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Chapter 1

Introduction

In this thesis our study on extra dimensions refers to gravitational defects
(p-branes) embedded in a higher dimensional bulk. The crucial point in our
approach is that the system brane/bulk is considered to be dynamical (the
opposite of probe), i.e. we take into account the back reaction of the brane to
the bulk and the dynamical variables are the bulk metric g,, and the embed-
ding fields x*. We will particularly focus on codimension-2 defects with the
assumption of a conical singularity on the 3-brane.

This is an interesting theoretical setting on its own, but it has also been mo-
tivated by modern theories (strings, supergravity), where our 4-dimensional
world is assumed to reside in 10 or 11 dimensions and we would like to derive
p-brane solutions beyond the probe limit.

Especially the codimension-1 case (hypersurfaces) in the context of gravity is
well-known and has been studied since Israel [1]. The matching conditions of

this case are
Kab - Khab = 87TGTab, (11)

where K, is the extrinsic curvature and h,, the induced metric on the brane;
they are derived by focusing on the parallel components of the bulk Einstein
equations at the position of the brane and isolating the distributional terms
with the singular structure §(y) (y the extra dimension). For a review on
codimension-1 braneworlds see [2].

This is similar to what happens in mathematics in general when we have delta
function sources in the equations and for example in electromagnetism we



obtain the junction conditions in terms of the surface sources

and
[BL]:Bj—Blzo , [BH]:BW—BN:@Tan. (1.3)

On the contrary, the treatment of a codimension-2 defect is quite different and
the situation becomes even more complicated for higher codimensions. There-
fore, our starting point will be the understanding of the codimension-2 case
with the hope that even higher codimensions could be examined accordingly
in the future.

Furthermore, six dimensional gravity or supergravity has been recently [3], [4]
proposed to offer a mechanism for understanding the smallness of the vacuum
energy. In this scenario, a codimension-2 object induces a conical singularity,
and the cancellation occurring between the brane tension and the bulk grav-
itational degrees of freedom gives rise to a vanishing effective cosmological
constant. To see this, we write the higher dimensional Einstein equations

1
RV, = SR} = Ky T", (1.4)

with a localized energy-momentum tensor (brane tension)

T = -8 0
[ — b
T”_( 0 Taﬁ:())'

Then, the parallel ab and normal af components of the equations take the
form respectively

D—-3—-p

1
T I Ry = AT 50 (1)

a 2

and for D = 6,p = 3 we get R%, = 0 independently of the value of brane
tension A. So, a Minkowski solution naturally arises for the universe, con-
trary to the case of codimension-1 [5], where a Minkowski solution arises with
the cost of a fine-tuning between the brane tension and the bulk cosmological
constant. Of course, the universe finally has a small effective cosmological con-
stant which is not exactly zero (small de Sitter expansion) whose explanation
was suggested [6] that would be facilitated by the quantum corrections within
the context of 6-dimensional supergravity.



However, codimension-2 gravitational defects in Einstein-Hilbert gravity were
found to be inconsistent in general [7] and the reason is based on the new form
of singularities @ appeared (wilder than d(y)). Although the generic analysis
is quite complicated, however this can be easily understood in the case of an

axially symmetric defect where the bulk metric takes the form
dsi = dr* + L*(x,7)d0* 4 hey(x, r)d2x"dx® . (1.6)

The function L(z,r) is expanded as L(z,r) = Bi(z)r + O(r?) where 3 (z) < 1
is the deficit angle of the conical singularity necessary to balance the distri-
butional source. So, L'(z,0") = fi(z) and assuming L'(x,0) = 1 we have
the discontinuity L'(z,07) — L'(z,0) = 81 — 1, thus L"(z) = (81(x) — 1)4(r).
Now, the parallel components of the higher-dimensional Einstein tensor is of

the form G, = %gab + ... where all the dotted terms are regular. There-
fore, the Einstein equation Gy, = /ﬁng b er(gl)r leads to the matching condition

T = i—g(ﬁl —1)gap, which means that in Einstein gravity only a brane tension
is compGatible. Indeed, this is the case for example of the special solution of
the cosmic string in four dimensions (1-brane) [8], where the tension of the
string exactly adjusts the deficit angle of the cone A\ = i—g(l — p1).

Since then, the problem has remained unsolved. Several efforts have been
made to show the mathematical reasons for this inconsistency, alternative for-
mulations for handling the distributions have also been proposed, or other
approaches either modify the equations of motion for the defect, or consider
thick defects (where a cut-off is introduced that makes the problem consistent
but scheme-dependent), or study the original problem perturbatively (rela-
tively successfully).

It was not until 2004 when it was suggested [9] that the problem of inconsis-
tency might not be the pathology of codimension-2 itself but the simplicity of
the Einstein-Hilbert Langrangian density. So, the higher-order six-dimensional
Gauss-Bonnet term was added in the action. This term

R? — AR W R™ + Rouwma RM™, (1.7)

which makes sense only for D > 4 (for D = 4 it is a topological invariant [10])
contains particular quadratic combinations of the Riemann tensor in such a
way that it contributes to the equations of motion only through second deriva-
tives of the metric. Moreover, this term has been shown to have a well-defined
perturbation operator around flat background and is free of ghosts [11] (also
[12]). As far as the extensions of the Gauss-Bonnet term are concerned, the



number of independent 2-rank tensors which are symmetric and divergence
free depend crucially from the number of dimensions and these tensors are
known as Lovelock terms [13]. The corresponding terms in the action which
give these terms are the Fuler densities. So, for D = 4 one includes in the
action the zeroth density £, (cosmological constant) and the first density £,
(Einstein-Hilbert term). For D = 5,6 also £9 (Gauss-Bonnet term) becomes
non-trivial, for D = 7,8 the third density £3 (cubic in curvature) is also in-
cluded, e.t.c. Of course, if arbitrary combinations of the higher curvature
terms were added, the equations would contain higher than second derivatives
which is complicated, unnatural and probably pathological.

Some effort was made towards this direction in [14], [15], [16], [17]. The
problem turns out to be very complicated because beyond the matching con-
ditions all the other equations have to be derived and their compatibility to
be checked at the brane location. For the case of cosmology with an axi-
ally symmetric defect the consistency was indeed checked in [18]. A variety
of cosmologies were derived on the brane with the freedom of one arbitrary
function of time, reflecting to the choice of boundary/asymptotic conditions.
This non-uniqueness does not imply any sort of deficiency of the theory, but
it expresses the fact that from the viewpoint of the brane observer the system
of the effective equations is consistent but not closed. This feature is quali-
tatively similar to what happens in codimension-1 cosmology [19], where one
arbitrary integration constant appears.

In this thesis we adopt a different philosophy to obtain the matching con-
ditions. Contrary to the above conventional way of obtaining the matching
conditions by varying the action with respect to the metric (equivalent to
isolating the distributional terms in the equations), we here consider the vari-
ation with respect to the embedding fields (brane position coordinates) z*,
but in such a way that the brane is dynamical and back-reacts to the bulk.
The same style of variation was performed for Einstein gravity in [20], where
new matching conditions were found along with a consistent but rather trivial
cosmology. Of course, in the probe limit the matching conditions reduced to
the Nambu-Goto equation of motion. Reminiscent of this process for Einstein
gravity has appeared for codimension-1 in [21], where relaxed Israel matching
conditions were obtained.

In the following, we consider Einstein-Gauss-Bonnet theory in six dimensions
where the embeddibility of the brane will be determined by this sort of non-
conventional equations of motion for the defect. We will derive the coupled



system of equations at the brane position and investigate if the cosmological
ansatz is mathematically consistent. It will be interesting to investigate under
which condition, if any, the arising cosmology is unique.



Chapter 2

Submanifolds in spacetime

Consider a D-dimensional manifold M which is considered to be the space-
time bulk and a (p + 1)-dimensional manifold ¥ with p + 1 < D, equipped
with a map ¢ : ¥ — M, which is C* and one-to-one, and its inverse
¢! §[X] — ¥ which is also C*°. Then, the image ¢[X] is said to be
an embedded submanifold (surface) of M of codimension D —p—1=N. In
this thesis, our main interest is for D = 6, p = 3 and therefore the submanifold
¢[X] has codimension 2. Geometrical aspects of higher-codimensional surfaces
can be found in [22].

In order to choose a unique connection for the manifold M, we assume metric
compatibility
\V4 Ay = 0 (2.1)

and torsion-free condition

A A A A TA
Th =20, —C) =0&T), =T (2.2)

[vu

in a coordinate basis where C’;}V = 0 (see appendix). The above properties

reflect to the submanifold ¢[X]. The general choice for the signature of the

metric g, is (¢,...,&,+1,...,+1) with ¢ = £1, representing the inner product
—_— ————

N p+1
in the space of vector fields

g(u,v) = g(u"0,,v"0,) = u'v"g(0,, 0,) = wW'v” g = u'v, (2.3)

where {0, = 8%} is a coordinate basis and u*,v" are the vector fields’ com-
ponents (u,v =0,1,...,D —1).



The inverse metric is ¢"” and indices pu,v,... are raised (lowered) with g"”

(9,) Tespectively.
The dual space of 1-form (covectors) is defined by the basis of differentials
{dz"} with dz*(0,) = o\

For ¢ coordinates on ®[X] with ¢ = 0,1,...,p, we can define p + 1 tangent
vectors as P

~ 9o

and therefore, the tangent vectors’ components are

t;

= x"ﬂﬁu (24)

tiH = [ENVZ' . (25)

We can also choose an arbitrary (non-coordinate) basis { E4} = {€4, 1o}, where
{e,} are parallel vectors to the surface with a = 0,1,...,p and {n,} are normal
vectors with o = 1,...,N. These are expressed in terms of the coordinate
basis {0, } as

eq = €,"'0, N = no" 0y , (2.6)

where e, and n," are the vectors’ components respectively.
The metric g can be expressed in terms of the arbitrary parallel vectors as

Gab = 9(€a, ) = gueaer” = e ey, (2.7)

in terms of the tangent {t;} vectors as
9ij = 9(ti, 1) = gua” ;" 5 (2.8)

and in terms of the normal vectors as

Jap = g(non n,@) = guunaunﬁy = naunﬁu . (29)

Indices a,b,..., a,f5,... and i, j,... are lowered with gu, gog and g;; respec-
tively.
The inverse metrics are denoted by g%, ¢*? and ¢ and indices a, b, ..., a, 3, . ..
and ¢, 7, ... are raised by them respectively. Obviously, e? ;" = 6%, n", ng" =
0%s, e.'n*, = 0. Moreover, the following equation of decomposition of iden-
tity is valid 0¥ = e *e®, + nan®,. The inverse metrics can be expressed in
the form

g" = g"e b, (2.10)



and
g*% =nnf, . (2.11)

We can also express the coordinate basis {0, } in terms of the arbitrary parallel
and normal vectors as
Oy = eyeq +n%ng . (2.12)

The map ¢:¥ — M that embeds the submanifold ¢[X] to the manifold M
allows us to pull back the metric from M to ¥ and define the induced metric
h = ¢*g as

huw = Gu — Napn™y (2.13)

from which we obtain that

The fully contravariant and mixed forms of the induced metric are
M = g —nyn™ | h*, =08 —nytn”, . (2.15)
The latter is a projection operator since
h*,h" . = h*, | (2.16)
which can be easily seen from (0% — n,#n®,)(6¥ — ng’nP,) = 6* — nghn®, —
nyt'n®, + ngunﬁﬁ = ht,.
Obviously, from the above decomposition of identity, the induced metric is

also written as
hyw = gabe“#eby, (2.17)

while its components in terms of the arbitrary parallel basis are

hay = h(eq, ) = hpved'es” = gap - (2.18)
Accordingly, the contravariant and mixed components are written as

W = g%e e, h*, = e el . (2.19)
In terms of the embedding fields x* the induced metric h takes a similar form

Y = gzt (2.20)

The metric remaining to be defined is that of the normal space to ¢[¥] as

My = Guv — h,uzl (221)



with corresponding contravariant and mixed forms

mt = g" — h" | mt, =08 — hl . (2.22)
The tensor m#, is also a projection operator
mt,m”y = m#y , (2.23)

since (0% — W) (05 — h¥y) = 6§ — 2h#y 4+ h# h"\ = 05 — 2h* 5 + hHy = mH).
The components of the “normal” metric in terms of the normal basis takes the
form

My = gaﬁnaunﬁy = Naun™y (2.24)

and similarly
mt = nn , mt, =nn%, . (2.25)

Of course, the inner product between the parallel and the normal metric is
Z€ro
hm?, = mt R, =0 . (2.26)

To conclude, the induced metric h acts as a projector for parallel vectors and
annihilates the normal vectors, while the normal metric m annihilates the
parallel vectors and acts as a projector for the tangent ones.

If we denote the Christoffel connection of g as 7 or ; and the Christoffel
connection of h as 57 or |, then in the basis {e,, n,} we have

Va b =V pale — K aNa = Yeba€” — Kaapn™ (2.27)
Va Na = walen + wﬁaanﬁ = K,mwe’ + wﬂaanﬂ , (2.28)

where
Yeba = g(Vaeba ec) = €y Va eb'u (229)

are the surface connection coefficients,

Ka‘lb - g(vanoﬂ eb) = € Va na,u = _g(Vaeby na) = "Nau Va €b'u = Daba
(2.30)

are the extrinsic curvature coeflicients and

Whaa = Q(Vanaa nﬁ) =Ngu Va nau (231)

is the normal fundamental form or extrinsic twist potential of the surface. In
the above notation /.6, = (Vaep)* and Vonot = (Vana)”. Of course, the



above relations are valid for a coordinate basis as well, i.e. for (a,b) — (i, 7).
Then, it holds that
Kaab = no‘a;b = —€aa;b (232)

since Koay = —9(Vath, Na) = —g(ebﬁ;ang + €°4€c;Ma) = —€pase and also

Kaab = g(Vanom eb) = g(nac;aec + naﬁ;anb’a eb) = Nab;a-
For a discussion on the reduction of the formalism to the codimension-1 case
see appendix.

If T4, (A = a,a) are the connection coefficients of 7 in the basis E4 =

{€q;na}, 1€
VaEp=TG,Ec, (2.33)

then
1—‘Cba = ’chaa I_‘oazb = _Faab = _Kaaba Fﬁaa = wﬁaa ) (234)

since Vaey = e Ea = [pee + T%ang and Vong = T4 Eq = T8 e, + T2 ng.
We also obtain

(e} vV O
K% = el'ey’n,., (2.35)
since n®,, = no‘“,y—lﬂwno‘,\ = na#,,,—(EA’\EB#ECVFABC—FEAVEB)‘EBH’A)n“,\
= n%,, — EBMEC,,FO‘BC — EAVnO‘MVA = n%,, — ecued,,lmcd —efn, Iy —

nﬂuecyf‘aﬁc — rzﬁurfyyf‘a[%Y —eSn e — nﬂyno‘uﬁ.
Another useful expression is the following

K% = —n"A(e ) + Thwede”) = —ns(e 'y + Twede”)  (2.36)

where f, = e,*f,, and it is shown by using (2.35) and the orthogonality of
e, nat.

Finally, the extrinsic curvature components can also be expressed in terms of
the expansion tensor (one such tensor for the congruence of integral curves of
any vector field n,)

0% = b0 (o) = B %y = ©°,, (2.37)

as
Kaab = @O‘Wea“eb” . (238)

Note that the symmetry of the i, v indices in ©%,, and of the a,b indices in
K, is due to that ¢[X] is a submanifold (surface). Formally, this is so, because

10



the so-called rotation tensor of the n, lines defined as w®,, = h”uhAyna[,{;A]
vanishes since the vectors normal to {n,} form an integrable subbundle.
The expansion tensor is a “parallel” tensor in the sense that

0%, = 0% uh" Y, (2.39)

or equivalently
0%,.ng" =0. (2.40)

We also have ©% e,/ = K €b,,.
If additionally the vectors n, are surface forming, ©%,, takes the form

@aij = Kaij = nam s @a/gi = @ai/g = @aﬁ’y = O y (241)
and moreover K%;; becomes
K% = Kaabeaiebj = —nO‘A(x)‘;ij + F)‘Wx’“‘ﬂ:”,j) ) (2.42)
Another useful relation concerns the contraction
g K% = —n®\(Opz* + T, 0", (2.43)

which is derived by using (2.20), (2.42) and that O, = kB (E,Ez—~° spFEc) =
hAB(EAEB — FgBhDCED) = g”(@zﬁj — Fk”ak> = Dgij.
We also have

na“Kaij = —(IL'“;Z‘]‘ + F“)\VZL‘A’Z‘IVJ) . (244)

This is easily seen by using the following identity of the appendix
hyu(fﬁu;ij + FM)\HZL'AJQZ'H,]') = O, (245)

which means that the vector (with respect to the index u) z#.;; + THya ;2"
is normal to the surface.
Another useful identity is

nt'gi K = —(Opat + THy, b)), (2.46)
which is found by using the previous equation for ¢ K*;; and the equation
h*, (Opx? + TV b)) = 0.

Therefore, we have

gVK®; =0 < Opa" +T",hY =0, (2.47)

11



which shows the equivalence between the definition of the minimal surface and
of the Nambu-Goto equation of motion.

Additional assumptions of orthonormalization of {n,},{e,} would imply ad-
ditional symmetry conditions @wgaq = —WagBa, Yoac = —Yabe TeSpectively.

If we make a local rotation of the normal frame
n, = (07 ng, n'*=0%n" (2.48)

then
Y Cba = ,ycba ) K Oéab - OaﬁKﬁab N (249)

i.e. the extrinsic curvature coefficients transform homogeneously. On the
contrary, the twist coefficient transforms as a connection (inhomogeneously)

wlﬁaa = OﬁW(Oil)aaw’yéa + OBW(Oil)WQ,a . (250)
With respect to this connection, the corresponding curvature
Sz50«7Lb = wﬁab,a - wﬁaa,b + w’yabwﬂva - w’yaawﬁ'yb - Ccabwﬁac (251)
transforms homogeneously
QP oy = O° (071’ V54 (2.52)
For fields @ transforming as tensors under normal frame rotations
« «a —1\0
5 =007 ,97, (2.53)

we can define a new worldsheet covariant derivative ! with respect to @w®s, as

B = PG, + wam@g — @3, 9P7

(2.54)

where | differentiation is meant on tangential indices a, b, . .. that ¢ may pos-
sess.

The parallel and normal components of the metric tensor are seen to be co-
variantly flat with respect to ! differentiation

Gable = Japie =0, (2.55)
since Gable = gab\c =0 and JapBle = gamc_w’yﬁcg’ya_w’yacgﬁ’y = goéﬂ,c_]jwﬁcg’ya_

F’yacgﬁ’y = 9Ba,c — FA,Bcha - FAozcgﬁA = Gap;c = 0.

12



If R¥,.x and RM,,\ are the curvature tensors of g, and h,, respectively, then
the following geometric relations hold:
Gauss-Codazzi

Raved = Rapea + K aalape — K acKapa (2.56)
Codazzi-Mainardi
Raabc = Kaab!c - Kaac!b ) (257)
Ricci
Rﬁaab = Qﬁaab + KaacKﬁbc - KabCKBac . (258)

These can be derived by computing the commutators [/, /s|e. and [V a, Vb a-
Of course, as usually, indices flip from coordinate to tangent/normal by mul-
tiplying with the appropriate vierbein

vV, K, A vV, K, A
Rabcd - Ruwﬁ)\eaueb €c €d 7?’ozabc = Ruufi)\nauea €y €,
vV, Kk, A
Rgaab = Ruvangh'neeq ey . (2.59)

For codimension-1, the normal distribution is trivial and the Ricci identity
reduces to a tautology.

13



Chapter 3

Brane action with
Gauss-Bonnet in the bulk

We consider the total brane-bulk action
S = Sgr + Smat + Sc

— 2%% /M or/ZIgI{ R = 206 + acp (Ryum R — 4R, R + R?) |

2

+/d4x\/—]hl( "e R—)\)+/ deL'mat—l-/dA‘meat
2 M s

2
2Kg

n / d4x\/—|h|{)\” (i — G 2") + X nga’ + A (gumlints — 5a5)} (3.1)
by

where g, (u,v =1,...,6) is the bulk metric tensor h,, is the induced metric
on the brane R and R are the bulk and brane Ricci scalars, A is the brane
tension and r. is the induced gravity crossover length scale and L, , Limat
are the matter Langrangians of the bulk and of the brane respectively. It is
convenient to consider n,* (o = 1,2) arbitrary unit normal vectors normal to
the brane and to each other (of course, in the next chapter where we consider
the axially symmetric ansatz for the bulk metric g they are surface forming).
The relation of h;; (4,5 =1,...,4) to g,, and the orthonormality of n,* imply
the following constraints

hij = g ;x” (3.2)

guunaunb’y = 504,8 (33)

14



Napt™ i = 0. (3.4)

It is obvious that the independent variables for the bulk/brane system are the
bulk metric g,,, and the embedding fields z#. Then, the induced metric and the
normal space are uniquely determined. Besides, the variation dg,, of the bulk
metric g,, away from the brane which is clear and gives the bulk equations
of motion, in our consideration the interaction of the brane with the bulk is
obtained by varying the action with respect to dx* and therefore at the brane
position the variation

59W - _£5rgm/ = _(g,uu,)\(sx)\ + guk&r)\,u + gz/)\(sx)\,,u) . (35)

Furthermore, the variation dh;;, 0n,* at the brane location could also be ex-
pressed in terms of dxz*. However, we find it more convenient to vary h;; and
ne* independently by including corresponding Langrange multipliers A%, \%¢,
%% and this is the meaning of the third line in the above action. Henceforth,
we will vary this action with respect to n,*, h;; and g,,, the last one both at
the brane location and in the bulk. To proceed with these variations at the
brane location we will specialize in the next chapter on the axially symmetric
case for which we will derive explicitly the equations of motion for the brane
where the impact from the bulk dynamics (back-reaction) will become mani-
fest.

Variation with respect to the induced metric h;; gives

1 y 2
5,8 = /Ed4x\/_|hy{)\” + Q(T” — ARV — T—CG”}éhzj. (3.6)

2
2Kg

Variation with respect to ng, gives

0p,S = / d*z/ —‘h|{)\ai£€#,i + 2>\°‘5n5”}5nw- (37)
P

Using the standard relations:

Ry = (0T ) — (0T, )i (3.8)
Ry = (0T )ix — (6T e (3.9)
0% = 501 Ggma + (G ) — (Gg)) (310)
5Tl = 5/ ol 50 (3.11)

15



variation with respect to the metric g, gives

1 1 1
0g5= 952 /d% V _|9’{ — G — Ng™ + acplg” (=R + —73“1,%,\73’“"‘””A
Ke J M 2 2

— 2R, R™) — 2RR™ — 2RPPRT oy + ARPTER e + ARTRE)] }5gm

1 1
+ = de\/—]g]—TTp(Sng
R, M 2

6

1
+ 5.2 d®x+/—|g| {297[”9’\]”((59%);)\7 + 4dacp (RT’)”’\ + QRPN — oRTIE A
Ke Jm

+R97[”9A]p) (0gpre)ixr }-%i”‘x\/—!h!{/\aﬁna“nﬁ” - /\ijl’“,ix”;b}@uu- (3.12)
P

The first three lines of (3.12) give the well known bulk Einstein-Gauss-Bonnet
equations of motion

Gror — S (Ropge R — AR R™ 4 R2) g + 2065 (RRyuy — 2Ry Ry
_2R#V){)\RH)\ + R,U,K)\O'RZIK)\U) — K%T#l/ _ Aﬁg“l’, (313)

where we are mainly interested (chapter 6) in a bulk with a pure cosmological
constant but for the moment we leave 7#” non-vanishing.
The tricky point however is how to handle the contribution on the brane from
the various 6-dimensional terms in (3.12) and this will be done by focusing
from now on to the axially symmetric case. As we will see, not all variations
(3.6), (3.7), (3.12) are independent since contributions from (3.12) will modify
the variation (3.6).

16



Chapter 4

Axial symmetry

For simplicity, we assume the axially symmetric bulk ansatz
dsg = dr® + L*(x,r)d0 + hy(x, r)dx'dz? (4.1)

where h;j(x,0) is the braneworld metric which is assumed to be regular ev-
erywhere with the possible exception of isolated singular points and 6 has the
standard periodicity 2w. The defect is assumed to have the conical singularity
structure with

L(z,r) = rL/(2) + r2[L"(2)] + —r3[1"(2)] ...

2 3!
=rfi(z)+ %7“262(3:) + ér?’ﬁg(a:) +..., (4.2)

where a / denotes differentiation with respect to r, L'(z) = L'(z,0") and
[L"(x)] denotes the regular part of the general L”(z) = L”(x,0%), which con-
tains also distributional terms.
We consider two characteristic cases :

(i) pure cone, with

L'(z,0)=1
L,(l’, 0+) = ﬂl(l‘)
x,07)

hij(x,0) = hi;(z, 07 (4.3)

17



where the extrinsic curvature is continuous, and
(ii) cone plus extrinsic curvature discontinuity, with

L'(z,0)=1
L'(2,07) = fi()
B(2,0) = 04 I (2,0%) (4.4)

Both cases can be described by the conditions

L'(z,0) =1
Ll(x70+) = ﬁl 'T)
My (2,0) = nh,, (,07) (4.5)
where n = 1,0 for cases (i), (ii) respectively.
We now obtain the general L”(x) at the position of the brane as
L'(z) = —(1 — ﬁl(x))d(r) + [L"(2)]. (4.6)
We also get
hiz(x) = (1= n)hi;(2)o(r) + [h;(2)], (4.7)
or in terms of the extrinsic curvature coefficients
Kij(x) = (1= n) Ky(2)d(r) + [Kj;(2)]. (4.8)

The non-vanishing components of the Christoffel symbols, Riemann tensors,
Ricci tensors and Ricci scalar of the metric (4.1), after a long calculation are
found to be:

r r 1 0 L 0 L,i ) ik
Fae:—LL/>Fij=—§h§j,FrGZE,Fe)i:f,Fee:—Lh Ly
Tl = Sh"hig Tk = Sh™ (g + by + hie) (4.9)

Rrirj = —Kij + K* Kji, Roig; = —LLjj + L'Kyj, Rugrg = —LL"
Rijki = Riji + K K — K Kji , Rorgi = L<L|hKhz’ - sz)
Rrivk = Kijje — Karyj (4.10)
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L g :
R = L K'— KYKj, Rgg = —LL" — L(OL+ L K),

!/

L .. Ly ,
Ryi = T]Kji A + K735 — Ky,

Ly, L

Ry = Ry — K+ 2K Ky, — Ky KK — 'L'J - 7Ky (4.11)
L g 2

R=R-2— —2K' - K'K;; — K* — Z(DL+L’K). (4.12)

O is the Laplacian operator of the metric h;;. The non-vanishing components
of the Einstein tensor are:

L; . L :
Gri = /K = 7+ Ky — Ky (4.13)
1 1 oL L
=—12R— -K"*K + -K?>+ — 4+ =K 4.14
grr R 9 jk + 9 + i3 + I ) ( )
2 1 L 1
g¢¢:L(—§R+K+§K Kjk+§K), (4.15)

Ly L

Gij = Gy — K'ij + 2K Kjp — KK — 7 + EKij
1 L / : L OL
+ Shi (2 + 2K + AKT* K, + K* + 2K +2—). (416

Since we are interested in the effective equations (all possible equations holding
at the brane position), we will make an expansion of the metric g, with respect
tor (i. e. of hij(x,r), L(x,r)), and therefore of all the quantities appearing in
the previous components of the Riemanns, the Ricci and the Einstein tensors,
and then we will take the limit » — 0. Of course the arising brane equation will
be exact and not approximate, as the expansions are used as a means to extract
the correct terms. Plugging all these terms in the integral (3.12) as well as in
the bulk equations (3.13) we obtain distributional terms with structure %’1),
singular terms diverging as + as r — 0 (denoted as O(2)), then regular terms
with finite values at r = 0 (denoted as O(1)) and finally a bunch of terms
multiplied by powers of r, which of course do not contribute to the brane
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equations since they vanish for » — 0. More precisely, two groups of equations
at the brane will arise from the bulk equations (3.13), the first coming from the
% terms which have to cancel independently (assuming that the bulk matter
T, is regular at r = 0, as e. g. a bulk cosmological constant), and the second
from the regular terms. On the other hand, only the distributional terms

a(r)

will contribute in (3.12), providing the new matching conditions. There

are also milder distributional terms of the form d(r) which however do not

contribute.

So, the above mentioned expansions are the following:

1
G (T, 1) = g () + rgl’w(x) + 5739;’” +...,

/ 1 "
hij(z,7) = hij(x) + rhi;(z) + 57“2 (R ()] + ...
= hZJ(QZ) + 2TK13(£) + 7’202‘3‘(1’) + ...

where 202']‘ (13) = [h;/j (I)] = ZKZIJ

= 2K (x) 4+ 2rKijg)+..
= 2Kw(l’> —|— QT'OZ‘J' —|— ey

R (x,7) = h¥(x) +rh'(z) + ...
= h(z) — 2rK"(x) + ...,

R (2, 1) = W9(x) +rp?(z) + ...

= 2KY(z) + r(8K*(2) K’ () — 2C% (z)) + . ..

Kij(x,r) = Kij(z) + r[K{j](x) +...
= Kw(l’) —|— ’I"Cij(l') + ... s
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



K9(x,r) = K9 (2) + r(CY(z) — 2K™(2) K] (z) + ..., (4.23)
K'j(x,r) = K'j(2) + r(C%(z) — 2K*(2) Kpj(z)) + .. . , (4.24)

D p(z,r) = () + T () + . ..
= Tjp(x) + r(Kjp(x) + Ky (z) — Kj'(2)) + ..., (4.25)

I (@ r) = —ohly(0r) = —Ky(a,r) = —Ky(x) — rCy(a) + ..., (4.26)

2
Li(z,r) Bl,i(x) . Boi(z)  Pa(w)Bri(x)
ton = et Gie  Tame )t 42

Lfi@ﬂ") . 151,1'( ) 511(@52(37)) _ Tﬁzz(ﬂﬁ)ﬁz(l’) 4o

L) 7B | ) 261 (x) 2% (x)

1

il

L) 1, 5@
L(z,7)

(Boi(a) -

)

Lij(z,r)  Brijx) 1
Lwr) @) @)
OL(z,r) OL(x) 1 . 1 Bafx)

L(z,r — L(x) +Bl(x) (DB( )2 251(x)

[L"(z,r)] _ 1P(x)  Bi(x)

Dﬂ(x)) o, (4.31)

Lz,r)  rB(z) 26 (x) + 05+ O(r), (4.32)
L) Ll Bl
Lie.r) fla,r)=—flz) + 2ﬁ1(a:)f( )+ f(z) + ... (4.33)

where f(x,r) is any scalar function.
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Chapter 5

Matching conditions

We will find here the matching conditions of the brane for the axially sym-
metric six-dimensional geometry. After the indices u, v in (3.12) are split into
parallel 7, 7 indices and normal ones, and taking into account the expansion
described in chapter 4, we obtain regular terms, mild distributional terms §(r)
and essential distributional terms @. Because of the axial symmetry, the
angular dependence in the integral is trivially extracted out. The radial r
integration is performed from 0 to € in the limit ¢ — 0. For smooth dg,,
variation, the regular and the §(r) terms do not contribute as it is seen for the

following two indicate terms

. 1 -
/ doz\/—|g| Kij6h |prane :/ \/—]hldédr[,(x,r)d4x§h;j(m,r)5h” =0
M M

(5.1)

/Mde\/—|g|K{j5hij|bmne = /M \/—|h|d9er(x,7")d4x{(1 — ) Ky(x)8(r)
+ [Kéj(x,r)]dhij} =0. (5.2)

It is obvious that hj;(z,r), [K};(x,7)] are power series in 7 and therefore the
radial integration vanishes as ¢ — 0. Also, the distributional term vanishes
due to rd(r) = 0. The structures from chapter 4 that contribute in the integral
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(3.112) are only

L)
(- A (5.3
K" N o(r)

Pk = - mry,@?, (5.5)

for example the term

/dﬁx\/—]g]%hijéh”\bmne = — /deer(x,r)d‘*x —|h|( (ﬁl()))é(r)hiﬁh”
M

— 2 [ atay/THL - BiDhy @0 (56)

does contribute. The z-dependence of the quantities is suppressed from now
on for notational convenience. The result for the total variation of the action
is
05 |brane: 5715 + 5hS + 598 |b7"ane: / d4l' V _|h| <)\aixu7i + 2)\0&5n6u> 5n0¢H
b
2

+ /d“x\/m{MJr%(T“—Ah“) S5GT+ (1—51( ))h
%

’%‘

4
+ myGBK”}cghU—i—/ T/ — |h|( natng” — N9zt iz >5gw,. (5.7)

“6

Since 0nqy,, 0h;j, are considered as independent, minimizing the action 6.5 |prane=
0 gives the equations

Mgk s 4 2N gt =0, (5.8)
N iy 2 | — g
NI (T — AR) =~ GY + T (1= B1)hY + mGB(Z B i 0, (5.9)

/d4x\/—\h\<)\aﬁna“nﬁ — N o, )(59,“,: : (5.10)
>

Since the vectors z*; and n,* are normal (independent), eq.(5.8) implies

A =0 =\ (5.11)
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The non-conventional dx* style of variation discussed before is done through
09 = — L5209 (eq. 3.5), thus eq. (5.10), using eq. (5.11) takes the form

/Zd4a:\/TfL])\ijx“,ix”7j (g,w,,\éric)‘ + gméa:,’\y + gy,\&ﬂi) ) (5.12)
After an integration by parts and imposing dx#|9x = 0 (5.12) becomes
2/ d*z\/—|h|gw (A”’,jxm - A”K%jna“> sr¥ =0, (5.13)
>

where use of the equation (2.42) was made.
Due to the arbitrariness of dz#, the last equation is equivalent to

Nk — NIK®ng =0, (5.14)
It follows that 3
N=0 (5.15)
and g
)\”Kaij - O, (516)

where A\ is given by (5.9). Finally, by differentiating eq.(5.9) and using
eq.(5.15) we get

iy _ 2’ ij iy STags 1,
71|jj = ’i_gﬁl,j(hj — 4CLGBG]) — fi% {(7] — ﬁ1)< — 5}1]

( ap Kaleakl) + KaKaij _ KamiKajm>} ’ (517)

)

which is the first matching condition and K¢ = K%;. This equation expresses
a non-conservation equation of the brane energy-momentum tensor, where this
energy exchange between the brane and the bulk is due to the variability along
the brane of both the deficit angle and its intrinsic and extrinsic geometry. In
the absence of the Gauss-Bonnet term, it reduces to the non-conservation
equation found in [20], where the exchange is only due to the deficit angle.
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Eq.(5.16) becomes

1 .. . ) .
(s ) 4 08— R,

1— 61 r2 . /q,% .
- 1+ c G + T
n— < 8ragp(l — 51)> 8ragp[n — Bi]
2
KA —2m(1 — 1) .
- Wi VK =0, 5.18
8rags(n — Bi) Y (5.18)

which is the second matching condition. Roughly speaking, this is a cubic

equation in the extrinsic curvature, contrary to the matching condition dis-
cussed in [8], [18] which is quadratic. In the absence of the Gauss-Bonnet
term, it reduces to the matching condition of [20], which is linear in extrin-
sic curvature; additionally, the special case of a probe brane of tension A (
T;; = 0,r. = 0) reduces the equation to the Nambu-Goto equation of motion
(2.47) as expected.

We will now examine the singular O(1) terms of the bulk equations (3.13)
and see what are the corresponding induced equations on the brane. From the
ri components we get the equation

7?'alilf(cu - RajilKakl - RaldlKaid = Bllk_(x) - L(Slk + sz - KaKaik
Bi(x) dagp
‘ 1
+ KM K — §(Ka“Kakl — KaKa)5£“> : (5.19)

Differentiating this equation and using the Codazzi-Mainardi identity, we can
get another form for the mathcing condition (5.17)

TU|‘ _ nﬁl“ 7TCLGB{4 B — §hz_7 (KaKa . Kaleak:l) — QY
aGgns

! 51 K%

+ K°K,9 — K,J*K ;7 } : (5.20)
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From the O(#) of the rr components we get

1 1 .
{ hij — Gij — K K g+ K7 Kgij — 5P (KﬁKg - Kﬂ’mK51m> }KO‘” =0.

4@@3

(5.21)
Combining this equation with the matching condition (5.18), we see that (5.21)
is equivalent to the equation

(O’lGij + O'thj - ﬂj)Kaij = O, (522)
where ) g . o1
o= Lo Smaeslzm) oy 2 —) (5.23)
K K K

The equations coming from the O(2) terms of the ij components are more
complicated and we do not give their general expression here. Similarly, the
general form of the regular equations is even more complicated. For the case
of cosmology we will write all these equations and check their consistency.
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Chapter 6

Cosmology

Consider the bulk cosmological metric
dsi = dr* + L*(x,r)d0* — n?(t,r)dt* + a’(t, )i (m)dmid;ﬂﬁ : (6.1)

where ;5 is a maximally symmetric 3-dimensional metric characterised by its

spatial curvature k = —1,0,1 and ¢ = 1,2,3. The energy momentum tensor
on the brane is assumed to be that of a perfect fluid with diagonal elements
(p,p,p,p). For the scalars n(t,r), a(t,r) we have the expansion

1

a(t,r) = a(t) + ra(t)A(t) + §r2a(t)A2(t) +..., (6.2)
1
n@m)=1+rN@y+§ﬁwa+.”, (6.3)
where . .
A=2 n=" (6.4)
a n
We also define the quantities
H— .
x=mp D oy g @
a n na
1 1
X=X-A? =Y — AN 6.5
+ 126LGB ’ y * 12CLGB ( )
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and begin the same procedure followed in the previous chapter.
For this metric, the first matching condition found becomes

p+3nH(p+p)
8mra ; A
_ K%GB ( —3XB1 — (- B1) (6AA — 6nNH + 6H”A2)> . (6.6)

while the second matching condition becomes

— 2
AT AN 71] - gi (1+ 871'04@37;61 - 51)) (X(A+N)+2YA)
_ Ko B K2A — 21(1 — By) -
24magg(n — b) (34p = Np) + 24mags(n — ) (344 N) = 0.6.7)

The O(+) part of the rt component (5.19), takes the form

A 51
2A|— —HN + AH .
( v ) o (6.8)
and the (’)(%) part of the rr components, (5.21), becomes
N
X(1+Z)+2y:o. (6.9)

Applying the cosmological metric straightforwardly to (5.20) and (5.22), or
alternatively combining (6.6) with (6.8) and (6.7) with (6.9) we get

 24magpX
p+3nH(p+p) = —néﬂ—fB, (6.10)
Io Kg
which is a non-conservation equation for p, and
N=fA, (6.11)
where (X + 2Y)
—p + 02 — 01 +
=3 : 6.12
/ —p — 09+ 301 X ( )
The terms O(1) of the ij components contain the ¢¢ equation
"
1
ol By y =0 (6.13)

a 5114 bagp
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and the 77 one which with use of (6.7), (6.9), (6.12 ) and (6.8) becomes

)", yla”  1+f  f Bi o
n +fa _12aGB_Aﬁl np

The regular terms of the 80 component with use of (6.8), (6.11) and (6.12)
become

I

n a 12a6 2 nf

V4 X+ (= )—:0. (6.14)

A2

)
12@@3

[a]” 1—f 15’1)2£_ 1

0
- A —
205X (k579 — A

)=0
(6.15)
The three last equations (6.13), (6.14), (6.15) form an algebraic system for

[ag : [n and ﬁﬁix which can be also solved in terms of [A]" and [N]

P By 1 5
BrA <1+3f) —1+h)- ( 51 6aGBX2 </{(257;9_A6— 1 aGB>  (6.16)
! ﬁl 1 9 5)
A1 +3f) = X~ 2A2( np )X - 12ac5X @275 — A - 12aGB>
+ (1+3/) (12%3 -4, (6.17)
/ - Bl 1+ 2f 5
NT(1+3f) = (nﬁl) 242 " 12a5X <"§750 — Ao - 12acp
—f2—4f -1
+ (143f) (12aGB - N+ X (6.18)
From these equations we take also
/ r f —1 61 A X
FUAY = N} = 5 (= AP = (L + 51+ )
1 0 5
T 12acpX (“27;’ — Ao - 12aGB> ' (6.19)
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The regular part of the rr component is

[A] (X +2Y) + [N]'X + —3[?;;5\[], + X'(A+ N) +24Y" — 12A*

— 6APN — 6AN® + 3[A)'( — A2 — 2AN) — 342N — )gaz) Xy
(G G D

- 12;3 (’{277 — e - 12;3) =0, (6.20)

where all the quantities are at r = 0 !. Rearranging (6.14) with repeated use
of (6.18) and equation

/ 1 / Bl 2 X 2
=(—)'=—F5(X—24
2
1-f L+ f oo 14277-3f > 2 1
- _ o 2y [ AP AT —
+ 12GGB(Y 2 x 2 +_f 12aGB
1 9 1
— Ng — 21
* 12aGB (KIG% A6 SCLGB> <6 )

which is proven in the appendix, we get the following useful equation

[A] (X +2Y) + [N]'X + SAI+HINT 12A* —6A3N — 6AN? + 3[A]
12@@3
( —A*—2AN) — 34%[N] = (ﬁfi(x + 4a”) + (1-7)
npy’ 2A2 12a¢5
2
- (1+ f)£ +A2X(1— f2) 42401+ f)° - LRy
2 3aGB
1 o9 n D
T Tacs <“677’ = 12aGB> ‘ (6:22)

Combining the previous equation, the regular part of the rr component and
differentiating the X, Y quantities from the previous equations of the algebraic
system we find

—124% — 6APN — 6AN® + (/{ng - mgT;> ~0. (6.23)

12@@3

!The regular part of the ij components contain [A]”, [N]”, 83 and therefore, these equa-
tions are not significant for the consistency of the problem
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Because we are interested in a bulk with a cosmological constant
124" + 6A"f +6A'f> = 0. (6.24)

with solution
f=-1 (6.25)

We can eliminate the quantities N, A%, A% from the matching condition (6.7)
using (6.8), (6.9) to get

1 _p—202+3p__1—ﬁ1( r? >(p—202+3p)
6acp 301 n— B 8racp(l — f1) 301
2 2
+ 3p+p) — ,
24magp(n — B1) (Bp+0) 12magp(n — Bi)

(6.26)

which with substitution of the parameters o1, 05 gives 0 = 0. We now focus

on the simpler and most interesting case of a spatially flat universe (k=0,
and from (6.20) and f = —1, we get a differential equation for the Hubble
parameter

%+H2—%+6%1(1+3w):0. (6.27)
Using '
H_dHdal _ dH a1 dG) .
n dadtn da n 2d(Ilna)’ '
rewrite the previous equations as
2
;l((iaz 2 - % + 37"’1(1 +3w) = 0. (6.29)

We analyse the two characteristic cases n =0, n = 1.
e case (i): n =0.
The non-conservation equation becomes the standard conservation equation
p+3(p+pnH =0, (6.30)
which for p = wp has the standard solution
p=cra 30T (6.31)
with ¢; an integration constant.

Substitute this result in the differential equation for the Hubble parameter

31



which is integrated to

09 C1 1 Cy

HYa)= >4+ —— ——+2
(a) 301 3oi(l4+w)a®  a?’

(6.32)

where ¢y is an integration constant and the parameters o, 0, now take the
values

> 8 2
o= L4 00 a2 (6.33)
K6 ke e
Finally
H2(a) = KEN — 27 C1K: o (6.34)

3(87TCLGB -+ Tg) 3(871'@03 + Tg)a?)(l-t,-w) ? .

The equation implies a late time modification of FLRW cosmology with an
extra term a2, which mimics non-vanishing curvature (or cosmic string net-
works).

e case (ii): n =1.

The non-conservation equation becomes

(6.35)

In this case, we do not have a close system of equations on the brane due
to arbitrariness of (31, so we cannot uniquely specify the Hubble evolution.
To get an indication here, we close the system by specifying the evolution of
one quantity and solve for the remaining. For example, assuming the energy
density to have a power law p(a) = ¢,a?, we find from (6.29)

k2 — 27 (1 + 3w)cyrd cs
H*(a) = 6 - 6 Py = 6.36
(a) 38magp +12)  3(2+p)(8mags + 7“3)& * a? ( )

Considering the three cases w = 0, %, —1 we get
ew=20
k2 — 21 Cyk2 C3
H?*(a) = 8 - 0 Py = 6.37
(a) 3(8rags +12)  3(2+p)(8rags + rg)a + a? (6.37)
o W= %
H(a) = 50— 2 Zllr Py 5 (6.38)
a) = — af + — )
38mags +12)  3(2+p)(8magp + r?) a?
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o w—=—1
\KE — 2 204K b C3
—. 6.39
3(8magp + 12) + 3(2+4 p)(8magp + r?)a + a? ( )

These cosmologies have to be analysed more with respect to their phenomeno-
logical implications.

H*(a) =
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Chapter 7

Conclusion

We have adopted a non-conventional style of variation with respect to the em-
bedding fields for a six-dimensional Einstein-Gauss-Bonnet theory and derived
new matching conditions taking into account the gravitational back-reaction
of the brane to the bulk. Besides these equations there are also other equations
valid at the position of the brane, characterized as regular and singular de-
pending on the behaviour of the relevant six-dimensional terms as we approach
the brane. The energy-momentum tensor of the brane can either be conserved
or not depending on the conditions imposed on the geometry at the conical
singularity. For a cosmological metric ansatz we have shown the consistency
of the problem and derived the four-dimensional cosmological evolution. In
the case of combined cone singularity with extrinsic curvature discontinuity,
this cosmology is unique and for a spatially flat universe it gives a late-time
modification of FRW of the form a=2 (curvature-like). In the other case of
pure cone singularity, the effective equations do not form a closed system and
characteristic situations were studied with similar results. In general, one can
study further the phenomenological implications of these cosmologies. Due to
the above IR sort of modifications at the level of cosmology, we speculate that
in the spherically symmetric solutions large distance corrections of gravity will
appear. However, as usually when one works from the braneworld viewpoint,
the bulk extensions of the derived four-dimensional solutions have not been
studied and so the physical viability of the solutions is not certain.
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Chapter 8

Appendix

e The structure constants of an arbitrary basis { E4} are defined by

[Ea, Ep]l = C°4pEc . (8.1)
If the basis is coordinate there exist z# such that E, = a%w then the dual
basis is E* = dx* and therefore
dE" = d*2" = 0. (8.2)
Since )
dE! = =S CV\E” A E*= O, =0. (8.3)

Therefore if the torsion TH,, = I'*,, — I'*,, — C*,, vanishes, then in a coor-
VA Av VA )
dinate basis the Christoffel connection is symmetric in its lower indices.

e For a hypersurface, i.e. codimension-1, the projection tensor reduces to
the expression
h;u/ =g — NNy, (84)

where n* is the unit normal and € = g(n,n) = +1 its sign. It projects any
vector V# tangent to the hypersurface as h,, V" = g,,V*—en,n, V¥ =V,—0 =
V.. Acting more than once it produces the same result as acting only once, i.e.
hEh% = (0F—entn,) (0% —en®n,) = 0¥ —entn, —en'n,+e*nfn, = 0F —entn, =
h%. Acting on two vectors V# WY tangent to ¢[>], the projection tensor acts
like the metric, i.e. h, VWY = g, VW —en,n, VWY = g, VFIV".
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The dual bases are E4 = (eq,e9 = n), B4 = (¢%, e’ = en) and the relation
EA(Ep) = 63 gives
n(n) =e. (8.5)

The index notation is simplified for the normal vector as
Ng =n < nt =n & ny =ny, (8.6)
and for its dual as
n® =en < n, =cen, =en, & n* =ent =en”. (8.7)

The correspondence for the extrinsic curvature coefficients is

oy =Ky = K (8.8)

and for the expansion tensor
O% = O =Ny = Ny, (8.9)

The known expression holds
Ko =gy - (8.10)

e We here prove equation (2.45).

If oty = t# T4t Y, then ot +0t ity = t 0 tiutgon w1
Since "4 g = gu = t* jtin + tii”; + UG Gupti® = gay = Gt +
tiutlu;j + ti“tlygw,7ptjp = 0.

Therefore U‘uijtlu -+ U‘uljtw =0.

Changing the indices (ijl) to (lij) and once more from (ijl) to (jli) we take
another two equations and the combination of these three equations gives
oty = 0, which is the wanted.

e The proof of eq. (6.21) is given here.
The O(%) part of the rr components becomes

1
X +2Y + = —fX + A* + 2f A% (8.11)
dacp

The expression of X gets the form

X + =X+ A%, (8.12)

12&@3
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Using these and equation (6.17) we get

( X+ 2Y4a1GB) A"+ (X * 12;GB> VT

= —X(f[A] = [N]') + A2(IN]' + (1 + 2/)[A])
112;;; N X?(l = AQXW

1 n 1 (/4;%7;9—/&6— ) )

B 1
= (n_ﬁlfﬁ()c? —2XA%) + X
1

(A1 f) — 2
( ( +f) 126LGB) + 1440,03 12(1@3 12@@3
Bip 1 o, A=f o 1+ f o, 1+2f2-3f ,
= (=) —Xx(x -24 X — X — L Ax
(nﬁl) 2A2 ( ) + 12CLGB 2 2
1 \2 1 1
— 2_ 270 _ N — . 8.13
<(1+f)A 12aGB> * Toucs <”67;’ 6 3aGB> (8.13)
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