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Chapter 1

Introduction

In this thesis our study on extra dimensions refers to gravitational defects
(p-branes) embedded in a higher dimensional bulk. The crucial point in our
approach is that the system brane/bulk is considered to be dynamical (the
opposite of probe), i.e. we take into account the back reaction of the brane to
the bulk and the dynamical variables are the bulk metric gµν and the embed-
ding fields xµ. We will particularly focus on codimension-2 defects with the
assumption of a conical singularity on the 3-brane.
This is an interesting theoretical setting on its own, but it has also been mo-
tivated by modern theories (strings, supergravity), where our 4-dimensional
world is assumed to reside in 10 or 11 dimensions and we would like to derive
p-brane solutions beyond the probe limit.
Especially the codimension-1 case (hypersurfaces) in the context of gravity is
well-known and has been studied since Israel [1]. The matching conditions of
this case are

Kab −Khab = 8πGTab, (1.1)

where Kab is the extrinsic curvature and hab the induced metric on the brane;
they are derived by focusing on the parallel components of the bulk Einstein
equations at the position of the brane and isolating the distributional terms
with the singular structure δ(y) (y the extra dimension). For a review on
codimension-1 braneworlds see [2].
This is similar to what happens in mathematics in general when we have delta
function sources in the equations and for example in electromagnetism we
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obtain the junction conditions in terms of the surface sources

[E∥] = E+
∥ − E−

∥ = 0 , [E⊥] = E+
⊥ − E−

⊥ = 4πσn (1.2)

and
[B⊥] = B+

⊥ −B−
⊥ = 0 , [B∥] = B+

∥ −B−
∥ = 4πj× n . (1.3)

On the contrary, the treatment of a codimension-2 defect is quite different and
the situation becomes even more complicated for higher codimensions. There-
fore, our starting point will be the understanding of the codimension-2 case
with the hope that even higher codimensions could be examined accordingly
in the future.

Furthermore, six dimensional gravity or supergravity has been recently [3], [4]
proposed to offer a mechanism for understanding the smallness of the vacuum
energy. In this scenario, a codimension-2 object induces a conical singularity,
and the cancellation occurring between the brane tension and the bulk grav-
itational degrees of freedom gives rise to a vanishing effective cosmological
constant. To see this, we write the higher dimensional Einstein equations

Rµ
ν −

1

2
Rδµν = κ2

DT µ
ν (1.4)

with a localized energy-momentum tensor (brane tension)

T µ
ν =

(
T a

b = −λδab 0
0 Tα

β = 0

)
.

Then, the parallel ab and normal αβ components of the equations take the
form respectively

Ra
b = −κ2

Dλ
D − 3− p

D − 2
δab , Rα

β = κ2
Dλ

p+ 1

D − 2
δαβ (1.5)

and for D = 6, p = 3 we get Ra
b = 0 independently of the value of brane

tension λ. So, a Minkowski solution naturally arises for the universe, con-
trary to the case of codimension-1 [5], where a Minkowski solution arises with
the cost of a fine-tuning between the brane tension and the bulk cosmological
constant. Of course, the universe finally has a small effective cosmological con-
stant which is not exactly zero (small de Sitter expansion) whose explanation
was suggested [6] that would be facilitated by the quantum corrections within
the context of 6-dimensional supergravity.
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However, codimension-2 gravitational defects in Einstein-Hilbert gravity were
found to be inconsistent in general [7] and the reason is based on the new form

of singularities δ(r)
r

appeared (wilder than δ(y)). Although the generic analysis
is quite complicated, however this can be easily understood in the case of an
axially symmetric defect where the bulk metric takes the form

ds26 = dr2 + L2(x, r)dθ2 + hab(x, r)dx
adxb . (1.6)

The function L(x, r) is expanded as L(x, r) = β1(x)r+O(r2) where β1(x) < 1
is the deficit angle of the conical singularity necessary to balance the distri-
butional source. So, L′(x, 0+) = β1(x) and assuming L′(x, 0) = 1 we have
the discontinuity L′(x, 0+)− L′(x, 0) = β1 − 1, thus L′′(x) =

(
β1(x)− 1

)
δ(r).

Now, the parallel components of the higher-dimensional Einstein tensor is of
the form Gab = L′′

L
gab + . . . where all the dotted terms are regular. There-

fore, the Einstein equation Gab = κ2
6Tab

δ(r)
2πβ1r

leads to the matching condition

Tab =
2π
κ2
6
(β1−1)gab, which means that in Einstein gravity only a brane tension

is compatible. Indeed, this is the case for example of the special solution of
the cosmic string in four dimensions (1-brane) [8], where the tension of the
string exactly adjusts the deficit angle of the cone λ = 2π

κ2
6
(1− β1).

Since then, the problem has remained unsolved. Several efforts have been
made to show the mathematical reasons for this inconsistency, alternative for-
mulations for handling the distributions have also been proposed, or other
approaches either modify the equations of motion for the defect, or consider
thick defects (where a cut-off is introduced that makes the problem consistent
but scheme-dependent), or study the original problem perturbatively (rela-
tively successfully).

It was not until 2004 when it was suggested [9] that the problem of inconsis-
tency might not be the pathology of codimension-2 itself but the simplicity of
the Einstein-Hilbert Langrangian density. So, the higher-order six-dimensional
Gauss-Bonnet term was added in the action. This term

R2 − 4RµνRµν +RµνκλRµνκλ, (1.7)

which makes sense only for D > 4 (for D = 4 it is a topological invariant [10])
contains particular quadratic combinations of the Riemann tensor in such a
way that it contributes to the equations of motion only through second deriva-
tives of the metric. Moreover, this term has been shown to have a well-defined
perturbation operator around flat background and is free of ghosts [11] (also
[12]). As far as the extensions of the Gauss-Bonnet term are concerned, the
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number of independent 2-rank tensors which are symmetric and divergence
free depend crucially from the number of dimensions and these tensors are
known as Lovelock terms [13]. The corresponding terms in the action which
give these terms are the Euler densities. So, for D = 4 one includes in the
action the zeroth density Lo (cosmological constant) and the first density L1

(Einstein-Hilbert term). For D = 5, 6 also L2 (Gauss-Bonnet term) becomes
non-trivial, for D = 7, 8 the third density L3 (cubic in curvature) is also in-
cluded, e.t.c. Of course, if arbitrary combinations of the higher curvature
terms were added, the equations would contain higher than second derivatives
which is complicated, unnatural and probably pathological.

Some effort was made towards this direction in [14], [15], [16], [17]. The
problem turns out to be very complicated because beyond the matching con-
ditions all the other equations have to be derived and their compatibility to
be checked at the brane location. For the case of cosmology with an axi-
ally symmetric defect the consistency was indeed checked in [18]. A variety
of cosmologies were derived on the brane with the freedom of one arbitrary
function of time, reflecting to the choice of boundary/asymptotic conditions.
This non-uniqueness does not imply any sort of deficiency of the theory, but
it expresses the fact that from the viewpoint of the brane observer the system
of the effective equations is consistent but not closed. This feature is quali-
tatively similar to what happens in codimension-1 cosmology [19], where one
arbitrary integration constant appears.

In this thesis we adopt a different philosophy to obtain the matching con-
ditions. Contrary to the above conventional way of obtaining the matching
conditions by varying the action with respect to the metric (equivalent to
isolating the distributional terms in the equations), we here consider the vari-
ation with respect to the embedding fields (brane position coordinates) xµ,
but in such a way that the brane is dynamical and back-reacts to the bulk.
The same style of variation was performed for Einstein gravity in [20], where
new matching conditions were found along with a consistent but rather trivial
cosmology. Of course, in the probe limit the matching conditions reduced to
the Nambu-Goto equation of motion. Reminiscent of this process for Einstein
gravity has appeared for codimension-1 in [21], where relaxed Israel matching
conditions were obtained.

In the following, we consider Einstein-Gauss-Bonnet theory in six dimensions
where the embeddibility of the brane will be determined by this sort of non-
conventional equations of motion for the defect. We will derive the coupled
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system of equations at the brane position and investigate if the cosmological
ansatz is mathematically consistent. It will be interesting to investigate under
which condition, if any, the arising cosmology is unique.

5



Chapter 2

Submanifolds in spacetime

Consider a D-dimensional manifold M which is considered to be the space-
time bulk and a (p + 1)-dimensional manifold Σ with p + 1 < D, equipped
with a map ϕ : Σ −→ M , which is C∞ and one-to-one, and its inverse
ϕ−1 : ϕ[Σ] −→ Σ which is also C∞. Then, the image ϕ[Σ] is said to be
an embedded submanifold (surface) of M of codimension D − p− 1 ≡ N . In
this thesis, our main interest is for D = 6, p = 3 and therefore the submanifold
ϕ[Σ] has codimension 2. Geometrical aspects of higher-codimensional surfaces
can be found in [22].
In order to choose a unique connection for the manifold M , we assume metric
compatibility

∇λgµν = 0 (2.1)

and torsion-free condition

T λ
µν ≡ 2Γλ

[νµ] − Cλ
µν = 0 ⇔ Γλ

µν = Γλ
νµ (2.2)

in a coordinate basis where Cλ
µν = 0 (see appendix). The above properties

reflect to the submanifold ϕ[Σ]. The general choice for the signature of the
metric gµν is (ε, . . . , ε︸ ︷︷ ︸

N

,+1, . . . ,+1︸ ︷︷ ︸
p+1

) with ε = ±1, representing the inner product

in the space of vector fields

g(u, v) = g(uµ∂µ, v
ν∂ν) = uµvνg(∂µ, ∂µ) = uµvνgµν = uµvµ (2.3)

where {∂µ = ∂
∂xµ} is a coordinate basis and uµ, vµ are the vector fields’ com-

ponents (µ, ν = 0, 1, . . . , D − 1).
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The inverse metric is gµν and indices µ, ν, . . . are raised (lowered) with gµν

(gµν) respectively.
The dual space of 1-form (covectors) is defined by the basis of differentials
{dxµ} with dxµ(∂µ) = δµν .

For σi coordinates on Φ[Σ] with i = 0, 1, . . . , p, we can define p + 1 tangent
vectors as

ti =
∂

∂σi
= xµ

,i∂µ (2.4)

and therefore, the tangent vectors’ components are

ti
µ = xµ

,i . (2.5)

We can also choose an arbitrary (non-coordinate) basis {EA} = {ea, nα}, where
{ea} are parallel vectors to the surface with a = 0, 1, . . . , p and {nα} are normal
vectors with α = 1, . . . ,N . These are expressed in terms of the coordinate
basis {∂µ} as

ea = ea
µ∂µ nα = nα

µ∂µ , (2.6)

where ea
µ and nα

µ are the vectors’ components respectively.
The metric g can be expressed in terms of the arbitrary parallel vectors as

gab = g(ea, eb) = gµνea
µeb

ν = ea
µebµ , (2.7)

in terms of the tangent {ti} vectors as

gij = g(ti, tj) = gµνx
µ
,ix

ν
,j (2.8)

and in terms of the normal vectors as

gαβ = g(nα, nβ) = gµνnα
µnβ

ν = nα
µnβµ . (2.9)

Indices a, b, . . . , α, β, . . . and i, j, . . . are lowered with gab, gαβ and gij respec-
tively.
The inverse metrics are denoted by gab, gαβ and gij and indices a, b, . . . , α, β, . . .
and i, j, . . . are raised by them respectively. Obviously, eaµeb

µ = δab, n
α
µnβ

µ =
δαβ, ea

µnα
µ = 0. Moreover, the following equation of decomposition of iden-

tity is valid δµν = ea
µeaν + nα

µnα
ν . The inverse metrics can be expressed in

the form
gab = gµνeaµe

b
ν (2.10)
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and
gαβ = nαµnβ

µ . (2.11)

We can also express the coordinate basis {∂µ} in terms of the arbitrary parallel
and normal vectors as

∂µ = eaµea + nα
µnα . (2.12)

The map ϕ:Σ −→ M that embeds the submanifold ϕ[Σ] to the manifold M
allows us to pull back the metric from M to Σ and define the induced metric
h = ϕ∗g as

hµν = gµν − nαµn
α
ν , (2.13)

from which we obtain that
hij = gij . (2.14)

The fully contravariant and mixed forms of the induced metric are

hµν = gµν − nα
µnαν , hµ

ν = δµν − nα
µnα

ν . (2.15)

The latter is a projection operator since

hµ
νh

ν
κ = hµ

κ , (2.16)

which can be easily seen from (δµν − nα
µnα

ν)(δ
ν
κ − nβ

νnβ
κ) = δµκ − nβ

µnβ
κ −

nα
µnα

κ + nβ
µnβ

κ = hµ
κ.

Obviously, from the above decomposition of identity, the induced metric is
also written as

hµν = gabe
a
µe

b
ν , (2.17)

while its components in terms of the arbitrary parallel basis are

hab = h(ea, eb) = hµνea
µeb

ν = gab . (2.18)

Accordingly, the contravariant and mixed components are written as

hµν = gabea
µeb

ν , hµ
ν = ea

µeaν . (2.19)

In terms of the embedding fields xµ the induced metric h takes a similar form

hµν = gijxµ
,ix

ν
,j . (2.20)

The metric remaining to be defined is that of the normal space to ϕ[Σ] as

mµν = gµν − hµν (2.21)
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with corresponding contravariant and mixed forms

mµν = gµν − hµν , mµ
ν = δµν − hµ

ν . (2.22)

The tensor mµ
ν is also a projection operator

mµ
νm

ν
λ = mµ

λ , (2.23)

since (δµν − hµ
ν)(δ

ν
λ − hν

λ) = δµλ − 2hµ
λ + hµ

νh
ν
λ = δµλ − 2hµ

λ + hµ
λ = mµ

λ.
The components of the “normal” metric in terms of the normal basis takes the
form

mµν = gαβn
α
µn

β
ν = nαµn

α
ν (2.24)

and similarly
mµν = nα

µnαν , mµ
ν = nα

µnα
ν . (2.25)

Of course, the inner product between the parallel and the normal metric is
zero

hµ
λm

λ
ν = mµ

λh
λ
ν = 0 . (2.26)

To conclude, the induced metric h acts as a projector for parallel vectors and
annihilates the normal vectors, while the normal metric m annihilates the
parallel vectors and acts as a projector for the tangent ones.

If we denote the Christoffel connection of g as ▽ or ; and the Christoffel
connection of h as ▽̄ or |, then in the basis {ea, nα} we have

▽a eb = γc
baec −Kα

abnα = γcbae
c −Kαabn

α (2.27)

▽a nα = Kαa
beb +ϖβ

αanβ = Kαabe
b +ϖβαan

β , (2.28)

where
γcba = g(▽aeb, ec) = ecµ ▽a eb

µ (2.29)

are the surface connection coefficients,

Kαab = g(▽anα, eb) = ebµ ▽a nα
µ = −g(▽aeb, nα) = −nαµ ▽a eb

µ = Kαba

(2.30)
are the extrinsic curvature coefficients and

ϖβαa = g(▽anα, nβ) = nβµ ▽a nα
µ (2.31)

is the normal fundamental form or extrinsic twist potential of the surface. In
the above notation ▽aeb

µ ≡ (▽aeb)
µ and ▽anα

µ ≡ (▽anα)
µ. Of course, the
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above relations are valid for a coordinate basis as well, i.e. for (a, b) −→ (i, j).
Then, it holds that

Kα
ab = nα

a;b = −ea
α
;b (2.32)

since Kαab = −g(▽aeb, nα) = −g(eb
β
;anβ + eb

c
;aec, nα) = −ebα;a and also

Kαab = g(▽anα, eb) = g(nα
c
;aec + nα

β
;anβ, eb) = nαb;a.

For a discussion on the reduction of the formalism to the codimension-1 case
see appendix.

If ΓA
BC (A = a, α) are the connection coefficients of ▽ in the basis EA =

{ea, nα}, i.e.
▽A EB = ΓC

BAEC , (2.33)

then

Γc
ba = γc

ba, Γαab = −Γaαb = −Kαab, Γβ
αa = ϖβ

αa , (2.34)

since ▽aeb = ΓA
baEA = Γc

baec +Γα
banα and ▽anα = ΓA

αaEA = Γb
αaeb +Γβ

αanβ.
We also obtain

Kα
ab = ea

µeb
νnα

µ;ν , (2.35)

since nα
µ;ν = nα

µ,ν−Γλ
µνn

α
λ = nα

µ,ν−
(
EA

λEB
µE

C
νΓ

A
BC+EA

νEB
λEB

µ,A

)
nα

λ

= nα
µ,ν − EB

µE
C
νΓ

α
BC − EA

νn
α
µ,A = nα

µ,ν − ecµe
d
νΓ

α
cd − ecµn

γ
νΓ

α
cγ −

nβ
µe

c
νΓ

α
βc − nβ

µn
γ
νΓ

α
βγ − ecνn

α
µ,c − nβ

νn
α
µ,β.

Another useful expression is the following

Kα
ab = −nα

λ(e
λ

(a , b) + Γλ
µνea

µeb
ν) ,= −nα

λ(e
λ

(a ; b) + Γλ
µνea

µeb
ν) (2.36)

where f,a = ea
µf,µ, and it is shown by using (2.35) and the orthogonality of

ea
µ, nα

µ.
Finally, the extrinsic curvature components can also be expressed in terms of
the expansion tensor (one such tensor for the congruence of integral curves of
any vector field nα)

Θα
µν ≡ hκ

µh
λ
νn

α
(κ;λ) = hκ

µh
λ
νn

α
κ;λ = Θα

νµ (2.37)

as
Kα

ab = Θα
µνea

µeb
ν . (2.38)

Note that the symmetry of the µ, ν indices in Θα
µν and of the a, b indices in

Kα
ab is due to that ϕ[Σ] is a submanifold (surface). Formally, this is so, because
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the so-called rotation tensor of the nα lines defined as ωα
µν = hκ

µh
λ
νn

α
[κ;λ]

vanishes since the vectors normal to {nα} form an integrable subbundle.
The expansion tensor is a “parallel” tensor in the sense that

Θα
µν = Θα

κλh
κ
µh

λ
ν , (2.39)

or equivalently
Θα

µνnβ
µ = 0 . (2.40)

We also have Θα
µνea

µ = Kα
abe

b
ν .

If additionally the vectors nα are surface forming, Θα
µν takes the form

Θα
ij = Kα

ij = nα
i;j , Θα

βi = Θα
iβ = Θα

βγ = 0 , (2.41)

and moreover Kα
ij becomes

Kα
ij = Kα

abe
a
ie

b
j = −nα

λ(x
λ
;ij + Γλ

µνx
µ
,ix

ν
,j) . (2.42)

Another useful relation concerns the contraction

gijKα
ij = −nα

λ(�hx
λ + Γλ

µνh
µν) , (2.43)

which is derived by using (2.20), (2.42) and that�h = hAB(EAEB−γC
ABEC) =

hAB(EAEB − ΓC
ABh

D
CED) = gij(∂i∂j − Γk

ij∂k) = �gij .
We also have

nα
µKα

ij = −(xµ
;ij + Γµ

λνx
λ
,ix

ν
,j) . (2.44)

This is easily seen by using the following identity of the appendix

hν
µ(x

µ
;ij + Γµ

λκx
λ
,ix

κ
,j) = 0 , (2.45)

which means that the vector (with respect to the index µ) xµ
;ij +Γµ

λκx
λ
,ix

κ
,j

is normal to the surface.
Another useful identity is

nα
µgijKα

ij = −(�hx
µ + Γµ

λνh
λν) , (2.46)

which is found by using the previous equation for gijKα
ij and the equation

hµ
ν(�hx

ν + Γν
κλh

κλ) = 0.
Therefore, we have

gijKα
ij = 0 ⇔ �hx

µ + Γµ
λνh

λν = 0 , (2.47)
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which shows the equivalence between the definition of the minimal surface and
of the Nambu-Goto equation of motion.
Additional assumptions of orthonormalization of {nα}, {ea} would imply ad-
ditional symmetry conditions ϖβαa = −ϖαβa, γbac = −γabc respectively.

If we make a local rotation of the normal frame

n
′

α = (O−1)βαnβ , n
′α = Oα

βn
β , (2.48)

then
γ

′c
ba = γc

ba , K
′α

ab = Oα
βK

β
ab , (2.49)

i.e. the extrinsic curvature coefficients transform homogeneously. On the
contrary, the twist coefficient transforms as a connection (inhomogeneously)

ϖ
′β

αa = Oβ
γ(O

−1)δαϖ
γ
δa +Oβ

γ(O
−1)γα,a . (2.50)

With respect to this connection, the corresponding curvature

Ωβ
αab = ϖβ

αb,a −ϖβ
αa,b +ϖγ

αbϖ
β
γa −ϖγ

αaϖ
β
γb − Cc

abϖ
β
αc (2.51)

transforms homogeneously

Ω′β
αab = Oβ

γ(O
−1)δαΩ

γ
δab . (2.52)

For fields Φα
β transforming as tensors under normal frame rotations

Φ′α
β = Oα

γ(O
−1)δβΦ

γ
δ , (2.53)

we can define a new worldsheet covariant derivative ! with respect to ϖα
βa as

Φα
β!a ≡ Φα

β|a +ϖα
γaΦ

γ
β −ϖγ

βaΦ
α
γ , (2.54)

where | differentiation is meant on tangential indices a, b, . . . that Φα
β may pos-

sess.
The parallel and normal components of the metric tensor are seen to be co-
variantly flat with respect to ! differentiation

gab!c = gαβ!c = 0 , (2.55)

since gab!c = gab|c = 0 and gαβ!c = gαβ|c−ϖγ
βcgγα−ϖγ

αcgβγ = gαβ,c−Γγ
βcgγα−

Γγ
acgβγ = gβα,c − ΓA

βcgAα − ΓA
αcgβA = gαβ;c = 0.
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If Rµ
νκλ and Rµ

νκλ are the curvature tensors of gµν and hµν respectively, then
the following geometric relations hold:
Gauss-Codazzi

Rabcd = Rabcd +Kα
adKαbc −Kα

acKαbd , (2.56)

Codazzi-Mainardi
Rα

abc = Kα
ab!c −Kα

ac!b , (2.57)

Ricci
Rβ

αab = Ωβ
αab +Kαa

cKβ
bc −Kαb

cKβ
ac . (2.58)

These can be derived by computing the commutators [▽a,▽b]ec and [▽a,▽b]nα.
Of course, as usually, indices flip from coordinate to tangent/normal by mul-
tiplying with the appropriate vierbein

Rabcd = Rµνκλea
µeb

νec
κed

λ , Rαabc = Rµνκλnα
µea

νeb
κec

λ ,

Rβαab = Rµνκλnβ
µnα

νea
κeb

λ . (2.59)

For codimension-1, the normal distribution is trivial and the Ricci identity
reduces to a tautology.
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Chapter 3

Brane action with
Gauss-Bonnet in the bulk

We consider the total brane-bulk action

S = Sgr + Smat + Sc

=
1

2κ2
6

∫
M

d6x
√

−|g|
{
R− 2Λ6 + aGB

(
RµνκλRµνκλ − 4RµνRµν +R2

)}
+

∫
Σ

d4x
√

−|h|( r2c
2κ2

6

R− λ) +

∫
M

d6xLmat +

∫
Σ

d4xLmat

+

∫
Σ

d4x
√
−|h|

{
λij(hij − gµνx

µ
,ix

ν
,j) + λαinαµx

µ
,i + λαβ(gµνn

µ
αn

ν
β − δαβ)

}
(3.1)

where gµν (µ, ν = 1, . . . , 6) is the bulk metric tensor hµν is the induced metric
on the brane R and R are the bulk and brane Ricci scalars, λ is the brane
tension and rc is the induced gravity crossover length scale and Lmat , Lmat

are the matter Langrangians of the bulk and of the brane respectively. It is
convenient to consider nα

µ (α = 1, 2) arbitrary unit normal vectors normal to
the brane and to each other (of course, in the next chapter where we consider
the axially symmetric ansatz for the bulk metric g they are surface forming).
The relation of hij (i, j = 1, . . . , 4) to gµν and the orthonormality of nα

µ imply
the following constraints

hij = gµνx
µ
,ix

ν
,j (3.2)

gµνnα
µnβ

ν = δαβ (3.3)
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nαµx
µ
,i = 0 . (3.4)

It is obvious that the independent variables for the bulk/brane system are the
bulk metric gµν and the embedding fields xµ. Then, the induced metric and the
normal space are uniquely determined. Besides, the variation δgµν of the bulk
metric gµν away from the brane which is clear and gives the bulk equations
of motion, in our consideration the interaction of the brane with the bulk is
obtained by varying the action with respect to δxµ and therefore at the brane
position the variation

δgµν = −£δxgµν = −(gµν,λδx
λ + gµλδx

λ
,ν + gνλδx

λ
,µ) . (3.5)

Furthermore, the variation δhij, δnα
µ at the brane location could also be ex-

pressed in terms of δxµ. However, we find it more convenient to vary hij and
nα

µ independently by including corresponding Langrange multipliers λij, λαi,
λαβ and this is the meaning of the third line in the above action. Henceforth,
we will vary this action with respect to nα

µ, hij and gµν , the last one both at
the brane location and in the bulk. To proceed with these variations at the
brane location we will specialize in the next chapter on the axially symmetric
case for which we will derive explicitly the equations of motion for the brane
where the impact from the bulk dynamics (back-reaction) will become mani-
fest.
Variation with respect to the induced metric hij gives

δhS =

∫
Σ

d4x
√

−|h|

{
λij +

1

2
(T ij − λhij)− r2c

2κ2
6

Gij

}
δhij . (3.6)

Variation with respect to nαµ gives

δnS =

∫
Σ

d4x
√

−|h|

{
λαixµ

,i + 2λαβnβ
µ

}
δnαµ . (3.7)

Using the standard relations:

δRλ
µνκ = (δΓλ

µκ);ν − (δΓλ
µν);κ (3.8)

δRµκ = (δΓλ
µκ);λ − (δΓλ

µλ);κ (3.9)

δgΓ
λ
µν =

1

2
gλρ{ (δgρµ);ν + (δgρν);µ − (δgµν);ρ} (3.10)

δ
√
−|g| = 1

2

√
−|g|gµνδgµν , (3.11)
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variation with respect to the metric gµν gives

δgS=
1

2κ2
6

∫
M

d6x
√

−|g|

{
− Gτρ − Λ6g

τρ + aGB[g
τρ(

1

2
R2 +

1

2
RµνκλRµνκλ

− 2RµνRµν)− 2RRτρ − 2RρνκλRτ
νκλ + 4RρµτκRµκ + 4RτλRρ

λ]

}
δgτρ

+
1

κ2
6

∫
M

d6x
√

−|g|1
2
T τρδgτρ

+
1

2κ2
6

∫
M

d6x
√
−|g|

{
2gτ [κgλ]ρ(δgρκ);λτ + 4aGB

(
Rτρκλ + 2Rρ[κgλ]τ − 2Rτ [κgλ]ρ

+Rgτ [κgλ]ρ
)
(δgρκ);λτ

}
+

∫
Σ

d4x
√

−|h|

{
λαβnα

µnβ
ν − λijxµ

,ix
ν
;b

}
δgµν . (3.12)

The first three lines of (3.12) give the well known bulk Einstein-Gauss-Bonnet
equations of motion

Gµν −
aGB

2

(
RκλστRκλστ − 4RκλRκλ +R2

)
gµν + 2aGB

(
RRµν − 2RµκRν

κ

−2RµνκλRκλ +RµκλσRν
κλσ
)
= κ2

6T µν − Λ6g
µν , (3.13)

where we are mainly interested (chapter 6) in a bulk with a pure cosmological
constant but for the moment we leave T µν non-vanishing.
The tricky point however is how to handle the contribution on the brane from
the various 6-dimensional terms in (3.12) and this will be done by focusing
from now on to the axially symmetric case. As we will see, not all variations
(3.6), (3.7), (3.12) are independent since contributions from (3.12) will modify
the variation (3.6).
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Chapter 4

Axial symmetry

For simplicity, we assume the axially symmetric bulk ansatz

ds26 = dr2 + L2(x, r)dθ2 + hij(x, r)dx
idxj , (4.1)

where hij(x, 0) is the braneworld metric which is assumed to be regular ev-
erywhere with the possible exception of isolated singular points and θ has the
standard periodicity 2π. The defect is assumed to have the conical singularity
structure with

L(x, r) = rL′(x) +
1

2
r2[L′′(x)] +

1

3!
r3[L′′′(x)] . . .

= rβ1(x) +
1

2
r2β2(x) +

1

6
r3β3(x) + . . . , (4.2)

where a ′ denotes differentiation with respect to r, L′(x) ≡ L′(x, 0+) and
[L′′(x)] denotes the regular part of the general L′′(x) ≡ L′′(x, 0+), which con-
tains also distributional terms.
We consider two characteristic cases :
(i) pure cone, with

L′(x, 0) = 1

L′(x, 0+) = β1(x)

h′
ij(x, 0) = h′

ij(x, 0
+) (4.3)
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where the extrinsic curvature is continuous, and
(ii) cone plus extrinsic curvature discontinuity, with

L′(x, 0) = 1

L′(x, 0+) = β1(x)

h′
ij(x, 0) = 0 ̸= h′

µν(x, 0
+) . (4.4)

Both cases can be described by the conditions

L′(x, 0) = 1

L′(x, 0+) = β1(x)

h′
µν(x, 0) = ηh

′

µν(x, 0
+) (4.5)

where η = 1, 0 for cases (i), (ii) respectively.
We now obtain the general L′′(x) at the position of the brane as

L′′(x) = −
(
1− β1(x)

)
δ(r) + [L′′(x)] . (4.6)

We also get
h′′
ij(x) =

(
1− η

)
h′
ij(x)δ(r) + [h′′

ij(x)] , (4.7)

or in terms of the extrinsic curvature coefficients

K ′
ij(x) =

(
1− η

)
Kij(x)δ(r) + [K ′

ij(x)] . (4.8)

The non-vanishing components of the Christoffel symbols, Riemann tensors,
Ricci tensors and Ricci scalar of the metric (4.1), after a long calculation are
found to be:

Γr
θθ = −LL′ , Γr

ij = −1

2
h′
ij , Γ

θ
rθ =

L′

L
, Γθ

θi =
L,i

L
, Γi

θθ = −LhikL,k

Γi
rj =

1

2
hikh′

kj , Γ
i
jk =

1

2
hiµ(hµj,k + hµk,j + hjk,µ) , (4.9)

Rrirj = −Kij +Kk
iKjk , Rθiθj = −LL|i|j + L

′
Kij , Rrθrθ = −LL′′

Rijkl = Rijkl +KikKjl −KikKjl , Rθrθi = L(L|hK
h
i − L′

|i)

Rribk = Kij|k −Kak|j , (4.10)
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Rrr = −L′′

L
−K ′ −KijKij , Rθθ = −LL′′ − L( L+ L

′
K) ,

Rri =
L|j

L
Kj

i −
L′

|i

L
+Kj

i|j −K|i ,

Rij = Rij −K ′
ij + 2Kk

iKjk −KijK −
L|i|j

L
− L′

L
Kij , (4.11)

R = R− 2
L′′

L
− 2K ′ −KijKij −K2 − 2

L
( L+ L′K) . (4.12)

is the Laplacian operator of the metric hij. The non-vanishing components
of the Einstein tensor are:

Gri =
L|j

L
Kj

i −
L′

L
+Kj

i|j −K|i , (4.13)

Grr = −12R− 1

2
KjkKjk +

1

2
K2 +

L

L
+

L′

L
K , (4.14)

Gϕϕ = L2
(
− 1

2
R +K ′ +

1

2
KjkKjk +

1

2
K2
)
, (4.15)

Gij = Gij −K ′
ij + 2Ki

kKjk −KKij −
L|i|j

L
+

L′

L
Kij

+
1

2
hij

(
2
L′′

L
+ 2K

′
+ 4KjkKjk +K2 + 2

L′

L
K + 2

L

L

)
. (4.16)

Since we are interested in the effective equations (all possible equations holding
at the brane position), we will make an expansion of the metric gµν with respect
to r (i. e. of hij(x, r), L(x, r)), and therefore of all the quantities appearing in
the previous components of the Riemanns, the Ricci and the Einstein tensors,
and then we will take the limit r → 0. Of course the arising brane equation will
be exact and not approximate, as the expansions are used as a means to extract
the correct terms. Plugging all these terms in the integral (3.12) as well as in

the bulk equations (3.13) we obtain distributional terms with structure δ(r)
r
,

singular terms diverging as 1
r
as r → 0 (denoted as O(1

r
)), then regular terms

with finite values at r = 0 (denoted as O(1)) and finally a bunch of terms
multiplied by powers of r, which of course do not contribute to the brane
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equations since they vanish for r → 0. More precisely, two groups of equations
at the brane will arise from the bulk equations (3.13), the first coming from the
1
r
terms which have to cancel independently (assuming that the bulk matter

Tµν is regular at r = 0, as e. g. a bulk cosmological constant), and the second
from the regular terms. On the other hand, only the distributional terms
δ(r)
r

will contribute in (3.12), providing the new matching conditions. There
are also milder distributional terms of the form δ(r) which however do not
contribute.

So, the above mentioned expansions are the following:

gµν(x, r) = gµν(x) + rg′µν(x) +
1

2
r2g′′µν + . . . , (4.17)

hij(x, r) = hij(x) + rh′
ij(x) +

1

2
r2[h′′

ij(x)] + . . .

= hij(x) + 2rKij(x) + r2Cij(x) + . . . (4.18)

where 2Cij(x) = [h′′
ij(x)] = 2K ′

ij.

hij
′(x, r) = h′

ij(x) + r[h′′
ij(x)] + . . .

= 2Kij(x) + 2rK′ij(x)+...

= 2Kij(x) + 2rCij + . . . , (4.19)

hij(x, r) = hij(x) + rh′ij(x) + . . .

= hij(x)− 2rK ij(x) + . . . , (4.20)

h′ij(x, r) = h′ij(x) + rρij(x) + . . .

= −2Kij(x) + r(8Kik(x)Kj
k(x)− 2Cij(x)) + . . . , (4.21)

Kij(x, r) = Kij(x) + r[K ′
ij](x) + . . .

= Kij(x) + rCij(x) + . . . , (4.22)
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Kij(x, r) = Kij(x) + r(Cij(x)− 2Kik(x)Kj
k(x) + . . . , (4.23)

Ki
j(x, r) = Ki

j(x) + r(Ci
j(x)− 2Kik(x)Kkj(x)) + . . . , (4.24)

Γi
jk(x, r) = Γi

jk(x) + rΓ′i
jk(x) + . . .

= Γi
jk(x) + r(Ki

j|k(x) +Ki
k|j(x)−Kjk|

i(x)) + . . . , (4.25)

Γr
ij(x, r) = −1

2
h′
ij(x, r) = −Kij(x, r) = −Kij(x)− rCij(x) + . . . , (4.26)

L,i(x, r)

L(x, r)
=

β1,i(x)

β1(x)
+ r
(β2,i(x)

2β(x)
− β2(x)β1,i(x)

2β2
1(x)

)
+ . . . , (4.27)

L′
,i(x, r)

L(x, r)
=

1

r

β1,i(x)

β1(x)
+

1

β1(x)

(
β2,i(x)−

β1,i(x)β2(x)

2β1(x)

)
− r

β2,i(x)β2(x)

2β2
1(x)

+ . . . ,

(4.28)
L′(x, r)

L(x, r)
=

1

r
+ r

β2(x)

2β1(x)
+ . . . , (4.29)

L,i,j(x, r)

L(x, r)
=

β1,i,j(x)

β1(x)
+ r

1

β1(x)

(
β2,i,j(x)

1

2
− β2(x)

2β1(x)
β1,i,j(x)

)
+ . . . (4.30)

L(x, r)

L(x, r
=

L(x)

L(x)
+

1

β1(x)

(
β(x)

1

2
− β2(x)

2β1(x)
β(x)

)
+ . . . , (4.31)

[L′′(x, r)]

L(x, r)
=

1

r

β2(x)

β1(x)
− β2

2(x)

2β1(x)
+ β3 +O(r) , (4.32)

L′(x, r)

L(x, r)
f(x, r) =

1

r
f(x) +

β2(x)

2β1(x)
f(x) + f ′(x) + . . . (4.33)

where f(x, r) is any scalar function.
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Chapter 5

Matching conditions

We will find here the matching conditions of the brane for the axially sym-
metric six-dimensional geometry. After the indices µ, ν in (3.12) are split into
parallel i, j indices and normal ones, and taking into account the expansion
described in chapter 4, we obtain regular terms, mild distributional terms δ(r)

and essential distributional terms δ(r)
r
. Because of the axial symmetry, the

angular dependence in the integral is trivially extracted out. The radial r
integration is performed from 0 to ϵ in the limit ϵ → 0. For smooth δgµν
variation, the regular and the δ(r) terms do not contribute as it is seen for the
following two indicate terms∫

M

d6x
√

−|g|Kijδh
ij|brane =

∫
M

√
−|h|dθdrL(x, r)d4x1

2
h′
ij(x, r)δh

ij = 0

(5.1)

∫
M

d6x
√

−|g|K ′
ijδh

ij|brane =
∫
M

√
−|h|dθdrL(x, r)d4x

{(
1− η

)
Kij(x)δ(r)

+ [K ′
ij(x, r)]δh

ij

}
= 0 . (5.2)

It is obvious that h′
ij(x, r), [K

′
ij(x, r)] are power series in r and therefore the

radial integration vanishes as ϵ → 0. Also, the distributional term vanishes
due to rδ(r) = 0. The structures from chapter 4 that contribute in the integral
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(3.112) are only
L′′

L
= −(1− β1(x))

δ(r)

β1(x)r
, (5.3)

Kij
′

L
= Kij(x)

δ(r)

β1(x)r
, (5.4)

L′

L
Kij

′(x) = (1− η)Kij(x)
δ(r)

r
, (5.5)

for example the term∫
M

d6x
√

−|g|L
′′

L
hijδh

ij|brane = −
∫
M

dθdrL(x, r)d4x
√

−|h|(1− β1(x))

L(x, r)
δ(r)hijδh

ij

= −2π

∫
Σ

d4x
√
−|h|(1− β1(x))hij(x)δh

ij (5.6)

does contribute. The x-dependence of the quantities is suppressed from now
on for notational convenience. The result for the total variation of the action
is

δS |brane= δnS + δhS + δgS |brane=
∫
Σ

d4x
√

−|h|
(
λαixµ

,i + 2λαβnβ
µ
)
δnαµ

+

∫
Σ

d4x
√

−|h|

{
λij +

1

2
(T ij − λhij)− r2c

2κ2
6

Gij +
π

κ2
6

(1− β1(x))h
ij

+
4παGB

κ2
6

Kij

}
δhij +

∫
Σ

d4x
√
−|h|

(
λαβnα

µnβ
ν − λijxµ

,ix
ν
,j

)
δgµν . (5.7)

Since δnαµ, δhij, are considered as independent, minimizing the action δS |brane=
0 gives the equations

λαixµ
,i + 2λαβnβ

µ = 0 , (5.8)

λij +
1

2
(T ij −λhij)− r2c

2κ2
6

Gij +
π

κ2
6

(1−β1)h
ij +

4παGB(η − β1)

κ2
6

Kij = 0 , (5.9)∫
Σ

d4x
√
−|h|

(
λαβnα

µnβ
ν − λijxµ

,ix
ν
;j

)
δgµν = 0 . (5.10)

Since the vectors xµ
,i and nα

µ are normal (independent), eq.(5.8) implies

λαi = 0 = λαβ . (5.11)
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The non-conventional δxµ style of variation discussed before is done through
δgµν = −£δxgµν (eq. 3.5), thus eq. (5.10), using eq. (5.11) takes the form∫

Σ

d4x
√
−|h|λijxµ

,ix
ν
,j

(
gµν,λδx

λ + gµλδx
λ
,ν + gνλδx

λ
,µ

)
. (5.12)

After an integration by parts and imposing δxµ|∂Σ = 0 (5.12) becomes

2

∫
Σ

d4x
√
−|h|gµν

(
λij

|jx
µ
,i − λijKα

ijnα
µ

)
δxν = 0 , (5.13)

where use of the equation (2.42) was made.
Due to the arbitrariness of δxµ, the last equation is equivalent to

λij
|jx

µ
,i − λijKα

ijnα
µ = 0 . (5.14)

It follows that
λij

|j = 0 (5.15)

and
λijKα

ij = 0 , (5.16)

where λij is given by (5.9). Finally, by differentiating eq.(5.9) and using
eq.(5.15) we get

T ij
|j =

2π

κ2
6

β1,j(h
ij − 4aGBG

ij)− 8πaGB

κ2
6

{
(η − β1)

(
− 1

2
hij

(
KαKα −KαklKαkl

)
+KαKα

ij −KαmiKα
j
m

)}
|j

, (5.17)

which is the first matching condition and Kα = Kαi
i. This equation expresses

a non-conservation equation of the brane energy-momentum tensor, where this
energy exchange between the brane and the bulk is due to the variability along
the brane of both the deficit angle and its intrinsic and extrinsic geometry. In
the absence of the Gauss-Bonnet term, it reduces to the non-conservation
equation found in [20], where the exchange is only due to the deficit angle.
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Eq.(5.16) becomes{
−1

2
hij
(
KβKβ −KβklKβkl

)
+KβKij

β −KβkiKβ
j
k

− 1− β1

η − β1

(
1 +

r2c
8παGB(1− β1)

)
Gij +

κ2
6

8παGB[η − β1]
T ij

− κ2
6λ− 2π(1− β1)

8παGB(η − β1)
hij

}
Kα

ij = 0 , (5.18)

which is the second matching condition. Roughly speaking, this is a cubic
equation in the extrinsic curvature, contrary to the matching condition dis-
cussed in [8], [18] which is quadratic. In the absence of the Gauss-Bonnet
term, it reduces to the matching condition of [20], which is linear in extrin-
sic curvature; additionally, the special case of a probe brane of tension λ (
Tij = 0, rc = 0) reduces the equation to the Nambu-Goto equation of motion
(2.47) as expected.

We will now examine the singular O(1
r
) terms of the bulk equations (3.13)

and see what are the corresponding induced equations on the brane. From the
ri components we get the equation

Rαl
ilKα −Rα

jilKα
kl −Rαl

dlKαi
d =

β1|k(x)

β1(x)

(
− 1

4aGB

δki +Gi
k −KαKαi

k

+Kαj
i Kαk

j − 1

2

(
KαklKαkl −KαKα

)
δki

)
. (5.19)

Differentiating this equation and using the Codazzi-Mainardi identity, we can
get another form for the mathcing condition (5.17)

T ij
|j = η

β1|j

β1

8πaGB

κ2
6

{
1

4aGB

hij − 1

2
hij
(
KαKα −KαklKαkl

)
−Gij

+ KαKα
ij −Kα

ikKαk
j

}
. (5.20)
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From the O(1
r
) of the rr components we get{

1

4aGB

hij −Gij −Kβl
iKβjl+KβKβij −

1

2
hij

(
KβKβ −KβlmKβlm

)}
Kαij = 0 .

(5.21)
Combining this equation with the matching condition (5.18), we see that (5.21)
is equivalent to the equation(

σ1Gij + σ2hij − Tij

)
Kαij = 0 , (5.22)

where

σ1 =
r2c
κ2
6

+
8πaGB(1− η)

κ2
6

, σ2 = λ− 2π(1− η)

κ2
6

. (5.23)

The equations coming from the O(1
r
) terms of the ij components are more

complicated and we do not give their general expression here. Similarly, the
general form of the regular equations is even more complicated. For the case
of cosmology we will write all these equations and check their consistency.
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Chapter 6

Cosmology

Consider the bulk cosmological metric

ds26 = dr2 + L2(x, r)dθ2 − n2(t, r)dt2 + a2(t, r)γîĵ(x)dx
îdxĵ , (6.1)

where γîĵ is a maximally symmetric 3-dimensional metric characterised by its

spatial curvature k = −1, 0, 1 and î = 1, 2, 3. The energy momentum tensor
on the brane is assumed to be that of a perfect fluid with diagonal elements
(ρ, p, p, p). For the scalars n(t, r), a(t, r) we have the expansion

a(t, r) = a(t) + ra(t)A(t) +
1

2
r2a(t)A2(t) + . . . , (6.2)

n(t, r) = 1 + rN(t) +
1

2
r2N2(t) + . . . , (6.3)

where

A =
a′

a
, N =

n′

n
(6.4)

We also define the quantities

X = H2 +
k

a2
, Y =

Ḣ

n
+H2 , H =

ȧ

na

X = X − A2 +
1

12aGB

, Y = Y − AN +
1

12aGB

(6.5)
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and begin the same procedure followed in the previous chapter.
For this metric, the first matching condition found becomes

ρ̇+ 3nH(ρ+ p)

=
8πaGB

κ2
6

(
− 3X β̇1 −

(
η − β1

)(
6AȦ− 6nNH + 6HnA2

))
, (6.6)

while the second matching condition becomes

A3 +3A2N − 1− β1

η − β1

(
1 +

r2c
8παGB(1− β1)

)(
X(A+N) + 2Y A

)
− κ2

6

24παGB(η − β1)

(
3Ap−Nρ

)
+

κ2
6λ− 2π(1− β1)

24παGB(η − β1)

(
3A+N

)
= 0 .(6.7)

The O(1
r
) part of the rt component (5.19), takes the form

2A
(Ȧ
n
−HN + AH

)
=

β̇1

nβ1

X (6.8)

and the O(1
r
) part of the rr components, (5.21), becomes

X
(
1 +

N

A

)
+ 2Y = 0 . (6.9)

Applying the cosmological metric straightforwardly to (5.20) and (5.22), or
alternatively combining (6.6) with (6.8) and (6.7) with (6.9) we get

ρ̇+ 3nH(ρ+ p) = −η
β̇1

β1

24πaGBX
κ2
6

, (6.10)

which is a non-conservation equation for ρ, and

N = fA , (6.11)

where

f = 3
−p+ σ2 − σ1(X + 2Y )

−ρ− σ2 + 3σ1X
. (6.12)

The terms O(1
r
) of the ij components contain the tt equation

2
[a]′′

a
− β2

β1A
X − X − 1

6aGB

= 0 (6.13)
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and the îĵ one which with use of (6.7), (6.9), (6.12 ) and (6.8) becomes

[n]′′

n
+ f

[a]′′

a
− 1 + f

12aGB

− β2

Aβ1

Y + X + (
β1

nβ1

)2
X
A2

= 0 . (6.14)

The regular terms of the θθ component with use of (6.8), (6.11) and (6.12)
become

[n]′′

n
− f

[a]′′

a
−Y − 1− f

12aGB

− 1

2
(
β̇1

nβ1

)2
X
A2

− 1

12aGBX
(
κ2
6T θ

θ −Λ6−
5

12aGB

)
= 0 .

(6.15)
The three last equations (6.13), (6.14), (6.15) form an algebraic system for
[a]′′

a
, [n]′′

n
and β2

β1A
which can be also solved in terms of [A]′ and [N ]′

β2

β1A

(
1+3f

)
= −(1+f)− 3

A2
(
β̇1

nβ1

)2− 1

6aGBX 2

(
κ2
6T θ

θ −Λ6−
5

12aGB

)
, (6.16)

[A] ′(1 + 3f
)
= fX − 3

2A2
(
β̇1

nβ1

)2X − 1

12aGBX

(
κ2
6T θ

θ − Λ6 −
5

12aGB

)
+
(
1 + 3f

)( 1

12aGB

− A2
)
, (6.17)

[N ]′
(
1 + 3f

)
= (

β̇1

nβ1

)2
X
2A2

+
1 + 2f

12aGBX

(
κ2
6T θ

θ − Λ6 −
5

12aGB

+
(
1 + 3f

)( 1

12aGB

−N2
)
+

−f2 − 4f − 1

2
X . (6.18)

From these equations we take also

f [A]′ − [N ]′ =
f − 1

12aGB

+ f
(
f − 1

)
[A]2 − (

β̇1

nβ1

)2
X
2A2

+
X
2

(
1 + f

)
− 1

12aGBX

(
κ2
6T θ

θ − Λ6 −
5

12aGB

)
. (6.19)
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The regular part of the rr component is

[A]′
(
X + 2Y

)
+ [N ]′X +

3[A]′ + [N ]′

12aGB

+X ′(A+N
)
+ 2AY ′ − 12A4

− 6A3N − 6AN3 + 3[A]′
(
− A2 − 2AN

)
− 3A2[N ]′ − X + Y

6aGB

−XY

+
( β̇1

β1

ṅ

n3
−

˙̇β1

β1

1

n2

)
X +

β̇1

β1

H

n

(
−X − 2Y

)
− 1

12aGB

(
κ2
6T r

r − Λ6 −
5

12aGB

)
= 0 , (6.20)

where all the quantities are at r = 0 1. Rearranging (6.14) with repeated use
of (6.18) and equation(

X +2Y +
1

4aGB

)
[A]′ +

(
X +

1

12aGB

)
[N ]′ = (

β̇1

nβ1

)2
X
2A2

(
X − 2A2

)
+

1− f

12aGB

X − 1 + f

2
X 2 − 1 + 2f 2 − 3f

2
A2X −

(
A2 + fA2 − 1

12aGB

)2

+
1

12aGB

(
κ2
6T θ

θ − Λ6 −
1

3aGB

)
(6.21)

which is proven in the appendix, we get the following useful equation

[A] ′(X + 2Y
)
+ [N ]′X +

3[A]′ + [N ]′

12aGB

− 12A4 − 6A3N − 6AN3 + 3[A]′

(
−A2 − 2AN

)
− 3A2[N ]′ = (

β̇1

nβ1

)2
X
2A2

(
X + 4a2

)
+

X
12aGB

(
1− f

)
−
(
1 + f

)X 2

2
+ A2X

(
1− f 2

)
+ 2A4

(
1 + f

)2 − 1 + f

3aGB

A2

+
1

12aGB

(
κ2
6T θ

θ − Λ6 −
5

12aGB

)
. (6.22)

Combining the previous equation, the regular part of the rr component and
differentiating the X, Y quantities from the previous equations of the algebraic
system we find

− 12A4 − 6A3N − 6AN3 +
1

12aGB

(
κ2
6T

ϕ
ϕ − κ2

6T ρ
ρ

)
= 0 . (6.23)

1The regular part of the ij components contain [A]′′, [N ]′′, β3 and therefore, these equa-
tions are not significant for the consistency of the problem
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Because we are interested in a bulk with a cosmological constant

12A4 + 6A4f + 6A4f3 = 0 . (6.24)

with solution
f = −1 (6.25)

We can eliminate the quantities N , A2, A3 from the matching condition (6.7)
using (6.8), (6.9) to get

1

6aGB

− ρ− 2σ2 + 3p

3σ1

= −1− β1

η − β1

(
1 +

r2c
8πaGB(1− β1)

)(ρ− 2σ2 + 3p

3σ1

)
+

κ2
6

24πaGB(η − β1)

(
3p+ ρ

)
− κ2

6λ− 2π(1− β1)

12πaGB(η − β1)
,

(6.26)

which with substitution of the parameters σ1, σ2 gives 0 = 0. We now focus
on the simpler and most interesting case of a spatially flat universe (k=0,
and from (6.20) and f = −1, we get a differential equation for the Hubble
parameter

Ḣ

n
+H2 − σ2

3σ1

+
ρ

6σ1

(1 + 3w) = 0 . (6.27)

Using
Ḣ

n
=

dH

da

da

dt

1

n
=

dH

da

naH

n
=

1

2

d(H2)

d(lna)
, (6.28)

rewrite the previous equations as

d(H2)

d(lna)
+ 2H2 − 2σ2

3σ1

+
ρ

3σ1

(1 + 3w) = 0 . (6.29)

We analyse the two characteristic cases η = 0, η = 1.
• case (i): η =0 .
The non-conservation equation becomes the standard conservation equation

ρ̇+ 3(p+ ρ)nH = 0 , (6.30)

which for p = wρ has the standard solution

ρ = c1a
−3(1+w) , (6.31)

with c1 an integration constant.
Substitute this result in the differential equation for the Hubble parameter
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which is integrated to

H2(a) =
σ2

3σ1

+
c1

3σ1(1 + w)

1

a3
+

c2
a2

, (6.32)

where c2 is an integration constant and the parameters σ1, σ2 now take the
values

σ1 =
r2c
κ2
6

+
8πaGB

κ2
6

σ2 = λ− 2π

κ2
6

. (6.33)

Finally

H2(a) =
κ2
6λ− 2π

3(8πaGB + r2c )
+

c1κ
2
6

3(8πaGB + r2c )a
3(1+w)

+
c2
a2

. (6.34)

The equation implies a late time modification of FLRW cosmology with an
extra term a−2, which mimics non-vanishing curvature (or cosmic string net-
works).
• case (ii): η =1 .
The non-conservation equation becomes

ρ̇+ 3nHρ(1 + w) = − β̇1

β1

24πaGB

κ2
6

(
2H2 +

Ḣ

n
+

1

6aGB

)
. (6.35)

In this case, we do not have a close system of equations on the brane due
to arbitrariness of β1, so we cannot uniquely specify the Hubble evolution.
To get an indication here, we close the system by specifying the evolution of
one quantity and solve for the remaining. For example, assuming the energy
density to have a power law ρ(a) = c4a

p, we find from (6.29)

H2(a) =
λκ2

6 − 2π

3(8πaGB + r2c )
− (1 + 3w)c4κ

2
6

3(2 + p)(8πaGB + r2c )
ap +

c3
a2

. (6.36)

Considering the three cases w = 0, 1
3
,−1 we get

• w = 0

H2(a) =
λκ2

6 − 2π

3(8πaGB + r2c )
− c4κ

2
6

3(2 + p)(8πaGB + r2c )
ap +

c3
a2

(6.37)

• w = 1
3

H2(a) =
λκ2

6 − 2π

3(8πaGB + r2c )
− 2c4κ

2
6

3(2 + p)(8πaGB + r2c )
ap +

c3
a2

(6.38)
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• w = −1

H2(a) =
λκ2

6 − 2π

3(8πaGB + r2c )
+

2c4κ
2
6

3(2 + p)(8πaGB + r2c )
ap +

c3
a2

. (6.39)

These cosmologies have to be analysed more with respect to their phenomeno-
logical implications.
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Chapter 7

Conclusion

We have adopted a non-conventional style of variation with respect to the em-
bedding fields for a six-dimensional Einstein-Gauss-Bonnet theory and derived
new matching conditions taking into account the gravitational back-reaction
of the brane to the bulk. Besides these equations there are also other equations
valid at the position of the brane, characterized as regular and singular de-
pending on the behaviour of the relevant six-dimensional terms as we approach
the brane. The energy-momentum tensor of the brane can either be conserved
or not depending on the conditions imposed on the geometry at the conical
singularity. For a cosmological metric ansatz we have shown the consistency
of the problem and derived the four-dimensional cosmological evolution. In
the case of combined cone singularity with extrinsic curvature discontinuity,
this cosmology is unique and for a spatially flat universe it gives a late-time
modification of FRW of the form a−2 (curvature-like). In the other case of
pure cone singularity, the effective equations do not form a closed system and
characteristic situations were studied with similar results. In general, one can
study further the phenomenological implications of these cosmologies. Due to
the above IR sort of modifications at the level of cosmology, we speculate that
in the spherically symmetric solutions large distance corrections of gravity will
appear. However, as usually when one works from the braneworld viewpoint,
the bulk extensions of the derived four-dimensional solutions have not been
studied and so the physical viability of the solutions is not certain.
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Chapter 8

Appendix

• The structure constants of an arbitrary basis {EA} are defined by

[EA, EB] = CC
ABEC . (8.1)

If the basis is coordinate there exist xµ such that Eµ = ∂
∂xµ , then the dual

basis is Eµ = dxµ and therefore

dEµ = d2xµ = 0 . (8.2)

Since

dEµ = −1

2
Cµ

νλE
ν ∧ Eλ ⇒ Cµ

νλ = 0 . (8.3)

Therefore if the torsion T µ
νλ = Γµ

λν − Γµ
νλ − Cµ

νλ vanishes, then in a coor-
dinate basis the Christoffel connection is symmetric in its lower indices.

• For a hypersurface, i.e. codimension-1, the projection tensor reduces to
the expression

hµν = gµν − εnµnν , (8.4)

where nµ is the unit normal and ε = g(n, n) = ±1 its sign. It projects any
vector V µ tangent to the hypersurface as hµνV

ν = gµνV
ν−εnµnνV

ν = Vµ−0 =
Vµ. Acting more than once it produces the same result as acting only once, i.e.
hµ
κh

κ
ν = (δµκ−εnµnκ)(δ

κ
ν−εnκnν) = δµν−εnµnν−εnµnν+ε2nµnν = δµν−εnµnν =

hµ
ν . Acting on two vectors V µ, W ν tangent to ϕ[Σ], the projection tensor acts

like the metric, i.e. hµνV
µW ν = gµνV

µW ν − εnµnνV
µW ν = gµνV

µW ν .
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The dual bases are EA = (ea, e0 = n), EA = (ea, e0 = εn) and the relation
EA(EB) = δAB gives

n
(
n
)
= ε . (8.5)

The index notation is simplified for the normal vector as

nα = n ⇔ nα
µ = nµ ⇔ nαµ = nµ (8.6)

and for its dual as

nα = εn ⇔ nα
µ = εnµ = εnµ ⇔ nαµ = εnµ = εnµ . (8.7)

The correspondence for the extrinsic curvature coefficients is

Kα
a
b = Kn

a
b = Ka

b (8.8)

and for the expansion tensor

Θα
µν = Θµν = nµ;ν = nν;µ . (8.9)

The known expression holds
Kab = na;b . (8.10)

• We here prove equation (2.45).
If σµ

ij ≡ ti
µ
;j+Γµ

λνti
λtj

ν , then σµ
ijtlµ+σµ

ljtiµ = ti
µ
;jtlµ+tl

µ
;jtiµ+gρλ,µtl

λtj
µti

ρ.
Since ti

µtl
νgµν = gil ⇒ ti

µ
,jtlµ + tiµtl

µ
,j + ti

µtl
νgµν,ρtj

ρ = gil,j ⇒ ti
µ
;jtlµ +

tiµtl
µ
;j + ti

µtl
νgµν,ρtj

ρ = 0.
Therefore σµ

ijtlµ + σµ
ljtiµ = 0.

Changing the indices (ijl) to (lij) and once more from (ijl) to (jli) we take
another two equations and the combination of these three equations gives
σµ

ijtlµ = 0, which is the wanted.

• The proof of eq. (6.21) is given here.
The O(1

r
) part of the rr components becomes

X + 2Y +
1

4aGB

= −fX + A2 + 2fA2. (8.11)

The expression of X gets the form

X +
1

12aGB

= X + A2 . (8.12)
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Using these and equation (6.17) we get(
X + 2Y

1

4aGB

)
[A]′ +

(
X +

1

12aGB

)
[N ]′

= −X
(
f [A]′ − [N ]′

)
+ A2

(
[N ]′ + (1 + 2f)[A]′

)
= (

β̇1

nβ1

)2
1

2A2

(
X 2 − 2XA2

)
+ X 1− f

12aGB

− X 2

2
(1 + f)− A2X 1 + 2f 2 − 3f

2

−
(
A2(1+f)− 1

12aGB

)2
+

1

144aGB

+
1

12aGB

(
κ2
6T θ

θ −Λ6−
5

12aGB

)
= (

β̇1

nβ1

)2
1

2A2
X
(
X − 2A2

)
+

1− f

12aGB

X − 1 + f

2
X 2 − 1 + 2f 2 − 3f

2
A2X

−
(
(1 + f)A2 − 1

12aGB

)2
+

1

12aGB

(
κ2
6T θ

θ − Λ6 −
1

3aGB

)
. (8.13)
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