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Abstract

The generation of custom light fields, often described as structured light, is a
topic of wide interest in optics. Structured light provides a significant advan-
tage compared to non-structured light, by enabling us to control the intensity
distribution and the focus position in both linear and non-linear propagation
regimes. Such a control is challenging for high-power beams, since as one in-
creases the beam’s optical power, nonlinear effects inevitably take place and
as a result the beam’s spatial structure is dynamically altered. Although a
plethora of structured optical beams have been introduced to address this
problem, their generation is not trivial. Their complexity challenges our
current state of the art techniques for light structuring and has urged us
to exploit, among others, unconventional approaches like the use of optical
aberrations or spatial multiplexing.

This thesis is focused on theoretical and experimental design techniques
for materializing structured optical wave packets, with higher efficiency and
power and at broad spectral range, tailored for materials science applica-
tions. These novel techniques include among others the use of reflecting
optics as broadband continuous phase masks, which allowed us to experi-
mentally study the effect of spatiotemporal coherence on the propagation of
accelerating wave packets and to generate curved plasma channels for THz
generation in air. Likewise, using rotationally symmetric accelerating beams
as a template, we introduce a toolbox of versatile light scalpels, and demon-
strate the generation of Tornado waves, an exciting new type of spiralling
light that combines radial and angular acceleration with a precisely tuned
focal distribution.
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Περίληψη

Η δημιουργία ειδικά σχεδιασμένου φωτός, ή όπως συχνά αναφέρεται διαμορ-
φωμένο φως, είναι ένα πεδίο ευρέως ενδιαφέροντος στην οπτική. Διαμορ-
φωμένο φως προσδίδει ένα σημαντικό πλεονέκτημα σε σύγκριση με μη δι-

αμορφωμένο φως, επιτρέποντας τον έλεγχο της κατανομής της έντασης και
την θέση της εστίας στη γραμμική και μη-γραμμική περιοχή. ΄Ενας τέτοιος
έλεγχος είναι αρκετά απαιτητικός για δέσμες με μεγάλη ισχύ, εφόσον όσο η
ισχύς της δέσμης αυξάνεται τόσο τέτοια μη γραμμικά φαινόμενα εμφανίζον-

ται με αποτέλεσμα να αλλάζουν δυναμικά την χωρική κατατομή της δέσμης.
Αν και πρόσφατα υπάρχει μια πληθώρα από διαμορφωμένες δέσμες φωτός για

λύση αυτού του προβλήματος, ωστόσο η δημιουργία τους δεν είναι απλή. Η
πολυπλοκότητά τους είναι πρόκληση για τις υπάρχουσες τεχνικές διαμόρφωσης

φωτός και μας ωθεί σε μη συνήθεις προσεγγίσεις όπως την χρήση οπτικών

σφαλμάτων ή της χωρικής πολυπλεξίας. Αυτή η διατριβή επικεντρώνεται σε
θεωρητικές και πειραματικές τεχνικές σχεδιασμού για την δημιουργία διαμορ-

φωμένων οπτικών κυματοπακέτων, με μεγαλύτερη απόδοση και ισχύ καθώς
και σε ευρύ φάσμα, ειδικά σχεδιασμένων για την εφαρμογές στην επιστήμη
των υλικών. Σε αυτές τις καινοτόμες τεχνικές, συγκαταλέγονται, μεταξύ
άλλων, η χρήση ανακλαστικών οπτικών ως συνεχείς φασικές μάσκες που λει-
τουργούν σε ευρύ φάσμα, επιτρέποντάς μας την πειραματική μελέτη της επί-
δρασης της χωρικής και χρονικής συμφωνίας κατά την διάδοση επιταχυνό-

μενων κυματοπακέτων καθώς και την δημιουργία καμπυλωμένου πλάσματος

για την δημιουργία THz στον αέρα. Επίσης, χρησιμοποιώντας περιστροφικά
συμμετρικές επιταχυνόμενες δέσμες ως μια παλέτα, εισάγουμε μία νέα εργαλειο-
θήκη οπτικών δεσμών και επιτυγχάνουμε την δημιουργία των Tornado waves,
μια καινούργια κατηγορία δεσμών με σπειροειδή τροχιά που συνδυάζει ακτινική

και γωνιακή επιτάχυνση, διαμορφώνοντας με ακρίβεια την κατανομή στην εστία.
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Thesis Summary

A plethora of optical beams with non-trivial amplitude and phase distri-
butions have been recently introduced. In a collection containing only the,
classical now, Bessel beams an increasing number of new members like the
Airy and the radially symmetric Airy, Mathieu and Pearcey beams have been
added, along with beams carrying orbital angular momentum (OAM). These
structured optical wave packets propagate in curved trajectories and resist
to diffraction or dispersion. Therefore, they are able to self-heal, bypass ob-
stacles, and create abrupt foci. Such advantages make them ideal candidates
to form a new set of tools applied in various applications ranging from ma-
terials processing and characterization to telecommunications. On the other
hand, the generation of these wave packets is not trivial. Their complexity
challenges our current state of the art techniques for wavefront shaping, and
has urged us to exploit, among others, unconventional approaches like the
use of optical aberrations, and spatial multiplexing. This thesis is focused
on design techniques for materializing structured optical wave packets, with
higher efficiency and power and at broad spectral range, tailored for materi-
als science applications.

In the first Chapter we make an introduction of wave propagation and
paraxial wave propagation as most of the waves that we deal with in this
thesis are in the paraxial regime. We introduce structure light by presenting
usually used in applications Gaussian and Bessel beams, and we make and
introduction to accelerating Airy beams and other types of structure light
beams. Following we show a few applications of structure light. We close
this chapter by presenting basic principles of spatial and temporal coherence
of light.

In the next Chapter we explore our approach for the design and engi-
neering of structured light. We present our pallet of accelerating beams,
namely the 1D Airy and 2D airy beams as well as the cylindrically symmet-
ric Airy beams and study their behavior along propagation. Moreover, we
introduce a unified description of the two variants of cylindrically symmetric
Airy beams, called ring-Airy and inverse ring-Airy respectively, in which we
have added a conical phase gradient to have more control over their focal
characteristics. Furthermore, we derive semi-empirical analytical relations

vii



for their focal characteristics. In addition, we show that by superimposing
two cylindrically symmetric Airy beams with conical phase, we can create
two foci feature that can be fully controlled, using our analytical predictions.

In the third chapter we present our generation techniques for the gener-
ation of structured light. We divide them in two main categories, in contin-
uous and discrete methods. First we show that using aberration of simple
reflective optics we can create a broadband continuous phase modulation
device, and study its capabilities and operational regime. Then we present
that it is possible to structure light using a phase-only imprinted in a spatial
light modulation device. In addition we introduce, for the first time to our
knowledge, a spatial multiplexing technique for the generation of multiple
superimposed ring-Airy beams carrying orbital angular momentum, using a
single phase mask.

In the final chapter we show our experimental results. To demonstrate
the ability of our reflective phase modulation device to act as such we gen-
erated white light Airy beams and studied their properties. In addition,
using this device we can create accelerating beams with variable partial spa-
tial coherence and study their propagation dynamics in free space as well as
their self healing properties when we block a part of the beam. Furthermore,
we also demonstrate the capability of our device to withstand high powers
by creating curved plasma channels and use them to generate THz waves.
Finally, using the spatial multiplexing technique we presented in the previ-
ous chapter, we can generate spiraling and we show the first experimental
observation of tornado waves.
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1 | Introduction

1.1 Wave propagation

The definition of a wave, although central to many physical phenomena that
we observe, is not trivial. Beside cyclic definitions like: "a wave is a solution
of the wave equation" or "a wave is an oscillation of something" a robust
and generic definition [1] is that "a wave is a propagating imbalance".

In this thesis we focus our attention on electromagnetic waves, and more
specifically to light waves and ways to structure them. An electromagnetic
wave refers to the simultaneous oscillation of the electric and magnetic fields,
and for an isotropic medium is described by Maxwell’s equations [2, 3].

∇ ·D = ρf

∇ ·B = 0

∇×E = −∂B
∂t

∇×H = Jf +
∂D
∂t

(1.1)

where E is the electric field, B is the magnetic field, while D is the electric
displacement and H is an auxiliary vector field called H-field 1, and ρf and Jf
are the external electric charge density and the corresponding electric current
density respectively. The properties of a medium are usually described by
two parameters: ε and µ, which are respectively the electric permittivity and
magnetic permeability of that medium. From Eq. (1.1) we can derive wave
equations for the electric and magnetic fields, in a medium free of charges
and currents, (ρ = 0 and J = 0):

∇2E− 1

v2

∂2E
∂t2

= 0

∇2B− 1

v2

∂2B
∂t2

= 0 (1.2)

where v = 1√
εµ is the speed of light in the medium. Assuming that we have a

linearly polarized plane wave that is harmonic in space and time, propagating
1For further clarification about dispute for the name of H see [3] p. 271.
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Figure 1.1: Illustration of a plane wave propagating along the z direction.
The sinusoidal curves depict the oscillating electric E and magnetic B fields.

in an arbitrary direction, then its electric field can be described by:

E(r, t) = E0 exp[i(k · r− ωt)]n̂

where n̂ is the polarization direction, which refers to the oscillation direction
of the electric field, i is the imaginary unit, r is the position vector, k = 2π

λ k̂
is the wave-vector, while the unitary vector k̂ is parallel to the propagation
direction, λ is the wavelength, and ω is the angular frequency. An example
of a plane wave propagating in z direction is illustrated in Fig. 1.1. The wave
is linearly polarized parallel to the x axis, while the magnetic field is parallel
to the y axis. Note that the electric and magnetic field vectors oscillate in
phase, normal to each other as well as to the propagation direction.

1.1.1 Paraxial approximation

Solving the wave equations (1.2) to study E/M wave propagation is not triv-
ial since the field vectors variate both in space and time. On the other hand,
under some common and simple constrains, the equations can be simpli-
fied while still describing a plethora of optical phenomena. To begin with,
assuming that the waves are harmonic the electric field can be described as:

E(r, t) = Ẽ(r) exp(−iωt) (1.3)

where Ẽ(r) describes the spatial distribution of the field and ω is the angular
frequency. Substituting this into the wave equation Eq. (1.2) leads to the

2



Figure 1.2: Illustration of a paraxial wavefront and its wavenumber pro-
jection on transverse and longitudinal axes, where the optical axis is the z
direction.

Helmholtz equation:
∇2Ẽ(r, t) + k2Ẽ(r, t) = 0 (1.4)

where k = ω/v is the wavenumber, and v the velocity of the light wave
in the medium. Let us now focus on the study of the propagation of such
harmonic waves, which propagate along an axis, referred to as propagation
axis. These waves are often described as paraxial because, as they propagate,
they weakly spread in a direction transverse to the propagation axis. From
a geometrical point of view paraxial propagation refers to rays that make a
small angle (typically θ ≤ 20o) to the propagation axis. This is depicted in
Fig. 1.2 where it shows a paraxial wavefront with its corresponding wave-
vector and its projection on transverse and longitudinal axes, in this case
the angle between wave-vector k and the propagation is sufficiently small
(θ ≤ 20o), thus the projection of k on z axis is much larger than that on x
axis kz � kx.

The propagation of such a field includes a dense oscillation, with a period
λ, and a slower evolution of the field amplitude. Assuming that the wave
propagates along z axis, we can decouple these two by using a carrier wave
with a slow changing amplitude u(r) to describe the field distribution:

Ẽ(r) = u(r) exp(ikz) (1.5)

Using the carrier wave/envelope description of Eq. 1.5 Helmholtz equation
(Eq. 1.4) can now be further simplified:

(∇2
⊥ +

∂2

∂z2
+ 2ik

∂

∂z
)u(r) = 0 (1.6)

3



where the symbol ∇2
⊥ denotes the transverse part of the Laplacian operator,

which in Cartesian coordinates is ∇2
⊥ = ∂2

∂x2
+ ∂2

∂y2
. Since we are focused on

the study of paraxial waves, the field amplitude u(r) evolves much slower
in the longitudinal direction compared to the transverse direction so we can
apply the so called slowly varying envelope approximation [2]:

∂2u(r)

∂z2
� k

∂u(r)

∂z
,
∂2u(r)

∂z2
� k∇2

⊥u(r) (1.7)

Taking all of the above into account, the Helmholtz equation Eq. (1.4) re-
duces to the paraxial wave equation:

i
∂u(r)

∂z
= − 1

2k
∇2
⊥u(r) (1.8)

Furthermore, in the case of a paraxial wave the field projection along the
propagation axis is infinitesimal (k ' kzk̂⇒ u·ẑ ' 0). Thus the propagation
of such waves can be decoupled from their polarization u(r) = u(r)p̂, where
u is the wave amplitude and p̂ is the polarization state. In this case, Eq. 1.8
can be written [4] in a scalar form as:

i
∂u(r)

∂z
= − 1

2k
∇2
⊥u(r) (1.9)

In the following we will mainly use of this equation since we are focused
in problems related to the paraxial propagation regime. In addition, quite
often we will study cylindrical symmetric beam distributions. The scalar
paraxial wave equation in cylindrical coordinates (r, φ, z) for a light beam
with cylindrical symmetry where its field distribution u(r, z) is independent
of the azimuthal angle φ is:

∂2u(r, z)

∂r2
+

1

r

∂u(r, z)

∂r
+ 2ik

∂u(r, z)

∂z
= 0 (1.10)

Furthermore, it is not hard to recognize that the Eq. (1.8) is mathe-
matically identical to Schrödinger’s equation of free particles [5] in quantum
mechanics.

i~
∂ψ(r, t)
∂t

= − ~2

2m

∂2ψ(r, t)
∂r2

(1.11)

where ~ is the reduced plank’s constant, ψ(r, t) is the spatiotemporal prob-
ability wave-function of the free particle, of mass m. The mathematical
equivalence z ↔ t dictates that a propagation along z of an optical wave is
equivalent to the evolution along time t of a wave-function. This allows us
to study the evolution of a quantum mechanical wave-packet, through the
propagation of an optical wave, using an equivalent optical scheme and vice
versa. As we will further discuss in the following sections this mathematical
equivalence bridges the fields of Optics and Quantum Mechanics allowing for
a fruitful interchange of ideas and applications.
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1.2 Structured light

By structured light we describe the generation of optical fields that are cus-
tomized. Structuring can involve, independently or in combination [6], the
spatial modulation of amplitude, phase, and polarization of a light wave.
In most of the cases, the goal is to achieve a tailored propagation or a fo-
cal intensity distribution. In the following we will review some of the light
distributions that are available, and compare them with respect to their
propagation properties.

1.2.1 Gaussian beams

The most commonly used intensity profile of a light wave is the Gaussian
distribution [7, 8]. Gaussian beams, are easy to handle, require no special
equipment to generate them, and their propagation can be analytically de-
scribed through optical systems [2, 9]. Likewise, they are easily focused to
localized and intense foci, using a simple converging lens. On the other
hand, their focal aspect ratio (ratio of focal width to focal length) depends
on the focus position with respect to the initial plane (z=0). The ampli-
tude distribution of this beam, at some plane (z) along its propagation, is
mathematically described by:

E(r, z) = E0
w0

w(z)
exp(− r2

w(z)2
) exp{−i[kz + k

r2

2R(z)
− ψ(z)]} n̂ (1.12)

where r is the radial distance, z is the propagation distance, E0 is the peak
electric field amplitude at z = 0, n̂ is a vector describing the polarization
state, w(z) is the beam semi-diameter defined by the radius at which the
field amplitude falls to 1/e of its peak value, w0 = w(0) is the beam waist,
R(z) is the beam’s wavefront radius of curvature, and ψ(z) is the Gouy
phase, representing the phase difference of Gaussian beam compared to a
plane wave [7]. Using the normalization of the paraxial wave equation we
can see that a Gaussian beam of waist w0 will spread as it propagates at a
distance comparable to zR = πw2

0/λ, which we refer to as Rayleigh length [7].
Another, commonly used, metric for the description of the transverse size of
a beam is the full width at half maximum (FWHM). For Gaussian beams
this is related to the beam semi-diameter FWHM = 2

√
ln2 w(z). Fig. 1.3(a)

shows the propagation 2 of a Gaussian beam with FWHM = 500 µm, and
a wavelength of λ = 800 µm with a Rayleigh length of zR ∼= 510mm. As
we can observe, the intensity decreases and the beam becomes wider as it
propagates at a distance comparable to zR. Typically, the intensity of a
Gaussian beam is highest at the beam’s waist. On the other hand, such a
beam can be focused using a lens, achieving a high intensity at the focus,

2The numerical simulations in this thesis were preformed using PyWp, an angular
spectrum propagation algorithm [10] developed in PythonTM .

5



Figure 1.3: Intensity distribution I(x, z) of (a) a Gaussian beam with
FWHM = 500 µm and (b) the same Gaussian beam focused by a lens of
a focal distance f = 50 mm.

which comprises the new waist, in a remote distance. In Fig. 1.3(b) we show
numerical simulation results of the propagation of a Gaussian beam after
being focused by a thin lens of focal distance f = 50 mm, placed at z = 0.
Clearly the maximum intensity at the focus is multiple times that of the
initial Imax ∼ 60 I0.

1.2.2 Non-diffracting waves

Diffraction is a fundamental physical property of travelling light [2], and it
is manifested by the spreading of a wave as it propagates in free space, or
when it encounters an obstacle. According to the Fresnel-Huygens principle
[2], diffraction results from the distributed interference of secondary waves
emitted from various points on the original wavefront. On the other hand,
diffraction can also be explained by means of the uncertainty principle [5],
originating from the transverse spatial confinement of the beam, that results
either from it’s finite size or by the presence of an obstacle.

Interestingly, there exists a special type of waves that overcome diffrac-
tion. These waves, referred to as non-diffracting waves [11], are solutions
of the paraxial wave equation (Eq. 1.8) with their intensity distribution re-
maining invariant along the propagation. A trivial non-diffracting wave is the
plane wave. It is easy to understand, using Babinet’s principle [2], that when
a non-diffracting wave is blocked by an obstacle, the diffracted wave will de-
cay after some propagation distance allowing for the non-diffracting wave to
self-heal. The realization of such waves is practically impossible, since they
are infinite in size and carry infinite energy. Nevertheless, variants of them
with finite size and energy can be realized by proper apodization. These
waves are quasi-non-diffracting since they impart many of the properties of
their ideal counterparts. Their transverse distribution remains unchanged
over a finite propagation distance and they exhibit self healing when ob-
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Figure 1.4: Distribution of an ideal, non-diffracting Bessel beam J0(cr) with
c = 0.2 · 10−3m−1 (a) Amplitude distribution at the transverse x− y initial
plane (|A(x, y, z = 0)|) and (b) Intensity distribution I(y, z) at a y− z plane
along propagation. Numerical simulation results [10]

scured by an obstacle. In the following, we will examine in more detail two,
commonly used, types of non-diffracting beams namely the Bessel and the
Airy beam.

Bessel beams

Bessel beams were the first non-trivial non-diffracting waves that were pro-
posed [12, 13]. In these first publications, a non-diffracting solution to the
wave equation was presented, in the form of a zero-order Bessel function of
the first kind [14], J0

‡. Bessel beams are actually comprised by a conical
wavefront. Their angular spectrum is a ring of radius k sin θ, where k is the
wavenumber and θ is the conical angle.

Fig. 1.4(a) shows the amplitude distribution at the transverse initial x−y
plane of a pure Bessel beam J0(cr) where c is a constant, and r is the
radius. Note the characteristic high intensity hot-spot in the center that is
surrounded by rings of decaying amplitude. Fig. 1.4(b) depicts numerical
simulation results of the intensity I(y, z) distribution at the y − z plane.
The non-diffracting property of the ideal Bessel beam that remains invariant
along z is clearly visible. Bessel beams of finite energy, referred to as Bessel-
Gauss, can be generated by transforming a collimated Gaussian beam using
a circular slit in combination with a is focusing lens [13], or by using a conical
lens or axicon [15, 9, 16], or by directly imprinting a conical phase using a
spatial light modulator (SLM) [17, 18]. The field distribution of Bessel-Gauss

‡Bessel function of the first kind and nth order: Jn(x) = 1
π

∫ π
0
cos(nθ − xsinθ)dθ
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Figure 1.5: (a) Transverse amplitude profile of the Gaussian beam with
FWHM = 5 mm (b) Conical phase gradient with angle θ = 5 mrad (
wrapped phase, in π units), (c) (x-z) intensity cross-section, and (d) Maxi-
mum peak intensity, normalized with initial intensity. Numerical simulation
results Imax/I0 along propagation. [10]

beams at the initial plane is described by:

u(r, 0) = exp(− r
2

w2
0

) exp(ikr sin θ) (1.13)

where r is the radius in cylindrical coordinates, w0 is the waist of the initial
Gaussian beam, and k is the wave number. Typical transverse amplitude and
phase profiles of a Gauss-Bessel beam at the initial plane (z = 0) are shown
in Figs. 1.5(a),(b). We clearly observe the characteristic Gaussian amplitude
profile (FWHM = 5 mm) in Fig. 1.5(a), and the conical phase distribution
(conical angle angle θ = 5 mrad) in Fig. 1.5(b). Although Bessel-Gauss
beams are not ideal, they impart some non-diffracting properties from their
ideal Bessel counterparts. For example, they propagate for a considerable
distance keeping an invariant intensity distribution compared to a similarly
sized Gaussian beam, before they eventually spread out due to diffraction
[12]. Numerical propagation results of the Gauss-Bessel beam depicted in
Fig. 1.5(a),(b) are shown in Figs. 1.5(c),(d). It is clear that, at least partially,
the non-diffracting properties of the pure Bessel beam are also present in the
propagation of the Gauss-Bessel beam.

Airy beams

In 1979 Berry and Balazs in their well-known article [19] entitled "Non-
spreading wave packets" showed that "...for a wave ψ in the form of an
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Airy function the probability density |ψ|2 propagates in free space without
distortion and constant acceleration.". In this work they proved that the
Airy function § [20], is the only, apart form the trivial plane wave, non-
dispersing solution of the one dimensional Schröndiger’s equation of a free
particle. Moreover, notably this wave-packet, described by Airy function,
not only does not spread with time but it also accelerates, to the positive x
values, without an external force. The Airy function can be mathematically
described using an integral:

Ai(x) =
1

π

∫ ∞
0

cos(xt+ t3/3)dt (1.14)

As shown in Fig. 1.6 the Airy function is not symmetrical, being practically
zero for x > 0 while oscillating with a decaying amplitude for x < 0. An
approximation of the Airy function[22], describes well this behaviour:

Ai(x) ∼= Re{ sin[ 2
3

(−x)3/2+π
4

]
√
π (−x)1/4

} =


sin[ 2

3
(−x)3/2+π

4
]

√
π (−x)1/4

x ≤ 0

e−
2
3x

3/2

2
√
π x1/4

x > 0

(1.15)

§The Airy function Ai(x) is a solution of the differential equation y′′−xy = 0 introduced
by George B. Airy to describe the shape of a supernumerary rainbow [20, 21].

Figure 1.6: Plot of (a) an Airy function Ai(x) and its square Ai2(x).
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Using this approximation, it was recently demonstrated [23] that all powers
of the Airy function can be described in an elegant way:

Ai(x)2m ∼=
m∑
n=0

2m−n ·m!

n!(m− n)!
E(x)2m−nAi(Ŝ · x)n (1.16)

Ai(x)2m+1 ∼=
m∑
n=0

2m−n ·m!

n!(m− n)!
E(x)2m−nAi(Ŝ · x)

n ·Ai(x)

where E(ρ) ≡ 1/[2
√
πf(ρ)1/4], Ŝ is a linear scaling operator Ŝ · ρ ≡ 22/3ρ+

π/(8× 21/3) and f is an apodization function described by:

f(x) ≡


−x x ≤ −6

5

6
5 − e

− 24
5 + e4x x > −6

5

Although the concept of a non-spreading wavefunction was demonstrated in
the field of Quantum Mechanics, the mathematical equivalence of Schröndi-
ger’s equation and paraxial wave equation made these findings directly appli-
cable to the field of Optics where non-diffracting Airy beams were introduced
by Siviloglou et. al [24]. Besides the ideal Airy distribution, an exponential
truncation was used in order to realize finite energy Airy beams:

u(x) = Ai(x)exp(ax) (1.17)

where a > 0 is an apodization factor. A typical truncated Airy function
distribution is shown in Fig. 1.7. Although there are many other ways to

Figure 1.7: Plot of (a) truncated Airy function Ai(x)exp(ax) and its square
|Ai(x)exp(ax)|2 with decay factor a = 0.1.
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Figure 1.8: Transverse amplitude profiles at the initial plane (|A(x, y, z =
0)|) of 1D Airy beams with different apodization factors a. (a) a = 0, (b)
a = 0.05, (c) a = 0.1, (d) a = 0.5, and (e) a = 2.

truncate the Airy distribution, this approach is quite beneficial for the real-
ization of Airy beams since it’s Fourier transform is a Gaussian distribution
with an imprinted cubic phase [24, 25]. We will discuss in more detail about
the generation techniques in the next chapters. Moreover, Figs. 1.8(a)-(e) de-
pict the effect of the truncation factor a to the transverse amplitude profiles
of the Airy beam. As the value of a increases the characteristic oscillatory
distribution of the Airy beam disappears, while for values of a > 1 the Airy
beam is practically transformed to a Gaussian-like beam.

The study of the propagation of the truncated version of the Airy beam
or simply Airy beam is usually described in normalized coordinates. The
paraxial wave equation in such coordinates is:

i
∂u(s, ξ)

∂ξ
+

1

2

∂2u(s, ξ)

∂s2
= 0 (1.18)

where u is the electric field envelope, s = x/w is a transverse dimensionless
coordinate, with w being an arbitrary transverse scale parameter, ξ = z/kx2

0

is a longitudinal dimensionless coordinate, and k = 2πn/λ is the wavenumber
and n the refractive index of the medium.

The analytic solution for the propagation of the Airy beam u(s, 0) =
Ai(s)exp(as), is derived [24] by directly integrating Eq. (1.18) and is given
by:

u(s, ξ) = Ai[s− (
ξ

2
)2 + iαξ] (1.19)

· exp[αs− αξ2

2
+ i(− ξ

3

12
+
α2ξ

2
+
sξ

2
)]

Alternatively, in physical coordinates, in a medium with n = 1, the propa-
gation of the Airy beam is described by:

u(x, z) = Ai[
x

wx
− (

z

2kw2
x

)2 +
iαz

kw2
x

] (1.20)

· exp[
αx

wx
− αz2

2k2w4
x

+ i(− z3

12k3w6
x

+
α2z

2kw2
x

+
xz

2kw3
x

)]
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Figure 1.9: Intensity distribution along propagation of (a) an ideal Airy
beam (α = 0) with transverse scale parameter wx = 100 µm, and (b) and
Airy beam with wx = 100 µm, and apodization factor α = 0.05.

In the case of an ideal Airy a = 0 so as it can be easily seen from the
Airy function arguments ¶ in Eqs. (1.19), (1.20) the distribution is invariant
along a parabolic trajectory. On the other hand, when a > 0 the amplitude
of the distribution decays as the beam propagates mainly due to the fac-
tor exp(− αz2

2k2w4
x
). For sufficiently small values of the truncation parameter

0 < a ≤ 0.5 this decay is very slow so the beam preserves it’s non-diffracting
properties for a considerable propagation distance. From Eq. (1.20) we can
estimate that the peak intensity will drop to half of it’s original value at a
distance zmax = kw2

x√
a

√
2 ln 2. Compared to the Rayleigh range of a Gaus-

sian beam with a beam waist w0 = wx this distance is larger by a factor√
2 ln 2/

√
a ∼ 1.18/

√
a. If the Gaussian beam has the same (FWHM) with

the primary Airy lobe then this ratio is slightly different ∼ 1.26/
√
a.

Fig. 1.9 depicts a numerical simulation [10] of the I(x, z) intensity dis-
tribution of an ideal and a truncated Airy beam along its propagation. The
beam parameters in this case are: transverse scale parameter wx = 100 µm,
apodization factor α = 0.05, and wavelength λ = 0.8 µm. Besides the
parabolic trajectory, Airy beam also preserves the non-diffracting character-
istic of an ideal Airy beam. As we can observe from Fig. 1.9 the intensity
of the main lode (the maximum intensity feature) is slowly decreasing as
it propagates dropping to half of it’s original in intensity at z ∼ 43.5 cm.
This distance is by a factor of ∼ 6 longer compared to that of a Gaussian
beam having the same FWHM as that of the main lobe of the Airy beam
[24]. The extension of the 1D Airy beam to it’s 2 dimensional counterpart is
straightforward [24], thus the initial field distribution in the transverse plane
is given by:

u(x, y, z = 0) = Ai(
x

wx
)Ai(

y

wy
) exp(αx

x

wx
)exp(αy

y

wy
) (1.21)

where, wx, wy being the transverse scale parameters in x, and y directions
¶Ai[s− ( ξ

2
)2], Ai[ x

wx
− ( z

2kw2
x
)2]
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Figure 1.10: (a) Transverse amplitude distribution at the initial plane
(|A(x, y, z = 0)|), of a 2D Airy beam with wx = wy = 200 µm and
αx = αy = 0.05, and (b) graphical representation of the main lobe trajectory
of the 2D Airy beam.

respectively, and αx, αy are the corresponding apodization factors. The
transverse amplitude distribution A(x, y), at the initial plane (z = 0), of a
2D-Airy beam is shown in Fig. 1.10(a). Likewise, if the 2D-Airy beam has
the same scaling parameters wx = wy and apodization factors αx = αy, the
trajectory of the beam’s main lobe is a parabola with a projection in x− y
plane which is a straight line oriented at 45o as shown in Fig. 1.10(b).

1.2.3 Radially symmetric Airy beams

A radially symmetric Airy beam, where the radial distribution is described
by the Airy function, was also recently proposed [26, 25, 27]. In this case
the amplitude is described by:

u(r, z = 0) = Ai(
r0 − r
w

) exp(α
r0 − r
w

) (1.22)

where r is the radial coordinate, r0, and w are the radius and width pa-
rameters of the main ring, and α is the apodization factor. This radially
symmetric Airy variant, referred to as ring-Airy beam or circular Airy beam
(CAB), due to its unique properties has drawn a lot of attention since it was
first introduced. Among others it exhibits an abrupt autofocus with high
intensity contrast along propagation [26, 25, 27]. Although diffracting it self
heals [28] when it is partially blocked. Fig. 1.11(a) shows the transverse am-
plitude profile of a ring-Airy beam. The beam parameters are: r0 = 1.5 mm,
w = 100 µm, α = 0.05, and λ = 0.8 µm. Likewise, Fig. 1.11(b) depicts the
I(x, z) intensity distribution along propagation where the parabolic trajec-
tory of the primary ring and the abrupt autofocus of the beam are clearly
visible.

Moreover, since ring-Airy beams retain low intensity until their abrupt
autofocus, non-linear phenomena, that depend on intensity, are affecting the
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Figure 1.11: (a) Transverse amplitude distribution at the initial plane
(|A(x, y, z = 0)|), of a ring-Airy beam with radius and width parameters
r0 = 1.5 mm, and w = 100 µm respectively, apodization factor α = 0.05,
and wavelength λ = 0.8 µm, and (b) I(x, z) intensity distribution along the
propagation of the ring-Airy beam.

beam propagation dynamics only at the focal region. As it has been recently
shown, in the non-linear propagation regime they are transformed to non-
linear intense light-bullets [29]. Likewise, compared to Gaussian beams,
they show improved results when used for the generation of THz radiation
[30]. Furthermore, their characteristic needle-like shaped focal voxel remains
practically constant with respect to the focal position. This property is very
advantageous for multi-photon polymerization Direct Laser Writing (DLW)
applications, especially for the fabrication of high aspect ratio 3D structures
at long working distances [31].

1.2.4 Light beams carrying Orbital Angular Momentum

Another category of structured light beams is that of light beams carrying
Orbital Angular Momentum (OAM) also referred to as vortex beams. Let
us begin by introducing the optical vortex [32, 33]. The phase distribution

Figure 1.12: Phase distribution of optical vortices with various values of
topological charge m = −2, ..., 2 (a)-(e).
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Figure 1.13: (a) Intensity cross-section I(y, z) along propagation, and (b)
transverse intensity profile I(x, y) at z = 1 m of a Gaussian vortex beam
with FWHM = 1 mm and topological charge m = 1. (Numerical simulation
results [10]).

of a wave that carries a vortex is similar to a helix. Such a wave can be
described (in the paraxial regime) as:

u(ρ, φ, z) = A(r, φ, z) exp(imφ) (1.23)

where A(r, φ, z) is the amplitude, r is the radial coordinate, φ is the azimuth
angle, and z is the propagation direction. The phase term exp(imφ) is a
helical phase that describes the vortex, while m is the topological charge.
The intensity of such waves is zero on the optical axis I(r = 0, z) = 0
due to destructive interference [32] resulting to a beam with a doughnut
shaped transverse intensity profile. In 1992 Allen et al. [34] showed that
such light carries orbital angular momentum (OAM) by using a Laguerre-
Gaussian mode description and comparing it with the eigenfunction of the
projection, along z axis, of the orbital angular momentum operator Lz in
quantum mechanics [5]. This approach was another example of using the
analogy between quantum mechanics and paraxial wave optics to describe a
physical phenomenon. Actually, optical vortices carry an OAM of m~ per
photon. The phase distribution of optical vortices with m = −2, ..., 2 is
depicted in Figs. 1.12(a)-(e). Note, that the abrupt discontinuities in the
phase are due to the presence of the vortex and their number is equal to the
absolute value of the topological charge |m|.

Light beams can carry OAM as inherent property, like for example La-
guerre - Gaussian (LG) beams [34], or OAM can be imposed by imprinting a
vortex in the phase of any light beam. Moreover, higher order Bessel beams
Jn(r), (∀ n > 0) also carry OAM. In this case the topological charge is equal
to the order of the Bessel function m = n. On the other hand, by imprinting
a helical phase exp(imφ) we can impose OAM to any light beam, like for
example a ring-Airy beam that is transformed to a ring-Airy vortex beam
[35].

In Figs. 1.13, 1.14 we depict two examples of such vortex beams. In more
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Figure 1.14: (a) Intensity cross-section I(y, z) along propagation, and (b)
transverse intensity profile I(x, y) at z = 520 mm of a ring-Airy vortex beam
with r0 = 1 mm, w = 100 µm and topological charge m = 1. Numerical
simulation results [10].

detail, Fig. 1.13(a) shows the intensity distribution along propagation of a
Gaussian beam with an imprinted helical phase u(x, y) = G(x, y) exp(imφ)
with FWHM = 1mm, and m = 1. Moreover, Fig. 1.13(b) shows the trans-
verse intensity profile I(x, y) at a propagation distance of z = 1 m, of the
Gaussian vortex beam, where we can observe the characteristic doughnut-
like shape. When a helical phase is imprinted to an abruptly auto-focusing
ring-Airy beam, the abrupt autofocus is unaffected, as shown in Fig. 1.14(a).
Likewise, the characteristic doughnut-like intensity profile is clearly visible
in the focal region as shown in Fig. 1.14(b).

1.2.5 Light beams with exotic distributions

In addition, there is also another category of distinctively shaped beams that,
although are not all non-diffracting, exhibit interesting and useful properties.
Here, we will show a few of them and discuss about their properties and their
applications.

Mathieu beams

One of the first alternatives of a non-diffracting after the first realization of
the Bessel beam, were the Mathieu beams that were proposed and experi-
mentally demonstrated by J.C.Gutiérrez-Vega et al. [36, 37]. The distribu-
tion of a Mathieu beam, in elliptical cylindrical coordinates‖, is described:

u(ξ, η, z; q) = Ce0(ξ; q)ce0(η; q)exp(ikzz) (1.24)
‖In elliptical cylindrical coordinates x = h cosh(ξ) cos(η), y = h sinh(ξ) sin(η), and z =

z, where ξ ∈ [0,∞) and η ∈ [0, 2π) are respectively the radial and angular variables and
2h is the interfocal separation.
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Figure 1.15: Normalized transverse intensity profiles of Mathieu beams with
h = 5, q = 25 and (a) m = 0, (b) m = 10.

where, Ce0 is the even radial Mathieu function of the first kind, while ce0

is the angular Mathieu function, ξ and η are the radial and angular vari-
ables respectively, q is a parameter associated with the ellipticity of the
coordinate system, and kz is the magnitude of the longitudinal component
of the wavevector. Fig. 1.15 shows typical transverse intensity distribution
of Mathieu beams with parameters: h = 5, q = 25 and Fig. 1.15(a) m = 0,
Fig. 1.15(b) m = 10. Mathieu beam is a non-diffracting solution of the wave
equation in elliptical-cylindrical coordinates and is described by the radial
and angular Mathieu functions as shown in Eq. (1.24). Since non-diffracting
Mathieu beams contain infinite energy, and therefore are not feasible, a trun-
cated version of finite energy, where the initial field is clipped by a circular
aperture, was proposed [38]. Mathieu beams have been used in a few appli-
cations as an alternative optical tool. For example, such beams were used as
light moulds for 3D microparticle structures [38], while femtosecond Mathieu
Beams were used for fabrication of complex 3D microcages [39].

Pearcey beams

A more recently introduced exotic beam with interesting properties is the
Pearcey beam [40]. These beams are based on the Pearcey function that de-
scribes the cusp caustic formed when light experiencing spherical aberration
[40] is focused. The Pearcey function is defined by the Pearcey integral:

P (x2, x1) =

∫ ∞
−∞

exp[i(t4 + x2t
2 + x1t)]dt (1.25)

where x1 and x2 represent the two dimensionless orthogonal variables that
are perpendicular to the propagation axis. The Pearcey beam, although
diffracting, exhibits a form-invariant behavior as well as auto-healing along
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Figure 1.16: Normalized transverse intensity profile of a Pearcey beam.

propagation. The first experimental observation of such beams was presented
by J.D Ring et al. in 2012 [40]. In Fig. 1.16 a typical normalized transverse
intensity profile of a Pearcey beam is depicted. Furthermore, an extension
of the Pearcey beams was proposed and it’s propagation dynamics were
theoretically investigated in 2018 by X. Chen et al. [41]. In this work a
radially symmetric counterpart of Pearcey beam that exhibits auto-focusing
behavior similar to that of the radially symmetric Airy beams [26, 42] was
demonstrated.

1.3 Structured light for materials science applica-
tions

Light finds use in various fields of science and technology. Applications range
from metrology, imaging and telecommunications to materials processing. In
metrology, light is utilized in order to measure material properties using in-
terferometric, spectroscopic, and other techniques [43, 44, 45, 46, 47]. More-
over, in imaging, light is used for detection, identification and data retrieval.
Furthermore, either pulsed of continuous, light beams can provide a volatile
tool for the processing of materials in order to cut, structure, or change
their properties. Although quite often, a Gaussian beam is utilized for these
applications, nevertheless there are several examples in bibliography where
a structured light beam is used [48, 30, 49, 39] showing improved results.
Especially, when the goal is the efficient energy delivery on a remote target,
structured light is a suitable means to achieve this. In Fig. 1.17 we depict an
illustration of a device that modulate an incoming wave to create structured
light that is afterwards used for materials processing. Such a device can be a
simple optical element, a more advanced Spatial Light Modulator (SLM), a
device consisting of linear and non linear optical elements, or a combination
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Figure 1.17: Illustration of a typical scheme for light structuring in materials
processing applications.

of all of the above.
In materials science applications there is a variety of cases where wave-

packets are modulated in their spatial distribution of amplitude, phase, or
polarization state, as well as in their temporal profile, such structured light
beams have been used and showed improved results [42, 31, 50, 51]. For
example, wave-packets, spatially shaped to transform into ring-Airy beams
[26, 42], have been employed for the manufacturing of large three-dimensional

Figure 1.18: Fabricated structures using ring-Airy beams (a,b) and Gaussian
beams (c,d): SEM images of hexagonal structures (1 mm in height). Image
reprinted from [31] with permission from the authors.
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Figure 1.19: SEM images of LIPSS using CV beams with azimuthal (a–d),
radial (e–h) and linear (i–l) polarization. Image reprinted from [53] with
permission from the authors.

structures with high resolution using multi-photon polymerization [31]. In
particular, using the needle-like focal voxel of ring-Airy beams, structures
with high aspect ratios were fabricated, exhibiting better results compared
to those were the structures were fabricated using conventional Gaussian
beams as shown in Fig. 1.18.

Furthermore, there are several materials processing applications where
the temporal profile of a wave-packet is modulated [50, 52]. Although this
thesis is focused in spatial shaping, it is essential to mention a few appli-
cations of temporal light shaping. In 2016, a group in the University of
Kassel [50] demonstrated the generation of uniform ablation structures with
high aspect ratios in fused silica using temporally shaped Airy wave-packets.
In more detail, they compared the ablation results of a 30fs Gaussian pulse
with one that was stretched to transform into a temporal Airy pulse of 1.5ps.
They observed that when using such temporal structuring the ablation crater
that was created was more uniform and with higher aspect ratio reaching
values 30 : 1 (depth:width).

Furthermore, another crucial parameter that can be controlled is the po-
larization of a beam. Different polarization states can produce remarkably
different results in various materials processing applications [54, 55, 56]. For
instance, cylindrical vector (CV) femtosecond laser beams have been used for
complex surface structuring [53]. In this work, a linearly polarized Gaussian
fs pulse was shaped by a series of waveplates to acquire radial and azimuthal
polarization. This resulted to a doughnut-like shape in their transverse inten-
sity profile. These CV beams were used to process thin Ni films (thickness
∼ 100 µm) to produce LIPSS ∗∗ with their characteristic texture aligned
perpendicular to the polarization vector. A typical result of this work is
presented in Fig. 1.19.

∗∗Laser-Induced Periodic Surface Structures (LIPSS).
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1.4 Coherence of light

Based on its electromagnetic nature light is often described as a synchronous
oscillation of the electric and magnetic field. In a homogeneous and isotropic
medium the two fields are transverse to each other and perpendicular to the
propagation direction [3]. Besides the ideal case of a monochromatic har-
monic plane wave that propagates along a direction, in a real physical system
light is emitted from sources that are confined in space, and emit within a
finite spectral content, usually distributed around a central frequency, or
wavelength. Furthermore, each point on the spatial extent of the source
emits in a somehow uncorrelated or weakly correlated way both in time,
compared to a previous instance, and in space, compared to it’s neighboring
points [2, 57]. This effectively introduces random phase, and polarization,
fluctuations [57] to the light field. The theory of coherence elucidates the
fluctuations of optical fields in a rigorous manner [57, 58]. It this thesis, we
experimentally studied the effect of coherence on the properties of accelerat-
ing optical beams. In the following, we are going to present the foundations
of coherence theory, in a non exhaustive way, introducing all the important
physics that are involved to properly interpret the experimental results. In
this context, it is more convenient to present the concepts of spatial and
temporal coherence independently [7], an approach we are going to follow in
this thesis.

1.4.1 Temporal coherence

Temporal coherence is directly linked to the finite extend of the spectral
content of a light beam. It represents a quantitative measure of the self-
correlation of a wave in time, namely the correlation of a wave, at a specific

Figure 1.20: Illustration of temporal coherence of a wave.
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point in space, at a reference time t0 with the evolution of the same wave after
a finite period of time ∆t. The effect of temporal coherence becomes apparent
in an interference experiment. For example, in a Michelson interferometer
[7], the wave is splitted into two parts and a variable time delay is imposed
between them. Afterwards, when the two parts are combined again their
superposition depends on the time delay, or the optical path difference ∆L =
c∆t, where c is the velocity of light. This process is graphically depicted in
Fig. 1.20, where it is visible that interference effects are observed within a
time delay or an optical path difference range, which we refer to as coherence
time tc and coherence length Lc = c∆tc respectively. According to coherence
theory [57], the coherence length depends on the spectral bandwidth of the
source. For quasi-monochromatic source the coherence length is [7, 57]:

Lc =
λ2

0

∆λ

where λ0 is the central wavelength and ∆λ is spectral width measured at
FWHM of the wavelength distribution. For example, a diode that emits at
a central wavelength of λ0 = 1 µm and spectral bandwidth of ∆λ ' 50 nm
has a coherence length Lc ' 20µm [59], while a continuous wave (CW) laser,
due to it’s very small spectral bandwidth (∆λ� λ0), exhibits considerably
longer coherence lengths, ranging form a few millimeters to hundreds of
meters [60, 61].

1.4.2 Spatial coherence

Spatial coherence, on the other hand refers to the correlation of different
point emitters in a source at the same time. Likewise, the effect of spatial
coherence becomes apparent by an interference experiment, particularly the
well-known double slit Young’s experiment where we split the wave in ques-
tion into two identical parts passing through two distinct slits, or pinholes.
When the two parts are recombined, the superimposing fields result to inter-
ference fringes. In more detail, let’s begin by assuming that a light source,
of square shape and side ∆x, illuminates an opaque screen, that contains
two pinholes P1 and P2 and is located a distance R. According to coherence
theory [57], we can observe interference fringes onto the screen if only the
two pinholes are inside the spatial coherence area defined as [57]:

∆A ∼ R2

S
λ2

0

where S = ∆x2 is the surface area of the source, and λ0 is the central wave-
length of the light emitted from the source. For example, an incandescent
lamp has a spatial coherence area in the order of 1 µm2, and a typical white-
light LED has a coherence area of few µm2, while a laser is considered fully
spatially coherent within the whole beam diameter.
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Figure 1.21: Illustration of the manifestation of spatial coherence of a wave
in a typical Young’s experiment.

Spatial coherence is often described by the equal-time mutual coherence
function (EMCF), also referred to as mutual intensity function, between two
arbitrary points [58, 62]. The EMCF takes values between 0 and 1, with the
lower limit referring to spatially incoherent while the upper limit refers to
spatially coherent light. Interestingly, according to the van Cittert-Zernike
theorem [2] the propagation of the EMCF is described by a wave propagation
equation. Thus EMCF spreads as it propagates, similarly to a wave that
diffracts. In this context, the evolution of the EMCF of an incoherent light
source of size S can be described in a similar way to the diffraction of a
wave from an aperture of the same size. Thus, a convenient method to
increase the spatial coherence of a light beam is the spatial filtering, namely
passing incoherent light through a small aperture [57]. In this case the spatial
coherence of the diffracted beam is inversely proportional to the size of the
aperture.

In particular, for light emitted by a circular source of radius a in a plane
located at a distance R >> a the absolute value of EMCF between two
points P1, P2 is described by:

|j(p1, p2)| = 2J1(v)

v
(1.26)

where J1 denotes the first order Bessel function of the first kind, and v is a
parameter described by:

v =
2πa

λ0R
d12

where d is the distance between the two points, and λ0 is the central wave-
length. From the above it is straightforward to estimate the FWHM of the
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coherence area by setting |j(p1, p2)| = 0.5 ⇒ v ' 2.25 thus the coherence
area will be:

d12 ' 2.25
λ0

πa
R (1.27)

To summarize, as described by Eq. (1.27), the spatial coherence length
d12 is proportional to the central wavelength λ0 and to the propagation
distance R and inversely proportional to the size of the source.
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2 | Design and engineering of
structured light

Customised optical fields, referred to as structured light, can provide signifi-
cant advantages in applications since their focal distribution and propagation
dynamics can be tailored. Customisation can be performed by, indepen-
dently or in combination, spatially modulating the amplitude, the phase, or
the polarization of the light wave [6]. Such an optimization process involves
two stages, firstly the design and engineering and then the generation of
structured light.

The first stage involves the selection of the optimal distribution (am-
plitude, phase and polarization) of the structured light beam for a specific
application. For instance, several examples exist in the bibliography where
structured light was adopted [63, 48, 31, 49, 30, 39] resulting to notably
better results. From these demonstrations it is obvious that the optimal
structured light depends on the application. In cases where longer foci are
required Bessel beams prevail compared to Gaussian beams, with the draw-
back of a much lower intensity contrast at the focal region. Based on this
fact and in correspondence to the field of medicine where a wide variety of
scalpels is used, it is clear that also a variety of light beams with differ-
ent focal distributions should be readily available to the optical engineer.
The design of structured light that will lead to a variety of tailored focal
distributions and the requirement to be able to function in the linear and
the non-linear propagation regime makes the task very difficult for iterative
numerical optimization techniques.

On the other hand, an analytic approach to design such a toolbox is in
principle possible by using non-diffracting beams, like Bessel or Airy beams.
These beams exhibit intensity hot-spots that are a result of strong linear
phase gradients and interference effects. Due to this, when the beam energy
in increased, non-linear effects that depend on intensity are excited only lo-
cally near the intensity hot-spots and do not have a significant impact in the
focal distribution. An ideal template to achieve this complex task is the re-
cently introduced family of accelerating optical wave packets [19, 24, 26, 42],
whose distribution is described by the Airy function. These structured light
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waves propagate in curved trajectories [64], exhibit abrupt autofocus [42, 27]
and are able to self-heal and bypass obstacles [65]. Furthermore, at high in-
tensities they reshape into nonlinear intense light-bullets with extremely well
defined focal position [29].

This design and engineering stage can involve either analytical approaches
that rely on the manipulation of a discrete collection of template light dis-
tributions, or numerical iterative methods, or even a combination of them.
In this chapter we will show that utilizing shaped accelerating beams, we
can precisely tailor the focal voxel distribution over an extended working
distance. By using analytical approaches, combined with a modular combi-
nation of template components, we provide a complete and versatile toolbox
of light scalpels, that can be used in variety of applications. In particular,
the template components of our toolbox are three: a) abruptly auto-focusing
ring Airy beams [26, 42], b) the recently introduced abruptly auto-defocusing
inverse ring Airy beams [27], and c) a conical phase gradient (CPG). The
first two, enable us to finely tune the focal distribution, while the CPG that
acts similar to an axicon [15] is used to control the focus position and an
alternative to a lens in order to increase the intensity contrast at the focus.
As we show, through numerical simulations, such an approach enables us to
produce a double foci that can be independently tuned in terms of position
as well as peak intensity, with the exiting feature of being uncorrelated in
the presence of an obstacle. Likewise, by overlapping the two foci an sharp
high contrast focus is formed.

2.1 Light Scalpels

The idea of using light as a scalpel comes from the field of medicine. There,
instead of searching for the "optimal" tool, surgeons have developed a variety
of scalpels that are optimal for specific operations. Comparing to the field
of Optics, and more specifically structured light, we see that, although there
is an equivalent versatility in the applications, most publications are still fo-
cused on finding the optimal, unique tool to replace all others. Furthermore,
the proposed light distributions become more and more complex, require so-
phisticated and costly equipment like spatial light modulators (SLM) to be
generated, and they are still far from being used from a non-optics specialist
community. As we are going to show, bringing the idea of designing versa-
tile light scalpels, that are based on a combination of a limited set of basic
ingredients, can provide a complete toolbox to the optical engineer and en-
able a larger community to benefit from the exiting properties of structured
light. Let’s first review some of the light distributions that are available, i.e.
light scalpels already in hand, and compare them in respect to their focal
properties.

The most commonly used intensity profile is the Gaussian distribution.
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Gaussian beams, are easy to handle, require no special equipment to generate
them, and we can analytically describe their propagation through optical
systems [2]. Likewise, they are easily focused to localized and intense foci,
using a simple lens. On the other hand, their focal aspect ratio (ratio of focal
width to focal length) depends on the focus position and in the non-linear
regime the focus shifts towards the source as we increase the beam power
[66]. The amplitude of Gaussian beams, at z = 0, is described by:

u0(r, z = 0) = A0 exp(− r
2

w2
0

) (2.1)

where A0 is a the peak amplitude at z = 0, r is the radius in cylindrical
coordinates and w0 is the initial beam waist.

On the other hand, there exists a large variety of structured light beams
that are optimized for specific applications. The first one of this kind is
the Bessel beam [12, 13]. Bessel beams are non-diffracting solutions of the
(2D+1) wave equation, and rely their properties on a conical shaped wave-
front. Their transverse amplitude profile is described mathematically by
Eq. (2.2) where J0 is the Bessel function of the first kind and zero order,
a is a constant and r is the radius in cylindrical coordinates. Their main
characteristic is that they focus in a narrow, in the order of the wavelength,
focal spot that does not spread due to diffraction as the beam propagates.
An ideal non-diffracting Bessel beam would require infinite energy to be re-
alized. Nevertheless, in practice the generation of finite energy Bessel-like
beams is achieved in the case of Bessel-Gauss beams [67] where a Gaus-
sian beam is shaped by a conical phase gradient. In this case, the beam is
nearly non-diffracting so its focal spot does not spread over a propagation
range, thus the elongated focus is finite in length. These beams are gener-
ated by using either a conical lens, referred to as axicon, [15] or by using
active wavefront shaping devices such as a Spatial Light Modulators (SLM).
Bessel-Gauss beams are not that easily handled through optical systems, for
example their focus is distorted when focused by a lens, but analytical or
semi-analytical predictions of this behavior are available [68, 18]. As in the
case of all non-diffracting beams, the focus is generated by interference ef-
fects due to the conical phase gradient. Thus, compared to Gaussian beams,
they are robust as their power is increased.

u0(r, z = 0) = J0(ar) (2.2)

Another type of beam, that is the only non-trivial, non-diffracting solution
of the (1D+1) wave equation [19, 24] is the Airy beam. Airy beams are
described mathematically by the Airy function [64] and have exciting prop-
erties. As they propagate, their distribution remains unchanged following a
parabolic trajectory, a property referred to as acceleration [64]. Furthermore,
as all non-diffracting beams they have the ability to self-heal [65] after being
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perturbed by an obstacle. Similarly to Bessel beams, an ideal non-diffracting
Airy beam cannot be physically realized. A truncated, with finite energy,
version of these beams can be generated by applying an exponential decay
apodization [24]. Interestingly the Fourier transform of Gaussian beam with
cubic phase modulation is an exponentially apodized Airy beam. While
such 1D beams have been successfully applied in light sheet microscopy [69],
a later introduced radially symmetric variation [26, 42] seems very promising
in a greater range of applications. These variants, which are referred to as
circular Airy beams (CABs) or ring-Airy beams, are described by the Airy
distribution in the radial coordinate. Their most exciting feature is that they
abruptly autofocus without the need of any focusing elements. Counterintu-
itively, these beams shrink down to a focal spot as they propagate, with their
distribution following a parabolic trajectory, a property imparted by their 1D
counterparts. These beams are generated by various approaches [42, 70, 30]
using SLMs. Although diffracting, ring-Airy beams show self-healing char-
acteristics since their foci is robust to perturbations introduced by obstacles
[28]. In the non-linear propagation regime, they show negligible focal shift
and are very robust as the power is increased [29], likewise their harmonics
also autofocus [23] with overlapping foci. Furthermore, their behavior when
propagating through optical systems is unique since two foci appear when
focused by a lens [71]. Although interesting, and analytically predictable
[72, 71] such a characteristic is not always desirable to applications. To
address the problem of further focusing ring-Airy beams an alternative ap-
proach using a conical phase gradient was recently proposed [27]. Using this
approach these beams can be further focused to create intense, controllable
foci.

2.1.1 Focal aspect ratio

As shown in Fig. 2.1 the three basic light scalpels that we described seem
complementary to each other. Gaussian beams, see Fig. 2.1(a), result to a
localized rather short focal region. On the other hand Bessel-Gauss beams as
shown in Fig. 2.1(c) result to a focus that is very long and not localized in the
propagation direction. Ring-Airy beams, as shown in Fig. 2.1(b) bridge the
behaviour of the previous two by resulting to needle like focal regions, with a
degree of localization on the propagation direction. In order to quantify this
behavior we will use the focal aspect ratio, which is defined as the ratio of the
FWHM of the focus in the longitudinal (∆f) and the lateral (w) directions
AR = ∆f/w. For a Gaussian beam this ratio can take values AGR > 3 while
for the Bessel-Gauss typically is around ABGR ∼ 103−104. Notably, ring-Airy
beams with values of ArAiR ∼ 102-103 [27] result in a focal aspect ratio that is
between of that of the other two aforementioned beams AGR < ArAiR < ABGR .
For this behavior to be clearly visible, we have chosen the parameters of all
beams in Fig. 2.1 in such a way so that the beams have similar initial size and
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Figure 2.1: Intensity cross-section (y−z) of the propagation of various beams.
(a) Gaussian focused by a lens, (b) a ring-Airy, and (c) a Gauss-Bessel beam.

focus at the same position. This approach resembles a typical application
where, using finite sized optics, a light beam delivers energy to a remote
target. Although the beam can in principle be structured, using and SLM
for example, the finite size of the optics cannot be exceeded.

2.2 Accelerating beams as a template for
light scalpels

As we mentioned in the introduction of this chapter Accelerating beam con-
sist an ideal template for the generation of structured light. Specifically we
utilize accelerating Airy beams, and variants of such beams for the creation
of structured light. When Berry and Balazs showed, in 1979, that an Airy
function is a non-dispersing solution of the Schröndiger equation in quan-
tum mechanics [19], it was hard to imagine that, after nearly three decades,
Siviloglou et al. will expand this result in the optical regime to generate
non-diffracting, accelerating Airy beams [64, 24]. This interesting transition
from Quantum Mechanics to Wave Optics was of course possible due to the
mathematical equivalence of Schröndiger equation in Quantum Mechanics
and the paraxial wave equation in Wave Optics 1.1.1.
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2.2.1 1D, 2D and 3D Airy beams

Along with Bessel beams, 1D Airy beams and 2D Airy beams are nowadays
the most widely used non-diffracting beams. Airy beams are intensity invari-
ant over a parabolic trajectory along their propagation [64, 24] and self-heal
[65]. These remarkable properties initiated many noteworthy applications
ranging from curved plasma channels [73], and trapping and moving parti-
cles perpendicular to propagation axis [74], and using Airy beams in light
sheet microscopy [49, 75]. In addition, if we take into account the temporal
distribution of a wavepacket, we can shape its temporal profile in such a way
to achieve a non-dispersing propagation. Combining temporal shaping and
spatial structuring of a wavepacket, for non-dispersing and non-diffracting
propagation one can create light that remain invariant along propagation.
This has been done in 2010 in [76], where an Airy distribution used for the
temporal component along with a 2D Airy spatial structuring, leading to
spatiotemporal intense Airy-Airy-Airy (Airy3) light bullets. The spatiotem-
poral intensity of these light bullets is given by:

I(x, y, z, t) = Ai2(± x

wx
)Ai2(± y

wy
)Ai2(± τ

τ0
− (k

′′
0 )2z2

4τ4
0

) (2.3)

where Ai denotes the Airy function, x, y, and z are the coordinates in the
transverse plane and along propagation, respectively, τ = t − (z/vg) is the
reduced time, vg is the group velocity of the envelope of the light bullet,
wx, wy, and τ0 are constants associated with the two spatial and temporal
widths of the wave packet, respectively, and k′′0 = ∂2k/∂ω2 is the dispersion
coefficient of the medium at the central frequency.

Furthermore, exploiting their accelerating nature and applying cylindri-
cal symmetry the circular Airy beam (CAB) or ring-Airy was introduced
[26, 42]. These beams have the exciting property of abruptly auto-focusing,
i.e. diffraction leads instead of spreading to a focus. We will deal with this
type of beams and their variations in detail in the following sections.

Airy and Gaussian beams, a Fourier Transform relation

As we have already described in the previous chapter (see 1.2.2) ideal Airy
beams carry infinite energy, thus some king of truncation is necessary in
order to materialize them. Siviloglou et al. have proposed [24] an exponential
truncation:

u(s) = Ai(s) exp(αs) (2.4)

where s = x/wx is a transverse coordinate normalized with a scale parameter
wx that is associated with the width of the main lobe of the Airy beam,
while α > 0 is the truncation parameter, which ensures that the function
is square integrable. Although other truncation functions are also possible,
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Figure 2.2: Members of the Airy beams family. (a) 1D Airy beam, (b)
pulse with an Airy temporal distribution, (c) 2D Airy beam, (d) 3D Airy
accelerating light bullet [76].

the exponential truncation has a unique property: it’s Fourier transform is
simply a Gaussian function with a cubic phase modulation [24]:

Φ(k) = exp(−αk2) exp[
i

3
(k3 − 3α2k − iα3)] (2.5)

where k is the spatial frequency. Furthermore, for small values of the trun-
cation factor (α→ 0) the above equation can be further simplified to:

Φ(k) = exp(−αk2) exp(
i

3
k3) (2.6)

This relation shows that the Fourier transform of a Gaussian distribution
modulated by a cubic phase distribution gives an exponentially truncated
Airy function.

Why Airy beams are curved?

Admittedly, the most striking feature of the Airy beam is that it follows
a curved trajectory along propagation. This trajectory is described by
a parabola given in Eq. (1.20). A rigorous analysis of this behaviour is
given in the original Berry and Balazs 1979 publication [19] where the Airy
wavepacket was introduced for the first time. In a nutshell they showed
that, viewed classically in phase space, an Airy wavepacket corresponds to a
family of orbits that are represented by a parabola. Therefore, it is not any
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Figure 2.3: Image of a caustic which is formed when rays are refracted by a
glass of water.

individual particle that accelerates in the Airy wavepacket but the caustic of
the family of orbits. In a similar approach to the above mentioned classical
analysis, light ray caustics (a geometrical optics concept) can also help us
to reach to a physical understanding of the effect. To begin with, a caustic
can be defined as a region to which tangent rays concentrate [77]. We often
observe this phenomenon, when light passes through a curved refractive sur-
face, like the ripples on water surface, or a droplet. An everyday example
of caustic formation is shown in Fig. 2.3 where rays of light pass through a
glass of water. In more detail, as we know [2] in an isotropic medium opti-
cal rays are perpendicular to the wavefront, which in shape is the "mirror
image" of the corresponding phase distribution, as it is graphically shown in
Fig. 2.4(a). Moreover, Fig. 2.4(b) shows a spherical wavefront, and the cor-

Figure 2.4: Graphical representation of a wavefront with the corresponding
optical rays and phase distribution. (a) Arbitrary wavefront, and (b) Spher-
ical wavefront. Note that in this case the phase distribution is described by
a quadratic function.
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Figure 2.5: Illustration of a wavefront resulting from a x3/2 phase distri-
bution. Note that in this case the optical rays form a parabolic caustic.
(Raytracing simulation results)

responding a quadratic phase distribution. Note that similar to the action
of a lens, all rays converge to a single point which we refer to as the focus.

In this context, by properly shaping the wavefront, we can direct optical
rays in such a way so that they follow any trajectory [78]. To apply this
concept in the case of the Airy beam we will use a known approximation of
the Airy function is [22, 19]:

Ai(x) ∼ 1

x1/4
exp(iCx3/2)

where C is a constant. As one can observe, the Airy function can be de-

Figure 2.6: Illustration of how an Airy beam can be formed as a result of a
caustic of rays. In this case a cubic phase modulated wavefront is Fourier
transformed by a lens, resulting to a x3/2 phase distribution at the Fourier
plane. (Raytracing simulation results)
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scribed by an oscillating term exp[iφ(x)], where φ(x) = Cx3/2 is the phase
distribution, and a decaying amplitude (1/x1/4) term. Let’s focus now only
on the phase distribution and ignore the amplitude decay [79]. Since optical
rays are perpendicular to the wavefront we can estimate each ray’s direction
r̂(x), by differentiating over the phase distribution ∂φ(x)

∂x we get for the Airy
distribution:

φ′(x) =
3

2
Cx1/2

Following, the slope of the rays will be:

r̂(x) ∝ x1/2

As it is graphically visualized through raytracing in Fig. 2.5 these rays form
a caustic that is described by a parabola. Furthermore, it is straightforward
to show that such a phase distribution φ(x) ∼ x3/2 can be generated by
Fourier transforming a wavefront with a cubic phase distribution (x3) ∗.
This behaviour is depicted, using raytracing simulations, in Fig. 2.6. These
results although only shown for the 1D case, for simplicity, they can be also
generalized for the 2D Airy beam counterpart.

2.2.2 Abruptly auto-focusing beams

Any wave of finite dimensions will diffract [2, 7], and usually this means that
it spreads at it propagates. Contrary to this common belief, there exist waves
that instead of spreading they focus as they propagate, a behaviour referred
to as auto-focusing. An annular beam, where light is emitted through a
ring and leads to an needle-like focus is such an example. The introduction
of accelerating waves has opened new dimensions to this field. Following
parabolic trajectories such fields can result to auto-focusing with an abrupt
increase of the intensity in the focal region. A straightforward example for
this behaviour is the case of colliding 1D Airy beams [71, 80, 81, 82] where
two 1D symmetrical Airy beams, superimpose. In more detail, two 1D Airy
beams that are mirror symmetric with respect to the propagation axis, can
result into an abrupt focus. Following symmetric parabolic trajectories these
beams can either form an abrupt focus or form an elongated focal region. In
both cases their characteristics, namely the focal position in the first case of
the focal length for the latter, can be tuned by the Airy beam’s parameters.
The initial field distribution (at z = 0) of such beams is:

ucol(x, 0) = u(x, 0) + u(−x, 0) (2.7)

u(x, 0) = Ai(
x− x0

wx
) exp(α

x− x0

wx
)

where x0 is a transverse displacement, wx is a constant, and α is the trunca-
tion parameter. An example of such waves is depicted in Fig. 2.7. In more

∗A detailed analysis, using matrix theory, is given in 4.4.1
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Figure 2.7: Colliding Airy beams with wx = 100 µm, x0 = −1 mm, and
α = 0.05 parameters. (a) Transverse I(x, y) intensity profile at z = 0,
(b) intensity I(y, z) cross-section along propagation, and (c) maximum peak
intensity along propagation normalized to the maximum intensity at the
initial plane Imax/I0. (Numerical simulation results [10].)

detail, Fig. 2.7(a) depicts the transverse (x-y) amplitude profile at the initial
plane (z=0) of colliding Airy beams with wx = 100 µm, x0 = −1 mm,
and α = 0.05, while Fig. 2.7(b) shows the intensity I(y, z) (y-z) cross-
section along propagation, and Fig. 2.7(c) shows the maximum peak intensity
along propagation normalized to the maximum intensity at the initial plane
Imax/I0 .

Radially symmetric Airy beams

A great enhancement of the abrupt auto-focusing behavior is achieved by
applying the Airy distribution in the radial coordinate, thus generating a
radially symmetric Airy beam [26, 42], referred to as Circular Airy beam
(CAB) or ring-Airy beam:

u(r, z = 0) = Ai(s) exp(αs) (2.8)

where s = (r0−r)/w, r is the radius in cylindrical coordinates, r0, w are the
radius and width parameters of the initial ring respectively, a is the trunca-
tion factor as before. The idea behind this is approach that each part of the
ring-like structure that is formed will follow a parabolic trajectory towards
the center thus resulting to an abrupt autofocus. The peak intensity at the
focus can be orders of magnitude higher compared to the initial intensity
[26, 42, 29].
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In Fig. 2.8 the amplitude and phase of a ring-Airy beam is shown along
with the corresponding intensity distribution along propagation. In more
detail, in Fig. 2.8(a) we see the transverse x − y cross-section of the ampli-
tude of a ring-Airy at the initial plane (z = 0), from which we observe the
characteristic concentric rings that point outwards in decaying fashion. The
radius of these rings decreases as the beam propagates until they collapse
as shown in Figs. 2.8(b),(c) which shows the x− z cross-section of intensity
and the maximum peak intensity Imax/I0 along propagation respectively, is
depicted and show the abrupt auto-focusing property of the ring-Airy. More-
over, as we see from Fig. 2.8(c) the intensity contrast at the focus reaches
values that exceeds Imax/I0 > 120. This contrast in general depends on the
ratio r0/w and reaches it’s maximum roughly at r0/w ∼ 15 [26]. Because
of the mathematical complexity of the paraxial wave equation in cylindrical
coordinates, an analytical relation for the propagation of such beams does
not exist however a simple equation for the focus position can be derived
[42], by using the analytical relation of propagation of the 1D Airy beam.

Ring-Airy beams have been used in various applications, especially in
the field of materials science [31, 30, 29, 83]. Likewise, since non-liner effects
depend on the intensity the ability of ring-Airy beams to maintain low,
practically constant intensity along propagation until the formation of the
high intensity focus, makes their propagation, compared to Gaussian beams,

Figure 2.8: Ring-Airy beam (a) Transverse amplitude profile at the ini-
tial plane (|A(x, y, z = 0)|), (b) the corresponding intensity I(y, z) cross-
section (Log-scale) along propagation, and (c) maximum peak intensity
along propagation normalized to the maximum intensity at the initial plane
Imax(z)/I0. Numerical simulation results [10], beam parameters: r0 = 1 mm,
w = 100 µm, α = 0.05, b = 1, and λ = 0.8 µm
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Figure 2.9: Inverse ring-Airy beam (a) Transverse amplitude profile at the
initial plane (|A(x, y, z = 0)|), (b) the corresponding intensity I(y, z) cross-
section (Log-scale) along propagation, and (c) maximum peak intensity
along propagation normalized to the maximum intensity at the initial plane
Imax(z)/I0. Numerical simulation results [10], beam parameters: r0 = 2 mm,
w = 100 µm, α = 0.05, b = 1,and λ = 0.8 µm.

robust to nonlinearities [29].
Recently a variation of the ring-Airy beam, which we refer to as inverse

ring-Airy, was introduced [84, 27]. These beams are also described by the
Airy function in the radial dimension but, contrary to the ring-Airy, have
their ring structure facing inwards. Both beams can be described in a unified
manner:

u(r, z = 0) = Ai(bs) exp(αbs) (2.9)

where b is a binary type parameter that takes only ±1 values, and acts as
a "switch" between the two variant beams. More specifically, for b = 1
Eq. (2.9) describes the auto-focusing ring-Airy, whereas for b = −1 Eq. (2.9)
describes the inverse ring-Airy. In Fig. 2.9 the amplitude and phase of an
inverse ring-Airy beam is shown along with the corresponding intensity dis-
tribution along propagation. In more detail, in Fig. 2.9(a) we see the trans-
verse x − y cross-section of the amplitude of an inverse ring-Airy at the
initial plane (z = 0), from which we observe the characteristic rings that,
contrary to the ring-Airy point inwards. Moreover, Figs. 2.9(b),(c) depict
the y− z cross-section of the intensity distribution and the normalized max-
imum peak intensity along propagation Imax/I0, respectively, that show the
resulting elongated focal region of the inverse ring-Airy, which is similar to
the needle-like focal region of a Bessel beam [16, 18]. For the case of the
inverse ring-Airy beam reaching to an analytical description of the propa-
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gation it is quite complex because of the oscillatory behavior of the beam
around its center [82, 84].

Radially symmetric Airy beams, with a conical phase

In order to further control the focusing properties of ring-Airy beams it is
desirable to use some extra focusing mechanism. Using a simple lens leads to
the formation of double foci [71] which is not always desirable. Recently we
have introduced an alternative way to further control the focusing properties
of ring-Airy beams by adding a conical phase gradient [27], equivalent to that
introduced by an axicon [15]. The idea of this conical phase originates from
the linear phase gradient †:

Φ(x) = exp(−i sin θkx)

where θ is the angle, k the wavenumber. Such phase gradient is usually used
to steer a light beam. in cylindrical symmetry this linear phase translates
into a conical phase gradient:

Φ(r) = exp(−i sin θkr)

where r is the radial coordinate in cylindrical coordinates (r, φ). Both of
these phase gradients are depicted in Fig. 2.10 where it shows the linear,
and conical phase along with their corresponding transverse (x − y) phase
distribution.

Following,expanding the generic description of ring-Airy and inverse ring-
Airy beams of Eq. (2.8) by adding a conical gradient we get:

u(r, 0) = u0Ai(bs) exp(bαs) exp(−i sin θkr) (2.10)

where, θ is the equivalent cone angle of the linear phase gradient, k is the
wavenumber, and as in Eq. (2.8) s = (r0 − r)/w, r is the radius, r0, w are
respectively the radius and width parameters, a is an exponential truncation
parameter, and b a "switch" parameter that can take only two values b = ±1.
As we are going to describe in detail later in this section the addition of the
conical gradient enables us to finely control the propagation dynamics of
both ring-Airy and inverse ring-Airy beams.

Abruptly auto-focusing beams, often referred as CABs or ring-Airy beams,
are a subject of intense research effort [85, 86, 29, 30, 87, 88, 35, 89], since
they were first introduced [26, 42]. Their most exciting property is that
instead of spreading due to diffraction, they abruptly auto-focus [26, 42], ex-
hibiting a more than two orders of magnitude ratio focal intensity to initial
intensity. Likewise, in the non-linear propagation regime [29], these beams

†The minus sign in the phase indicates that a positive θ corresponds to a leftwards
wavefront tilt, i.e. the tilted wavefront will make a θ angle to the x axis.

38



preserve their abrupt auto-focusing, with a minimal nonlinear focal shift.
This makes them ideal candidates for applications that require controlled
energy deposition, with minimal effects before the focus [42]. For example,
ring-Airy beams are advantageous compared to Gaussian or Bessel beams
in multiphoton polymerization [31] and in two color laser plasma THz gen-
eration [30]. Furthermore, a tighter focus, and thus further increase of the
focal intensity, can be achieved by using a lens. As it has been recently
shown [71], due to the twin wave nature of ring-Airy beams, focusing by
a lens leads to two foci instead of one. This counter-intuitive behavior is
characteristic for a larger family of waves, referred to as Janus waves [71].
Although this effect is interesting and beneficial to some applications [30], it
prevents the use of focusing elements in applications where the twin focus is
undesirable. An alternative approach for controlling the focal properties is
to use a conical phase gradient. As it has been recently shown [90] for the
case of abruptly auto-focusing beams this conical phase acts in a coopera-
tive action with the auto-focusing properties of the beam and provides some
additional control to the focus position. In addition, when the focus position
is brought close enough to the generation plane, where it becomes compa-
rable to the wavelength, non-paraxial propagation effects appear resulting
in a significant increase of their focal intensity contrast, due to the coherent
constructive effects of the paraxial and non-paraxial parts of the beam [91].

On the other hand, besides the extensive work in the field, to our knowl-
edge analytical expressions that predict the dimensions and position of the
focus for abruptly auto-focusing and auto-defocusing beams are sparse and
incomplete. The position of the focus is rather accurately predicted for auto-
focusing beams [29, 31] even in the case of the presence of a conical phase

Figure 2.10: Phase gradients. (a) Linear phase, and (b) conical phase. In
both cases insets show the corresponding transverse (x− y) phase distribu-
tion.
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Figure 2.11: Typical amplitude profiles (normalized values) of ring-Airy with
w = 200µm and (a) r0 = 3000µm (b) r0 = 1000µm (c) r0 = 200µm and
inverse ring-Airy with w = 200µm and (d) r0 = 400µm (e) r0 = 1000µm
(f) r0 = 3000µm, (g) I(r, z = 0) intensity profiles for rotationally symmetric
Airy beams of decreasing radius. b = 1 (ring-Airy), b = −1 (inverse ring-
Airy). Arrows indicate the direction of increasing radius.

gradient [90], but to our knowledge no analytical description exists for their
auto-defocusing variant [84]. Furthermore, analytical formulas that predict
the focal dimensions [31] are applicable only to abruptly auto-focusing beams
for a limited range of beam parameters, and without the presence of a conical
phase gradient.

In this work, we follow a unified theoretical analysis for both auto-
focusing, and auto-defocusing, ring-Airy beams in the presence of a coni-
cal phase gradient. Starting from the analytical expressions that describe
the propagation of 1D Airy beams [24], we derive generic analytical expres-
sions that predict the position and dimensions of the focus for both types of
beams. Our theoretical predictions are in excellent agreement with numerical
simulations, performed over an extended parameters range.

The 1D Airy beams impart their innate properties to ring-Airy beams,
their rotationally symmetric variant. As shown in Fig. 2.11(a) the intensity
profile of a ring-Airy beam [26] is comprised by concentric rings that become
thinner and denser as the radius is increased resembling the characteristic
oscillatory shape of the 1D Airy beam, here in cylindrical symmetry. The
beam propagation properties are controlled by the dimensions of the primary
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ring radius and width [26, 42] but can also be tailored by introducing a tilt
though a linear phase gradient [90, 92] which in the case of these rotationally
symmetric beams takes the form of a conical phase distribution similar to
that of an conical lens (axicon). On the other hand, in the case of the variant
of the ring-Airy beam where the secondary rings extend inwards instead of
outwards, as shown in Fig. 2.11(b), is an alternative way to define a rota-
tionally symmetric Airy beam. We call this less studied [84, 70] rotationally
symmetric Airy beam as inverse ring-Airy.

Airy beam trajectory: From 1D Airy beams to ring-Airy beams

In order to be able to design structured light using a toolbox of template
optical beams, one needs to be able to describe their propagation in some
kind of analytical form. In the case of 1D Airy beams, a rigorous analytical
solution is available [19, 24, 64] and can be directly expanded to 2D Airy
[24, 92] and 3D Airy (or Airy3) beams [76]. This enables us to accurately
design structured light using any combination of 1D, 2D or 3D Airy beams.
Likewise, another very important member of the accelerating beams family
is the cyllindrically symmetric ring-Airy beam. As we have already men-
tioned, it is not in general possible to directly use a solution derived in the
1D paraxial wave equation in Cartesian coordinates to the cyllidrically sym-
metric case. The reason behind this is that although the two equations are
similar there exists an extra term 1

ru(r, z) in the paraxial wave equation in
cylindrical coordinates that makes the analogy incomplete:

1D Cartesian coordinates :
∂2u(x, z)

∂x2
+ 2ik

∂u(x, z)

∂z
= 0

Cylindrical symmetry :
∂2u(r, z)

∂r2
+ 2ik

∂u(r, z)

∂z
+

1

r

∂u(r, z)

∂r
= 0

On the other hand, if we notice more carefully, the extra term 1
r
∂u(r,z)
∂r be-

comes important near the center r → 0 when ∂u(r,z)
∂r 6= 0. Likewise, the dis-

tribution of the ring-Airy beams is such (see Fig. 2.8) that up to their abrupt
focus their amplitude near their center is negligible (u(r, z) ' 0 ∀ r < ∆r?).
This characteristic makes it possible to use the analytic predictions derived
for the 1D Airy beam to describe the trajectory of the ring-Airy beam up
to the focal point. Furthermore, using this partial analogy we can reach
to analytical (although not rigorous) descriptions of all the important beam
characteristics that enable us to design structured light that uses combina-
tions of ring-Airy beams.

An ideal 1D model that is analogous to of ring-Airy beams are the sym-
metric colliding 1D Airy beams [71, 93, 80]. These types of beams are
comprised by two symmetric 1D Airy beams propagating along mirrored
parabolic trajectories. As they propagate, these beams coherently interfere,
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leading to a focus along the propagation axis, a behaviour which is similar
to that of the auto-focusing ring-Airy beams. Moreover, for the case of 1D
Airy beams there exists rigorous analytic description of the field distribu-
tion along propagation [24, 92]. This makes it possible to tailor the focusing
behavior of the two symmetric Airy beams and extend these results to their
radially symmetric counterpart the ring-Airy beams.

Let’s now describe in more detail our reference 1D model that we wish
to replicate the behaviour of ring-Airy beams that are further tuned by a
conical phase gradient as in Eq. (2.10). The ring structure is replicated
by two symmetric 1D Airy beams, while conical gradient is replicated by
adding in a symmetric linear phase gradient, or initial tilt angle, to each of
the beams. In the initial plane our 1D model is the described as:

U1D(x, z; θ) = Φ(x, 0, θ) + Φ(−x, 0,−θ),

Φ(x, z, θ) = Ai(b
x0 + x

w
) exp(bα

x0 + x

w
) exp[i(θk(x0 + x))]

where x, x0 are respectively the transverse coordinate, and initial displace-
ment, w is the Airy width parameter, θ is the equivalent cone angle (sin θ ∼ θ),
k is the wavenumber, and α > 0 is the truncation coefficient. As in Eq. (2.10)
the parameter b can take only two values. For b = 1 we get the 1D equiv-
alent of the auto-focusing ring-Airy beam, while for b = −1 we get the 1D
equivalent of the abruptly auto-defocusing inverse ring-Airy beam. Using
the rigorous analytic description for the propagation of 1D Airy beams [92]
we describe now the field distribution of the symmetric colliding 1D Airy
beams at any plane z:

U1D(x, z; θ) =Φ(x, z, θ) + Φ(−x, z,−θ),

Φ(x, z, θ) =Ai(b
x0 + x

w
− z2

4k2w4
+ i

αz

kw4
− bθ z

w
)

× exp(bα
x0 + x− θz

w
− αz2

4k2w4
) (2.11)

× exp[i(b
x0 + x+ bα2w

2kw3
z − z3

12k3w6

+ θk(x0 + x)− b θz
2

2kw3
− θ2kz

2
)]

Clearly, the distribution of the intensity maximum along propagation can
be tailored by properly adjusting the initial shift and linear gradient. Our 1D
analysis and it’s extrapolation to cylindrical symmetry is based on the fact
that, up to their focus, ring-Airy beams practically exhibit zero amplitude
on their center of symmetry. As shown in Fig. 2.12 numerical simulations
confirm that there is a strong analogy between the auto-focusing colliding 1D
Airy beams Fig. 2.12(i) and the ring-Airy beams Fig. 2.12(ii). Interestingly,
this analogy is also valid for the case of the auto-defocusing colliding 1D
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Airy beams Fig. 2.12(iv), and the inverse ring-Airy beams Fig. 2.12(v). Note
that besides the position of the focus, the intensity distribution along the
propagation axis, especially in the focal region, is almost identical, if we
ignore the dynamic range, as shown in Figs. 2.12(iii),(vi). On the other
hand, the I(x, z) intensity profiles, as shown in Figs. 2.12(iii),(iv) insets,
show some differences especially along x direction, and after the focus. This
is an expected result since in one case (colliding 1D Airy beams) we have
the interference of two 1D beams carrying a linear phase gradient and in
the other (radially symmetric Airy) we have the interference of of a beam
modulated with a conical wavefront.

Using the analytic predictions of Eq. (2.11) that refer to the propagation
of colliding 1D Airy beams, and taking into account the above-mentioned
similarities and differences, we retrieve approximate analytic expressions for
the focal properties of radially symmetric Airy beams.

2.3 Focus engineering

Manipulation of a light beam is a crucial component of light applications,
particularly the controlled modulation of the initial amplitude and phase
distribution that affects its focal region, or as we name it here focus engi-
neering, is more than often a necessity. As we have already discussed in
the beginning of this chapter, accelerating beams can be used for a plethora
of applications, therefore a rich control of their propagation dynamics is re-
quired. For the case of radially symmetric Airy beams an analytical solution
of their propagation does not exist, however using the analogy to 1D Airy
beams presented in the previous section we can derive semi-empirical ana-
lytical equations for the characteristic focal properties. These include, the
focal position and focal dimensions longitudinal and transverse size). Let’s
start from the generic definition of Eq. (2.10) that describes ring-Airy and
inverse ring-Airy beams with a conical gradient:

u(r, 0) = u0Ai(bs) exp(bαs) exp(−i sin θkr)

Despite the unified analytical description of Eq. (2.10) for ring-Airy and
inverse ring-Airy beams, as shown in Fig. 2.13 their propagation dynamics
are quite different. Ring-Airy beams exhibit abrupt auto-focusing. Likewise,
their intensity up to the focus is very low, and almost constant as shown
in Fig. 2.13(a). On the other hand the inverse ring-Airy beams, when a
positive conical phase gradient is added, exhibit abrupt auto-defocusing.
Furthermore, as shown in Figs. 2.13(a),(b) we can shift the focus position in a
controlled manner for both beams by simply varying the conical phase angle.
We have to note here that although the characteristic parabolic trajectory
of accelerating ring-Airy beams [26, 42, 71, 31] is shadowed by the presence
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of the strong linear gradient, the abrupt auto-focusing behavior is clearly
evident in the profiles of the peak intensity along z.

In [31] approximate analytic relations were recently introduced for the
estimation of abruptly auto-focusing ring-Airy focal parameters fAi, ∆fAi,
wAi as a function of the radius r0 and width w parameters of the initial main
ring of the ring-Airy, however valid only for r0/w � 1. Using the equiva-
lence to 1D+1 colliding Airy beams, we extended this analysis to radially
symmetric Airy beam, to cover abruptly auto-focusing and auto-defocusing
ring-Airy beams, under the action of a conical phase gradient at the ini-

Figure 2.12: Comparison of intensity I(x, z) along propagation for auto-
focusing colliding 1D Airy beams (1st row) with with radially symmetric Airy
beams (2nd row). 3d row: Normalized intensities along the z propagation axis
I(0, z)/Imax. Insets: I(x, z) intensity profiles (normalized, false colors), (1D)
colliding 1D Airy beams (2D) radially symmetric Airy beams. (Numerical
simulation parameters: λ=0.8 µm, α = 0.05 (i) x0 = −2.0 mm, w=100
µm, θ=10 mrad (ii) r0=2.0 mm, w=100 µm, θ=10 mrad (iv) x0=2.0 mm,
w=100 µm, θ=10 mrad (v) r0=2.0 mm, w=100 µm, θ=10 mrad).
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tial plane. Furthermore, our unified analytical description now include an
expanded initial parameters range.

Controlling the focus position

The focus position can be accurately predicted by our 1D reference model.
When the the truncation coefficient is sufficiently small (α� 1) it is possible

Figure 2.13: Intensity I(x, z) profiles of rotationally symmetric Airy beams
and peak intensity along z with different conical phase gradients at the
input plane (z=0) θi=1,2,3=30 mrad, 20 mrad, 10 mrad (r0=1.0 mm and
w=100 µm, u0=1) (a) ring-Airy (b) inverse ring-Airy. Insets show the posi-
tion and the dimensions of the focus.
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Figure 2.14: Ring-Airy double foci. (a) Position of the real and the virtual
foci of ring-Airy beams as a function of normalized angle θ̃. (b)-(d) Graphical
representation of the peak intensity features parabolic trajectory for θ =
0, θ > 0 and θ < 0 respectively.

to analytically describe the position of the focus:

f1D
Ai
∼= 4bzAi

[
−2θ̃ ± (4θ̃2 + bx̃)

1/2
]

(2.12)

where zAi ≡ kw2/2 , x̃ ≡ x0/w+b is a shape factor and θ̃ ≡ zAiθ/w is a nor-
malized cone angle. Two solutions (note the ± sign) appear in Eq. (2.12)].
These are a result of the Janus nature of these waves [71], and correspond
to the foci of the "real" and "virtual" waves. As shown by Fig. 2.14 (a)
the position of the "real" focus of the ring-Airy decreases monotonically and
abruptly with normalized angle θ̃, meanwhile "virtual focus" goes further
from the initial plane in the negative regime as the normalized angle θ̃ in-
creases. This behavior is depicted in Fig 2.14(b)-(c) where the trajectories of
the primary ring of these beams, for the three cases of the conical angle, are
illustrated. By exploiting the relation of the 1D model for the trajectory
of the main lobe we translate this into the trajectory of the primary ring
of the cylindrical symmetric Airy beams. Thus we can extract an analytic
equation for the focus position of the abruptly autofocusing ring-Airy and
abruptly auto-defocusing inverse ring-Airy beam shaped by a conical phase:

fAi
zAi
∼= 4b

[
−2θ̃ ± (4θ̃2 + bs)1/2

]
(2.13)

where zAi ≡ kw2/2 , s ≡ ro/w + b is a shape factor and θ̃ ≡ zAiθ/w is a
normalized cone angle.

A graphical representation of the trajectories of ring-Airy and inverse
ring-Airy with conical phase gradient is presented in Fig. 2.15. For negative
values of the conical angle θ, the focus of the ring-Airy is formed in a greater
distance from the generation plane, while its peak intensity decreases, and
after a limit value of θ is disappeared, whereas although the peak intensity
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Figure 2.15: Illustration of the trajectory control in the presence of conical
phase gradient for (a)-(c) a ring-Airy beam and (d)-(f) an inverse ring-Airy
beam .

of the inverse ring-Airy deceases it maintains a similar behavior, forming an
elongated focus. Contrary, when the conical angle θ takes positive values,
the focus of the ring-Airy is brought closer to the initial plane z = 0 while
its peak intensity contrast increases, in addition, interestingly, the inverse
ring-Airy after a positive limit value of θ forms a focus that abruptly auto-
defocuses. furthermore the intensity distribution of the peak intensity along
propagation of the inverse ring-Airy, when it forms a focus, is like a mirror
image of the of the ring-Airy, this can be seen in Fig. 2.13.

Focal length

The next important focal parameter is the longitudinal dimension of the
focus, namely the the focal spot length ∆fAi. Taking into account the tra-
jectory of the 1D toy model of Eq. (2.12), we can estimate the projection
of the primary lobe on the axis at the focus, this is illustrated in Fig. 2.16,
where the projection is indicated by the red line. Using this approach we
reach to an approximate analytic description for the focal spot length:

∆fAi
fAi

∼=
42b− 1

50

[(
4θ̃2 + bs

)
− 2θ̃

(
4θ̃2 + bs

)1/2
]−1

(2.14)

Focus Width

To derive an analytic description for the transverse dimension of the focus,
namely the focal spot width wAi is a more complicated task. The radially
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Figure 2.16: Illustration of the derivation of the focal length of ring-Airy
beams using the projection of the primary lobe on the axis at the focus.

symmetric nature of the problem enables us to locally approximate the focal
spot as a result of the interference of a conically shaped wavefront as shown
in Fig. 2.17. Using this approach makes it possible to use the well-known
analytic estimations for the spot size of Bessel beams [13]. In order to esti-
mate the incoming wavefront cone angle at the focus we use the tangent of
the analytically described from the 1D reference model parabolic trajectory
Eq. (2.12). Thus, we reach to an approximate analytic estimation of the
focal spot width for ring-Airy and inverse ring-Airy beams:

wAi
w
∼= C

(
1− 1

2− 2bθ̃2 + bs

)(
4

4θ̃2 + bs
+
w2

z2
Ai

)1/2

(2.15)

where C ≡ (76 + 22b)/(65 + 15b) is a constant.

2.3.1 Engineering abruptly auto-focusing ring-Airy beams

To confirm the validity of our analytic predictions as described in Eqs. (2.12) -
(2.15) we used numerical simulations of the paraxial wave equation [10],
for a broad range of parameters of the initial ring of CABs. More specifi-
cally, we quantitatively studied the evolution of the focal properties fAi/zAi,
∆fAi/fAi, wAi/w as a function of two parameters; the normalized shape fac-
tor s and the normalized conical angle θ̃. In our numerical simulations we
either vary the normalized shape factor s keeping a constant normalized con-
ical angle θ̃ = 0 or we vary θ̃ keeping s constant. In the first case, since θ̃ = 0,
our results are comparable to the estimations presented in [31]. We have to

Figure 2.17: Illustration of the derivation of the focal width of ring-Airy
beams using the approach of the interference of a conically shaped wavefront.
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Figure 2.18: Focal distance fAi, of abruptly auto-focusing ring-Airy beams
normalized over zAi as a function, (a) of the shape factor s (θ̃ = 0), (b) of
the normalized cone angle θ̃ (s=21).

note though that Eqs. (2.12) - (2.15) are now valid for a much larger initial
parameters ranging from r0/w > 1, θ̃ > 0 up to r0/w ≈ 40, θ̃ ≈ 15 rad.
Fig. 2.18(a) shows the position of the focus fAi as a function of the primary
ring parameters. The numerical simulations are in both cases in excellent
agreement with the theoretical predictions of Eq. (2.12). As the shape factor
s is increased, the normalized focal distance is increased proportionally to√
s as predicted by Eq. (2.12) for θ̃ = 0. We should note here that increasing

the shape factor s by decreasing the ring width w parameter also affects the
normalized length zAi. Likewise, Fig. 2.18(b) depicts the effect of the conical
phase angle on the focus position. As expected, increasing the conical angle
θ̃ decreases the normalized focal distance fAi/zAi. Clearly, by varying the
conical angle θ̃, instead of the shape factor s, we achieve a similar dynamic
range in controlling the focus position, although fAi saturates for θ̃ >6 rad.
Fig. 2.19 shows the focal spot length ∆fAi as a function of the primary

ring parameters. Again the numerical simulation results are in very good
agreement to the analytical predictions of Eq. (2.14). As the shape factor s
is increased the normalized focal spot length is decreased. Combining this
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Figure 2.19: Ring-Airy focal spot length normalized over the focal distance
fAi as a function (a) of the shape factor s (θ̃ = 0), (b) of normalized cone
angle θ̃ (s=21).

with the fact that the focal distance fAi is increased, as shown in Fig. 2.18(a),
we get that as the focus is shifted further away it becomes shorter compared
to the focal distance fAi. On the other hand, as shown in Fig. 2.19(b), when
the conical angle is increased the the normalized focal length quickly satu-
rates after θ̃ > 3 rad. Likewise, Fig. 2.20 shows the dependence of the focal
spot width wAi, normalized over the width parameter w as function of the
initial parameters. The analytical predictions of Eq. (2.15) are in very good
agreement with the numerical simulation results. As the shape factor s is
increased, the normalized focus width monotonically decreases. A similar
behavior is observed in Fig. 2.20(b), where the cone angle θ̃ is increased.

Another crucial characteristic of the beam’s focal region is its shape,
which is well described by it’s aspect ratio, defined as the ratio of the focal
length over the focal width ARrAi = ∆fAi/wAi. Fig. 2.21 depicts the ana-
lytically estimated values of the aspect ratio AR for auto-focusing ring-Airy
beams as a function of the radius r0 and width w parameters. The results
in Fig. 2.21(a) are retrieved for a conical angle θ = 0 while in Fig. 2.21(b)
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Figure 2.20: Focal spot width wAi of ring-Airy, normalized over the width
parameter w as a function (a) of the shape factor s (θ̃ = 0) and (b) of the
normalized cone angle θ̃ (s=21).

for a conical angle θ=5 mrad. From the contour lines we can observe that a
constant aspect ratio, i.e. a preservation of the focus shape, can be achieved

Figure 2.21: Aspect ratio ∆fAi/w of the focal region of a ring-Airy as a
function of the radius and width parameters (r0, w). (a) θ = 0, (b) θ =
5 mrad.
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Figure 2.22: Position of the focus fAi of an auto-defocusing inverse ring-
Airy beam, normalized over zAi. (a) as a function of the shape factor s
(θ̃ = 7.854 rad), (b) as a function of the normalized cone angle θ̃ (s=19).

by controlling the shape parameter through the radius parameter r0 while
keeping the width parameter w constant. This interesting behavior was first
demonstrated by [31] for the case of θ = 0. Here we expand this result for
the case of a conical angle θ > 0. As it can be seen from Fig. 2.21 a typical
characteristic of these beams is the needle-like shape of the focal region since
the aspect ratio is quite high (ARrAi > 100). This characteristic, from the
practical point of view, and in respect of the shape of the focal region, sets
auto-focusing ring-Airy beams between Bessel beams [13] where the aspect
ratio is much higher and typical Gaussian beams where the aspect ratio can
be quite lower.

2.3.2 Engineering abruptly auto-defocusing inverse ring-Airy
beams

Inverse ring-Airy beams reveal their abrupt auto-defocusing behavior in the
presence of a conical phase gradient. This phase gradient is represented by

52



conical angle θ in Eq. (2.10). As shown in Fig. 2.13(b) in order for the abrupt
auto-defocusing behavior to be observed the conical angle have to be greater
than a limit value:

θ̃ > (s/4)1/2

As in the case of auto-focusing ring-Airy beams, to confirm the validity
of our analysis we performed numerical simulations of the paraxial wave
equation [10]. Our simulations were preformed for a broad range of values of
the main ring radius, width, and conical angle with the condition that the
beam exhibits abrupt auto-defocus.

Fig. 2.22(a) shows the position of the focus fAi of an auto-defocusing
inverse ring-Airy beam as a function of the scale parameter s. The sim-
ulations are performed for a conical angle θ = 10 mrad (θ̃ = 7.854 rad).
Numerical simulations are in excellent agreement with the theoretical pre-
dictions of Eq. (2.12), showing that the normalized focus position exhibits a
practically linear dependence on the shape parameter s as expected. Indeed

Figure 2.23: Inverse ring-Airy focal spot length ∆fAi normalized over fAi as
a function (a) of the shape factor s (θ̃ =7.854 rad). (b) of the normalized
cone angle θ̃ (s=29).
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Figure 2.24: Focus width wAi of an abruptly auto-defocusing inverse ring-
Airy, normalized over the width parameter w as a function (a) of the shape
factor s (θ̃ =10.21 rad). (b) of the normalized cone angle θ̃ (s=19).

from Eq. (2.12) and by setting b = −1 we get fAi/zAi ∼= s/θ̃ for s � 4θ̃2.
Likewise, Fig. 2.22(b) shows the effect of the conical phase gradient on the fo-
cus position of the abruptly auto-defocusing ring-Airy. Again, the numerical
simulations are in excellent agreement with the predictions of Eq. (2.12). The
normalized focus position shows a monotonic decrease as the conical angle
is increased, in a similar fashion as in the case of the abruptly auto-focusing
ring-Airy beams shown in Fig. 2.18. Furthermore Fig. 2.23(a) depicts the
dependence length of the focus (FWHM) ∆fAi of an auto-defocusing inverse
ring-Airy beam normalized to the focus position as a function of the scale
parameter s. The numerical simulation results are in excellent agreement
with the analytical predictions of Eq. (2.14). Similar to the case of the
ring-Airy beams shown in Fig. 2.19(a) the normalized focal length shows a
monotonic decrease as the s parameter increases. On the other hand, as
shown in Fig. 2.23(b), although there is a very good agreement between
the numerical simulations and the analytical predictions for θ̃ > 7 rad, the
Eq.(2.14) underestimates ∆fAi/fAi by < 5% when θ̃ < 6 rad. This is due
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to the fact that for low values of the cone angle θ̃ we are approaching the
validity limit of our analysis which in holds for 4θ̃2 > s.

Fig. 2.24(a) depicts the focal width wAi of an auto-defocusing inverse
ring-Airy beam, normalized over the width parameter w, as a function of
the shape parameter s. The analytic predictions are again in excellent agree-
ment to the numerical simulations. Although the normalized focal width wAi
exhibits a linear dependence on the shape parameter s, this holds only for if
the width parameter w remains constant, as we can deduce from Eq. (2.15)
for the case of s � 4θ̃2. The dependence of wAi/w on the conical phase
angle θ̃ is shown in Fig. 2.24(b). While the fit between analytical predictions
and numerical simulation results is excellent for θ̃ >8 rad, Eq. (2.15) over-
estimates by 10% for θ̃ <7 rad. As in the case of ∆fAi for such low θ̃ values
we approach validity limit of our analysis.

The aspect ratio ARrAi of auto-defocusing inverse ring-Airy beams as
a function of the radius r0 and width parameters w is shown in Fig. 2.25.
The results in Fig. 2.25(a) are for a conical angle θ = 10 mrad while in
Fig. 2.25(b) for θ = 15 mrad. In both cases the valid ARrAi values are
between r0 > w and r0/w < 2(1 + θ̃2) as shown by the respective curves.
The contour lines mark the areas of constant aspect ratio. As in the case
of abruptly auto-focusing ring-Airy beams ARrAi, and thus the focal voxel
shape, is preserved when the radius parameter r0 is increased while keeping
the width parameter w constant. Likewise, the aspect ratio takes large values
(ARrAi > 100), indicating a needle-like focal region.

2.3.3 Light scalpels using superimposing CABs

As we have shown in the previous sections, the use of accelerating beams
can be quite advantageous for engineering the focal characteristics. We can
tailor the focus by varying a small number of parameters. Even more ex-
citing possibilities arise when we superimpose such fields to generate exotic

Figure 2.25: Aspect ratio ∆fAi/w of the focal region of an inverse ring-Airy
as a function of the radius and width parameters (r0, w). (a) θ =10 mrad,
(b) θ = 15 mrad.
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focal distributions. In the following we will discuss about some of these
superpositions and their unique characteristics.

Engineering Multiple foci

Creating two foci along the propagation axis of a beam, although can be of
great use in various applications, is not a trivial task. For example, holo-
graphic methods can be used [94] to produce multiple foci in 3D space, but
they suffer from interference artifacts they are located along the propaga-
tion axis. We take advantage of the unique properties of accelerate beams
to generate tailored foci along the propagation axis. Our approach is based
on superimposing two ring-Airy beams (autofocusing and autodefocusing)
which share a common conical phase modulation like that of an axicon. As
a result, two distinct foci are created along propagation.Each focus is inde-
pendently controlled both in terms of the relative position and relative peak
intensity. The field amplitude on the initial plane is then described by:

u(r, 0) = u0[C ·Ai(s) exp(as) +Ai(−s) exp(−as)] exp(−i sin θkr) (2.16)

where C is a parameter which takes values in the range C ∈ (0, 1] and is
used to.control the intensity ration between the foci.

In order to study the properties of such a superposition we have per-
formed numerical simulations of the paraxial wave equation [10] in all of our
simulations we have set the wavelength λ = 0.8µm, and used a truncation
factor α = 0.05, while the the parameter C was tune to adjust the intensity
contrast between the two foci.

Figure 2.26: Typical (a) transverse amplitude profile at the initial plane
(|A(x, y, z = 0)|) of the combination of a ring-Airy and an inverse ring-Airy
at z=0 and (b) its corresponding y − z cross-section intensity distribution
along propagation.
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Figure 2.27: Intensity distribution along z of three different cases of shaped
accelerating beams controlling the relative position of the double foci. (Imax
lines are shifted for better illustration.)

A typical example of this superposition and the resulting double foci fea-
ture is depicted in Fig. 2.26. As shown in Fig. 2.26(a), which depicts the
amplitude of the two beams at the initial plane z = 0, we chose the ring
parameters r0, and w in such a way so that the whole inverse ring-Airy is
contained within the area that is surrounded by the primary ring of the ring-
Airy. The reasoning behind this design strategy is that within this area the
ring-Airy amplitude is practically zero, thus we avoid any unnecessary com-
plexity in the initial plane distribution. As we can see in Fig. 2.26(b), the
inverse ring-Airy is set to focus first. Likewise, after this abrupt autodefocus,
the abrupt autofocus of the ring-Airy is formed. We should note here that
although the strong linear conical phase gradient shadows the parabolic tra-
jectory of the beams, the accelerating properties are apparent in the abrupt
focal intensity variation.

The control of the position of the two separate foci can be easily achieved
in our approach by properly tuning the primary ring parameters r0, w, and
the cone angle θ. Such a control is shown in Fig. 2.27 which depicts the peak
intensity Imax(z) along propagation for a superposition of an ring-Airy and
inverse ring-Airy beam as we move one of the two foci along the axis. To

Table 2.1: Parameters of CABs in Fig. 2.27.

Beam r0 (µm) w (µm) θ (mrad) C

Ring-Airy 1600 100 10 0.65
2000 100 10 0.6
3000 100 10 0.52

Inverse ring-Airy 1000 100 10 -
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Figure 2.28: Maximum peak intensity distribution along z of three different
cases of shaped accelerating beams controlling the relative intensity of the
double foci.(Imax lines are shifted for better illustration.)

achieve this we properly select the parameters r0, w, and C (see Table 2.1.)
of the ring-Airy beam while keeping the cone angle θ constant. As we can
clearly observe from Fig. 2.27 the 2nd foci can be moved back and forth
on the propagation axis, with no effect on the 1st focus or their relative
intensities. Alternatively, the position of the two foci can be controlled
by tuning the primary ring radius r0 of one of the beams while keeping the
width parameter w, and the cone angle θ constant. In this case a proper
calibration of parameter C is still required in order to adjust relative inten-
sities. Moreover, we are also able to adjust the relative intensities of the two
foci. This is shown in Fig. 2.28 which depicts numerical simulation results
of the peak intensity Imax(z) along propagation for a superposition of an
ring-Airy and inverse ring-Airy beam as we tune their relative intensities.
In our simulations we simply finely tune the parameter C, which controls
the ring-Airy focus intensity, while keeping the primary ring parameters r0,
w and the angle θ constant (see Tab. 2.2). Note that in this case only the
peak intensity of the second focus is affected with practically no effect on
the position or distribution of the two foci.

Another exceptional result of the superposition of accelerating beams
generating multiple foci along the propagation is that it is advantageous
compared to other methods when the beam encounters obstacles. Notably,

Table 2.2: Parameters of CABs in Fig. 2.28.

Beam r0 (µm) w (µm) θ (mrad) C

Ring-Airy 1700 100 10 0.4, 0.63, 0.8
Inverse ring-Airy 1000 100 10 -
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Figure 2.29: Double foci feature with the first foci blocked by an obstacle.
(a) Intensity cross-section along propagation I(y, z) and (b) normalized peak
intensity along propagation. (Imax lines are separated for better illustration.)

our generation scheme is resilient in the presence of an obstacle due to their
decoupled trajectories, a property imparted from the Airy distribution. To
demonstrate this property we have performed numerical simulations of the
paraxial wave equation in the presence of an obstacle that entirely blocks
the first of the two foci. As it is clearly shown in Fig. 2.29, although the first
focus is blocked the second focus remains intact. This occurs because both
foci are formed by interference effects from light that is directed towards the
focus though a combination of a strong linear and non-linear phase gradient.
We believe that this remarkable characteristic could find great use in many
applications, for example in materials processing especially when a simul-
taneous treatment of a two sided object, like a glass plate, is required. In
the previous examples the foci are located a few hundreds of mm away from
the source. This is a rather large working distance for many applications,
so an obvious question is if we can scale all this down. Recently, it was
demonstrated that ring-Airy beams can be scaled down to the paraxial limit
[91], with the working distance reducing to mm or even µm. On the other
hand, it is straightforward to scale-up to working distances of several meters
by using optical components, such as beam expanders. As we are going to
show in the following, by properly selecting the parameters that control the
focal characteristics of a CAB, we can adjust its focal dimensions, and there-
fore the focal distance down to the sub-millimeter regime. To demonstrate
this flexibility we have performed numerical simulations where, by tuning the
beam’s parameters we have scaled the focal range over 4 orders of magnitude,
i.e. from meters to hundreds of micrometers. For example, Fig. 2.30 shows
the peak intensity Imax(z) over the propagation distance for three cases of
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Figure 2.30: Normalized peak intensity distribution along z of three different
cases of scaled double foci features produced from ring-Airy and inverse ring-
Airy with conical phase gradient.

superimposed ring-Airy and inverse ring-Airy. In all cases a conical phase
gradient is used to enhance and control the focus position (see Table 2.3 for
the the parameters used in each case). With this we want to show the capa-

Table 2.3: Parameters of CABs in Fig. 2.30.

Beam r0 (µm) w (µm) θ (mrad) C

Ring-Airy 7000 300 5 0.75
1300 50 50 0.82
70 4 200 0.59

Inverse ring-Airy 5000 300 5 -
1000 50 50 -
40 4 200 -
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Figure 2.31: Normalized peak intensity distribution along z of ring-Airy and
inverse ring-Airy beams with CPG focusing at the same position forming a
hyper-focus.

bility of these shaped beams to be utilised in various applications of different
scales.

Hyper-focus

As we have shown, the position of the two foci can be finely tuned. Let’s
study now the case where the two foci are tuned so that they overlap. This
superposition of abruptly auto-focusing with an abruptly auto-defocusing
beam leads to an intense focus, of high peak intensity contrast focus which
we refer to as hyper-focus. The location of this hyper-focus can be estimated
from the analytical description of the focus position fAi as a function of r0,
w, and θ:

r′0 ' b(
fAi
4zAi

)2w + fAiθ − bw (2.17)

where fAi is the focus position of the CAB, and zAi = πw2/λ. By properly
tuning the parameters we are able to focus both ring-Airy and inverse ring-
Airy beams at the same position along propagation axis. For example, we
can select the parameters w, and θ to be the same for both beams. Then
by using the value of radius r0 for the one beam as a parameter, we can
solve for the the radius r′0 from Eq. (2.17) under the condition that the
two foci overlap. This interesting behaviour can be seen in Fig. 2.31,
where numerical simulations results of the peak intensity Imax(z) for three
different cases are shown (see Table 2.4 for the parameters used). As we
can observe from the three distinct cases that are depicted the hyper-focus
is fully controllable. We can tune the parameters of the primary ring of both
beams in order to adjust the focal characteristics, namely the width, the
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length and the position of the hyper-focus. Fuerthermore, this hyper-focus
combines the characteristic features of both beams to abruptly auto-focus
and auto-defocus. Interestingly as a result of the interference of two beams,
their secondary intensity features are suppressed, resulting in a focus with
even higher intensity contrast reaching values that of Imax/I0 ∼ 800.

Twisting light: Tornado Waves

As we described in (1.2.4), we can induce topological charge into e light beam
by imprinting a helical phase into it. Such structuring produce optical vor-
tices, where their phase distribution is rotating along propagation as a result
of OAM. Moreover, the intensity profile of such beams exhibit a doughnut-
like shape due to destructive interference along axis (I(x = 0, y = 0, z) = 0).
Such beams find application in various fields ranging from optical trapping
[95] to communications [96].

Moreover, the interference of two beams carrying OAM of opposite topo-
logical charge have been shown to produce a rotating intensity pattern along
propagation. Particularly, it has been observed that the superposition of
higher-order Bessel beams produce rotating intensity patterns with constant
angular velocity [97, 98]. In addition, as shown in [99, 100] through the su-
perposition of complex beams imposed with OAM, the creation of angularly
accelerating intensity patterns is possible.

We refer to structured light in which its characteristic intensity features
rotate along propagation as twisting light. In particular, here we examine the
case of the recently introduced tornado waves [101], where two or more ring-
Airy beams modulated by opposite vortices, produce high intensity lobes,
accelerating both radially and angularly along propagation.

In a more recent publication, Brimis et. al [101] showed that it is possible
to create light that accelerates both in the radial and angular directions,
along propagation, called tornado waves. This has been achieved utilizing the
inherent property of a ring-Airy to auto-focus in accelerating fashion. Thus,
by superimposing two abruptly auto-focusing ring-Airy beams carrying OAM
of opposite topological charges and focusing in overlapping regions in space
along propagation, a pattern of high intensity lobes that approaching to each
other and rotating in an accelerating manner, is created. The initial field

Table 2.4: Parameters of CABs in Fig. 2.31.

Beam r0 (µm) w (µm) θ (mrad) C

Ring-Airy 1000 100 5, 10, 15 1
Inverse ring-Airy 905.6 100 5 -

1109.8 100 10 -
1158.1 100 15 -
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Figure 2.32: (a) Propagation of intensity and (b) transverse intensity profile
at distance z = 5.9 mm of Tornado waves TWs consisting of two ring Airy
beams carrying OAM with parameters: r01 = 62.5 µm, r02 = 62.5 µm,
w1 = 12.5 µm, w2 = 11.25 µm, α = 0.03,m1 = 1,m2 = −1, and λ = 0.8 µm.

distribution of the superposition of the two ring-Airy beams carrying OAM
is given by:

u(r, φ, z = 0) = Ai(s1) exp(αs1) exp(im1φ) + Ai(s2) exp(αs2) exp(im2φ)
(2.18)

where, Ai denotes the Airy function, (r, φ, z) describe the cylindrical coor-
dinates, si = (r0i − r)/wi, r0, w are the radius and the width parameters
of the main ring of the ring-Airy, respectively, and mi denotes the topo-
logical charge of the helical phase imposed in each ring-Airy beam. The
behavior of TWs along propagation is shown in Fig 2.32 where it shows the
I(y, z) intensity distribution Fig 2.32(a) and the transverse intensity profile
I(x, y) at a distance z = 5.9 mm Fig 2.32(b) of TWs consisting of two ring
Airy beams carrying OAM with parameters: r01 = 62.5 µm, r02 = 62.5 µm,
w1 = 12.5 µm, w2 = 11.25 µm, α = 0.03,m1 = 1,m2 = −1, and λ = 0.8 µm.
This behavior resembles a double helix that shrinks as it propagates and is
visualized in Fig. 2.33 where the spiraling trajectory of the high-intensity
lobes of the tornado waves consisting of two vortex ring-Airy beams with
opposite helicities (m1 = 1, m2 = −1) is depicted.

Furthermore it is possible to form a multiple lobe intensity feature, when
the ring-Airy beams carry OAM of opposite helicities mi > 1, then the
number of intensity lobes N is given by the sum of the absolute values of
the topological charges N = |m1|+ |m2| of each helical phase.
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Figure 2.33: Visualization of the spiraling trajectory of the high-intensity
lobes of the tornado waves consisting of two vortex ring-Airy beams with
opposite helicities (m1 = 1, m2 = −1). The figure is edited from [101], with
permission for the authors.
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3 | Generation techniques
of structured light

3.1 Generation techniques

For the generation of structured light a device, or an optical element, that
shapes the wavefront, the amplitude or the polarization of a beam is re-
quired. Although light structuring sounds somehow exotic, it is a common
practice that often becomes unnoticed. A simple example of such an optical
element that performs such structuring is the spherical lens. In this case, a
quadratic phase modulation is imposed by the lens to an incoming wavefront
[102]. For example, when a collimated beam travels through a converging
lens, it’s plane wavefront is converted to spherical leading it to focus on the
focal plane of a lens. Such a transformation is an example of light struc-
turing through a continuous phase modulation device. Likewise, there are
numerous optical elements or devices that shape light in a continuous fash-
ion, ranging form simple reflective optical elements like spherical mirrors to
a more complex adaptive optics device such as a deformable mirror [103]. In
more detail, adaptive optics is a large category of optical systems that its
main goal is to correct the distortions/aberrations of a wavefront by mea-
suring those distortions and calculating the required corrections [104, 105].
Afterwards using a device that shapes the distorted wavefront imposes those
corrections. Such a device usually is a deformable mirror that can change
its overall shape in a controlled way so that it can compensate for the wave-
front distortions. A schematic of a deformable mirror correcting a distorted
wavefront is presented in Fig. 3.1, where the incoming distorted wavefront is
corrected by the deformable mirror and then reflected.

On the other hand, there are also devices that structure light in a discrete
manner. In this case, the phase or the amplitude of a wavefront is modu-
lated using an array of discrete and independently controllable modulation
points. Such devices are often referred to as spatial light modulators (SLMs).
They can be either transmissive or reflective and can modulate the amplitude
(amplitude SLMs) or the phase (phase SLMs). In the case of phase SLMs
the device modulates the phase from 0 → 2π so phase wrapping is used to
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Figure 3.1: Schematic representation of a deformable mirror correcting a
distorted wavefront.

cover modulations larger that 2π. Their operation is based either on liquid
crystal arrays [17, 106], or on digital micro-mirrors. Digital micro-mirror
devices(DMDs), are optomechanical devices that use a large number of inde-
pendently moving reflective mirrors, each sized a few microns, to modulate
the wavefront [107, 108]. Such devices usually used in two positions, selec-
tively deflecting parts of the beam, so they are ideal amplitude modulators
for reflective binary Computer Generated Hologram (CGH) applications.

In this work we applied both continuous and discrete methods for the
generation of structured light. We developed a reflective phase modulation
device consisting of cylindrical mirrors that can operate as a broadband con-
tinuous phase mask. We used this device for the generation ultra-broadband
white light 2D Airy beams as well for the study of the effect of the spatial
coherence upon such beams. On the other hand, we utilized a spatial light
modulator (SLM) for the generation of complex structured accelerating beam
carrying orbital angular momentum (OAM), called Tornado Waves (ToWs).

3.1.1 Continuous methods

As we mentioned before light structuring methods can be divided in two
categories, first the continuous methods, in which the incoming light beam
is shaped in a continuous manner, and discrete methods where the wave is
shaped independently in small regions. Using the latter method usually there
is diffraction to discretization and thus the efficiency is not the optimum, on
top of that in most cases there is also the need for phase wrapping, this
has a negative effect on the final quality of the structured light. These
limitations can be solved using a continuous method to structure light. Such
a method make use of devices utilizing components with a smooth surface.
Such components can be simple optical elements such as lenses or mirrors, a
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deformable mirror, or even a custom made continuous phase mask made of a
transparent material. In this thesis we use the first approach, in a nutshell,
we exploit the aberrations of cylindrical mirrors to create a continuous phase
modulation device.

3.2 Continuous phase modulation using optical
aberrations

As we have already described in the previous section, continuous modulation
of a wave’s properties can be realized with a variety of methods. In the case of
phase modulation for example we commonly use spherical lenses and mirrors
for this purpose. A direct use of such elements results in a quadratic phase
modulation. For a more complex wavefront transformation the standard
solution is to use either continuous phase masks or adaptive optics. Here we
present a different approach that uses optical aberrations of simple cylindrical
reflective optics to modulate the phase of an incoming wavefront

3.2.1 Ultra-broadband and ultra-intense structured light

Optical aberrations

In order to understand the idea behind this counterintuitive approach, let’s
first describe the nature of optical aberrations. An ideal optical system,
images each point from the object space to a single point in the image space.
In real optical systems this behaviour, referred to a Stigmatic imaging, is
possible within the paraxial optics regime [2]. So optical aberrations describe
the deviation of an optical system’s performance from the ideal stigmatic
imaging. Optical aberrations can be quantified in two ways as depicted in
Fig. 3.2. The first refers to the ray aberration and is a vector with a starting
point on the paraxial image plane and an ending point on the point where
the light ray intersects the paraxial image plane [2]. The second is referred
to as wavefront aberration and is based on comparing the wavefront that
exits from the exit pupil of the optical system to a spherical wavefront that
is centered on the paraxial image point.

Therefore, the wavefront exiting form a system where optical aberrations
are present, differs form the ideal spherical one since optical aberrations lead
to deformations. This deteriorating action of optical aberrations leading to
undesired effects on the final result, is the reason behind all this effort to
minimize or eliminate them [110, 111, 112]. Although starting from simple
geometrical optics principles, analytic formulations of optical aberrations are
increasingly complex even for simple optical systems [111, 112]. The absence
of a generic solution, and complexity of the problem, drives optical designers
to acquire the necessary skills though continuous practice and education
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Figure 3.2: Optical Aberrations. (a) Ray aberration is defined as δ̄ = P ∗1P1

(b) Wavefront aberration defined as Φ = (Q̄Q)OPL. Figure from [109]

[110, 111].
For example, the wave aberration Φ of an optical system can described

[2] as a Taylor series:

Φ = Φ(0) + Φ(4) + . . .+ Φ(2κ) + . . .

where Φ(0) refers to the paraxial regime, Φ(4) are the Seidel aberration terms,
and orders higher than this are referred to as higher order aberrations. Seidel
aberration terms can be analytically described for a simple spherical lens

Φ(4) = −1

4
Bρ4 − 1

2
(2C cos2θ +D) r2

0ρ
2 + E r3

0ρ cos θ + Fr0ρ
3 cos θ (3.1)

where B,C,D,E, F are respectively the spherical aberration, astigmatism,
field curvature, distortion and coma aberration coefficients, θ is the azimuthal
angle at the exit pupil, r0 is the object height and ρ is the distance, measured
from the optical system center, along the normal to the propagation axis.
Fig. 3.3(a)-(e) depicts an illustration of primary Seidel illustration.

By closer observation of Eq. (3.1) it becomes clear that the Seidel terms,
or the primary aberrations, represent smooth perturbations of an ideal wave-
front so we can envisage their action as the action of continuous phase masks.
Nevertheless, the term cos θ in astigmatism and distortion aberrations lead
to a coupling between the Cartesian coordinates x, y, thus we cannot inde-
pendently control the phase modulation in those axes. A simple solution
is to this problem is the use of 1D cylindrical system, which they impose
phase modulation only onto their optical axis, thus by cascading two such
system orthogonally oriented to each other we can achieve an independent
modulation.

In the case of an one dimensional (1D) cylindrical optical system, Eq. (3.1)
is simplified to [2, 25]:

φ
(4)
1D = −1

4
Bx4 + Fx0x

3 − 1

2
(2C +D)x2

0x
2 + E x3

0x, (3.2)

where x0 is the object height and x is the distance, measured from the
optical system center, along the normal to the propagation axis. As it is
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Figure 3.3: Primary Seidel aberrations. (a) Spherical aberration, (b) Coma,
(c) Field curvature, (d) Astigmatism, (e) Distortion.

evident in Eq. (3.2) the wavefront primary aberrations are now described as
a power series over x while the cross-mixing effect of the azimuth angle θ is
eliminated. For example, spherical aberration leads to a pure quartic spatial
phase perturbation while coma aberration leads to a pure cubic one.

A initial implementation of the idea of using optical aberrations as con-
tinuous phase masks was first demonstrated in [25]. In this early work, the
coma aberration of a tilted cylindrical refracting telescope system was iso-
lated to achieve a pure cubic phase modulation. In this thesis, this initial idea
was expanded to allow for high-power, ultra-broadband, and tunable phase
masks that rely on optical aberrations. As we will demonstrate, reflective
cylindrical optics can be properly adjusted so that the resulting optical aber-
rations can used as polynomial spatial phase modulation devices. In more
detail, a simple reflective beam expander can be tuned to isolate polynomial
phase terms up to the forth power. Furthermore, these polynomial terms can
be combined, by properly tuning the optical system, to lead to non trivial
phase distributions. Interestingly, although spectrally ultra-broadband, the
simplicity of the design enables the scaling of the system for operation in
any part of the electromagnetic (E/M) spectrum.

1D beam expander as a tunable phase mask

Although in a single element optical system the aberrations can not be iso-
lated [110, 25, 113], nevertheless this is possible, as we will show, in an optical
system consisting by two elements. As it is well known in optical design, the
optical aberrations can be minimized by using consecutive optical elements
with aberration coefficients of opposite sign [110, 2, 112]. We use the same
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Figure 3.4: Beam expander consisting of (a) two cylindrical lenses L1 and L2

as in [25] and (b) two cylindrical mirrors as in [114]. In (c) the corresponding
isolated coma aberration which a 3rd order phase is plotted.

basic principle to independently control each of the aberrations in a two
element system. The cylindrical beam expander [25] is an ideal template
optical system, since it converts a plane wavefront in the entrance to a plane
wavefront at the exit. Optical aberrations are in this case introduced by
applying small variations in the orientation and the position of the optical
elements.

In Fig. 3.4(a), a simple beam telescopic beam expander consisting of
cylindrical lenses L1, L2 is illustrated as presented in [25], the orientation
of the lenses, in space, is such as to isolate the 3rd order coma aberration
Eq. (3.2). Although, this device has its advantages as it is continuous there
also some limitations to it. First it has limited bandwidth due to dispersion
of the lenses as well as limited power threshold because of the absorption fro
the lenses. Moreover, with this configuration of the lenses the effective area,
where the wavefront has acquired the desired cubic modulation, is only the
bottom half as indicated by the red lines in Fig. 3.4(a). An extension of this
scheme that tries to overcome these limitations was developed in this thesis,
and uses cylindrical mirrors instead of lenses as illustrated in Fig. 3.4(b).
When a collimated beam passes through the telescopic expander acquires a
cubic phase modulation in the direction of the optical axis, here x direction,
as shown in Fig. 3.4(c). Using mirrors the phase modulation through OPD is
achieved with propagation in air so the dispersion is minimized, also there is
the possibility to use our device in vacuum to avoid the dispersion completely.
In addition the effective area in the case of mirrors is limited only by the
aperture of the first mirror. Furthermore, using reflective optics expands the
power threshold such a device can withstand.

Let’s now focus on the design of a simple beam expander composed by
two cylindrical mirrors. As shown in Fig. 3.5, in our design light is first
reflected from the convex diverging cylindrical mirror M1, and then by the
concave converging M2. The diverging element placed first in order to allow
for the system to withstand the highest input power possible. Since the
beam diverges after reflection by mirror M1, it’s intensity will be reduced
when it is reflected by mirror M2, so the highest intensity is expected in the
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Figure 3.5: Cylindrical mirror beam expander. The mirror position is de-
noted by vectors ri, while unit vectors n̂i, p̂i describe respectively the mirror
orientation and direction of curvature at its center. The optical axis in the
entrance and exit of the system is denoted by Qi. (i = 1, 2). Inset: Orienta-
tion of M1, detail showing the polar θ and azimuthal φ angles of rotation.

input mirror which sets the threshold. If the beam was first reflected by a
converging mirror then the intensity would increase inside the system thus
setting a lower input threshold. Without loss of generality, we consider that
r1 = 0̄ ⇒ r2 = r12, thus the orientation and the position of the mirrors so
that the system behaves as a beam expander is described by:

n̂1 = cosφ sin θ x̂ + sinφ sin θ ŷ− cos θ ẑ,
n̂2 =− cosφ′ sin θ′ x̂− sinφ′ sin θ′ ŷ + cos θ′ ẑ, (3.3)
r12 =d (cosφ sin 2θ x̂ + sinφ sin 2θ ŷ− cos 2θ ẑ),

where d is the distance between the mirrors, and θ, θ′ = θ+∆θ, and φ, φ′ =
φ + ∆φ are, respectively, the polar and azimuthal angles of rotation of M1

(see inset of Fig. 3.5) andM2, while ∆θ, and ∆φ denote the small variations
in the orientation of M2.

Because there is no analytic solution of the aberrations such tilted sys-
tems add, we utilized a ray-tracing software with an interactive graphical
user interface (GUI). Using this GUI allowed us to vary the parameters of
that control the orientation of the mirrors and with the ray-tracing to retrieve
data about the resulting phase modulation. In Fig. 3.6 we see a screenshot
of the software we used and as an example we depict the configuration of
the mirrors in order to produce a cubic phase modulation. The parameters
in the ray-tracing were: the radii of curvature of the two mirrors were re-
spectively R1 = 100 mm, R2 = −200 mm, the distance between the mirrors
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Figure 3.6: Ray-tracing software with interactive GUI. Here is depicted a
cubic phase modulation. The parameters are: the radii of curvature of the
two mirrors were respectively R1 = 100 mm, R2 = −200 mm, the distance
between the mirrors is d = 17.55 mm, the tilt angle θ = 45o, while the
wavelength was set to λ0 = 0.55 µm.

is d = 17.55 mm, the tilt angle θ = 45o, while the wavelength was set to
λ0 = 0.55 µm. The resulting dynamic range of operation was ∼ 50waves,
while the corresponding RMS wavefront error was 0.211 in waves.

We can now demonstrate the capability of the system shown in Fig. 3.5
to selectively introduce optical aberrations, in such a way so that each of the
spatial polynomial phase term in Eq. (3.2) can be isolated. Using numerical
raytracing we have simulated the optical behavior of the system for various
configurations and our results are depicted in Fig. 3.7. Note that in all cases
that are depicted in Fig. 3.7 the RMS phase error is less than 0.25 waves
while the optical system was slightly perturbed from the basic mirror beam
expander configuration to achieve the desired spatial phase modulation.

Quartic phase- In more detail, to achieve, as shown in Fig. 3.7(d), a
pure quartic spatial phase distribution, we isolate the spherical aberration
by adjusting the system parameters to:

d ' f1 + f2

cos θ
,

φ = π/2, 0o ≤ θ < 45o,

∆θ = ∆φ = 0,

where f1 and f2 are respectively the focal distances of first and second mirror.
Cubic phase- Likewise, to achieve, as shown in Fig. 3.7(c), a pure third

power in the spatial phase, we have to isolate the coma aberration, the
configuration is different:
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Figure 3.7: Spatial phase modulation introduced by the optical system (ray-
tracing results) for various configurations enabling the isolation of power
terms up to the 4th order. Black circles denote the raytracing results while
red curves are their respective fits. In our simulations the radii of curvature
of the two mirrors were respectively R1 = 100 mm, R2 = −200 mm, while
the wavelength is set to λ0 = 0.55 µm.

d ' (f1 + f2) cos θ,

φ = 0, 5o ≤ θ ≤ 45o,

∆θ = ∆φ = 0

Quadratic phase- We get a quadratic spatial phase modulation by varying
the mirror distance by ∆L so that:

d ' f1 + f2

cos θ
,

φ = π/2, 0o ≤ θ < 45o,

∆θ = ∆φ = 0

Linear phase- Finally to achieve pure linear and quadratic spatial phase
modulations, as shown in Fig. 3.7(a),(b) we use a similar configuration as in
the case of quartic phase. Thus a linear spatial phase modulation is achieved
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Figure 3.8: Spatial phase modulation (raytracing results) introduced by the
optical system enabling the reconstruction of various functions.

by:

d ' f1 + f2

cos θ
,

φ = π/2, 0o ≤ θ < 45o,

∆θ = 0, ∆φ 6= 0,

Furthermore, the effective aperture of this reflective beam expander is
practically limited only by the aperture of mirror M2 since the entire mirror
M1 aperture can, in principle, be used. This behavior is superior compared
to the previously presented [25] refractive optics variation of the device, since
in that case the effective aperture is limited to only half of the input beam
diameter. A direct way to increase the effective aperture of the reflective
device is to proportionally increase the size of all elements, though with the
cost of increasing the RMS error.

Operation regime

The next step is to demonstrate that this mirror expander can be actually
used as a tunable, continuous phase mask. Our approach is to combine
the various aberrations, or power terms as described in Eq. (3.2), so that
according to the well known Taylor’s theorem [22] we approximate any con-
tinuous phase distribution within the limits of the exit pupil. Using again
numerical raytracing we have simulated the optical behavior of the system
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Table 3.1: Summary of the reconstruction quality of functional
phase distributions presented in Fig. 3.8.a

Functions Polynomial Dynamic range RMS
approximation (waves) (waves)

sin(s) s− 1
6s

3 81 0.247
tan(s) s+ 1

3s
3 11 0.125

sin2(s) s2 − 1
4s

4 1.8 0.037
sinh(s) s+ 1

6s
3 69 0.212

cosh(s) 1 + 1
2s

2 − 1
24s

4 3.9 0.002
s exp(s) s+ s2 + 1

2s
3 + 1

6s
4 21 0.128

a All results are presented as a function of a normalized spatial coordinate
s = (x+ x0)/w, where x0 is a shift and w is a scaling factor.

and as depicted in Fig. 3.8 we have managed to achieve a variety of spatial
phase distributions. In our numerical tests we have successfully achieved to
produce phase perturbations that are described by specific functional distri-
butions than among others include sin(s), cosh(s), s exp(s). A summary
of the functional distributions along with the corresponding description by
Taylor expansion series with terms up to the 4th power, and their respective
achieved dynamic range and RMS wavefront error is presented in Tab. 3.1.
Note that in all cases the RMS error is kept either below, or well bellow
λ0/4, a value that constitutes the upper limit for any accurate wavefront
reconstruction [111, 112]. Let’s now consider the spectral bandwidth of op-
eration of such a device. In our estimations we assume that all the surfaces
of the device elements are cylindrical with ideal surface quality, so any limi-
tations come from the optical design of the device. Since the induced spatial
phase distribution is actually a geometric variation of the optical path we
can write:

Φ =
2π

λ0
G(x, λ0), (3.4)

where λ0 is the vacuum wavelength and G(x, λ0) is the spatial distribution of
the optical path. When all elements composing such a device are achromatic,
like the mirror beam expander presented here, G is wavelength independent
while Φ ∝ 1/λ0. This means that the device is an achromatic optical path
modulator, and not an achromatic phase mask.

This type of achromaticity limits the useful spectral bandwidth, since
for a device that is designed to operate at a wavelength λc to achieve dy-
namic range Φmax to its phase variation, there is a maximum wavelength of
operation λmax where the introduced phase variation becomes less than a

75



Figure 3.9: Comparison of reflective and refractive [25] beam expander phase
generators in a spatial cubic phase configuration (raytracing results). (a) In-
duced cubic spatial phase strength g = G/x3 and (b) RMS error, as a func-
tion of the wavelength. Reflective system (black curves), refractive system:
(blue curves) fused silica (FS) lenses, (red curves) BK7 lenses.

threshold value, here set to 2π:

λmax =
Φmax

2π
λc (3.5)

On the other hand, the limitation from the shorter wavelength range is
set by the quality of the acquired phase distribution, which is quantified
by the RMS wavefront error of the distribution as compared to the desired
ideal distribution. Assuming now that an RMS error (RMS)min is achieved,
at the design wavelength λc, there is a minimum wavelength of operation
λmin where the introduced RMS error becomes larger than π/2.

λmin =
(RMS)min

π/2
λc (3.6)

As an example we will estimate the upper and lower spectral limits of op-
eration, using the above mentioned criteria, of the configuration presented
in Fig. 3.7(c). In this case since the design wavelength is λc = 0.55 µm,
the device, without any alterations, can effectively operate in the range
0.33 µm ≤ λ0 ≤ 22 µm.

The spectral dependence of the device is more complex when its ele-
ments are not achromatic. In a beam expander composed by cylindrical
lenses [25], the induced optical path G will also depends on wavelength due
to the dispersion of glass. In this case we rely on numerical raytracing to ana-
lyze the spectral characteristics of the device since analytic, generic formulas
like Eqs. 3.5-3.6 are not available. The spectral performance of a refractive
device [25] compared to a reflective one, both configured to perform spa-
tial cubic phase modulation, is shown as a function of the wavelength in
Fig. 3.9. Clearly, in the refractive variant of the system, the cubic spatial
phase strength g, and consequently the optical path G, strongly depends on
the wavelength. The simulations have been performed for two glass types
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(BK7 and Fused Silica) that have distinctly different Abbe numbers. The
reflective system on the other hand shows a constant cubic spatial phase
strength g, completely independent from the wavelength. Another impor-
tant factor is the quality of the phase distribution, which can be quantified
by its RMS error compared to the desired ideal distribution. As it is shown
in Fig. 3.9(b) in refractive systems the RMS error varies strongly on the
wavelegth and increases rapidly as we deviate from the design wavelength
(λc = 800 nm in this case), exceeding λ/2 at a narrow spectral range around
λc. The reflecting system on the other hand shows a monotonic decrease of
the RMS error as the wavelength is increased, and exceeds the upper limit
of λ/2 in the short wavelength range at ∼ λc/10.

Scalability

Besides any limitations in the spectral bandwidth of operation, our proposed
system is completely scalable in respect to the design wavelength. Let’s
assume that a device is optimized for operation at a wavelength λc and we
need a new device that will now operate at a wavelength λ′c = mλc , (m > 0).
The original design can be used as is, with all the distances and mirror
physical dimensions scaled by a factor m, i.e. distance d′ = md, radii of
curvature R′1 = mR1, R

′
2 = mR2.

Achromaticity in the optical path versus achomaticity in the phase

As we have already mentioned in the previous section, a reflective device
is achromatic in the optical path. In this section we will discuss on the
differences between the achromaticity in the optical path and in the phase
and their importance to applications. In a nutshell, any wavefront shaping
device will modulate the phase of an incoming wavefront by perturbing the
optical path. Replicating Eq. 3.4 the phase modulation Φ will be:

Φ(x, λ) =
2π

λ
G(x, λ),

where λ is the wavelength and G is the optical path. In the case of a device
that is achromatic to the optical phase, Φ does not depend on wavelength,
thus the optical path is proportional the wavelength:

G(x, λ) =
λ

2π
Go(x)⇒ Φ ∝ G0(x)

where G0 is a function that depends only on x. This means that for a poly-
chromatic input beam all its spectral components acquire the same phase.

On the other hand, in the case of a device that is achromatic to the optical
path, G does not depend on wavelength, so the induced phase becomes:

Φ(x, λ) =
2π

λ
G(x)⇒ Φ ∝ 1

λ
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This means that shorter wavelengths will acquire higher phase modulation.
Such a property is important to applications [115] as we are going to demon-
strate though the following examples.

First, let’s consider a device that induces a quadratic spatial phase mod-
ulation Φ ∝ x2. Such a device will have an action similar to that of a thin
lens and will focus a plane monochromatic wave front at a distance [116] f :

f = −2π

λ

x2

Φ(x, λ)

If the device is achromatic to the optical phase Φ then we can safely assume
that Φ(x, λ) = −Cx2 so the beam will be focused at a distance f = π

λ
1
C .

For a polychromatic beam this means that different colors will focus at a
different distance so chromatic aberration is observed. On the other hand,
if the device is achromatic to the optical path G then we can safely assume
that G(x, λ) = −Cx2 ⇒ Φ(x, λ) = −2π

λ Cx
2 so the beam will be focused at

a distance f = 1
2C . For a polychromatic beam this means that all colors will

now focus at the same point!
In our second example we will consider the more complex case of a cubic

phase modulator that is used to generate 1D Airy beams [24]. As we are going
to show a device that is achromatic in the optical path length (OPL), like the
reflective continuous phase modulator we developed, produces Airy beams
that co-propagate independently from their wavelength. This enables us to
create broadband, non-spreading, white light Airy beams. In order to clearly
demonstrate the differences of a system that is achromatic in phase to one
that is achromatic in the optical path we performed numerical simulations
of the paraxial wave equation for monochromatic beams at three different
wavelengths λB = 400 µm (blue), λG = 550 µm (green), λR = 700µm
(red). Our comparative results are presented in Fig. 3.10. Clearly, when the
device is achromatic in the optical path, as shown in Fig. 3.10(b), all colors
co-propagate to result in a white Airy beam. On the other hand, when
the device is achromatic in phase, as shown in Fig. 3.10(b), the spectral
components of the generated beam are splitting as they propagate.

3.2.2 Discrete methods

Spatial light modulator

A spatial light modulator (SLM) is a device that imposes a modulation
onto an incoming light beam, is either reflective or transmissive, and is a
common light shaping tool. Spatial light modulators use a digital display,
usually a LCOS type, to shape light by controlling each pixel individually
and can be categorized to three main groups. First, amplitude-SLMs where
they shape the spatial amplitude distribution of an incoming light beam, the
phase-SLM where the phase of the light beam is modulated by the device,
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Figure 3.10: Numerical simulation results of Airy beams with width param-
eter w = 100µm and wavelengths λB = 400µm, λG = 550µm, λR = 700µm
generated with a device that is achromatic in (a) optical path length and in
(b) phase. The figures combined in ImageJ and we used pseudo-colors for
illustration.

and more rarely an SLM that modify both the intensity and the phase of
a beam. In this thesis we will focus on the techniques that we used to
encode both amplitude and phase information onto a phase-only SLM and
on the design of phase-only masks for the generation of complex structured
light beams. Usually a phase-SLM exploits liquid crystals to impose a phase
retardation to the incoming wave. In more detail, as liquid crystals are
birefringent, they are imposing a phase retardation through the change of
index of refraction that is dependent to the angle between the direction of
the incoming wave, and direction that these crystals are aligned [117]. This
behavior is illustrated in Figs. 3.11(a)-(c). The pixel by pixel control of
the orientation of the nematic liquid crystals usually is achieved through
the use of a CMOS back-plane, thus we are bale to have a pixel by pixel
control of the phase modulation. Furthermore, as the display of the SLM is
discretized, the reflection/transmission from it, produces diffraction orders,
where the desired modulation is on the zeroth order. In order to achieve
maximum efficiency on the zeroth order the polarization of the input beam
must be aligned to the polarization plane of the SLM. This efficiency is
usually ∼ 80− 90%

Normally, a SLM is connected to a computer through a controller device
for the transfer and the manipulation of the mask. This mask is loaded to
the SLM as an image type file (usually a bitmap image file (BMP)), which
is computer generated. For phase SLMs the phase modulation that can
be achieved is usually a few wavelengths (∼ 2π), thus a phase wrapping
of the phase imprinted into the phase mask is required. Furthermore, the
resolution of the commercially available phase-SLMs ∗ is ranging form 800×
600 pixels to 4160×2464 pixels, wile the pixel pitch is between 2µm−40µm
. A typical setup for the operation of an SLM is illustrated in Fig. 3.12.

∗Info taken from hamamatsu.com, holoeye.com, thorlabs.com.
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Figure 3.11: Schematic representation of the operation of a phase-SLM using
Liquid Crystals.

When an incoming light beam is reflected by an SLM the outgoing beam is
imposed with the desired modulation induced by the nematic liquid crystals,
by altering the orientation of the crystals with respect to the incoming wave.

The design of the masks loaded into an SLM for the generation of struc-
tured light is not a trivial task. Besides the more simple cases, where a
straightforward phase distribution, like a polynomial or a helical phase, is
needed for the modulation of a light beam, often o more complex phase
distribution, and in many cases both intensity and phase modulation, is
required.

Figure 3.12: Illustration of a typical setup of the operation of a reflective
SLM.
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3.3 Design of Phase-masks

Although the introduction of SLMs has made it possible modulate light
with unrepresented control and precision, the generation of complex struc-
tured light, is still not a trivial task. Generating structured light is actually
a transformation process, where some input beam is reshaped to transform
to the required structured light distribution. Transformation can be a single
step process, like for example when a thin lens imprints a quadratic phase
on a plane wave to transform it to a spherical. On the other hand, the trans-
formation might require several steps, including propagation over a distance.
An example of such a process is holographic reconstruction [118], where a
reference light beam is modulated in amplitude by the hologram, and trans-
forms to the object wave as it propagates. Irrespective of the number of steps
required, one has to design and apply a specific modulation to an incoming
light field. This modulation might refer to the phase, the amplitude, the
polarization or any combination of them. In the absence of generic analyt-
ical approaches one has to rely on numerical simulations, or even machine
learning techniques, that will correlate the required input modulation for a
specific output.

Physical or technical limitations of the available equipment can play also
an important role and should be taken into account in the design phase. For
instance, most of the available SLMs can modulate either the phase or the
amplitude, but not both. Furthermore, SLMs are discrete devices with finite
dynamic range, pixel size that ranges from 5−40 µm, physical dimensions in
the range of∼ 100 mm2. For example phase SLMs can modulate a beam with
a maximum phase modulation slightly higher than 2π, thus we have to rely
on phase wrapping to achieve larger spatial phase modulations. Although a
Spatial Light Modulator is a device that gives more degrees of freedom and
control, over light structuring, there some limitation that must be taken into
account. As they are discretized and consisting of pixels with finite physical
dimensions, it is not possible to reproduce modulations that are steeper than
the sampling period. Another limitation comes form the physical dimensions
of the screen, which limits the resulting NA, of the structured light wave.
Moreover is limited in it dynamic range because as the maximum phase
modulation it can achieve is ∼ 2π − 3π, thus a phase wrap is needed for
phase masks with larger value of maximum phase modulation.

3.3.1 Encoding amplitude and phase information onto phase-
only masks

Encoding amplitude and phase information onto phase-only masks is a an
exciting approach for the generation of structured light. Since the majority
of the high-power light modulating devices are phase modulators such an
approach can enable us to generate intense structured light. We can better
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understand the complexity of such a approach through a simple example. If
we modulate the phase of a plane wave u(r, t) = u0e

i(k·r−ωt), where k is the
wavevector and ω is the angular frequency, by a modulation b(r) we will get:

u′(r, t) = eib(r)u(r, t)

We can then take the Taylor series expansion of this modulation to:

u′(r, t) '

[
1 + ib(r)− b(r)2

2
− ib(r)3

6
+ . . .

]
u(r, t)

We can identify amplitude modulation terms in the above description. Like-
wise, if the modulation is very weak b(r)� 1 then we can keep only the fist
order term:

u′(r, t) ' [1 + ib(r)]u(r, t)

Clearly we can now identify two components, the original plane wave and
an amplitude modulated wave which is π/2 shifted in phase. So under these
conditions a weak phase modulation can actually modulate the amplitude
of incoming wave. On the other hand, in our example phase and amplitude
modulation seem coupled and difficult to be independently controlled.

A solution to this problem was presented by [119] et al. in 1999. In
this paper the imposed phase modulation was the product of the, properly
modified, required phase and amplitude modulation. This modification, in-
spired by analyzing the problem through a Fourier series expansion, made it
possible to decouple amplitude and phase modulation.

3.3.2 Phase-only masks for the direct generation of Struc-
tured light

Although in general the generation of structured light would require a mod-
ulation in both amplitude and the phase, in some cases a direct phase mod-
ulation is all that needed. For example, Airy beams require only a phase
modulation. This can be either a cubic phase imposed into a Gaussian beam
followed by a Fourier transform using a lens [24], or using a direct 3/2 phase
modulation [79]. The latter approach is based on the approximation of the
Airy function by Ai(x) ' x−1/4 exp(iCx3/2), where C is a constant.

Generation of ring-Airy beams

Based on this approximation, we use direct phase modulation schemes to
generate a variety of accelerating beams, like ring-Airy beams whose am-
plitude distribution is described by the Airy function. An example of the
generation of abruptly auto-focusing vortex beams using phase-only mod-
ulation was presented in [35]. Following that, in our work we explored a
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Figure 3.13: (a) phase mask of cylindrically symmetric chirped phase de-
scribed in Eq. (3.7), and (b) the intensity distribution along propagation of
the corresponding ring-Airy.

variation of this approach for the generation of ring-Airy beams, that was
first presented in [30]. This technique is based on a chirped phase modulation
scheme proposed in [86], which can be viewed as an extension to cylindrical
symmetry, of the approach presented by [79]. In our work a phase-only mask
is used with a phase distribution described by:

φ(r) =

{
−kC(r − r0)3/2 , r > r0

0 , r < r
(3.7)

where C is a constant, k is the wavenumber, r is the radial coordinate, and
r0 is a reference radius. Such a phase mask is depicted in Fig. 3.13(a) with
r0 = 1 mm and kC = 0.1 m−1/2, meanwhile the intensity distribution along
propagation of an ring-Airy beam generated with a Gaussian beam with
FWHM = 10 mm illuminating this mask is shown in Fig. 3.13(b).

Adding Orbital Angular Momentum (OAM) to ring-Airy beams

Orbital angular momentum can be added to a beam by modulating it’s phase
with a vortex. This vortex can be applied as for example, linear azimuthal
variation of the phase ψ(θ) = mθ, where θ is the azimuth angle and m
is the topological charge or the number of twists in the phase over a full
rotation. Ring-Airy vortex beams, can be directly generated by adding a
helical phase to the 3/2 phase chirp described in Eq. (3.7). In this case the
phase modulation is described by:

Φ(r) = φ(r) + ψ(θ) =

{
−kC(r − r0)3/2 + lθ , r > r0

mθ , r < r
(3.8)

Fig. 3.14 depicts a ring-Airy beam carrying OAM of topological charge
m = +1. Beams that carry OAM exhibit an interesting property. At the
center of their vortex (r = 0 in our case), due to the phase ambiguity, the
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Figure 3.14: Transverse x− y phase distribution of (a) 3/2 chirp phase with
r0 = 1.0mm and C = 0.100 m−1/2, (b) helical phase with topological charge
m = +1 and (c) combined chip phase and vortex (φ(r) +ψ(θ)) at the initial
plane (z=0). Phase is in π units.

intensity is zero. So, when such beams are focused they from a hollow focal
region. This characteristic is also evident in the case of autofocusing beams
as we can see in Fig. 3.15. In more detail, Fig. 3.15(a) shows the I(x, z)
intensity cross-section of the vortex ring-Airy beam described in Fig. 3.14
using Gaussian beam with FWHM = 10 mm to illuminate the phase mask,
while in Fig. 3.15(b) the corresponding maximum peak intensity Imax/I0

along propagation is depicted. The characteristic auto-focusing behavior of
the ring-Airy beam can be clearly observed.

Figure 3.15: Intensity distribution of ring-Airy vortex along propagation (a)
x− z intensity cross-section, and (b) maximum peak intensity Imax normal-
ized with initial intensity I0. Inset shows a zoomed-in area of the hollow
focal region.
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3.4 Interfering structured light beams

Although the generation of a single structured beam that require both ampli-
tude and phase modulation, for instance an abruptly auto-focusing ring-Airy
beam, can be achieved using several techniques, and different approaches
[42, 30, 86], on the other hand the creation of multiple interfering beams
using a single mask is a challenge. There is a variety of cases where the com-
bination of multiple beams is needed, in this work we focus on the design
techniques for the generation of Tornado waves [101], which are composed
by the interference of two ring-Airy beams, with different initial parameters,
both carrying an helical phase of opposite topological charge.

3.4.1 Spatial multiplexing technique

Brimis at al. in [101], showed that ToWs can be generated by superimposing
two ring-Airy beams that, although follow different parabolic trajectories,
are tuned to abruptly auto-focus at overlapping focal regions while carrying
OAM of opposite helicity [101]. For the generation of ring-Airy beams, either
using a straightforward phase- only or a Fourier transform method, usually
a phase or amplitude SLM is required [42, 30]. To extend these approaches
to ToWs that are interfering fields is not straightforward. For instance, tak-
ing the simple case of two plane waves, with phase modulation as exp(iΦA),
exp(iΦB), where ΦA, ΦB refer to the spatial phase distribution of each wave.
Both of them can be independently generated using a phase SLM by apply-
ing the corresponding spatial phase distribution as shown before. On the
other hand, their superposition involves an amplitude and phase modulation
exp(iΦA) + exp(iΦB) = 2 cos(ΦA−ΦB

2 ) exp(i iΦA+iΦB
2 ) that a phase SLM can-

not directly reproduce. The sum of these two phase terms is not the sum of
the two phase distributions, therefore by adding the two phase distributions
it does not reproduce the desired amplitude and phase modulation of the
superposition of the two vortex ring-Airy. Furthermore, when the two phase
distributions are opposite as in the case of the two superimposed waves of
the ToWs, the sum of the overlapping region where the helicities are op-
posite exp(iΦA) = − exp(iΦB) is zero. Although a simple solution to this
problem is using two independent phase SLMs for the generation of the two
distinct vortex ring-Airy beams here we follow simpler approach, using a
single SLM device. To avoid the phase cancellation due to the spatial over-
lap of the phase distributions we apply a spatial multiplexing technique for
the design of a single phase mask that imposed onto the SLM. Using this
approach, superimposed fields of any complexity in their phase structure can
be generated. In more detail the technique we developed is based on time-
division multiplexing (TDM), which regularly used to alternately combine
different frequencies in telecommunications in the time domain, here applied
in the spatial domain. As an example we will first describe our approach
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Figure 3.16: Representation of the spatial multiplexing technique (a) Two
1D signals A,B alternatively sampled at 2w spatial intervals with a w shift
between them (b) Fourier transform F of the sampled signals, (c) sampling
geometries in a 2D SLM array, (d) Propagation and angular separation of
the diffraction orders

for 1D phase distributions. Assuming that we use a discrete device with a
w sampling interval. As shown in Fig. 3.16(a), two continuous distributions
SA(x), SB(x) can be alternately sampled, each one at 2w intervals, with a
w shift between them. In this case the signal S(x) on the device is described
by:

S(x) = SA(x)comb(
x

2w
) + SB(x)comb(

x+ w

2w
) (3.9)

where comb(x) =
+∞∑
i=−∞

δ(x− i) and δ(x) is the delta function. The Fourier

transform of this discrete, multiplexed signal with then takes the form:

F {S} = 2w
{
F {SA}+ F {SB} eikwlx

}
∗ comb(kwlx

π
) (3.10)

where k = 2π/λ is the wave number and lx is the directional cosine. Assum-
ing that both signals are band limited, i.e their spatial spectrum F {SA},
F {SB} is non zero in a finite region, the resulting spatial spectrum is com-
prised by a periodic repetition of the spatial spectra [116] as it is graphically
represented in Fig. 3.16(b). The periodic spatial sampling results in a grating
like effect where each of the diffraction orders represents a replica of the orig-
inal distributions. Interestingly, as graphically depicted in Fig. 3.16(c), the
diffraction orders propagate in different directions. This angular separation
is a key element of our approach since by simple propagation all diffraction
orders besides the zero can be easily filtered out by the finite NA of the op-
tical setup. The scheme for applying this multiplexing in a 2D SLM device
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is shown in Fig. 3.16(d) where the values of SA(x), SB(x) distributions are
represented in alternating pixel columns. For example for an SLM device
with a typical pixel size of w = 10 µm operating at λ = 1 µm the angular
separation between the zero and the first order is 2.86 deg corresponding to
a numerical aperture of NA=0.05, or a spatial separation of 50 mm after
propagating for 1 m. We have to note here that in a more rigorous represen-
tation, that we are going to present elsewhere, one should take into account
the finite pixel size and shape as well as the aperture of the SLM device. In
this case the diffraction orders are suppressed in power compared to the zero
order, further enhancing the effectiveness of our approach.

3.4.2 Phase-masks design for the generation of
Tornado waves

For the generation of spiraling structured light that we refer to as Tornado
Waves we applied this multiplexing approach to generate by superimposing
accelerating waves uA, uB carrying OAM. In more detail, for each of the
superimposed fields a phase mask was designed following an approach similar
to [85, 30, 79] as we described in 3.3.2. The phase in each phase mask can be
described as Φ (r, θ) = ϕ (r) + ψ (θ) where ϕ (r) = −kC(r − r0)3/2,∀r ≥ r0,
(and ϕ (r) = 0, ∀r < r0) is a radially chirped phase distribution, ψ (θ) = mθ,
is a helical phase and r is the radial coordinate, r0 is a reference radius, C
is a constant, k the wavenumber, θ is the azimuthal angle, and m is the
topological charge.

In our design we have tuned [101] the foci of uA, uB to overlap. The
position of the abrupt autofocus of a ToW can be estimated with good
accuracy using the analytical solution of the one-dimensional Airy beam
[101, 27, 42]. In our case, since we are using a generation approach similar
to [79] using the parabolic trajectory of the caustic resulting from phase
distribution Φ, we estimate that the position of the abrupt autofocus is at

Figure 3.17: Phase mask for the generation of ToWs (wrapped phase). Insets
zoom in the phase mask to reveal the alternating sampling geometry for the
individual masks ΦA, ΦB that respectively generate each of the superimpos-
ing accelerating waves.
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f = 4
3C

√
r0, where C is the constant determining how strong is the radial

chirp phase. As we can observe from the above relation the focus position
is independent of the wavelength. The individual phase masks ΦA, ΦB were
then spatially multiplexed as depicted in Fig. 3.16(d) to a single phase mask
that was used in the SLM. The resulting multiplexed phase mask is shown
in Fig. 3.17. From the insets we can observe in detail the effect of spatial
multiplexing of the individual phase masks ΦA, ΦB.
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4 | Experimental observation
of structured light

4.1 Ultra-broadband White-light 2D Airy beams

For the experimental demonstration of the ability of the proposed mirror
beam expander system to operate as a continuous phase mask we have chosen
to work in a spatial cubic phase configuration. This configuration enables the
generation of accelerating non-diffracting Airy beams, [24, 92, 25, 76, 120],
since a Gaussian beam modulated by a spatial cubic phase can be directly
converted to Airy beam by Fourier transforming (FT) using a lens [24]. Our
proposed phase mask is superior from an SLM but also from the previously
reported refractive variant [25] in respect of the bandwidth, efficiency and
and input power limit. The ability of such devices to achieve a continuous
spatial phase avoids all discretization side effects present in SLM devices.
Furthermore, since our device is achromatic in respect of the optical path
difference it results in the generation of broadband accelerating Airy beams
[115]. In addition using our device we were able to generate accelerating
beam with variable partial spatial coherence and study its affect upon their
propagation dynamics. As well as to investigate the self-healing properties of
partially coherent accelerating beams. An image of the experimental setup
of the broadband reflective phase modulation device is shown in Fig. 4.1.
Fig. 4.1(a) depicts the system with a configuration to impose a pure cubic
phase modulation, while Fig. 4.1(a) show a zoomed-in image of one of the
systems that show the direction of the light through the mirrorsM1 andM2.

Fig. 4.2 depicts a graphical representation of our setup and shows that
the 2D cubic spatial phase mask was implemented by cascading two orthogo-
nally orientated cylindrical mirror beam expanders. A broadband white light
Gaussian beam, after propagating through the two orthogonally oriented op-
tical systems is modulated by a cubic spatial phase in both transverse axes
and is then FT by a lens resulting in a 2D Airy beam [24, 25]. In general
the field distribution of a 2D Airy beam at the initial plane is described by
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(a)

M1

M2

(b)

Figure 4.1: Image of the experimental setup of the broadband reflective
phase modulation device, (a) configured for a two dimensional pure cubic
phase (b) a zoom in image of one of the systems that show the direction of
the light through the mirrors M1 and M2.

[24]:
u(x, y, z = 0) = Ai(
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where Ai(·) denotes the Airy function, wx, wy are the primary lobe width pa-
rameters, and ax, ay is the apodization factors in each direction. As the beam
propagates it’s distribution is displaced in such a way so that the primary
lobe follows a parabolic trajectory [24, 92, 25] rmax '

(
w−3
x x̂ + w−3

y ŷ
)

(z/2k)2.
Thus the beam exhibits a stronger deflection when the width parameter is
decreased or the wavelength is increased.

Since our phase mask device is comprised by achromatic elements the
imposed geometric optical path, ignoring the dispersion of air, is G(x, y) =
gxx

3+gyy
3, where gx, gy are constants related to the achieved dynamic range.

Taking into account the Fourier transforming action of a focusing element,
like a lens, of focal distance f , and the imposed phase distribution described
in Eq. (3.4) we can estimate the width and truncation parameters of the
generated 2D Airy [24, 92]:

wi =
3
√

3 k−2/3fg
1/3
i , (i = x, y) (4.2)

ai = k−2/3 g
−2/3
i

3
√

9w2
G

, (i = x, y) (4.3)

where wG is the waist radius of the input Gaussian beam. Using Eq. (4.2)-
(4.3) we can then estimate the transverse displacement of the generated Airy
beam as a function of the wavelength.

rmax '
(
g−1
x x̂ + g−1

y ŷ
) z2

12f3
(4.4)
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FT lens
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Figure 4.2: Graphical representation of a reflective phase generator (RPG)
configured to imprint a cubic spatial phase to the incident wavefront. The
radii of curvature of cylindrical mirrors Mi, (i = 1, . . . , 4) is respectively
(R1 = R3 = 102 mm, R2 = R4 = −153 mm), (FT) is an achromatic lens of
focal length f = 300 mm that performs the optical Fourier transform.

Interestingly, for such a phase mask [115], and if the FT focusing element
is achromatic, the traverse displacement does not depend on wavelength.
In this case the width parameter for each spectral component is effectively
auto-adjusted (see Eq. (4.2)) so that it compensates the wavelength related
deflection variations. Thus using such a device ultra-broadband Airy beams
can be generated [115], which when combined with an Airy temporal profile
can support ultra-short Airy3 light bullets [76]. Using the proposed phase
mask we have generated white light 2D accelerating Airy beams as shown
in Fig. 4.2. For illumination we used spatially filtered and collimated light
from a white light LED ( 450 nm - 750 nm). The transverse beam profile
was imaged using a linear 14bit CCD camera for various propagation dis-
tances. Details on the experimental setup can be found in [25]. furthermore
we used band-pass interference filters (40nm) to isolate different parts of the
LED spectrum and generate 2D Airy beams of different colors. The trans-
verse intensity profiles of these 2D Airy beams are shown in Fig. 4.3. Using
those interference filters we have isolated the propagation of each spectral
component and as shown in Fig. 4.4(a),(b) the trajectories in the transverse
direction of the intensity maximum are, as predicted in Eq. (4.4), indepen-
dent of the wavelength. The generated white light 2D Airy beam sustains
over 50% of its initial peak intensity for a propagation distance of 60mm,
a value which is ∼ 4 times larger than that of a similarly sized Gaussian
beam (FWHM ' 50µm). Our results, retrieved in a broad spectral range
(∆λ0/λ0 ∼ 0.54), are comparable to previously demonstrated white light
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Figure 4.3: Transverse intensity profiles of 2D Airy beams in different part
of the spectrum. The corresponding central wavelength is (a) λc = 450nm,
(b) λc = 500nm, (c) λc = 550nm, (d) λc = 600nm, (e) λc = 650nm, (f)
λc = 700nm, (g) λc = 750nm. (h) Shows a white light 2D Airy beam ( 450
nm - 750 nm).

Airy beams [121, 115]. Moreover, Fig. 4.4(c) shows a color image of the
white light 2D Airy beam captured using a photographic camera. Our ex-
periments clearly show the potential of such an optical device to be used as
an ultra-broadband phase mask.

4.2 Coherence control of 2D Airy beams

The formation of Airy beam relies on the wave nature of light since the
characteristic curved trajectory is a result of the interference of different
parts of the Airy’s initial field distribution [122, 72, 123]. Thus, we expect
that the spatiotemporal coherence of the light used for its generation would
have a strong effect upon the Airy beam properties. Several approaches that
study the effect of partial coherence have been presented in the bibliography.
In all of them partial spatial coherence was somehow simulated. For example
in [122], a rapidly rotating ground glass was used to induce a random spatial
phase distribution in a by all other means coherent accelerating beam. In
this case, the observation interval (CCD camera integration time) was set to
be much longer than the timescale of the induced phase variations, leading
to an averaging effect that practically simulates spatial incoherence.

4.2.1 Spatial coherence of 2D Airy beams

For the generation of the ultra-broadband white 2D Airy beams we used
a technique described in 3.2.1. Using reflective optics as continuous phase
masks in order to generate Airy beams we have significant advantages in
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Figure 4.4: Trajectory of the primary lobe of 2D Airy beam generated with
RPG in (a) x-axis and (b) y-axis (c) White light 2D Airy beam. (PRG
properties: Dynamic range of 20 waves, RMS error of 0.2 waves)

terms of the output quality and the intensity of the beam as well as in its
spectral content. As shown in Fig. 4.5, for illumination we used a white
LED (450 nm-750 nm), while a condenser lens was used to collect light and
loosely focus it on a pinhole. A lens, was then used to collimate the beam
that in turn illuminated the telescopic cylindrical mirror system. As we are
going to describe in detail later, using pinholes of different diameter, allows
us to vary the degree of spatial coherence of the collimated beam. A smaller
pinhole increases the spatial coherence while a larger one decreases it the
analytic relation is described in 1.4.2. The degree of temporal coherence on
the other hand was varied by narrowing the spectral bandwidth using inter-
ference filters. Narrowing the spectrum increases the temporal coherence.
An achromatic spherical lens was used to finally generate the broadband 2D
Airy beam.

Measurement of spatial coherence

Although is rather straight forward to vary the spatial coherence of a beam
by changing the size of the illumination pinhole as shown in Fig. 4.5, it is not
trivial to quantitatively characterize these changes. In general the mutual
coherence function [2] for a field u(r, t) is described as:

Γ(r1, r2, τ) = 〈u∗(r1, t)u(r1, t+ τ)〉 (4.5)

where r1, r2 are the positions of two points on the wavefront, τ is a time
delay and 〈 〉 denotes averaging. To characterise the temporal coherence
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Figure 4.5: Illustration of the setup was used for the generation of 2D Airy
beam with partial spatial and temporal coherence. L1 collects light from the
white light LED and loosely focuses it onto the pinhole P . L2 collimates
the beam, which then enters the cubic phase modulation device consisting
of mirrors Mi, (i = 1, . . . , 4). BP is a band pass filter, which is removed in
for the white light measurements. L3 is a Fourier Transforming lens used to
transform the cubic phase modulated beam to a the 2D Airy beam.

of a beam one needs to measure Γ(r1, r1, τ), thus requires some kind of
correlation over time. This can be achieved by varying the OPD between
two the arms of a Michelson interferometer that is illuminated by our beam.
Such a measurement is rather trivial when a beam is spatially coherent, but
rather challenging when the spatial coherence is low.

Measuring spatial coherence on the other hand is always a demanding
process. Since we need to measure Γ(r1, r2, 0), some kind of correlation over
space is required. One needs to bring to interference different parts of the
beam and vary their distance without affecting the temporal delay. Most
techniques presented in the bibliography rely either on some configuration
similar to a Young’s experiment [124] or on using mirrors to fold the beam
[125] so that symmetric points are brought to interference. A novel approach
to solve this technically challenging problem was recently introduced by A.
Bhattacharjee et al. [126]. Their technique uses a variation of the Michelson
interferometer, in which, as depicted in Fig. 4.6, a converging lens is placed
in one of the interferometer arms in such a way so that it’s focus is on the
plane of the interferometer mirror. In more detail, the collimated beam
under study is then splitted using a cube beam splitter, into two parts. One
part is reflected by the mirror M2 while the other part is focused by the lens
L1 onto the mirrorM1 The reflected beams are recombined on beam splitter
and their resulting interference pattern is imaged on a digital camera. As
show in the inset of Fig. 4.6 the lens L1 inverses the transverse profile of the
beam so at any point P (x, y) on the sensor we observe the superposition of
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the original field u(x, y, t) with it’s inverted replica:

utot(x, y, t) = u(x, y, t) + u(−x,−y, t)

thus at a radial distance r =
√
x2 + y2 we observe the correlation of two

points on the beam that are separated by a distance 2r. Adding a small tilt
to mirror M2, and then properly adjusting the delay, breaks the cylindrical
symmetry of the interference pattern and leads to linear fringes that can be
more easily characterized. A typical measurement for white light illumina-
tion is shown in Fig. 4.7 while the inset shows a typical of the fringes. The
spatial coherence length is estimated by measuring the FWHM of the of the
decaying intensity oscillation. Clearly in this case the spatial dimensions
over which the beam is coherent is ' 425µm..

We used the above mentioned modified interferometer to characterize
the coherence of the beam used to illuminate the mirror phase generator
device. We measured the corresponding spatial coherence for a variety of
illumination pinhole diameters. In Fig. 4.8 the spatial coherence as a func-
tion of pinhole diameter is given, as expected spatial coherence decreases
monotonically with the pinhole diameter.

Figure 4.6: Graphical representation of the setup that was used for the
measurement of spatial coherence. Lens L1 is at distance f from the mirror
M1, executing the inversion of the beam. MirrorM2 is placed on a translation
stage. The resulting interference is imaged into a digital camera. Inset show
transverse profiles of the beam before and after the the mirror M1, and
displays the inversion of the beam in both x and y axes.
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Figure 4.7: Typical measurement of Spatial coherence. Note that the oscilla-
tions in the intensity are a result of interference and are periodic to λ optical
path difference. While the envelope is related to the spatial coherence and
refers to the physical beam dimensions. (inset: filtered experimental image)
.

4.2.2 Propagation of partially coherent 2D Airy beams

As we have already discussed Airy beams rely on interference effects so we
expect that coherence will have a strong impact on their propagation dynam-
ics. Interestingly, as we are going to show the degree of spatial coherence
does not affect their parabolic trajectory.

In Fig. 4.9 normalized transverse x−y intensity profiles of 2D Airy beams
with variable spatial coherence are depicted. It is clear that when the spatial
coherence decreases the intensity distribution of 2D Airy beams becomes
blurred meanwhile the characteristic Airy oscillatory intensity pattern is lost
for spatial coherence length d12 < 500µm.

Figure 4.8: Spatial coherence length d12 as a function of pinhole diameter.
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Figure 4.9: Normalized transverse x− y intensity profiles of 2D Airy beams
with variable spatial coherence. The corresponding values spatial coherence
d12 are (a) 2200µm, (b) 1600µm, (c) 850µm, (d) 640µm, (e) 580µm, (f)
425µm, (g) 250µm.

In Tab. 4.1 we summarize the values of spatial coherence, and its cor-
responding acceleration coefficients along with the main lobe width of the
resulting accelerating beam.

Moreover, from Fig. 4.9 we can also observe that the size of the main
intensity lobe of the 2D Airy beam is increasing as the spatial coherence
decreases. This effect can become more clear in Fig. 4.10(a) where the in-
tensity profiles of 2D Airy beams with different spatial coherence are plotted.
In addition in Fig. 4.10(b) the corresponding FWHM of the main lobe as a
function of spatial coherence is depicted.

On the other hand, although their transverse distributions are strikingly
different the trajectories of the main intensity lobe are not affected by the

Table 4.1: spatial coherence and its corresponding acceleration coefficients
with respect to pinhole diameter.

Pinhole Spatial Main lobe Acceleration
Diameter Coherence d12 width (FWHM) Coefficient ca
(µm) (µm) (µm) (10−4mm−1)
11 2200 32 1.15
15 1600 34 1.20
23 850 49 1.17
27 640 64 1.09
34 580 74 1.17
47 425 115 1.19
107 250 185 1.25
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spatial coherence of the illuminating beam, as shown in Fig. 4.11. Note that
in all cases the accelerating beams were generated using the reflective phase
modulation device. Likewise, as we can observe the trajectory of the 2D
Airy beams remains parabolic, with the same curvature, regardless of the
spatial coherence of the illuminating beam. This interesting behaviour can
be explained if we describe the propagation of an Airy beam using caustics
of rays. This approach ignores the wave nature of these beams describing
the propagation dynamics as a directed flow of energy. Likewise, interference
effects that result in the characteristic Airy oscillatory intensity pattern, are
also ignored. In this perspective, the caustic description is in principle an
incoherent approach. In more detail, the phase distribution of an Airy beam
can be well approximated [35] by Φ(x) = cx3/2, where c is a constant. The
light rays, which are normal to the Airy wavefront, will form a caustic with
a trajectory described by x = caz

2, where ca is an acceleration coefficient.
Clearly the rays form a caustic that describes a parabolic trajectory. Like-
wise, the incoming beam is modulated so that a cubic phase is imprinted,
irrespectively from the spatial coherence. Therefore, the resulting caustics
will be identical.

4.2.3 Self-healing properties of partially coherent 2D Airy
beams

Another extraordinary property of coherence accelerating Airy beams is that
they have the ability to self-heal [65]. Their intensity distribution is recovered
after being partially blocked by an opaque obstacle. Here we show, for the
first time to our knowledge, that partially coherent 2D Airy beams also
exhibit this property.

In order to experimentally study the self-healing properties of such beams
we used the phase modulation mirror device presented in Fig. 4.5. We then
placed an opaque object with sharp edges, referred to as obstacle, at the

Figure 4.10: Plots of (a) normalized maximum intensity profile of 2D Airy
beams with different degree of spatial coherence and (b) the corresponding
FWHM of the main lobe as a function of spatial coherence.
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Figure 4.11: Trajectories of the main intensity lobe of 2D Airy beams of
different degrees of spatial coherence d12 from 250µm to 2200µm. Red line
denotes a parabolic fit on Airy with d12 = 580 µm.

initial plane of the beam (z = 0), i.e. the Fourier plane of the focusing
lens. Using a digital camera equipped with a telecentric imaging system, we
monitored the position of the obstacle. Using an x− y − z stage we placed
the obstacle in such a way so that it blocked the primary intensity lobe of
the 2D-Airy beam, this procedure is depicted in Fig. 4.12. As shown in
Fig. 4.13, the obstacle lies in the upper right corner of the distribution, and
thus selectively blocks only the high intensity lobe.

As shown in Fig. 4.13, for the case of a spatial coherence length d12 =

Figure 4.12: Graphical representation of the setup used to block the main
lobe of the accelerating beam in order to study the self-healing properties of
partially coherent accelerating beams.
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Figure 4.13: Normalized transverse x − y intensity profile of a partially
coherent 2D Airy beam (a)-(d) unblocked reference beam and (e)-(h) with
a block clipping the main lobe the beam. (In all cases the measured spatial
coherence length was d12 = 2200 µm)

2200 µm, the block initially perturbs the beam by eliminating the primary
lobe. As the beam propagates the beam starts to self heal. Compared with
the case of undisturbed propagation, shown in the upper row of Fig. 4.13,
the primary lobe is fully recovered after ∼ 26 mm of propagation. Interest-
ingly, taking into account the primary lobe size w and defining an equivalent
Rayleigh length of zAi = πw2

λ we get that zAi ' 5 mm, thus when perturbed
by an obstacle of size ∼ w the beam self heals after a propagation distance
of ∼ 5zAi.

Counterintuitively, this is also the case for an accelerating beam with
low degree of spatial coherence. In the upper row of the Fig. 4.14 are shown
the normalized transverse x − y intensity profiles of an unblocked partially
coherent 2D Airy beam with d12 = 250 µm, while in the bottom row of
the Fig. 4.14 we see the same accelerating beam. but in this case we have
blocked its main intensity lobe. As we can observe the primary lobe is fully
recovered after ∼ 26 mm of propagation, even for the case of low degree of
spatial coherence.

The spatial coherence length d12 of the illuminating beam can vary by
roughly one order of magnitude 250 µm ≤ d12 ≤ 2200 µm, as shown in
Tab. 4.1. Comparing this with the primary lobe FWHM size w0 ' 45 µm of
the generated 2D-Airy beam under coherent conditions we observe that in
all cases d12 > w0.

A quantitative metric of the beam recovery is evolution of the peak in-
tensity I ′max of the perturbed beam, compared to the peak intensity Imax
of the unperturbed one. As we can observe from the evolution of the ratio
I ′max/Imax that is shown in Fig. 4.15, for all degrees of spatial coherence the
produced accelerating beams are fully reconstructed after free propagation.
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Figure 4.14: Normalized transverse x − y intensity profile of a partially
coherent 2D Airy beam (a)-(d) unblocked reference beam and (e)-(h) with
a block clipping the main lobe the beam. (In all cases the measured spatial
coherence length was d12 = 250 µm)

Figure 4.15: Maximum intensity ratio of clipped 2D Airy beams of variable
spatial coherence with an unblocked reference beam, as a function of the
propagation distance.

Likewise, their maximum intensity is recovered almost up to 95%.

4.3 Ultra-intense Airy Beams generate curved
plasma for THz applications

As a clear demonstration of the capability of our setup to generate besides
broadband, intense 2D Airy beams, we utilized it to generate such beams
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using as a source high power femtosecond fs laser pulses. We utilized this
intense curved plasma to generate THz waves through the two-color filamen-
tation approach. This technique is one of the most convenient and efficient
sources of pulsed ultra-broadband terahertz (THz) waves [127, 128]. In this
process a beam and its second harmonic is combined in order to create a two
color plasma filament that by ionizing the air leads to the emotion of THz.
The setup for the generation of intense 2D Airy beams is shown in Fig. 4.16.
In our experiments we used a Ti:sapphire laser source which provides 35 fs
(FWHM) laser pulses, at a repetition rate of 1 kHz and a central wavelength
λ = 800 nm. Using intense pulses with energy up to 1.11 mJ, (∼ 32 GW peak
power) to illuminate our setup we were able to deliver 0.73 mJ (∼ 2 GW
peak power) for the generation of the 2D Airy beams. This rather low ef-
ficiency of 66% is mainly due to beam clipping resulting from the mirror
finite size, and their non optimized mirror reflectivity for this spectral range,
which is R ∼ 95%. Besides these losses and taking into account the primary
lobe size and the intensity distribution of Airy beams, we estimate that the
peak intensity of the primary lobe is in the order of ∼ 0.3 TW/cm2. This
ultra-high intensity is sufficient to excite electrons, through multiphoton ion-
ization [66], in air and thus generate a plasma filament that will follow the
parabolic trajectory of the beam.

Moreover, the intensity of our generated 2D Airy beams allowed us to
generate it’s second harmonic. By adding a non-linear type-I BBO crystal,
after the lens that performs the Fourier Transform, along with the (ω) 2D
Airy beam, a co-propagating 2nd harmonic (2ω) was generated. As described

Figure 4.16: Illustration of the experimental setup we used for the generation
of a curved plasma. L1 lens with focal length f = 100 mm. Pulse duration
35 fs (FWHM), central wavelength λ = 800 nm, repetition rate of 1 kHz,
and input pulse energy 1.11 mJ.
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in detail by Koulouklidis et al. [23] the Airy beam imparts its properties to
the 2nd harmonic. Interestingly, the generated ω and the 2ω 2D Airy beams
co-propagate following the same parabolic trajectory. This allows them to
interact over a long propagation distance, an important property, which we
have exploited to generate THz waves induced from 2-color filaments in air.

A side-view fluorescence image of generated plasma channel is depicted
Fig. 4.17(a). We can clearly observe that the plasma is curved and that it
consists of two distinct intense regions, one short in length (part 1) and one
longer (part 2). As we see in Fig. 4.18(a) the transverse distribution of the
generated THz waves consists of two doughnut shaped regions, that thy are
produced of the two distinct parts of the plasma. To prove our assumption
we have isolated each intense region of the plasma and observed the corre-
sponding THz profile. In Fig. 4.18(b) we observe the corresponding THz
profile that is generated form the part 1 of the plasma while in Fig. 4.18(c)
the THz profile form the second part of the plasma.

Clipping part of the beam right after the focusing lens L1 we can shape
the plasma accordingly, namely it is possible to direct energy either to part
1 of the plasma when the upper part of the beam is clipped or the part 2 of
the plasma when the lower part of the beam is clipped, as Figs. 4.17(b),(c)
depict.

To isolate part 1 or part 2 of the curved plasma we use a simple but
effective approach that is illustrated in Fig. 4.19. A knife-edge, placed after
the FT lens, is used to block different parts of the beam. In more detail, as
shown in Fig. 4.19(a), clipping the upper part of the beam isolates plasma
part 1. On the other hand,as shown in Fig. 4.19(b) when the lower part of
the beam is blocked, plasma part 2 is isolated.

Figure 4.17: Side-view fluorescence image of generated plasma channel (a)
whole plasma (b) part 1 of the plasma when the upper part of the beam is
clipped, and (c) part 2 of the plasma when the lower part of the beam is
clipped.
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Figure 4.18: Transverse THz profiles, generated from (a) the whole curved
plasma, (b) from part 1 of the plasma, and (c) from part 2 of the plasma.

4.4 Generation of spiraling light: Tornado Waves

Structured light, as we often describe the generation of custom light fields,
is a topic of wide interest in optics. Structuring can involve, independently
or in combination, the spatial modulation of phase, amplitude, and polar-
ization [6] of a light wave. Such fields can provide a significant advantage
compared to non-structured light, especially in applications where light is
used as means of energy delivery on a target. Controlling of the intensity
distribution and the shape of the focus as the input power is increased is a
challenge for applications like direct laser writing, non-linear wave mixing
and harmonics generation, and high power THz generation. For example,
higher powers ignite nonlinear propagation effects that dynamically reshape
the light beam [66]. The use of structured light can in principle enable us to
control the intensity distribution and the focus position in the linear and the
non-linear propagation regimes. To address this open problem a plethora of
variations of structured light have been introduced, dramatically extending

Figure 4.19: Illustration of the method we used to isolated different parts of
the plasma by clipping the corresponding parts of the beam (a) clipping the
upper part of the beam results into the isolation of the part 1 of the plasma
and (b) clipping the lower part of the beam results into the isolation of the
part 2 of the plasma .
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a collection containing only the, classical now, Bessel beams [129]. The ap-
pearance of spatial light modulation devices (SLM) have made it possible to
generate a wide range of structured light variations, optimized using various
approaches. Besides trial and error numerical approaches some basic design
guidelines have emerged that allow us to design the focal distribution. A key
element of this approach is the use of stationary, non-diffracting light like
Bessel [129] and Airy beams [24]. The propagation of such light is dominated
by a strong linear energy flux that through interference generates the high in-
tensity features of the beam. As the power is increased, nonlinear effects are
exited only locally at the high intensity regions, making it possible to tailor
the propagation dynamics. In this context, an ideal template for this tailored
control is the recently introduced family of rotationally symmetric accelerat-
ing beams, often referred as circular Airy beams (CAB) or ring-Airy beams,
whose radial distribution is described by the Airy function [26, 42]. These
waves propagate in curved trajectories, and exhibit abrupt autofocus, while
at high intensities they reshape into nonlinear intense light-bullets with ex-
tremely well defined focal position [29]. Interestingly, by imprinting a helical
phase, shaping can induce topological charge to the wave, often referred to
as optical vortex. Such waves carry orbital angular momentum (OAM) and
exhibit a rotating phase structure as they propagate [6]. Twisting structured
light, where the intensity pattern rotates forming a helical pattern, can be
generated by superimposing structured light that caries (OAM) of opposite
helicity [130, 131, 6]. Furthermore, by properly tuning the interfering (OAM)
carrying waves, this twisting can occur inward and angularly accelerating,
or decelerating, fashion forming a helix of variable pitch as light propagates
[132, 133]. Recently, Tornado waves (ToWs) [101], a new type of structured
light that combines the radial acceleration with the angular acceleration was
theoretically introduced. Like a tornado, ToWs intensity maxima outline a
spiral of decreasing radius and pitch as they propagate. In this thesis we ex-
perimentally realize, for the first time to our knowledge, Tornado Waves and
demonstrate their unique property to twist and accelerate both over the ra-
dial and the angular direction. Using a novel experimental approach, which
involves spatial multiplexing, we generate such complex interfering fields us-
ing a single phase mask imprinted onto a SLM. this technique is described in
more detail in 3.4.1. Furthermore, we explore various approaches to create
dynamic ToWs that also rotate in time, and focus our study on two color
ToWs which exhibit rotational frequencies in the THz regime.

The propagation of such beams is described by the paraxial wave equation
[101, 42]:

∇2
⊥u+ 2ik

∂u

∂z
= 0 (4.6)

where ∇2
⊥ denotes the transverse part of the Laplacian, z the propagation

distance and u the electric field envelope.
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Figure 4.20: Simulation of the propagation of Tornado waves (a) x-z Intensity
profile distribution. Note the diagonal stripes that represent the diffracted
orders and (b) x-y Intensity profile (normalized to peak value) at z = 30cm.
The ±1 diffraction orders are clearly separated from the zero order

In order to investigate the validity of our approach for generating ToWs
we performed numerical simulations of Eq. (4.6). In our simulations we
considered a linearly polarized Gaussian beam along the y direction that
illuminates the phase mask which is shown in Fig. 3.17. The intensity pro-
file along propagation direction is presented in Fig. 4.20(a). The abruptly
autofocusing characteristics are clearly reproduced.

The diagonal stripes appearing in this x− z section are due to the pres-
ence of the diffracted orders. A clear demonstration of the effectiveness of
the spatial multiplexing approach is shown in Fig. 4.20b where an x − y
intensity profile at z = 30 cm is depicted. The Gaussian intensity profile of
the propagating beam has already been transformed to a vortex shape, char-
acteristic of ToW’s [101]. Furthermore, besides the zero order, two replicas
representing the ±1 diffraction orders are clearly visible. As expected the

Table 4.2: Design parameters for the generation of ToWs.
(f refers to predicted values )

r0 C l f λ

(µm) (m−1/2) (mm) (nm)
ΦA 800 0.089 +1,2 424 594
ΦB 1000 0.100 -1,-2 422 594
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±1 diffraction orders, due to their angular separation, are spatially separated
from the zero order and do not affect the central foci distribution.

For the generation of Tornado waves we use a simple experimental setup
as shown in figure 4.21. A CW laser beam of Gaussian profile and wavelength
λ = 594 nm polarized in x direction in order to match the polarization
plane of the SLM that is in the horizontal plane, is expanded by a factor
of 2 by lenses L1, L2, reaching a FWHM = 8.9 mm and then illuminates
the phase mask, depicted in Fig. 3.17 imprinted on a reflective phase SLM
(HOLOEYE-PLUTO 0.7” HDTV) with 8 µm pixel and resolution 1920x1080
pixels. The modulated beam is then directed using reflecting mirrors M1,
M2 towards a 1280x1024 pixels 8bit digital camera. In order to record the
transverse intensity profile I(x, y) of the modulated beam along propagation,
the camera is translated along the z axis. Meanwhile, the diffraction orders
that are produced as a side effect of the multiplexed phase mask, depicted
in Fig. 4.20, are not imaged by the camera sensor due to their large spatial
separation from the zero order. The angular separation of the orders is
affected by the SLM pixel size as described in Eq. (3.10) and depicted in
Fig. 3.16.

Figure 4.21: Experimental setup for the generation of Tornado waves. Lenses
L1, L2 comprise a 2x beam expander.

4.4.1 Observation of Tornado waves

Using the experimental setup depicted in Fig. 4.21 and applying the multi-
plexing technique we generated ToWs by superimposing accelerating waves
carrying OAM using the design parameters presented in Tab. 4.2. The num-
ber of twisting intensity lobes appearing in the transverse I(x, y) intensity
profile depend [101] on the topological charges N = |mA| + |mB|. In our
experiments we used 3 combinations of topological charge: (mA = 1,mB =
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Figure 4.22: Normalized transverse x-y intensity sections of tornado waves
with 2 lobes, mA = 1, mB = −1, along propagation.

−1), (mA = 1,mB = −2), (mA = 2,mB = −2) resulting respectively into 2,
3 and 4 twisting intensity lobes. The evolution of the cross sectional inten-
sity I(x, y) distribution as a ToW propagates along z is shown in Fig. 4.23.
Starting from a reference point z0 = 414 mm along the propagation we can
observe that the intensity lobes rotate at a varying rate and a decreasing
radius around z axis (located in the center of each image). This is a typical
behavior of ToWs where light twists and accelerates both in the angular and
in the radial dimension [101].The I(x, y) intensity pattern becomes more
complex as the number of lobes N is increased [101].In all cases the high
intensity lobes rotate at a varying rate and a decreasing radius around z
axis, although, as we observe by comparing Fig. 4.23a to 4.23b and 4.23c,
this becomes less profound as the number of lobes is increasing. In order
to evaluate the accelerating characteristics of these ToWs we retrieved and
analysed the I(x, y) cross sectional images. By monitoring the radial and
angular position of each twisting intensity lobe we were able to track their
trajectories. In Fig. 4.24(a) we depict the evolution of the angular orienta-
tion θ of the two lobes (see Fig. 4.23a) and the normalized peak intensity as
a function of the propagation distance. The angle θ increases at a varying
rate as indicated from its oscillatory behaviour. From these measured values
we can estimate the angular velocity v ≡ θ̇(z) and the angular acceleration
γ ≡ θ̈(z) that are depicted in Fig. 4.24b,c respectively. The vertical gray
shaded areas highlight the zones where we observe angular acceleration. We
observe a typical ToW behaviour, where the angular velocity v varies in a
quasi-periodic fashion between 0 and ∼ 10 deg/mm. These areas are related
to angular acceleration, where γ takes values between ∼ ±1 deg/mm2 as
one can observe in Fig. 4.24c. The estimated angular acceleration values are
in good agreement with the values theoretically predicted [101] for ToWs in
this range of autofocusing values. Furthermore, the maximal angular accel-
eration is observed when the peak intensity of the rotating lobes decreasing
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Table 4.3: Peak values for angular velocity and acceleration for various topo-
logical charge combinations

mA mB vmax γmax
(deg/mm) (deg/mm2)

+1 -1 10.3± 1.4 1.2± 0.4
+1 -2 5.0± 0.7 0.5± 0.2
+2 -2 4.0± 0.8 0.4± 0.2

as we can observe by comparing to the peak intensity distribution shown
Fig. 4.24a.

Following a similar procedure to Fig. 4.24 we analysed the I(x, y) cross
sectional images to retrieve the radial and angular position of the twisting
intensity lobes, and estimate their angular velocity and acceleration. A vi-
sualization of the trajectory of the high intensity lobes is shown in Fig. 4.25
while an overview of the peak values of the angular velocity v and angular
acceleration γ is given in Tab. 4.3. Both the peak intensity and the peak
values for vmax, γmax decrease as the the number of lobes N is increased.
The drop in the peak intensity is a result of distributing the beam energy in
the ToW funnel [101] to an increasing number of lobes.

Figure 4.23: Normalized transverse x-y intensity sections of tornado waves
with 2, 3, and 4 lobes respectively (a) mA = 1, mB = −1, (b) mA = 1,
mB = −2, (c) mA = 2, mB = −2.
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Figure 4.24: Evolution of the two lobes of Tornado waves withmA = 1,mB =
−1, along propagation. (a) angle θ (cyan line) and normalized maximum
peak intensity (grey dotted line), (b) angular velocity v, and (c) angular
acceleration γ.

Tornado waves in the temporal domain

We believe that the efficient generation of such complex superimposed fields
that carry orbital angular momentum of opposite handedness using a single
phase modulation device is a milestone for using such waves in applications.
In the work where this wave first introduced [101] it have been revealed that
simple scaling laws apply to the angular velocity v and acceleration γ of any
twisting light structure as we scale it’s spatial dimensions. Here we extend
this analysis to the effect of the number of lobes and demonstrate that it
is possible to generate dynamically twisting light that rotates at an angular
frequency ωr around z axis, by using two different colors. Using a generic
description of two superimposing OAM carrying waves of different frequency

Figure 4.25: Visualization of the trajectory of high intensity lobes for Tor-
nado waves with (a) mA = 1, mB = −1, (b) mA = 1, mB = −2, (c) mA = 2,
mB = −2.
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(ωA, ωB), and respectively of different wavelength (λA, λB) can be described
as:

us(r, t) = uA(r;λA)ei[ϕA(r;λA)+ψA(θ)−ωAt]

+uB(r;λB)ei[ϕB(r;λB)+ψB(θ)−ωBt]

where ϕi (r;λA) refers to the spatial phase, ψi (θ) = miθ is the azimuthal
phase (vortex) and mi is the topological charge. It is straightforward to
show that this superposition will result to an intensity profile that will twist
in space with an angular velocity

υ =
1

N

∂∆ϕ

∂z
(4.7)

and angular acceleration of:

γ =
1

N

∂2∆ϕ

∂z2
(4.8)

where N = |mA| + |mB| is the number of high intensity lobes, and ∆ϕ ≡
ϕA − ϕB is the spatial phase difference. Clearly, increasing the complexity
of the wave by increasing the topological charge results in decreasing the
angular velocity and acceleration.

Furthermore, these two color twisting light structures will dynamically
rotate around z axis with a temporal frequency fr, or a temporal period
Tr = 1/fr:

fr =
1

N
f0 =

c

N

∆λ

λ2
A

(
1 +

∆λ

λA

)−1

Tr =N T0 =
N

c

λ2
A

∆λ

(
1 +

∆λ

λA

) (4.9)

where f0 = (ωA − ωB)/2π, T0 = 1/f0 are respectively a reference beat
frequency and period [134], and ∆λ = λB−λA. Clearly, the period for a full
rotation of the N high intensity lobe pattern is proportional to the number of
lobes. In principle, due to symmetry these high intensity lobes are identical
and they are angularly distributed at 2π/N intervals, so as they rotate they
will periodically overlap at a period To. Of course any break of the perfect
symmetry, a common situation in experiments, would lead to a variation of
the intensity between the lobes.

In order to demonstrate the viability of this approach in generating
dynamically twisting light structures we have performed numerical simu-
lations with two-color ToWs. Using the ToW parameters of Tab. 4.2 and
λA = 594 nm, ∆λ = 20 nm we have studied the temporal evolution of
a two-color ToW for the case of two (N = 2, mA,B = ±1) and three
(N = 3, mA,B = +1,−2) high intensity lobes. The reference period is
in this case (To ∼ 61 fs). A visualization of the evolution of the ToW peaks
as a function of time is shown in Fig. 4.26. The I(x, y, zo, t) intensity cross
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Figure 4.26: Numerical simulation results visualizing the rapid rotation of
high intensity lobes in a two color Tornado wave (a) for the case of N = 2
and (b) N = 3 high intensity lobes. (To ∼ 109 fs).

section is retrieved at the autofocus position zo = 42 cm of the two color
ToW. As predicted by Eq. 4.9 the high intensity lobes perform a full rotation
in 2To ∼ 122 fs for N = 2 and in 3To ∼ 182 fs for N = 3. Such structured
light, that rotates rapidly within the pulse duration, can be quite appealing
in direct laser writing applications.
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Conclusions

In this Thesis, we have studied the properties of the focal region of abruptly
autofocusing ring-Airy, and their variants autodefocusing inverse ring-Airy
beams, under the action of a conical phase gradient. Exploiting the simi-
larities between the propagation of 1D Airy beams and radially symmetric
Airy beams, we present analytic approximations for the position, length and
width of the focus, using a unified formulation for both beam types. Our
results enable the tailoring of the focal region of such abruptly autofocusing
and autodefocusing beams by simply tuning the dimensions of the initial
primary ring and the conical angle. Furthermore, We have confirmed the
validity of our analytical results by numerical simulations over a broad pa-
rameters range. We expect that our results will have a significant impact to
applications that exploit the unique properties of radially symmetric Airy
beams like for instance, materials processing, optical trapping, and deposi-
tion of high-laser powers at remote locations.

In addition, we presented a new method for the generation of a dou-
ble foci feature along propagation, by superimposing two radially symmetric
Airy beams with a presence of a conical phase, where the two distinct foci
are independently controllable. Moreover, using this technique the produced
feature exhibits a remarkable property where its second focus remains unaf-
fected even if the first one is completely blocked. Furthermore, we showed
that using this approach enables us to create a single focus with ultra high
peak intensity contrast. Therefore, we believe that these shaped accelerating
beams constitute a new set of scalable tools, finding use in numerous laser
applications, ranging from materials processing to particle manipulation.

Moreover, we have demonstrated that by exploiting optical aberrations
a properly adjusted cylindrical mirror beam expander can effectively op-
erate as a broadband, high power continuous phase mask. By correlating
each of the Seidel wave aberrations to a specific power term, we have shown
that smooth phase distributions can be generated using, an up to the forth
power, polynomial approximation. Raytracing numerical simulations have
confirmed the potential of the device to generate such phase distributions.
Using a cascade of two orthogonally oriented phase masks we have gener-
ated accelerating white light Airy beams, that due to the specific spectral

113



properties of such devices, do not break up as they propagate. Furthermore,
using this device we created accelerating beams with variable partial spatial
coherence and studied their propagation dynamics in free space as well as
their self-healing properties when a the main lobe of the beam is blocked.
Finally, we also demonstrated the capability of our device to withstand high
powers by creating intense curved plasma channels to generate THz waves.

Lastly, we have realized light spiraling like a tornado by superimposing
abruptly auto-focusing waves, that carry OAM of opposite handedness, us-
ing a single spatially multiplexed phase modulating device. Furthermore,
we have shown that by using a two-color scheme it is possible to generate
dynamically twisting light that can rotate at ultrahigh angular frequencies
100GHz < ωr < 50THz. These results may pave the way for various novel
applications that rely on the spiralling behavior of ToWs, like direct laser
writing, optical tweezers and nonlinear optics.
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Appendix A

In this section will show that for a polychromatic 1D Airy beam generated
from a reflective system that is achromatic in optical path difference, G,
its spectral components co-propagate along z axis. We start from the field,
at the initial plane, that describes such a beam in normalized coordinates
φ(s, ξ = 0) = Ai(s)exp(αs), where s = x/w, ξ = z/kw2, α is the truncation
factor, w is the width parameter, k = 2πn/λ0 is the wavenumber, λ0 is the
wavelength and n the refractive index. This in normalized coordinates is
φ(x, z = 0) = Ai(x/w)exp(αx/w). Now we take the Fourier transform of
this field and we come up with:

Φ(u) = wexp[(−αw2 k
2

f2
u2)

+
i

3
(w3 k

3

f3
u3 − 3α2w

k

f
u− iα3)] (4.10)

where u is the coordinate in frequency space [102], and f is the focal distance
of the lens that performs the optical Fourier transform. Eq.4.10 for a→ 0 is
simplified to:

Φ(u) = wexp[(−αw2 k
2

f2
u2) +

i

3
(w3 k

3

f3
u3)] (4.11)

Comparing Eq. 4.11 with the field distribution of Gaussian with a cubic
phase:

G(x) = exp(− x
2

w2
0

)exp(iδx3) (4.12)

where w0 is the waist radius of the Gaussian and δ is a parameter of the
cubic phase, we deduce the following:

w =
(3δ)1/3f

k

a =
f2

w2k2w2
0

=
1

w2
0(3δ)2/3

(4.13)

δ =
w3k3

3f3
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Assuming that we have an 1D Airy beam with an extra linear phase,
in normalized units, its initial field is u(s, ξ = 0) = Ai(s)exp(αs)exp(ivs),
v = θkw, and θ the angle of the linear phase. While the field distribution
along propagation is described by:

u(s, ξ) =Ai[s− (
ξ

2
)2 − vξ + iαξ]

× exp(αs− αξ2

2
− αvξ) (4.14)

× exp[i(− ξ
3

12
+ (α2 − v2 + s)

ξ

2
+ vs− vξ

2
)]

We can easily deduce that the maximum of the Airy beam propagates
along the z axis, in normalized coordinates, according to:

sm − (
ξ

2
)2 − vξ ' −1 (4.15)

where sm denotes the transverse displacement of the main lobe. Meanwhile
in physical coordinates this relation becomes:

xm ' θz +
z2

4k2w3
− w (4.16)

In the above equations we assumed that α → 0 thus the term iαξ of Eq.
4.14 can be neglected, also we took the approximation that the Airy function
Ai have maximum at ' −1. If we now set the beginning of the axis at the
maximum Eq. 4.16 becomes xm ' θz + z2/(4k2w3) and recalling from the
first equation of the set of Eq. 4.13 that w = ((3δ)1/3f)/k and δ = nk0δ0,
where δ0 is a constant, then we have:

xm ' θz + z2/(12f3δ0) (4.17)

From Eq. 4.17 it is clear that the trajectory of the main lobe of an 1D Airy
beam, when is generated by an achromatic system (δ0 = constant), is inde-
pendent form the wavelength, thus all the spectral components propagating
in the same curve.
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Appendix B

Cubic phase play an essential on the generation of an Airy beam, this can be
achieved by imposing such a phase into a Gaussian beam and then take its
Fourier transform. Moreover, the Fourier transform of a pure Airy function is
a pure cubic distribution ∗ [135]. Here we will show, through matrix theory,
that the Fourier transform of a cubic wavefront is a phase distribution in the
form x3/2, which results in a parabolic caustic. Starting with the vector that
describes a ray coming from a cubic wavefront, which is perpendicular to its
tangent, is: (

y0

β0

)
=

(
y0

ay0
2

)
(4.18)

where y0 is the position, and β0 = ay0
2 the angle of the ray, while a is a

constant. The matrix that describes a lens, with focal length f , preforming
a Fourier transform is given by:(

0 f
− 1
f 0

)
=

(
1 f
0 1

)(
1 0
− 1
f 1

)(
1 f
0 1

)
(4.19)

Thus for the vector at the exit of such an optical system we have:(
y1

β1

)
=

(
0 f
− 1
f 0

)(
y0

β0

)
(4.20)

where

y1 = afy0
2

b1 = −y0

f
= − y1

1/2

a1/2f3/2
(4.21)

Finally we have: (
y1

β1

)
=

(
y1

− y11/2

a1/2f3/2

)
(4.22)

∗F(Ai(x)) = exp(ik3/3)
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Figure 4.27: Illustration of how an Airy beam can be formed as a result of
a caustic of rays. In this case a cubic phase modulated wavefront is Fourier
transformed by a lens, resulting to a x3/2 phase distribution at the Fourier
plane. (Raytracing simulation results)

The rays with such an angle distribution are perpendicular to a wavefront
of the form of ∼ y3/2 →∼ x3/2. Such rays form a parabolic caustic as shown
in Fig. 4.27.
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