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Abstract

In the present work we discuss inflation, dark matter and cosmological evolu-
tion in the context of the brane-world scenario. Being string theory inspired,
the brane-world models provide corrections to the General Relativity, which
is considered to be the low-energy limit of string theory. We find that novel
cosmologies are obtained, which potentially can provide answers to some
of the longstanding problems of modern cosmology, such as the origin and
nature of dark energy. At the same time the successes of the standard four-
dimensional cosmology are preserved, and in some cases the treatment in the
framework of brane cosmology is even more satisfactory.

vii



Chapter 1

Introduction

The standard electroweak model is a mathematically-consistent renormaliz-
able field theory which predicts or is consistent with all experimental facts.
It successfully predicted the existence and form of the weak neutral current,
the existence and masses of the W and Z bosons, and the charm quark,
as necessitated by the GIM mechanism. The charged current weak interac-
tions, as described by the generalized Fermi theory, were successfully incor-
porated, as was quantum electrodynamics. When combined with quantum
chromodynamics for the strong interactions and general relativity for classi-
cal gravity, the standard model is almost certainly the approximately correct
description of nature down to at least 10−16cm, with the possible exception
of the Higgs sector. However, the theory has far too much arbitrariness to
be the final story. For example, the minimal version of the model has 21 free
parameters, assuming massless neutrinos and not counting electric charge
(Y ) assignments. Most physicists believe that this is just too much for the
fundamental theory. The complications of the standard model can also be
described in terms of a number of problems.

1.1 Gauge Problem

The standard model is a complicated direct product of three sub-groups,
SU(3)× SU(2)×U(1), with separate gauge couplings. There is no explana-
tion for why only the electroweak part is chiral (parity-violating). Similarly,
the standard model incorporates but does not explain another fundamental
fact of nature: charge quantization, namely why all particles have charges
which are multiples of e/3. This is important because it allows the electrical
neutrality of atoms (|qp| = |qe|). Possible explanations include: grand uni-
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Introduction

fied theories, the existence of magnetic monopoles, and constraints from the
absence or cancellation of anomalies.

1.2 Fermion Problem

All matter under ordinary terrestrial conditions can be constructed out of the
fermions (νe, e

−, u, d) of the first family. Yet we know from laboratory studies
that there are ≥ 3 families: (νµ, µ

−, c, s) and (ντ , τ
−, t, b) are heavier copies

of the first family with no obvious role in nature. The standard model gives
no explanation for the existence of these heavier families and no prediction
for their number. Furthermore, there is no explanation or prediction of the
fermion masses, which vary over at least five orders of magnitude, or of the
CKM mixings. There are many possible suggestions of new physics that
might shed light on this, including composite fermions; family symmetries;
radiative hierarchies, in which the fermion masses are generated at the loop-
level, with the lighter families requiring more loops; and the topology of
extra space-time dimensions, such as in superstring models. Despite all of
these ideas there is no compelling model and none of these yields detailed
predictions. The problem is just too complicated. Simple grand unified
theories don’t help very much with this, except for the prediction of mb in
terms of mτ in the simplest versions.

1.3 Higgs/hierarchy Problem

In the standard model one introduces an elementary Higgs field into the
theory to generate masses for the W , Z, and fermions. For the model to be
consistent the Higgs mass should not be too different from the W mass, M2

H =
O(M2

W ). If MH were to be larger than MW by many orders of magnitude
there would be a hierarchy problem, and the Higgs self-interactions would be
excessively strong. Combining theoretical arguments with laboratory limits
one obtains MH ∼< 1 TeV.

However, there is a complication. The tree-level (bare) Higgs mass re-
ceives quadratically-divergent corrections from loop diagrams. One finds

M2
H = (M2

H)bare + O(λ, g2, h2)Λ2, (1.1)

where Λ is the next higher scale in the theory. If there were no higher scale one
would simply interpret Λ as an ultraviolet cutoff and take the view that MH

is a measured parameter and that (MH)bare is not an observable. However,
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1.4. Strong CP Problem

the theory is presumably embedded in some larger theory that cuts off the
integral at the finite scale of the new physics. For example, if the next scale
is gravity then Λ is the Planck scale MP = G

−1/2
N ∼ 1019 GeV. If there is a

simple grand unified theory, one would expect Λ to be of order the unification
scale MX ∼ 1014 GeV. Hence, the natural scale for MH is O(Λ), which is much
larger than the expected value. There must be a fine-tuned and apparently
highly contrived cancelation between the bare value and the correction, to
more than 30 decimal places in the case of gravity. If the cutoff is provided by
a grand unified theory there is a separate hierarchy problem at tree-level. The
tree-level couplings between the Higgs field and the superheavy fields lead to
the expectation that MH is equal to the unification scale unless unnatural
fine-tunings are employed.

One solution to this Higgs/hierarchy problem is the possibility that the
W and Z bosons are composite. However, in this case one would apparently
eliminate the successes of the SU(2)×U(1) gauge theory. Another approach
is to eliminate elementary Higgs fields in favor of a dynamical mechanism
in which they are replaced by bound states of fermions. Technicolor and
composite Higgs models are in this category. The third possibility is super-
symmetry, which prevents large renormalizations by enforcing cancellations
between the various diagram contributions. However, most grand unified
versions do not explain why (MW /MX)2 is so small in the first place.

1.4 Strong CP Problem

Another fine-tuning problem is the strong CP problem. One can add an
additional term Θ

32π2 g
2
sFF̃ to the QCD lagrangian which breaks P , T and

CP symmetry. F̃µν = εµναβFαβ/2 is the dual field. This term, if present,
would induce an electric dipole moment dN for the neutron. The rather
stringent limits on the dipole moment lead to the upper bound Θ < 10−10.
The question is, therefore, why is Θ so small? It is not sufficient to just
say that it is zero because CP violation in the weak interactions leads to
a radiative correction or renormalization of Θ by O(10−3). Therefore, an
apparently contrived fine-tuning is needed to cancel this correction against
the bare value. Solutions include the possibility that CP violation is not
induced directly by phases in the Yukawa couplings, as is usually assumed in
the standard model, but is somehow violated spontaneously. Θ then would
be a calculable parameter induced at loop level, and it is possible to make Θ
sufficiently small. However, such models lead to difficult phenomenological
and cosmological problems. Alternately, Θ becomes unobservable if there is
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a massless u quark. However, most phenomenological estimates are not con-
sistent with mu = 0. Another possibility is the Peccei-Quinn mechanism, in
which an extra global U(1) symmetry is imposed on the theory in such a way
that Θ becomes a dynamical variable which is zero at the minimum of the
potential. Such models imply the existence of very light pseudoscalar par-
ticles called axions. Laboratory, astrophysical, and cosmological constraints
allow only the range 108 − 1012 GeV for the scale at which the above U(1)
symmetry is broken.

1.5 Graviton Problem

Gravity is not fundamentally unified with the other interactions in the stan-
dard model, although it is possible to graft on classical general relativity by
hand. However, this is not a quantum theory, and there is no obvious way to
generate one within the standard model context. In addition to the fact that
gravity is not unified and not quantized there is another difficulty, namely
the cosmological constant. The cosmological constant can be thought of as
energy of the vacuum. The energy density induced by spontaneous symmetry
breaking is some 50 orders of magnitude larger than the observational upper
limit. This implies the necessity of severe fine-tuning between the generated
and bare pieces, which do not have any a priori reason to be related. Possible
solutions include Kaluza-Klein and supergravity theories. These unify grav-
ity but do not solve the problem of quantum gravity or yield renormalizable
theories of quantum gravity, nor do they provide any obvious solution to the
cosmological constant problem. Superstring theories unify gravity and may
yield finite theories of quantum gravity and all the other interactions. It is
not clear whether or not they solve the cosmological constant problem.

1.6 Dark sector problem

On the other hand Cosmology, the science of the Universe, has its own Stan-
dard Model. It is the so-called Hot Big-Bang model. The expansion of the
Universe, the Bing-Bang Nucleosynthesis and the Cosmic Microwave Back-
ground Radiation have established the theoretical framework of Cosmology
(which is based essentially on the Theory of General Relativity and the Cos-
mological Principle, namely that the Universe is homogeneous and isotropic
on large scales) into the Standard Model of modern cosmology. In the last
decade or so we have entered an era of precision cosmology. The basic quan-
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tities have been measured and now what remains is to try to understand
them. What is surprising, is the fact that the Universe today seems to ex-
pand with an accelerating rate, while one would expect that because of the
attractive nature of gravity the universe should be decelerating. This means
that the dominant component in the universe is some strange “material”
with negative pressure, called Dark Energy. The rest of the universe consists
of photons, neutrinos (only a tiny fraction of the energy budget) and non-
relativistic matter, most of which is in some unknown non-baryonic form,
called Dark Matter. So we see that in its majority the Universe consists of
something that we do not know what it is. The nature and detailed charac-
teristics of dark matter and dark energy are the major theoretical challenges
for modern cosmology.

1.7 The brane-world idea

Recently it has been suggested that there might exist some extra spatial
dimensions. Of course this is not a new proposal. Instead it is essentially a
revival of the old Kaluza-Klein idea. In the traditional Kaluza-Klein sense
the extra dimensions are compactified on a small enough radius to evade
detection in the form of Kaluza-Klein modes. However now there is a different
setting where the extra dimensions could be large, under the assumption
that ordinary matter is confined onto a three-dimensional subspace, called
brane (more precisely “3-brane”, referring to the three spatial dimensions)
embedded in a higher dimensional space, called bulk. In fact the idea that
we might be living inside a defect embedded in a higher dimensional space
has already a long history. In the context of an ordinary higher dimensional
gauge field theory it was proposed that we might live on a codimension one
solitonic object. However, it was soon realized that in contrast to scalar and
spin-1/2 fields, it would be difficult to confine gauge fields on such an object.

The situation is drastically different in the context of type-I string theory.
A few developments led to an exciting possibility and renewed interest in
the whole idea. First, with the discovery of the D-branes as an essential
part of the spectrum in type-I string theory, one could conjecture that we
inhabit such a D-brane embedded in a ten-dimensional bulk. The usual
solitonic defect of field theory was thus replaced by an appropriate collection
of D-branes, which by construction confine the gauge fields, together with
all the ingredients of the standard model. All known matter and forces lie
on our brane-world, with the exception of gravity which acts in the bulk
space as well. It was however pointed out that the gravitational force on the
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brane was consistent with all laboratory and astrophysical data as long as
the extra dimensions were smaller than a characteristic scale. This led to
the exciting possibility of two extra dimensions in the sub-millimeter range.
Furthermore, it was demonstrated in the context of an appropriate effective
five-dimensional theory of gravity, that once we take into account the back
reaction of the brane energy-momentum onto the geometry of spacetime, the
graviton is effectively confined on the brane and Newton’s law is reproduced
to an excellent accuracy at large distances, even with a non-compact extra
dimension.

The present work comprises my research in the field of brane cosmology.
Brane-worlds open-up new ways to attack the Dark Matter, Dark Energy
problems and these were exploited in what follows. Our work is organized as
follows: In Part I, which includes chapters 2 and 3, we present the Theoretical
framework of our discussion. We introduce, briefly and for completeness, the
fundamentals of the Brane-World scenario, the Standard Models of particle
physics and of Cosmology, as well as some basic knowledge about Supersym-
metry. In Part II, the rest of the present work, we present our research in
the field of brane cosmology. In chapter 4 we discuss axino dark matter in
the brane-world scenario. We present sneutrino inflation and supersymmet-
ric hybrid inflation in chapters 5 and 6 respectively. The role of brane-bulk
energy exchange and a concrete model with our universe as a global late-time
attractor is discussed in the seventh chapter. We summarize our results and
finish with some conclusions in the last chapter.
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Chapter 2

The brane-world scenario

In the present section we shall describe various realizations of the brane-world
idea [1].

2.1 Randall-Sundrum localization

We will consider the case of a five-dimensional bulk with coordinates xM =
(xµ, y), µ = 0, 1, 2, 3. We also consider a three-brane located at y = 0. Apart
from the five-dimensional Einstein term we also have a constant energy den-
sity (brane tension) on the brane, and a non-vanishing cosmological constant
in the bulk. We can summarize the effective action as

S =

∫
dy d4x

√
g(M3R− Λ)−

∫
d4ξdyδ(y)

√
ĝVb (2.1)

where ĝab is the induced metric on the brane ĝab = gMN
∂xM

∂ξa
∂xN

∂ξb . We will
pick a static gauge for the brane coordinates ξa = xa. To simplify matters,
we will also consider an orbifold structure under y → −y. Thus, the two
parts of space-time separated by the brane are mirror symmetric around the
position of the brane.

We would like to solve the equations of motion stemming from action
(2.1). Let us first seek solutions invariant under the orbifold action which
are flat along the brane, and depend only on the fifth coordinate y.

The ansatz for the five-dimensional metric is

ds2 = e2A(y)dxµdxµ + dy2 (2.2)

In order for the flat-brane ansatz to provide a solution, the two vacuum

8



2.1. Randall-Sundrum localization

energies must be related
V 2

b = −12ΛM3 (2.3)

This implies that the vaccum energy Λ must be negative. We will also define
the RS (AdS) energy scale

K = − Λ

Vb

(2.4)

The gravitational equations have the solution

A(y) = −K|y| (2.5)

The space on the one side of the brane is a slice of AdS5 patched-up with
its mirror image at y = 0. Indeed defining r = eKy for y > 0 and scaling
xµ → xµ/K we obtain

ds2 =
1

K2r2
(dr2 + dxµdxµ), r ≥ 1 (2.6)

which is the r ≥ 1 slice of AdS5 in Poincare coordinates with AdS energy
scale K. Note that the orbifold has removed the boundary of AdS5 at r = 0.

An interesting further question concerns the effective interactions medi-
ated by gravity in this background. To find them we must study the small
fluctuations around this solution. Direct variation of the equations along the
brane longitudinal directions and gauge fixing gives a scalar equation for the
static graviton propagator

M3(−e−2A∇2
x − ∂2

y − 4A′∂y)G(x; y) = δ(y)δ(3)(x) (2.7)

This can be Fourier transformed along the xi coordinates obtaining

M3(−e−2A~p2 − ∂2
y − 4A′∂y)G(~p; y) = δ(y) (2.8)

Imposing the symmetry G(~p, y) = G(~p,−y) we obtain the solution

G(y, ~p) = Bw2K2(
wp

K
) (2.9)

where p = |~p|, w = eK|y|, K2 is the standard Bessel function and

B =
1

2M3pK1(
p
K

)
(2.10)

We can now investigate the force mediated by the graviton fluctuations
on the brane by evaluating

G(~p, 0) =
1

2M3p

K2(
p
K

)

K1(
p
K

)
(2.11)

9



The brane-world scenario

The static gravitational potential between two unit sources on the brane
(upon transforming back to configuration space) becomes

V (r) =
1

2π2r

∫ ∞

0

dppsin(pr)G(~p, 0) =
K

4πM3r
+ δV (r) (2.12)

with

δV (r) =
K

4πM3r

∫ ∞

0

dq sin(qr)
K0(q)

K1(q)
(2.13)

where here r2 = ~x2 is the spatial distance on the brane. We can now compute
the correction to the gravitational potential for two extreme cases.

For Kr À 1 the main contribution to the integral (2.13) comes from
small q and we obtain

δV (r) ' 1

8πKM3r2
(2.14)

Thus, at long distances gravity is four-dimensional with sub-leading correc-
tions. The effective four-dimensional Planck scale is M2

p = M3/K.

For Kr ¿ 1 the main contribution to the integral comes from large q
and we obtain

δV (r) ' 1

4π2M3r2
(2.15)

Thus, at short distances gravity is five-dimensional. This is completely anal-
ogous to compactification with radius 1/K. The RS setup is thus an alterna-
tive mechanism to compactification for transforming five-dimensional gravity
into four-dimensional at large distances.

2.2 Brane-Induced gravity

We now describe an alternative realization of four-dimensional gravity that
comes under the name of brane-induced gravity. First we consider the sim-
plest case of a five-dimensional bulk with coordinates xM = (xµ, y), µ =
0, 1, 2, 3 . We also consider a three brane located at y = 0. Apart from
the five-dimensional Einstein term we would like to study the effects of a
four-dimensional Einstein term localized on the brane. The relevant action
is

M3

∫
dy d4x

√
gR + rc

∫
d4ξdyδ(y)

√
ĝR̂ (2.16)

where ĝab is the induced metric on the brane and R̂ the induced Ricci scalar.
We also parameterized the coefficient of the four-dimensional term in terms
of a new length scale rc.
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We are interested in the gravitational interaction, generated by the action
(2.16), as perceived on the brane. We will evaluate first the static propagator
of (2.16). Although there is interesting physics in the tensor structure, we
will neglect it for the moment and consider instead the scalar propagator.
Placing the source on the brane (at the origin) we must solve

M3(∇2
3 + ∂2

y + rcδ(y)∇2
3)G(~x, y) = −δ(y)δ(3)(x) (2.17)

Fourier transforming in the 3-spatial coordinates ~x we obtain

M3(~p2 − ∂2
y + rcδ(y)~p2)G(~p, y) = δ(y) (2.18)

The solution can be found by first solving the equations away from the po-
sition of the brane, and then matching along y = 0. The result is

G(~p, y) =
e−|~p||y|

M3(2|~p|+ rc~p2)
(2.19)

For the source and the probe being on the brane y = 0 the static propagator
becomes

G(~p, 0) =
1

M3(2|~p|+ rc~p2)
(2.20)

By Fourier transforming back we obtain the static gravitational potential

V (r) =
1

2π2r

∫ ∞

0

dppsin(pr)G(~p, 0) (2.21)

We are now ready to study the behavior of the gravitational force in various
regimes.

For long distances prc ¿ 1 the potential can be approximated as

V (r) ∼ 1

M3r2
(2.22)

This is the behavior of five-dimensional gravity with Planck scale M .

For short distances prc À 1 we obtain

V (r) ∼ 1

M3rcr
(2.23)

This is the behavior of four-dimensional gravity with effective Planck scale
M2

p = M3rc. Thus, we have a situation which is inverted with respect to
normal compactification: four-dimensional gravity at short distances and
five-dimensional gravity at long distances.

11



The brane-world scenario

2.3 Randall-Sundrum plus brane–induced grav-

ity

In this subsection we will investigate what happens when both mechanisms
are at work simultaneously. The relevant effective action now is

∫
dy d4x

√
g(M3R− Λ) +

∫
d4ξdyδ(y)

√
ĝ(M3rcR̂− Vb) (2.24)

The crucial observation here is that since the RS solution is flat on the brane
, it is not affected by the presence of the localized Einstein term. Thus with
the RS fine-tuning V 2

b = −12ΛM3 the solution (2.2), (2.5) is still valid.

Now the equation for the static (scalar) graviton propagator is modified
to

M3(−e−2A∇2
x − ∂2

y − 4A′∂y − rcδ(y)∇2
x)G(x; y) = δ(y)δ(3)(x) (2.25)

This can be Fourier transformed along the xi coordinated obtaining

M3(−e−2Ap2 − ∂2
y − 4A′∂y + rcδ(y)p2)G(~p; y) = δ(y) (2.26)

Imposing the symmetry G(~p,−y) = G(~p, y) we obtain the solution

G(p, y) = Bw2K2(
wp

K
) (2.27)

where the constant B is given by

B =
1

M3p(2K1(
p
K

) + rcpK2(
p
K

))
(2.28)

We investigate the force mediated by the graviton fluctuations on the
brane by evaluating

G(~p, 0) =
1

M3p

K2(
p
K

)

2K1(
p
K

) + rcpK2(
p
K

)
(2.29)

We distinguish two separated cases.

For Krc À 1 the potential exhibits four-dimensional behavior ∼ 1/r for
all distances, with an effective Planck scale M2

pl ' M3rc.

For Krc ¿ 1 we find five-dimensional behavior ∼ 1/r2 for the potential
for distances rc ¿ r ¿ 1/K, while for r À 1/K or r ¿ rc the potential
displays four-dimensional behavior. For short distances the Planck scale is
M2

p ' M3rc, while for long distances the effective Planck scale is M̃2
p '

M3/K.
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Chapter 3

Preliminaries

3.1 The Standard Model of particle physics

and supersymmetry

3.1.1 The SM of particle physics

The Standard Model Lagrangian

The Standard Model [2] is a gauge theory of the microscopic interactions.
The strong interaction part is a gauge theory, based on the gauge group
SU(3) and is described by the Lagrangian

LSU3 = −1

4
F i

µνF
iµν +

∑
r

q̄rαi 6Dα
β qβ

r (3.1)

where
F i

µν = ∂µG
i
ν − ∂νG

i
µ − gsfijk Gj

µ Gk
ν (3.2)

is the field strength tensor for the gluon fields Gi
µ, i = 1, · · · , 8, with gs

the QCD gauge coupling constant, and the structure constants fijk (i, j, k =
1, · · · , 8) are defined by

[λi, λj] = 2ifijkλ
k (3.3)

where the SU(3) λ matrices are defined in Table 3.1. The F 2 term leads
to three and four-point gluon self-interactions. The second term in LSU3

is the gauge covariant derivative for the quarks: qr is the rth quark flavor,
α, β = 1, 2, 3 are color indices, and

Dα
µβ = (Dµ)αβ = ∂µδαβ + igs Gi

µ Li
αβ (3.4)

13
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λi =

(
τ i 0
0 0

)
, i = 1, 2, 3

λ4 =




0 0 1
0 0 0
1 0 0


 λ5 =




0 0 −i
0 0 0
i 0 0




λ6 =




0 0 0
0 0 1
0 1 0


 λ7 =




0 0 0
0 0 −i
0 i 0




λ8 = 1√
3




1 0 0
0 1 0
0 0 −2




Table 3.1: The SU(3) matrices.

where the quarks transform according to the triplet representation matrices
Li = λi/2. The color interactions are diagonal in the flavor indices, but in
general change the quark colors. They are purely vector (parity conserving).
There are no bare mass terms for the quarks in (3.1). These would be allowed
by QCD alone, but are forbidden by the chiral symmetry of the electroweak
part of the theory. The quark masses will be generated later by spontaneous
symmetry breaking. There are in addition effective ghost and gauge-fixing
terms which enter into the quantization of both the SU(3) and electroweak
lagrangians, and there is the possibility of adding an (unwanted) term which
violates CP invariance.

The electroweak theory is based on the SU(2) × U(1) gauge group. Its
Lagrangian is

LSU2×U1 = Lgauge + Lϕ + Lf + LYukawa (3.5)

The gauge part is

Lgauge = −1

4
F i

µνF
µνi − 1

4
BµνB

µν (3.6)

where W i
µ, i = 1, 2, 3 and Bµ are respectively the SU(2) and U(1) gauge

fields, with field strength tensors

Bµν = ∂µBν − ∂νBµ

Fµν = ∂µW
i
ν − ∂νW

i
µ − gεijkW

j
µW k

ν (3.7)

where g(g′) is the SU(2) (U(1)) gauge coupling and εijk is the totally antisym-
metric symbol. The SU(2) fields have three and four-point self-interactions.
B is a U(1) field associated with the weak hypercharge Y = Q − T3, where

14



3.1. The Standard Model of particle physics and supersymmetry

Q and T3 are respectively the electric charge operator and the third compo-
nent of weak SU(2). It has no self-interactions. The B and W3 fields will
eventually mix to form the photon and Z boson.

The scalar part of the lagrangian is

Lϕ = (Dµϕ)†Dµϕ− V (ϕ) (3.8)

where ϕ =

(
ϕ+

ϕ0

)
is a complex Higgs scalar, which is a doublet under

SU(2) with U(1) charge Yϕ = +1
2
. The gauge covariant derivative is

Dµϕ =

(
∂µ + ig

τ i

2
W i

µ +
ig′

2
Bµ

)
ϕ (3.9)

where the τ i are the Pauli matrices. The square of the covariant derivative
leads to three and four-point interactions between the gauge and scalar fields.

V (ϕ) is the Higgs potential. The combination of SU(2)×U(1) invariance
and renormalizability restricts V to the form

V (ϕ) = +µ2ϕ†ϕ + λ(ϕ†ϕ)2 (3.10)

For µ2 < 0 there will be spontaneous symmetry breaking. The λ term
describes a quartic self-interaction between the scalar fields. Vacuum stability
requires λ > 0.

The fermion term is

LF =
F∑

m=1

(
q̄0
mLi 6Dq0

mL + l̄0mLi 6Dl0mL + ū0
mRi 6Du0

mR

+d̄0
mRi 6Dd0

mR + ē0
mRi 6De0

mR

)
(3.11)

In (3.11) m is the family index, F ≥ 3 is the number of families, and L(R)
refer to the left (right) chiral projections ψL(R) ≡ (1 ∓ γ5)ψ/2. The left-
handed quarks and leptons

q0
mL =

(
u0

m

d0
m

)

L

l0mL =

(
ν0

m

e−0
m

)

L

(3.12)

transform as SU(2) doublets, while the right-handed fields u0
mR, d0

mR, and
e−0

mR are singlets. Their U(1) charges are YqL
= 1

6
, YlL = −1

2
, YψR

= qψ. The
superscript 0 refers to the weak eigenstates, i.e. fields transforming according
to definite SU(2) representations. They may be mixtures of mass eigenstates
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(flavors). The quark color indices α = r, g, b have been suppressed. The
gauge covariant derivatives are

Dµq
0
mL =

(
∂µ +

ig

2
τ iW i

µ + i
g′

6
Bµ

)
q0
mL

Dµl
0
mL =

(
∂µ +

ig

2
τ iW i

µ − i
g′

2
Bµ

)
l0mL

Dµu
0
mR =

(
∂µ + i

2

3
g′Bµ

)
u0

mR

Dµd
0
mR =

(
∂µ − i

g′

3
Bµ

)
d0

mR

Dµe
0
mR = (∂µ − ig′Bµ) e0

mR (3.13)

from which one can read off the gauge interactions between the W and B
and the fermion fields. The different transformations of the L and R fields
(i.e. the symmetry is chiral) is the origin of parity violation in the elec-
troweak sector. The chiral symmetry also forbids any bare mass terms for
the fermions.

The last term in (3.5) is

−LYukawa =
F∑

m,n=1

[
Γu

mnq̄0
mLϕ̃u0

mR + Γd
mnq̄0

mLϕd0
nR + Γe

mnl̄0mnϕe0
nR

]
+ H.C.

(3.14)
where the matrices Γmn describe the Yukawa couplings between the single
Higgs doublet, ϕ, and the various flavors m and n of quarks and leptons.
One needs representations of Higgs fields with Y = 1

2
and −1

2
to give masses

to the down quarks, the electrons, and the up quarks. The representation
ϕ† has Y = −1

2
, but transforms as the 2∗ rather than the 2. However, in

SU(2) the 2∗ representation is related to the 2 by a similarity transformation,

and ϕ̃ ≡ iτ 2ϕ† =

(
ϕ0†

−ϕ−

)
transforms as a 2 with Yϕ̃ = −1

2
. All of the

masses can therefore be generated with a single Higgs doublet if one makes
use of both ϕ and ϕ̃. The fact that the fundamental and its conjugate
are equivalent does not generalize to higher unitary groups. Furthermore,
in supersymmetric extensions of the standard model supersymmetry forbids
the use of a single Higgs doublet in both ways in the lagrangian, and one
must add a second Higgs doublet. Similar statements apply to most theories
with an additional U(1) gauge factor, i.e. a heavy Z ′ boson.
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3.1. The Standard Model of particle physics and supersymmetry

Spontaneous Symmetry Breaking

Gauge invariance (and therefore renormalizability) does not allow mass terms
in the lagrangian for the gauge bosons or for chiral fermions. Massless gauge
bosons are not acceptable for the weak interactions, which are known to be
short-ranged. Hence, the gauge invariance must be broken spontaneously,
which preserves the renormalizability. The idea is simply that the lowest
energy (vacuum) state does not respect the gauge symmetry and induces
effective masses for particles propagating through it.

Let us introduce the complex vector

v = 〈0|ϕ|0〉 = constant (3.15)

which has components that are the vacuum expectation values of the various
complex scalar fields. v is determined by rewriting the Higgs potential as a
function of v, V (ϕ) → V (v), and choosing v such that V is minimized. That
is, we interpret v as the lowest energy solution of the classical equation of
motion. The quantum theory is obtained by considering fluctuations around
this classical minimum, ϕ = v + ϕ′.

The single complex Higgs doublet in the standard model can be rewritten
in a Hermitian basis as

ϕ =

(
ϕ+

ϕ0

)
=

(
1√
2
(ϕ1 − iϕ2)

1√
2
(ϕ3 − iϕ4

)
(3.16)

where ϕi = ϕ†i represent four hermitian fields. In this new basis the Higgs
potential becomes

V (ϕ) =
1

2
µ2

(
4∑

i=1

ϕ2
i

)
+

1

4
λ

(
4∑

i=1

ϕ2
i

)2

(3.17)

which is clearly O4 invariant. Without loss of generality we can choose the
axis in this four-dimensional space so that 〈0|ϕi|0〉 = 0, i = 1, 2, 4 and
〈0|ϕ3|0〉 = ν. Thus,

V (ϕ) → V (v) =
1

2
µ2ν2 +

1

4
λν4 (3.18)

which must be minimized with respect to ν. For µ2 > 0 the minimum occurs
at ν = 0. That is, the vacuum is empty space and SU(2)×U(1) is unbroken
at the minimum. On the other hand, for µ2 < 0 the ν = 0 symmetric point is
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unstable, and the minimum occurs at some nonzero value of ν which breaks
the SU(2)× U(1) symmetry. The point is foun d by requiring

V ′(ν) = ν(µ2 + λν2) = 0 (3.19)

which has the solution ν = (−µ2/λ)
1/2

at the minimum. (The solution for
−ν can also be transformed into this standard form by an appropriate O4

transformation.) The dividing point µ2 = 0 cannot be treated classically. It
is necessary to consider the one loop corrections to the potential, in which
case it is found that the symmetry is again spontaneously broken.

We are interested in the case µ2 < 0, for which the Higgs doublet is

replaced, in first approximation, by its classical value ϕ → 1√
2

(
0
ν

)
≡ v.

The generators L1, L2, and L3−Y are spontaneously broken (e.g. L1v 6= 0).
On the other hand, the vacuum carries no electric charge (Qv = (L3 +Y )v =
0), so the U1Q of electromagnetism is not broken. Thus, the electroweak
SU(2)× U(1) group is spontaneously broken down, SU(2)× U1Y → U1Q.

To quantize around the classical vacuum, write ϕ = v + ϕ′, where ϕ′ are
quantum fields with zero vacuum expectation value. To display the physical
particle content it is useful to rewrite the four hermitian components of ϕ′

in terms of a new set of variables using the Kibble transformation:

ϕ =
1√
2
ei
P

ξiLi

(
0

ν + H

)
(3.20)

H is a hermitian field which will turn out to be the physical Higgs scalar. If
we had been dealing with a spontaneously broken global symmetry the three
hermitian fields ξi would be the massless pseudoscalar Goldstone bosons that
are necessarily associated with broken symmetry generators. However, in a
gauge theory they disappear from the physical spectrum. To see this it is
useful to go to the unitary gauge

ϕ → ϕ′ = e−i
P

ξiLi

ϕ =
1√
2

(
0

ν + H

)
(3.21)

in which the Goldstone bosons disappear. In this gauge, the scalar covariant
kinetic energy term takes the simple form

(Dµϕ)†Dµϕ =
1

2
(0 ν)

[
g

2
τ iW i

µ +
g′

2
Bµ

]2 (
0
ν

)
+ H terms

→ M2
W W+µW−

µ +
M2

Z

2
ZµZµ + H terms (3.22)
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3.1. The Standard Model of particle physics and supersymmetry

where the kinetic energy and gauge interaction terms of the physical H par-
ticle have been omitted. Thus, spontaneous symmetry breaking generates
mass terms for the W and Z gauge bosons

W± =
1√
2
(W 1 ∓ iW 2)

Z = − sin θW B + cos θW W 3 (3.23)

The photon field
A = cos θW B + sin θW W 3 (3.24)

remains massless. The masses are

MW =
gν

2
(3.25)

and

MZ =
√

g2 + g′2
ν

2
=

MW

cos θW

(3.26)

where the weak angle is defined by tan θW ≡ g′/g. One can think of the
generation of masses as due to the fact that the W and Z interact constantly
with the condensate of scalar fields and therefore acquire masses, in analogy
with a photon propagating through a plasma. The Goldstone boson has
disappeared from the theory but has reemerged as the longitudinal degree of
freedom of a massive vector particle.

It can be shown that GF /
√

2 ∼ g2/8M2
W , where GF = 1.16639(2) ×

10−5 GeV −2 is the Fermi constant determined by the muon lifetime. The
weak scale ν is therefore

ν = 2MW /g ' (
√

2GF )−1/2 ' 246 GeV (3.27)

Similarly, g = e/ sin θW , where e is the electric charge of the positron. Hence,
to lowest order

MW = MZ cos θW ∼ (πα/
√

2GF )1/2

sin θW

(3.28)

where α ∼ 1/137.036 is the fine structure constant. Using sin2 θW ∼ 0.23
from neutral current scattering, one expects MW ∼ 78 GeV , and MZ ∼
89 GeV . (These predictions are increased by ∼ (2− 3) GeV by loop correc-
tions.) The W and Z were discovered at CERN by two groups (UA1 and
UA2) in 1983. Subsequent measurements of their masses and other proper-
ties have been in perfect agreement with the standard model expectations
(including the higher-order corrections), as is described in the articles of by
Schaile and Einsweiler.
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After symmetry breaking the Higgs potential becomes

V (ϕ) = −µ4

4λ
− µ2H2 + λνH3 +

λ

4
H4 (3.29)

The third and fourth terms represent the cubic and quartic interactions of
the Higgs scalar. The second term represents a (tree-level) mass

MH =
√
−2µ2 =

√
2λν (3.30)

The weak scale is given in (3.27), but the quartic Higgs coupling λ is un-
known, so MH is not predicted. A priori, λ could be anywhere in the range
0 ≤ λ < ∞. There is now an experimental lower limit MH ≥ 60 GeV from
LEP. Otherwise, the decay Z → Z∗H would have been observed (There are
also theoretical lower limits on MH in the ∼ 10 GeV range, depending on
mt, when higher-order corrections are included).

3.1.2 Basics of Supersymmetry

The motivation for supersymmetry

It is widely accepted that the Standard Model of gauge interactions describ-
ing the laws of physics at the weak scale is extraordinarily successful. The
agreement between theory and experimental data is very good. Yet, we
believe that the present structure is incomplete. Only to remind a few draw-
backs, the theory has too many parameters, it does not describe the fermion
masses and why the number of generations is three. It contains fundamental
scalars, something difficult to reconcile with our current understanding of
non-supersymmetric field theory. Finally, it does not incorporate gravity.

It is tempting to speculate that a new (but yet undiscovered) symme-
try, supersymmetry [3], may provide answers to these fundamental questions.
Supersymmetry is the almost universally accepted framework for construct-
ing extensions of the Standard Model. Supersymmetry can be formulated
either as a global or a local symmetry. In the latter case it includes gravity,
and is therefore called supergravity. Supersymmetry is the only framework
in which we seem to be able to understand light fundamental scalars. It
addresses the question of parameters: first, unification of gauge couplings
works much better with than without supersymmetry; second, it is easier to
attack questions such as fermion masses in supersymmetric theories, in part
simply due to the presence of fundamental scalars. Supersymmetry seems to
be intimately connected with gravity. So there are a number of theoretical
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3.1. The Standard Model of particle physics and supersymmetry

arguments that suggest that nature might be supersymmetric, and that su-
persymmetry might manifest itself at energies of order the weak interaction
scale.

The supersymmetry algebra and supermultiplets

We begin with some basics, that apply to both global supersymmetry and
supergravity.

In the low-energy regime, phenomenology requires the type of supersym-
metry known as N = 1 (one generator). In this section, we present some
features of N = 1 supersymmetric theories, that are likely to be relevant for
inflation.

The basic supersymmetry algebra is given by

{Qα, Qβ̇} = 2σµ

αβ̇
Pµ (3.31)

where Qα and Qβ̇ are the supersymmetry generators (bars stand for conju-
gate), α and β run from 1 to 2 and denote the two-component Weyl spinors
(quantities with dotted indices transform under the (0, 1

2
) representation of

the Lorentz group, while those with undotted indices transform under the
(1

2
, 0) conjugate representation). σµ is a matrix four vector, σµ = (−1, ~σ)

and Pµ is the generator of spacetime displacements (four-momentum).

The chiral and vector superfields are two irreducible representations of
the supersymmetry algebra containing fields of spin less than or equal to one.
Chiral fields contain a Weyl spinor and a complex scalar; vector fields contain
a Weyl spinor and a (massless) vector. In superspace a chiral superfield may
be expanded in terms of the Grassmann variable θ (the fermionic coordinates)

φ(x, θ) = φ(x) +
√

2θψ(x) + θ2F (x) (3.32)

where θ2 ≡ εαβθαθβ. Here x denotes a point in spacetime, φ(x) is the complex
scalar, ψ the fermion, and F is an auxiliary field. As in this expression, we
shall generally use the same symbol to represent a superfield and its scalar
component. Under a supersymmetry transformation with anticommuting
parameter ζ, the component fields transform as

δφ =
√

2ζψ (3.33)

δψ =
√

2ζF +
√

2iσµζ̄∂µφ (3.34)

δF = −
√

2i∂µψσµζ̄ (3.35)
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Here and in the following, for any generic two-component Weyl spinor λ, λ̄
indicates the complex conjugate of λ. For a gauge theory one has to introduce
vector superfields and the physical content is most transparent in the Wess-
Zumino gauge. In this gauge and for the simplest case of an abelian group
U(1), the vector superfield may be written as

V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ + 1
2
θ2θ̄2D (3.36)

Here Aµ is the gauge field, λα is the gaugino, and D is an auxiliary field.
The analog of the gauge invariant field strength is a chiral field:

Wα = −iλα + θαD − i
2
(σµσ̄νθ)αFµν + θ2σµ

αβ̇
∂µλ̄

β̇ (3.37)

where Fµν = ∂µAν − ∂νAµ, and where σ̄µ = (−1,−~σ). Regarding the super-
symmetry transformations, let us just note that

δλ = iζD + ζσµσ̄νFµν (3.38)

Global supersymmetry is defined as invariance under these transforma-
tions with ζ independent of spacetime position, and local supersymmetry
(supergravity) as invariance with ζ depending on spacetime position. In
the latter case one has to introduce another supermultiplet containing the
graviton and the gravitino.

Global supersymmetry may be regarded as a limit of supergravity, in
which roughly speaking gravity is made negligible by taking MPl to infinity.
For most purposes it is a good approximation if the vevs of all relevant scalar
fields and auxiliary fields are much less than MPl.

The Lagrangian of global supersymmetry

We focus first on global supersymmetry, with the usual restriction that it be
renormalizable.

To write down the action for a set of chiral superfields, φi, transforming
in some representation of a gauge group G, one introduces, for each gauge
generator, a vector superfield, V a. Defining the matrix V = T aVa, where
T a are the hermitian generators of the gauge group G in the representation
defined by the scalar fields and excluding the possible Fayet-Iliopoulos term
to be discussed later, the most general renormalizable lagrangian, written in
superspace, is then

L =
∑

n

∫
d2θd2θ̄φ†ne

V φn +
1

4k

∫
d2θW 2

α +

∫
d2θW (φn) + h.c. (3.39)
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where in the adjoint representation Tr(T aT b) = kδab and W (φn(x, θ)) is a
fundamental object known as superpotential. The corresponding function of
the scalar components φn(x), denoted by the same name and symbol, is a
holomorphic function of the φn. For simplicity, we shall pretend that there is
a single gauge U(1) interaction, with coupling constant g. This is adequate
since such an interaction is the only one that we consider in detail. (To be
precise, we consider a U(1) with a Fayet-Iliopoulos term.) In the case of
several U(1)’s, there are no cross-terms in the potential from the D-terms,
i.e. VD is simply expressed as

∑
n(VD)n.

To write this down in terms of component fields, we need the covariant
derivative

Dµ = ∂µ − i

2
gAµ (3.40)

In terms of the component fields, the lagrangian takes the form:

L =
∑

n

(
Dµφ

∗
nDµφn + iDµψ̄nσ̄µψn + |Fn|2

)

− 1

4
F 2

µν − iλσµ∂µλ̄ +
1

2
D2 +

g

2
D

∑
n

qnφ∗nφn

−
[
i
∑

n

g√
2
ψ̄nλ̄φn −

∑
nm

1

2

∂2W

∂φn∂φm

ψnψm

+
∑

n

Fn

(
∂W

∂φn

)]
+ c.c. (3.41)

At the end of the second line, qn are the U(1)-charges of the fields φn. The
equations of motion for the auxiliary fields Fn and D are the constraints:

Fn = −
(

∂W

∂φn

)∗
(3.42)

D = −g

2

∑
n

qn|φn|2 (3.43)

Eq. (3.41) contains the gauge invariant kinetic terms for the various
fields, which specify their gauge interactions. It also contains, after having
made use of Eqs. (3.42) and (3.43), the scalar field potential,

V = VF + VD (3.44)

VF ≡
∑

n

|Fn|2 (3.45)

VD ≡ 1

2
D2 (3.46)
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This separation of the potential into an F term and a D term is crucial
for inflation model-building, especially when it is generalized to the case of
supergravity.

The potential specifies the masses of the scalar fields, and their interac-
tions with each other. The first term in the third line specifies the interactions
of gaugino and scalar fields, while the second specifies the masses of the chi-
ral fermions and their interactions with the scalars. All of these non-gauge
interactions are called Yukawa couplings.

To have a renormalizable theory, W is at most cubic in the fields, corre-
sponding to a potential which is at most quartic.

From the above expressions, in particular Eq. (3.45), one sees that the
overall phase of W is not physically significant. An internal symmetry can
either leave W invariant, or alter its phase. The latter case corresponds to
what is called an R-symmetry. Because W is holomorphic, the internal sym-
metries restrict its form much more than is the case for the actual potential
V . In particular, terms in W of the form 1

2
mφ2

1 or mφ1φ2, which would
generate a mass term m2|φ1|2 in the potential, are usually forbidden.1 As
a result, scalar particles usually acquire masses only from the vevs of scalar
fields (i.e. from the spontaneous breaking of an internal symmetry) and from
supersymmetry breaking. The same applies to the spin-half partners of scalar
fields, with the former contribution the same in both cases.

In the case of a U(1) gauge symmetry, one can add to the above la-
grangian what is called a Fayet-Iliopoulos term

−2ξ

∫
d2θd2θ̄ V (3.47)

This corresponds to adding a contribution −ξ to the D field, so that (3.43)
becomes

D = −g

2

∑
n

qn|φn|2 − ξ (3.48)

The D term of the potential therefore becomes

VD =
1

2

(
g

2

∑
n

qn|φn|2 + ξ

)2

(3.49)

From now on, we shall use a more common notation, where ξ and the

1An exception is the µ term of the MSSM, µHUHD, which gives mass to the Higgs
fields.
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charges are redefined so that

VD =
1

2
g2

(∑
n

qn|φn|2 + ξ

)2

(3.50)

This is equivalent to

D = −g

(∑
n

qn|φn|2 + ξ

)
(3.51)

A Fayet-Iliopoulos term may be present in the underlying theory from the
very beginning, or appears in the effective theory after some heavy degrees
of freedom have been integrated out.

Spontaneously broken global susy

Global supersymmetry breaking may be either spontaneous or explicit. How-
ever here we shall discuss only the first case. For spontaneous breaking, the
lagrangian is supersymmetric as given in the last subsection. But the gen-
erators Qα fail to annihilate the vacuum. Instead, they produce a spin-half
field, which may be either a chiral field ψα or a gauge field λα. The con-
dition for spontaneous susy breaking is therefore to have a nonzero vacuum
expectation value for {Qα, ψβ} or {Qα, λβ}.

The former quantity is defined by Eq. (3.34), and the latter by Eq. (3.38).
The quantities ∂µφ and Fµν contain derivatives of fields, and are supposed
to vanish in the vacuum. It follows that susy is spontaneously broken if, and
only if, at least one of the auxiliary fields Fn or D has a non-vanishing vev.

In the true vacuum, one defines the scale MS of global supersymmetry
breaking by

M4
S =

∑
n

|Fn|2 +
1

2
D2 (3.52)

or equivalently

M4
S = V (3.53)

(In the simplest case D vanishes and there is just one Fn.)

When we go to supergravity, part of V is still generated by the super-
symmetry breaking terms, but there is also a contribution −3|W |2/M2

Pl. This
allows V to vanish in the true vacuum as is (practically) demanded by ob-
servation.
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During inflation, V is positive so the negative term is smaller than the
susy-breaking terms. In most models of inflation it is negligible. In any case,
V is at least as big as the susy breaking term, so the search for a model of
inflation is also a search for a susy-breaking mechanism in the early Universe.

Spontaneous symmetry breaking can be either tree-level (already present
in the lagrangian) or dynamical (generated only by quantum effects like con-
densation). The spontaneous breaking in general breaks the equality between
the scalar and spin-1

2
masses, in each chiral supermultiplet. But at tree level

the breaking satisfies a simple relation, which can easily be derived from the
lagrangian (3.41). Ignoring mass mixing for simplicity, one finds in the case
of symmetry breaking by an F -term,

∑
n

(
m2

n1 + m2
n2 − 2m2

nf

)
= 0 (3.54)

Here n labels the chiral supermultiplets, mnf is the fermion mass while mn1

and mn2 are the scalar masses. In the case of symmetry breaking by a D
term, coming from a U(1), the right hand side of Eq. (3.54) becomes DTrQ.
But in order to cancel gauge anomalies, it is strongly desirable that TrQ = 0
which recovers Eq. (3.54).

3.2 The Standard Model of Cosmology, the

early Universe and inflation

3.2.1 The SM of cosmology

The Robertson-Walker Metric

Cosmology [4] as the application of general relativity (GR) to the entire
universe would seem a hopeless endeavor were it not for a remarkable fact –
the universe is spatially homogeneous and isotropic on the largest scales.

“Isotropy” is the claim that the universe looks the same in all directions.
Direct evidence comes from the smoothness of the temperature of the cosmic
microwave background. “Homogeneity” is the claim that the universe looks
the same at every point. It is harder to test directly, although some evidence
comes from number counts of galaxies. More traditionally, we may invoke the
“Copernican principle,” that we do not live in a special place in the universe.
Then it follows that, since the universe appears isotropic around us, it should
be isotropic around every point; and a basic theorem of geometry states that
isotropy around every point implies homogeneity.
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3.2. The Standard Model of Cosmology, the early Universe and inflation

We may therefore approximate the universe as a spatially homogeneous
and isotropic three-dimensional space which may expand (or, in principle,
contract) as a function of time. The metric on such a spacetime is necessarily
of the Robertson-Walker (RW) form.

Therefore, the most general spacetime metric consistent with homogene-
ity and isotropy is

ds2 = −dt2 + a2(t)
[
dρ2 + f 2(ρ)

(
dθ2 + sin2 θdφ2

)]
(3.55)

where the three possibilities for f(ρ) are

f(ρ) = {sin(ρ), ρ, sinh(ρ)} (3.56)

This is a purely geometric fact, independent of the details of general relativ-
ity. We have used spherical polar coordinates (ρ, θ, φ), since spatial isotropy
implies spherical symmetry about every point. The time coordinate t, which
is the proper time as measured by a comoving observer (one at constant spa-
tial coordinates), is referred to as cosmic time, and the function a(t) is called
the scale factor.

There are two other useful forms for the RW metric. First, a simple
change of variables in the radial coordinate yields

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(3.57)

where

k =





+1 if f(ρ) = sin(ρ)
0 if f(ρ) = ρ
−1 if f(ρ) = sinh(ρ)

(3.58)

Geometrically, k describes the curvature of the three-dimensional space.
k = +1 corresponds to positively curved spatial sections (locally isometric
to 3-spheres); k = 0 corresponds to local flatness, and k = −1 corresponds
to negatively curved (locally hyperbolic) spatial sections.

Note that we have not chosen a normalization such that a0 = 1. We
are not free to do this and to simultaneously normalize |k| = 1, without
including explicit factors of the current scale factor in the metric. In the flat
case, where k = 0, we can safely choose a0 = 1.

A second change of variables, which may be applied to either (3.55)
or (3.57), is to transform to conformal time, τ , via

τ(t) ≡
∫ t dt′

a(t′)
(3.59)
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Applying this to (3.57) yields

ds2 = a2(τ)

[
−dτ 2 +

dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(3.60)

where we have written a(τ) ≡ a[t(τ)] as is conventional. The conformal time
does not measure the proper time for any particular observer, but it does
simplify some calculations.

A particularly useful quantity to define from the scale factor is the Hubble
parameter (sometimes called the Hubble constant), given by

H ≡ ȧ

a
(3.61)

The Hubble parameter relates how fast the most distant galaxies are receding
from us to their distance from us via Hubble’s law,

v ' Hd. (3.62)

This is the relationship that was discovered observationally by Edwin Hubble,
and has been verified to high accuracy by modern observational methods.

The Friedmann Equations

As mentioned, the RW metric is a purely kinematic consequence of requiring
homogeneity and isotropy of our spatial sections. We next turn to dynamics,
in the form of differential equations governing the evolution of the scale factor
a(t). These will come from applying Einstein’s equation,

Rµν − 1

2
Rgµν = 8πGTµν (3.63)

to the RW metric.

Before diving right in, it is useful to consider the types of energy-mome-
ntum tensors Tµν we will typically encounter in cosmology. For simplicity,
and because it is consistent with much we have observed about the universe,
it is often useful to adopt the perfect fluid form for the energy-momentum
tensor of cosmological matter. This form is

Tµν = (ρ + p)UµUν + pgµν (3.64)

where Uµ is the fluid four-velocity, ρ is the energy density in the rest frame of
the fluid and p is the pressure in that same frame. The pressure is necessarily
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isotropic, for consistency with the RW metric. Similarly, fluid elements will
be comoving in the cosmological rest frame, so that the normalized four-
velocity in the coordinates of (3.57) will be

Uµ = (1, 0, 0, 0) (3.65)

The energy-momentum tensor thus takes the form

Tµν =

(
ρ

pgij

)
(3.66)

where gij represents the spatial metric (including the factor of a2).

Armed with this simplified description for matter, we are now ready to
apply Einstein’s equation (3.63) to cosmology. Using (3.57) and (3.64), one
obtains two equations. The first is known as the Friedmann equation,

H2 ≡
(

ȧ

a

)2

=
8πG

3

∑
i

ρi − k

a2
(3.67)

where an overdot denotes a derivative with respect to cosmic time t and i
indexes all different possible types of energy in the universe. This equation
is a constraint equation, in the sense that we are not allowed to freely specify
the time derivative ȧ; it is determined in terms of the energy density and
curvature. The second equation, which is an evolution equation, is

ä

a
+

1

2

(
ȧ

a

)2

= −4πG
∑

i

pi − k

2a2
(3.68)

It is often useful to combine (3.67) and (3.68) to obtain the acceleration
equation

ä

a
= −4πG

3

∑
i

(ρi + 3pi) (3.69)

In fact, if we know the magnitudes and evolutions of the different energy
density components ρi, the Friedmann equation (3.67) is sufficient to solve
for the evolution uniquely. The acceleration equation is conceptually useful,
but rarely invoked in calculations.

The Friedmann equation relates the rate of increase of the scale factor, as
encoded by the Hubble parameter, to the total energy density of all matter
in the universe. We may use the Friedmann equation to define, at any given
time, a critical energy density,

ρc ≡ 3H2

8πG
(3.70)
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for which the spatial sections must be precisely flat (k = 0). We then define
the density parameter

Ωtotal ≡ ρ

ρc

, (3.71)

which allows us to relate the total energy density in the universe to its local
geometry via

Ωtotal > 1 ⇔ k = +1

Ωtotal = 1 ⇔ k = 0 (3.72)

Ωtotal < 1 ⇔ k = −1

It is often convenient to define the fractions of the critical energy density in
each different component by

Ωi =
ρi

ρc

(3.73)

Energy conservation is expressed in GR by the vanishing of the covariant
divergence of the energy-momentum tensor,

∇µT
µν = 0 (3.74)

Applying this to our assumptions – the RW metric (3.57) and perfect-fluid
energy-momentum tensor (3.64) – yields a single energy-conservation equa-
tion,

ρ̇ + 3H(ρ + p) = 0 (3.75)

This equation is actually not independent of the Friedmann and acceleration
equations, but is required for consistency. It implies that the expansion of the
universe (as specified by H) can lead to local changes in the energy density.
Note that there is no notion of conservation of “total energy,” as energy can
be interchanged between matter and the spacetime geometry.

One final piece of information is required before we can think about
solving our cosmological equations: how the pressure and energy density are
related to each other. Within the fluid approximation used here, we may
assume that the pressure is a single-valued function of the energy density
p = p(ρ). It is often convenient to define an equation of state parameter, w,
by

p = wρ (3.76)

This should be thought of as the instantaneous definition of the parameter w;
it need represent the full equation of state, which would be required to cal-
culate the behavior of fluctuations. Nevertheless, many useful cosmological
matter sources do obey this relation with a constant value of w. For example,
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3.2. The Standard Model of Cosmology, the early Universe and inflation

w = 0 corresponds to pressureless matter, or dust – any collection of massive
non-relativistic particles would qualify. Similarly, w = 1/3 corresponds to
a gas of radiation, whether it be actual photons or other highly relativistic
species.

A constant w leads to a great simplification in solving our equations. In
particular, using (3.75), we see that the energy density evolves with the scale
factor according to

ρ(a) ∝ 1

a(t)3(1+w)
(3.77)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consis-
tent with what we would have obtained by more heuristic reasoning. Consider
a fixed comoving volume of the universe - i.e. a volume specified by fixed
values of the coordinates, from which one may obtain the physical volume at
a given time t by multiplying by a(t)3. Given a fixed number of dust particles
(of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (3.77), with
w = 0.

To make a similar argument for radiation, first note that the expansion
of the universe (the increase of a(t) with time) results in a shift to longer
wavelength λ, or a redshift, of photons propagating in this background. A
photon emitted with wavelength λe at a time te, at which the scale factor
is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0)) at
wavelength λo, obeying

λo

λe

=
a0

ae

≡ 1 + z (3.78)

The redshift z is often used in place of the scale factor. Because of the
redshift, the energy density in a fixed number of photons in a fixed comoving
volume drops with the physical volume (as for dust) and by an extra factor
of the scale factor as the expansion of the universe stretches the wavelengths
of light. Thus, the energy density of radiation will scale as a(t)−4, once again
in agreement with (3.77), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravi-
tational equations. This is because it is equivalent to treat any cosmological
constant as a component of the energy density in the universe. In fact, adding
a cosmological constant Λ to Einstein’s equation is equivalent to including
an energy-momentum tensor of the form

Tµν = − Λ

8πG
gµν (3.79)
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This is simply a perfect fluid with energy-momentum tensor (3.64) with

ρΛ =
Λ

8πG
pΛ = −ρΛ (3.80)

so that the equation-of-state parameter is

wΛ = −1 (3.81)

This implies that the energy density is constant,

ρΛ = constant (3.82)

Thus, this energy is constant throughout spacetime; we say that the cosmo-
logical constant is equivalent to vacuum energy.

Similarly, it is sometimes useful to think of any nonzero spatial curvature
as yet another component of the cosmological energy budget, obeying

ρcurv = − 3k

8πGa2

pcurv =
k

8πGa2
(3.83)

so that

wcurv = −1/3 (3.84)

It is not an energy density, of course; ρcurv is simply a convenient way to keep
track of how much energy density is lacking, in comparison to a flat universe.

Flat Universes

It is much easier to find exact solutions to cosmological equations of motion
when k = 0. Fortunately for us, nowadays we are able to appeal to more than
mathematical simplicity to make this choice. Indeed, modern cosmological
observations, in particular precision measurements of the cosmic microwave
background, show the universe today to be extremely spatially flat.

In the case of flat spatial sections and a constant equation of state para-
meter w, we may exactly solve the Friedmann equation (3.77) to obtain

a(t) = a0

(
t

t0

)2/3(1+w)

(3.85)
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Type of Energy ρ(a) a(t)

Dust a−3 t2/3

Radiation a−4 t1/2

Cosmological Constant constant eHt

Table 3.2: A summary of the behaviors of the most important sources of
energy density in cosmology. The behavior of the scale factor applies to
the case of a flat universe; the behavior of the energy densities is perfectly
general.

where a0 is the scale factor today, unless w = −1, in which case one obtains
a(t) ∝ eHt. Applying this result to some of our favorite energy density sources
yields Table 3.2.

Note that the matter- and radiation-dominated flat universes begin with
a = 0; this is a singularity, known as the Big Bang. We can easily calculate
the age of such a universe:

t0 =

∫ 1

0

da

aH(a)
=

2

3(1 + w)H0

(3.86)

Unless w is close to −1, it is often useful to approximate this answer by

t0 ∼ H−1
0 (3.87)

It is for this reason that the quantity H−1
0 is known as the Hubble time, and

provides a useful estimate of the time scale for which the universe has been
around.

Horizons

One of the most crucial concepts to master about FRW models is the ex-
istence of horizons. This concept will prove useful in understanding the
shortcomings of what we are terming the standard cosmology.

Suppose an emitter, e, sends a light signal to an observer, o, who is at
r = 0. Setting θ = constant and φ = constant and working in conformal
time, for such radial null rays we have τo − τ = r. In particular this means
that

τo − τe = re (3.88)

Now suppose τe is bounded below by τ̄e; for example, τ̄e might represent the
Big Bang singularity. Then there exists a maximum distance to which the
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observer can see, known as the particle horizon distance, given by

rph(τo) = τo − τ̄e (3.89)

Similarly, suppose τo is bounded above by τ̄o. Then there exists a limit
to spacetime events which can be influenced by the emitter. This limit is
known as the event horizon distance, given by

reh(τo) = τ̄o − τe (3.90)

These horizon distances may be converted to proper horizon distances at
cosmic time t, for example

dH ≡ a(τ)rph = a(τ)(τ − τ̄e) = a(t)

∫ t

te

dt′

a(t′)
(3.91)

Just as the Hubble time H−1
0 provides a rough guide for the age of the

universe, the Hubble distance cH−1
0 provides a rough estimate of the horizon

distance in a matter- or radiation-dominated universe.

3.2.2 The early Universe

In this subsection we use what we know of the laws of physics and the universe
today to infer conditions in the early universe. Early times were character-
ized by very high temperatures and densities, with many particle species kept
in (approximate) thermal equilibrium by rapid interactions. We will there-
fore have to move beyond a simple description of non-interacting “matter”
and “radiation,” and discuss how thermodynamics works in an expanding
universe.

Describing Matter

We have discussed how to describe matter as a perfect fluid, described by an
energy-momentum tensor

Tµν = (ρ + p)UµUν + pgµν (3.92)

where Uµ is the fluid four-velocity, ρ is the energy density in the rest frame
of the fluid and p is the pressure in that same frame. The energy-momentum
tensor is covariantly conserved,

∇µT
µν = 0 (3.93)
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In a more complete description, a fluid will be characterized by quantities
in addition to the energy density and pressure. Many fluids have a conserved
quantity associated with them and so we will also introduce a number flux
density Nµ, which is also conserved

∇µN
µ = 0 (3.94)

For non-tachyonic matter Nµ is a timelike 4-vector and therefore we may
decompose it as

Nµ = nUµ (3.95)

We can also introduce an entropy flux density Sµ. This quantity is not
conserved, but rather obeys a covariant version of the second law of thermo-
dynamics

∇µS
µ ≥ 0 (3.96)

Not all phenomena are successfully described in terms of such a local entropy
vector (e.g. black holes); fortunately, it suffices for a wide variety of fluids
relevant to cosmology.

The conservation law for the energy-momentum tensor yields, most im-
portantly, equation (3.75), which can be thought of as the first law of ther-
modynamics

dU = TdS − pdV (3.97)

with dS = 0.

It is useful to resolve Sµ into components parallel and perpendicular to
the fluid 4-velocity

Sµ = sUµ + sµ (3.98)

where sµU
µ = 0. The scalar s is the rest-frame entropy density which, up to

an additive constant (that we can consistently set to zero), can be written as

s =
ρ + p

T
(3.99)

In addition to all these quantities, we must specify an equation of state,
and we typically do this in such a way as to treat n and s as independent
variables.

Particles in Equilibrium

The various particles inhabiting the early universe can be usefully charac-
terized according to three criteria: in equilibrium vs. out of equilibrium
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(decoupled), bosonic vs. fermionic, and relativistic (velocities near c) vs.
non-relativistic. In this section we consider species which are in equilibrium
with the surrounding thermal bath.

Let us begin by discussing the conditions under which a particle species
will be in equilibrium with the surrounding thermal plasma. A given species
remains in thermal equilibrium as long as its interaction rate is larger than
the expansion rate of the universe. Roughly speaking, equilibrium requires it
to be possible for the products of a given reaction to have the opportunity to
recombine in the reverse reaction and if the expansion of the universe is rapid
enough this won’t happen. A particle species for which the interaction rates
have fallen below the expansion rate of the universe is said to have frozen
out or decoupled. If the interaction rate of some particle with the background
plasma is Γ, it will be decoupled whenever

Γ ¿ H (3.100)

where the Hubble constant H sets the cosmological timescale.

As a good rule of thumb, the expansion rate in the early universe is
“slow,” and particles tend to be in thermal equilibrium (unless they are very
weakly coupled). This can be seen from the Friedmann equation when the
energy density is dominated by a plasma with ρ ∼ T 4; we then have

H ∼
(

T

MPl

)
T (3.101)

Thus, the Hubble parameter is suppressed with respect to the temperature
by a factor of T/MPl. At extremely early times (near the Planck era, for
example), the universe may be expanding so quickly that no species are
in equilibrium; as the expansion rate slows, equilibrium becomes possible.
However, the interaction rate Γ for a particle with cross-section σ is typically
of the form

Γ = n〈σv〉 , (3.102)

where n is the number density and v a typical particle velocity. Since n ∝ a−3,
the density of particles will eventually dip so low that equilibrium can once
again no longer be maintained. In our current universe, no species are in
equilibrium with the background plasma (represented by the CMB photons).

Now let us focus on particles in equilibrium. For a gas of weakly-
interacting particles, we can describe the state in terms of a distribution
function f(p), where the three-momentum p satisfies

E2(p) = m2 + |p|2 (3.103)
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Relativistic Relativistic Non-relativistic
Bosons Fermions (Either)

ni
ζ(3)
π2 giT

3
(

3
4

) ζ(3)
π2 giT

3 gi

(
miT
2π

)3/2
e−mi/T

ρi
π2

30
giT

4
(

7
8

)
π2

30
giT

4 mini

pi
1
3
ρi

1
3
ρi niT ¿ ρi

Table 3.3: Number density, energy density, and pressure, for species in ther-
mal equilibrium.

The distribution function characterizes the density of particles in a given
momentum bin. (In general it will also be a function of the spatial position
x, but we suppress that here.) The number density, energy density, and
pressure of some species labeled i are given by

ni =
gi

(2π)3

∫
fi(p)d3p

ρi =
gi

(2π)3

∫
E(p)fi(p)d3p

pi =
gi

(2π)3

∫ |p|2
3E(p)

fi(p)d3p (3.104)

where gi is the number of spin states of the particles. For massless photons we
have gγ = 2, while for a massive vector boson such as the Z we have gZ = 3.
In the usual accounting, particles and antiparticles are treated as separate
species; thus, for spin-1/2 electrons and positrons we have ge− = ge+ = 2.
In thermal equilibrium at a temperature T the particles will be in either
Fermi-Dirac or Bose-Einstein distributions,

f(p) =
1

eE(p)/T ± 1
(3.105)

where the plus sign is for fermions and the minus sign for bosons.

We can do the integrals over the distribution functions in two oppo-
site limits: particles which are highly relativistic (T À m) or highly non-
relativistic (T ¿ m). The results are shown in Table 3.3, in which ζ is the
Riemann zeta function, and ζ(3) ≈ 1.202.

From Table 3.3 we can extract several pieces of relevant information.
Relativistic particles, whether bosons or fermions, remain in approximately
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equal abundances in equilibrium. Once they become non-relativistic, how-
ever, their abundance plummets, and becomes exponentially suppressed with
respect to the relativistic species. This is simply because it becomes pro-
gressively harder for massive particle-antiparticle pairs to be produced in a
plasma with T ¿ m.

It is interesting to note that, although matter is much more dominant
than radiation in the universe today, since their energy densities scale differ-
ently the early universe was radiation-dominated. We can write the ratio of
the density parameters in matter and radiation as

ΩM

ΩR

=
ΩM0

ΩR0

(
a

a0

)
=

ΩM0

ΩR0

(1 + z)−1 (3.106)

The redshift of matter-radiation equality is thus

1 + zeq =
ΩM0

ΩR0

≈ 3× 103 (3.107)

This expression assumes that the particles that are non-relativistic today
were also non-relativistic at zeq; this should be a safe assumption, with the
possible exception of massive neutrinos, which make a minority contribution
to the total density.

At this point we should stress that even decoupled photons maintain a
thermal distribution; this is not because they are in equilibrium, but simply
because the distribution function redshifts into a similar distribution with a
lower temperature proportional to 1/a. We can therefore speak of the “effec-
tive temperature” of a relativistic species that freezes out at a temperature
Tf and scale factor af :

T rel
i (a) = Tf

(af

a

)
(3.108)

For example, neutrinos decouple at a temperature around 1 ∼ MeV ; shortly
thereafter, electrons and positrons annihilate into photons, dumping energy
(and entropy) into the plasma but leaving the neutrinos unaffected. Con-
sequently, we expect a neutrino background in the current universe with a
temperature of approximately 2K, while the photon temperature is 3K.

A similar effect occurs for particles which are non-relativistic at decou-
pling, with one important difference. For non-relativistic particles the tem-
perature is proportional to the kinetic energy 1

2
mv2, which redshifts as 1/a2.

We therefore have

T non−rel
i (a) = Tf

(af

a

)2

(3.109)
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In either case we are imagining that the species freezes out while relativistic
/non-relativistic and stays that way afterward; if it freezes out while rela-
tivistic and subsequently becomes non-relativistic, the distribution function
will be distorted away from a thermal spectrum.

The notion of an effective temperature allows us to define a corresponding
notion of an effective number of relativistic degrees of freedom, which in
turn permits a compact expression for the total relativistic energy density.
The effective number of relativistic degrees of freedom (as far as energy is
concerned) can be defined as

g∗ =
∑

bosons

gi

(
Ti

T

)4

+
7

8

∑

fermions

gi

(
Ti

T

)4

(3.110)

(The temperature T is the actual temperature of the background plasma,
assumed to be in equilibrium.) Then the total energy density in all relativistic
species comes from adding the contributions of each species, to obtain the
simple formula

ρ =
π2

30
g∗T 4 (3.111)

We can do the same thing for the entropy density. From (3.99), the entropy
density in relativistic particles goes as T 3 rather than T 4, so we define the
effective number of relativistic degrees of freedom for entropy as

g∗S =
∑

bosons

gi

(
Ti

T

)3

+
7

8

∑

fermions

gi

(
Ti

T

)3

(3.112)

The entropy density in relativistic species is then

s =
2π

45
g∗ST 3 (3.113)

Numerically, g∗ and g∗S will typically be very close to each other. In the
Standard Model, we have

g∗ ≈ g∗S ∼




100, T > 300 MeV
10, 1 MeV < T < 300 MeV
3, T < 1 MeV

(3.114)

The events that change the effective number of relativistic degrees of free-
dom are the QCD phase transition at 300 ∼ MeV , and the annihilation of
electron/positron pairs at 1 ∼ MeV .

Because of the release of energy into the background plasma when species
annihilate, it is only an approximation to say that the temperature goes as
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T ∝ 1/a. A better approximation is to say that the comoving entropy density
is conserved,

s ∝ a−3 (3.115)

This will hold under all forms of adiabatic evolution; entropy will only be pro-
duced at a process like a first-order phase transition or an out-of-equilibrium
decay. (In fact, we expect that the entropy production from such processes
is very small compared to the total entropy, and adiabatic evolution is an
excellent approximation for almost the entire early universe.) Combining
entropy conservation with the expression (3.113) for the entropy density in
relativistic species, we obtain a better expression for the evolution of the
temperature,

T ∝ g
−1/3
∗S a−1 (3.116)

The temperature will consistently decrease under adiabatic evolution in an
expanding universe, but it decreases more slowly when the effective number
of relativistic degrees of freedom is diminished.

Thermal Relics

As we have mentioned, particles typically do not stay in equilibrium forever;
eventually the density becomes so low that interactions become infrequent,
and the particles freeze out. Since essentially all of the particles in our current
universe fall into this category, it is important to study the relic abundance
of decoupled species. (Of course it is also possible to obtain a significant relic
abundance for particles which were never in thermal equilibrium; examples
might include baryons produced by GUT baryogenesis, or axions produced
by vacuum misalignment.) In this subsection we will typically neglect factors
of order unity.

We have seen that relativistic, or hot, particles have a number density
that is proportional to T 3 in equilibrium. Thus, a species X that freezes out
while still relativistic will have a number density at freeze-out Tf given by

nX(Tf ) ∼ T 3
f (3.117)

Since this is comparable to the number density of photons at that time,
and after freeze-out both photons and our species X just have their number
densities dilute by a factor a(t)−3 as the universe expands, it is simple to
see that the abundance of X particles today should be comparable to the
abundance of CMB photons,

nX0 ∼ nγ0 ∼ 102 cm−3 (3.118)
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We express this number as 102 rather than 411 since the roughness of our
estimate does not warrant such misleading precision. The leading correction
to this value is typically due to the production of additional photons subse-
quent to the decoupling of X; in the Standard Model, the number density of
photons increases by a factor of approximately 100 between the electroweak
phase transition and today, and a species which decouples during this period
will be diluted by a factor of between 1 and 100 depending on precisely when
it freezes out. So, for example, neutrinos which are light (mν < MeV) have
a number density today of nν = 115 cm−3 per species, and a corresponding
contribution to the density parameter (if they are nevertheless heavy enough
to be nonrelativistic today) of

Ω0,ν =
( mν

92 eV

)
h−2 (3.119)

(In this final expression we have secretly taken account of the missing numer-
ical factors, so this is a reliable answer.) Thus, a neutrino with mν ∼ 10−2 eV
would contribute Ων ∼ 2× 10−4. This is large enough to be interesting with-
out being large enough to make neutrinos be the dark matter. That’s good
news, since the large velocities of neutrinos make them free-stream out of
overdense regions, diminishing primordial perturbations and leaving us with
a universe which has much less structure on small scales than we actually
observe.

Now consider instead a species X which is nonrelativistic or cold at the
time of decoupling. It is much harder to accurately calculate the relic abun-
dance of a cold relic than a hot one, simply because the equilibrium abun-
dance of a nonrelativistic species is changing rapidly with respect to the
background plasma, and we have to be quite precise following the freeze-
out process to obtain a reliable answer. The accurate calculation typically
involves numerical integration of the Boltzmann equation for a network of
interacting particle species; here, we cut to the chase and simply provide a
reasonable approximate expression. If σ0 is the annihilation cross-section of
the species X at a temperature T = mX , the final number density in terms
of the photon density works out to be

nX(T < Tf ) ∼ 1

σ0mXMP

nγ (3.120)

Since the particles are nonrelativistic when they decouple, they will certainly
be nonrelativistic today, and their energy density is

ρX = mXnX (3.121)

41



Preliminaries

We can plug in numbers for the Hubble parameter and photon density to
obtain the density parameter,

ΩX =
ρX

ρcr

∼ nγ

σ0M3
PlH

2
0

(3.122)

Numerically, when ~ = c = 1 we have 1 GeV∼ 2× 10−14 cm, so the photon
density today is nγ ∼ 100 cm−3 ∼ 10−39 GeV−3. The Hubble constant is
H0 ∼ 10−42 GeV, and the Planck mass is MPl ∼ 1018 GeV, so we obtain

ΩX ∼ 1

σ0(109 GeV2)
(3.123)

It is interesting to note that this final expression is independent of the mass
mX of our relic, and only depends on the annihilation cross-section; that’s
because more massive particles will have a lower relic abundance. Of course,
this depends on how we choose to characterize our theory; we may use vari-
ables in which σ0 is a function of mX , in which case it is reasonable to say
that the density parameter does depend on the mass.

One candidate for Cold Dark Matter (CDM) is a Weakly Interacting
Massive Particle (WIMP). The annihilation cross-section of these particles,
since they are weakly interacting, should be σ0 ∼ α2

W GF , where αW is the
weak coupling constant and GF is the the Fermi constant. Using GF ∼
(300GeV)−2 and αW ∼ 10−2, we get

σ0 ∼ α2
W GF ∼ 10−9 GeV−2 (3.124)

Thus, the density parameter in such particles would be

ΩX ∼ 1 (3.125)

In other words, a stable particle with a weak interaction cross section nat-
urally produces a relic density of order the critical density today, and so
provides a perfect candidate for cold dark matter. A paradigmatic example
is provided by the lightest supersymmetric partner (LSP), if it is stable and
supersymmetry is broken at the weak scale. Such a possibility is of great
interest to both particle physicists and cosmologists, since it may be possi-
ble to produce and detect such particles in colliders and to directly detect a
WIMP background in cryogenic detectors in underground laboratories; this
will be a major experimental effort over the next few years.

Baryogenesis

The symmetry between particles and antiparticles, firmly established in col-
lider physics, naturally leads to the question of why the observed universe is
composed almost entirely of matter and no primordial antimatter.
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If large domains of matter and antimatter exist, then annihilations would
take place at the interface between them. If the typical size of such a domain
was small enough, then the energy released by these annihilations would
result in a diffuse γ-ray background and a distortion of the cosmic microwave
radiation, neither of which is observed.

While the above considerations put an experimental upper bound on the
amount of antimatter in the universe, strict quantitative estimates of the
relative abundances of baryonic matter and antimatter may also be obtained
from the standard cosmology. The baryon number density does not remain
constant during the evolution of the universe, instead scaling like a−3, where
a is the cosmological scale factor. It is therefore convenient to define the
baryon asymmetry of the universe in terms of the quantity

η =
nB

s
(3.126)

where s is the entropy density and nB is the difference between the baryon
number density and the anti-baryon number density. The range of η consis-
tent with the observational data is

2.6× 10−10 < η < 6.2× 10−10 (3.127)

Thus the natural question arises: As the universe cooled from early times to
today, what processes, both particle physics and cosmological, were respon-
sible for the generation of this very specific baryon asymmetry?

As pointed out by Sakharov, a small baryon asymmetry η may have been
produced in the early universe if three necessary conditions are satisfied

• Baryon number (B) violation

• Violation of C (charge conjugation symmetry) and CP (the combina-
tion of C and parity)

• departure from thermal equilibrium

The first condition should be clear since, starting from a baryon symmet-
ric universe with η = 0, baryon number violation must take place in order
to evolve into a universe in which η does not vanish. The second Sakharov
criterion is required because, if C and CP are exact symmetries, one can
prove that the total rate for any process which produces an excess of baryons
is equal to the rate of the complementary process which produces an ex-
cess of antibaryons and so no net baryon number can be created. That is
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to say that the thermal average of the baryon number operator B, which
is odd under both C and CP , is zero unless those discrete symmetries are
violated. CP violation is present either if there are complex phases in the La-
grangian which cannot be reabsorbed by field redefinitions (explicit breaking)
or if some Higgs scalar field acquires a VEV which is not real (spontaneous
breaking). We will discuss this in detail shortly.

Finally, to explain the third criterion, one can calculate the equilibrium
average of B at a temperature T = 1/β:

〈B〉T = Tr (e−βHB) = Tr [(CPT )(CPT )−1e−βHB)]

= Tr (e−βH(CPT )−1B(CPT )] = −Tr (e−βHB) (3.128)

where we have used that the Hamiltonian H commutes with CPT . Thus
〈B〉T = 0 in equilibrium and there is no generation of net baryon number.

Of the three Sakharov conditions, baryon number violation and C and
CP violation may be investigated only within a given particle physics model,
while the third condition – the departure from thermal equilibrium – may be
discussed in a more general way, as we shall see. Let us discuss the Sakharov
criteria in more detail.

Baryon Number Violation

Grand Unified Theories (GUTs) [5] describe the fundamental interactions by
means of a unique gauge group G which contains the Standard Model (SM)
gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The fundamental idea of GUTs
is that at energies higher than a certain energy threshold MGUT the group
symmetry is G and that, at lower energies, the symmetry is broken down to
the SM gauge symmetry, possibly through a chain of symmetry breakings.
The main motivation for this scenario is that, at least in supersymmetric
models, the (running) gauge couplings of the SM unify at the scale MGUT '
2×1016 GeV, hinting at the presence of a GUT involving a higher symmetry
with a single gauge coupling.

Baryon number violation seems very natural in GUTs. Indeed, a general
property of these theories is that the same representation of G may contain
both quarks and leptons, and therefore it is possible for scalar and gauge
bosons to mediate gauge interactions among fermions having different baryon
number.

It is well-known that the most general renormalizable Lagrangian invari-
ant under the SM gauge group and containing only color singlet Higgs fields
is automatically invariant under global abelian symmetries which may be
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identified with the baryonic and leptonic symmetries. These, therefore, are
accidental symmetries and as a result it is not possible to violate B and L at
tree-level or at any order of perturbation theory. Nevertheless, in many cases
the perturbative expansion does not describe all the dynamics of the theory
and, indeed, in 1976 ’t Hooft realized that nonperturbative effects (instan-
tons) may give rise to processes which violate the combination B + L, but
not the orthogonal combination B − L. The probability of these processes
occurring today is exponentially suppressed and probably irrelevant. How-
ever, in more extreme situations – like the primordial universe at very high
temperatures – baryon and lepton number violating processes may be fast
enough to play a significant role in baryogenesis.

CP violation

CP violation in GUTs arises in loop-diagram corrections to baryon number
violating bosonic decays. Since it is necessary that the particles in the loop
also undergo B-violating decays, the relevant particles are the X, Y , and H3

bosons in the case of SU(5).

In the electroweak theory things are somewhat different. Since only the
left-handed fermions are SU(2)L gauge coupled, C is maximally broken in
the SM. Moreover, CP is known not to be an exact symmetry of the weak
interactions. This is seen experimentally in the neutral kaon system through
K0, K̄0 mixing. Thus, CP violation is a natural feature of the standard
electroweak model.

While this is encouraging for baryogenesis, it turns out that this partic-
ular source of CP violation is not strong enough. The relevant effects are
parameterized by a dimensionless constant which is no larger than 10−20.
This appears to be much too small to account for the observed BAU and,
thus far, attempts to utilize this source of CP violation for electroweak baryo-
genesis have been unsuccessful. In light of this, it is usual to extend the SM
in some fashion that increases the amount of CP violation in the theory while
not leading to results that conflict with current experimental data. One con-
crete example of a well-motivated extension in the minimal supersymmetric
standard model (MSSM).

In some scenarios, such as GUT baryogenesis, the third Sakharov con-
dition is satisfied due to the presence of superheavy decaying particles in a
rapidly expanding universe. These generically fall under the name of out-of-
equilibrium decay mechanisms.

The underlying idea is fairly simple. If the decay rate ΓX of the su-
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perheavy particles X at the time they become nonrelativistic (i.e. at the
temperature T ∼ MX) is much smaller than the expansion rate of the uni-
verse, then the X particles cannot decay on the time scale of the expansion
and so they remain as abundant as photons for T ∼< MX . In other words,
at some temperature T > MX , the superheavy particles X are so weakly
interacting that they cannot catch up with the expansion of the universe and
they decouple from the thermal bath while they are still relativistic, so that
nX ∼ nγ ∼ T 3 at the time of decoupling.

Therefore, at temperature T ' MX , they populate the universe with an
abundance which is much larger than the equilibrium one. This overabun-
dance is precisely the departure from thermal equilibrium needed to produce
a final nonvanishing baryon asymmetry when the heavy states X undergo B
and CP violating decays.

The out-of-equilibrium condition requires very heavy states: MX ∼> (1015

−1016) GeV and MX ∼> (1010 − 1016) GeV, for gauge and scalar bosons,
respectively, if these heavy particles decay through renormalizable operators.

Since the linear combination B −L is left unchanged by sphaleron tran-
sitions, the baryon asymmetry may be generated from a lepton asymmetry.
Indeed, sphaleron transition will reprocess any lepton asymmetry and con-
vert (a fraction of) it into baryon number. This is because B + L must be
vanishing and the final baryon asymmetry results to be B ' −L.

In the SM as well as in its unified extension based on the group SU(5),
B −L is conserved and no asymmetry in B −L can be generated. However,
adding right-handed Majorana neutrinos to the SM breaks B − L and the
primordial lepton asymmetry may be generated by the out-of-equilibrium
decay of heavy right-handed Majorana neutrinos N c

L (in the supersymmetric
version, heavy scalar neutrino decays are also relevant for leptogenesis). This
simple extension of the SM can be embedded into GUTs with gauge groups
containing SO(10). Heavy right-handed Majorana neutrinos can also explain
the smallness of the light neutrino masses via the see-saw mechanism.

3.2.3 Inflation

So far we have described what is known as the standard cosmology. This
framework is a towering achievement, describing to great accuracy the phys-
ical processes leading to the present day universe. However, there remain
outstanding issues in cosmology. Many of these come under the heading of
initial condition problems and require a more complete description of the
sources of energy density in the universe. The most severe of these problems
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Fixed Point 1 + 3w > 0 1 + 3w < 0
Ω = 0 attractor repeller
Ω = 1 repeller attractor
Ω = ∞ attractor repeller

Table 3.4: Behavior of the density parameter near fixed points.

eventually led to a radical new picture of the physics of the early universe -
cosmological inflation, which is the subject of this subsection.

We will begin by describing some of the problems of the standard cos-
mology.

The Flatness Problem

The Friedmann equation may be written as

Ω− 1 =
k

H2a2
(3.129)

where for brevity we are now writing Ω instead of Ωtotal. Differentiating this
with respect to the scale factor, this implies

dΩ

da
= (1 + 3w)

Ω(Ω− 1)

a
(3.130)

This equation is easily solved, but its most general properties are all that
we shall need and they are qualitatively different depending on the sign of
1 + 3w. There are three fixed points of this differential equation, as given in
Table 3.4.

Observationally we know that Ω ' 1 today – i.e. we are very close to
the repeller of this differential equation for a universe dominated by ordinary
matter and radiation (w > −1/3). Even if we only took account of the lu-
minous matter in the universe, we would clearly live in a universe that was
far from the attractor points of the equation. It is already quite puzzling
that the universe has not reached one of its attractor points, given that the
universe has evolved for such a long time. However, we may be more quan-
titative about this. If the only matter in the universe is radiation and dust,
then in order to have Ω in the range observed today requires (conservatively)

0 ≤ 1− Ω ≤ 10−60 (3.131)

This remarkable degree of fine tuning is the flatness problem. Within the
context of the standard cosmology there is no known explanation of this
fine-tuning.
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The Horizon Problem

The horizon problem stems from the existence of particle horizons in FRW
cosmologies, as discussed in a previous subsection. Horizons exist because
there is only a finite amount of time since the Big Bang singularity, and thus
only a finite distance that photons can travel within the age of the universe.
Consider a photon moving along a radial trajectory in a flat universe (the
generalization to non-flat universes is straightforward). In a flat universe, we
can normalize the scale factor to

a0 = 1 (3.132)

without loss of generality. A radial null path obeys

0 = ds2 = −dt2 + a2dr2 (3.133)

so the comoving (coordinate) distance traveled by such a photon between
times t1 and t2 is

∆r =

∫ t2

t1

dt

a(t)
(3.134)

To get the physical distance as it would be measured by an observer at any
time t, simply multiply by a(t). For simplicity let’s imagine we are in a
matter-dominated universe, for which

a =

(
t

t0

)2/3

(3.135)

The Hubble parameter is therefore given by

H =
2

3
t−1

= a−3/2H0 (3.136)

Then the photon travels a comoving distance

∆r = 2H−1
0 (

√
a2 −√a1) (3.137)

The comoving horizon size when a = a∗ is the distance a photon travels since
the Big Bang,

rhor(a∗) = 2H−1
0

√
a∗ (3.138)

The physical horizon size, as measured on the spatial hypersurface at a∗, is
therefore simply

dhor(a∗) = a∗rhor(a∗) = 2H−1
∗ (3.139)
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Indeed, for any nearly-flat universe containing a mixture of matter and radi-
ation, at any one epoch we will have

dhor(a∗) ∼ H−1
∗ (3.140)

where H−1
∗ is the Hubble distance at that particular epoch. This approximate

equality leads to a strong temptation to use the terms “horizon distance” and
“Hubble distance” interchangeably; this temptation should be resisted, since
inflation can render the former much larger than the latter, as we will soon
demonstrate.

The horizon problem is simply the fact that the CMB is isotropic to
a high degree of precision, even though widely separated points on the last
scattering surface are completely outside each others’ horizons. When we look
at the CMB we were observing the universe at a scale factor aCMB ≈ 1/1200;
meanwhile, the comoving distance between a point on the CMB and an
observer on Earth is

∆r = 2H−1
0 (1−√aCMB)

≈ 2H−1
0 (3.141)

However, the comoving horizon distance for such a point is

rhor(aCMB) = 2H−1
0

√
aCMB

≈ 6× 10−2H−1
0 (3.142)

Hence, if we observe two widely-separated parts of the CMB, they will have
non-overlapping horizons; distinct patches of the CMB sky were causally
disconnected at recombination. Nevertheless, they are observed to be at the
same temperature to high precision. The question then is, how did they know
ahead of time to coordinate their evolution in the right way, even though they
were never in causal contact? We must somehow modify the causal structure
of the conventional FRW cosmology.

Unwanted Relics

We have already talked about grand unified theories (GUTs). If grand uni-
fication occurs with a simple gauge group G, any spontaneous breaking of
G satisfies π2(G/H) = π1(H) for any simple subgroup H. In particular,
breaking down to the standard model will lead to magnetic monopoles [6],
since

π2(G/H) = π1([SU(3)× SU(2)× U(1)]/Z6) = Z (3.143)
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(The gauge group of the standard model is, strictly speaking, [SU(3) ×
SU(2) × U(1)]/Z6. The Z6 factor only affects the global structure of the
group and not the Lie algebra, and thus is usually ignored by particle physi-
cists.)

Using the Kibble mechanism, the expected relic abundance of monopoles
works out to be

Ω0,mono ∼ 1011

(
TGUT

1014 GeV

)3 ( mmono

1016 GeV

)
(3.144)

This is far too big; the monopole abundance in GUTs is a serious problem
for cosmology if GUTs have anything to do with reality.

In addition to monopoles, there may be other model-dependent relics
predicted by our favorite theory. If these are incompatible with current
limits, it is necessary to find some way to dilute their density in the early
universe.

The General Idea of Inflation

The horizon problem especially is an extremely serious problem for the stan-
dard cosmology because at its heart is simply causality. Any solution to this
problem is therefore almost certain to require an important modification to
how information can propagate in the early universe. Cosmological inflation
is such a mechanism.

Before getting into the details of inflation we will just sketch the general
idea here. The fundamental idea is that the universe undergoes a period of
accelerated expansion, defined as a period when ä > 0, at early times. The
effect of this acceleration is to quickly expand a small region of space to a
huge size, diminishing spatial curvature in the process, making the universe
extremely close to flat. In addition, the horizon size is greatly increased,
so that distant points on the CMB actually are in causal contact and un-
wanted relics are tremendously diluted, solving the monopole problem. As
an unexpected bonus, quantum fluctuations make it impossible for inflation
to smooth out the universe with perfect precision, so there is a spectrum of
remnant density perturbations; this spectrum turns out to be approximately
scale-free, in good agreement with observations of our current universe.

Slowly-Rolling Scalar Fields

If inflation is to solve the problems of the standard cosmology, then it must be
active at extremely early times. Thus, we would like to address the earliest
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times in the universe amenable to a classical description. We expect this
to be at or around the Planck time tP and since Planckian quantities arise
often in inflation we will retain values of the Planck mass in the equations
of this section. There are many models of inflation, but because of time
constraints we will concentrate almost exclusively on the chaotic inflation
model of Linde. We have borrowed heavily in places here from the excellent
text of Liddle and Lyth.

Consider modeling matter in the early universe by a real scalar field φ,
with potential V (φ). The energy-momentum tensor for φ is

Tµν = (∇µφ)(∇νφ)− gµν

[
1

2
gαβ(∇αφ)(∇βφ) + V (φ)

]
(3.145)

For simplicity we will specialize to the homogeneous case, in which all quan-
tities depend only on cosmological time t and set k = 0. A homogeneous real
scalar field behaves as a perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) (3.146)

pφ =
1

2
φ̇2 − V (φ) (3.147)

The equation of motion for the scalar field is given by

φ̈ + 3
ȧ

a
φ̇ +

dV

dφ
= 0 (3.148)

which can be thought of as the usual equation of motion for a scalar field
in Minkowski space, but with a friction term due to the expansion of the
universe. The Friedmann equation with such a field as the sole energy source
is

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
(3.149)

A very specific way in which accelerated expansion can occur is if the uni-
verse is dominated by an energy component that approximates a cosmological
constant. In that case the associated expansion rate will be exponential, as
we have already seen. Scalar fields can accomplish this in an interesting way.
From (3.146) it is clear that if φ̇2 ¿ V (φ) then the potential energy of the
scalar field is the dominant contribution to both the energy density and the
pressure, and the resulting equation of state is p ' −ρ, approximately that of
a cosmological constant. the resulting expansion is certainly accelerating. In
a loose sense, this negligible kinetic energy is equivalent to the fields slowly
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rolling down its potential; an approximation which we will now make more
formal.

Technically, the slow-roll approximation for inflation involves neglecting
the φ̈ term in (3.148) and neglecting the kinetic energy of φ compared to
the potential energy. The scalar field equation of motion and the Friedmann
equation then become

φ̇ ' −V ′(φ)

3H
(3.150)

H2 ' 8πG

3
V (φ) (3.151)

where a prime denotes a derivative with respect to φ.

These conditions will hold if the two slow-roll conditions are satisfied.
These are

|ε| ¿ 1

|η| ¿ 1 (3.152)

where the slow-roll parameters are given by

ε ≡ M2
Pl

2

(
V ′

V

)2

(3.153)

and

η ≡ M2
Pl

V ′′

V
(3.154)

It is easy to see that the slow roll conditions yield inflation. Recall that
inflation is defined by ä/a > 0. We can write

ä

a
= Ḣ + H2 (3.155)

so that inflation occurs if
Ḣ

H2
> −1 (3.156)

But in slow-roll
Ḣ

H2
' −ε (3.157)

which will be small. Smallness of the other parameter η helps to ensure that
inflation will continue for a sufficient period.
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It is useful to have a general expression to describe how much inflation
occurs, once it has begun. This is typically quantified by the number of
e-folds, defined by

N(t) ≡ ln

(
a(tend)

a(t)

)
(3.158)

Usually we are interested in how many efolds occur between a given field value
φ and the field value at the end of inflation φend, defined by ε(φend) = 1. We
also would like to express N in terms of the potential. Fortunately this is
simple to do via

N(t) ≡ ln

(
a(tend)

a(t)

)
=

∫ tend

t

H dt ' 1

M2
Pl

∫ φend

φ

V

V ′ dφ (3.159)

The issue of initial conditions for inflation is one that is quite subtle and
we will not get into a discussion of that here. Instead we will remain focused
on chaotic inflation, in which we assume that the early universe emerges from
the Planck epoch with the scalar field taking different values in different parts
of the universe, with typically Planckian energies. There will then be some
probability for inflation to begin in some places, and we shall focus on those.

Vacuum Fluctuations and Perturbations

Recall that the structures - clusters and superclusters of galaxies - we see on
the largest scales in the universe today, and hence the observed fluctuations
in the CMB, form from the gravitational instability of initial perturbations
in the matter density. The origin of these initial fluctuations is an important
question of modern cosmology.

Inflation provides us with a fascinating solution to this problem - in
a nutshell, quantum fluctuations in the inflaton field during the inflationary
epoch are stretched by inflation and ultimately become classical fluctuations.
Let’s sketch how this works.

Since inflation dilutes away all matter fields, soon after its onset the uni-
verse is in a pure vacuum state. If we simplify to the case of exponential
inflation, this vacuum state is described by the Gibbons-Hawking tempera-
ture

TGH =
H

2π
'
√

V

MPl

(3.160)

where we have used the Friedmann equation. Because of this temperature,
the inflaton experiences fluctuations that are the same for each wavelength

53



Preliminaries

δφk = TGH. Now, these fluctuations can be related to those in the density by

δρ =
dV

dφ
δφ (3.161)

Inflation therefore produces density perturbations on every scale. The
amplitude of the perturbations is nearly equal at each wavenumber, but there
will be slight deviations due to the gradual change in V as the inflaton rolls.
We can characterize the fluctuations in terms of their spectrum AS(k), related
to the potential via

A2
S(k) ∼ V 3

M6
Pl(V

′)2

∣∣∣∣
k=aH

(3.162)

where k = aH indicates that the quantity V 3/(V ′)2 is to be evaluated at
the moment when the physical scale of the perturbation λ = a/k is equal
to the Hubble radius H−1. Note that the actual normalization of (3.162) is
convention-dependent, and should drop out of any physical answer.

The spectrum is given the subscript “S” because it describes scalar fluc-
tuations in the metric. These are tied to the energy-momentum distribution,
and the density fluctuations produced by inflation are adiabatic — fluctua-
tions in the density of all species are correlated. The fluctuations are also
Gaussian, in the sense that the phases of the Fourier modes describing fluc-
tuations at different scales are uncorrelated. These aspects of inflationary
perturbations — a nearly scale-free spectrum of adiabatic density fluctua-
tions with a Gaussian distribution — are all consistent with current observa-
tions of the CMB and large-scale structure, and have been confirmed to new
precision by WMAP and other CMB measurements.

It is not only the nearly-massless inflaton that is excited during inflation,
but any nearly-massless particle. The other important example is the gravi-
ton, which corresponds to tensor perturbations in the metric (propagating
excitations of the gravitational field). Tensor fluctuations have a spectrum

A2
T(k) ∼ V

M4
Pl

∣∣∣∣
k=aH

(3.163)

The existence of tensor perturbations is a crucial prediction of inflation which
may in principle be verifiable through observations of the polarization of
the CMB. Although CMB polarization has already been detected, this is
only the E-mode polarization induced by density perturbations; the B-mode
polarization induced by gravitational waves is expected to be at a much
lower level, and represents a significant observational challenge for the years
to come.
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3.2. The Standard Model of Cosmology, the early Universe and inflation

For purposes of understanding observations, it is useful to parameterize
the perturbation spectra in terms of observable quantities. We therefore
write

A2
S(k) ∝ knS−1 (3.164)

and
A2

T(k) ∝ knT (3.165)

where nS and nT are the “spectral indices”. They are related to the slow-roll
parameters of the potential by

nS = 1− 6ε + 2η (3.166)

and
nT = −2ε (3.167)

Since the spectral indices are in principle observable, we can hope through
relations such as these to glean some information about the inflaton potential
itself.

Our current knowledge of the amplitude of the perturbations already
gives us important information about the energy scale of inflation. Note
that the tensor perturbations depend on V alone (not its derivatives), so
observations of tensor modes yields direct knowledge of the energy scale. If
large-scale CMB anisotropies have an appreciable tensor component (pos-
sible, although unlikely), we can instantly derive Vinflation ∼ (1016 GeV)4.
(Here, the value of V being constrained is that which was responsible for
creating the observed fluctuations; namely, 60 e-folds before the end of infla-
tion.) This is remarkably reminiscent of the grand unification scale, which
is very encouraging. Even in the more likely case that the perturbations
observed in the CMB are scalar in nature, we can still write

V
1/4
inflation ∼ ε1/41016 GeV (3.168)

where ε is the slow-roll parameter defined in (3.153). Although we expect
ε to be small, the 1/4 in the exponent means that the dependence on ε is
quite weak; unless this parameter is extraordinarily tiny, it is very likely that
V

1/4
inflation ∼ 1015-1016 GeV.

We should note that this discussion has been phrased in terms of the
simplest models of inflation, featuring a single canonical, slowly-rolling scalar
field. A number of more complex models have been suggested, allowing for
departures from the relations between the slow-roll parameters and observ-
able quantities; some of these include hybrid inflation, inflation with novel
kinetic terms, the curvaton model, low-scale models, brane inflation and
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models where perturbations arise from modulated coupling constants. This
list is necessarily incomplete, and continued exploration of the varieties of
inflationary cosmology will be a major theme of theoretical cosmology into
the foreseeable future.

Reheating and Preheating

Clearly, one of the great strengths of inflation is its ability to redshift away
all unwanted relics, such as topological defects. However, inflation is not
discerning, and in doing so any trace of radiation or dust-like matter is sim-
ilarly redshifted away to nothing. Thus, at the end of inflation the universe
contains nothing but the inflationary scalar field condensate. How then does
that matter of which we are made arise? How does the hot big bang phase
of the universe commence? How is the universe reheated?

Inflation ends when the slow-roll conditions are violated and, in most
models, the field begins to fall towards the minimum of its potential. Ini-
tially, all energy density is in the inflaton, but this is now damped by two
possible terms. First, the expansion of the universe naturally damps the
energy density. More importantly, the inflaton may decay into other parti-
cles, such as radiation or massive particles, both fermionic and bosonic. To
take account of this one introduces a phenomenological decay term Γφ into
the scalar field equation. The inflaton undergoes damped oscillations and
decays into radiation which equilibrates rapidly at a temperature known as
the reheat temperature TRH.
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PART II

Cosmological evolution, inflation and dark mat-

ter in brane cosmology
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Chapter 4

Axino dark matter

We discuss dark matter in the brane world scenario. We work in the Randall-
Sundrum type II brane world and assume that the lightest supersymmetric
particle is the axino. We find that the axinos can play the role of cold dark
matter in the universe, provided that the five-dimensional Planck mass is
bounded both from below and from above. This is possible for higher reheat-
ing temperatures compared to the conventional four-dimensional cosmology
due to a novel expansion law for the universe.

4.1 Introduction

There are good theoretical reasons for which particle physics proposes that
new exotic particles must exist. The most compelling solution to the strong
CP-problem of quantum chromodynamics (QCD), which can be stated as
“why is the Θ parameter in QCD so small?”, is the one proposed by Peccei
and Quinn [7]. An additional global, chiral symmetry is introduced, now
known as Peccei-Quinn (PQ) symmetry, which is spontaneously broken at
the PQ scale fα ≥ 108 GeV [8]. Since U(1)PQ is a spontaneously broken
global symmetry, there must be a Nambu-Goldstone boson associated with
this symmetry. However, because U(1)PQ suffers from a chiral anomaly,
this boson is not massless but acquires a small mass. The pseudo Nambu-
Goldstone boson associated with this spontaneous symmetry breaking is the
axion [9], which has not yet been detected. On the other hand, supersymme-
try (SUSY) is an ingredient that appears in many theories for physics beyond
the standard model. SUSY solves the hierarchy problem and predicts that
every particle we know should be escorted by its superpartner. The axino is
the superpartner of the axion. In order for the supersymmetric solution of the

58



4.1. Introduction

hierarchy problem to work, it is necessary that the SUSY becomes manifest
at relatively low energies, less than a few TeV , and therefore the required
superpartners must have masses below this scale (for supersymmetry and
supergravity see e.g. [10]).

One of the theoretical problems in modern cosmology is to understand
the nature of cold dark matter in the universe. There are good reasons,
both observational and theoretical, to suspect that a fraction of 0.22 of the
energy density in the universe is in some unknown “dark” form [11]. Many
lines of reasoning suggest that the dark matter consists of some new, as
yet undiscovered, massive particle which experiences neither electromagnetic
nor color interactions. In SUSY models which are realized with R-parity
conservation the lightest supersymmetric particle (LSP) is stable. A popular
cold dark matter candidate is the LSP, provided that it is electrically and
color neutral. Certainly the most theoretically developed LSP is the lightest
neutralino. However, there are other dark matter candidates as well, for
example the gravitino and the axino. In this work we assume that the axino
is the LSP. Axinos are special because they have unique properties: They
are very weekly interacting and their mass can span a wide range, from very
small (∼ eV ) to large (∼ GeV ) values. What is worth stressing is that, in
contrast to those of the neutralino and the gravitino, axino mass does not
have to be of the order of the SUSY breaking scale in the visible sector,
MSUSY ∼ 100GeV − 1TeV . The first paper to show that the axinos can be
CDM was [12]. There are however some early works on axino cosmology (see
e.g. [13], [14]).

We believe that some time in its early history, the universe experienced
an inflationary phase [15]. According to the inflationary paradigm, during
the slow-roll phase of inflation the universe undergoes a rapid expansion, and
consequently any initial population of axinos is diluted away. After slow-roll
a reheating phase follows and leads the universe to the radiation era of the
standard hot Big-Bang cosmology of temperature TR. As the PQ symmetry
is restored at fα, we consider only values of TR up to the PQ scale, which we
take to be fα = 1011 GeV . Another important scale is the temperature TD at
which axinos decouple from the thermal bath. For TR > TD, there has been
an early phase in which axinos were in thermal equilibrium with the thermal
bath. The axino density parameter is then given by the equilibrium number
density [16]

Ωα̃h2 ∼ mα̃

2 keV
(4.1)

If we require that Ωα̃h2 ∼ 0.1 then the axino mass mα̃ ∼ 0.2 keV . For
an axino mass in the range mα̃ ≤ 1 keV , 1 keV ≤ mα̃ ≤ 100 keV and
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mα̃ ≥ 100keV , we refer to hot, warm and cold axino dark matter respectively.
So we see that for TR > TD, axinos can only be hot dark matter. For TR < TD,
the axinos are out of thermal equilibrium so that the production mechanisms
have to be considered in detail.

In order to generate a large enough abundance of axinos, one needs to
repopulate the universe (after inflation) with them. There are two generic
ways of achieving this. First, they can be generated through thermal produc-
tion (TP), namely via scattering and decay processes of ordinary particles
and sparticles still in the thermal bath. Second, axinos may also be produced
via non-thermal production mechanisms (NTP) possibly present during the
reheating phase. In [17] the authors considered both NTP and TP and they
found that TR had to be relatively low, below some 106 GeV . However NTP
mechanisms are strongly model dependent and we shall not consider them
here. In [16] the authors using specific techniques (the hard thermal loop re-
summation technique [18] together with the Braaten-Yuan prescription [19])
computed the thermal production rate of axinos in supersymmetric QCD
and evaluated the relic axino abundance. They found that axinos provide
the density of cold dark matter observed by WMAP for relatively small re-
heating temperature after inflation TR ≤ 106 GeV , essentially in agreement
with [17]. Such a low reheating temperature excludes some models for in-
flation and the baryon asymmetry in the universe has to be explained by a
mechanism that works efficiently at relatively small temperatures, excluding
thermal leptogenesis [20] (for thermal leptogenesis in brane world cosmology
see [21]).

The purpose of this paper is to show that this fact can be dealt with in the
context of the brane world scenario. Our brane world model is the Randall-
Sundrum type II model (RSII) [22], and in fact its supersymmetric extended
model [23]. However, the cosmological solution of this extended model is the
same as that in the non-supersymmetric model, since Einstein’s equations
belong to the bosonic part. The RSII model offers a novel expansion law for
the observable four-dimensional universe. We find that the axino abundance
today is proportional to the transition temperature, at which the modified
expansion law in the brane world cosmology connects to the standard one,
rather than the reheating temperature after inflation as in the standard cos-
mology. This means that even though the reheating temperature can be very
high, the axinos can play the dominant part of the cold dark matter in the
universe. Other works that discuss dark matter in brane cosmology are [24].

Let us see in more detail the thermal production of axinos (in standard
cosmology). We assume that after inflation axinos are far from thermal
equilibrium. With the axino number density nα̃ being much smaller than the
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photon number density nγ, the evolution of nα̃ with cosmic time t can be
described by the Boltzmann equation

dnα̃

dt
+ 3Hnα̃ = Cα̃ (4.2)

where Cα̃ is the collision term, while the second term on the left-hand side
accounts for the dilution of the axinos due to the expansion of the universe
described by the Hubble parameter H. It is convenient to define the dimen-
sionless quantity

Yα̃ =
nα̃

s
(4.3)

where s is the entropy density for the relativistic degrees of freedom in the
primordial plasma

s(T ) = heff (T )
2π2

45
T 3 (4.4)

with heff (T ) ' geff (T ) in the radiation dominated epoch and geff counts
the total number of effectively massless degrees of freedom (those species
with mass mi ¿ T ). When all the degrees of freedom are relativistic
geff = 915/4 = 228.75. Replacing the cosmic time t with the temperature
T , the number density nα̃ with the number-to-entropy ratio Yα̃ and using
conservation of the entropy per comoving volume (see for example the first
reference in [15]), the Boltzmann equation can be cast into the form

dYα̃

dT
=

Cα̃(T )

Ts(T )H(T )
(4.5)

where H(T ) is the Hubble parameter as a function of the temperature T for
the radiation dominated era

H(T ) =

√
π2geff

90

T 2

Mpl

(4.6)

where Mpl = 2.4 × 1018 GeV is the reduced Planck mass. In terms of the
number-to-entropy ratio Yα̃, the axino density parameter is given by

Ωh2 =
ρα̃h2

ρcr

=
mα̃nα̃h2

ρcr

=
mα̃Yα̃s(T0)h

2

ρcr

(4.7)

Here we make use of the following values

T0 = 2.73K = 2.35× 10−13 GeV (4.8)

heff (T0) = 3.91 (4.9)

ρcr/h
2 = 8.1× 10−47 GeV 4 (4.10)
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The collision term Cα̃ has been computed in supersymmetric QCD by the
authors of [16]

Cα̃(T ) =
3ζ(3)(N2

c − 1)g6T 6

4096π7f 2
α

(
0.4336nf + (Nc + nf ) ln

(
1.38T 2

mg

))
(4.11)

where Nc = 3, nf = 6 and g is the QCD coupling constant

g(T ) =

(
1

4× π × 0.118
+

3

8π2
ln

(
T

MZ

))−1/2

(4.12)

The collision term Cα̃ assumes that gluons and gluinos are in thermal equi-
librium and hence the expression that gives Cα̃ is only valid for T > mg̃. The
thermal axino production proceeds basically during the hot radiation domi-
nated epoch, that is at temperatures above that at matter-radiation equality
Teq. Integrating the Boltzmann equation the axino yield at the present tem-
perature of the universe T0 is given by

Yα̃(T0) =

∫ TR

Teq

dT
Cα̃

Ts(T )H(T )
' Cα̃(TR)

s(TR)H(TR)
(4.13)

or

Yα̃(T0) =
3ζ(3)45

√
90(N2

c − 1)g6
(
0.4336nf + (Nc + nf ) ln

(
1.38T 2

R

mg

))
Mpl

2heff
√

geff 4096π10f 2
α

TR

(4.14)
and finally the axino density parameter is obtained

Ωh2 = 5.5g6ln

(
1.108

g

) ( mα̃

0.1GeV

) (
TR

104GeV

)(
1011 GeV

fα

)2

(4.15)

Considering fα = 1011 GeV , axinos can be cold dark matter for masses
mα̃ ≥ 100 keV and reheating temperatures TR ≤ 106 GeV [16].

Recently the brane world models have been attracting a lot of attention
as a novel higher dimensional theory. In these models, it is assumed that the
standard model particles are confined on a 3-brane while gravity resides in the
whole higher dimensional spacetime. The model first proposed by Randall
and Sundrum (RSII) [22], is a simple and interesting one, and its cosmological
evolutions have been intensively investigated [25, 26, 27]. According to that
model, our four-dimensional universe is realized on the 3-brane with a positive
tension located at the UV boundary of five-dimensional AdS spacetime. In
the bulk there is just a cosmological constant Λ5, whereas on the brane
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there is matter with energy-momentum tensor τµν . Also, the five-dimensional
Planck mass is denoted by M5 and the brane tension is denoted by T . If
Einstein’s equations hold for the five-dimensional bulk, then it has been
shown in [28] that the effective four-dimensional Einstein’s equations induced
on the brane can be written as

Gµν + Λ4gµν =
8π

m2
p

τµν + (
1

M3
5

)2πµν − Eµν (4.16)

where gµν is the induced metric on the brane, πµν = 1
12

τ τµν + 1
8
gµν ταβ ταβ−

1
4
τµα τα

ν − 1
24

τ 2gµν , Λ4 is the effective four-dimensional cosmological constant,
mp is the usual four-dimensional Planck mass and Eµν ≡ Cα

βρσ nα nρ gβ
µ gσ

ν is
a projection of the five-dimensional Weyl tensor Cαβρσ, where nα is the unit
vector normal to the brane. The tensors πµν and Eµν describe the influence
of the bulk in brane dynamics. The five-dimensional quantities are related
to the corresponding four-dimensional ones through the relations

mp = 4

√
3π

T
M3

5 (4.17)

and

Λ4 =
1

2M3
5

(
Λ5 +

T 2

6M3
5

)
(4.18)

In a cosmological model in which the induced metric on the brane gµν has
the form of a spatially flat Friedmann-Robertson-Walker model, with scale
factor a(t), the Friedmann-like equation on the brane has the generalized
form (see e.g. the second reference in [25])

H2 =
Λ4

3
+

8π

3m2
p

ρ +
1

36M6
5

ρ2 +
C

a4
(4.19)

where C is an integration constant arising from Eµν . The cosmological con-
stant term and the term linear in ρ are familiar from the four-dimensional
conventional cosmology. The extra terms, i.e the “dark radiation” term and
the term quadratic in ρ, are there because of the presence of the extra di-
mension. Adopting the Randall-Sundrum fine-tuning

Λ5 = − T 2

6M3
5

(4.20)

the four-dimensional cosmological constant vanishes. So the generalized
Friedmann equation takes the final form

H2 =
8πG

3
ρ

(
1 +

ρ

ρ0

)
+

C

a4
(4.21)
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where
ρ0 = 96πGM6

5 (4.22)

with G the Newton’s constant. The second term proportional to ρ2 and
the dark radiation are new ingredients in the brane world cosmology and
lead to a non-standard expansion law. The dark radiation term is severely
constrained by the success of the Big Bang Nucleosynthesis (BBN), since
the term behaves like an additional radiation at the BBN era [29]. So, for
simplicity, we neglect the term in the following analysis. The five-dimensional
Planck mass is also constrained by the BBN, which is roughly estimated as
M5 ≥ 10TeV [30]. A more stringent constraint may be obtained by requiring
that relative corrections to the Newtonian law of gravity should be small on
scales r ≥ 1 mm. This gives M5 > 108 GeV [31].

One can see that the evolution of the early universe can be divided into
two eras. In the low energy regime ρ ¿ ρ0 the first term dominates and we
recover the usual Friedmann equation of the conventional four-dimensional
cosmology. In the high density regime ρ0 ¿ ρ the second term dominates
and we get an unconventional expansion law for the universe. In between
there is a transition temperature Tt for which ρ(Tt) = ρ0. The transition
temperature Tt is determined as

Tt = 1.6× 107

(
100

geff

)1/4 (
M5

1011 GeV

)3/2

GeV (4.23)

once M5 is given. Using the transition temperature the generalized Fried-
mann-like equation (for the radiation era) can be rewritten in the form

H = Hst

√
1 +

T 4

T 4
t

(4.24)

with Hst the Hubble parameter in standard four-dimensional Big-Bang cos-
mology. Assuming a transition temperature TR À Tt and Tt À Teq, the
following integral can be computed to a very good approximation

∫ TR

Teq

dT
1√

1 + T 4

T 4
t

=

∫ Tt

Teq

dT
1√

1 + T 4

T 4
t

+

∫ TR

Tt

dT
1√

1 + T 4

T 4
t

' 2Tt (4.25)

Therefore, the axino yield resulting on integrating the Boltzmann equation
in brane cosmology is

Yα̃(T0) =

∫ TR

Teq

dT
Cα̃(T )

Ts(T )Hst(T )

1√
1 + T 4

T 4
t

' Cα̃(TR)

TRs(TR)Hst(TR)
2Tt (4.26)
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The expression is only valid for Tt > mg̃. So we see that essentially the
reheating temperature TR in the axino parameter density Ωα̃ is replaced by
the transition temperature Tt. Therefore, axinos can play the role of cold
dark matter in the universe for

mα̃ ≥ 100 keV, Tt ≤ 2× 106 GeV (4.27)

independently of the reheating temperature. This is the main result in this
work. At this point we would like to stress the fact that the axino abundance
does depend on the reheating temperature, but only through the coupling
constant g(TR). The function g(T ) is a very slow-varying function of the
temperature (for example, g(T = 106 GeV ) = 0.986 and g(T = 1010 GeV ) =
0.852), so practically we can consider reheating temperatures of the order of
∼ 1010 GeV and neglect the dependence on it. Note that according to the
analysis of [32], with a transition temperature Tt ≤ 106 GeV the gravitino
problem can be avoided. It is interesting to note that in order that the axinos
can play the role of cold dark matter in the universe, the five-dimensional
Planck mass M5 can only take values in a range between an upper limit and
a lower limit. If M5 becomes too high, the transition temperature Tt will
be higher than ∼ 106 GeV and this sets an upper bound for M5: M5 ≤
2.9 × 1010 GeV . On the other hand, if M5 becomes too low, the reheating
temperature will be smaller than the gluino mass, mg̃ ∼ 1 TeV . Thus, we
get a lower bound for M5: M5 > 1.8× 108 GeV . So we find a window for the
five-dimensional Planck mass

1.8× 108 GeV < M5 ≤ 2.9× 1010 GeV (4.28)

It is interesting to note that this range for the five-dimensional Planck mass
is compatible with the bounds mentioned before coming from the BBN and
modifications to Newton’s law, namely that M5 > 108 GeV .

To illustrate the above ideas let us present a specific example. We con-
sider the case in which the five-dimensional Planck mass is M5 = 1010 GeV .
Then the transition temperature Tt is found to be Tt = 4 × 105 GeV . We
also assume that the reheating temperature is TR = 1010 GeV . If the axinos
are to be the cold dark matter in the universe, their parameter density has
to be Ωα̃h2 = 0.113. This happens for mα̃ ' 511keV . Our treatment is valid
as long as axinos are never in thermal equilibrium after inflation. One can
easily check that this is the case. For that we need to compare the Hubble
parameter H(T ) to the rate Γ(T ) of the reaction that maintain the axinos in
thermal equilibrium. For T < fα the reaction rate is [14]

Γ ∼ α3
s

16πf 2
α

T 3 (4.29)
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We can see that after inflation H(T ) À Γ(T ) for all the values of M5 in the
allowed range.

Summarizing, we have discussed dark matter in Randall-Sundrum type
II brane world assuming that the axino is the LSP. We have seen that axinos
can be the dominant part of the cold dark matter in the universe if their
mass mα̃ ≥ 100 keV and the transition temperature Tt ≤ 2 × 106 GeV
independently of the reheating temperature TR after inflation (provided that
TR À Tt, which is true for TR ∼ 1010 GeV ). Therefore, in contrast to
the case for the conventional four-dimensional cosmology, high values for TR

such as 1010 GeV are allowed, in accord with most inflationary models and
baryogenesis through leptogenesis.
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Chapter 5

Sneutrino inflation

We discuss sneutrino inflation in the brane-world scenario. We work in the
Randall-Sundrum type II brane-world, generalized with the introduction of
the Gauss-Bonnet (GB) term, a correction to the effective action in string
theories. We find that a viable inflationary model is obtained with a reheating
temperature appropriate to lead to the right baryon asymmetry and render
the gravitino safe for cosmology. In specific realizations we satisfy all the
observational constaints without the unnaturally small Yukawa couplings
required in other related approaches.

5.1 Introduction

Inflation [15] has become the standard paradigm for the early Universe, be-
cause it solves some outstanding problems present in the standard Hot Big-
Bang cosmology, like the flatness and horizon problems, the problem of un-
wanted relics, such as magnetic monopoles, and produces the cosmological
fluctuations for the formation of the structure that we observe today. The re-
cent spectacular CMB data from the WMAP satellite [11, 33] have strengthen
the inflationary idea, since the observations indicate an almost scale-free
spectrum of Gaussian adiabatic density fluctuations, just as predicted by
simple models of inflation. According to chaotic inflation with a potential
for the inflaton field φ of the form V = (1/2)m2φ2, the WMAP normaliza-
tion condition requires for the inflaton mass m that m = 1.8×1013 GeV [34].
However, a yet unsolved problem about inflation is that we do not know how
to integrate it with ideas in particle physics. For example, we would like to
identify the inflaton, the scalar field that drives inflation, with one of the
known fields of particle physics.
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One of the most exciting experimental results in the last years has been
the discovery of neutrino oscillations [35]. These results are nicely explained if
neutrinos have a small but finite mass [36]. The simplest models of neutrino
masses invoke heavy gauge-singlet neutrinos that give masses to the light
neutrinos via the seesaw mechanism [37]. If we require that light neutrino
masses ∼ 10−1 to 10−3 eV , as indicated by the neutrino oscillations data, we
find that the heavy singlet neutrinos weight ∼ 1010 to 1015 GeV [38], a range
that includes the value of the inflaton mass compatible with WMAP. On the
other hand, the hierarchy problem of particle physics is elegantly solved by
supersymmetry (see e.g. [10]), according to which every known particle comes
with its superpartner, the sparticle. In supersymmetric models the heavy
singlet neutrinos have scalar partners with similar masses, the sneutrinos,
whose properties are ideal for playing the role of the inflaton [39, 34].

Superstring theory includes, apart from the fundamental string, other
extended objects called p-branes. A special class of p-branes are D(irichlet)p-
branes, where open strings can end. D-brane physics has motivated the
brane-world idea, which has attracted a lot of interest over the last years.
In a brane-world scenario our universe is modeled by a 3-brane embedded
in a five-dimensional bulk spacetime. In the simpest cases, all the standard
model fields (open string sector) are confined on the brane, while gravity
(closed string sector) propagates in the bulk. The brane is a hypersurface
that splits the five-dimensional manifold into two parts and plays the role
of a boundary of spacetime. Usually the brane is considered to be infinitely
thin and the matching conditions can be used to relate the bulk dynamics
to what we observe on the brane. The model first proposed by Randall and
Sundrum (RS II) [22] offers a viable alternative to the standard Kaluza-Klein
treatment of the extra dimensions and together with various extensions has
been intensively investigated for its cosmological consequences (see e.g. [25]
and for reviews [40]).

In four dimensions, the Einstein tensor is the only second-rank tensor
that (i) is symmetric, (ii) is divergence free, (iii) it depends only on the
metric and its first derivatives, and (iv) is linear in second derivatives of the
metric. However, in D > 4 dimensions more complicated tensors with the
above properties exist. For example, in five dimensions the second order
Lovelock tensor reads

Hab = RRab − 2RacR
c
b − 2RcdRacbd + Rcde

a Rbcde

− 1

4
gab(R

2 − 4RcdR
cd + RcdesRcdes) (5.1)

and can be obtained from an action containing the GB term [41]
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LGB = R2 − 4RabR
ab + RabcdRabcd (5.2)

Higher order curvature terms appear also in the low-energy effective field
equations arising in string theory. Brane-worlds are string-inspired and so it
is natural to include such terms in the five-dimensional field equations.

It is important to note that in the context of extra dimensions and the
brane-world idea one obtains on the brane a generalized Friedmann equa-
tion, which is different from the usual one of conventional four-dimensional
cosmology. This means that the rate of expansion of the universe in this
novel cosmology is altered and accordingly the description of the physics in
the early universe can be different from the standard treatment. So it would
be very interesting to study the cosmological implications of these new ideas
about extra dimensions and braneworlds. The Friedmann-like equation for
a GB brane-world has been derived in [42, 43, 41].

Sneutrino inflation in the context of Randall-Sundrum type II model
has been analyzed in [44]. However, it would be interesting to study the
effect of the GB term. After all, this term is a high energy modification to
general relativity and as such it is expected to be important in the early
universe. Furthermore, as it has been shown in [45], the quadratic potential
V ∼ φ2 for the inflaton is observationally more favoured when the GB term
is present. The purpose of the present work is to discuss sneutrino inflation
in the context of a GB braneworld.

The present chapter is organized as follows. There are five sections of
which this introduction is the first. In section 2 we describe sneutrino in-
flation in a GB brane-world. Section 3 contains the discussion of reheating,
gravitino production and baryogenesis through leptogenesis. Our results are
summarized in section 4 and we conclude with a discussion section 5.

5.2 Sneutrino inflation in a GB brane-world

5.2.1 GB brane-world

Here we review GB brane-world, following essentially [45]. The five-dimensio-
nal bulk action for the GB braneworld scenario is given by

S =
1

2κ2
5

∫
d5x

√
−(5)g [−2Λ5 + R

+ α
(
R2 − 4RabR

ab + RabcdR
abcd

)]

−
∫

brane

d4x
√−g λ + Smat (5.3)
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where α > 0 is the GB coupling, which has dimensions of length2, λ > 0
is the brane tension, Λ5 < 0 is the bulk cosmological constant and Smat

denotes the matter action. The fundamental energy scale of gravity is the
five-dimensional scale M5 with κ2

5 = 8π/M3
5 . For the discussion to follow we

define a new mass scale through the relation α = 1/M2
∗ .

The GB term may be viewed as the lowest-order stringy correction to
the five-dimensional Einstein-Hilbert action with α ¿ 1/µ2, where 1/µ is
the bulk curvature scale, |R| ∼ µ2. The Randall-Sundrum type models are
recovered for α = 0. Moreover, for an anti-de Sitter bulk, it follows that
Λ5 = −3µ2(2− ξ), where

ξ ≡ 4αµ2 ¿ 1 (5.4)

Imposing a Z2 reflection symmetry across the brane in an anti-de Sitter
bulk and assuming that a perfect fluid matter source is confined on the brane,
one obtains the modified Friedmann equation

κ2
5(ρ + λ) = 2µ

√
1 +

H2

µ2

[
3− ξ + 2ξ

H2

µ2

]
(5.5)

This can be rewritten in the useful form

H2 =
µ2

ξ

[
(1− ξ) cosh

(
2χ

3

)
− 1

]
(5.6)

where χ is a dimensionless measure of the energy density ρ on the brane
defined by

ρ + λ = m4
α sinh χ (5.7)

with

mα =

[
8µ2(1− ξ)3

ξκ4
5

]1/8

(5.8)

the characteristic GB energy scale.

The requirement that one should recover general relativity at low energies
leads to the relation

κ2
4 =

µ

1 + ξ
κ2

5 (5.9)

where κ2
4 = 8π/M2

pl and Mpl is the four-dimensional Planck scale. Since
ξ ¿ 1, we have µ ≈ M3

5 /M2
pl. Furthermore, the brane tension is fine-tuned

to zero effective cosmological constant on the brane

κ2
5λ = 2µ(3− ξ) (5.10)
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The GB energy scale mα is larger than the RS energy scale λ1/4, since we
consider that the GB term is a correction to RS gravity. Using (5.10) this
implies [46] ξ . 0.15, which is consistent with Eq. (5.4).

Expanding Eq. (5.6) in χ, we find three regimes for the dynamical history
of the brane universe

ρ À m4
α ⇒ H2 ≈

[
µ2κ2

5

4ξ
ρ
]2/3

(GB) (5.11)

m4
α À ρ À λ ⇒ H2 ≈ κ2

4

6λ
ρ2 (RS) (5.12)

ρ ¿ λ ⇒ H2 ≈ κ2
4

3
ρ (GR) (5.13)

Eqs. (5.11)-(5.13) are considerably simpler than the full Friedmann equation
and for inflation we shall assume the first one (GB).

5.2.2 Chaotic inflation in a GB brane-world

We will consider the case in which the energy momentum on the brane is
dominated by the sneutrino inflaton field φ confined on the brane with a self-
interaction potential V (φ) = (1/2)M2 φ2, where M is the mass of the sneu-
trino field. The field φ is a function of time only, as dictated by the isotropy
and homogeneity of the observed four-dimensional universe. A homogeneous
scalar field behaves like a perfect fluid with pressure p = (1/2)φ̇2 − V and
energy density ρ = (1/2)φ̇2 +V . We shall assume that there is no energy ex-
change between the brane and the bulk, so the energy-momentum tensor Tµν

of the scalar field is conserved, that is ∇νTµν = 0. In terms of the pressure
p and the energy density ρ the continuity equation takes the form

ρ̇ + 3H(p + ρ) = 0 (5.14)

where H is the Hubble parameter H = ȧ/a. This is equivalent to the equation
of motion for the scalar field φ

φ̈ + 3Hφ̇ + V ′(φ) = 0 (5.15)

the Klein-Gordon equation for φ in a Robertson-Walker background. The
equation that governs the dynamics of the expansion of the universe is the
Friedmann-like equation of the previous subsection. Inflation takes place in
the early stages of the evolution of the universe, so we suppose that inflation
takes place in the GB high energy regime

H2 =

(
µ2κ2

5

4ξ
ρ

)2/3

(5.16)

71



Sneutrino inflation

In the slow-roll approximation the slope and the curvature of the potential
must satisfy the two constraints ε ¿ 1 and |η| ¿ 1, where ε and η are the
two slow-roll parameters which are defined by

ε ≡ − Ḣ

H2
(5.17)

η ≡ V ′′

3H2
(5.18)

In this approximation the equation of motion for the scalar field takes the
form

φ̇ ' − V ′

3H
(5.19)

while the generalized Friedmann equation becomes (V À φ̇2)

H2 '
(

µ2κ2
5

4ξ
V

)2/3

(5.20)

The number of e-folds during inflation is given by

N ≡ ln
af

ai

=

∫ tf

ti

Hdt (5.21)

Before presenting all the formulae, it would perhaps be useful at this point
to describe what follows. Any model of inflation should i) solve the flatness
and horizon problems, ii) reproduce the amplitude for density perturbations
(COBE normalization), iii) predict a nearly scale-invariant spectrum, and iv)
predict very small tensor perturbations. For a strong enough inflation we take
N = 70, which is enough to solve the horizon and flatness problems. Using
the equations of motion we shall compute the spectral index, as well as the
scalar and tensor perturbations. We will then fix the remaining parameters
by requiring that the amplitude of scalar perturbations is reproduced. This
will lead to a prediction of the spectral index and the tensor-to-scalar ratio.

According to a recent analysis [47], at 1− σ

As ' 2× 10−5 (5.22)

−0.048 < ns − 1 < 0.016 (5.23)

with As the amplitude of the density perturbations and ns the spectral index.
On large cosmological scales, data [47] give for the tensor perturbations

r < 0.47 95% c.l. (5.24)
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with r the tensor-to-scalar ratio defined as r = 16A2
t /A

2
s (consistent with the

normalization of Ref. [33] in the low energy limit), where At is the amplitude
of the tensor perturbations.

In the slow-roll approximation the number of e-folds and the slow-roll
parameters are given by the formulae

ε ' V ′2

9V 5/3

(
4ξ

µ2κ2
5

)2/3

(5.25)

η ' V ′′

3V 2/3

(
4ξ

µ2κ2
5

)2/3

(5.26)

N ' −3

(
µ2κ2

5

4ξ

)2/3 ∫ φend

φ∗

V 2/3

V ′ dφ (5.27)

where φend is the value of the inflaton at the end of inflation, which is deter-
mined from the condition that the maximum of ε, |η| equals unity, and the
∗ denotes the point at which observable quantities are computed. The main
cosmological constraint (normalization condition) comes from the amplitude
of the scalar perturbations [48]

As =
4

5

H2

M2
pl|H ′(φ)| (5.28)

where the right-hand side is evaluated at the horizon-crossing when the co-
moving scale equals the Hubble radius during inflation and Mpl = 1.22 ×
1019 GeV is the four-dimensional Planck mass. In the present context the
amplitude of the scalar perturbations is given by

A2
s =

144V 8/3

25M4
plV

′2

(
µ2κ2

5

4ξ

)2/3

(5.29)

The spectral index for the scalar perturbations ns is given in terms of the
slow-roll parameters

ns − 1 ≡ d lnA2
s

d lnk
= 2η − 6ε (5.30)

and is found to be

ns =
2N − 3

2N
= 0.98 (5.31)

while the tensor-to-scalar ratio r is given by

r =
3M2

∗M
2
pl

2N3/2MM3
5

(5.32)
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with At the amplitude of the tensor perturbations [48]

At =
2

5
√

π

H

Mpl

(5.33)

where again the right-hand side is evaluated at the horizon-crossing. Taking
the normalization condition into account we obtain for M

M = 3.4× 10−5
M

2/3
∗ M

4/3
pl

M5

(5.34)

and for the tensor-to-scalar ratio

r = 75.3
M

4/3
∗ M

2/3
pl

M2
5

(5.35)

5.3 Reheating, gravitino production and lep-

togenesis

5.3.1 Reheating

We start by introducing three heavy right-handed neutrinos Ni which only
interact with leptons and Higgs. The superpotential that describes their
interactions is [49]

W = fiaNiLaHu (5.36)

where fia is the matrix for the Yukawa couplings, Hu is the superfield of
the Higgs doublet that couples to up-type quarks and La (a = e, µ, τ) is the
superfield of the lepton doublets. We assume that the scalar partner of the
lightest right-handed neutrino plays the role of the inflaton. After inflation
the inflaton decays into normal particles which quickly thermalize. This is
the way the universe reenters the radiation dominated era. The sneutrino
inflaton decays into leptons and Higgs and their antiparticles according to
the superpotential (5.36) and the decay rate is given by [49]

Γφ =
1

4π
f 2M (5.37)

with M the sneutrino mass and f 2 ≡ ∑
a |f1a|2. The reheating temperature

after inflation is defined by assuming instantaneous conversion of the inflaton
energy into radiation, when the decay rate of the inflaton Γφ equals the
expansion rate H. In GB braneworld cosmology H is given by

H =

(
κ2

5

16α

)1/3

ρ1/3 (5.38)
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and in the radiation dominated era the energy density of the universe is given
by

ρ = ρR = geff
π2

30
T 4 (5.39)

with geff = 228.75 the effective number of relativistic degrees of freedom in
the MSSM for T À 1 TeV . Thus we obtain

H =

(
κ2

5

16α

)1/3 (
geff

π2

30
T 4

)1/3

(5.40)

The condition H(TR) = Γφ gives for the reheating temperature

TR =

(
15M3M3

5

16π6geffM2∗
f 6

)1/4

(5.41)

After inflation, the direct out-of-equilibrium decays of the sneutrino inflaton
generate the lepton asymmetry which is partially converted into a baryon
asymmetry via sphaleron effects. This requires that TR < M or that

f 2 <

(
16π6geffMM2

∗
15M3

5

)1/3

(5.42)

5.3.2 Gravitino production

Any viable inflationary model should avoid the gravitino problem [50]. This
means that for unstable gravitinos that decay after Big-Bang Nucleosynthesis
(BBN), their decay products should not alter the abundances of the light
elements in the universe that BBN predicts. This requirement sets an upper
bound for the gravitino abundance

η3/2 ≡
n3/2

nγ

≤ ζmax

m3/2

(5.43)

with m3/2 ∼ 100 GeV − 1 TeV the gravitino mass, nγ the photon number
density and ζmax a parameter related to the maximum gravitino abundance
allowed by the BBN predictions. According to the analysis of the authors
of [51], ζmax = 5 × 10−12 GeV for m3/2 = 100 GeV . To find the gravitino
abundance one has to integrate Boltzmann equation

dn3/2

dt
+ 3Hn3/2 = C3/2(T ) (5.44)

with C3/2(T ) the collision term responsible for the thermal production of
gravitinos as a function of the temperature T < TR. The rate for the thermal
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production of gravitinos is dominated by QCD processes since the strong
coupling is considerably larger than the electroweak couplings. Taking into
account 10 two-body processes involving left-handed quarks, squarks, gluons
and gluinos, the authors of [52] computed the collision term C3/2(T ) in the
framework of supersymmetric QCD. They obtained

C3/2(T ) = a(T )

(
1 + b(T )

m2
g̃

m2
3/2

)
T 6

M2
pl

(5.45)

where mg̃ ∼ 1 TeV is the gluino mass and a(T ), b(T ) are two slowly-varying
functions of the temperature, estimated to be [44]

a(TR) = 2.38, b(TR) = 0.13 (5.46)

If we assume that the quantity sa3 is constant during the expansion of
the universe, where a is the scale factor and s is the entropy density s =
heff (2π2T 3)/45, then the integration of Boltzmann equation gives

η3/2(T ) =
heff (T )

heff (TR)

C3/2(TR)

H(TR)nγ(TR)
(5.47)

with heff the effective number of relativistic degrees of freedom. For T À
1 TeV all particles are relativistic and for the MSSM heff (TR) ∼ geff (TR) =
915/4 = 228.75, while heff (T ) = 43/11 for T < 1 MeV . Thus, using (5.43)
with m3/2 = 100 GeV one is led to the following upper bound for the reheat-
ing temperature

TR ≤ 1.63× 10−8
M

6/5
pl M

2/5
∗

M
3/5
5

≡ T0 (5.48)

At this point we should also check whether the contribution of the gravitinos
to the energy density of the universe is compatible with the observed matter
density of the universe, Ωmh2 < 0.143 [11], where h = (H/100) Mpc sec

Km
. From

the gravitino abundance we can calculate their normalized density

Ω3/2h
2 = m3/2η3/2nγ0h

2ρ−1
cr (5.49)

with nγ0 = 3.15 × 10−39 GeV 3 the photon density today and ρcr = 8.07 ×
10−47h2 GeV 4 the critical density. For m3/2 = 100 GeV we obtain

Ω3/2h
2 = 1.86× 109 M5T

5/3
R

M2
plM

2/3
∗

(5.50)
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Using the WMAP bound on the matter density of the universe, Ωmh2 < 0.143
we get the following relation between TR, M5 and M∗

TR < 8.54× 10−7
M

6/5
pl M

2/5
∗

M
3/5
5

(5.51)

which is less stringent than the constraint (5.48) coming from BBN.

5.3.3 Direct leptogenesis from sneutrino decay

Any lepton asymmetry YL ≡ nL/s produced before the electroweak phase
transition is partially converted into a baryon asymmetry YB ≡ nB/s via
sphaleron effects [53]. The resulting YB is

YB = C YL (5.52)

with the fraction C computed to be C = −8/15 in the MSSM [54]. The lepton
asymmetry, in turn, is generated by the direct out-of-equilibrium decays of
the sneutrino inflaton after inflation and is given by [49]

YL =
3

4

TR

M
ε (5.53)

with ε the CP asymmetry in the sneutrino decays. For convenience we
parametrize the CP asymmetry in the form

ε = εmax sinδL (5.54)

where δL is an effective leptogenesis phase and εmax is the maximum asym-
metry which is given by [55]

εmax =
3

8π

M
√

∆m2
atm

v2sin2β
(5.55)

with v = 174GeV the electroweak scale, tanβ the ratio of the vevs of the two
Higgs doublets of the MSSM and ∆m2

atm = 2.6× 10−3 eV 2 the mass squared
difference measured in atmospheric neutrino oscillation experiments. For
simplicity we shall take sinβ ∼ 1 (large tanβ regime), in which case the
maximum CP asymmetry is given by

εmax = 2× 10−10

(
M

106 GeV

)
(5.56)
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Combining the above formulae we obtain

YB = 8× 10−11|sinδL|
(

TR

106 GeV

)
(5.57)

From the WMAP data [11] we know that

ηB ≡ nB

nγ

= 6.1× 10−10 (5.58)

If we recall that the entropy density for relativistic degrees of freedom is
s = heff

2π2

45
T 3 and that the number density for photons is nγ = 2ζ(3)

π2 T 3, one
easily obtains for today that s = 7.04nγ. Thus, using (5.57) we have

TR =
1.08× 106

|sinδL| GeV (5.59)

from which we get a lower bound for the rehetaing temperature

TR ≥ 1.08× 106 GeV (5.60)

5.4 Results

Let us summarize the results obtained above. We take M5 and M∗ to be two
independent mass scales, in principle anywhere between the four-dimensional
Planck mass Mpl and the electroweak scale, v ∼ 200 GeV . First we present
all the constraints that have to be satisfied. We have mentioned that ξ ¿ 1
and that in the GB regime ρ À m4

α. These lead to the constraints

M∗ À 2M3
5

M2
pl

(5.61)

and
M∗ ¿ M (5.62)

respectively. On the other hand, the sneutrino drives inflation and simulta-
neously produces the lepton asymmetry through its direct out-of-equilibrium
decay after the inflationary era. This requires the reheating temperature to
be smaller than the sneutrino inflaton mass, namely TR < M . Furthermore,
the gravitino abundance constraint requires TR ≤ T0. So we see that the re-
heating temperature has to be lower than both M and T0. Now the question
arises, whether M is larger than T0 or vise versa. We have checked that for
M5 and M∗ in their allowed range, M is always larger than T0. Thus, the
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requirement that TR ≤ T0 also guarantees that TR < M . Hence, for given M5

and M∗, the reheating temperature is bounded both from below and from
above as follows

1.08× 106 GeV ≤ TR ≤ T0 (5.63)

Of course, T0 should not be lower than the minimum of the reheating tem-
perature

T0 ≥ 1.08× 106 GeV (5.64)

Combining all the constraints mentioned above we find an upper bound for
M∗

M∗ ≤ 3× 1011 GeV (5.65)

Then, for a given value for M∗, M5 has to range between a maximum and a
minimum value. If M5 gets too small, the tensor-to-scalar ratio gets larger
than the observed value, while if M5 gets too large, then the constraint (5.61)
or (5.62) is not satisfied. For example, for the extremum values of M∗

• For M∗ = 3× 1011 GeV

1.31× 1015 GeV ≤ M5 ≤ 2.42× 1015 GeV (5.66)

• while for M∗ = 200 GeV

9.97× 108 GeV ≤ M5 ≤ 5.3× 1012 GeV (5.67)

We see that M5 can be very close to the unification scale MGUT ∼ 1016 GeV
(but remains lower than that) and not lower than 108 GeV . Interestingly, our
findings are compatible with experiments to probe deviations from Newton’s
law, which currently imply that M5 ≥ 108 GeV [46]. Finally, for all the
allowed values of M5 and M∗, we find that the constraint (5.64) is always
satisfied and that the tensor perturbations are always negligible.

So far we have treated M∗ as a phenomenological parameter of the model.
However, the GB coupling α is related to the string mass scale Mstring and
it is defined to be α = 1/(8M2

string) [56]. Thus, M2
∗ = 8M2

string. M-theory
seems to allow arbitrary values for the string scale. Experimental limits
imply that is is not lower than O(TeV ). If the string scale is around a
few TeV [57, 58, 59], observation of novel effects in forthcoming experiments
becomes a realistic possibility (see e.g. [60]). For the special case Mstring =
7 TeV or M∗ = 19.81 TeV we obtain

2.13× 1010 GeV ≤ M5 ≤ 2.45× 1013 GeV (5.68)
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For the minimum value M5 = 2.13 × 1010 GeV we obtain for M , tensor-to-
scalar ratio and reheating temperature the following

r = marginal (5.69)

M = 3.28× 1013 GeV (5.70)

and
1.08× 106 GeV ≤ TR ≤ 4.34× 1010 GeV (5.71)

while for the maximum value M5 = 2.45× 1013 GeV we obtain

r = 3.56× 10−7 (5.72)

M = 2.85× 1010 GeV (5.73)

and
1.08× 106 GeV ≤ TR ≤ 6.33× 108 GeV (5.74)

Finally, for the Yukawa coupling f 2 we find

• for M5 = 2.13× 1010 GeV , f 2 < 6.79× 10−2,

• while for M5 = 2.45× 1013 GeV , f 2 < 5.63× 10−6

However, phenomenological issues such as neutrino masses and axion scale,
seem more natural if Mstring is in the range of 1010− 1014 GeV [61] centered
around 1012 GeV . For the case Mstring ∼ 1011 GeV or M∗ = 3 × 1011 GeV
as mentioned already we obtain

1.31× 1015 GeV ≤ M5 ≤ 1.42× 1015 GeV (5.75)

For the minimum value M5 = 1.31 × 1015 GeV we obtain for M , tensor-to-
scalar ratio and reheating temperature the following

r = marginal (5.76)

M = 3.27× 1013 GeV (5.77)

and
1.08× 106 GeV ≤ TR ≤ 4.33× 1010 GeV (5.78)

while for the maximum value M5 = 1.42× 1015 GeV we obtain

r = 0.4 (5.79)

M = 3.01× 1013 GeV (5.80)

and
1.08× 106 GeV ≤ TR ≤ 4.12× 1010 GeV (5.81)

Finally, for the Yukawa coupling f 2 we find
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• for M5 = 1.31× 1015 GeV , f 2 < 0.07,

• while for M5 = 1.42× 1015 GeV , f 2 < 0.06

Note that in contrast to the standard four-dimensional [34] or to the Randall-
Sundrum sneutrino inflation [44] scenarios, in all cases treated above, the
Yukawa coupling f 2 in the presence of the GB term need not be unnaturally
small.

5.5 Conclusions

In the present work we have examined sneutrino inflation in the GB brane-
world. The GB term appears in the low-energy effective field equations
of string theories and it is the lowest order stringy correction to the five-
dimensional Einstein gravity. Inflation is driven by the sneutrino inflaton,
which is the scalar superpartner of the lightest of the heavy singlet neutri-
nos, that might explain in a natural way the tiny neutrino masses via the
seesaw mechanism. The sneutrino inflaton, apart from driving inflation, also
produces the lepton asymmetry that partially is converted to the baryon
asymmetry via sphaleron effects. We find that we can get a viable inflation-
ary model that reproduces the correct amplitude for density perturbations
and predicts a nearly scale-invariant spectrum and negligible tensor pertur-
bations. Furthermore, the reheating temperature after inflation is such that
the gravitino does not upset the BBN results and the required lepton asym-
metry is generated. Our analysis shows that all these are simultaneously
achieved for a wide range of values of the five-dimensional Planck mass M5

and the mass scale M∗ set by the GB coupling.

81



Chapter 6

D-term inflation

We consider hybrid inflation in the braneworld scenario. In particular, we
consider inflation in global supersymmetry with the D-terms in the scalar
potential for the inflaton field to be the dominant ones (D-term inflation).
We find that D-term dominated inflation can naturally accomodate all re-
quirements of the successful hybrid inflationary model also in the framework
of D-brane cosmology with global supersymmetry. The reheating tempera-
ture after inflation can be high enough (∼ 1010 GeV or higher) for successful
thermal leptogenesis.

6.1 Introduction

Recently there has been considerable interest in higher dimensional cosmo-
logical models. In those models our four-dimensional world lives on a three-
dimensional extended object (brane) which is embedded in a higher dimen-
sional space (bulk). The models of this kind are string-inspired ones, as it
is known that in Type I string theory [62] there are two sectors, the open
and the closed ones, and that the theory contains extended objects, called
D-branes, where open strings can end. The fields in the closed sector (in-
cluding gravity) can propagate in the bulk, whereas the fields in the open
sector are confined to the brane. In such string-inspired scenarios the extra
dimensions need not be small [57, 63] and in fact they can even be non-
compact [22]. It is important to note that in the context of extra dimensions
and the braneworld idea one discovers a generalized Friedmann equation,
which is different from the usual Friedmann equation in conventional cos-
mology. This means that the rate of expansion of the universe in this novel
cosmology is altered and accordingly the physics in the early universe can be
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different from what we know already. So it would be very interesting to study
the cosmological implications of these new ideas about extra dimensions and
braneworlds. Perhaps the best laboratory for such a study is inflation [15],
which has become the standard paradigm in the Big-Bang cosmology and
which is in favour after the recent discovery from WMAP satellite (see e.g
[11]) that the universe is almost flat. It is known that there is not a the-
ory for inflation yet. All we have is a big collection of inflationary models.
The single-field models for inflation, such as ’new’ [64] or ’chaotic’ [65], are
characterized by the disadvantage that they require ’tiny’ coupling constants
in order to reproduce the observational data. This difficulty was overcome
by Linde who proposed, in the context of non-supersymmetric GUTS, the
hybrid inflationary scenario [66]. We remark that before that, the authors in
[67] worked out a string-inspired version of hybrid inflation. It turns out that
one can consider hybrid inflation in supersymmetric theories (for a review on
supersymmetry and supergravity see [10]) too. In fact, inflation looks more
natural in supersymmetric theories rather in non-supersymmetric ones [68].
In a supersymmetric theory, the tree-level potential is the sum of an F-term
and a D-term. These two terms have rather different properties and in all
inflationary models only one of them dominates [69]. The case of F-term
inflation (where F-terms dominate) was considered for the first time in [70],
while the case of D-term inflation (where D-terms dominate) was considered
in [71]. In fact, if one considers supergravity then D-term inflation looks more
promising, since it avoids the problem associated with the inflaton mass [71].
F-term inflation in braneworld was studied in [72]. In the present note we
discuss the implications of D-term inflation. Before proceeding our discus-
sion, let us specify our setup. The braneworld model that we shall consider
is the supersymmetric version of the RS II model (see e.g. [23]). However,
the cosmological solution of this extended model is the same as that in the
non-supersymmetric model, since Einstein’s equations belong to the bosonic
part. The only sourse in the bulk is a five-dimensional cosmological constant.
There is matter confined to the brane and during inflation, which is the cos-
mological era we shall be interested in, this matter is dominated by a scalar
field, called the inflaton field φ.

The present chapter consists of six sections of which this introduction
is the first. We present D-term inflation in the second section and brane
cosmology in the third. Our results for the inflationary dynamics on the
brane are discussed in the fourth section. We discuss reheating after inflation
in the fifth section and finally we conclude in the sixth section.
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6.2 D-term inflation

In this section we explain what D-term inflation is, following essentially [68].
Inflation, by definition, breaks global supersymmetry since it requires a non-
zero cosmological constant V (false vacuum energy of the inflaton). For a
D-term spontaneous breaking of supersymmetry a term linear in the auxiliary
field D is needed (Fayet-Iliopoulos mechanism [73]). If the theory contains
an abelian U(1) gauge symmetry (anomalous or not), the Fayet-Iliopoulos
D-term

ξ

∫
d4θV = ξD (6.1)

where V is the vector superfield, is supersymmetric and gauge invariant and
therefore allowed by the symmetries. We remark that an anomalous U(1)
symmetry is usually present in string theories and the anomaly is cancelled
by the Green-Schwarz mechanism. However, here we will consider a non-
anomalous U(1) gauge symmetry. In the context of global supersymmetry,
D-term inflation is derived from the superpotential

W = λΦΦ+Φ− (6.2)

where Φ, Φ−, Φ+ are three chiral superfields and λ is the superpotential cou-
pling. Under the U(1) gauge symmetry the three chiral superfields have
sharges QΦ = 0, QΦ+ = +1 and QΦ− = −1, respectively. The superpotential
given above leads to the following expression for the scalar potential

V (φ+, φ−, |φ|) = λ2(|φ|2(|φ+|2 + |φ−|2) + |φ+φ−|2) +
g2

2
(|φ+|2 − |φ−|2 + ξ)2

(6.3)
where φ is the scalar component of the superfield Φ, φ± are the scalar com-
ponents of the superfields Φ±, g is the gauge coupling of the U(1) symmetry
and ξ is a Fayet-Iliopoulos term, chosen to be positive. The global minimum
is supersymmetry conserving, but the gauge group U(1) is spontaneously
broken

〈φ〉 = 〈φ+〉 = 0, 〈φ−〉 =
√

ξ (6.4)

However, if we minimize the potential, for fixed values of φ, with respect to
other fields, we find that for φ > φc = g

λ

√
ξ, the minimum is at φ+ = φ− = 0.

Thus, for φ > φc and φ+ = φ− = 0 the tree-level potential has a vanishing
curvature in the φ direction and large positive curvature in the remaining
two directions m2

± = λ2|φ|2 ± g2ξ.

For arbitrary large φ the tree-level value of the potential remains constant
and equal to V0 = (g2/2)ξ2, thus φ plays naturally the role of an inflaton
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field. Along the inflationary trajectory the F-term vanishes and the universe
is dominated by the D-term, which splits the masses in the Φ+ and Φ−
superfields, resulting to the one-loop effective potential for the inflaton field.
The radiative corrections are given by the Coleman-Weinberg formula [74]

∆V1−loop =
1

64π

∑
i

(−1)Fim4
i ln

m2
i

Λ2
(6.5)

where Λ stands for a renormalization scale which does not affect physical
quantities and the sum extends over all helicity states i, with fermion num-
ber Fi and mass squared m2

i . The radiative corrections given by the above
formula lead to the following effective potential for D-term inflation

V (φ) =
g2ξ2

2

(
1 +

g2

16π2
ln
|φ|2λ2

Λ2

)
(6.6)

The end of inflation is determined either by the failure of the slow-roll con-
ditions or when φ approaches φc.

6.3 Effective gravitational equations on the

brane

Here we review the basic equations of brane cosmology. We work essentially
in the context of Randall-Sundrum II model [22]. In the bulk there is just a
cosmological constant Λ5, whereas on the brane there is matter with energy-
momentum tensor τµν . Also, the brane has a tension T . The five-dimensional
Planck mass is denoted by M5. If Einstein’s equations hold in the five-
dimensional bulk, then it has been shown in [28] that the effective four-
dimensional Einstein’s equations induced on the brane can be written as

Gµν + Λ4gµν =
8π

M2
p

τµν + (
8π

M3
5

)2πµν − Eµν (6.7)

where gµν is the induced metric on the brane, πµν = 1
12

τ τµν + 1
8
gµν ταβ ταβ−

1
4
τµα τα

ν − 1
24

τ 2gµν , Λ4 is the effective four-dimensional cosmological constant,
Mp is the usual four-dimensional Planck mass and Eµν ≡ Cα

βρσ nα nρ gβ
µ gσ

ν is
a projection of the five-dimensional Weyl tensor Cαβρσ, where nα is the unit
vector normal to the brane. The tensors πµν and Eµν describe the influence
of the bulk in brane dynamics. The five-dimensional quantities are related
to the corresponding four-dimensional ones through the relations

Mp =

√
3

4π

M3
5√
T

(6.8)
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and

Λ4 =
4π

M3
5

(
Λ5 +

4πT 2

3M3
5

)
(6.9)

In a cosmological model in which the induced metric on the brane gµν has
the form of a spatially flat Friedmann-Robertson-Walker model, with scale
factor a(t), the Friedmann-like equation on the brane has the generalized
form (see e.g. the second reference in [25])

H2 =
Λ4

3
+

8π

3M2
p

ρ + (
4π

3M3
5

)2ρ2 +
C

a4
(6.10)

where C is an integration constant arising from Eµν . The cosmological con-
stant term and the term linear in ρ are familiar from the four-dimensional
conventional cosmology. The extra terms, i.e. the “dark radiation” term
and the term quadratic in ρ, are there because of the presence of the extra
dimension. Adopting the Randall-Sundrum fine-tuning

Λ5 = −4πT 2

3M3
5

(6.11)

the four-dimensional cosmological constant vanishes. Furthermore, the term
with the integration constant C will be rapidly diluted during inflation and
can be ignored. So the generalized Friedmann equation takes the final form

H2 =
8π

3M2
p

ρ
(
1 +

ρ

2T

)
(6.12)

We notice that in the low density regime ρ ¿ T we recover the usual Fried-
mann equation. However, in the high energy regime ρ À T the unity can be
neglected and then the Friedmann-like equation becomes

H2 =
4πρ2

3TM2
p

(6.13)

Note that in this regime the Hubble parameter is linear in ρ, while in con-
ventional cosmology it goes with the square root of ρ.

6.4 Inflationary dynamics on the brane

As already mentioned, we will consider the case in which the energy-mome-
ntum on the brane is dominated by a scalar field φ confined on the brane
with a self-interaction potential V (φ) given in (6.6). The field φ is a function
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6.4. Inflationary dynamics on the brane

of time only, as dictated by the isotropy and homogeneity of the observed
four-dimensional universe. A homogeneous scalar field behaves like a perfect
fluid with pressure p = (1/2)φ̇2 − V and energy density ρ = (1/2)φ̇2 + V .
There is no energy exchange between the brane and the bulk, so the energy-
momentum tensor Tµν of the scalar field is conserved, that is ∇νTµν = 0.
This is equivalent to the continuity equation for the pressure p and the energy
density ρ

ρ̇ + 3H(p + ρ) = 0 (6.14)

where H is the Hubble parameter H = ȧ/a. Therefore we get the equation
of motion for the scalar field φ, which is the following

φ̈ + 3Hφ̇ + V ′(φ) = 0 (6.15)

This is of course the Klein-Gordon equation for a scalar field in a Robertson-
Walker background. The equation that governs the dynamics of the expan-
sion of the universe is the Friedmann-like equation of the previous section.
Inflation takes place in the early stages of the evolution of the universe, so in
the Friedmann equation the extra term dominates and therefore the equation
for the scale factor is

H2 =
4πρ2

3TM2
p

(6.16)

In the slow-roll approximation the slope and the curvature of the potential
must satisfy the two constraints ε ¿ 1 and |η| ¿ 1, where ε and η are the
two slow-roll parameters which are defined by

ε ≡ − Ḣ

H2
(6.17)

η ≡ V ′′

3H2
(6.18)

In this approximation the equation of motion for the scalar field takes the
form

φ̇ ' − V ′

3H
(6.19)

while the generalized Friedmann equation becomes (V À φ̇2)

H2 ' 4πV 2

3TM2
p

(6.20)

The number of e-folds during inflation is given by

N ≡ ln
af

ai

=

∫ tf

ti

Hdt (6.21)
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For a strong enough inflation we take N = 60. In the slow-roll approximation
the number of e-folds and the slow-roll parameters are given by the formulae
[31]

ε ' M2
p

16π

(
V ′

V

)2
4T

V
(6.22)

η ' M2
p

8π

(
V ′′

V

)
2T

V
(6.23)

N ' − 8π

M2
p

∫ φf

φi

V

V ′
V

2T
dφ (6.24)

The main cosmological constraint comes from the amplitude of the scalar
perturbations which is given in this new context by [31]

A2
s =

512π

75M6
p

V 3

V ′2

(
V

2T

)3

(6.25)

where the right-hand side is evaluated at the horizon-crossing when the co-
moving scale equals the Hubble radius during inflation. Finally, the spectral
index for the scalar perturbations is given in terms of the slow-roll parameters

ns − 1 ≡ d lnA2
s

d lnk
= 2η − 6ε (6.26)

and the tensor-to-scalar ratio is given by

A2
t

A2
s

= ε
T

V
(6.27)

In what follows we will assume that g ∼ 0.5 and that inflation ends at
φc = (g/λ)

√
ξ. To make sure that the slow-roll conditions are satisfied we

impose the constraint
TM2

p λ2

16π3g2ξ3
¿ 1 (6.28)

Also, we have assumed that the potential V is much larger than the brane
tension T . Therefore another constraint to be satisfied is

g2ξ2

4T
À 1 (6.29)

Now that we have written all the necessary formulae, we can proceed to the
presentation of our results. For arbitrary λ it is not possible to satisfy both
the datum from COBE that As = 2× 10−5 and the slow-roll conditions. For

88



6.5. Reheating

this to happen the superpotential coupling λ has to be smaller or equal to
0.0245 (approximately). Then, for a given value for λ, the brane tension
cannot become arbitrarily large because in that case the constraint that the
potential should be much larger than the brane tension is not satisfied. We
find the following upper bound for the brane tension T

T ≤ 1055 − 1056 GeV 4 (6.30)

Now that we have set upper bounds for T and λ so that our constraints and
the data from COBE are satisfied, we can compute the spectral index ns and
the tensor-to-scalar ratio r. We find for the spectral index ns = 0.983−0.998
and for the ratio r ∼ 10−4 or lower.

A detailed analysis shows that for a particular value for λ (below the
upper bound of course) the spectral index does not depend on T and is always
very close to 1. As λ becomes smaller and smaller the spectral index slightly
increases and gets even closer to 1. Also, in all cases the tensor perturbations
are negligible. Finally, we find that for the maximum value for the brane
tension, M

(max)
5 ∼ 1015GeV and

(√
ξ
)

max
= (3.99−6.74)×1014GeV , whereas√

ξ becomes smaller as T decreases. We note that according to our analysis λ
a priori can take arbitrarily small values. However, this would be unnatural
and for that reason we do not consider values for λ smaller than 5× 10−4. In
that case we find that the values of the inflaton remain safely below Planck
mass and therefore global supersymmetry is a good approximation. Our
result differs from a similar study [75], in which the discussion leads to the
conclusion that supergravity corrections are important.

6.5 Reheating

Finally, let us turn to the discussion of reheating after inflation and to the
computation of the reheating temperature TR. After slow-roll the inflaton
decays with a decay rate Γ and the decay products quickly thermalize. This
is the way the universe reenters the radiation era of standard Big-Bang cos-
mology. The reheating temperature TR is related to two more cosmological
topics, namely the gravitino problem [50] and the baryogenesis through lep-
togenesis. In gravity mediated SUSY breaking models and for an interesting
range of the gravitino mass, m3/2 ∼ 0.1− 1TeV , if the gravitino is unstable
it has a long lifetime and decays after the BBN. The decay products destroy
light elements produced by the BBN and hence the primordial abundance
of the gravitino is constrained from above to keep the success of the BBN.
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This leads to an upper bound on the reheating temperature TR after infla-
tion, since the abundance of the gravitino is proportional to TR. A detailed
analysis derived a stringent upper bound TR 6 106−107 GeV when gravitino
has hadronic modes [51, 76]. On the other hand, primordial lepton asymme-
try is converted to baryon asymmetry [77] in the early universe through the
“sphaleron” effects of the electroweak gauge theory [53]. This baryogenesis
through leptogenesis requires a lower bound on the reheating temperature.
Leptogenesis can be thermal or non-thermal. For a thermal leptogenesis
TR > 2× 109 GeV [78], whereas for non-thermal leptogenesis TR > 106 GeV
[79]. It seems that it is impossible to satisfy both constaints for the reheating
temperature coming from leptogenesis and the gravitino problem. However,
the authors of [32] have showed that in the brane world scenario, that we
discuss here, it is possible to solve the gravitino problem allowing for the
reheating temperature to be as high as 1010 GeV . According to reference [32]
the gravitino abundance is proportional not to the reheating temperature, as
is the case in conventional cosmology, but to a transition temperature Tt be-
tween high temperatures (TR) and low ones (today’s temperature T0). That
way the requirement for not over-production of gravitino leads to an upper
bound for this transition temperature and not for the reheating temperature,
which can be as high as a satisfactory leptogenesis requires.

The reheating temperature is given by the formula

TR =

(√
3T

π

15ΓMp

π2geff

)1/4

(6.31)

where geff is the effective number of degrees of freedom at the reheating
temperature and for the MSSM is geff = 915

4
. Assuming that the inflaton φ

decays to the lighest of the three heavy right handed neutrinos ψ

φ → ψ + ψ (6.32)

the decay rate of the inflaton is [69]

Γ =
minfl

8π

(
M1√

ξ

)2

(6.33)

where minfl is the inflaton mass, M1 is the smallest of the three neutrino
mass eigenvalues and minfl > 2M1. The mass of the inflaton is given in
terms of the coupling constant g and the Fayet-Iliopoulos parameter ξ by

minfl =
√

2 g
√

ξ (6.34)
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Figure 6.1: Reheating temperature TR versus the superpotential coupling λ
for M1 = 1010 GeV and

√
ξ = 1014 GeV .

If the value of the mass of the lightest right handed neutrino is M1 =
1010 GeV , which is a representative value, then the reheating temperature
TR can be one to two orders of magnitude larger than the right handed neu-
trino mass, depending on the values of the superpotential coupling λ and
the Fayet-Iliopoulos term ξ (see Figures 6.1 and 6.2). So we see that the
reheating temperature is of the right order of magnitude for thermal lepto-
genesis. When the right handed neutrino mass increases (remaining though
smaller than minfl/2), the reheating temperature increases too and in fact
it goes like ∼ √

M1. For example, if λ = 0.01 and
√

ξ = 1014 GeV , then
TR = 4.15× 1011 GeV for M1 = 6× 109 GeV and TR = 3.79× 1012 GeV for
M1 = 5× 1011 GeV . Finally, for a given M1 and a given ξ, when λ increases
then TR decreases, but only slighty so as to remain of the right order of mag-
nitude for a successful leptogenesis (see Figure 6.1). Also, for a given value
of M1 and λ, when ξ increases, TR increases also (see Figure 6.2).

6.6 Conclusions

To summarize, we have reexamined supersymmetric D-term dominated hy-
brid inflation in brane cosmology. We have found that we can reproduce the
observational data provided that each of the brane tension, five-dimensional
Planck mass and the superpotential coupling does not exceed a particular
value. For a given value for the superpotential coupling, when the brane
tension takes the maximum allowed value then the scale of inflation

√
ξ is of
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Figure 6.2: Reheating temperature TR versus the Fayet-Iliopoulos term ξ for
superpotential coupling λ = 0.01 and M1 = 1010 GeV .

the order of ∼ 1014 GeV . This value of the inflationary scale is lower than
the (supersymmetric) GUT scale, but close to it. Also, we have found that
for natural values of the superpotential coupling λ the inflaton field cannot
take large values and stays well below the four-dimensional Planck mass,
consistent with the global supersymmetry approximation adopted here. Fur-
thermore, we have seen that our results are compatible with the correspond-
ing results in the standard four-dimensional cosmology. This means that the
advantages of the hybrid model are naturally preserved in the framework of
brane cosmology. Finally, our study shows that the reheating temperature
after inflation can naturally be of order 1010 GeV (or larger) allowing for a
successful thermal leptogenesis.
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Chapter 7

Brane-Bulk energy exchange

The role of brane-bulk energy exchange and of an induced gravity term on
a single braneworld of negative tension and vanishing effective cosmological
constant is studied. It is shown that for the physically interesting cases of
dust and radiation a unique global attractor which can realize our present
universe (accelerating and 0 < Ωm0 < 1) exists for a wide range of the para-
meters of the model. For Ωm0 = 0.3, independently of the other parameters,
the model predicts that the equation of state for the dark energy today is
wDE,0 = −1.4, while Ωm0 = 0.03 leads to wDE,0 = −1.03. In addition, during
its evolution, wDE crosses the wDE = −1 line to smaller values.

7.1 Introduction

In cosmologies where the present universe is realized as a finite point during
the cosmic evolution, the answer to the coincidence question “why it is that
today Ωm0 and ΩDE,0 are of the same order of magnitude”, relies on appro-
priate choice of initial conditions. By contrast, in a scenario in which the
present universe is in its asymptotic era (close to a fixed point) the answer to
the above question reduces to an appropriate choice of the parameters of the
model. However, this latter situation is not easily realized if today’s universe
is accelerating, because:

If the energy density of a perfect fluid with equation of state w > −1/3
of any cosmological system is conserved, all fixed points of the system with
Ωm 6= 0 are decelerating.

Indeed, with ρ the energy density of the perfect fluid with conservation
equation ρ̇+3(1+w)Hρ = 0, the Hubble equation of an arbitrary cosmology
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can be written in the form

H2 = 2γ(ρ + ρDE) (7.1)

where γ = 4πGN/3. Then, the equation governing ρDE can always be
brought into the form ρ̇DE + 3(1 + wDE)HρDE = 0, where wDE is time-
dependent and distiguishes one model from the other. It can be easily seen
that d(Ωm/ΩDE)/d ln a = 3(Ωm/ΩDE)(wDE − w) and 2q = 1 + 3(wΩm +
wDEΩDE), where Ωm = 2γρ/H2, ΩDE = 2γρDE/H2 and q = −ä/aH2. At
the fixed point (denoted by ∗) d(Ωm/ΩDE)/d ln a = 0. For Ωm∗ 6= 0 one
obtains wDE∗ = w, and 2q∗ = 1 + 3w > 0.

Thus, independently of the cosmological model, the only way our accel-
erating universe with Ωm∗ 6= 0 can be close to a late time fixed point is by
violating the standard conservation equation of matter. In 4-dimensional the-
ories, an accelerating late time cosmological phase characterized by a frozen
ratio of dark matter/dark energy appears in coupled dark energy scenar-
ios [80] as a result of the interaction of the dark matter with other energy-
momentum components, such as scalar fields. In higher dimensional theories,
where the universe is represented as a 3-brane, this violation could be the
result of energy exchange between the brane and the bulk. In particular
in five dimensions, a universe with fixed points characterized by Ωm∗ 6= 0,
q∗ < 0 was realized in [27] in the context of the Randall-Sundrum braneworld
scenario with energy influx from the bulk. However, these fixed points can-
not represent the present universe, since they have Ωm∗ > 2. In this paper
we present a brane-bulk energy exchange model with induced gravity whose
global attractor can represent today’s universe.

Let us consider an arbitrary cosmology in the form (7.1). Instances of
such cosmologies arise in braneworld models or in theories with modified 4-
dimensional actions leading to H2 = f(ρ), or in cosmologies where ρDE is
due to additional fields. Assuming that as a result of some interaction ρ is
not conserved, it will satisfy an equation of the form

ρ̇ + 3(1 + w)Hρ = −T (7.2)

Then, the equation governing ρDE can always be brought into the form

ρ̇DE + 3(1 + wDE)HρDE = T (7.3)

where wDE is time and model dependent. Whenever a fixed point of the
system satisfies

H∗T∗ 6= 0 , ρ̇ = ρ̇DE = 0 (7.4)
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one obtains

wDE∗ = −1− 1 + w

Ω−1
m∗ − 1

(7.5)

Equation (7.5) is model-independent, in the sense that it does not depend
on the form of T or the function wDE(t). For Ωm∗ < 1 equation (7.5) gives
wDE∗ < −1. Specifically, for w = 0 and Ωm∗ = ΩCDM = 0.3 one obtains
wDE∗ = −1.4, while for Ωm∗ = Ωbar = 0.03, wDE∗ = −1.03.

The cosmology discussed in the present paper has a global attractor of the
form (7.4), (7.5) [81]. Moreover, the universe during its evolution crosses the
wDE = −1 barrier from higher values. This behavior is favored by several
recent model-independent [82] as well as model-dependent [83, 84, 85, 86]
analyses of the astronomical data.

7.2 The model

We consider the model described by the gravitational brane-bulk action [87]

S =

∫
d5x

√−g (M3R− Λ) +

∫
d4x

√
−h (m2R̂− V ) (7.6)

where R, R̂ are the Ricci scalars of the bulk metric gAB and the induced metric
hAB = gAB − nAnB respectively (nA is the unit vector normal to the brane
and A,B = 0, 1, 2, 3, 5). The bulk cosmological constant is Λ/2M3 < 0, the
brane tension is V , and the induced-gravity crossover scale is rc = m2/M3.

We assume the cosmological bulk ansatz

ds2 = −n(t, y)2dt2 + a(t, y)2γijdxidxj + b(t, y)2dy2 (7.7)

where γij is a maximally symmetric 3-dimensional metric, parametrized by
the spatial curvature k = −1, 0, 1. The non-zero components of the five-
dimensional Einstein tensor are

G00 = 3
{ ȧ

a

( ȧ

a
+

ḃ

b

)
− n2

b2

[a′′

a
+

a′

a

(a′

a
− b′

b

)]
+

kn2

a2

}
(7.8)

Gij =
a2

b2
γij

{a′

a

(a′

a
+

2n′

n

)
− b′

b

(n′

n
+

2a′

a

)
+

2a′′

a
+

n′′

n

}

+
a2

n2
γij

{ ȧ

a

(2ṅ

n
− ȧ

a

)
− 2ä

a
+

ḃ

b

( ṅ

n
− 2ȧ

a

)
− b̈

b

}
− kγij (7.9)

G05 = 3
(n′

n

ȧ

a
+

a′

a

ḃ

b
− ȧ′

a

)
(7.10)

G55 = 3
{a′

a

(a′

a
+

n′

n

)
− b2

n2

[ ä

a
+

ȧ

a

( ȧ

a
− ṅ

n

)]
− kb2

a2

}
(7.11)
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where primes indicate derivatives with respect to y, while dots derivatives
with respect to t. The five-dimensional Einstein equations take the usual
form

GAC =
1

2M3
TAC |tot (7.12)

where

TA
C |tot = TA

C |v,B + TA
C |m,B + TA

C |v,b + TA
C |m,b + TA

C |ind (7.13)

is the total energy-momentum tensor,

TA
C |v,B = diag(−Λ,−Λ,−Λ,−Λ,−Λ) (7.14)

TA
C |v,b = diag(−V,−V,−V,−V, 0)

δ(y)

b
(7.15)

TA
C |m,b = diag(−ρ, p, p, p, 0)

δ(y)

b
(7.16)

TA
C |m,B is any possible additional energy-momentum in the bulk, the brane

matter content TA
C |m,b consists of a perfect fluid with energy density ρ and

pressure p, while the contributions arising from the scalar curvature of the
brane are given by

T 0
0 |ind =

6m2

n2

( ȧ2

a2
+

kn2

a2

)δ(y)

b
(7.17)

T i
j |ind =

2m2

n2

( ȧ2

a2
− 2ȧṅ

an
+

2ä

a
+

kn2

a2

)
δi
j

δ(y)

b
(7.18)

Assuming a Z2 symmetry around the brane, the singular part of equations
(7.12) gives the matching conditions

a′o+

aobo

= −ρ + V

12M3
+

rc

2n2
o

( ȧ2
o

a2
o

+
kn2

o

a2
o

)
(7.19)

n′o+

nobo

=
2ρ + 3p− V

12M3
+

rc

2n2
o

(2äo

ao

− ȧ2
o

a2
o

− 2ȧoṅo

aono

− kn2
o

a2
o

)
(7.20)

(the subscript o denotes the value on the brane), while from the 05, 55
components of equations (7.12) we obtain

n′o
no

ȧo

ao

+
a′o
ao

ḃo

bo

− ȧ′o
ao

=
T05

6M3
(7.21)

a′o
ao

(a′o
ao

+
n′o
no

)
− b2

o

n2
o

[ äo

ao

+
ȧo

ao

( ȧo

ao

− ṅo

no

)]
− kb2

o

a2
o

=
T55 − Λb2

o

6M3
(7.22)
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where T05, T55 are the 05 and 55 components of TAC |m,B evaluated on the
brane. Substituting the expressions (7.19), (7.20) in equations (7.21), (7.22),
we obtain the semi-conservation law and the Raychaudhuri equation

ρ̇ + 3
ȧo

ao

(ρ + p) = −2n2
o

bo

T 0
5 (7.23)

(
H2

o +
k

a2
o

)[
1− r2

c (ρ + 3p− 2V )

24m2

]
+

r2
c (ρ + 3p− 2V )(ρ + V )

144m4

+
(Ḣo

no

+ H2
o

)[
1− r2

c

2

(
H2

o +
k

a2
o

)
+

r2
c (ρ + V )

12m2

]
=

Λ− T 5
5

6M3

(7.24)

where Ho = ȧo/aono is the Hubble parameter of the brane. One can easily
check that in the limit m → 0, equation (7.24) reduces to the corresponding
second order equation of the model without R̂ [27]. Energy exchange between
the brane and the bulk has also been investigated in [88, 89, 90].

Since only the 55 component of TAC |m,B enters equation (7.24), one can
derive a cosmological system that is largely independent of the bulk dynam-
ics, if at the position of the brane the contribution of this component relative
to the bulk vacuum energy is much less important than the brane matter
relative to the brane vacuum energy, or schematically

∣∣∣T
5
5

Λ

∣∣∣ ¿
∣∣∣ ρ

V

∣∣∣ (7.25)

Then, for |Λ| not much larger than the Randall-Sundrum value V 2/12M3,
the term T 5

5 in equation (7.24) can be ignored. Alternatively, the term T 5
5

can be ignored in equation (7.24) if simply

∣∣∣T
5
5

Λ

∣∣∣ ¿ 1 (7.26)

Note that relations (7.25) and (7.26) are only boundary conditions for T 5
5 ,

which in a realistic description in terms of bulk fields will be translated
into boundary conditions on these fields. In the special case where (7.25),
(7.26) are valid throughout the bulk, the latter remains unperturbed by the
exchange of energy with the brane.

One can now check that a first integral of equation (7.24) is

H4
o −

2H2
o

3

(ρ + V

2m2
+

6

r2
c

− 3k

a2
o

)
+

(ρ + V

6m2
− k

a2
o

)2

+

+
4

r2
c

( Λ

12M3
− k

a2
o

)
− χ

3r2
c

= 0

(7.27)
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with χ satisfying

χ̇ + 4noHoχ =
r2
cn

2
o T

m2bo

(
H2

o −
ρ + V

6m2
+

k

a2
o

)
(7.28)

and T = 2T 0
5 is the discontinuity across the brane of the 05 component of

the bulk energy-momentum tensor. The solution of (7.27) for Ho is

H2
o =

ρ + V

6m2
+

2

r2
c

− k

a2
o

± 1√
3rc

[2(ρ + V )

m2
+

12

r2
c

− Λ

M3
+ χ

] 1
2

(7.29)

and equation (7.28) becomes

χ̇ + 4noHoχ =
2n2

o T

m2bo

{
1± rc

2
√

3

[2(ρ + V )

m2
+

12

r2
c

− Λ

M3
+ χ

] 1
2
}

(7.30)

At this point we find it convenient to employ a coordinate frame in which
bo = no = 1 in the above equations. This can be achieved by using Gauss
normal coordinates with b(t, z) = 1, and by going to the temporal gauge on
the brane with no = 1. It is also convenient to define the parameters

λ =
2V

m2
+

12

r2
c

− Λ

M3
(7.31)

µ =
V

6m2
+

2

r2
c

(7.32)

γ =
1

12m2
(7.33)

β =
1√
3rc

(7.34)

For a perfect fluid on the brane with equation of state p = wρ our system is
described by equations (7.23), (7.29), (7.30), which simplify to (we omit the
subscript o in the following)

ρ̇ + 3(1 + w)Hρ = −T (7.35)

H2 = µ + 2γρ± β
√

λ + 24γρ + χ− k

a2
(7.36)

χ̇ + 4Hχ = 24γT
(
1± 1

6β

√
λ + 24γρ + χ

)
(7.37)

while the second order equation (7.24) for the scale factor becomes

ä

a
= µ− (1 + 3w)γρ± β

λ + 6(1− 3w)γρ√
λ + 24γρ + χ

(7.38)
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Finally, setting ψ ≡ √
λ + 24γρ + χ, equations (7.36), (7.37), (7.38) take the

form

H2 = µ + 2γρ± βψ − k

a2
(7.39)

ψ̇ + 2H
(
ψ − λ + 6(1− 3w)γρ

ψ

)
= ±2γT

β
(7.40)

ä

a
= µ− (1 + 3w)γρ± β

λ + 6(1− 3w)γρ

ψ
(7.41)

Throughout, we will assume T (ρ) = Aρν , with ν > 0, A constant parameters
[27, 26]. Notice that the system of equations (7.35)-(7.37) has the influx-
outflow symmetry T → −T , H → −H, t → −t. For T = 0 the system
reduces to the cosmology studied in [91].

We will be referring to the upper (lower) ± solution as Branch A (Branch
B). We shall be interested in a model that reduces to the Randall-Sundrum
vacuum in the absence of matter, i.e. it has vanishing effective cosmological
constant. This is achieved for µ = ∓β

√
λ, which, given that m2V + 12M6

is negative (positive) for branches A (B), is equivalent to the fine-tuning
Λ = −V 2/12M3. Notice that for Branch A, V is necessarily negative. Cos-
mologies with negative brane tension in the induced gravity scenario have
also been discussed in [92].

Consider the case k = 0. The system possesses the obvious fixed point
(ρ∗, H∗, ψ∗) = (0, 0,

√
λ). However, for sgn(H)T < 0 there are non-trivial

fixed points, which are found by setting ρ̇ = ψ̇ = 0 in equations (7.35),
(7.40). For w ≤ 1/3 these are:

2T (ρ∗)2

9(1 + w)2ρ2∗
= 2µ + (1− 3w)γρ∗

±
√

9(1 + w)2γ2ρ2∗ + 4β2[λ + 6(1− 3w)γρ∗]

(7.42)

H∗ = − T (ρ∗)
3(1 + w)ρ∗

(7.43)

ψ2
∗ ±

3(1 + w)

β
γρ∗ψ∗ − [λ + 6(1− 3w)γρ∗] = 0 (7.44)

Equation (7.41) gives ( ä

a

)
∗

=
T (ρ∗)2

9(1 + w)2ρ2∗
(7.45)

which is positive, and also, it has the same form (as a function of ρ∗) as in
the absence of R̂. The deceleration parameter is found to have the value

q∗ = −1 (7.46)
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which means Ḣ∗ = 0. Furthermore, at this fixed point we find

Ωm∗ ≡ 2γρ∗
H2∗

=
18(1 + w)2

A2
γρ3−2ν

∗ (7.47)

Equation (7.42), when expressed in terms of Ωm∗, has only one root for each
branch

ρ∗ =
β

2γ

6(1− 3w)β ±
√

λ(1− 3w − 4Ω−1
m∗)

(2Ω−1
m∗ + 1 + 3w)(Ω−1

m∗ − 1)
(7.48)

However, it can be seen from (7.48) that for −1 ≤ w ≤ 1/3 and Ωm∗ < 1 the
Branch B is inconsistent with equation (7.42). On the contrary, Branch A
with −1 ≤ w ≤ 1/3 and Ωm∗ < 1 is consistent for 0 < 6(1− 3w)β +

√
λ(1−

3w−4Ω−1
m∗) < 3

√
4(1− 3w)2β2 − (1 + w)2λ. Thus, since we are interested in

realizing the present universe as a fixed point, Branch B should be rejected,
and from now on we will only consider Branch A. So, we have seen until
now that for negative brane tension, we can have a fixed point of our model
with acceleration and 0 < Ωm∗ < 1. This behavior is qualitatively different
from the one obtained in the context of the model presented in [27] (for
−1/3 ≤ w ≤ 1/3), where for positive brane tension we have Ωm∗ > 2, while
for negative brane tension the universe necessarily exhibited deceleration;
therefore, in that model the idea that the present universe is close to a fixed
point could not be realized.

Concerning the negative brane tension the following remarks are in or-
der: (a) In the conventional, non-supersymmetric setting, it is well known
that a negative tension brane with or without induced gravity is accompa-
nied by tachyonic bulk gravitational modes [93]; however, including the GB
corrections relevant at high-energies, the tachyonic modes can be completely
removed for a suitable range of the parameters [94]. (b) As shown in [95],
in supersymmetric theories, spacetimes with two branes of opposite tension
are stable; in particular, there is no instability due to expanding “balooning”
modes on the negative brane. It is, however, unclear what happens in models
with supersymmetry unbroken in the bulk but softly broken on the brane.
(c) Finally, it has been shown [96] that with appropriate choice of boundary
conditions, both at the linearized level as well as in the full theory, the grav-
itational potential of a mass on a negative tension brane has the correct 1/r
attractive behaviour.
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7.3 Critical point analysis

We shall restrict ourselves to the flat case k = 0. In order to study the
dynamics of the system, it is convenient to use (dimensionless) flatness pa-
rameters such that the state space is compact [97]. Defining

ωm =
2γρ

D2
, ωψ =

βψ

D2
, Z =

H

D
(7.49)

where D =
√

H2 − µ, we obtain the equations

ωm + ωψ = 1 (7.50)

ω′m = ωm

[
(1 + 3w)(ωm − 1)Z − A√

|µ|
( |µ|ωm

2γ

)ν−1

(1− Z2)
3
2
−ν

− 2Z(1− Z2)
1− Z2 − 3(1− 3w)β2µ−1ωm

1− ωm

] (7.51)

Z ′ = (1− Z2)
[
(1− Z2)

1− Z2 − 3(1− 3w)β2µ−1ωm

1− ωm

− 1− 1 + 3w

2
ωm

]

(7.52)

with ′ = d/dτ = D−1d/dt. Note that −1 ≤ Z ≤ 1, while both ω’s satisfy
0 ≤ ω ≤ 1. The deceleration parameter is given by

q =
1

Z2

[1 + 3w

2
ωm − (1− Z2)

ωm − Z2 − 3(1− 3w)β2µ−1ωm

1− ωm

]
(7.53)

and H ′ = −HZ(q + 1). The system of equations (7.51)-(7.52) inherits from
equations (7.35)-(7.37) the symmetry A → −A, Z → −Z, τ → −τ . The
system written in the new variables contains only three parameters. However,
going back to the physical quantities H, ρ one will need specific values of
two more parameters.

It is obvious that the points with |Z| = 1 have H = ∞. Therefore,
from (7.39) it arises that the infinite density ρ = ∞ big bang (big crunch)
singularity, when it appears, is represented by one of the points with Z = 1
(Z = −1). The points with ωm = 1, |Z| 6= 1, 0 have ω′m = ∞, Z ′ = ∞ and
finite ρ, H; for w ≤ 1/3, one has in addition ä/a = +∞, i.e. divergent 4D
curvature scalar on the brane.

The system possesses, generically, the fixed point (a) (ωm∗, ωψ∗, Z∗) =

(0, 1, 0), which corresponds to the fixed point (ρ∗, H∗, ψ∗) = (0, 0,
√

λ) dis-
cussed above. For ν ≤ 3/2 there are in addition the fixed points (b) (ωm∗, ωψ∗,
Z∗) = (0, 1, 1) and (c) (ωm∗, ωψ∗, Z∗) = (0, 1,−1). All these critical points

101



Brane-Bulk energy exchange

ν < 3/2 ν = 3/2 ν > 3/2
No. of F.P. 1 0 or 1 1

Nature A A S

Table 7.1: The fixed points for w = 0, influx.

are either non-hyperbolic, or their characteristic matrix is not defined at
all; thus, their stability cannot be studied by first order perturbation analy-
sis. In cases like these, one can find non-conventional behaviors (such as
saddle-nodes and cusps [98]) of the flow-chart near the critical points. There
are two more candidate fixed points (d) (ωm∗, ωψ∗, Z∗) = (1, 0, 1) and (e)
(ωm∗, ωψ∗, Z∗) = (1, 0,−1), whose existence cannot be confirmed directly
from the dynamical system, since they make equations (7.51), (7.52) unde-
termined. Apart from the above, there are other critical points given by

A√
|µ|

( |µ|ωm∗
2γ

)ν−1

= − 3(1 + w) Z∗
(1− Z2∗)

3
2
−ν

(7.54)

(1 + 3w)ω2
m∗ + (1− 3w)

[
1− 6β2

µ
(1− Z2

∗)
]
ωm∗ − 2[1− (1− Z2

∗)
2] = 0

(7.55)

They exist only for AZ∗ < 0 and correspond to the ones given by equa-
tions (7.42)-(7.44). For the physically interesting case w = 0 with influx we
scanned the parameter space and were convinced that for ν 6= 3/2 there is
always only one fixed point; for ν < 3/2 this is an attractor (A), while for
ν > 3/2 this is a saddle (S). For w = 0, ν = 3/2 there is either one fixed point
(attractor) or no fixed points, depending on the parameters. For the other
characteristic value w = 1/3, we concluded that for ν < 3/2 there is only
one fixed point (attractor), for ν > 2 there is only one fixed point (saddle),
while for 3/2 < ν < 2 there are either two fixed points (one attractor and one
saddle) or no fixed points at all, depending on the parameters. For w = 1/3,
ν = 3/2 there is either one fixed point (attractor) or no fixed points. Finally,
for w = 1/3, ν = 2 there is either one fixed point (saddle) or no fixed points.
These results were obtained numerically for a wide range of parameters and
are summarized in Tables 7.1 and 7.2.

The approach to an attractor described by the linear approximation of
(7.51)-(7.52) is exponential in τ and takes infinite time τ for the universe to
reach it. Given that near this fixed point the relation between the cosmic
time t and the time τ is linear, we conclude that it also takes infinite cosmic
time to reach the attractor.
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ν < 3/2 ν = 3/2 3/2 < ν < 2 ν = 2 ν > 2
No. of F.P. 1 0 or 1 0 or 2 0 or 1 1

Nature A A A,S S S

Table 7.2: The fixed points for w = 1/3, influx.

Defining ε = sgn(H), we see from (7.51)-(7.52) that the lines Z = ε
(ν ≤ 3/2), ωm = 0 are orbits of the system. Furthermore, the family of solu-
tions with Z ≈ ε and dZ/dωm = Z ′/ω′m ≈ 0 is approximately described for
ν < 3/2 by ω′m = ε(1 + 3w)ωm(ωm − 1), and thus, they move away from the
point (ωm∗, Z∗) = (1, 1), while they approach the point (ωm∗, Z∗) = (1,−1).
In addition, the solution of this equation is ωm = [1+ceε(1+3w)τ ]−1, with c > 0
an integration constant. Using this solution in equation H ′/H = −Z(q + 1)
we find that for w = 1/3, H/Ho =

√
ωm/(1 − ωm), where Ho is another

integration constant. Then, the equation for ωm(t) becomes dωm/dt =
−2εωm

√
H2

oωm − µ(1− ωm)2, and can be integrated giving t as a function
of ωm or H. Therefore, in the region of the big bang/big crunch singularity
one obtains a(t) ∼ √

εt, ρ(t) ∼ t−2, as in the standard radiation dominated
big-bang scenario. This means that for ν < 3/2 the energy exchange has no
observable effects close to the big bang/big crunch singularity.

Since our proposal relies on the existence of an attractor, we shall restrict
ourselves to the case ν < 3/2. It is convenient to discuss the four possible
cases separately:

(i) w = 0 with influx. The generic behavior of the solutions of equations
(7.51)-(7.52) is shown in Figure 7.1. We see that all the expanding
solutions approach the global attractor. Furthermore, there is a class
of collapsing solutions which bounce to expanding ones. Finally, there
are solutions which collapse all during their lifetime to a state with
finite ρ and H. The physically interesting solutions are those in the
upper part of the diagram emanating from the big bang (ω,Z) ≈ (1, 1).
These solutions start with a period of deceleration. The subsequent
evolution depends on the value of 3β2/|µ|, which determines the relative
position of the dashed and dotted lines. Specifically, for 3β2/|µ| > 1
(the case of Figure 7.1) one distinguishes two possible classes of universe
evolution. In the first, the universe crosses the dashed line entering the
acceleration era still with wDE > −1, and finally it crosses the dotted
line to wDE < −1 approaching the attractor. In the second, while in the
deceleration era, it first crosses the dotted line to wDE < −1, and then
the dashed line entering the eternally accelerating era. For 3β2/|µ| ≤ 1,
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Figure 7.1: Influx, w = 0, ν < 3/2. The arrows show the direction of in-
creasing cosmic time. The dotted line corresponds to wDE = −1. The region
inside (outside) the dashed line corresponds to acceleration (deceleration).
The region with Z > 0 represents expansion, while Z < 0 represents col-
lapse. The present universe is supposed to be close to the global attractor.

the dotted line lies above the dashed line, and, consequently, only the
second class of trajectories exists. To connect with the discussion in the
introduction, notice that the Friedmann equation (7.39) can be written
in the form (7.1) with dark energy ρDE = (βψ + µ)/2γ. Using (7.40),
the equation for ρDE takes the form (7.3) with

wDE =
−1

3(1− ωm)

[
2Z2 − ωm − 1− 6(1− 3w)

β2

µ

ωm(1− Z2)

Z2 − ωm

]
(7.56)

The global attractor (7.42)-(7.44) satisfies relations (7.4) and conse-
quently, wDE evolves to the value wDE∗ given by (7.5). As for the
bouncing solutions, they approach the attractor after they cross the
line Z2 = ωm, where wDE jumps from +∞ to −∞; however, the evo-
lution of the observable quantities is regular.

(ii) w = 0 with outflow. The generic behavior in this case is obtained from
Figure 7.1 by the substitution Z → −Z and τ → −τ , which reflects the
diagram with respect to the ωm axis and converts attractors to repelers.

(iii) w = 1/3 with outflow. Figure 7.2 depicts the flow diagram of this case.
Even though in the case of radiation in general wDE > −1/3 from
equation (7.56), there are both acceleration and deceleration regions.
Furthermore, from equation (7.5) it is Ωm∗ > 1.
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Figure 7.2: Outflow, w = 1/3, ν < 3/2. The arrows show the direction of in-
creasing cosmic time. The region inside (outside) the dashed line corresponds
to acceleration (deceleration). The region with Z > 0 represents expansion,
while Z < 0 represents collapse.

(iv) w = 1/3 with influx. This arises like in (ii) by reflection of Figure 7.2
and resembles Figure 7.1.

7.4 Conclusions

In this work, we studied the role of brane-bulk energy exchange on the cosmo-
logical evolution of a brane with negative tension, zero effective cosmological
constant, and in the presence of the induced curvature scalar term in the
action. Adopting the physically motivated ρν power-law form for the energy
transfer and assuming a cosmological constant in the bulk, an autonomous
system of equations was isolated. In this scenario, the “dark energy” is a
result of the geometry and the brane-bulk energy exchange. The negative
tension of the brane is necessary in order to realize the present universe (ac-
celerating with 0 < Ωm0 < 1) as being close to a future fixed point of the
evolution equations. We studied the possible cosmologies using bounded nor-
malized variables and the corresponding global phase portraits were obtained.
By studying the number and nature of the fixed points we demonstrated nu-
mericaly that our present universe can be easily realized as a late-time fixed
point of the evolution. This provides an alternative answer to the coinci-
dence problem in cosmology, which does not require specific fine-tuning of
the initial data. Furthermore, the equation of state for the dark energy at the
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attractor is uniquely specified by the value Ωm0. Remarkably, for Ωm0 = 0.3,
one obtains wDE,0 = −1.4, independently of the other parameters, while for
the other suggestive value Ωm0 = 0.03, wDE,0 = −1.03. In the past, the
function wDE crosses the line wDE = −1 to larger values.

It would be interesting to investigate if the above partial success of the
present scenario persists after one tries to fit the supernova data and the
detailed CMB spectum [99]. Of course, the nature of the content of the bulk
and of the mechanism of energy exchange with the brane is another crucial
open question, which we hope to deal with in a future publication.
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Chapter 8

Conclusions

We have studied dark matter, inflation and dark energy in the brane-world
scenario. These are three topics of fundamental importance for modern cos-
mology. According to recent observations (Cosmic Microwave Background,
Supernovae, galaxy serveys), most of the energy content of our universe is in
the form of dark matter and dark energy. In addition, inflation is responsible
for producing the cosmological fluctuations for the formation of the struc-
ture that we observe today. The brane-world idea is inspired from M/string
theory and although brane models are not yet derived from the fundamen-
tal theory, at least they contain the key features of string theory, such as
extra dimensions, higher-dimensional objects (branes), higher order correc-
tions to gravity (Gauss-Bonnet) etc. Inflation and the dark sector have been
addressed in the framework of standard four-dimensional cosmology. How-
ever, it is challenging to try to study them using alternative gravitational
theories such as braneworlds. Furthermore, since string theory claims to
give us a fundamental description of nature, it is important to study what
kind of cosmology they predict. The essence of the brane-world scenario
is that the standard model, with its matter and gauge interactions, is lo-
calized on a three-dimensional hypersurface, called brane, embedded in a
higher-dimensional spacetime, called the bulk. Gravitons, the mediators of
the gravitational interaction, are free to propagate into the whole bulk and
thus connect the standard model sector with the dynamics of the extra di-
mensions. Brane models are capable of giving non-conventional cosmologies.
In standard four-dimensional cosmology the Hubble parameter goes like the
square of the energy density. However, in brane models this is not true any
more. The relation between the Hubble parameter and the energy density
is more complicated and the specific form depends on the model at hand.
These novel cosmologies can be used in a two-fold way: On one hand they
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help us in attacking in a different context longstanding problems of standard
cosmology. On the other hand they offer us an ideal laboratory for testing
ideas coming from M/string theory. We believe that brane cosmology is an
exciting field and that it deserves further study.
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