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Abstract

Multiple Access Channel (MAC) is a simple model for noisy many-to-one commu-
nication that is found in several applications, such as the uplink of a cellular system
or medium access in a local area network. In this work we consider the practical
aspects of the implementation of a Gaussian MAC. Specifically, we present several
known results and techniques that are used on multiple access scenarios. The po-
tential of uniform discrete inputs on a multiterminal environment with Gaussian
noise is demonstrated. We give proof about the optimality of these inputs in terms
of sum rate and highlight the duality between this problem and the optimal point-
to-point transmission over a Gaussian channel using linear coding. The second
part of this thesis is concerned with the construction of channel codes that achieve
the rates that are previously produced. Encoding and decoding algorithms are
analytically presented and experimental results are simulated.





Περίληψη

Το Κανάλι Πολλαπλών Προσβάσεων (ΚΠΠ) είναι ένα απλό μοντέλο για την θορυ-

βώδη επικοινωνία πολλών χρηστών προς ένα που συναντάτε σε πολλές εφαρμογές,

όπως το uplink ενός κυψελοειδούς συστήματος ή το medium access σε ένα τοπικό
δίκτυο. Σε αυτή την εργασία εξετάζουμε τις πρακτικές πτυχές της εφαρμογής ενός

Γκαουσιανού ΚΠΠ. Συγκεκριμένα, παρουσιάζουμε διάφορα γνωστά αποτελέσματα και

τεχνικές που χρησιμοποιούνται σε σενάρια πολλαπλής πρόσβασης. Αναδεικνύεται η

αξία των ομοιόμορφων διακριτών εισόδων σε ένα περιβάλλον με πολλούς χρήστες

και Γκαουσιανό θόρυβο. Παρέχουμε απόδείξεις σχετικά με τη βελτιστότητα αυτών

των εισόδων ως προς τον συνολικό ρυθμό μετάδοσης και τονίζουμε τη δυαδικότητα

μεταξύ αυτού του προβλήματος και της βέλτιστης μετάδοσης σημείου - προς - σημεί-

ο σε ένα Γκαουσιανό κανάλι με την χρήση γραμμικής κωδικοποιήσης. Το δεύτερο

μέρος αυτής της εργασίας ασχολείται με την κατασκευή κωδίκων που επιτυγχάνουν

τους ρυθμούς μετάδοσης που παρήχθησαν προηγουμένως. Οι αλγόριθμοι κωδικοποίη-

σης και αποκωδικοποίησης παρουσιάζονται αναλυτικά και προσομοιώνται πειραματικά

αποτελέσματα.
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Chapter 1

Introduction

In this chapter we introduce the basic theories and research fields behind this
thesis. The fundamental preliminary notions that are used throughout this work
are presented.

1.1 Network Information Theory

Network information theory studies the optimal flow of information through net-
works, that is the communication in multi-user scenarios in contrast to the original
information theory that studies point-to-point schemes. It aims to establish the
fundamental limits and the coding schemes that achieve these limits by extending
the fundamental theorems of Shannon [1]. Even though the theory is far from
complete, many elegant results and techniques have been developed over the past
45 years with a potential to be applied in real-world networks.

The first paper on network information theory was on the two-way channel
by Shannon himself [2]. This was followed the next decade by several papers
on multi-user schemes such as the work of Cover on the broadcast channel, the
multiple access channel by Ahlswede and Liao, and the distributeted lossless com-
pression by Slepian and Wolf [3]. These results ignited the research in this field
from the mid 1970s to the early 1980s with many new results and techniques de-
veloped. In spite of this early interest, many problems remained open and there
was not any major research happening from the mid 1980s to the mid 1990s,
with a lot of researchers altering their focus to other areas. The mid 1990s were
a turning point for communication theorists and practitioners. The flourishing
of wireless communications and the Internet was supported by advancements in
semiconductor technology, channel and source coding, signal processing, and com-
puter science. Since then the interest in the field is revived and in addition to the
old open problems, new approaches, models, and concepts have been proposed.
There are several techniques developed in network information theory that are
used in real-world networks such as network coding and successive interference
cancellation.

1



2 CHAPTER 1. INTRODUCTION

1.2 Coding Theory

Coding theory provides the mathematical tools used to construct codes for error
correction, compression, and cryptography. Despite the fact that it is an older area
compared to information theory it should not be considered as a discrete theory.
The main reason is that before the seminal paper of Shannon the results were not
produced in relevance to the fundamental limits and the codes were neither created
nor benchmarked with the appropriate criteria in mind. The practice of designing
codes without the use of Shannon’s information measurements exists even today
and some of the state-of-the-art channel codes, such as Turbo codes, are meant to
“approach” and not “achieve” the theoretical limits.

Research interest in coding followed a similar path to network information
theory. The defining of information theory limits challenged the theorist for the
first 20 years to invent codes that achieve the “capacity” of the a given channel.
Two of the most prominent achievements of this period were the Convolutional
codes and the Viterbi algorithm, which was used to optimally decode these codes.
Most of the early space missions, such as the Voyager program, used these com-
munication schemes. The years that followed were characterised by a decreasing
interest from the research community until the mid 1990s, when Turbo codes were
invented and performed incredibly better than the state-of-the-art at the time.
A few years later, Low-density parity-check (LDPC) codes were rediscovered and
studied again, since they were impractical back in the 1960s, when they were first
invented by Gallagher. The most recent milestone in the progress of the field is the
invention of Polar codes by Arikan in the late 2000s, which were the first provably
capacity-achieving codes.

This thesis focuses on a specific type channel codes, namely linear block codes.
Linear block codes encode information in blocks and have the property of linearity,
that is the encoding procedure can be executed by a linear transformation over a
Galois Field GF (q),

c = uG (1.1)

where q is the cardinality of the used alphabet, c is the 1×N produced codeword,
u is the 1 × K information vector, and G is the K × N Generator matrix. The
decoding is equivalent to the solution of the following linear system,

c = uG+ z (1.2)

where z is the 1×N noise vector. An important aspect of linear block codes is that
they are appropriate for symmetric channels, that are the channels that the use of
uniformly distributed inputs is essential for optimal transmission rates over them.
For this work we are particularly attracted to the capacity-achieving Polar codes,
since they achieve the theoretical transmission rates with absolute certainty.
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1.3 Preliminaries

1.3.1 Random Variables

The transmitted signals are simulated with equivalent random variables. We are
particularly interested in two classes of continuous probability distributions for our
analysis. The first one the Normal distribution also known as Gaussian distribution
N (µ, σ2), where µ is the mean value and σ2 is the variance. The probability density
function of this distribution is the following,

f(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (1.3)

Throughout this work we assume that the noise is normally distributed and in
some cases the inputs of the given channel.

The second important continuous probability distributions is the Uniform dis-
tribution U(−a, a), where a defines the support −a ≥ x ≥ a. The probability
density function is

f(x|a) =

{
1
2a , −a ≥ x ≥ a
0, otherwise.

(1.4)

Clearly, the mean value of this distribution is 0. The variance is

σ2 =
a2

3
. (1.5)

Variance is an important metric since in the case of zero-mean distributions this
value is equivalent to the power of the random variable. In the following chapters
we use the comparable notation that uses the variance instead of the support,
U(−
√

3σ2,
√

3σ2).

1.3.2 Entropy

Entropy is a measurement of uncertainty as described in [1]. Let a discrete random
variable X with alphabet X and probability mass function p(x) = Pr{X = x}.
The entropy H(X) is defined as,

H(X) = −
∑
x∈X

p(x) log p(x). (1.6)

The base of the logarithm determines the unit of measurement and it is usually 2,
i.e. the entropy is measured in bits. Based on this definition it is derived that

H(X) ≥ 0. (1.7)

Another important formula which combines conditional and joint entropies is the
chain rule. Specifically,

H(Y |X) = H(X,Y )−H(X). (1.8)
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1.3.3 Differential Entropy

A similar measurement to entropy but not exactly equivalent is the differential
entropy. It is the straightforward conversion of (1.6), which is defined for discrete
random variables, to the equivalent formula for the continuous distributions. Let
X a continuous random variable, then

h(X) = −
∫
p(x) log p(x)dx. (1.9)

Chain rule remains relevant, however differential entropy does not retain, in gen-
eral, many properties of entropy that make it a useful measurement of uncertainty.
In particular, it is not invariant under a change of variables and can become nega-
tive. An adjustment to Shannon’s definition for differential entropy was proposed
by Jaynes in [4] called limiting density of discrete points. Despite these defects in
the original definition of differential entropy, this measurement remains extremely
important and works as it should in cases where differential entropies are compared
as in the following section 1.3.4.

At this point we give the entropies of the two discussed continuous distributions
in 1.3.1. The differential entropy of a random variable X ∼ N (µ, σ2) is

h(X) =
1

2
log(2πeσ2). (1.10)

The differential entropy of a random variable X ∼ U(−
√

3σ2,
√

3σ2) is

h(X) =
1

2
log(12σ2). (1.11)

1.3.4 Mutual Information

Mutual information is a measurement of dependence between two random vari-
ables, or in other words, the information that holds one random variable about
the other. The following results are exactly similar for discrete and continuous
random variables alike. We present the discrete random variables case. Let two
discrete random variables X and Y with joint probability mass function p(x, y)
and marginal probability functions p(x) and p(y), then

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.12)

Some of the most useful mutual information identities are the following,

I(X;Y ) = I(Y ;X)

= H(Y )−H(Y |X)

= H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y ).

(1.13)
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H(Y|X)H(X|Y) I(X;Y)

H(X,Y)

H(X) H(Y)

Figure 1.1: The relationship between entropy and mutual information.

Figure 1.2: The additive white Gaussian noise channel.

In Figure 1.1 the relationship between entropy and mutual information is presented
with a Venn diagram.

Based on the aforementioned results, Shannon gave the definition of Channel
Capacity in [1], which is the maximum achievable transmission rate.

Theorem 1 (Channel Coding Theorem). The capacity of the discrete memoryless
channel p(y|x) is given by the information capacity formula

C = max
p(x)

I(X;Y ).

At this point we present the discrete-time additive white Gaussian noise chan-
nel as depicted in Figure 1.2, since it is one of the most important models that
simulate real-world applications and its capacity is single-letter characterized and
used throughout this thesis. The output of the channel which corresponds to input
X is

Y = gX + Z, (1.14)

where g is the channel gain and Z ∼ N (0, σ2Z) is the noise. For the capacity
characterization of this channel we use the equivalent to Theorem 1 for continuous
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signals with input cost. For any X ∼ F(x) with E(X2) = σ2X ,

I(X;Y ) = H(Y )−H(Y |X)

= H(X + Z)−H(X + Z|X)

= H(X + Z)−H(Z)

(a)
=

1

2
log(2πe(σ2X + σ2Z))− 1

2
log(2πeσ2Z)

=
1

2
log

(
1 +

σ2X
σ2Z

)

= C

(
σ2X
σ2Z

)
= C(S),

(1.15)

where S is the signal-to-noise ratio and (a) follows from the fact that the maxi-
mum entropy distribution with support in (−∞,∞), mean value E(X) = a1, and
E(X2) = a2 is N (a1, a2 − a21) [5].



Chapter 2

Gaussian Multiple Access
Channel

We consider the practical aspects of the implementation of the Gaussian Multiple
Access Channel. We present the capacity region of this channel and results on the
use of uniform inputs with linear codes. Additionally, the dual problem of optimal
point-to-point Gaussian coding is revealed.

2.1 Capacity of the Gaussian MAC

The majority of classical network information theory problems remain open. De-
spite this fact, multiple access channels are well understood. We consider the
channel depicted in Figure 2.1, where X1 and X2 are the inputs, g1, g2 are the
gains of each user and Z is the additive white Gaussian noise. We assume, with-
out loss of generality, that the variance of the noise is equal to 1. Hence, the
signal-to-noise ratios are defined as follows.

S1 =g1P

S2 =g2P
(2.1)

Theorem 2 The capacity region of the two-user Gaussian MAC is the set of rate
pairs (R1, R2) such that

R1 ≤C(S1)

R2 ≤C(S2)

R1 +R2 ≤C(S1 + S2)

where C(x) is the Gaussian capacity function. [3]

7
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Figure 2.1: Gaussian multiple access channel.

Figure 2.2: Capacity of the two-user Gaussian MAC.

It is notable that in the case of Gaussian MAC a simple inner and outer bound
coincide and define the capacity of the channel as in Figure 2.2. This inner bound
is obtained by using successive cancellation decoding and the outter bound is the
capacity of the point-to-point Gaussian channel when SNR is S1 + S2.

In the case of k-sender Gaussian MAC the aforementioned results are general-
ized in a straightforward way [3]. Let the received SNRs Sj for j ∈ [1 : k], then
the capacity region is the set of rate tuples such that

∑
j∈J

Rj ≤ C

(∑
j∈J

Sj

)
for every J ⊆ [1 : k]. (2.2)

2.2 Common coding schemes

We demonstrate practical schemes that use point-to-point Gaussian channel codes.
We further show that such codes, when used with successive cancellation decoding
and time sharing, can achieve the entire capacity region.
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2.2.1 Treating other codeword as noise

In this scheme, each message is decoded by treating the other message as noise.
This scheme achieves the set of rate pairs (R1, R2) such that,

R1 ≤C
(

S1
S2 + 1

)
,

R2 ≤C
(

S2
S1 + 1

)
.

(2.3)

2.2.2 Time-division multiple access

A naive time-division scheme achieves the set of rate pairs (R1, R2) such that,

R1 ≤aC(S1),

R2 ≤āC(S2).
(2.4)

for some a ∈ [0, 1] and ā = 1− a.

Note that, despite the fact that the method of treating other codeword as noise
is not close to capacity, in low SNRs it performs better than time-division multiple
access.

2.2.3 Time division with power control

Note that the average power used by the senders in time-division multiple access
is strictly lower than the average power constraint P for a ∈ (0, 1). If the senders
are allowed to use higher power in each transmission with the preservation of
the average power P , the transmission rates are strictly greater than naive time-
division multiple access scheme. This scheme achieves the set of rate pairs (R1, R2)
such that,

R1 ≤aC
(
S1
a

)
,

R2 ≤āC
(
S2
ā

)
.

(2.5)

for some a ∈ [0, 1] and ā = 1− a.

Note that for α = S1/(S1 +S2) the sum-rate R1 +R2 of this method is equal
to the sum-capacity.

2.2.4 Successive cancellation decoding

The corner points of the Gaussian MAC capacity region can be achieved using
successive cancellation decoding as depicted in Figure 2.3.
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Figure 2.3: Successive cancellation decoding of the two-user Gaussian MAC.

• Upon receiving Y = g1X1+g2X2+Z, the reciever recovers X2 while treating
the recieved signal g1X1 from sender 1 as part of the noise. The probability
of error for this step tends to zero as the block length of the code goes to
infinity if R2 < C(S2/(S1 + 1)).

• The receiver then subtracts g2X2 from Y and decodes g1X1 + Z to recover
X1. The probability of error for this step tends to zero as the block length
of the code goes to infinity if R1 < C(S1).

The other corner point can be achieved by changing the decoding order and any
point on the R1 +R2 = C(S1 + S2) line can be achieved by time sharing between
the two corner points. Thus, any point inside the capacity region can be achieved
using good point-to-point Gaussian channel codes.

2.3 Uniform discrete input distributions

As presented above, one can achieve the capacity of Gaussian MAC by using suc-
cessive cancellation decoding and optimal Gaussian point-to-point random codes.
A straightforward Gaussian signaling is not practical in every case. Most applica-
tions trade off a part of the capacity for the use of discrete uniform inputs. Also,
state-of-the art coding solutions such as LDPC and Polar codes are linear codes,
hence, they need uniform inputs to work properly. In this section we derive a
worst-case gap to capacity when uniform inputs are used for the Gaussian MAC.

2.3.1 The case of the Gaussian point-to-point channel

One of the most important and elegant results in information theory is the single-
letter characherization of the point-to-point Gaussian channel capacity. This result
shows that the use of normal distributed inputs is essential to achieve transmition
with rate equal to capacity. Even so, most practical telecommuniacation schemes
use sub-optimal uniform distributions. Ungerboeck in [6] was the first to observe
that uniform discrete inputs perform quite close to the Gaussian ones. In [7],
Ozarow and Wyner based on this observation derived a firm lower bound on the
achievable rate for the case of N discrete uniform input levels.
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I(XN ;YN ) ≥ C − 1

2
log2

(
πe

6

)
− 1

2
log2

(
1 + a2

a2

)
(2.6)

Where C is the capacity of the channel and

a = N2−C (2.7)

We generalize this result to the multiple access channel and define a criterion
for the density of the discrete input that is used.

2.3.2 A lower bound for the the Gaussian MAC

We derive the following result by employing successive decoding and (2.6). We
assume, for a straightforward use of (2.6), that X2 follows a Gaussian distribution.
Since this assumption is not true and the Gaussian interference is the worst case
scenario when it is treated as noise, we derive a strict inequality for the sum rate.

I(X1;Y ) > C

(
S1

S2 + 1

)
− 1

2
log2

(
πe

6

)
− 1

2
log2

(
1 + a21
a21

)
(2.8)

I(X2;Y |X1) ≥ C(S2)−
1

2
log2

(
πe

6

)
− 1

2
log2

(
1 + a22
a22

)
(2.9)

For the sum rate we have inequality (2.9).

I(X1;Y ) + I(X2;Y |X1) >C(S1 + S2)− log2

(
πe

6

)
− 1

2
log2

(
1 + a21
a21

)
− 1

2
log2

(
1 + a22
a22

) (2.10)

For our analysis we assume that a = a1 = a2, without loss of generality. Hence,

I(X1;Y ) + I(X2;Y |X1) > C(S1 + S2)− log2

(
πe

6

)
− log2

(
1 + a2

a2

)
. (2.11)

Assuming that the input distributions are continuous and uniform we derive in-
equality (2.12). This is, in practice, equivalent to a dense discrete input since the
channel is noisy.

I(X1;Y ) + I(X2;Y |X1) > C(S1 + S2)− log2

(
πe

6

)
= C(S1 + S2)− 0.5092

(2.12)

This result proves that the use of uniform dense discrete distributions is asymp-
totically stable, i.e. sum capacity of the Gaussian MAC is achieved within 0.5092
bit for any signal-to-noise ratio. In practice, the sum-rate is closer to sum-capacity
in comparison to the point-to-point scenario, even in the case of two senders. This
can be observed in Figure 2.4.
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2.3.3 Input cardinality criterion

In this part, we present a formula for the choice of the input cardinality, i.e. the
number of symbols. We set a tolerance offset r in relation to the narrowest bound
when input distribution is continuous and uniform. From (2.11) and (2.12) we
have,

r = log2

(
1 + a2

a2

)
. (2.13)

As the cardinality of the input becomes larger, r goes to zero. So, for our
simulations we set a small target value for r, and by using equation (2.7), we
derive the number of input levels for each user.

Using (2.13) and (2.7), we derive the following formulas for each sender, as-
suming that the message X1 is decoded first,

N1 =

⌈√
S1 + S2 + 1

(2r − 1)(S2 + 1)

⌉
,

N2 =

⌈√
S2 + 1

2r − 1

⌉
.

(2.14)

In Figure 2.4, we present the rate region of various well studied methods in
comparison to the proposed scheme, for S1 = 10 dB, S2 = 15 dB and r = 0.3.
For those parameters, we use 12 symbols for sender 1 and 3 for sender 2, based
on the aforementioned equations (2.14). In the case where X2 is decoded first, 5
symbols are used for the first sender and 7 symbols for the other one. We observe
that uniform discrete inputs are quite competitive compared to capacity, despite
the small number of used symbols. The trade-off of using this scheme with linear
codes is very attractive compared to Gaussian codes.

2.3.4 Sum-rate optimality for the k-sender Gaussian MAC

Based on our observations, it is remarkable that in terms of sum-rate this multi-
user arrangement seems to work better than a point-to-point Gaussian channel
transmission scheme with the same aggregate power constraint.

We generalize this conjecture for the case of k-senders and prove it based on
the central limit theorem (CLT). This theorem establishes that when independent
random variables are added, their sum tends toward a normal distribution even if
the original variables themselves are not normally distributed. There are several
variants of the CLT specialized to different assumptions. We formally present the
Lyapunov CLT [8].

Theorem 3 (Lyapunov CLT) Suppose {X1, X2, ...} is a sequence of independent
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Figure 2.4: Rate regions of various methods for S1 = 10 dB, S2 = 15 dB and
r = 0.3.
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random variables, each with finite expected value µi and variance σ2i . Define

s2n =
n∑
i=1

σ2i .

If for some δ > 0, Lyapunov’s condition

lim
i→∞

1

s2+δn

n∑
i=1

E
[
|Xi − µi|2+δ

]
= 0

is satisfied, then a sum of Xi−µi
sn

converges in distribution to a standard normal
random variable, as n goes to infinity,

1

sn

n∑
i=1

(Xi − µi)
d−→ N(0, 1).

For our study, we are exclusively interested in zero-mean uniform distribu-
tions, since zero-mean distributions maximize the the variance of power constraint
signals. The author in [8] proves that any zero-mean and uniformly bounded dis-
tribution satisfies the Lyapunov’s condition for δ = 1. Our distributions have finite
support and are symmetric around the mean µi = 0, therefore they are uniformly
bounded and the Lyapunov’s condition is satisfied.

Based on the aforementioned results we prove that uniform distributions are
optimal in terms of sum-rate. Suppose X1, X2, ..., Xk are independent continuous
uniform random variables, i.e. the signals of each user. Each signal has expected
value µi = 0 and variance σ2i = Si. From Theorem 3 and [8], as k →∞,

I(X1, X2, ..., Xk;Y ) = h(Y )− h(Y |X1, X2, ..., Xk)

= h

( k∑
i=1

Xi + Z

)
− h
( k∑
i=1

Xi + Z|X1, X2, ..., Xk

)

= h

( k∑
i=1

Xi + Z

)
− h
(
Z
)

=
1

2
log

(
2πe

k∑
i=1

Si

)
− 1

2
log
(
2πe
)

= C

( k∑
i=1

Si

)

(2.15)

Even though this proof stands asymptotically as k goes to infinity, the rate of
convergence is very promising even for a small number of senders.
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Figure 2.5: Achievable rates with Gaussian and uniform inputs for the point-to-
point Gaussian channel.

2.4 A dual problem

There is duality between this problem and the optimal point-to-point transmis-
sion over a Gaussian channel using linear codes. The so-called shaping gain of
1.53 dB can be achieved [9]. There is some work done in this direction, such as
[10], where the idea of using a multiple access scheme with binary convolutional
codes to approach the capacity of the Gaussian noise channel is presented. In [11]
the authors use the same scheme with binary Turbo codes to approach capacity
without referring to the multiple access channel. The most recent work is [12],
where a comparision is made between the method of [11] and a particular shaping
technique using Polar codes. In this section we present an analysis of the shaping
gain that can be achieved and we give a method for optimal split of the power
among the k senders based on results on the Irwin-Hall distribution.

2.4.1 Shaping gain

Shaping gain is called the power gain that is achieved when particular methods are
used to “correct” the sub-optimality of the usage of non-Gaussian, usually uniform,
input distribution on a Gaussian channel. In Figure 2.5 this sub-optimality is
depicted. Shaping therefore induces a Gaussian-like probability distribution on a
constellation, rather that an equiprobable distribution.
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Figure 2.6: Shaping gain as a function of SNR.

In this section we give a simple upper bound on the shaping gain, namely,
ultimate shaping gain. The basic idea is that we compare the required power
to represent the same amount of information with a zero-mean uniform distribu-
tion as with a zero-mean Gaussian distribution. Let U ∼ U(−

√
3σ2u,

√
3σ2u) and

G ∼ N (0, σ2g) where σ2u and σ2g are the variances, i.e. the powers of the signals.
The amount of information that is represented by a probability distribution is
calculated by the differential entropy,

h(U) = h(G)⇒
1

2
log(12σ2u) =

1

2
log(2πeσ2g)⇒

12σ2u = 2πeσ2g ⇒
σ2u
σ2g

=
πe

6
.

(2.16)

Note that this gain of πe/6 (1.53 dB) is available as signal-to-noise ratio grows
to infinity. In Figure 2.6 we present the actual shaping gains for finite SNRs.
Despite the fact that the use uniform distributions is not detrimental, as presented
in section 2.3, we observe shaping gains that correspond to a possible reduction in
power up to roughly 30%.

2.4.2 Power distribution among senders

At this point, arises the question of how the power should be distributed among
the senders with the objective of fast convergence to the capacity in mind. From
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equation 2.15 we derive that this problem can be reduced to the fast convergence
of the sum of input distributions to a Normal distribution. Through observation it
seems that the optimal convergence is achieved when the inputs are identically dis-
tributed, i.e. each senders uses the same amount of power. Indeed, this conjecture
is true.

Theorem 4 The sum of n independent and identical uniform distributions con-
verges faster to a normal distribution in comparison to the sum of n independent
but not identical uniform distributions.

In the first section of the appendix we provide the proof as presented in [13].
In this section, we demonstrate some interesting results on the equivalent Irwin-

Hall distribution, which is the continuous probability distribution for the sum
of n independent and identically distributed U(0, 1) random variables [14]. De-
spite the definition that is usually used in the literature, in this thesis we refer to
the Irwin-Hall distribution as the distribution for the sum of n i.i.d. zeros-mean
U(−
√

3σ2,
√

3σ2) random variables, where σ2 is the variance. We are particularly
interested on results about the rate of convergence of this distribution. Publication
[14] provides an upper bound on the absolute difference of the cumulative distribu-
tion function F (z) of the Irwin-Hall distribution and the cumulative distribution
function Φ(z) of Normal distribution,

|F (z)− Φ(z)| ≤
√

3

20
√
n
. (2.17)

This result stands true independently from the support of the i.i.d uniform
random variables that are added. In Figure 2.7 we compare the probability density
function of the Irwin-Hall distribution for n = 3, n = 4 with the probability density
function of the Normal distribution N(0, 1). All three resulting distributions have
variances equal to 1 and they are indeed similar. In Figure 2.8 we plot the bound
(2.17). In both cases the results are very promising for an actual implementation of
this scheme, since with a small number of virtual senders we achieve distributions
that are very close to the optimal Normal distribution.

In Figure 2.9 the power loss, i.e. the available shaping gain, for several n’s
is illustrated. We observe that even with two virtual senders the majority of the
availiable shaping gain is achieved.
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Figure 2.7: Comparison of sum of three independent U(−1, 1) and four independent
U(−

√
3/4,

√
3/4) random variables with the normal distribution N (0, 1).

Figure 2.8: Decay of absolute error |F (z)− Φ(z)| as a function of n.
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Figure 2.9: Shaping gain as a function of SNR for various n’s.
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Chapter 3

Polar Coding

In this chapter we present the coding scheme that is used to implement the concepts
of Chapter 2. Specifically we present the technique of channel polarization, which
was originally proposed in [15] for binary-input discrete memoryless channels and
is the basis of polar coding. These codes can achieve the “symmetric capacity,” i.e.
the mutual information produced by uniformly distributed inputs, of any binary-
input channel by employing low-complexity encoding and decoding algorithms.
Later, it was proved that this code construction can achieve the capacity of any
q-ary discrete memoryless channel [16]. This section rehearses the construction of
Polar codes. Note that for the purposes of this work we use alphabets of prime
cardinality, since the generalization from binary polar coding is straightforward.

3.1 Basic Notions

3.1.1 Symmetric Capacity

Given a q-ary input channel W : X → Y with X = {0, 1, . . . , q− 1}, its symmetric
capacity is defined as

I(W )
.
=
∑
x∈X

∑
y∈Y

1

q
W (y|x) logq

W (y|x)∑
x′∈X

1
qW (y|x′)

. (3.1)

Symmetric capacity is nothing but the mutual information between the input and
the output of the channel when the input is uniformly distributed. Therefore,
if the channel is symmetric, then its Shannon capacity is equal to its symmetric
capacity. It is known that linear codes produce uniformly distributed codewords
and, in the case of symmetric channels, uniform input distribution is needed to
maximize mutual information between the transmitter and the receiver. Since
we use base-q logarithm, we calculate capacity in q-ary symbols per channel use.
Consequently,

0 ≤ I(W ) ≤ 1.

21
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0 0

?

1 1

1− ε

ε
ε

1− ε

Figure 3.1: The binary erasure channel with erasure probability ε.

Figure 3.2: Basic polarization step.

3.1.2 Binary Erasure Channel

In this chapter, we use the binary erasure channel for our analysis, as in Figure
3.1. Once a bit is transmitted, the receiver either obtains the bit correctly with
probability 1 − ε or receives a message that the bit was not received with proba-
bility ε. We choose this type of channel because it is relatively easy to construct
algorithms for evaluating the polarized channels, due to the closed-form expression
for the BEC capacity. The symmetric capacity of the BEC is

I(W ) = 1− ε. (3.2)

The proof is provided in [5].

3.2 Channel Polarization

Channel polarization is an operation by which, out of N independent copies of a
given discrete memoryless channel W , one manufactures a second set of N channels

{W (i)
N : 1 ≤ i ≤ N} that show a polarization effect in the sense that, as N becomes

large, the symmetric capacity terms {I(W
(i)
N )} tend towards 0 or 1 for all but a

vanishing fraction of indices i [15].
To achieve this effect, we use a linear transformation over GF(q), where q is

a prime, for combining two identical channels to new synthetic channels W ′ and
W ′′,

{W,W} 7→ {(y21;u1), (y
2
1, u1;u2)} ⇐⇒ {W,W} 7→ {W ′,W ′′}.

The first step of this recursive transformation is shown in Figure 3.2. As this
transformation occurs, the first channel degrades and the second upgrades in terms
of symmetric capacity. In Figure 3.3, the latter is observed for the BEC.



3.2. CHANNEL POLARIZATION 23

Figure 3.3: Symmetric capacity for the BEC before and after the basic polarization
step.

Having shown how the basic step of original polarization works, we can define
the recursion that constructs the generator matrix of Polar codes. As in [15], we
define the Kronecker power G⊗n as G⊗G⊗n−1 for all n ≥ 1,where ⊗ denotes the
Kronecker product and G⊗0 = [1].

GN = F⊗n =

[
1 0
1 1

]⊗n
. (3.3)

With this method we can construct N ×N generator matrices, where N = 2n. In
Figure 3.4 the generator matrix G8 is presented. The next step is to define which
rows of G correspond to the perfect channels and which to the useless. In the
perfect rows, there will be put information bits, while in the useless rows, there
will be put frozen (known to the decoder) bits. This task is easily managed for the
BEC. We can recursively calculate the symmetric capacities of the manufactured
channels using the following formulas [15].

I(W
(2i−1)
N ) = I(W

(i)
N/2)

2, (3.4)

I(W
(2i)
N ) = 2I(W

(i)
N/2)− I(W

(i)
N/2)

2. (3.5)

In the case of BEC(0.5), the symmetric capacity limit is at 0.5 bits per channel
use. In Figure 3.5, using (3.4) and (3.5), we observe the effect of channel polar-
ization. Indeed, almost half of the channels are perfect and the other half are
useless.
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G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



Figure 3.4: Generator matrix G8 produced using (3.3).

3.3 Encoding

In this section, we consider the implementation of the encoder of Polar codes.
Matrix multiplication of G with an information vector is easy for small block
lengths but not convenient for bigger block lengths. We design a recursion based
on the main channel combination W2 that has been indicated in the Section 2.2.

The general form of the recursion is shown in Figure 3.6 where two independent
copies of WN/2 are combined to produce channel WN . The operator RN is a
permutation, known as the reverse shuffle operation, and simply separates the
odd-indexed from the even-indexed signals. Odd-indexed signals become input to
the first copy of WN/2 and even-indexed to the second.

In terms of complexity, if we take the complexity of a scalar mod-q addition as
1 unit and the complexity of the reverse shuffle operation RN as N units of time
we have,

T (N) =
N

2
+O(N) + 2T (

N

2
)⇒

T (N) = O(N log2N).
(3.6)

3.4 Decoding

The decoder introduced in [15] is called successive cancellation decoder. Its role is
to decide with the rule of closest neighbour on the ith symbol (1 ≤ i ≤ N) that is

transmitted over W
(i)
N by computing

ûi =

{
ui, when ui is a frozen symbol

arg maxx∈{0,1,...,q−1}W
(i)
N (yN1 , u

i−1
1 |x), otherwise,

(3.7)
This decoding scheme estimates sequentially every information symbol. Each

estimation is carried out by using the knowledge of frozen and previously estimated
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Figure 3.5: Channel polarization for a BEC with ε = 0.5 and N = 211.

symbols. Note that the nature of the successive cancellation decoding of the mul-
tiple access channel has a distinct relationship with channel polarization and the
successive cancellation decoding of Polar codes, as to the fact that in both cases
the mutual information is conserved and achieved. We calculate the probabilities
of (3.7) using the recursive formulas (3.8) and (3.9).

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2i

1

q
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u

2i−2
1,e |u2i−1 ⊕ u2i)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i),

(3.8)

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

1

q
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u

2i−2
1,e |u2i−1 ⊕ u2i)

·W (i)
N (y2NN+1, u

2i−2
1,e |u2i).

(3.9)

Every transition probability in this recursion is used over one time. For this
reason, we implement a data structure to store these values in order not to calculate
them again. We use q matrices of size N×(log2N+1). Each cell is filled after Θ(1)
calculations, which implies that the complexity of the decoder is O(N log2N).

In the special case of binary alphabets, it is convenient to define the likelihood
ratio as
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Figure 3.6: Recursive construction of WN from two copies of WN/2.

L
(i)
N (yN1 , û

i−1
1 ) =

W
(i)
N (yN1 , û

i−1
1 |0)

W
(i)
N (yN1 , û

i−1
1 |1)

. (3.10)

This way, the SC decoder is defined as

ûi =


ui, if ui is a frozen bit

0, if L
(i)
N (yN1 , û

i−1
1 ) ≥ 1

1, otherwise.

(3.11)

For computing L
(i)
N (yN1 , û

i−1
1 ), a straightforward calculation using the recursive

formulas (3.8) and (3.9) gives

L
(2i−1)
N (yN1 , û

2i−2
1 ) =

L
(i)
N/2(y

N/2
1 , û2i−21,o ⊕ û

2i−2
1,e )L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e ) + 1

L
(i)
N/2(y

N/2
1 , û2i−21,o ⊕ û

2i−2
1,e ) + L

(i)
N/2(y

N
N/2+1, û

2i−2
1,e )

, (3.12)

L
(2i)
N (yN1 , û

2i−1
1 ) =

[
L
(i)
N/2(y

N/2
1 , û2i−21,o ⊕ û

2i−2
1,e )

]1−2û2i−1

L
(i)
N/2(y

N
N/2+1, û

2i−2
1,e ).

(3.13)
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3.5 Construction of Polar Codes

Having in our hands a low complexity encoding and decoding channel code, it is of
great interest the efficient construction of such a code. That is, the determination
of the frozen symbols that are constant and known to the receiver. This is a
research subject by itself as only the q-ary erasure channel has closed-form formulas
(3.4) and (3.5) for channel evaluation.

There are several results on this problem in the literature. The most acclaimed
is [18], where upper and lower bounds of the capacity are calculated recursively,
until a proper sorting of the channels is possible. Unfortunately, this scheme is
efficient in terms of complexity only for binary-input channels. The challenge of
this work is to construct polar codes for q-ary discrete-input continuous-output
channels. With this object in mind, we make a trade-off between the theoretical
optimal results and the complexity of our scheme. Particularly, we convert the
given discrete-input continuous-output channel to a discrete-input discrete-output
channel with very large output alphabet. This is not a trade-off in practice, since
conventional systems cannot operate with analog inputs without quantization and
the lost rate from this quantization is infinitesimal.

Consindering that there is not any exact algorithm for a evaluating q-ary chan-
nels we use an approximate method. Specifically, we use a Monte Carlo approach to
solve the problem of channel evaluation as it was proposed in the introductory pa-
per of polar codes [15]. Using a transmission arrangement with successive cancella-
tion decoding we compute the symbol error rate of the i-th Wi constructed channel
by transmitting frozen symbols to all previously decoded channels W1, ...,Wi−1.

3.6 Performance Analysis

In this section we evaluate the performance of the proposed transmission schemes.
We examine two particular cases. The first one is about the 2-sender Gaussian
MAC and the second is about the optimal transmission over a point-to-point Gaus-
sian channel as presented in section 2.4. The purpose of this analysis is to observe
the polarization effect as block length becomes larger in the case of the Gaussian
MAC and to compare the practical shaping gain that is achieved using the a virtual
MAC in comparison to the straightforward use of uniformly distributed inputs.

3.6.1 Hard-decision versus Soft-decision

There are two considerable approaches for treating the output of a Gaussian chan-
nel. The most commonly used method is the hard-decision decoding, which is the
process of assigning the real-valued output of the channel to a discrete symbol
(demodulation) and then decoding the resulting codeword. The second and least
used approach is the soft-decision decoding, in which the output of the channel is
given directly to the decoder. In general, the superiority of soft-decision decoding
is well known. However, due to the increased complexity in comparison to the
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Figure 3.7: Comparison of soft-decision and hard-decision decoding on a binary
transmission over the point-to-point Gaussian channel. The rate of the code is 0.5
bits/channel use and the block length is 2048.

hard-decision decoding this method is not extensively used. In our case, both de-
coding schemes are performed with the same complexity. This has to do with the
nature of the successive cancellation decoder, since the only difference between the
two methods is the initialization of the recursion of the decoder. In Figure 3.7, the
performance of soft-decision and hard-decision decoding is depicted in a specific
point-to-point transmission scenario. Every simulation that follows is performed
using soft-decision decoding.

3.6.2 Two-sender Gaussian MAC

The first simulation that we perform is for the case presented in Figure 2.4, where
the signal-to-noise ratio of the first sender is S1 = 15 dB and the second is S2 = 10
dB. Using the formulas of (2.14) and setting r = 0.3 we set the first sender to use
a quinary alphabet and the second a septenary.

In general, the capacity is an asymptotic identity of the channel, that is it is
achievable as block length grows to infinity. This becomes apparent in Figure 3.8
where the performance of the code of sender 1 is presented in terms of symbol error
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Figure 3.8: Performance of the code of the first sender for several block lengths
where S1 = 15 dB.

rate for several block lengths. In our scenario the “absolutely” correct reception of
the first sender is extremely important, since only then the first codeword can be
subtracted from the received signal. We set the tolerance limit to symbol error rate
to 10−3. To achieve such error rate for the first sender in moderate block lengths
we have to choose one out of two options. The first one is to obligate the second
sender to use less power, which means that S1

S2+1 becomes better for the first sender
but at the same time the second one limits its rate. The second option is to reduce
the transmission rate of the first sender and let the second sender unaffected. We
choose the latter since in terms of sum-rate the second codeword usually carries the
majority of the information and in the case discussed in section 2.4 it invariably
does. In Figure 3.8, we also display the performance of the code when the rate is
reduced. Using this rate, the target error rate is achieved and the first codeword
can be subtracted without complications. In Figure 3.9, the performance of the
code of the second sender is depicted for block length equal to 4096 symbols. For
this relatively small block length, a sum-rate of 1.45 bits/channel use is achieved
with propability of error equal to 10−3.
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Figure 3.9: Performance of the code of the second sender for block length N =
4096.

3.6.3 Point-to-point Gaussian Channel

A performance comparison between a virtual two-sender MAC scheme and the
straightforward use of uniform inputs is simulated. The comparison is made in
terms of frame error rate since several different alphabets are used and symbol
error rate is not appropriate. In the case of uniform inputs a quinary alphabet is
used and the rate of the code is set to 1.5 bits/channel use. For the case of virtual
senders the first sender uses a transmission rate that allows correct decoding almost
always. We set this tolerance limit to the frame error rate of the first sender to
10−3. The first virtual sender transmits with a rate of 0.45 bits/channel use and
uses a binary alphabet. The second one uses a ternary alphabet and transmits
with a rate of 1.05 bits/channel use. Note that in both cases the aggregate rate
is 1.5 bits/channel use. In Figure 3.10 the dominance of our proposed method is
depicted over the conventional one.
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Figure 3.10: Comparison between the virtual two-sender MAC as presented in
section 2.4 and the straightforward use of uniform inputs. The block length is set
to 2048 and the rate 1.5 bits/channel use.
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Appendix

1 Proof of theorem 4

Let U1, U2, ... be i.i.d. random variables uniformly distributed on [−1, 1]. If a
natural number n and a real a1, ..., an vary so that

n∑
i=1

a2i = 3 and
n

max
i=1
|ai| → 0 (1)

(whence n→∞), then (say) by the Berry–Esseen inequality,

Sn :=

n∑
i=1

aiUi

converges to a standard normal rv Z in distribution.
The closeness of the distribution of Sn to normality can be reasonably measured

in an infinite variety of ways. One of them, in view of the Esseen smoothing
inequality, is to consider the closeness of the characteristic function fn of Sn to
the characteristic function f of Z in a neighbourhood of 0. Given (1), we have

ln fn(t)− ln f(t) =
n∑
i=1

ln
sin(ait)

ait
− t2

2
∼ t4

180

n∑
i=1

a4i

uniformly over all t in any given neighbourhood of 0; here we use the asymptotic
expansion

ln
sin(at)

at
−
(
−a2t2

6

)
∼ a4t4

180

for a→ 0 and t in any given neighbourhood of 0.
So, the closeness of the distribution of Sn to normality can be measured by

n∑
i=1

a4i
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which attains its minimum given the first condition in (1) when the a2i ’s are the
same for all i = 1, ..., n, that is, when the random variables aiUi are identically
distributed [13].
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