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Abstract

Web is a very dynamic ecosystem that is constantly evolving. It started as a col-

lection of static HTML web pages and advanced to rich “Web 2.0” applications.

As a side-effect, all this new functionality and features gave birth to new types of

attacks.

In this thesis we focus on Cross-Site Scripting (XSS) attacks. We present new

code injection attacks that defeat existing approaches for (XSS) prevention. This

family of attacks resembles the classic return-to-libc attack in native code. Based

on our findings, we proceed and present a fast and practical way to isolate all legit-

imate client-side code from possible code injections. We implement and evaluate

our solution in one of the leading web browsers namely Firefox and in the Apache

web server. Our framework can successfully prevent all 1,152 real-world attacks

that were collected from a well-known XSS attack repository. Furthermore, our

framework imposes negligible computational overhead in both the server and the

client side. Finally, our modifications have no negative side-effects in the user’s

experience.

Supervisor: Prof. Evangelos P. Markatos
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Περίληψη

ΗWeb πλατφόρμα είναι ένα εξαιρετικά δυναμικό οικοσύστημα το οποίο εξελίσσεται

συνεχώς. ΄Οταν πρωτοεμφανίστηκε, ήταν μια συλλογή από στατικές HTML

σελίδες η οποία μετεξελίχθηκε σε πλούσιες “Web 2.0” εφαρμογές. Σαν αρν-

ητική επίπτωση βέβαια, όλη αυτή η νέα λειτουργικότητα και χαρακτηριστικά,

γέννησαν νέα είδη επιθέσεων.

Σε αυτήν την εργασία, επικεντρωνόμαστε στις επιθέσεις τύπου Cross-Site

Scripting. Παρουσιάζουμε νέες επιθέσεις εισαγωγής κώδικα οι οποίες ξεπερνούν

τις υπάρχουσες τεχνικές για την αντιμετώπιση XSS επιθέσεων. Αυτή η οικογένεια

επιθέσεων μοιάζει με της κλασικές return-to-libc επιθέσεις σε native κώδικα.

Στηριζόμενοι στα αποτελέσματα μας, προχωράμε και παρουσιάζουμε ένα γρήγορο

και πρακτικό τρόπο για την απομόνωση όλου του γνήσιου client-side κώδικα

από κώδικα ο οποίος έχει εισαχθεί με κακόβουλο σκοπό. Υλοποιήσαμε και αξι-

ολογήσαμε την λύση μας σε έναν από τους γνωστότερουςWeb περιηγητές, τον

Firefox, και στονWeb εξυπηρετητή, Apache. Η τεχνική απέτρεψε και τις 1.152

πραγματικές επιθέσεις που συλλέξαμε από μια γνωστή πηγή XSS επιθέσεων.

Ως επί των πλείστων, η τεχνική μας δεν επιβάλει σημαντικό επιπλέον υπολογισ-

τικό κόστος ούτε στον εξυπηρετητή, ούτε και στον περιηγητή. Τέλος, αυτές

οι αλλαγές δεν παρουσιάζουν αρνητικές επιπτώσεις στην εμπειρία χρήσης του

περιηγητή από τον τελικό χρήστη.

Επόπτης: Καθ. Ευάγγελος Μαρκάτος
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1
Introduction

One of the most profound techniques for compromising a system is by performing

a code injection. The process of injecting malicious code in an existing trusted

code base can be applied to numerous different environments. For example, the

attack can take place in native code, usually referred to as a buffer overflow [28],

in a database environment through a SQL injection [6] or in the web browser’s

environment using the Cross-Site Scripting (XSS) technique.

Lately, we have observed a significant increase in XSS attacks. It is worth

mentioning that during the second half of 2007, 11,253 site-specific cross-site vul-

nerabilities were documented by XSSed, compared to 2,134 traditional vulnera-

bilities documented by Symantec [31]. This observation translates to the fact that

XSS attacks carried out on web sites were roughly 80% of all documented secu-

1



2 CHAPTER 1. INTRODUCTION

rity vulnerabilities. On the other hand, new technologies, such as AJAX [14], give

more opportunities for code injection in the web environment. These technologies

encourage the creation of rich and more complex interfaces with more vulnerabil-

ities.

An XSS attack is typically carried out as follows. An attacker injects some

client-side code, usually JavaScript, in a web document. The injection may be

performed, but is not limited to, in a content submission. For example, a user posts

a comment in a blog story in which she embeds some JavaScript. The result is that

every web browser that renders the comment of the blog story will also execute the

attacker’s JavaScript. The malicious code can steal the users’ cookies or perform

arbitrary operations that can lead from simple annoyance to financial data loss.

There are numerous proposals for XSS attack mitigation. In this thesis we

are particularly interested in policy based mechanisms like the one proposed by

BEEP [16]. We spot limitations in the approach and develop new XSS attacks that

succeed to bypass the policy framework. Finally, we propose our own framework,

which we refer to as ⊕JS or in the simple form xJS . Our framework is inspired

mainly by the concept of Instruction Set Randomization (ISR) [20]. xJS uses

Isolation Operators in order to randomize the whole source corpus of client-side

code and policies expressed as Browser Actions. Our framework guarantees that all

trusted client-side code can be successfully isolated from possibly untrusted, and

thus, it prevents all possible code injections in the browser environment.

Our contributions. We present new code injection attacks that defeat existing

approaches, such as Whitelisting [16]. This family of attacks resembles the classic

return-to-libc attack in native code [11]. We highlight all major weaknesses in pre-

venting XSS attacks using a DOM Sandboxing technique. Based on our findings,

we proceed and present a fast and practical way to isolate all legitimate client-side

code from possible code injections. We implement and evaluate our solution in one

of the leading web browsers namely FireFox and in the Apache web server. Our

framework can successfully prevent all 1,152 real-world attacks that were collected
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form an XSS attack repository [13]. Moreover, our framework imposes negligible

computational overhead in the server and in the client side. Finally, our modifica-

tions have no negative side-effects in the user experience.

This thesis is organized as follows. In Chapter 2 we present in detail the reasons

which drove us to this work. We enlist all the properties of the threat model we are

trying to fight in Chapter 3. Our proposed solution is presented in Chapter 4 and

is evaluated in Chapter 5. Its limitations are discussed in Chapter 6. We review

related work in Chapter 7 and finally we conclude in Chapter 8.
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2
Motivation

This chapter enumerates all our motivations. Lately, we have seen plenty of pub-

lished papers for the detection and mitigation of XSS attacks. We would like to

highlight the reasons for putting more effort on that direction.

Our framework focuses on three major factors: (a) practical implementation,

(b) low computational overhead, and (c) attack coverage.

Practical Implementation. Our first objective is to have an easy and straight

forward to implement solution. This can significantly assist to the hard task of de-

ployment. As it is the case of other recent proposals [16, 24] our solution needs

co-operation from both sides, web server and client, and thus deployment is con-

sidered a very demanding procedure. The implementation of this prototype took

roughly a few days for the Firefox web browser and no more than 100 lines of code

5



6 CHAPTER 2. MOTIVATION

(for the code isolation only – no policy handling). As far as the web server modifi-

cations are concerned, again the process was fairly easy. The modular architecture

of the Apache web server allowed us to extend the web server’s features with a

reasonable amount of work.

Low Computation Overhead. Our framework could be seen as a fast ran-

domization technique. Indeed, we are inspired in great extent from the Instruc-

tion Set Randomization (ISR) [20] concept. ISR has been proposed for defending

against code injections in native code or in other environments, such as code ex-

ecuted by databases [10]. However, we believe that applying an ISR technique

for dealing with XSS attacks is not trivial. The basic problem is that web code is

produced in the server and it is executed in the client. In addition, the server lacks

all needed functionality to manipulate the produced code. For example, randomiz-

ing all JavaScript code in the web server needs at least one full JavaScript parser

running in the server. This can significantly increase the computational overhead

and as a negative result the code will be parsed twice (one in the server during

serving and one in the client during execution). Instead of trying to implement ISR

for JavaScript we decided to implement an isolation operator, which transposes

all produced code in a new isolated domain. The isolation operator is based on

the XOR function which is considered fast; it can be found implemented as a CPU

instruction in all modern hardware platforms.

Attack Coverage. Finally, our third concern was to come up with a solution

that covers a large fraction of XSS exploits. Unfortunately, as it is discussed in

detail in [24], XSS attacks have become significantly sophisticated. Sometimes

they can be carried out even through a file upload [7]. As we show in the evaluation

chapter, our framework successfully prevents all real-world attacks hosted by an

XSS attack repository [13]. Moreover, as discussed in detail in Chapter 5, our

framework can prevent more sophisticated attacks that are based on the careless

use of the JavaScript eval() function.
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To summarize our objectives, is the design and evaluation of a practical, com-

putational inexpensive framework to defend against the majority of XSS attacks.
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3
Threat Model

In this chapter we present in detail the threat model we are trying to address in this

thesis. First, we present a short introduction of XSS attacks. Second, we describe

two common practices, suggested in BEEP [16], that try to mitigate the problem,

namely whitelisting and DOM sandboxing. We shortly present new attacks that can

escape from these techniques and thus we define a family of XSS attacks that can

actually take place in a real-world web sites. Our framework aims on shielding web

sites from such code injections. Finally, we close this chapter with the limitations

of our framework presenting attacks that can not be addressed.

9
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3.1 XSS Overview

A cross-site scripting attack is a typical code injection performed in web applica-

tions. The attacker aims on injecting her code into a web document, which will

eventually get rendered in a victim’s web browser. Upon rendering, the malicious

code may steal information from the user’s browser environment or force the user’s

browser to perform specific activities. Most XSS attacks are carried out using

JavaScript, although other client-side technologies can be also used. For example,

consider an attacker submitting a comment, which embeds a JavaScript code snip-

pet, in a web blog. All other users visiting the web blog and viewing the comments

of the story will host the attacker’s JavaScript code snippet in their browsers. The

malicious JavaScript code may issue a request to the attacker’s web server with a

URI that embeds the user’s cookie. This URI may have the form:

http://www.attacker.com/page?document.cookie

Thus, the attacker can collect all cookies from users viewing the web blog. The

cookies can lead the adversary to hijack the sessions of the victim users, since

quite frequently a web cookie contains information for user authentication.

Although traditionally XSS attacks have been associated with cookies stealing,

the attack itself has a broader target set. As we argue in this thesis, plenty of

modern web sites have employed rich user-driven AJAX interfaces. That is, most

of the operations are carried out through client-side code. In addition, there are

efforts for client-side toolkits [3]. Adversaries targeting this kind of web sites

can benefit from the richness of the client-side code and thus create XSS exploits

which perform operations on behalf of the victim user. These operations may cause

annoyance, data loss or complete takeover of a user’s profile, as we discuss in detail

later in this chapter.
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3.2 Whitelisting and DOM sandboxing

One way to prevent execution of untrusted client-side code in a web browser

is by using a policy framework. This methodology was originally presented in

BEEP [16] and it is enforced using two techniques, namely: Whitelisting and DOM

sandboxing.

We shortly review Whitelisting and DOM sandboxing in this chapter.

Script whitelisting works as follows. The web application includes a list of

cryptographic hashes of valid (trusted) client-side scripts. The browser, using a

hook, checks, upon execution of a JavaScript code snippet, if there is a crypto-

graphic hash for that script in the white-list. If the hash is found the script is

considered trusted and the browser executes it. If not, the script is considered non-

trusted and the policy defines if the script will be rendered or not.

Notice that there is no checking for the location of the script inside the web

document. For example, consider the simple case where an attacker places a trusted

script, initially configured to run upon a user’s click (using the onclick action),

to be rendered upon document loading (using the onload1 action).

DOM sandboxing works as follows. The web server places trusted scripts in-

side div or span HTML elements that are attributed as trusted. For example,

consider the construct:

<div class=’trusted’> ... script ... </div>

The web browser, upon rendering, parses the DOM tree and executes client-side

scripts only when they are contained in trusted DOM elements. This method is vul-

nerable to the node-splitting attack, in which a malicious script is surrounded, on

purpose, by misplaced HTML tags in order to escape from a DOM node. Consider

for example the construct:
1One can argue that the onload action is limited and usually associated with the <body>

tag. The latter is considered hard to be altered through a code-injection attack. However, note

the onload event is also available for other elements (e.g., images using the <img> tag) included

in the web document.
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<i>{ message }<\i>

which, denotes that a message should be rendered in italic style. If the message

variable is filled in with:

</i><b> bold message </b><i>

then the carefully placed <i> and <b> tags should result the message to be dis-

played in bold style, rather than italic.

The authors of BEEP suggest a workaround for dealing with node-splitting,

but we consider it rather inefficient, since all the data inside an untrusted div

must be placed using a special coding idiom in JavaScript. We rather agree with a

more elegant approach suggested in [15] (some very similar ideas have also been

proposed in [24]).

Notice that DOM sandboxing requires the code injection to take place in an

existing DOM tree. However, as it was recently shown, this is not always the case;

a simple file upload and rendering is enough [7].

3.3 Defeating Whitelisting

Most XSS attacks are considered to happen by injecting arbitrary client-side code

in a web document. This code is assumed to be foreign, i.e. not generated by the

web server. However, it is possible to perform an XSS attack by placing code that

is generated by the web server in different regions of the web page. This attack

resembles the classic return-to-libc attack [11] in native code applications. Return

oriented programming suggests that an exploit may simply transfer execution to a

place in libc2, which may cause again execution of arbitrary code on behalf of

the attacker. The difference with the traditional buffer overflow attack [28] is that

2This can also happen with other libraries as well, but libc seems ideal since (a) it is linked

to every program and (b) it supports operations like system(), exec(), adduser(), etc.,

which can be (ab)used accordingly. More interestingly, the attack can happen with no function calls

but using available combinations of existing code [30].
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1: <html>

2: <head> <title> Blog! </title> <head>

3: <body>

4: <a onclick="logout();">Logout</a>

5: <div class="blog_entry" id="123">blah blah

6: <input type="button" onclick="delete(123);">

7: </div>

8: <div class="blog_comments"> <ul>

9: <li> <img onload="logout();" src="logo.gif">

10: <li> <img onload="window.location.href=’http://www.google.com’;"

src="logo.gif">

11: <li> <img onload="delete(123);" src="logo.gif">

12: </div>

13: <a onclick="window.location.href=’http://www.google.com’;">

Google</a>

14: </body>

15:</html>

FIGURE 3.1: A minimal Blog site demonstrating the whitelisting attacks.
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the attacker has not injected any foreign code in the program. Instead, she transfers

execution to a point that already hosts code that can assist her goal.

A similar approach can be used by an attacker in order to escape whitelisting.

Instead of injecting her code, she can take advantage of existing white-listed code

available in the web document. Note that, typically, a large fraction of client-side

code is not executed upon document loading, but it is triggered during user events,

such as mouse clicks or mouse movements. Below we enumerate some possible

scenarios.

Annoyance. Assume the blog site shown in Figure 3.1 that has a JavaScript

function logout(), which is executed when the user clicks Logout (see line 4

in Fig. 3.1). An attacker could perform an XSS attack by placing a script that

calls logout() when a blog entry is rendered (see line 9 in Fig. 3.1). A user

reading a blog story will be forced to logout. In a similar fashion, a web site that

uses JavaScript code to perform redirection (for example using one of the standard

ways, like window.location.href=X) can be also attacked by placing this

white-listed code in an onload event (see line 10 in Fig. 3.1).

Data Loss. In a similar fashion, a portal which places user content that can be

deleted using client-side code (AJAX [14] interfaces are popular in social networks

like Facebook and MySpace) can be attacked by injecting the white-listed dele-

tion code in an onload event (see line 11 in Fig. 3.1). This can be considered

similar to a SQL injection attack [6], since the attacker implicitly grants access to

the web site’s database.

Complete Takeover. Theoretically, a web site that has a full featured AJAX

interface can be completely taken over, since the attacker has all she needs to use

already white-listed by the web server. For example, a bank web site that uses

a JavaScript transact() function for all the user transactions is vulnerable to

XSS attacks that perform arbitrary transactions.

A quick workaround to mitigate the attacks presented above, is to include the

event type, during the whitelisting process. For example, upon trying to execute
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script S1, which was triggered by an onclick event, the browser should check

the white-list for finding a hash key for S1 associated with an onclick event.

However, this can only mitigate attacks which are based on using existing code

with a different event type than the one used initially by the web programmer.

Attacks may still happen. Consider the Data Erasing attack described above and

an attacker that places the deletion code in onclick events associated with new

web document’s regions, not initially designed by the web programmer.

Finally, attacks that are based on injecting malicious data in white-listed scripts

have been described in [24].

3.4 Defeating DOM Sandboxing

DOM sanbdoxing marks regions defined by div and span tags as trusted or non-

trusted. JavaScript code is executed only if it is contained in a trusted region. We

assume that a technique like Noncespaces [15] is used to prevent node-splitting.

We have two arguments against DOM sandboxing. First, we believe that mark-

ing a region as trusted or non-trusted may not always be that trivial. Especially,

given the complexity of modern web sites, which are typically composed by hun-

dreds of different div elements and thousands of JavaScript code. But, even if the

marking is carried out correctly, there is no guarantee that a trusted div element

will never host code from an XSS attack. The site designer should take care of this

issue, programmatically. More precisely, the site designer should provide guaran-

tees that a trusted <div> element will never host user input. Second, XSS attacks

do not always need a DOM tree in order to take place. For example, consider an

XSS attack which is carried in a PostScript file [7]. The attack will be launched

when the file is previewed. There is high probability that upon previewing there

will be no DOM tree to surround the injected code.
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3.5 Addressable Attacks

In this thesis, we propose a framework that can address XSS attacks that are carried

out using JavaScript. Our basic concept can also be applied to other client-side

technologies (for example Adobe Flash), but our primary goal is JavaScript based

XSS attacks.

Moreover, our framework aims on preventing JavaScript code injections that

are based on third party code or on code that is already used by the trusted web

site. Thus, our framework can prevent execution of trusted code, which has been

injected by an attacker in specific portion of a web document.

Finally, our framework can in principle prevent attacks that are based on in-

jected data and misuse of the JavaScript eval() function. Consider, the following

example:

<?php

$s = "<div id=’malicious’>" . $_GET["id"] . "</div>";

echo $s;

?>

<script>

eval(document.getElementById(’malicious’).innerHTML);

</script>

If an attacker insert JavaScript code in the id field of the GET request, then the

code will be executed. The above document is vulnerable, because the eval()

function is used carelessly. One way, to prevent this kind of code injection is by

using tainting [26]. The main idea is to mark data that are foreign (i.e. they were

part of a user input over the network or a database) as unsafe. Tainting analysis

has also been used in [24] for dealing with attacks like the above one. Our frame-

work can be augmented to prevent such attacks using tainting or by modifying the

eval() function. In fact, our Firefox implementation prevents this kind of code

injections. We discuss this issue in detail in Chapter 5.
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3.6 Non-Addressable Attacks

There are a few web threats that are not explicitly related to XSS attacks. However,

they occasionally occur in the context of an XSS attack. Below, we shortly discuss

threats that are not directly prevented by our framework.

Phishing [12] aims on luring a user to submit her credentials in a non authen-

tic web site, which looks like an authentic one. For defending Phishing we refer

the reader to [5]. Sometimes, Phishing can be achieved by injecting a malicious

iframe in a vulnerable web page. This can be considered as an XSS attack, how-

ever we believe that its impact is quite lower than the one imposed by injection

of malicious JavaScript code. Our framework does not protect against iframe

injection. Some ways to mitigate this attack can be found in [24].

Cross-Site Request Forgery (CSRF) and login CSRF attacks have been exten-

sively studied in [8]. CSRF attacks are launched by malicious sites that generate

web requests towards other popular web sites. The web requests are executed by

the victim’s web browser and, thus, the web browser fills in all the state (e.g. cook-

ies) required, in order to send the web request with the victim’s credentials. In

the case that the victim has already logged in her e-banking or e-mail web site,

then the requests enforced by the malicious web site will succeed having numer-

ous dramatic consequences. On the other hand, there is a type of CSRF attacks, the

login CSRF attack, that does not assume that the user is already logged in a target

web site. Instead, the attack aims to force the user to login in a web site with the

attacker’s credentials.

In this thesis we do not address either CSRF neither login CSRF attacks. Some

proposals for mitigation of these attacks can be found in [8, 17, 19].
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4
Architecture

In this chapter we present in detail the xJS framework for preventing XSS attacks.

The fundamental concept of the framework is based on Isolation Operators. How-

ever, in order to be applied practically we propose Code Separation for client-side

code and Action Based Policies in the browser environment. We review each of

these three concepts. At the end of this chapter we provide information about our

implementation prototype in the Firefox web browser and the Apache web server.

4.1 Isolation Operators

One methodology that can be used to prevent code injections is Instruction Set

Randomization (ISR), which has been applied to native code [20] and to SQL [10].

The basic concept behind ISR is to randomize the instruction set in such a way that

19
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a code injection is not able to speak the language of the environment [21] and thus

is not able to execute. In this thesis, inspired by ISR, we introduce the concept of

Isolation Operators (IO), which essentially randomize the whole source corpus and

not just the instruction set.

We follow this approach for the following reason. Web code is produced in the

web server and it is executed in the web browser. In addition, the server lacks all

needed functionality to manipulate the produced code. For example, randomizing

the JavaScript instruction set needs at least one full JavaScript parser running in

the server. This can significantly increase the computational overhead and as a

negative result the code will be parsed twice (one in the server during serving and

one in the client during execution).

Applying an IO such as the XOR function can effectively randomize all JavaScript

source, not just the instruction set. The isolation is achieved since all trusted code

produced by the web server has been transposed to a new domain: the XOR do-

main. The web browser has to de-isolate the source by applying again the IO and

then execute it.

4.2 Code Separation

Traditionally we think of web code in terms of server-side and client-side code. The

server-side part is usually written in a scripting language (PHP, Ruby, Python, Perl,

etc.), or even in native code, that is pre-processed by the server. The rest of the web

code is considered as client-side code and it is evaluated in the web browser. The

web server can pre-process the server-side code by looking for specific delimiters.

For example, a PHP code fraction is enclosed in <?php and ?>.

Our framework suggests that the web code separation should span in three

domains: server-side, client-side and markup. More precisely, in our prototype

implementation we use a pre-processor to filter all trusted JavaScript code, which

is enclosed in < < < < and > > > >. In Figure 4.1 we depict an xJS example.
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On the left is the source code as it exists in the web server and on the right is

the same source as it is fetched by the web browser. The JavaScript source has

been XORed and a Base64 [18] encoding has been applied in order to transpose all

non-printable characters to the printable ASCII range.

<div> <div>

<<<< <script>

alert("Hello World"); vpSUlJTV2NHGwJyW/NHY...

>>>> </script>

</div> </div>

FIGURE 4.1: Example of a web page that is generated by our framework.

This kind of code separation assists significantly to a possible manipulation of

the whole client-side code corpus. If this scheme is enforced then applying an IO

to all produced JavaScript is trivial.

4.3 Action Based Policies

Finally, our framework suggests that policies should be expressed as actions. Es-

sentially, all trusted code should be treated using the policy ”de-isolate and ex-

ecute”. For different trust levels, multiple IOs can be used or the same IO can

be applied with a different key. For example, portions of client-side code can be

marked with different trust levels. Each portion will be isolated using the XOR

function, but with different key. The keys are transmitted in HTTP headers (see

the use of X-IO-Key header, later in this chapter) every time the server sends the

web page to the web browser.

Expressing the policies in terms of actions has the following benefit. The in-

jected code cannot bypass the policy, unless it manages to produce the needed result

after the action is applied to it. The latter is considered very hard, even for trivial

actions such as the XOR operation. One possible direction for escaping the policy
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is using a brute force attack. However, if the key is large enough the probability of

a brute force attack to succeed is low.

Defining the complete policy set is out of the scope of this thesis. For the

purpose of our evaluation (see Chapter 5) we use one policy, which is expressed as

”de-isolate (apply XOR) and execute”.

4.4 Implementation

In order to test our framework we modified the Firefox web browser. We also

created a filter for the Apache web server.

Implementing the xJS prototype took roughly a few days for the web browser

side and no more than 100 lines of code. Since we have lack of knowledge about

all the internals of such a large project, we consider our modifications to be non

optimized. Our major concern was to have working prototypes in order to test the

framework and not official patches.

The modified web browser operates in the following way. For each HTTP

response it searches for the X-IO-Key header field. If found, it uses its value,

which is the key for the de-isolation process. At the moment, we do not support

multiple keys, but extending the browser with such a feature is considered trivial.

For our prototype implementation, we altered two functions in the Firefox’s

JavaScript implementation. The function that handles all events (such as onload,

onclick, etc.) and the function that evaluates a JavaScript code block. We mod-

ified these functions to (i) decode all source using Base64 and (ii) apply the XOR

operation with the de-isolation key (the one transmitted in X-IO-Key) to each

byte. It is worthy noting here that these functions operate recursively. We further

discuss this issue in Chapter 5.

As far as the web server is concerned, we implemented an Apache filter using

the Ruby [23] programming language. The filter acts essentially as a pre-processor

similar to the one used by PHP [2]. It parses all document code and isolates all
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JavaScript (injected inside < < < < and > > > > or with the ’+=’ notation

for events) using the XOR function and a random key. It finally encodes the result

in Base64, it places the <script> tag if needed and it attaches the random key to

the X-IO-Key. The key is refreshed in every response.

We chose to implement the filter, in order to have a prototype rapidly. How-

ever, our intention is to develop an Apache module in the near future, mainly for

performance issues.
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5
Evaluation

In this chapter we evaluate our xJS prototype. We have modified the Firefox web

browser and we have extended the functionality of the Apache web server using

a filter. Our evaluation seeks to answer four questions: (a) how many real XSS

attacks can be prevented, (b) what is the overhead in the server, (c) what is the

overhead in the web browser and, finally, (d) does the framework impose any side-

effects in the user’s experience. Below, we address each of these four questions

separately. We summarize the results of our evaluation at the end of this chapter.

5.1 Attack Coverage

In this part we try to identify how effective is the xJS framework in preventing

real-world XSS attacks. We used the repository hosted by xssed.com [13] which
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includes a few thousands of XSS vulnerable web pages. This repository has been

also used for evaluation in other papers [24].

Apparently, there are a couple of issues which make the attack coverage evalua-

tion of xJS quite challenging. First, some attacks listed in xssed.com have been

already fixed. The web site hosts the vulnerable web pages after the code injection

has happened. However, this cannot be of use, since xJS aims on preventing the

code injection before it takes place. Second, we have no access to the vulnerable

web server and, thus, we cannot use our server-side filter. In order to overcome all

these issues we choose to conduct the evaluation in the following way.

URLs Number Percentage

iframe attack vector 384 4,1%

redirection to xssed.com 416 4,5%

redirection & iframe 60 0,6%

Failed to parse 2,518 27,5%

Still vulnerable 1,152 12,5%

Total 9,156 100,0%

TABLE 5.1: Evaluation data categorization.

First, we needed to resolve all still vulnerable web sites. In order to do so,

we downloaded 9,156 URLs from xssed.com. From this sample we excluded

384 URLs that had an iframe as attack vector, 416 URLs that had a redirection

to xssed.com as attack vector and 60 URLs that had both an iframe and a

redirection xssed.com as attack vector. We remained with all URLs that were

vulnerable at some period of time and the vulnerability could be triggered using the

alert() function. We proceeded and requested each vulnerable page through a

custom proxy server we built. The task of the proxy was to attach a small JavaScript

code snippet that overrides the alert() function with a URL request to a web

server located in our laboratory. Since, all attack vectors were based on using

the alert() function, in order to demonstrate the vulnerability, the web server
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recorded all successful attacks in its access logs. Using this methodology we man-

aged to identify 1,152 web pages, which were still vulnerable. Our proxy failed to

open 2,518 web pages due to parsing errors. These are web pages that have mis-

placed HTML code that was unable to be fully parsed. Our methodology suggests

that about 1 in 7 web pages had not been fixed after the vulnerability was published.

Table 5.1 gives a synoptic view of the data that where used for our evaluation.

Second, we needed a way to simulate the web server filter we use in the xJS

framework in order to perform the client-side code isolation. Again, we used our

proxy in the following way. For each vulnerable page, the proxy requested again

the web document but with a different attack vector. For example, for the attack

vector below:

http://site.com/page?id=<script>alert("XSS");</script>

the proxy requested the URL:

http://site.com/page?id=<xscript>alert("XSS");</xscript>

Using this methodology, the proxy managed to build all vulnerable web pages

with the attack vector embedded but not in effect. The next step was the proxy to

parse all vulnerable pages, identify all JavaScript code, which we consider trusted

and isolate it using the XOR IO. At this stage, we had all vulnerable web pages

with all JavaScript isolated and with the attack vector defunct. The last step was to

re-enable the attack vector by replacing the xscript with script again and return the

web page to the browser. All web pages were also including the JavaScript snip-

pet for the alert() overloading. After the end of the experiment, we recorded

zero requests to our web server. This means that all XSS attacks were prevented

successfully by our framework. Thus, we concluded that, as far as the sample col-

lected through xssed.com is concerned, the xJS framework has 100% success

in XSS attack prevention.

Finally, we tested attacks we have presented in Chapter 3 that are based on a

code injection in data and the careless use of eval(). Recall the example we used

in Chapter 3:
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<?php

$s = "<div id=’malicious’>" . $_GET["id"] . "</div>";

echo $s;

?>

<script>

eval(document.getElementById(’malicious’).innerHTML);

</script>

Normally, someone would expect xJS to be unable to prevent this kind of at-

tack. The injected code will be in plain text (non-isolated), but unfortunately it will

be attached to isolated code after the de-isolation process. Thus, the injected code

will be executed as it was trusted. However, there is a way to prevent this behavior.

In fact, the internal design of Firefox gave as this feature with no extra cost. Firefox

is using a js CompileScript() function in order to compile JavaScript code.

The design of this function is recursive and it is essentially the implementation

of the actual eval() function of JavaScript. When Firefox identifies the script

eval($ GET(’id’));, it will de-isolate it, call the eval() function, which

in principle will call itself in order to execute the $ GET(’id’) part. At the 2nd

call, the eval() will try again to de-isolate the $ GET(’id’) code, which if it

is in plain text will fail and thus will never get executed.

5.2 Server Overhead

In this part we try to identify the overhead in the server imposed by xJS. In order

to measure the server overhead, we need to have a set of web pages that embed a

significant amount of JavaScript. We chose to use some web pages with JavaScript

code that ship with the SunSpider suite [4]. We manually selected three JavaScript

tests. One which is considered heavy because it is a hard test involving string

operations with many lines of JavaScript (it is probably the hardest test in the whole

suite), one which is considered normal because it has a typical amount of source

code like most of the other tests, and one which is considered light because it is a
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FIGURE 5.1: Server side evaluation using the Apache benchmark tool (ab) (Fast

Ethernet link).

few lines of JavaScript, involving bit operations. We will further refer to this tests

as heavy, medium and light.

Since, these web pages do not use the special delimiters to separate the JavaScript

source, we wrote a script to compile an HTML page to a document that separates

all JavaScript using < < < < and > > > >. The script parses the target docu-

ment for identifying all <script> tags and events (such as onclick, onload,

etc.), and it replaces them with our special delimiters.

We conducted two sets of experiments. During the first experiment we used

ab [1], which is considered as the de-facto tool for benchmarking an Apache web

server, over a Fast Ethernet (FE) network. We configured ab to issue 100 requests

for the heavy, normal and light web page, respectively. After the end of the ex-

periments, we removed the Apache filter and we run ab again to benchmark the

web server with our modifications removed. In this run, we used the official tests

(without the special delimiters). Finally, we repeated all the above experiment with

an ab client running in a typical DSL line (6 Mbps).

In Figure 5.1 we depict the results for the benchmarking when the ab tool

is connected to the web server using a FE connection. Notice, that the modified

Apache imposes from a few tens to hundreds of milliseconds in the worst case

(the heavy web page – Figure 5.1(a)). From a first look this is quite unpromising.

However, in Figure 5.2 we depict the same experiments over the DSL link. The
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FIGURE 5.2: Server side evaluation using the Apache benchmark tool (ab) (DSL

link).

overhead is still the same and it is negligible, since the delivery overhead domi-

nates. This drives us to conclude that the filter imposes a fixed overhead of a few

milliseconds per page, which is not the dominating overhead. Nevertheless, there is

space for improvement. A similar implementation in native code will significantly

outperform the Ruby filter, which uses some heavy and time consuming regular

expressions. Apparently, even the Ruby filter does not cause a dramatic overhead

in the server.

5.3 Client Overhead

In this part we try to identify the overhead in the browser imposed by xJS. We use

the Sunspider test suite with 100 iterations. That means that every test of about

15 JavaScript programs is executed 100 times. We used the gettimeofday()

function to measure the execution time of the modified functions in the browser.

For our prototype implementation we have altered two functions. The one that is

responsible for handling code associated with events, such as onclick, onload,

etc., and the one that is responsible for evaluating whole JavaScript code blocks. In

Firefox we modified internally the JavaScript eval() function which is recursive.

In Figure 5.3 we depict the cumulative distribution of the delays imposed by

all modified recorded function calls for Firefox during a run of the Sunspider suite
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FIGURE 5.3: Cumulative distribution for the delay imposed by all modified func-

tion calls in the Firefox.

for 100 iterations. As delay we assume the time needed for the modified function

to complete minus the time needed for the unmodified one to complete.

All delays are less than 1 millisecond. Firefox needed about 500,000 calls for

the 100 iterations of the test suit. In Figure 5.3 we plot the first 5,000 calls (these

calls correspond to one test iteration only) of the complete set of about 500,000

calls, in order to be more assimilable.

5.4 User Experience

Finally, in this part we try to identify if the user’s experience changes due to xJS.

We run the Sunspider suite for 100 iterations with the modified web browser and

with the equivalent unmodified one and record the output of the benchmark. In Fig-

ure 5.4 we plot the results for different categories of tests. Each category includes

a few individual benchmark tests. As expected there is no difference between a

modified and a non modified web browser. This result is reasonable, since after the

de-isolation process the whole JavaScript source executes normally as it is in the

case with a non compatible with the xJS framework web browser.
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5.5 Summary

We summarize our evaluation results. Our evaluation proves that xJS can success-

fully prevent all 1,152 real-world attacks that were collected from an XSS attack

repository [13]. Moreover, our framework imposes negligible computational over-

head in the server and in the client side. Finally, our modifications do not yield

any negative side-effects in the user’s experience. All client-side code executes as

expected.
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Limitations

In this chapter we highlight some aspects that we consider as limitations of our

approach. We shortly review each one of them and provide possible workarounds.

This chapter establishes the basic roadmap for our future work.

Coding Style. The proposed separation scheme for all client-side code using

special delimiters requires the change of current programming disciplines.

However, we understand that this scheme may produce negative reactions.

Thus, we discus some alternative ways to achieve the same result.

First, the web developer can use a server-side function, implemented in PHP

or in a similar technology, in order to inject all JavaScript. For example, she may

use an xjs(code, key) function, which will isolate using the XOR operator all

input code and then inject it to the document. Apparently, this function has to also
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emit the correct X-IO-Key header field. Second, a server module can be used

to pre-process all web pages and isolate all JavaScript code, without looking for

special delimiters. This server module can act exactly as our filter, but using as

special delimiters the <script> and </script> tags.

Dynamic Code. Web developers frequently use templates in order to produce

the final web pages. These templates are stored usually in a database and some-

times they include JavaScript. The database may also contain data that they are

produced by user inputs. A possible scenario is that the code injection can take

place in the database. This can happen if trusted code and a user input that may

contain untrusted code are merged together before included in the final web page.

This case is quite hard to track, since it involves the programmer’s logic in great

extent. The critical part is that client-side code is hosted in another environment

(the database) which is also vulnerable to code injections. We consider it hard to

isolate the trusted code without explicit assistance from the database. Our plans is

to further investigate such cases in our future work.

Mashups. A mashup is a web site that collects information from third parties

and presents it to the user. One could argue that a mashup is essentially a code

injection process. The main site will fetch code from third party sites and inject it

to the web documents it generates. There is a number of possible things that may

produce confusion or even have negative result.

A fraction of the third party web sites have implemented the framework. This

case will produce a mixed up of client-side code in the web browser. Parts will

be isolated and parts, trusted or not, will be in plain text. There will be confusion

and the final web document will be probably non functional. This issue can be

addressed if each web server reports if the framework is supported or not. This can

be achieved using the X-IO-Key header, since when it is emitted it implies that

the framework is supported. However, the security of the mashup, as far as XSS

attacks are concerned, is not fully guaranteed.
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None of the third party web sites have implemented the framework, but the

main site. This case will produce a negative result. The mashup will isolate all

collected, third party, client-side code in the final web document and thus will

advertise all generated client-side code as trusted. The code will possibly include

code injections performed in any of the third party web sites. Thus, the framework

must not be, in any case, applied in proxy environments on behalf of third party

sites.

All third party web sites have implemented the framework, but not the main

site. This case is considered healthy, since all authentic sources perform the iso-

lation. The isolated code is trusted, even if the main site does not implement the

framework. However, the main site must also transfer the keys (the X-IO-Key)

in order the browser to be able to perform de-isolation. As long as the main site is

considered trusty, then the framework guarantees no code injection incidents in the

final web document.

File Creation/Overwrite. An attacker could create or overwrite a file that

is served by the web server and insert JavaScript code using the IO. In that case

there is no way for our framework to identify that code as malicious. Although an

attack of this form is possible, we believe that if a web server is vulnerable to file

creation/overwrite the attacker can then inject server-side code and even takeover

the whole web site.
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7
Related Work

The most relevant work to this thesis is the BEEP [16] framework. In this thesis,

we essentially tried to highlight weaknesses in the methodology proposed by BEEP

and to develop a framework that can address all possible issues. We have reviewed

in detail most aspects of BEEP in Chapter 3.

Our technique is based on Isolation Operators and it is inspired by the Instruc-

tion Set Randomization (ISR) [20]. Solutions based on ISR have been applied to

native code and to SQL injections [10]. Some discussion about using ISR for XSS

attacks can be found in [21], but to the best of our knowledge there has not been

any systematic effort towards this approach.

As far as XSS attack prevention is concerned, the literature is quite rich. In [32]

the authors propose to use dynamic tainting analysis to prevent XSS attacks. Taint-
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tracking has been partially or fully used in similar approaches [24, 25, 27, 29].

Noxes [22] aims on finding and blocking unsafe URLs purely at the client side,

while XSS-GUARD [9] aims on performing all input checking at the server side.

Web attacks that are not in principle related to XXS, but they somehow assist

in a XSS attack have also been presented lately. More precisely, Noncespaces [15]

address the node splitting attack, where malicious code escapes a trusted region

in a web document. Their solution is also based on ISR. Our framework is not

vulnerable to the node splitting attack, since it doesn’t need a DOM tree to have

effect. More interestingly in [7] the authors have presented ways to perform an

XSS attack through file uploads. Our framework can successfully prevent such

XSS attacks.



8
Conclusion

In this thesis, we tried to explore new techniques for performing XSS attacks and

how they can be prevented. More precisely, we presented new code injection at-

tacks that defeat existing approaches for XSS attack prevention. This family of

attacks resembles the classic return-to-libc attack in native code. The attacks are

based on injecting existing trusted code, which is already whitelisted, in the vul-

nerable web site. Taking into account that modern web sites are rich in client-side

code, we consider these attacks critical. Based on our findings, we proceeded and

presented xJS a fast and practical way to isolate all legitimate client-side code

from possible code injections.

Our framework, inspired by the Instruction Set Randomization technique, sug-

gests the use of Isolation Operators (IO). An IO, such as one that is based on the
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XOR function, aims on randomizing all of the source corpus that it is to be pro-

tected from code injections. The result is that all client-side code is transposed to

a new domain, in our case the domain defined by the XOR operator, and thus it

is completely isolated from all code injections. Finally, our framework suggests

policies expressed as Browser Actions. More precisely the web browser executes

all trusted client-code after it has been de-isolated through an action, in our case

the XOR operation.

We implemented and evaluated our solution in the Firefox web browser and in

the Apache web server. Our evaluation aimed on identifying if (a) the framework

can successfully prevent real-world XSS attacks, (b) if the framework imposes un-

realistic computational overhead in the server side, (c) if the framework imposes

unrealistic computational overhead in the web browser and (d) if the user’s expe-

rience is altered due to our modifications in the browser. Our extensive evaluation

proved that xJS can successfully prevent all 1,152 real-world attacks that were

collected from an XSS attack repository [13]. Moreover, our framework imposes

negligible computational overhead in the server and in the client side. Finally, our

modifications did not yield any negative side-effects in the user’s experience. All

client-side code was executed as expected.

Last but not least, we reviewed possible issues we consider as limitations of

our approach. We presented each one of those and offered workarounds. These

issues compose the basic roadmap for our future work.
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