.069 0.735 0.019 

SVMR 0.937 0.019 0.953 0.024 0.875 0.038 

SVMP 0.923 0.023 0.924 0.024 0.847 0.045 

RF 0.915 0.032 0.938 0.042 0.83 0.064 

ANN 0.963 0.016 0.949 0.033 0.927 0.031 
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Two of the three remaining datasets, the Archaeological (Figure 4.17) and the Modern 

Domestic Sheep dataset (Figure 4.19), retain their results even after a similar 

reduction. For the Archaeological data ANN and RF have significantly higher results 

than the rest of the algorithms. Random Forest achieved an Accuracy value over 0.75 

while the remaining metric values were around 0.7. ANN achieved an Accuracy value 

higher than 0.85 and while the remaining metric values exceeded 0.8 (Figure 4.18, 

Table 4.8). Using the Modern Domestic Sheep data an agreement of the produced 

results with those of the 258 pixels was observed. Once again, the ANN had the higher 

results, with its Accuracy and Sensitivity exceeding 0.7, followed by RF with an 

Accuracy value around 0.6. Those results remained close to the resulted values using 

258 pixels (Figure 4.20, Table 4.9). 

 

Figure 4.17: PCA score plot for Archaeological Human Bones, using 100 pixels and unit vector 

normalization. 

 

Figure 4.18: Archaeological Human dataset, selecting further reduced biogenic spectral 

areas, corresponding in 100 pixels. The values of the three different metrics that were used, 

for each of the algorithms, along with the standard deviation for each value, can be seen. The 

Artificial Neural network has significantly better results than any of the other algorithms. 
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Table 4.8: Metric values for the Archaeological Human data, with further reduced biogenic 

spectral areas, corresponding in 100 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.631 0.036 0.608 0.035 0.519 0.043 

SVMR 0.663 0.033 0.576 0.036 0.548 0.046 

SVMP 0.646 0.053 0.576 0.042 0.531 0.065 

RF 0.769 0.055 0.724 0.038 0.696 0.069 

ANN 0.866 0.028 0.852 0.03 0.827 0.036 

 

Figure 4.19: PCA score plot for Modern Domestic Sheep Teeth, selecting 100 pixels and unit 

vector normalization. 

 

Figure 4.20: Domestic Sheep dataset, selecting further reduced biogenic spectral areas, 

corresponding in 100 pixels. The values of the three different metrics that were used, for each 

of the algorithms, along with the standard deviation for each value, can be seen. The Artificial 

Neural network has significantly better results than any of the other algorithms. 
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Table 4.9: Metric values for the Domestic Sheep data, selecting further reduced biogenic 
spectral areas, corresponding in 100 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.516 0.086 0.437 0.072 0.364 0.111 
SVMR 0.476 0.047 0.401 0.035 0.308 0.06 
SVMP 0.433 0.035 0.367 0.041 0.251 0.045 
RF 0.622 0.054 0.54 0.067 0.502 0.071 
ANN 0.724 0.072 0.721 0.092 0.644 0.095 

The remaining Human Modern data (Figure 4.21) had a small but important increase 

in the resulted Accuracy value, exceeding 0.75 with the use of the ANN, while the rest 

of the metric values increased, as well. Random Forest followed ANN, with the 

remaining algorithms achieving insufficient results (Figure 4.22, Table 4.10). 

 

Figure 4.21: PCA score plot for Modern Human Teeth, using 100 pixels and unit vector 

normalization. 

 

Figure 4.22: Modern Human dataset, selecting further reduced biogenic spectral areas, 

corresponding in 100 pixels. The values of the three different metrics that were used, for each 
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of the algorithms, along with the standard deviation for each value, can be seen. The Artificial 

Neural network has significantly better results than any of the other algorithms. 

Table 4.10: Metric values for the Modern Human data, selecting further reduced biogenic 
spectral areas, corresponding in 100 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.556 0.011 0.528 0.008 0.52 0.011 

SVMR 0.332 0.043 0.271 0.017 0.276 0.036 

SVMP 0.351 0.011 0.351 0.01 0.308 0.012 

RF 0.665 0.037 0.601 0.037 0.634 0.041 

ANN 0.755 0.026 0.735 0.032 0.735 0.028 

4.2.3 Selection of 130 Pixels 

The significantly reduced running time, selecting only 100 pixels, created the 

opportunity to increase the inserted information to the models by adding new spectral 

areas to the already used. For that reason, combined with the already selected 

spectral areas, three more spectral areas were used (Figure 4.23). All the new areas 

corresponded in spectral lines from biogenic elements. In particular, the spectral lines 

of Ca in 370.6 nm and in 373.7 nm and the spectral line of Sr in 407.8 nm. 

 

Figure 4.23: Three more spectral areas were added in the previously selected (Figure 4.14), 

adding 30 more features. 

Thirty (30) new pixels were added in total in the previous 100 pixels, leading to 

performing models, using the Modern Domestic Sheep and the Modern Human data. 

In particular, using the Domestic Sheep dataset (Figure 4.24) the Accuracy values for 

all the models increased up to 0.1 (Figure 4.25, Table 4.11), depending on the 

algorithm, with the Artificial Neural Network reaching 0.8 and thus reached the limit 

for an efficient classification that has been set by previous works. Additionally, 

Sensitivity value for the ANN reached 0.8, too. Random Forest followed, reaching 

more than an Accuracy value of 0.65, with the rest of the model significantly improving 

their performance but retaining their insufficient behavior. Following this 

improvement, analyzing the Modern human data (Figure 4.26) the accuracy value for 

the ANN was increased by 0.07 exceeding 0.8, while the rest of its metric values 
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exceeded 0.8, as well. Exceeding the lowest threshold for an efficient classification for 

both Modern datasets was a key step for achieving the main aim of the project. 

Despite thee sufficiently good result of the ANN, the metric values for the remaining 

algorithms were significantly lower (Figure 4.27, Table 4.12). 

 

Figure 4.24: PCA score plot for Modern Domestic Sheep Teeth, selecting 130 pixels and using 

unit vector normalization. 

 

Figure 4.25: Domestic Sheep dataset, selecting 130 pixels. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network has significantly better results than any of 

the other algorithms, followed by Random Forest. 
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Table 4.11: Metric values for the Domestic Sheep data, selecting 130 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.502 0.062 0.439 0.073 0.349 0.086 

SVMR 0.56 0.071 0.484 0.081 0.419 0.095 

SVMP 0.495 0.076 0.465 0.103 0.343 0.102 

RF 0.673 0.075 0.623 0.077 0.574 0.097 

ANN 0.8 0.029 0.799 0.031 0.742 0.037 

 

Figure 4.26: PCA score plot for Modern Human Teeth, selecting 130 pixels and using unit 

vector normalization. 

 

Figure 4.27: Modern Human dataset, selecting 130 pixels. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network has significantly better results than any of 

the other algorithms. 
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Table 4.12: Metric values for the Modern Human data, selecting 130 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.606 0.026 0.58 0.031 0.574 0.028 

SVMR 0.341 0.04 0.277 0.02 0.287 0.038 

SVMP 0.346 0.012 0.339 0.015 0.302 0.013 

RF 0.699 0.024 0.646 0.024 0.672 0.026 

ANN 0.826 0.035 0.818 0.042 0.812 0.038 

 

Furthermore, using the combined data (Figure 4.28) the models had excellent results 

with Accuracy values exceeding 0.94 (Figure 4.29, Table 4.13). The highest of the 

Accuracy values was achieved by ANN, which remained the best behaved algorithm 

reaching 0.97. On the other hand, the selection of the 130 pixels for the Archaeological 

data (Figure 4.30) occurred the impact of spectral lines by non-biogenic elements on 

the final results. It can be seen that adding the extra spectral areas for the analysis of 

the Archaeological data a small increase in the metric values of all used algorithms is 

revealed (Figure 4.31, Table 4.14). SVM and KNN had Accuracy values around 0.7, 

while the resulted Accuracy by using the Random Forest exceeded 0.8, providing a 

very good classification result. As it was expected, the ANN achieved a classification 

Accuracy over 0.87, exceeding the value of RF. 

 

Figure 4.28: PCA score plot for Domestic Sheep and Human Teeth, selecting 130 pixels and 

using unit vector normalization. 
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Figure 4.29: Domestic Sheep and Human dataset, selecting 130 pixels. The values of the three 

different metrics that were used, for each of the algorithms, along with the standard 

deviation for each value, can be seen. Artificial Neural Network has slightly higher results, 

while remaining algorithms give almost the same results. 

Table 4.13: Metric values for the Domestic Sheep and Human data, selecting 130 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.946 0.014 0.938 0.016 0.892 0.029 

SVMR 0.958 0.023 0.975 0.021 0.917 0.045 

SVMP 0.943 0.013 0.942 0.015 0.885 0.026 

RF 0.95 0.027 0.975 0.016 0.899 0.054 

ANN 0.97 0.01 0.96 0.024 0.941 0.02 

 

Figure 4.30: PCA score plot for Archaeological Human Bones, selecting 130 pixels and using 

unit vector normalization. 



[96] 
 

 

Figure 4.31: Archaeological Human dataset, selecting 130 pixels. The values of the three 

different metrics that were used, for each of the algorithms, along with the standard 

deviation for each value, can be seen. The Artificial Neural Network and Random Forest have 

significantly better results than any of the other algorithms, with the ANN having slightly 

higher results than RF. 

Table 4.14: Metric values for the Archaeological Human data, using 130 pixels. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.711 0.027 0.674 0.038 0.625 0.035 

SVMR 0.717 0.044 0.656 0.065 0.628 0.063 

SVMP 0.686 0.047 0.634 0.057 0.588 0.062 

RF 0.831 0.056 0.794 0.065 0.779 0.074 

ANN 0.874 0.042 0.874 0.038 0.838 0.053 

4.3 Feature Selection by Variance 
After achieving a good classification Accuracy for all datasets, using the 130 selected 

pixels, further feature selection and further reduction of running time was attempted. 

As it was already discussed in the section 3.8, a feature selection function using 

variance as the selection factor was developed, in order to perform a drastic feature 

reduction to 10 final features. Two different approaches were examined. Firstly, the 

further feature reduction was performed starting from the 100 pixels and then 

starting from the 130 pixels that had been previously used. 

4.3.1 Feature Selection by Variance on 100 Pixels 

The heavy feature reduction, from 100 to 10, by using the newly developed feature 

selection function, neither improved nor retained the sufficient results of the 

algorithms by using the 100 preselected pixels. The results for the three datasets that 

were tested for discrimination between individuals had been drastically reduced. The 

Archaeological dataset (Figure 4.32) had the lowest results since none of the models 

achieved classification Accuracy over 0.55 (Figure 4.33, Table 4.15). The highest 
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Accuracy values were achieved by the Artificial Neural Network and the Random 

Forest, reaching slightly lower than 0.55. The remaining algorithms reached even 

lower Accuracy values. The ANN for the Modern Domestic Sheep dataset (Figure 4.34) 

managed to keep a sufficient Accuracy value, slightly lower than 0.7, but much 

reduced compared to the value of the model using all the 100 pixels. The rest of the 

algorithms achieved Accuracy values lower than 0.65 and some even lower than 0.6 

(Figure 4.35, Table 4.16). For the Modern Human dataset (Figure 4.36), the results 

were equally low than the previous two datasets (Figure 4.37, Table 4.17). Once again, 

the ANN and the RF reached the highest Accuracy values, slightly over 0.6, but without 

reaching the previously achieved values using 100 pixels. The remaining algorithms 

had quite low results. 

 

Figure 4.32: PCA score plot for Archaeological Human Bones, selecting 10 from 100 pixels 

with the lowest in-class variance and the highest among classes variance. 

 

Figure 4.33: Archaeological Human dataset, selecting 10 from 100 pixels with the lowest in-

class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network and the Random Forest have slightly better 

results than any of the other algorithms. 
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Table 4.15: Metric values for the Archaeological Human data, selecting 10 from 100 pixels 
with the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.486 0.064 0.422 0.092 0.32 0.091 

SVMR 0.506 0.041 0.406 0.077 0.329 0.068 

SVMP 0.491 0.045 0.39 0.076 0.31 0.072 

RF 0.54 0.07 0.482 0.112 0.393 0.103 

ANN 0.543 0.089 0.464 0.116 0.392 0.122 

 

Figure 4.34: PCA score plot for Modern Domestic Sheep Teeth, selecting 10 from 100 pixels 

with the lowest in-class variance and the highest among classes variance. 

 

Figure 4.35: Modern Domestic Sheep dataset, selecting 10 from 100 pixels with the lowest 

in-class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network has significantly better results than any of 

the other algorithms. 
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Table 4.16: Metric values for the Modern Domestic Sheep data, selecting 10 from 100 pixels 

with the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.615 0.062 0.536 0.076 0.494 0.086 

SVMR 0.549 0.065 0.456 0.053 0.405 0.085 

SVMP 0.527 0.063 0.432 0.048 0.375 0.078 

RF 0.622 0.049 0.545 0.05 0.507 0.059 

ANN 0.68 0.111 0.612 0.085 0.588 0.138 

 

Figure 4.36: PCA score plot for Modern Human Teeth, selected 10 from 100 pixels with the 

lowest in-class variance and the highest among classes variance. 

 

Figure 4.37: Modern Human dataset, selected 10 from 100 pixels with the lowest in-class 

variance and the highest among classes variance. The values of the three different metrics 

that were used, for each of the algorithms, along with the standard deviation for each value, 

can be seen. The Artificial Neural Network and Random forest have slightly better results than 

any of the other algorithms. 
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Table 4.17: Metric values for the Modern Human data, selected 10 from 100 pixels with the 

lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.561 0.024 0.499 0.032 0.522 0.026 

SVMR 0.299 0.02 0.306 0.027 0.254 0.022 

SVMP 0.303 0.019 0.311 0.025 0.258 0.021 

RF 0.62 0.027 0.574 0.027 0.588 0.029 

ANN 0.614 0.035 0.562 0.055 0.581 0.038 

The combined dataset (Figure 4.38) was the only dataset that maintained sufficient 

results regardless of the model that was used for its analysis. Its results were 

significantly lower than the previously achieved (using 100 pixels), but all the 

algorithms exceeded the threshold of 0.8 (Figure 4.39, Table 4.18). ANN had the 

highest performance with an Accuracy value of 0.87, while the rest of the algorithms 

had Accuracy values lower than 0.85. 

 

Figure 4.38: PCA score plot for Domestic Sheep and Human Teeth, selecting 10 from 100 

pixels with the lowest in-class variance and the highest among classes variance. 
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Figure 4.39: Domestic Sheep and Human dataset, selecting 10 from 100 pixels with the lowest 

in-class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network has slightly better results than any of the 

other algorithms. 

Table 4.18: Metric values for the Domestic Sheep and Human data, selecting 10 from 100 

pixels with the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.838 0.069 0.789 0.111 0.674 0.139 

SVMR 0.835 0.046 0.847 0.079 0.669 0.094 

SVMP 0.823 0.049 0.815 0.089 0.644 0.098 

RF 0.823 0.058 0.84 0.054 0.645 0.115 

ANN 0.873 0.095 0.873 0.082 0.746 0.19 

4.3.2 Feature Selection by Variance on 130 Pixels 

The further feature selection starting from 130 resulted in lower metric values than 

using all the 130 pixels. The three datasets that were tested for discrimination 

between individuals, could not achieve reliable classification by any of the used 

algorithms. In particular, for the Archaeological dataset (Figure 4.40) the Random 

Forest reached the higher classification Accuracy with a value slightly lower than 0.55, 

while ANN and KNN followed with Accuracy values slightly lower than that of the RF 

(Figure 4.41, Table 4.19). For the Modern datasets, the results were higher than that 

of the Archaeological dataset but were lower than using the 130 pixels. Analyzing the 

Modern Domestic Sheep data (Figure 4.42) the higher Accuracy value was 0.68 by the 

ANN, while Random Forest had almost the same value. The rest of the algorithms 

achieved classification values lower than 0.6 (Figure 4.43, Table 4.20). In a similar 

situation, for the Modern Human dataset (Figure 4.44) none of the algorithms achieve 

a reliable classification (Figure 4.45, Table 4.21). The ANN had the higher Accuracy 
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value, almost 0.65, followed by the RF and KNN with 0.6. The SVM algorithm had 

significantly lower results. 

 

Figure 4.40: PCA score plot for Archaeological Human Bones, selecting 10 from 130 pixels 

with the lowest in-class variance and the highest among classes variance. 

 

Figure 4.41: Archaeological Human dataset, selecting 10 from 130 pixels with the lowest in-

class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Random Forest has slightly better results than the other algorithms. 
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Table 4.19: Metric values for the Archaeological Human data, selecting 10 from 130 pixels with 

the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.523 0.124 0.442 0.162 0.358 0.173 

SVMR 0.506 0.091 0.412 0.13 0.333 0.135 

SVMP 0.494 0.089 0.404 0.126 0.318 0.133 

RF 0.546 0.168 0.486 0.201 0.397 0.227 

ANN 0.52 0.171 0.446 0.197 0.358 0.231 

 

Figure 4.42: PCA score plot for Modern Domestic Sheep Teeth, selecting 10 from 130 pixels 

with the lowest in-class variance and the highest among classes variance. 

 

Figure 4.43: Modern Domestic Sheep dataset, selecting 10 from 130 pixels with the lowest 

in-class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Artificial Neural Network and the Random Forest have slightly better 

results than the other algorithms. 
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Table 4.20: Metric values for the Modern Domestic Sheep data, selecting 10 from 130 pixels 

with the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.644 0.069 0.559 0.063 0.532 0.09 

SVMR 0.6 0.046 0.513 0.059 0.473 0.063 

SVMP 0.571 0.049 0.489 0.059 0.435 0.063 

RF 0.676 0.05 0.596 0.046 0.579 0.062 

ANN 0.684 0.068 0.621 0.052 0.592 0.083 

 

Figure 4.44: PCA score plot for Modern Human Teeth, selecting 10 from 130 pixels with the 

lowest in-class variance and the highest among classes variance. 

 

Figure 4.45: Modern Human dataset, selecting 10 from 130 pixels with the lowest in-class 

variance and the highest among classes variance. The values of the three different metrics 

that were used, for each of the algorithms, along with the standard deviation for each value, 

can be seen. The Artificial Neural Network has slightly better results than the other 

algorithms. 
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Table 4.21: Metric values for the Modern Human data, selecting 10 from 130 pixels with the 

lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.597 0.04 0.543 0.044 0.563 0.044 

SVMR 0.319 0.025 0.291 0.014 0.271 0.025 

SVMP 0.29 0.017 0.302 0.022 0.246 0.018 

RF 0.602 0.04 0.551 0.039 0.568 0.043 

ANN 0.644 0.026 0.596 0.03 0.613 0.029 

On the contrary, the behavior of the models for the discrimination between species 

on the combined dataset (Figure 4.46) was very good. All the models achieved 

Accuracy values between 0.89 and 0.93, with the RF achieving the higher results 

followed by the ANN and the KNN (Figure 4.47, Table 4.22). Despite the fact that the 

resulted classification was sufficiently good, the resulted metric values were 

significantly lower than those achieved by using 130 pixels. 

 

Figure 4.46: PCA score plot for Domestic Sheep and Human Teeth, selecting 10 from 130 

pixels with the lowest in-class variance and the highest among classes variance. 
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Figure 4.47: Domestic Sheep and Human dataset, selecting 10 from 130 pixels with the lowest 

in-class variance and the highest among classes variance. The values of the three different 

metrics that were used, for each of the algorithms, along with the standard deviation for each 

value, can be seen. The Random Forest has slightly better results than any of the other 

algorithms. 

Table 4.22: Metric values for the Domestic Sheep and Human data selecting 10 from 130 pixels 

with the lowest in-class variance and the highest among classes variance. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.917 0.032 0.931 0.015 0.833 0.063 

SVMR 0.91 0.033 0.931 0.035 0.819 0.065 

SVMP 0.894 0.028 0.913 0.057 0.788 0.056 

RF 0.929 0.034 0.96 0.015 0.858 0.068 

ANN 0.913 0.064 0.931 0.057 0.826 0.127 

4.4 Spectral Line Intensities 
Following a different approach for a drastic feature selection, than the previously 

used, targeting a classification results for all four datasets, only the pixels with the 

maximum intensity from specific spectral lines were selected as important features 

(Figure 4.48). This feature selection has been already discussed in section 3.8. In 

particular, the spectral lines that were selected corresponded in spectral areas that 

were determined by the 258 and 100 pixels. Na’s spectral line was excluded because 

of its low intensity. 
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Figure 4.48: Selecting only pixel with the highest intensity values from each spectral line. 

By using this feature selection, the classification results for all datasets were 

significantly decreased with the models failing to reach Accuracy values over 0.55 for 

classification in the different individuals. Using the Archaeological data (Figure 4.49), 

the highest Accuracy value of 0.55 was achieved by the ANN, while the rest of the 

models failed to achieve higher values than 0.5 (Figure 4.50, Table 4.23). Because of 

the low Accuracy values, the Kappa values were significantly low, as well. All the 

algorithms had Accuracy values lower than 0.6 during the analysis of the Domestic 

Sheep data (Figure 4.51, Figure 4.52, Table 4.24). The ANN was the highest scored 

algorithm having an Accuracy value slightly higher than 0.55, while the rest of the 

algorithms achieved Accuracy values lower than 0.55. In a similar situation, the 

Modern Human data (Figure 4.53) had the highest Accuracy value slightly over 0.45, 

using the ANN that was closely followed by the RF. The remaining algorithms scored 

very low results (Figure 4.54, Table 4.25). As a result, none of the algorithms was able 

for a dissent classification regardless the used data. 

 

Figure 4.49: PCA score plot for Archaeological Human Bones, selecting only the pixel with the 

highest intensity for specific biogenic spectral lines. 
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Figure 4.50: Archaeological Human dataset, selecting only the pixel with the highest intensity 

for specific biogenic spectral lines. The values of the three different metrics that were used, 

for each of the algorithms, along with the standard deviation for each value, can be seen. The 

Artificial Neural Network has significantly better results than any of the other algorithms. 

Table 4.23: Metric values for the Archaeological Human data, selecting only the pixel with the 

highest intensity for specific biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.409 0.056 0.344 0.054 0.21 0.076 

SVMR 0.463 0.062 0.374 0.061 0.265 0.087 

SVMP 0.471 0.032 0.372 0.04 0.271 0.048 

RF 0.494 0.064 0.46 0.077 0.332 0.092 

ANN 0.557 0.054 0.556 0.074 0.423 0.074 

 

Figure 4.51: PCA score plot for Modern Domestic Sheep Teeth, selecting only the pixel with 

the highest intensity for specific biogenic spectral lines. 
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Figure 4.52: Domestic Sheep dataset, selecting only the pixel with the highest intensity for 

specific biogenic spectral lines. The values of the three different metrics that were used, for 

each of the algorithms, along with the standard deviation for each value, can be seen. The 

Artificial Neural Network has slightly better results than the other algorithms. 

Table 4.24: Metric values for the Domestic Sheep data, selecting only the pixel with the 
highest intensity for specific biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.36 0.03 0.279 0.032 0.141 0.041 

SVMR 0.524 0.02 0.459 0.025 0.366 0.02 

SVMP 0.52 0.049 0.437 0.041 0.355 0.067 

RF 0.48 0.094 0.457 0.116 0.321 0.127 

ANN 0.564 0.081 0.553 0.103 0.434 0.11 

 

Figure 4.53: PCA score plot for Modern Human Teeth, selecting only the pixel with the highest 

intensity for specific biogenic spectral lines. 
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Figure 4.54: Modern Human dataset, selecting only the pixel with the highest intensity for 

specific biogenic spectral lines. The values of the three different metrics that were used, for 

each of the algorithms, along with the standard deviation for each value, can be seen. The 

Artificial Neural Network has slightly better results than the other algorithms. 

Table 4.25: Metric values for the Modern Human data, selecting only the pixel with the 
highest intensity for specific biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.307 0.02 0.24 0.024 0.241 0.025 

SVMR 0.282 0.022 0.234 0.028 0.221 0.026 

SVMP 0.285 0.025 0.235 0.032 0.225 0.029 

RF 0.464 0.02 0.413 0.022 0.416 0.022 

ANN 0.487 0.027 0.436 0.033 0.441 0.032 

Using the combined dataset (Figure 4.55), all the metric values were significantly 

lower than those of the previous approaches (Figure 4.56, Table 4.26). The Accuracy 

values were slightly lower than 0.8 for all algorithms apart from ANN that slightly 

exceeded this value. This significantly decrease in the Accuracy values indicates that 

the created models have very low classification abilities, using this particular feature 

selection. 
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Figure 4.55: PCA score plot for Domestic Sheep and Human Teeth, selecting only the pixel 

with the highest intensity for specific biogenic spectral lines. 

 

Figure 4.56: Domestic Sheep and Human dataset, selecting only the pixel with the highest 

intensity for specific biogenic spectral lines. The values of the three different metrics that were 

used, for each of the algorithms, along with the standard deviation for each value, can be 

seen. The Artificial Neural Network has slightly better results than any of the other 

algorithms. 

Table 4.26: Metric values for the Domestic Sheep and Human data, selecting only the pixel 

with the highest intensity for specific biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.68 0.022 0.582 0.053 0.354 0.044 

SVMR 0.786 0.032 0.742 0.067 0.57 0.064 

SVMP 0.77 0.023 0.724 0.101 0.538 0.048 

RF 0.767 0.036 0.742 0.066 0.532 0.072 

ANN 0.824 0.025 0.844 0.07 0.649 0.048 
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4.5 Feature Extraction by Calculating Integrals 
In a different approach, a feature extraction technique was used. This method has 

already been discussed in section 3.8 and the resulting features were 10 integral 

values calculated by the same spectral lines that had been used (Figure 4.57) in section 

4.4. The classification results were even lower than the previous case, resulting in 

algorithms that could not be used for the desirable task. 

 

Figure 4.57: Extracted features by the calculation of the integrals for biogenic spectral lines. 

All the Accuracy values were lower than 0.6 for the Archaeological (Figure 4.58, Figure 

4.59, Table 4.27) and the Modern Domestic Sheep (Figure 4.60, Figure 4.61, Table 

4.28) datasets, with the ANN achieving the higher values of 0.59 and 0.53, 

respectively. The results for the Modern Human dataset were even lower, considering 

that the highest Accuracy value was slightly higher than 0.4 (Figure 4.62, Figure 4.63, 

Table 4.29), achieved by ANN. Even the results for the combined data were 

significantly lower than the previous approaches, with all the algorithms except KNN 

achieving Accuracy values between 0.75 and 0.8 (Figure 4.64, Figure 4.65, Table 4.30). 

Those results proved the inability of the algorithms, using those extracted features, to 

create appropriate models that could achieve any reliable classification. 
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Figure 4.58: PCA score plot for Archaeological Human Bones, using the integrals of specific 

biogenic spectral lines. 

 

Figure 4.59: Archaeological Human dataset, using the integrals of specific biogenic spectral 

lines. The values of the three different metrics that were used, for each of the algorithms, 

along with the standard deviation for each value, can be seen. The Artificial Neural Network 

has significantly better results than any of the other algorithms. 

Table 4.27: Metric values for the Archaeological Human data, using the integrals of specific 
biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.406 0.068 0.328 0.081 0.204 0.096 

SVMR 0.483 0.059 0.386 0.059 0.295 0.083 

SVMP 0.471 0.079 0.368 0.071 0.279 0.108 

RF 0.511 0.106 0.468 0.099 0.358 0.138 

ANN 0.591 0.077 0.564 0.095 0.466 0.103 
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Figure 4.60: PCA score plot for Modern Domestic Sheep Teeth, using the integrals of specific 

biogenic spectral lines. 

 

Figure 4.61: Domestic Sheep dataset, using the integrals of specific biogenic spectral lines. 

The values of the three different metrics that were used, for each of the algorithms, along 

with the standard deviation for each value, can be seen. The Artificial Neural Network has 

slightly better results than any of the other algorithms. 

Table 4.28: Metric values for the Domestic Sheep data, using the integrals of specific biogenic 

spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.385 0.05 0.296 0.04 0.169 0.067 

SVMR 0.491 0.022 0.373 0.019 0.306 0.03 

SVMP 0.491 0.031 0.377 0.031 0.307 0.043 

RF 0.451 0.039 0.376 0.032 0.274 0.048 

ANN 0.535 0.115 0.508 0.129 0.395 0.15 
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Figure 4.62: PCA score plot for Modern Human Teeth, using the integrals of specific biogenic 
spectral lines. 

 

Figure 4.63: Modern Human dataset, using the integrals of specific biogenic spectral lines. 

The values of the three different metrics that were used, for each of the algorithms, along 

with the standard deviation for each value, can be seen. The Artificial Neural Network has 

significantly better results than any of the other algorithms. 

Table 4.29: Metric values for the Modern Human data, using the integrals of specific 
biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.227 0.02 0.162 0.02 0.149 0.024 

SVMR 0.238 0.007 0.182 0.012 0.166 0.009 

SVMP 0.235 0.017 0.179 0.019 0.163 0.018 

RF 0.319 0.018 0.276 0.023 0.255 0.019 

ANN 0.415 0.023 0.362 0.012 0.362 0.022 
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Figure 4.64: PCA score plot for Domestic Sheep and Human Teeth, using the integrals of 

specific biogenic spectral lines. 

 

Figure 4.65: Domestic Sheep and Human dataset, using the integrals of specific biogenic 

spectral lines. The values of the three different metrics that were used, for each of the 

algorithms, along with the standard deviation for each value, can be seen. The k Nearest 

Neighbors algorithm has lower metric values, while the rest of the algorithms give almost the 

same results for the three metric values. 

Table 4.30: Metric values for the Domestic Sheep and Human data, using the integrals of 

specific biogenic spectral lines. 

 Accuracy SD Sensitivity SD Kappa SD 

KNN 0.654 0.025 0.535 0.033 0.3 0.05 

SVMR 0.777 0.044 0.731 0.047 0.553 0.087 

SVMP 0.774 0.038 0.72 0.028 0.545 0.075 

RF 0.772 0.064 0.749 0.075 0.543 0.127 

ANN 0.784 0.026 0.738 0.055 0.566 0.054 
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4.6 Results’ Discussion 
The different models that were used for the classification of hard tissue remains, 

under many circumstances and using several datasets, provided the opportunity for a 

comparison among them to identify the best fitted model for this particular 

classification task. Simultaneously, a comparison among the different feature sets that 

were used for each classification approach, resulted in the best feature selection 

procedure and the best set of features for the current work. 

Among the three different metrics that were used for this work, Accuracy considered 

the most characteristic metric value for the evaluation of the results. For that reason 

and considering that the rest of the metric values consistently followed the same 

pattern, the comparison of the Accuracy values of the different classification 

approaches can provide a sufficient interpretation for the differences among the 

results. Thus, the Artificial Neural Network consistently appeared having better 

classification ability than the rest of the algorithms, scoring the highest results in the 

majority of the different approaches. Thus, ANN was considered the best possible 

choice for a decent classification result, among the used algorithms. The only 

approaches in which the ANN failed to reach the highest classification, for some of the 

datasets, were either in the feature selection by variance or when the Accuracy values 

were so low for all models that could not lead to a sufficient classification result. The 

ANN was systematically followed by the Random Forest algorithm that stood out as 

the best of the rest, showing great consistency but with lower results than those of 

the ANN. 

Following the selection of ANN as the best classification algorithm for the current task, 

the comparison of the results for the different feature reduction approaches revealed 

that the Accuracy of the models can significantly vary depending on the features that 

are taken into consideration. The use of the newly built functions for feature selection 

and extraction resulted in models that failed to perform classification of unknown 

samples. Hence, the feature selection by the maximum intensity on specific spectral 

lines or by the variance, alongside the feature extraction by the calculation of the 

integrals for specific spectral lines, are unsuitable for feature reduction on the 

classification problems of the current work. On the other hand, the manual feature 

selection targeting specific spectral areas, with spectral lines that correspond in 

biogenic elements of hard tissues, works sufficiently well, as it was expected by a 

previous work in the field. (Siozos et al., 2021) The initial approach of 258 pixels, was 

suffered by lack of accuracy for the two modern datasets (Domestic Sheep dataset 

and Human dataset), during the classification on individuals, with the accuracy values 

of those two datasets lying slightly above 0.7. With a further significant feature 

reduction to 100 pixels of the initial 258, the classification results were increased but 

remained under the threshold of 0.8, for a sufficient classification. This threshold was 

reached and surpassed by the addition of 30 extra pixels, on the 100 previously 

mentioned pixels, with the accuracy values reaching 0.8 and 0.83, for the Modern 

Domestic Sheep and the Modern Human dataset, respectively. Additionally, the 

accuracy values of the ANN algorithm for the Archaeological and the Combined 
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Modern datasets, exceeding 0.85 and 0.95 respectively, remained almost the same 

despite the number of pixels that were used each time. Resulting to the best 

classification accuracy values for all datasets, the selection of the 130 pixels was 

considered better than the rest of the feature selection approaches and the one that 

could provide the most accurate and robust classification models (Figure 4.66, Figure 

4.67, Figure 4.68, Figure 4.69). 

 

Figure 4.66: Comparison of the Accuracy values among different used features using the 

Artificial Neural Network. These results refer to the discrimination of individuals using the 

Archaeological Human data. The Accuracy values of the manually selected features are 

significantly higher, with the one for the 130 pixels being the highest of all with a low standard 

deviation, too. On the contrary, the Accuracy value for the 100 pixels has the lowest standard 

deviation, achieving a very good classification behavior, as well. 

 

Figure 4.67: Comparison of the Accuracy values among different used features using the 

Artificial Neural Network. These results refer to the discrimination of individuals using the 

Modern Domestic Sheep data. The Accuracy value of the 130 manually selected features is 

significantly higher than the rest, with the lowest value of standard deviation, too. 
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Figure 4.68: Comparison of the Accuracy values among different used features using the 

Artificial Neural Network. These results refer to the discrimination of individuals using the 

Modern Human dataset. The Accuracy values of the manually selected features are 

significantly higher than the rest, with the 130 pixels reaching the highest value, by far. Using 

258 pixels, the lowest standard deviation is achieved, but the Accuracy value is significantly 

lower than the one for the 130 pixels. 

 

Figure 4.69: Comparison of the Accuracy values among different used features using the 

Artificial Neural Network. These results refer to the discrimination between species using the 

combined (Domestic Sheep and Human) dataset. The Accuracy values of the manually 

selected features are significantly higher, with the one for the 130 pixels being the highest of 

all with the lowest standard deviation, too. 

Using the Artificial Neural Network and taking into consideration only the 130 pixels 

that were previously mentioned, the classification of LIBS spectra, coming from hard 

tissue remains of different individuals and species, was achieved. Depending on the 

dataset that was used, the classification could vary from sufficient to excellent. The 

classification of LIBS spectra on individuals for both Modern Domestic Sheep and 

Modern Human dataset was sufficient, exceeding the threshold of 0.8 on Accuracy 

that has been set from earlier works. Good classification on individuals was achieved 

in Archaeological data, even though the 30 extra pixels come from spectral areas with 
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many impurities and thus the results might not come strictly from biogenic elements. 

In addition, a very similar classification result was achieved without taking into 

consideration these extra spectral areas, for this particular dataset. Finally, the 

classification on LIBS spectra in different species, using the combined modern dataset, 

was excellent. The classification ability of the model for this specific task was great, 

reaching accuracy values exceeding 0.96, making it the best classification result that 

was achieved in the current work. Additionally, the feature selection processes 

resulted in a significant time reduction, with the running time varying from 30 𝑚𝑖𝑛 

(Modern Domestic Sheep dataset) to 60 𝑚𝑖𝑛 (Modern Human dataset), depending on 

the dataset and the amount of data that the model had to proceed. 

4.7 Conclusion 
Archaeological and forensic excavations frequently reveal large numbers of hard 

tissue remains of animal or human origins. The discrimination between individuals and 

the classification of the remains in the individuals that they belong, especially in cases 

that the remains are severally fragmented and disarranged, can be very useful for the 

proper study of the artifacts, revealing information about the identity, life and death 

of each individual. The difficulty of the discrimination and classification task can vary 

depending on the condition of the biological remains and the excavation site. Thus, 

several methods are used to help archaeologist and forensic scientists to achieve their 

goal. Laser Induced Breakdown Spectroscopy is a micro-destructive, fast and 

transferable technique that can provide useful information about the elemental 

composition of the samples, with no prior treatment and minimal damage of them. 

LIBS can provide massive amounts of data in a very short time and thus is a suitable 

technique to be combined with machine learning methods. LIBS combined with 

machine learning and artificial neural networks can be a useful tool for archaeologist 

or forensic scientist, speeding up the process of discrimination/classification. 

In the current work, LIBS data collected from four different sample sets were analyzed 

using several, widely used, machine learning algorithms implemented in the open 

source Programming Language R. Three sample sets consisted of modern human 

or/and animal teeth and one sample set consisted of archaeological bone fragments, 

were measured with the use of a customized LIBS microspectrometer. K Nearest 

Neighbors, Support Vector Machine using a polynomial and a radial kernel, Random 

Forest and a relatively simple Artificial Neural Network were used for the analysis of 

the collected data. Comparing the used algorithms, the results of ANN were 

significantly higher than the rest of the algorithms, in all the tested situations. RF 

followed with significantly lower results while the remaining algorithms were 

considered unable to provide a sufficient classification for the majority of classification 

tasks. Thus, the ANN was considered the most suitable algorithm to achieve the 

desirable classification. Because of the huge number of features resulting from the 

structure of the LIBS spectrum, several feature selection processes were tested for 

minimizing the computational time and maximizing the results. Seven different 

approaches were examined, with the one using 130 manually selected pixels provided 

the best results for the classification task. In particular, using the ANN algorithm and 
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the 130 selected features, an excellent classification accuracy on species was achieved 

for the dataset of Modern Human combined with Modern Domestic Sheep teeth, 

exceeding 95%, while the classification accuracies on individuals were reached and 

exceeded the threshold of 80% for the Modern Domestic Sheep teeth and the Modern 

Human teeth datasets, respectively, resulting in a decent classification for those two 

datasets. Furthermore, a very good classification was achieved for the Archaeological 

dataset, with the classification accuracy exceeding 85%, using the ANN algorithm and 

the 130 selected features. Hence, for the current work a robust and accurate 

classification model was developed, based on the comparison of several classification 

algorithms and many feature selection approaches. The model was tested in several 

situations for four different datasets and for two different tasks, successfully achieving 

the classification of LIBS spectra in the correct individual or species, with a 

classification accuracy varying from decently good to excellent. 

Those promising results, combined with other familiar studies, can be used as starting 

point for further research on the development of a LIBS based combined with machine 

learning methods for the classification of hard tissue remains. The use of more 

advanced computer hardware will allow to test more parameters during the 

parameter selection and further increase the accuracy of the models. Increasing the 

number of testing samples, creating huge data sets, is another key point that can 

significantly improve the ability of the models to correctly discriminate individuals and 

classify samples. The fact that LIBS provides the opportunity for fast and accurate 

analysis resulting in a significant amount of data in a short period of time, makes it 

one of the most suitable techniques for creating huge datasets. Training the models 

with more and more data can potentially result in a major increase in their 

classification accuracy, especially for the ANN, providing the opportunity for potential 

classification of entire samples in the correct individual. 
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