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Abstract

Nowadays with climate change being a major issue in Scientific Commu-
nity and to citizens too, the scientific community struggles to find causes,
results and make predictions about future impacts to our lives.

Having Internet Of Things, like Meteorological Sensors, like an arrow in
the quiver, helps the Scientific Community collect important meteorological
and spatial data in a manner of using this kind of data to build statistical
and mathematical models to guide them to more accurate results, plus faster
than the existing models.

The frequent collection of the meteorological and spatial data from het-
erogenous sources of information, drives to huge portions of data that have
to be stored and managed efficiently in a sense of being useful to users by
converting raw data format into knowledge.

The solution to the efficient storage and management of these big portions
of data was given firstly by building a data warehouse with a collection of
different databases, regarding the sources of information and secondly by
using a Knowledge Base Layer over the data warehouse. With this approach,
we create interoperability over the data warehouse.

The approach of the thesis is a Web-Based Management Information Sys-
tem that uses NoSQL databases to build the Storage Layer so as the Knowl-
edge Base Representation Layer. The Apache Cassandra DB is used as the
Storage Layer and the Knowledge Base Layer implemented with the usage of
Neo4j Graph DB. The combination of these two NoSQL Databases leads to a
dynamic M.I.S. Web-Based Application that can handle the load of data from
sensors. The Web App can be used easily from novice to more advanced users
to gather and manage the data, create statistics, views and execute dynamic
queries to the database warehouse to have results on demand.



Per–lhyh

Stic mËrec mac me thn klimatik† allag† na apotele– me–zwn z†thma gia thn

Episthmonik† KoinÏthta allà kai gia touc aplo‘c pol–tec ep–shc, h Episth-

monik† KoinÏthta agwn–zetai gia na brei ait–ec, apotelËsmata kai prospaje–

na kànei problËyeic sqetikà me tic mellontikËc sunËpeiec pou ja epifËrei stic

zwËc mac.

'Eqontac to D–ktuo twn Pragmàtwn (IoT), Ïpwc touc aisjht†rec Metew-
rologik∏n dedomËnwn, san bËloc sth farËtra, bohjà thn Episthmonik† Koi-

nÏthta na sullËgei shmantikËc plhrofor–ec sqetikà me ta Metewrologikà kai

Qwrikà dedomËna ∏ste me th qr†sh twn dedomËnwn aut∏n na ulopoio‘n stati-

stikà kai majhmatikà montËla, ta opo–a kai ja touc odhg†soun se akribËstera

apotelËsmata, me taq‘tero rujmÏ apÏ ta †dh upàrqonta.

H suqnÏthta sullog†c twn Metewrologik∏n kai Qwrik∏n dedomËnwn a-

pÏ diaforetikËc phgËc plhrofÏrhshc, odhge– se megàla tm†mata dedomËnwn,

ta opo–a prËpei na apojhkeuto‘n kai na e–nai diaqeir–sima apodotikà, me thn

Ënnoia tou na mporo‘n na e–nai qr†sima proc touc qr†stec metatrËpontac a-

katËrgasta dedomËna se gn∏sh.

H l‘sh gia thn apodotik† apoj†keush kai diaqe–rish aut∏n twn megàlou

Ïgkou dedomËnwn dÏjhke arqikà me thn kataskeu† miac «Apoj†khc DedomË-

nwn» me sullog† apÏ diaforetikËc bàseic dedomËnwn, sqetikËc me tic phgËc

plhrofÏrhshc apÏ Ïpou proËrqontai kai deutereuÏntwc me th qr†sh epipËdou

«Gnwsiak†c Anaparàstashc» , pànw apÏ to ep–pedo thc «Apoj†khc DedomË-

nwn».

SkopÏc thc ergas–ac aut†c e–nai h ulopo–hsh miac Diadiktuak†c Efarmo-

g†c Diaqeiristiko‘ Plhroforiako‘ Sust†matoc, to opo–o qrhsimopoie– Mh-

SqesiakËc NoSQL bàseic dedomËnwn gia thn kataskeu† tou EpipËdou Apoj†-
keushc, Ïpwc ep–shc kai tou epipËdou «Gnwsiak†c Anaparàstashc». H bàsh

dedomËnwn «Apache Cassandra DB» qrhsimopoi†jhke gia to ep–pedo apoj†-
keushc kai to ep–pedo Gnwsiak†c Anaparàstashc ulopoi†jhke me th qr†sh

gràfwn dedomËnwn kai pio sugkekrimËna me «Neo4j Graph DB». O sunduasmÏc



aut∏n twn d‘o Mh-Sqesiak∏n bàsewn dedomËnwn od†ghse se Ëna dunamikÏ

DiaqeiristikÏ PlhroforiakÏ S‘sthma to opo–o e–nai ikanÏ na qeir–zetai ton

Ïgko dedomËnwn apÏ touc aisjht†rec. H diadiktuak† efarmog† mpore– na qrh-

simopoihje– apÏ arqàriouc wc kai Ëmpeirouc qr†stec gia na sullËgoun kai na

diaqeir–zontai ta dedomËna, na dhmiourgo‘n statistikà kai p–nakec dedomËnwn,

Ïpwc kai na ektelo‘n dunamikËc eperwt†seic sthn «Apoj†kh DedomËnwn» ka-

tà apa–thsh.



Euqarist–ec

Ja †jela na euqarist†sw jermà ton kajhght† kai epÏpth mou k. Dhm†trio

Plexousàkh, Dieujunt† 'Ereunac kai presbeut† tou Instito‘tou Plhrofori-

k†c, ITE, gia thn empistos‘nh pou mou Ëqei de–xei allà kai thn st†rix† tou

Ïla autà ta qrÏnia san kajhght†c, allà kai san ànjrwpoc pànw apo Ïla. Oi

gn∏seic kai to Ïramà tou Ïpwc kai h sumbouleutik† kajod†ghsh tou mou Ë-

dwsan ta apara–thta efÏdia Ïlo autÏ ton kairÏ na epizht∏ pànta to kal‘tero

tÏso stic spoudËc mou Ïso kai sth metËpeita ergasiak† mou stadiodrom–a.

Sto shme–o autÏ ja †jela ep–shc na euqarist†sw touc k. ApÏstolo Tra-

gan–th kai k. Iwànnh Tz–tzika gia thn sumbouleutik† kajod†ghsh stic meta-

ptuqiakËc spoudËc mou Ïpwc kai gia tic kajoristikËc gn∏seic pou apËkthsa

mËsa apÏ maj†matà touc.

AkÏma euqarist∏ ta mËlh tou ergasthr–ou Plhroforiak∏n Susthmàtwn

gia thn àristh sunergas–a pou Ëqoume Ïlo autÏn ton kairÏ, tic gn∏seic pou

mou Ëqoun metafËrei allà kai tic euqàristec stigmËc pou Ëqw peràsei sto

ergast†rio autÏ.

ApÏ ta mËlh tou ergasthr–ou de ja mporo‘sa na mhn euqarist†sw idiaitË-

rwc thn Argur∏(Ro‘la thc kardiàc mac) kai N–na gia th qrÏnia fil–a pou mac

sundËei kai gia thn amËristh upost†rix† touc.

Ep–shc apÏ kardiàc mou ja †jela na euqarist†sw touc aderfiko‘c mou

f–louc Giànnh, Hl–a, N–ko kai ton koumpàro mou N–ko gia th d‘namh pou mou

d–noun sto kàje ti akÏma kai apÏ makrià apÏ tic q∏rec pou plËon br–skontai.

TËloc to megal‘tero euqarist∏ an†kei sthn oikogËneia mou Dhm†trh, Bà-

sw, KËllu, Giànnh kai thn Eir†nh Ëqontàc touc san bàsh gia to kàje ti sth

zw† mou, gia thn katanÏhsh, thn upomon†, th baj‘tath agàph pou mou de–-

qnoun allà kai th st†rixh pou de–qnoun se kàje mou egqe–rhma e–te autÏ

aforà tic spoudËc mou e–te tic epaggelmatikËc epilogËc mou. To †joc kai oi

arqËc twn goni∏n mou Dhm†trh kai Bàsw, Ïpwc kai h diapaidag∏ghs† pou

Ëlaba me bo†jhsan sth metËpeita pore–a thc zw†c mou.

Sac euqarist∏ Ïlouc Ënan proc Ënan!



stouc gone–c mou,

Dhm†trh kai Bàsw



Contents

1 Introduction 1

2 Related Work 4

3 Meteorological and Spatial Data format 6

4 System Architecture 10

4.1 Data Warehouse with NoSQL Apache Cassandra DB . . . . . 10
4.1.1 Apache Cassandra . . . . . . . . . . . . . . . . . . . . 11

4.2 Implementing a Data Integration Layer with NoSQL Neo4j
Graph DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Neo4j . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Data Managment 20

5.1 CQLSH Shell and COPY FROM Command . . . . . . . . . . 20
5.2 Java Process Handling for the import . . . . . . . . . . . . . 23
5.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Performance Issues . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Ensuring Interoperability 27

6.0.1 Incremental Addition of Data Source . . . . . . . . . . 35
6.0.2 Lesson Learned . . . . . . . . . . . . . . . . . . . . . . 35

i



7 M.I.S. Web App Overview 37

7.1 M.I.S. Web App Capabilities . . . . . . . . . . . . . . . . . . . 37
7.1.1 Data Table (Access: admin, user) . . . . . . . . . . . . 38
7.1.2 Query OWDB (Access: admin, user) . . . . . . . . . . 40
7.1.3 Line Chart (Access: admin, user) . . . . . . . . . . . . 42
7.1.4 3D Plot (Access: admin, user) . . . . . . . . . . . . . . 43
7.1.5 Import File (Access: admin) . . . . . . . . . . . . . . . 44
7.1.6 Execute CQL (Access: admin) . . . . . . . . . . . . . . 45
7.1.7 Settings (Access: admin) . . . . . . . . . . . . . . . . . 46

7.1.7.1 Mediator Table . . . . . . . . . . . . . . . . . 46
7.1.7.2 Export of Column Family (Table) in JSON File 47
7.1.7.3 Users Table . . . . . . . . . . . . . . . . . . . 48

8 Conclusion and Future Work 49

Bibliography 51

ii



Chapter 1

Introduction

Nowadays with climate change being a major issue in Scientific Community
and to citizens too, the scientific community struggles to find causes, results
and make predictions about future impacts to our lives.

With the invention of Internet of Things Sensors, the collection of data
that Scientist can use for profit has been much simpler job than before. In
our case the collection of Meteorological and Spatial measurements are the
data that has high importance for monitoring and analysis that can lead to
valuable results about the climate change. The historic observation of these
data is what adds value and not the data by themselves. So collecting and
observing Meteorological and Spatial Time Series data is the case of study
but yet an easy job.

The frequency of the collection of raw Meteorological and Spatial data
comes with the high cost of storing, retrieving and managing-handling the
big amount of data that increases over time. A Meteorological Sensor keeps
sending data in a daily base to Lab Clusters every certain period of time,
that can be every minute, every five or ten minutes or hourly, creating an
amount of time series data that is an issue that matters and needs a solution,
in a manner of turning the data into useful pieces of information.

Gathering big data from multiple different sensors that are located to
different areas around the Crete Island makes the problem of storage and

1
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performance much more complicated. Combining all the sources of informa-
tion into one Management Information System Web Based App drives us to
the need of the Interoperability over these Meteorological and Spatial data.

Related work can be found in Kanishk Chaturv ’InterSensor Service: Es-
tablishing Interoperability over Heterogeneous Sensor Observations and Plat-
forms for Smart Cities’ [10], Ramar, Kaladevi ’Ontological based interoper-
ability and integration framework for heterogeneous weather systems’ [11],
M. G. Kibria, S. Ali, M. A. Jarwar and I. Chong, ’A framework to support
data interoperability in web objects based IoT environments’ [12] and B.
Ahlgren, M. Hidell and E. C. -. Ngai, ’Internet of Things for Smart Cities:
Interoperability and Open Data’ [13] papers. The previous approaches have
developed solutions through ontology algorithms, services and frameworks
that apply interoperability on data from heterogenous sources of informa-
tion. The above solutions are from the semantic point of view approach.

The Contribution of our work differs from the previous solutions due
to the holistic approach to the interoperability on heterogenous sources of
information that offers solution on both knowledge base and the storage of
time series big data. As a result we developed a Management Informational
System (M.I.S.) Web Application that can be used from novice to expert users
due to the simplicity of the system, for data retrieval over the heterogenous
data sources of information. The M.I.S. Web App offers usages for data
representations, dynamic queries for data retrieval, analytics and statistics
of data and also the management of data.

In this thesis we used the NoSQL Apache Cassandra DB [1, 2] as the
database warehouse (Storage Layer), in which all the data will be stored.
The Apache Cassandra DB is used due to fast writes, handling of massive
datasets, high fault tolerance, easy administration and the closely query ap-
proach with Cassandra Query Language (CQL) to SQL Developers, plus the
fact that distributed systems (Clusters) are used in the Labs that the data
is going to be stored.
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Having data from different sources makes it difficult to query over dif-
ferent databases and get the right result. The solution in this thesis is the
Knowledge Base Representation layer over the data warehouse, which pro-
vides us the Interoperability over the Meteorological and Spatial Data. The
technology we used to build the Interoperability is the NoSQL Neo4j Graph
DB [3, 4]. Neo4j Graph DB is a database that connects everything into
graph, with nodes and relationships making very easy to understand every
graph model. The high performance in storage and processing, the scalabil-
ity, the reliability and the ease of use of Cypher query language were the key
features to be the intermediate layer that connects the Client with the data
warehouse, avoiding an overhead in query performance.

The combination of Apache Cassandra DB for Storage Layer as well as
Neo4j Graph DB as the Knowledge Base Representation Layer in this thesis,
lead to a high-performance ecosystem to store and query big data over dif-
ferent sources of information, with the Web Based Management Information
System making easy to manage this kind of data from novice to advanced
users.

Interoperability is achieved through the mapping of nodes, of Neo4j, with
certain attributes, to certain Column Families (Tables) and their Columns of
Apache Cassandra. This abstract approach works smoothly for time series
data but is not limited on this kind of data. This approach can work in any
kind of data with the right database design in Storage Layer and with the
accurate mapping with the Knowledge Base Layer. The mapping approach
in this thesis came from the Global Schema (GAV) [9] approach, with the
difference that we used the Knowledge Base Layer as Mediator instead of
using a Mediator Table. This approach guided to a much more efficient way
to apply mapping through the sources of information.
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Related Work

Kanishk Chaturvedi, et al. in 2018 [10], has developed an open source
Java Based implementation of Intersensor Service. His Application supports
RDBSM databases, so as NoSQL database, such as MongoDB. Data pro-
duced by sensors apart from stored in databases, are stored also in CSV and
Excel sheets format. The approach in this paper is the interoperability as a
service in heterogenous sensor observations in smart cities.

Ramar Kaladevi et al. in 2016 [11], developed a framework for interoper-
ability over weather sensor data by a novel ontology merging algorithm based
on semantic relations. It can be used for knowledge sharing and information
retrieval.

M. G. Kibria et al. in 2017 [12], developed a framework for interoper-
ability IoT sensor data of smart cities. This framework processes data from
semantic and non-semantic data sources, from heterogeneous sources of in-
formation and supports different type formats (CSV, Databases, XML, etc.
). The outcome is the export them in RDF/Triple store format so that can
create knowledge and analytics to end users.

4
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B. Ahlgren, et al. in 2016 [13], has developed a Project called GreenIoT.
This is an application that offers interoperability from sensors big data over
heterogeneous sources of information. It’As purpose is to offer to citizens
and public authorities of Uppsala in Sweden and also worldwide, open acces-
sible data from these sources for daily societal challenges, such as air quality,
meteorological metrics and more.

The above approaches have developed frameworks and services that can
be used on existing heterogenous sources of information and they can sup-
port the Knowledge Base Layer. These solutions are used in real world in
smart cities. What differs our approach from the previous is that we have de-
veloped from the scratch a Web Based application that can totally support
the Weather Time Series data interoperability from heterogenous sources
of information. Our approach is an architecture with its own Knowledge
Based Layer and Storage Layer that are scalable and easily managed to offer
great performance as well as stable usage. Using latest NoSQL technologies
combined, Apache Cassandra DB for storage and Neo4j Graph DB for the
knowledge layer we solve the problem of storing and retrieving big data in
distributed systems in an effective way.
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Meteorological and Spatial Data

format

The data files that we used are in .CSV and .DAT format, that include
measurements from meteorological sensors. These sensors keep tracking data,
at the end of each day a file is created with all day long data included. Each
file is generated from a different source (sensors) of information. Each source
gives data daily, weekly, monthly, yearly and even a file can be created for a
certain period of time.

The Weather Stations of Department of Mathematics and Applied Math-
ematics and Hellenic Republic Decentralized Administration of Crete were
the sources of information, from which we took samples of data.

The sample file from Department of Mathematics and Applied Mathe-
matics was a tab separated .DAT file. The file consists of forty three (43)
columns and one thousand two hundred and thirteen (1.213) rows. The data
is from a certain period of time and it keeps data tracking per ten minutes
for meteorological and spatial measurements with the minimum, maximum
and average values of each attribute.

6
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The Meteorological attributes are (only attribute names described below,
min, max, average column names excluded):

1. Date (dd/mm/yyyy)

2. Time (hh:mm)

3. Wind Speed at 20m (m/s)

4. Wind Speed at 28.5m (m/s)

5. Wind Speed at 30m (m/s)

6. Average Wind Direction at 20m (degrees)

7. Average Wind Direction at 28.5m (degrees)

8. Temperature (Celsius degree)

9. Rain Duration

10. Atmospheric pressure at the altitude of the station

11. Relative Humidity

The sample files from Hellenic Republic Decentralized Administration of
Crete were two files from two different sources of information. Both files
were in tab separated .CSV files. The first source of information was from
the source of Tympaki Town and the second from the source of Doxaro Vil-
lage Weather Stations. The generated file from Tympaki sensors consist of
eleven (11) columns and nine thousand the two hundred fifty six (9.256) rows.
The generated file from Doxaro sensors consist of eleven (11) columns and
five thousand and twenty one (5.021) rows. Both files have similar Meteoro-
logical attributes and their average values per hour.

The Meteorological attributes are:

1. Date (yyyy-mm-dd)

2. Time (hh:mm:ss)

3. Barometric Preasure
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4. Relative Humidity

5. WIND SPEED (m/s)

6. WIND DIRECTION (degrees)

7. Temperature (Celsius degree)

8. Precipitation (mm)

9. Pyranometer 0 2000

10. Hourly Eto

11. Rain Duration

The meteorological files are in NetCDF [14] climate common data for-
mat. NetCDF format is ’self-describing’, this means that there is a header
which describes the layout of the rest of the file, as name/value attributes.
NetCDF is commonly used in climatology, meteorology and oceanography
applications.

Data in NetCDF format is:

• Self-Describing: A NetCDF file includes information about the data it
contains.

• Portable: A NetCDF file can be accessed by computers with different
ways of storing integers, characters, and floating-point numbers.

• Scalable: Small subsets of large datasets in various formats may be ac-
cessed efficiently through NetCDF interfaces, even from remote servers.

• Appendable: Data may be appended to a properly structured NetCDF
file without copying the dataset or redefining its structure.

• Sharable: One writer and multiple readers may simultaneously access
the same NetCDF file.

• Archivable: Access to all earlier forms of NetCDF data will be sup-
ported by current and future versions of the software.
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Geospatial Data has use two main types of geospatial data formats. The
Vector Data and Raster Data [15]. In our case of study, the files contain
neither Vector nor Raster Data explicitly. The Geospatial information is
produced from the data sources(meteorological sensors) that are in different
Geographical points around Crete Island.



Chapter 4

System Architecture

In this section we are going to tear down step-by-step the Layers that we
described earlier and make a clear view of the usage of each technology.

As a first step, we are going to examine the Storage Layer with NoSQL
Apache Cassandra DB. In second step we will describe the technic that we
used to build the Knowledge Base Representation Layer with NoSQL Neo4j
Graph DB.

4.1 Data Warehouse with NoSQL Apache Cassandra

DB

From the analysis of data files format of previous section, we observed that are
wide-column tables, that consist of time series data with the attributes(columns)
Date and Time being the indexes of each record with measurements written
from the sensors.

Requirements in storage and performance in this kind of data drove us to
the NoSQL solution Apache Cassandra DB [5].

10
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4.1.1 Apache Cassandra

A short briefing on Apache Cassandra DB is that we have a NoSQL Database
that provides no single point of failure by not having a Master-Slave Architec-
ture. Having this as an aspect, we can have a scalable Cluster by adding any
type of machine-server at any moment, that each one of them can work prop-
erly and equally in a Apache Cassandra DB Cluster. A feature that makes
Apache Cassandra DB stand out from the rest NoSQL Databases is called
Tunable Consistency Model, by providing to a developer the choice of hav-
ing performance over accuracy or vice versa, compared to other distributed
systems databases according to CAP-Theorem (also known as Brewer’As the-
orem) [6]. Apache Cassandra DB is distributed over several machines that
cooperates with each other, these machines are called nodes. It arranges each
node in a ring format and assigns data to each one. Every node contains the
replication of data and in case of failure the replication changes as it needs
to.

Apache Cassandra DB stores data in Keyspaces is the outer container of
data and the basic attributes of Keyspaces are:

1. Replication Factor: number of machines in the cluster that will re-
ceive copies of the same data.

2. Replica placement strategy: strategy to place replicas in the ring.

3. Column Family (Table): is a container for an ordered collection of
rows in the Keyspace container. Each row is a container for an ordered
collection of columns. Keyspace can contain at least one Column Family
or more.

A picture of Apache Cassandra DB Model:
After this briefing as a next step, we are going to explain how we modeled

database by using the Apache Cassandra technical terms.
From the data file analysis, we created a Keyspace that contains all the

column families created for each different source of information.
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Figure 4.1: Cassandra Model

Design Decision:

1. Keyspace is named as meteo

2. Column Family generated from Doxaro Village file is named as doxaro.

3. Column Family generated from Tympaki Town file is named as tympaki
a3 (a3 is from the meteorologixal sensor that data is collected).

4. Column Family generated from Department of Mathematics and Ap-
plied Mathematics file is named as mathuoc.

All the Column families are created from time series data as we described
in Meteorological and Spatial Data format section, Date and Time attributes
combined creates the Composite Key of Cassandra that makes each record
unique in a column family. Composite Key [1] is a special type of Primary
Key to represent groups of related rows, called partitions.

A picture of what a Cassandra Table with Composite Key Structure [1]:

CQL Command to create the Keyspace:

CREATE KEYSPACE meteo

WITH replication =
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Figure 4.2: Cassandra Partitions

’class’:’SimpleStrategy’,

’replication_factor’: 1

;

The replication factor attribute was set to 1, just because at first stage we
used a single node machine. The class of SimpleStrategy [1] is used because
we wanted a simple replication factor for the Cluster. After choosing the
usage of meteo as a Keyspace we create the Tables inside.

For our case we will see a human readable example for Column Family of
doxaro and how is created.

CQL Command to create Column Family (Table) [1]:

CREATE TABLE doxaro(

Date date,

Time text,

WIND_SPEED decimal,

Relative_Humidity decimal,

Temperature decimal,

Barometric_Pressure decimal,
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Pyranometer_0_2000 decimal,

Precipitation decimal,

WIND_DIRECTION decimal,

Hourly_ETo decimal,

Rain_Duration decimal,

PRIMARY KEY(Date, Time) );

Date attribute is the Partition Key and Time attribute the Clustering
Column. Clustering Column is used to sort the data in a partition.

An example of how you can query in CQL like an SQL query is:
SELECT * FROM meteo.doxaro limit 10;

Figure 4.3: Cassandra Query Result

(Apache Cassandra version used for the thesis 3.11.4)

4.2 Implementing a Data Integration Layer with NoSQL

Neo4j Graph DB

In Data Warehouse section we talked about data files, tables, columns and
how we store them efficiently. In this section we are going to provide an
approach of how we connected each source of information that is stored in
different tables in Apache Cassandra DB with each other, in a way of creating
Interoperability over the storage layer.
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With a closer look at attributes that each data file has, we can easily
discover similarities in the context. So how can we build a feature that will
fulfill all requirements of a user to get all the result of a Weather attribute
from all the Tables from the Data Warehouse?

4.2.1 Neo4j

In the thesis to create the Knowledge Base Representation Layer we used the
NoSQL Neo4j Graph DB. The reason of choosing this database over others
[7] is because we wanted to avoid adding a Read overhead in our data, in a
way to achieve great performance when we execute a query that reads data
from the tables from Data Warehouse.

A short brief on Neo4j Graph DB [8] is that we have a NoSQL Database
that provides a model that data is connected as Nodes and Relationships and
as a result creating a Graph Model. Every Node represents an entity and can
have one or more Label for grouping the Nodes. A Node can have from none
to many labels. Each Node connect with other Nodes by a directed or bidi-
rectional Relationship. A Relationship can have only one Type. Both Nodes
and Relationships have properties that are represented as a name with value
and are used to add meanings and qualities to a Node or a Relationship.
Neo4j has it’As query language that is used to query, traverse and retrieve
information from a graph model and it is called Cypher. A key feature of
Neo4j is the Index-free adjacency that accelerates read and write performance
even if the graph model gets bigger and more complexity is added.

After this briefing and the model that we are going to use in this thesis,
we are going to explain the creation of our model and its usage. The graph
model that we are going to explain in our example is constructed from the UI
of the Web App by an admin user. Here we are going to see what happens
in the Backend and how everything is created from the scratch.

The first node is created from default to be the root Node from which
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the whole graph is going to expand. The Label of the first node is WEATH-
ERONTOLOGY and its property is name:Weather.

The Cypher command to create this node is:

Figure 4.4: Cypher Merge Command

*MERGE is used instead of CREATE to avoid duplicate nodes.

To check the result of this we execute the cypher query:

Figure 4.5: Cypher to check results

Result:

Figure 4.6: Result a node created

From the UI and admin user side now, the admin starts to construct the
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graph by adding Weather Attributes, the name of the Table with which it
connects and the column name that the Weather Attribute stands for.

As an example lets have a look of what happens when the admin wants
to create the weather attribute Temperature and connect with the Table of
doxaro and Column Temperature that has the Temperature attribute as we
saw in data files.

At first stage the cypher command that are executed are:

Figure 4.7: Cypher command to create mapping of attributes

This Cypher command creates a node if not exists with the Label : AT-
TRIBUTES and the property name:’temperature’); Then with the MATCH
command we find two nodes that we want to create a directed Relation-
ship with the Type :hasAttribute. After this a Node with Label :DBTABLE
is created if not exists with the two properties one is the name of the ta-
ble and the other the column with the temperature value name:’doxaro’,
dbtableattributes:’temperature’. As final step we execute the MATCH com-
mand to find the node of Temperature Attribute and create a connection with
Type :mapTo with the node with :DBTABLE and properties name:’doxaro’,
dbtableattributes:’temperature’.
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To check the result of the query we execute the cypher query:

Figure 4.8: Cypher command to check the mapping results

Figure 4.9: Mapping results

Figure 4.10: Mapping results detailed
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By adding the admin user more and more weather attributes and mapping
them with the tables will make a graph grow and provide the interoperability
that we wanted.

As a proof of concept we created the Weather Attributes of Time Series
Data Temperature, Humidity, Date and Time. When a user will ask for
the Temperature Attribute values all the data that is mapped with Apache
Cassandra DB Tables will be the results.

Having doxaro, tympaki a3 and mathuoc tables the following model is
created:

Figure 4.11: Mapping in Neo4j

(Neo4j version used for the thesis 4.2.0)
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Data Managment

As we saw in previous section the management of the amount of data from
the CSV and DAT files was an issue, so is the process of import, of those
files, in the NoSQL Apache Cassandra DB that is the Storage Layer in our
Application.

5.1 CQLSH Shell and COPY FROM Command

Apache Cassandra DB has a built-in tool named CQLSH. CQLSH is a built-
in tool, that can execute CQL Commands from terminal. The role of this
tool is to interact with the database and it is shipped with every Apache
Cassandra DB package. The CQLSH tool is stable to run only with each
Apache Cassandra DB version that is released with. With this tool apart
from executing CQL Commands you can have the full access to make changes
in the database environment like add setting, creating keyspaces, formatting
the view of terminal shell and much more special commands.

One key special command for us is the COPY FROM command. The
COPY FROM command copies data from files as CSV and DAT in our case.
The advantage of COPY FROM command is that can achieve great import
performance, with huge amount of data from a file as a batch import to
database.

20
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Usage of COPY FROM command:
COPY <keyspace name>.<table name> [(<columnName>, ...)]

FROM <file name>

WITH <copy option> [AND <copy option> ...]

Copy option that we are going to use for the import process in our case
is the:

1. HEADER: This is a Boolean option (true/false) which specifies whether
the first line of the file is the column names or not. Default value of
this option is the false

2. DELIMETER: This option specifies the delimiter character that sep-
arates the columns in the file. The default delimiter character is the
","

3. DATETIMEFORMAT: This option specifies the datetime format that
reads data from the file. Default format is the %Y-%m-%d %H:%M:%S%z

As a next step after the how the COPY FROM commands works , is to
give an example for our example of usages. The example that we are going to
have uses the m_doxaro_hourly.csv file, from Doxaro Vilalge sensors and it
contains eleven (11) columns and five thousand and twenty one (5.021) rows
as we described in the second (2) section.

The command to import the doxaro.dat file is:

Figure 5.1: COPY FROM Command
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What the figure 4.1 command does?

1. Points the keyspace where the data will be imported. meteo is our
keyspace name.

2. Points the column family(table) where the data will be imported. doxaro
is our column family(table) name.

3. In the parenthesis we specify the column names of the table, that must
be the same column number in the data file because it is exact one-to-
one import, where the data is going to be stored. The column names
are:

(a) Date

(b) Time

(c) Barometric Preasure

(d) Relative Humidity

(e) WIND_SPEED

(f) WIND_DIRECTION

(g) Temperature

(h) Precipitation

(i) Pyranometer_0_2000

(j) Hourly Eto

(k) Rain Duration

4. It specifies the path and the file from which is going to read the data for
the import. The path and the file is the /ImportFilePath/m_doxaro_hourly.csv

5. Lastly are the option that we used for the import

(a) HEADER = FALSE defines that there is no header row in the file.

(b) DELIMITER = tab symbol defines that the columns in the file are
tab separated.
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(c) DATETIMEFORMAT = ’%Y-%m-%d’ defines that the data of
Date column must be in format like 2019-02-25.

The results of the import of each file are:

Figure 5.2: Import Results

1. 25K.dat is a file created by generator with random 25K data(rows) and
43 Columns, same as the mathuoc file just to test the import perfor-
mance with much more data.

2. 100K.dat is a file created by generator with random 100K data(rows)
and 11 Columns, same as the doxaro file just to test the import perfor-
mance with much more data.

The single node machine that was used for the import test had 2,6 GHz
6-Core Intel Core i7 CPU, 16 GB 2400 MHz DDR4, 512 Flash Storage hard
disk and MacOS Operating System.

5.2 Java Process Handling for the import

Now we have a clear view of how the CQLSH shell and COPY FROM com-
mands works, we are going to describe how we use this tool with Java in our
Application.

The CQLSH is a tool that you can use it through terminal. The way
of having its advantages in our Application was to execute it as a System
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Process.

1. We need to create a temporary file that it will contain the COPY FROM
command as we saw in previous section. CQLSH has the feature that
can read a COPY FROM command from a file.

2. We use need to specify the path where Apache Cassandra CQLSH tool
is installed.

3. We use Process and Runtime Classes to execute the CQLSH as a pro-
cess.

Example of what we described:

Figure 5.3: Run CQLSH as Java Process

From the Application UI the admin user just selects the file that is to be
imported in the database and the user gets back the result of execution.
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The result from the import of the mathuoc file:

Figure 5.4: Import Result

5.3 Scalability

The Scalability in our data will not be an issue, because with a certain Cluster
hardware as well as the configuration of Cassandra, a linear scalability can
be achieved, so as the handle of millions or billions of data.
The design approach that we implemented, will lead to steady and accurate
data management, due to the usage of Cassandra mechanisms for not having
conflicts with any third party developed tools that may lead to data loss or
inaccurate results.

5.4 Performance Issues

Performance in database was always an issue and with from what we saw
from the previous section we are going to a further any issues that may arise
as the data amount increases.
Initialy we have to separate the performance to Write and Read performance.

The Write performance in Cassandra works steady and great even if the
data import cames to huge amounts, a problem that is known in writes is the
replicas data loss but this can be handle by the configuration of Cassandra
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(adding replication factor to a number that guarantees that a batch of nodes
in a Cluster have taken the data and replicas are created).

The Read performance is an issue that we have to consider and that is
because of multiple factors. Factors that affect the Read performance are
the Network Traffic (heavy traffic loads leads to slow read performance), the
queries that may not designed as it should (creating queries that does not
contain the partition keys is an issue for the read performance), the bloom
filters that are used for the read process are not designed to act very fast and
finally the limitation that Cassandra has to partition size and the number
of values (if a table contains too many columns and values it may lead to
very slow performance), so creating small sized partitions is a good practice
to overcome this obstacle. But all in all the reads in Cassandra are great
compared to other NoSQL Databases and provide steady data availability,
it uses cache to store the data that needed often and the common Read
performance problems may be solved with the right configuration, query
design or hardware update.
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Ensuring Interoperability

In previous sections we saw the data files, the layers analysis and how we
implement the import of data in Storage Layer with great performance. In
this sections we will do the Interoperability Analysis and how it works from
a Client Request to Web App, to Web App Response back to the Client.

The analysis that we are going to do will be as a case scenario of certain
data information request from a client to our Application.

The scenario:
’A Client who uses our Web App, needs to find the temperature of weather,
that is greater than 10 Celsius degree, in all locations on 21/02/2019 at 15:00
o’clock.’

27
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Client fills the dynamic query over the data Warehouse. The Request to
our Web App is to find and return data from all the Column Families(Tables)
with the columns Date = ’2019-02-21’, Time = ’15:00’ and Temperature >
’10’.

Figure 6.1: Query Over Warehouse DB

The full road of Client Request of Date, Time and Temperature attribute
to find and get data back:

Figure 6.2: Mapping Architecture

At the time the Web App get the Client Request a Java Servlet asks the
Neo4j Graph DB (Knowledge Base Layer) whether this attribute has been
mapped to a Column Family(Table) and to its column.

In our scenario the Web App asks to find in which column of which Table
the attribute ’Temperature’ has been mapped.
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The result that Neo4j returns is the nodes with the Attributes ’name’
and ’dbtableattributes’, that indicates the Column Family (Table) and its
Column respectively, that is mapped with the Temperature, Date, Time
attributes that Client Requested.

The picture below shows the return of three nodes(blue colored) that are
mapped with the ’Temperature’ Attribute. Similar result will be returned
for the ’Date’ and ’Time’ attributes

Figure 6.3: Knowledge Base Layer
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As a next step the servlet handles the result from Neo4j Graph DB and it
sends it to Apache Cassandra, plus the given ’Where Clause’ values, querying
all the Column Families(Tables) from the result of Neo4j the given ’Where
Clause’ values.

Figure 6.4: Storage Layer

Figure 6.5: Node Response to Query
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Apache Cassandra finds the nodes in the ’Ring of Nodes’ (Servers in the
Cluster) that contain the Requested Result and retrieves the data. The data
is sent back to the Client as a Response to the initial Request.

The final result that the Client has from the Web App is shown to the
picture below:

Figure 6.6: Query result to Client UI

A second scenario:
’A Client who uses our Web App, needs to find the temperature of weather,
that is greater than 15 Celsius degree and less than 30 Celsius degree, hu-
midity greater than 15 percentage , in all locations from date 21/02/2019 to
25/02/2019, from time 15:00 o’clock to 19:00 o’clock.’

As we show in previous senario the route that it follows will be the same
and here we are going to see the parameters for the dynamic query and the
results as a proof of concept that Interoperability works in range queries.

From the results of the query we can see that mathuoc does not fulfil the
query at all, doxaro has only one record for this query and tympaki_a3 has
more records regarding the query request.
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Figure 6.7: Query Over Warehouse DB 2

Figure 6.8: Query Results to Client UI 2.1

Figure 6.9: Query Results to Client UI 2.2
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A third scenario:
’A Client who uses our Web App, needs to find the temperature and the hu-
midity of weather, that are greater than 15 Celsius degree and 15 percentage,
in all locations at date 21/02/2019, from time 18:00 o’clock to 21:00 o’clock.’

Figure 6.10: Query Over Warehouse DB 3

Figure 6.11: Query Results to Client UI 3.1
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Figure 6.12: Query Results to Client UI 3.2

Figure 6.13: Query Results to Client UI 3.3
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All the above steps show how the Interoperability between many differ-
ent data sources can be implemented, by having performance, accuracy and
consistency as key parts for the best result.

The performance part comes from the very fast and steady reads that
Neo4j offers as well as the read in Cassandra database that is used to store
the data. Neo4j is responsible for the fast reads due to the almost zero read
time to find the mappings in the graph by using caching and the Shortest
Path Algorithm. Cassandra can have great read performance with the right
configuration as we saw in previous section.

Accuracy and Consistency comes with the Cassandra data availability
and its fault tolerance mechanisms and also the right mapping that the ad-
ministration has made from the administration panel UI of M.I.S. Web App
in Neo4j.

With all the above parts we can ensure the efficient Interoperability over
heterogenous sources of information.

6.0.1 Incremental Addition of Data Source

The incremental Addition of Data Source is not an issue that should consider
us in our thesis and that comes from that it has an abstract design without
any strict rules of mapping or database creation. So even if a new source
or sources of information may need to inserted in our M.I.S. Application the
only need is the right database design and also the right mapping from an
expert user between the Knowledge Base Layer and the Storage Layer.

6.0.2 Lesson Learned

Lessons Learned from this experience is that with modern technologies and
technics, we can achieve great results in data management. We can take
advantage of hardware that we have nowadays used High-Performance Dis-
tributed Systems, using a variety of Databases, Relational and NoSQL by
each case of use and finally built a hybrid application, which gives solutions
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to problems that years before would be difficult to solve or would be costly
enough not having the opportunity to work on and find their potentials.
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M.I.S. Web App Overview

After all, we have a great knowledge of how everything works from previous
sections, it is time to have a look at the final product, the Management
Information System(M.I.S.) Web App, its Contents and in Use.

7.1 M.I.S. Web App Capabilities

The contest of the Management Information System(M.I.S.) Web App are
the following:

1. Data Table

2. Query OWDB(Over Warehouse DB)

3. Line Chart

4. 3D Plot

5. Import File

6. Execute CQL

7. Settings

8. Users

37
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Lets now have a deeper look of what the above contents are. In every
section access has been implemented for registered users that has two types,
’admin’ and ’user’. In each contect the access is written next to title.

Figure 7.1: Web App User Interface index page

7.1.1 Data Table (Access: admin, user)

Data Table is used for querying a Column Family (Table) by Date and get
all the results in a Table format with rows and columns.
The Table has the following features:

1. Total Search of certain data value in all of the columns of the Table

2. Column Search of certain data value

3. Column ordering

4. Paging results

5. Fixed columns (keeps data of certain column/s in position in a horizon-
tal scroll)

User fills a StartDate(From), an EndDate(To) form. and then selects
the Column Family(Table) that wants to retrieve data from and submits a
request.
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The response to the request is a result from the chosen Column Fam-
ily(Table) formatted in a Table.

Figure 7.2: Data Tables Usage
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7.1.2 Query OWDB (Access: admin, user)

The Query OWDB works as a dynamic query builder for the interoperability,
from which a user can execute complex queries from the UI without the need
of knowledge of any query language. User just inputs parameters, operators
and values of data to get the wanted results in a Table.
The Table has the following features:

1. Total Search of certain data value in all of the columns of the Table

2. Column Search of certain data value

3. Column ordering

4. Paging results

5. Fixed columns (keeps data of certain column/s in position in a horizon-
tal scroll)

User can build a query by choosing parameters that wants results from,
chooses the operator of each parameter should be and finally fills the values
of the given parameters that wants to retrieve results regarding the operator.
User request is created by the submit of the form with parameters, operators
and values.



CHAPTER 7. M.I.S. WEB APP OVERVIEW 41

The response to the request is a result from all the Column Families(Tables)
regarding the mapping that has been implemented for interoperability, for-
matted in a Table.

Figure 7.3: Dynamic Query Builder Over Warehouse DB

Figure 7.4: Result of Dynamic Query
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7.1.3 Line Chart (Access: admin, user)

The Line Chart works for statistical - analytical purposes. It creates a graph-
ical interface for one or multiple attributes and it shows the results in colored
lines in ’x’ and ’y’ axis. With the mouse over each line user gets the exact
info of values at that point of line.

User fills a Date Range (From - To) and a Hour Range (From - To) form,
then selects an attribute or multiple attributes that wants to have results for
and finally choses the ’x’ axis that wants the data to be represented and can
be in ’Date’ or in ’Time’. A request is created by the form submit.

The response to the request is the results in line chart graphical represen-
tation showing color separated attributes lines. The ’y’ axis shows the values
of each attribute and the ’x’ axis the ’Date’ or the ’Time’ that attribute value
is represented. Mouse position on each line shows information of the exact
name of the attribute, its value and ’Date’ or ’Time’ that represents.

Figure 7.5: Line Chart plot
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7.1.4 3D Plot (Access: admin, user)

3D Plot is used to create a 3D Sparce Data graphical interface. Each dot in
sparce representation has information of each record in the result. The ’x’
axis represents the ’Date’, the ’y’ axis represents value of data and the ’z’
axis represents the ’Time’.
The 3D plot has the following features:

1. Zoom In and Out in 3D Plot

2. Download the plot as .png image

3. Orientation modes of the plot

User adds data for Date Range (From - To) for Hour Range (From - To)
and finally selects one attribute from which wants to have results. A request
is created by the form submit.

The response from the request is the results in Sparce Data graphical
representation.

Figure 7.6: 3D Sparce Data plot
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7.1.5 Import File (Access: admin)

The Import File has the usage of importing data from the .csv and .dat in
the Column Family (Table) that we want as it is described in section 4. The
admin choses the file for the import and it submits a request for the import
process.

The response to the request is the result of the import in depth analysis.

Figure 7.7: Import Data File Result in UI
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7.1.6 Execute CQL (Access: admin)

With the Execute CQL content we give the opportunity to the admin to write
and execute any abstract CQL command that might need to make changes
in any Column Family(Table) or Keyspace.

The user writes the CQL command and a request is created by the form
submit.

The response from the request is the result of CQL Execution in a Table.

Figure 7.8: Terminal to execute CQL Commands in UI
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7.1.7 Settings (Access: admin)

In the Setting the admin has the full access of the Web App. In this content
admin can control the usage of:

1. Mediator Table

2. Export of Column Family (Table) in JSON File

7.1.7.1 Mediator Table

In Mediator Table the admin can only insert a mapping of attribute with a
Column Family (Table) and an attribute of that Table. Deletes and Updates
are very sensitive processes for the mapping and it is safer to be executed by
an advanced admin user and that is the reason of not allowing this process
from the UI to any admin.

Figure 7.9: Mediator Table with attribute mapping
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7.1.7.2 Export of Column Family (Table) in JSON File

In the export of Table in JSON File an admin user choses the Table that
wants its data to be exported in JSON format.
Request is created by choosing the Table submit.

The response to the request is the JSON File.

Figure 7.10: Export sample of JSON File
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7.1.7.3 Users Table

In Users Table an admin can register a new member of the application with
the role of simple user or admin user, with full access in features of the Web
App.

User Table UI:

Figure 7.11: Users Table UI
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Conclusion and Future Work

As the data from Meteorological sensors continuously increases, the need of
solutions to manage this kind of data as well as combine them from het-
erogenous sources of information for the creation of Knowledge Base, has
been arose.

Our work addresses this problem by using a Layered based Web Applica-
tion, not only to solve the mapping of attributes of heterogenous databases
but also to store the data efficiently. The usage of modern technologies in
distributed systems gave us the opportunity to develop a high performance
and scalable Web App that offers an Interoperability over a data warehouse
of heterogenous sources of information.

Our approach uses two Layers of to handle the Knowledge Base and the
Storage. The solution to the Knowledge Base came with the use of NoSQL
Neo4j Graph DB. Neo4j is used to map attributes between the different
sources of information having the role of mediator from the Client to the
data warehouse by building dynamic queries to data warehouse regarding
the Client requests. Neo4j has high performance reads, despite the graph
scalability. The second layer is the Storage Layer. In that layer all the data
from heterogenous sources are stored in Column Families (Tables) in NoSQL
database the Apache Cassandra. This database offers us high performance
writes and can handle huge amounts of imports to a Cluster in parallel.

49
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Apache Cassandra storage system works great even if the data that has to
handle will increase rapidly.

Our future work is to develop an extension of this Web App that will
support the translation of RDF Triple Stores to Neo4j Graph Database, that
will drive to a semantically more accurate mapping approach by importing
ontologies with relations and attributes to a Knowledge Graph.
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