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Chapter 1

Introduction

A major goal of molecular spectroscopy is to understand the forces which couple the
degrees of freedom of a polyatomic molecule and thereby control the internal energy
flow. These forces manifest indirectly in the vibrational–rotational energy levels of
the molecule. In the context of internal vibrational energy redistribution, interesting
issues to spectroscopists, both experimentalists and theorists, are the dissociation
and the isomerization processes in highly excited molecules and, specifically, the
way these processes are reflected in the vibrational–rotational energy spectra. The
recognition of patterns in a spectrum attributed to such unimolecular reactions is
greatly facilitated by the appropriate assignment of the quantum states, especially
the highly excited ones. The departure from the simple picture of the independent
normal modes as energy increases can be quite dramatic and puzzling. New classi-
fication schemes ought to be devised and diagnostic features should be identified. If
we can interpret a spectrum and understand the mechanisms which influence it, we
may be able to identify the chemical character of a molecule in a reaction, predict its
spectral characteristics and account for or even control the evolution of a chemical
process.

Our understanding of atoms and molecules is rapidly enhanced by the advances
in laser spectroscopy. Experimental techniques and instruments have allowed the
spectroscopists to analyze spectra in detail with very high resolution. The develop-
ment of modern spectroscopic techniques such as the Dispersed Fluorescence (DF)
and the Stimulated Emission Pumping (SEP) [1], enables researchers to trace out the
vibrational motions of highly excited small polyatomic molecules, in particular those
taking place in the course of chemical reactions. Moreover, the sustained availability
of ever powerful computers and the progress made in numerical algorithms and ab
initio electronic structure methods in recent years, make feasible a very satisfactory,
complete, ab initio study of realistic systems of few particles. Nowadays, the con-
struction of a global ab initio potential energy surface for light polyatomic molecules,
in excellent agreement with experiment, is common place, as well as the complete
solution of the Schrödinger equation using such a potential. A very thorough review
on the present status of molecular spectroscopy is given in [2].

One of the research interests of our group is the study of highly excited vi-
brational levels of small polyatomic molecules. Specifically, the recognition of the
spectroscopic signatures of a qualitative change in the character of the vibrational
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2 CHAPTER 1. INTRODUCTION

states—such as a transition from a normal- to local- mode picture or the onset of
bond rearrangement in an isomerization process, is one of the central issues of our
work. Special consideration is given on the implications on the spectrum of reso-
nances that may be exhibited between the normal modes in the molecule. We follow
a novel approach through periodic orbit analysis of the classical phase space in order
to study the behavior of a molecule.

The experimental observation, theoretical calculation, and identification of iso-
merization states are quite intricate tasks due to the high energy required to over-
come the barrier separating the isomers, the subsequently large density of states
and the special character these states have as they explore large parts of the phase
space. Similar remarks apply to resonance states in unbound systems. At high en-
ergies, the chaotic nature of the nonlinear potential of the molecules is most promi-
nent; saddle–node bifurcations occur in the classical phase space, and, as it will be
shown, influence considerably the energy spectrum. The large density of states in
high energy regime together with the chaotic effects complicate the analysis and
understanding of the spectrum, making imperative the close collaboration between
experiment, classical, semiclassical and quantum treatment in order to achieve a
complete and detailed interpretation of the rotational–vibrational spectrum.

The “traditional” approach of spectroscopists to the reconstruction of the observed
spectrum and the interpretation of the dynamics of a molecule, starts by determin-
ing various molecular constants such as vibrational frequencies, rotational constants
and so on. Then, a simple parametric Hamiltonian of uncoupled harmonic oscilla-
tors, valid around the equilibrium configuration, is fitted to these experimental data
(or ab initio calculated force constants for low energies). This way, each state in the
spectrum can be assigned a set of quantum numbers based either on regular patterns
of the energy levels or the nodal patterns in the eigenfunctions. The simple Hamil-
tonian is gradually extended with anharmonic terms and couplings of the normal
modes as the energy increases. The eigenvalues of the resulting effective Hamil-
tonian are typically expressed in a series of powers of the quantum numbers, the
Dunham expansion form. This model gradually breaks down in higher energies as
the normal modes deviate from the actual oscillators, exhibiting a substantial change
in their character. Nonlinear effects set in and the coupling of the electronic, vi-
brational and rotational degrees of freedom becomes non-negligible. Normal modes
may be destroyed and others appear; spectra become too dense and complex to
be described by a simple model. Processes such as dissociation or isomerization,
exploring regions well above the energy minima, cannot be treated successfully in
this approach. The construction of accurate global Potential Energy Surfaces from
ab initio data, covering not only the equilibrium configuration but all the accessible
space, and the solution of the corresponding multidimensional Schrödinger equation,
calculating highly excited bound states, are necessary. These tasks were achieved
for small molecules with three of four atoms only in the last decade [3]; it is still a
computational challenge to treat more atoms with ab initio methods [4].

Still, the calculation of thousands of wave functions has little merit without the
proper assignment of quantum numbers which itself is a quite formidable and at
the same time, questionable task as the energy increases. The assignment should
consist of not only a set of numbers but, also, the exact type of vibration associated
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with each normal mode. The qualitative dependence on energy of the character,
and even of the existence, of the normal modes, renders the classification in terms of
independent vibrations meaningless. More important than compiling a parametrized
list of all energy levels, are the identification of specific patterns in the spectrum,
their interpretation in terms of particular features of the system, and the extraction
of dynamical information encoded in the spectrum. These are the actual challenges
for the theorists and this is where classical mechanics steps in.

During the last few decades, various techniques were developed to interpret quali-
tatively highly congested and complex spectra. Methods of statistical nature based
on random matrix theory [5], adjust statistical distributions with few parameters to
describe energy levels [6], eigenfunctions [7], and intensities. These methods assume
either regularity or ergodicity in the systems they apply on.

Techniques which employ particular sortings of the spectral lines, facilitating the
recognition of patterns and the hierarchical coupling in spectra have been developed.
Such a method is the one by Davis [8], in which hierarchical “trees” are generated
from molecular spectra by following the branching of peaks as resolution is changed
continuously. The trees can then be analyzed using several techniques developed in
the classification and multivariate analysis literature. This way, information is ob-
tained on the time scales of the dynamics and the hierarchical structure of spectra.
Other methods for pattern recognition and extraction in experimental molecular
spectra are the extended cross-correlation [9] and extended auto-correlation meth-
ods [10] of Coy, Jacobson, and Field. The first allows the rapid identification and
extraction of patterns that are repeated in multiple experimental records. The sec-
ond technique permits the identification of complex patterns that are parameterized
in a multidimensional way, even when the patterns are obscured by the presence of
interfering data.

Other approaches, of dynamical nature, are the semiclassical methods, in the
broad sense, which attempt to establish a correspondence between quantum states
and classical entities. These methods can describe specific spectral characteristics
and contribute an understanding of the intramolecular vibrational redistribution
process. Numerical experiments show that, in general, the quantum eigenfunctions
and the distributions of eigenvalues reflect the structure of the classical phase space:
in regular regions, the eigenfunctions are localized with well-ordered nodal patterns
while in chaotic regimes the opposite is in general true. In hard chaos the complete
delocalization of wave functions can be proven. The distributions of the differences
of adjacent energy levels also differ in regular and chaotic areas. There are notable
exceptions in this picture, though; in classically chaotic regions, wave functions can
be localized to some extent. This localization is associated with periodic orbits, as
we will see below.

Direct application of Classical Mechanics can certainly not justify the stability of
atoms and molecules and, in general, account for their behavior in low energy levels.
However, the dynamics of highly excited atoms and molecules are often characterized
by actions much larger than the Planck constant; chaotic effects prevail over regular
motion and the density of states rises exponentially, approaching the classical limit.
A large number of low intensity lines, practically continuous, interspersed with more
intense ones comprise the energy spectra in this regime; the assignment of energy
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levels in terms of quantum numbers is incomplete and dubious there. It is, therefore,
important to understand the nonlinear features of the classical systems and relate
them to quantum characteristics in high energy regimes where other approaches may
break down.

In regular systems, the correspondence of classical and quantum mechanics is
fully established in the form of the Einstein–Brillouin–Keller (EBK) theory which
will be outlined in a subsequent chapter. Classical mechanics turns out to be very
useful in understanding certain aspects of molecular processes—such as ionization,
dissociation, molecular collisions, isomerization, interaction of electromagnetic radia-
tion with molecules—taking place at higher energies where chaos sets in. Apart from
the qualitative interpretation that can be achieved through the classical treatment,
many long-time quantum properties can be quantitatively understood using short-
time classical dynamics information; these include wave function intensity distribu-
tions, intensity correlations in phase space and correlations between wave functions,
and distributions of decay rates and conductance peaks in weakly open systems. The
correspondence of classical and quantum systems in high-energy chaotic regions is
a far from closed research issue.

Pioneering studies on model potentials and, more recently, on realistic systems,
have demonstrated the crucial assistance of classical theory in the recognition and
interpretation of specific experimental or quantum features. Among other classical
objects, periodic orbits and bifurcations in the corresponding classical systems have
been shown to relate to the localization of wave functions [11, 12], the distribution
of the prominent peaks in low resolution spectra, the density of states [13], and the
sudden birth of important classes of quantum states [14]. The periodic orbits of
a system, in conjunction with continuation techniques providing their quantitative
dependence on energy in the form of continuation/bifurcation diagrams, and their
structural changes (bifurcations) exhibited on specific energy values are very useful
concepts and tools in interpreting the evolution of spectra from the low energy regime
deep into the potential well up to highly excited regions [15]. Periodic orbits born
around the potential minima and through the bifurcation mechanisms, proliferate
with increasing energy, thus providing a framework on which assignment of the ever
complex quantum states is meaningful and liberated from the constraint of the fixed
number of normal modes. Other special characteristics of the classical phase space,
such as the stable and unstable manifolds and the remnants of tori, relate with and
influence specific states and patterns of the quantum spectra [16, 17]. Being exact
objects, living in approximately the same nonlinear phase space which yields the
experimental or quantum spectrum, classical entities express, within the limits of
the uncertainty principle, all features governing the actual behavior.

Polyatomic molecules offer real systems for testing the theories of nonlinear clas-
sical mechanics; they are realistic cases where the interpretation of the spectrum
and the dynamics in terms of periodic orbits can be applied and developed further.
Our research group was interested in various triatomic molecules: hydrogen cyanide
(HCN), phosphaethyne and deuterated phosphaethyne (HCP/DCP), formyl radical
and deuterated formyl radical (HCO/DCO), hypochlorous acid (HOCl), hypobro-
mous acid (HOBr), and HeH+

2 /HeHD+/HeDH+. Our contribution in the study of
some of them will be presented in this thesis. The classical treatment for them
complements the quantum mechanical, semiclassical, and, in cases, experimental
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results obtained by the collaborating research groups, making these molecules pro-
totypes for which a complete and extensive study is available and valuable tests of
the theories can be conducted.

The presentation of this work is developed with the specific consideration of being
accessible to non-experts. To this end it summarizes hopefully all necessary topics
for a newcomer to the field providing an extensive reference to the relevant litera-
ture for those who wish to pursue these matters further. This thesis is organized
as follows: In the next chapter, a detailed presentation of the classical view of dy-
namical systems, both regular and chaotic, and their phase space characteristics
is given, along with an overview of the semiclassical methods relating them to the
quantum picture. In the third chapter, the framework of theoretical molecular spec-
troscopy is presented, with an overview of the methods used for the derivation of
potentials and the solution of the quantum Hamiltonian. The fourth chapter is tech-
nical in nature: it presents the methods and algorithms employed in constructing
the continuation/bifurcation diagrams; among them, the, relatively new in com-
putational physics, genetic algorithms are adapted to our type of problems. The
subsequent chapter presents a program facilitating the automatic differentiation of
mathematical functions encoded in the fortran 90 programming language; it was
developed during our research, tested in highly complex functions—the potentials
we used, and published. The sixth, seventh and eighth chapters present our work
on the HCP/DCP, HCO/DCO, and HOCl molecules, the results we obtained by
the periodic orbit analysis and their relation to the outcome of the quantum and
experimental treatment. The thesis concludes with a brief overview of our findings.
Parts of our research work were published in the following articles:

1. Pankaj Bhatia, Biswajit Maiti, Narayanasami Sathyamurthy, Stamatis Sta-
matiadis, and Stavros C. Farantos. Exploring molecular motions in collinear
HeH+

2 and its isotopic variants using periodic orbits. Physical Chemistry
Chemical Physics, 1(6):1105–1114, March 1999.

2. J. Weiß, J. Hauschildt, S. Yu. Grebenshchikov, R. Düren, R. Schinke, J. Koput,
S. Stamatiadis, and S. C. Farantos. Saddle–node bifurcations in the spectrum
of HOCl. J. Chem. Phys., 112(1):77–93, January 2000.

3. B. Maiti, N. Sathyamurthy, S. Stamatiadis, and S. C. Farantos. Periodic
Orbit Analysis for HeH+

2 in three dimensions. Indian Journal of Chemistry,
39A(1–3):338–344, 2000.

4. J. Bredenbeck, C. Beck, R. Schinke, J. Koput, S. Stamatiadis, S. C. Farantos,
and M. Joyeux. The vibrational spectrum of deuterated phosphaethyne: A
quantum mechanical, classical, and semiclassical analysis. J. Chem. Phys.,
112(20):8855–8865, May 2000.

5. S. Stamatiadis, R. Prosmiti, and S. C. Farantos. auto deriv: Tool for
automatic differentiation of a fortran code. Comput. Phys. Commun.,
127(2&3):343–355, May 2000. URL address: www.cpc.cs.qub.ac.uk/cpc/
summaries/adls.
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6. S. Stamatiadis, S. C. Farantos, Hans-Martin Keller, and Reinhard Schinke.
Saddle–node states in the spectra of HCO and DCO: a periodic orbit classi-
fication of vibrational levels. Chem. Phys. Lett., 344(5–6):565–572, August
2001.

7. S. C. Farantos, E. Filippou, S. Stamatiadis, G. E. Froudakis, M. Mühlhäuser,
M. Massaouti, A. Sfounis, and M. Velegrakis. Photofragmentation spectra of
Sr+CO complex: experiment and ab initio calculations. Chem. Phys. Lett.,
366(3–4):231–237, December 2002.



Chapter 2

Classical Mechanics

2.1 Introduction

As mentioned in the introductory chapter, an important research issue in the field
of chemical physics is the evolution of the vibrational motion of small polyatomic
molecules with increasing energy. In realistic systems, non-linear effects set in when
the molecule deviates far from the equilibrium configuration and explores an ex-
tended region of the phase space. The classical and quantum phase spaces encom-
pass growing chaotic regions which influence considerably the behavior of the system.
The rotational–vibrational spectrum can exhibit a considerable chaotic character for
which the normal-mode analysis is inadequate. It is necessary to understand how
and why certain chaotic entities relate to qualitative variations of the molecular
spectra in high energies and devise new approaches to interpret such spectra.

In this chapter, we will provide a concise summary of certain notions of classical
mechanics, essential to anyone wishing to analyze and interpret meaningfully the
features of complex, chaotic spectra. We will also develop the framework and the
definitions on which subsequent chapters are based. Equilibrium points, invariant
tori, periodic orbits and bifurcations of them, stable and unstable manifolds can be
shown to relate to the distribution of energy levels, influence the form of wave func-
tions, provide the path for chemical reactions, and describe, qualitatively at least,
many aspects of the quantum behavior. We will focus especially on periodic orbits
and their bifurcations. In subsequent chapters, ample evidence will corroborate that
periodic orbits form the “backbone” of quantum wave functions of actual physical
systems regardless the energy region; something first noted on model systems. More-
over, we will show that saddle–node and pitchfork bifurcations profoundly affect the
vibrational spectra in high energies and can relate to specific types of wave functions.

This chapter is laid out as follows: the first section presents the foundations of
classical mechanics, deriving the equations of motion and their properties. Defini-
tions and terminology is given in an attempt to make the chapter as self-sufficient
as possible. The second deals with certain characteristic features and phase space
structures of dynamical systems: the various kinds of equilibrium points, periodic
orbits, and bifurcation types are analyzed in detail. The third section presents the
definitions and an overview of integrable and non-integrable systems, leading to an
introduction to chaos. Finally, semiclassical methods, which relate aspects of clas-
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8 CHAPTER 2. CLASSICAL MECHANICS

sical and quantum behavior, are briefly presented, and an introduction to quantum
chaos is given.

2.2 Equations of Motion

Let us consider a set of n dimensionless (non-relativistic) particles, with masses
mi (i = 1, . . . , n), in positions ~ri (i = 1, . . . , n) with respect to an inertial refer-
ence frame, subject to p independent, holonomic constraints of the form:

hj(~r1, ~r2, . . . , ~rn, t) = 0 j = 1, . . . , p.

We say this system has f = 3n − p degrees of freedom. The particles may be
interacting and external forces may act on them.

We can associate to such a system a particular twice–differentiable function of f
independent variables q1, q2, . . . , qf (collectively denoted by q), their time derivatives
q̇1, q̇2, . . . , q̇f (q̇), and time t; this function L(q, q̇, t) is called the Lagrangian. The
qi = qi(t) are the generalized coordinates, functions of ~r1, ~r2, . . . , ~rn. According to
the Hamilton’s Variational Principle, the evolution of the positions of the particles
from an initial time t1 through a final time t2, is such that the action integral, a
functional of q,

I[q] =
∫ t2

t1

L(q, q̇, t) dt, (2.1)

assumes an extreme value. The Principle reads:

δ I[q] = 0. (2.2)

Note that eq. (2.2) is invariant under gauge transformations of the form

L → L +
d
dt

G(q, t),

where G is an arbitrary triply–differentiable function of q, t; that means L is not
unique. If we can further assume that all forces ~Fi acting on the particles are potential
forces, that is, a scalar function V (~r1, ~r2, . . . , ~rn, t) exists and the equations

~Fi = −∇iV , i = 1, . . . , n

hold, then the Euler–Lagrange differential equations,

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 i = 1, . . . , f, (2.3)

can be derived from this principle.
The Lagrangian for mechanical systems can be defined as the difference of the

kinetic energy from the potential,

L = T − V =
n∑

i=1

1
2
mi~̇r

2
i − V ,

expressed in q, q̇.
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There are situations where we prefer to describe the system with another set of
generalized coordinates,

Qi = Qi(qj , t). (2.4)

In such a case, we can express qj as functions of Qi, provided Qi(qj , t) are inde-
pendent and invertible, that is, det[∂Qi/∂qj ] 6= 0, and derive a new Lagrangian;
L(qi, q̇i, t) becomes L̃(Qj , Q̇j , t).

The Variational Principle, eq. (2.2), being independent of the particular choice
of the generalized variables, reads

δI[Q] = δ

∫ t2

t1

L̃
(
Q, Q̇, t

)
dt = 0.

The form of the Euler–Lagrange equations, eq. (2.3), remains unchanged:

∂L̃

∂Qi
− d

dt

(
∂L̃

∂Q̇i

)
= 0 i = 1, . . . , f.

Invertible transformations of the kind in eq. (2.4), which leave invariant the form of
the Euler–Lagrange equations are called point transformations.

There is another way to derive equivalent equations of motion of a mechanical sys-
tem. If we define the generalized momenta pi conjugate to the each coordinate qi as

pi =
∂L

∂q̇i
, then, q̇ = q̇(q,p, t), provided

∣∣∣∣
∂2L

∂q̇i ∂q̇j

∣∣∣∣ 6= 0 holds. We define the Legendre

transform of L with respect to q̇ as the Hamiltonian function, H:

H(q,p, t) =
f∑

i=1

piq̇i(q,p, t)− L (q, q̇(q,p, t), t) .

H is defined on the space spanned by {q,p}, called the phase space, and may
have temporal dependence. If we apply the Hamilton’s variational principle to the
function

F (q,p, q̇, ṗ, t) =
f∑

i=1

piq̇i −H(q, q̇, t), (2.5)

treating q,p, q̇, ṗ as independent, we derive the canonical equations which govern
the evolution of the system:

ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
. (2.6)

In Hamiltonian mechanics, where the generalized momenta are independent of the
generalized coordinates, we are allowed a broader choice of transformations com-
pared to point ones, in the form

Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t).

We note that the function F in eq. (2.5) depends explicitly on the particular choice
of q,p, and so, restrictions are imposed on the transformations in order to preserve
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the form of the canonical equations, eq. (2.6). The allowed transformations are
called canonical.

A canonical transformation can be generated by one or more, as they are not
unique, functions of time and of 2f variables chosen among the 4f variables q, p,
Q, P, regarded as independent. For example, let G be any function of (q,P, t) with

the proviso that
∣∣∣∣

∂2G

∂qi ∂Pj

∣∣∣∣ 6= 0. If we choose

pi =
∂G

∂qi
, Qi =

∂G

∂Pi
,

and invert them, we get a canonical transformation and a new Hamiltonian,

H̃(Qi, Pi, t) = H +
∂G

∂t
,

on which we can apply eq. (2.6). It can be shown [18] that any two points on a given
solution of the equations of motion are connected by a canonical transformation.
We will use this theorem below.

Any temporal dependence in a Hamiltonian function can be waived, without any
loss of generality, by introducing an artificial degree of freedom, i.e.

H(q1, q2, . . . , qn, p1, p2, . . . , pn, t) → H̃(q1, q2, . . . , qn, qn+1, p1, p2, . . . , pn, pn+1)
= H(q1, q2, . . . , qn, p1, p2, . . . , pn, qn+1) + pn+1.

This transformation from a non-conservative (
∂H

∂t
6= 0) system to a conservative

one (
∂H̃

∂t
= 0), enables us to treat only autonomous systems with time–independent

Hamiltonians on an extended phase space.

A much more compact notation for the canonical equations, eq. (2.6), can be
achieved by denoting the {q1, q2, . . . , qf , p1, p2, . . . , pf} phase space vector with x,

and with ∇H the vector
{

∂H

∂xα

}
, α = 1, . . . , 2f . Then:

ẋ = J∇H, (2.7)

where

J =
[

O I
−I O

]
, (2.8)

I the f×f unit matrix, and O the f×f zero matrix. In this notation, a transforma-
tion from x = {q1, q2, . . . , qf , p1, p2, . . . , pf} to X = {Q1, Q2, . . . , Qf , P1, P2, . . . , Pf}
is canonical when

MT JM = J (2.9)

holds, where

Mαβ =
∂xα

∂Xβ
, α, β = 1, . . . , 2f.

As matrix J is orthogonal, JT = J−1, eq. (2.9) can be transformed into:

J−1MT J = M−1.
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This equation implies that M−1, MT , and M have the same eigenvalues; on the
other hand, M and M−1 have inverse eigenvalues. Therefore, any symplectic matrix
M has eigenvalues in pairs: {λ, 1/λ}.
We can easily prove a very important property of autonomous Hamiltonian systems:

the volume in phase space of a domain U ,
∫

U

f∏

i

dqidpi, is conserved during the evo-

lution of a Hamiltonian system (Liouville’s theorem); the Jacobian of the coordinate
transformation between different times, being symplectic, has determinant equal to
unity. If the system is not autonomous, the theorem holds for the volume in the
extended phase space with dimension 2f + 2.

2.3 Analysis of Dynamical Systems

The dynamics of a very great variety of systems can be cast into the form

ẋ(t) = F(µ,x(t), t), x(t0) = x0, (2.10)

a system of n first order differential equations with a specific initial condition. t
is the time variable, x(t) is a point in the configuration space of the system—a
manifold M ⊆ Rn—and F a vector field that may contain one or more parameters
(collectively denoted by µ) such as the coupling to or the characteristics of external
fields. The values of these parameters may play an decisive role on the structure of
the solutions of the equations above.

An important theorem (see [19]) of ordinary differential equations gives precise
information on the local in space and time existence and uniqueness of solutions for
eq. (2.10), provided the function F(µ,x, t) fulfills certain broad conditions.

In what follows, we focus on the critical elements (stationary points, periodic
orbits) of a dynamical system and their stability characterization. We will also
mention briefly integral manifolds and define the attractor, a phase space structure
which plays an important role in a non-conservative dynamical system. We conclude
this section by studying the effect on the critical elements of the variation of the
extra parameter(s) µ in eq. (2.10); we formulate the notion of bifurcation.

2.3.1 Equilibrium Points

Suppose, at first, that F has no explicit temporal dependence; it is autonomous.
The point x = xe is a critical or equilibrium point of eq. (2.10) for µ = µ0 if

F(µ0,xe) = 0. Consequently, x(t) = xe is a solution for all times.
A fundamental property of an equilibrium point is its stability. The following

definitions hold:

The critical point x = xe for eq. (2.10) is said to be (Liapunov) stable
if, for every neighborhood U of xe, there is another neighborhood V such
that a solution passing through an arbitrary point of it never leaves U ;

and
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The critical point x = xe for eq. (2.10) is said to be asymptotically
stable if there is a neighborhood U of xe, such that a solution passing
through an arbitrary point of it exists in the limit t → +∞ and tends to
xe.

It follows that an asymptotically stable point is also Liapunov stable. Any point
not stable or asymptotically stable is unstable.

In order to derive information on the stability of a critical point, linearization of the
vector function F(µ,x), that is, a Taylor expansion in x around this point up to the
first derivative, is performed. The following remarks hold:

• It can be proven (see [20]) that, if an equilibrium point is asymptotically stable
for the linear system, so is for the original non-linear.

• Hartman–Grobman theorem [21] and its generalization by Shoshitaishvili (see
[22]), define a local topological conjugacy between a non-linear and the respec-
tive linear systems; the dynamics are qualitatively the same in an area around
the critical point. The first theorem refers to unstable critical points with the
center subspace Ec = ∅ (defined below), while the second deals with the case
where Ec is not empty. They prove that an unstable point of a linear system
is also unstable for the original non-linear.

• In the case where a critical point of a linear system is stable, there is a subtle
difference: it is not guaranteed to retain the stability when non-linear terms
appear. Its linear stability is necessary but not sufficient condition for its
stability in the non-linear system. In this case, we employ the direct method
of Liapunov : we try to find a scalar function V (t,x) which vanishes at the
critical point and is positive everywhere else in a neighborhood U of it. If
the total time derivative of V along the orbits of the system is non-positive
everywhere in U , the point is Liapunov stable;1 if it is strictly negative, the
point is asymptotically stable.

Let us elaborate on the linearization method. Without any loss of generality, we can
translate the origin of the coordinate system to the critical point and set µ = µ−µ0;
this way the critical point is at µ = 0, x = 0. Eq. (2.10) is then linearized into

ẋ = F(0, 0) + x · (∇F)|µ=0,x=0 ⇒ ẋ = Ax, (2.11)

where A a real constant matrix with elements Aij =
∂Fi

∂xj

∣∣∣∣
µ=0,x=0

, i, j = 1, . . . , n.

The general solution of eq. (2.11) depends on the eigenvalues λi and eigenvectors
of A (see [19, 20, 23]). In brief, when all eigenvectors are linearly independent the
solution assumes the form

x(t) = U diag[eλit] U−1 x(0),

1A function V with these properties is called a Liapunov function.
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where the n × n matrix U is constructed using the eigenvectors of A as columns.
If there are no n independent eigenvectors, something that may occur when an
eigenvalue is degenerate, the columns of U are the non-trivial solutions of

(A− λiI)kui = 0, k = 1, . . . , mi,

where mi is the multiplicity of λi. Then

x(t) = U diag[eλit] U−1
n−1∑

k=0

Nk tk

k!
x(0),

where N = A− U diag[λi] U−1.
The matrix A is real and therefore, if λ is one of its eigenvalues, so is the conju-

gate, λ∗. If <(λk) < 0, the corresponding component of the vector U−1 ·x decays to
zero; <(λk) > 0 implies exponential growth of this component. We can define a sub-
space Eλ of the configuration space M for each λ; it is spanned by the corresponding
eigenvectors if λ is real,

Eλ ≡ {u ∈ M | (A− λI)u = 0},

or the real, uR, and imaginary, uI , parts of the complex eigenvector(s) if λ is complex.
As both parts satisfy (A− λI)(A− λ∗I)u{R,I} = 0 then

Eλ ≡ {u ∈ M | (A− λI)(A− λ∗I)u = 0}.

The union of all spaces Eλ with <(λ) > 0 is the unstable subspace Eu, the union
of all spaces Eλ with <(λ) < 0 is the stable subspace Es, and the union of all Eλ

with <(λ) = 0 is the center subspace Ec. These spaces are invariant; if a solution
of eq. (2.11) belongs to one of them, it lies for all times in it. If it starts in Es

it converges to the critical point as t → +∞; if it lies on Eu it diverges away
exponentially, and if it is on Ec it remains at a fixed distance away from it.

We can classify a fixed point of a linear system in one of the following categories:

• If all eigenvalues of A have negative real parts, the critical point is asymptot-
ically stable.

• If all eigenvalues have non-positive real parts and the imaginary ones are dis-
tinct, the equilibrium point is Liapunov stable.

• If at least one eigenvalue has positive real part, it is unstable.

There is a number of criteria to determine, avoiding the explicit computation,
whether the eigenvalues of A have negative real parts or not; for details see [24].

An asymptotically stable critical point of a non-linear system is called a sink.
If all eigenvalues of matrix A for the corresponding linear system have positive real
parts, the fixed point is called a source. If no eigenvalues of A are imaginary, the
fixed point is hyperbolic.

A further classification, valid for both linear and non-linear systems, is the fol-
lowing:
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• If all eigenvalues of A are real and, either, all positive or all negative, the
critical point is called a node.

• If the eigenvalues are real and mixed (positive and negative) the critical point
is a saddle.

• If all eigenvalues are imaginary, the critical point is a center.

• If all eigenvalues of A are complex with non-zero real part, the critical point
is a focus.

For a non-linear system, we can define (local) stable S and unstable U manifolds,
which are unique and tangent to Es, Eu of the corresponding linear system at the
critical point; this is a result of the stable manifold theorem [25]:

All initial conditions in a neighborhood D of the equilibrium point
for which the solutions for t ≥ 0 of eq. (2.10) lie in D and tend to the
critical point as t → +∞ comprise the stable manifold S.

All initial conditions in a neighborhood D of the equilibrium point
for which the solutions for t ≤ 0 of eq. (2.10) lie in D and tend to the
critical point as t → −∞ comprise the unstable manifold U .

The evolution of S for t ≤ 0 produces the global stable manifold, W s, while the
evolution of U for t ≥ 0 yields the global unstable manifold, W u.

We can also define (but not uniquely) a center manifold, W c, tangent to Ec.

Let us briefly mention what happens when eq. (2.10) is not autonomous (see [26] for
details):

Linear terms of the form A + B(t)

Assume the matrix
∂Fi

∂xj

∣∣∣∣
{µ=0,x=0}

is of the form A+B(t), where A is constant. The

eigenvalues of A control and reveal the stability of the critical point of the original
non-linear system, in the same manner as in the autonomous, if

∑

i,j

Bij(t) tends

to 0 when t → +∞ and, additionally for Liapunov stability, if
∫ ∞

0

∑

i,j

Bij(t) dt is

bounded.

Linear terms with periodic coefficients

If the matrix
∂Fi

∂xj

∣∣∣∣
{µ=0,x=0}

is periodic in t with period T , a theorem by Floquet

ensures that the solution x(t) of the linear system with initial displacement x(t0) =
x0, can be written as

x(t) = P (t)eB(t−t0)P−1(t0) x0, (2.12)

where P (t) a matrix with period T and B a constant matrix. According to the
theorem, the kind of stability of the critical point for eq. (2.10) is determined by
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the eigenvalues of B in a similar way as in the autonomous system. Indeed, if we
introduce the transformation

x = P (t)z,

the linear equation eq. (2.11) becomes

ż = Bz.

Therefore, we can apply the theory for a linear system with constant coefficients;
the solutions in z contain terms of the form eλt which are retained in the solution
in x, ultimately controlling the stability.

Application on Hamiltonian systems

A particular restriction arises on Hamiltonian systems, described by eq. (2.7), a
special case of eq. (2.10). In this kind of systems, the matrix A is JB where B is

a real symmetric matrix with elements Bij =
∂2H

∂xi ∂xj
, the Hessian of H evaluated

at the equilibrium point. We can show that for each positive eigenvalue +λ of A,
the negative −λ is also an eigenvalue. Matrices A, AT , JAT J−1 have the same
eigenvalues; but as JT = −J :

AT = (JB)T = BT JT = −BJ, JAT J−1 = J(−BJ)J−1 = −JB = −A.

Therefore, A and −A have the same eigenvalues. This also holds for A and A∗.
We conclude that in a Hamiltonian system, eigenvalues of the linearized equations

come in quartets: {λ, λ∗,−λ,−λ∗}. Some of them may coincide. As a consequence,
no asymptotically stable points can exist for such systems. A stable point exists
only if all eigenvalues are imaginary.

2.3.2 Periodic Solutions

Any solution x(t) of eq. (2.10) which satisfies

x(t + T ) = x(t) T > 0, ∀t,

is called periodic with period T or T–periodic. For such a solution, naturally, kT
(k ∈ Z ∗) is also a period; conventionally, the minimum T > 0 satisfying the equation
above is regarded as the period. An equilibrium point is a trivial periodic orbit.

Brouwer’s fixed point theorem and its extensions (see [27]) prove that there exists
at least one periodic solution of eq. (2.10), under various broad conditions.

An important theorem by Weinstein [28], based on earlier work by Liapunov,
and generalized by Moser [29], predicts that at least f families, where f is the num-
ber of degrees of freedom, of periodic solutions of a Hamiltonian system exist at
the vicinity of a stable equilibrium point. Their periods are close to those of the
periodic solutions for the corresponding linear system. Montaldi et al. [30] extended
the theorem to utilize the symmetries possessed by the system; in such a case it
provides a higher estimate for the number of principal families. Further generaliza-
tions were made by Bartsch [31]. Liapunov demonstrated that the periodic solutions
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corresponding to the normal modes of the linearized problem can be continued to
periodic solutions of the non-linear system provided the frequencies of the normal
modes are incommensurate or some of them are negative.

We can define stability for a periodic orbit, and, in general, any orbit, any solution
of eq. (2.10). In the following definitions, A is the orbit in question, starting at a
on t = t0, and B a neighboring orbit starting at an arbitrary b with their initial
distance smaller than a given δ > 0, i.e. |b− a| < δ. Orbit A is:

(Orbitally or Poincaré) stable, if, for every orbit B there is an ε > 0 such that,
for t ≥ 0, orbit B never leaves, as a whole, a tube with radius ε around A.

Asymptotically stable, if, for every orbit B, the distance of xB(t) from orbit A
tends to zero in the limit t → +∞.

Liapunov stable, if, for every orbit B, the distance of xB(t) from xA(t) tends to
zero in the limit t → +∞.

Analogous criteria can be applied to the past, in the limit t → −∞.

Information on the stability of an orbit X(t) can be derived by the linearization
of eq. (2.10) in the neighborhood of this orbit. If we keep terms linear in x in the
Taylor expansion of F around X and set y(t) = x(t)−X(t), the equation is modified
into

ẋ = F(µ,X(t), t) + (x−X) ·∇F|x=X ⇒ ẏ = Ay, (2.13)

where A a matrix with elements Aij =
∂Fi

∂xj

∣∣∣∣
x=X

. Note that the partial derivatives

must be taken along the orbit X. Matrix A is not time–independent, even if F has
no explicit dependence on t.

Let us study a particular, important case for matrix A, the one where A has periodic
elements; there are no systematic results for a general matrix A. If we linearize a
system around a T–periodic orbit X(t) and the elements of A(t) turn out to be
periodic in t with the same period T , then the Floquet theorem we referenced in
§2.3.1 applies. According to it, the general solution y(t) = x(t)−X(t) of the linear
system in eq. (2.13) at t = t0 + T reads:

y(t0 + T ) = P (t0 + T ) eBT P−1(t0) y0 = Z(t0, t0 + T )y0. (2.14)

As P is periodic with period T , the matrix Z(t0, t0 + T ) = P (t0 + T ) eBT P−1(t0)
and the matrix C = eBT have the same eigenvalues; therefore, the eigenvalues of
Z(t0, t0 +T ) reveal the stability of the orbit X(t). Note that, as y(t) = Z(t0, t)y(t0),
the matrix Z satisfies the variational equation:

dZ(t0, t)
dt

= A(t0, t)Z(t0, t). (2.15)

Matrix C introduced above is called the monodromy matrix of eq. (2.13). Its
eigenvalues, ρ, are called the characteristic or Floquet multipliers. They (and the
eigenvalues of Z(t0, t0 + T )) are related to the eigenvalues λ of B, the characteristic
exponents, via

ρ = eλT .
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The stability criteria for an orbit X(t) apply on the characteristic exponents in the
same manner as in the previous section. Assuming that the monodromy matrix can
be diagonalized, the criteria formulated in terms of the Floquet multipliers read:

• if all characteristic exponents have modulus less than unity, the orbit is asymp-
totically stable;

• if all characteristic exponents have modulus less or equal to unity, and those
on the unit circle are distinct, the orbit is (orbitally) stable;

• if there exits at least one characteristic exponent with positive real part then
the orbit is unstable.

Application on autonomous systems

Autonomous systems linearized around a periodic orbit, yield equations with peri-
odic coefficients; it can be proven that

• Liapunov stable periodic orbits cannot exist (see [26] §5.3). By heuristic argu-
ments, stability in the sense of Liapunov assumes that at t → +∞ all neighbor-
ing orbits intersect the “central” one. This, by the existence and uniqueness
theorem mentioned in the introduction of this section, can occur only at a
stationary point; such a point, cannot be part of a periodic orbit.

• there are no asymptotically stable periodic orbits. An outline of the proof is
the following:

If X(t) is a T–periodic solution of eq. (2.10), for autonomous F, then

Ẋ = F(µ,X) ⇒ Ẍ = ∇F(µ,X) · Ẋ.

Therefore, Ẋ, which is also T–periodic, satisfies eq. (2.13). Consequently,
eq. (2.14) yields

Ẋ(t0 + T ) = Z(t0, t0 + T )Ẋ(t0).

We conclude that Ẋ is an eigenvector of Z(t0, t0 +T ) with eigenvalue equal to
unity;2 the criteria for asymptotic stability cannot be met.

Application on Hamiltonian systems

In T–periodic Hamiltonian systems, the transformation y(t0) → y(t0 +T ) is canoni-
cal (cf. §2.2). Consequently, the Jacobian—the real matrix Z introduced above—has
determinant equal to unity, and its eigenvalues come in quartets: {ρ, 1/ρ, ρ∗, 1/ρ∗}.
Some or all of them may coincide. Therefore, in Hamiltonian systems we cannot have
asymptotically stable orbits; orbitally stable exist only if all characteristic exponents
are imaginary.

2The time reversal symmetry, t0 + t → t0 − t, of the autonomous system, require Z and Z−1 to
have the same eigenvalues; therefore, there is another eigenvalue equal to unity.
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2.3.3 Integral Manifolds

Any differentiable function C(q,p, t) which remains constant during the evolution
of a Hamiltonian system, is an integral of motion. It obeys the following relations:

0 =
dC

dt
=

∂C

∂t
+

f∑

i=1

∂C

∂qi
q̇i +

∂C

∂pi
ṗi

=
∂C

∂t
+

f∑

i=1

∂C

∂qi

∂H

∂pi
− ∂C

∂pi

∂H

∂qi

=
∂C

∂t
+ {C, H}

=
∂C

∂t
+ [∇xC]T J [∇xH].

The notation {A, B} introduced above is the Poisson bracket of two dynamic vari-
ables A(q,p, t), B(q,p, t):

{A,B} ≡
f∑

i=1

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
. (2.16)

The surface C(q,p, t) = const. consists of a family of orbits as we will see in §2.4.1,
and is called an integral manifold.

2.3.4 Attractors

A subset A of the manifold M on which the dynamical system in eq. (2.10) is
defined, is said to be an attractor if it is closed and invariant (all orbits starting
from A remain in it for all times) and

• there is an open domain U in M , that contains A and does not disperse under
the evolution of the system, and

• every orbit in a neighborhood V ⊆ U , asymptotically converges to the attrac-
tor.

The union of all neighborhoods of A that fulfill the above conditions is the basin of
the attractor A. In a weaker condition, an attractor is stable if every orbit starting
from V remains in U for all positive times.

An attractor can be a point, an orbit or any other hypersurface.

2.3.5 Bifurcations

Let us examine what happens to the equilibrium points and the periodic orbits
of a dynamical system, regarding their existence and stability, when an external
parameter µ is varied. Recall that a stationary point x0 satisfies F(µ0,x0) = 0 for
a certain value µ0 of µ. With no loss of generality we can assume µ0 = 0, x0 = 0.

We mentioned that in the case of a hyperbolic point (either asymptotically stable or
unstable), theorems predict the direct correspondence between the non-linear and
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the linear system. The implicit function theorem states that if the matrix A with
elements

Aij =
∂Fi

∂xj

∣∣∣∣
µ=0,x=0

, i, j = 1, . . . , n

is non-singular, then the equation F(µ,x) = 0 can be solved uniquely for x as a
function of µ, at least in a neighborhood of (0, 0). This means that if no eigenvalue
of the linear stability matrix is zero, there exists locally a unique curve of equilibrium
points in the {µ,x} space passing through the origin. In other words, the equilibrium
(0, 0) is unique and survives small variations of µ, though, in general, shifts its
location.

The eigenvalues of A are functions of µ; therefore, they move on the complex
plane when µ varies. They may cross the imaginary axis, leading to loss of hyper-
bolicity. This qualitative change has implications on the local structure of phase
space, as we will see below, and is an example of bifurcation. The kinds of bifurca-
tions presented here are referred to as codimension-one bifurcations; they appear in
systems depending on one parameter and survive small perturbations.

In order to study the behavior of the non-linear system when hyperbolicity is
lost, we can use the techniques of center-manifold reduction and normal-form theory.
This approach is outlined in the following:

1. Identify the center manifold and restrict the dynamical system to it;

2. perform coordinate changes on the reduced system in order to simplify it; this
yields the normal form of the bifurcation;

3. study the resulting equations, expanding them around the stationary point,
keeping linear and, possibly, small non-linear terms of the parameter and co-
ordinates.

One of two cases may occur when hyperbolicity is lost:

• If a simple eigenvalue becomes zero, the case is referred to as steady-state
bifurcation and the non-linear behavior may take several forms. Most typical is
a saddle–node bifurcation but we can also encounter transcritical and pitchfork
bifurcations.

• If a pair of distinct conjugate eigenvalues becomes imaginary, we have a Hopf
bifurcation.

Below, the normal forms and the corresponding diagrams in the reduced para-
meter–coordinate space are presented (their derivation can be found, for example,
in [32]), for each kind of bifurcation. The “reverse,” in a sense, conclusions apply
when hyperbolicity is gained, that is, when eigenvalues leave the imaginary axis. It
is important to realize that the stability of the branches presented here refer to the
reduced space; the actual stability depends on all eigenvalues of the full system.

Saddle–node: The non-linear system reduces to the one-dimensional equation

ẋ = ε1µ + ε2x
2
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where ε1,2 = ±1.
The point (µ = 0, x = 0) is an equilibrium with zero eigenvalue. The exact

behavior depends on the values of ε1,2. If they are both equal to unity, the equilibria
of the reduced system are the points (µ,±√−µ). We note that they exist for µ < 0,
and as the stability matrix is 2x, the upper branch (for positive x) is unstable
while the lower (for negative x) is asymptotically stable. Similar is the analysis
for the other values of ε1,2. Their diagrams are depicted in fig. (2.1)(I). As we
can see, the (asymptotically) stable branch merges with the unstable one at the
origin in a mutual annihilation or creation; recalling the definitions, stable nodes
merge with saddle points, hence the name of the bifurcation. Notice that when the
zero eigenvalue of the original linear system is degenerate, the normal form is not
one-dimensional, and the branches might both consist of unstable points.

Transcritical: It may happen that an asymptotically stable equilibrium loses sta-
bility through a steady-state bifurcation, but persists for all µ 6= 0. The normal
form turns out to be:

ẋ = ε1µx + ε2x
2

where ε1,2 = ±1.
The point x = 0 is an equilibrium for all µ; the eigenvalue, being equal to ε1µ,

changes sign at µ = 0, thus inverting the stability. A second branch of equilibria is
the curve x = −(ε1/ε2)µ. The eigenvalue for this branch is −ε1µ, opposite of the
x = 0 equilibrium. At µ = 0 the equilibria collide and “exchange” stabilities. The
diagrams for the transcritical bifurcation are depicted in fig. (2.1)(II).

Pitchfork: This kind of steady-state bifurcation arises when the system, at least
locally, has a reflection symmetry, i.e. F(µ,x) = −F(µ,−x). The normal form then
is:

ẋ = ε1µx + ε2x
3

where ε1,2 = ±1.
In this case too, x = 0 persists through µ = 0 changing its stability. Another

branch exists, x = ±
√
−(ε1/ε2)µ, only for sgn(ε1µ/ε2) = −1. It is a parabola lying

on one side of the x axis. The corresponding eigenvalue is −2ε1µ; it has opposite
sign of the eigenvalue for x = 0. As we see in fig. (2.1)(III), the diagrams resemble
pitchforks, hence the name.

Hopf: Assume that the distinct pair of eigenvalues crossing the imaginary axis
is of the form γ(µ) ± iω(µ) with γ(0) = 0, ω(0) 6= 0. The center manifold is two-
dimensional and the normal form, written in polar coordinates, turns out to be:

ṙ = γ(µ)r + α(µ)r3 + O(r5)

θ̇ = ω(µ) +
∞∑

j=1

bj(µ)r2j .

These equations lead to
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(a) (b) (c) (d)

x

µ

(I)

(II)

(III)

Figure 2.1: Diagrams for (I) saddle–node, (II) transcritical, (III) pitchfork bifurcations for
(a) ε1 = 1, ε2 = 1, (b) ε1 = −1, ε2 = −1, (c) ε1 = −1, ε2 = 1, (d) ε1 = 1, ε2 = −1. The
origin is at the point where stability changes. Solid lines represent asymptotically stable
points. Dashed ones indicate instability.

• one branch of equilibria, at r = 0. Its stability is determined by the sign of
γ(µ); it changes stability at µ = 0.

• when
γ(µ)
α(µ)

< 0, a periodic orbit with amplitude rH(µ) ≈
√
−γ(µ)

α(µ)
and an-

gular frequency ωH(µ) = ω(µ) +
∞∑

j=1

bj(µ) rH
2j . Its stability is controlled by the

sign of −2γ(µ), the eigenvalue: if γ(µ) > 0 or, equivalently, µ > 0, it is asymptoti-
cally stable; otherwise, it is unstable. Fig. (2.2) presents the diagrams for the Hopf
bifurcation.

R
2

R
2

(a) (b)

µ µ

Figure 2.2: Diagrams for Hopf bifurcations: (a) α(µ) < 0, (b) α(µ) > 0. Solid lines
represent asymptotically stable points or orbits. Dashed ones indicate instability.
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The clear-cut figures for steady–state bifurcations are modified when we take into
consideration higher order terms. The perturbation results in breaking certain as-
sumptions and therefore, restoring the “generic” behavior, i.e. saddle node bifurca-
tions. For example, in the transcritical bifurcation, the addition of a perturbation
controlled by ε, leads one to expect the modifications in fig. (2.3)(I): the diagram
contains either two saddle-node bifurcations or no bifurcation at all. For a pitchfork
bifurcation the four modifications depicted in fig. (2.3)(II) are possible. The last
two exhibit a hysteresis effect.

ε = 0

(I)

(II)

ε ≠ 0

Figure 2.3: Perturbation of steady–state bifurcations: (I) transcritical (II) pitchfork.

As we saw earlier, the analysis of the stability of stationary points and periodic
orbits can be very similar under certain conditions. All results presented above can
also be extended to periodic orbits:

• a steady-state bifurcation occurs when a Floquet multiplier becomes equal
to unity; then, two branches of periodic orbits with opposite stability are
created or merge (saddle–node), collide and exchange stability (transcritical)
or one branch changes stability, passing it over to other two branches which
are created (pitchfork). In the pitchfork bifurcation, the two branches created
give rise to the same family of periodic orbits.

• a Hopf bifurcation takes place when a pair of multipliers touch (or leave)
the unit circle. In that case, the “central” periodic orbit persists and a two-
dimensional invariant torus encapsulates it.

Let us examine another mechanism leading to a qualitative change in the local
dynamics around a T–periodic orbit. Recall that if the linearization of the equations
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in its neighborhood is periodic, Floquet theory enables us to cast the evolution into
the form

x(T ) = Z(T )x(0).

Eigenvalues of Z(T ) control the stability.
Let us assume that κ forward iterations of this mapping,

x(κT ) = Zκ(T )x(0),

produce a monodromy matrix with an eigenvalue equal to unity. In terms of the
eigenvalues of Z(T ) this happens when a Floquet multiplier equals

e
2πi

m

κ , κ ∈ Z ∗, m = 0, . . . , κ− 1.

Its conjugate multiplier will also exist (as long as m 6= 0, κ/2). The system undergoes
a steady-state bifurcation, which is a pitchfork because of the reflection symmetry
of the mapping

Zκ(T )x(0) = −Z(T )κ(−x(0)).

Note that when two distinct multipliers exist, the reduced coordinate space is two-
dimensional. It can be shown that a periodic orbit with period κT exists in the
neighborhood of the original. For example, if −1 is an eigenvalue of Z(T ) then
κ = 2, and the period–doubling bifurcation takes place.

We notice in fig. (2.1) and fig. (2.2) that stability is, in a sense, inherited during
a bifurcation or, in general, conserved before and after the critical point µ = 0. This
can be formulated rigorously in terms of the Poincaré index and its conservation
in autonomous systems [33]. This index is defined for a closed curve C that passes
through no periodic orbits as the number of times the vector ~x(T ) − ~x(0) with
~x(0) ∈ C encircles 0 as ~x(0) traverses C. The index is a continuous function of C;
as it is integer valued, it is constant. This quantity can also characterize a periodic
orbit, referring to the index of a closed curve surrounding it and no other periodic
orbits. The index is summable i.e. the index of a curve formed by traversing first
one and then another curve is the sum of the separate indices. Thus, the index of
any curve is the sum of the indices of the periodic orbits it encircles. It can be shown
that the index of a center or a single hyperbolic orbit is +1 and −1 respectively.
The index of a curve surrounding a periodic orbit is constant through a bifurcation;
in plain terms, this means that the number of stable orbits minus the number of
unstable ones is the same before and after the point of bifurcation.

Recall that when the monodromy matrix is symplectic, the multipliers come in
quartets: {ρ, 1/ρ, ρ∗, 1/ρ∗}. Therefore, a simple multiplier cannot leave the unit
circle unless it collides with its conjugate (at ±1) or with another multiplier with
modulus equal to unity. After this collision, the multipliers may continue on the unit
circle or leave it, rendering the system complex unstable. Further results constitute
the Krein theory and can be found in [34].

2.4 Classification of Dynamical Systems

A Hamiltonian of a system with f degrees of freedom is called integrable if there
exist f single valued analytic functions C1, C2, . . . , Cf of (x, t), which are
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• functionally independent, i.e. the vectors
{

∂Ci

∂t
,
∂Ci

∂x1
,
∂Ci

∂x2
, . . . ,

∂Ci

∂x2f

}
, i = 1, . . . , f,

are linearly independent,

• integrals of motion, i.e. {Ci, H}+
∂Ci

∂t
= 0,

• in involution, i.e. {Ci, Cj} = 0, ∀ i, j = 1, . . . , f .

As a remark without further comment, there exist systems which possess more
than f independent integrals, though only f of them are in involution. There is
no systematic method of finding the integrals in a given dynamical system; under
certain conditions the existence or not of them can be predicted.

2.4.1 Integrable Systems

The following theorem by Liouville and Arnol’d, can be proven:
If a system is integrable, there exists a canonical transformation from {q,p} to

{~ϕ, I}, yielding a function of only the generalized momenta I as the transformed
Hamiltonian:

H = H(I). (2.17)

The canonical equations, eq. (2.6), for the transformed system then read:

İi = −∂H

∂ϕi
= 0 ⇒ Ii = ci, (2.18)

ϕ̇i =
∂H

∂Ii
= ωi(Ii) ⇒ ϕi = ϕi(0) + ωit, (2.19)

with ci, ϕi(0), ωi constants depending on the initial conditions. The {ϕi, Ii} are
the angle–action variables. As the transformation is canonical, it preserves the
symplectic area for any closed loop in phase space:

∮
pdq =

∮
I d~ϕ.

In an integrable system of f degrees of freedom, no solution of its equations of
motion can wander all over the 2f -dimensional phase space, but, since the trajectory
preserves the integrals of motion, it is restricted on a smooth (2f − f)-dimensional
hypersurface, the integral manifold. If, in addition, this hypersurface is compact
and connected, as it is in bounded motion, it can be shown to be diffeomorfic to
a T f = S1

I1
× S1

I2
. . . × S1

If
torus. This “invariant” torus is characterized by the

actions eq. (2.18), which are the radii of the circles, and the angles eq. (2.19), which
parameterize them. If the angular velocities ωi(Ii) are commensurate, i.e. multiple
of an angular velocity Ω, then any trajectory is closed and periodic with period
2π/Ω and the torus is called resonant ; otherwise, a trajectory fills densely the torus
without crossing itself and is quasi-periodic. Notice that all trajectories on a torus
are either periodic or quasi-periodic as ωi characterize the torus via Ii. Each set of
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values for the integrals of motion corresponds to a distinct torus; the tori cannot
intersect each other. The phase space, therefore, is comprised of nested invariant
tori; among them, densely interspersed, are the resonant tori.

All of the above can be extended on systems on which the motion is not bounded.
In this case, the manifold on which motion takes place is diffeomorfic to Rk ×
T f−k (k ≤ f).

Poincaré in [35] states that if a Hamiltonian system possesses p integrals in invo-
lution with each other and their gradients are linearly independent on a periodic
solution, then this orbit has 2p characteristic exponents equal to zero (or 2p Floquet
multipliers equal to one). Therefore, an integrable Hamiltonian system has—in the
linear approximation at least—only stable periodic orbits.

2.4.2 Non–Integrable Systems

Consider an integrable system with eq. (2.17) as its Hamiltonian. If it is perturbed,
in general it will become non-integrable. There will be not enough integrals of
motion to restrain the trajectories on tori; qualitative changes of the phase space
structure will occur but, assuming H is non-degenerate, i.e. its Hessian has non-zero
determinant, most of the invariant tori which exist for the unperturbed system, will
continue to exist, albeit deformed. Moreover, the area of the chaotic region where
tori were destroyed, diminishes to zero as the perturbation tends to zero. Whether
a torus is destroyed or not depends on its characteristic frequencies: if they are
sufficiently incommensurate, the torus survives a small perturbation. This is a result
of the famous KAM theorem outlined by Kolmogorov [36] and subsequently proved
by Moser [37] and Arnol’d [38].

One of the last theorems formulated by Poincaré [39] and proven by Birkhoff [40],
provides information on the structure of the phase space areas previously occupied
by the destroyed tori. Among those tori were the resonant ones; the theorem pre-
dicts that the periodic orbits on them are replaced by families of pairs of stable and
unstable periodic orbits. These chains of successive stable and unstable orbits lie
arbitrarily close to tori resistant to adequately small perturbations (KAM tori). The
stability regions around the stable periodic orbits grow with the perturbation, even-
tually piercing and destroying the neighboring KAM torus. The torus transforms
from a continuous barrier to a Cantor set of points; it is then called a cantorus.

The existence of tori in 2f -dimensional non-integrable systems implies the exis-
tence of 2f integrals of motion on these tori; the integrals though are not Cauchy-
analytic functions (the KAM tori are isolated), and therefore can not lead to inte-
grability.

For a conservative non-integrable system with two degrees of freedom, the KAM
tori enclose completely the chaotic regions; as these regions are not connected, a
chaotic orbit in one of them cannot visit another. This is not the case for higher
dimensions; there exist paths through which an orbit can “leak” from one region to
another, albeit with very small probability. This is the Arnol’d diffusion (see [41]).
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2.5 Integrability and Chaos

No procedure presently exists for predicting whether a generic system is integrable or
not. There are several methods which enable us to characterize dynamical systems,
at least locally in regions of phase space, as non-integrable or chaotic. There are also
criteria—apart from separability—which, when satisfied, the system is integrable.

A very descriptive means of studying dynamical systems of two degrees of freedom
is the Poincaré surface of section method: a three-dimensional hypersurface is em-
bedded in the four-dimensional phase space, chosen in such a way that no orbits are
tangent to it. The evolution of the points of this surface according to the dynamics
of the system (i.e. the orbits with these points as initial conditions) may bring them
back on it, generating a mapping (the Poincaré mapping) between points on the
surface. In mechanical systems the momenta enter the Hamiltonian quadratically;
when the system is also autonomous, the time reversal symmetry enables us to keep
only the points on the surface where a momentum is positive.

When integrals of motion exist, the effective dimension of the phase space is
reduced and so is the dimension of the surface of section. Thus, in a conservative
system, each point on a surface f(q,p) = 0 defines completely the state of the
system. Through Poincaré mapping, a periodic orbit in such a system appears as
a finite number of points on the surface of section; the sequence of these points is
repeated. Their number defines the order of the points: that many iterations of
the Poincaré mapping generate the identity mapping. In this sense, these points
are fixed. A quasi-periodic orbit fills densely the surface, subject to the integrals
of motion that must remain constant. On an integrable system, the images of a
quasi-periodic orbit lie on a closed curve surrounding a fixed point (the image of a
periodic orbit).

Let us examine what happens in the neighborhood of a hyperbolic periodic orbit in
a two degree-of-freedom system; similar but richer structure is observed in systems
with higher dimensionality. Recall that on a surface of section, periodic orbits project
as fixed points; each hyperbolic point is associated with a stable and an unstable
manifold which correspond to curves on the surface. If the system is integrable,
the unstable manifold of a hyperbolic fixed point joins smoothly the stable manifold
of the same or other hyperbolic point, forming a separatrix curve, fig. (2.4). An
orbit starting at t = −∞ from the first hyperbolic point, projects on this curve and
reaches at t = +∞ the other point.

Pu

Ps

P Q
Qu

Qs

P

Ps

Pu

Figure 2.4: Neighborhood of hyperbolic points (P,Q) in an integrable system. The arrows
indicate the stable and unstable manifolds.

When the system is perturbed and loses its integrability, the stable and unstable
curves in general do not join smoothly but on a infinite set of discrete points; these
are characterized as homoclinic or heteroclinic depending on whether the intersecting
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manifolds emanate from fixed points of the same or different families (cf. Poincaré–
Birkhoff theorem). According to a theorem established by Birkhoff, the presence of a
homoclinic point associated with an unstable periodic orbit implies the existence of
an uncountable set of non-periodic trajectories which contains a dense and countable
set of periodic orbits of arbitrarily long periods. Without going into details, the
curves are forced to approach the fixed point, looping through the intersection points,
while avoiding both themselves and the fixed point: the intersection points form a
kind of lattice with infinitely tight loops (homoclinic tangle), fig. (2.5). According
to the Newhouse theorem [42], saddle-node bifurcations occur as a consequence
of tangencies of the stable and unstable manifolds of unstable periodic orbits. In
subsequent chapters we will encounter other mechanisms for their birth (systematic
resonances of at least two coordinates).

Figure 2.5: Schematic representation of the neighborhood of a hyperbolic point in a non-
integrable system. Ws and Wu are the stable and unstable manifolds.

A surface of section for the HeHD+ system we studied in [43] is depicted in
fig. (2.6). We can distinguish in the center the islands of stability of one periodic
orbit; between them an unstable orbit appears. Three islands at the edges surround
an order-3 periodic orbit. A major portion of the surface is covered by chaotic orbits.

Another method to study the dynamics, applicable to systems of any dimensionality,
involves the examination of the Fourier spectrum of individual trajectories:

I(ω) =
1
2π

lim
τ→∞

1
τ

∣∣∣∣
∫ τ

−τ
f [q(t)]e−iωt dt

∣∣∣∣
2

, (2.20)

where f [q(t)] any function evaluated on a trajectory. In an integrable system, all or-
bits yield discrete and sharp (within computational limits) power spectra, consisting
of the fundamental frequencies, their overtones and their combinations. A chaotic
system has orbits with broad, banded spectra, possibly with a fractal dimension;
the bands occur near the sharp lines of any neighboring quasi-periodic trajectory.

The comparison of the phase space and time averages of some function of the
dynamical variables can also serve as an indication of chaos. In the quasi-periodic
regime they will be substantially different; in the chaotic they are expected to be
roughly the same (ergodicity in statistical mechanics).
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Figure 2.6: Poincaré surface of section for the HeHD+ system, at y=1.3 α0, E=−0.15 eV.

Liapunov exponents can also be used as a means to characterize a given region of
phase space as regular or chaotic (see [44]). Consider two neighboring phase space
points at an initial distance d(0). At time t this distance is d(t). The Liapunov
characteristic exponent, λ, is defined as

λ = lim
t→∞ ln

d(t)
d(0)

. (2.21)

In a 2f -dimensional system there are 2f directions, each characterized by a Lia-
punov exponent. It can be shown that in a volume-preserving dynamical system
the exponents come in pairs, {λ,−λ}. For every integral of motion a pair is zero.
In areas where the motion is regular, the exponents are zero; they are positive (and
negative) in chaotic regions. Other quantities, such as the Kolmogorov–Sinai (KS)
metric entropy [45], directly related to the sum of Liapunov exponents, can serve
as a measure to the “irregularity” of a region. The local exponential divergence of
trajectories of a bounded system implied by non-zero Liapunov exponents, or equiv-
alently, the sensitive dependence on initial conditions, may serve as a definition of
chaos. The divergence produces a local stretching in the phase space; due to con-
finement this stretching must fold. The continual stretching and folding produces
the complicated behavior associated with chaos.

A dynamical system can be shown to be integrable if—according to the Kova-
levskaya–Painlevé conjecture [46]—it satisfies the Painlevé property : all complex
time singularities in the solutions of the differential equations depending only on
the “external parameters” (i.e. initial conditions, coupling, etc.), the “movable” sin-
gularities, are poles. Integrability can also be expected if the system fulfills the
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“extended” or “weak” Painlevé property which allows rational branch singularities
in addition to poles.

Two other phenomena can indicate a chaotic region: the accumulation of period–
doubling bifurcations of unstable periodic orbits and the scaling behavior associated
with these bifurcations (see, for example, [47]). Also, there are a few techniques
which, in certain cases, can give good qualitative, and even semi-quantitative, pre-
diction of the minimum energy necessary to ensure “substantial” chaos. For a brief
presentation see [48].

2.6 Classical–Quantum Correspondence

2.6.1 Semiclassical Quantization

Information on the classical behavior of a system can be used to compute quantum
quantities. Semiclassical methods, being developed since the beginning of quantum
mechanics, relate the quantum description of a highly excited system to the classical
one: quantum mechanical eigenvalues and wave functions are determined from in-
formation on the classical orbits. Early methods assumed the separability of the sys-
tem (Wentzel–Kramers–Brillouin) or the classical integrability (Born–Sommerfeld,
Einstein–Brillouin–Keller [49]) or the adiabatic separation of degrees of freedom
(Ehrenfest [50]).

An important quantization condition is the Einstein–Brillouin–Keller (EBK)
rule. It provides an approximation to the energy spectrum by quantizing the actions:

Ii =
1
2π

∮

Ci

pdq =
(
mi +

αi

4

)
~, (2.22)

where mi are the (integer) quantum numbers and αi the constant Keller–Maslov
indices. These indices depend on the topology of the appropriate tori (those yield-
ing integer quantum numbers) via the topologically independent paths Ci on which
the integration takes place. Recall that in an integrable system, a transformation to
action-angle variables is possible, yielding a Hamiltonian of the form of eq. (2.17).
Substituting the quantized actions in it, the energy spectrum is derived, occasionally
on excellent agreement with the quantum calculation. Classical frequencies of quan-
tized tori are related to quantum energy differences via the correspondence principle.
For systems with tori of mixed topologies, isolated by separatrices, this simple quan-
tization rule has to be modified, because the Keller–Maslov indices change across
a separatrix; moreover, one has to take into consideration the quantum mechanical
tunneling between tori of different topology [51].

Common assumption of all techniques is the existence of tori or remnants of tori.
Therefore, these methods for semiclassical quantization apply only on systems which
are integrable or not far from integrability. In order to cover non-integrable systems,
techniques that are not based on the existence of tori had to be developed. Approx-
imate Hamiltonians or quantization schemes employing the individual orbits rather
than the underlying phase space structure can be used. The uncertainty principle
precludes the association of a single periodic orbit, with a precisely defined period,
with a particular energy eigenvalue; a family, though, of energy levels relates to a
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periodic orbit. The spectrum basically results from the interference between the
semiclassical quantum amplitudes associated with the fundamental, low-period, or-
bits. This suggests that the spectrum may become irregular in classically chaotic
systems; this irregularity can be regarded as a manifestation of quantum chaos and
results from a dispersion in the periods of the periodic orbits and not their insta-
bility. Few methods are outlined below. Among the most notable are the trace
formulas; they express a fundamental local–global duality: the spectrum of periodic
orbits is dual to the spectrum of eigenvalues.

The Birkhoff–Gustavson technique [52] is applicable to chaotic systems. Basi-
cally, the method is a systematic procedure to canonically transform the Hamiltonian
into a truncated power series in harmonic oscillator terms. The resulting Hamilto-
nian is a function of only the new generalized momenta. The EBK quantization on
it, can yield a semiclassical spectrum with very good agreement, depending on the
system, with the quantum one not only in regular regions of the phase space but
also in the chaotic part. Another related method is the canonical Van Vleck pertur-
bation theory [53]. This technique expands the Hamiltonian in a perturbative series
and rewrites it employing the harmonic oscillator raising and lowering operators.
Van Vleck unitary transformations are then applied in such a way that decoupling
occurs and good quantum numbers emerge in the new coordinates. Both methods
have been applied, with satisfactory results, to actual non-linear systems such as the
molecules of phosphaethyne (HCP) [54] and hydrogen cyanide (HCN) [55].

Gutzwiller [13] using Feynman’s path integral formulation [56], and Balian and
Bloch [57], have derived a semiclassical expression for the trace of the resolvent (or
Green operator) of the quantum Hamiltonian operator as a sum over all isolated
periodic orbits, taking into account their linear stabilities. This formula can be
used to obtain approximate values for the quantum energy eigenvalues of classically
chaotic systems that are not separable. The trace formula has been augmented with
terms in powers of the Planck constant by Alonso and Gaspard [58]. The terms in
the ~-expansion depend on the nature and the non-linear stabilities of the periodic
orbits. The Berry–Tabor trace formula [59], based on the EBK quantization rule,
was derived in a different way than Gutzwiller’s trace formula; it also provides the
quantum density of states as a coherent summation over resonant tori and therefore
is applicable only to integrable systems. A uniform result bridging the Berry–Tabor
and Gutzwiller trace formulas for the case of a resonant island chain was derived by
Ozorio de Almeida [60].

Other methods proposed on semiclassical quantization include a technique [61]
which exploits generic classical trajectories; periodic orbits do not play any special
role. This method, applicable to both integrable and non-integrable systems, is
based on the semiclassical approximation of the equilibrium density matrix using
trajectories on the upside down potential surface. It also offers a good approxima-
tion to the quantum wave functions, something that other semiclassical methods can
not achieve. Another technique employed in the study of the intermediate regime
between the quantum and classical ones, is the quasi-classical method. It is com-
plementary to semiclassical methods. It uses the Wigner-Weyl representation [62]
for the physical observables and expands it in a series of ~. It cannot reproduce
quantization effects but it is very useful in the statistical description of a system.
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It should be noted that semiclassical quantization often predicts a simpler, more
degenerate energy spectrum than is computed quantum mechanically or observed
experimentally. This estimate is attributed to coalescence of levels in the semiclassi-
cal limit (~→ 0), coalescence which may manifest itself in real spectra as an excess
of near-degeneracies. A more detailed treatment in the semiclassical framework can
derive these “avoided crossings” (accidental Fermi resonant interactions).

Thorough reviews of semiclassical quantization can be found in [63,64].

2.6.2 Quantum Chaos

It is well known that a correspondence of classical and quantum mechanics is ob-
tained by promoting the dynamical variables (observables) to Hermitian operators
and the classical Poisson brackets, eq. (2.16), to commutators. Therefore, a quan-
tum system of f degrees of freedom is integrable if there exist f globally defined
operators Ĉi(q̂j , p̂j), i, j = 1, . . . , f , whose mutual commutators vanish

[Ĉi, Ĉk] = ĈiĈk − ĈkĈi = 0, i, k = 1, . . . , f.

When the above conditions hold, there exist common eigenstates of them character-
ized by f quantum numbers.

Many definitions were proposed to specify what quantum chaos is; what happens
when the conditions above are not satisfied. Closely related is the question of the
way and the circumstances under which a quantum system reflects the underlying
classical dynamics. In order to study the classical–quantum correspondence, the
form of wave functions and the distribution of energy levels were examined. The
analysis which follows refers to bound systems; it can be extended to unbound ones
as long as it is applied to orbits and wave functions which behave as confined for a
considerable time. An important conclusion drawn from all of them is that classical
chaos does not necessarily imply quantum chaos.

In order to formulate one definition of quantum chaos, let us briefly describe one
way to solve the Schrödinger equation: the wave function is expanded in a (finite)
set of basis functions and the resulting matrix is diagonalized to obtain (some)
approximate eigenvalues and eigenvectors. It was proposed [65] that an eigenstate
with contributions from a large number of basis functions is chaotic. Such a quantum
state was termed “global;” those consisting of a few basis functions were named
“local.” Such a definition of quantum chaos was basis set dependent; it satisfied,
though, the “expected” behavior for the systems on which it was applied: in low
energies, where classical systems are regular, most wave functions were assigned as
“local,” while in higher energies more “global” wave functions were found. However,
it was demonstrated in other systems that “global” wave functions may correspond
semi-classically to quasi-periodic states, while “local” ones may map to classically
chaotic regions.

It has been suggested [66] that “irregularity” of the energy spectrum and a large
sensitivity of an energy level to a perturbation, reflected in the second derivative of
the eigenvalue with respect to a perturbation parameter, can serve as criteria for
the quantum analog of classical chaos. Again, these conditions were not necessarily
met in classically chaotic regions.
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Numerical experiments show that in a classically regular phase space, the prob-
ability amplitude of an eigenfunction of the corresponding quantum system may
be localized on the coordinate space projection of an eigentorus (a torus satisfying
eq. (2.22)). Such pattern of the wave function gave rise to the term scars [11, 67].
The nodal pattern permits a straight assignment of quantum numbers to the eigen-
function. On the other hand, in an classically chaotic region, a wave packet may
interfere with random direction and phase with itself, resulting in a wave function
spread more or less uniformly over the accessible configuration space with more or
less random nodal pattern. This fundamental difference in the form of the wave
functions could serve as a defining characteristic of quantum regular and chaotic
regions. However, it was shown [68] that this difference may be attributed to an
increase of the non-separability of the system, which is not related to chaos.

Among other criteria suggested on the onset of quantum chaos is the exten-
sive appearance of avoided crossings: a quantum state participating simultaneously
in many such resonances, exhibits a statistical character and can be described as
chaotic, while avoided crossings produce irregularities in the quantum spectrum.
Also, a considerably more rapid dispersion of an initially highly localized wave
packet, measured by | 〈ψ(0)|ψ(t)〉 |2, can serve as an indication of quantum chaos.

An important characteristic of chaotic spectra was first observed by Wigner [69].
He realized that assignment of individual lines was not only infeasible, but also not
useful. Instead, he studied the statistical distribution of adjacent energy levels. It
was found that the level density P (S) of spacings S of irregular spectra can be
modeled by the Wigner distribution

P (S) =
π

2
S e

−π

4
S2

,

while in regular spectra the spacing density follows the Poisson distribution

P (S) = e−S.

In both formulas, S is given in mean spacing units. It is assumed that the number of
energy levels is very large, suitable for statistical treatment. This is indeed the case
in the semiclassical limit, where the density of states, (2π~)−f , tends to infinity.

It was observed that irregular energy levels tend to “repel” each other, yielding
zero probability of finding degeneracies, as reflected in the Wigner distribution. The
opposite is true for regular spectra where the levels tend to cluster.

The mathematical model from which the Wigner distribution can be derived is
the Gaussian Orthogonal Ensemble (GOE); a set of real symmetric matrices with
elements taken from a gaussian distribution. An average over the ensemble members
was found to be equivalent to the spectral average. Matrices with uniformly dis-
tributed elements yield the Poisson distribution. The spectrum of a generic system
with mixed chaotic and regular regions, is expected to be modeled by a weighted
superposition of the two distributions. The weights can be the classical volumes of
the corresponding phase space domains. It is important to note that the qualitative
difference in the distributions exhibited by regular and irregular spectra has not
been proven rigorously.



2.6. CLASSICAL–QUANTUM CORRESPONDENCE 33

Another statistical measure of level correlations on larger than first-neighbor scale,
is the ∆3-statistic or spectral rigidity. It is defined by (see [70]),

∆3(L) =
〈

1
L

min
A,B

∫ E+L

E
[N(E′)−AE′ −B]2 dE′

〉

E

,

where N(E) the number of levels below energy E, and < . . . >E denotes averaging
over a suitable energy range. ∆3(L) gives the average least squares deviation of
N(E) from the best straight line, fitting it over an interval of length L. Spectral
rigidity and spacing distribution are independent statistics giving complementary
information as they are measures of long and short spectral correlations.

It can be shown by analytical calculations on GOE that, for L À 1, the spectral
rigidity is

• for irregular spectra: ∆3(L) =
1
π2

ln L− 0.007,

• for regular spectra: ∆3(L) = L/15.

On model systems with dense spectra, these remarks on the distributions of the
level spacings can serve as definitions of quantum chaos. Moreover, the degree of
chaos of a system can be estimated by the way its spectrum evolves from a Poisson
to a Wigner distribution as energy increases. However, the applicability of such
a criterion on small molecular systems is problematic. The number of states is
too small to be statistically treated and their density varies considerably when a
dissociation limit or isomerization barrier is approached. Most importantly, there
are molecules whose spectra are neither Poisson at low energies nor Wigner at high
energies, so no definite conclusions can be drawn by the level spacing distribution.
The triatomic molecules with a hydrogen atom, such as those we studied, generally
exhibit one fundamental frequency much larger and fairly decoupled from the other
two; they fall into such a category.



34 CHAPTER 2. CLASSICAL MECHANICS



Chapter 3

Quantum Chemistry

3.1 Introduction

An overview of the framework of molecular spectroscopy and the methods which
comprise the “toolbox” of researchers in this field is necessary in order to under-
stand the way classical mechanics contributes. The presentation which follows, deals
mainly with the theoretical treatment and is oriented towards the methods employed
in the molecular species we studied.

In general, the spectrum recorded by the experimentalists is reconstructed in
detail, and in a greater extent, via quantum mechanical calculations based on ab
initio or empirical potentials. The semiclassical analysis of the system, which in-
volves a simpler Hamiltonian incorporating the basic features of it and adjusted to
reproduce specific quantitative results, can often provide meaningful interpretation
of various spectral characteristics. The classical analysis, via the full Hamiltonian,
of the phase space and dynamics, paying attention to the way, and the conditions
under which, periodic orbits come into existence, evolve and disappear, reveals a
different facet of the underlying system and helps us clarify puzzling quantum or
experimental findings. These approaches can also assist the quantum analysis by
providing guidance on the assignment and grouping of wave functions.

In this chapter we will give a brief outline of the Stimulated Emission Pumping
(SEP) and Dispersed Fluorescence (DF) experimental techniques which produced
the spectra of the molecules we studied. We will also describe the methods employed
to derive the potentials. Among them, the Self-Consistent Field method—the ba-
sis for all ab initio techniques—and the Configuration Interaction method and its
variants are presented in adequate detail. We will elaborate on the approximations
leading to the construction of the nuclear Hamiltonian, and an outline of the meth-
ods developed to solve the corresponding Schrödinger equation will be given. The
way classical mechanics assists the interpretation of spectra, the main objective of
this thesis, is left for subsequent chapters where specific molecules are analyzed. The
semiclassical approach is also briefly outlined here for completeness.

This chapter is laid out as follows: the first section provides a review of the
necessary theoretical background in an attempt to facilitate comprehension of the
subsequent sections and to lay out the terminology and notation. The full Hamil-
tonian for a molecule is then constructed and the fundamental Born–Oppenheimer

35
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approximation is explained along with an outline of the cases where it is not ap-
plicable. The next section deals mainly with the ab initio and, in a lesser extent,
the empirical methods developed for the calculation of the Potential Energy Sur-
faces governing the nuclear motion. The most common theoretical approaches to
the solution of the Schrödinger equation follow. The experimental techniques and
the introduction on the semiclassical treatment conclude this chapter.

3.2 Theoretical Background

Before we proceed to the main subjects of this chapter, it is appropriate to clarify the
notation and remind us of certain notions of quantum mechanics and point group
theory which will be used below.

3.2.1 Elements of Quantum Mechanics

The theoretical treatment of a set of non-relativistic particles calls for the solution
of the time-dependent Schrödinger equation:

Ĥ Ψ(q, t) = i~
∂Ψ(q, t)

∂t
. (3.1)

In the equation above, q denotes the set of degrees of freedom for the system, Ψ is
the wave function, and Ĥ is the Hamiltonian operator.

If q are Cartesian coordinates, the Hamiltonian operator can be derived by the
classical Hamiltonian function H(~q, ~p, t), through the simple promotion of qi and pi

to quantum operators q̂i and p̂i with the properties (in position space representation):

q̂iΨ = qiΨ, p̂iΨ = −i~
∂Ψ
∂qi

.

If the classical Hamiltonian function is expressed in generalized coordinates and their
conjugate momenta, the Podolsky transformation can be used to reformulate it prior
to applying the above promotions. This method is outlined below for a Hamiltonian
where pi enter solely in the kinetic term. It can be similarly applied when any other
quadratic term in pi appears (see [71]).

The classical kinetic term can be cast into the form

T =
1
2

∑

i

∑

j

gijpipj ,

where gij can be functions of the generalized coordinates. Let us denote with J the
determinant of the Jacobian of the transformation from a set of Cartesian coordi-
nates {xi} to the particular set of generalized coordinates {qj}, J = |∂qj/∂xi|, and
with g the determinant of the gij matrix. Podolsky in [72] showed that the kinetic
operator can be obtained by quantizing the equivalent term

T =
1
2
J−1/2g

1/4


∑

i

∑

j

pig
−1/2gijpj


 g

1/4J
1/2.
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If the Hamiltonian operator does not depend explicitly on time, a separation of
variables {q, t} is possible, factoring out of Ψ the temporal dependence:

Ψ(q, t) = Φ(q) e−iEt/~.

The form of the temporal term is chosen such that eq. (3.1) assumes a simpler form:

Ĥ (q,p) Φ(q) = E Φ(q). (3.2)

This is the time-independent Schrödinger equation and contains a parameter, E.
Solving eq. (3.1) or eq. (3.2) under specific boundary conditions for the wave

functions Ψ or Φ or their spatial derivatives, provides non-trivial solutions (the wave
functions) for certain values of E. This parameter corresponds to the total energy of
the system in question. Bound systems exhibit discrete values of it while unbound
systems possess a continuous energy spectrum. Both wave function and energy are
parametrized by a set of one or more quantum numbers collectively denoted by n:
Φn, En. When the energies are equal for different values of the quantum numbers,
we speak of degeneracy.

As the time-independent Hamiltonian operator is hermitian it can be shown that
its eigenfunctions comprise a complete basis in configuration space; moreover, they
can be chosen to be orthonormal. These mean that

∫

V
Φ∗mΦn dq ≡ 〈m|n〉 = δmn ∀ m,n (3.3)

holds, and that any function F (q) can be expanded on the eigenfunctions Φn,

F (q) =
∑

n

cnΦn(q) ≡
∑

n

cn |n〉 ,

where
cn =

∫

V
Φ∗nF dq ≡ 〈n|F 〉 .

In all integrals, dq denotes the volume element expressed in the generalized coordi-
nates, that is

dq = |J−1|
∏

i

dqi,

where J is defined above.

It is appropriate to present here a special kind of unbound states which play an
important role in, among others, the unimolecular dissociation process we will en-
counter in a subsequent chapter. Resonances are quasi-bound states embedded in
the continuum above the dissociation threshold of a system. They act as analogues
of the bound states in the sense that their wave functions are mainly localized over
the potential well, having tails with significantly smaller amplitude over the dissocia-
tion channels. This topography is in contrast to other states in the continuum which
extend with roughly the same amplitude over all energetically accessible space. The
durability of resonances can be intuitively justified by a particular energy distribu-
tion; a system can live an appreciable time on a excited state above the fragmentation
threshold if the energy is initially deposited on degrees of freedom weakly coupled
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to the dissociation modes. This delay in fragmentation is reflected as a pronounced
variation of the cross sections if the fragmentation energy lies in the neighborhood
of the energy of a resonance. The amplitude distribution of resonances is not static
as is in bound states; resonances eventually wither away, in a rate depending on the
coupling between the well region and the product channels. Due to the time-energy
uncertainty relation, their limited lifetime τ is inversely proportional to the energy
width Γ they exhibit.

In systems with relatively weak coupling between the degrees of freedom asso-
ciated to fragmentation and the rest, we can distinguish two classes of resonances:
Feshbach and shape ones. The former refers to resonances which turn into bound
states when the coupling goes to zero, while the latter refers to the opposite.

The profile of (Breit-Wigner) resonances can be described by a Lorentzian func-
tion

σ(E) ∝ (Γ/2)
(E − Eres)2 + (Γ/2)2

,

where σ(E) is an energy dependent cross section and Γ is the full width at half max-
imum. One can regard resonances as eigenstates with a complex energy eigenvalue
E = Eres − iΓ/2. Using this in the formula for the time evolution of a quantum
mechanical wave function we get

|Ψ(t)|2 ∝ |e−iEt/~|2 = |e−iErest/~e−Γt/(2~)|2 = e−Γt/~,

that is, the population of a resonance state decays exponentially in time. We can
determine the dissociation rate to be Γi/~, which is thus the inverse of the lifetime τi.
In addition to Eres and Γ, a resonance is characterized by the final state distribution
of the products of dissociation. Eres provides information mainly on the Hamiltonian
in the well region, Γ is influenced by the coupling between the exit channels and the
potential well, and the products can reveal much on the dynamics of the system in
the dissociation channels.

Fundamental methods to solve the Schrödinger equation

Exact solution of the Schrödinger equation is generally not feasible; approximation
methods are employed to solve it. Among those developed to that end, the vari-
ational method is the most central. Based on it are the ab initio methods for the
calculation of potentials presented in §3.5.1; an outline will be given here, along with
an overview of the perturbative treatment, another important tool in solving specific
forms of the Schrödinger equation. A full presentation of both of them can be found
in any advanced quantum mechanics textbook. Specialized techniques, applicable
to the vibration-rotation nuclear Hamiltonian we will derive, are presented in §3.6.
The calculation of states in the continuum is another case where variations of the
methods presented here can be applied.

Variational method. We can construct a function F (q; λ) as a parametric sum
of N linearly independent functions {ϕi(q)} (i = 1 . . . , N), which, in turn, are
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expanded on all the (unknown) eigenfunctions {|µ〉} of Ĥ :

F (q;λ) =
N∑

i=1

ci(λ) ϕi(q)

|ϕi〉 =
∑

µ

aiµ |µ〉





⇒ F (q;λ) =
N∑

i=1

∑
µ

ci(λ) aiµ |µ〉 =
∑

µ

dµ(λ) |µ〉 .

The expectation value, ĤF (λ), of the Hamiltonian operator for this function is de-
fined as:

ĤF (λ) ≡ 〈F | Ĥ |F 〉
〈F |F 〉 ≡

∫

V
F (q; λ)∗ Ĥ F (q; λ) dq

∫

V
F (q; λ)∗ F (q; λ) dq

.

But

〈F | Ĥ |F 〉 =
∑

µ

∑
ν

d∗µdν 〈µ| Ĥ |ν〉 =
∑

µ

∑
ν

d∗µdνEν 〈µ|ν〉

≥ E1

∑
µ

∑
ν

d∗µdν 〈µ|ν〉 = E1 〈F |F 〉 ,

where E1 is the energy of the lowest (or ground) state. We conclude that

ĤF (λ) ≥ E1,

i.e. the expectation value provides an upper limit on the lowest energy.
Minimization of ĤF (λ) with respect to the parameter(s) λ can give an estimate

of the energy for the ground state; the function F for the set of the critical values of
λ is an approximation to the ground wave function. This approximation can be very
accurate if the set of {ϕi} is chosen so that the expected physical characteristics of
the ground eigenfunction are reproducible by the basis functions.

The same procedure can be applied to estimate successively higher states with
the proviso that F is taken orthogonal to all lower eigenfunctions, i.e.

〈F |Φ1〉 = 〈F |Φ2〉 = . . . = 0.

The minimization of the expectation value of Ĥ is then constrained by the above
relations.

A related method, also referred to as the (linear) variational method, assumes that
the parameters collectively denoted by λ above, are the coefficients in the expansion
on {ϕi}:

F (q;λ) =
N∑

i=1

λi ϕi(q).

With this as a trial function, the resolution of Schrödinger equation, eq. (3.2), can
be turned into a generalized matrix diagonalization problem:

N∑

j=1

λj

∫

V
ϕ∗i Ĥ ϕj dq = E

N∑

j=1

λj

∫

V
ϕ∗i ϕj dq ⇒ Hλ = ESλ, (3.4)
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where H is the Hamiltonian matrix with elements Hij = 〈ϕi| Ĥ |ϕj〉 and S the
overlap matrix with Sij = 〈ϕi|ϕj〉 , (1 ≤ i, j ≤ N). The diagonalization provides
E, a diagonal matrix containing the eigenvalues which we can arrange in ascending
order: E1 ≤ E2 ≤ · · · ≤ EN . The variational treatment ensures that E1 is an upper
bound to the exact ground state energy; moreover, each energy Ei also bounds the
exact energy of the corresponding ith excited state. This follows from the mutual
orthogonality of the eigenvectors, the corresponding sets of λi, which express the
eigenfunctions in the {ϕ} basis. The larger and more “appropriate” for the specific
problem the basis is, the better approximation we can achieve, especially for the
low-lying states.

Time-independent perturbation method. Let us assume we can write the
Hamiltonian operator as a sum of an operator Ĥ o for which the eigenvalues Eo

n

and eigenfunctions ϕo
n ≡ |no〉 are analytically known, and another operator, εĤ ′,

which represents a small correction to Ĥ o. Moreover, we assume the set {|no〉} is
orthonormal, and the set of energies {Eo

n} is discrete and non-degenerate. If we
expand the wave function Φ and the energy E in powers of ε, substitute them along
with Ĥ in eq. (3.2), and equate the coefficients of same orders of ε we get:

Ek = Eo
k + ε 〈ko| Ĥ ′ |ko〉+ ε2

∑

m6=k

| 〈mo| Ĥ ′ |ko〉 |2
Eo

k − Eo
m

+ · · ·

and

Φk = |ko〉+ ε
∑

m6=k

〈mo| Ĥ ′ |ko〉
Eo

k −Eo
m
|mo〉+ · · · .

3.2.2 Elements of Point Group Theory

There are certain geometrical entities (point, lines, planes) with respect to which
a transformation of the nuclear frame of a molecule casts it into a configuration
indistinguishable from the original. These entities are the symmetry elements and
the transformations related to them are the symmetry operations. Such operations
are, for example, an inversion through a point (denoted by i), a rotation about an
axis by an angle 2π/n (denoted by Cn), a reflection through a plane (denoted by σ).

The set of all symmetry operations applicable on a particular nuclear configura-
tion of a molecule possesses the properties of a mathematical group. In each group
we can gather the elements into classes comprised of all symmetry operations related
via a similarity transformation. We can construct a set of square matrices isomor-
phic to such a group; this means that there is a one to one correspondence between
matrices and symmetry operations and that any relation between the elements of
the symmetry group holds also for their images in the matrix group. There is an
infinite number of such matrix groups; the are called the reducible representations
of the point group. There are transformations which can cast the elements of such
a representation into the same block diagonal form. It can easily be shown that the
corresponding blocks from each of the elements of the matrix group, form themselves
a group isomorphic to the parent one and to the point group. This reduction pro-
cess will eventually produce distinct groups which can not be reduced further; they
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constitute the irreducible representations of the point group and they are equal in
number to the number of classes of the symmetry group. In each irreducible repre-
sentation, the traces of the matrices are termed the characters of the corresponding
symmetry operations. One of the irreducible representations is totally symmetric
(the characters are all +1) and the others have distinct character sets.

An important physical requirement is that the electronic eigenfunctions, which
we will define in a subsequent section, and the vibrational normal modes of any
molecule, belong to (or form a basis for) one of the irreducible representations of
the point group of the molecule. This means that the eigenfunctions and the nor-
mal modes are also eigenfunctions of the symmetry operations in the irreducible
representation and their eigenvalues are its characters. Moreover, if an irreducible
representation is not one dimensional, that is, the matrices forming it have rank
greater than 1, the degeneracy of the relevant eigenfunctions is symmetry dictated.

The symmetry of the wave functions and of certain operators (dipole moment,
polarizability, etc.) is very useful in determining whether an integral involving them
vanishes. For example, the product of such entities, each belonging to specific ir-
reducible representations, is a reducible representation. The vanishing integral rule
requires an integral to be zero if the integrand belongs to a reducible representation
which does not contain the totally symmetric irreducible one.

The irreducible representations of a point group are commonly denoted with
the aid of Mulliken symbols: A and B are used for one dimensional, E for two
dimensional and T (or F ) for three dimensional representations. The character (+1
or −1) of the principal rotational operation, if it exists, determines the symbol A
or B respectively. If the molecule has a center of inversion, the character of i in
the irreducible representation is denoted by a subscript g (gerade) or u (ungerade)
for the symmetric (+1) and antisymmetric (−1) cases. A single or a double prime
by the name denotes the character (+1, −1) of the reflection through a horizontal
symmetry plane (if it exists). If more than one irreducible representations have these
eigenvalues equal, they are distinguished by a numerical subscript. For infinite point
groups describing linear molecules, the symbols Σ, Π, ∆, Φ, Γ . . . are used. A + or −
superscript in Σ denotes the character of the reflection through the (infinite number
of) vertical planes of symmetry (if they exist). The ground electronic state is usually
denoted by X; for the excited states the symbols A,B, . . . are used. A tilde on them
denotes linear configuration.

Vast literature exists on this subject; see, for example, [73].

3.3 The Molecular Hamiltonian

For a mechanical system of N dimensionless particles with masses mj , position
vectors ~qj , on which forces generated by a potential V (~qj , ~pj , t) are exerted, the
Hamiltonian operator turns out to be

Ĥ = T̂ + V̂ =
N∑

j=1

~̂p
2

j

2mj
+ V (~̂qj ,

~̂pj , t) = −
N∑

j=1

~2

2mj
∇2

j + V (~qj ,−i~∇j , t). (3.5)

An isolated non-relativistic molecule consisting of one or more nuclei and one or
more electrons, can be treated as a set of point-like particles. Let Nn be the number
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of nuclei, Mi their masses, Zi their atomic numbers, ~Ri ≡ (Xi, Yi, Zi) and ~Pi their
position and momentum vectors (i = 1 . . . , Nn); let Ne be the number of electrons,
in positions ~rj ≡ (xj , yj , zj), with momenta ~pj , (j = 1 . . . , Ne). R and r will be used
to denote the nuclear and the electronic configurations (sets of position vectors),
respectively; P and p will collectively be the momenta.

The kinetic part of the Hamiltonian operator is

T̂ = T̂ n + T̂ e

where

T̂ n =
Nn∑

i=1

−~2

2Mi

(
∂2

∂X2
i

+
∂2

∂Y 2
i

+
∂2

∂Z2
i

)

and

T̂ e = − ~2

2me

Ne∑

i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

)
.

The interaction of these particles is represented by the potential

V (R, r,P,p) = V nn(R) + V ee(r) + V ne(R, r) + v(R, r,P,p), (3.6)

where (in S.I.)

V nn(R) =
e2

4πε0

Nn∑

i=1

Nn∑

j=i+1

ZiZj∣∣∣~Ri − ~Rj

∣∣∣
, (3.7)

V ee(r) =
e2

4πε0

Ne∑

i=1

Ne∑

j=i+1

1
|~ri − ~rj | , (3.8)

V ne(R, r) = − e2

4πε0

Nn∑

i=1

Ne∑

j=1

Zi∣∣∣~Ri − ~rj

∣∣∣
. (3.9)

v incorporates all non-electrostatic interactions of the particles (due to their spins,
orbital angular momenta, etc.). It includes terms representing the interaction of
each of the electron spin magnetic moments with (see [74,75]):

• the magnetic moments generated by the orbital motions of the electrons

1
4πε0

gµB

c2

Ne∑

i=1

Ne∑
j=1
j 6=i

−e

|~ri − ~rj |3
[
(~ri − ~rj)×

(
~pi

2me
− ~pj

me

)]
·~si,

• the magnetic moments generated by the orbital motions of the nuclei

1
4πε0

gµB

c2

Ne∑

i=1

Nn∑

j=1

Zje

|~ri − ~Rj |3

[
(~ri − ~Rj)×

(
~pi

2me
−

~Pj

Mj

)]
·~si,
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• the spin magnetic moments of the other electrons

1
4πε0

g2µB
2

c2

Ne∑

i=1

Ne∑

j=i+1

{
1

|~ri − ~rj |3 (~si ·~sj)

− 3
|~ri − ~rj |5 [~si · (~ri − ~rj)][~sj · (~ri − ~rj)]− 8π

3
δ(~ri − ~rj)(~si ·~sj)

}
,

where µB is the Bohr magneton, and g, ~si the Landé g-factor and spin of the ith
electron.

Similar terms, smaller in magnitude and responsible for the hyperfine structure in
the energy spectrum, arise from the interaction of the electric and magnetic moments
of the nuclei with the other moments in the molecule. Nuclei with non-zero spin, I,
have non-vanishing magnetic dipole moment. The relevant terms in v are analogous
to the above for electrons, namely

• 1
4πε0

mpµN

c2

Nn∑

i=1

Nn∑
j=1
j 6=i

GiZie

Mi

1

|~Ri − ~Rj |3

[
(~Ri − ~Rj)×

(
~Pi

2Mi
−

~Pj

Mj

)]
· ~Ii

• 1
4πε0

mpµN

c2

Nn∑

i=1

Ne∑

j=1

−Gie

Mi

1

|~Ri − ~rj |3

[
(~Ri − ~rj)×

(
~Pi

2Mi
− ~pj

me

)]
· ~Ii

• 1
4πε0

(mpµN )2

c2

Nn∑

i=1

Nn∑

j=i+1

G2
i

M2
i

{
1

|~Ri − ~Rj |3
(~Ii · ~Ij)

− 3

|~Ri − ~Rj |5
[~Ii · (~Ri − ~Rj)][~Ij · (~Ri − ~Rj)]− 8π

3
δ(~Ri − ~Rj)(~Ii · ~Ij)

}
,

where µN is the nuclear magneton, mp the proton mass, and Gi, ~Ii the g-factor and
spin of the ith nucleus.

Additionally, nuclei with spin equal to 1 or greater have non-vanishing electric
quadrupole moments; higher order moments arise for greater spins. These moments
interact with each other and result in additional terms in v; the one comparable in
magnitude to the dipole–dipole nuclear terms is

−1
6

Nn∑

i=1

3∑

α=1

3∑

β=1

Q
(αβ)
i F

(αβ)
i ,

where Q
(αβ)
i is the component in a molecule-fixed coordinate system of the electric

quadrupole moment of the ith nucleus and F
(αβ)
i is the α-component of the gradient

of the β-component of the electric field felt by the ith nucleus due to the other
charges in the molecule.

Collecting all the above yields the Hamiltonian operator for the molecule as

Ĥ = T̂ n + T̂ e + V̂ nn + V̂ ee + V̂ ne + v̂. (3.10)

Simplifying approximations are necessary in order to solve with adequate accuracy
the Schrödinger equation with this Hamiltonian for any real molecule. We can
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reduce by three the number of degrees of freedom by extracting the motion of the
center of mass; this is useful for a two particle system but does not gain us much
in realistic molecular systems. To derive equations more suitable for our present
algorithmic and computational capabilities, we can apply the Born–Oppenheimer
approximation.

3.4 The Born–Oppenheimer Approximation

The total forces exerted on each of the nuclei and the electrons are of the same order
of magnitude, while the nuclei are thousands of times heavier than the electrons.
Therefore, the electrons move much more rapidly than the nuclei and adjust their
positions almost instantaneously on any change of the nuclear configuration, leading
us to consider the separation of these motions. This is qualitatively the adiabatic or
Born–Oppenheimer approximation. We can fix the nuclear configuration at various
sets of {~Ri} and solve for the electronic wave functions Φe(r;R) and energies Ee,
both depending only parametrically on the nuclear configuration. If we do this for
a range of configurations, we obtain the potential energy surface along which the
nuclei move.

The time-independent equation for the electrons is the clamped–nuclei Schrödinger
equation. It reads

EeΦe(r;R) = Ĥ eΦe(r;R)

=
[
T̂ e + V̂ nn(R) + V̂ ee(r) + V̂ ne(r;R)

]
Φe(r;R). (3.11)

If spin–orbit effects are important (as are for molecules with highly charged nuclei)
we can incorporate the v̂ operator in the electronic Hamiltonian. Note that V̂ nn is
a constant for each nuclear configuration and just shifts the electronic energy levels.
The different notation used here for the dependence of potentials and wave functions
on R reflects its parametric nature.

Let us revisit the total Hamiltonian eq. (3.10). The solution of eq. (3.11), the
set of {Φe

k}, can serve as a basis (characterized as adiabatic) for the expansion of
the total wave function

Φ(R, r) =
∑

k

[χk(R) Φe
k(r;R)] .

The Schrödinger equation for the Hamiltonian in eq. (3.10) is then

Ĥ
∑

k

[χk(R) Φe
k(r;R)] = E

∑

k

[χk(R) Φe
k(r;R)] ,

or, making use of the orthonormality relation eq. (3.3),

∫

V
Φe∗

s(r;R) Ĥ
∑

k

[χk(R) Φe
k(r;R)] dr = E χs(R).
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Simplifying it further,

E χs(R) =
∑

k

∫

V
drΦe∗

s(r;R)
(
T̂ n + Ĥ e + v̂

)
χk(R)Φe

k(r;R)

=
∑

k

∫

V
dr Φe∗

s(r;R) T̂ nχk(R) Φe
k(r;R) +

∑

k

(
Ĥ e

sk + v̂sk

)
χk(R)

holds, where the notation Âsk is used for the matrix elements of an operator Â in
the adiabatic basis,

Âsk ≡ 〈s| Â |k〉 ≡
∫

V
dr Φe∗

s(r;R) Â Φe
k(r;R).

After some straightforward algebra the Schrödinger equation for the molecule reads:
[
T̂ n + T̂ ′

ss + T̂ ′′
ss + Ĥ e

ss + v̂ss −E
]
χs(R)

= −
∑

k 6=s

[
T̂ ′

sk + T̂ ′′
sk + Ĥ e

sk + v̂sk

]
χk(R), (3.12)

with

T̂ ′
sk(R) = −2

∑

i

~2

2Mi

∫

V
dr Φe∗

s(r;R) ∇i[Φe
k(r;R)] ·∇i,

(3.13)

T̂ ′′
sk(R) = −

∑

i

~2

2Mi

∫

V
dr Φe∗

s(r;R) ∇2
i [Φ

e
k(r;R)],

where ∇i ≡
(

∂

∂Xi
,

∂

∂Yi
,

∂

∂Zi

)
the differentiation operator with respect to the coor-

dinates of the ith nucleus.
As we chose the eigenfunctions of Ĥ e as the basis for the expansion of the

molecular wave function, we can achieve further simplification given that

Ĥ e
sk = Ee

s δsk.

Eq. (3.12) is nevertheless formally exact, regardless of the basis chosen. One could
prefer to minimize other coupling terms, such as T̂ ′

sk, resulting in a diabatic elec-
tronic basis. Additionally, by taking the derivative of 〈Φe

s(r;R)|Φe
s(r;R)〉 , it is

easy to show that if the electronic wave function Φe
s is real then

T̂ ′
ss = 0.

The Born–Oppenheimer approximation consists in neglecting the couplings on the
right-hand side of eq. (3.12). With the further assumption that the wave function
is real, we obtain the following approximate equation for the motion of the nuclei:

[
T̂ n +

(
T̂ ′′

ss + Ee
s + v̂ss

)]
χs(R) = Eχs(R). (3.14)
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Eq. (3.14) is the time-independent Schrödinger equation describing in the Born–
Oppenheimer approximation the nuclear motion on a Potential Energy Surface
(PES) set up primarily by the electrons on a specific electronic state:

Vs(R) = T̂ ′′
ss + Ee

s + v̂ss.

χs(R) assumes the role of the nuclear eigenfunction and acquires a “nuclear” index
in addition to the electronic quantum number s.

The principal contribution to the PES comes from the electronic energy; the
others are much smaller. The magnitude of the diagonal term T ′′ss, called the Born–
Oppenheimer diagonal correction, can be estimated if we derive from eq. (3.13) the
formula

T̂ ′′
ss(R) =

∑

i

1
2Mi

〈s| ~P 2
i |s〉 ,

where ~Pi the momentum of the ith nucleus. The nuclear momenta are of the order
of the electronic momenta, p, and so

〈s|P 2 |s〉 ≈ 〈s| p2 |s〉 ≈ 2m 〈s|He |s〉 = 2mEe
s.

Therefore, the term T̂ ′′
ss in the PES is roughly m/M ≈ 10−4 times the larger term

Ee
s and can be ignored in an approximation.

The Born–Oppenheimer approximation yields differential equations with greatly re-
duced dimensionality, assuming that there is negligible interaction between the elec-
tronic levels and no coupling of the electronic with the nuclear degrees of freedom.
These are, in many cases, valid assumptions; however, small or large deviations from
the experiment are to to be expected. For example, transitions “forbidden” in the
Born–Oppenheimer framework may be observed, occasionally strongly, in the actual
experimental spectra (Herzberg–Teller effect [76]). Another interesting consequence
is predissociation: a crossing between bound and repulsive potential surfaces causes
the mixing of the corresponding rovibrational states and affects their properties;
a system can dissociate from a bound state through this tunneling. The Born–
Oppenheimer approximation certainly breaks down severely if the electronic states
are close together (compared to the nuclear energies spacing) or the coupling terms
do not allow a separation of electronic and nuclear motion. Such a situation arises
in the vicinity of an avoided crossing of two energy surfaces; for example, near the
crossing between the covalent and ionic potential energy curves of NaCl, fig. (3.1)
[reprinted from [77]], the character of the electronic wave functions varies rapidly as
the bond length changes, while at large separations it remains more or less constant.
Other cases are presented below.

3.4.1 Breakdown of the Born–Oppenheimer Approximation

The most important cases where the Born–Oppenheimer approximation can not be
applied are the Renner–Teller effect, the Jahn–Teller effect, and the calculation of
energy levels of Rydberg states.

There are certain symmetrical nuclear configurations for which the point group pos-
sesses degenerate irreducible representations. This fact requires the degeneracy of
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are the nonadiabatic coupling elements. Integration of eqns (19) yields the expansion
coefficients ai(t) whose square modulus, |ai(t)|2, can be interpreted as the probability of
finding the system in the adiabatic state i at time t.

We now want to develop a condition for the validity of the Born-Oppenheimer approx-
imation based on qualitative arguments. For this purpose, we shall consider a two-state
system. To illustrate the problem, fig. 1 shows the avoided crossing between the covalent
and ionic potential energy curves of NaCl.15, 16 As we can see, the adiabatic wavefunctions
φ1 and φ2 change their character as the bond length is varied. The characteristic length, l,
over which φ1 and φ2 change significantly clearly depends on the nuclear configuration R;
in the vicinity of the NaCl avoided crossing, for instance, the character of the wavefunc-
tions varies rapidly, whereas at large separations it remains more or less constant.

E

R

Na++Cl−

Na++Cl−

φ2

φ1

Na+Cl

Na+Cl

�
�

�

� � � � � � �

Figure 1. Avoided crossing between the covalent and ionic adiabatic potential curves of NaCl (thin lines: crossing
of diabatic states).

Division of the characteristic length l by the velocity of the nuclei, Ṙ = |Ṙ|, at a
particular configuration R defines the time the system needs to travel the distance l around
R:

passage time τp =
l

Ṙ
. (21)

In order for the Born-Oppenheimer approximation to be valid, the electron cloud has to
adjust instantly to the nuclear changes. The time scale characteristic of electronic motion
can be obtained from the relation

∆E = |E1 − E2| = ω (22)

381

Figure 3.1: Avoided crossing between the covalent and ionic adiabatic potential curves of
NaCl (thin lines: crossing of diabatic states).

specific electronic states at these configurations. In a nuclear distortion that re-
duces the symmetry, the degeneracy may be resolved and result in discrete potential
energy surfaces, which only accidentally can coincide.

The Renner–Teller effect

In linearity, the point group to which the molecule belongs is C∞v or D∞h; thus,
there exist excited doubly degenerate electronic states with Π,∆, Φ, . . . symmetry.
When the molecule is bent, the point group becomes Cs or C2v respectively; the
irreducible representations for them are all one-dimensional. The degeneracy is
lifted and the electronic states split. The amount of splitting has to be an even—as
required by symmetry—function of the angle measuring the deviation from linearity.
This splitting upon bending of the two, degenerate in linear configuration, electronic
states and the subsequent interaction of their rotational-vibrational levels, is called
the Renner–Teller effect [78]. It results in coupling the electronic to the rotational
and vibrational degrees of freedom, breaking down the main assumption of the
Born–Oppenheimer approximation.

The Renner–Teller effect is a particular case of the Jahn–Teller effect.

The Jahn–Teller effect

A molecule in a particular nonlinear nuclear configuration belonging to a point group
with at least a Cn (n > 2) principal symmetry axis, exhibits degeneracy in excited
electronic states. According to the Jahn–Teller theorem [79], a nuclear distortion
must occur to lower the point group symmetry, raise the degeneracy and cause an
energy split. This spontaneous symmetry breaking and the subsequent interaction
between the vibrational levels of each electronic state is the Jahn–Teller effect.

At the symmetrical nuclear configuration, the two potential energy surfaces in-
tersect at a special case of level crossing, a conical intersection. It can be shown,
see [79], that the splitting is linear at first approximation in the nuclear coordinates.
This means that two degenerate non totally symmetric vibrational modes (Jahn–
Teller active modes) exist which makes the symmetrical configuration unstable in
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the lower energy level. This is described as the Jahn–Teller instability. The lower
PES has minima away from the high-symmetry geometry; in the absence of non-
linear Jahn–Teller coupling, they are infinite and at a certain distance, forming a
“trough” allowing the molecule to “pseudo-rotate” (acquiring in the wave function
a Berry phase [80]). The quadratic terms in the coupling can be shown, see [81], to
give rise to a finite number of symmetrically equivalent minima in the lower poten-
tial energy surface. If n in the principal axis Cn of the high symmetry geometry is
odd, there are n minima while with even n there exist n/2 minima.

If the Jahn–Teller distortion is large enough it will result in a wave function
localized around the minima of the lower PES. This case is referred to as the static
Jahn–Teller effect. The dynamic Jahn–Teller effect occurs when the there is no
permanent distortion of the molecule. The theoretical treatment of the two cases is
substantially different.

In the case of molecules with a non-degenerate ground electronic state but with
a very low lying excited state, distortions of proper symmetry arise which mix the,
approximately degenerate, ground and excited states, and thereby lower the ground
state energy (pseudo Jahn–Teller effect).

In contrast to the Renner–Teller effect, which is essentially a rovibronic inter-
action which can perturb significantly the rotational energy level patterns in the
vibronic states affected by it, the perturbations resulting from the Jahn–Teller ef-
fect are predominantly vibronic; they couple the electronic to the vibrational degrees
of freedom.

Rydberg states

Rydberg states are special electronic states for which there are systematic degenera-
cies and near degeneracies that, in general, prohibit the application of the Born–
Oppenheimer approximation. A Rydberg state for a molecule can be regarded as
being an electronic state in which one electron orbits in large distance, compared to
the molecular dimensions, around the molecular ionic core.

For Rydberg states the treatment is analogous to the hydrogen-like atoms, as the
interaction of electron with the core can be regarded as independent of the structure
of the core. The Quantum Defect Theory [82] is based on this idea and can be
applied to solve the Schrödinger equation. An example of the application of this
technique can be found in [74].

3.5 Determining the Potential Energy Surface

The calculation of the potential which controls the nuclear motion is an important
first step towards understanding the behavior of molecules. The analysis of the
PES topography allows us to determine the equilibrium geometries or stationary
points in general, their relative energies and the reaction paths connecting them,
the dissociation channels, the fundamental vibrational frequencies; the dynamical
picture of the molecules in terms of classical trajectory simulations, bifurcations in
the phase space or evolution of wave packets among others, is obviously governed
by the PES. The interpretation of the characteristics of the PES and their relation
to experimental results is the next major step.
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There are various techniques employed to derive the potential energy surface.
They all fall into two major categories: ab initio and empirical methods. With the
advents of computers, accurate ab initio methods are applicable to small molecules
and empirical techniques are less used; we will briefly present them for completeness.

3.5.1 Introduction to Ab Initio Methods

The term “ab initio” is used to describe methods which calculate molecular prop-
erties by solving the Schrödinger equation without resorting to any empirical or
experimental data. They are all based on the Born–Oppenheimer approximation.
Under this approximation, the electronic wave functions and energies are determined
by eq. (3.11), the Schrödinger equation for the Hamiltonian

Ĥ e = T̂ e + V̂ ee + V̂ ne, (3.15)

ignoring any relativistic effects of all kinds, which, if necessary, can be treated per-
turbatively. In this section we regard the nuclei fixed at a specific configuration and
focus on the eigenproblem of the electronic Hamiltonian. For simplicity, we ignore
the constant term V nn, which must be added, though, to the electronic energies to
provide the PES. Also, bear in mind that all calculations leading to the electronic
energy must be repeated for a multitude of nuclear configurations and then a func-
tion should be fitted to these results to provide a continuous PES. The advances in
computer speed and the improvements in molecular-orbital software made alterna-
tive approaches, which do not require the construction of a global potential energy
surface, feasible. According to them, the potential and its derivatives can be com-
puted by electronic structure calculations only on certain configurations dictated by
the method used in solving the nuclear Hamiltonian or the classical equations of
motion. For a recent review on these approaches see [83].

By dropping the term representing the interactions between the electrons, V̂ ee, we
can separate the electronic degrees of freedom and reduce Ĥ e into a sum of Ne

one-electron Hamiltonians, i.e.

Ĥ e → Ĥ e
o =

Ne∑

i=1


− ~2

2me
∇2

i −
e2

4πε0

Nn∑

j=1

Zj∣∣∣~Rj − ~ri

∣∣∣


 .

If we solve the Schrödinger equation ĥϕ = εϕ for the one-electron Hamiltonian

ĥ(~r, ~p) =
~p 2

2me
− e2

4πε0

Nn∑

j=1

Zj∣∣∣~Rj − ~r
∣∣∣
, (3.16)

we obtain the eigenfunctions ϕk(~r), called the molecular orbitals (MO), and the
eigenenergies εk, called the molecular orbital energies. Augmenting the molecular
orbitals ϕ(~r) with the electron spin functions, σ(s = ±1/2), we can derive the
spin–orbitals φ(~r; s) ≡ ϕ(~r)σ(s), the basis functions describing the full state of one
electron. For a set of Ne electrons, the product

Ne∏

i=1

φni(~ri; si),



50 CHAPTER 3. QUANTUM CHEMISTRY

where ni is the quantum number of the spatial state occupied by the ith electron and
si its spin projection, does not satisfy the Pauli exclusion principle. This principle,
applied for electrons, requires the total wave function to be antisymmetric in the ex-
change of any two particles. This requirement is fulfilled by a particular combination
of the (degenerate) basis functions, best formulated in the Slater determinant :

Φe
on(r; s) =

1√
Ne!

∣∣∣∣∣∣∣∣∣

φn1(~r1; s1) φn2(~r1; s1) · · · φnNe
(~r1; s1)

φn1(~r2; s2) φn2(~r2; s2) · · · φnNe
(~r2; s2)

...
...

...
...

φn1(~rNe ; sNe) φn2(~rNe ; sNe) · · · φnNe
(~rNe ; sNe)

∣∣∣∣∣∣∣∣∣
. (3.17)

The corresponding eigenenergies are

Ee
on =

Ne∑

i=1

εni .

The approach presented above, the independent particle model, does not provide an
acceptable solution of eq. (3.11); nevertheless, it is useful as it serves as the starting
point for the more sophisticated techniques described below.

In another step made in the ab initio methods, the molecular orbitals are expanded
in a basis of Nb, suitably chosen, linearly independent, functions {χ1, χ2, . . . , χNb

}:

ϕi(~r) =
Nb∑

k=1

ckiχk(~r). (3.18)

As the basis is necessarily finite, the above equation represents an approximation to
the molecular orbitals; this is the Linear Combination of Atomic Orbitals (LCAO)
approximation.

The basis set used to consist of functions localized on a nucleus and resembling
the hydrogen atom wave functions

χ(~r) ∝ rn−1Ylm(θ, φ)e−ζr,

with suitably chosen ζ’s, referred to as Slater-type orbitals (STO). Modern basis sets
use Gaussian-type orbitals (GTO), functions of the form

χ(~r) ∝ xnxynyznze−ζr2
.

STO’s are more accurate than GTO’s but their exact computational treatment is
cumbersome. To utilize, in some extent, the desired properties of both, a basis
set may be constructed from a combination of n GTO’s fitted to STO’s; such are
the STO-nG basis sets. Various other extensions and combinations of these basis
sets are available to computational chemists. The double (DZ) or triple (TZ) zeta
basis set uses two or three STO’s per orbital to increase accuracy near the nucleus.
Other sets were developed to include the valence shells so the accuracy at high
energies is increased; for example, the basis 6− 31G uses a single basis function for
the core orbitals with six GTO’s for each STO, and two sets for valence orbitals,
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one with three GTO’s per STO and the other, more diffuse, with one. Adding a
set of d atomic orbitals for each non-hydrogen atom to account for polarization is
indicated by a single asterisk in the basis name (6−31G∗); a double asterisk implies
that polarization functions are also used for hydrogen. Other orbitals with certain
properties might be necessary when other quantities, apart from energy, are to be
computed.

The modern quantum chemistry ab initio packages, such as gaussian98 [84],
molpro [85], gamess [86], offer a wide set of basis sets to the computational chemist
to choose from.

3.5.2 Self-Consistent Field (SCF)

Substantial improvement on the previous treatment is the Self-Consistent Field
(SCF) [87], or, in the limit where the number of basis functions is very large, the
Hartree–Fock (HF) method. In these, the interaction between electrons is taken
into account to some extent, as each particle is regarded as moving in a average
field due to the other electrons in addition to the nuclear attraction. Apart from
that, the electrons are oblivious to each other; the SCF method describes them with
single-particle wave functions.

The (non-degenerate) ground electronic wave function is represented in SCF
calculations by a single Slater determinant eq. (3.17), that is, the electrons are
allowed to occupy a specific set of (parametric) spin orbitals, {φ1, φ2,. . . ,φNe}. The
molecular orbitals in them are then expanded in the functions {χ1, χ2, . . . , χNb

}:

ϕi(~r) =
Nb∑

k=1

ckiχk(~r).

The Slater determinant, Φ̃e, constructed with the orbitals {φi}, depends on the
coefficients {cki}. According to the variational principle, these coefficients can be
determined by minimizing Ee({cki}) =

〈
Φ̃e

∣∣∣ Ĥ e
∣∣∣Φ̃e

〉
with respect to {cki}, subject

to the conditions 〈φi|φj〉 = δij (which imply
〈
Φ̃e

∣∣∣Φ̃e
〉

= 1). At the critical set of the

coefficients, Φ̃e approximates the correct ground state wave function, and Ee({cki})
gives an estimate (actually, an upper limit) for the corresponding energy.

The exact mathematical treatment for the generic case laid out above, where a
single set of spatial orbitals is used and no assumption is made on their occupancy,
is quite complicated. It results into a system of integro-differential equations, the
Hartree–Fock equations:

Eνϕν(~r) = ĥϕν(~r) +
e2

4πε0




Ne∑

µ=1

∫

V

ϕ∗µ(~r′)ϕµ(~r′)
|~r − ~r′| d3r′


ϕν(~r)

− e2

4πε0

Ne∑

µ=1

(σµ, σν)
[∫

V

ϕ∗µ(~r′)ϕν(~r′)
|~r − ~r′| d3r′

]
ϕµ(~r). (3.19)

ĥ is the one-electron Hamiltonian eq. (3.16), (σµ, σν) the inner product of the spin
parts of φµ, φν , and ν runs from 1 to Ne.
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In the equations above the first term in the right hand side represents the motion
of individual electrons in the field due to the nuclei, the second is the electrostatic
potential arising from the charge distribution of the Ne electrons and the third is
the exchange energy and has no classical analogue; it accounts for the tendency
of electrons with same spin to “avoid” each other. It also cancels an unphysical
self-interaction for the electrons introduced by the second term. The quantity Eν

approximates, according to Koopmans’ theorem [88], the ionization energy of the
electron in φν .

The Hartree–Fock equations eq. (3.19), can be cast into a simpler form if we utilize
information on the spin orientation of the electrons and occupancy of the orbitals.

When closed-shell systems are studied, the ground state is singlet and all orbitals
are doubly occupied with electrons of opposite spin. Therefore, Ne/2 distinct molec-
ular orbitals are occupied and are used in the Slater determinant. The restricted
closed-shell Hartree–Fock (RHF) theory which deals with this case, elaborates on
eq. (3.19) deriving the Roothaan–Hall equations [89]:

Nb∑

ν=1

(Fµν − εiSµν)cνi = 0, µ = 1 . . . , Nb. (3.20)

In the equations above,

Sµν =
∫

V
χ∗µ(~r)χν(~r) dV ≡ 〈χµ|χν〉

is the overlap integral of the two atomic orbitals, εi the energy of the molecular

orbital
Nb∑

k=1

ckiχk, and Fµν are the elements of the Nb ×Nb Fock matrix:

Fµν = 〈χµ| ĥ |χν〉+ 2Jµν −Kµν , (3.21)

with

Jµν =
Nb∑

λ=1

Nb∑

ρ=1

(µν, λρ)Pλρ, Kµν =
Nb∑

λ=1

Nb∑

ρ=1

(µρ, λν)Pλρ (3.22)

the Coulomb and exchange matrices,

(µν, λρ) =
e2

4πε0

∫

V

∫

V

χ∗µ(~r1)χ∗λ(~r2)χν(~r1)χρ(~r2)
|~r1 − ~r2| d3r1d3r2

the two-electron integrals, and

Pλρ =
Ne/2∑

k=1

c∗λkcρk

the core density matrix element.

The ground state of many molecules can not be described by a closed-shell SCF
wave function because, either the number of electrons is odd, or, certain orbitals are



3.5. DETERMINING THE POTENTIAL ENERGY SURFACE 53

singly occupied due to a spin coupling. This is the subject of the restricted open-
shell Hartree-Fock (ROHF) theory. Following [90], we assume a molecular orbital
set consisting of N2 doubly occupied MO’s and N1 = Ne − 2N2 singly occupied.
Similar equations as in the previous case hold, with (1 + N1) Fock matrices, one for
the core orbitals,

F c
µν = fc 〈χµ| ĥ |χν〉+

1+N1∑

k=1

(
ackJ

k
µν + bckK

kµν
)

,

and one for each of the N1 open-shell orbitals,

F i
µν = fi 〈χµ| ĥ |χν〉+

1+N1∑

k=1

(
aikJ

k
µν + bikK

kµν
)

, (i = 1 . . . , N1).

In the equations above, fi is the occupation for the ith orbital, having the values
1 or 1/2 if the orbital is doubly or singly occupied respectively; aij = 2fifj and
bij = −fifj with the added condition that bij = −1/2 if both i, j orbitals are singly
occupied. The J, K matrices are given by eq. (3.22); the density matrices there, are
also one for the core and N1 for the singly occupied orbitals

P c
λρ =

N2∑

k=1

c∗λkcρk, P i
λρ = c∗λicρi.

Another approach to the generic problem is referred to as the unrestricted Hartree–
Fock (UHF) theory. It is mathematically much simpler than ROHF and easier to
use as a basis for correlated methods such as Møller–Plesset (§3.5.4). On the other
hand, the wave function it produces is not an eigenfunction of the total spin Ŝ 2

while the true electronic states are.
In UHF theory, two distinct sets of spatial orbitals are used, one for the elec-

trons with σ(+1/2) ≡ α spin and the other for electrons having σ(−1/2) ≡ β spin.
They are represented with different coefficients on the same basis in the LCAO
approximation:

ϕα
i (~r) =

Nb∑

k=1

akiχk(~r), ϕβ
i (~r) =

Nb∑

k=1

bkiχk(~r).

The coefficients {aki, bki} are varied independently yielding the Pople–Nesbet equa-
tions [91]:

Nb∑

ν=1

(Fα
µν − εα

i Sµν)aνi = 0, µ = 1 . . . , Nb,

Nb∑

ν=1

(F β
µν − εβ

i Sµν)bνi = 0, µ = 1 . . . , Nb. (3.23)

These equations obviously degenerate to the Roothaan–Hall equations, eq. (3.20),
when the two sets of orbitals coincide, i.e. all electrons come in pairs.
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The procedure to solve the equations produced by any of the above methods
is iterative: An initial guess of the coefficients in the LCAO expansions of {ϕν},
is chosen; it should reproduce the physical characteristics and the general form of
the desired wave function so the equations can converge to the correct electronic
state. It should be noted that convergence is not mathematically guaranteed. With
the initial wave functions, the integrals in eq. (3.19) or the Fock matrices in the
other equations are computed and then the differential system or the generalized
eigenfunction problem are solved for a new approximation to the coefficients; this
process is repeated until the change in the coefficients in successive steps is negligible.

Closely related to HF methods is the Generalized Valence Bond (GVB) theory [90].
Without getting into details, in this theory each molecular orbital in closed-shell HF
(RHF), which is occupied by two electrons, is replaced in the Slater determinant by
two other orbitals which are non-orthogonal

ϕi(~r1)ϕi(~r2) → ϕi1(~r1)ϕi2(~r2) + ϕi2(~r1)ϕi1(~r2).

The resulting determinant, the GVB-Perfect Pairing (GVB-PP) wave function, in-
corporates the mixing of ionic and covalent character for any bond. It overcomes
this way the exclusion of electron correlation by the HF theory, producing more
accurate results for many molecular properties.

While the SCF theory predicts adequate estimates for many properties of atoms and
molecules, it is not comparable to experiment in reactions were bonds break and
form (ionization, dissociation, isomerization), or, in general, away from equilibrium.
The assumption of a single Slater determinant severely hampers the variational
method to achieve a satisfactory approximation. Another shortcoming, inherent to
the variational method, is that, in practice, it is very difficult to derive excited states.
On the other hand, the SCF method is size-extensive; it means that the energy
relative error in the calculations increase linearly with the number of particles in
the molecule. A special case of this property is the size-consistency : if we perform
separate SCF calculations with a certain basis for two non-interacting molecules and
add the ground energies, the result will be, as expected, the same as if we made one
SCF calculation with the same basis for the system of the two molecules. Another
advantage of SCF, in comparison to the other methods we present below, is that it
requires less computer resources (CPU time and memory).

Numerous variations have been developed to address the drawbacks and extend
the standard SCF method. A mention should be made to semi-empirical methods
which address the main time-consuming step of SCF computation, the one- and
two-electron integrals. In these methods, most of the integrals are neglected and
others are approximated by parametric functions; the parameters are such that ex-
perimental data are reproduced. Below, the most notable ab initio methods building
on SCF are presented.

3.5.3 Configuration Interaction (CI)

Electron correlation effects left out of an SCF calculation can be taken into consid-
eration by extending the trial wave function in the SCF method from a single Slater
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determinant to a sum of determinants formed by different sets of orbitals. This way,
the “contamination” by the actual excited electronic states inherent in the SCF wave
function is canceled out yielding a better approximation to the ground level. Let us
limit the discussion in the RHF method; similar remarks hold for the others.

We note that solving the Roothaan–Hall equations eq. (3.20), Nb eigenvalues
and eigenvectors are produced, that is, equal in number to the LCAO basis. There-
fore, Nb different molecular orbitals are determined while the Slater determinant
is formed by only Ne/2 functions. The orbitals used in the determinant are the
occupied ones, while the rest are called virtual orbitals. From the Nb MO’s we
can construct

( Nb
Ne/2

)
Slater determinants. The configurations in which one occu-

pied orbital from the SCF determinant is replaced by a virtual, are characterized as
single excitations; the substitution of two occupied orbitals by virtual ones yields
doubly excited configurations. In practice, we choose Nb À Ne so the number of
constructible determinants is quite large. In a Configuration Interaction (CI) calcu-
lation, the SCF result is used to construct Ns suitably chosen Slater determinants
{Φ(SCF )

i }; the wave function in the electronic Schrödinger equation, eq. (3.11), is
represented by a superposition of these:

Φ(CI) =
Ns∑

i=1

ciΦ
(SCF )
i .

If we choose the maximum Ns then the CI calculation is characterized as full ; nor-
mally, computational restrictions do not allow this magnitude of calculations.

Eq. (3.11) can be cast into an eigenvalue problem, yielding the energies and the
coefficients in the expansion above. This way, we can determine an approximation
to the first Ns electronic levels. MacDonald’s theorem [92] guarantees that the
eigenenergies in ascending order provide an upper limit for the respective energy
levels.

The CI technique converges very slowly but it can yield results very close to the
experimentally deduced for small molecules. The exact solution would require an
infinite basis set for the LCAO expansion (Nb → ∞), and an infinite number of
Slater determinants (Ns → ∞) in the CI wave function; both requirements cannot
be met in actual computations.

It can be shown that single excitations do not improve by themselves the SCF
wave function with respect to electron correlation; double (or higher) do. Accord-
ingly, the variant mostly used in actual calculations is the configuration interaction
with single and double excitations (CISD). Although computationally tractable, the
CISD method is not size consistent (cf. SCF method). An approximate way to
correct this deficiency is to introduce the Davidson correction [93],

∆E = (1− c2
0)ESD,

where c0 is the coefficient of the SCF wave function in the normalized CISD wave
function and ESD the correlation energy computed by CISD. Another approach to
make the CISD size consistent was suggested in [94]. The Quadratic Configuration
Interaction (QCISD) method is formed by the addition of higher excitation terms,
quadratic in the expansion coefficients, which enforce size consistency.
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A detailed presentation of CI methods can be found in [87]. Below, we briefly
describe three extensions and variants of the CI method, which were employed in
the PES calculation of the molecules we studied: the Complete Active-Space Self-
Consistent Field (CASSCF), the Multi-reference Configuration Interaction (MRCI),
and the Coupled Cluster (CC) method.

In CASSCF, the trial wave function is a multi-configuration expansion con-
structed as in CI by a set of molecular orbitals, which, in turn, are expanded in
the LCAO basis. Both sets of coefficients are optimized in a CASSCF calculation
leading to a fully optimized wave function.

MRCI generalizes the CI method in the sense that a CASSCF result is used
instead of plain SCF. The constructed MRCI wave function is a multi-configuration
expansion on wave functions obtained by applying on a previous CASSCF result the
excitation operators from occupied orbitals to unoccupied ones.

The CC method is another size-consistent technique to incorporate electron
correlation. It approximates the electron wave function by a sum of ground and
excited configurations in the following manner:

Φ(CC) = e(bT1+bT2+···)Φ(SCF ).

T̂i on the SCF wave function produces a linear combination of all ith-order excita-
tions. The first terms in the expansion of the exponential, 1+T̂1+T̂2+· · ·, applied on
the SCF result give a wave function similar to CI. The exponential operator is used
to ensure the size-consistency of the calculation; for example, the CCSD method,
which includes single and double excitations, applied on two separate molecules A,B
with SCF wave functions ΦA, ΦB, yields

e(bT A
1 +bT A

2 )ΦAe(bT B
1 +bT B

2 )ΦB = e(bT A
1 +bT A

2 +bT B
1 +bT B

2 )ΦAΦB.

The right hand side is the wave function which is constructed in the CCSD method
if the two non-interacting molecules are treated as a system. Quasi-perturbative
treatment of the connected triples (T) and quadruples (Q) leads to the CCSD(T)
and CCSD(TQ) approaches.

A method closely related to CCSD is Brueckner Doubles [95], which uses the
Brueckner orbitals rather than the HF orbitals for a CCSD treatment. The Brueck-
ner orbitals are defined as the set of orbitals for which the single excitation coef-
ficients are zero. The theory is slightly more computationally intensive but more
accurate than CCSD.

The applicability of the MRCI and CCSD methods, scaling from N5
e to N8

e , is
limited by the molecule size.

3.5.4 Møller–Plesset Perturbation Theory (MP)

A common form of many-body perturbation theory, the Møller–Plesset (MP) theory
[96], is a size-consistent method which treats the deviation of the electron repulsion
from the average field of the SCF calculation as perturbation. The zeroth order
Hamiltonian is the sum of the one-electron Fock operators: Ĥ0 =

∑

i

F i; F i is the

Fock operator acting on the ith electron. The perturbation is then Ĥ e − Ĥ0. The



3.5. DETERMINING THE POTENTIAL ENERGY SURFACE 57

zeroth approximation in the wave function is the SCF Slater determinant (which is
an eigenfunction of Ĥ0) and its energy is the sum of the energies of the occupied
orbitals. The energy including the first correction is the SCF prediction and from the
second order the electron correlation appears. The approximations mostly used are
the MP2 and MP4 levels, keeping up to the second and fourth order in the expansion,
respectively. MP3 and MP5 have additional computational cost, compared to MP2
and MP4 respectively, without substantial improvements on accuracy over them.

It was shown that the convergence of the MP series is slow when bonds are
stretched or when a UHF wave function with high spin contamination is used.

A variant of MP2 is the Complete Active-Space Perturbation Theory at second
order (CASPT2). This method uses a multi-reference CASSCF zero-order wave
function.

3.5.5 Density Functional Theory (DFT)

Density Functional Theory (DFT) [97] is a method developed initially by solid-state
physicists. It is not strictly an ab initio method as it does not solve directly the
Schrödinger equation. Instead, it is based on a theorem by Hohenberg and Kohn [98],
which states that the knowledge of the electron density of a system in its ground
state is enough to determine the energy. The exact electron density has cusps in
the positions of the nuclei and its gradient yields the charges of the nuclei. This
information is in principle sufficient to derive the Hamiltonian and the energy, thus
justifying the Hohenberg–Kohn theorem. The energy is considered a functional of
the electron density, which is proven to exist although the theory does not provide
a specific form for it. Many functionals are proposed in the literature.

The method is computationally less demanding than CI-type theories as it does
not calculate the molecular wave function, thus drastically reducing the dimension-
ality of the problem. DFT is presently restricted to the ground electronic state
and is not guaranteed to converge as the variational techniques are. On the other
hand, it scales with the number of electrons in a more favorable power law than CI
methods, making it applicable to larger molecules.

Another form of DFT is based on Kohn–Sham theory [99] which derives similar
equations to SCF theory, but with a local exchange potential as exchange contribu-
tion.

3.5.6 Empirical Methods

In empirical methods, the PES is derived by choosing a suitable function of a rel-
atively simple form, to describe the interaction of atoms. This model potential
depends on an adequate number of parameters which are fitted to experimental
data or accurate ab initio calculations. The analytical forms commonly chosen are
polynomial expansions or many-body functions.

Polynomial expansions are appropriate when a local representation of the PES
is sought. If large amplitude motion away from a minimum is not relevant for the
particular study of the system, then, around the stationary point, a Taylor series
expansion of the potential energy in nuclear coordinates up to a certain order is a
candidate function.
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Many-body expansion, developed mainly by Murrell and co-workers [100], pro-
vides a global representation of the PES. The potential is represented as a sum of
two-body, three-body,. . . terms. For example, the Sorbie–Murrell potential [101] for
a triatomic molecule ABC expressed in bond coordinates R1 ≡ RAB, R2 ≡ RBC ,
R3 ≡ RAC is formally

V (R1, R2, R3) = VAB(R1) + VBC(R2) + VAC(R3) + VABC(R1, R2, R3),

where VAB, VBC , VAC the corresponding adiabatic diatomic potential curves. VABC

is the three-body term having a relatively simple functional form such as

VABC(R1, R2, R3) =
∑

ijk

uijk si
1 sj

2 sk
3

3∏

m=1

[
1− tanh

(γmsm

2

)]
,

where si are the displacement coordinates. The coefficients uijk, γm are derived
from experimental or ab initio data.

The most widely used diatomic terms are the Morse potential

V (R) = D
(
e−2a(R−Re) − 2e−a(R−Re)

)
, (3.24)

and the Lennard–Jones potential

V (R) = A

[
1
2

(
Re

R

)12

−
(

Re

R

)6
]

.

The former is appropriate for atoms which form a chemical bond, while the latter
best fits the interaction of atoms for which a shallow van der Waals minimum exists
in large internuclear separations. Variations of them are the Hulbert and Hirschfelder
potential,

VHH = D
[(

1 + gρ3 + hρ4
)
e−2aρ − 2e−aρ

]
ρ ≡ R−Re,

which improves the fit around the equilibrium Re, and the Born–Meyer potential
which amends the repulsive term in the Lennard–Jones potential, making it expo-
nential because of its relationship to the overlap between the wave functions:

V (R) = Ae−BR − CR−6.

Another satisfactory candidate for a diatomic term is the Extended Rydberg func-
tion,

V (R) = −De−a1ρ
(
1 + a1ρ + a2ρ

2 + a3ρ
3 + · · ·) ρ ≡ R−Re,

which can fit high derivatives of the potential. Morse and Rydberg functions do not
reproduce the dispersion energy of the atoms in large distances so they are most
usually augmented by including a R−6 term and possibly other powers of R−1.

Semi-empirical potentials based on a simple quantum mechanical description
of the electronic wave function and incorporating empirical parameters have been
developed. Among them are the LEPS (London–Eyring–Polanyi–Sato) function
and the one produced by the diatomics-in-molecules method. Also, many model
potentials appropriate to specific molecular systems have been proposed.
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3.6 The Nuclear Hamiltonian

The Born–Oppenheimer approximation allows us to describe the nuclear motion in
a molecule via eq. (3.14). The assumption that the nuclei are not subject to external
forces, or that these forces exist but their corresponding terms can be isolated in
the potential, enables the complete extraction of the translational nuclear degrees of
freedom from this equation. A further separation and reduction of the dimensionality
for the remaining 3Nn − 3 translation-free coordinates is desirable for all but the
most trivial molecular systems; this can be achieved, in a greater or lesser degree,
by separating the uniform rotation of the molecule as a whole from the vibration or
internal motion (the relative, with respect to each other, motion of the nuclei). One
should define

• an axis system, attached to the molecule and rotating with it, the body-fixed
or molecular axis system,

• the coordinates which describe the rotation of this system with respect to the
laboratory axis system, and

• the coordinates describing the vibrational motion of the nuclei in the body-
fixed system.

All choices are equivalent in the sense that none alters the Schrödinger equation
describing the molecule. However, particular choices can minimize (but never elim-
inate) the coupling of rotation and vibration coordinates, enabling the approximate
separation of equations for each of the two sets.

The body-fixed system is usually a Cartesian axis frame originating at the molec-
ular center of mass. Its orientation with respect to an inertial system originating at
the same point is described by the three Euler angles, χ, φ, θ. The most common
of the various definitions for them given in fig. (3.2). The relation of the coordi-

φ

X

Y

Z

X’

Y’

Z’

χ

θ Figure 3.2: Definition of the Euler angles,
χ, φ, θ. {X,Y,Z} are the axes of the labora-
tory system, {X’,Y’,Z’} are the axes of the
body-fixed system. Both originate at the nu-
clear center of mass.

nates (Xi, Yi, Zi), (X ′
i, Y

′
i , Z ′i), of the ith nucleus in the laboratory system and the

body-fixed system respectively, is

(Xi, Yi, Zi)T = A(φ, θ, χ) (X ′
i, Y

′
i , Z ′i)

T

where

A(φ, θ, χ) =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 ·




1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 ·




cosχ − sinχ 0
sinχ cosχ 0

0 0 1


 .
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As we have already separated the translational motion by locating the origin of
the laboratory system on the center of mass, the relation above extracts the three
rotation coordinates and implies that from the 3Nn coordinates (X ′

i, Y
′
i , Z ′i), only

3Nn − 6 are independent.1 Therefore, we are allowed to define 6 (or 5) constraints
on the (X ′

i, Y
′
i , Z ′i) in order to bring the kinetic term of the Hamiltonian in a more

appropriate form. In the case of a nonlinear molecule in which the nuclei perform
small vibrations around their equilibrium positions ~R

′ 0
i , the Eckart conditions (see

[71] or [102])
Nn∑

i=1

Mi(~R
′
i − ~R

′ 0
i ) = 0,

Nn∑

i=1

Mi(~R
′
i × ~R

′ 0
i ) = 0

achieve the maximum uncoupling of the nuclear degrees of freedom. Other choices
or, even, other approaches are appropriate in the case of large amplitude motion;
see, for example, [103,104]. We will elaborate the vibrational coordinate systems in
§4.2. Worth mentioning, without further analysis, is a novel aspect in the dynamics
of multi-body systems: the realization that certain gauge fields play an important
role in the elimination of degrees of freedom and in the description of the reduced
dynamics [105].

After grouping in the nuclear Hamiltonian the rotation and the vibration coor-
dinates, collectively denoted by Θ and q respectively, and the identification of the
coupling terms, one should choose a basis set on which the eigenfunctions are to
be expanded, according to the methods presented in §3.2.1. Usually, the set is con-
structed from the direct product of a pure rotation basis by a pure vibration set,
which can be obtained from approximate solutions of the corresponding pure rotation
and vibration problems. The Wigner functions DJ

KM (Θ) (see [106]), parametrized
by the rotational angular momentum quantum number J , the magnetic quantum
number M , and the vibrational angular momentum quantum number K, are used
for the rotation basis, while the vibration set is comprised of products of harmonic
oscillators for each of the normal modes. The rotation-vibration eigensolutions for
weak coupling terms can be parametrized by the quantum numbers of the most
dominant basis function in their expansion. However, the most interesting cases,
exhibited in the molecules we studied, are those where this classification breaks
down and new quantum numbers should be defined, such as the polyad number, or,
even, new identification schemes ought to be devised.

The variational method is widely used in nuclear, atomic, molecular, and solid-
state physics. The availability of powerful computers and efficient computational
algorithms makes possible nowadays to diagonalize dense matrices with an order of
at least 105, even with commodity hardware. Despite the advances in hardware and
algorithms, as impressive as they may be, the variational method is incapable of
treating fully anything but the very small molecules. The exponential growth of the
size of the necessary basis set with the degrees of freedom has led to the develop-
ment of techniques which do not call for the full diagonalization of a huge matrix.
Such methods are the Lanczos diagonalization scheme [107] and other filtering algo-
rithms [108], the mean-field optimizations, and the diagonalization–truncation meth-
ods [109]. The filtering methods compute selected eigenvalues and eigenvectors of a

1Note that in the special case of a linear molecule only two of the Euler angles act as independent
rotation coordinates.
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matrix, those inside a specific energy window. The algorithms of the second category
optimize the basis sets in the framework of the mean-field approach we encountered
in §3.5.1; this solves approximately a many-body problem by reducing it to a set
of coupled one-body problems. The vibrational self-consistent field (VSCF) [110]
and vibrational multiconfigurational self-consistent field (VMCSCF) [111] are such
methods. We will outline the basic notion of the algorithms comprising the third
class as it is the one used in the quantum treatment of the molecules we studied.

The diagonalization–truncation procedure progressively improves a basis set by
spanning initially a portion of the configuration space. Separate Hamiltonian ma-
trices are constructed for limited sets of degrees of freedom, they are diagonalized
and the resulting set of eigenvectors is truncated based on a energy criterion. The
coupling of different sets of degrees of freedom is progressively introduced. At each
step, a new diagonalization is performed, followed by a truncation of the basis in
ways that attempt to retain the information encoded in the coupling terms. The
accuracy of the calculations on a certain contracted basis is tested by repeating the
calculations with a different energy criterion.

A very powerful simplification of the variational calculation is also achieved by
the Discrete Variable Representation (DVR). It was introduced by Light and co-
workers (for a review see [109]) and it is widely used in the vibration-rotation lit-
erature. It was also employed in the molecules we studied. In this method, a trial
wave function is expanded as a linear combination of N basis functions and the co-
efficients are determined to satisfy the Schrödinger equation at N particular points
in the configuration space. This leads to a problem equivalent to the generalized
diagonalization; its resolution produces eigenvalues, the energies, and eigenvectors,
the coefficients. Alternatively, the trial function can be defined by its values at the
N points of the grid. The two representations are related and by exploiting both one
can usually derive sparse Hamiltonian matrices which can be efficiently diagonalized.

Another method worth mentioning is the Morse Oscillator Rigid Bender Internal
Dynamics (MORBID) approach. It is a variational method developed by Jensen
[103], specifically for “floppy” triatomic molecules, in order to describe highly excited
vibrational states involving large amplitude bending motion.

The case of unimolecular dissociation and the calculation of resonances require spe-
cial methods. Resonance energies and widths can be determined from an absorption
spectrum which is calculated by solving the time–independent Schrödinger equation
for a set of energy values and evaluating the overlaps of the corresponding continuum
eigenstates with the initial wave function from which dissociation occurs [112]. This
can be a time-consuming process as it requires a dense grid and the repeated solu-
tion of the Schrödinger equation for different energies. Additionally, the resonance
position and widths are extracted through a fitted spectrum, a procedure that can
be difficult and ambiguous.

Another method for the extraction of resonances, based on the variational prin-
ciple of Kohn (see [113]), has been developed and applied to several molecules,
including HCO [114] and DCO [115]. In brief, the coordinate space is divided in two
regions, the inner and the outer, judging by the coupling between the product states.
In the inner region, the Hamiltonian is expanded on a dense set of basis functions,
developed through a general contraction–truncation scheme, and diagonalized. This
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procedure is computationally demanding but is performed once for all wave func-
tions as the basis set is energy–independent. As a by-product, the bound states and
their energies are determined at this step. In the outer region where the coupling
between the products is assumed to be small, the time–independent Schrödinger
equation is solved quite fast by direct integration for each value of energy. Matching
the wave functions at the boundary of the two regions results in algebraic equations
which, when solved, determine uniquely the wave function.

More recently, two other methods for calculating resonance energies and widths
have been implemented and applied to HCO. The artificial boundary inhomogene-
ity method of Jang and Light [116] relies on a simple modification of the time-
independent Schrödinger equation. An inhomogeneity Bi is introduced rendering
the equation in the form (Ĥ − E)−1Bi = Φi. The correct eigenfunction Φi is the
solution in the region where Bi = 0. Scattering information can be deduced by
imposing appropriate boundary conditions on a linear combination of the Φi. For
details on the procedure see [117]. Poirier and Carrington [118] devised a complex–
symmetric version of the preconditioned inexact spectral transform, which uses an
iterative linear solver to compute inexact Lanczos vectors for (Ĥ − E)−1 and then
diagonalizes the augmented, complex Hamiltonian in the basis they form. This last
method offers many advantages over the alternatives and it was shown to derive
more accurate results for HCO than any other previously applied.

3.7 Experimental Techniques

In recent years, huge progress took place in experimental spectroscopy mainly due
to instrumental and technical advances. It is today possible to record a number
of overtone transitions in polyatomic species with the sensitivity, resolution and
simplification required to perform high-resolution investigations, despite their very
low intensities and high densities.

Let us briefly present the Franck–Condon principle which controls whether a
transition is observed in the experimental spectrum and, consequently, which states
are accessible. The intensities of the spectral lines in the electric dipole transition
are proportional to the absolute square of the matrix element between the initial
and final states of the electric dipole moment operator. Assuming that the electronic
redistribution is orders of magnitude more rapid than the nuclear motion, the wave
functions are separable into an electronic and a nuclear part. In the dipole moment
matrix element for a transition between states belonging to different electronic levels,
the overlap integral of the initial and final vibrational wave functions can be, in the

first approximation, factored out. The
∣∣∣
〈
ψ

(f)
vib

∣∣∣ψ(i)
vib

〉∣∣∣
2

term is the Franck–Condon
factor ; a symmetry dictated zero value renders a transition forbidden.

The most widely used methods to record experimental spectra of the molecules
our group studied are the Stimulated Emission Pumping (SEP) and Dispersed Fluo-
rescence (DF) spectroscopies. They are double-resonance techniques, very useful in
the investigation of highly excited vibrational levels of polyatomic molecules in the
electronic ground state [119]. Both are variants of Laser–Induced Fluorescence (LIF)
which relies on the detection of radiation emitted by a molecule after the absorption
of light photons with appropriate energies. High-resolution direct absorption spec-
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troscopic methods are sensitive primarily to the stretch overtone states; unfavorable
Franck–Condon factors inhibit probing highly excited bending states. The SEP and
DF techniques are based on electronic transitions and, therefore, can give access to
complementary classes of states involving high excitation in bending. This charac-
teristic makes them ideal for the experimental study of the isomerization process.
Moreover, in the case of molecules with an inversion center, the electronic emis-
sion samples gerade vibrational levels while direct overtone spectroscopy can access
mostly ungerade levels.

In the SEP technique, a first laser promotes the molecule to a single rovibra-
tional level of an electronically excited state, while a tunable dye laser stimulates
the emission down to one or more particular vibrational levels of the ground elec-
tronic state. Because the initial and final electronic states often have quite different
equilibrium structures, the initial rovibrational level may overlap substantially with
many in the ground state, and probe them all. The spectral resolution which is
achieved in this process is ∼ 0.03 cm−1. The SEP spectrum is measured as a de-
crease of the side fluorescence when the dump beam causing the stimulated emission
is scanned. However, only a very narrow energy range (∼ 20 cm−1) can be sampled
in a single scan and, in addition, the accurate measurement of relative intensities is
very difficult; they are usually corrupted by experimental artifacts. DF is a suitable
alternative to SEP when high resolution is not necessary. It involves a spontaneous
emission from the excited state allowing a much easier and quicker coverage of large
spectral regions but with much lower resolution. This fact is not necessarily a dis-
advantage because low resolution spectra contain information exclusively relevant
to the early time dynamics of the perfectly specified and initially localized state
that is prepared by short-pulse excitation. DF spectra give us an overview of the
vibrational spectrum in the ground state and reveal the most important anharmonic
effects, complementing the more detailed SEP spectra.

One should mention another spectroscopic technique employed in addition to DF
and SEP. In the Resonance-Enhanced Multiphoton Ionization (REMPI), a molecule
is excited by a laser to some intermediate state and, even before it predissociates,
it is ionized by another photon. The ion (or, equivalently, the electron) intensity
reflects the energy levels of the intermediate state.

In order to reproduce the spectrum, the spectroscopists construct an effective (or
resonance) Hamiltonian matrix. The diagonal terms of it are given as an expansion
in the quantum numbers (Dunham expansion). For example, for a system with 3
normal modes and zero angular momentum this reads

〈v1, v2, v3|H |v1, v2, v3〉 =
3∑

i=1

ωivi +
3∑

i=1

3∑

j=i

xijvivj +
3∑

i=1

3∑

j=i

3∑

k=j

yijkvivjvk + · · · .

The spectroscopic constants ωi, xij , yijk, k, ki, . . . are determined by the spectrum
through the fitting procedure.

In case where a systematic degeneracy exists, such as a 1:2 Fermi resonance
between the first and second mode, the quantum numbers v1, v2 are not separately
conserved while the polyad number, P = v1 + 2v2 is. The Fermi resonance couples
levels in the basis of harmonic oscillator products with the same values of P and v3;
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off-diagonal terms should be considered in the effective Hamiltonian. These can be
given as

〈v1, v2, v3|H |v1 + 2, v2 − 1, v3〉 =

− (v1 + 2)
√

v2


k +

3∑

i=1

kivi +
3∑

i=1

3∑

j=i

kijvivj + · · ·

 .

Assuming no interpolyad coupling, the block-diagonal effective Hamiltonian matrix
is diagonalized to give an estimate on the energy levels.

3.8 Semiclassical Treatment

The semiclassical approach is quite similar to the experimental one. Because it is
quite difficult to formulate a general procedure for arbitrary PES, this method resorts
to the construction of an effective Hamiltonian function in action-angle variables. It
is assumed that all couplings of the normal modes are negligible except for specific
terms such as a Fermi resonance inherent to the system. The resonance Hamiltonian
for a system of f degrees of freedom, exhibiting a 1:2 Fermi resonance among the
first two modes, is written as a sum of the Dunham expansion, HD, and the Fermi
coupling, HF , which, for zero vibrational angular momentum, are

HD =
f∑

i=1

ωiIi +
f∑

i=1

f∑

j=i

xijIiIj +
f∑

i=1

f∑

j=i

f∑

k=j

yijkIiIjIk + · · ·

HF = 2I1

√
I2 cos(2φ1 − φ2)


k +

f∑

i=1

kiIi +
f∑

i=1

f∑

j=i

kijIiIj + · · ·

 .

The parameters are fitted to experimentally measured or calculated quantities.
The quantities (I, φ) are action-angle-like set of conjugate coordinates built on

dimensionless normal coordinates (q,p) according to

Ii =
q2
i + p2

i

2
, qi =

√
2Ii cos(φi), pi = −

√
2Ii sin(φi).

The inclusion of a built-in Fermi resonance, which is only approximate in the
actual system, offers to the quantum version of the effective Hamiltonian a built-
in conserved quantity, the polyad number P = v1 + 2v2, in addition to v3. For a
system of 3 degrees of freedom with an inherent resonance, an appropriate choice
of action-angle variables leads to two classical constants of motion and an effective
one-dimensional problem parametrically dependent on them. The system is suitable
for quantization through the EBK rule, eq. (2.22), thus reconstructing the spectrum.
A drawback in this approach is the fact that the resonance Hamiltonian cannot be
decomposed in kinetic and potential operators, making ambiguous the relation of
the generalized coordinates qi to the real coordinates of the molecule.

The fixed points of this Hamiltonian in terms of the action-angle variables define
periodic orbits in the space of dimensionless coordinates which are coupled by the
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Fermi resonance. These orbits, characterized by the conserved quantum numbers,
are sufficient for understanding the properties of the quantum wave functions as long
as the third mode remains decoupled. Both qualitative and quantitative results can
be derived by analyzing the system through these periodic orbits. The fact that the
classical equations of motion can be solved analytically and the trajectories can be
calculated and analyzed for each set of quantum numbers, makes the semiclassical
approach, though artificial in a sense, advantageous in certain aspects compared to
the classical treatment.
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Chapter 4

Algorithms and Techniques

4.1 Introduction

The analysis of certain features of the molecular vibrational spectra in the context
of classical mechanics, calls for the location of periodic orbits and their continua-
tion with respect to variations in energy. Their bifurcations should also be located,
identified, and continued. In this chapter we will present the algorithmic procedures
followed to achieve these tasks. Schematically, the Hamilton equations of motion are
integrated for a specific time T . The set of initial conditions should be chosen such
that the distance of the final point in the phase space from the initial one approaches
zero. The trajectory traced out is then a periodic orbit with period T . The choice
for the tentative period T is of the order of the time scale of the vibrational motions
in the system. This procedure can be treated as a root-finding or a minimization
problem. The integration of the differential equations defines a system of implicit
nonlinear equations with the initial conditions acting as the unknowns. Alterna-
tively, the differences of the corresponding components in the initial and final points
can be zeroed by employing minimization techniques to calculate the appropriate
initial point. It turns out that an optimization method is more robust compared to
a root-finding one in the search of an unstable orbit.

In both classes of root-finding and minimization problems, the appropriate guess
of the initial point is crucial to the success of the algorithms. We mentioned in §2.3.2
the Weinstein–Moser theorem which provides tentative conditions for periodic orbits
in the vicinity of an equilibrium or a stationary point. Apart from these orbits, many
others exist, especially in high energies, emanating from a saddle–node bifurcation;
no theorem provides a definite and—more importantly—practical prediction of their
location or periods. A painstaking trial-and-error search in the region of “kinks”
in the potential or at the vicinity of a qualitative change in a family of periodic
orbits is one way to find periodic orbits. In this chapter we will also present another
technique which pinpoints initial guesses based on Genetic Algorithms. They belong
to the novel class of the Evolutionary Algorithms, and are emerging as valuable
tools to computational scientists, applicable wherever a random-like selection based
on a property is necessary. The conventional methods (gradient descent, simplex,
variational methods) are inherently inefficient in cases when multiple extrema need
to be determined; apart from the periodic orbit location problem, protein folding

67
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in Biology, the determination of structure of atomic clusters in Chemical Physics
or crystals in Solid State Physics are such cases. Simulated Annealing and Genetic
Algorithms are being applied with, sometimes, spectacular results on such problems.

The application of the implicit function theorem of §2.3.5 to the Poincaré map-
ping, ensures that, away from bifurcations, an isolated periodic orbit survives a slight
change in the energy of the system and remains unique. By this, continuation/bi-
furcation diagrams can be constructed in order to organize the periodic orbits into
families and expose the dependence of their periods on energy. The application of
this procedure will be discussed below.

In the following sections we will lay out the coordinate systems used, present the
corresponding Hamiltonian functions, and explain the integration algorithm. We
will elaborate on the method we used to construct and solve the nonlinear systems
of equations. We will also formulate the minimization problem and describe the
optimization algorithms employed. The introduction to genetic algorithms will be
given at the end of this chapter. All computations were performed by our code in c
or fortran 77 and fortran 95 programming languages and the following libraries
or packages: various codes from Numerical Recipes [120] and lapack [121], cvode
[122] for the integration of ordinary differential equations, fftw [123] for Fourier
analysis, an updated version of pomult [124] for the continuation and stability
analysis of periodic orbits, and pgapack [125] for the search of initial conditions
and optimization based on Genetic Algorithms.

4.2 Coordinate Systems

In principle, any set of coordinates can be used to describe a molecular configu-
ration. In practice, the choice of the algorithm employed to treat the classical or
quantum problem, its outcome and the precision of the results, are determined by
the particular set of coordinates used. These sets fall in general into two classes:
the curvilinear and rectilinear coordinates. The former is comprised of internal co-
ordinates, defined in terms of the bond stretchings and the bond angles. These,
in conjunction with coordinates pertaining to the overall molecular motion, can be
meaningfully applied to small systems, offering a high chemical flavor in describing
the molecular vibrational problem. The latter class consists of the projections onto
a fixed Cartesian frame of the internal coordinates. The Cartesian position vectors
or the normal mode coordinates, specific linear combinations of Cartesian displace-
ments which diagonalize the quadratic part of the potential and kinetic energy, fall
into this category.

Cartesian coordinates with respect to the molecular center-of-mass are suitable
for large polyatomic species as they render the Hamiltonian in a particularly simple
form. On the other hand, by using internal coordinates we can get a lot of insight
into how the different motions of the atoms in the molecule contribute to the inter-
nal energy flow. The choice of a particular set of internal coordinates is based on
the configuration space to be sampled, the relative atomic masses, the excitation
energies, and the coupling strength between the nuclear degrees of freedom.

Various internal coordinate systems with specific properties have been proposed,
tailored to particular types of molecules or Potential Energy Surfaces (PES). For
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example, bond–angle coordinates, the set of bond distances and bending angles, is an
obvious choice for describing moderate amplitude vibrational motion in the vicinity
of a PES minimum. Local-mode coordinates, simple internal coordinates which
describe specific vibrations and ensure that the diagonal anharmonicity parameter
exceeds the non-diagonal coupling strength, are appropriate for problems related to
overtone spectroscopy. Jacobi vectors, describing the position of a given nucleus
with respect to the center of mass of a set of nuclei or Radau coordinates which
define the positions of a set of light nuclei with respect to a heavier one, are suitable
for molecules exhibiting large amplitude vibrations or in the study of dissociation.
Special sets of coordinates can be also employed in systems with symmetries or
with special features in order to exploit them. Other systems can be defined as
specific functions of the bond stretchings and bending angles, adapted to particular
problems or algorithms, or optimized to improve the separability of nuclear degrees
of freedom. For a detailed investigation on coordinate systems offering separability
see [126]; for an overview of coordinate sets applied to molecules see [2].

Let us present the coordinate sets we applied to the systems we studied. The
triatomic molecules we dealt with were considered as non-rotating. This, along with
the extraction of the center-of-mass motion, reduces by 6 the degrees of freedom.
The remaining three independent coordinates describing the plane configuration of
a general, nonlinear ABC molecule can be, among others, the Jacobi set, the valence
coordinates or the bond distances as defined in fig. (4.1). The formulas relating the
various sets of coordinates can be easily derived from it.

(I) (II) (III)

RAB

A

B CR

R

BC

AC

RBC

RAB

A

R

B CKr

A

B C

αγ

Figure 4.1: Coordinates for an ABC triatomic molecule: (I) Jacobi, (II) valence, (III) bond
distances. K indicates the B–C center-of-mass.

The Jacobi set are the (R,r,γ) coordinates, where R is the distance of atom A
from K, the mass center of B and C atoms, r is the distance of B and C, and γ is the
ÂKC angle, ranging from 0 to π rad. This set is the most natural in describing a
unimolecular dissociation process, a non-reactive scattering of an atom by a diatomic
molecule, a Van der Waals complex where one atom is weakly bound to a diatom,
or, in general, in cases where the motion of atom A is largely decoupled from the
motion of the other two. The Hamiltonian function expressed in Jacobi coordinates
reads

H(R, r, γ, PR, Pr, Pγ) =
P 2

R

2mR
+

P 2
r

2mr
+

(
1

mRR2
+

1
mrr2

)
P 2

γ

2
+ V (R, r, γ),
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where PR, Pr, Pγ are the conjugate momenta of R, r, γ and

mR =
mA(mB + mC)
mA + mB + mC

, mr =
mB mC

mB + mC

the reduced masses for the (A,BC) and (B,C) systems.
The valence coordinates are comprised of the AB and BC bond distances RAB

and RBC , and the angle α between them. They are most appropriate for analyz-
ing the low vibrational states of a molecule as the potential expressed in them is
quadratic in small displacements from the equilibrium (∆RAB, ∆RBC , ∆α). The
Hamiltonian function in terms of RAB, RBC , α and their conjugate momenta PAB,
PBC , Pα is

H(RAB, RBC , α, PAB, PBC , Pα) =
P 2

AB

2mAB
+

P 2
BC

2mBC
+

PABPBC cosα

mB

− Pα sinα

mB

(
PAB

RBC
+

PBC

RAB

)
+

(
1

2mBCR2
BC

+
1

2mABR2
AB

− cosα

mBRABRBC

)
P 2

α

+ V (RAB, RBC , α),

where
mAB =

mA mB

mA + mB
, mBC =

mB mC

mB + mC

the reduced masses for (A,B) and (B,C) systems.
The bond coordinates, RAB, RAC and RBC , treat all atoms on equal footing

and express the PES and other properties in a physically meaningful manner. A
drawback which makes their use cumbersome is that they are not independent, in
the sense that they must satisfy the triangle inequalities, RAB ≤ RBC + RAC and
permutations in it. To overcome this, other sets of coordinates have been proposed,
offering the equivalent treatment of the atoms; hyper-spherical systems are among
them. These coordinate sets are mass-weighted and, therefore, not easily related
to the geometric shape of the molecules they describe. Perimetric coordinates [127]
remedy this.

Let us also give here the Hamiltonian operator for a triatomic molecule in Jacobi
coordinates:

Ĥ =
[
− ~2

2mR

∂2

∂R2
− ~2

2mr

∂2

∂r2
+

~2

2mRR2
̂̀2 +

~2

2mrr2
ĵ 2 + V (R, r, γ)

]
Rr, (4.1)

where mr, mR are the reduced masses of B–C and A–BC respectively. ̂̀is the orbital
angular momentum operator associated with the motion of the A atom with respect
to the center of mass of BC and ĵ is the rotational angular momentum operator
pertaining to the BC diatom. The total angular momentum of the molecule is
conserved; to account for this, we can employ the relevant operator Ĵ and replace
ĵ by Ĵ − ̂̀. Some straightforward algebra yields eq. (4.1) in the form

Ĥ =
[
− ~2

2mR

∂2

∂R2
− ~2

2mr

∂2

∂r2
+

~2

2mRR2
̂̀2

+
~2

2mrr2

(
Ĵ 2 + ̂̀2 − Ĵ+

̂̀− − Ĵ− ̂̀
+ − 2 Ĵz

̂̀
z

)
+ V (R, r, γ)

]
Rr,
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where Ĵ± and ̂̀± the appropriate raising and lowering operators and Ĵz and ̂̀
z are

the projections on the molecule-fixed z-axis. The eigenfunctions for this Hamiltonian
are normalized with respect to the volume element dV = R2r2 sinγdRdrdγ. This
Hamiltonian was employed by our collaborators in the quantum calculations of the
molecules we studied.

4.2.1 Integration of the Equations of Motion

The equations governing the evolution of the triatomic system, easily derived by
eq. (2.6) and the appropriate Hamiltonian, are Ordinary Differential Equations
(ODE) with initial conditions in a 6-dimensional space. Their general form is

ẋ = f(x, t), x(0) = x0. (4.2)

Given the solution x(tn) at a point tn, the algorithms available for the integration
of this type of systems compute an approximation to the solution at a point tn +
h, x(tn + h). In our work we applied the Runge–Kutta family of algorithms to
integrate eq. (4.2), an outline of which is given below. Other general methods are
the predictor–corrector and Bulirsch–Stoer techniques [120] and their variants. The
equations of motion of the molecular systems we studied are, at most, mildly stiff,
so these methods suffice.

If the first M−1 derivatives with respect to t of the smooth vector field f in eq. (4.2)
are known, we can approximate the solution at tn + h, given the values x(tn), by a
truncated Taylor series:

x(tn + h) = x(tn) +
M∑

m=1

hm

m!
f (m−1)(x(tn), tn) + O(hM+1).

Normally, it is very hard to compute the derivatives; they can be approximated
instead by values of f(zi) at various points along the step h: zni = tn + aih, i =
1, . . . M + 1. The Taylor series becomes

x(tn + h) ' x(tn) + h
M+1∑

i=1

cif(x(zni), zni).

The appropriate selection of the coefficients ai, ci, the approximation of x(zni),
and the order M can yield an error term of the order of hM+1. The Runge–Kutta
algorithms define a1 = 0 and expand x(zni) as follows:

x(zni) = x(tn) + h

i−1∑

j=1

bij f(x(znj), znj) i > 1.

Various sets of the ai, ci, bij coefficients and the order M have been proposed. We
have used the fifth order Runge–Kutta–Fehlberg algorithm with the set of coefficients
derived by Cash and Karp [128], reproduced in [120] §16.2. It offers the additional
advantage of the adaptive stepsize control. An error estimate ∆n, given by

∆n = h

6∑

i=1

(ci − c̃i)f(x(zni), zni),
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can be used to modify the step h to attain the accuracy one seeks. The coefficients
c̃i and more on Runge–Kutta methods can be found in [120].

An important class of algorithms comprises the symplectic integrators (see, for ex-
ample, [129]) which rigorously preserve specific properties of the system during the
integration such as the constraints, the reversibility, the integrals of motion (energy,
orbital momentum, angular momentum, etc.). Symplectic integrators have been
proved more stable than “general” methods for Hamiltonian systems [130].

4.3 Continuation/Bifurcation Diagrams

A very helpful tool to visualize the dependency of periodic orbits on energy and
the way bifurcations are organized is the Continuation/Bifurcation Diagram (or Di-
agram of Characteristics). It depicts the variation of the period with respect to
energy, or, in general, the evolution of a characteristic quantity related to a peri-
odic orbit, such as a turning point (the maximum value of a coordinate), as energy
changes. In such a diagram, the orbits are organized into continuous families stem-
ming from stable equilibrium points or from bifurcations. The diagram is a direct
fingerprint of the classical dynamics of a system; it facilitates the recognition of
energy regimes in which interesting qualitative changes appear in the classical pic-
ture and consequently affect the quantum behavior. In subsequent chapters we will
attempt to extrapolate classical quantitative and qualitative results to the quantum
picture. We should always bear in mind that, due to the uncertainty relation between
time and energy, only the structures in the Period–Energy continuation/bifurcation
diagram having an area larger than ~ = 0.6582 eV · fs are meaningful.

The issue of locating periodic orbits is formally a two-point boundary value
problem: the initial and final, after time T , points of a solution of eq. (4.2) should
coincide:

x(0) = x(T ).

Note that the unknowns are both the initial point and the period.
Several techniques have been proposed to solve this type of problem. In the

shooting method [120], the boundary value problem above is converted to an initial
value one. An initial point in the phase space is chosen, the differential equations are
integrated for an appropriate time T and the final point is obtained. By varying the
initial conditions, the difference of the two points can diminish yielding a periodic
trajectory. In relaxation methods [120], the differential equations are replaced by
difference equations on an appropriate mesh of points for the independent variable.
An approximate solution is then iteratively varied to satisfy both finite difference
equations and boundary conditions. Collocation methods with cubic spline interpo-
lation of the periodic solutions of autonomous ordinary differential equations [131]
are also an option. Another method can be based on the expansion of a tentative
solution in a Fourier series; this could be considered as a a way to inherently satisfy
the boundary conditions during the search as the orbit is by construction closed.
Among the multitude of algorithms developed for location of periodic orbits in real-
istic dynamical systems worth noting are the characteristic bisection method [132],
and the Newton–Picard scheme [133].
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The technique we employed is the multiple shooting method. It attempts to
incorporate the benefits of the relaxation algorithms in the shooting technique, thus
improving the stability of integration in chaotic systems. In this method, the one-
point initial value problem is converted to (m−1) initial value problems by choosing
m nodes in time along the period, the first and the last matching the initial and
final times. The equations of motion are integrated to produce (m − 1) shorter
trajectories. The initial conditions at each node (except the last) are the unknowns
and a set of nonlinear implicit equations is formed if we require at each intermediate
node the final point of the trajectory that ends there to match the initial point of
the trajectory that starts from this node. This set is augmented by the boundary
conditions to yield in total N(m− 1) equations of N(m− 1) unknowns, where N is
the dimension of the phase space.

The continuation to higher or lower energies of a family of periodic orbits is
relatively easy as long as an orbit in it has been located; any point of this orbit can
serve as initial condition for a search with a slightly altered period which normally
converges.

In order to determine the stability of a computed periodic orbit, the eigenvalues
of the monodromy matrix (cf. §2.3.2) have to be evaluated. Recall that the linearized
system around a periodic orbit X(t) is

ẏ(t) = A(t)y(t),

where y(t) = x(t) − X(t), Aij =
∑

k

Jik
∂2H

∂xk ∂xj

∣∣∣∣∣
x=X

and J is the matrix of the

symplectic form, eq. (2.8). The monodromy matrix has the same eigenvalues with
matrix Z(t0, t0 + T ) in eq. (2.14). The latter can be calculated via its definition,
y(t) = Z(t0, t)y(t0), or as the solution for t = t0 + T of the variational equation
eq. (2.15),

Ż(t0, t) = A(t0, t)Z(t0, t)

with the initial condition Z(t0, t0) = I.
When the eigenvalues of Z indicate a bifurcation (cf. §2.3.5), a search along the

corresponding eigenvectors for a periodic orbit with the predicted period is usually
successful and a new branch of a family can be followed.

In the procedure described above, a set of nonlinear equations is constructed. It has
the general form

fi(x1, x2, . . . , xn) = 0, i = 1, . . . n. (4.3)

Various algorithms have been developed to solve it [120]. It could also be treated as
an optimization problem if we take the sum of squares or absolute values of all fi as
a function to be minimized. Below, we outline the algorithms we used to solve this
type of problems in both approaches.

4.3.1 Roots of Nonlinear Equations

The codes we employed in finding roots of a nonlinear system implemented the
most common methods in the vast majority of problems: the Newton–Raphson
method with backtracking and the Broyden’s method. Both methods are iterative,



74 CHAPTER 4. ALGORITHMS AND TECHNIQUES

i.e. an initial guess is gradually improved towards the actual solution by repeated
application of a procedure.

Newton–Raphson method

In the Newton–Raphson method, a set of n nonlinear functions fi(xj) is expanded
in a Taylor series up to the second order around the unknown solution {x0

i }≡ x0,

fi(xj) = fi

(
x0

j

)
+

n∑

k=1

∂fi

(
x0

j

)

∂xk

(
xk − x0

k

)
+ · · · ⇒

f(x) ' J(x0) · (x− x0) ⇒ x0 ' x− J−1(x) · f(x)

where J the Jacobian of the functions with elements Jik(x0
j ) ≡

∂fi(x0
j)

∂xk
. The last

relation is derived as J−1(x0) = J−1(x) in first order.
The Taylor expansion yields the iterative procedure which provides an, in general,

better approximation xf to the actual solution, given an approximate solution xi,

xf = xi − J−1(xi) · f(xi).

The direction pi = −J−1(xi) · f(xi) towards which the procedure shifts the initial
guess is not necessarily closer to the actual solution; we may be far from it for the
quadratic approximation to be valid. Therefore, a modification in the procedure
above is necessary to ensure that the new approximation is better than the old one.
The shift is taken as a fraction λ of the full step:

xf = xi + λpi, 0 < λ ≤ 1.

When a direction p is computed, we try at first the full step; when the approxi-
mate solution is close to the actual one the convergence is quadratic i.e. the accuracy
is squared in successive steps. If, on the other hand, the function h = f(x) · f(x)
does not diminish in the full step, we backtrack on the direction p until it does. We
are guaranteed that this direction is a descent direction for h(x); its derivative on p
is negative:

∇h ·p = (2 f ·J)(−J−1 · f) = −2 f · f < 0.

There are various models proposed on the choice of λ in eq. (4.3.1); successive
halving of the full step can work. For a more complex and more efficient algorithm
see [120].

Broyden’s method

Broyden’s method falls in the category of quasi–Newton or secant methods (see
[120]). It provides an approximation to the Jacobian of the nonlinear functions when
it is very difficult or computationally expensive to produce their analytic derivatives.
It converges superlinearly once we are close enough to the root and it may do so
in fewer function evaluations than the Newton–Raphson method. The idea is as
follows:
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Let us denote the approximate Jacobian by B. The ith quasi–Newton step
(x− x0) is then the solution of

Bi · (xi+1 − xi) = −f(xi).

The quasi–Newton or secant condition is that Bi+1 satisfies

Bi+1 · (xi+1 − xi) = f(xi+1)− f(xi).

This equation does not define Bi+1 uniquely if the dimension is larger than one.
Broyden’s method formulates Bi+1 by making the least change to Bi consistent
with the secant condition:

Bi+1 = Bi +

[
f(xi+1)− f(xi)−Bi · (xi+1 − xi)

]⊗ (xi+1 − xi)
(xi+1 − xi) · (xi+1 − xi)

;

the ⊗ indicates a tensor product. The initial guess B0 for B can be the identity
matrix or the finite differences approximation to the Jacobian.

4.3.2 Optimization Methods

The solution of a system of equations as in eq. (4.3) can be found if we “collapse”
the absolute values or the squares of fi’s into one function, e.g.

g(x) ≡ g(x1, x2, . . . xn) =
n∑

i=1

|fi(x1, x2, . . . xn)|.

The methods usually suggested for such a problem are the Powell’s method, if the
gradient of g is not known analytically, and the conjugate gradient and the related
variable metric algorithms otherwise [120]. We employed both classes to locate
specific unstable orbits. They were not our primary tools and, therefore, we will
only describe their general idea.

Both types of methods reduce the multidimensional problem to a series of one-
dimensional minimization problems along specific vectors, chosen differently for each
technique. The minimization of a smooth function of one variable, g(x), is greatly
facilitated if we locate the range where the minimum we are after lies. That is,
we should find three points a, b, c in increasing order, for which g(a) > g(b) and
g(b) < g(c) hold; in that case, the minimum is in (a, c). A parabolic fit through
these points provides an estimate for the minimum which can be used to narrow the
interval. An appropriate number of iterations of this procedure will locate the exact
minimum.

The main use of the sum of absolute values for the nonlinear functions we derive,
was in the search of appropriate initial conditions through Genetic Algorithms, which
we describe in the following section.

4.4 Genetic Algorithms

The principles of Genetic Algorithms (GA) were laid down by Holland [134] in 1975.
He described how to apply the ideas of natural evolution as defined by Darwin to
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optimization problems. For millions of years, biological organisms evolve into higher
life forms according to natural selection rules such as “the survival of the fittest.”
In absence of intelligence, the, seemingly random, natural evolution process leads
to better adapted species, with higher chance to survive the competition for food
and shelter or attract mates. During reproduction, a recombination of the “good”
characteristics of each ancestor are passed to the offsprings, potentially making them
more “fit” than either parent. Spontaneous mutation, in which special features are
gained or lost from a generation to the next, is another mechanism to produce species
more adapted to their environment. Natural evolution is being tested successfully
for millions of years; it was natural to simulate it and apply its rules to problems
where better or “fitter” individuals in a population should emerge without loss of
randomness.

Genetic Algorithms borrow their terminology from Biology. The genes code the
characteristics of an individual in the form of alleles, different values expressing
them. For example, the gene controlling the eye color can encode it in one of the
black, brown, blue, and green alleles. The gene pool is the set of all possible alleles
in a particular population and determines the diversity of the individuals in it. A
genome is the set of all the genes of a specific species. In GA all genes are stored for
simplicity in the same chromosome, something not true for most living organisms.
Chromosome and genome are synonymous for GA. In actual biological systems, two
genes exist in a chromosome for each characteristic, one being the dominant over
the other; both have equal possibility to be inherited by the offspring. On the other
hand, in typical Genetic Algorithms all genomes are haploid for simplicity, meaning
that they store one gene for each feature, thus resolving the issue of dominance. Re-
combination is the process through which a new genome is created for an offspring
by mixing the genes of the parents. The most common form of recombination of
biology is the crossover : one chromosome from each parent is cut at one point and
the halves from each are used to construct a new chromosome. Typical Genetic
Algorithms do not differentiate between male and female; all individuals in a pop-
ulation can recombine. Mutation is another process to get new genomes. During
this process, a random gene changes its value randomly among the available alleles,
producing a new genome, probably fitter than the original. In GA, mutation is used
as a means to introduce new individuals in a population which prematurely exhibits
small diversity.

Genetic Algorithms adapt the ideas behind natural selection and the notions laid
out above to algorithmic mechanisms. Suppose we can deem an individual “better”
or “fitter” than another, through one well-defined quantitative property, the value
of the fitness function. GA handles a population of individuals for which such a
function is defined. For example, in an optimization problem the fitness function
is the mathematical function to be maximized and each individual is one of the
possible sets of unknowns. Each individual is represented by a chromosome which
can encode any point in the search space. In optimization, the search space might be
discretized so a possible set of values can be represented by its integer coordinates, or
can be regarded as continuous and require real numbers to represent the unknowns.
Integers or finite reals can in turn be encoded, if necessary, in binary, as dictated
by the original definition of Genetic Algorithms. A set of reproduction operators
should also be defined; these apply on the chromosomes and perform the mutations
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and recombinations.
The algorithm goes as follows: An initial population of solutions is randomly

constructed. The gene pool should be as diverse as possible in order to cover all ac-
cessible space. Then, individuals are selected from the population for reproduction,
based on their relative fitness value. The best ones should have higher probability
to be chosen. In the reproduction phase, new individuals are derived via recombi-
nation and mutation. The fitness value for each member of both the old and new
populations is calculated and, based on it, a selection of a new set of individuals
is made, equal in number to the initial one. The process {Selection, Reproduction,
Evaluation, Replacement} is repeated until the population converges toward the op-
timal points or diversity is lost. Note that due to the large number of individuals,
the population might not only gather around the “best” point (the solution to the
problem) but also locate suboptimal points (for example, local maxima), a property
which, in cases, is desirable. Sufficiently large number of iterations and adequately
diverse initial population, though, will accumulate all individuals around the best
solution.

We can point out certain features of the Genetic Algorithms from the presenta-
tion above. GA deal with a population of solutions, in contrast to the traditional
optimization algorithms which manipulate a single point. This offers the advantage
of versatility; a properly configured Genetic Algorithm cannot be trapped around a
local maximum or be hampered by discontinuities or other unusual features of the
function under optimization. Moreover, the large population and the independency
of the fitness function evaluations—the time-consuming part of the algorithm—make
GA particularly appropriate for parallelization, in contrast to other algorithms. This
is an important advantage since serial computation is nowadays obsolescent due to
the advents of machines and standards for parallel programming. We should also
note that GA do not impose any requirement as other algorithms would, on the
search space or the fitness function, of which they need only its value. This means
that GA are robust since they can perform consistently well on a broad range of
problem types. Additionally, they are particularly suited for cases where the solution
space is too vast to be searched systematically; the problem of locating tentative
initial conditions for periodic orbits in a multi-dimensional phase space is such a
case.

It is also important to mention certain limitations of the Genetic Algorithms.
As they are stochastic in nature, there is no guarantee that they will pinpoint the
optimal solution. Instead, they can provide a good starting point for the traditional
algorithms which will compute with the desired accuracy the solution. A hybrid
method of GA with one of the traditional algorithms is probably the best approach
to the optimization problem. Moreover, the behavior of Genetic Algorithms crucially
depends on the population size, the choice of the representation in chromosomes and
the action of the recombination and mutation operators. Experimenting with these
will lead to a successful algorithm. It is worth noting that Genetic Algorithms is a
relatively recent field of research being actively developed. No rigorous theory has
been yet developed to justify the, nevertheless indisputable, success of GA at least
in certain types of problems.

For more information on Genetic Algorithms one can consult [135,136] and ref-
erences therein.
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Chapter 5

Automatic Differentiation via
auto deriv

5.1 Introduction

Complicated analytical functions of many independent variables often appear in
many scientific disciplines. Numerous problems can be reduced to the solution of
systems of non-linear equations or the optimization of a function. The most efficient
algorithms for these tasks depend on the first and, occasionally, the second partial
derivatives of the functions. The feasibility of the computation of partial derivatives
is imperative in the study of motion in a potential field or the stability analysis in
classical mechanics and related scientific areas. Especially in chaotic systems, where
errors accumulate exponentially, derivatives as accurate as possible are essential. For
many of the tasks above, numerical differentiation is often inadequate and its imple-
mentation might be even inapplicable.1 The need of accurate to machine precision
derivatives, instead of approximate ones, frequently arises in many fields of physics,
engineering, computational chemistry and applied mathematics. As we will explain
below, the need for an easy and accurate way of evaluating the first and second
partial derivatives of multidimensional functions was not well addressed within the
fortran programming community, which, until recently, included the vast majority
of computational scientists. To remedy this we developed auto deriv.

auto deriv is a software module facilitating the analytical computation of the
first and second partial derivatives of, in principle, an arbitrarily complex,2 contin-
uous mathematical function of any number of independent variables. The mathe-
matical function should be expressed as one or more fortran 90 or fortran 77
procedures. It should be clarified that the module assists in computing the numeri-
cal values of the derivatives to machine precision at any given set of the independent
variables; it does not deliver their analytical expressions. The mathematical rules
for differentiation of sums, products, quotients, elementary functions in conjunction
with the chain rule for compound functions are applied. A new type of variables is
defined and the overloading mechanism of functions and operators provided by the

1The usual “black-box” codes for numerical differentiation cannot evaluate the derivatives of
both (x− 1)

3/2 and (1− x)
3/2 at x = 1, for example.

2Depending on the available memory and the capabilities of the compiler.
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fortran 90 language is extensively used to implement the differentiation rules.
There are no restrictions on the complexity of the problem imposed by the pro-

gram. There are certain limitations that may appear mostly due to the specific
implementation chosen in the user code. They can always be overcome by recoding
parts of the routines developed by the user or by modifying auto deriv according
to specific instructions given below. The common restrictions of available memory
and the capabilities of the compiler hold.

The description presented here was in part published in [137].

5.2 Motivation

Our motivation for developing auto deriv was the need to integrate and analyze
classical trajectories in Molecular Dynamics simulations by using realistic potential
functions. These require the solution of Hamilton equations, and thus, the compu-
tation of the gradient of the Hamiltonian function, H (qi, pi), of the problem. qi

are the generalized coordinates and pi their conjugate momenta for a system of n
degrees of freedom. In mechanical systems, H is comprised of the kinetic energy,
T —having a straightforward dependence on pi, and possibly, qi—and the potential
energy V , which, as usual in our field, is a function of qi fitted to ab initio electronic
structure calculations and/or empirical data, thus, lacking analytic expressions for
the derivatives.

There exist commercial symbolic algebra packages, [138–140], which can evaluate
derivatives of any order of relatively straightforward functions, or, rather, complex
expressions of elementary functions and, even, encode them in a variety of program-
ming languages. They can not, however—to the best of our knowledge—input a
complex fortran 90, or, even a fortran 77, piece of code implementing a math-
ematical function and compute the derivatives. Publicly available alternatives and
commercial versions of them3 have been developed to achieve this, at least par-
tially: as a rule, the first derivatives of a fortran function are computed. They
are cumbersome in their use as they require to formulate a stand-alone function
which is then submitted or processed locally to compute the derivatives. The re-
sulting code is in a separate file. Some of them were developed only for a particular
type of computers. We are not aware of any other publicly available software that
does not require translation from fortran to another programming language and
a significant amount of modifications to the user code in order to accomplish the
differentiation. Prior to the development of our program, none of the alternatives
were quite appropriate for the kind of functions, almost “black-box,” we wanted to
differentiate.

The potential functions we use are coded in fortran and, thus, the language
we chose to implement this tool was the one described in [141], commonly known
as fortran 90 (F90). By this standard, certain features and language constructs
were introduced in fortran, providing, among others, primitive support for value–
oriented programming. Using derived types, function and operator overloading, and
the encapsulation mechanism of modules, we constructed a concrete class which
“instructs” the compiler on how to apply the chain rule of forward differentiation to

3see http://www.autodiff.org for an up-to-date review.
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any mathematical function comprised of elementary, intrinsic fortran 90 functions
and to interpret appropriately all operators in order to compute the derivatives.

5.3 Elements of fortran 90

A brief presentation of the concepts introduced in fortran by the major revision
of [141] and used by auto deriv, will be given in this section. For a detailed
explanation of them the reader can consult any book on fortran 90 (for example
[142]).

By the new standard, the programmer can use not only the original data types
(real, integer, etc.) but also, can define and use aggregates of them. These
structures can in turn serve as the building blocks of more complex entities. Such a
derived type is defined through the keyword type. For example:

TYPE vector
REAL :: x, y, z
END TYPE vector

defines a structure holding three real numbers (which can be the coordinates of
a vector in 3D space, hence the name chosen). The user can declare the type
of a variable to be a derived type (for example, TYPE (vector) :: a, b, c),
address its components via % (for example, a%x = 1.0), and collectively pass them
as arguments to a subroutine, effectively packing related information in one variable.

The programmer can also define operations involving derived types. For example,
the cross product of two vectors can be computed via the * operator, as easily as in c
= a * b, provided that a suitable definition for the intended action of this operator
is made known to the compiler. This is done by first defining a function, in the same
module as TYPE (vector), being something like:

FUNCTION cross(a, b)
TYPE (vector), INTENT (in) :: a, b
TYPE (vector) :: cross

cross%x = a%y ∗ b%z − a%z ∗ b%y
cross%y = a%z ∗ b%x − a%x ∗ b%z
cross%z = a%x ∗ b%y − a%y ∗ b%x
END FUNCTION cross

An interface should exist to overload the operator *

INTERFACE OPERATOR (∗)
MODULE PROCEDURE cross
END INTERFACE

In addition to operator overloading, fortran 90 supports function overloading; one
could use the notation ABS(a), to compute the absolute value (norm) of a vector a.
This requires a function

FUNCTION absvec(a)
TYPE (vector), INTENT (in) :: a
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REAL :: absvec

absvec = sqrt(a%x∗∗2 + a%y∗∗2 + a%z∗∗2)
END FUNCTION absvec

and an interface declaration to overload the generic name ABS with a new function

INTERFACE ABS
MODULE PROCEDURE absvec
END INTERFACE

Given these declarations, the same function (ABS) applied to a real returns the
absolute value while when applied to a vector returns its norm.

The programmer can define functions accepting and returning derived types; for
example, rotation of a vector in 3D space can be performed through such a function.

The access attribute (private or public) can be specified for an entity in a
module. The former indicates that the entity can be used only inside the module,
while the latter attribute “exports” it to any program unit which uses the module.

5.4 Usage

auto deriv is written in strict iso fortran 90 and should be accepted by any F90
conforming compiler. It is encoded in the form of a Fortran module, which, when
used, provides the definition of a derived type, type (func). type (func) lays out
the memory for the value, the first and the second partial derivatives of any variable
declared as such. Functions for the manipulation and extraction of the numerical
values are also available. The user should define the kind, the number and the values
of the independent variables and the order (first or/and second) of the derivatives
required.

5.4.1 Example

An example of how to use auto deriv is the following:
Let us suppose that we want to evaluate the first and (possibly) the second

derivatives of the mathematical function f with respect to three variables x, y and
z encoded in the subroutine in lst. (5.1). Note that it is not necessary to use a
function or, even, only one procedure, as we will see. The modifications which are
needed in this subroutine in order to evaluate the derivatives are the following:

We should augment the argument list with additional variables to hold the first
and (if required) the second derivatives and, also, we should specify, either in the
procedure or through an argument, the order of the derivatives we want. In order to
use the same subroutine for both first and second order differentiation let us pass as
argument an integer (deriv); different values of it will choose different order. Another
way to do this is to use the facilities of the optional and keyword arguments of F90:
over–simplifying, we can pass only those variables we need to be filled. The former
approach enables us to call the subroutine from a F77 code or other programming
languages lacking the concept of optional arguments; in the example we will follow
this method.
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There is no requirement imposed by auto deriv for the type, the number or,
even, the existence of these additional variables. For simplicity we will pass a rank–1
array (Df ) with n real elements to hold the first derivatives, and another rank–1
array (DDf ) with n (n + 1)/2 elements which will hold the upper triangle of the
Hessian matrix (H), where n is the number of independent variables. In our example
n = 3 so, the array DDf in F90 notation is:

DDf = (/H11,H12,H13,H22,H23,H33/).

Additionally, we will indicate with deriv = 1 that we need only the first derivatives
and with deriv = 2 that we require both first and second derivatives.

The definition of the subroutine incorporating these changes and the necessary
calls from deriv class are presented in lst. (5.2). In order to preserve the same form
of the statements in the main part of the subroutine, we reserve the names x, y, z, f
for the new variables of type (func), and we use other names, (x , y , z , f ), for
their values.

The programmer should make the following modifications prior to incorporating
auto deriv:

In module deriv class:

1. Assign the number of independent variables to the variable n.

2. Change, if necessary, the kind variable dpk to the appropriate value for the
input variables. The default is to have double precision. If required, the other
kind variables provided to cope with mixed mode arithmetic, spk and ik, can
be changed. Currently auto deriv supports all expressions among variables
of the types real (dpk), real (spk) and integer (ik).

In the user’s subroutine or function:

1. Change the names of the input and output variables in the argument list and
declare them as real having the same kind as in deriv class. Their previous
names should be used for the variables declared as type (func).

2. Make deriv class accessible through use. If necessary, rename the few public
variables provided by deriv class to avoid name clashes with local entities. For
example, USE mod, newname => oldname imports the variable oldname from
module mod, but with the name newname. The public entities of deriv class
are: the subroutines derivative, independent, extract, the type (func), and,
of course, all operators and many intrinsic F90 functions. A newer version of
auto deriv than the published one, available from the author, includes also
the ad error variable.

3. Declare as type (func) all variables corresponding to mathematical functions;
that is, both dependent and independent, and also, all intermediate (depen-
dent) variables. Note that the use of implicit typing is permissible; this
practice, however, has the side–effect of declaring constants and other vari-
ables not related to the differentiation as variables in the mathematical sense.
This is not wrong as their derivatives are zeroed, it is only a waste of mem-
ory and triggers unnecessary computations. It is generally regarded as “good
programming style” to avoid implicit declarations.
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SUBROUTINE a(x, y, z, f)
IMPLICIT NONE

INTEGER, PARAMETER :: dpk = KIND(1.d0) ! double precision kind

REAL (dpk), INTENT (in) :: x, y, z
REAL (dpk), INTENT (out) :: f

REAL (dpk) :: g

g = y∗∗2 ∗ EXP(z)
f = SIN(x) ∗ g

END SUBROUTINE a

Listing 5.1: Routine implementing a test function to be differentiated.

SUBROUTINE a(x , y , z , f , Df, DDf, deriv)
USE deriv class ! make the module accessible
IMPLICIT NONE

INTEGER, PARAMETER :: dpk = KIND(1.d0) ! double precision kind

REAL (dpk), INTENT (in) :: x , y , z
REAL (dpk), INTENT (out) :: f
REAL (dpk), INTENT (out) :: Df(3), DDf(3 ∗ (3 + 1) / 2)
INTEGER, INTENT (in) :: deriv

TYPE (func) :: x, y, z , f
TYPE (func) :: g

CALL derivative(deriv) ! declare the order of the derivative .
! declare as independent the variables (x, y, z) and assign them
! their values (x , y , z )
CALL independent(1, x, x )
CALL independent(2, y, y )
CALL independent(3, z, z )

g = y∗∗2 ∗ EXP(z)
f = SIN(x) ∗ g

CALL extract(f, f , Df, DDf) ! extract from f the value and derivatives .
END SUBROUTINE a

Listing 5.2: Modification of the routine presented in lst. (5.1) for computing the first and
second derivatives of function f by incorporating deriv class.
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4. Define the order of derivatives by calling the subroutine derivative. The integer
argument passed (deriv) should have the value of 0, 1, or 2 indicating that we
require the computation of the value of the function (included for symmetry
and testing), the value and the first derivatives or the value, the first and the
second derivatives respectively.

5. Declare the independent variables, their order and value, by calling the sub-
routine independent separately for each variable.

6. After the final assignment to the dependent variables, extract the derivatives
and the value of the function. The subroutine extract, will return the deriva-
tives in rank–1 arrays holding the gradient and the upper triangle of the Hes-
sian.

Note that the statements in the main body of the subroutine need not be altered.
In fact, auto deriv was designed in such a way that almost no modification of the
existing code is required.

5.4.2 Special Cases

There are certain cases which the user should bear in mind:

• If the subroutine or function calls other subroutines or functions, their defini-
tion should be changed as follows:

i) They must use the module deriv class.

ii) All dependent and independent variables, either local or in the argument
list, have to be declared as type (func).

No change is required in the argument list.

• Use of common blocks and equivalence statements, although discouraged
by the introduction of modules and pointers in fortran 90, is widespread.
Transfered constants pose no problem. On the other hand, the awkward pro-
gramming style of passing input and returning results from a subroutine or
function through common blocks or using equivalenced variables, requires
the user to treat them as if they were declared in the argument list; that
is, their names must be changed, and other variables should be declared, as
described above. The subroutine independent should be called for the input
variables and their values should be extracted and update the common blocks
at the end. For example

REAL :: constant
REAL :: x ! input variable

COMMON/block/constant, x
...........

! use x
...........
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should become

REAL :: constant
REAL :: x ! input variable
TYPE (func) :: x

COMMON/block/constant, x

CALL independent(i, x, x ) ! i : unique index
............

! use x
............

! at the end of the routine
CALL extract(x, x ) ! assign to x the expected value

• The user must ensure, and modify the subroutine or function if necessary,
that the generic names of trigonometric and other mathematical functions are
used; that is, for example, sin(x) is used instead of dsin(x) irrespectively of
the type of x, as encouraged by fortran 77. Also, the user should eliminate
all transformations from one kind to another between variables of type (func).
That is, statements such as y = dble(x) works for x, y if they are real (with
the appropriate kinds), but as deriv class provides a type (func) with only
one kind, such transformations have no meaning. Likewise, assignments of a
type (func) to a real are not supported.

5.5 Implementation

deriv class is a collection of functions overloading all operators and all appropriate
fortran 90 functions and subroutines to accept not only real values but also vari-
ables of a derived type (type (func)) comprised of the value, the first and the second
derivatives of the corresponding mathematical quantity.

The compiler is “taught” how to handle expressions involving variables of this
type —addition, subtraction, multiplication, etc. between them— and also, how to
apply all meaningful fortran 90 functions and subroutines on them in order to
compute not only the value of the expression but, in addition, the numerical value
of the first and second derivatives. deriv class also provides functions to interpret
mixed mode expressions between variables of type (func), reals, and integers. Us-
ing this module, the compiler is able to apply the usual rules of differentiation, in
conjunction with the chain rule, on any statement. That is, the compiler parsing a
statement involving the type (func) variables a,b,c,d like

d = a * b + c

will generate code to evaluate the following mathematical expressions:

d = a b + c
∂d

∂qi
=

∂a

∂qi
b + a

∂b

∂qi
+

∂c

∂qi
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∂2d

∂qi ∂qj
=

∂2a

∂qi ∂qj
b +

∂a

∂qi

∂b

∂qj
+

∂a

∂qj

∂b

∂qi
+ a

∂2b

∂qi ∂qj
+

∂2c

∂qi ∂qj
.

Allocatable components of a derived type are not yet part of fortran. It
is necessary, therefore, to define in the module prior to compiling, the number of
independent variables (in the mathematical sense); n is the integer which holds it.

The components of a type (func) variable are a real variable for the value
(value) of the function, and two rank–1 arrays of n and n (n+1)/2 real elements (x,
xx), for the first and second derivatives, respectively. The arrays hold the gradient
and the upper triangle of the Hessian; it is stored in the format:

xx(i + n (j − 1)− j (j − 1)/2) = Hji (i ≥ j). (5.1)

A few parameters are defined in the module: they are the kind of the components of
type (func), (dpk), and the kind for the reals (spk) and the integers (ik) that can
appear in the same expression. Currently, fortran provides no mechanism to utilize
implicit promotions in expressions involving derived types or define conversions of
one derived type to another. It was necessary, therefore, to write all procedures into
supported types.

The default values for the kinds yield double precision, default real, and default
integer numbers. They can be tailored to extend the precision. Note, however, that
dpk, and spk must correspond to different precisions to avoid clashes in overloading
resolution. The fortran 90 standard ensures that at least two different kinds
of reals are provided by the compiler. Multiple definitions of these kinds can be
eliminated by modifying the module to inherit the kinds from another or export
them outside deriv class by changing the access attribute. By default, these and
all “internal” variables and functions are of private access. Note that complex
variables are not supported.

There is a number of variables to be specified at run-time, before the compu-
tation is enabled. These are the required order of differentiation (drvtv) and the
independent variables. Two subroutines are provided, derivative and independent,
to manipulate them from the user’s routine.

The subroutine derivative accepts an integer argument and assigns it to drvtv.
It should be either 0, 1 or 2. All derivatives with order less or equal to this number
will be evaluated (considering the value of the function as the zeroth derivative). An
argument different than 0, 1 or 2 results in computing only the value. The interface
is:

SUBROUTINE derivative(der)
IMPLICIT NONE
INTEGER, INTENT (in) :: der
END SUBROUTINE derivative

The subroutine independent is used for declaring a type (func) variable as indepen-
dent in the mathematical sense. The routine accepts three arguments: the variable,
a real (dpk) value and an integer i. It zeroes the derivatives of the independent
variable except the ith component of the first derivative, which is set to unity. It
also assigns to the appropriate component of the type (func) variable the supplied
real value. This routine should be repeatedly called for all independent variables.
Its interface is:
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SUBROUTINE independent(i, x, val)
IMPLICIT NONE
INTEGER, INTENT (in) :: i
TYPE (func), INTENT (out) :: x
REAL (dpk), INTENT (in) :: val
END SUBROUTINE independent

The module deriv class provides the subroutine extract to “decode” a type (func)
variable. It breaks it up into a real number (for the value), and two optional rank–1
arrays for the derivatives. There is a number of routines to extract them separately
(under the generic names value, FD, SD) but normally they need not be used;
therefore, they are private to the module. The interface of extract is:

SUBROUTINE extract(x, val, Dx, DDx)
IMPLICIT NONE
TYPE (func), INTENT (in) :: x
REAL (dpk), INTENT (out) :: val
REAL (dpk), INTENT (out), OPTIONAL :: Dx(n), DDx(n∗(n+1)/2)
END SUBROUTINE extract

5.5.1 Supported F90 Intrinsics

The module was designed in such a way that any intrinsic function or subroutine in
standard F90 that can be applied to a real number can also accept a type (func)
variable and give the expected result. For example, a statement

f = SIN(y),

where f and y are of type (func), amounts to three statements, when drvtv=2,
(the fortran 90 array notation is used)

f%value = SIN(y%value)

f%x = COS(y%value) * y%x

f%xx = −SIN(y%value) * y%x⊗ y%x + COS(y%value) * y%xx.

The product of two arrays, y%x⊗y%x, in the last expression is the tensor product. It
produces a higher order tensor (the Hessian), which is stored in a rank–1 array as in
eq. (5.1). As operations involving intrinsic types can not be redefined, we should use
a function (tensor) or define a new operator (.tensor.), as we chose in deriv class,
to compute this special product.

In order to localize all references to the exact representation of type (func), we
introduce several functions under the generic names value, FD, SD, and val assign,
FD assign, SD assign. They provide the value, the first and the second derivatives,
and assign them to the components of a type (func) variable. They are not meant
to be used outside the module so they are declared as private. Extensive use of
pointers keep them very simple and it should be a relatively easy task for a compiler
with inlining capabilities to integrate them in a code without the overhead of a
function call. We anticipate that no loss in efficiency is introduced by this practice
while it adds considerably to the maintainability of the code. The only binding to the
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internal representation of type (func), remains the assumption that the derivatives
are stored in rank–1 arrays; all pointers are declared as such. Unless type aliasing is
introduced in fortran, this limitation can not be waived. We could have declared
the derivatives as new user-defined types to solve it but by this we would make the
code more complex and, possibly, less efficient.

Care was taken that all meaningful for numerical calculations intrinsic functions
and every built-in operator of fortran 90 are overloaded appropriately. Fully sup-
ported are all expressions involving the following routines: abs, atan, ceiling, cos,
cosh, digits, dim, dot product, epsilon, exp, exponent, floor, fraction,
huge, kind, log, log10, matmul, maxexponent, minexponent, mod, mod-
ulo, nearest, precision, radix, range, rrspacing, scale, set exponent,
sign, sin, sinh, spacing, tan, tanh, tiny. Certain others are not fully over-
loaded; details on them are presented in the following paragraph.

5.5.2 Limitations

As we can not implement the kind as an argument, required by aint, anint, int,
nint, their overloaded functions simply do not accept this argument. They can
transform only to the default kinds defined by dpk and ik.

A very serious limitation stems from the lack in fortran 90 of user–defined
elemental functions. An expression like y = SIN(x) where y, x are conformable
arrays, is accepted by fortran 90 if the array elements are of a built-in type. Un-
fortunately, this does not hold for user–defined types. The multitude of definitions
that must be added to auto deriv in order to provide a similar behavior for them,
would make the code very complicated. The user is, therefore, required either to
make explicit the loop or loops implied in his/her code or, a better solution, to en-
hance deriv class by adding to it only the exact instance of the function needed. This
normally means that the programmer should copy the function accepting scalars,
rename it, change the type of the arguments to make them arrays of the required
rank, and add the function name to the corresponding public interface provided by
the module.

A similar problem arises for intrinsic functions accepting arrays (sum, product,
maxloc, minloc, maxval and minval). auto deriv overloads these functions to
accept arrays of rank–1 only of type (func) elements. If the user wishes to apply any
of the above functions to arrays of different rank, he/she should add to the module
the appropriate version of the function with the dimensions of the array arguments
altered.

fortran does not provide functions a mechanism to accept variable number
of arguments. Therefore, the implementation of overloaded functions for max/min
is inherently incomplete. The number of arguments must be fixed, while the not
overloaded versions can have arbitrary. deriv class provides max/min that accept
two or three arguments. If the user needs a max/min with more, the appropriate
instance has to be added and overload max/min by including its name to the relevant
interface.

Note that in the implementation of max, min and maxval, minval we use
maxloc, minloc; finding only the maximum/minimum value does not suffice. As
maxloc, minloc do not accept the optional argument DIM in fortran 90, the
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four functions above can not be implemented efficiently to accept it either; we chose
not to support the optional argument in them.

A serious mathematical problem arises in cases where we have discontinuity or
when 0/0 is encountered; for example, in abs(x) at x = 0, or when the derivatives
of

√
f(x) at x = 0 are required and f(0) = f ′(0) = 0. Care was taken when only

the denominator in a fraction equals to zero; this case is avoided, unless the user
in the code performs an illegal operation (which would show up even without using
deriv class). But “undefined” situations as the above, may appear in acos, asin,
atan2, sqrt. In such cases, 0/0 is arbitrarily resolved to 0; admittedly this is not
correct. The user should either modify the code or not depend on auto deriv in
such situations. Note that even computing by other means the analytic expressions
for the derivatives would lead to this problem. A newer version of auto deriv than
the published one, sets the module variable ad error to .TRUE. enabling the user
to check whether such problematic cases were encountered.

5.6 Tests

We conducted certain tests to measure the efficiency of auto deriv. We have
calculated the elapsed time during the computation of the value and the deriva-
tives of functions for which the corresponding analytic expressions were known. In
each test we used a version of the fortran 90 code with the derivatives computed
analytically, “by hand,” and another incorporating auto deriv.

Potential Compiler Order of derivatives
0 1 2

HCP (analytic) NAG 0.626 1.155 2.612
HCP (auto deriv) NAG 8.465 38.147 83.975
HCP (analytic) PGI 0.712 1.217 2.451
HCP (auto deriv) PGI 9.105 355.795 807.796
HCP (analytic) Fujitsu 0.690 1.270 2.703
HCP (auto deriv) Fujitsu 10.279 66.731 142.812
HCP (analytic) Absoft 0.667 1.288 2.973
HCP (auto deriv) Absoft 16.075 68.494 156.458
HF dimer (analytic) NAG 0.071 0.752 -
HF dimer (auto deriv) NAG 1.807 5.302 14.250
HF dimer (analytic) PGI 0.152 0.518 -
HF dimer (auto deriv) PGI 1.142 39.513 103.397
HF dimer (analytic) Fujitsu 0.075 0.596 -
HF dimer (auto deriv) Fujitsu 1.903 9.335 23.231
HF dimer (analytic) Absoft 0.086 1.315 -
HF dimer (auto deriv) Absoft 3.174 10.434 22.812

Table 5.1: Elapsed times during the calculations of the derivatives of Potential Energy
Surfaces for the molecular systems HCP and HF–dimer. Time quoted in ms.

The first mathematical function we used is the potential for the HCP molecule
[143]. It is a realistic example of a function depending on three variables and it is



5.7. DISCUSSION 91

sufficiently complex for exhibiting the capabilities of auto deriv. Another test was
made with a potential for the HF–dimer [144], a function of six variables. For this
we have calculated analytically only the first derivatives. In table (5.1) we present
the elapsed time, averaged over a thousand evaluations, during the computation of
each potential and for the two versions (analytic derivatives and using auto de-
riv). The results are tabulated for the compilers we had available. The standard
date and time subroutine was employed. The tests were performed on a PC with
an Intel Pentium II processor at 450 MHz, running the Linux Operating System.
We have also compiled and run the programs on IBM RS/6000 and HP machines
with the systems’ compilers; these results are not presented here. In the test we used
the F90/95 compilers shown in table (5.2); the options chosen should be the optimal
ones. The required memory during the tests, naturally, depends on the specific
function differentiated. As we use a type (func) variable holding (1+n+n (n+1)/2)
real (dpk) numbers for each real (dpk) mathematical variable in the original code
we expect a roughly proportional increase in memory used by the program.

COMPILER OPTIONS
NAGWare f95 Rel. 4.0(185)
gcc 2.95.1

−Ounroll=1 −O4
−Wc,−funroll-loops,−O3,−fforce-mem
−Wc,−fforce-addr,−march=i686

Portland Group, Inc. pgf90 v3.0 −fast −tp p6
Fujitsu F90 −O3 −Kfast,eval,PENTIUM PRO −AR
Absoft Pro Fortran 6.0 f90 v2.1 −B100 −O

Table 5.2: fortran 90/95 compilers used for the test runs.

5.7 Discussion

auto deriv was designed to make the evaluation of accurate analytic first and
second derivatives feasible; computing them “by hand” is, in realistic cases, too
time consuming and highly error prone. The emphasis was not on implementing
it optimally. Efficiency is, for the most part, hampered by the primitive support
fortran 90 offers for value–oriented programming. Most important was to make it
work, requiring as little change in user’s code as possible. We can see from the tests
in the last section that auto deriv should not be considered as an option when the
derivatives are, or can easily be, available analytically. However, it is a valuable tool
when we deal with complicated mathematical functions with no derivatives available.
We anticipate that as the compilers evolve and support more efficiently the advanced
features of fortran 90, this disproportionality in performance between our package
and the analytic derivatives shrinks and programmers will not be deterred from using
it.

We may ask whether it is possible to compute higher order derivatives from
the first and second ones. Recursive functions could be used in order to compute
derivatives of arbitrarily high order. We leave such extensions for future upgrades.

The current standard [145] of fortran 95 provides a few extra facilities (among
others the elemental attribute of subroutines and functions) which would enable
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us to provide a much “cleaner” and more powerful implementation. However, the
relative scarcity of fortran 95 compilers led us to postpone these modifications for
future upgrades. Care was taken that the array notation provided by F90 is used
throughout the code. It might assist a compiler to optimize, or, even, parallelize
it. Unfortunately, the current definition (version 2.0) of High Performance Fortran
(HPF) does not support distribution onto multiple processors of arrays of a derived
type; otherwise, compiler directives could be inserted to indicate to the HPF com-
piler possible parallelisms. When fortran 95 compilers become widespread, and,
most importantly, when the expected major revision, unofficially known as for-
tran 2000, is standardized, some of the above limitations in the package can be
overcome. We plan to follow closely all enhancements in the language and incorpo-
rate them to auto deriv.



Chapter 6

Spectroscopy of phosphaethyne
(HCP) and deuterated
phosphaethyne (DCP)

6.1 Introduction

As mentioned in the introductory chapter, an important research area for modern
spectroscopists is the isomerization process in small molecules, and, especially, its
manifestation in the experimental and the theoretical rovibrational spectrum. Iso-
merization is the transformation of a molecule from a stable configuration to another
stable, or, more loosely, metastable arrangement. In a broad sense, any substantial
change in the molecular configuration, such as the large-amplitude bending motion
we will analyze below, can be considered as equivalent to isomerization and is equally
interesting.

The triatomic monohydrides, molecules of the HAB form, can exhibit the sim-
plest kind of isomerization reaction, the hydrogen migration process: HAB↔ABH.
These molecules are fundamental in experimental and theoretical studies and serve
as prototypes—especially those containing a carbon atom such as hydrogen cyanide
(HCN) and phosphaethyne (HCP). Their small size and the single and triple bonds
involved make them ideal benchmark molecules. The basic chemical interest of their
electronic structure, the profound change in nature of the bonds the hydrogen atom
participates in during the isomerization reaction, and the dynamics exhibited, mo-
tivated their study. Moreover, apart from HCN which for decades is the subject of
intense research by astrophysicists and environmental scientists, HCP is also of as-
trophysical relevance: According to Turner et al. [146], thermochemical equilibrium
calculations show that all gas-phase phosphorus in the interstellar medium should
be in the form of HCP. As a consequence, many spectroscopic studies are available
on HCP and its isotopomers: high resolution spectra from microwave to infrared re-
gion have been recorded [147–159] and various Potential Energy Surfaces have been
determined [143,150,160–166].

Our group was interested in studying among others, the HCN, HCP and its iso-
topic variant, deuterated phosphaethyne (DCP), molecules. The electronic ground
state 1 1Σ+(1 1A′) for the HCP/DCP molecules possesses, as will be explained below,
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one stable minimum at the linear configuration (H/D–CP) and a saddle point at the
other linear form (CP–H/D), in contrast to HCN where the isomers are the two
linear configurations. Strictly speaking, isomerization can not occur in HCP/DCP
in their ground electronic state; nevertheless, with sufficiently high energy, the bend-
ing amplitude of the H/D–CP bond can grow and the molecule can approach the
metastable configuration in a process resembling isomerization.

Isotopic substitution is a well-established spectroscopic method for identifying
and interpreting spectral features of molecules. The replacement of a particular
atom in a molecule by its isotope affects only the kinetic part of the Hamiltonian
and, consequently, it modifies the fundamental frequencies and the zero-point energy
of the system. As a consequence, we can anticipate a quantitative change, a shift
of the vibrational levels, in the lower energy region without significant modification
in the overall spectral patterns. At higher energies, where the coupling terms in
the kinetic energy between various degrees of freedom grow strong, we can expect
a substantial deviation in the spectra of the isotopic variants. However, in the case
where an anharmonic resonance controlled by the atomic masses governs the phase
space of the molecule, qualitative changes can be observed even at low energies.
Naturally, the larger the mass variation is, the stronger these changes are.

In this chapter we will present our research results on two of the most exten-
sively studied species, HCP and DCP, elucidate the analysis of their classical phase
space in the ground electronic state for zero total angular momentum and relate the
findings to the quantum mechanical picture. We will show how the different facets
of the features of a molecular system are encoded in the experimental, quantum
and classical results, and relate to each other. The emphasis will be given in the
classical analysis. We will thus develop a way to predict characteristic features of
the quantum and experimental spectra through the classical picture. This, hope-
fully, is a valuable assistance in larger molecules, where the full quantum treatment
is practically inapplicable while the classical one we present for triatomic molecules
can be rather trivially extended.

Let us just note at this point that recently, a simple, qualitative model for
HCP and other similar bond-breaking isomerizing systems has been developed by
Jacobson and Child [167]. It consists of a spherical pendulum coupled to a harmonic
oscillator and admits analytical treatment.

We begin the chapter with an overview of related experimental results, followed
by a brief review of the available potential energy surfaces derived in the literature
for HCP/DCP. We also outline the construction of the potential energy surface we
used. Then, the detailed analysis of the classical phase space of HCP and DCP
is given. It is followed by a presentation of the related quantum picture for each
molecule, along with a discussion of the analogies between the classical and quantum
treatment. The chapter concludes with an overview of our findings. Preliminary
results for HCP were presented in a review paper [168], while for the DCP molecule
our work was published in [169]. Additionally, our team calculated the analytical
form of the first and second derivatives of the potential we used, a very complex
function fitted to ab initio points.
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6.2 Experiment

HCP has been the subject of pioneering experiments since the early 1960’s when it
was first synthesized by Gier [170]. Various spectroscopic techniques were since em-
ployed to investigate its microwave, ultraviolet, and, recently, infrared spectra and
reveal the dynamics encoded in them. While HCN is the most examined molecule
for signatures of isomerization in the vibrational spectrum, no experimental obser-
vation for its isomerization states exists yet. The excited electronic states of HCN
from which highly excited vibrational levels of the ground state can be accessed,
lie in the vacuum ultraviolet wavelength region and, as most of such states rapidly
predissociate, it is difficult to employ present experimental techniques to high en-
ergies. The spectroscopic conditions for observing indications of isomerization in
the form of hydrogen migration, are more favorable for HCP than HCN. The iso-
merization process or large amplitude bending motion in HCP has been studied
experimentally by Lehmann et al. [150], Chen et al. [151] and later by Ishikawa and
co-workers [154,156–158].

The first group studied the vibrational levels of the X̃ (ground) electronic state
up to 16917 cm−1 above the zero-point energy (with zero angular momentum) in
the Dispersed Fluorescence (DF) Ã 1A′′ → X̃ 1Σ+ spectrum. They assigned the
observed states as combinations of the bend (v2) and the CP stretching (v3) modes,
(0, v2, v3). The Stimulated Emission Pumping (SEP) experiment of the second group
probed the highly excited vibrational levels at 16000 cm−1–19000 cm−1 above zero-
point energy in the ground electronic state. They found a predominantly bending
character in these states with very small differences in the rotational constants.
Both teams found the overall vibrational spectrum surprisingly harmonic even at
the high energies probed. This indicates that the observed states do not actually
follow the isomerization path as they would access significantly anharmonic region
of the potential on it. The third group has recorded the Ã 1A′′ → X̃ 1Σ+ and
C̃ 1A′ → X̃ 1Σ+ SEP and DF spectra for HCP in an attempt to access high lying
bending vibrational states (Ã and C̃ have significantly bent equilibrium geometries,
roughly 130◦ and 113◦ respectively). The former band is believed to follow the pure
bending overtones (0, v2, 0), with v2 ranging from 26 to 42, in the X̃ state; it covers
an energy regime up to 25315 cm−1 above the ground vibrational state, that is,
roughly 3.139 eV above zero-point energy (which is ∼ 0.3684 eV above the potential
minimum). The latter band sampled vibrational levels in the interval of 22500 cm−1

to 23200 cm−1 above the ground state. As we will see below, the energy difference
of the two linear configurations is calculated to be ca. 3.39 eV and therefore, the
energy interval probed in the experiment is sufficiently wide to allow the observa-
tion of large-amplitude motion of H around CP, provided the atoms move along the
minimum energy path. By fitting the spectra to well known spectroscopic models
for linear molecules, they, too, established that the spectra are quite regular, de-
spite the molecule being highly excited. Nevertheless, three important observations,
among others, were made: First, perturbations of the pure bending overtones appear
with v2 ≥ 32 which were absent at lower excitations. Second, the rotational and
vibrational fine structure constants of the (0, v2, 0) levels change abruptly around
v2 = 36. Third, anomalously large rotational constants are exhibited by some of
the vibrational levels in the C̃ → X̃ spectrum. These were considered as indica-
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tions of a change in the character of the H–CP stretch from predominantly H–C to
H–P motion. Thus, the onset of perturbations and the abrupt changes of the fine
structure constants were suggested as diagnostic of the onset of isomerization. Sub-
sequent SEP experiments by Ishikawa et al. [156] on the C̃ → X̃ transition, focused
on the energy region of 13400 cm−1 to 17500 cm−1 above the ground state. Moti-
vated by qualitative results of Farantos et al. in [171], they found strong evidence
corroborating the existence of two distinct families of bending states, attributed to
normal-mode and isomerization-type states.

No states with excitation in the HC stretch mode (v1) were observed in the DF
or SEP spectra by any group as the HC distance does not change significantly in the
transitions they studied. A recent experiment using IR-UV-SEP triple resonance
spectroscopy by Ishikawa and co-workers [158] managed to access some levels with
one quantum in the HC mode around 16000 cm−1. Additionally, of the third pure
progression, (0, 0, v3), only states up to v3 = 3 have been observed due to unfavorable
Franck–Condon factors: the (0, 0, v3) states are centered around 180◦ whereas the
Ã and C̃ electronic states are significantly bent.

In contrast to HCP, experimental information on the vibration–rotation spectrum of
DCP is sparse (see [163] and references therein). The transition energies of the lowest
states have been measured [172–174]. The pure rotational spectrum of DCP is better
studied, especially on the ground and the lower excited vibrational states [153,159].
High resolution Fourier Transform IR spectra of DCP were also recorded in various
energy windows from 400 cm−1 to 5500 cm−1 and spectroscopic constants, including
Fermi-resonance parameters of the effective Hamiltonian, were calculated by Jung
in [175].

6.3 Potential Energy Surface

Various forms for the Potential Energy Surface (PES) of the ground electronic state
for HCP/DCP were reported in literature. Lehmann and co-workers in [150], fitted
a rigid bender Hamiltonian to experimental data they measured, thereby determin-
ing the bending potential over a broad range of the bending angle. In the same
work, an ab initio potential was also calculated using Møller–Plesset perturbation
theory (MP4), in excellent agreement with the empirical one in the areas they co-
incided. Their prediction was that the linear CP–H configuration corresponds to
a saddle point with the curvature of the potential energy along the bending co-
ordinate changing almost 90◦; subsequent calculations by other groups confirmed
this. Another PES was produced by Chen and Chong [162], fitted to ab initio DFT
points. Puzzarini et al. in [163], used internally contracted MRCI from CASSCF ref-
erence wave functions with large orbital expansions, to develop another potential for
HCP, adjusted to reproduce experimental data. Koput and Carter [165] employed a
coupled–cluster variant, CCSD(T), with basis sets of triple- to quintuple-zeta qual-
ity to derive a potential energy surface. Schinke and co-workers in [164], computed
a number of points by ab initio methods on the MRCI level with singly and doubly
excited reference wave functions obtained by CASSCF calculation. The points were
fitted to an analytical expression of the Sorbie–Murrell form (§3.5.6). The same
team produced an improved and more accurate global PES in [143]. Though it does
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not describe properly the H+CP dissociation channel, it was designed for the study
of the isomerization process; therefore, we based on it our classical analysis of the
phase space. We will outline below the procedure they employed. Since our work
in HCP/DCP, another ground state potential energy surface has been developed by
Nanbu et al. [166].

Surfaces for excited electronic states have also been produced through ab initio
MRCI calculations by various groups [160, 161, 166]. It turns out that some of
the potentials exhibit interesting topographical features such as multiple minima.
Various other groups have reported ab initio calculations for specific geometries of
the molecule or experimental results aiming mainly to determine the equilibrium
structure.

The potential energy surface we employed was calculated using the internally con-
tracted multi-reference configuration interaction method with Davidson correction
(icMRCI+Q) (§3.5.3); the number of contracted configurations in the CASSCF cal-
culation was such that the total energies were determined to an accuracy better than
10−8 hartree. All calculations were performed with the MOLPRO program [85].
More than one thousand points were computed, scattered on a grid covering the
full range of the ĤCP bond angle; RHC , RCP varied from 2.5 α0 to 4.0 α0. Addi-
tional points were calculated in the vicinity of the isomerization path. The calculated
points encompass an energy range of about 5 eV with respect to the global minimum,
way above the metastable configuration and close to the dissociation threshold.

The ab initio points were fitted to an analytical function of the form (cf. fig. (6.1)
for the notation on coordinates)

v =
5∑

i=0

6∑

j=0

6∑

k=0

[
aC

ijk ηi
C Pj(cosφC) µC + aP

ijk ηi
P Pj(cosφP ) µP

]
rk µasy

with i + j + k ≤ 6. The functions ηi
C , ηi

P are

ηC = 1− e−b1(RHC−b2), ηP = 1− e−b3(RHP−b4),

and Pj are the Legendre polynomials. The µ functions are

µC(x) =
1− tanh[b5(x− b6)]

2
,

µP (x) = 1− µC(x),

µasy(R) =
1− tanh[b7(R− b8)]

2
,

where x = R cos γ. The parameters aC
ijk, aP

ijk, bi were determined by fitting the
function v to the ab initio points. Two independent fits were performed, one (V1) to
approximate best the region below 2.25 eV above the minimum, and the other (V2)
to reproduce accurately higher energies. The final expression for the PES is

V = V1(1− λ1) + V2λ1 − δV λ2 + V0

where
λ1 =

1 + tanh(4V2 + 12)
2

, λ2 =
1− tanh(12V2 + 15.6)

2
.
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Figure 6.1: Coordinates for the HCP/DCP molecules. K indicates the C–P center-of-mass.

The correction term is of the form
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with α ≡ φC , the ĤCP bond angle in rad. The parameters in this term were
chosen to minimize the differences between the original energies and those obtained
from the analytical expression. V0 is a constant with its value chosen to adjust
the energy of the minimum to the value of the energy minimum predicted by the
potential in [171]. A discrepancy between the fundamental frequency for the CP
stretching mode and certain experimental results lead Schinke and co-workers to
scale the RCP coordinate by 1.01. The final expression of the PES contains also
several cut-off functions in order to eliminate unphysical structures in regions not
covered by the original ab initio points.

The topographical analysis of the potential in the physically relevant region reveals
a global minimum of Vmin = −5.2362 eV at R = 2.1750 Å, r = 1.53065 Å, γ = π rad
in Jacobi coordinates. The CP–H/D configuration at R = 1.8783 Å, r = 1.6040 Å,
γ = 0 rad is a saddle point; the potential value there is −1.8438 eV. Contour plots
of cuts of the potential on the minimum are given in fig. (6.2) and fig. (6.3). We
notice the “peanut”-like structure reflecting the different “radii” of the carbon and
phosphorus atoms. A projection of the minimum energy path is given in fig. (6.4).
This path consists of the points where the potential is minimum with respect to
R and r for successive fixed values of the angle γ. A drastic slope change around
γ '130◦ at roughly −3.05 eV is exhibited on the potential “waist;” towards the
CP–H/D region the potential becomes quite anharmonic.

6.4 Analysis of the Classical Phase Space

In our calculations in both HCP and DCP molecules we employed the Jacobi co-
ordinate system, fig. (4.1)(I), as more appropriate to study the large-amplitude
bending motion of H/D. The values for the masses we used are mH = 1.00783 u,
mD = 2.01566 u, mC = 12.0 u, mP = 30.9810343 u. The total angular momentum
of both molecules was zero.
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Figure 6.2: Contour plot of the HCP/DCP ground-state potential energy surface for r ≡
RCP at the equilibrium value of 1.53065 Å. x, y are the coordinates of H/D with respect to
the CP center of mass. The 21 contours start from −5.2 eV and increase by 0.25 eV.

6.4.1 HCP

The Continuation/Bifurcation (C/B) diagram for the HCP molecule is given in
fig. (6.5). It depicts the periodic orbit families we located, plotting their period
(measured in time units of ∼ 10.18 fs) with respect to their energy (in eV). For
clarity it is split in two, one graph comprising the principal families and their bi-
furcations, and another consisting of the saddle–node orbits. Energy plays the role
of the “external” parameter which causes the bifurcations. There is little point in
showing the C/B diagram in a more traditional form in terms of a coordinate with
respect to energy as in fig. (2.1) and fig. (2.2); in our case of multidimensional peri-
odic orbits it would not be unique, while all information on the bifurcations can be
inferred from the Energy–Period plot.

Three principal families emerge deep in the potential well. The orbits just above the
energy minimum have periods very close to those predicted through the harmonic
expansion (Weinstein theorem, cf. §2.3.2) and exhibit predominant excitation in each
of the normal modes. The calculated periods of the classical harmonic oscillators are
0.9802 t.u., 2.5524 t.u., and 4.7774 t.u.. The first two modes are of pure stretching
nature, mainly in R and r respectively, while the last period corresponds to the
pure bending mode. Notice the approximate 2:5:10 resonance among them; this
inherent to the system 1:2 relation of periods for the r- and γ-oscillators is the one
which influences decisively the classical phase portrait and the quantum spectrum
of HCP, as we will see below. We denote the principal families by R, r, and B to
indicate their primary character (B stands for bending). Their detailed evolution is
as follows:

The R family is remarkably stable up to relatively high energy; at roughly
−2.590 eV and at a period of 1.285 t.u. it loses its stability through a period–
doubling bifurcation, giving birth to a new family, R1, with initial period around
2.571 t.u.. Stability is regained at (−2.056 eV, 1.384 t.u.) through another period–
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Figure 6.3: Contour plots of the HCP/DCP ground-state potential energy surface for R =
2.1750 Å (left) and γ = π rad (right). The 21 contours start from −5.2 eV and increase by
0.25 eV.

doubling bifurcation. A family of unstable orbits, denoted by R2, branches off there.
If we examine the real pair of the Floquet multipliers in the interval of instability, we
notice that the largest in absolute value does not exceed 1.12; the R family, therefore,
behaves as relatively stable at least up to dissociation. R1 is stable until −0.57 eV
where a period–doubling bifurcation takes place. We notice that the periods of the
orbits in the R1 family are roughly the “eigenperiod” of the r-oscillator enabling
a resonance through which energy is transfered to it. This justifies the stability of
R1 even in high energies as it deposits a large part of the excess energy on the less
stiff r-oscillator, which is essentially unexcited in the parent family R prior to the
birth of R1. The same reasoning extends to the orbits of R2 which preserve their
unstable character with minor alterations. Plots of representative orbits of these
families at various energies are depicted in fig. (6.6); their energies, periods and sets
of initial conditions are given in table (6.1).

The r family starts at the predicted period of 2.552 t.u. and is stable up to
(−3.434 eV, 2.819 t.u.) where it undergoes a period–doubling bifurcation. Above
this point, the family is mildly unstable apart from a small interval between−1.06 eV
and −1.00 eV where the real eigenvalues of the monodromy matrix return briefly
to the unitary circle. The family becomes stable again through a period–doubling
bifurcation at (0.242 eV, 2.99 t.u.). The stable family that branches off at the main
period–doubling bifurcation is denoted by r1. Its first located orbit has a period of
5.637 t.u. at −3.434 eV. The family is stable throughout its life apart a very brief
interval around (−1.231 eV, 6.535 t.u.) where a “collision” of the Floquet multipliers
on the unit circle in a Hopf bifurcation renders it temporarily complex unstable. The
r1 family recombines with the principal family at (−1.0 eV, 6.475 t.u.) in the vicinity
of the stability interval of r. This interval gives also birth to another family with γ
excitation through a period–doubling bifurcation; we denote it by r2. It starts at
(−1.06 eV, 6.489 t.u.) and while it appears in the diagram as the continuation of
r1 it is different in character. r2 family has not been continued above −0.623 eV,
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Figure 6.4: Potential energy as a function of γ along the minimum energy path. The
potential is minimized in R and r for specific γ. The kink exhibited at roughly −3.05 eV
relates to the birth of saddle–node bifurcations and isomerization states.

as numerical difficulties due to nearby orbits there prevented the convergence of the
algorithms we used. In fig. (6.6) the evolution of r family is depicted by plots of
three of its orbits covering the energy range of this family. Similarly, orbits of the
r1 and r2 families are plotted in fig. (6.7). Their initial conditions, periods, and
energies are given in table (6.1).

The orbits of the R, R1, R2, and r families are effectively restricted on the
{R, r} plane due to the linearity of HCP at the equilibrium point, whereas the r1,
r2 families exhibit a small bending vibration; the orbits of the latter families have the
appropriate period to resonate with the γ-oscillator. Nevertheless, the predominant
character of all of them is the stretch in R and r.

The principal family of primarily bending nature is denoted with B. The first
located orbit in it is at −5.213 eV and has a period of 4.786 t.u., quite close to
the expected by the harmonic approximation. The initial stability is lost around
(−3.910 eV, 5.190 t.u.) but is quickly regained at −3.866 eV and is kept even above
dissociation. During the instability interval of B, a conjugate pair of Floquet multi-
pliers leaves and, in a slightly higher energy, re-enters the unit circle at 0◦. The two
successive bifurcations appear to give birth to the B1 and B2 families. The first
orbit of B1, which inherits the stability, has the same period as the corresponding
orbit of B, 5.191 t.u.. The family becomes unstable at −2.75 eV. Orbits of the B1
family are quite complicated; they are not symmetric with respect to γ = π rad line
and, therefore, we can deduce that their “reflections” are also periodic orbits and
that their influence on the quantum behavior is limited. The B2 family starts off as
unstable; it changes through a steady–state bifurcation at (−2.763 eV, 5.525 t.u.)
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remaining stable up to −1.102 eV where it undergoes a period–doubling bifurcation.
It is quite intricate but symmetric with respect to γ = π rad. In fig. (6.8) represen-
tative orbits of the B, B1, and B2 families are given; their energies, periods and
initial conditions are given in table (6.1).
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Figure 6.8: Projections of orbits in HCP, given at table (6.1), of the B family (upper row),
the B1 family (middle row), and the B2 family (lower row). Solid, dashed, and dotted lines
on the same plot represent orbits of increasing energy.

Quite interesting is the “peak” exhibited by B at −1.23 eV. The energy accu-
mulated in the bending mode is such that angle γ reaches there 2.4 rad, very close
to the onset of strong anharmonicity of the potential, as judged by the minimum
energy path, fig. (6.4). This fact makes, eventually, the γ-oscillator resonate pri-
marily with r and, in a lesser extent, with R, resulting in the onset of excitation
of higher harmonic terms of these modes. It is important to note that the orbits
of the B family are thus confined, regardless the energy, in relatively small bending
angles between 2.4 rad and 3.88 rad around the equilibrium geometry. Moreover,
their shape is not the appropriate one to penetrate towards CP–H. This behavior
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is counterintuitive: one would expect that orbits in B family explore deeper and
deeper the isomerization path with increasing energy. As it turns out, the excess
energy is deposited in the other two modes enlarging primarily the CP stretching
and making H approach CP. One could attribute this confinement to an effective
barrier due to the 1:2 resonance of the r- and γ-oscillators, and, in a lesser degree, to
the 1:5 resonance of R and γ. A similar “kink” is exhibited by the r and r1 families
at the same energy and can be explained by the resonance with R. The descending
segment of r and, consequently, B, above the onset of resonance is due to the steep
region of the potential which is explored by r in high energies.

Apart from the orbits in the fundamental B family and its bifurcations, other orbits
exist which exhibit a large bending vibration, extending on the isomerization path
towards the CP–H side of the PES at gradually higher angles. They are born
through saddle–node bifurcations. The first bifurcation of this kind we located
occurs at (−3.5673 eV, 5.5855 t.u.) and the emerging family is denoted by SN1. Its
stable branch, SN1s, undergoes a steady–state bifurcation at (−1.978 eV, 8.196 t.u.)
through which it loses its stability for the rest of the energy region we traced it. As we
can see in fig. (6.9), the r-oscillation changes considerably as energy increases. The
orbits of the family exhibit gradually smaller r–amplitude up to (−3.1 eV, 7.0 t.u.);
at this point of the C/B diagram, fig. (6.5), a significant change in the slope takes
place. Above −3.1 eV the family grows in parallel to the r family, an observation
which corroborates that the resonance with the r-oscillator is reestablished and that
the excess in energy is deposited there; the other two modes, R and γ, do not
change their quite large amplitude considerably. Nevertheless, the variation in the r
coordinate is small, much smaller than in the B family. In fig. (6.10) the evolution
of the unstable branch SN1u of the first saddle–node family is depicted. It exhibits
a much larger r-oscillation and its Period–Energy relation resembles that of r. The
data of the orbits plotted are given in table (6.2).

Two interesting observations can be made on SN1: First, none of its orbits
extends more than roughly 60◦ from the equilibrium, even at high energies; they
barely exceed the angle where the “kink” in the minimum energy path is exhibited
(cf. fig. (6.4)). Therefore, these too support the regularity of the system and cannot
influence the isomerization quantum states. Second, we notice that a saddle–node
bifurcation occurs at the vicinity of the rather abrupt change in the slope of the
SN1 family. The emerging family, denoted by SN2, has a stable branch which, in
a sense, “inherits” and continues the steep segment of SN1s.

SN2 is born at (−3.0723 eV, 7.2932 t.u.); notice that the minimum energy
path depicted in fig. (6.4) at this energy exhibits the most notable “kink”. Its
stable branch, SN2s, undergoes a series of steady–state bifurcations at −3.007 eV,
−2.958 eV, and −2.656 eV which alternate the stability. The last bifurcation gives
birth to a family we denote by SN2A and renders SN2s unstable for the rest of
the energy region we covered. The unstable branch, SN2u, was continued up to
−1.21 eV; it consists of orbits with very small r-vibration and it is “parallel” to the
similar in character segment of SN1s. The segment of SN2A we located starts at
10.2522 t.u. and is unstable. In fig. (6.11) representative orbits of the SN2 family
and its bifurcation are depicted; their data are given in table (6.2). We also give
there an initial condition for an orbit belonging to a bifurcation of SN2A (SN2AA)
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Figure 6.9: Projections of orbits of the SN1s family of HCP from low (upper row) to high
(lower row) energies. Their data are given in table (6.2).
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Figure 6.10: Projections of orbits of the SN1u family of HCP at low, medium, and high
energies (solid, dashed, and dotted lines respectively). Their energies, periods and initial
conditions are given in table (6.2).

we located but we were not interested in continuing. As we can see, the orbits of the
SN2 family extend to large angles on the isomerization path. On the other hand,
while some of them have enough energy to reach the saddle point at γ = 0◦, the
CP–H configuration, none of them does.

At (−2.6179 eV, 10.5163 t.u.) another saddle–node bifurcation was located. It
gives birth to the SN3 family. The stable branch of this family, SN3s, becomes
unstable at (−2.545 eV, 10.2176 t.u.) and the SN3A family emerges with the
same period. As the energy increases, SN3s becomes highly unstable. The unsta-
ble branch, SN3u, undergoes a steady–state bifurcation at −2.6078 eV and gains
stability; 3 meV above this energy it becomes complex unstable. SN3A starts at
−2.5447 eV having an initial period of 10.22 t.u.. It quickly loses the initial sta-
bility through a bifurcation at (−2.535 eV, 10.258 t.u.) which renders it complex
unstable. The orbits in this family are not symmetric with respect to γ = π rad.
Initial conditions for representative orbits of the SN3 and SN3A families are given
in table (6.2); they are plotted in fig. (6.12).

As we can see in the relevant plots, the families emanating from saddle–node
bifurcations comprise of orbits which extend progressively deeper on the minimum
energy path, exploring areas where the potential is gradually flatter; this has a direct
impact on their periods, which strongly increase with energy. One can surmise the
birth of more saddle–node families in higher energies which penetrate deeper and
deeper into the CP–H hemisphere of the PES. Such families are born in predomi-
nantly chaotic phase space regions making quite problematic the attempts to locate
them. The overall dynamical behavior of HCP, as deduced from the C/B diagram
and elaborated in this section, is rather regular despite the resonance between the r-
and γ-oscillators. Instability is developed in relatively high energies primarily when
the bending angle extends significantly towards the CP–H side of the potential.

6.4.2 DCP

The Continuation/Bifurcation (C/B) diagram for the DCP molecule is given in
fig. (6.13). It depicts the various periodic orbit families we located, plotting their
period (measured in time units of ∼ 10.18 fs) with respect to their energy (in eV).
For clarity it is split in two, one graph comprising the principal families and their



108 CHAPTER 6. SPECTROSCOPY OF HCP AND DCP

SN2s

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN2u

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN2A

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.5

2.0

2.5

γ (rad)

R
 (

Å
)

SN2AA

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.0

1.5

2.0

2.5

γ (rad)

R
 (

Å
)

SN2s

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.45

1.50

1.55

1.60

1.65

1.70

γ (rad)
r 

(Å
)

SN2u

1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.45

1.50

1.55

1.60

1.65

1.70

γ (rad)

r 
(Å

)

SN2A

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.5

1.6

1.7

1.8

γ (rad)

r 
(Å

)

SN2AA

1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.5

1.6

1.7

1.8

γ (rad)

r 
(Å

)

SN2s

1.45 1.50 1.55 1.60 1.65 1.70

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)

R
 (

Å
)

SN2u

1.45 1.50 1.55 1.60 1.65 1.70

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)

R
 (

Å
)

SN2A

1.5 1.6 1.7 1.8
1.0

1.5

2.0

2.5

r (Å)

R
 (

Å
)

SN2AA

1.5 1.6 1.7 1.8
1.0

1.5

2.0

2.5

r (Å)

R
 (

Å
)

Figure 6.11: Projections of orbits in HCP, given at table (6.2), of the SN2s family (first
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Figure 6.12: Projections of orbits in HCP, given at table (6.2), of SN3s (upper row), SN3u
(middle row), and SN3A (lower row). Solid and dashed lines on the same plot represent
orbits of low and high energy respectively.

bifurcations, and another depicting the saddle–node orbits.

As expected, three principal families emerge deep in the potential well. The orbits
just above the energy minimum have periods, as shown below, very close to those
predicted through the harmonic expansion and exhibit predominant excitation in
each of the normal modes. The calculated periods of the classical harmonic oscil-
lators are 1.3138 t.u., 2.6628 t.u., and 6.1534 t.u.. The first two modes are of pure
stretching nature, mainly in R and r respectively, while the last period corresponds
to the pure bending mode. Due to the significant change in one of the atomic masses
from the HCP case we examined above, a 1:2 Fermi resonance is now exhibited be-
tween the stretching modes, while the bending one does not participate in a low
order resonance. We denote the principal families by R, r, and B to indicate their
primary character (B stands for bending). Their detailed evolution is as follows:

The first orbit we located from the R family, in the vicinity of the potential
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cate instability.
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minimum, has a period of 1.314 t.u.. At (−5.1760 eV, 1.3195 t.u.), just 0.06 eV
above the minimum, the R family undergoes a period–doubling bifurcation through
which it loses stability and gives birth to the R1 family. Stability is regained at
(−4.6115 eV, 1.378 t.u.) through another period–doubling bifurcation; the instabil-
ity is inherited by the R2 family born at this point. Above this bifurcation, the R
family is remarkably stable up to at least −0.3 eV, which is the energy we ended its
continuation. R1 starts at a period of 2.639 t.u.; its initial stability is lost through a
period–doubling bifurcation at (−2.3218 eV, 2.8957 t.u.). The first orbit we located
from the R2 family is at 2.7567 t.u.; the family is unstable in the energy region we
traced it.

The r family starts with a period of 2.663 t.u. and remains stable up to 0.04 eV
where it undergoes a period–doubling bifurcation. Representative orbits of the R,
R1, R2 and r families depicting their evolution are given in fig. (6.14). The orbits
are confined on the {R, r} plane at γ = 180◦ and they are overlaid on the relevant
potential contour plot. Their data are given in table (6.3). As we can see from
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Figure 6.14: Projections in the {R, r} plane of orbits at low, medium, and high energies of
the R, R1, R2, and r families in DCP, superimposed on the potential contours for γ = π rad.
The inner contour is at −5.2 eV and the increment is 0.3 eV.

the plot, the families R1 and R2 exhibit substantial oscillation in both R and r
coordinates. We will relate them below to certain progressions of quantum states
which have similar behavior.

Let us note that at −1.3 eV a sharp dip followed by an equally sharp peak at
−1.23 eV is exhibited by r, and, as it turns out, by other families (B1, SN1u,SN4u).
The peak occurs at the same energy as in HCP and can be attributed to a very acute
resonance with R, while the plunge in the period prior to it indicates that the relevant
orbits started to explore a quite steep region of the potential.
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B, the principal family exhibiting excitation in the γ-oscillator, starts with a
period of 6.16 t.u.. As energy increases, the eigenvalues of the monodromy matrix
come very close to ±1 but do not leave the unit circle apart from a brief interval of
complex instability between −3.4815 eV and −3.4626 eV. A steady–state bifurca-
tion prior to reaching (−3.2424 eV, 8.39 t.u.) gives birth to the B1 family which
inherits the stability. The B family becomes more unstable as energy grows and
undergoes another bifurcation at −0.709 eV becoming doubly unstable. B1 starts
at 8.388 t.u. and undergoes two successive Hopf bifurcations at −2.9323 eV and
2.8676 eV which render it temporarily complex unstable. Two successive period–
doubling bifurcations at −2.8666 eV and −2.4213 eV make it singly and doubly
unstable, respectively, at least up to the final energy we continued it. Plots of
various orbits of the B and B1 families are given in fig. (6.15).
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Figure 6.15: Projections of various orbits in DCP from the B family (upper figures) at
low (solid line), medium (dashed line), and high (dotted line) energies, and the B1 family
(lower figures) at low (solid line) and high (dashed line) energies. Their data are given in
table (6.3).

A similar observation for the bending orbits we made in the HCP case holds also
for the DCP phase space. The orbits of the B and B1 families go deeper on the
isomerization path but are still confined, even at high energies, in angles ±1 rad
around the equilibrium geometry. Although they do have the proper shape, they do
not probe deeper and deeper the CP–D hemisphere with increasing energy as one
might expect but, rather, they deposit the excess energy in the other two modes.
This is intriguing as the γ-oscillator does not take part, at least initially, in a low-
order resonance with the others; we attributed the confinement in HCP to such a
resonance. The solution lies in the significant anharmonic character of the bending
mode in contrast to the other two (and to the B family in HCP). γ gradually tunes
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at high energies into a resonance with the R- and r-oscillators, effectively confining
the B and B1 families to small deviations from equilibrium.

Many saddle–node families have been located in the DCP phase space. The first
such family is born at (−3.0895 eV, 8.9660 t.u.) and is denoted by SN1. Its orbits
do not extend more than 1 rad away from the equilibrium. It is not symmetric with
respect to γ = π rad so we expect its “mirror” family to exist; both play a limited, if
any, role in the quantum picture. The stable branch SN1s undergoes a Hopf bifur-
cation at −3.065 eV which renders it complex unstable. Around −2.91 eV it regains
stability through another Hopf bifurcation, losing it shortly afterwards at (−2.88 eV,
9.64 t.u.) through a period doubling bifurcation. Another period–doubling bifur-
cation at −2.725 eV renders SN1s doubly unstable. The unstable branch, SN1u,
undergoes at −2.012 eV a period–doubling bifurcation. The two eigenvalues that
leave the unitary circle at this energy return at −1.126 eV. Representative orbits of
SN1 are given in table (6.4) and plotted in fig. (6.16).

A saddle–node bifurcation at (−2.991 eV, 10.107 t.u.) gives birth to the SN2
family. The two branches can be characterized as stable and unstable in a reduced
phase space judging from the position of one pair of eigenvalues on the unitary plane.
The second free-to-move pair makes both unstable. SN2s undergoes successively in
an energy region from −2.96 eV to −2.34 eV a cascade of period–doubling and Hopf
bifurcations which, apart a very small region of stability, render it as complex un-
stable. There is an indication that this branch incorporates the branches of another
saddle–node bifurcation at (−1.1572 eV, 12.647 t.u.) but we could not isolate it.
The initially doubly unstable branch, SN2u, undergoes two period–doubling bifur-
cations at −2.985 eV and −1.033 eV; in this region it is singly unstable. The orbits
of SN2 are also non-symmetric with respect to γ = π rad. Interestingly enough, the
orbits of SN2u tend to be symmetric with increasing energy; this is achieved above
−1.93 eV. The evolution of SN2 is depicted by representative orbits in fig. (6.16);
their data are given in table (6.4).

Another saddle–node bifurcation was located at (−2.8456 eV, 12.9731 t.u.). The
family emanating from it is denoted with SN3. Its stable branch, SN3s, undergoes
a series of Hopf bifurcations at −2.8375 eV, −2.681 eV, −2.648 eV which toggle
the stability, leaving the family doubly unstable. In the region between −2.3 eV
and −1.527 eV a pair of eigenvalues return and remain on the unitary circle. the
largest of the eigenvalues grows steadily in magnitude, making the family highly
unstable. As we can see in fig. (6.17), the orbits of SN3 are symmetric with respect
to γ = π rad and probe the isomerization path deeper than the previous saddle–node
families.

SN4 is born at (−2.2985 eV, 16.1594 t.u.). Both branches of it are, as in the
case of SN2, unstable. The family undergoes a series of bifurcations none of which
changes it qualitatively. The shape of its orbits is depicted in fig. (6.17); they are
non-symmetric.

At (−3.4363 eV, 5.9033 t.u.) another saddle–node bifurcation occurs and SN5 is
born. This family is robust in the sense that its branches do not alter their stability
at least up to −1.51 eV where our data end. Another saddle–node bifurcation was
located at (−2.5722 eV, 5.6741 t.u.). The family emanating from it is denoted with
SN6. The stable branch undergoes a bifurcation only at −0.53 eV through which it
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Figure 6.16: Projections of orbits from the stable (first row) and unstable (second row)
branches of SN1 and the stable (third row) and unstable (fourth row) branches of SN2
families in DCP at low (solid line) and high (dashed line) energies. Their data are given in
table (6.4).



6.4. ANALYSIS OF THE CLASSICAL PHASE SPACE 117

SN3s

1 2 3 4 5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN3u

1 2 3 4 5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN4s

1 2 3 4 5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN4u

1 2 3 4 5

1.2

1.5

1.8

2.1

2.4

2.7

γ (rad)

R
 (

Å
)

SN3s

1 2 3 4 5

1.4

1.6

1.8

2.0

2.2

γ (rad)
r 

(Å
)

SN3u

1 2 3 4 5

1.4

1.6

1.8

2.0

2.2

γ (rad)

r 
(Å

)

SN4s

1 2 3 4 5

1.4

1.6

1.8

2.0

2.2

γ (rad)

r 
(Å

)

SN4u

1 2 3 4 5

1.4

1.6

1.8

2.0

2.2

γ (rad)

r 
(Å

)

SN3s

1.4 1.6 1.8 2.0 2.2

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)

R
 (

Å
)

SN3u

1.4 1.6 1.8 2.0 2.2

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)
R

 (
Å

)

SN4s

1.4 1.6 1.8 2.0 2.2

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)

R
 (

Å
)

SN4u

1.4 1.6 1.8 2.0 2.2

1.2

1.5

1.8

2.1

2.4

2.7

r (Å)

R
 (

Å
)

Figure 6.17: Projections of orbits from the stable (first row) and unstable (second row)
branches of SN3 and the stable (third row) and unstable (fourth row) branches of SN4
families in DCP at low (solid line) and high (dashed line) energies. Their data are given in
table (6.4).
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loses stability. We were not able to continue the unstable branch above −2.325 eV; it
appears to head towards a bifurcation which will stabilize it. Plots of representative
orbits of SN5 and SN6 are plotted in fig. (6.18); their data are given in table (6.4).
We can see that the orbits of both families are symmetric with respect to γ = π rad.

We have also located another family of periodic orbits which we were not able to
identify as a bifurcating branch of any family. The first orbit from the denoted with
UN we found is at (−2.3736 eV, 14.2665 t.u.); we have continued the UN family
well above the dissociation limit. In the energy region we have data for, the family
is unstable. Its evolution is depicted in fig. (6.19).

Notice that the orbits from the saddle–node families we located are either non-
symmetric with respect to γ = π rad (SN1, SN2, SN4), or their shape is not
the appropriate one to explore the isomerization path (SN5, SN6). The SN3
family, which lack these limitations, is highly unstable and, therefore, is unable to
induce localization of wave functions. There seem to be no families to facilitate the
transition of the molecule from D–CP to CP–D in contrast to the HCP case we
examined in the previous section.

6.5 Quantum Treatment and Discussion

The quantum mechanical study of HCP has been presented in [143] by Beck et al.,
while for DCP it was published by Bredenbeck et al. in [169]. We review and augment
them below.

6.5.1 HCP

The quantum treatment of HCP was performed for J = 0, 1, 2; it was treated in in
Jacobi coordinates and the corresponding Hamiltonian operator is given in eq. (4.1).
The nuclear wave function was expanded on a set of basis functions for the angular
motion, represented by the three Euler angles χ, φ, θ and the Jacobi angle γ, while
the two stretching coordinates were treated by the discrete variable representation
(DVR). 116 products of the Wigner functions DJ

KM (χ, φ, θ, γ) with the associated
Legendre polynomials P`K(γ) were used as basis functions for the angular part;
equidistant grids with 42 and 45 nodes were used for R and r respectively. The
initial set of 219240 direct product basis functions was drastically contracted in a
sequence of diagonalizations and truncations leaving a manageable optimized basis
set of ca. 9500 functions; in this basis, the Hamiltonian was diagonalized to produce
the energies and wave functions. For non-zero angular momentum, this procedure
was repeated for every allowed value of K and for the final step, the Coriolis coupling
was introduced and parity was taken into account. The calculations were deemed
fairly accurate as the energies deviated by less than 0.1 cm−1 in the energy window
of interest, compared to the same procedure with a different cut-off energy.

The classical harmonic expansion of the potential around the equilibrium provided
us with the oscillator periods. From them we can estimate the quantum vibrational
frequencies of the normal modes, once we clarify a point.

The deviation of the C–P bond, during the molecular vibrations, from the closest
principal axis at the equilibrium configuration is small, due to the small mass and
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Figure 6.18: Projections of orbits from the stable (first row) and unstable (second row)
branches of SN5 and the stable (third row) and unstable (fourth row) branches of SN6
families in DCP at low (solid line) and high (dashed line) energies. Their data are given in
table (6.4).
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Figure 6.19: Projections of orbits from the UN family in DCP at low (solid line) and high
(dashed line) energies. Their data are given in table (6.4).

distance from C–P of H/D. Therefore, we can regard the C–P bond as the molecule-
fixed z-axis. This choice offers the advantage of rendering the Coriolis coupling, the
terms with the raising/lowering operators, very small. This coupling spoils the
conservation of the eigenvalues K~ of Ĵz (which are also eigenvalues of ̂̀

z with
our choice for the z-axis) by mixing states with adjacent K; making the coupling
small allows us to regard K as a good quantum number. This K in spectroscopic
literature is called the vibrational angular momentum quantum number.

The second normal mode has almost pure bending character. Since the equi-
librium structure of the HCP X̃ electronic state is linear, the bending vibration
is doubly degenerate. This leads to the restriction that the eigenvalues of Ĵz,
K~, satisfy |K| = v, v − 2, . . . and 0 or 1 for even or odd bending quantum num-
ber v respectively. The total angular momentum J must be larger or equal to
K. As we treat classically the molecule as having J = 0, it follows that K is
zero and v must be even; therefore, the quanta of the bending mode are twice
the classically estimated. With the above in mind, the quanta of the normal
modes are calculated from classical data to be 0.4144 eV (3342.68 cm−1), 0.1592 eV
(1283.67 cm−1), and 0.1701 eV (1371.67 cm−1) for the R, r and bending modes re-
spectively. The fundamental frequencies as determined by the quantum calculations
are 3216.56 cm−1, 1274.58 cm−1 and 1333.74 cm−1 respectively, while the experi-
mental values (from [155]) are 3216.889 cm−1, 1278.278 cm−1 and 1334.980 cm−1.
The quantum and experimental results are in very good agreement (as the PES was
appropriately modified to achieve this), while the slight discrepancy exhibited in the
classical values can be accounted for: the frequencies of the classical oscillators were
computed at the minimum of the potential while the quantum treatment incorpo-
rates the zero-point energy. From the classically estimated quanta we can compute
the ground-state energy at −4.86435 eV, in excellent agreement with the correct
value of −4.86776355 eV.

The principal feature of the HCP quantum phase space is, as in the classical
analysis, the pronounced 2:1 anharmonic resonance between the bending and r nor-
mal modes, i.e. 2v2 = v3. This resonance leads to a quasi-degeneracy of eigenstates
with the same polyad number P = v2 + 2v3 = 0, 1, 2 . . . (and the same v1). The
quantum states are organized in well-defined “clusters” termed as polyads, which,
in the low energy regime are far from each other. We will use the notation [[v1, P ]]
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for each polyad; the states can be assigned as (v1, P − 2v3, v3). There are (P + 2)/2
and (P + 1)/2 individual states in each polyad for even and odd values of P respec-
tively. In low energies the pure v2 overtones (0, v2, 0) lie at the top of the polyad
whereas the pure v3 overtones (0, 0, v3) lie at the bottom. The characteristics of the
polyads are generally the same up to [[0,16]]. Qualitative changes occur above this
“cluster,” starting from the bottom states which gradually assume the character of
isomerization states.

The first mode essentially represents the H–CP stretch. It is weakly coupled
to the other two modes and due to its large quantum, few members of its pure
progression lie in the energy window of interest and were unambiguously identified.
Those wave functions which were visually assigned to the (v1, 0, 0) states can be
shown to be scarred by periodic orbits of the R family with appropriate energies,
that is, their energy above the potential minimum is roughly equal to the excitation
energy of the wave functions.

The members of the (0, v2, 0) progression start out as true bending states at the
bottom of the energy-level spectrum, that is, they exhibit excitation predominantly
on the bending angle. Due to the resonance, however, they gradually evolve towards
larger CP bond distances as v2 increases. As we can see in fig. (6.20) [R. Schinke,
personal communication] where representative members of the pure bending progres-
sion are depicted, the series acquires a CP stretch character and, as a consequence,
its members, even at high energies, are confined to angles ±40◦ around the HCP
equilibrium. They do not follow the isomerization path from H–CP to CP–H as
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Figure 6.20: Various members of the (0, v2, 0) progression in HCP. Shown is one particular
contour R2r2 sinγ|Ψ(R, r, γ)|2 = const.. The plots are viewed along the R axis in the
direction perpendicular to the {r, γ} plane. The r axis ranges from 2.4 α0 to 4.0 α0 and the
γ axis ranges from 180◦ to 100◦. Due to the sinγ factor, a node at the linear configuration
exists irrespective of whether v2 is even or odd.

one would expect through a normal mode analysis, even when their energies lie
well above the energy where the minimum energy path departs from the potential
well around the equilibrium and levels off to the CP–H side. The (0, v2, 0) states
are very robust in the sense that they form regular series easily recognizable up to
very high energies where many other states are unassignable due to strong mixing
with their neighboring states. Wave functions of this progression do not alter their
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general shape; with increasing energy more nodes build up. If we recall the shape
and the almost continuous stability of the periodic orbits comprising the B family,
we can clearly consider them as backbones of the (0, v2, 0)-type wave functions. As
will be shown below, there is also a quantitative match between B and the bending
progression.

The third pure progression (0, 0, v3) comprises wave functions which evolve along
the CP stretching coordinate, r. They are also robust and easily identified even at
high energies. As inferred by fig. (6.21) [R. Schinke, personal communication] and
fig. (6.6), they are obviously scarred by orbits of the r family.
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Figure 6.21: Various members of the (0, 0, v3) progression in HCP. The r axis ranges from
2.4 α0 to 4.0 α0 and the γ axis ranges from 180◦ to 100◦.

A remark pertaining to all wave functions of the pure progressions is that the
quantum numbers in their assignment are consistent with the number of nodes along
the corresponding scarring periodic orbits and not necessarily along the coordinate
axes. This distinction is not that prominent in the HCP case we examine here, as
the fundamental periodic orbit families follow the R, r and γ oscillators, at least in
low energies; it is very clear, though, in the DCP spectrum as we will explain in the
following section.

States which exhibit large-amplitude bending motion of the hydrogen atom
around CP emerge rather abruptly at high energies. The so called “isomeriza-
tion states” appear as mutations of the lowest states in the polyads from P = 18
onwards, and gradually their neighboring states also acquire a true bending charac-
ter, replacing the regular states. As we can see in fig. (6.22) [R. Schinke, personal
communication], the isomerization states, parametrized by the polyad number and
denoted by (0, P, 0)I , are not confined to angles close to linearity as the members
of the bending progression are. Due to the substantial change in the slope of the
potential along the minimum energy path towards the CP–H region, the (0, P, 0)I
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Figure 6.22: Upper row: Isomerization states in HCP. Lower row: Corresponding classical
periodic orbits. The r axis ranges from 2.4 α0 to 4.0 α0 and the γ axis ranges from 180◦ to
100◦.

progression is considerably more anharmonic than the pure v2 progression. This
causes neighboring polyads to overlap, making the energy spectrum complicated
and confusing. The first wave function clearly assigned as an isomerization state,
(0, 22, 0)I , appears at −3.203 eV or 1.664 eV above the zero-point energy. At almost
exactly (within 5×10−3 eV) this amount of energy above the potential minimum the
first saddle–node bifurcation occurs; naturally, SN1 also influences lower quantum
states. Recall that the orbits in the steep segments of SN1 and SN2 exhibit excita-
tion primarily in γ; the resonance skews the branches and increases the amplitude of
r. We can therefore consider the orbits in the steep segments as the backbones of the
pure (0, P, 0)I progressions. This is verified in the lower row of fig. (6.22) where the
“corresponding” periodic orbits are plotted. Their energy above minimum roughly
equals the excitation energy (i.e. above zero-point energy) of the depicted isomer-
ization states.

In fig. (6.23) a striking evidence of the correspondence of quantum and classical
results is depicted. In the upper part of the figure, reprinted from [168], the calcu-
lated [168] and the experimental [150,154,155] energy differences between neighbor-
ing quantum states of the progressions (0, P, 0), (0, 0, P/2) and (0, P, 0)I versus the
polyad quantum number P are plotted. In the lower part, the classical equivalent is
given: the frequencies of the periodic orbits of the B (multiplied by 2), r, and SN
(multiplied by 2) families are plotted against the polyad number P as inferred by
the classical energy E. In the harmonic approximation, the classical energy above
minimum is proportional to the classical action; this in turn relates linearly to the
quantum numbers via the EBK quantization rule, eq. (2.22). Exact quantitative
correspondence of course cannot be expected, nevertheless, all the features of the
system as exhibited in the quantum diagram are present in the classical one: kinks
and “dips” or minima of interpolyad level spacings appear also on the periodic orbit
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Figure 6.23: (a) Energy differences between neighboring states of the (0, P, 0), (0, 0, P/2)
and (0, P, 0)I progressions versus polyad number P in the HCP spectrum. Dots indicate
quantum mechanical calculations and are plotted at the higher state, open circles show the
experimental results. (b) Classical frequencies of the B, r, and the saddle–node families
versus a classically estimated polyad number (see text). The linetype changes with the
stability.
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families, the convergence of (0, P, 0) and (0, 0, P/2) progressions at high energies is
exhibited by the B and r families which correspond to these progressions. We also
note that the behavior of the quantum isomerization states, which exhibit small r
excitation, is reflected in the steep segments of the saddle–node states; once they
level off due to the onset of resonance with r, one can surmise that they influence
the (0, v2, v3) progressions.

Svitak and co-workers [176] showed that characteristic patterns in the spectrum
of a pair of resonant modes are associated with the structure of the corresponding
classical phase space. According to them, a “dip” or minimum of interpolyad level
spacings implies a separatrix, a structure in the classical phase space that contains
an unstable periodic orbit. More complicated phase space structures which involve
more than one periodic orbit, e.g. those formed after a saddle–node bifurcation, can
give rise to more complex spectral patterns. Joyeux et al. in [177] examine such
patterns in the energy spacing between adjacent levels in the HCP spectrum.

6.5.2 DCP

All quantum calculations for DCP assumed a non-rotating molecule. The Hamil-
tonian for DCP, eq. (4.1), was represented in a highly contracted-truncated three-
dimensional basis in a similar manner to the HCP case. The initial 322770 functions
were shrunk to 12087; tests were performed with different cut-off energies to assess
the error of the variational calculations and ensure the accuracy of the results. The
uncertainty for the energies of the less satisfactory converged progression is of the
order of 1 cm−1 while for most states the accuracy is much higher. It is worth noting
that the agreement between the quantum calculations of the transition energies and
the limited experimental results is excellent.

The classical harmonic expansion of the potential around the equilibrium pro-
vided us with the oscillator periods. From them we can calculate the quanta of
the normal modes to be 0.3092 eV (2493.87 cm−1), 0.1526 eV (1230.80 cm−1) and
0.1320 eV (1064.65 cm−1) for the R, r and bending modes respectively, keeping in
mind the remark on the bending frequency we elucidated in the HCP case. The fun-
damental frequencies as determined by the quantum calculations are 2419.44 cm−1,
1228.68 cm−1 and 1037.17 cm−1 respectively. We notice the very good agreement
of classical and quantum frequencies although they are not supposed to be directly
comparable. One could attribute the more accurate, than in HCP, classical predic-
tions to the larger mass of D compared to H; it makes the molecule more suitable for
classical treatment. The ground-state energy is classically estimated at −4.9393 eV,
while the correct quantum value is −4.9410 eV.

As expected by the classical analysis, the quantal spectrum of DCP is governed
by a 1:2 anharmonic resonance between the two stretching modes v1 and v3. This
resonance leads to a quasi-degeneracy of eigenstates with the same polyad quantum
number P = 2v1 + v3 = 0, 1, 2 . . . (and the same bending quantum number v2).
The bending degree of freedom is—at least in the low and intermediate energy
regimes—relatively weakly coupled to the two stretching degrees of freedom. The
spectrum is structured in terms of polyads; we will denote them with [[v2, P ]]. Up to
[[0,15]] the polyads are distinct and the assignment in terms of v1 and v3 is generally
straightforward; above P = 15 the polyads overlap making the identification more
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and more cumbersome. It turns out that the pure v3 overtones (0, 0, v3) always lie
at the top of their polyads whereas the pure v1 overtones (v1, 0, 0) lie at the bottom.

The particular resonance appearing in DCP leads to a substantial mixing of the
R and r modes. As a consequence, the pure v1 and v3 progressions are not local-
ized parallel to the R and r axes but they develop along the R and R1 periodic
orbit families following them up to high energies; the assignment reflects the num-
ber of nodes along the corresponding scarring orbits. Recall that the R1 family
is born roughly 0.06 eV above the minimum, well below the quantum zero-point
energy (0.29517 eV). In fig. (6.24) we present contours of members of the v1 and v3

progressions exhibiting this particular behavior. We can describe the (v1, 0, 0) over-
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Figure 6.24: Selected wave functions of the (0, 0, v3) and (v1, 0, 0) progressions in DCP.
Shown is one particular contour R2r2 sinγ|Ψ(R, r, γ)|2 = const.. The plots are viewed along
the γ axis in the direction perpendicular to the {R, r} plane. The lower rightmost panel
shows the potential energy surface and representative orbits of the R and R1 families. The
R axis ranges from 2.2 α0 to 5.5 α0 and the r axis ranges from 2.2 α0 to 3.9 α0. The
referenced eigenenergies are measured from the potential minimum.

tones as D–CP stretching states; a similar classification of the (0, 0, v3) overtones as
CP stretching states would certainly be inappropriate. Instead, another group of
quantum states exhibits a predominant CP stretch.

An examination of the quantum results shows that a few states with v2 = 0
do not clearly fall into the v1 and v3 pure progressions or their combinations but,
instead, form different classes. The states assigned as (v, 0, v) with v = 3, 4, . . .
(P = 9, 12, . . .) judging by their position in the spectrum, are the clearest examples.
They gradually develop a new type of shape with increasing v. Their “backbone” is
strongly curved in the {R, r} plane, too, but in the opposite direction than observed
for the v3 progression. Recalling the shape of the orbits in the r family one can
relate the new class to these and assign them as (0, 0, P )r to distinguish them from
the (0, 0, v3) states. The number of nodes along the backbones of the (0, 0, P )r wave
functions is identical to the polyad number P . Notice that states of the new class
can be found in higher polyads with P a multiple of 3. In other polyads there are
states with similar, but not as clear, character as (v, 0, v)/(0, 0, P )r; however, in their
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assignment v1 and v3 must differ by one, i.e. v1 − v3 = ±1. A careful inspection
of the (v, 0, v ± 1) and the low (v, 0, v) levels reveals that these are mixtures of the
(0, 0, v3) and (0, 0, P )r wave functions. Therefore, the (0, 0, P )r wave functions do
exist in lower energies but are obscured; in higher energies, the mixing decreases and
the (0, 0, P )r character emerges. In fig. (6.25) the wave functions of few (v, 0, v± 1)
and (v, 0, v)/(0, 0, P )r states are depicted.
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Figure 6.25: Wave functions of the form (v, 0, v) and (v, 0, v ± 1) in DCP. The first panel
shows the potential energy surface and a representative periodic orbit of the r family. The
axes and the plots are as in fig. (6.24).

The qualitative relation of the three progressions (v1, 0, 0), (0, 0, v3) and (0, 0, P )
with the corresponding periodic orbit families, R, R1 and r can be also exhibited
in terms of the energy dependent transition frequencies i.e. the energy differences
between adjacent levels, and their relation to the classical frequencies as depicted
in fig. (6.26). The energies for the (v1, 0, 0) progression are divided by 2 because of
the 2:1 resonance and the energies of the (0, 0, P )r progression are divided by 3 as
there is one entry for every third polyad. The frequencies of the R family are also
divided by 2 to follow the (v1, 0, 0) progression. Additionally, the classical energies
with respect to minimum are shifted by the quantum zero-point energy.
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Figure 6.26: (a) Transition energies, i.e. energy differences between neighboring levels, for
the three progressions (v1, 0, 0) (divided by 2) ( ), (0, 0, v3) (¥), and (0, 0, P )r (divided by
3) (¨), in the DCP spectrum. Each symbol is plotted at the energy of the upper state. (b)
Frequencies of the periodic orbits of the families R (divided by 2), R1, R2 and r. The
energy of each orbit with respect to minimum is shifted by the zero-point energy. Solid lines
represent stable families; dashed ones indicate instability.
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At low energies, the transition frequencies for all three progressions are very
close together, which implies that here the mixing of modes is strongest. Due to the
different anharmonicities of the three progressions, the gap between the transition
energies widens. This means that the energy range over which a polyad spreads,
increases with energy, which in turn may explain why the mixing between the states
(0, 0, v3) and (0, 0, P )r gradually diminishes in the higher polyads. In this respect,
there is one detail worth mentioning: The transition energy of the (0, 0, v3) progres-
sion first increases with v3 rather than decreases as expected for a vibrational pro-
gression. This indicates that the (0, 0, 1) state is not a true member of the (0, 0, v3)
progression; this is actually confirmed by examining the particular wave function. It
appears to fit better into the (0, 0, P )r progression rather than the (0, 0, v3) series.

One could expect that the fundamental progression (0, 0, v3) follows the r prin-
cipal family of periodic orbits and not the R1 bifurcation. There is no apparent
reason within the classical framework why this happens. A semiclassical analysis
though, provides an explanation to this (cf. Sec. V of [169]).

The bending dynamics of DCP is quite different than what we encountered in HCP.
The bending mode is not involved in an low-order anharmonic resonance with any
of the other two modes but is more or less separated. The corresponding wave
functions (0, v2, 0) are not hindered to evolve along the minimum energy path in
γ. The quantum analysis reveals that up to v2 = 34 the wave functions do not
show distortions and are easy to locate in the spectrum. The corresponding energy
is roughly where the B family becomes unstable. At higher energies, the bending
states become more difficult to assign and the wave functions show gradually more
admixtures of other states. As we can infer from fig. (6.27) where selected states of
the pure bending progression are plotted, and the plots of the classical orbits with
bending excitation, the (0, v2, 0) states are scarred by orbits of the stable segment
of the B family. In higher energies, additional contributions from orbits in the
saddle-node families, most probably SN3, justify the complexity of the evolution
towards CP–D on the isomerization path. It is a fact that no clear-cut isomerization
quantum states have been found.

6.6 Conclusion

We showed above how powerful the classical phase space analysis can be. In the
case of HCP, the abrupt onset of perturbations observed in the experimental SEP
spectra, the substantial change of the rotational and vibrational fine structure con-
stants of the bending states above a particular energy, and the anomalously large
rotational constants of certain vibrational levels are consistent with the existence
of the quantum “isomerization” states; these in turn have been shown to relate in
terms of shape and transition energies to the saddle–node families of periodic orbits.
The overall regularity of the spectrum is reflected in the stability of the fundamental
families and their bifurcations. In DCP, the existence and the characteristics not
only of the fundamental progressions but also of a special class of wave functions is
accurately encoded in the classical phase space. Moreover, the lack of periodic orbits
that would support a definite isomerizing transition is consistent with the quantum
calculations. The crucial role of the periodic orbit analysis in the identification pro-
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Figure 6.27: Selected wave functions of the pure bending progression in DCP. The vertical
axes range from 2.2 α0 to 5.5 α0 and the horizontal axes range from 180◦ to 80◦. The first
panel shows the potential energy surface and a representative periodic orbit of the B family.

cess of the quantum wave functions with appropriate characteristics and, even, the
fairly accurate—due to the regularity of the spectrum—quantitative predictions it
provided are desirable properties of a technique extensible to larger molecules for
which a complete quantum treatment is infeasible.



Chapter 7

Spectroscopy of formyl radical
(HCO) and deuterated formyl
radical (DCO)

7.1 Introduction

When a molecule is excited above its lowest dissociation threshold, it will ulti-
mately fragment into the various possible products through the energetically ac-
cessible channels. This process, the unimolecular dissociation, is of fundamental
importance to physical chemistry and chemical physics [178]; its implications are
key topics in atmospheric and astrophysical sciences. One might expect that the
possibility of a molecule to dissociate rises monotonically with the energy above
threshold, and so is the rate of fragmentation. This is mostly correct, except when
resonance states are encountered. Their dissociation rate may differ by orders of
magnitude from those of neighboring ordinary continuum states. The advances in
modern spectroscopic methods, such as the Stimulated Emission Pumping (SEP)
and Dispersed Fluorescence (DF), allow the preparation of a system in a particular
resonance state, at least in principle, enabling the experimentalists to determine
its energy and width, along with the distribution of internal quantum states of the
products. In practice, it is possible to record a large number of resonance energies
and widths in the spectrum of few small molecules which have a sufficiently low
density of states. This characteristic is necessary to avoid averaging as the energy
resolution that can be achieved in present experiments is not arbitrary. The identi-
fication of a large number of resonances can provide valuable insight of the internal
dynamics of a system prior to fragmentation.

The formyl radical, HCO, is among the important molecules in combustion [179],
atmospheric chemistry [180] and astrophysics [181]. In addition to its practical im-
plications, the very rich resonance structure has attracted a lot of research efforts,
both experimental and theoretical, on HCO and especially on its dissociation into
H+CO. Comprehensive references can be found in [182–184]. Its deuterated iso-
topomer, DCO, has also been under investigation [115, 184–186]. As we will see
below, a very shallow potential well (∼ 0.84 eV) characterizes these molecules; res-
onances are mainly built on excitation of the CO stretching mode. The wealth
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of spectroscopic data for extended energy regions available for HCO and DCO,
combined with theoretical calculations based on accurate global ab initio poten-
tials [114, 187–189] make these molecules prototype systems for studies of radical
spectroscopy and unimolecular reactions. Numerous calculations have been made to
reconstruct the experimental data, and several theoretical techniques, both estab-
lished and innovative ones, have been tested on them.

In this chapter we will present our research results on HCO and DCO based
on the analysis of their classical phase space in the ground electronic state for zero
total angular momentum. The qualitative behavior of the molecules will be derived
from the classical picture and checked against the accurate quantum predictions.
Also, we will elaborate on the applicability of the classification scheme of quantum
states based on classical periodic orbits; it is a superior alternative to the traditional
normal mode assignment which can reveal specific patterns in the organization of
quantum states.

We begin the chapter with a concise review of the available potential energy
surfaces derived in the literature for HCO/DCO. We also outline the construction
of the one we used. Then, the detailed analysis of the classical phase space of HCO
and DCO is given. It is followed by a presentation of the quantum picture for
each molecule, along with a discussion of the analogies between the classical and
quantum treatment. The chapter concludes with an overview of our findings. The
presentation here is a revised and expanded version of the analysis we published
in [190].

7.2 Potential Energy Surface

The first and, for many years, the only global Potential Energy Surface (PES)
for the ground electronic state of HCO/DCO was developed by Bowman, Bittman
and Harding (BBH) [187] and reformulated via a Legendre polynomial fit by Ro-
manowski, Lee, Bowman, and Harding (RLBH) [188]. The potentials were the
result of extensive—at that time—ab initio calculations fitted via a novel method
to a global function. These surfaces reproduce quite accurately all special features
(wells, barriers, saddle points, etc.) of the actual potential and are, in general, real-
istic descriptions for it. However, the comparison of the calculated bound states of
HCO [187] with low-resolution measurements by Murray et al. [191], indicated that
the BBH potential was not adequately accurate. Bowman and Gazdy in [192] em-
ployed a coordinate scaling to the BBH potential to bring the theoretical predictions
in agreement with the experimental results by Murray et al. and with newer ones
by Sappey and Crosley [193]. This scaling applied to RLBH potential proved to be
a significant improvement as it gave a PES which produced more accurate energies
for the bound states and resonances of HCO and DCO [194, 195] in comparison to
experimental observations [182,185,191,193,196–198]. Notwithstanding the modifi-
cation, the BBH and RLBH surfaces did not satisfactorily reproduce the more recent
spectroscopic data for HCO [199, 200] and DCO [185, 186]. The inherent drawback
is that both potentials use spline fits of the ab initio points, something which results
in very slight, unphysical wiggles in significant regions of the PES. These, in turn,
compromise the accuracy of the calculations, primarily on resonance energies and
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widths. On the other hand, scattering cross sections for H+CO are relatively less
sensitive on them and are quite accurate.

Another potential energy surface for HCO/DCO has been developed by Cho et al.
[201]. It is an analytical fit of experimental vibrational energies and reproduces
the general topography of the actual surface. It has the advantage, with respect
to an ab initio PES, that the parameters of the potential can be easily varied.
This allows to assess how each feature of the surface influences the quantitative
results. An alternative potential function has been derived by Murrell and Rodriguez
[202] for the ground-state surface of HCO/DCO, which reproduces the spectroscopic
properties of the molecule at equilibrium and the results of ab initio calculations at
other stationary points on the surface.

To cope with the need of a state-by-state comparison between theory and experi-
ment—in view of the large density of states, especially in DCO—Werner, Keller,
and Schinke developed another PES for the lowest two singlet states, X̃ 2A′ and
Ã 2A′′, based on more accurate than ever ab initio calculations. Its preliminary
version [189] covered the configuration space only partially (ĤCO > 60◦) and used
a threefold 1D spline interpolation scheme. Nevertheless, its predictions were in
better agreement with experimental data for HCO [193] than the BBH results. The
ab initio calculations were extended to cover all relevant configuration space and a
new interpolation scheme was used in the newest version of the potential, the WKS
surface [114]. This is the PES we employed in our calculations; we will describe it
briefly below.

A total of ca. 1000 ab initio energies were calculated for various points, primar-
ily the nodes of a three-dimensional grid defined by the two stretching coordinates,
RHC and RCO, and the ĤCO bond angle. The grid covered the entire region im-
portant for the fragmentation into H and CO, the main dissociation channel. The
other channels require the breaking of the CO bond which, in turn, demands a sub-
stantial amount of energy; they were not taken into account. All calculations were
performed with the MOLPRO package [85] using the internally contracted multi-
reference configuration interaction method with Davidson correction (icMRCI+Q)
(§3.5.3). The potential is written as a sum of diatomic and triatomic terms. The
diatomic potentials for RHO and RHC are of the form of the extended Rydberg
functions (§3.5.6) fitted on specific spectroscopic data, while the CO potential is
a rational function constructed to have the appropriate R−6

CO asymptotic behavior.
The three-body term is a rational function of complex expansions on primitive poly-
nomial bases. The potential for the ground state incorporates a term to account
for the conical intersection at ĤCO = 180◦ with another electronic state of the
same symmetry; the intersection at ĤCO = 0◦ was not treated in any special way
as it is much higher in energy and, therefore, less important for the H+CO disso-
ciation. Numerous modifications in the general form were made in order to avoid
unphysical behavior. The few hundred parameters of the potential function were
determined through a complicated optimization procedure. Dynamical calculations
on the resulting PES gave theoretical estimates with systematic deviations from the
experimental results; the necessary modifications to correct them were introduced
in the potential, and the new parameters were fitted to reproduce mainly the spec-
troscopic data of Tobiason et al. [200]. It should be noted that our group computed
the analytical first derivatives of the WKS potential.
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The topographical analysis of the physically relevant region of the potential reveals
a global minimum of −0.833884 eV at R = 3.02150 α0, r = 2.23253 α0, γ =
2.52822 rad in Jacobi coordinates, cf. fig. (7.1). The potential is zero for infinitely
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Figure 7.1: Coordinates for the HCO/DCO molecules. K indicates the C–O center-of-mass.

separated H/D and CO with CO at its equilibrium distance of 2.13942 α0. The
dissociation energy is not zero: a barrier of 0.125406 eV exists at R = 4.23411 α0, r =
2.14885 α0, γ = 2.30282 rad. There also exists a linearization barrier of 0.26807 eV
at R = 3.29158 α0, r = 2.24855 α0, γ = π rad. Local minima much higher than
the main well were found but they are not expected to influence the dissociation of
HCO/DCO. Representative cuts of the WKS surface for the ground state at the
primary equilibrium are given in fig. (7.2); in the same figure a projection of the
minimum energy path is plotted. This path consists of the points where the potential
is minimum with respect to r and γ for successive fixed values of the H–CO distance
R.

7.3 Analysis of the Classical Phase Space

In our calculations in HCO and DCO molecules, we employed the Jacobi coordi-
nate system as more appropriate for studying the primary dissociation channel of
H/D+CO. The values for the masses we used are mH = 1.00783 u, mD = 2.01566 u,
mC = 12.0 u, and mO = 15.99491 u. The total angular momentum of both molecules
was J = 0.

7.3.1 HCO

The Continuation/Bifurcation (C/B) diagram for the HCO molecule is given in
fig. (7.3). It depicts the periodic orbit families we located, plotting their period
(measured in time units of ∼ 5.387 fs) with respect to their energy (in eV). For
clarity it is split in two, one graph comprising the principal families and their bifur-
cations, and another consisting of the saddle–node orbits. Energy plays the role of
the “external” parameter which causes the bifurcations.

Three principal families emerge deep in the potential well. The orbits just above the
energy minimum have periods very close to those predicted through the harmonic
expansion (Weinstein theorem, cf. §2.3.2) and exhibit predominant excitation in each
of the normal modes. The calculated periods of the classical harmonic oscillators
are 2.2799 t.u., 3.2791 t.u., and 5.5761 t.u.. The first two are of stretching nature,
initially at least, mainly in R and r respectively, while the last one corresponds to
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Figure 7.2: Contour plots of the WKS potential energy surface for the ground state of
HCO/DCO. On each plot, one coordinate is fixed at the corresponding primary equilibrium
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panel depicts the potential energy as a function of R along the minimum energy path. The
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the bending mode. The periods of the three modes are quite incommensurate; they
do not participate initially in a low-order resonance. We denote the principal fam-
ilies by R, r, and B respectively to indicate their primary character (B stands for
bending). Below we present their detailed evolution; unfortunately, the numerically
evaluated Jacobian of the Hamilton equations is not accurate enough to provide re-
liable eigenvalues of the monodromy matrix especially at high energies and therefore
the stability analysis is somewhat vague.

The R family is quite anharmonic; it undergoes a period–quadrupling bifurcation—
two eigenvalues of the monodromy matrix pass through (0,±i)—around −0.5884 eV
and the R1 family is born. R is stable up to (−0.2665 eV, 2.818 t.u.) where a period–
doubling bifurcation occurs and R2 branches off. At (1.385 eV, 3.348 t.u.) there
is indication that stability is regained through another period–doubling bifurcation.
The first orbit we located from R1 is at (−0.5841 eV, 9.816 t.u.) and is stable. The
family loses its stability at 0.757 eV through a period–doubling bifurcation. The R2
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family starts with a period of 5.636 t.u.. Its birth can be attributed to the inter-
action between the R- and γ-oscillators as the gradually tune into a 1:2 resonance.
There is indication that the family loses its initial stability around 1.08 eV. It seems
it merges with a saddle–node family born around 1.3808 eV. At this energy, a bi-
furcation gives birth to the R2A family. Representative orbits of the R family and
its bifurcations are given in fig. (7.4); their initial conditions, energies, and periods
are given in table (7.1).

The r family starts with the expected period of 3.2792 t.u. and is stable up to well
above 3.2 eV with the exception of a narrow energy window between (−0.1235 eV,
3.4117 t.u.) and (−0.0097 eV, 3.435 t.u.). At these energies, two period-doubling
bifurcations destabilize the family, giving birth to r1 and r2 respectively. Around
0.785 eV, a “period–tripling” bifurcation occurs, that is, a pair of Floquet multipliers
becomes equal to e±i2π/3 and a family we denote by r3 is born. r1, which inherits the
stability of r, undergoes a Hopf bifurcation at 0.837 eV; the two pairs of eigenvalues
of the monodromy matrix which collided and left the unitary circle do not return, at
least before the last orbit we located at 3.5 eV. The r2 family starts with a period of
6.8707 t.u. and is unstable through all its located segment. The first orbit of r3 was
located at (0.7892 eV, 10.846 t.u.) and is stable. The family undergoes a series of
period–doubling bifurcations (at 1.567 eV, 2.665 eV, 3.150 eV and 3.390 eV) which
alternate its stability. Representative orbits of the r family and its bifurcations
are given in fig. (7.5); their initial conditions, energies, and periods are given in
table (7.1).

The B family is stable up to (−0.395 eV, 5.88 t.u.) where a family, denoted by
B1, branches off with twice the period. Two other period–doubling bifurcations, at
(−0.359 eV, 5.91 t.u.) and (0.07 eV, 6.423 t.u.), toggle the stability and give birth
to B2 and B3 respectively, leaving the B family permanently unstable. A pair of
eigenvalues of the monodromy matrix becomes real passing through +1 at (0.533 eV,
6.75 t.u.) and an orbit with the same period was located in the vicinity of B at
this point. The family born is denoted by B4. Two period–doubling bifurcations
take place at 1.172 eV and 1.655 eV. Through the first, the B family recombines
with the B1 branch while the second generates the B5 family. No other qualitative
change of B takes place up to at least 3.5 eV. The B1 family starts with a period of
11.76 t.u. and is stable up to 0.122 eV where a period–doubling bifurcation occurs.
At (0.42 eV, 13.43 t.u.) a pair of Floquet multipliers leave the unitary circle through
+1 and re-enter around (1.06 eV, 14.22 t.u.). As mentioned, the family merges
with B. B2 starts at (−0.359 eV, 11.825 t.u.) and is unstable. It undergoes two
period–doubling bifurcations at 0.725 eV and 1.482 eV. The B3 family is born
at (0.071 eV, 12.85 t.u.) as stable. Between 0.81 eV and 0.135 eV it is complex
unstable. At 0.151 eV the family becomes singly unstable and the B3A family
is born. B3 undergoes at 0.46 eV a period–doubling bifurcation. B3A starts at
(0.151 eV, 13.289 t.u.) and soon becomes complex unstable. The first orbit of the
B4 family has a period of 6.7509 t.u. and is unstable. The family stabilizes around
(1.27 eV, 6.911 t.u.) through a period–doubling bifurcation. B4 merges with a
bifurcation of the saddle–node family SN3 we will see below, around 1.6137 eV.
The first orbit we located from the B5 family is at (1.668 eV, 14.79 t.u.); the whole
segment is highly unstable. Representative orbits of the B family and its bifurcations
are depicted in fig. (7.6) and fig. (7.7); their initial conditions, energies, and periods
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Figure 7.4: Projections of representative orbits of the R, R1, R2, R2A families in HCO
at various energies. The data are given in table (7.1). Solid, dashed, and dotted lines on
the same plot represent orbits of increasing energy.
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Figure 7.5: Projections of representative orbits of the r, r1, r2, r3 families in HCO at low
(solid line) and high (dashed line) energies. The data are given in table (7.1).
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are given in table (7.1).
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Figure 7.6: Projections of representative orbits of the B, B1, B2 families in HCO at
various energies. The data are given in table (7.1). Solid, dashed, and dotted lines on the
same plot represent orbits of increasing energy. Note that the r-range in the B1 plots has
been adjusted for clarity.

One family of periodic orbits originating at the dissociation barrier has been located.
It is denoted by r′ to indicate the primary excitation, which is in r as this is the
(only) stable direction in the saddle point at the barrier. It starts at (0.1299 eV,
2.911 t.u.) and, naturally, is unstable. Representative orbits from it are plotted in
fig. (7.8) while their data are given in table (7.1).

A cascade of saddle–node bifurcations was also located. The lowest family energy-
wise is born just below the threshold at (−0.0046 eV, 3.564 t.u.); it is denoted
by SN1. Its main feature is a prominent excitation in R. The stable branch,
SN1s, grows towards higher periods and soon it undergoes two Hopf bifurcations at
0.062 eV and 0.079 eV, which render it temporarily complex unstable. Stability is
eventually lost at (0.085 eV, 4.695 t.u.) through a period–doubling bifurcation which
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Figure 7.7: Projections of representative orbits of the B3, B3A, B4, B5 families in HCO
at various energies. The data are given in table (7.1). Solid and dashed lines on the same
plot represent orbits of low and high energy respectively.
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Figure 7.8: Projections of representative orbits of the r′ family in HCO at low (solid line),
medium (dashed line), and high energies (dotted line). The data are given in table (7.1).

generates SN1B. The unstable branch of SN1, SN1u, undergoes a period–doubling
bifurcation at 0.001 eV which gives birth to SN1A; the naming of the bifurcations
follows their relative energies. Another period–doubling bifurcation for the unstable
branch of SN1 occurs too high, at 2.14 eV. SN1A has initial period of 6.9885 t.u.
and is unstable throughout its lifetime. SN1B starts at 9.391 t.u.; its initial stability
is lost almost immediately through a Hopf bifurcation. Representative orbits of the
SN1 and its bifurcations are plotted in fig. (7.9); their data are given in table (7.2).
As we can tell from the C/B diagram and these plots, the orbits of the stable branch
of SN1 acquire a significant excitation in r above 0.23 eV. This qualitative change
can be attributed to the fact that at this energy the ratio of the periods of SN1
and the r-oscillator reaches a low order of resonance, 3:5. Above this resonance, the
r-oscillator absorbs the excess amount of energy, making the family behave as quite
harmonic, resembling the r family. On the other hand, the immediate 1:1 resonance
of the unstable branch of SN1 with r shows up in the evolution of the whole branch.

A saddle–node bifurcation was located close to the “kink” of the SN1 family, at
(0.1384 eV, 7.2300 t.u.). The family born is denoted by SN2. The two branches can
be characterized as stable and unstable in a reduced phase space judging from the
position of one pair of eigenvalues on the unitary plane. The second free-to-move
pair makes both unstable. The evolution of both branches exhibits no interesting
features other than the onset around 0.3 eV of a 2:5 resonance with the r-oscillator
for the upper, “unstable” branch. The consequent excitation of r above this energy
is evident in fig. (7.10) where representative orbits of the SN2 are plotted.

At (0.24287 eV, 6.7356 t.u.) a saddle–node family is born; it is denoted by
SN3. The stable “upper” branch SN3s, undergoes a period–doubling bifurcation at
0.310 eV where it merges with a branch of another saddle–node family, SN5. SN3s
heads towards two successive saddle–node bifurcations at 0.574 eV and 0.522 eV.
Around (0.7 eV, 9.5 t.u.) a qualitative change is evident. The apparent 8:3 resonance
with the r-oscillator at this point affects the evolution in higher energies in the usual
pattern. The unstable branch SN3u undergoes two period–doubling bifurcations at
0.885 eV and 1.152 eV. It becomes stable at (1.6137 eV, 6.967 t.u.) where it meets
the B4 family and destabilizes again through a Hopf bifurcation at 1.68 eV.

The next saddle–node bifurcation we located is at (0.5544 eV, 9.178 t.u.). It gives
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Figure 7.9: Projections of representative orbits of the SN1, SN1A, and SN1B families in
HCO at low (solid line), medium (dashed line), and high energies (dotted line). The data
are given in table (7.2).
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Figure 7.10: Projections of representative orbits of the SN2 family in HCO at low (solid
line), medium (dashed line), and high energies (dotted line). The data are given in ta-
ble (7.2).

birth to the SN4. It comprises highly unstable orbits on which stability analysis
could not be performed reliably. Another saddle–node family, the SN5, is born at
(0.2437 eV, 14.094 t.u.). It has no interesting features. Representative orbits of the
SN3, SN4, and SN5 families are plotted in fig. (7.11). Their data are given in
table (7.2).

7.3.2 DCO

The Continuation/Bifurcation (C/B) diagram for the DCO molecule is given in
fig. (7.12). It depicts the periodic orbit families we located, plotting their period
(measured in time units of ∼ 5.387 fs) with respect to their energy (in eV). For
clarity it is split in two, one graph comprising the principal families and their bifur-
cations, and another consisting of the saddle–node orbits. Energy plays the role of
the “external” parameter which causes the bifurcations.

Three principal families emerge deep in the potential well. The orbits just above
the energy minimum have periods very close to those predicted through the har-
monic expansion. The calculated periods of the classical harmonic oscillators are
3.06226 t.u., 3.34940 t.u., and 7.19393 t.u.. The first two families are of mainly
stretching nature with roughly equal amplitudes in R and r and similar periods.
We, therefore, describe them as consisting of Antisymmetric Stretch (AS) and Sym-
metric Stretch (SS) orbits, respectively, according to the relative phases of the R-
and r- oscillators. The third period corresponds to an orbit with mainly bending
(B) excitation. Below we present their detailed evolution.
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Figure 7.11: Projections of representative orbits of the SN3s, SN3u, SN4, and SN5
families in HCO. Solid, dashed, and dotted lines on the same plot represent orbits of low
and medium and high energy respectively. The data are given in table (7.2).
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The first orbit of the AS family we located is at (−0.8328 eV, 3.063 t.u.). It
is stable up to (0.905 eV, 3.52 t.u.) where a bifurcating family is born with the
same period, inheriting the stability. This new family, AS1, destabilizes through
a Hopf bifurcation at 2.805 eV and remains complex unstable well above 3.2 eV.
Representative orbits of the AS and AS1 families at various energies are given in
fig. (7.13); their data are presented in table (7.3).
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Figure 7.13: Projections of representative orbits of the AS and AS1 families in DCO at
various energies. The data are given in table (7.3). Solid, dashed, and dotted lines on the
same plot represent orbits of increasing energy.

The SS family is stable up to (0.808 eV, 3.642 t.u.) where a period-doubling
bifurcation gives birth to SS1. Stability is restored at (1.658 eV, 3.864 t.u.) through
another period-doubling bifurcation, generating SS2, and is kept even above 3 eV.
SS1 starts at a period of 7.284 t.u.. It loses its initial stability at (1.78 eV, 7.763 t.u.)
through a period-doubling bifurcation. The other two free-to-move Floquet multipli-
ers collide at +1 and become real at 1.94 eV. Another period-doubling bifurcation
occurs at 2.05 eV but it is too high to interest us. SS2 starts with a period of
7.7283 t.u. and is twice unstable. At (1.801 eV, 7.775 t.u.) a period-doubling bifur-
cation occurs and the family becomes singly unstable. Representative orbits of the
SS, SS1, and SS2 families at various energies are given in fig. (7.14); their data are
presented in table (7.3).

The principal family with prominent bending character, B, is stable up to
(−0.078 eV, 8.022 t.u.) where a period-doubling bifurcation generates B1. A series
of additional period-doubling bifurcations can be identified at 0.2488 eV, 0.272 eV,
and 0.665 eV before the high instability of B prohibits a meaningful construction
of the monodromy matrix. The family born at the first bifurcation is denoted by
B2. B1 starts at a period of 16.044 t.u. and is stable up to (0.111 eV, 16.525 t.u.)
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where a period-doubling bifurcation occurs. At 0.79 eV the family is rendered dou-
bly unstable through a steady–state bifurcation. The bifurcating branch is B1A
and undergoes a saddle–node bifurcation around 0.6889 eV. The first located orbit
of the B2 family is at (0.2498 eV, 17.281 t.u.). The whole branch is unstable; there
are indications that two steady–state bifurcations take place at 0.92 eV and 1.5 eV.
Representative orbits of the B family and its bifurcations are plotted in fig. (7.15);
their data are presented in table (7.3).
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Figure 7.14: Projections of representative orbits of the SS, SS1, and SS2 families in DCO
at various energies. The data are given in table (7.3). Solid, dashed, and dotted lines on
the same plot represent orbits of increasing energy. The narrower γ-range in the SS plots
than in the others was chosen for clarity.

One family of periodic orbits originating at the dissociation barrier has been located.
It is denoted by r′ to indicate the primary excitation. It starts at (0.12569 eV,
2.9134 t.u.) and, naturally, is unstable. Representative orbits from it are plotted in
fig. (7.16) while their data are given in table (7.3).

A series of saddle–node families has been located for DCO. Their overall pattern is
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Figure 7.15: Projections of representative orbits of the B, B1, B2, and B1A families in
DCO at various energies. The data are given in table (7.3). Solid, dashed, and dotted lines
on the same plot represent orbits of increasing energy.
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Figure 7.16: Projections of representative orbits of the r′ family in DCO at low (solid line),
medium (dashed line), and high energies (dotted line). The data are given in table (7.3).

the familiar one: each has a quite anharmonic segment which, when conditions allow
a low-order resonance with r, changes its slope in the C/B diagram dramatically and
evolves almost parallel to the fundamental stretching families. At the vicinity of the
point where the slope changes for each family, its “successor” is born inheriting
the anharmonic behavior. The detailed evolution of the saddle–node families is as
follows.

SN1 is born at (−0.4185 eV, 3.4973 t.u.). Both its branches start as unstable;
they can be characterized as stable (SN1s) or unstable (SN1u) in a reduced space.
The “stable” is the one rising in period. At −0.1608 eV it undergoes a period–
doubling bifurcation and stabilizes; the branching family there is denoted by SN1A.
Two Hopf bifurcations, at −0.087 eV and −0.058 eV, and two period–doubling ones,
at −0.048 eV and −0.034 eV, destabilize it briefly. Stability is eventually lost at
a steady–state bifurcation around 0.688 eV where SN1B is born. The “unstable”
branch, SN1u, undergoes a period–doubling bifurcation at 0.157 eV which generates
SN1C. SN1A is born with an initial period of 8.4583 eV and inherits the instability
of SN1s. Two period–doubling bifurcations have been recorded at 0.02 eV and
0.532 eV but the stemming branches were not followed. The first orbit of SN1B
we located is at 6.4185 t.u.. It is stable up to 0.858 eV where a period–doubling
bifurcation occurs. SN1C starts with a period of 6.965 t.u.. It is unstable and no
qualitative changes of it take place. Representative orbits of the SN1 family and
its bifurcations are plotted in fig. (7.17) and fig. (7.18). Their data are given in
table (7.4).

SN2 is born at (0.0944 eV, 6.7889 t.u.). The “stable” branch SN2s grows
steeply towards higher periods. A series of period–doubling bifurcations around
0.11 eV at various periods (7.77 t.u., 8.02 t.u., 8.73 t.u.) is characterized by a
window of stability between the last two. Another small stable segment is found
between 0.615 eV and 0.68 eV before the branch becomes highly unstable. The
unstable branch, SN2u, exhibits no qualitative changes. Quite interesting, though,
is the fact that it is not parallel to SN1s but it crosses it at a point—unlike the
saddle–nodes in HCO and other molecules we studied where each SN family is, in
a sense, bounded by the neighboring ones. It turns out that a crossing occurs also
between the SN2s and SN3 families.

SN3 is born at (0.1262 eV, 9.993 t.u.). The upper branch, nominally denoted by
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Figure 7.17: Projections of representative orbits of the SN1 family in DCO at various
energies. The data are given in table (7.4). Solid, dashed, and dotted lines on the same plot
represent orbits of increasing energy.

SN3s, is quite steep and all interesting features occur around the energy mentioned.
Its initial complex instability is lost at 10.313 t.u.. A period–doubling bifurcation
at 10.683 t.u. ends the small stable segment. A steady–state bifurcation also takes
place at 0.136 eV. The lower branch, SN3u, is highly unstable in the energy region
we traced it. Representative orbits of the SN2 and SN3 families are plotted in
fig. (7.19). Their data are given in table (7.4).

Another saddle–node family we located is at (0.1503 eV, 12.087 t.u.), denoted
with SN4. It is born extremely close to the point where the upper branch SN3
skews. The family is too unstable to construct a meaningful monodromy matrix
and analyze it. The two branches, as we traced them, show the “reverse” behavior
of the expected; one of them (denoted by SN4s) is quite steep but plunges in
period until a resonance levels it, while the other (SN4u) evolves parallel to SN3s.
Representative orbits of the SN4 family are plotted in fig. (7.20).

7.4 Quantum Treatment and Discussion

The main quantum mechanical studies for the unimolecular dissociation of HCO
and DCO we will refer to, have been presented by Keller et al. in [114] and [115]
respectively, based on the WKS surface. Recent, and generally more accurate, results
on resonances and widths of HCO have also been obtained by Poirier and Carrington
in [118], on the same surface via another technique. We will review them below in
order to relate them to our findings. Let us mention here that, since the work of
Keller et al., resonances of HCO for various values of the total angular momentum
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Figure 7.18: Projections of representative orbits of the located bifurcations of the SN1
family in DCO at various energies. The data are given in table (7.4). Solid, dashed, and
dotted lines on the same plot represent orbits of increasing energy.

have been calculated by Whittier and Light [117] on the RLBH surface.

The dynamical calculations by Keller et al. were performed in Jacobi coordi-
nates, fig. (7.1); the Hamiltonian is the one given in eq. (4.1) as the total angular
momentum J was zero for both molecules. There were also calculations for J = 1
in the case of DCO, which do not concern us. The group followed a modification
of the log-derivative version of the Kohn’s variational principle, outlined in §3.6, to
solve the time-independent Schrödinger equation (Ĥ − E)Ψ(n,j)

E = 0 for the par-
tial wave functions Ψ(n,j)

E subject to the appropriate boundary conditions for the
fragmentation into H/D+CO(n, j). The quantum numbers (n, j) indicate the final
vibrational and rotational state of CO respectively. The resonances show up as sharp
structures in any quantity containing the wave functions; Keller et al. calculated an



7.4. QUANTUM TREATMENT AND DISCUSSION 159

SN2s

2.1 2.2 2.3 2.4 2.5 2.6 2.7
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

γ (rad)

R
 (

α 0
)

SN2u

2.1 2.2 2.3 2.4 2.5 2.6 2.7
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

γ (rad)

R
 (

α 0
)

SN3s

2.1 2.2 2.3 2.4 2.5 2.6 2.7
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

γ (rad)

R
 (

α 0
)

SN3u

2.1 2.2 2.3 2.4 2.5 2.6 2.7
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

γ (rad)

R
 (

α 0
)

SN2s

2.1 2.2 2.3 2.4 2.5 2.6 2.7
1.8

2.0

2.2

2.4

2.6

2.8

γ (rad)

r 
( α

0)

SN2u

2.1 2.2 2.3 2.4 2.5 2.6 2.7
1.8

2.0

2.2

2.4

2.6

2.8

γ (rad)

r 
( α

0)

SN3s

2.1 2.2 2.3 2.4 2.5 2.6 2.7
1.8

2.0

2.2

2.4

2.6

2.8

γ (rad)

r 
( α

0)

SN3u

2.1 2.2 2.3 2.4 2.5 2.6 2.7
1.8

2.0

2.2

2.4

2.6

2.8

γ (rad)

r 
( α

0)

SN2s

1.8 2.0 2.2 2.4 2.6 2.8
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

r (α0)

R
 (

α 0
)

SN2u

1.8 2.0 2.2 2.4 2.6 2.8
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

r (α0)
R

 (
α 0

)

SN3s

1.8 2.0 2.2 2.4 2.6 2.8
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

r (α0)

R
 (

α 0
)

SN3u

1.8 2.0 2.2 2.4 2.6 2.8
2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

r (α0)

R
 (

α 0
)

Figure 7.19: Projections of representative orbits of the SN2 and SN3 families in DCO at
various energies. The data are given in table (7.4). Solid, dashed, and dotted lines on the
same plot represent orbits of increasing energy.
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Figure 7.20: Projections of representative orbits of the SN4 family in DCO at low (solid
line), medium (dashed line). The data are given in table (7.4).

absorption-type cross section,

σabs(E) =
∑

n,j

∣∣∣
〈
χ0

∣∣∣Ψ(n,j)
E

〉∣∣∣
2
,

as a sum over all open product channels (n, j). χ0 was arbitrarily chosen to be a
three-dimensional Gaussian function appropriately localized and extended in order
to give good Franck–Condon overlap with many resonance states. Information on
resonance energies and widths was extracted through a fit of a Lorentzian at the
peaks of the lifetime function

τ̃(E) =
||ΨE ||2

4 σabs(E)
.

ΨE is the total wave function, the one we will plot later on for various resonances,
a particular superposition of all partial wave functions for a given energy,

ΨE =
∑

n,j

∣∣∣Ψ(n,j)
E

〉 〈
Ψ(n,j)

E

∣∣∣χ0.

Its norm is computed over the region where the coupling of the various vibrational–
rotational channels of CO is not negligible.

7.4.1 HCO

The quantum calculations estimated the ground energy of the HCO system to be
−0.48685 eV, and provided the fundamental excitation energies of the three normal
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modes at 2437.2 cm−1, 1865.0 cm−1, 1079.3 cm−1 for the HC stretch, CO stretch
and ĤCO bending modes respectively. The corresponding experimental values [203]
are 2434.5 cm−1, 1868.2 cm−1, and 1080.8 cm−1. Given the periods of the classi-
cal oscillators we can estimate the corresponding frequencies to be 2715.79 cm−1,
1888.23 cm−1, and 1110.40 cm−1 respectively, while the ground-state energy is clas-
sically derived at −0.47963 eV. The quantum and experimental results are in very
good agreement as the PES was appropriately modified to achieve this, while the
slight discrepancy exhibited in the classical values for the frequencies of the CO
stretch and bending modes can be accounted for: the frequencies of the classical
oscillators were computed at the minimum of the potential while the quantum treat-
ment incorporates the zero-point energy. The substantial deviation of frequencies
in the HC stretch reflects the large anharmonicity of this mode, evident in the C/B
diagram, fig. (7.3), and corroborated by the significantly lower second excitation
energy in the HC progression. We will denote by (v1, v2, v3) a state with v1, v2, v3

quanta in the HC stretch, CO stretch, and bending modes respectively.
The analysis of the lifetime function provided 15 true bound states and 123

resonances up to 2 eV. Bound states are these with energy below the ground state of
the isolated CO, at 0.135 eV; the resonance states with energy below the dissociation
barrier (including the zero-point energy in r and γ) at 0.27 eV, are blocked by a
dynamical barrier and decay via tunneling. Let us note that Poirier et al. in [118]
calculated additional resonances up to 1.11 eV, interspersed among those derived
by Keller et al..

As we see in the potential cuts, fig. (7.2), the two primary dissociation channels,
H+CO and HC+O, are almost perpendicular to each other; r- and γ-oscillators are
also largely independent. These imply a weak coupling of the CO stretching mode to
the coordinates of H. The quantum mechanical calculations validate this conclusion
as Keller and coworkers managed to identify unambiguously all eleven members of
the (0, v, 0) progression falling into the energy window they studied. The patterns
of the corresponding wave functions were clear and their energies indicated a very
regular progression. It is also corroborated by the C/B diagram fig. (7.3) and the
relevant plot, fig. (7.5), as the family denoted by r exhibits an almost pure CO
excitation—and, therefore, scars the (0, v, 0) progression, has a slightly ascending
period, and is stable almost throughout the energy region we probed. Similarly,
progressions with excitation in r and few quanta on one of the other two modes
exhibit a clear nodal structure up to their high overtones.

The fundamental excitation energies are initially quite different and no mixing
effects appear. As the quantum calculations showed, the pure (v, 0, 0) progression
is substantially anharmonic and, at some energy, the HC stretch tunes into reso-
nance with the similarly—but in a lesser degree—anharmonic bending mode and
approaches the period of CO stretch. This is also evident in the classical bifurcation
diagram: just above the dissociation threshold, the R and B families come very close
to a 1:2 resonance which is approximately retained in the rest of the energy region we
studied. The fact that two quanta of the bending mode roughly equal one of the HC
stretch led Keller and coworkers to categorize the quantum states according to their
polyad number P = 2v1 +v3 (and their CO stretch quantum number v2). At low en-
ergies, where the states with the same P and v2 are energetically far from each other,
the polyad members exhibit clear nodal patterns. At higher energies, the resonance
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sets in and the approximately degenerate states mix substantially; the assignment
in terms of normal modes is, in cases, rather ambiguous and, even, meaningless and
infeasible. Certain wave functions were identified against their nodal pattern, based
solely on their position in their polyads, while others were left “unnamed.” Let
us note that Tobiason et al. in [200] provided an assignment based on a Dunham
expansion fit of the experimental energies which generally agrees with the one by
Keller et al., derived by the visual inspection of each wave function. Of course,
states with more than one quanta on the dissociation mode, the HC stretch, were
not measured experimentally as they turned out to have a very short lifetime. The
theoretical computations had the same problem for overtones with more than two
quanta on HC stretch; they were rather broad for a definite identification and those
located were mixed, due to the resonance, and assigned an ambiguous label. The
overall agreement between experiment and theory on the positions of the resonances
is excellent; the estimated rms deviation is 17 cm−1.

An alternative assignment of the quantum states, based on the structure of the
classical phase space and its periodic orbits, can elucidate the mixing due to reso-
nances and guide the identification of the members of a progression. Periodic orbits
are governed by the same resonances of a quantum system albeit in a classical way;
they have a distinct advantage over the presumed independent normal modes and
are not tied to a particular coordinate system. In fig. (7.21) the {R, γ} projections
of selected wave functions with excitation in R and γ are presented, plotted on the
corresponding in shape periodic orbits. In the upper right corner of each panel,
their energy (in cm−1) above zero-point and the normal mode assignment are given.
The assignment in parentheses, (2, 0, 1), is determined by the position in a polyad,
and, therefore, is in some cases, ambiguous. As we can see, the wave functions of
the pure (0, 0, v) progression possess a very clear nodal pattern which, despite the
assignment, is not aligned with the γ axis. They are obviously scarred by orbits
of the B family and the nodes are arranged on them. In fact, all wave functions
presented, develop along the periodic orbit (or combination of periodic orbits) which
scars them and not necessarily according to their “name.” Therefore, the (2, 0, 0),
(1, 0, 1) and (2, 0, 1) states are all scarred by the R2 family (the first one might have
a contribution from R), and, according to our analysis, are related. On the other
hand, the (1, 0, 0) state is scarred by R while (3, 0, 0) is localized mainly along a SN1
orbit, something which explains the large anharmonicity of the (v, 0, 0) progression.

Keller and coworkers did not succeed in determining overtones higher than
(3, 0, 0) and (0, 0, 7), at 0.744 eV and 0.875 eV above zero-point energy, respec-
tively. This can be justified in the classical framework: stability of the corresponding
periodic orbit families is lost at 0.896 eV and 0.905 eV above minimum; the corre-
sponding actions are 3.33 ~ and 7.0 ~. Higher overtones in HC stretch and bending
modes fall into the region where the classical orbits of SN1 and B are unstable.

In fig. (7.22) the energy differences between successive members of the pure
progressions is plotted against the energy of the higher state in each pair. The
points are overlayed on the plot of the frequencies of the relevant periodic orbits vs.
their excitation energy. The classical energies with respect to the potential minimum
are shifted by the zero-point energy. As we can see, the transition energies follow the
frequencies of the corresponding periodic orbit families with the exception of the last
point of the (v, 0, 0) progression which is influenced by SN1 and R2. Nevertheless,
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Figure 7.21: Contour plots of the modulus square of selected eigenfunctions in the {R, γ}
plane in HCO, superimposed on the corresponding periodic orbits that scar them. The
normal mode assignment and the energy in cm−1 above the ground state are given for each.
Shown separately is the relevant potential cut at minimum.

the trend indicated by the steep segments of R and SN1 is reflected in the evolution
of the transition energies in the pure HC stretch progression.

7.4.2 DCO

The ground state of DCO was calculated to be −0.54465 eV. The quantum treat-
ment provided the fundamental excitation energies of the three normal modes at
1804.8 cm−1, 1900.6 cm−1, and 843.8 cm−1 for the two stretching and D̂CO bending
modes respectively. The corresponding experimental values [186] are 1795.0 cm−1,
1910.2 cm−1, and 846.5 cm−1. Given the periods of the classical oscillators we
can estimate the corresponding frequencies to be 1848.6 cm−1, 2021.9 cm−1, and
860.7cm−1 respectively, while the ground-state energy is classically derived from
them at −0.54059 eV. The quantum values are in very good agreement with the
experimental results in view of the fact that the WKS PES was adjusted to repro-
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symbol is plotted at the energy of the upper state and is overlayed on the frequency curves
of the periodic orbits of the R, SN1, R2, B and r families. The energy of each orbit above
minimum is shifted by the zero-point energy. Solid lines represent stable families; dashed
ones indicate instability.

duce experimental HCO spectra and was not modified for the DCO analysis. The
relative deviation of the classical from the quantum values in the bending mode is
comparable to the corresponding one in the HCO case. Recall that in HCO the
classical frequencies of other two modes, the harmonic CO stretch and the quite
anharmonic HC stretch, exhibited respectively a small and a large deviation from
the quantum excitation energies. In the DCO case, this difference in magnitude is
smoothed out: both stretch modes are mildly anharmonic.

In all experimental, quantum, and classical results, the accidental 1:1:2 approxi-
mate resonance is evident. Due to this resonance and the strong coupling of R and
r, the two stretching modes cannot be characterized of primarily DC or CO stretch
but, instead, can be described as symmetric and antisymmetric combinations of
them. The mixing between modes can be demonstrated by varying a parameter in
the Hamiltonian and investigating how this change affects the energies of the modes.
The easiest way to introduce a parameter without a modification of the potential is
a multiplicative factor on the mass of the hydrogen atom. It can be shown quantum
mechanically [115] as well as classically fig. (7.23) that the almost pure HC and CO
stretch modes we saw in HCO undergo an avoided crossing and mix—or, in classical
terms, the corresponding oscillators gradually tune into resonance—when the mass
of the light atom varies continuously from 1mH to 2mH. The classical harmonic
approximation estimates that the mixing is maximal around 2.1mH, not far from
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what the accurate quantum treatment predicts (≈ 1.9mH). On the other hand, the
bending mode is not involved in the mixing and remains relatively intact.
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Figure 7.23: Fundamental frequencies
of the three normal modes in the XCO
molecule as a function of the mass of X.
The upper two curves are the stretching
modes; the lower is the bending mode.

Keller and coworkers have located in DCO 29 bound states, that is, with energy
less than the ground state of the free CO (0.135 eV), and 144 resonances up to
1.5 eV. The agreement with the experiment [186] on the energies was deemed
excellent with an rms deviation of 16 cm−1; the widths were not reproduced with
the same accuracy. The 1:1 resonance and the strong coupling between the DC
and CO stretches prevented a meaningful identification for the majority of the wave
functions. The assignment (v1, v2, v3) with v1, v2, v3 quanta in the DC stretch, CO
stretch, and bending modes respectively, was straightforward mostly for overtones
of the pure bending mode and for few states with excitation in the other two. In
fig. (7.24) [reprinted from [115]], contour plots in the {R, r} plane of all calculated
states assigned as (v1, v2, 0) are depicted, labeled with their nominal normal mode
assignment. Visual inspection cannot justify the identification for some of them in
this figure; striking examples are the states labeled with (0, 1, 0) and (1, 0, 0) which
actually reflect the assignment of the HCO states they evolve into when the light
atom mass is varied from mD to mH.

The fact that one quantum in DC stretch roughly equals a quantum in CO stretch
or two quanta in the bending mode facilitates the organization of the quantum
states into polyads according to their polyad number P = v1 + v2 + v3/2. Within
each polyad there are states which participate in an avoided crossing. The most
prominent coupling exists between states assigned as (0, v2, v3) and (1, v2 − 1, v3)
where one quantum is transferred from DC stretch to CO stretch and vice versa.
Among others, states which exchange two quanta between these modes were found
to mix, as the (0, v2, v3) and (2, v2 − 1, v3 − 2) states do, due to the strong coupling
between the coordinates of the light atom. Note that the assignments above refer to
the corresponding states away from the crossings, that is, either in HCO or TCO.
An alternative way to label a state is through a decomposition in terms of basis
wave functions. As we mentioned, the mere visual identification of the mixed states
in DCO in terms of normal modes is problematic.

The analysis of the classical phase space offers another means to classify most
quantum states into progressions without the shortcomings of the assignment based
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Figure 7.24: Contour plots in the {R, r} plane of all calculated states by Keller et al.
assigned as (v1, v2, 0) in DCO. [Fig. 11 of [115]].
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on normal modes. We notice in fig. (7.24) that there are groups of wave functions
which form pure progressions, that is, their maxima and minima align incrementally
along a line in one direction without excitation perpendicular to it. Such a group is
the progression identified as (1, v2, 0); another comprises the (0, v2, 0) states although
one could seriously question the assignments of the (0, 2, 0), (0, 3, 0) and (0, 7, 0)
states and their fundamental difference from e.g. (2, 2, 0). The (2, 0, 0), (3, 0, 0), and
(4, 0, 0) states (but not the (1, 0, 0) one) appear to form another progression. In
fig. (7.25), the members of these progressions are overlaid on the corresponding—
with respect to excitation energy—periodic orbits of specific families. The (1, v2, 0)
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Figure 7.25: Contour plots in the {R, r} plane of the modulus square of the wave functions
of the (1, v, 0), (0, v, 0), (v, 0, 0) progressions in DCO, superimposed on periodic orbits of
the AS and AS1, SS, and SN1 families respectively that scar them. The normal mode
assignment and the energy in cm−1 above the ground state are given for each. The relevant
potential cut at minimum is also shown.

states are scarred by the AS family; the last two members of the progression are
more appropriately superimposed on orbits of the AS1 family which is the stable
branch with almost exactly the same period with the corresponding segment of the



168 CHAPTER 7. SPECTROSCOPY OF HCO AND DCO

AS family. The (0, v2, 0) states are localized on orbits of the SS family while SN1
scars the (v1, 0, 0), v1 = 2, 3, 4 progression.

Although two plots only are available to us from the pure bending progression,
fig. (7.26), the relation of (0, 0, v3) states to the classical B family can be verified
through their energies, as shown below.
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Figure 7.26: Contour plots in the {R, γ} plane of the modulus square of the wave functions
of (0, 0, 4) and (0, 0, 8) states in DCO, superimposed on corresponding periodic orbits of the
B family. The normal mode assignment and the energy in cm−1 above the ground state are
given for each. The relevant potential cut at minimum is also shown.

The qualitative relation of the four progressions mentioned above with the corre-
sponding periodic orbit families, can also be demonstrated through the dependence
of their transition frequencies, i.e. the energy differences between adjacent levels, on
energy and their relation to the classical frequencies, fig. (7.27). The oscillations
observed in the (0, v2, 0) transition energies and the fact that the backbones of some
members do not follow the orbits (cf. fig. (7.25)) can be attributed to a substantial
mixing with other states or, even, an inappropriate assignment. It is no surprise,
from a classical point of view, that no states in the pure progressions with more
quanta have been located; the corresponding classical families are unstable at the
energies where the higher members would lie, and no similar and stable periodic
orbits exist there to localize the wave functions. Especially for levels above (4, 0, 0),
the dissociation barrier has been reached and their lifetimes are too small to allow
identification.

Fig. (7.25) and fig. (7.27) make clear beyond doubt that all states but the first,
characterized as of DC stretch character, (v1, 0, 0), correspond to the saddle–node
periodic orbits of SN1 while (1, 0, 0) is fundamentally different and should be at-
tributed to an AS orbit. The saddle–node orbits appear just before the next excited
level and mark the domains in phase space where eigenfunctions localized along the
R coordinate can be found. Orbits of the SN1 family also play important role in
the localization of other states with substantial excitation in R and few quanta on r.
According to the assignment based on periodic orbits, the (1, v2, 0) states comprise,
despite their “name,” a pure progression which should be labeled as AS. Most
members of (0, v2, 0) should unambiguously be assigned as SS states while there
is doubt whether the remaining levels in this progression according to the normal
mode decomposition do actually belong to it. On the other hand, the assignment of
the (0, 0, v3) states—which do not participate considerably in any mixing—is clearly
justified by the classical analysis.

It is worth noting that Tobiason et al. in [185] performed an assignment based on
a Dunham fit of the energy differences measured in their dispersed fluorescence ex-
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periment. Their labeling of many states does not agree with the one by Keller et al.;
in fact, the assignment of (2, 2, 0) is attributed to (0, 4, 0) and vice versa, state
(0, 7, 0) by Keller et al. is (2, 4, 2) according to Tobiason et al., etc..

7.5 Conclusion

The analysis presented above of the HCO and DCO quantum spectra demonstrates
the general scope of the assignment based on periodic orbits: it is applicable to both
spectra, providing consistent labeling of states, whether the normal mode assignment
suffices (as in HCO case) or is inadequate (as in DCO). The Fermi resonance between
two or more modes may prevent a meaningful assignment, while, as seen here, it
is predicted and embodied naturally in the shape of the scarring periodic orbits.
Moreover, the number and the evolution of the pure progressions is correctly deduced
through the classical analysis avoiding the distortions imposed by the assignment
based on the normal modes.



Chapter 8

Spectroscopy of hypochlorous
acid (HOCl)

8.1 Introduction

Hypochlorous acid, HOCl, is one of the molecules drawing considerable research ef-
forts, both experimental and theoretical, into its spectroscopy and dynamics, mainly
due to its role in the chemistry of the upper atmosphere. It acts as a reservoir of
OH and chlorine [204] while its photodissociation via the three available channels
(OH+Cl, HCl+O, OCl+H) gives reactive species of atmospheric relevance [205].
Moreover, HOCl was proposed to play an important role in the balance of strato-
spheric ozone in the polar regions; it contributes to the conversion of relatively stable
chlorine reservoir compounds into more reactive species via heterogeneous chemistry
on polar stratospheric clouds [206]. A detailed understanding of the infrared spec-
trum of HOCl facilitates, among others, the monitoring of its concentration in the
atmosphere, a crucial factor in its implications. HOCl is also much studied due to its
pure scientific interest. It is a prototype system for investigating bond breaking on
ground-state Potential Energy Surfaces (PES) which lack reaction barriers; intense
research focused on this [207].

The spectroscopy [208] and dissociation [209] of HOCl are the target of recent
experimental interest. However, due to experimental limitations (vibrational over-
tone spectroscopy), only states in the vicinity of overtones of the HO bond are
considered—out of the 8̃00 bound states merely 2%-3% have been experimentally
analyzed.

In this chapter we will present our research results on HOCl. We will mainly focus
on the analysis of the classical phase space and study the influence of saddle–node
bifurcations on the level pattern and morphology of the quantum states. This process
helps us test, validate and expand our approach in deducing quantum features based
on classical analysis. We begin with an exposition of the potential energy surface
we employed, followed by the detailed analysis of the classical phase space regarding
the organization of periodic orbits. The subsequent section presents a review of the
behavior of the quantum eigenstates in terms of their shape and energy distribution
along with a detailed cross-reference to classical features. The presentation here is
a revised and expanded version of the analysis we published in [210].

171
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8.2 Potential Energy Surface

Various groups have proposed functional forms representing the potential of the
HOCl electronic ground state, mainly in the vicinity of the equilibrium, either em-
pirically, (Escribano et al. [211]), or through ab initio calculations: Halonen and
Ha [212] used third order Møller–Plesset method, Peterson [213] and Koput and Pe-
terson [214] employed CCSD(T), a variant of Coupled Cluster method, to calculate
high quality ab initio values. The last two potentials were very accurate in repro-
ducing the experimentally known overtones and combination bands up to energies
of about 10000 cm−1. However, the study of high overtones of the HO stretching
mode and the fragmentation into HO and Cl requires a global function covering at
least the HO+Cl channel. Skokov, Peterson, and Bowman [215] extended the calcu-
lations of Peterson and constructed such a global surface. Our group also derived a
suitable PES [210], with comparable accuracy in the ab initio level to their version.
Skokov et al. however, performed a more elaborate scaling procedure and therefore
their PES reproduces the experimentally known vibrational energies slightly better
than our surface. The general topographies of the two potential functions are very
similar. We will describe below the details of our potential which, of course, is the
one employed in our classical and quantum treatment.

The total energies of hypochlorous acid are calculated using the internally con-
tracted multi-reference configuration interaction method with Davidson correction
(icMRCI+Q) (§3.5.3). The one-particle basis set employed in the calculation is
the correlation-consistent polarized set of quintuple-zeta quality, cc-pV5Z. The cc-
pV5Z basis set consists of a (20s12p4d3f2g1h)/[7s6p4d3f2g1h] set for chlorine, a
(14s8p4d3f2g1h)/[6s5p4d3f2g1h] set for oxygen, and a (8s4p3d2f1g)/[5s4p3d2f1g]
set for hydrogen, thus resulting in a molecular one-particle basis set of 241 contracted
functions. Only the spherical harmonic components of the d through h polarization
functions are used. The reference wave function in the icMRCI calculations consists
of a full valence complete active space (CAS). The wave function thus includes all
excitations of 14 valence electrons in 9 molecular orbitals corresponding to the va-
lence atomic sp orbitals of chlorine and oxygen, and the 1s orbital of hydrogen. For
each point of the PES, the reference wave function is determined in the complete
active space self-consistent field calculation (CASSCF). The molecular 1s- and 2sp-
like core orbitals of chlorine and the 1s-like core orbital of oxygen are kept doubly
occupied in all the configurations and optimized. In the vicinity of the minimum of
the PES, the contribution of the SCF configuration in the CASSCF wave function
is determined to be about 0.98 and there are only two excited configurations with
coefficients greater than 0.05. The total energy of hypochlorous acid is determined
in the subsequent icMRCI calculation, in which all single and double excitations
with respect to the reference wave function are included and external configurations
are internally contracted. The molecular core orbitals are kept doubly occupied in
all the configurations. This results in over one million contracted configurations
(in contrast to over 75 million uncontracted configurations). The multi-reference
Davidson correction to the calculated energy is then employed to approximately
compensate for the effects of higher excitations. The total energies are determined
to an accuracy better than 10−8 hartree. All calculations were performed using the
MOLPRO program [85].
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Ab initio calculations were performed on 1234 points scattered on a grid covering
most of the energetically accessible configuration space. On this grid, the two bond
distances RHO and ROCl and the ĤOCl bond angle vary from 1.3 α0 to 3.5 α0,
2.5 α0 to 9 α0, and 20◦ to 160◦ respectively. Distances are spaced 0.1 α0 apart and
the angle increases by 10◦ steps for the largest part of the grid. The mesh is denser
around the equilibrium whereas it is coarser at large OCl distances. The dissociation
channel to HO+Cl is energetically much more favorable than the others [216, 217]
and, therefore, it is the only one sampled.

The analytical function to be fitted on the ab initio points was expressed in
bond coordinates in an attempt to make a reasonable extrapolation towards the two
linear configurations where no points were calculated. Following Sorbie and Murrell
(§3.5.6), the total potential is written as

V (ROCl, RHO, RClH) = VI(ROCl, RHO, RClH) + vHO(RHO),

where VI goes to zero for large OCl distances. The diatomic term is expressed as a
Morse potential, eq. (3.24), with the parameters taken from [218]: D = 4.621 eV,
a = 1.2139 α0

−1, and Re = 1.8323 α0. The energy normalization is chosen such
that E = 0 corresponds to HO+Cl with the HO distance fixed at equilibrium. The
“interaction potential” VI is written as a threefold sum of one-dimensional functions:

VI(ROCl, RHO, RClH) =

1
2

[1 + tanh (6−ROCl)]
7∑

i=0

7∑

j=0

7∑

m=0

αijmgi(RHO)hj(ROCl)dm(RClH),

with

gi(RHO) =
[
1− e−kHO(RHO−R̄HO)

]i

hj(ROCl) =
[
1− e−kOCl(ROCl−R̄OCl)

]j+1
− 1

dm(RClH) =
[
1− e−kClH(RClH−R̄ClH)

]m
.

The non-linear parameters are: R̄HO = 1.85 α0, R̄OCl = 3.2 α0, R̄ClH = 4.0 α0,
kHO = 0.3 α0

−1, kOCl = 0.8 α0
−1, kClH = 0.1 α0

−1. All hj(ROCl) functions go
to zero as ROCl tends to infinity. The damping factor introduced in VI suppresses
spurious features of the potential at large distances where the ab initio points are
scarce.

The linear parameters αijm are determined using a least-squares fit procedure.
Two independent fits V

(1)
I and V

(2)
I were performed with different weighting factors

for the ab initio points: one focuses on the potential well giving smaller weight to
points above dissociation while the other provides a better description of the global
potential by treating all points equivalently. The final expression for the HOCl
ground-state PES is

V = (t− 1)V (1)
I + tV

(2)
I + vHO,

where the switching function t is defined by (all energies are in eV)

t =
1
2

{
1 + tanh

[
8

(
V

(2)
I + vHO + 0.8

)]}
.
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The rms deviation of the fit from the ab initio points is of the order of 1meV
even well above the E = 0 threshold; in the vicinity of the primary equilibrium is
even less. In order to improve agreement with experimental data on the overtone
frequencies from [209], the two bond distances RHO and ROCl were scaled by 0.996
and 0.998 respectively. The modified PES agrees favorably in all its features with
relevant experimental results.

The analysis of the surface reveals a global minimum of −2.524756 eV at R =
3.24077 α0, r = 1.82848 α0, γ = 1.81650 rad in Jacobi coordinates, cf. fig. (8.1).
This particular choice is the appropriate one for studying the dissociation of HOCl
into HO and Cl: R is the distance from Cl to the center of mass of HO, r is the
HO bond distance, and γ is the angle between the two vectors ~R and ~r; γ = 180◦

corresponds to linear HOCl.
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Figure 8.1: Coordinates for the HOCl molecule. K indicates the H–O center-of-mass.

Fig. (8.2) depicts the equipotential contour plots of the PES at minimum. In
the same figure we also depict a projection of the minimum energy path towards
the HO+Cl channel; the potential is minimized in r and γ for successive specific
values of R. From the first plot is evident that there is no barrier in the HO+Cl
exit channel. Moreover, from the orthogonality of the two channels R → ∞ and
r → ∞ we can infer the (approximate) independence of R and r. In the linear
geometry, γ = 180◦, two conical intersections exist, caused by interaction with
higher electronic states [215]. The first one is estimated to occur near R = 4.03 α0,
r = 1.85 α0 at 0.449 eV and is attributed to an interaction of the 1 1A′ and 2 1A′

states, which vanishes for linear configurations where these states are of 1Σ+ and
1Π symmetry. It is essentially the crossing between the Σ+ and Π states of OH
as Cl is relatively far. The second conical intersection is located at R = 3.26 α0,
r = 3.14 α0 at 2.29 eV; it can be regarded as the crossing between the Σ+ and
Π states of OCl. Both intersections occur at relatively high energies and are not
expected to influence significantly the bound and low resonance states. Recall that
the potential for geometries close to linearity is evaluated by extrapolation and,
thus, is only qualitatively correct. Based on this remark, certain features of the
potential—such as a spurious saddle point at R = 3.15 α0, r = 1.78 α0, γ = 180◦

where V = −0.44 eV—which are not present in the Skokov et al. PES should be
treated with caution. Nevertheless, they do influence the quantum states, even
bound ones.
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Figure 8.2: Contour plots of the HOCl ground-state potential energy surface at minimum.
On each plot, one coordinate is fixed at the corresponding value at minimum. The 23
contours start from −2.5 eV and increase by 0.25 eV. The lower right panel depicts the
potential energy as a function of R along the minimum energy path. The potential is
minimized in r and γ for specific R.

8.3 Analysis of the Classical Phase Space

The classical treatment of HOCl was performed in Jacobi coordinates, fig. (4.1)(I).
The angular momentum was taken to be zero. The values for the masses we used
are mO = 15.99494 u, mH = 1.00777 u, and mCl = 35.44594 u.

The Continuation/Bifurcation (C/B) diagram for the HOCl compound is given in
fig. (8.3). It depicts the periodic orbit families we located, plotting their period
(measured in time units of ∼ 5.387 fs) with respect to their energy (in eV). For
clarity it is split in two, one graph comprising the principal families and their bifur-
cations, and another consisting of the saddle–node orbits. Energy plays the role of
the “external” parameter which causes the bifurcations.

Three principal families emerge deep in the potential well. The orbits just above
the energy minimum have periods very close to those predicted through the har-
monic expansion (Weinstein theorem, cf. §2.3.2). The calculated periods of the
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classical harmonic oscillators are 8.3499 t.u., 1.6330 t.u., and 4.8571 t.u.. The first
corresponds to an orbit with predominant Cl–OH stretching and substantial γ ex-
citation; the family starting with it will be denoted by R. The second period is
of an orbit of pure OH stretching; its family is labeled with r. The third period
corresponds to an orbit exhibiting mainly bending character but with non-negligible
R amplitude; B stands for its family. Below we present their detailed evolution.
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Figure 8.3: Continuation/Bifurcation Diagram for HOCl: fundamental families (lower fig-
ure) and saddle–node families (upper figure). All periods are measured in time units of
∼ 5.837 fs. Continuous lines represent stable families of periodic orbits; dashed ones indi-
cate instability.

The R principal family is initially stable and quite anharmonic compared to the
other fundamental families. At (−2.064 eV, 9.0300 t.u.) it comes very close to a
period–doubling bifurcation but does not destabilize. At (−1.6290 eV, 9.8700 t.u.)
R exhibits an abrupt change in its slope in the C/B diagram and at the same
point the Floquet multipliers indicate that a steady–state bifurcation is imminent.
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As we will see below, at the vicinity of this point the SN2 saddle–node family
is born. This behavior is the most clear example we have encountered so far of an
“avoided” pitchfork bifurcation, cf. fig. (2.3). The R family becomes less anharmonic
and retains its stability up to (1.687 eV, 13.5 t.u.) where it undergoes a period–
doubling bifurcation. The skew marks the onset of a 1:6 resonance between R- and
r-oscillators. As we can see in fig. (8.4) where orbits of R at low, medium, and high
energies from table (8.2) are plotted, the amplitude in r is negligible before the skew
but grows considerably afterwards. The fact that the excess energy is deposited in
the r-oscillator contributes to the stabilization of R and makes it follow the evolution
of the more harmonic r family we will examine below.
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Figure 8.4: Projections of representative orbits of the R family at low (solid line), medium
(dashed line), and high energies (dotted line). Their data are given in table (8.2).

The r family is remarkably stable in a wide range of energies and exhibits an
almost pure OH stretching character. It undergoes a period–doubling bifurcation
around (0.9933 eV, 2.96 t.u.) where it loses stability. However, before this point
two branching families of r have been located: one with five times the period of the
orbit at (−2.2695 eV, 1.676 t.u.) of r and the other with four times the period at
(−0.2994 eV, 2.1367 t.u.); at these energies, a pair of eigenvalues of the monodromy
matrix reaches e±2πi/5 and e±2πi/4 respectively. The first one, denoted by r1, starts
with a period of 8.38 t.u. and is stable up to (−1.205 eV, 9.02 t.u.) where it undergoes
a period–doubling bifurcation. The second, denoted by r2, starts with a period of
8.5465 t.u.. It is destabilized at (0.125 eV, 8.845 t.u.) through a period–doubling
bifurcation. Such a bifurcation also occurs at 1.88 eV, rendering the family twice
unstable. Representative orbits of the r, r1, and r2 families are plotted in fig. (8.5);
their initial conditions, energies, and periods are given in table (8.2).

The B family loses its initial stability at (−0.1894 eV, 5.901 t.u.). A steady–state
bifurcation there gives birth to B1 which, in its short lifetime, evolves exactly as B
before it merges with it at −0.101 eV thereby restoring the stability of B. A period–
doubling bifurcation finally renders the bending family unstable at (−0.0437 eV,
5.985 t.u.) where B2 is born. Another steady–state bifurcation at 0.09 eV renders
the B family twice unstable and B3 branches off. B2 is also short-lived as it merges
with B at 0.611 eV. Representative orbits of the B family and its bifurcations are
plotted in fig. (8.6); their data are given in table (8.2).

A large number of saddle–node families have been located in the classical phase
space of HOCl. The first one, SN1, is born at (−2.1945 eV, 5.0093 t.u.); its stable
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Figure 8.5: Projections of representative orbits of the r, r1, and r2 families at low (solid
line) and high (dashed line) energies. Their data are given in table (8.2).

branch, SN1s, undergoes a period–doubling bifurcation at−0.6291 eV where SN1A
is born. The unstable branch, SN1u, exhibits a brief window of stability among two
steady–state bifurcations at −0.3188 eV and −0.102 eV. SN1u is quite harmonic in
the located segment, following closely the evolution of B. On the other hand, SN1s
deviates from harmonicity above roughly −0.5 eV. SN1A alternates in stability
through a series of bifurcations before it becomes highly unstable. Representative
orbits of the SN1 and SN1A families are plotted in fig. (8.7); their data are given
in table (8.3).

At (−1.6213 eV, 9.8894 t.u.), exactly at the point where R skews, another
saddle–node family is born; it is denoted by SN2. The evolution of its stable branch
initially mimics the one of the steep segment of R; around −0.91 eV SN2s skews
and becomes more harmonic due to a resonance with r. It loses its initial stability
around −0.245 eV. Orbits of the SN2 family are depicted in fig. (8.8); their data
are given in table (8.3).



8.3. ANALYSIS OF THE CLASSICAL PHASE SPACE 179

B

0.5 1.0 1.5 2.0 2.5 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

γ (rad)

R
 (

α 0
)

B1

0.5 1.0 1.5 2.0 2.5 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

γ (rad)

R
 (

α 0
)

B2

0.5 1.0 1.5 2.0 2.5 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

γ (rad)

R
 (

α 0
)

B3

0.5 1.0 1.5 2.0 2.5 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

γ (rad)

R
 (

α 0
)

B

0.5 1.0 1.5 2.0 2.5 3.0

1.5

1.8

2.1

2.4

2.7

3.0

γ (rad)

r 
( α

0)

B1

0.5 1.0 1.5 2.0 2.5 3.0

1.5

1.8

2.1

2.4

2.7

3.0

γ (rad)

r 
( α

0)

B2

0.5 1.0 1.5 2.0 2.5 3.0

1.5

1.8

2.1

2.4

2.7

3.0

γ (rad)

r 
( α

0)

B3

0.5 1.0 1.5 2.0 2.5 3.0

1.5

1.8

2.1

2.4

2.7

3.0

γ (rad)

r 
( α

0)

B

1.5 1.8 2.1 2.4 2.7 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

r (α0)

R
 (

α 0
)

B1

1.5 1.8 2.1 2.4 2.7 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

r (α0)
R

 (
α 0

)

B2

1.5 1.8 2.1 2.4 2.7 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

r (α0)

R
 (

α 0
)

B3

1.5 1.8 2.1 2.4 2.7 3.0
3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

r (α0)

R
 (

α 0
)

Figure 8.6: Projections of representative orbits of the B, B1, B2 and B3 families at various
energies. Solid, dashed, and dotted lines on the same plot represent orbits of increasing
energy. Their data are given in table (8.2).



180 CHAPTER 8. SPECTROSCOPY OF HOCl

SN1s

1.0 1.5 2.0 2.5 3.0

3.0

3.2

3.4

3.6

3.8

γ (rad)

R
 (

α 0
)

SN1u

1.0 1.5 2.0 2.5 3.0

3.0

3.2

3.4

3.6

3.8

γ (rad)

R
 (

α 0
)

SN1A

1.0 1.5 2.0 2.5 3.0

3.0

3.2

3.4

3.6

3.8

γ (rad)

R
 (

α 0
)

SN1s

1.0 1.5 2.0 2.5 3.0

1.6

2.0

2.4

2.8

3.2

γ (rad)

r 
( α

0)

SN1u

1.0 1.5 2.0 2.5 3.0

1.6

2.0

2.4

2.8

3.2

γ (rad)

r 
( α

0)

SN1A

1.0 1.5 2.0 2.5 3.0

1.6

2.0

2.4

2.8

3.2

γ (rad)

r 
( α

0)

SN1s

1.6 2.0 2.4 2.8 3.2

3.0

3.2

3.4

3.6

3.8

r (α0)

R
 (

α 0
)

SN1u

1.6 2.0 2.4 2.8 3.2

3.0

3.2

3.4

3.6

3.8

r (α0)

R
 (

α 0
)

SN1A

1.6 2.0 2.4 2.8 3.2

3.0

3.2

3.4

3.6

3.8

r (α0)

R
 (

α 0
)

Figure 8.7: Projections of representative orbits of the SN1 and SN1A families at various
energies. Solid, dashed, and dotted lines on the same plot represent orbits of increasing
energy. Their data are given in table (8.3).

A cascade of saddle–node families which all behave in a similar manner, has also
been located. They are denoted by SN3, SN4,. . . ,SN11. The general pattern is the
following: the stable branch of each family comprises of orbits with a predominant
OH–Cl stretching character and initially evolves quite steeply. At a certain point
a resonance (1:8, 1:9,. . . ) between the R- and r-oscillators kicks in and the family
changes slope dramatically; soonly afterwards the stability is lost. At the vicinity of
the point where the skew takes place, the next member of this series of saddle–node
families is born and the behavior is replicated. In table (8.1) we present the pairs of
energy and period where each bifurcation takes place. Plots of representative orbits
of the families born are given in fig. (8.9), fig. (8.10), and fig. (8.11). Their data are
presented in table (8.4).
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Figure 8.8: Projections of representative orbits of the SN2 family at various energies.
Solid, dashed, and dotted lines on the same plot represent orbits of increasing energy. Their
data are given in table (8.3).

FAMILY ENERGY (eV) PERIOD (t.u.)
SN3 −0.842419 12.6434
SN4 −0.766117 13.1940
SN5 −0.578109 14.9941
SN6 −0.452732 16.7664
SN7 −0.367191 18.4922
SN8 −0.305820 20.1970
SN9 −0.259752 21.8900
SN10 −0.223688 23.5750
SN11 −0.194331 25.2542

Table 8.1: Origins of the saddle–node families comprising the cascade in the classical phase
space of HOCl.
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Figure 8.9: Projections of representative orbits of the SN3, SN4, and SN5 families at low
(solid line) and medium (dashed line) energies. Their data are given in table (8.4).

8.4 Quantum Treatment and Discussion

All dynamics calculations were performed using the filter diagonalization method.
This technique calls for the construction of optimally adapted basis functions (so-
called “window basis functions”) ϕi, which span only a relatively small subspace
of the whole Hilbert space. These are generated by applying the Green’s function
Ĝ +(Ei) = (Ei − Ĥ + iW )−1 as a filtering operator onto an initial wave packet
χ, ϕi = ImĜ +(Ei)χ, where iW is a complex absorbing potential (W = 0 in cal-
culations for bound states). The energies Ei are taken to be equally spaced in
the interval [Emin, Emax]. The filtering is efficiently performed using the (modified)
Chebychev polynomial expansion of the Green’s function [219]. In the second step,
the eigenstates in the energy window [Emin, Emax] are calculated by diagonalizing
the Hamiltonian in the small set of basis functions {ϕi}. The Hamiltonian employed
is the one in eq. (4.1) for zero total angular momentum. The imaginary (absorbing)
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Figure 8.10: Projections of representative orbits of the SN6, SN7, and SN8 families at
low (solid line) and medium (dashed line) energies. Their data are given in table (8.4).

potential iW in the Green operator for the calculation of the complex resonance
energies above the HO+Cl dissociation threshold, enters in the form of a damp-
ing factor, exp(−γ̂(R)). Following Mandelshtam and Taylor [219], the coordinate
dependent function γ̂(R) was taken to be

γ̂(R) =
D0√
∆H

(
R−Rd

Rmax −Rd

)2

Θ(R−Rd).

∆H (in atomic units) denotes the spectral range of the Hamiltonian and Θ is the
Heaviside step function. The three adjustable parameters are the damping strength,
D0, the starting point for the absorbing potential, Rd, and the end point of the grid
in the dissociation coordinate, Rmax. Certain values were chosen for them in order
to give tolerable resonance widths.

The quantum calculations estimated the ground energy of the HOCl system to
be −2.17028 eV, and provided the fundamental excitation energies of the three nor-
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Figure 8.11: Projections of representative orbits of the SN9, SN10, and SN11 families
at low (solid line) and medium (dashed line) energies. Their data are given in table (8.4).

mal modes at 3602.20 cm−1, 1238.32 cm−1, and 724.61 cm−1 for the HO stretching,
ĤOCl bending and OCl stretching modes respectively. The corresponding experi-
mental values [220] are 3609.48 cm−1, 1238.62 cm−1, and 724.36 cm−1, in excellent
agreement with the quantum ones. Given the periods of the classical oscillators we
can estimate the corresponding frequencies to be 3791.50 cm−1, 1274.77 cm−1, and
741.53 cm−1 respectively. The slight discrepancy of a few per cent between classical
and quantum values is expected as the frequencies of the classical oscillators were
computed at the minimum of the potential while the quantum treatment incorpo-
rates the zero-point energy. The ground-state energy is classically estimated by the
oscillator frequencies at −2.16472 eV.

The quantum analysis provided 827 bound states and 160 resonances up to
0.30 eV. Bound states are those below the dissociation threshold of 0.22877 eV;
this limit incorporates the ground energy of the isolated OH and the zero-point
energies of the OCl and bending modes. The narrow energy window in which reso-
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nances were sought was sufficient to achieve the goal of elucidating the strong state
dependence of the resonance widths. All wave functions were visually inspected and
their vast majority was assigned in terms of the normal modes. The labeling was
straightforward to about four-fifths of the dissociation limit. Then, however, com-
plications related to saddle–node bifurcations of the corresponding classical phase
space arose, making the interpretation quite challenging. In what follows, (v1, v2, v3)
designates a state with v1 quanta in OH stretching, v2 quanta in bending, and v3

quanta in Cl–OH stretching modes.

The analysis of the quantum energy spectrum reveals that the same patterns
emerge, appropriately shifted, for different values of v1. It is a clear indication
that the coupling between the HO stretch and the other two degrees of freedom is
very weak (but, nevertheless, not negligible). This, in addition to the fact that the
HO frequency is much larger than the others, results essentially in a separated HO
vibration from the Cl motion. Below we will elucidate the distribution and behavior
of the states with v1 = 0.

The fact that two quanta of the OCl stretch are roughly equivalent to one quan-
tum of ĤOCl bending, facilitates the organization of states into clusters, termed
as polyads. The levels with the same v1 and polyad number P = 2v2 + v3 have
approximately the same energy and comprise the [[v1, P ]] polyad. The polyads are
quite broad and overlap even at low energies; this is attributed to the relatively large
initial deviation from resonance of the bending and stretching motions of Cl with
respect to OH vibration. However, being the dissociation mode, the OCl stretch is
much more anharmonic than the bend; this results in a gradual tuning into close res-
onance of the two modes, destroyed only due to structural changes around −0.5 eV.
As the exact resonance sets in, the coupling of R and γ influences the shape of wave
functions at least for the highest members in each polyad. As we can see in upper
panels of fig. (8.13), the (0, 0, v3) wave functions become gradually more curved in
the {R, γ} plane. The curvature is present at v3 = 12 but is more pronounced from
v3 = 16 and above. This horseshoe-type behavior is typical for systems governed by
a 1:2 resonance [221]. Therefore, as a consequence of the mixing, the states which
at low energies start out to advance along the dissociation coordinate, R, avoid the
dissociation path at high energies (see also fig. (8.12)). We should also note that the
(0, 0, v3) wave functions are localized parallel to the R axis for low energies, thus jus-
tifying their initial assignment. On the other hand, for higher energies this is clearly
not the case; the identification in terms of the OCl normal mode is meaningless.

Although not shown here, the low members of the pure OCl stretch progression
are localized on orbits of the steep segment of the R family. Above the point where
R skews, the localization is controlled by orbits of SN2, the family of which the
stable branch inherits the behavior of R at low energies. In the lower panels of
fig. (8.13), the corresponding classical periodic orbits—i.e. the orbits of which the
energy above minimum roughly equals the quantum energy above ground state—of
the SN2 family are depicted. It is worth noting that the energy where SN2 is
born corresponds, in the sense above, to an energy less than 0.09 eV below that of
the first member (v3 = 12) of the (0, 0, v3) progression which exhibits a qualitative
change in its character. The same factor which affects the (0, 0, v3) states, namely
the R–γ resonance, has analogous effects on the classical orbits. The assignment in
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cm21, the scaled PES underestimates it by 7 cm21. How-
ever, the scaling factor is chosen so that the disagreement
with the experimental energies is small for all states of the
(v1,0,0) progression with v151 through 7 ~see Table II!.
The other two transition frequencies obtained with the scaled
PES are in very good agreement with experiment. The scal-
ing slightly modifies also the equilibrium bond distances.
This could be corrected for by a tiny translation of the two
stretch coordinates, which, however, has not been done. All
dynamics calculations, which will be presented in the follow-
ing, are performed with the scaled PES.

In Table II we compare vibrational band origins with
available experimental data. The agreement is satisfactory
with the largest deviation being 20 cm21 and a rms deviation
of 11 cm21.

There are two other PESs available for HOCl, which
have been constructed very recently. Peterson57 determined a
near-equilibrium PES based on high quality coupled cluster
ab initio calculations. With this PES the experimentally
known overtones and combination bands up to energies of
about 10 000 cm21 were accurately reproduced. However,
because this PES is restricted to configurations not too far
from equilibrium, it cannot be used for studying the frag-
mentation into HO and Cl. Similar ab initio calculations on
an even higher level of accuracy were subsequently per-
formed by Koput and Peterson.58 Skokov, Peterson, and
Bowman29 extended the calculations of Peterson and con-
structed a global PES, which is suited to study high over-
tones of the HO stretching mode as well as dissociation into
HO1Cl. The ab initio level is comparable to the level of
accuracy used in our calculations. Skokov, Peterson, and
Bowman, however, performed a more elaborate scaling pro-
cedure and therefore their PES reproduces the experimen-
tally known vibrational energies slightly better than our sur-
face. The general topographies of the two potential surfaces
are very similar.

Figure 1 depicts three two-dimensional cuts through the
PES. The coordinates are the Jacobi coordinates appropriate
for dissociation into HO and Cl: R, the distance from Cl to
the center of mass of HO, r, the HO bond distance, and g ,
the angle between the two vectors R and r (g5180° corre-
sponds to linear HOCl!. The two dissociation channels,
HO1Cl (R→`) and H1OCl (r→`), are clearly seen in
Fig. 1 ~middle panel!. However, the latter one is consider-
ably higher in energy and therefore is of no consequence for
our study. There is no barrier in the HO1Cl exit channel
~Fig. 2!. In the linear geometry, g5180°, two pronounced
maxima exist, which are caused by conical intersections with
higher electronic states.29 The first one occurs near R'4a0

@Fig. 1 ~upper panel!# and the second one is located at large
HO distances @Fig. 1 ~lower panel!#.

The main characteristic of the HOCl ground-state PES is
the weak potential coupling between the three internal de-
grees of freedom. The minimum energy paths are almost
perfectly aligned along the respective coordinate axes. At
low energies the same is true for the nodal lines of the quan-
tum mechanical wave functions. At higher energies, how-
ever, an anharmonic resonance between R and g is devel-
oped, which strongly changes this simple picture.

III. CALCULATION OF BOUND AND RESONANCE
STATES

All dynamics calculations are performed using the filter
diagonalization method.59–61 In a first step, optimally
adapted basis functions ~so-called ’window basis functions’!

FIG. 1. Contour plots of the HOCl ground-state PES. The contour spacing is
0.25 eV and the highest energy in each panel is 3 eV. Energy normalization
is such that E50 corresponds to HO1Cl with HO at equilibrium.

FIG. 2. Minimum energy path along the dissociation coordinate R; the po-
tential is minimized in the other two degrees of freedom. The symbols
indicate the extension of wave functions in the two progressions (0,0,v3)
and (0,0,x)D , respectively ~see the text!.

80 J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Weiß et al.

Figure 8.12: The extent of orbits in the R, SN2, and the cascade saddle–node families
(left), and (0, 0, v3) and (0, 0, x)D wave functions (right) (see text). The energy of the
classical orbits is shifted by the zero-point energy. The symbols are overlaid on the minimum
energy path.

terms of the R and SN2 families, which clearly scar the (0, 0, v3) wave functions,
is consistent for the whole energy regime; v3 always reflects the number of nodes
along the backbone orbits whether they are parallel to the R axis or not. One might
expect that states of the fundamental progression with excitation in R and sufficient
energy would explore the HO+Cl channel deeper and deeper. Instead, the analysis
reveals that such states bend significantly and remain localized above the potential
well irrespective of their energy. This is depicted in the right panel of fig. (8.12),
along with the maximum R reached by the corresponding classical orbits (left panel).
There is another progression which explores the dissociation path; these D states we
will discuss further on, do not come about before −0.5 eV or so.

The wave functions of the (0, v2, 0) progression evolve parallel to the γ axis and
retain this shape up to v2 = 13 or so. The weak 1:3 resonance of r and γ is
reflected in the undulatory behavior of the wave functions, characteristic for such
a resonance [222]. Nevertheless, their backbones are also consistently marked by
stable periodic orbits, in this case belonging to the SN1 family and its bifurcation
and in a lesser degree—mainly in low energies—to B. This may come as a surprise
since B does not seem to play the primary role in scarring; nevertheless, the first
saddle–node family is born below the quantum ground state and, therefore, exists
along with the principal families and can influence from the very beginning the
quantum states, as it does. In fig. (8.14), members of the (0, v2, 0) progression are
shown along with the corresponding orbits of the SN1 and SN1A families; the role
of the latter is explained below.

As mentioned, the pure bending wave functions (0, v2, 0) slightly change their
shape at high v2. While at lower energies the (0, v2, 0) wave functions do not have a
node in the R direction, in the high-energy regime they start to develop excitation
in R. The energy of the (0, 13, 0) state is −0.331074 eV which corresponds roughly
to −0.685 eV in the classical phase space. The shape the bending wave functions
acquire above it resembles a very narrow horse-shoe, see fig. (8.14), a behavior ex-
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R

γ

Figure 8.13: Upper row: wave functions of the pure overtone states assigned as (0, 0, v3).
Lower row: corresponding periodic orbits of the SN2 family. The γ axis ranges from 19◦ to
179◦ and the R axis ranges from 2.5 α0 to 5.42 α0. In all wave function plots shown is one
particular contour |Ψ(R, r, γ)|2=const.. The plots are viewed along one coordinate axis, in
the direction perpendicular to the plane of the other two coordinates.

pected for a 2:1 resonance. Because of the splitting into two branches, the period of
the corresponding orbits, if any, should be about two times longer than the periods
of the SN1 orbits, implying a period-doubling bifurcation. Indeed, these findings
are consistent with the birth around −0.63 eV of the SN1A family, having twice
the period of SN1; SN1A inherits the stability and, therefore, is the primary local-
ization entity in the relevant phase space region. The SN1A family also becomes
unstable at higher energies, something which explains the observation that clear-cut
(0, v2, 0) wave functions do not exist in that regime.

The increasing coupling of R and γ with increasing energy and the resulting
mixing have another significant implication, this time on the middle members of the
high polyads, above P = 21. Fig. (8.15) illustrates the changes in the wave function
character for selected states belonging to the [[0, 21]] through [[0, 25]] polyads. As we
can see, a “backbone” emerges on some wave functions along which the amplitude is
maximal. This backbone evolves parallel to the R axis. The change in character can
be so dramatic that certain states (e.g. (0, 8, 8), (0, 9, 7)) can be given a normal mode
assignment based only on their relative position in the polyads and not their shape;
they are actually new, independent states. In order to distinguish these new states
from the “normal” ones, we can assign them as (v1, v2, x)D(P), where the abbreviation
D(P) stands for “dissociation” and the number in parentheses indicates the polyad
this state belongs to. With increasing polyad quantum number, combination states
of the D type with one, two, and more nodes in the direction perpendicular to
the main backbone, i.e. with excitation essentially in the bending mode, come into
existence, (e.g. state (0, 8, 9) for polyad P = 25). Note that the number of nodes
along the backbones of these functions is not identical to the polyad quantum number
P . For example, the (0, 0, x)D(24) wave function for polyad P = 24 has only 19 nodes.
However, beyond any doubt, it is not a member of polyad P = 19. Because of the
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Figure 8.14: Upper row: wave functions of the (0, v2, 0) states. Lower row: corresponding
periodic orbits of the SN1 and SN1A families. The γ axis ranges from 1◦ to 179◦, the R
axis ranges from 2.5 α0 to 5.42 α0, and the r axis ranges from 1.0 α0 to 3.5 α0.

mismatch between the polyad quantum number and the actual number of nodes
along the backbone, we replace the quantum number v3 by x without specifying
the value of x. As before, v1 is the number of HO stretching quanta and v2 refers
to the number of quanta in the direction perpendicular to the backbone, basically
the angular coordinate. Notice also another peculiarity: the number of nodes of
the D states along their backbones does not necessarily increase by one when going
from one polyad to the next higher one. For example, the wave functions for states
(0, 0, x)D(24) and (0, 0, x)D(25) both have 19 nodes. Moreover, it is possible that
the number of nodes along the backbones is identical for states (0, 0, x)D(P) and
(0, 1, x)D(P). The allocation of such states into particular polyads is based mainly
on energy.

The D states clearly follow the dissociation path, i.e. they extend further and
further into the HO+Cl fragment channel when the energy increases, see fig. (8.16)
and fig. (8.12). They form a new family of states which does not exist at lower
energies but is born relatively abruptly at high energies. The birth of the D states
leaves the number of states per polyad intact; it is the structure of the individual
polyads, i.e. the wave functions and the energy spacings between neighboring states,
as elaborated below, that is considerably changed by the D states. The alterations
become rapidly more severe with increasing energy.

The first state with a considerable D character is probably (0, 7, 9) at−0.46973 eV.
The corresponding classical energy, that is, the one equal to the energy above min-
imum of the quantum ground state, is −0.8242 eV; it is very close to the point
where the cascade of saddle–node families is born in the classical phase space. Or-
bits in the steep, stable, segments of the SN3 family and above, penetrate deeper
and deeper the dissociation path (cf. fig. (8.12)), show negligible excitation in r and
clearly (cf. fig. (8.16)) scar the D states and provide a consistent way to assign these,
superior to the problematic in cases, normal mode assignment. On the other hand,
the segments after each skew are mainly unstable, exhibit large OH amplitude and,
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Figure 8.15: Selected wave functions for polyads [[0, 21]]–[[0, 25]] illustrating the gradual
distortion of the nodal behavior observed for the lower polyads and the genesis of the
(v1, v2, x)D(P) dissociation states. The R axis ranges from 2.5 α0 to 5.42 α0 and the γ
axis ranges from 19◦ to 179◦. The assignment reflects the number of nodes on the “axes”
indicated in two of the panels.
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Figure 8.16: Upper panel: wave function plots of selected D states. Lower panel: corre-
sponding periodic orbits of the SN4 and SN5 families.

therefore, do not influence the D states.
The quantum analysis we present in [210] focuses on the ramifications of the R

and γ resonance on the eigenfunctions and their energies. As we mentioned, OH
stretch is effectively independent from the other modes, a fact evident mainly in
the quantum picture. A definite series of states, necessarily few due to the large
quantum, form the (v1, 0, 0) progression and, although not shown here, are scarred
by orbits of the r family.

A generic feature of the classical phase space is the major role the resonance of r
with R plays: the birth of all but SN1 saddle–nodes is attributed in a definite way
to it. It is intriguing that this resonance affects very slightly the quantum picture.
It may be attributed to the large quantum in OH stretch: the energy deposited on
the r-oscillator when a resonance condition is met should be quite large in order to
have an impact on quantum mechanics, and, in such a case, a large OH amplitude
will be accompanied by significant excitations in the other two modes. One can
surmise that the harmonic branches of R and the saddle–node families, when they
are stable, influence states with non-zero quanta in all modes.

The excellent correspondence of classical periodic orbits and quantum wave func-
tions is not limited to their morphology; the transition frequencies, i.e. the energy
differences between adjacent levels,1 are directly comparable to the frequencies of
the classical periodic orbits.2 In the upper panel of fig. (8.17), the transition energies
follow closely the frequency curve of r. The lower panel depicts the differences of
adjacent levels for the (0, v2, 0), (0, 0, v3), and (0, 0, x)D progressions and the frequen-
cies of the corresponding scarring periodic families: B, SN1, and SN1A (multiplied
by two) for the first, R and SN2 for the second, and SN3–SN11 for the third pro-
gression. Since the D states advance along the dissociation path, they exhibit a
considerable anharmonicity as indicated by the energy level spacing between adja-

1available from ftp://ftp.aip.org//epaps/journ_chem_phys/E-JCPSA6-112-009001
2available from the author.
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cent (0, 0, x)D(P) states. The curve of transition frequencies for the D states seems
to be the continuation of the curve for the (0, 0, v3) states, i.e. the states which in
the low energy regime have mainly OCl stretching character.

8.5 Conclusion

The preceding analysis establishes the relation of quantum features to characteristics
of the classical phase space in a way that not only qualitative but also quantitative
predictions are feasible. The existence and morphology of the fundamental progres-
sions, their energy patterns, the role of the Fermi resonance of R with γ are all
accounted for in terms of the shape and frequencies of classical periodic orbits. The
fact that the overtones of the Cl–OH stretching mode do not advance along the dis-
sociation path although energetically favored, and the sudden appearance of another
progression in high energies which does so are directly reflected to the behavior of
the R and SN2 families of periodic orbits and the cascade of saddle–node bifurca-
tions in the classical phase space. Additionally, the organization of quantum states
based on their scarring periodic orbits provides a means to assign them consistently
from low to high energies avoiding the distortions and unphysical labeling imposed
by strict normal mode assignment.

The relation of classical and quantum features developed so far enables us to
make valuable predictions on the quantum and actual, experimental behavior of
realistic polyatomic molecules based solely on the analysis of periodic orbits. The
study of the classical phase space is trivially extensible to systems with more than
three, four, or five atoms whereas the detailed quantum analysis is computationally
quite challenging if applicable.
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Chapter 9

Conclusions

In the preceding chapters we have presented a detailed analysis of the classical
phase space for certain triatomic compounds of environmental or astrophysical in-
terest. We have also showed the wealth of information obtainable through periodic
orbit analysis, which, in many cases, is comparable to the results of a full quantum
treatment but much less computationally demanding.

It has been established that we can derive, based solely on classical mechanics,
many quantum features: the quanta of the normal modes, the ground-state energy,
and the morphology of the wave functions, in cases counterintuitive, are among them.
Especially the knowledge of the approximate shape of the eigenfunctions is by itself
important both for experimentalists and quantum theorists. The former can utilize
it to probe successfully specific states by preparing the system in a particular initial
state with significant overlap with the desired final one. The latter can employ it
as a close initial guess in algorithms that improve a given function to approach the
eigenfunction of a Hamiltonian operator, or in other methods, they can use it to
construct a limited set of basis functions which reproduces quite closely the wave
function sought.

We have also discussed that the organization of periodic orbits into families fa-
cilitates the assignment of many quantum states in a manner independent of normal
modes and their limitations. Orbits in well-defined segments of one or more closely
related families scar specific wave functions. This way, progressions are defined based
on similar physical characteristics and morphology of quantum states, whereas the
strict normal mode assignment may lead to dubious labelling or even be infeasible.
Moreover, the existence and stability analysis of periodic orbit families was shown
to provide quite accurate diagnostic indications on the birth and the disappearance
of the corresponding scarred progressions, information which is simply unattainable
in the quantum mechanics framework.

The correspondence of periodic orbit families and quantum state progressions is
not limited to their similarity in morphology. The energy differences among succes-
sive members in each progression, that is, the transition energies which are directly
or indirectly recorded in experiments, turned out to be in, usually, excellent agree-
ment with the frequencies of the corresponding periodic orbit families. One can get
valuable information on the distribution of peaks in a spectrum or the degree of
unharmonicity of quantum energy levels by studying a classical Continuation/Bifur-
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cation diagram.
In the same context of the relationship of quantum progressions to classical

families of periodic orbits, we have also established the important role played by
saddle–node bifurcations and the emanating families in clarifying key issues in the
experimental and theoretical spectra. We have shown that the birth, morphology
and evolution of wave functions which advance further and further on the dissocia-
tion or isomerization paths reflect in all their features certain saddle–node families
in the classical phase space. These families are born due to resonances between the
classical degrees of freedom. In the molecules we studied there is an approximate
initial resonance and, additionally, one mode evolves in a more anharmonic fashion
compared to the others. This way, two oscillators gradually tune into an almost
exact resonance, influencing not only the evolution and the shape of the relevant
periodic orbits, but also, giving birth to saddle–node families. Typically, secondary
resonances involving the third oscillator are abundant in the classical phase space,
with similar ramifications. The coupling between the corresponding degrees of free-
dom participating in the primary resonance is quite strong and emerges also in
the quantum picture; the shape of wave functions changes gradually, reflecting the
resonance, and new progressions are born. On the other hand, the secondary reso-
nance is among modes with very weak coupling; dramatic changes due to it occur in
the classical phase space where the continuous nature enables the strict resonance
conditions to be met, while the discrete quantum mechanics surpasses them.

The work presented in this thesis along with previous studies, enable us to form
a systematic method in deriving many useful quantum and, consequently, experi-
mental features of realistic polyatomic systems which may be too large to admit
a full, detailed quantum treatment within the present theoretical framework and
computational facilities, without resorting, on the other hand, to statistics.
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EuqaristÐec

Sto tèloc thc makr�c prosp�jeiac thc suggraf c thc diatrib c mou jèlw na euqari-
st sw, katarq n thn oikogènei� mou gia thn upost rix  touc kaj¸c kai ton epiblèpon-
ta Kajhght  S. Far�nto gia th sunergasÐa kai gia tic dunatìthtec pou mou pareÐqe
¸ste na epekteÐnw tic gn¸seic mou se jèmata pèran tou �mesou ereunhtikoÔ mou to-
mèa. Den xeqn¸ ìti qwrÐc tic parotrÔnseic tou de ja eÐqe arqÐsei potè h suggraf 
tou parìntoc èrgou. Jèlw epÐshc na euqarist sw ton Dr. R. Schinke kai thn ereu-
nhtik  tou om�da gia thn polÔ apodotik  sunergasÐa kaj¸c kai gia th filoxenÐa touc
sto Max-Planck-Institut für Strömungsforschung. Shmantik  eÐnai akìmh h oikonomi-
k  upost rixh pou mou pareÐqan ta Tm mata Fusik c kai QhmeÐac tou PanepisthmÐou
Kr thc kai to InstitoÔto Hlektronik c Dom c kai Laser tou IdrÔmatoc TeqnologÐac
kai 'Ereunac.

Jèlw na euqarist sw epÐshc touc Jodwr  kai BoÔla Pierr�tou, Gi¸rgo kai Ma-
roÔsa Koundour�kh, L�mpro kai Nat�sa Nikolìpoulou, Ant¸nh Koumpen�kh kai thn
oikogènei� tou, kai TsampÐko kai M�nia Kìttou, gia thn oikogeneiak  atmìsfaira pou
mou prosèferan to di�sthma paramon c mou sto Hr�kleio kai sto Göttingen, touc
NÐko Sim�to, Miq�lh Kapnistì kai MarÐa Lashjiwt�kh pou sumpl rwnan to stenì
kÔklo twn fÐlwn mou kaj¸c kai ìlouc touc upìloipouc sunadèlfouc metaptuqiakoÔc
pou me di�forouc trìpouc sunèbalan sthn diexagwg  tou èwc t¸ra ereunhtikoÔ mou
èrgou.
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