
RED : A REputation Dashboard that

displays the geolocation of bots and malicious

computers, utilizing OSINT data.

Konstantinos Spyridakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Evangelos P. Markatos

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

RED : A Reputation Dashboard that displays the
geolocation of bots and malicious computers, utilizing

OSINT data.

Abstract

OSINT community’s active involvement and innovative approaches have played a
pivotal role in the evolution of modern systems. Leveraging freely available online
sources, developing tools and techniques, have a significant influence on infor-
mation access, cost-effective solutions and collaboration between individuals and
organizations. This work, focused on developing a tool that effectively utilizes OS-
INT data to extract IP addresses of computers engaged in shady or cybercriminal
activities. Adapting to the difficulties of visualizing such content, we introduce
an IP Reputation Dashboard (RED) that displays the geolocation of bots and
malicious computers across the world. Throughout this research, we explored
and implemented methodologies for information acquisition, content analysis, and
adept utilization of these approaches to effectively visualize the gathered data
on the dashboard. RED’s user interface offers interactive visualizations, includ-
ing world maps, charts, graphs presenting geospatial data pertaining to poor IP
address credibility, facilitating quick understanding and interpretation of fetched
OSINT information. Furthermore, the design of the tool aligns with the needs of
developers seeking to expand or integrate acquisition and visualization techniques
into their development environment, providing them with streamlined processes
and abstract implementation models. RED empowers users to make data-driven
decisions, identify emerging attack trends, track entities, enabling organizations to
gain actionable intelligence from the wealth of publicly available information.

RED (Reputation Dashboard): Ενας πίνακας
ελέγχου αξιοπιστίας που εμφανίζει τη

γεωτοποθεσία των ρομπότ και κακόβουλων

υπολογιστών, χρησιμοποιώντας δεδομένα από

πηγές ανοιχτού λογισμικού.

Περίληψη

Η ενεργή συμμετοχή της κοινότητας ανοιχτών διαδέσιμων δεδομένων και οι καινο-

τόμες προσεγγίσεις έχουν καθοριστικό ρόλο στην εξέλιξη των σύγχρονών συστη-

μάτων. Η αξιοποίηση ανοιχτών διαθέσιμων διαδικτυακών πηγών, η ανάπτυξη εργα-

λείων και τεχνικών, έχουν σημαντική επίδραση στην πρόσβαση σε πληροφορίες, σε

οικονομικά αποδοτικές λύσεις και στη συνεργασία μεταξύ ατόμων και οργανισμών.

Αυτή η εργασία, επικεντρώθηκε στην ανάπτυξη ενός εργαλείου που χρησιμοποιεί α-

ποτελεσματικά ανοιχτών διαδέσιμα δεδομένα για την εξαγωγή διευθύνσεωνIP υπολο-
γιστών που εμπλέκονται σε ύποπτες ή εγκληματικές δραστηριότητες στο διαδίκτυο.

Προσαρμοζόμενοι στις δυσκολίες της οπτικοποίησης τέτοιου περιεχομένου, παρου-

σιάζουμε έναν Πίνακα Φήμης Διευθύνσεων IP που εμφανίζει τη γεωτοποθεσία των
ρομπότ και κακόβουλων υπολογιστών σε όλο τον κόσμο. Κατά τη διάρκεια αυτής της

έρευνας, διερευνήσαμε και εφαρμόσαμε μεθοδολογίες για την απόκτηση πληροφορι-

ών, την ανάλυση περιεχομένου και την έμπειρη χρήση αυτών των προσεγγίσεων για

την αποτελεσματική οπτικοποίηση των δεδομένων που συγκεντρώθηκαν στον πίνακα.

Η Διεπαφή Χρήστη του εργαλείου, προσφέρει διαδραστικές οπτικοποιήσεις, συμπερι-

λαμβανομένων παγκόσμιων χαρτών, γραφημάτων και διαγραμμάτων που παρουσιάζουν

γεωχωρικά δεδομένα σχετικά με τη χαμηλή αξιοπιστία των διευθύνσεων IP , διευκο-
λύνοντας τη γρήγορη κατανόηση και ερμηνεία των ανοιχτών διαθέσιμων πληροφορών

που αποκτήθηκαν. Επιπλέον, ο σχεδιασμός του εργαλείου ευθυγραμμίζεται με τις

ανάγκες των προγραμματιστών που επιθυμούν να επεκτείνουν ή να ενσωματώσουν

τεχνικές απόκτησης και οπτικοποίησης στο περιβάλλον ανάπτυξής τους, παρέχοντάς

τους απλοποιημένες διαδικασίες και αφαιρετικά μοντέλα υλοποίησης. Το RED επι-
τρέπει στους χρήστες να λαμβάνουν αποφάσεις βασισμένες στα δεδομένα, να ανιχνε-

ύουν αναδυόμενες τάσεις επιθέσεων, να παρακολουθούν οντότητες, επιτρέποντας στις

οργανώσεις να αποκτήσουν νοημοσύνη από τον πλούτο των δημόσια διαθέσιμων πλη-

ροφοριών.

Acknowledgements

I would like to express my sincere appreciation and gratitude to all those who
have contributed to the completion of this research project.

First and foremost, I would like to extend my deepest gratitude to my supervisor
Prof. Evangelos Markatos for his guidance, expertise and support throughout
both my Bachelor’s and Master’s studies. He introduced me to the fundamental
mechanism of asking simple yet correct questions to address a complex problem
in the research field, tearing it down and keeping it simple (KISS). Furthermore,
I would like to express my gratitude to my friend and colleague Konstantinos
Anemozalis, for his excellent collaboration and irreplaceable contribution to the
depth of this work. I am deeply grateful to DiSCS Lab of FORTH, including
colleagues and friends that enriched my development experience by discussing and
sharing their insights to the breadth of the project.

I am also indebted to FORTH and CC-DRIVER for their financial support,
which made this research possible. Their commitment to advancing knowledge
and their belief in the importance of research have played a crucial role in the
successful completion of this project. I am deeply grateful to my family for their
unwavering love, encouragement and support. Being there for any ups and downs
during this work, and most important, giving me the ability to attend to University
of Crete and complete my Master’s Degree. I want to acknowledge my gratitude
to Ioanna, for her understanding and belief in my aspirations. Lastly, I want to
thank my friends for supporting me in every step.

στους γονείς μου,

Contents

Table of Contents 2

List of Tables 3

List of Figures 5

1 Introduction 7

1.1 The OSINT Community . 7

1.2 Research . 8

1.2.1 Threat Intelligence . 8

1.2.2 Software development . 8

2 Threat Intelligence Sources 11

2.1 Overview . 11

2.2 Datasets . 11

2.3 Data Source Structure . 12

2.4 Feed Categorization . 13

3 System Overview & Architecture 17

3.1 Parsing System . 18

3.1.1 Macro-Architecture . 18

3.1.1.1 Controller . 18

3.1.1.2 Web Parsers . 19

3.1.1.3 GeoJSON Feature 19

3.1.1.4 Extensibility . 20

3.2 Visualization Dashboard . 22

3.2.1 Live Dashboard . 22

3.2.1.1 Dashboard Macro Architecture 23

3.2.1.2 Functionality . 23

3.2.2 Globe Map . 25

3.2.2.1 Clustering . 26

3.2.3 User Interface . 26

3.2.3.1 Maps . 26

3.2.3.2 Search . 28

1

3.2.3.3 Statistics . 29
3.2.3.4 Threat Exchange 30

4 Statistics 35
4.1 Overview . 35
4.2 Findings . 35

4.2.1 Attack Distribution per Capita 35
4.2.2 IP Occurrence . 36
4.2.3 Attack Category Distribution 37
4.2.4 Attack Origin . 37

5 Related Work & Limitations 41
5.1 Limitations . 41

6 Conclusion 43

7 Future Work 45

Bibliography 49

2

List of Tables

1.1 Dataset of collected OSINT blocklists. 8

2.1 Attack sources categorized. Index column indicates the number of
blocklist fetched from each source. 15

3

4

List of Figures

2.1 Blocklist contribution. 13

3.1 Architecture Overview. 18
3.2 AlienVault parser example. 19
3.3 GeoJSON feature schema . 20
3.4 Generic parser schema . 21
3.5 Dashboard macro-architecture . 22
3.6 Clicking on a cluster. 27
3.7 Popup example. 28
3.8 Marker on map. 29
3.9 Cross validation of IP reputation through alternative reputation

services. 30
3.10 Attack additional information, when clicking a marker. 31
3.11 Check/Uncheck boxes to show/hide chosen attack categories. . . . 31
3.12 Inspecting search module. 32
3.13 Inspecting search results. 32
3.14 Inspect attack distribution worldwide. 32
3.15 Inspect attack distribution of a chose country, Greece. 33
3.16 OSINT data exchange module. 33

4.1 Choropleth map of attack distribution. 36
4.2 Attack distribution per capita. 37
4.3 Attack distribution of the Virgin Islands. 38
4.4 IP address occurrence. 39
4.5 Attack category distribution. 40

5

6

Chapter 1

Introduction

There has been an increasing interest in open-source intelligence data (OSINT), in
various research fields. While more companies, organizations or individuals con-
tribute to the OSINT community, the pool of available data grows. As a result, the
need of effiecient collection techniques of these data raises. We would like to share
some background knowledge and methodology techniques that helps in data acqui-
sition from public available sources. At the same time, data types are complex and
differ from one publisher to another, so representation becomes difficult and anal-
ysis is impossible espessially for non-familiar users. Trying to resolve these issues,
led us to implement a two-layer system, collecting and visualizing public datasets
including suspicious or malicious IP addresses. This background is provided to
help readers understand the importance of the contribution of the OSINT com-
munity to mitigate cyberattacks. Furthermore, we provide steps towards building
RED system and introduce the architecture design and its expansion capabilities.
Acknowledging the impact of this research, will provide readers the ability to com-
prehend the statistical results, provided in the latest chapters. Finally, we discuss
limitations and future work of this study in Chapters 5 and 7, respectively.

1.1 The OSINT Community

The Open Source Intelligence (OSINT) community plays a crucial role in today’s
interconnected world. By harnessing the power of publicly available information,
the OSINT community empowers individuals, organizations, and government agen-
cies to gather, analyze, and utilize valuable insights for various purposes. One of
the key advantages of OSINT is its accessibility, as it taps into a vast range of
publicly available sources such as social media, news articles, public records, and
online forums. The OSINT community facilitates the detection of emerging trends,
identification of potential risks, and the generation of actionable intelligence. It
aids in supporting investigations, monitoring security threats, informing policy
decisions, and facilitating disaster response efforts. To this day, the OSINT com-
munity faces a major issue, trust. Trust serves as the foundation for the OSINT

7

8 CHAPTER 1. INTRODUCTION

Name Maintainer List Category Date Description Result State

Rescure https://rescure.fruxlabs.com - - - - FAIL Outdated

Icewater https://github.com/SupportIntelligence/IcewaterIcewater - - - 12,805 Free Yara rules... FAIL Outdated

FireHOL IP Lists http://iplists.firehol.org - various - 400+ publicly available IP Feeds PASS -

Emerging Threats Firewall Rules http://iplists.firehol.org/ - attacks - A collection of rules for several types ... PASS -

Bambenek Consulting http://osint.bambenekconsulting.com/feed/c2-ipmasterlist.txt - c&c - A feed of known C&C IP addresses... PASS -

Table 1.1: Dataset of collected OSINT blocklists.

community, enabling collaboration, source evaluation, data protection, informed
decision-making, and the overall credibility and reliability of the intelligence gener-
ated. Hence, researching the trustworthiness of OSINT data is essential to ensure
that the information used is reliable, accurate, and obtained from trustworthy
sources.

1.2 Research

1.2.1 Threat Intelligence

In this study, OSINT data were obtained only from publicly-available sources.
These sources consist of IP blacklists, corporate threat exchanges (APIs, structured
data) and Firewall rules. Determining the trustworthiness of each source required
research on its type, publishing rate (consistency) and data usability. This research
was a joint work of European project, CC-DRIVER, which was the sponsor and
also gave access to sources in the name of research. Each source was maintained
and published by a certain group of people. The selection procedure for choosing
trustworthy sources started by monitoring their publicly available feed. After a
couple of weeks of stable publishing rate, we moved on with evaluation of the
overall reputation of the blacklisted IP addresses.

Given the existence of an extensive array of online blacklists with diverse char-
acteristics, evaluation and testing required specific analysis on each one, making
this process the most demanding part of our work.

As part of this work, we introduce a dataset holding available sources, infor-
mation on retrieval and whether are valuable or not. We provide a snippet of this
dataset in Figure 1.1. For each evaluated data source we accumulate, among other
things, its name, maintainer, category as well as a short description. Finally, we
manually review its data source based on the collected information and conclude
whether it will be utilized in this work (see column “Result” in Figure 1.1).

1.2.2 Software development

The selection of the appropriate OSINT sources, was the first step of the parsing
system. In order to perform daily fetching and analysis on those sources, we de-
veloped an automated parsing system in charge of checking a source’s availability,
fetching non-obsolete IP addresses, categorizing each incident and last, producing
structured data compatible to the representation mechanism. Hence, research was
conducted to construct a lightweight parsing model built in Python3, distributed

1.2. RESEARCH 9

and fault-tolerant, capable of handling web-parsing error scenarios. In this study,
the final task was to create a visualization environment for the aforementioned IP
sources. Such environment should be friendly and straightforward for any kind
of user, cybersecurity aware or not. Thus, we develop a dashboard that maps
IP addresses of potential attackers to geographical locations. To this end, find-
ing the appropriate tools to build the dashboard and then displaying it live was
the final stage of this work. The client-server model was specifically developed to
handle millions of IP addresses in case of high volume sources. More precisely,
we used clustering and filtering modules in order to retrieve data faster while not
congesting the processing and memory units of the client.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Threat Intelligence Sources

2.1 Overview

Datasets from the OSINT community are the main source of information of our
system. They come in various formats and provide information such as a descrip-
tion of the attack, network configuration, timestamps, reporter of the incident,
attack method, attack timespan etc. Performing data collection revolves around
identifying trustworthy organizations or teams that provide accurate and well-
maintained datasets. The source evaluation was completed with constructing a
multidimensional array containing seen sources and details about them. Fetching
OSINT sources led to a collection of blacklists with various formats and metadata.
Unfortunately, publishers of blacklists do not share a common publishing format.
Furthermore, the mechanisms of data publication differ across organizations. Some
observed publishing techniques were through APIs, rules, text files, IP lists and
RSS feeds. All blacklisting sources collected for this work can be found on the
CC-DRIVER-BACKLIST. The published dataset contains important information
such as the distinct name, a short description, purpose of existence or the usage of
each blacklist. We chose to accept blacklists that report a fine number of Indicators
of Compromise.

2.2 Datasets

To find public IP blacklists, we utilized various online services and resources that
provide blacklisting information, like MalwareWorld, Maltiverse, VirusTotal etc.
Then, we navigated to the origins of those reports. A lot more sources came across
while digging in collaborators and related services. We used 34 distinct sources of
blocklists for our analysis. These blocklists contain entries called IOCs (Indicators
of Compromise), consisting of a unique identifier involved in a cyberattack. Pars-
ing public data based on different APIs can vary in difficulty depending on several
factors.

11

https://docs.google.com/spreadsheets/d/13acxtxlW1dUjTcfQiLWoqeDOssiKNRe9-VlHlYSf-jM/edit#gid=14687384

12 CHAPTER 2. THREAT INTELLIGENCE SOURCES

Documentation: The availability and quality of API documentation greatly in-
fluence the ease of parsing public data.
API Design: The design of the API itself affects the parsing process. APIs
with clean and consistent data structures, standardized formats (such as JSON or
XML), and intuitive naming conventions are generally easier to parse.
Authentication and Access: Some APIs, although free of use, require authen-
tication mechanisms, such as API keys, tokens, or OAuth, to access their data.
Data Complexity: The complexity of the data itself can influence parsing diffi-
culty.
Data Volume and Pagination: If the public data is extensive and paginated,
parsing can become more complex. Paginated data requires handling pagination
links, managing multiple API requests, and merging or appending data from dif-
ferent pages, which can increase the parsing effort.
Error Handling: Robust parsing requires handling various error scenarios, such
as rate limiting errors, authentication failures, or malformed data responses. Im-
plementing error handling mechanisms to ensure the reliability and fault tolerance
of the parsing process can add complexity.

Overall, the difficulty of parsing public data based on different APIs can vary
significantly based on these factors. The need of various parsing schemes, led to
the creating of an adaptive parsing model.

2.3 Data Source Structure

During this study, we came across several types of public datasets. IOC extraction,
for each of those, required a different mechanism. Starting with the simpler and
yet most common type of dataset, raw files. Many reporters, in terms of simplicity,
publish IOCs by writing them in files and serving them to the public community
through their original website. In this work, we collect and process CSV, Text,
JSON, XML, Ipsets, Netsets, Rules and TAXII files.

Next, we used API services of organizations, that offered IOCs through specific
endpoints. Some examples of such APIs are AlienVault, PulseDive, ThreatFox,
Maltiverse. These services offer various IOCs through exposed endpoints. Fetch-
ing data from those services requires following guidelines and policies from the
original documentation, like token authentication, maximum downloads/period,
rate limits.

The Last category of dataset parsing, consists of OSINT tools and projects.
Fetching IOCs in this category, requires deployment, run and updating of third-
party tools and importing them as modules to our parsing model. FireHOL,
Maltrail and OpenCTI offer services through their installation and deployment,
responsible for at least 60% of total IOCs parsed.

Please note that each reporter followed a different file structure, closer to their
needs, concluding that yet there is not a common format for threat exchanging.
This issue is further discussed in Section 5.1.

2.4. FEED CATEGORIZATION 13

Figure 2.1: Blocklist contribution.

2.4 Feed Categorization

Table 2.1 contains the blacklist maintainers classified into four categories based
on the attack type they monitor and the number of blacklists they maintain. Our
dataset includes popular blacklists such as FireHOL [1], Digitalside [2], Cinsscore
[3], Alienvault [4], Abuse.ch [5], Emerging Threats [6].

Figure 2.1 shows the blacklist size distribution in the dataset. On the one
hand, we have large blacklists(15.76%) listing more than 500,000 addresses and on
the other, we have small blacklists (19.56%) which list less than 1,000 addresses.

Attack Classification We classify attacks based on the extra information pro-
vided by each maintainer.

• Attacks : General category of attacks (undefined method).

• Abuse : Abusing any mechanism, form of communication (e.g. ports flood-
ing, html form abuse etc.)

• Spam : Abusing communication message protocols.

• Phishing : Targets contracted by email, forms, online calls.

• Malware : Delivery/ Download of infected documents, programs.

14 CHAPTER 2. THREAT INTELLIGENCE SOURCES

• Command and Control : Orchestrator of botnets.

• Bruteforce : Endless connections tries in order to get authentication or slow
down the system.

2.4. FEED CATEGORIZATION 15

Name Category Index

abuseipdb Attacks 1

alienvault Varied 1

bambenek Command&Control 1

benkow Varied 1

blackhole Attacks 1

bruteforceblocker Bruteforce 1

bsdly pop3gropers Abuse 1

cinsscore Attacks 1

daniellopez tweetfeed Varied 1

dataplane Attacks 1

digitalside Malware 1

dsi ut capitole Malware 1

emergingthreats Command&Control 1

feodotracker Malware 1

firehole Varied 36

maltiverse Malware 3

maltrail Varied 1

mirai Malware 1

mitchellkrog Phishing 1

myip Attacks 1

nextron Spam 1

openphish Phishing 1

phishtank Phishing 1

pulsedive Varied 1

rescure Attacks 1

rutgers Bruteforce 1

sans attacks 1

sblam Spam 1

sslbl Command&Control 1

talosint Attacks 1

threatfox Varied 2

threatview Attacks 1

urlhaus Varied 1

viriback Malware 1

Table 2.1: Attack sources categorized. Index column indicates the number of
blocklist fetched from each source.

16 CHAPTER 2. THREAT INTELLIGENCE SOURCES

Chapter 3

System Overview &
Architecture

Our objective is to provide knowledge and insights about the newest cyberattacks.
RED is designed to empower people at storing, visualizing and analyzing cyberat-
tacks.

The primary purpose of RED is to simplify the term “Source IP address” of
the cyberattacker. To make this possible, we map IP addresses fetched by the
Parsing System to geographic locations. Next, we proceed with the visualization
development. Using Leaflet maps, we created an interactive visualization environ-
ment for all types of users visiting the platform. Navigating through the map,
helps users identify the source of the cyber-attacks. The map is enriched with
pinned markers (geolocation points) which provide additional information of the
attack incident. The description of each attack is available with a simple click on
the pinned marker. Additionally, we utilize several APIs from distinguished orga-
nizations to further validate the results of this study. Furthermore, the dashboard
offers a search mechanism in order to search for specific IP addresses and check
involvement in cybersecurity incidents. Last, we provide cyberattack statistics for
each country for a 2-month period. We go through the system’s architecture, an-
alyze the dashboard mechanisms in the Section3.2. We close this chapter with a
short demo, a basic scenario of using this dashboard.

The second goal of the project, is the usability of the parsers that perform
IP address collection from OSINT resources. These mechanisms are suggested
mostly for developers, in order to deploy this parsing system and enrich it with
future available sources. Going through the parsing system’s model, we discuss the
importance of fault tolerance regarding web parsers. Another important consider-
ation, during the parsing system development, was the distribution of the down-
loaded content. We designed this system in Python3 to simplify the deployment
without the need of any specific hardware. At last, there is available functionality
using configuration files. A new developer, without any Python knowledge, can
enable, disable or add a source to the parsing system by editing text configuration

17

18 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Figure 3.1: Architecture Overview.

files, making the parsing process even easier.

3.1 Parsing System

An automated web parsing model based on Python scripting, using OSINT sources
with extensibility standards. This system is responsible for collecting open-source
intelligence and other available data of computers engaged in shady or cybercrim-
inal activities. After processing the data, it produces a list of verified IP addresses
possibly belonging to cybercriminals, with additional information attached to each
case.

3.1.1 Macro-Architecture

In this section, we tear down the parsing system to identify its components and the
relationships between them. The structure of the system mainly depends on the
communication between these components. Isolating and distributing individual
tasks on each component enables the system to distribute the load, stabilize easier
after a potential failure, and as a result provide extensibility standards for future
developers.

3.1.1.1 Controller

As illustrated in Figure 3.1, the parsing system model consists of four main enti-
ties. In a multimodular system, orchestration is always a good solution. Starting
of, we introduce the Controller. Controller is responsible for adjusting system ini-
tialization given the appropriate configuration guidelines. The main purpose of the
Controller, is to trigger the fetching process of our second entity, the Web Parsers.
Controller handles Web Parsers as standalone processes that depend on the con-
figuration that it provides. In this way, Web Parsers run in parallel, independent
of one another. Achieving asynchronous fetching is the key for both distributing
downloaded content and stabilizing the system after a potential error scenario.
Web parsing error scenarios are common, while online services face downtimes,

3.1. PARSING SYSTEM 19

Figure 3.2: AlienVault parser example.

updates etc. The system remains stable after a Web Parser crash and is able to
recover with just killing the Web Parser’s process and restarting again based on
the configuration policies.

3.1.1.2 Web Parsers

Moving on to the second main entity, we have the Web Parsers. The term entity is
used to describe a group of Python scripts, each of which is built to fetch a specific
type of OSINT source. In this study, we managed to successfully fetch thirty-four
(34) different sources for over a 3-month period. Every Web Parser is a script,
which given a specific configuration will fetch OSINT data. Each one of them
are implemented based on how data is structured and delivered. Parsers utilize
links, APIs or exposed documents to retrieve data from the Web, using the fetch
function. Controller is importing the parsers as Python modules, makes a different
call of their fetch function, and finally logs the outcome of the process. The
fetching functionality is achieved by analyzing the data downloaded. Downloading
published content in any form from AlienVault parser as shown in Figure 3.2. The
first step is the verification of the IOCs, by validating the IPv4 and IPV6 format.
IP addresses that pass the validation are queried in the IP2Location local database
to check their existence and return the geolocation translation. The next step is
the creating of the GeoJSON entry. GeoJSON analysis will be on the next section.
At last, each parser merges Entries that contain same IP addresses and writes the
entries in a Dictionary formatted file using IP addresses as keys. In that way, we
speed up the process of merging all lists fetched with duplicate IP addresses.

3.1.1.3 GeoJSON Feature

When creating a visualization map, we must consider the amount of input given.
We simply cannot overload the map with thousands of pinned locations. Using
Supercluster, we can make clusters of locations extremely fast. Supercluster is
designed to receive GeoJSON objects as input. So, to prevent map and hence

20 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

” type ” : ” ob j e c t ” ,
” p r op e r t i e s ” : {

” l o c a t i o n ” : {” type” : ” s t r i n g ”} ,
” country ” : {” type” : ” s t r i n g ”} ,
” ip ” : {” type” : ” s t r i n g ”} ,
”maintainerURL ” : {” type” : ” s t r i n g ”} ,
”mainta iner ” : {” type” : ” s t r i n g ”} ,
” category ” :{” type” : ” s t r i n g ”} ,
” d e s c r i p t i o n ” : {” type” : ” s t r i n g ”} ,
” source ” : {” type” : ” s t r i n g ”}

} ,
” geometry ” : {

” type ” : ”Point ” ,
” coo rd ina t e s ” : [

”number” ,
”number”
]

}

Figure 3.3: GeoJSON feature schema

client overloading, we utilized GeoJSON features as shown in Figure 3.3. GeoJ-
SON features are JSON objects that have an additional field called geometry that
contains a geolocation point (latitude, longitude) of a specific location on a map.
Supercluster module constructs aggregated points or clusters. Further discussion
about Supercluster module in the next chapter. Spectating this object, we can see
all the necessary information that needs to be sent to the Dashboard.

3.1.1.4 Extensibility

The end of this chapter is a discussion regarding the need of extensibility. As
cyber awareness raises, the cyberattack community becomes larger. As a result,
more organizations will publish potential threats to prevent cyberattacks. That
being said, increasing the number of the IP Blacklists improves the functionality of
tools such as RED. We designed RED web parsers to be easy readable, so that the
deployment of a new parser would be smoother. By having more OSINT sources,
improve cross-verification, data integrity and in the end provides a richer dataset
that demonstrate the current cyberattack behavior closest to reality.

The simpler the implementation, the easier it is for the developer to construct
an additional parser. In this example, we spectate the BruteforceBlocker parser
that is only 27 lines of beginner level Python3.

features={}

3.1. PARSING SYSTEM 21

{
” u r l ” : ” s t r i n g ” ,
” type” : ” s t r i n g ” ,
” del im” : ” s t r i n g ” ,
” ip po s ” : ”number” ,
” category ” : ” s t r i n g ” ,
”mainta iner ” : ” s t r i n g ” ,
”maintainerURL” : ” s t r i n g ” ,
” d e s c r i p t i o n ” : ” s t r i n g ” ,
”comments” : ” s t r i n g ”

}

Figure 3.4: Generic parser schema

__url__ = ’https://danger.rulez.sk/projects/

bruteforceblocker/blist.php’

__comments__ = []

__maintainter__ = "FreeBSD"

__maintainter_url__ = "https://www.freebsd.org/"

__category__ = "bruteforce"

__description__ = "Ip␣address␣listed␣performed␣SSH␣

bruteforce␣attack(s)."

def fetch():

__content__ = csv.reader(fetch_content(__url__,[])

[0],delimiter=’␣’)

for record in __content__:

if not record: continue

record = ip2info(ioc_xtr(record[0]))

if not record :continue

obj = Entry.createEntry(record,

__maintainter_url__,__maintainter__,

__category__,__description__,__url__)

features[obj.properties.get("ip")] =

add_or_update(obj,features)

write2file(features)

return len(features)

Assuming the same published content format, changing the field url and
the rest of the information based on each source, we can create a brand new
functional parser. Finally, we introduce a generic web parser, that functions based
on a configuration file. So future devs, would not mess up with Python at all.
As shown in Figure 3.4, a developer can enhance the functionality of RED, by

22 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Figure 3.5: Dashboard macro-architecture

complete the required fields. Note that, the content’s file type, file structure and
data position must be given by the developer. Configuration fields should be
completed as in the given example below.

• url : The url of the publishing OSINT document.

• type : Preferred file type

• delim : Delimeter to split objects.

• ip pos : Position of the IOC, IP address in our case.

• category : Pre-defined categorization of the incident or position of the desired
word in content.

• maintainer : Name of the maintainer, organization, team.

• maintainerURL : Official home website of the maintainer.

• description : Pre-defined description or position of the desired word in con-
tent.

• comments : Additional description or comments.

3.2 Visualization Dashboard

3.2.1 Live Dashboard

In today’s world, cyber criminality impact is way underrated. In the effort of
raising awareness about cyberattacks, we developed a dashboard to help experts
and not experts comprehend the amount of attack incidents worldwide.

3.2. VISUALIZATION DASHBOARD 23

3.2.1.1 Dashboard Macro Architecture

Initially, when designing a multifunctional dashboard, the first goal to be achieved
is the simplicity. Keeping the architecture design simple, is achieved by keeping the
implementation and communication of the components separate. In this way, the
update, debug and extensibility processes become more stable and fast. As shown
in Figure 3.5 on server side, we create a server-worker model. The idea behind this
implementation is to give clients access to the dashboard through their browser.
So, the first step is to set up a Node.js application, which serves and displays
OSINT sources fetch from the web. Eventually, this application service can be
exposed to any networks and provide dashboard utilities to any user having access
to it.

3.2.1.2 Functionality

Now, we will discuss how components work with each other, which is responsible
for each task and explanation of our choice not going with alternative software.
Visualizing large datasets requires usage of mechanisms specifically designed to
handle the load. Our system fetches ninety thousand unique IP addresses per day,
so the load is much larger before removing duplicates. In extreme scenarios, e.g.
DDoS attacks, cyberattacks number observed raises exponentially, highlighting the
need of appropriate mechanisms of handling unexpected loads of data. That being
said, we decided to use Supercluster, a very fast open-source JavaScript library for
geospatial point clustering for browsers and Node.js. Having Supercluster library
as the key component of smooth and fast visualization, we proceeded in developing
the application on top of Node.js framework. For deeper understanding on how it
works, you can visit IP-Reputation [7].

The idea of client-server communication resides on a simple message communi-
cation protocol, Socket.io. Socket.io library enables low-latency, bidirectional and
event-based communication between a client and a server. The communication
methods that are implemented, are based on actions triggered by the user. User’s
input is basic usage of a map (navigation, zoom, clicks, popups, filtering) and
querying IP addresses. Input type must be handled as events, triggering specific
mechanisms on the backend but at the same time bidirectional calls are important
so that backend can make changes to user’s visualization e.g. attack filters.

Server. The server is a Node.js application responsible to provide event logging,
user authentication and backend support for the client web application. Events
are logged locally on the server. Server is responsible for website availability and
binding functionality between live dashboard and pre-fetched data. User authen-
tication is required for providing security in case of exposing the dashboard in the
network. In other cases, it is optional and can be bypassed. Server component is
responsible for backend orchestration mechanisms such as map bounds changing,
zooming, clustering, filtering and IP address querying.

24 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

• Map bounds change : Navigation and clicking.

• Zooming : Zoom in or out.

• Clustering : Given new map bounds, zoom to recreate pinned locations
clusters.

• Filtering : Add or remove attack type filters, remove pins with the required
category.

• IPQuery : Search database for specific IP address CIDR notation.

• getChildren : Return pinned locations of a specific cluster.

• Update : Update map with latest fetched data.

Furthermore, deploying and running the application should be an easy task.
Automating these processes requires setting various parameters like restart poli-
cies, max heap and scheduled start, stop or restarts. Requirements:
Running this tool optimally requires, Python3+, Node.js, make, git unzip and
pm2. It was developed and tested on Ubuntu 20.04+ and Debian 10 Buster+.
To achieve application management, we used a production process manager for
Node.js, PM2. Configuring an PM2 ecosystem is pretty easy, as shown in the
example below.

An ecosystem configuration example. File ecosystem.config.js

module.exports = {

apps : [{

name : "cc-driver",

script : "./server.js",

max_old_space_size : "4096",

cron_restart : "30 14 * * *"

}]

Start the application : Run the ecosystem configuration.

pm2 start ecosystem.config.js

Deployment of this application is also feasible in Docker environment. Dividing
the two-layer application, we distributed the load of the application to two different
instances. Regarding the parsing system, we used Python3.9 image to handle the
collecting procedures. This image, is scheduled by default to wake up and run
once a day, in order to fetch OSINT data. After completing its purpose, the
image terminates, resulting in freeing memory and space that were consumed.
The parsing system extracts data fetched to a shared volume, in order to be used
by the visualization system. The visualization system, is deployed on a Node:18
docker image, that serves the content of our server on default port :8080. When
the visualization system successfully runs, content is already served and can be
viewed by visiting localhost:8080 with a common browser.

3.2. VISUALIZATION DASHBOARD 25

Listing 3.1: Docker-composer configuration.

services:

web-parser:

build:

context: .

dockerfile: parser.Dockerfile

volumes:

- shared-volume:/usr/src/app

web-server:

build:

context: .

dockerfile: server.Dockerfile

ports:

- "8080:8080"

volumes:

- shared-volume:/usr/src/app

volumes:

shared-volume:

In order to set up and deploy those images, we use Docker-composer. Docker
composer’s configuration can be found and edited in the application and looks
like this Figure 3.1. Distributing the load of the application to different images,
improve efficiency and fault tolerance, while keeping each environment sandboxed
for users who might choose one of the two functionalities.

Worker. Worker is a JavaScript script controlled by the Server and whose pri-
mary role is event handling. Starting points are loading feeds on dashboard, data
filtering and both Supercluster [8] initialization, implementation. After parsing is
complete, the worker parses the GeoJSON file, excludes IP addresses that were
found on old datasets and creates a new dataset of unique feeds. This procedure
is required in order to distinguish and finally visualize IP addresses which were
reported for malicious intent in their geospatial characteristics, reducing loading
latency and improving the dashboard’s view. Worker module is implementing the
server’s basic functionality for each client that accesses the RE.Dashboard.

3.2.2 Globe Map

This study consists of open-source tools and plugins exclusively. Considering the
map implementation, we searched for interactive maps compatible with [8] and
JavaScript frameworks. Leaflet is a lightweight library that interacts perfectly
with the existing components.

26 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

3.2.2.1 Clustering

Clustering is the last component of the backend that we will discuss. The actual
need of clustering arise from the weakness of multiple pins to be shown on the
exact same location. For any case of more than two pins on the same location,
only one pins is shown, and the rest are hidden behind. A way of visualization is
to construct clusters based on some common characteristics. In our case, clusters
are constructed based on the distance between the pinned locations on the map.
Clustering thousands of geolocation points on the map requires great CPU power
and is not supported by all frameworks. For our study, we imported Supercluster,
an open-source library which to RE.Dashboard like a glove.

3.2.3 User Interface

When creating a dashboard for multi-type users, the primary goal is to keep it
simple. Users feel comfortable using tools which concept is easy to deliver. We
designed our tool so that users can immediately point out its basic functionality
and purpose of creation. The dashboard’s basic functionality is separated with four
tabs. The first two are two maps visualizing suspicious IP addresses worldwide.
The third tab is a Search engine, that the user is able to query any IP address or
IP address range. In the last tab, we display the RED statistics that are collected
from April 2023’. In the next sections, we will dive in each tab, analyze its content
and discuss the actions a user can perform using RED.

3.2.3.1 Maps

The concrete output of this research malicious activities, is a live dashboard, or
more specifically a global map. A map instance of all suspicious activity provides
informative statistics and knowledge for each continent, country or city around the
globe. The IP-Reputation dashboard shows all IPs that parsers fetch each day.
The dashboard is divided into two tabs, ”All” and ”Today”. Dashboard’s Actions
:

Cluster Clusters expand by clicking on them or zooming in. In that way, when
reaching a specific zoom level, the cluster will expand and reveal a list of entries,
as shown in the Figure 3.6. Clicking on a specific IP address open a new popup
containing information for this specific entry.

Pin A pin is the visualization technique of viewing a suspicious target on our
map. The IP2Location [9] module is responsible for translating the IP address to
geolocation attributes. Furthermore, IP2Location [9] provides more information
such as Country, City, ASN of the specific entry. A pin contains information about
the reporter, the category, and a short description of the suspicious IP address.

Pins as shown in Figure 3.8 are locked geographic locations, enriched with
custom popups, that provide extra information about the attack incident. Popups

3.2. VISUALIZATION DASHBOARD 27

Figure 3.6: Clicking on a cluster.

contain six fields of information. As shown in the Figure 3.7, the suspicious IP
address has the following information : Location : Tympakion It is reported by
an organization named cite Cinsscore. We categorized this incident as a generic
attack. Cinsscore team flagged this packet as Rogue, as it raised a number of alerts
when passed through Sentinels. The last field is a button ”More information” as
shown in Figure 3.9, that contains eight certified organizations that perform IP
address reputation scoring. Hitting any of those links provide validation for this
IP address’s reputation score and in general network behavior.

As shown in the Figure 3.10, the IP address’s last byte covered by an asterisk.
Under the General Data Protection Regulation (GDPR), the protection of personal
data is given high priority. An IP address can be considered personal data if it can
be associated with an identifiable individual. The GDPR applies to the processing
of such personal data, including the collection, storage, use, and disclosure of IP
addresses. The categorization of each malicious activity derives from description,
keywords or activity patterns of each attack.

Attack type filter Attack type filtering is a module for viewing specific attack
types on the dashboard. This mechanism is triggered by (un)checking the top left
checkboxes on the map. Each time a preference is changed, the server responds
with new filtered data based on attack category. Having 7 different categories of
attack types results in many combinations of the original dataset. As a result,
every new combination would trigger full recreation of Supercluster [8] object,
which is time and memory inefficient. For that reason, we created a data structure
to store the up to eight different combinations in order to avoid latency. A user,
viewing the dashboard, comes to the realization of two different maps.

1. ”All” tab displays all IP addresses and metadata obtained each day from
all parsers. Content downloaded is displayed on the globe map without any
further filtering.

28 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Figure 3.7: Popup example.

2. ”Today” tab displays all IP addresses obtained for a specific day, except
those found on the previous day’s dataset. Using this kind of filtering, we
manage to acquire IP addresses that most probably were discovered the same
day that were added to the dataset.

This modification of the dashboard’s contents was firstly introduced to filter poorly
maintained blacklists. Furthermore, it applies maintenance policies for IP-Reputation
in regard to the time that an entry (IP address and metadata) should ”live” in a
dataset. IP-Reputation applies this policy due to the fact that every other blacklist
has a different policy of maintaining IP addresses. It is essential, when developing
a tool of different sources, that the same policy applies to all the data fetch. In
other words, blacklists are not stable at all. Keeping the previous state of each
blacklist and compare with the current, helps to remove false positives, error cases
and poor maintenance techniques.

3.2.3.2 Search

Under the search tab of the tool, users can run queries on specific IP addresses or
subnets by using the CIDR notation and receive a list of malicious IP addresses
that matches their requirements, as shown in Figure 3.12. Since some queries can
result in vast amounts of data, making it difficult to display on a single screen, the
data are broken down into pages. Users can also click on the ”More Information”
button next to each IP address, which would open a popup similar to the ones on
the global map, Figure 3.13.

3.2. VISUALIZATION DASHBOARD 29

Figure 3.8: Marker on map.

3.2.3.3 Statistics

Lastly, we look at the tab named Statistics, viewing Figure 3.14. Statistics is
powerful knowledge, while users, especially in our study, can keep track of incidents
in cases of enormous datasets. During our work, we managed to build, a lightweight
implementation of displaying attack trends over time. Under the statistics tab,
we can look at a time series chart, demonstrating the frequency or intensity of
attacks over a specific time period. This can reveal patterns, spikes, or trends in
cyberattack activities on all countries. The user can view statistics of each country
selecting from this bar, as shown in the Figure 3.15.

As shown in Figure 3.14, the time series chart displays a consistent average of
50,000 attacks per day, with a lower bound of 40,000 attacks per day. This suggests
a relatively stable baseline level of attacks throughout the observed period.

However, the chart also highlights seven notable spikes where the number of
attacks exceeded 80,000 per day. These spikes indicate significant deviations from
the average and signify periods of heightened attack activity.

The distribution of attacks appears to be skewed towards these spikes, as they
represent major outliers in comparison to the average and lower bound. These
spikes may be indicative of specific events or vulnerabilities that attracted a higher
number of attacks during those periods.

Analyzing the causes and patterns behind these spikes would be valuable in
understanding the factors driving the increased attack activity during those times.
It may also be important to investigate whether these spikes correlate with any
specific external factors, such as major events or changes in the security landscape,
to gain further insights.

Overall, the chart suggests a consistent level of attacks around the average,
but with sporadic spikes indicating distinct periods of intensified attack activity.
In the next chapter, we will extend the discussion on statistics analyzing plots,
derived from a 4-month research.

30 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Figure 3.9: Cross validation of IP reputation through alternative reputation ser-
vices.

3.2.3.4 Threat Exchange

Finally, contributing back to the OSINT community, we expose high threat level
IP addresses. The verification and filtering process is done by querying the IP ad-
dresses, that found to be in most blacklists, to the Google Safe Browsing API.
A user view these IP addresses by running the application and navigating to
http://localhost:8080/malicious ips.txt. These hosts, hence IP addresses, are con-
sidered malicious by a large part of the community. Document format in Figure
3.16

3.2. VISUALIZATION DASHBOARD 31

Figure 3.10: Attack additional information, when clicking a marker.

Figure 3.11: Check/Uncheck boxes to show/hide chosen attack categories.

32 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Figure 3.12: Inspecting search module.

Figure 3.13: Inspecting search results.

Figure 3.14: Inspect attack distribution worldwide.

3.2. VISUALIZATION DASHBOARD 33

Figure 3.15: Inspect attack distribution of a chose country, Greece.

Figure 3.16: OSINT data exchange module.

34 CHAPTER 3. SYSTEM OVERVIEW & ARCHITECTURE

Chapter 4

Statistics

4.1 Overview

This chapter serves as the entry point to a 4-month research collection dedicated
to statistical analysis in the realm of cyberattacks. This statistical analysis is
conducted on a comprehensive dataset collected from reputable sources. Despite
the trustworthiness of the sources, due to GDPR compliance, an IP address is
considered personal data, that can be used to identifying an individual. Based on
these constraints, our statistical analysis is focused on the multitude of the attacks,
their origin limited to country level and time span.

4.2 Findings

4.2.1 Attack Distribution per Capita

A follow-up statistic of attack distribution (Chapter 4 Statistics tab), is identifying
the percentage of cyberattacks originating from different countries based on the
population of those countries. Combining the collected cyberattacks from each
country, we calculated the ratio of average attacks per country to the population
of this country. As shown in the Figure 4.1, the deeper the blue color on the
country, the more attacks have been reported on average. Focusing on the deepest
blue colors, we see China and then United States averaging with huge distances
with all other countries. India is third on attacks, while Russia and Brazil hold
high rank too.

Now, we combined numbers of attack incidents with current country population
to calculate the percentage of cyberattacks per capita. In Figure 4.2, we look at
completely different results. In this figure, we’re spectating the Top20 countries
with the biggest average attacks/ country population ratio. Surprisingly, China
(representing as HK) and US are not even at top5. The first country averaging
more attacks per population are the British Virgin Islands, averaging 90 attacks
per day with 30,000 thousand citizens, Figure 4.3.

35

36 CHAPTER 4. STATISTICS

Figure 4.1: Choropleth map of attack distribution.

4.2.2 IP Occurrence

Moving on to our next finding, we conducted research on the occurrences of IP
addresses in our dataset. This statistic may have different interpretation, based
on the storing policies of each maintainer. Having the same IP in a dataset,
without any further information, leads to many results. It may indicate the attack
duration, a repetition of the attack, or a blacklist clean up policy that varies
throughout the organization. The latter case causes several issues while analyzing
cyberattacks on statistics, especially if blacklists does not provide information of
the first occurrence of the IP address. Despite these issues, looking at the chart
on Figure 4.4, we observe that 10% of the attacks are from IP addresses that have
not been blacklisted over a four-month period. Close to 50% of all the attacks,
have been seen and reported 2–10 times and 30% are reported 11-100. From
these numbers, we can surely say the over a four-month period about the 80%
of the attackers are known. Considering the blacklist various policies, some IP
addresses may never be excluded from a blacklist if not whitelisted or may be
excluded after a fixed period of time handled by the maintainer. Lastly, we observe
that approximately, 10% of the attacks are originated from sources reported over
100 times, concluding that blacklists can be utilized as a proactive mechanism
eliminating the case of false positive by only acquiring the most-reported IPs.

4.2. FINDINGS 37

Figure 4.2: Attack distribution per capita.

4.2.3 Attack Category Distribution

Analyzing the attack percentages within different categories provides valuable in-
sights into the prevalent threats, as seen in Figure 4.5.

Malware attacks account for the largest portion at 56.0%, indicating the wide-
spread use of malicious software to compromise systems and steal sensitive data.
Command and control (C&C) attacks, although relatively less prevalent, still pose
a threat at 0.6%, primarily involving the establishment of unauthorized control
over compromised devices. Phishing attacks, comprising 1.3% of the total, while
phishing domains and emails are taken down faster. Attacks in a broader sense
make up 21.3% of the total. Abuse category, holds 19.9% while spam persists at
0.8%. Spam is often categorized as abuse of Internet usage, so that explains the
low rates.

4.2.4 Attack Origin

In the modern Internet, performing an attack does not always require the use
of your own IP address. Attackers managed to abuse free web hosting services to
serve malicious content while keeping their identity hidden. So, we search which IP
addresses, collected from a four-month period, are included in large corporate free
web hosting services. Specifically, we looked up the three different organizations’
IP ranges, Google, GitHub, GitLab. Google’s public IP addresses are known
and in our case mostly used for file sharing such as Google forms, documents,
slides, spreadsheets, etc. GitHub and GitLab are known DevSecOps platforms
with public sharing option like GitHub pages or directly exposed static webpages.
Searching through these organizations, we found out that 834 unique IP addresses
belong to Google, 91 belong to GitHub and 5,121 to GitLab services. The number

38 CHAPTER 4. STATISTICS

Figure 4.3: Attack distribution of the Virgin Islands.

of reports for each organization is 13,246 reports for Google, 8,068 for GitHub and
finally 111,254 reports for GitLab. This result shows the impact of blacklisting an
IP address. These IP addresses may be assigned to another user, resulting that
the future user will be blocked if the blacklist is poorly maintained.

4.2. FINDINGS 39

Figure 4.4: IP address occurrence.

40 CHAPTER 4. STATISTICS

Figure 4.5: Attack category distribution.

Chapter 5

Related Work & Limitations

While this study was based on OSINT data, we will exclusively focus on open-
source projects and works, that share ideas, techniques, features and discuss im-
provement on OSINT based tools. Many of the projects we will look, have already
contributed to our study by introducing problem solutions, providing OSINT data
and posing issues that eventually improved RE.D.

Maltrail : Maltrail is a malicious traffic detection system, utilizing publicly
available (black)lists containing malicious and/or generally suspicious trails, along
with static trails compiled from various AV reports and custom user defined lists,
where trail can be anything from domain name, URL, IP address or HTTP User-
Agent header value. We include Maltrail as a source to our work. This project
fetches thousands of IOCs daily. Maltrail’s maintainers include some ”static”
sources, which results to unmaintained blocklists, that contain old information.

FireHOL blocklists : The objective is to create a blacklist that can be safe
enough to be used on all systems, with a firewall, to block access entirely, from
and to its listed IPs. The key prerequisite for this cause, is to have no false
positives. All IPs listed should be bad and should be blocked, without exceptions.
We included FireHOL blocklists in our work as the first valuable source. FireHOL
is updated once per day. FireHOL maintainers tend not to clean up blacklists from
old IP addresses, resulting in large ipsets that may contain false positives.

Malware World : A system based on +500 blacklists and 5 external intelligences
to detect potentially malicious hosts on the internet. It is worth noting that
Malware World might be the largest collection of datasets. Unfortunately, as the
number of ipsets raises, the map’s efficiency drops, overloading the user.

5.1 Limitations

Two major limitations that affect the OSINT data have been observed during this
study.

41

https://github.com/stamparm/maltrail
https://github.com/firehol/blocklist-ipsets
https://www.npmjs.com/package/malwareworld

42 CHAPTER 5. RELATED WORK & LIMITATIONS

Format of OSINT data Every maintainer chooses to publish their data in a
different format. So, collecting various available sources may be time-consuming,
while adapting to each format costs and requires specific structure of the fetching
mechanism.

Maintaining policies Each blacklist maintainer may follow different policies
on adding and removing IP addresses. During this study, we have seen removal
procedures per day, week and month. One way to adapt to each maintainer’s
policy, is to keep only the new IP addresses each day. That is the path that we
followed, and enabled us to acquire and analyze ipsets from sources with following
different maintaining policies. As for similar projects

Chapter 6

Conclusion

In conclusion, the development and implementation of a two-layer system consist-
ing of a parsing module and a visualization module have proven to be effective
in handling and analyzing OSINT data sets. This system has provided valuable
insights and visualizations that facilitate the understanding and interpretation of
statistical information. The parsing module played a crucial role in extracting
data from diverse sources such as API endpoints, documents, rules and ipsets.
The system efficiently transformed raw data into a structured format suitable for
further analysis, enriched with additional information besides the IP address, like
the geographic coordinates and a description of the attack categorization. With
the parsed data, the visualization module demonstrated IP addresses as pinned
locations on a world map, making it appealing to non-familiar users. By employ-
ing data visualization techniques, such as charts and interactive board, the system
provided users with an insightful overview of the analyzed data, viewing attack
patterns and trends. Moreover, the two-layer system was designed to be exten-
sible to utilize future public available data and demonstrate with simple but yet
meaningful representation. In summary, the system’s is by itself a contribution
to the OSINT community, while it is a collection of OSINT data processed and
presented human friendly. Also, the threat exchange module can be used as an
OSINT source itself, providing users a verified blocklist. As for similar projects

43

44 CHAPTER 6. CONCLUSION

Chapter 7

Future Work

While this study established a connection between the OSINT community and
not familiar users, we believe that there is place for future development. This
dashboard, utilized only thirty-four different sources of blacklisted IP addresses,
while there are so many organizations that are willing or will offer their own OSINT
data. Adding parsers, will have great impact on cross-validating the IP address’
reputation and remove the possibilities of false positives. Furthermore, we can
enrich the Tab Statistics with more plots, dynamically updated while fetching new
data. Finally, we believe that eliminating false positives is the key to a successful
visualization dashboard. That being said, validation services can be improved so
that a user can check an IP’s reputation as a score of multiple reputation services.

45

46 CHAPTER 7. FUTURE WORK

Bibliography

[1] C. Tsaousis, “Firehol blocklist-ipsets,” 2023. [Online]. Available: https:
//github.com/firehol/blocklist-ipsets

[2] “Digitalside.” [Online]. Available: https://osint.digitalside.it/Threat-Intel/
lists/latestips.txt

[3] “Cinsscore.com.” [Online]. Available: http://Cinsscore.com

[4] “Alienvault reputation system.” [Online]. Available: https://www.alienvault.
com/

[5] “Swiss security blog - abuse.ch.” [Online]. Available: https://www.abuse.ch/

[6] “Emerging threats.” [Online]. Available: https://rules.emergingthreats.net/

[7] “Ip-reputation.” [Online]. Available: https://github.com/spkostas/
IP-Reputation-Global-Map

[8] V. Agafonkin, “Supercluster,” 2016. [Online]. Available: https://www.npmjs.
com/package/supercluster

[9] IP2Location, “Ip2location,” 2001 - 2023. [Online]. Available: https:
//www.ip2location.com/

[10] S. Ramanthan, J. Mirkovic, and M. Yu, “Blacklists assemble : Aggregating
blacklists for accuracy,” 2018.

[11] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker, and S. Savage,
“Reading the tea leaves: A comparative analysis of threat intelligence,” in
28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 851–867. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/li

[12] L. Guo, “An empirical analysis on threat intelligence: Data characteristics
and real-world uses.” 2020. [Online]. Available: https://escholarship.org/uc/
item/5h9983b0

[13] FILIGRAN, “Open cyber threat intelligence platform.” [Online]. Available:
about:blank

47

https://github.com/firehol/blocklist-ipsets
https://github.com/firehol/blocklist-ipsets
https://osint.digitalside.it/Threat-Intel/lists/latestips.txt
https://osint.digitalside.it/Threat-Intel/lists/latestips.txt
http://Cinsscore.com
https://www.alienvault.com/
https://www.alienvault.com/
https://www.abuse.ch/
https://rules.emergingthreats.net/
https://github.com/spkostas/IP-Reputation-Global-Map
https://github.com/spkostas/IP-Reputation-Global-Map
https://www.npmjs.com/package/supercluster
https://www.npmjs.com/package/supercluster
https://www.ip2location.com/
https://www.ip2location.com/
https://www.usenix.org/conference/usenixsecurity19/presentation/li
https://escholarship.org/uc/item/5h9983b0
https://escholarship.org/uc/item/5h9983b0
about:blank

48 BIBLIOGRAPHY

[14] M. K. M. Stampar, “Malicious traffic detection system.” 2016. [Online].
Available: https://github.com/stamparm/maltrail

[15] V. Agafonkin, “Leaflet,” 2016. [Online]. Available: https://leafletjs.com/

[16] I. Labs, “iocextract,” 2023. [Online]. Available: https://pypi.org/project/
iocextract/

[17] K. Reitz, “requests,” 2023. [Online]. Available: https://pypi.org/project/
requests/

[18] “Bambenek consulting feeds.” [Online]. Available: http://osint.
bambenekconsulting.com/feeds

[19] “Cisco talos - additional resources.” [Online]. Available: http://www.
talosintelligence.com/additional-resources/

[20] “Clean mx - realtime db.” [Online]. Available: http://www.clean-mx.com

[21] “Cybercrime.” [Online]. Available: http://cybercrime-tracker.net/

[22] “Daniel gerzo bruteforceblocker.” [Online]. Available: https://danger.rulez.
sk/index.php/bruteforceblocker/

[23] “Emerging threats.” [Online]. Available: https://rules.emergingthreats.net/
fwrules/emerging-Block-IPs.txt

[24] “My ip - blacklist checks.” [Online]. Available: https://myip.ms/info/about

[25] “Sblam! zabezpiecza formularze przed spamem.” [Online]. Available:
http://sblam.com/

[26] “Benkow.” [Online]. Available: https://benkow.cc/export.php

[27] “Abuseipdb.” [Online]. Available: https://api.abuseipdb.com/api/v2/
blacklist

[28] “Blackhole.” [Online]. Available: https://ip.blackhole.monster/
blackhole-today

[29] “pop3gropers.” [Online]. Available: https://home.nuug.no/∼peter/
pop3gropers.txt

[30] “Dataplane.” [Online]. Available: https://dataplane.org/

[31] “ut capitole.” [Online]. Available: https://www.ut-capitole.fr

[32] “Feodotracker.” [Online]. Available: https://feodotracker.abuse.ch/
downloads/ipblocklist.csv

[33] “Honeydb.” [Online]. Available: https://honeydb.io/

https://github.com/stamparm/maltrail
https://leafletjs.com/
https://pypi.org/project/iocextract/
https://pypi.org/project/iocextract/
https://pypi.org/project/requests/
https://pypi.org/project/requests/
http://osint.bambenekconsulting.com/feeds
http://osint.bambenekconsulting.com/feeds
http://www.talosintelligence.com/ additional-resources/
http://www.talosintelligence.com/ additional-resources/
http://www.clean-mx.com
http://cybercrime-tracker.net/
https://danger.rulez.sk/index.php/bruteforceblocker/
https://danger.rulez.sk/index.php/bruteforceblocker/
https://rules.emergingthreats.net/fwrules/ emerging-Block-IPs.txt
https://rules.emergingthreats.net/fwrules/ emerging-Block-IPs.txt
https://myip.ms/info/about
http://sblam.com/
https://benkow.cc/export.php
https://api.abuseipdb.com/api/v2/blacklist
https://api.abuseipdb.com/api/v2/blacklist
https://ip.blackhole.monster/blackhole-today
https://ip.blackhole.monster/blackhole-today
https://home.nuug.no/~peter/pop3gropers.txt
https://home.nuug.no/~peter/pop3gropers.txt
https://dataplane.org/
https://www.ut-capitole.fr
https://feodotracker.abuse.ch/downloads/ipblocklist.csv
https://feodotracker.abuse.ch/downloads/ipblocklist.csv
https://honeydb.io/

BIBLIOGRAPHY 49

[34] “mirai.” [Online]. Available: https://mirai.security.gives/index.php

[35] “Mitchellkrogza phishing database.” [Online]. Avail-
able: https://raw.githubusercontent.com/mitchellkrogza/Phishing.
Database/master/phishing-links-NEW-today.txt

[36] “Neo23x0.” [Online]. Available: https://raw.githubusercontent.com/
Neo23x0/signature-base/39787aaefa6b70b0be6e7dcdc425b65a716170ca/iocs/
otx-c2-iocs.txt

[37] “openphish.” [Online]. Available: https://openphish.com/feed.txt

[38] “phishtank.” [Online]. Available: http://data.phishtank.com/data/
online-valid.json

[39] “pulsedive.” [Online]. Available: https://pulsedive.com

[40] “Rescure blacklist.” [Online]. Available: https://rescure.me/rescure blacklist.
txt

[41] R. S. of Arts and Sciences, “Network monitoring system.” [Online]. Available:
https://report.cs.rutgers.edu

[42] “Isc sans.” [Online]. Available: https://isc.sans.edu/

[43] “Sslbl.” [Online]. Available: https://sslbl.abuse.ch

[44] “Threatfox.” [Online]. Available: https://threatfox.abuse.ch/

[45] “Threatview.” [Online]. Available: https://threatview.io

[46] “Urlhaus.” [Online]. Available: https://urlhaus.abuse.ch

[47] “Viriback.” [Online]. Available: https://tracker.viriback.com

https://mirai.security.gives/index.php
https://raw.githubusercontent.com/mitchellkrogza/Phishing.Database/master/phishing-links-NEW-today.txt
https://raw.githubusercontent.com/mitchellkrogza/Phishing.Database/master/phishing-links-NEW-today.txt
https://raw.githubusercontent.com/Neo23x0/signature-base/39787aaefa6b70b0be6e7dcdc425b65a716170ca/iocs/otx-c2-iocs.txt
https://raw.githubusercontent.com/Neo23x0/signature-base/39787aaefa6b70b0be6e7dcdc425b65a716170ca/iocs/otx-c2-iocs.txt
https://raw.githubusercontent.com/Neo23x0/signature-base/39787aaefa6b70b0be6e7dcdc425b65a716170ca/iocs/otx-c2-iocs.txt
https://openphish.com/feed.txt
http://data.phishtank.com/data/online-valid.json
http://data.phishtank.com/data/online-valid.json
https://pulsedive.com
https://rescure.me/rescure_blacklist.txt
https://rescure.me/rescure_blacklist.txt
https://report.cs.rutgers.edu
https://isc.sans.edu/
https://sslbl.abuse.ch
https://threatfox.abuse.ch/
https://threatview.io
https://urlhaus.abuse.ch
https://tracker.viriback.com

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The OSINT Community
	Research
	Threat Intelligence
	Software development

	Threat Intelligence Sources
	Overview
	Datasets
	Data Source Structure
	Feed Categorization

	System Overview & Architecture
	Parsing System
	Macro-Architecture
	Controller
	Web Parsers
	GeoJSON Feature
	Extensibility

	Visualization Dashboard
	Live Dashboard
	Dashboard Macro Architecture
	Functionality

	Globe Map
	Clustering

	User Interface
	Maps
	Search
	Statistics
	Threat Exchange

	Statistics
	Overview
	Findings
	Attack Distribution per Capita
	IP Occurrence
	Attack Category Distribution
	Attack Origin

	Related Work & Limitations
	Limitations

	Conclusion
	Future Work
	Bibliography

