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Abstract  
 

Neonatal seizures are a condition happening in early childhood years and it is accounting for 

several deaths and severe problems on newborn neonates. Despite the early advancements 

on the treatment of this condition, the main problem concerning the physicians is the 

difficulty to identify and characterize a seizure, as one a small percentage gets detected in 

neonatal intensive care units (NICU). Multi-channel EEG signal analysis is the gold standard 

for seizure detection. However, the interpretation of such signals presents a great challenge, 

since only experienced pediatric neurologists who have emphasized in neonatal EEG analysis 

can perform this task. Machine learning methods can become a useful tool in the 

interpretation of EEG signals and in the assignment of seizure classification and regression 

tasks.  

Various studies exist in the literature that have also employed supervised machine learning 

methods for neonatal seizure classification. However, an important step before proceeding 

with seizure classification, is rejecting the multiple artefacts that exist throughout the whole 

EEG signal. Especially in neonatal EEG analysis, where there are more artifacts compared to 

adult EEG signals, further steps of preprocessing need to be considered. 

In our study, we included an extra step, besides the basic frequency filtering steps proposed 

in the literature, of a signal decomposition to its independent signal sources, by using 

independent component analysis (ICA). This way, and by computing some statistical 

measures as thresholds for component rejection, we managed to isolate the independent 

noise sources that were present throughout the whole frequency spectrum and reject them 

upon confirming their noisy nature.  

Having artefact-free signal sources, we performed wavelet analysis to extract features both 

in time and frequency domain, which would serve as classifiers for the supervised 

classification models. The basic brain rhythm frequency bands were extracted, along with 

some additional statistical measures, as suggested by the literature. 

Two seizure classification models were trained on two-class labeled datasets, containing 

seizure and non-seizure windows. An SVM and a random forest classifier were cross 

validated and used for the classification step and the features were finally reduced by 

performing feature selection to remove the redundant ones. The whole process was 

repeated in four different trials, where seizure and non-seizure windows of varying length 

were used to observe the impact of the different window size on our models. 

Both classification models were tested on independent datasets and yielded great accuracy 

scores of more than 82% for SVM and more than 95% for random forest. This thesis 

contributes two classification models for neonatal seizure detection, as well as six selected 

features (delta_meanEnergy, gammaLow_meanEnergy, gammaHigh_meanEnergy, 

Shannon_entropy, Renyi_entropy and Kurtosis) which yielded high accuracy scores. 
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The importance of thorough artefact rejection is discussed, as well as the differences 

between the two classification models and the impact of the varying window size on their 

performance. 
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Περίληψη 
 

Τα επιληπτικά επεισόδια νεογνών είναι μια κατάσταση που εμφανίζεται στα πρώτα 

παιδικά χρόνια και ευθύνονται για αρκετούς θανάτους και σοβαρά προβλήματα σε 

νεογέννητα βρέφη. Παρά τις τελευταίες εξελίξεις στη θεραπεία της πάθησης, το κύριο 

πρόβλημα που απασχολεί τους γιατρούς είναι η δυσκολία εντοπισμού και χαρακτηρισμού 

ενός επεισοδίου, καθώς ένα μικρό ποσοστό ανιχνεύεται σε μονάδες εντατικής θεραπείας 

νεογνών (NICU). Η ανάλυση σήματος EEG πολλαπλών καναλιών είναι η βασικότερη 

μέθοδος ανίχνευσης επιληπτικών κρίσεων. Ωστόσο, η ερμηνεία τέτοιων σημάτων αποτελεί 

μεγάλη πρόκληση, καθώς μόνο έμπειροι παιδονευρολόγοι με εξειδίκευση στην ανάλυση 

ηλεκτροεγκεφαλογραφήματος νεογνών μπορούν να κάνουν αυτήν την εργασία. Οι μέθοδοι 

μηχανικής μάθησης μπορούν να γίνουν ένα χρήσιμο εργαλείο στην ερμηνεία των σημάτων 

EEG και ταξινόμηση / πρόβλεψη αν αναφέρονται σε επιληπτικό επεισόδιο. 

Υπάρχουν διάφορες μελέτες στη βιβλιογραφία που έχουν επίσης χρησιμοποιήσει 

μεθόδους μηχανικής μάθησης για την ταξινόμηση των κρίσεων νεογνών. Ωστόσο, ένα 

σημαντικό βήμα πριν προχωρήσουμε στην ταξινόμηση των επιληπτικών κρίσεων, είναι η 

απόρριψη των πολλαπλών πηγών θορύβου που υπάρχουν σε ολόκληρο το σήμα EEG. 

Ειδικά στην ανάλυση EEG νεογνών, όπου υπάρχουν περισσότερες πηγές θορύβου σε 

σύγκριση με τα σήματα EEG ενηλίκων, πρέπει να ληφθούν υπόψη περαιτέρω βήματα 

προεπεξεργασίας. 

Στη μελέτη μας, συμπεριλάβαμε ένα επιπλέον βήμα, εκτός από τα βασικά βήματα 

φιλτραρίσματος συχνότητας που προτείνονται στη βιβλιογραφία, μιας ανάλυσης σήματος 

στις ανεξάρτητες πηγές σήματος του, χρησιμοποιώντας ανάλυση ανεξάρτητων πηγών (ICA). 

Με αυτόν τον τρόπο, και υπολογίζοντας ορισμένα στατιστικά μέτρα ως κατώφλια για την 

απόρριψη πηγών θορύβου, καταφέραμε να απομονώσουμε τις ανεξάρτητες πηγές 

θορύβου που υπήρχαν σε όλο το φάσμα συχνοτήτων και να τις απορρίψουμε 

επιβεβαιώνοντας τη θορυβώδη φύση τους. 

Έχοντας πηγές σήματος χωρίς θόρυβο, πραγματοποιήσαμε ανάλυση wavelets για να 

εξαγάγουμε χαρακτηριστικά τόσο στο πεδίο του χρόνου όσο και της συχνότητας, τα οποία 

αξιοποιήθηκαν ως classifiers για τα μοντέλα ταξινόμησης. Εξήχθησαν οι βασικές ζώνες 

συχνοτήτων του εγκεφαλικού ρυθμού, μαζί με ορισμένα πρόσθετα στατιστικά μέτρα, όπως 

προτείνεται από τη βιβλιογραφία. 

Δύο μοντέλα ταξινόμησης επιληπτικών κρίσεων εκπαιδεύτηκαν σε σύνολα δεδομένων δύο 

τάξεων, που περιείχαν παράθυρα με επεισόδιο και χωρίς. Ένας SVM και ένας Random 

Forest αξιολογήθηκαν και χρησιμοποιήθηκαν για το βήμα ταξινόμησης και τα 

χαρακτηριστικά μειώθηκαν τελικά μέσω του βήματος της επιλογής χαρακτηριστικών 

(feature selection) για την αφαίρεση των περιττών χαρακτηριστικών. Η όλη διαδικασία 

επαναλήφθηκε σε τέσσερις διαφορετικές δοκιμές, όπου χρησιμοποιήθηκαν παράθυρα με 

επεισόδια και μη, σπασίματος διαφορετικού μήκους για να παρατηρηθεί ο αντίκτυπος του 

διαφορετικού μεγέθους παραθύρου στα μοντέλα μας. 
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Και τα δύο μοντέλα ταξινόμησης δοκιμάστηκαν σε ανεξάρτητα σύνολα δεδομένων και 

κατάφεραν να πετύχουν ποσοστά επιτυχίας άνω του 82% για το SVM και άνω του 95% για 

τον RF. Αυτή η διατριβή συνεισφέρει δύο μοντέλα ταξινόμησης για την ανίχνευση κρίσεων 

νεογνών, καθώς και έξι επιλεγμένα χαρακτηριστικά (delta_meanEnergy, 

gammaLow_meanEnergy, gammaHigh_meanEnergy, Shannon_entropy, Renyi_entropy και 

Kurtosis) τα οποία πέτυχαν υψηλά ποσοστά επιτυχίας. 

Σχολίαζεται επίσης η σημασία της επισταμένης απόρριψης ανεξαρτήτων πηγών θορύβου, 

καθώς και οι διαφορές μεταξύ των δύο μοντέλων ταξινόμησης και ο αντίκτυπος του 

ποικίλου μεγέθους παραθύρου στην απόδοσή τους. 
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Chapter 1: Introduction 
 

Seizures in childhood is a major unsolved problem which affects a big percentage of 

neonates born (1,8-3,5/1000 in the United States). It appears that there is a greater risk for 

seizure during the neonatal period. Despite the existing treatment of phenobarbital, recent 

studies suggest that we cannot be sure for the use of anticonvulsants in the neonatal 

period. (Silverstein, 2007) 

Although there have been advancements in neonatal seizure treatment, another serious 

problem is that we can only identify about one third of the occurred seizures, while the 

other cases remain undetected in Neonatal Intensive Care Units (NICU). (Temko, 2014) 

The only available method for neonatal seizure detection that has been used till today, is 

studying of multichannel EEG signals. The interpretation of these signals cannot be 

performed by any physician, but only by experienced pediatric neurologists with expertise in 

neonatal EEG. These experts can annotate the parts of the signal where a seizure occurred, 

by evaluating the frequency and the amplitude of each channel. (Temko, 2014) 

To tackle this problem of limited availability of experts in neonatal EEG interpretation, 

different methods have been developed. Amplitude integrated EEG (aEEG) is one of these 

methods, which involves a simpler form of EEG monitoring. It is computed from two EEG 

channels, each one taken from each hemisphere, and it is a logarithmically scaled, 

compressed, and temporally smoothed version of the EEG. These EEGs also need to be 

interpreted by neurologists, possibly with less expertise in neonatal seizure detection. 

(Temko, 2014) 

As an alternative to aEEG, many studies exist on the development of algorithms to 

automate the detection of neonatal seizures on multichannel EEGs. Various methods have 

been proposed, but there are some limitations blocking their transition to clinical use. The 

first limitation is the proof of concept, because it contains specific targeted segments of the 

EEG signal. In addition, the training and testing data are unrealistic, since they have been 

carefully selected as subsets of the whole signal, based on their performance, rejecting the 

bad performing channels or signal segments. Lastly, algorithm provided diagnosis or 

prognosis is currently unacceptable from the clinical settings. (Temko, 2014) 

While these factors act as a barrier for developing algorithms as the only tool for seizure 

detection and prognosis, they do not prevent them for acting as a useful tool set for 

neurologists, who can use them as a complementary tool, before they come up with their 

verdict on seizure characterization. 

There are two major approaches in neonatal seizure detection. The first creates a set of 

heuristic riles and then decides by thresholding from clinical prior knowledge. The resulting 

features can contribute to a decision which is made by implementing empirically derived 

thresholds, resulting to binary classification decisions. (Celka, 2002) 
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The second approach focuses on inductive learning by utilizing statistical classifier methods 

or model-based parameterization. These methods are used in the stages of feature 

extraction, in order to determine the features that will be used as classifiers, using a data-

driven decision rule. (Aarabi, 2007) 

 

Thesis contribution 
 

As mentioned before, an automated neonatal seizure detection algorithm cannot be solely 

used as a detection method, but it has been proven to be a useful tool in assisting the 

clinician with their verdict. Our study contributes two machine learning methods which will 

be used for neonatal seizure detection, on independent data. Despite the many years of the 

involvement of machine learning in various fields of medicine, only a small number of 

algorithms has been developed for seizure detection in neonates. (SR, 2016) This is due to 

the difficulty of signal acquisition in neonates, since they tend to make a wide range of 

different movements. Thus, some unusual repetitive spikes in the signal might be 

misinterpreted as seizure, making it challenging for the clinicians to give an accurate 

diagnosis. (Minetti, 2020) 

Taking into consideration the later, we try to tackle this problem by implementing analytical 

signal preprocessing before we proceed with the seizure detection algorithms. 

In a nutshell, our approach contains the following steps, which are analytically described in 

Chapter 3. We start by preprocessing the signals, by implementing filtering in time-domain, 

and using independent component analysis (ICA) for artifact removal. We then proceed with 

feature extraction, using wavelet analysis (both in time and frequency domain), which 

results to a set of computed features. These features are used as classifiers in the 

classification step, where we train an SVM and a Random Forest classifier for the 

classification of the signals. Lastly, we perform feature selection, using the maximum 

relevance- minimum redundancy algorithm, to result to a lower dimension feature space 

with the best scoring features. The models are cross validated and tested on independent 

datasets. 

 

Thesis overview 
 

Chapter 2 describes the necessary background for this thesis. Signal preprocessing, ICA, 

statistical metrics, and machine learning methods used for this study are extensively 

described. The related work is also discussed and how this contributes to the literature. 

Chapter 3 we describe in detail the research methodology, and we present our work and 

our models’ implementation from a technical point of view, explaining all the steps that 

were followed during the study. In Chapter 4 we present the results of our proposed 
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models. Finally, in Chapter 5 we discuss the results of this thesis and in Chapter 6 we suggest 

some possible future research enhancements and directions. 

 

 

Chapter 2: State-of-the-art 

Preprocessing 
 

One of the greatest challenges in signal processing is the existence of noise and artifacts. 

These artifacts may include instrumental noise, environmental noise, or powerline noise 

(introduced by the network). Especially in EEG signals, the challenge is greater, since the 

signal is also mixed with artifacts from muscle activity, heart activity, eye movement or 

blinking. During an EEG recording, the patient needs to stay still and try to make the less 

possible moves in order to minimize the inserted noise. The case is different with neonates, 

where it becomes a greater challenge to hold the neonate still during the recording. 

(Cheveigné, 2019) 

Thus, a preprocessing step appears to be crucial in order to reduce the added noise from 

the previous various sources and increase the signal to noise ratio (SNR). 

Digital filtering is a widely used preprocessing step when working with EEG data. The typical 

practice is to first apply low pass filtering to filter out high frequencies that may be 

correlated with a spike (noise) (usually greater than 50 Hz).  Low pass filtering is also applied 

to remove slow frequencies that contain a great amount of random, such as baseline 

changes and artifacts. (Awnish Kumar, 2020) (usually less than 1Hz).  

For both high pass and low pass filtering, we used zero phase finite impulse response filters. 

As a general definition, a filter is a function  

A zero-phase filter is a subcategory of linear phase filters, where the phase slope is zero, 

resulting an even impulse response h(n). ℎ(𝑛) = ℎ(−𝑛), 𝑛 ∈ 𝑍 

Zero phase filtering with IIR filters is achieved with forward-backward filtering, as 

implemented in Matlab's filtfilt function. The resulting total frequency response is the 

squared magnitude of the original IIR filter's frequency response. Since the squared 

magnitude is real-valued, the resulting filter is a zero-phase filter. 

 

A FIR of order N, is described by: 

𝑦[𝑛] = ∑ 𝑏𝑖  𝑥[𝑛 − 𝑖]

𝑁

𝑖=0
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Where x[n] is the input signal, 

Y[n] is the output signal, 

N is the filter order, 

bi  is the value of the impulse response at the i'th instant for 0 ≤ 𝑖 ≤ 𝑁 of an Nth -order FIR 

filter. 

 

Next, we also have to reject the powerline noise which is inserted by the network. The best 

practice to remove noise of a specific frequency range, is to use a band reject filter. The 

powerline interference is analyzed in a narrow band (48-52) of harmonic signals. In order to 

remove this narrow band of frequencies, we can use a highly selective notch filter, at a 

specific frequency. (Verma, 2015) 

A Notch frequency filter is defined by:  

𝐻(𝑠) =  
𝑠2 + 𝜔𝑧2

𝑠2 + (
𝜔𝑝
𝑄 ) 𝑠 + 𝜔𝑝2

 

where ωz is zero circular frequency and ωp is the pole circular frequency. Zero frequency is 

the cutoff frequency and ωp sets the type of the notch filter: standard notch when ωz = ωp, 

low-pass notch (ωz > ωp) and high-pass notch (ωz < ωp) filters. Q denotes the Q-factor.  

 

Independent Component Analysis (ICA) 
 

Independent component analysis (ICA) is one of the most commonly used techniques for 

blind source separation. It is a real challenge when trying to separate the useful information 

of a signal from the various independent noise sources that are introduced. These noise 

sources can have a great impact on the measured signal. In EEG signals, the main sources of 

noise are muscle and cardiac activity, respiratory activity, and movement artifacts. However, 

while we have managed to remove some noise sources from the signal by applying 

frequency filters and rejecting specific frequency bands, this can not be the case here, as 

these noise sources are spread throughout the whole frequency spectrum. 

Thus, it is crucial to find a technique that can distinct the signal contribution coming from 

unrelated sources, without rejecting the signal parts containing useful information. This 

process of separating mixed signals, is known as blind source separation. One of the most 

common examples to describe the problem of blind source separation, is the cocktail party 

problem. The later, describes the interference of the voice signals of different people 

speaking at the same time, while in a cocktail party. The aim of this problem is to extract the 

original voice of a single person, amongst the mixed signal of different voices and ICA is one 
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of the most commonly used techniques for dealing with this problem. The problem can also 

be described by the following figure. (Tharwat, 2018) 

 

Figure 1: Cocktail Party Problem (Tharwat, 2018) 

 

ICA works by optimizing higher-order statistics (i.e. kurtosis) in order to extract independent 

signal sources. It uses many algorithms such as Infomax, projection pursuit and FastICA. 

These algorithms aim on extracting the independent components by : 

1. Maximization of the non-gaussianity 

2. Minimization of the mutual information 

3. Applying the maximum likelihood estimation method 

The mixture of two different source signals can be described as follows: 

𝑋 = ( 
𝑥1

𝑥2
) = (

𝑎𝑠1 + 𝑏𝑠2

𝑐𝑠1 + 𝑑𝑠2
) = (

𝑎  𝑏

𝑐  𝑑
) (

𝑠1

𝑠2
) = 𝐴𝑠 

Where 𝑋 ∈ 𝑅𝑛 𝑥 𝑁 is the defined space from the mixtures and n is the number of mixtures. 

A is the mixing coefficient matrix, where 𝐴 = (
𝑎  𝑏

𝑐  𝑑
). 

The process of extracting independent signals from the mixture, is by applying the 

abovementioned algorithms and can be also described by the following figure where the 

independent source signals are extracted from two mixture signals, by using the unmixing 

matrix W. (Tharwat, 2018) 
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Figure 2 Unmixing Matrix W (Tharwat, 2018) 

 

Feature Extraction 
 

Multichannel EEG signals contain large amounts of data, coming from different channels 

located throughout the scalp. This makes it impossible to insect and analyze the raw EEG 

data visually. Thus, there is a high demand to extract relevant information from the signal, 

which will give us insights for the evaluation and understanding of the cognitive processes. 

(Amin, 2015)  

Extracting useful information from the signal, is a crucial step in order to proceed to the 

machine learning analysis (classification or regression). The process of feature extraction is 

the link between raw data and machine learning methods, as it creates the input data 

(features) which will be used by the ML models. It goes without saying that the impact of 

this step is crucial to the performance of the classification, since the machine learning 

models depend strongly on the quality of their input data (garbage in → garbage out). 

(Amin, 2015). If the computed features are not directly related to the analysis we are 

interested (in our case seizure classification), the performance results of the classification 

step will not be satisfactory, as they may yield poor classification results, due to the lack of 

strongly related features with the study (Amin, 2015). 

Different approaches exist for feature extraction in EEG signals, with the top performing 

being time domain, frequency domain and wavelet transform analysis. From these three, 

wavelet transform features appear to be more effective, since they tackle better the non-

stationarity of EEG signals, than the compared methods.  

The discrete wavelet transform (DWT), is the most commonly used method when analyzing 

EEG signals, due to its non-stationary characteristics. The DWT uses short duration windows 

for high frequencies and longer duration windows for lower frequencies, which results to a 

good time-frequency analysis. It uses successive high pass and low pass filters of the input 

time series, followed by two down samplers by a factor of 2. The mother wavelet 
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corresponds to the high pass filter g(n), while the low pass filter h(n) is its mirror version 

(Amin, 2015). 

There is a variety of mother wavelets which can be employed, with some of the most 

common being Daubechies wavelet (db4), Morlet, Mayer, Mexicanhat, Gaussian and Haar. 

In our study we chose to work with the Morlet wavelet, as proposed by the bibliography for 

EEG analysis. The Morlet wavelet is a complex exponential which is tuned by a Gaussian 

function which depends on a parameter called “number of oscillations” and is user decided. 

This parameter is determined by the standard deviations σt and σf of the time and frequency 

resolutions respectively. (D’Avanzo, 2009). This wavelet tuneable parameter is tuned for 

each frequency band, in order to achieve better time-frequency resolution. The Morlet 

wavelet can be described by the following equation: 

𝐶(𝛼, 𝜏) = < 𝜒, 𝜓𝛼,𝜏 > =  ∫ 𝑥(𝑡)𝜓 ∗𝑎,𝑡
𝑅

(𝑡)𝑑𝑡 

Where ψ(t) is the mother wavelet, a is the scale, C(α,τ) is the wavelet coefficient and * is the 

conjugate complex operator (D’Avanzo, 2009). 

We considered CWT analysis on all main EEG frequency bands (delta, theta, alpha1, alpha2, 

beta, gamma low, gamma high). On each frequency band, we calculated the mean energy 

and the standard deviation of the wavelet. 

We also added the Shannon entropy, renyi entropy and kurtosis to our features.  

Shannon entropy describes the distribution of signal components and is a widely used 

feature in EEG analysis. Shannon wavelet entropy is the Shannon entropy applied on the 

calculated wavelets and describes the signal variation on different frequency scales. 

Shannon entropy is used to extract the periodicity in the signal, and it has been applied for 

the detection of weak signals in the past. (Ling, 2007) 

Shannon wavelet entropy is described by: 

𝑠𝑠 =  − ∑ 𝑝𝑗

𝑗

𝑙𝑜𝑔𝑝𝑗 

Renyi Entropy mainly serves as an index of diversity. It is an automorphic function and it can 

describe the degree of randomness in a given signal. (Liang, 2015 ) It is described by: 

𝑆𝑎
(𝑅)

=  
1

1 − 𝑎
log[∑(

𝑗

𝑝𝑗)𝑎] 

Kurtosis is the last computed feature that we have included in our study. Kurtosis is a metric 

that can measure the peakyness of the signal. Kurtosis has been related with specific activity 

distributions in EEG signals. It is positive for peaked activity distributions  (i.e. eye blink, 

movement, muscle and cardiac activity) and it is negative for flat activity distributions (i.e. 

flat added noise). (Giuseppina Inuso, 2007) Kurtosis can be described by: 
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𝑘 =  𝑚4 − 3𝑚2
2  

𝑚𝑛 = 𝐸 {(𝑥 − 𝑚1)𝑛} 

Where m1 is the mean and mn is the n-order central moment of the variable (Giuseppina 

Inuso, 2007). 

 

Classification methods 

 

Supervised classification is the process of developing models in order to classify the input 

data to labeled classes. Binary classification is a special case where only two classes exist, 

and the classification problem is transposed to two-class decision. This is the case in our 

study, where we only have two output classes that describe our model’s decision, seizure 

and non-seizure. The trained models undergo a training process, where they are trained 

based on the features of the training dataset and then their accuracy is evaluated against a 

testing dataset. In order to evaluate the performance of the trained models, we also 

compute some additional metric which give further information about the quality of our 

models. The most commonly used metrics are ROC curve, sensitivity (true positive rate), 

specificity (true negative rate) and mean square error (MSE). We included specificity and 

sensitivity in our study, as they give us enough information for the evaluation of our models.  

• Sensitivity, or true positive rate, is defined as the ratio of positive samples that are 

correctly predicted as positive, with respect to all positive data samples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

• Specificity, or true negative rate, is defined as the ratio of negative samples that are 

correctly predicted as negative, with respect to all negative data samples. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

SVM 
 

Support vector machines (SVMs) is the first classification method we used. Support vector 

machine is a powerful tool used for two-class classification and it targeted to be used as a 

non-linear mapping of the input vectors into a high-dimensional feature space. It relies on 

the idea of finding the maximum geometric margin between the two classes. One of the 

simplest types of support vector machines is linear classification, which attempts to set 
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a straight-line separating data with two dimensions. A linear classifier is also referred to as 

hyperplane. Various hyperplanes achieve the same target, to separate the two-class data, 

but only one can achieve the maximum separation. (Pirooznia, 2008) 

The basic principle of the learning procedure in SVM is to find a hyperplane which will 

separate the data into two classes, and then try to maximize the margin between the two 

classes and the separating hyperplane, whilst ensuring the accuracy of correct classification. 

The final binary classifier that is produced, is called optimal separating hyperplane. It does 

not suffer from local optima problem, i.e., it works without a convex optimization problem. 

(Rabia Musheer, 2015) 

In case of linearly separable data, the principle of SVM is described as follows. The main goal 
of the training phase is to find the linear function : 
 

𝑓(𝑥) =  𝑊𝑇𝑋 + 𝑏 
which will be the plane that will divide the data and the space to two different classes 
according to the condition: 

𝑊𝑇𝑋 + 𝑏 > 0  
𝑊𝑇𝑋 + 𝑏 < 0 

 
These functions define the separating plane, and the distance between the two parallel 

hyperplane equals to: 
2

|𝑤||2. This quantity is referred to as the classification margin, as 

described in figure 3.  
 

 
Figure 3: SVM Hyperplane definition 

In order to maximize the classification margin, the algorithm is required to solved the 
following optimization problem: 

• Minimize 
1

2 |𝑤||2 

• Subject to 𝑌𝑖(𝑊𝑇𝑋𝑖 + 𝑏) ≥ 1 
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In case of non-linearly separable data, SVM will have to work with more than two 
dimensions, and therefore will have to map the data from the input space into a high-
dimensional feature space. The classes will then be separated by an optimal hyperplane. 
(Rabia Musheer, 2015) In order to perform this mapping, we will use a function called a 
kernel function. While several kernel functions exist, we decided to work with the 
polynomial, since it yielded the best results. The polynomial kernel is defined as:  

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇 , 𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0 

 
For non-linearly separable data, SVM requires the solution of the following optimization 
problem: 
 

• minimize 
1

2 |𝑤||2
+ 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1  

• Subject to 𝑌𝑖(𝑊𝑇𝑋𝑖 + 𝑏) ≥ 1 −  𝜉𝑖 

• 𝜉𝜄 ≥ 0 
 
The kernel’s goal is to minimize the distance of each sample xi from its center, which is 
achieved by calculating the value weights in each run. The successfulness of SVM strongly 
depends on the choice of the kernel function K, and of course the hyper parameters 
therefore in order to adjust optimally these parameters we should perform a cross-
validation procedure. (Zekic-Sušac, 2014) 
 
 

Random Forest 
 

Random forest is the second machine learning method we used for classification of the two-

class data. Random forest was firstly developed in 2001 and it has proven to be a powerful 

tool with great accuracy scores in classification tasks. Random forest works by utilizing an 

ensemble of classification trees. Input data are bootstrapped and are built into trees, which 

may be built by bagging or random variable selection. A variable candidate set is selected 

randomly at each split, from the whole input dataset. Each tree is grown on different 

random subsamples, ensuring the randomness of the method. In order to have a low bias, 

all trees are fully grown. Low correlation between individual trees is also ensured by both 

bagging and random variable selection. An ensemble forest is produced by averaging the 

large ensemble of high-variance, low-bias and low correlation trees. Thus, the problem of 

overfitting is tackled. 

The algorithm of random forest can be described by the following steps:  

Input: 

 T: Training set (𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛, 𝑦𝑛) 

 Ntree : the number of the built trees 

 Mtry : the number of chosen variables to split at each node 
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Training: 

 for each k in Ntree : 

  create a bootstrap sample from the input training dataset T. 

  at each node of the tree, pick Mtry random variables and decide the 

 best split between these Mtry  variables 

create an unpruned tree from these bootstrapped samples 

 end 

Classification: 

 Use majority voting for classification among the N trees 

 Compute 

 𝑓𝑎𝑣𝑔(𝑋) ≔ (𝑝1(𝑋), … , 𝑝𝑘(𝑋)) ≔
1

𝑁
∑ 𝑓𝑖(𝑋)𝑁

𝑏=1  

 𝑓𝑅𝐹(𝑋) ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑘{𝑝1(𝑋), … , 𝑝𝑘(𝑋)} 

 

An important step which plays a crucial role in achieving the desired performance, is 

parameter optimization in the random forest model. Two major parameters need to be 

decided during the training of the model. The first is the number of trees that will grow on 

each forest (Ntree). The second is the number of variables that will be tried on each split 

(Mtry). The later is a real parameter, meaning that its optimal value is strongly dependent on 

the input data. The square root of the number of variables is often chosen as the default 

value for Mtry. For larger number of candidate classifiers Mtry, it is desired to have a large 

number of trees in the forest Ntree, in order to give enough chances for each classifier to be 

selected. A common approach on deciding a good value of Ntree is gradually increase the 

value of Ntree and stop when the prediction error becomes stable. (Chen, 2013)  

 

Cross Validation 
 

In order to validate our classification methods described earlier, it is necessary to have some 

test datasets, independent from the training datasets, that will be used to measure the 

classification error. However, since our datasets our significantly limited and hard to find, it 

is difficult to obtain independent datasets for testing, or weaken our training datasets by 

keeping out some samples for testing. A technique that will give a solution to this problem is 

K-fold cross validation. K-Fold cross validation also prevents the problem of overfitting in 

our dataset, which happens when the classifiers are computed multiple times from the 

same samples. (Pirooznia, 2008) 
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The concept behind cross-validation is the same as with a single holdout validation set, to 

estimate the model’s predictive ability and performance on unseen data. Its basic principle 

is that it repeats the experiments multiple times by dividing the training dataset in ”V” 

different parts every time, keeping one of them out for validation and using the others for 

learning. It does not require separate test datasets, and it also does not reduce the training 

dataset. The training dataset is partitioned into ”V” smaller datasets, called ”folds”. The 

default number of ”V” is 10. In each repetition, 1 subset is kept out for testing and the 

remaining ”V-1” are used for training. This procedure is repeated ”V” times, resulting to a 

bigger test dataset and taking advantage of the full spectrum of the training dataset. It is 

worth mentioning that cross validation does not prevent overfitting in itself, but it may help 

in identifying a case of overfitting caused by the classification method. (Pirooznia, 2008) 

 

Feature Selection 
 

Feature selection is the process of sub-setting a dataset with relevant and redundant 

features, in order to improve the performance of the classification methods, regarding 

accuracy and time to construct the model. (Aziz, 2017) It differs from the feature extraction 

process, as it selects a subset from already selected features, thus avoiding the drawback of 

the output interpretability. The feature selection methods are classified as filters, wrappers 

and embedded, depending on the methods used to evaluate the feature subsets. (Rabia 

Musheer, 2015) 

 

Filter methods are widely used on gene ranking, as they have computational efficiency. They 

select the best subset by variable ordering, using variable ranking methods, implementing 

heuristic methods. They also use a ranking criterion of statistics, in order to score the 

variables and define a threshold value, discarding the variables under it. Their main 

drawback is that they are independent of the specific required prediction task. That means 

that they will select the features even if the latter don’t fit in the classification model, thus 

making them unreliable. One of the most commonly used filter feature selection method is 

Maximum Relevance Minimum Redundancy (mRMR). (Rabia Musheer, 2015) 

 

Wrapper methods on the other hand, don’t use feature relevant criteria like the filter 

methods. Instead, they depend on the performance of classifiers to obtain a feature subset. 

They use the predictive accuracy of a data mining method, to determine the fitness of a 

selected subset, by integrating the data mining method as a black box. The aim of this 

method is to find the subset with the maximum evaluation, by following a trial and error 

method. This approach forces the method to execute cross validation on small datasets in 

order to find the most accurate estimation, resulting in better overall performance. (Rabia 
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Musheer, 2015) On the downside, wrapper methods are very expensive regarding time and 

computations, when implemented on high dimensional feature space. (Pirooznia, 2008) 

 

The embedded methods were inspired as an attempt to combine the advantages of both 

filter and wrapper methods. Unlike the two previous ones, which separate the feature 

selection and training process, the embedded methods integrate the feature selection 

methods into the construction process of the classifier or regression model. (Rabia Musheer, 

2015) More specifically, embedded methods incorporate the feature selection as a part of 

the training process, while significantly reducing the computational time. The consider both 

relations between input and output features, and also search for features which allow 

better local discrimination. They use the independent statistical criteria used by filter 

methods, in order to obtain the optimal subsets of a known group of classifiers. After that,  

the classification method is used to select the optimal subset among the group of optimal 

subsets produced by the previous step. They can be categorized into three sub methods, 

namely pruning method, built-in mechanism, and regularization models. In the pruning 

method, all features are included in the training process initially, and then the ones with the 

smaller correlation coefficient values are recursively removed (pruned), using an SVM 

algorithm. In the built-in mechanism method, the features are selected by some supervised 

learning algorithms, in the training phase, while in the regularization method, the objective 

functions are used to minimize fitting errors and near zero regression coefficient features 

are eliminated. Various feature selection techniques are suggested in the literature. LLDA 

based Recursive Feature Elimination (LLDA-RFE), kernel-penalized SVM (KP-SVM), 

discriminative least squares regression (LSR), Support Vector Data Description (SVDD) and 

Support Vector Machine - Recursive Feature Elimination (SVM-RFE) are some of the most 

significant ones. Feature selection methods are widely used in EEG signal analysis due to 

their conceptual simplicity. However, as every algorithm, they come with some drawbacks. 

During the feature selection process, many useful features may be rejected, thus resulting in 

loss of useful information, while correlations between variables are not taken into 

consideration. These problems can be overcome by selecting the optimal subsets according 

to a quality criterion instead of filtering out the redundant features. However, these 

methods will not perform as well on independent testing datasets, since they suffer from 

overfitting, and also implement some computational heavy algorithms, which are difficult to 

integrate and interpret. (Aziz, 2017) 

 

Minimum redundancy maximum relevance (mRMR) 
 

The Minimum redundancy maximum relevance algorithm is amongst the best feature 

selection methods for dimensionality reduction, due to its high accuracy. It was firstly 

introduced when trying to tackle the problem of high dimensionality of DNA microarray 

data, where there is a high number of features and a small number of samples. However, 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 23 of 53 

 

the number of features have a strong impact on its computational cost. It comes to tackle 

the problem of machine learning methods poor performance, when faced with many 

irrelevant and redundant features. During the previous years, the mRMR method has gained 

great popularity, despite its computational cost, mainly because of its high accuracy. 

(Ram´ırez-Gallego, 2016). 

The mRMR method works by scaling quadratically based on the number of features and 

growing linearly depending on the sample size. It is worth mentioning that the mRMR has 

been accused of not enclosing conditional redundancy in its computations. However, it has 

been proven that the mRMR offers a great trade-off between stability and accuracy. (Brown, 

2012) 

mRMR ranks the features by their importance for a given classification task. The relevance 

of the features to the target is evaluated, and a penalty is given for each redundant feature. 

Its main goal is to find the maximum relevance between a class c and a feature set X, using 

their mutual information, which is defined as: 

I(A; B) =  ∑ ∑ 𝑝(𝑎, 𝑏)log (
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
)

𝑎∈𝐴𝑏∈𝐵

 

Where p(a) and p(b) are the marginal probabilities and p(a, b) is the joint probability 

between these two features. 

However, applying the mRMR in high dimensional spaces is not an easy task, where the 

samples may be insufficient, and the computational cost may be high. A way to solve this 

problem is by applying the maximum relevance criterion, which searches for the features 

that satisfy the following equation: 

max 𝐷(𝑿, 𝑐); 𝐷 =
1

|𝑋|
 ∑ 𝐼 (𝑋𝑖 ; 𝑐)

𝑋𝑖 ∈𝑋

 

If we only apply the maximum relevance criterion, this will result in a large amount of 

redundancy in our feature set. Thus, the criterion of minimum redundancy also needs to be 

applied, which is defined as: 

min(𝑅(𝑋); 𝑅 =
1

|𝑋|
∑ 𝐼 (𝑋𝑖, 𝑋𝑗)

𝑋𝑖,𝑋𝑗 ∈𝑋

 

The combination of these criteria leads to the mRMR algorithm, which is essentially a 

greedy algorithm, described in the following equation: 

𝑚𝑎𝑥𝑋𝑖∈𝑆 [𝐼(𝑋𝑖; 𝑐) −  
1

|𝑆|
∑ 𝐼 (𝑋𝑖; 𝑋𝑗)

𝑋𝑗 ∈𝑆

] 

Where S is the set of the selected features. (Ram´ırez-Gallego, 2016) 
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Related Work 
 

Seizures in neonates can have serious consequences in the patients. More specifically, they 

may lead to brain injury, deterioration of respiratory or circulatory systems, and in severe 

cases they may result in the death of the patient. (Açikoğlu, 2019) Therefore, the early 

diagnosis and prognosis of neonatal seizures is of crucial importance, in order to improve 

prognosis and long-term impact on the patients. 

In this context, many studies have been implemented which employ machine learning 

methods, as an assistance to the physician for the improvement of accurate seizure 

diagnosis and prognosis.  

It is well established that the gold standard for detecting neonatal seizures is through the 

analysis of EEG signals. (Açikoğlu, 2019) All the studies that we are referencing, have worked 

with EEG signals from neonates. 

Moreover, several studies have shown that the use of support vector machines (SVMs) in 
neonatal seizure classification tasks, yields great results. (Açikoğlu, 2019) uses SVM and KNN 
(k nearest neighbors) for seizure classification, with accuracy scores over 95%. (Raghu S, 
2018) also used SVM (amongst other algorithms) and showed that the SVM outperformed 
the other models. (Siddiqui1, 2020) used SVMs for seizure classification and scored accuracy 
over 95%. (Tanveer, 2021) also used SVMs, managing to outperform several older studies in 
seizure classification accuracy. Finally, Temko et al, in both their studies (Temko, 2011) 
(Temko, 2016) used SVM classifiers and achieved high classification scores. 
 
The use of random forest is also common when dealing with neonatal seizure classification 
tasks. Ensemble trees have been employed by (Siddiqui1, 2020), managing to outperform 
other classification algorithms.  (Tanveer, 2021) also used random forest classifiers for 
training and evaluation and achieved high accuracy scores as well. (Chen, 2013) also used an 
ensemble classifier for neonatal seizure classification, which yielded an accuracy score over 
92%. 
 
It goes without saying that all the above-mentioned studies have used cross validation 
during the training process, in order to avoid overfitting. Again, the gold standard is 10-fold 
cross validation. 
 
Feature selection techniques have also been suggested in the literature, as the demand to 
reduce the irrelevant features appears to be crucial. Many algorithms have been employed 
for the feature selection step, with the most commonly used being Neighborhood 
component analysis (NCA), Infinite Latent Feature Selection (ILFS), Feature Selection via 
Concave Minimization (FSV), Laplacian Score (LS), Multi-Cluster Feature Selection (MCFS), 
Correlation-based Feature Selection (CFS), Unsupervised Feature Selection with Ordinal 
Locality (UFSOL), Least Absolute Shrinkage and Selection Operator (LASSO) and Minimum 
Redundancy Maximum Relevance (MRMR). (Açikoğlu, 2019) (Siddiqui1, 2020) (Temko, 2016) 
also mentions Principal Component Analysis (PCA) as a good method for feature selection in 
seizure classification.  
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In our study, we decided to use the MRMR feature selection algorithm, as suggested by 
(Mohammad Reza Mohammadi, 2016). MRMR is a two-step algorithm, where a set of 
candidate features is selected in the first step and a compact subset of features is selected 
in the second step. As suggested by the literature, the MRMR appears to select the most 
relevant features with great accuracy, as the selected features yielded classification 
performance of 92% (Mohammad Reza Mohammadi, 2016). 
 
Based on these previous studies, we decided the algorithms we are going to use for the 

classification and feature selection steps. However, we spotted that the most challenging 

part in order to achieve good classification results, is feature extraction.  

While several papers exist on classification and feature selection, only a small number of 

studies exists on the steps before classification (data preprocessing and feature extraction). 

Our work was mainly focused on signal preprocessing of the input EEG signals and several 

aspects were considered. The main goal was to properly filter out the artifacts and the 

added noise on the signal, an important step that has a great impact on the classification 

accuracy. This thesis contributes an approach of signal preprocessing steps, each one 

corresponding to different types of noise, as an important step before feature extraction. 

Independent component analysis is also employed to help with artifact rejection, by 

evaluating selected statistical metrics on each component. Since the EEG signals from 

neonates are quite more challenging compared to adult EEG signals, we have focused our 

study on preprocessing the signals optimally and then extracting features by using wavelet 

analysis. 

Our thesis comes to contribute to the literature a pipeline of preprocessing steps, artifact 

rejection by ICA, feature extraction by wavelet analysis and finally two classification models 

for neonatal seizures, including feature selection. 
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Chapter 3: Research methodology 
 

The aim of this thesis is to propose some machine learning methods for the classification of 

seizures in neonatal EEG recordings. 

The steps that were followed are briefly described in Figure 4. Each step is described in 

detail, in their dedicated sections. The whole process of signal analysis and machine learning 

was implemented in Matlab. 

 

Figure 4 : Methodology Pipeline 

Signal Preprocessing 
 

For our study, we used Multi-channel EEG signals, recorded from 79 term neonates 

admitted to the NICU at the Helsinki University Hospital. The median recording duration was 

74 min (IQR: 64 to 96 min). The EEGs were annotated for the presence of seizures by three 

experts. An average of 460 seizures were annotated per expert in the dataset, while 22 

neonates were seizure free by consensus. (Stevenson, 2019) 
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Since the datasets are raw signal data, containing various sources of noise, an initial step of 

preprocessing appears to be crucial. Multi-channel EEG signals mainly suffer from artifacts 

which are caused by instrument noise, powerline frequency, muscle activity, cardiac and 

respiratory activity, patient movement etc. All these noise sources need to be extracted and 

removed, so that the actual signal containing useful information can be studied.  

The abovementioned common EEG artifacts have been encountered in many previous 

studies and have known statistical characteristics. Thus, we proceed frequency filtering 

(high pass, low pass and notch filtering) as proposed by the literature, to reject common 

artifact sources and increase SNR. We also apply independent component analysis in order 

to isolate and reject the noise sources that are entangled in the signal frequency spectrum. 

 

Channel Locations 
 

As a preliminary step, we need to import the channel locations onto the signals, in order to 

be able to visualize the channels and extract useful information about them. 

The EEG signals were recorded using a NicOne EEG amplifier with sampling frequency of 256 

Hz and EEG caps with 19 electrodes. The international 10-20 standard was employed for the 

positioning of the channels, including a recording reference at midline. The standard 

longitudinal bipolar layout (a.k.a. ‘double banana’) was used to generate a bipolar montage 

for annotation:  

standard longitudinal bipolar layout (a.k.a. ‘double banana’): Fp2-F4, F4-C4, C4-P4, P4-O2, 

Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, 

Cz-Pz  (Figure 2) 

The two extra channels ECG EKG (heart rate monitor) and Resp Effort (respiratory effort) 

were removed, resulting in datasets of 19 channels. Common Average Referencing was also 

added for each channel. 
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Figure 5 : Channel Locations 

 

 

High Pass Filtering 
As a first preprocessing step, high pass filtering was applied on the signals. 

A great amount of random noise is contained in low frequencies, such as baseline changes 

and artifacts. (Awnish Kumar, 2020) 

The purpose of high pass filtering is to suppress the low frequency interference and increase 

the SNR. It also removes linear trends, slow and possibly large amplitude drifts and 

contributes to obtaining good quality ICA decompositions. A zero phase FIR filter was 

applied with a low frequency cutoff at 0.5 Hz. The output signals were cleansed from low-

frequency drifts, resulting in artifact-free signals. 

A Finite Impulse Response (FIR) Filter is employed to perform high pass filtering. Its main 

characteristic is that is only uses the delayed version of the input signal x(t) to filter the 

signal, without taking into consideration the previous output values (requiring no feedback). 
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Figure 6: High Pass Filtering 

A zero phase filter is a subcategory of linear phase filters, where the phase slope is zero, 

resulting an even impulse response h(n). ℎ(𝑛) = ℎ(−𝑛), 𝑛 ∈ 𝑍 

 

A FIR of order N, is described by: 

𝑦[𝑛] = ∑ 𝑏𝑖  𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 

Where x[n] is the input signal, 

Y[n] is the output signal, 

N is the filter order, 

bi  is the value of the impulse response at the i'th instant for 0 ≤ 𝑖 ≤ 𝑁 of an Nth -order FIR 

filter. 

 

Low Pass Filtering 
 

Artifacts can also be found in higher frequencies where brain activity interferes with other 

body activities, for example muscle activity (20-300 Hz). This activity introduces the so-

called muscle artifacts in our signals, which needs to be removed. (Muthukumaraswamy, 

2013) 

In general, we want to examine only the bands of our signal where the gamma band ends, in 

order to avoid all other types of high frequency oscillations that only contribute artifacts to 

our signals, rather than useful information. 
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Likewise high pass filtering, a Finite Impulse Response (FIR) Filter is employed to perform 

low pass filtering. A zero phase FIR filter was applied with a high frequency cutoff at 70 Hz. 

 

Figure 7: Low Pass Filtering 

Notch Filtering 

Finally, we need to reject the noise added by the powerline. In Europe, the powerline 

frequency is at ~50 Hz, while in the US at ~60 Hz. This powerline noise is added to the 

monitoring equipment and is also recorded onto the signal, resulting in artifact. 

One of the most commonly used band reject filters is the Notch Filter. In a Notch Filter, we 

need to define a low and a high frequency, which refer to the limits of the band to be 

rejected. In our study we define FL = 48 Hz and FH = 52 Hz, in order to ensure that the 

powerline noise is attenuated. 

 

Figure 8: Notch Filtering 
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In figure 9 and figure 10 we can see the signal before and after applying notch filtering, 

respectively. We can observe the attenuation around 50 Hz, which was the desired result. 

 

 

 

Figure 9: Before applying Notch Filtering 

 

 

Figure 10: After applying Notch Filtering 
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Artifact Removal 
 

While the initial steps of filtering manage to remove some artifacts based on frequency, 

they are not enough.  

Artifacts can appear into EEG signals from various sources. It is a fact that EEG signals 

contain a mixture of brain and non-brain activity, with the latest contributing irrelevant 

signal information (artifact) which needs to be removed. Common artifacts are pulse, 

cardiac, sweat, eye movement, respiratory and muscle and movement artifacts. (Britton JW, 

2016) 

In order to identify and reject the noise coming from different sources, we used one of the 

most commonly used decomposition techniques, Independent Component Analysis. 

ICA 
 

Independent Component Analysis (ICA) is a linear decomposition technique, aiming to 

reveal the underlying independent statistical sources of mixed signals. It can help on multi-

channel EEGs, where the detection of different signal sources cannot be performed on raw 

data level, even when applying common statistical techniques. 

Amongst the various algorithms that exist for the application of ICA, we decided to use 

Infomax ICA, as it is one of the most commonly used ones with great discrimination ability 

between independent components. Infomax ICA aims on finding the independent 

components by maximizing entropy. That means that the algorithm tries to minimize the 

number of mutual information between two observations X and Y, thus searching for the 

observations (components) which are maximally independent. 

We applied Infomax ICA on all raw signals. Each signal was analyzed in 19 independent 

components, as the number of different channels. ICA was applied on the full signal 

duration. The ICA was a time-consuming process, since it attempts to find the best split of 

components throughout the whole signal duration. The generated components are 

maximally independent and they can reveal different noise sources, which will be 

characterized as artifacts based on statistical criteria, and then rejected. 

In Figure 7 we can visualize the independent components generated from the analysis of 

dataset 1, and the different parts of the brain that they are correlated to. Matlab matches 

the analyzed components with a signal activation map by colorizing the component 

activations on different brain regions.  

An unmixing matrix is also generated, which is the inverse of the mixing matrix and can be 

used to recover the original signal sources from the preserved components.  
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Figure 11: Visualization of Component Activations 

 

Global Metrics 
 

Having extracted the independent components of each signal, we then need to decide 

which ones are considered as artifacts. We could rely on the graphical representation of 

Figure 7, as estimated by eeglab, but we saw that these estimations are not always 

accurate, resulting to loss of useful information. 

In order to decide which components will be considered as artifacts, we calculated some 

metrics on each component, along the whole signal duration (global approach). 

More specifically, we calculated the kurtosis, Shannon entropy and Renyi entropy for each 

component.  

Kurtosis has been used in different studies for the identification of different artifacts, 

including the cardiac artifact (CA) and ocular artifact (OA). Kurtosis is defined as 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑚4

(𝑚2)2
 

− 3, 

Where 𝑚𝑛 = 𝐸{(𝑥 − 𝐸{𝑥})𝑛}. 

Shannon Entropy and Renyi entropy, are two metrics that have also been used in artifact 

detection algorithms. Shannon Entropy is defined as 
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𝐻𝑠ℎ =  − ∑ 𝑝𝑖(𝑥) log[𝑝𝑖(𝑥)]

𝑖

 

Renyi Entropy of order α, where 𝛼 ≥ 0 and 𝛼 ≠ 1,  is defined as 

𝐻𝛼(𝑋) =  
1

1 − 𝛼
log (∑ 𝑝𝑖

𝛼

𝑛

𝑖=1

) 

Entropy is a measure of disorder, randomness, or uncertainty. Higher entropy values mean 

more irregular signals, which can be translated into bigger drifts in a component’s values, 

thus considering it an artifact. (L. Lee, 2003) 

We then defined a threshold for each metric, which was given by Chevyshev’s inequality. 

The latest guarantees that for a class of unknow probability distributions, only a certain 

fraction of values can be greater than a certain distance from the mean. It is defined as 

Pr(|𝑥 − 𝜇|  ≥ 𝑘𝜎) ≤
1

𝑘2
  

After calculating the threshold for each metric, which gave a list of components over each 

threshold, we took the union of the three and resulted with the final list of components that 

we want to reject: 

𝐶𝑃𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 =  𝐾𝑢𝑟 ∪ 𝐻𝑠ℎ  ∪ 𝐻𝑅𝐸 

The same process was repeated on all datasets. An average of 69% of the components was 

kept, while the remaining 31% was considered as artifact and was removed.  

In Figure 7 we present the calculated metrics thresholds and the components that exceed 

them, for dataset 1.  

 

Figure 12: Global metrics and thresholds on ICs 
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The next step, after we have decided which components to reject, is to back project the 

remaining components to the channels x timepoints. This process is performed by 

projecting the ICA component activations through the associated weight matrices to 

reconstitute the observed data using only the selected ICA components. 

Import of Annotations 
 

With the steps of signal filtering and artifact rejection with ICA, we have completed the step 

of preprocessing. Following up, we want to import the annotations of the three experts 

onto the signals and then define our regions of interest. 

Since we want to examine the presence of seizures in neonatal EEG signals, it is appropriate 

to define the regions where the seizures occurred.  

The three experts annotated the signals for seizure, mainly by visual detection in the EEG. 

They were not presented with the clinical details of the infants. The annotations were based 

solely on the EEG signals, while there was an additional channel of ECG for interpretation. 

It is expected that the opinion of the three experts would not converge in all cases. More 

specifically, the 65% of the seizures was annotated by all three reviewers, the 21% was 

annotated by two reviewers and 14% was annotated by one reviewer. In order to ensure 

that the annotated regions refer to seizures, we took the consensus of the three experts and 

only used these annotations for seizure characterization on each dataset.  

Signal Epoching 
 

After importing the annotations on all datasets, we need to epoch our data. We are only 

interested in the regions of the signals when the seizures occurred, so we need to extract 

these time windows. In addition, we extract time windows where no seizure occurred, to 

use them in the classification step as control samples.  

The duration of seizures varies, and the mean duration is 92 sec. We decided to also extract 

non-seizure windows of the same duration (92 sec), so that we have comparable sizes. 

This process results to a new dataset, containing only a number of seizure and non-seizure 

windows, (with all 19 channels), for each dataset. 

In the next step of feature extraction, these time windows are the only part of the signal 

that we will be using, and they will provide us with the features that we need to extract. 

However, since the seizure windows have a big duration variance, we decided to examine if 

the window size will affect the next steps, so we created four trials of different window 

sizes. In each trial, each seizure was divided into overlapping windows of different size. The 

non-seizure windows followed the partitioning of the seizure windows. The trials 

partitioning is presented in Table 1. The results from the partitioning trials are quite 

interesting and they are presented in the Results Chapter. 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 36 of 53 

 

Table 1: Window partition trials 

 

 

Feature Extraction 
 

EEG records multi-frequency non-stationary brain signal from channels localized in a specific 

topology. Feature extraction is the first – and a very important – step, towards machine 

learning (classification or regression). It refers to the process of transforming raw data into 

numerical features that can be processed while preserving the information in the original 

data set. It yields better results than applying machine learning directly to the raw data.  

Several feature extraction methods, specifically for signal analysis, exist. Features can be 

extracted from time domain, frequency domain or both (wavelet analysis). Especially for 

EEG signals, wavelet analysis has proven to yield great results, since it performs better on 

non-stationary signals, compared to time-domain and frequency-domain analysis. Wavelet 

analysis of EEG signals considers measurement of mean spectral magnitude or power for 

some given frequency bands. (Varsha K. Harpale, n.d.)  

We decided to use the discrete wavelet transform, which is one of the most commonly used 

methods for feature extraction, as it has non-stationary characteristics, like multi-channel 

EEG signals. DWT can be used with various mother wavelets with the latest referring to 

linear transformations where the base functions are shifted and scaled versions of an initial 

function. The Morlet wavelet has been associated with similar EEG studies, so we decided to 

use this one.  

We implemented the DWT analysis on all main frequency bands which are: 

 Delta (0.5−4 Hz), Theta (4−8 Hz), Alpha 1 (8−11 Hz), Alpha 2 (11−15 Hz), Beta (15−30 Hz), 

Gamma Low (30−45 Hz), Gamma High (45−63 Hz). 

These frequency bands are also called brain rhythms. These rhythms have been studied 

upon for decades and there has been established some characteristic behavior related to 

each one of the brain rhythms. 

• Delta: Delta waves range from 0.5 to 4Hz. They are the lower-frequency waves, and 

they are related with the state of deep sleep and continuous attention tasks. Due to 

similar nature, they are sometimes confused with movement artefacts.  
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• Theta: Theta waves range from 4-8Hz. They are related to sleepiness or deep 

meditation states. 

• Alpha: Alpha waves range from 8-15Hz. They are mostly occurring on the occipital 

lobe of the brain. Alpha waves have been linked with relaxation states of mind, and 

states of closed eyes. Any state of sudden distraction or stress reduces the alpha 

waves.  

• Beta: Beta waves range from 15-30Hz. As the frequency arises and the brain gets 

more active, beta waves are linked with active thinking, states of high alert and 

anxiety or high brain focus. 

• Gamma: Gamma waves range from 30-63Hz. They are considered to participate in 

higher brain functionality, like combining information from different input sensory 

sources in order to produce a complex outcome. They are also related with certain 

brain diseases. (Bajaj, 2020) 

We calculated the mean energy and the standard deviation for each of the 

beforementioned frequency bands. We also used the full spectrum frequency and 

calculated the mean energy and the standard deviation as well. Finally, we also estimated 

the three statistical measures which were also used for artifact rejection (kurtosis, Shannon 

entropy and Renyi entropy) and added them to our features.  

The final list of estimated features (19 in total), is the following: 

1. delta_meanEnergy 

2. theta_meanEnergy 

3. alpha1_meanEnergy 

4. alpha2_meanEnergy 

5. beta_meanEnergy 

6. gammaLow_meanEnergy 

7. gammaHigh_meanEnergy 

8. delta_stdEnergy 

9. theta_stdEnergy 

10. alpha1_stdEnergy 

 

11. alpha2_stdEnergy 

12. beta_stdEnergy 

13. gammaLow_stdEnergy 

14. gammaHigh_stdEnergy 

15. allFrequencies_meanEnergy 

16. allFrequencies_stdEnergy 

17. shannon_entropy 

18. renyi_entropy, 19. kurtosis 

 

 

The 19 mentioned features were estimated for all datasets, for all seizure and non-seizure 

windows. The process was repeated four times, one for each different trial. As expected, the 

trial with the smallest overlapping window (10 sec / 2 sec overlap) had about  

9 ∗ 𝑁𝑢𝑚𝑤𝑖𝑛𝑑𝑜𝑤𝑠 , thus 9 ∗ 𝑁𝑢𝑚𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 of the full-size window (92 sec average). 

Having estimated all our features, we can migrate from the signal domain to the machine 

learning domain. These features, which are essentially numerical values, will be used as data 

for training classification models and then testing their accuracy. 
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Classification 
 

Several algorithms have been used for seizure classification on human EEG signals. 

(Murugavel, 2013) establishes SVM classifier to perform EEG classification. (Kumar, 2012) 

analyzes EEG based on fuzzy set. (Zhou, 2018) introduces CNN to analyze EEG signals. 

(Damodar ReddyEdla, 2018) approaches the problem with ensemble learning, by using 

classifiers such as random forest. 

We decided to implement SVM (support vector machines) and Random Forest, since they 

are some of the most widely used classifiers. The SVM classifier is a useful tool in two class 

classification, which works by trying to define the optimal hyperplane that will better 

separate the data in two classes. Random forest on the other hand, utilizes an ensemble of 

classification trees. The input data are organized into trees, and the optimal variable 

candidate set is decided recursively. After the best split in trees has been decided, majority 

voting is used for classification amongst the trees. 

Before training our models, we need to prepare our training and testing datasets, which are 

the time windows of features estimated in the feature extraction step. 

We merged the seizure and non-seizure features in one dataset and labeled the data with 

two classes, ‘Seizure’ and ‘NonSeizure’, matching each feature to its corresponding class. 

In order to avoid training a biased model, we divided the dataset into training and testing 

datasets. 70% of the data were used for training, while 30% were used for independent 

testing. This way, we can train our model on the majority of samples and test them on an 

independent testing dataset. 

All models were cross validated by 10-fold cross validation. Cross-validation is a technique 

for evaluating machine learning models by training several models on subsets of the training 

data and evaluating them on the complementary subset of the data. 10-fold cross validation 

divides the data into 10 equal sets and trains a model on 9 of them as input and tests it on 

the remaining subset. The process is repeated 10 times and then the average accuracy 

result is kept. Cross validation is used to avoid overfitting the data, which means the danger 

of generalizing a data specific pattern. 

The two models that we trained were SVM and random forest. Before training the SVM 

classifier, we performed parameter optimization, in order to achieve better results. More 

specifically, hyperparameter optimization tries to find the optimal values of box-constraint 

and kernel-scale. Box-constraint is a value of allowed misclassification in the training set, 

when the data is not perfectly separable. The higher the box-constraint the higher the cost 

of the misclassified points, leading to a stricter separation of the data. Kernel-scale on the 

other hand, is a scaling parameter for the input data.  

SVM typically follows the following steps:  
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1. A hyperplane separates the data in two classes is found. 
2. The algorithm runs recursively in order to maximize the margin between the data 

and the hyperplane. 
3. The mapping of the input data to the high-dimensional feature space is performed 

by a kernel function. 
4. The kernel function is tuned by kernel parameters. 
5. The tuning parameters are optimized by the process of cross-validation. 
6. After the optimal tuning parameters are derived, class predictions are made for all 

samples. 
7. Total accuracy level is estimated by computing the average classification rate from 

all repetitions. 

Random Forest on the other hand, typically follows the following steps: 

1. N number of random records are taken from the data set having k number of records 

2. Individual decision trees are constructed for each sample 

3. Each decision tree will generate an output 

4. Final output is considered based on Majority Voting or Averaging for Classification 

and regression respectively 

Both models were trained with 10-fold cross validation. We repeated the process for all four 

trials of different window size that we had (92 sec, 45 sec, 20 sec, 10 sec). The accuracy 

scores are presented in the results chapter. 

 

Feature Selection 
 

As a final step, we performed feature selection on our estimated features from the feature 

extraction chapter.  

Feature selection is the process of reducing the number of input variables (features) when 

developing a classification or regression model. It is desirable to reduce the number of input 

variables to both reduce the computational cost of modeling and, in some cases, to improve 

the performance of the model. Feature selection aims on reducing the original set of 

features, by removing irrelevant and noisy or redundant features that possibly have a 

negative impact on the model. (Jianyu Miao, 2016) 

Several algorithms exist for feature selection, like SVM RFE (recursive feature elimination), 

Pearson Correlation, Chi-squared, Tree based etc. 

We decided to use the Maximum Relevance Minimum Redundancy (mRMR) algorithm for 

the selection of features. mRMR selects a subset of features which have the most 

correlation with a class (maximum relevance) and the least dependency among themselves 

(minimum redundancy). Relevance is calculated by the F-statistic (continuous features) or 

the mutual information (discrete features), while redundancy is calculated by the Pearson 
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correlation coefficient (continuous features) or mutual information (discrete features). 

(Milos Radovic, 2017) 

 mRMR sorts all features by their maximum relevance and minimum redundancy score and 

then the user can decide how many to select. After many trials, we decided to select the top 

six features on all trials, since they managed to achieve the higher classification scores. 

The top six features that were selected from the mRMR algorithm are the following: 

1. delta_meanEnergy 

2. gammaLow_meanEnergy 

3. gammaHigh_meanEnergy 

4. Shannon_entropy 

5. Renyi_entropy 

6. Kurtosis 

We then trained again all our models, with the subset of the selected features, for all 

different window size trials. The results are presented in the results chapter. 

 

Chapter 4: Research findings / results 
 

In this chapter we present the results from the stages of our study. The results from the pre-

processing stages (filtering, ICA) have already been presented. Here we present the results 

from the classification and feature selection steps. 

Classification 
 

Tables 1-4 contain information about the mean accuracy of the 10-fold validated models 

and the variance between them. Sensitivity and specificity, two important metrics have also 

been included. Sensitivity (true positive rate) is used to determine the proportion of positive 

cases which got predicted correctly as positive, while specificity (true negative rate) is the 

proportion on negative cases which were predicted as negative.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

The addition of these metrics can give us more information about the quality of our models, 

and how they perform on the decision of each class. For instance, a high sensitivity rate 
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could imply that the model is able to distinguish the first class with high accuracy, while a 

low specificity would imply a weakness in classifying samples in class two. 

The two classification models where first trained and tested on the same datasets used for 

training. Afterwards, they were tested on the independent testing datasets. The process 

was repeated four times, each time having a different window partition trial. The results of 

each trial are presented in the following tables. 

 

Table 2: Full window size / 92 sec non seizure window 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 82.01 91.86 81.65 77.12 

Variance 0.001 0.02 2.24E-28 0.24 

Sensitivity 0.97 0.98 NaN 0.35 

Specificity 0.99 0.90 1 0.87 

 

 

Table 3: 45 sec – 10 sec overlap seizure / non seizure window 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 67.81 98.90 67.77 97.12 

Variance 5.9E-05 0.21 1.34E-06 0.52 

Sensitivity 0.65 0.99 0.75 0.96 

Specificity 0.99 0.99 1 0.92 

 

 

Table 4: 20 sec – 5 sec overlap seizure / non seizure window 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 68.58 97.81 68.52 97.33 

Variance 1.51E-05 0.3 1.15E-07 0.09 

Sensitivity 0.79 0.98 0.5 0.95 

Specificity 0.99 0.99 1 0.98 
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Table 5: 10 sec – 2 sec overlap seizure / non seizure window 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 70.47 97.76 75.32 94.81 

Variance 3.78E-06 0.07 2.7E-05 0.04 

Sensitivity 0.82 0.99 0.16 0.97 

Specificity 0.99 0.99 0.99 0.99 

 

 

Feature Selection 
 

In this section we present the results after the selection of the six most relevant features ( 

delta_meanEnergy, gammaLow_meanEnergy, gammaHigh_meanEnergy, Shannon_entropy, 

Renyi_entropy, kurtosis ). Following the classification step, the models have been tested 

both on the training datasets themselves, and the independent testing datasets. The 

process was repeated four times, each time having a different window partition trial. The 

results of each trial are presented in the following tables. 

 

Table 6: Full window size / 92 sec non seizure window (with selected features) 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 81.64 87.82 81.64 75.45 

Variance 1.14E-06 0.01 2.24E-28 0.38 

Sensitivity 0.5 0.82 NaN 0.22 

Specificity 1 0.98 1 0.90 
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Table 7: 45 sec – 10 sec overlap seizure / non seizure window (with selected features) 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 67.70 98.35 67.75 97.83 

Variance 1.6E-03 4.01 2.24E-28 0.1 

Sensitivity 0.2 0.99 0.14 0.98 

Specificity 0.99 0.99 0.99 0.99 

 

 

Table 8: 20 sec – 5 sec overlap seizure / non seizure window (with selected features) 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 68.50 97.58 68.51 97.73 

Variance 1.12E-06 0.57 2.24E-28 0.04 

Sensitivity 0.28 0.99 0 0.98 

Specificity 0.99 0.99 1 0.99 

 

 

Table 9: 10 sec – 2 sec overlap seizure / non seizure window (with selected features) 

 training testing 

(%) SVM RF SVM RF 

Mean accuracy 70.39 97.80 70.39 95.23 

Variance 7.23E-05 0.05 2.7E-05 0.01 

Sensitivity 0.07 0.99 0 0.98 

Specificity 0.99 0.99 1 0.99 
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Chapter 5: Discussion and analysis of findings 
 

We conducted a series of steps analyzing 79 neonatal seizure multi-channel EEG signals in 

order to train seizure classification algorithms. The study can be divided into four core parts. 

The first part contains the data preprocessing and artifact rejection steps. The second part 

contains the wavelet analysis and the feature extraction. The third part contains the training 

of the classification models, and the fourth part contains the feature selection process. 

 

Preprocessing and Artifact Rejection 
 

The frequency filtering step is a preprocessing step integrated in every EEG study. The low 

pass filters usually filter out frequencies above 40-60 Hz, while high pass filters attenuate 

frequencies below 1 Hz. Since we know that these frequencies contain only added noise and 

not useful signal, it is a common practice to proceed with filtering them out. 

The greater challenge arises when we want to analyze the noise components in the 

spectrum of useful signal. There, it is important to have an objective criterion that will be 

able to distinguish between artifacts and useful signal amongst the examined independent 

components. Although eeglab provided us with a visualization map containing estimations 

on the activation of different brain sections for each component, we did not confirm the 

accuracy of these estimations as we observed a significant loss of useful signal when 

rejecting these components. The more objective criterion that we used for artifact removal 

(estimation of kurtosis, Shannon entropy and Renyi entropy) yielded good results, as it 

managed to accurately reject the noisy components. The latter were visually inspected by 

examination of the signal data for each rejected component and confirming that they are 

related to noise spikes from their signal characteristics (frequency, amplitude, drift). 

Feature Extraction 
 

One of the most crucial steps for machine learning is always the extraction of signal-related 

features, that will be able to provide the model with sufficient and strongly event-related 

information in order to take accurate classification decisions. As we are working with epochs 

of a multi-channel EEG signal, where seizures occurred, we expect these parts to have 

different statistical characteristics that the normal EEG signal epochs. 

Wavelet analysis has proven to obtain the most out of each epoch window, as it analyzes 

the signal both in time and frequency domain. They are also the preferred method 

compared to STFT (Short Time Fourier Transform), because the wavelet analysis using 

different wavelet functions can enrich the study with more details. (Bajaj, 2020) 

The extracted wavelet features which were based on the brain rhythms, gave us sufficient 

information about the event related brain activity, which we later used as input for the 
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classification step. These frequency bands (brain rhythms) contain information about 

various brain functionality and characteristics and are good indicators to highlight abnormal 

(seizure related) activity.  

The three statistical measures that were also computed and extracted as features (Shannon 

entropy, Renyi entropy, kurtosis), provided us with useful information about the distribution 

and the characteristics of the signal parts, with and without seizure events. Their 

importance is confirmed, as all three of them were selected in the feature selection step. 

Classification 
 

We trained two classification models on segmented EEG datasets containing seizure events 

and control window samples. Since we expected our models to perform differently based on 

window size, we decided to extract our features from different window sizes on each trial 

and see how the different window sizes will affect the accuracy of our models. 

We performed four different partitioning trials on our datasets. The first, contains the full 

window size of the seizures and a 92 sec time window for the control samples (which is the 

average duration of the seizures). In the second trial, we split our seizure and non-seizure 

windows to 45 sec windows with 10 sec overlap between them and we extracted the 

features. The extracted features were then used for training and testing our classification 

models. The third trial contained 20 sec windows with 5 sec overlap, and the fourth trial 

contained 10 sec windows with 2 sec overlap, and the process of feature extraction and 

classification was repeated for each trial respectively. It is reasonable that the number of 

the extracted features would be different on each trial, with the smaller window size trial 

having the greatest number of features.  

The accuracy scores showed that the varying window size indeed affected the performance 

of our models. As we partitioned the window to smaller sizes, the SVM seemed to perform 

more poorly compared to the full-size window. It started from 81.67% on the full-size 

window and was reduced to 70.39% while the window size was getting smaller. Random 

forest on the other hand, seemed to work better when presented to more features of 

smaller window size, than the smaller number of full-size window features. It started from 

91.86% on the full-size window and was increased to 97.76% on the 10 sec window trial.  

This impact of the varying window size on our models, can be related to the different 

algorithms that the two machine learning models used for training. As we all know, support 

vector machines try to define the optimal hyperplane that will optimally separate the input 

data to two classes. The optimal hyperplane is defined by trying to maximize the distance 

(margin) between the observations and the hyperplane itself. This means that the marginal 

values that are closer to the hyperplane will be more prone to be falsely classified, 

compared to the values that have larger distance from the hyperplane, where the 

classification task is easier. That is the main reason why the SVM models perform worse as 

we proceed with smaller window size trials, as the largest number of features will inevitably 
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produce some marginal values which can be easily classified on the wrong classification 

class. The following figure describes the mentioned problem. 

 

Figure 13 – Values closer to the hyperplane are more prone to be misclassified compared to values 
with greater distance from the hyperplane 

 

Random forest on the other hand, seems to perform better when it is trained with more 

feature datasets of smaller window length. Random forest works by selecting random 

samples from the provided dataset and then create a decision tree for each selected 

sample. Each decision tree will be fully grown, and a prediction or classification result will be 

obtained from each decision tree. Majority voting is used to decide the final outcome. A 

large number of uncorrelated decision trees is the key to making the best data-related 

decisions and it is the main advantage of ensemble training compared to other models. 

Thus, it is deducted that the more we increase the number of uncorrelated feature samples, 

the better accuracy results we will yield, since more independent forests will be grown, and 

more consistent decisions will be made. This justifies the increase in the accuracy of random 

forest, when the window size was decreased, generating more feature samples. 

Another important parameter in achieving acceptable accuracy scores, is hyper parameter 

optimization. SVM hyperparameters include box-constraint and kernel-scale and they are 

directly involved in the performance of the model. The box-constraint is the degree of 

allowed misclassification when the training data is not perfectly separable, with higher 

values meaning stricter data separation. Kernel scale is a scaling parameter for the input 

data. For random forest, the tunable hyperparameters include the number of decision trees 

and the number of chosen variables to split at each node.  

We trained our models both with and without parameter optimization and the results were 

obvious. Parameter optimization played a crucial role in both SVM and random forest 

classifiers, as it managed to yield higher accuracy scores of >30%, compared to the absence 
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of parameter optimization. This is justified by the fact that there is a strong dependance 

between choosing the right kernel function and setting its parameters appropriately, with 

achieving high classification results. (Syarif, 2016) 

The process of cross validation also played an important role in avoiding overfitting and 

providing our models with more samples to train and validate. Cross validation was also 

important in choosing the optimal hyper parameters for our classification models. 

The two models were tested on both training and independent testing datasets. As 

expected, the accuracy scores were slightly higher when tested on the datasets used for 

training, rather than on the independent testing datasets. This happens due to the 

correlation of the model parameters with the training data, as the model already has 

knowledge of the data characteristics and is prone to becoming biased. However, the 

models yielded high accuracy rates on the independent testing datasets as well, confirming 

their contribution in neonatal seizure classification tasks.  

In supervised machine learning, we generally have to keep a balance between variance and 

bias in order to train a good model. The variance generally increases on SVM classifiers 

when we decrease the margin, which also results in decreasing the bias. Respectively, when 

we increase the margin of the hyperplane, the variance decreases and the bias increases. 

We also included the variance in our study to ensure that a balance is kept while trying to 

define the optimal hyperplane by adjusting the constraints of the margin. Low values in 

variance are desirable (but non-zero), as we want to optimally distinguish two close data 

points, without considering them similar. 

The performance of machine learning models can be evaluated by several metrics. Besides 

classification accuracy which we have already discussed, we also included sensitivity and 

specificity, two widely used measures that describe the ability to correctly decide and 

classify data to each class. Sensitivity, or true positive rate, describes the ability to correctly 

classify the positive class, while specificity, or true negative rate, describes the ability to 

correctly classify the negative class. The results showed us that the negative class (non-

seizures) was correctly identified in most cases. The specificity rates, that were >95% for 

both SVM and RF in all window splitting trials, imply that the models were able to classify 

data in the negative class (non-seizures) with great accuracy, independently of the window 

size and number of features.  

However, the same did not apply in the case of sensitivity. From the testing of our models, 

we observe that SVM had lower sensitivity rates in the window splitting trials than the full-

size window. This means that while the seizures were split in smaller windows, the SVM 

models could not predict the positive class (seizures) with such accuracy, compared to the 

full-size windows. This can be explained by the fact that SVM performs poorly when 

introduced with many marginal values which make the definition of the hyperplane harder, 

compared to higher margin values, where the classification task is easier. 
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Random forest on the other hand, had the reverse behavior on choosing the positive class 

(seizures), as the results show that the sensitivity was increased while we were proceeding 

with smaller window size partitioning trials. This behavior is also justified by the fact that 

larger training datasets result to more created uncorrelated random forests, which results in 

majority voting to choose the positive (or negative) class optimally. 

Summing up, we can deduct that both models managed to handle the neonatal seizure 

classification task successfully. The wavelet analysis was a good technique for feature 

extraction, as suggested by the literature, since its strong relevance with brain functionality 

was confirmed by the extracted features that were successfully employed for seizure 

classification. The varying window size affected the decisions of our models, with smaller 

windows of larger training datasets favoring random forest over SVM. Overall, random 

forest outperformed SVM, especially in terms of sensitivity, where the latter appeared to 

struggle in correctly deciding the positive class, while the window size was decreasing. 

 

 

Feature Selection 
 

The feature selection process confirmed the remarks we made in the classification step. The 

MRMR algorithm managed to associate the features with the classification result and rank 

the most important ones by relevance score. The goal was to obtain the minimum-optimal 

subset, where the most relevant features would be included, while preserving the highest 

accuracy rate. The final subset of selected features managed to train classifiers that yielded 

accuracy scores similar to the full feature set and in some trials, even higher. The fluctuation 

of the accuracy and sensitivity/specificity metrics followed the one from the full feature set 

classification, where the different number of predictor values (on smaller window size trials) 

also affected the models, and the sensitivity difference between SVM and random forest 

was present as well. The whole feature selection process managed to filter out the less 

relevant features, while preserving the high accuracy scores in both models, pinpointing the 

features which are contributing the most for correct seizure classification.  
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Chapter 6: Conclusion and recommendations 
 

 

Neonatal seizures are a major problem in infants, being responsible for many serious 

diseases and in some cases, even death. One of the main problems is that it remains 

undetected in most of the cases, resulting in false diagnosis and insufficient early treatment. 

Even though many studies exist on the analysis of multi-channel EEG signals for neonatal 

seizure classification with the involvement of machine learning methods, which is the gold 

standard for seizure detection, less studies have focused on thorough artefact rejection, 

before proceeding with the classification task. Neonatal EEG signals, besides the various 

noise sources that affect all EEG signals, also suffer from added artefacts due to the nature 

of the examination (infants are more prone to move, cry, etc.). The lack of experienced 

pediatric neurologists with expertise in neonatal EEG, is also a great challenge in accurate 

seizure detection in neonates.  

Our study contributes a set of extracted features based on wavelet analysis and two 

supervised classification models, trained on these features. ICA was involved in the step of 

artefact rejection, in order to filter out the irrelevant to the signal noise sources and extract 

features that contained the highest possible SNR. Four trials were performed, where the 

feature window size was changed, and the feature extraction and classification/ feature 

selection steps were repeated. The variance of the seizure window size appeared to have an 

impact of the classification models, favoring random forest and making SVM struggle while 

the number of marginal samples increased. 

The proposed models (SVM and random forest) were tested on independent datasets, 

yielding accuracy scores of > 80% and >95% respectively. These models can also be used for 

classification tasks on different multi-layer EEG signals and present the physician with 

accurate and useful insights for the absence or presence of seizures in a neonatal EEG. 

However, before the process of feature extraction, which is a time-consuming process, the 

correct preprocessing steps need to be implemented. Filtering in frequency and artefact 

rejection through ICA and estimation of global metrics, are important steps for extracting 

artefact-free EEG signals. Then, the classification models can be used on the proposed 

computed features (delta_meanEnergy, gammaLow_meanEnergy, 

gammaHigh_meanEnergy, Shannon_entropy, Renyi_entropy, Kurtosis). 

 

Since the important step of ICA has been successfully integrated in the preprocessing phase, 

this study can be expanded in various ways. More supervised machine learning could be 

trained for the classification task, such as KNN, neural networks, etc.) These different 

algorithms can be compared to SVM and random forest, and their dependance on the 

varying window size could be examined. Moreover, the study could be expanded to a deep 

learning analysis, provided that there is an adequate number of training samples. 



Application Grade Thesis 

 

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/  
 

Page 50 of 53 

 

In addition, besides the extracted features that are used for classification, we could also use 

the preprocessed signal epochs for regression tasks. A softmax function could be employed 

for the estimation of the probability function over a time window on the signal. The 

distribution of the probability on overlapping moving windows, could give a prediction value 

for the presence or absence of a seizure on the signal. These probabilities could work as 

predictors for regression tasks on neonatal seizure detection, advancing the study even 

further and providing the physician with an estimation both on the diagnosis and prognosis 

of this severe condition. 
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