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Abstract

“Cluster” and “graph” states are entangled quantum states that are crucial
resources in measurement-based quantum computing and quantum commu-
nications. Despite the importance of photonic graph and cluster states for
quantum technologies, their generation presents considerable difficulties and
it is a matter of current research.

Semiconductor quantum dots (QDs) are strong candidates for creating
photonic cluster and graph states. In the first part of the thesis, we will
study the generation and characterization of entangled photonic states from
self-assembled quantum dots. Then we will investigate the purification of
these states to maximize the overlap with the target entangled state.
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1 Quantum Information Processing

Quantum Information Processing is a field that studies the transmission and
manipulation of information taking advantage of quantum mechanics. Quan-
tum information science is applied to different branches of science. In the
following sections, we will analyze the basics of quantum information science.

1.1 Qubit

The first and most fundamental concept of quantum information is the qubit.
Generally speaking, a qubit is a two-level system. Qubits are electrons in
quantum dots or photons.

Di Vincenzo proposed the necessities for a two-level system to be prepared
in a quantum computer as a qubit.[1] In this thesis, we will focus on the
initialization and manipulation of qubits in a quantum dot.

1.2 Bloch Sphere

The geometrical representation of a two-level system is the Bloch sphere.
The state |Ψ〉 of the two-level system is a Bloch vector that points in the
surface of the unit sphere.

|Ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1.2.1)

Figure 1: Every qubit state can be represented on Bloch sphere.
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1.2.1 Rotations in Bloch sphere

Any vector on the Bloch sphere represents a quantum state. To manipulate
the qubit we have to make rotations around an arbitrary axis. These rotations
are essential for the initialization of qubits. The rotations will change the
phase and amplitudes of the ground and excited state of the two-level system.
Rotations can be performed about an arbitrary axis. The three fundamental
rotations are about the x, y and z-axis.

Rx(φ) = e−iX
φ
2 = cos

φ

2
I − i sin

φ

2
X =

(
cos φ

2
−i sin φ

2

−i sin φ
2

cos φ
2

)

Ry(φ) = e−iY
φ
2 = cos

φ

2
I − i sin

φ

2
Y =

(
cos φ

2
sin φ

2

− sin φ
2

cos φ
2

)

Rz(φ) = e−iZ
φ
2 = cos

φ

2
I − i sin

φ

2
Z =

(
e−i

φ
2 0

0 ei
φ
2

)

To rotate our state by any arbitrary angle we will need a linear combina-
tion of the three fundamental rotations. We can initialize our qubit in every
state we want through rotations. After the successful initialization, the qubit
is prepared for any quantum computation.

x y

|1>

Rx Rotation 

(a) Rx rotation

x y

|1>

Ry Rotation 

(b) Ry rotation

x
y

|1>

Rx+Ry Rotation 

(c) Rx+Ry rotation

The optical rotations of a qubit by a specific axis can be done with coherent
pulses in the qubit space directly or indirectly. In the direct process, the
pulse is applied in the desired two-level system and the transfer of popula-
tion is affected by the pulse width and detuning. There is another way of
rotating the qubit by using the excited state in the Λ system.[3, 4]
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1.3 Two-qubit Entanglement

Apart from initialization and manipulation of qubits, the most quantum
mechanical property of matter is the entanglement, the quantum correlation
between qubits, which has no classical analog.

1.3.1 Definition

Suppose that we have two qubits that define a Hilbert space of 22 dimensions.
In the bipartite system, the whole state Ψ of the two entangled qubits in
general cannot be written in the following way.

Ψ = ψ0 ⊗ ψ1 (1.3.1)

When the state can be written as (1.3.1) it is separable. Every qubit acts
in its own Hilbert space with no correlation with the other one. If we use
Local Operations and Classical Communication (LOOC) there is no way to
make the state (1.3.1) an entangled state.

1.3.2 Entangling gates

To entangle two qubits there is a way of applying entangling gates in the
tensor product of the two systems. Two of the most well-known entangling
gates are CNOT and Cphase gate.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3.2)

Cphase =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 (1.3.3)

There is a specific case of Cphase gate for angle θ = π, the CZ gate.
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We can use single-qubit gates and entangling ones to construct the four
high entangled two-qubit states which are defined as Bell states[2]

∣∣Φ+,−〉 =
|00〉 ± |11〉√

2∣∣Ψ+,−〉 =
|01〉 ± |10〉√

2

The |Φ+〉 state is the well known GHZ state for two qubits. The GHZ state
can be expanded in a multipartite entangled state as

|GHZ〉 =
|0〉⊗N + |1〉⊗N√

2
(1.3.4)

where N is the number of the qubits.

1.3.3 Experimental Entanglement

A famous example of creating photonic entanglement is Spontaneous Para-
metric Down Conversion(SPDC). The process is described below:

Figure 3: Spontaneous Parametric Down Conversion [5]

A strong laser of energy ωi and wavenumber ki pumps a nonlinear crystal.
There is a small probability (1 success per 106 − 109 incoming photons) of
creating two entangled photons. The creation of entanglement depends on
the interaction of the laser with the crystal. The process conserves the energy
and the momentum. From a photon of energy ωi we get two photons of
generally different energies ω1, ω2 respectively where ωi = ω1 + ω2 . The
momentum is also conserved with the equation ki = k1 + k2.
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1.3.4 Entanglement Measures

The entanglement is not so trivial to be measured. In a theoretical approach,
a simple way to measure the entanglement is by calculating the fidelity. Fi-
delity is a measure of how close is a state ψ to a target state φ.

F = | 〈ψ|φ〉 |2

One other way for measuring the two-qubit entanglement is by looking
at the concurrence. Concurrence is a quantity that varies from 0 to 1 for a
highly entangled state. The calculation of concurrence in a pure entangled
state |Ψ〉 is straightforward:

C = 2|c00c11 − c01c10| (1.3.5)

where cij are the coefficients of the general two qubit state |Ψ〉 = c00 |00〉 +
c01 |01〉+ c10 |10〉+ c11 |11〉.

Another way to measure entanglement is by quantum state tomogra-
phy. Quantum state tomography (QST) is a process that results in the full
construction of the density matrix of the desired state.[2] It is a direct re-
construction of a density matrix that can detect any quantum correlations if
there are nondiagonal density matrix elements.

Moreover, the stabilizer operators S are useful for the measure of entan-
glement. A stabilizer operator is a tensor product of Pauli operators that
stabilizes the desired state. In other words, stabilizers satisfy the eigenvalue
equation with eigenvalue + 1.

S |ψ〉 = + |ψ〉

For the whole system of 2n stabilizer operators, the entanglement measure is
the mean value of all stabilizer operators and varies from zero to one. If the
mean value is one then the state is highly entangled.[2]

1.4 Multipartite Entanglement

Going beyond the entanglement between two systems we define multipartite
entanglement. Multipartite entanglement is much more complicated. There
is no full understanding of high-dimensional entangled states.

Instead of having two systems, we can define the entanglement between
N systems. Multipartite entangled states, in general, cannot be written as:

Ψ = ψo ⊗ ....⊗ ψi ⊗ ......⊗ ψN (1.4.1)
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Quantifying entanglement in higher entangled states is not trivial. A way
of identifying multipartite entanglement is by looking at quantities such as
entanglement witnesses or stabilizers.[6, 7]

1.4.1 Graph states

Graph states are multi-qubit entangled states that can be represented graph-
ically. A graph state G is defined by its vertices (qubits) V and edges E that
connect a vertex with another one. So, the edges represent the entanglement
between the qubits. A more mathematical description of graph states is :

G(V,E) =
∏
a,b∈E

CZa,b |+〉⊗N (1.4.2)

where the vertices are represented in state |+〉 = |0〉+|1〉√
2

and the entanglement
is generated through the CZ gate.

Another way to define a graph state is the adjacency matrix. The adja-
cency matrix is a square matrix that represents a graph. This matrix is an
NxN matrix for a graph state with N vertices. The elements of this matrix
are defined as:

Γa,b = 1 if a, b ∈ E otherwise Γa,b = 0 (1.4.3)

Figure 4: Star (complete) graph with adjacency matrix Γij i6=j = 1

2-colorable graphs
Each vertex represents a specific qubit of a physical system. In the following
figure, the spin is the green vertex and the photon is red. The edges between
them represent the entanglement between spin and photon.
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Figure 5: Graphical GHZ state with adjacency matrix Γ1,j = Γj,1 = 1

k-colorable graphs
In addition to 2-colorable graphs, k-colorable are even broader. A graph
is called a k-colorable graph if it is possible to divide the vertices of each
graph into a group and assign it to each group color such that no neighbor
vertices have the same color. So, a group of vertices is defined as the number
of vertices that are not connected through edges (next nearest neighbors).
In the following examples, there are three groups of vertices (green, red,
blue).[8, 9]

(a) Circle 3-colorable graph (b) Tree 3-colorable graph

1.4.2 Cluster states

One category of graph states is cluster states that are highly entangled and
are represented by vertices in |+〉 states with a CZ gate between them which
are represented in 1D, 2D, and 3D square lattices.

G(V,E) =
∏
a,b∈E

CZa,b |+〉⊗N (1.4.4)

Real examples of cluster states can be made through cold atoms in optical
lattices.[10] There is a possibility of making cluster states using sequential
quantum dots taking advantage of tunneling, making coupled quantum dots.
[11, 12]
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(a) 1d Cluster state (b) 2d Cluster state

1.4.3 Measurement Based Quantum Computing

The above graphs and especially cluster states are the resource states for
measurement-based quantum computation.

Measurement-based quantum computing is a model of quantum computa-
tion that was introduced in 2001.[13] In this type of quantum computation,
the resource state is a 2D cluster state.[12] After the initialization of this
entangled state, we can apply only single-qubit operations and classical feed-
forward measurements to perform quantum computations.

The advantage of this computation is that it does not require two-qubit
gates during the computation. These gates are, in general, difficult to be
performed. In this model, the difficulty of creating entanglement has been
transferred to the preparation of the cluster state.
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2 Self-assembled quantum dots

Quantum dots are promising systems for quantum technologies and generally
in the study of quantum mechanics. Self-assembled semiconductor quantum
dots are single-photon sources.[14] Their fast recombination rates are useful
for the manipulation of qubits before interaction with the environment.[4]

2.1 Design of Self-assembled QDs

Self-assembled quantum dots are grown non-deterministically at the interface
of two different semiconductor layers.

Specifically, a well-known example of self-assembled QDs are InAs and
GaAs QDs. InAs QDs are formed using the Stranski-Krastanow growth.[4,
15] This growth mode utilizes the strain caused by the lattice mismatch
between the InAs layers and GaAs substrates. On the other hand, GaAs
self-assembled quantum dots are small islands that are formed due to the
confinement with AlGaAs layers.[4]

Figure 8: Formation of self-assembled QDs[4]

2.2 Structure

Experimentalists use semiconductors by taking advantage of their band struc-
ture to create single photons with specific polarization. The band structure
of these materials consists of two bands the valence band and the conduction
band. Each band has states that can be occupied by electrons. A direct or
indirect energy bandgap is between valence and conduction band.
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(a) InAs band structure[16] (b) GaAs band structure[16]

In absolute zero T=0 K, the valence band is fully occupied by electrons
and the conduction band is empty. When an electron is excited optically, it
jumps from the valence to the conduction band and leaves behind a hole in
the valence band (absence of an electron). A pedagogical picture of seeing
electrons and holes is exactly like bubbles in the water. The movement of
water is the electron while bubbles are going to the top are the holes.

At low temperatures the electron-hole pair will depend on the spin con-
figuration. So the exchange interaction of electrons with holes is responsible
for the presence of excitons and their dynamics.

Hex = a ~Jh · ~Se + b ~J3
h · ~Se (2.2.1)

where Jh is the hole’s spin and Se the electron’s spin.[15]

2.2.1 Bulk and electronic states

The most popular semiconductor self-assembled quantum dots are designed
between InAs and GaAs parts. InAs and GaAs are in the zincblende lattice
structure. We can identify their band structure by looking at their lattice
structure.

The valence band consists of electrons that are mainly formed in p-type
orbitals. About the conduction band, the electrons are formed in s orbitals
near the edge of this band. States of holes and electrons in valence (v) and
conduction band (c)[11]:
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|c〉1/21/2 = |s〉 |↑〉 Electron spin up

|c〉1/2−1/2 = |s〉 |↓〉 Electron Spin down

|v〉3/23/2 = − 1√
2
|x+ iy〉 |↑〉 Heavy hole up

|v〉3/2−3/2 =
1√
2
|x− iy〉 |↓〉 Heavy hole down

|v〉3/21/2 = − 1√
6

(|x+ iy〉 |↓〉+ 2 |z〉 |↑〉) Light hole

|v〉3/2−1/2 =
1√
6

(|x− iy〉 |↑〉+ 2 |z〉 |↓〉) Light hole

|v〉1/21/2 = − 1√
3

(|x+ iy〉 |↓〉+ |z〉 |↑〉) SO hole

|v〉1/2−1/2 =
1√
3

(|x− iy〉 |↑〉 − |z〉 |↓〉) SO hole

2.2.2 Excitons in QDs

Apart from single electrons or holes, there is a possibility of forming a sys-
tem in QD which is an exciton. Excitons are bound states of electrons and
holes with bulk binding energies Eb,bulk≈ 0.2-2 meV and QD binding energies
Eb,QD≈ 2-100 meV for QD due to stronger confinement.[17]

In the spin configuration, the exciton can be presented as a heavy hole
with an electron with a total spin of J = 1.

2.2.3 Trions in QDs

Trions are charged excitons. There are two types of charged excitons, the
negative one and the positive one. The positively charged exciton (t+) con-
sists of a single hole and an exciton (h-he). On the other hand, the negative
trion is composed of an electron and an exciton. (t−)

The trions are formed with an extra electron (t−) or an extra hole (t+)
in the QD. The extra electron or hole is generated by a voltage difference.
Current flows in the QD and it injects electrons in the desired state of the
conduction band. Pauli’s exclusion principle is blocking the continuous in-
jection of electrons. The spin configuration of the electron -if it is in spin up

15



or down-state- can be seen by electrical current measurements.[18]

The trions are used for the excited state in the 3 level system. For ex-
ample, a widely used three-level system in a simple self-assembled quantum
dot consists of the following levels. The two ground states are the states of
an extra electron in a conduction band under the application of a magnetic
field.
The trion state forms the excited state of the Λ system.

Figure 10: Trion and single electron states in QD[4]

where the green arrows are electrons and the cyan ones are holes.

2.2.4 Optical Transitions

The transitions help to manipulate the qubits in conduction and valence
band. Selection rules for atomic systems are ∆J = 0,±1 and ∆mj = ±1
where j is the total angular momentum and mj is the magnetic quantum
number. The selection rules in the atomic or atomic-like systems (QDs) are
conserved with the presence of light (photons).

The photon is a particle with helicity 1. Each photon carries a spin
angular momentum. The possible spin angular momenta are +~ and −~
with a left circular polarization and right circular polarization respectively.
Every linear combination of the polarization of photon can generate different
transitions. The following table sums up the transition differences between
matter and photons in QDs.

Mjelectron −Mjhole = Mjphoton

Jhole − Jelectron = 1
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To satisfy the requirements for emitting a photon the conservation of total
momentum and the magnetic quantum number is essential. In the following
subsections, we will study the total transitions in which we are interested
between electrons and trions in self-assembled QDs in different types of ge-
ometry.

2.2.5 Transitions in Faraday Geometry

A magnetic field in QDs is applied to split specific states on a different basis.
We can work with a heavy hole or light hole trion system but in this case,
we will investigate the heavy hole trion |t〉3/2±3/2.

Faraday geometry is the application of a magnetic field parallel to the
growth of the QD. This magnetic field is along the symmetry axis so the
Zeeman energy splits the electron states but there is no splitting for trion
states if there is a small magnetic field.

Figure 11: 3 level in Faraday Geometry

2.2.6 Transitions in Voigt Geometry

The Voigt geometry breaks the symmetry due to the application of a mag-
netic field along an axis perpendicular to the optical axis of the QD. This
symmetry breaking changes the eigenstates of the system. The new eigen-
states of the whole system are parallel to the direction of the field. For
example, for a z-axis growth self-assembled quantum dot if the magnetic

17



field is on the x-axis the eigenstates of electron and heavy hole become:

|c〉1/21/2,x =
1√
2

(|c〉1/21/2 + |c〉1/2−1/2)

|c〉1/2−1/2,x =
1√
2

(|c〉1/21/2 − |c〉
1/2
−1/2)

|v〉3/23/2,x =
1√
2

(|v〉3/23/2 + |v〉3/2−3/2)

|v〉3/2−3/2,x =
1√
2

(|v〉3/23/2 − |v〉
3/2
−3/2)

So, there is a mixing of eigenstates on a z basis if we apply an x-axis mag-
netic field. The x-axis magnetic field is willing to make possible indirect
transitions.

Figure 12: 3 level in Voigt Geometry
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2.3 QDs with semiclassical field

We will present the main types of level systems that are used in semiconduc-
tor self-assembled quantum dots in the presence of laser.

2.3.1 Two-level system

The simplest example of a two-level system in QD is an electron under the
application of a magnetic field. There is a split in energies which makes the
lower energy represent the |0〉 state, and the higher the |1〉 state. In a QD,
there is another possibility of a two-level system with the ground state is
the electron state and the excited state is the trion state. In this case, the
dynamics of the system are governed by a pulsed or continuous laser with
specific polarization.

2.3.2 Dynamics of two-level system

In this section, we will study how a two-level system in a QD behaves in the
presence of a pulsed laser. We will investigate the spin vector dynamics in
the Bloch sphere. For the dynamics of the system, we will solve the time-
dependent Schrödinger equation in the presence of a pulse.
For the dynamics of the system, we solve the Schrödinger equation.

i~
∂Ψ

∂t
= HΨ (2.3.1)

where Ψ = cg |g〉+ ce |e〉.
The |g〉 , |e〉 is the Dirac representation of the ground and excited-state

respectively. The coefficients cg, ce are the amplitudes of the system. To be
able to solve the problem we have to construct the Hamiltonian using the
Rotating wave approximation (RWA).

H = −~ωo
2
σz + f(t)eiωtσ+ + f(t)e−iωtσ− (2.3.2)

where σ+ = |e〉 〈g| , σ− = |g〉 〈e|. The f(t) is the envelope function of the
pulse .
We transform our Hamiltonian by going to the rotating frame.

U =

(
e−iωot/2 0

0 eiωot/2

)
(2.3.3)
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Procced in interaction picture: VI=U
†V U where V = f(t)σ−e

−iωt+f(t)σ+e
iωt

and U = eiHot/~.
The VI is represented as the operator for time evolution in the interaction
picture.

VI =

(
0 fei∆t

fe−i∆t 0

)
where ∆ = ω − ωo > 0.

So for the evolution of Ψ in interaction picture we get:

i~
∂

∂t

(
e−iωot/2cg
eiωot/2ce

)
=

(
ei∆tfce
e−i∆tfcg

)
(2.3.4)

c̈e + (i∆− ḟ

f
)ċe + f 2ce = 0 (2.3.5)

Our Hamiltonian for the two-level system is described by the following equa-
tion f(t) = ~Ω=constant(square pulse) :

H = −~ωo
2
σz + ~Ωeiωtσ+ + ~Ω∗e−iωtσ− (2.3.6)

where the spacing between our two-level system is ωo. The frequency
ω is the frequency of the E/M field that interacts with the quantum dot.
Finally, the frequency Ω is called Rabi frequency and it is defined as Ω = d·E

~
where d is the dipole moment which is a feature of the system and E is the
envelope function of our pulse. Going to the interaction picture we can get
rid of the energy spacing term in the Hamiltonian and reconstruct our new
Hamiltonian :

H̃ = ~Ωei∆tσ+ + ~Ω∗e−i∆tσ− (2.3.7)

where ∆ = ω − ωo .

We defined the Hamiltonian for our system in the interaction picture and
we study the dynamics of the two-level system. We observe the well-studied
Rabi oscillations between ground and excited state.
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(a) Excited state probability for small
detunings of square pulse
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(b) Excited state probability for
larger detunings of square pulse

After the famous Rabi oscillations for a square pulse, we can study the
trajectory of the spin vector on the Bloch sphere. In the following pictures,
we investigate the evolution of spin vector for different detunings.

x

y

|1>

Square 2  pulse with detuning 0,0.2,0.6

(a) Evolution of spin vector
with detuning 0,0.2,0.6 (blue,red,green)

x

y

|1>

Square 2  pulse with detuning 0,1,2

(b) Evolution of spin vector
with detuning 0,1,2 (blue,red,green)

The square pulses transfer the population between the excited and the
ground state for specific pulses’ length. The pulse’s duration is directly re-
lated to the area of the pulse. Famous areas of pulses are π/2, π, 2π. For
example, π/2 pulses rotate the system from the z-axis to the x-axis. The π
square pulses rotate the system from the +z to -z-axis and vice versa.
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Sech Pulse
There is another famous example of a pulse that is used for manipulating a
two-level system. The sech pulse problem is known since the 1930s.[19]

Now we assume that f(t)=sech(σt) to specify our problem and after a
transformation z=0.5(tanh(σt)+1) we end up with the famous hypergeomet-
rical differential equation.[3] We will investigate the dynamics of the two-level
system under the application of a single sech pulse. The following figures are
concerning bandwidth σ=1 and the other physical parameters are analyzed
with respect to bandwidth.
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(b) Excited state probability with
sech pulse in detuning 0,1,2

The fascinating result is that the sech pulse propagates without losing its
shape. So, the detuning affects only the percentage of the transferred pop-
ulation and the period of oscillations is unaffected. We will see how this
preserved-shaped pulse affects the coherences in a two-level system.
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(b) Coherences with Pulse bandwidth
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For double bandwidth of sech pulse, we have the following coherences in
the evolution of time.
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(a) Coherences with pulse bandwidth σ=2
and detunings 0,0.2,0.6
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After the study of density matrix elements, we focus on the Bloch sphere.
The following images are about how the state vector of a two-level system
evolves under the application of a sech pulse.
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(a) Spin vector dynamics with sech pulse
detuned by 0,0.2,0.6 (blue,red,green)
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(b) Spin vector dynamics with sech
pulse detuned by 0,1,2 (blue,red,green)

2.3.3 Three level system

Going beyond the two-level system, three-level systems are used in QDs
to study spin-photon entanglement or optical control.[4] In semiconductor
quantum dots the most common example of the three-level Λ system consists
of the Zeeman-split states of an excess electron in the QD as ground states
and a trion as the excited state. If we apply an in-plane magnetic field we
will take advantage of both transitions due to the symmetry breaking.

We can study the dynamics of the three-level system as in the case of
the two-level system. We define the Hamiltonian of the three-level system
with two E/M laser pulses. In the semiclassical approach, we assume a Λ
three-level system.

H = ~ω1 |1〉 〈1|+ ~ω2 |2〉 〈2|+ ~ω3 |3〉 〈3|+
Ω1e

iωat |1〉 〈3|+ Ω∗1e
−iωat |3〉 〈1|+ Ω2e

iωbt |2〉 〈3|+ Ω∗2e
−iωbt |3〉 〈2|

Supposing that the excited state is zero and going in the rotating wave
approximation we get:

ċ1 = −iω1c1 + iΩ1(t)eiωatc3

ċ2 = −iω2c2 + iΩ2(t)eiωbtc3

ċ3 = +iΩ∗1(t)e−iωatc1 + iΩ∗2(t)e−iωbtc2(t)

(2.3.8)

In the rotating frame:

|Ψ(t)〉 = c̃1 |1〉+ c̃2 |2〉+ c3 |3〉 where c̃1 = c1e
−iωat and c̃2 = c2e

−iωbt (2.3.9)
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So the equations (2.3.8) are described as following:

˙̃c1 = −i∆1c̃1 + iΩ1(t)c3

˙̃c2 = −i∆2c̃2 + iΩ2(t)c3

ċ3 = +iΩ∗1(t)c̃1 + iΩ∗2(t)c̃2

For square pulse: ˙̃c1

˙̃c2

ċ3

 = −i

 ∆1 0 −Ω1

0 ∆2 −Ω2

−Ω∗1 −Ω∗2 0

c̃1

c̃2

c3


The upper 3 × 3 matrix is the Hamiltonian of the system. We diagonalize
it in order to investigate the dynamics of the three-level Λ system. We
assume exact resonance and we solve the eigenvalue problem with the initial
condition cg(0) = 1. For eigenvalues:

λ(−λ2+(|Ω1|2+|Ω2|2)) = 0⇒ λ = 0 or λ = ±Ω̃, where Ω̃ =
√
|Ω1|2 + |Ω2|2

(2.3.10)
Finding the eigenvectors and going to the dressed state picture we get:

c1(t) =
|Ω1|2

Ω̃2
cos Ω̃t+

|Ω2|2

Ω̃2
(2.3.11)

c2(t) = −2
Ω∗1Ω2

Ω̃2
sin2(

Ω̃t

2
) (2.3.12)

c3(t) =
iΩ∗1
Ω̃

sin Ω̃t (2.3.13)

(2.3.14)

For non resonant square pulses with same detuning(∆ = ∆1 = ∆2) we
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get the following answer for the amplitudes of the wavefunction:

c1(t) = e−i∆t/2[
i∆

4
√

Ω̃2 + ∆2/4
sin

(√
Ω̃2 + ∆2/4 t

)
+
|Ω1|2

Ω̃2
cos

(√
Ω̃2 + ∆2/4 t

)
]

+
ei∆t|Ω2|2

Ω̃2

c2(t) = e−i∆t/2[
i∆Ω2

4Ω1

√
Ω̃2 + ∆2/4

sin

(√
Ω̃2 + ∆2/4 t

)
+

Ω2

2Ω1

cos

(√
Ω̃2 + ∆2/4 t

)
]

− Ω2e
i∆t

2Ω1

c3(t) =
i|Ω1|2e−i∆t/2

Ω1

√
Ω̃2 + ∆2/4

sin

(√
Ω̃2 + ∆2/4 t

)

The upper procedure can be used for examining other types of pulses and
different detunings in the system.
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3 Entanglement in QDs

Entanglement is essential for quantum technologies. There are a couple of
ways to generate entanglement in quantum dots. In this chapter, we will
study spin-photon entanglement that is crucial for various applications.

3.1 Spin-photon Entanglement

After studying the dynamics of the three-level system driven by a semiclas-
sical field (square pulses), we will get into the quantized E/M field that can
explain the entanglement between the spin of the QD and the photons.

The spin-photon entanglement takes advantage of the solid-state system
of the QD and its fast recombination rates. Due to the QDs’ rates, the qubits
recombine and emit single photons to end up with an entangled state. To
understand this type of single-photon source, we will investigate the photon
degree of freedom with the quantization of the electromagnetic field.

3.1.1 Entanglement protocol

The entanglement between spin and photons starts with an electron in the
conduction band.
1) After the in-plane application of the magnetic field, the symmetry breaks.
2) A fast π pulse is applied to transfer the population from ground states to
excited states, trion state.
3) Finally, due to the fast recombination rate, the trion state relaxes to
the electron states with an emitted photon. We know that this operation
produces a highly entangled state between the spin and photon degree of
freedom.

The Hamiltonian of the problem consists of a three-level system, a pulse,
and a quantized electromagnetic field.

H = HQD +Hpulse−QD +HquantizedE/M+coupling (3.1.1)

The protocol starts with the vacuum field and the equal superposition of
ground states. Then the pulse hamiltonian takes place. Finally, the photon
due to relaxation entangles with the spin of the QD with a CZ gate. The
initial state for our system is Ψinitial = 1√

2
(|1〉+ |2〉)⊗ |0v〉 where |0v〉 is the

vacuum quantized E/M field. After the application of the pulse the state is
Ψafter = |3〉⊗|0v〉. Finally, the system relaxes to the ground states emitting a
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photon with horizontal and vertical polarization. So the final state is defined
as :

Ψ =
1√
2

(|1〉 ⊗ |H〉+ |2〉 ⊗ |V 〉) (3.1.2)

where |H〉 = a†H |0v〉 , |V 〉 = a†V |0v〉 . The operator a†H,V is the creation of
photon in the horizontal and vertical mode respectively. The upper state is
entangled as long as there is no way to be written in a separable form.

So it is clear that it produced an entangled state between spin and photon.
To identify how good is the entanglement we measure the fidelity of the
entangled gate between spin and photon.

3.1.2 Results

The spin degree of freedom becomes entangled with the photon’s polarization
in a GHZ state(1.3.4). GHZ state is the local equivalent to a two-qubit cluster
state. We assume that our photon is stored in a cavity or a fiber that has
coupling g ≈ µeV .
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Figure 19: Fidelity of CZ gate with spin-photons
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3.2 Multipartite Entanglement using QDs

Multiphoton entanglement is generated with a photonic machine gun.[12, 20]
The protocol consists of a periodical pumping of the population in ground
states to excited states through a pulse train. The repeated pumping will
generate one photon in each cycle with specific polarization modes that are
entangled with the spin degree of freedom. In this way, we can continue the
process to end up with lots of entangled photons entangled with the spin.
This protocol can produce the famous GHZ state of photons.(1.3.4)

Multi-QDs entanglement

Instead of using photons for entanglement, there is a possibility of pro-
ducing the well-known spin-spin entanglement between coupled quantum
dots. This type of entanglement is well studied in the quantum electron-
ics regime with gated quantum dots.[21, 22, 23] The use of spin-spin en-
tanglement with coupled dots and spin-photon entanglement with periodical
pumping can generate 2d cluster states which are capable of universal quan-
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tum computing.[12, 24]

4 Entanglement Purification

After the generation of photonic cluster states with semiconductor self-assembled
quantum dots, we can use them for quantum computation.

However, the entanglement that is generated in experiments is weak. For
instance, to generate a cluster state we perform CZ gates between the qubits.
Although in experiments, the generation of the cluster state may be impre-
cise. Instead of the application of the CZ gate, Cphase(1.3.3) gates appear.
These gates will not generate a cluster state but a state with weaker entan-
glement between nodes due to the Cphase gate. So we have to purify the
state to obtain the highly entangled state.

The two-qubit gates which perform the entanglement must be close to the
ideal case. There are different ways to make highly entangled states. Lots
of quantum error-correcting codes exist that consume redundant qubits to
create states of fewer qubits that are closer to perfect entangled states.[25, 26]

On the other hand, there is entanglement purification[27] that uses LOCC
and produces higher entangled states using weaker entangled states. The
simplest example is purifying a bipartite system. To produce a Bell state,
we make LOCC in weak two-qubit entangled states. In the following section,
we will see how it is possible to generate them.

4.1 Bipartite system

4.1.1 Bennett et al. protocol

In 1995, Bennett et al.[28] proposed a way to distill a two-qubit entangled
state from two weak entangled states. The steps of the protocol are the
following:
1)Generate two partially entangled states between Alice and Bob.
2)Make local operations and transfer each state to Werner state.(4.1.2)
3)Make bilateral CNOT(1.3.2) operators in Alice’s qubits and Bob’s qubits
respectively.
4)Measure one qubit of Alice and Bob.
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Figure 21: Bennett et al. protocol

If the measurements coincide (00 or 11) then we can iterate the protocol.
The iterations will increase our fidelity with the entangled state of the un-
measured qubits. If the measurements are different the unmeasured state is
discarded.

After the creation of the partially entangled states, the following step
is to produce a Werner state. We start by producing the bipartite system
in the diagonal Bell basis by applying the stabilizer operators of Bell states
probabilistically. After applying the stabilizer operators, we get the desired
diagonal density matrix in Bell basis.

ρbell = p0

∣∣Ψ+
〉 〈

Ψ+
∣∣+ p1

∣∣Ψ−〉 〈Ψ−∣∣+ p2

∣∣Φ+
〉 〈

Φ+
∣∣+ p3

∣∣Φ−〉 〈Φ−∣∣ (4.1.1)

where pi are real numbers that satisfy the relation
∑3

i=0 pi = 1.

To further depolarize the state we apply random unitary gates and Hadamard
gates in a specific way to get to a Werner state. Mathematically speaking a
Werner state is :

ρwerner = p0 |Ψ〉 〈Ψ|+ p1IAB (4.1.2)

where |Ψ〉 is one of the Bell states (Ψ+,−,Φ+,−) and IAB is the 4x4 identity
matrix for the bipartite system.

Specifically for creating a Werner state the first step is to apply a random
unitary matrix U to Alice’s qubits. After that, we apply a Hadamard gate,
the conjugate of the random unitary matrix which was first applied and
finally the Hadamard gate again in Bob’s qubits. The procedure can be seen
in the picture above. In that way, we have the desired Werner state of each
entangled state.[27]

The next step was to apply the local CNOT gates.
We perform CNOT gates for qubits of each observer (Alice and Bob). This
step is crucial because it transforms the information from Ψ states to Φ states
and the fidelity is getting higher.
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Finally, Bob measures one qubit and Alice another one. If the measure-
ments are the same, the state of the unmeasured qubits is kept, otherwise is
discarded.

4.1.2 Deutsch et al. protocol

Deutsch et al. in 1996[29] proposed a protocol that can create Bell states
without applying random unitary gates and stabilizer operators.

Instead of producing a Werner state as in the Bennett et al. protocol,
we apply specific operations to Alice’s and Bob’s qubits. We perform an
Rx(π/2) rotation for Alice qubits and its adjoint Rx(−π/2) rotation to Bob
qubits instead of transforming our entangled state into Werner state. The
other steps are identical to the Bennett et al. protocol.[28]

It is pretty straightforward to see how our state is changed through this
protocol. We begin with two partially entangled states

|Ψ1〉 |Ψ2〉 = (a |0A0B〉+ b |1A1B〉) (c |0A0B〉+ d |1A1B〉). (4.1.3)

To simplify the calculations we assume that a = c and b = d which means
that we begin with two identical entangled states. We perform the operation
Rx(π/2) for Alice’s qubits and the adjoint one for Bob’s qubits.

|0A〉 →
|0A〉 − i |1A〉√

2
|1A〉 →

|1A〉 − i |0A〉√
2

|0B〉 →
|0B〉+ i |1B〉√

2
|1B〉 →

|1B〉+ i |0B〉√
2

After performing this step we can apply the CNOT gates for Alice’s and
Bob’s qubits. About Bob’s qubits, we apply the CNOT gate with control
and target qubits with swapping roles.

|00A〉 → |00A〉 , |00B〉 → |00B〉
|01A〉 → |01A〉 , |01B〉 → |11B〉
|10A〉 → |11A〉 , |10B〉 → |10B〉
|11A〉 → |00A〉 , |11B〉 → |01B〉

We take the adjoint of the state to get the full matrix of the two entangled
states. After that, we trace out to take the information for the unmeasured
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subsystem.

ρ =
(a+ b)4

4

∣∣Φ+
〉 〈

Φ+
∣∣+

(a2 − b2)2

4

∣∣Ψ−〉 〈Ψ−∣∣
+

(a2 − b2)2

4

∣∣Φ−〉 〈Φ−∣∣+
(a− b)4

4

∣∣Ψ+
〉 〈

Ψ+
∣∣

Taking advantage of the upper equation we can compute our new fidelity.
After some iterations, the state of the unmeasured qubits reaches the Bell
state. We will study the reachable fidelity and how the initial fidelity is
increased after each iteration.

(a) Purification of a two-qubit entangled state us-
ing two identical partially entangled states of ini-
tial fidelity 0.5, 0.6, 0.7, 0.8, 0.9 (blue, green, red,
yellow, purple line) .
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Figure 22: Final fidelity with Deutsch et al. protocol.

Bipartite purification with noisy operations

After studying the whole protocol, we can see the crucial usage of one and
two-qubit operations to purify one entangled state. In experiments, there
are errors between qubit gates. In the following figures, we will assume that
each qubit gate can be a depolarizing channel of probability p.

The depolarizing channel for each qubit gate is defined as :

E(ρ) = (1− p)ρ+ p
I

2
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We use the Deutsch et al. protocol with single error gates and we get the
maximum fidelity that can be reached.
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Figure 23: Fidelity of state after purification with noisy operations.

4.1.3 Comparison between Deutsch et al. and Bennett et al. pro-
tocols

The Deutsch et al. protocol is efficient. There is no need to go to the Werner
state through applications of random unitary gates. The output fidelity in
Bennett et al. protocol is well established.[27]

F ′ =
F 2 + (1− F )2/9

F 2 + 2F (1− F )/3 + 5(1− F )2/9
(4.1.4)

We found the output fidelity in Deutsch et al. protocol and we compare it
with the Bennett et al. protocol.
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Figure 24: Output fidelity after iterating the protocol once with initial fi-
delity.

The output fidelity in the Deutsch et al. protocol is higher than the
Bennett et al. protocol. So, the specific operations in the Deutsch et al.
protocol are more efficient for the asymptotically perfect fidelity.

4.2 Multipartite system

In multipartite systems, the process of entanglement purification is a little
bit trickier. There is no way to apply specific operations like in the Deutsch
et al. protocol, so we adapt the Bennett et al. protocol for multipartite
systems. [27, 30, 31, 32, 33]

The protocol is an extended version of Bennett et al. protocol with mul-
tipartite entangled states. Steps for the purification of multi-qubit entangled
states:
1)Create two weak multi-qubit entangled states with the same fidelity.
2)Apply probabilistic stabilizer operators in each entangled state.
3)Apply the local CNOTs between qubits of the same group.
4)Measure the qubit of the one weak multi-qubit entangled state.

If
∑N

i Mi ⊕ 2 = 0, where the outcomes of the measurement operators
are Mi, we keep the unmeasured state, otherwise we discard it. Now we will
present the quantum circuits and the improved fidelities for famous multi-
qubit entangled states. The expansion to entangled states with more qubits
is pretty straightforward.

4.2.1 Purification with identical copies

The traditional protocol for purifying a graph state uses two identical copies
of the graph.

Suppose we begin with two partially entangled graph states. We apply
the stabilizer operators of the state in a probabilistic way and we end up
with a state that is diagonal on a graph state basis. After the application of
stabilizers, we perform the CNOT gates between qubits of the same group.
For qubits that belong on another group of vertices, we apply CNOT gates
swapped, assuming that the control qubit belongs to the second state and
the target in the first one.
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Figure 25: Schematic for the applied CNOT gates in a graph state[27].

Specific examples of purification of multipartite systems can be seen in the
following figures.

(a) Quantum circuit for
purifying GHZ states[31]

(b) Quantum circuit for
purifying cluster states[31]

The stars in the upper figures denote the partially entangled states and
the measurements are on an X and Z basis. The protocol is a probabilistic
application of P1 and P2 subprotocols. The P1 purifies the entanglement for
the first qubit in the weak entangled state and the P2 purifies the entan-
glement connection between the other qubits. Now we will use this type of
quantum circuit. We will produce the post-distillation for the GHZ states
consuming a weak GHZ state after every iteration.

Except for the creation of GHZ state, cluster state purification is impor-
tant for measurement-based quantum computation. The protocol is identical
to the GHZ state.

After the GHZ and the cluster state protocol, we can apply these oper-
ations to another graph state as long as the initial entangled states are the
same. The measurements on the qubits of the first graph will purify and
increase the entanglement between the qubits of the second one. The errors
in multipartite systems are more common than in bipartite systems. Noisy
operations are more likely to be present in multi-qubit states than in the
bipartite state.
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(b) Purification protocol using two partially en-
tangled states with initial fidelities 0.61, 0.71,
0.81, 0.89 (red, green, blue, yellow line) to reach
a four-qubit cluster state

4.3 Purification of two-qubit states after measurements

The following work is original and produces new knowledge about the pu-
rification of two-qubit states using measurements. We start with a partially
entangled multi-qubit state that is close to a linear cluster state and we per-
form measurements in the middle qubits to get a highly entangled state of
the end qubits.

Highly entangled states are difficult to create. In experiments, there is a
high probability of creating Cphase gates instead of the CZ gates. A single
QD can generate a Cphase gate with photons[34, 35]. Time-bin entangled
photons[36] is another example for generating entanglement through Cphase
gates. However, Bell states are essential for the creation of the quantum
network.[37]

First, we initialize our protocol with a linear state of three or more qubits
that are connected via Cphase gates. Graphs created using Cphase gates are
called weighted graphs.[6] We perform X basis measurements on the middle
qubits and measure the entanglement of the two end qubits that remain
unmeasured.

The X basis measurements purify the system of the two end qubits and
the final two-qubit state of the unmeasured qubit can become a Bell pair. We
will investigate the three, four, and five-qubit cases and see the purification
of the unmeasured qubits concerning the θ angle of Cphase gates.
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Figure 28: Schematic for the general protocol

After the X measurements we purify the state of the first and the last qubit
and we measure the concurrence.

Figure 29: Concurrence of the two end qubits after the X measurements of
the middle ones.

It seems that in the case of an even number of qubits in an entangled
state if we measure the middle qubits there is no purification. However, in
the case of three and five qubits, measuring in the X basis the middle qubits
increases the entanglement of the two-qubit state maximizing the concurrence
for nonideal entangling gates.

We try the star graph and purify its two qubits after applying X basis
measurements to the other ones.
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Figure 30: Schematic for the star graph.

In the star graph with Cphase gates between qubits, there is no purifica-
tion as the system grows. The purification takes place for a specific part of
the angle in the Cphase gates.

Figure 31: Concurrence of the two qubits after X measurements of the other
ones in the star graph.

Understanding how to extract smaller multipartite states of higher entan-
glement out of larger weighted graphs is a topic of fundamental and practical
interest, which we are investigating in ongoing work.
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5 Conclusions

Self-assembled semiconductor quantum dots are single-photon sources and
promising candidates for the generation of photonic entanglement. They can
create photons that can become entangled with the spin qubits of the QD.
These entangled states can be made deterministically by using pulses and
a fiber to store the photons. By performing a periodic train of pulses to
manipulate the spin qubit in the QD, we can emit photons that can become
entangled with the spin of the QD.

However, there is a possibility of creating a partially entangled state if
the operations (pulses) are induced to errors and are imperfect. In this
case, we can use an approach of quantum information science to increase
the entanglement. The application of local operations and two-way quantum
communication is enough to purify our entangled state. Photonic entangled
states and the idea of entanglement purification are well-known in quantum
networks with the use of quantum repeaters.[38, 39, 40]
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