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Abstract

In the present work we discuss inflation, dark matter and cosmological evolu-
tion in the context of the brane-world scenario. Being string theory inspired,
the brane-world models provide corrections to the General Relativity, which
is considered to be the low-energy limit of string theory. We find that novel
cosmologies are obtained, which potentially can provide answers to some
of the longstanding problems of modern cosmology, such as the origin and
nature of dark energy. At the same time the successes of the standard four-
dimensional cosmology are preserved, and in some cases the treatment in the
framework of brane cosmology is even more satisfactory.

vil



Chapter 1

Introduction

The standard electroweak model is a mathematically-consistent renormaliz-
able field theory which predicts or is consistent with all experimental facts.
It successfully predicted the existence and form of the weak neutral current,
the existence and masses of the W and Z bosons, and the charm quark,
as necessitated by the GIM mechanism. The charged current weak interac-
tions, as described by the generalized Fermi theory, were successfully incor-
porated, as was quantum electrodynamics. When combined with quantum
chromodynamics for the strong interactions and general relativity for classi-
cal gravity, the standard model is almost certainly the approximately correct
description of nature down to at least 10~*®cm, with the possible exception
of the Higgs sector. However, the theory has far too much arbitrariness to
be the final story. For example, the minimal version of the model has 21 free
parameters, assuming massless neutrinos and not counting electric charge
(Y') assignments. Most physicists believe that this is just too much for the
fundamental theory. The complications of the standard model can also be
described in terms of a number of problems.

1.1 Gauge Problem

The standard model is a complicated direct product of three sub-groups,
SU(3) x SU(2) x U(1), with separate gauge couplings. There is no explana-
tion for why only the electroweak part is chiral (parity-violating). Similarly,
the standard model incorporates but does not explain another fundamental
fact of nature: charge quantization, namely why all particles have charges
which are multiples of e/3. This is important because it allows the electrical
neutrality of atoms (|¢,| = |¢c|). Possible explanations include: grand uni-

1



Introduction

fied theories, the existence of magnetic monopoles, and constraints from the
absence or cancellation of anomalies.

1.2 Fermion Problem

All matter under ordinary terrestrial conditions can be constructed out of the
fermions (v,, €™, u, d) of the first family. Yet we know from laboratory studies
that there are > 3 families: (v,, ", ¢, s) and (v;,77,t,b) are heavier copies
of the first family with no obvious role in nature. The standard model gives
no explanation for the existence of these heavier families and no prediction
for their number. Furthermore, there is no explanation or prediction of the
fermion masses, which vary over at least five orders of magnitude, or of the
CKM mixings. There are many possible suggestions of new physics that
might shed light on this, including composite fermions; family symmetries;
radiative hierarchies, in which the fermion masses are generated at the loop-
level, with the lighter families requiring more loops; and the topology of
extra space-time dimensions, such as in superstring models. Despite all of
these ideas there is no compelling model and none of these yields detailed
predictions. The problem is just too complicated. Simple grand unified
theories don’t help very much with this, except for the prediction of m; in
terms of m., in the simplest versions.

1.3 Higgs/hierarchy Problem

In the standard model one introduces an elementary Higgs field into the
theory to generate masses for the W, Z, and fermions. For the model to be
consistent the Higgs mass should not be too different from the W mass, M7 =
O(MZ,). If My were to be larger than My, by many orders of magnitude
there would be a hierarchy problem, and the Higgs self-interactions would be
excessively strong. Combining theoretical arguments with laboratory limits
one obtains My < 1 TeV.

However, there is a complication. The tree-level (bare) Higgs mass re-
ceives quadratically-divergent corrections from loop diagrams. One finds

MJ%I = (Ml%f)bare + O()‘>927 hQ)A2> (1.1)

where A is the next higher scale in the theory. If there were no higher scale one
would simply interpret A as an ultraviolet cutoff and take the view that My
is a measured parameter and that (M )pare is not an observable. However,
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1.4. Strong C'P Problem

the theory is presumably embedded in some larger theory that cuts off the
integral at the finite scale of the new physics. For example, if the next scale
is gravity then A is the Planck scale Mp = G;/Q ~ 1012 GeV. If there is a
simple grand unified theory, one would expect A to be of order the unification
scale Mx ~ 10 GeV. Hence, the natural scale for My is O(A), which is much
larger than the expected value. There must be a fine-tuned and apparently
highly contrived cancelation between the bare value and the correction, to
more than 30 decimal places in the case of gravity. If the cutoff is provided by
a grand unified theory there is a separate hierarchy problem at tree-level. The
tree-level couplings between the Higgs field and the superheavy fields lead to
the expectation that My is equal to the unification scale unless unnatural
fine-tunings are employed.

One solution to this Higgs/hierarchy problem is the possibility that the
W and Z bosons are composite. However, in this case one would apparently
eliminate the successes of the SU(2) x U(1) gauge theory. Another approach
is to eliminate elementary Higgs fields in favor of a dynamical mechanism
in which they are replaced by bound states of fermions. Technicolor and
composite Higgs models are in this category. The third possibility is super-
symmetry, which prevents large renormalizations by enforcing cancellations
between the various diagram contributions. However, most grand unified
versions do not explain why (My/Mx)? is so small in the first place.

1.4 Strong C'P Problem

Another fine-tuning problem is the strong C'P problem. One can add an
additional term 326; -2 F F to the QCD lagrangian which breaks P, T and
C'P symmetry. FW = €uapl® /2 is the dual field. This term, if present,
would induce an electric dipole moment dy for the neutron. The rather
stringent limits on the dipole moment lead to the upper bound © < 1071,
The question is, therefore, why is © so small? It is not sufficient to just
say that it is zero because C'P violation in the weak interactions leads to
a radiative correction or renormalization of © by O(107%). Therefore, an
apparently contrived fine-tuning is needed to cancel this correction against
the bare value. Solutions include the possibility that C'P violation is not
induced directly by phases in the Yukawa couplings, as is usually assumed in
the standard model, but is somehow violated spontaneously. © then would
be a calculable parameter induced at loop level, and it is possible to make ©
sufficiently small. However, such models lead to difficult phenomenological
and cosmological problems. Alternately, © becomes unobservable if there is
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a massless u quark. However, most phenomenological estimates are not con-
sistent with m, = 0. Another possibility is the Peccei-Quinn mechanism, in
which an extra global U(1) symmetry is imposed on the theory in such a way
that © becomes a dynamical variable which is zero at the minimum of the
potential. Such models imply the existence of very light pseudoscalar par-
ticles called axions. Laboratory, astrophysical, and cosmological constraints
allow only the range 10® — 10'? GeV for the scale at which the above U(1)
symmetry is broken.

1.5 Graviton Problem

Gravity is not fundamentally unified with the other interactions in the stan-
dard model, although it is possible to graft on classical general relativity by
hand. However, this is not a quantum theory, and there is no obvious way to
generate one within the standard model context. In addition to the fact that
gravity is not unified and not quantized there is another difficulty, namely
the cosmological constant. The cosmological constant can be thought of as
energy of the vacuum. The energy density induced by spontaneous symmetry
breaking is some 50 orders of magnitude larger than the observational upper
limit. This implies the necessity of severe fine-tuning between the generated
and bare pieces, which do not have any a priori reason to be related. Possible
solutions include Kaluza-Klein and supergravity theories. These unify grav-
ity but do not solve the problem of quantum gravity or yield renormalizable
theories of quantum gravity, nor do they provide any obvious solution to the
cosmological constant problem. Superstring theories unify gravity and may
yield finite theories of quantum gravity and all the other interactions. It is
not clear whether or not they solve the cosmological constant problem.

1.6 Dark sector problem

On the other hand Cosmology, the science of the Universe, has its own Stan-
dard Model. It is the so-called Hot Big-Bang model. The expansion of the
Universe, the Bing-Bang Nucleosynthesis and the Cosmic Microwave Back-
ground Radiation have established the theoretical framework of Cosmology
(which is based essentially on the Theory of General Relativity and the Cos-
mological Principle, namely that the Universe is homogeneous and isotropic
on large scales) into the Standard Model of modern cosmology. In the last
decade or so we have entered an era of precision cosmology. The basic quan-
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tities have been measured and now what remains is to try to understand
them. What is surprising, is the fact that the Universe today seems to ex-
pand with an accelerating rate, while one would expect that because of the
attractive nature of gravity the universe should be decelerating. This means
that the dominant component in the universe is some strange “material”
with negative pressure, called Dark Energy. The rest of the universe consists
of photons, neutrinos (only a tiny fraction of the energy budget) and non-
relativistic matter, most of which is in some unknown non-baryonic form,
called Dark Matter. So we see that in its majority the Universe consists of
something that we do not know what it is. The nature and detailed charac-
teristics of dark matter and dark energy are the major theoretical challenges
for modern cosmology.

1.7 The brane-world idea

Recently it has been suggested that there might exist some extra spatial
dimensions. Of course this is not a new proposal. Instead it is essentially a
revival of the old Kaluza-Klein idea. In the traditional Kaluza-Klein sense
the extra dimensions are compactified on a small enough radius to evade
detection in the form of Kaluza-Klein modes. However now there is a different
setting where the extra dimensions could be large, under the assumption
that ordinary matter is confined onto a three-dimensional subspace, called
brane (more precisely “3-brane”, referring to the three spatial dimensions)
embedded in a higher dimensional space, called bulk. In fact the idea that
we might be living inside a defect embedded in a higher dimensional space
has already a long history. In the context of an ordinary higher dimensional
gauge field theory it was proposed that we might live on a codimension one
solitonic object. However, it was soon realized that in contrast to scalar and
spin-1/2 fields, it would be difficult to confine gauge fields on such an object.

The situation is drastically different in the context of type-I string theory.
A few developments led to an exciting possibility and renewed interest in
the whole idea. First, with the discovery of the D-branes as an essential
part of the spectrum in type-I string theory, one could conjecture that we
inhabit such a D-brane embedded in a ten-dimensional bulk. The usual
solitonic defect of field theory was thus replaced by an appropriate collection
of D-branes, which by construction confine the gauge fields, together with
all the ingredients of the standard model. All known matter and forces lie
on our brane-world, with the exception of gravity which acts in the bulk
space as well. It was however pointed out that the gravitational force on the
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brane was consistent with all laboratory and astrophysical data as long as
the extra dimensions were smaller than a characteristic scale. This led to
the exciting possibility of two extra dimensions in the sub-millimeter range.
Furthermore, it was demonstrated in the context of an appropriate effective
five-dimensional theory of gravity, that once we take into account the back
reaction of the brane energy-momentum onto the geometry of spacetime, the
graviton is effectively confined on the brane and Newton’s law is reproduced
to an excellent accuracy at large distances, even with a non-compact extra
dimension.

The present work comprises my research in the field of brane cosmology.
Brane-worlds open-up new ways to attack the Dark Matter, Dark Energy
problems and these were exploited in what follows. Our work is organized as
follows: In Part I, which includes chapters 2 and 3, we present the Theoretical
framework of our discussion. We introduce, briefly and for completeness, the
fundamentals of the Brane-World scenario, the Standard Models of particle
physics and of Cosmology, as well as some basic knowledge about Supersym-
metry. In Part II, the rest of the present work, we present our research in
the field of brane cosmology. In chapter 4 we discuss axino dark matter in
the brane-world scenario. We present sneutrino inflation and supersymmet-
ric hybrid inflation in chapters 5 and 6 respectively. The role of brane-bulk
energy exchange and a concrete model with our universe as a global late-time
attractor is discussed in the seventh chapter. We summarize our results and
finish with some conclusions in the last chapter.
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The Theoretical Framework



Chapter 2

The brane-world scenario

In the present section we shall describe various realizations of the brane-world
idea [1].

2.1 Randall-Sundrum localization

We will consider the case of a five-dimensional bulk with coordinates 2™ =
(" y), = 0,1,2,3. We also consider a three-brane located at y = 0. Apart
from the five-dimensional Einstein term we also have a constant energy den-
sity (brane tension) on the brane, and a non-vanishing cosmological constant
in the bulk. We can summarize the effective action as

S = / dy d*z/g(MPR — A) — / d*edys(y)\/ Vs (2.1)

where g4, is the induced metric on the brane g,, = gMN%%. We will
pick a static gauge for the brane coordinates £* = z¢. To simplify matters,
we will also consider an orbifold structure under y — —y. Thus, the two
parts of space-time separated by the brane are mirror symmetric around the
position of the brane.

We would like to solve the equations of motion stemming from action
(2.1). Let us first seek solutions invariant under the orbifold action which
are flat along the brane, and depend only on the fifth coordinate y.

The ansatz for the five-dimensional metric is
ds?* = W dzidy, + dy? (2.2)

In order for the flat-brane ansatz to provide a solution, the two vacuum
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2.1. Randall-Sundrum localization

energies must be related
V2= —12AM? (2.3)

This implies that the vaccum energy A must be negative. We will also define

the RS (AdS) energy scale

A
K=—= 2.4
7 (2.4)

The gravitational equations have the solution
Aly) = —Kly| (2.5)

The space on the one side of the brane is a slice of AdS5 patched-up with
its mirror image at y = 0. Indeed defining r = %Y for y > 0 and scaling
' — /K we obtain

ds* (dr* + da*dz,), r>1 (2.6)

~ K22
which is the r > 1 slice of AdSs in Poincare coordinates with AdS energy
scale K. Note that the orbifold has removed the boundary of AdSs at r = 0.

An interesting further question concerns the effective interactions medi-
ated by gravity in this background. To find them we must study the small
fluctuations around this solution. Direct variation of the equations along the
brane longitudinal directions and gauge fixing gives a scalar equation for the
static graviton propagator

MP(—e V2 = 32 — 44'9,)Gasy) = 3(y)8 (x) (2.7)
This can be Fourier transformed along the z° coordinates obtaining
MP(—e AP — 32 — 440,)G(5:y) = 3(y) (2.8)

Imposing the symmetry G(p,y) = G(p, —y) we obtain the solution

w
Gly,p) = Bu’Ky(72) (2:9)
where p = |p], w = eXW K, is the standard Bessel function and
1
(2.10)

B=—r——
2M3pKy ()
We can now investigate the force mediated by the graviton fluctuations
on the brane by evaluating

1K
- 2MBp Ky (

)
)

=l

G(p,0) (2.11)

5
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The brane-world scenario

The static gravitational potential between two unit sources on the brane
(upon transforming back to configuration space) becomes

e K
V(r) = 5 /O dppsin(pr)G(p,0) = Sy + oV (r) (2.12)
with % - Kola)
. . o\q
oV(r) = Y /0 dq sin(qr) Ki(q) (2.13)

where here 72 = 72 is the spatial distance on the brane. We can now compute
the correction to the gravitational potential for two extreme cases.

For Kr > 1 the main contribution to the integral (2.13) comes from

small ¢ and we obtain
1

= 8w K M3r?
Thus, at long distances gravity is four-dimensional with sub-leading correc-
tions. The effective four-dimensional Planck scale is M} = M?/K.

oV (r) (2.14)

For Kr < 1 the main contribution to the integral comes from large ¢

and we obtain )

~
Thus, at short distances gravity is five-dimensional. This is completely anal-
ogous to compactification with radius 1/K. The RS setup is thus an alterna-
tive mechanism to compactification for transforming five-dimensional gravity
into four-dimensional at large distances.

SV (r) (2.15)

2.2 Brane-Induced gravity

We now describe an alternative realization of four-dimensional gravity that
comes under the name of brane-induced gravity. First we consider the sim-
plest case of a five-dimensional bulk with coordinates ™ = (2" y),u =
0,1,2,3 . We also consider a three brane located at y = 0. Apart from
the five-dimensional Einstein term we would like to study the effects of a
four-dimensional Einstein term localized on the brane. The relevant action
is

M3/ dy d4x\/§R~l—7’c/ d*edys(y)v/gR (2.16)

where gg is the induced metric on the brane and R the induced Ricci scalar.
We also parameterized the coefficient of the four-dimensional term in terms
of a new length scale r..

10



2.2. Brane-Induced gravity

We are interested in the gravitational interaction, generated by the action
(2.16), as perceived on the brane. We will evaluate first the static propagator
of (2.16). Although there is interesting physics in the tensor structure, we
will neglect it for the moment and consider instead the scalar propagator.
Placing the source on the brane (at the origin) we must solve

M3 (V5 + 8; +r.0(y)V3)G(T,y) = —0(y)s™ () (2.17)
Fourier transforming in the 3-spatial coordinates ¥ we obtain
MP(p® = 95 + 10 (y)p") G (B, y) = d(y) (2.18)

The solution can be found by first solving the equations away from the po-
sition of the brane, and then matching along y = 0. The result is

o171yl
 MB2Ip] + rep?)

G(p,y) (2.19)

For the source and the probe being on the brane y = 0 the static propagator

becomes ]

)= PR )

By Fourier transforming back we obtain the static gravitational potential

G(p.0 (2.20)

1

22y

V(r)

/000 dppsin(pr)G(p,0) (2.21)

We are now ready to study the behavior of the gravitational force in various
regimes.

For long distances pr. < 1 the potential can be approximated as

1

V(r) ~ s

(2.22)

This is the behavior of five-dimensional gravity with Planck scale M.
For short distances pr. > 1 we obtain

1
M3r.r

V(r) (2.23)
This is the behavior of four-dimensional gravity with effective Planck scale
M? = M?®r.. Thus, we have a situation which is inverted with respect to
normal compactification: four-dimensional gravity at short distances and
five-dimensional gravity at long distances.

11



The brane-world scenario

2.3 Randall-Sundrum plus brane—induced grav-
ity

In this subsection we will investigate what happens when both mechanisms
are at work simultaneously. The relevant effective action now is

/ dy d*z\/g(MPR — A) + / d*edyd(y)\/§(MPr.R — V) (2.24)

The crucial observation here is that since the RS solution is flat on the brane
, it is not affected by the presence of the localized Einstein term. Thus with
the RS fine-tuning V;? = —12AM? the solution (2.2), (2.5) is still valid.

Now the equation for the static (scalar) graviton propagator is modified
to

MP(—e 24V3 = ) — 440, — 18(y)V2)Glay) = 6(y)6PD(x)  (2.25)

This can be Fourier transformed along the 2 coordinated obtaining

M3 (—e7?4p* — 0 — 440, + r8(y)p*)G(Bry) = 6(y)  (2.26)
Imposing the symmetry G(p, —y) = G(p,y) we obtain the solution
w
Glp.y) = Bw’Ky(52) (2.27)

where the constant B is given by

1
B =
M3p(2K:1(%) + repKa(£))

(2.28)

We investigate the force mediated by the graviton fluctuations on the
brane by evaluating

1 Ks(E)

G(p,0) =
P:0) = 3 212 + ropa ()

(2.29)

We distinguish two separated cases.

For Kr.> 1 the potential exhibits four-dimensional behavior ~ 1/r for

all distances, with an effective Planck scale M2 ~ M?r,.

For Kr. < 1 we find five-dimensional behavior ~ 1/r? for the potential
for distances r. < r < 1/K, while for r > 1/K or r < r. the potential
displays four-dimensional behavior. For short distances the Planck scale is
M? ~ M?r., while for long distances the effective Planck scale is ]\;[p2 ~
M3/K.

12



Chapter 3

Preliminaries

3.1 The Standard Model of particle physics
and supersymmetry

3.1.1 The SM of particle physics
The Standard Model Lagrangian

The Standard Model [2] is a gauge theory of the microscopic interactions.
The strong interaction part is a gauge theory, based on the gauge group
SU(3) and is described by the Lagrangian

Lsy, = _ZF;VFW I quz D5q’ (3.1)

where ' . . ‘
F,, =0.G, —0,G, — gsfijx G}, G* (3.2)
is the field strength tensor for the gluon fields GL, i =1,---,8, with g,
the QCD gauge coupling constant, and the structure constants f;. (,j, k =
1,---,8) are defined by o
[N, N = 26 fijp A (3.3)
where the SU(3) A matrices are defined in Table 3.1. The F? term leads
to three and four-point gluon self-interactions. The second term in Lgy,

is the gauge covariant derivative for the quarks: g, is the r** quark flavor,
a, 3 =1,2,3 are color indices, and

D;O:B = (Du)ap = 0uap + igs GL Lflg (3.4)

13
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AZ’:(B 8),@':1,2,3
00 1 00 —i
M=[000 N=[00 o0
100 i 0 0
000 00 0
NM=|[0o01 N=|00 —i
010 0i 0
10 0
M=Llo1 o0
00 -2

Table 3.1: The SU(3) matrices.

where the quarks transform according to the triplet representation matrices
L? = \"/2. The color interactions are diagonal in the flavor indices, but in
general change the quark colors. They are purely vector (parity conserving).
There are no bare mass terms for the quarks in (3.1). These would be allowed
by QCD alone, but are forbidden by the chiral symmetry of the electroweak
part of the theory. The quark masses will be generated later by spontaneous
symmetry breaking. There are in addition effective ghost and gauge-fixing
terms which enter into the quantization of both the SU(3) and electroweak
lagrangians, and there is the possibility of adding an (unwanted) term which
violates C'P invariance.

The electroweak theory is based on the SU(2) x U(1) gauge group. Its
Lagrangian is

LSUQXUl = Lgauge + ch + Lf + LYukawa (35>
The gauge part is
1 % Nz 1 N
Lgauge = —ZFWF — ZBWB (3.6)

where W, i =1, 2, 3 and B, are respectively the SU(2) and U(1) gauge
fields, with field strength tensors

B,, = 0,B,—-0,B,

Fu = 0.W,—0,W, — gejWiW} (3.7)
where g(g’) is the SU(2) (U(1)) gauge coupling and €;;;, is the totally antisym-

metric symbol. The SU(2) fields have three and four-point self-interactions.
B is a U(1) field associated with the weak hypercharge Y = @ — T3, where
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3.1. The Standard Model of particle physics and supersymmetry

() and T3 are respectively the electric charge operator and the third compo-
nent of weak SU(2). It has no self-interactions. The B and Wj fields will
eventually mix to form the photon and Z boson.

The scalar part of the lagrangian is

L, = (D"9)'Dup — V(p) (3.8)

+
where ¢ = ( (ZO > is a complex Higgs scalar, which is a doublet under
SU(2) with U(1) charge Y, = +1. The gauge covariant derivative is

,7_’L

. P
D, = (8M +ig 5 W, + _Bu) © (3.9)

2

where the 7° are the Pauli matrices. The square of the covariant derivative
leads to three and four-point interactions between the gauge and scalar fields.

V() is the Higgs potential. The combination of SU(2) x U(1) invariance
and renormalizability restricts V' to the form

V(p) = +120 o + Metp)? (3.10)

For p? < 0 there will be spontaneous symmetry breaking. The \ term
describes a quartic self-interaction between the scalar fields. Vacuum stability
requires A > 0.

The fermion term is

F
Lp= Z (qgnLi Dy, + i DL+ Ui DUy
m=1
+dy, gt P g + € g @@%R) (3.11)

In (3.11) m is the family index, F' > 3 is the number of families, and L(R)
refer to the left (right) chiral projections ¢y = (1 F 75)1/2. The left-
handed quarks and leptons

0 0
0o _ Upy > 0o _ ( Vm )
Qmr = Lo = o (3.12)
L ( d?n . L emO .

transform as SU(2) doublets, while the right-handed fields u?,,, d° ., and
e,y are singlets. Their U(1) charges are Y, = ¢, Y}, = —1, Yy, = qy. The
superscript 0 refers to the weak eigenstates, i.e. fields transforming according

to definite SU(2) representations. They may be mixtures of mass eigenstates
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(flavors). The quark color indices a = r, g, b have been suppressed. The
gauge covariant derivatives are

DqunL = (au + EngW;i + i%,Bu) Gon

DI, = (aﬂ o i%/BM) o,

Duugm = (au + i§9/3u> ugm

D#dgnR = |\ Ou— i%Bu) d?nR

Duemp = (9 —ig'By)enpr (3.13)

from which one can read off the gauge interactions between the W and B
and the fermion fields. The different transformations of the L and R fields
(i.e. the symmetry is chiral) is the origin of parity violation in the elec-
troweak sector. The chiral symmetry also forbids any bare mass terms for
the fermions.

The last term in (3.5) is

F
— Lyukawa = Z [FumnqgnLSZUEnR + annqgnLSOng + ann&n@egR} + H.C.
m,n=1

(3.14)
where the matrices I',,,, describe the Yukawa couplings between the single
Higgs doublet, ¢, and the various flavors m and n of quarks and leptons.
One needs representations of Higgs fields with ¥ = % and —% to give masses
to the down quarks, the electrons, and the up quarks. The representation
o has Y = —%, but transforms as the 2* rather than the 2. However, in

SU (2) the 2* representation is related to the 2 by a similarity transformation,
of
and ¢ = it?pl = ( v ) transforms as a 2 with Y; = —3. All of the

masses can therefore be generated with a single Higgs doublet if one makes
use of both ¢ and ¢. The fact that the fundamental and its conjugate
are equivalent does not generalize to higher unitary groups. Furthermore,
in supersymmetric extensions of the standard model supersymmetry forbids
the use of a single Higgs doublet in both ways in the lagrangian, and one
must add a second Higgs doublet. Similar statements apply to most theories
with an additional U(1) gauge factor, i.e. a heavy Z’ boson.
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3.1. The Standard Model of particle physics and supersymmetry

Spontaneous Symmetry Breaking

Gauge invariance (and therefore renormalizability) does not allow mass terms
in the lagrangian for the gauge bosons or for chiral fermions. Massless gauge
bosons are not acceptable for the weak interactions, which are known to be
short-ranged. Hence, the gauge invariance must be broken spontaneously,
which preserves the renormalizability. The idea is simply that the lowest
energy (vacuum) state does not respect the gauge symmetry and induces
effective masses for particles propagating through it.

Let us introduce the complex vector
v = (0]p|0) = constant (3.15)

which has components that are the vacuum expectation values of the various
complex scalar fields. v is determined by rewriting the Higgs potential as a
function of v, V(¢) — V(v), and choosing v such that V' is minimized. That
is, we interpret v as the lowest energy solution of the classical equation of
motion. The quantum theory is obtained by considering fluctuations around
this classical minimum, @ = v + ¢'.

The single complex Higgs doublet in the standard model can be rewritten
in a Hermitian basis as

-5)-(HE) e

where ¢; = gpz represent four hermitian fields. In this new basis the Higgs
potential becomes

V(p) = %/ﬁ (Z so?) + ik <Z so?) (3.17)

which is clearly O, invariant. Without loss of generality we can choose the
axis in this four-dimensional space so that (0|p;|0) = 0, ¢ = 1,2,4 and
(0]¢3|0) = v. Thus,

1 1
Vip) = V(v) = EILLQVQ + Z)\V4 (3.18)

which must be minimized with respect to v. For p? > 0 the minimum occurs
at v = 0. That is, the vacuum is empty space and SU(2) x U(1) is unbroken
at the minimum. On the other hand, for 4? < 0 the v = 0 symmetric point is
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unstable, and the minimum occurs at some nonzero value of v which breaks
the SU(2) x U(1) symmetry. The point is foun d by requiring

V') =v(®+M?) =0 (3.19)

which has the solution v = (—u?/ )\)1/ ? at the minimum. (The solution for
—v can also be transformed into this standard form by an appropriate Oy
transformation.) The dividing point y? = 0 cannot be treated classically. It
is necessary to consider the one loop corrections to the potential, in which
case it is found that the symmetry is again spontaneously broken.

We are interested in the case u? < 0, for which the Higgs doublet is
replaced, in first approximation, by its classical value ¢ — \/Li g = .
The generators L', L?, and L? —Y are spontaneously broken (e.g. L'v # 0).
On the other hand, the vacuum carries no electric charge (Quv = (L3+Y)v =
0), so the Ujg of electromagnetism is not broken. Thus, the electroweak

SU(2) x U(1) group is spontaneously broken down, SU(2) x Uyy — Uyg.

To quantize around the classical vacuum, write p = v 4+ ¢, where ¢’ are
quantum fields with zero vacuum expectation value. To display the physical
particle content it is useful to rewrite the four hermitian components of ¢’
in terms of a new set of variables using the Kibble transformation:

¢:7?XXL(V+H) (3.20)

H is a hermitian field which will turn out to be the physical Higgs scalar. If
we had been dealing with a spontaneously broken global symmetry the three
hermitian fields £ would be the massless pseudoscalar Goldstone bosons that
are necessarily associated with broken symmetry generators. However, in a
gauge theory they disappear from the physical spectrum. To see this it is
useful to go to the unitary gauge

N~ eiTi 1 0
I —i>. &L -
po— ¢ =e © \/§(V—I—H) (3.21)
in which the Goldstone bosons disappear. In this gauge, the scalar covariant
kinetic energy term takes the simple form

1 o ! 2
(Dup)tDp = 5(0 V) [gTZW,Z + %Bu} < 3 ) + H terms
M2
Hﬂﬁwﬂmﬂufﬂﬁ+ﬂmm (3.22)
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3.1. The Standard Model of particle physics and supersymmetry

where the kinetic energy and gauge interaction terms of the physical H par-
ticle have been omitted. Thus, spontaneous symmetry breaking generates
mass terms for the W and Z gauge bosons

1
W:t - Wl -W2
\/5( FiW7)
7Z = —sinbyB + cosfyW? (3.23)
The photon field
A = cos Oy B + sin Oy W*? (3.24)

remains massless. The masses are

My == (3.25)

and

M,
My =\/@+g%2 =~ (3.26)

2 cosfy

where the weak angle is defined by tanfy = ¢’/g. One can think of the
generation of masses as due to the fact that the W and Z interact constantly
with the condensate of scalar fields and therefore acquire masses, in analogy
with a photon propagating through a plasma. The Goldstone boson has
disappeared from the theory but has reemerged as the longitudinal degree of
freedom of a massive vector particle.

It can be shown that Gp/v2 ~ ¢*/8MZ,, where G = 1.16639(2) x
1075 GeV =2 is the Fermi constant determined by the muon lifetime. The
weak scale v is therefore

v=2My /g~ (V2Gp)V? ~ 246 GeV (3.27)
Similarly, g = e/ sin 0y, where e is the electric charge of the positron. Hence,

to lowest order
(ma/V2GF)"?
sin ‘9W

MW = MZ COS 9W ~ (328)
where o ~ 1/137.036 is the fine structure constant. Using sin?fy, ~ 0.23
from neutral current scattering, one expects My, ~ 78 GeV, and My ~
89 GeV. (These predictions are increased by ~ (2 — 3) GeV by loop correc-
tions.) The W and Z were discovered at CERN by two groups (UA1 and
UA2) in 1983. Subsequent measurements of their masses and other proper-
ties have been in perfect agreement with the standard model expectations
(including the higher-order corrections), as is described in the articles of by
Schaile and Einsweiler.
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After symmetry breaking the Higgs potential becomes
2772 5 A
V(p)=—"—~—p*"H*+ \H’ + ZH (3.29)

The third and fourth terms represent the cubic and quartic interactions of
the Higgs scalar. The second term represents a (tree-level) mass

My = /=212 = V2 (3.30)

The weak scale is given in (3.27), but the quartic Higgs coupling A is un-
known, so My is not predicted. A priori, A could be anywhere in the range
0 < X < 0. There is now an experimental lower limit My > 60 GeV from
LEP. Otherwise, the decay Z — Z*H would have been observed (There are
also theoretical lower limits on My in the ~ 10 GeV range, depending on
my, when higher-order corrections are included).

3.1.2 Basics of Supersymmetry
The motivation for supersymmetry

It is widely accepted that the Standard Model of gauge interactions describ-
ing the laws of physics at the weak scale is extraordinarily successful. The
agreement between theory and experimental data is very good. Yet, we
believe that the present structure is incomplete. Only to remind a few draw-
backs, the theory has too many parameters, it does not describe the fermion
masses and why the number of generations is three. It contains fundamental
scalars, something difficult to reconcile with our current understanding of
non-supersymmetric field theory. Finally, it does not incorporate gravity.

It is tempting to speculate that a new (but yet undiscovered) symme-
try, supersymmetry [3], may provide answers to these fundamental questions.
Supersymmetry is the almost universally accepted framework for construct-
ing extensions of the Standard Model. Supersymmetry can be formulated
either as a global or a local symmetry. In the latter case it includes gravity,
and is therefore called supergravity. Supersymmetry is the only framework
in which we seem to be able to understand light fundamental scalars. It
addresses the question of parameters: first, unification of gauge couplings
works much better with than without supersymmetry; second, it is easier to
attack questions such as fermion masses in supersymmetric theories, in part
simply due to the presence of fundamental scalars. Supersymmetry seems to
be intimately connected with gravity. So there are a number of theoretical
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3.1. The Standard Model of particle physics and supersymmetry

arguments that suggest that nature might be supersymmetric, and that su-
persymmetry might manifest itself at energies of order the weak interaction
scale.

The supersymmetry algebra and supermultiplets

We begin with some basics, that apply to both global supersymmetry and
supergravity.

In the low-energy regime, phenomenology requires the type of supersym-
metry known as N = 1 (one generator). In this section, we present some
features of N = 1 supersymmetric theories, that are likely to be relevant for
inflation.

The basic supersymmetry algebra is given by
{Qa: Qp} = 20", P, (3.31)

where @), and @B are the supersymmetry generators (bars stand for conju-
gate), o and 3 run from 1 to 2 and denote the two-component Weyl spinors
(quantities with dotted indices transform under the (0, 5) representation of
the Lorentz group, while those with undotted indices transform under the
(3,0) conjugate representation). o* is a matrix four vector, o# = (—1,7)
and P, is the generator of spacetime displacements (four-momentum).

The chiral and vector superfields are two irreducible representations of
the supersymmetry algebra containing fields of spin less than or equal to one.
Chiral fields contain a Weyl spinor and a complex scalar; vector fields contain
a Weyl spinor and a (massless) vector. In superspace a chiral superfield may

be expanded in terms of the Grassmann variable 6 (the fermionic coordinates)
o(x,0) = d(x) + V20 () + 6*F(x) (3.32)

where 62 = €,30%0°. Here z denotes a point in spacetime, ¢(x) is the complex
scalar, 1 the fermion, and F is an auxiliary field. As in this expression, we
shall generally use the same symbol to represent a superfield and its scalar
component. Under a supersymmetry transformation with anticommuting
parameter (, the component fields transform as

6d = V20 (3.33)
0 = V2AUF +V2i0"C0,¢ (3.34)
OF = —V/2id,30"C (3.35)
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Here and in the following, for any generic two-component Weyl spinor A, A
indicates the complex conjugate of A\. For a gauge theory one has to introduce
vector superfields and the physical content is most transparent in the Wess-
Zumino gauge. In this gauge and for the simplest case of an abelian group
U(1), the vector superfield may be written as

V = —00"0A, + 0?0\ — i0°0\ + 10°0° D (3.36)

Here A, is the gauge field, A, is the gaugino, and D is an auxiliary field.
The analog of the gauge invariant field strength is a chiral field:

Wa = —ida + 0aD = §(05"0)aF, + 6% 0, N (3.37)

where F,, = 0,A, — 0,A,, and where ¢* = (-1, —). Regarding the super-
symmetry transformations, let us just note that

N =1(D + (o"c"F,, (3.38)

Global supersymmetry is defined as invariance under these transforma-
tions with ¢ independent of spacetime position, and local supersymmetry
(supergravity) as invariance with ( depending on spacetime position. In
the latter case one has to introduce another supermultiplet containing the
graviton and the gravitino.

Global supersymmetry may be regarded as a limit of supergravity, in
which roughly speaking gravity is made negligible by taking Mp, to infinity.
For most purposes it is a good approximation if the vevs of all relevant scalar
fields and auxiliary fields are much less than Mp.

The Lagrangian of global supersymmetry

We focus first on global supersymmetry, with the usual restriction that it be
renormalizable.

To write down the action for a set of chiral superfields, ¢;, transforming
in some representation of a gauge group G, one introduces, for each gauge
generator, a vector superfield, V¢ Defining the matrix V = T*V,, where
T are the hermitian generators of the gauge group G in the representation
defined by the scalar fields and excluding the possible Fayet-Iliopoulos term
to be discussed later, the most general renormalizable lagrangian, written in
superspace, is then

L=>Y" / d*0d*0¢t e" ¢, + ﬁ / d*OW? + / d*0W (¢,) +h.c.  (3.39)
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where in the adjoint representation Tr(7T°7T°) = k6 and W (¢,(x,0)) is a
fundamental object known as superpotential. The corresponding function of
the scalar components ¢,(z), denoted by the same name and symbol, is a
holomorphic function of the ¢,,. For simplicity, we shall pretend that there is
a single gauge U(1) interaction, with coupling constant g. This is adequate
since such an interaction is the only one that we consider in detail. (To be
precise, we consider a U(1) with a Fayet-Iliopoulos term.) In the case of
several U(1)’s, there are no cross-terms in the potential from the D-terms,
i.e. Vp is simply expressed as Y (Vp)n.

To write this down in terms of component fields, we need the covariant
derivative

D, =0, - %gA“ (3.40)
In terms of the component fields, the lagrangian takes the form:

L= Y (DudiD"u+iDyths" by + |Ff7)

n

1 2 . \ 1 2 g *
— (B = iXe"9 A+ D+ 0D an Gn

. g - < 1 W
- 1 = n>\ n - aa. 9. ¥n¥m
[ 23" 2 555,00,
ow
F,| —
- 20 ()
At the end of the second line, ¢, are the U(1)-charges of the fields ¢,,. The
equations of motion for the auxiliary fields F,, and D are the constraints:

oW \*
E, — —((%n) (3.42)
_ _gzn:qny¢n|2 (3.43)

+ec (3.41)

Eq. (3.41) contains the gauge invariant kinetic terms for the various
fields, which specify their gauge interactions. It also contains, after having
made use of Egs. (3.42) and (3.43), the scalar field potential,

Vi= Vr+Vp (344)

Ve = > |F (3.45)
1 2

Vp = 5D (3.46)
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This separation of the potential into an F' term and a D term is crucial
for inflation model-building, especially when it is generalized to the case of
supergravity.

The potential specifies the masses of the scalar fields, and their interac-
tions with each other. The first term in the third line specifies the interactions
of gaugino and scalar fields, while the second specifies the masses of the chi-
ral fermions and their interactions with the scalars. All of these non-gauge
interactions are called Yukawa couplings.

To have a renormalizable theory, W is at most cubic in the fields, corre-
sponding to a potential which is at most quartic.

From the above expressions, in particular Eq. (3.45), one sees that the
overall phase of W is not physically significant. An internal symmetry can
either leave W invariant, or alter its phase. The latter case corresponds to
what is called an R-symmetry. Because W is holomorphic, the internal sym-
metries restrict its form much more than is the case for the actual potential
V. In particular, terms in W of the form %mqﬁ or mao1¢s, which would
generate a mass term m?2|¢;|?* in the potential, are usually forbidden.! As
a result, scalar particles usually acquire masses only from the vevs of scalar
fields (i.e. from the spontaneous breaking of an internal symmetry) and from
supersymmetry breaking. The same applies to the spin-half partners of scalar
fields, with the former contribution the same in both cases.

In the case of a U(1) gauge symmetry, one can add to the above la-
grangian what is called a Fayet-Iliopoulos term

—2¢ / d*0d*0 vV (3.47)

This corresponds to adding a contribution —¢ to the D field, so that (3.43)
becomes

D = _g ZQn|¢n|2 _5 (348)

The D term of the potential therefore becomes

2
1
Vb =3 (g D tlenl® + s) (3.49)

From now on, we shall use a more common notation, where £ and the

LAn exception is the p term of the MSSM, puHy Hp, which gives mass to the Higgs
fields.
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charges are redefined so that

2
Vb = %QQ (Z QR|¢n|2 + f) (350)

This is equivalent to

D=—g <Z G| Dn|* + é) (3.51)

A Fayet-Iliopoulos term may be present in the underlying theory from the
very beginning, or appears in the effective theory after some heavy degrees
of freedom have been integrated out.

Spontaneously broken global susy

Global supersymmetry breaking may be either spontaneous or explicit. How-
ever here we shall discuss only the first case. For spontaneous breaking, the
lagrangian is supersymmetric as given in the last subsection. But the gen-
erators (), fail to annihilate the vacuum. Instead, they produce a spin-half
field, which may be either a chiral field ¢, or a gauge field A,. The con-
dition for spontaneous susy breaking is therefore to have a nonzero vacuum
expectation value for {Qq, ¥} or {Qa, Mg}

The former quantity is defined by Eq. (3.34), and the latter by Eq. (3.38).
The quantities d,¢ and F),, contain derivatives of fields, and are supposed
to vanish in the vacuum. It follows that susy is spontaneously broken if, and
only if, at least one of the auxiliary fields F;, or D has a non-vanishing vev.

In the true vacuum, one defines the scale Mg of global supersymmetry
breaking by

1
M=) |F+ 5D2 (3.52)

or equivalently
Mg =V (3.53)

(In the simplest case D vanishes and there is just one F,.)

When we go to supergravity, part of V' is still generated by the super-
symmetry breaking terms, but there is also a contribution —3|W[*/M3,. This
allows V' to vanish in the true vacuum as is (practically) demanded by ob-
servation.
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During inflation, V' is positive so the negative term is smaller than the
susy-breaking terms. In most models of inflation it is negligible. In any case,
V' is at least as big as the susy breaking term, so the search for a model of
inflation is also a search for a susy-breaking mechanism in the early Universe.

Spontaneous symmetry breaking can be either tree-level (already present
in the lagrangian) or dynamical (generated only by quantum effects like con-
densation). The spontaneous breaking in general breaks the equality between
the scalar and spin—% masses, in each chiral supermultiplet. But at tree level
the breaking satisfies a simple relation, which can easily be derived from the
lagrangian (3.41). Ignoring mass mixing for simplicity, one finds in the case
of symmetry breaking by an F-term,

Z (m2, +mby —2m;) =0 (3.54)
Here n labels the chiral supermultiplets, m, is the fermion mass while m,,;
and m,y are the scalar masses. In the case of symmetry breaking by a D
term, coming from a U(1), the right hand side of Eq. (3.54) becomes DTrQ.

But in order to cancel gauge anomalies, it is strongly desirable that TrQ = 0
which recovers Eq. (3.54).

3.2 The Standard Model of Cosmology, the
early Universe and inflation

3.2.1 The SM of cosmology
The Robertson-Walker Metric

Cosmology [4] as the application of general relativity (GR) to the entire
universe would seem a hopeless endeavor were it not for a remarkable fact —
the universe is spatially homogeneous and isotropic on the largest scales.

“Isotropy” is the claim that the universe looks the same in all directions.
Direct evidence comes from the smoothness of the temperature of the cosmic
microwave background. “Homogeneity” is the claim that the universe looks
the same at every point. It is harder to test directly, although some evidence
comes from number counts of galaxies. More traditionally, we may invoke the
“Copernican principle,” that we do not live in a special place in the universe.
Then it follows that, since the universe appears isotropic around us, it should
be isotropic around every point; and a basic theorem of geometry states that
isotropy around every point implies homogeneity.
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We may therefore approximate the universe as a spatially homogeneous
and isotropic three-dimensional space which may expand (or, in principle,
contract) as a function of time. The metric on such a spacetime is necessarily
of the Robertson-Walker (RW) form.

Therefore, the most general spacetime metric consistent with homogene-
ity and isotropy is
ds* = —dt* + a*(t) [dp® + f*(p) (d6” + sin® 0dp?)] (3.55)
where the three possibilities for f(p) are

f(p) = {sin(p), p, sinh(p)} (3.56)

This is a purely geometric fact, independent of the details of general relativ-
ity. We have used spherical polar coordinates (p, 8, ¢), since spatial isotropy
implies spherical symmetry about every point. The time coordinate ¢, which
is the proper time as measured by a comoving observer (one at constant spa-
tial coordinates), is referred to as cosmic time, and the function a(t) is called
the scale factor.

There are two other useful forms for the RW metric. First, a simple
change of variables in the radial coordinate yields

2

ds? = —dt* +a*(t) |5 _TW + 12 (62 + sin? 0d¢?) (3.57)
where
+1 if f(p) = sin(p)
k= 0 if f(p)=p (3.58)
~1 if f(p) = sinh(p)

Geometrically, k describes the curvature of the three-dimensional space.
k = 41 corresponds to positively curved spatial sections (locally isometric
to 3-spheres); k = 0 corresponds to local flatness, and &k = —1 corresponds
to negatively curved (locally hyperbolic) spatial sections.

Note that we have not chosen a normalization such that ag = 1. We
are not free to do this and to simultaneously normalize |k| = 1, without
including explicit factors of the current scale factor in the metric. In the flat
case, where k = 0, we can safely choose ag = 1.

A second change of variables, which may be applied to either (3.55)
or (3.57), is to transform to conformal time, T, via

() = / G‘Z:) (3.59)
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Applying this to (3.57) yields

ds® = a*(7) | —dr* + + 7* (df” + sin® 0d¢?) (3.60)

r
1 — kr?
where we have written a(7) = a[t(7)] as is conventional. The conformal time
does not measure the proper time for any particular observer, but it does
simplify some calculations.

A particularly useful quantity to define from the scale factor is the Hubble
parameter (sometimes called the Hubble constant), given by
a
H=- 3.61
. (3.61)
The Hubble parameter relates how fast the most distant galaxies are receding
from us to their distance from us via Hubble’s law,

v~ Hd. (3.62)

This is the relationship that was discovered observationally by Edwin Hubble,
and has been verified to high accuracy by modern observational methods.

The Friedmann Equations

As mentioned, the RW metric is a purely kinematic consequence of requiring
homogeneity and isotropy of our spatial sections. We next turn to dynamics,
in the form of differential equations governing the evolution of the scale factor
a(t). These will come from applying Einstein’s equation,

1

RW—2

Ry = 87GT,, (3.63)

to the RW metric.

Before diving right in, it is useful to consider the types of energy-mome-
ntum tensors 7}, we will typically encounter in cosmology. For simplicity,
and because it is consistent with much we have observed about the universe,
it is often useful to adopt the perfect fluid form for the energy-momentum
tensor of cosmological matter. This form is

T;w = (/O + p)U,uUl/ + PIuv (364>

where U* is the fluid four-velocity, p is the energy density in the rest frame of
the fluid and p is the pressure in that same frame. The pressure is necessarily
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isotropic, for consistency with the RW metric. Similarly, fluid elements will
be comoving in the cosmological rest frame, so that the normalized four-
velocity in the coordinates of (3.57) will be

U* = (1,0,0,0) (3.65)

The energy-momentum tensor thus takes the form

T, = < p - ) (3.66)

where g;; represents the spatial metric (including the factor of a?).

Armed with this simplified description for matter, we are now ready to
apply Einstein’s equation (3.63) to cosmology. Using (3.57) and (3.64), one
obtains two equations. The first is known as the Friedmann equation,

-\ 2
o (a\" _ 8rG k

where an overdot denotes a derivative with respect to cosmic time ¢ and ¢
indexes all different possible types of energy in the universe. This equation
is a constraint equation, in the sense that we are not allowed to freely specify
the time derivative a; it is determined in terms of the energy density and
curvature. The second equation, which is an evolution equation, is

2

i 1(a k
5+§<5> = 47rG2i:pi—2—a2 (3.68)

It is often useful to combine (3.67) and (3.68) to obtain the acceleration

equation
a ArG

o= (pi + 3pi) (3.69)

In fact, if we know the magnitudes and evolutions of the different energy
density components p;, the Friedmann equation (3.67) is sufficient to solve
for the evolution uniquely. The acceleration equation is conceptually useful,
but rarely invoked in calculations.

The Friedmann equation relates the rate of increase of the scale factor, as
encoded by the Hubble parameter, to the total energy density of all matter
in the universe. We may use the Friedmann equation to define, at any given
time, a critical energy density,

32
Pe = 8@

(3.70)
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for which the spatial sections must be precisely flat (k = 0). We then define

the density parameter

Qtotal = ﬁ 5 (371)

C

which allows us to relate the total energy density in the universe to its local
geometry via

Qtotal > ]_ <~ kf = +1
Qtotal - ]_ = k - O (372)
Qtotal < 1 <~ k - —1

It is often convenient to define the fractions of the critical energy density in
each different component by
Q=" (3.73)
pC
Energy conservation is expressed in GR by the vanishing of the covariant
divergence of the energy-momentum tensor,

vV, T" =0 (3.74)

Applying this to our assumptions — the RW metric (3.57) and perfect-fluid
energy-momentum tensor (3.64) — yields a single energy-conservation equa-
tion,

p+3H(p+p) =0 (3.75)

This equation is actually not independent of the Friedmann and acceleration
equations, but is required for consistency. It implies that the expansion of the
universe (as specified by H) can lead to local changes in the energy density.
Note that there is no notion of conservation of “total energy,” as energy can
be interchanged between matter and the spacetime geometry.

One final piece of information is required before we can think about
solving our cosmological equations: how the pressure and energy density are
related to each other. Within the fluid approximation used here, we may
assume that the pressure is a single-valued function of the energy density
p = p(p). It is often convenient to define an equation of state parameter, w,
by

p=wp (3.76)
This should be thought of as the instantaneous definition of the parameter w;
it need represent the full equation of state, which would be required to cal-

culate the behavior of fluctuations. Nevertheless, many useful cosmological
matter sources do obey this relation with a constant value of w. For example,
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w = 0 corresponds to pressureless matter, or dust — any collection of massive
non-relativistic particles would qualify. Similarly, w = 1/3 corresponds to
a gas of radiation, whether it be actual photons or other highly relativistic
species.

A constant w leads to a great simplification in solving our equations. In
particular, using (3.75), we see that the energy density evolves with the scale
factor according to

1

pla) o PO (3.77)
Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consis-
tent with what we would have obtained by more heuristic reasoning. Consider
a fixed comoving volume of the universe - i.e. a volume specified by fixed
values of the coordinates, from which one may obtain the physical volume at
a given time ¢ by multiplying by a(¢)®. Given a fixed number of dust particles
(of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)™®, in agreement with (3.77), with
w = 0.

To make a similar argument for radiation, first note that the expansion
of the universe (the increase of a(t) with time) results in a shift to longer
wavelength A, or a redshift, of photons propagating in this background. A
photon emitted with wavelength A, at a time t¢., at which the scale factor
is a. = a(t.) is observed today (t = to, with scale factor ag = a(ty)) at
wavelength A,, obeying

)\o ao

=1+2 (3.78)

Ae  a
The redshift z is often used in place of the scale factor. Because of the
redshift, the energy density in a fixed number of photons in a fixed comoving
volume drops with the physical volume (as for dust) and by an extra factor
of the scale factor as the expansion of the universe stretches the wavelengths
of light. Thus, the energy density of radiation will scale as a(t)™*, once again
in agreement with (3.77), with w = 1/3.

Thus far, we have not included a cosmological constant A in the gravi-
tational equations. This is because it is equivalent to treat any cosmological
constant as a component of the energy density in the universe. In fact, adding
a cosmological constant A to Einstein’s equation is equivalent to including
an energy-momentum tensor of the form

A

T, v — — 5 _~Yuv
a 87rGg“

(3.79)
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This is simply a perfect fluid with energy-momentum tensor (3.64) with

B A
pA- = G
PN = —paA (3-80)

so that the equation-of-state parameter is
wp = —1 (3.81)
This implies that the energy density is constant,
pa = constant (3.82)

Thus, this energy is constant throughout spacetime; we say that the cosmo-
logical constant is equivalent to vacuum energy.

Similarly, it is sometimes useful to think of any nonzero spatial curvature
as yet another component of the cosmological energy budget, obeying

B 3k
Peurv = B
P = e (3.83)
o 8rGa? '
so that
Weury = —1/3 (3.84)

It is not an energy density, of course; peury is simply a convenient way to keep
track of how much energy density is lacking, in comparison to a flat universe.

Flat Universes

It is much easier to find exact solutions to cosmological equations of motion
when k& = 0. Fortunately for us, nowadays we are able to appeal to more than
mathematical simplicity to make this choice. Indeed, modern cosmological
observations, in particular precision measurements of the cosmic microwave
background, show the universe today to be extremely spatially flat.

In the case of flat spatial sections and a constant equation of state para-
meter w, we may exactly solve the Friedmann equation (3.77) to obtain

a(t) = ao (1)2/3@%) (3.85)
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Type of Energy p(a) a(t)
Dust a3 2/3
Radiation a™? t1/2
Cosmological Constant | constant | ef*

Table 3.2: A summary of the behaviors of the most important sources of
energy density in cosmology. The behavior of the scale factor applies to
the case of a flat universe; the behavior of the energy densities is perfectly
general.

where aq is the scale factor today, unless w = —1, in which case one obtains
a(t) oc eff'. Applying this result to some of our favorite energy density sources
yields Table 3.2.

Note that the matter- and radiation-dominated flat universes begin with
a = 0; this is a singularity, known as the Big Bang. We can easily calculate
the age of such a universe:

U da 2
fo = /0 oH(@) 31+ w)H, (3.86)

Unless w is close to —1, it is often useful to approximate this answer by
to~ Hy' (3.87)

It is for this reason that the quantity H, ' is known as the Hubble time, and
provides a useful estimate of the time scale for which the universe has been
around.

Horizons

One of the most crucial concepts to master about FRW models is the ex-
istence of horizons. This concept will prove useful in understanding the
shortcomings of what we are terming the standard cosmology.

Suppose an emitter, e, sends a light signal to an observer, o, who is at

r = 0. Setting 8§ = constant and ¢ = constant and working in conformal

time, for such radial null rays we have 7, — 7 = r. In particular this means
that

To — Te = Te (3.88)

Now suppose 7, is bounded below by 7.; for example, 7. might represent the
Big Bang singularity. Then there exists a maximum distance to which the
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observer can see, known as the particle horizon distance, given by

ron(To) = To — Te (3.89)

Similarly, suppose 7, is bounded above by 7,. Then there exists a limit
to spacetime events which can be influenced by the emitter. This limit is
known as the event horizon distance, given by

Ten(To) = To — Te (3.90)

These horizon distances may be converted to proper horizon distances at
cosmic time ¢, for example

at’
a(t’)
Just as the Hubble time H;' provides a rough guide for the age of the

universe, the Hubble distance cH; ' provides a rough estimate of the horizon
distance in a matter- or radiation-dominated universe.

dg = a(T)rpn = a(7) (T — 7)) = a(t)/t (3.91)

3.2.2 The early Universe

In this subsection we use what we know of the laws of physics and the universe
today to infer conditions in the early universe. Early times were character-
ized by very high temperatures and densities, with many particle species kept
in (approximate) thermal equilibrium by rapid interactions. We will there-
fore have to move beyond a simple description of non-interacting “matter”
and “radiation,” and discuss how thermodynamics works in an expanding
universe.

Describing Matter

We have discussed how to describe matter as a perfect fluid, described by an
energy-momentum tensor

Tw = (p+p)UU, + 09 (3.92)

where U* is the fluid four-velocity, p is the energy density in the rest frame
of the fluid and p is the pressure in that same frame. The energy-momentum
tensor is covariantly conserved,

vV, T" =0 (3.93)
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In a more complete description, a fluid will be characterized by quantities
in addition to the energy density and pressure. Many fluids have a conserved
quantity associated with them and so we will also introduce a number flux
density N*, which is also conserved

VNt =0 (3.94)

For non-tachyonic matter N* is a timelike 4-vector and therefore we may
decompose it as
NH =nU" (3.95)

We can also introduce an entropy flur density S*. This quantity is not
conserved, but rather obeys a covariant version of the second law of thermo-
dynamics

V.S >0 (3.96)

Not all phenomena are successfully described in terms of such a local entropy
vector (e.g. black holes); fortunately, it suffices for a wide variety of fluids
relevant to cosmology.

The conservation law for the energy-momentum tensor yields, most im-
portantly, equation (3.75), which can be thought of as the first law of ther-
modynamics

dU = TdS — pdV (3.97)
with dS = 0.

It is useful to resolve S* into components parallel and perpendicular to
the fluid 4-velocity
Sk = sU" + s# (3.98)

where s,U" = 0. The scalar s is the rest-frame entropy density which, up to
an additive constant (that we can consistently set to zero), can be written as

D
5= (3.99)

In addition to all these quantities, we must specify an equation of state,
and we typically do this in such a way as to treat n and s as independent
variables.

Particles in Equilibrium

The various particles inhabiting the early universe can be usefully charac-
terized according to three criteria: in equilibrium vs. out of equilibrium
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(decoupled), bosonic vs. fermionic, and relativistic (velocities near c) vs.
non-relativistic. In this section we consider species which are in equilibrium
with the surrounding thermal bath.

Let us begin by discussing the conditions under which a particle species
will be in equilibrium with the surrounding thermal plasma. A given species
remains in thermal equilibrium as long as its interaction rate is larger than
the expansion rate of the universe. Roughly speaking, equilibrium requires it
to be possible for the products of a given reaction to have the opportunity to
recombine in the reverse reaction and if the expansion of the universe is rapid
enough this won’t happen. A particle species for which the interaction rates
have fallen below the expansion rate of the universe is said to have frozen
out or decoupled. If the interaction rate of some particle with the background
plasma is I', it will be decoupled whenever

'« H (3.100)

where the Hubble constant H sets the cosmological timescale.

As a good rule of thumb, the expansion rate in the early universe is
“slow,” and particles tend to be in thermal equilibrium (unless they are very
weakly coupled). This can be seen from the Friedmann equation when the
energy density is dominated by a plasma with p ~ T%; we then have

H~ (Mi) T (3.101)

Pl

Thus, the Hubble parameter is suppressed with respect to the temperature
by a factor of T'/Mp). At extremely early times (near the Planck era, for
example), the universe may be expanding so quickly that no species are
in equilibrium; as the expansion rate slows, equilibrium becomes possible.
However, the interaction rate I' for a particle with cross-section ¢ is typically
of the form

' =n{ov) , (3.102)

where n is the number density and v a typical particle velocity. Since n oc a3,

the density of particles will eventually dip so low that equilibrium can once
again no longer be maintained. In our current universe, no species are in
equilibrium with the background plasma (represented by the CMB photons).

Now let us focus on particles in equilibrium. For a gas of weakly-
interacting particles, we can describe the state in terms of a distribution
function f(p), where the three-momentum p satisfies

E*(p) = m® + |p|? (3.103)
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Relativistic | Relativistic | Non-relativistic

Bosons Fermions (Either)

3 3 miT\3/2 .
U2 %%TS (%) CTz)giTg 9i (Q—WT) emmi/T
. Euslpig o} I Wy o7 oy
pi | 359 (%) % 9i min;
, 1, L, T .
Di 3Pi 3Pi nil K p;

Table 3.3: Number density, energy density, and pressure, for species in ther-
mal equilibrium.

The distribution function characterizes the density of particles in a given
momentum bin. (In general it will also be a function of the spatial position
x, but we suppress that here.) The number density, energy density, and
pressure of some species labeled 7 are given by

9i 3
o= o [ He)
po= o [ ERE)E

_ gi \p\2 3
Di = (27r)3/3E(p)fi(p)dp

where g; is the number of spin states of the particles. For massless photons we
have g, = 2, while for a massive vector boson such as the Z we have g; = 3.
In the usual accounting, particles and antiparticles are treated as separate
species; thus, for spin-1/2 electrons and positrons we have g.- = g+ = 2.
In thermal equilibrium at a temperature T the particles will be in either
Fermi-Dirac or Bose-Einstein distributions,

1
f(p> = eE(p)/T :l: 1

(3.104)

(3.105)

where the plus sign is for fermions and the minus sign for bosons.

We can do the integrals over the distribution functions in two oppo-
site limits: particles which are highly relativistic (7" > m) or highly non-
relativistic (7" < m). The results are shown in Table 3.3, in which ( is the
Riemann zeta function, and ((3) ~ 1.202.

From Table 3.3 we can extract several pieces of relevant information.
Relativistic particles, whether bosons or fermions, remain in approximately
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equal abundances in equilibrium. Once they become non-relativistic, how-
ever, their abundance plummets, and becomes exponentially suppressed with
respect to the relativistic species. This is simply because it becomes pro-
gressively harder for massive particle-antiparticle pairs to be produced in a
plasma with T" < m.

It is interesting to note that, although matter is much more dominant
than radiation in the universe today, since their energy densities scale differ-
ently the early universe was radiation-dominated. We can write the ratio of
the density parameters in matter and radiation as

On o <G> _QMO

e 1+ 2)7t 3.106
o~ O (1+2) (3.106)

~ Oro

Qo

The redshift of matter-radiation equality is thus

Q
1+ 2zeqg = Q—“I:s ~ 3 x 10° (3.107)

This expression assumes that the particles that are non-relativistic today
were also non-relativistic at z.q; this should be a safe assumption, with the
possible exception of massive neutrinos, which make a minority contribution
to the total density.

At this point we should stress that even decoupled photons maintain a
thermal distribution; this is not because they are in equilibrium, but simply
because the distribution function redshifts into a similar distribution with a
lower temperature proportional to 1/a. We can therefore speak of the “effec-
tive temperature” of a relativistic species that freezes out at a temperature
T and scale factor ay:

I1a) = 77 (<L) (3.108)
For example, neutrinos decouple at a temperature around 1 ~ MeV'; shortly
thereafter, electrons and positrons annihilate into photons, dumping energy
(and entropy) into the plasma but leaving the neutrinos unaffected. Con-
sequently, we expect a neutrino background in the current universe with a
temperature of approximately 2K, while the photon temperature is 3K.

A similar effect occurs for particles which are non-relativistic at decou-
pling, with one important difference. For non-relativistic particles the tem-
perature is proportional to the kinetic energy %mv2, which redshifts as 1/a?.
We therefore have

ar\ 2
Tron=el (g) = T (—f) (3.109)

a
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In either case we are imagining that the species freezes out while relativistic
/non-relativistic and stays that way afterward; if it freezes out while rela-
tivistic and subsequently becomes non-relativistic, the distribution function
will be distorted away from a thermal spectrum.

The notion of an effective temperature allows us to define a corresponding
notion of an effective number of relativistic degrees of freedom, which in
turn permits a compact expression for the total relativistic energy density.
The effective number of relativistic degrees of freedom (as far as energy is
concerned) can be defined as

9= i <%>4+£ S o <§)4 (3.110)

bosons fermions

(The temperature T' is the actual temperature of the background plasma,
assumed to be in equilibrium.) Then the total energy density in all relativistic
species comes from adding the contributions of each species, to obtain the

simple formula
2

p= %g*T4 (3.111)

We can do the same thing for the entropy density. From (3.99), the entropy
density in relativistic particles goes as T° rather than 7%, so we define the
effective number of relativistic degrees of freedom for entropy as

Gos = Y G (%):g S g (;)3 (3.112)

bosons fermions

The entropy density in relativistic species is then

= " g,¢T? 11
S 4595 (3 3)

Numerically, g, and g,s will typically be very close to each other. In the
Standard Model, we have

100, T > 300 MeV
g~ gus ~ 4 10, 1 MeV < T <300 MeV (3.114)
3, T<1MeV

The events that change the effective number of relativistic degrees of free-
dom are the QCD phase transition at 300 ~ MeV, and the annihilation of
electron/positron pairs at 1 ~ MeV'.

Because of the release of energy into the background plasma when species
annihilate, it is only an approximation to say that the temperature goes as
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T  1/a. A better approximation is to say that the comoving entropy density
is conserved,
soca? (3.115)

This will hold under all forms of adiabatic evolution; entropy will only be pro-
duced at a process like a first-order phase transition or an out-of-equilibrium
decay. (In fact, we expect that the entropy production from such processes
is very small compared to the total entropy, and adiabatic evolution is an
excellent approximation for almost the entire early universe.) Combining
entropy conservation with the expression (3.113) for the entropy density in
relativistic species, we obtain a better expression for the evolution of the

temperature,
T o g, %0 (3.116)

The temperature will consistently decrease under adiabatic evolution in an
expanding universe, but it decreases more slowly when the effective number
of relativistic degrees of freedom is diminished.

Thermal Relics

As we have mentioned, particles typically do not stay in equilibrium forever;
eventually the density becomes so low that interactions become infrequent,
and the particles freeze out. Since essentially all of the particles in our current
universe fall into this category, it is important to study the relic abundance
of decoupled species. (Of course it is also possible to obtain a significant relic
abundance for particles which were never in thermal equilibrium; examples
might include baryons produced by GUT baryogenesis, or axions produced
by vacuum misalignment.) In this subsection we will typically neglect factors
of order unity.

We have seen that relativistic, or hot, particles have a number density
that is proportional to T° in equilibrium. Thus, a species X that freezes out
while still relativistic will have a number density at freeze-out Ty given by

nx(Ty) ~ T} (3.117)

Since this is comparable to the number density of photons at that time,
and after freeze-out both photons and our species X just have their number
densities dilute by a factor a(t)™ as the universe expands, it is simple to
see that the abundance of X particles today should be comparable to the
abundance of CMB photons,

nxo ~ Ny ~ 10 cm™? (3.118)
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We express this number as 10? rather than 411 since the roughness of our
estimate does not warrant such misleading precision. The leading correction
to this value is typically due to the production of additional photons subse-
quent to the decoupling of X; in the Standard Model, the number density of
photons increases by a factor of approximately 100 between the electroweak
phase transition and today, and a species which decouples during this period
will be diluted by a factor of between 1 and 100 depending on precisely when
it freezes out. So, for example, neutrinos which are light (m, < MeV) have
a number density today of n, = 115 cm™ per species, and a corresponding
contribution to the density parameter (if they are nevertheless heavy enough
to be nonrelativistic today) of

m, 5
Qo = (92 eV> h (3.119)
(In this final expression we have secretly taken account of the missing numer-
ical factors, so this is a reliable answer.) Thus, a neutrino with m, ~ 1072 eV
would contribute 2, ~ 2 x 1074, This is large enough to be interesting with-
out being large enough to make neutrinos be the dark matter. That’s good
news, since the large velocities of neutrinos make them free-stream out of
overdense regions, diminishing primordial perturbations and leaving us with
a universe which has much less structure on small scales than we actually
observe.

Now consider instead a species X which is nonrelativistic or cold at the
time of decoupling. It is much harder to accurately calculate the relic abun-
dance of a cold relic than a hot one, simply because the equilibrium abun-
dance of a nonrelativistic species is changing rapidly with respect to the
background plasma, and we have to be quite precise following the freeze-
out process to obtain a reliable answer. The accurate calculation typically
involves numerical integration of the Boltzmann equation for a network of
interacting particle species; here, we cut to the chase and simply provide a
reasonable approximate expression. If og is the annihilation cross-section of
the species X at a temperature T' = my, the final number density in terms
of the photon density works out to be

1

(T <L)~ ™

(3.120)

Since the particles are nonrelativistic when they decouple, they will certainly
be nonrelativistic today, and their energy density is

pPx = MxNx (3121)
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We can plug in numbers for the Hubble parameter and photon density to
obtain the density parameter,
Px Ny

P Per  OoMPHG
Numerically, when A = ¢ = 1 we have 1 GeV~ 2 x 107** c¢m, so the photon
density today is n, ~ 100 cm™® ~ 107" GeV~2. The Hubble constant is
Hy ~ 107*? GeV, and the Planck mass is Mp; ~ 10'® GeV, so we obtain

1

00(109 GeV?)
It is interesting to note that this final expression is independent of the mass
myx of our relic, and only depends on the annihilation cross-section; that’s
because more massive particles will have a lower relic abundance. Of course,
this depends on how we choose to characterize our theory; we may use vari-
ables in which o is a function of my, in which case it is reasonable to say
that the density parameter does depend on the mass.

One candidate for Cold Dark Matter (CDM) is a Weakly Interacting
Massive Particle (WIMP). The annihilation cross-section of these particles,
since they are weakly interacting, should be og ~ a2,GF, where ayy is the
weak coupling constant and G is the the Fermi constant. Using Gp ~

(300GeV)~2 and ay ~ 1072, we get
oo ~ aiyGp ~ 1077 GeV ™2 (3.124)

(3.122)

Qx ~ (3.123)

Thus, the density parameter in such particles would be
Qx ~1 (3.125)

In other words, a stable particle with a weak interaction cross section nat-
urally produces a relic density of order the critical density today, and so
provides a perfect candidate for cold dark matter. A paradigmatic example
is provided by the lightest supersymmetric partner (LSP), if it is stable and
supersymmetry is broken at the weak scale. Such a possibility is of great
interest to both particle physicists and cosmologists, since it may be possi-
ble to produce and detect such particles in colliders and to directly detect a
WIMP background in cryogenic detectors in underground laboratories; this
will be a major experimental effort over the next few years.

Baryogenesis

The symmetry between particles and antiparticles, firmly established in col-
lider physics, naturally leads to the question of why the observed universe is
composed almost entirely of matter and no primordial antimatter.
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If large domains of matter and antimatter exist, then annihilations would
take place at the interface between them. If the typical size of such a domain
was small enough, then the energy released by these annihilations would
result in a diffuse v-ray background and a distortion of the cosmic microwave
radiation, neither of which is observed.

While the above considerations put an experimental upper bound on the
amount of antimatter in the universe, strict quantitative estimates of the
relative abundances of baryonic matter and antimatter may also be obtained
from the standard cosmology. The baryon number density does not remain
constant during the evolution of the universe, instead scaling like a=3, where
a is the cosmological scale factor. It is therefore convenient to define the
baryon asymmetry of the universe in terms of the quantity

n=— (3.126)
s
where s is the entropy density and npg is the difference between the baryon
number density and the anti-baryon number density. The range of 1 consis-
tent with the observational data is

26x 107" <n<6.2x10"" (3.127)

Thus the natural question arises: As the universe cooled from early times to
today, what processes, both particle physics and cosmological, were respon-
sible for the generation of this very specific baryon asymmetry?

As pointed out by Sakharov, a small baryon asymmetry 7 may have been
produced in the early universe if three necessary conditions are satisfied

e Baryon number (B) violation

e Violation of C (charge conjugation symmetry) and CP (the combina-
tion of C and parity)

e departure from thermal equilibrium

The first condition should be clear since, starting from a baryon symmet-
ric universe with n = 0, baryon number violation must take place in order
to evolve into a universe in which 7 does not vanish. The second Sakharov
criterion is required because, if C' and C'P are exact symmetries, one can
prove that the total rate for any process which produces an excess of baryons
is equal to the rate of the complementary process which produces an ex-
cess of antibaryons and so no net baryon number can be created. That is
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to say that the thermal average of the baryon number operator B, which
is odd under both C' and C'P, is zero unless those discrete symmetries are
violated. C'P violation is present either if there are complex phases in the La-
grangian which cannot be reabsorbed by field redefinitions (explicit breaking)
or if some Higgs scalar field acquires a VEV which is not real (spontaneous
breaking). We will discuss this in detail shortly.

Finally, to explain the third criterion, one can calculate the equilibrium
average of B at a temperature 7' = 1/0:

(B)y = Tr(ePB)="Tr[(CPT)(CPT) e P B)]
= Tr(eP"(CPT)'B(CPT)] = -Tr (e "B) (3.128)

where we have used that the Hamiltonian H commutes with CPT. Thus
(B)r = 0 in equilibrium and there is no generation of net baryon number.

Of the three Sakharov conditions, baryon number violation and C' and
C'P violation may be investigated only within a given particle physics model,
while the third condition — the departure from thermal equilibrium — may be
discussed in a more general way, as we shall see. Let us discuss the Sakharov
criteria in more detail.

Baryon Number Violation

Grand Unified Theories (GUTs) [5] describe the fundamental interactions by
means of a unique gauge group G which contains the Standard Model (SM)
gauge group SU(3)c ® SU(2)L ® U(1)y. The fundamental idea of GUTs
is that at energies higher than a certain energy threshold Mgyt the group
symmetry is G and that, at lower energies, the symmetry is broken down to
the SM gauge symmetry, possibly through a chain of symmetry breakings.
The main motivation for this scenario is that, at least in supersymmetric
models, the (running) gauge couplings of the SM unify at the scale Mgyt ~
2 x 10% GeV, hinting at the presence of a GUT involving a higher symmetry
with a single gauge coupling.

Baryon number violation seems very natural in GUTs. Indeed, a general
property of these theories is that the same representation of G may contain
both quarks and leptons, and therefore it is possible for scalar and gauge
bosons to mediate gauge interactions among fermions having different baryon
number.

It is well-known that the most general renormalizable Lagrangian invari-
ant under the SM gauge group and containing only color singlet Higgs fields
is automatically invariant under global abelian symmetries which may be
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identified with the baryonic and leptonic symmetries. These, therefore, are
accidental symmetries and as a result it is not possible to violate B and L at
tree-level or at any order of perturbation theory. Nevertheless, in many cases
the perturbative expansion does not describe all the dynamics of the theory
and, indeed, in 1976 't Hooft realized that nonperturbative effects (instan-
tons) may give rise to processes which violate the combination B + L, but
not the orthogonal combination B — L. The probability of these processes
occurring today is exponentially suppressed and probably irrelevant. How-
ever, in more extreme situations — like the primordial universe at very high
temperatures — baryon and lepton number violating processes may be fast
enough to play a significant role in baryogenesis.

CP violation

C'P violation in GUTSs arises in loop-diagram corrections to baryon number
violating bosonic decays. Since it is necessary that the particles in the loop
also undergo B-violating decays, the relevant particles are the X, Y, and Hy
bosons in the case of SU(5).

In the electroweak theory things are somewhat different. Since only the
left-handed fermions are SU(2). gauge coupled, C' is maximally broken in
the SM. Moreover, C'P is known not to be an exact symmetry of the weak
interactions. This is seen experimentally in the neutral kaon system through
Ky, Ky mixing. Thus, C'P violation is a natural feature of the standard
electroweak model.

While this is encouraging for baryogenesis, it turns out that this partic-
ular source of C'P violation is not strong enough. The relevant effects are
parameterized by a dimensionless constant which is no larger than 1072,
This appears to be much too small to account for the observed BAU and,
thus far, attempts to utilize this source of CP violation for electroweak baryo-
genesis have been unsuccessful. In light of this, it is usual to extend the SM
in some fashion that increases the amount of C'P violation in the theory while
not leading to results that conflict with current experimental data. One con-
crete example of a well-motivated extension in the minimal supersymmetric

standard model (MSSM).

In some scenarios, such as GUT baryogenesis, the third Sakharov con-
dition is satisfied due to the presence of superheavy decaying particles in a
rapidly expanding universe. These generically fall under the name of out-of-
equilibrium decay mechanisms.

The underlying idea is fairly simple. If the decay rate I'x of the su-
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perheavy particles X at the time they become nonrelativistic (i.e. at the
temperature 7' ~ My) is much smaller than the expansion rate of the uni-
verse, then the X particles cannot decay on the time scale of the expansion
and so they remain as abundant as photons for T" < Mx. In other words,
at some temperature 7' > My, the superheavy particles X are so weakly
interacting that they cannot catch up with the expansion of the universe and
they decouple from the thermal bath while they are still relativistic, so that
ny ~ n, ~ T? at the time of decoupling.

Therefore, at temperature T' ~ My, they populate the universe with an
abundance which is much larger than the equilibrium one. This overabun-
dance is precisely the departure from thermal equilibrium needed to produce
a final nonvanishing baryon asymmetry when the heavy states X undergo B
and C'P violating decays.

The out-of-equilibrium condition requires very heavy states: My > (10'°
—10'%) GeV and Mx 2 (109 — 10'%) GeV, for gauge and scalar bosons,
respectively, if these heavy particles decay through renormalizable operators.

Since the linear combination B — L is left unchanged by sphaleron tran-
sitions, the baryon asymmetry may be generated from a lepton asymmetry.
Indeed, sphaleron transition will reprocess any lepton asymmetry and con-
vert (a fraction of) it into baryon number. This is because B + L must be
vanishing and the final baryon asymmetry results to be B ~ —L.

In the SM as well as in its unified extension based on the group SU(5),
B — L is conserved and no asymmetry in B — L can be generated. However,
adding right-handed Majorana neutrinos to the SM breaks B — L and the
primordial lepton asymmetry may be generated by the out-of-equilibrium
decay of heavy right-handed Majorana neutrinos N¢ (in the supersymmetric
version, heavy scalar neutrino decays are also relevant for leptogenesis). This
simple extension of the SM can be embedded into GUTs with gauge groups
containing SO(10). Heavy right-handed Majorana neutrinos can also explain
the smallness of the light neutrino masses via the see-saw mechanism.

3.2.3 Inflation

So far we have described what is known as the standard cosmology. This
framework is a towering achievement, describing to great accuracy the phys-
ical processes leading to the present day universe. However, there remain
outstanding issues in cosmology. Many of these come under the heading of
initial condition problems and require a more complete description of the
sources of energy density in the universe. The most severe of these problems
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Fixed Point | 1+ 3w >0 | 143w <0
Q=0 attractor repeller
Q=1 repeller attractor
Q)= attractor repeller

Table 3.4: Behavior of the density parameter near fixed points.

eventually led to a radical new picture of the physics of the early universe -
cosmological inflation, which is the subject of this subsection.

We will begin by describing some of the problems of the standard cos-
mology.

The Flatness Problem

The Friedmann equation may be written as
k
H2a?
where for brevity we are now writing €2 instead of (). Differentiating this
with respect to the scale factor, this implies
ds Q2 -1)
— =1+ 3w)—
da ( ) a
This equation is easily solved, but its most general properties are all that
we shall need and they are qualitatively different depending on the sign of

14 3w. There are three fixed points of this differential equation, as given in
Table 3.4.

Observationally we know that 2 ~ 1 today — i.e. we are very close to
the repeller of this differential equation for a universe dominated by ordinary
matter and radiation (w > —1/3). Even if we only took account of the lu-
minous matter in the universe, we would clearly live in a universe that was
far from the attractor points of the equation. It is already quite puzzling
that the universe has not reached one of its attractor points, given that the
universe has evolved for such a long time. However, we may be more quan-
titative about this. If the only matter in the universe is radiation and dust,
then in order to have € in the range observed today requires (conservatively)

0<1-0<107% (3.131)

Q-1=

(3.129)

(3.130)

This remarkable degree of fine tuning is the flatness problem. Within the
context of the standard cosmology there is no known explanation of this
fine-tuning.
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The Horizon Problem

The horizon problem stems from the existence of particle horizons in FRW
cosmologies, as discussed in a previous subsection. Horizons exist because
there is only a finite amount of time since the Big Bang singularity, and thus
only a finite distance that photons can travel within the age of the universe.
Consider a photon moving along a radial trajectory in a flat universe (the
generalization to non-flat universes is straightforward). In a flat universe, we
can normalize the scale factor to

ap =1 (3.132)
without loss of generality. A radial null path obeys
0 = ds* = —dt* + a*dr? (3.133)

so the comoving (coordinate) distance traveled by such a photon between

times ¢; and ¢t is
2o dt
Ar = / — (3.134)
t1 CL(t)
To get the physical distance as it would be measured by an observer at any
time ¢, simply multiply by a(t). For simplicity let’s imagine we are in a
matter-dominated universe, for which

£\ /3

a= (—) (3.135)
to

The Hubble parameter is therefore given by

2
H = Zt!
3

= a%%H, (3.136)
Then the photon travels a comoving distance

Ar = 2H; " (Vaz — /ay) (3.137)

The comoving horizon size when a = a, is the distance a photon travels since
the Big Bang,

hor(ax) = 2Hy ' /a, (3.138)

The physical horizon size, as measured on the spatial hypersurface at a,, is
therefore simply
dhor(a4) = aurnor(ay) = 2H, ! (3.139)
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Indeed, for any nearly-flat universe containing a mixture of matter and radi-
ation, at any one epoch we will have

dpor(ay) ~ H, ! (3.140)

where H_ ! is the Hubble distance at that particular epoch. This approximate
equality leads to a strong temptation to use the terms “horizon distance” and
“Hubble distance” interchangeably; this temptation should be resisted, since
inflation can render the former much larger than the latter, as we will soon
demonstrate.

The horizon problem is simply the fact that the CMB is isotropic to
a high degree of precision, even though widely separated points on the last
scattering surface are completely outside each others’ horizons. When we look
at the CMB we were observing the universe at a scale factor acyp ~ 1/1200;
meanwhile, the comoving distance between a point on the CMB and an
observer on Earth is

A?” = 2H0_1 (1 — \/aCMB)
~ 2H;! (3.141)

However, the comoving horizon distance for such a point is

Mor(acns) = 2Hy'\/acus
~ 6x1072H;* (3.142)

Hence, if we observe two widely-separated parts of the CMB, they will have
non-overlapping horizons; distinct patches of the CMB sky were causally
disconnected at recombination. Nevertheless, they are observed to be at the
same temperature to high precision. The question then is, how did they know
ahead of time to coordinate their evolution in the right way, even though they
were never in causal contact? We must somehow modify the causal structure
of the conventional FRW cosmology.

Unwanted Relics

We have already talked about grand unified theories (GUTSs). If grand uni-
fication occurs with a simple gauge group G, any spontaneous breaking of
G satisfies my(G/H) = m(H) for any simple subgroup H. In particular,
breaking down to the standard model will lead to magnetic monopoles [6],
since

mo(G/H) = 7 ([SU(3) x SU(2) x U(1)]/Z¢) = 2 (3.143)
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(The gauge group of the standard model is, strictly speaking, [SU(3) X
SU(2) x U(1)]/2s. The Z4 factor only affects the global structure of the
group and not the Lie algebra, and thus is usually ignored by particle physi-
cists.)

Using the Kibble mechanism, the expected relic abundance of monopoles
works out to be

T 3 m
11 GUT mono
o mono ~ 10 (1014 GeV) (1016 Gev> (3.144)

This is far too big; the monopole abundance in GUTs is a serious problem
for cosmology if GUTs have anything to do with reality.

In addition to monopoles, there may be other model-dependent relics
predicted by our favorite theory. If these are incompatible with current
limits, it is necessary to find some way to dilute their density in the early
universe.

The General Idea of Inflation

The horizon problem especially is an extremely serious problem for the stan-
dard cosmology because at its heart is simply causality. Any solution to this
problem is therefore almost certain to require an important modification to
how information can propagate in the early universe. Cosmological inflation
is such a mechanism.

Before getting into the details of inflation we will just sketch the general
idea here. The fundamental idea is that the universe undergoes a period of
accelerated expansion, defined as a period when a > 0, at early times. The
effect of this acceleration is to quickly expand a small region of space to a
huge size, diminishing spatial curvature in the process, making the universe
extremely close to flat. In addition, the horizon size is greatly increased,
so that distant points on the CMB actually are in causal contact and un-
wanted relics are tremendously diluted, solving the monopole problem. As
an unexpected bonus, quantum fluctuations make it impossible for inflation
to smooth out the universe with perfect precision, so there is a spectrum of
remnant density perturbations; this spectrum turns out to be approximately
scale-free, in good agreement with observations of our current universe.

Slowly-Rolling Scalar Fields

If inflation is to solve the problems of the standard cosmology, then it must be
active at extremely early times. Thus, we would like to address the earliest

50



3.2. The Standard Model of Cosmology, the early Universe and inflation

times in the universe amenable to a classical description. We expect this
to be at or around the Planck time tp and since Planckian quantities arise
often in inflation we will retain values of the Planck mass in the equations
of this section. There are many models of inflation, but because of time
constraints we will concentrate almost exclusively on the chaotic inflation

model of Linde. We have borrowed heavily in places here from the excellent
text of Liddle and Lyth.

Consider modeling matter in the early universe by a real scalar field ¢,
with potential V(¢). The energy-momentum tensor for ¢ is

L8 (V o) (V56) + V(0) (3.145)

Ty = (V,68) (V) ~ 9 |5

For simplicity we will specialize to the homogeneous case, in which all quan-
tities depend only on cosmological time t and set k = 0. A homogeneous real
scalar field behaves as a perfect fluid with

po = FHHV) (3.146)
pe = 38— V(9) (3.147)

The equation of motion for the scalar field is given by

¢ av

3— =0 3.148
¢+ cb i (3.148)
which can be thought of as the usual equation of motion for a scalar field
in Minkowski space, but with a friction term due to the expansion of the
universe. The Friedmann equation with such a field as the sole energy source

is
8t

3

H? = { ¢ V(gb)} (3.149)

A very specific way in which accelerated expansion can occur is if the uni-
verse is dominated by an energy component that approximates a cosmological
constant. In that case the associated expansion rate will be exponential, as
we have already seen. Scalar fields can accomplish this in an interesting way.
From (3.146) it is clear that if ¢? < V(¢) then the potential energy of the
scalar field is the dominant contribution to both the energy density and the
pressure, and the resulting equation of state is p ~ —p, approximately that of
a cosmological constant. the resulting expansion is certainly accelerating. In
a loose sense, this negligible kinetic energy is equivalent to the fields slowly
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rolling down its potential; an approximation which we will now make more
formal.

Technically, the slow-roll approximation for inflation involves neglecting
the gb term in (3.148) and neglecting the kinetic energy of ¢ compared to
the potential energy. The scalar field equation of motion and the Friedmann
equation then become

V(o)
0~ = (3.150)
H? ~ ?V@) (3.151)

where a prime denotes a derivative with respect to ¢.

These conditions will hold if the two slow-roll conditions are satisfied.
These are

le] <« 1
n| < 1 (3.152)

where the slow-roll parameters are given by

M2 1\ 2
€= T’* (%) (3.153)
and .
1%
n= ME,IV (3.154)

It is easy to see that the slow roll conditions yield inflation. Recall that
inflation is defined by d/a > 0. We can write

g+ m (3.155)
a
so that inflation occurs if '
H
el > —1 (3.156)
But in slow-roll ‘
H
T2 ~ —¢ (3.157)

which will be small. Smallness of the other parameter 7 helps to ensure that
inflation will continue for a sufficient period.
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It is useful to have a general expression to describe how much inflation
occurs, once it has begun. This is typically quantified by the number of
e-folds, defined by

N(t)=1In (ag(t)d)> (3.158)

Usually we are interested in how many efolds occur between a given field value
¢ and the field value at the end of inflation ¢enq, defined by €(genq) = 1. We
also would like to express N in terms of the potential. Fortunately this is
simple to do via

a/<tel’1d) tend 1 /¢end V
N(t) =1 = Hdt ~ — — d 3.159
o=n("e) - g, v B

The issue of initial conditions for inflation is one that is quite subtle and
we will not get into a discussion of that here. Instead we will remain focused
on chaotic inflation, in which we assume that the early universe emerges from
the Planck epoch with the scalar field taking different values in different parts
of the universe, with typically Planckian energies. There will then be some
probability for inflation to begin in some places, and we shall focus on those.

Vacuum Fluctuations and Perturbations

Recall that the structures - clusters and superclusters of galaxies - we see on
the largest scales in the universe today, and hence the observed fluctuations
in the CMB, form from the gravitational instability of initial perturbations
in the matter density. The origin of these initial fluctuations is an important
question of modern cosmology.

Inflation provides us with a fascinating solution to this problem - in
a nutshell, quantum fluctuations in the inflaton field during the inflationary
epoch are stretched by inflation and ultimately become classical fluctuations.
Let’s sketch how this works.

Since inflation dilutes away all matter fields, soon after its onset the uni-
verse is in a pure vacuum state. If we simplify to the case of exponential
inflation, this vacuum state is described by the Gibbons-Hawking tempera-

ture

o _H _VV
GH = 2T o Mp1
where we have used the Friedmann equation. Because of this temperature,
the inflaton experiences fluctuations that are the same for each wavelength

(3.160)
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0¢r = Tau. Now, these fluctuations can be related to those in the density by

Sp = %w (3.161)

Inflation therefore produces density perturbations on every scale. The
amplitude of the perturbations is nearly equal at each wavenumber, but there
will be slight deviations due to the gradual change in V' as the inflaton rolls.
We can characterize the fluctuations in terms of their spectrum Ag(k), related
to the potential via

2 Ve
As(k) ~ ———— 3.162
RO .
where k& = aH indicates that the quantity V?/(V')? is to be evaluated at
the moment when the physical scale of the perturbation A = a/k is equal
to the Hubble radius H~'. Note that the actual normalization of (3.162) is

convention-dependent, and should drop out of any physical answer.

The spectrum is given the subscript “S” because it describes scalar fluc-
tuations in the metric. These are tied to the energy-momentum distribution,
and the density fluctuations produced by inflation are adiabatic — fluctua-
tions in the density of all species are correlated. The fluctuations are also
Gaussian, in the sense that the phases of the Fourier mo