
University of Crete
Computer Science Department

Semantic Web Middlewares and Versioning
Services

Dimitris Andreou
Master's Thesis

Heraklion, December 2007

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Platfìrmec ShmasiologikoÔ IstoÔ kai UphresÐec

Ekdìsewn

ErgasÐa pou upobl jhke apo ton

Dhm trh S. Andrèou

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Dhm trhc Andrèou, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

BasÐlhc QristofÐdhc, Anaplhrwt c kajhght c, Epìpthc

Iw�nnhc TzÐtzikac, EpÐkouroc kajhght c, Mèloc

Grhgìrhc AntwnÐou, kajhght c, Mèloc

Dekt :

P�noc Traqani�c, Kajhght c

Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, Dekèmbrioc 2007

3

4

Abstract

The Semantic Web (SW) is an evolving extension of the World Wide Web in which

Web content can be expressed not only in natural language but also in a format that

can be read and used by software agents, thus permitting them to find, share and in-

tegrate information more easily. It comprises a variety of formally specified languages

(RDF/S, OWL), associated formats (e.g. RDF/XML, N3, Turtle, N-Triples) and related

technologies for their management.

Various platforms have been implemented in the recent years which apart from helping

applications process Semantic data, evolve towards providing middleware services. These

services are contacted remotely and provide controlled access to a repository on behalf of

client applications, which are not needed to know or depend on the internal repository

layout.

This thesis reviews such platforms and focuses on the design and implementation of the

Semantic Web Knowledge Manager (SWKM) platform specifically. A common require-

ment in these platforms is that they all need some sort of main memory representation

of Semantic data, in order facilitate its processing internally. These representations are

also used by external in clients, to develop Semantic-aware applications. In this thesis we

experimentally compared the performance characteristics of the main memory represen-

tation of each platform, by covering a multitude of possible access patterns. Additionally,

we pay particular attention to the various Semantic versioning facilities, since versioning

is an ubiquitous requirement for collaborative applications. In general, versioning is the

process of assigning unique identifiers to states of artifacts and keeping other historical

information and metadata. In this thesis, versioning services for the SWKM platform are

introduced and compared to similar existing offerings.

5

In summary, the contribution of this work lies on the experimental evaluation and

comparative analysis of various main memory representations of Semantic data, and on

the design and implementation of middleware versioning services for Semantic models,

offered as Web Services.

6

Platfìrmec ShmasiologikoÔ IstoÔ kai UphresÐec

Ekdìsewn

Dhm trhc Andrèou

Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

Platfìrmec ShmasiologikoÔ IstoÔ kai UphresÐec

Ekdìsewn

O Shmasiologikìc Istìc eÐnai mia exelissìmenh epèktash tou PagkosmÐou IstoÔ sthn

opoÐa to perieqìmeno mporeÐ na ekfrasteÐ ìqi mìno me fusik gl¸ssa all� kai me tupikèc

gl¸ssec pou epitrèpoun thn paroq prohgmènwn uphresi¸n anaz thshc, diamoirasmoÔ

kai olokl rwshc plhroforÐac. Perilamb�nei poikilÐa tupopoihmènwn glwss¸n (RDF/S,

OWL) kai sqetik¸n morfotÔpwn (RDF/XML, N3, Turtle, N-Triples), kaj¸c kai sqetikèc

teqnologÐec gia th diaqeÐrish touc.

Di�forec platfìrmec èqoun ulopoihjeÐ ta teleutaÐa qrìnia pou ektìc thc paroq c

uphresi¸n gia thn epexergasÐa shmasiologik¸n dedomènwn, exelÐssontai proc thn kateÔ-

junsh thc paroq c uphresi¸n endi�mesou logismikoÔ. Oi uphresÐec autèc prosfèroun

apomakrusmènh kai elegqìmenh prìsbash se mÐa perissìterec b�seic dedomènwn ek mèr-

ouc efarmog¸n-pel�th, oi opoÐec den qrei�zetai na gnwrÐzoun na exart¸ntai apì tic

leptomèreiec ulopoÐhs c touc.

Sthn ergasÐa aut melet same tètoiec platfìrmec kai epikentrwj kame sthn sqedÐash

kai thn ulopoÐhsh thc platfìrmac Semantic Web Knowledge Manager (SWKM). Koin

apaÐthsh apì autèc tic platfìrmec eÐnai h paroq k�poiou eÐdouc anapar�stashc kÔriac

mn mhc gia shmasiologik� dedomèna, h opoÐa eÐnai afenìc aparaÐthth gia thn eswterik

(apì to endi�meso logismikì) epexergasÐa aut¸n twn dedomènwn, kai afetèrou qr simh

gia touc pel�tec twn uphresi¸n. Sthn paroÔsa ergasÐa sugkrÐname tic epidìseic tètoiwn

anaparast�sewn (pou prosfèrontai apì di�forec platfìrmec) qrhsimopoi¸ntac èna platÔ

eÔroc pijan¸n motÐbwn qr shc. Epiprosjètwc, d¸same idiaÐterh èmfash se uphresÐec kai

7

ergaleÐa gia th diaqeÐrish ekdìsewn (versions), diìti h paroq tètoiwn uphresi¸n eÐnai

sun jwc aparaÐthth se sunergatikèc efarmogèc. Genik�, h diaqeÐrish ekdìsewn sunÐstatai

sthn an�jesh monadik¸n tautot twn sta di�fora teqnourg mata (sthn prokeimènh shmasi-

ologik¸n montèlwn) kai sthn diat rhsh istorik¸n plhrofori¸n kai �llwn metadedomènwn.

Sthn paroÔsa ergasÐa sqedi�same kai ulopoi same tètoiec uphresÐec gia thn platfìrma

SWKM kai tic sugkrÐname me parìmoiec up�rqousec uphresÐec.

SunoyÐzontac, h suneisfor� aut c thc ergasÐac ègkeitai afenìc sthn sugkritik kai

peiramatik axiolìghsh diafìrwn anaparast�sewn kÔriac mn mhc gia dedomèna shmasi-

ologikoÔ istoÔ, ki afetèrou ston sqediasmì kai sthn ulopoÐhsh uphresi¸n diaqeÐrishc

ekdìsewn shmasiologik¸n montèlwn se epÐpedo endi�mesou logismikoÔ me qr sh istouphre-

si¸n (web services).

Epìpthc Kajhght c: BasÐlhc QristofÐdhc

Anaplhrwt c Kajhght c

Contents

Table of Contents v

List of Figures x

1 Introduction 1

1.1 Introduction to the Semantic Web . 1

1.2 The notion of a Middleware Platform for the Semantic Web 2

1.2.1 Main Memory Representation . 4

1.2.2 Persistence . 4

1.2.3 Access . 4

1.3 Motivation for Benchmarking Main Memory Representations 5

1.4 Motivation and Application Scenarios for Versioning Services 5

1.4.1 Collaborative Development and Evolution of Ontologies 5

1.4.2 Collaborative Development and Evolution of Concepts 7

1.4.3 Archiving and Preservation . 8

1.5 Contributions . 9

1.5.1 Organization of the thesis . 10

2 Semantic Web Middleware Platforms 11

2.1 Introduction . 11

2.1.1 RDF Data Model . 11

2.1.2 Dependencies between RDF spaces 12

2.1.3 Declarative Query/Update support 13

2.1.4 Selection Criteria . 14

i

2.1.5 RDF/S Triple vs. Object-based Views 15

2.2 Sesame . 16

2.2.1 Architecture . 16

2.2.2 Main Memory Model . 17

2.2.2.1 Data Structures . 18

2.2.2.2 Access Methods . 19

2.2.3 Persistence Storage . 19

2.2.4 Sesame Services . 20

2.2.4.1 Query Service . 20

2.2.4.2 Extract RDF Service . 20

2.2.4.3 Upload Data Service . 20

2.2.4.4 Clear Repository Service 21

2.2.4.5 Triple Removal Service . 21

2.2.5 Summary . 21

2.3 Jena . 21

2.3.1 Main Memory Model . 22

2.3.1.1 Data Structures . 22

2.3.1.2 Access Methods . 23

2.3.2 Persistence Storage . 23

2.3.3 Services . 24

2.4 Kowari . 24

2.4.1 Architecture . 24

2.4.2 Main Memory Model . 25

2.4.2.1 Data Structures . 26

2.4.2.2 Access Methods . 27

2.4.3 Persistence Storage . 27

2.4.4 Services . 28

2.5 SWKM . 29

2.5.1 Architecture . 29

2.5.2 Main Memory Model . 29

ii

2.5.2.1 Data Structures . 29

2.5.2.2 Access Methods . 31

3 Benchmarking the Main Memory representations 33

3.1 Introduction . 33

3.2 RDF/S Benchmark . 34

3.2.1 RDFS version of the LUBM schema 34

3.2.2 Instance Generation . 36

3.2.3 Query Workload . 36

3.3 Experimental Evaluation . 38

3.3.1 Load Time & Memory Requirements 38

3.3.2 Query Response Time . 39

3.3.2.1 Schema Queries on Models 39

3.3.2.2 Triple Queries on Models 40

3.3.2.3 Instance Queries on Models 41

3.3.2.4 Triple and Schema Queries on NS and GS 43

3.3.3 Summarizing the Results . 44

3.4 Conclusions . 45

4 Semantic Web Knowledge Middleware (SWKM) Services 47

4.1 Introduction . 47

4.2 Overview and Design Choices . 49

4.3 SWKM Services . 51

4.3.1 Importer Service . 51

4.3.1.1 A note in resolving dependencies for storing 52

4.3.2 Exporter Service . 55

4.3.3 Query Service . 56

4.3.4 Update Service . 57

4.3.5 Comparison Service . 58

4.3.6 Change Impact Service . 60

4.3.7 Registry Service . 63

iii

4.3.8 Versioning Service . 73

4.3.8.1 Import Version Operation 73

4.3.8.2 Create and Import Versions Operation 76

4.4 Usage of Services Example . 79

4.5 Evaluation of the SWKM platform . 87

4.5.1 Strengths . 87

4.5.2 Weaknesses . 88

5 Related Work 91

5.1 Related Work on Benchmarking RDF/S Main Memory Models 91

5.2 Related Work on Versioning . 93

5.2.1 Ontoview . 93

5.2.2 SemVersion . 96

5.2.2.1 The MarcOnt Ontology Builder Case 97

5.2.3 Blackboard Collaboration Architecture of ConcepTool 99

5.2.4 MORE . 99

5.2.5 DIP . 102

5.2.6 GVS . 105

5.2.7 Summary Comparison . 107

5.2.7.1 Structural Diff . 109

5.2.7.2 Semantic Diff . 109

5.2.7.3 Change Log . 110

5.2.7.4 Change-based Deltas . 110

5.2.7.5 Concept Mapping between versions 110

5.2.7.6 Storage Tools . 110

5.2.7.7 Storage Approach . 111

5.2.7.8 Declarative Query Language 111

5.2.7.9 Branch . 112

5.2.7.10 Merge . 112

5.3 Open Issues . 113

iv

5.4 Evaluation of the SWKM Versioning Service 114

6 Conclusion 119

6.1 Synopsis and Key Contributions . 119

6.2 Directions for Further Research . 119

v

vi

List of Tables

3.1 Benchmark Queries . 35

5.1 Features of the comparison . 108

5.2 Features comparison of versioning systems and tools 109

vii

viii

List of Figures

1.1 The Semantic Web Overview . 2

1.2 The Java Enterprise Edition Architecture 3

1.3 The Microsoft Distributed interNet Applications Architecture (DNA) . . . 3

2.1 Dependencies among namespaces, graphspaces and namespaces and graphspaces 12

2.2 Sesame Architecture Overview . 17

2.3 Sesame Data Structures . 18

2.4 Jena Data Structures . 22

2.5 Kowari Architecture Overview . 25

2.6 JRDF Model Design . 26

2.7 JRDF Data Structures . 26

2.8 SWKM Data Structures . 30

2.9 RDF/S Triple vs Object View in SWKM 31

3.1 Univ-Bench Schema . 36

3.2 Load Time (left) / Memory Requirements (center) / Q1-Q7 (right) 38

3.3 Q3 (left) / Q7 (center) / Q8-Q15 (right) 40

3.4 Queries 16-21 . 41

3.5 Queries 22-28 . 44

4.1 An architectural overview of the SWKM services 48

4.2 Deployment of SWKM middleware and Client interaction 49

4.3 Importer service . 51

4.4 Exporter service . 55

ix

4.5 Query service . 57

4.6 Update service . 57

4.7 Comparison service . 58

4.8 Comparison service interaction with Exporter and Main Memory Model . . 61

4.9 Change Impact service . 61

4.10 Change service interaction with Exporter and Main Memory Model 64

4.11 Registry service . 64

4.12 The Registry Schema . 67

4.13 Import Version Operation . 73

4.14 Create and Import Versions Operation . 76

4.15 Versioning service interaction with Exporter, Main Memory Model and

Importer . 79

5.1 Comparing two ontologies in OntoView . 95

5.2 Multiple concurrent ontology branches . 98

5.3 Blackboard Architecture . 100

5.4 MORE System . 102

5.5 A commit dialog in DIP versioning tool. 104

5.6 The three RDF graphs above show personal information from three sources.

The first one asserts that a person who has first name ’Li’ and surname

’Ding’. 106

x

Chapter 1

Introduction

1.1 Introduction to the Semantic Web

The Semantic Web is an evolving extension of the World Wide Web in which web

content can be expressed not only in natural language, but also in a format that can

be read and used by software agents, thus permitting them to find, share and integrate

information more easily. It derives from W3C director Sir Tim Berners-Lee’s vision of the

Web as a universal medium for data, information, and knowledge exchange.

At its core, the semantic web comprises a philosophy, a set of design principles, col-

laborative working groups, and a variety of enabling technologies. Some elements of

the semantic web are expressed as prospective future possibilities that have yet to be

implemented or realized. Other elements of the semantic web are expressed in formal

specifications. Some of these include Resource Description Framework (RDF), a variety

of data interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples), and notations such

as RDF Schema (RDFS) and the Web Ontology Language (OWL), all of which are in-

tended to provide a formal description of concepts, terms, and relationships within a given

knowledge domain. The proposed, by World Wide Web Consortium (W3C)1, overview of

the Semantic Web can be seen in Figure 1.1.

1http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/Overview.html#(19)

1

Figure 1.1: The Semantic Web Overview

1.2 The notion of a Middleware Platform for the Se-

mantic Web

In the early years of the Internet, the client-server paradigm (also referred to as ”two-

tiered architecture”) was the common way to develop distributed applications. In this

paradigm, most of the application logic is bundled with the client, along with some user

interface that issues calls to the server database. Each new application that needs to

operate on the same data connects to the same database; so, the database becomes the

main integration point between applications, providing them data sharing and (thus)

communication.

This approach makes it very problematic to modify the data layer, as that is used

directly by the applications, and modification to it cause those applications to break.

Also, it is difficult to update the application logic itself (and enforce common updated

policies), since this is bundled with each client, so every client installation must be updated

independently. An even more serious problem is the increased network traffic; this is a

direct consequence of application logic moved far away from the persistence layer, so all

data needed by the application need to cross the network.

More recently, another paradigm became popular, known as ”n-tier architecture”, and

2

it was pioneered by platforms such as Java Enterprise Edition (JavaEE2) and Microsoft’s

Distributed interNet Applications Architecture (DNA3). A glimpse of this paradigm, ex-

pressed in either of these platforms (almost identically) is provided in Figures 1.2 and 1.3.

In this architecture, middleware refers to software that is between the client application

and the persistence layer, mediating both. In this sense, an application no longer has

to deal directly with the database, but can rely instead on a set of services built on top

of it. The implementation details of the persistence are hidden, and the middleware can

guarantee the consistency of the database (which would not be the case if applications

would contact and update it directly). Also, as usually the middleware resides close to

the database, this transition entails a win in performance, as more computation is pushed

closer to the data, avoiding costly data transmissions over the wire.

Figure 1.2: The Java Enterprise Edition Architecture

Figure 1.3: The Microsoft Distributed interNet Applications Architecture (DNA)

A middleware for the Semantic Web follows the same general architecture and addi-

tionally offers more specific services regarding Semantic Web data. In briefly reviewing

the available middleware services provided from each major RDF management system,

2java.sun.com/javaee/
3http://www.microsoft.com/technet/archive/itsolutions/intranet/plan/introdna.mspx

3

we focus on the main memory representation of RDF data models, on their long-term

persistence, and on access of data.

1.2.1 Main Memory Representation

In general, a main memory representation of SW data is useful for two main purposes:

(a) for the internal functioning of the middleware (to support validation, provide services

that are able to manipulate them fast, etc), and (b) for providing clients an appropriate

programmatic abstraction of SW data (for client-side manipulation) which in addition is

consistent with the capabilities of the underlying SW repository.

1.2.2 Persistence

Probably the most important functionality that a middleware offers is the provision of

persistence services that hide the details of the particular physical layer used. Typically,

SW data have to persist (except the most trivial cases) across multiple application life-

cycle periods, and may well outlive the application itself. In addition, it should provide

the classical transactional semantics (atomicity, concurrency, isolation, durability) in an

efficient manner. Scalability is also an issue, inasmuch available SW data grow worldwide

at an adequate volume to bolster the vision of the Semantic Web itself.

1.2.3 Access

The middleware should offer expressive (e.g. declarative) and efficient access services

to the SW data stored in the underlying repository. The expressibility of access methods

are directly correlated with the effort needed to create application that take advantage

of the available data by accessing them in convenient ways. Examples of what access

paths can be more ”convenient” to developers are given in later chapters (in particular,

see Section 2.1.5).

4

1.3 Motivation for Benchmarking Main Memory Rep-

resentations

The main memory representation of SW data determines in a large degree the efficiency

of applications built over the middleware. This is due to the fact the main memory

representation affects the efficiency of both server-side and client-side tasks. Furthermore,

in main memory processing it is not too obvious what to optimize (in contradiction with

secondary memory, where IO accesses are the major factor for latency), since applications

use much more fine-grained APIs to access the main memory representations, thus there is

not much of a chance to optimize these very short-lived accesses; and deriving at runtime

the big picture of an application’s accessed paths is problematic and often ignored in

order to avoid the runtime overhead. So, in almost all cases main memory representations

choose predefined indexes by assuming that these will be the most cost-effective, and it is

particularly interesting to find out if those implementation decisions have been correct or

not, to what extend and for which access patterns. By having this information, application

developers can make more intelligent decisions when picking main memory representations

to develop time-critical applications, and framework designers can get valuable feedback

so as to improve problematic areas in their tools.

1.4 Motivation and Application Scenarios for Ver-

sioning Services

In this thesis, there is a particular focus on versioning facilities for the Semantic Web.

To understand the issue better, we will go through some motivating application scenarios

that may benefit from versioning facilities, and examine the relative requirements of each.

1.4.1 Collaborative Development and Evolution of Ontologies

An ontology is a shared knowledge artifact of a community. A matter of fact is that

if it is actively used by a community, the community will drive the need for it to evolve.

5

Individuals propose changes to the ontology, that may involve changes proposed by other

members, or be completely independent. Without versioning, individuals would either

wait for a general consensus to be reached, or would create a copy of the ontology, apply

their desired changes, and experiment with it to gain further insight of the consequences.

This is a rather ad-hoc process, and members collaboration is prohibited - each member

have to keep track of his/her own changes, and changes of other members that interest

him/her the most. All these are moving parts, and the risk of human error increases.

Furthermore, combining the work of different individuals is not as easy as it should.

Finally, each member has to worry about keeping backups before each important change,

and then check for compatibility problems, and possibly revert to a backup.

A versioning system should allow its users to freely perform changes, create new ver-

sions and experiment with them, incorporate changes of others, recombine changes, with-

out fearing of introducing irreversible problems. The creation of new versions, with under

discussion features, enables a richer and less theoretic discussion of the extension, as the

changes are accessible to all, and each member can put the proposed ontology under test

and produce further feedback. At a later stage, the decision to change the authoritative

(aka trunk) version of the ontology can be accommodated, either by extending the exist-

ing version to include the desired features, or by directly merging changes that produces

experimental versions.

In such a scenario, functional requirements for a versioning would include:

• Extend an existing version to produce another

• Annotate a version with arbitrary metadata such as author, intension, issues, com-

ments etc.

• Evaluate queries over versions and such metadata

• Select and combine changes, apply them in an existing version to produce another,

and detect and resolve possible conflicts

• Analysis of changes and description of their consequences (such as the exact com-

patibility problems that are introduced)

6

As per the performance requirements, it is obvious that in a collaborative setting, the

most costly factor to consider is the time spent by humans. So, a versioning tool should

concentrate on providing the highest performance in tasks like:

• Create a version

• Retrieve a version

• Retrieve change log

Normally, heavier disk usage can be afforded in order to accommodate higher per-

formances for the above tasks. Note, however, that excessive disk usage will deteriorate

operation times as well.

1.4.2 Collaborative Development and Evolution of Concepts

A more free-form collaboration setting is one that does not require centralized de-

cision points at all. Imagine a community portal into which there is no need to come

to a structured, general consensus of an ontology at all, in a Web 2.0 fashion. Users

spontaneously define their concepts or reuse definitions of their peers, and an ontological

landscape emerges, where the relative importance of concepts is measured by the number

of usages or instantiations. An example of such a portal is described in [51]. Note

that concepts increase monotonically, and redundant or obsolete concepts need not be

removed, so a weaker versioning model that only allows a single branch of evolution is

enough 4.

This versioning model results in a slightly different set of functional requirements,

where the focus is not so much the management of ontologies, but the management of

concepts, and who created/used them, and when. These can be summarized as tracing

concept history:

• Annotate a version with arbitrary metadata such as author, intension, issues, com-

ments etc. (as in previous scenario)

4An applicable approach for this kind of versioning model is described in [46]

7

• Evaluate queries over versions and such metadata (as in previous scenario)

• Find instantiations of a concept in a time interval

• Find time interval that a concept is in use (or when a concept was used for the first

time)

Queries that can address these requirements can be expressed given an operator that

relates concepts to their creation time, which in turn can be built on top of a more

primitive operator that correlates triples to versions, which themselves can be associated

with time of creation metadata.

Performance-wise, insertions should be performed very fast, which is what the end-user

expects as typically insertions happen incrementally in small volumes. Even more impor-

tantly, as typically read operations vastly outnumber write operations, what is needed

is real time performance for the evaluation of history trace-type queries, such the ones

described above. Retrieval of the full contents of an ontology is not at all a critical op-

eration, so a versioning system should be able to choose data structures and algorithms

with very low retrieval performance, in order to attain higher performance at more critical

operations.

1.4.3 Archiving and Preservation

Another important usage scenario involves information preservation and archiving,

where the prime focus is on storing vast amounts of knowledge in a future-proof, search-

able way. In the Semantic Web context, such activities can be translated into creating

ontologies that can capture the semantics of the data to be archived. These ontologies

eventually need to change, especially since archiving focus on the long term rather than

the short, to accommodate the representation of new types of knowledge, or generally

changes in the real world or its conceptualization. An example of archiving, out of the

Semantic Web scope though, is the Internet Archive WaybackMachine5. Moreover, sev-

eral scientific communities (e.g. biological, medical etc) produce and use voluminous data

5http://www.archive.org/

8

annotated by ontologies or similar structures, which are periodically extended, refined, or

revised, and it would be desirable to store and manage efficiently every available version.

Functionally, this scenario does not bring any new requirement, except perhaps the

need to sometimes track the provenance of preserved knowledge; but this can be covered

by the more general requirement of storing arbitrary metadata, as stated in the first

application scenario.

Performance-wise though, archiving impose vastly different priorities than other tasks.

The main focus is the reduction of storage space requirements, which may happen in

expense of performance of creating new versions and, secondly, in expense of querying

capabilities. The performance of the latter though cannot be degraded too much, as data

are valuable only so long as they are retrievable in reasonable time constraints.

1.5 Contributions

In a nutshell, the contribution of this thesis lies in:

• benchmarking several different main memory representations, and

• designing and implementing versioning services for SW data

Specifically, several contemporary RDF management system/middleware platforms

are analyzed in terms of architecture and supported services. The various abstractions of

main memory models of each platform are compared, and conclusions and useful advice

about which model is more preferable for typical use cases are given. In addition, this

thesis provides a detailed description of the SWKM platform architecture, its available

middleware services and implementation, and in particular its versioning services. These

services are mainly concerned with the application scenario detailed in Section 1.4.1; the

others our out of the scope of the current design goals, and may be the subject of future

research. Various design decisions behind the versioning services are discussed, by also

comparing with other systems where relevant, and insights are provided on the related

problems of implementing versioning facilities.

9

1.5.1 Organization of the thesis

Chapter 2 describes various currently available middleware platforms in terms of their

main memory representations, their persistence-related services and their provided access

paths.

Chapter 3 presents the experimental setting and benchmark results for the main mem-

ory representation models of the aforementioned middlewares, with the respective drawn

conclusions.

Chapter 4 delves into the design, architecture and implementation decisions of the

SWKM middleware in particular, as well as its versioning services specification and im-

plementation desicions.

Chapter 5 examines the state of the art in benchmarking main memory representations

and in versioning services and tools for the Semantic Web.

Chapter 6 summarizes the results of this thesis and identifies topics that are worth

further work and research.

10

Chapter 2

Semantic Web Middleware Platforms

2.1 Introduction

This section reviews various currently available middleware platforms. As briefly

mentioned in Section 1.2, the discussion will focus on three perspectives: (a) on the

main memory model the platform uses and offers for RDF data manipulation, (b) on

persistence-related services, and (c) on the available access paths to the persisted RDF

information. The latter subsections introduce these points

2.1.1 RDF Data Model

In the RDF data model1, a universe of discourse to be modeled is a set of resources

(essentially anything that can have a universal resource identifier, URI). Resources are

then described through a set of properties (i.e. binary predicates) while descriptions are

statements (i.e. triples) of the form subject-predicate-object: a subject denotes the

described resource, a predicate denotes a resource property, and an object the correspond-

ing property value. The predicate and object 2 are in turn resources (or literal values).

A vocabulary (called namespace) of the properties but also of the classes employed in

1www.w3.org/TR/rdf-concepts
2Note that the subject and object of a statement can be also non-universally identified objects, called

unnamed resources (or blank nodes), whose URI could not be shared across different RDF descriptions.

11

resource descriptions can be defined in the RDF Schema (RDFS3) language (also rep-

resented in the basic RDF model). More formally, a namespace defines uniquely (via

its associated namespace URI) a container of schema elements; classes, properties, etc.

This provides a means to avoid naming collisions of elements between different organi-

zations which could happen to choose the same simple name, e.g. ”Person”. Instead,

this simple name is transformed into a URI by adding its namespace prefix, i.e. the URI

of the namespace that it belongs, for example ”http : //www.example.org/#Person”.

The namespace in this example is ”http : //www.example.org/#”. In this document,

we distinguish the terminology between ”namespace URI”, which is a name (string), and

”namespace” which is meant as a container of schema elements that share as prefix the

same namespace URI.

An important extension to this model is the so-called Named Graphs [11], also known

as graphspaces, the preferred term in this document. Graphspaces provision for the asso-

ciation of a name (URI) to a set of triples; from that point, this particular set of triples

can be referred collectively by using its respective URI. A motivating application scenario

for graphspaces is provenance tracking; i.e. who asserted what facts.

2.1.2 Dependencies between RDF spaces

Figure 2.1: Dependencies among namespaces, graphspaces and namespaces and
graphspaces

3www.w3.org/TR/rdf-schema

12

Each RDF space is allowed to depend on declarations found in other RDF spaces. For

instance, a property P, defined in namespace A may be a subtype of a property S defined

in a namespace B. In this case, we say that namespace A depends on namespace B. Also,

data instances in a graphspace C will be instances of a class defined in a namespace D. In

this case, graphspace C depends on namespace D. Finally, data instances in a graphspace

E may refer to a graphspace F. In this case, graphspace E depends on graphspace F.

For understanding and using an ontology, it may be needed to resolve such a depen-

dency. For instance, before storing a single namespace it needs to be validated (to ensure,

for example, that no cyclic class inheritance exists). If it depends on another namespace,

it cannot be properly validated without the presence of the other namespace (in the pre-

vious example, a class that is part of an inheritance cycle may be defined in a different

namespace than the one that is being stored; the cyclic dependency cannot be detected

without processing the second namespace).

2.1.3 Declarative Query/Update support

Several query languages (e.g. RQL[30], SPARQL4, iTQL5) have been developed during

the last years for supporting declarative access to ontologies and resources descriptions

available on the Semantic Web. A comparative discussion about the relative merits and

weaknesses of each declarative query/update language is out of the scope of this thesis.

SWKM in particular uses RQL. RQL is a typed declarative query language for RDF.

It is defined by a set of basic queries and iterators that can be used to build new ones

through functional composition; it can combine schema paths for executing complicated

schema navigations; not many languages support this type of queries. However, its ma-

jor innovation lies in its ability to ask queries both on the schema and data levels. It

supports generalized path expressions featuring variables on labels for both classes and

properties, i.e. nodes and arcs in the graph representation, respectively. Finally, it pro-

vides set-theoretic operators, allows using XML Schema data types, aggregate functions

and arithmetic operations on data values.

4http://www.w3.org/TR/rdf-sparql-query/
5http://www.kowari.org/oldsite/271.htm

13

One of the unique features of RQL is its ability to match filtering/navigation patterns

against RDF/S graphs by taking into account (or ignoring) the semantics (e.g. transitivity

of subsumption relationships) of the ontologies employed to describe knowledge artifacts

(see [23] for a detailed comparison of SW QL expressiveness). This functionality is useful

for abstracting the technicalities of the RDF/S data model while it has been efficiently

implemented in secondary memory.

SWKM also offers a declarative language for updating RDF knowledge, called RUL[38].

This language ensures that the execution of the update primitives on nodes and arcs

neither violates the semantics of the RDF model (e.g. insert a property as an instance

of a class) nor the semantics of a specific RDFS schema (e.g. modify the subject of a

property with a resource not classified under its domain class). This main design choice

has been made given that type safety for updates is even more important than type safety

for queries: the more errors catched at update specification time the less costly runtime

checks (and possibly expensive rollbacks) are needed. It is also smoothly integrated with

RQL.

To support RQL and RUL evaluations, an interpreter has been developed (imple-

mented in C++). This operates directly upon this persistence layer, that can both re-

trieve knowledge/answer queries (expressed in RQL) or update the knowledge base (with

RUL) respectively. Currently, there are several provided mappings between RDF/S and

the (object-)relational model that the interpreter can handle, with different performance

properties, named as: Schema Oblivious, Schema-Aware, Hybrid [44][7]. RDF/S repre-

sentations are mapped and stored as relations in the database.

2.1.4 Selection Criteria

We selected four Java-based main memory representation management systems (MM-

RMS) for the main memory model benchmark, namely Sesame, Jena, JRDF (used as the

main memory API of Kowari), and SWKM , which, to the best of our knowledge, cover

the full spectrum of general purpose Java programming frameworks available nowdays

to SW developers. In particular, we are interested in understanding the impact of their

14

various architectural and implementation choices when constructing or accessing program-

matically RDF/S schemas and instances. Our choice to stick with RDF/S is motivated

by the fact that according to a recent survey [14] 85.45% of the SW relies on RDF/S,

while only 14.55% on OWL.

2.1.5 RDF/S Triple vs. Object-based Views

The basic abstraction SW developers have in their disposal to program is that of an

RDF/S Model, which encapsulated the data model expressed in Section 2.1.1. A model

consists of one or more collections of triples and groups all the methods for constructing

and accessing RDF/S schemas and instances. All four MMRMS used in our benchmark

represent triples as objects, whereas the three of them (Jena, Sesame, JRDF) model also

the concept of node, for representing the corresponding subject, predicate or object. Since

a node is generic enough to represent almost anything in RDF/S, it cannot carry any type

information (so we cannot know what kind of specific RDF/S construct it represents, such

as a class, property or individual resource). It is usually used either as a storage facility

for triples (in Sesame) or just as a reference object during triple creation (Jena, JRDF).

In general the three aforementioned MMRMS support, in a similar manner, the concepts

of the model, the triple and the node.

However, SW developers are more akin to program with objects having a concise state

(i.e. attribute values) and type information (i.e. classes they instantiate). This is due

to the old and good reasons of modern programming paradigms: ease of use, speed of

navigation and access, better encapsulation and exploitation of capabilities like inheritance

and polymorphism. Such an object-based view would map RDFS classes to programming

language classes, RDF resources to programming language objects and RDF predicates

to data or function members of those objects. Unfortunately most of the so far developed

MMRMS do not provide an object-based view of the RDF/S schemas and instances

represented in Main Memory. Some efforts to provide a programmatic object creation for

RDF/S based schemas, like RDF Reactor [47] and RDF2Go [47] require that the RDF/S

schema is parsed in advance and the corresponding Java classes to be created before the

actual code can be written, making such approaches at least cumbersome and resilient

15

to changes. Other efforts, like ActiveRDF [39], rely on the dynamic typing capabilities

of scripting languages such as Ruby in order to bridge to some extend the gap between

RDF/S and the object oriented world.

2.2 Sesame

Sesame6. is an open source Java framework for storing, querying and reasoning with

RDF and RDF Schema. It can be used as a database for RDF and RDF Schema, or as a

Java library for applications that need to work with RDF internally. Sesame provides the

user with the necessary tools to parse, interpret, query and store RDF data, embedded

in user applications or in a seperate database on a remote server.

A central concept in Sesame is the Repository. A repository is a abstraction of storage

container for RDF data. This can mean Java objects in memory, or it can mean a rela-

tional database. Virtually all operations in Sesame happens with respect to a repository:

the repository is the provider of persistence and querying capability.

Sesame also supports RDF Schema inferencing. This means that given a set of RDF

and/or RDF Schema, Sesame can find the implicit information in the data. Sesame

supports this by simply adding all implicit information to the repository when data is

being added.7

2.2.1 Architecture

Figure 2.2 shows an architectural overview of Sesame. Starting at the bottom, the

Storage And Inference Layer, or SAIL API, is a Sesame API that abstracts Sesame’s

persistence, and is described in Section 2.2.3

On top of the SAIL, we find Sesame’s functional modules, such as the SeRQL[10],

RQL[30] and RDQL[41] query engines, the admin module, and RDF export. Access to

these functional modules is available through Sesame’s Access APIs, consisting of two

seperate parts: the Repository API and the Graph API. The Repository API provides

6http://www.openrdf.org
7As of the upcoming version 2.0, inferencing capabilities will be independent from any specific repos-

itory. In prior versions it was up to a repository whether it supported or not inferencing.

16

Figure 2.2: Sesame Architecture Overview

high-level access to Sesame repositories, such as querying, storing of rdf files, extracting

RDF, etc. The Graph API provides more fine-grained support for RDF manipulation,

such as adding and removing individual statements, and creation of small RDF models

directly from code.

The Access APIs provide direct access to Sesame’s functional modules, either to a

client program (for example, a desktop application that uses Sesame as a library), or to

the next layer of Sesame’s middleware. The middleware provides HTTP-based access to

Sesame’s APIs. Then, on the client side of the remote invocation we again find the access

APIs, which can again be used for communicating with Sesame, this time not as a library,

but as a server running on a remote location.

2.2.2 Main Memory Model

Sesame’s main memory model is primarily graph-based, where URIs are nodes, and

triples are a pair of edges (an edge from subject to predicate, and an edge from predicate

to object) each. This provides a quite simple view of RDF data, that allows someone

to navigate uniformly the logical RDF graph, ignoring RDF intricacies where they are

irrelevant. As we shall discuss in upcoming sections, Sesame’s main memory model is

17

triple-based view oriented, a choice that at least affords its API to be very concise.

2.2.2.1 Data Structures

Figure 2.3: Sesame Data Structures

As we can see in Figure 2.3, an RDF/S model in Sesame keeps an ArrayList of all

its triples (triples). Moreover, it also holds three HashMaps with all kinds of nodes

appearing in the model triples, namely literals, named resources (nodes that carry a URI)

and anonymous resources (blank nodes). Both the key and value of these Maps are the

node itself (object reference). Moreover, each node contains three ArrayLists of triples

(subjectTriples, predicateTriples, objectTriples) having the given node as subject,

predicate or object respectively.

When a node needs to be created or retrieved from the memory, a new node is created

and then looked up in the Maps. If a node exists, the already saved node will be used

instead and the newly created one will be garbage collected. On the other hand, when

a new triple is to be inserted, at first, three nodes are created (for its subject, predicate

and object) and looked up in the Maps described earlier. If one of these new nodes is not

found, then it is saved in the corresponding Map. Once the subject, predicate and object

nodes are retrieved, the triple is looked up in the triples list of the model. When the

triple is not found, it is saved in triples while the corresponding lists of nodes appearing

as its subject, predicate and object are updated.

It should be noted here that Model and Node are not classes of the Sesame API, i.e.

there is no access method allowing the programmer to retrieve them or any other method

facilitating the retrieval of related nodes, as for instance, to find the superclasses of a

18

specific class. They are just used as holders for the containers of the triples, so as the

API to be able to find their location. Moreover, only the URI or the literal information

contained in a Node is actually represented in the triples and not the object instantiating

the Node.

2.2.2.2 Access Methods

There are only two access methods for model triples in Sesame. The first one, returns

an Iterator over triple lists, given the desired subject, predicate and/or object. If one

or more of the search arguments is null, for instance the subject, this implies that any

subject is accepted in the search results. If not null, all method arguments are looked

up in the node’s Maps described above. Then, the subject, predicate and object lists

of a node are actually searched and the one with the fewer triples is selected each time

(to minimize the search space). When iterating through the result, the triples of the list

returned in each case are acquired one by one, and the subject, predicate and object are

checked to see if they match the corresponding arguments employed to invoke the method.

This means that most of the searching time for triples is spent on iterating through the

results, while time for actually getting the result (iterator) is negligible. The choice of

returning an Iterator was made for two reasons. Firstly, the user should not be able to

change the contents of a returned list to respect encapsulation of the model. Secondly, an

iterator allows using the same main memory to return the results. The second method

returns an Iterator to all the triples of the model. Calling the second method is the

same as calling the first one with all three arguments being null.

2.2.3 Persistence Storage

SAIL is Sesame’s abstraction from the storage format used (i.e. whether the data is

stored in an RDBMS, in memory, or in files, for example), and provides reasoning support.

In the persistence layer, there are SAIL implementations for PostgreSQL, MySQL, SQL

Server and Oracle database. SAIL implementations can also be stacked on top of each

other, to provide functionality such as caching or concurrent access handling. Each Sesame

repository has its own SAIL object to represent it. The SAIL abstraction defines very

19

few and basic operations, such as adding and removing triples, starting and committing

transactions, clearing the repository etc. Whether this abstraction is rich enough to allow

implementations to take advantage of available optimization opportunities (for instance,

to implement bulk uploading with a SAIL interface, Sesame partitions the uploading in

sequential transactions containing 1000 additions of a triple each, regardless whether the

underlying implementation supported streaming) remains to be seen.

2.2.4 Sesame Services

2.2.4.1 Query Service

The Query Service of Sesame’s middleware regards the remote evaluation of SeRQL,

RQL and RDQL type of queries. Various serialization syntaxes are supported, chosen

by user parameters. SeRQL in particular can also be used to construct and return RDF

graphs.

2.2.4.2 Extract RDF Service

An ”Extract RDF” service is provided, with the purpose to retrieve the (possibly

filtered by the parameters explained below) contents of a repository. A client can specify

the following parameters when requesting to extract a particular repository: (a) whether

schema information should be extracted, (b) whether data instances (not schema) should

be extracted, (c) whether only explicit triples will be exporter, or implicit too.

2.2.4.3 Upload Data Service

Another service, which complements adding triples to a SAIL interface, is the ”Upload

Data” service, which has the purpose of loading into the database entire RDF documents.

The parameters a client can control (apart from the RDF content itself): (a) a baseURI

(optional) for resolving any relative URI in the RDF document, (b) whether data valida-

tion should take place. A request to Upload Data service may result in getting a list of

validation errors, with error message, and line and column where the error occured.

20

2.2.4.4 Clear Repository Service

Sesame offers an easy way to clear a repository from its contents, without removing

the initial schema of the underlying database (if applicable). This is particularly useful

in testing.

2.2.4.5 Triple Removal Service

This service allows for a triple-pattern (subject-predicate-object) to be defined,

and all matching triples to be removed. This may become more powerful in upcoming

versions; currently the problem of the absence of a general declarative update language is

apparently limiting. It should be noted that removals are performed without managing

side-effects, that is, triples are removed directly and the end result depends on whether

the repository supports inference or not.

2.2.5 Summary

We saw that Sesame offers http-based interfaced based on its underlying APIs, pack-

aged in its middleware, and can act as a centralized mediator of RDF repositories, with

a quite respectable array of services. It is also noted that the services themselves are

simple wrappers over HTTP requests8, making them easily accessible with commodity

technology.

2.3 Jena

Jena9, to the best of our knowledge, does not offer a middleware offering per se. But

using Jena framework one can tailor custom middleware services. We will describe here

the main Jena tools which could be used to create them.

8An application of the RESTful approach
9jena.sourceforge.net

21

2.3.1 Main Memory Model

The main memory model of Jena, as Sesame, is based on the concept of a graph,

created by URIs/nodes and triples/edges. It seems that there were much influence between

these two projects, as large parts of model related APIs are surprisingly similar. A

significant design difference exists in the handling of inference. In Jena, inference is

provided through a proxy model, that offers inference based on an underlying model that

it talks to while in Sesame, inference is placed on the persistence/access layer, namely

by a inferencing SAIL implementation that is also based to an underlying SAIL for data

access.

2.3.1.1 Data Structures

Figure 2.4: Jena Data Structures

As we can see in Figure 2.4 an RDF/S based model in Jena is kept in three HashMaps

each one containing all triples as values and using as key the subject, the predicate and

the object respectively (subjectToTriples, predicateToTriples, objectToTriples).

These Maps are updated synchronously when a new triple is inserted, thus assuring con-

sistency among them and minimizing search cost (so if a triple is found in one it is

guaranteed to be in the rest). Moreover, it also keeps a HashSet of enhanced nodes

(EnhNode), which is a class that contains references to the node, as well as to the model in

which it is contained. This is the only construct that keeps explicit information regarding

the available nodes, where a node can again be any subject, predicate or object of any

triple.

The size of all the above memory constructs is doubled when capacity reaches 50%,

resulting in 2 to 4 times bigger than needed memory consumption; all of them have an

initial size of 10. The index used is calculated using the hash code of the (string) label

22

of the key. When a collision occurs, the first position that is empty, before the one

expected, is used, resulting in worst case linear lookups instead of constant ones. As also

illustrated in Figure 2.4, Jena introduces the concept of Global Cache(s). It uses two

caches (implemented as HashSets), one for triples and one for nodes. These caches keep

only a predefined number of objects (1000 for triples and 5000 for nodes, respectively)

and are used to facilitate fast access to recently used triples or nodes, since they do not

have to be looked up in the Maps described above.

2.3.1.2 Access Methods

Jena provides also four access methods for model triples. There exists a method

that retrieves all triples of a model and one that returns the triples matching the subject,

predicate and object or any combination of them passed as arguments. The former returns

an Iterator of all triples in the model, in which case the map that contains the subjects

as keys is used. Additionally there exists a method returning all subjects, all predicates or

all objects of the triples of a model and one returning all subjects with a given property,

all objects with a given property and so on. These methods along with methods of the

form ”find all subclasses of subject X” choose which of the Maps (subjectToTriples,

predicateToTriples, objectToTriples) to work on based on the available input, e.g. if

the subject is given then they use subjectToTriples and so on. As already mentioned, all

triples that are looked up in any model are also stored in the Global Cache. Finally, there

are no methods that can return any kind of information regarding RDF/S namespaces

and graphspaces.

2.3.2 Persistence Storage

Jena offers a single persistence solution10, implemented in various RDBMS. It follows

the ”schema-oblivion” approach, in which there is one and only one relational schema,

regardless of whatever RDF/S schema are stored into the database. This approach is not

recommendable as has been shown; for an in-depth discussion, refer to [42].

10Described here: http://jena.sourceforge.net/DB/layout.html

23

2.3.3 Services

To the best of our knowledge, Jena does not offer a full suite of middleware services,

nor persistence-related services in particular, although it should be pretty easy for one

to build such services on top of Jena persistence tools. But a quite important service is

implemented by the collaboration of two subprojects: ARQ11 and Joseki12. ARQ is an

implementation of SPARQL and Joseki an implementation of the SPARQL Protocol13,

standardized by the World Wide Web Consortium. The SPARQL Protocol defines a query

service, bindable to HTTP (GET and POST actions) or SOAP14. This service evaluates

SPARQL queries, and returns its results in a well defined format, so in theory one can

target a query to various implementations of SPARQL Protocol and be able to understand

the result without having to know any implementation-specific details.

2.4 Kowari

Kowari15 is an open source, scalable, transactional database for the storage, retrieval

and analysis of metadata. Kowari is written in Java and it supports Resource Description

Framework (RDF) and Web Ontology Language (OWL) metadata.

2.4.1 Architecture

Figure 2.5 shows an architectural overview of Kowari[49]. The topmost shows the

access APIs to Kowari, that connect (see the layers below) remotely to a query engine

that can operate on several types of storage. These include Simple Ontology Framework

API (SOFA16), Java RDF (JRDF17), Jena, interactive Tucana Query Language (iTQL),

RDF Data Query Language (RDQL18) and Simple Object Access Protocol (SOAP). The

JRDF, SOFA, Jena and iTQL APIs can all be used on the client side or in-JVM local to

11http://jena.sourceforge.net/ARQ/
12http://www.joseki.org/
13http://www.w3.org/TR/rdf-sparql-protocol/
14http://www.w3.org/TR/soap/
15http://kowari.sourceforge.net
16http://sofa.projects.semwebcentral.org/
17http://jrdf.sourceforge.net/
18http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

24

Figure 2.5: Kowari Architecture Overview

the server. The Session and Resolver APIs are responsible for taking access requests and

directing them to the storage layer.

The Resolver API is located at the interface between the upper parts of the query

engine and the storage layer. An incoming query is broken down to the point where

individual constraints are to be resolved against individual RDF models. The Resolver

API has been developed to allow these simple operations to be applied against almost any

kind of data source. The intention is to allow pluggable graphs implementations other

than the native Kowari data store. These alternative graph implementations are called

Resolvers. When Kowari starts, a configuration file is read that contains a list of Resolvers

to use. As each Resolver implementation is loaded, it registers its ability to handle a type

of model. When a constraint is to be resolved against a model on the current server,

the query engine looks up the type in the system model, and maps the request to the

appropriate Resolver.

2.4.2 Main Memory Model

As already noted, Kowari’s primary Main Memory Model is provided by JRDF. JRDF,

as Sesame and Jena, offers a graph-based view of RDF data, and in Figure 2.6 we a

hierarchy that shows how a node can be mapped to an RDF element.

25

Figure 2.6: JRDF Model Design

Nothing is significantly different in this approach than the aforementioned ones, so we

can with the analysis of its internal data structures, which are quite different, something

that is also exhibited in performance characteristics.

2.4.2.1 Data Structures

Figure 2.7: JRDF Data Structures

As we can see in Figure 2.7, JRDF in order to store an RDF/S model keeps three

HashMaps of all the available triples (spoMap, posMap, ospMap). These Maps use as key

one of the subject, predicate or object and as value another HashMap with the other two

(using the second as key and the third as value respectively). It should be noted here that

JRDF provides no explicit programmatic construct of a triple but instead keeps the nodes

in the corresponding Maps as described. This implies that if we want to retrieve a triple

object we have to construct it every time we need it (even if it is the same), resulting in

some more overhead.

Additionally, two HashMaps (StringPool, NodePool) are used in order to hold the

nodes (where a node in JRDF can be, as in Sesame, a literal, a URI or a blank node).

The first one uses the URIs of the nodes as key and the (long integer) IDs as value whereas

the second uses the IDs as key and the (node) objects as value. The node IDs are then

used throughout the system to refer to the actual objects.

26

2.4.2.2 Access Methods

There is only one method supported by JRDF to retrieve triples. Like in all previously

described MMRMS, it takes as arguments the subject, predicate and/or object of the

inquired triple and returns an Iterator over the result. At first, the given nodes are

looked up in the string pool, so as to retrieve their ids. Afterwards, depending on the

passed arguments, the three maps described previously are used. For instance, if only

the subject and object are given as arguments, the Map where the object is the key and

the map holding the subjects as keys and the predicates as values will be used. So, when

the user iterates through the results, the set of predicates that corresponds to the given

subject and object are scanned, and a new triple, holding the given subject and object as

well as the retrieved predicate is constructed and returned.

2.4.3 Persistence Storage

Kowari’s native data store (a XA19 enabled statement store) is a native Java transac-

tional data store that stores RDF statements persistently on disk without the use of an

external database.

The Statement Store stores statements as quad-tuples consisting of subject, predicate,

object and meta nodes. The first three items form a standard RDF statement and the

meta node describes which model the statement appears in. Each quad is unique, so a

statement that appears in two models will be listed twice, with differing meta node values.

Kowari stores RDF statements in six different orders (indices). This corresponds to

the minimum number of ways the four node types can be arranged such that any collection

of one to four nodes can be used to find any statement or group of statements that match.

Each of these orderings therefore acts as a compound index, and independently contains

all of the statements for the RDF store.

Each index in Kowari is an AVL tree that provides addressing information into a large

random-accessed file. Using this structure allows the AVL trees to remain relatively small

and can often fit into physical memory. In practice, the speed of searching, insertion and

19XA is widely used distributed transaction processing protocol. Refer to
http://www.opengroup.org/onlinepubs/009680699/toc.pdf for the specification

27

deletion operations are linear when the depth of the AVL trees is relatively small. As

trees may become unbalanced during write operations, they must be rebalanced, often by

rotation of a node’s children. This is a simple operation on the addressing information

tree that does not affect the underlying data.

2.4.4 Services

Kowari at the server side offers various remoting options to the underlying iTQL

interpreter, which handles client sessions, which can issue database queries and updates.

These options are:

• JavaServer Pages 20 (JSP) tag libraries, that is, markup tags that can be embedded

directly in JSP pages

• SOAP-based web services

Also, a client is offered that communicates directly with the iTQL interpreter of the

server. Apart from exposing iTQL, there are no other server-side services offered, but the

intention is clear: instead of having separate services, make available all functionality as

expressions in the iTQL language. For example, iTQL has language constructs to allow

one to import an RDF/XML or N-Triple file into the database (although this can only be

done via URLs; i.e. it is not possible to import a file that is generated by a program but

not accessible through a URL), start/commit/rollback transactions, taking backups, etc.

This approach has both its advantages and its disadvantages. By having a uniform way

to access all functionality, only one remote endpoint need to be configured and accessed by

the client, which simplifies deployments of both server and client. But on the other hand,

developers instead of having APIs with methods, parameters etc, only have a generic

”input: string, output: string” function, and they have to manually translate/encode

requests into a particular syntax, instead of calling a more type-safe method. That is

unless developers use Kowari-specific client helper components which could offer such APIs

(but note that if developers are free to use Kowari on both server and client endpoints,

then it might be the case that the protocol could be a more efficient binary one).

20A popular server-side templating solution: http://java.sun.com/products/jsp/

28

2.5 SWKM

SWKM21 is developed by ICS-FORTH organization, and partially supported by EU

projects KPLab22(IST-1999-13479) and CASPAR23. It’s purpose is to provide general and

scalable knowledge management services based on Semantic Web technologies.

2.5.1 Architecture

An elaborate technical review of the SWKM platform architecture is given in Chapter

4.

2.5.2 Main Memory Model

SWKM’s model is the only MMRMS that supports a fully-fledged object based view

of RDF/S. This view allows typing information to be carried along with the objects

themselves while provides object methods for storing and accessing RDF/S schemas and

instances. Additionally, it offers higher abstractions to SW developers such as Namespaces

(viewed as a container of classes and properties defined in a schema) and Graphspaces [11]

(viewed as a container of edges relating objects through various kinds of properties). In a

nutshell, the subject, predicate or object of a triple in SWKM are Java objects whose state

and type information is determined by the triples of an RDF/S model. Thus, SWKM

supports seamlessly both triple and object views allowing to construct the latter from the

former in a transparent to the user way.

2.5.2.1 Data Structures

As we can see in Figure 2.8, SWKM employs two additional abstractions as contain-

ers of the RDF/S model information: NameSpaces (NS) and GraphSpaces (GS). In this

context, an RDF/S model consists of NS and GS collections. A NS gathers all the class

and property nodes along with the respective triples that are defined in an RDFS schema

associated to the model while a GS keeps track of all edges relating nodes through various

21http://athena.ics.forth.gr:9090/SWKM
22http://www.kp-lab.org//
23http://www.casparpreserves.eu/

29

Figure 2.8: SWKM Data Structures

kinds of properties. In SWKM, the subject, predicate or object of a triple are Java ob-

jects whose state and type information is determined by the triples of an RDF/S model.

In turn a triple is implemented as a Java object holding references to the participating

nodes. At the NS level four Maps named keyToTypetriples, keyToSubclasstriples,

keyToDomaintriples, keyToRangetriples are used to store schema related triples split

by their predicate, i.e. using a different Map for each possible property of the RDF/S.

The Maps used are actually MultiHashMaps24, which store the value of the HashMap’s

< key, value > pair in another HashMap. Moreover these Maps are indexed by sub-

ject, object and by subject and object (meaning that actually three HashMaps are kept

per RDF/S property). Class and property instance related information are kept at the

model level in the classInstances and propertyInstances HashMaps respectively. Ac-

tually, for the propertyInstances, six Maps are kept since subject or predicate or object

and all their possible combinations are used as multikeys for faster search. Triples are

24commons.apache.org/collections/

30

treated as objects, subclasses of the root class Triple, allowing for programmatic access to

them through common interfaces and methods. Class Triples (Figure 2.9) instantiations

carry also information about the NS and the GS they belong to. Finally, separating the

triples and providing object representations for each RDF/S property type make easier

the development of sophisticated algorithms for RDFS schema evolution and comparison.

Nodes are also stored as objects either at the NS (when they are schema related)

or at the model (when they are instance related) level. Two HashMaps, classes and

properties, are used to store the objects representing the classes and the properties of

each NS and kept at the NS level. On the other hand, one additional HashMap is used

to store resources (classInstances) at the model level. Nodes carry within available

information that is computed at run time, e.g. a node of type Class carries information

about its subclasses and its superclasses (in both cases immediate and all), a node of

type Class Instance carries information about its classification, etc; this information is

computed from the corresponding triples once. Finally, NS and GS themselves hold

dependency information, i.e. to which NS or NS and GS respectively they might depend

on.

2.5.2.2 Access Methods

Resource

MetaClass

PropertyClass

Schema_Resource ClassInstance

Triple

Domain Range

Subsumption

SubPropertySubClass

Type

Triple View Object View

m 1

1m

PropertyInstance

domainOf

rangeOf

relationship
isA

Resource

MetaClass

PropertyClass

Schema_Resource ClassInstance

Triple

Domain Range

Subsumption

SubPropertySubClass

Type

Triple View Object View

m 1m 1

1m 1m

PropertyInstance

domainOf

rangeOf

relationship
isA

Figure 2.9: RDF/S Triple vs Object View in SWKM

Using the SWKM API the developer has the possibility to choose between the triple-

based and the object-based views to access the same information represented in an RDF/S

model. In the triple-based view, similarly to all previously mentioned MMRMS, a retrieval

method for all triples of the model, as well as one for all triples with some subject, predicate

and/or object are offered. To retrieve all triples of a model, all values of the previously

described Maps are returned. For this operation, all the Maps hashed on the subjects are

31

used. When searching for triples by subject, predicate and/or object, the respective Hash

Maps are used. A rich set of variations of these methods is also provided. For instance,

a user can choose not to include in the results of the ”find all triples” method the triples

contained in the default RDF/S namespace or one can retrieve triples searching for them

either by their (string) URI or by the object representation of the node. As already stated,

we can also retrieve triples that belong to a specific NS or GS.

In the object-based view, the objects carry information firstly through their types (thus

they are not just nodes as in the previous MMRMS). Additional information is computed,

like subClassOf, superClassOf and subPropertyOf, superPorpertyOf information for classes

and properties respectively, which then can be retrieved directly from the object’s mem-

bers in constant time by returning an Iterator on the structure(s) that holds it. The

same way information on which triples the object serves as domain, range or predicate is

also kept. The object based view offers an objectification of the RDF information in a

consistent way. Additionally in any step this can be combined with information retrieved

through the triple based access methods. Actually, one can seamlessly move between the

two views since the objects mainly serve as triple nodes and can be reached through the

triples and the triples can be found based on the Hash Map keys which are build based on

the objects (Figure 2). This combined capability of representing and manipulating RDF

information in main memory both as triples and as full blown objects is to the best of

our knowledge unique in SWKM.

32

Chapter 3

Benchmarking the Main Memory

representations

3.1 Introduction

The development of end-user applications and middleware services for the Semantic

Web (SW) requires suitable data abstractions and structures for engineers. This is the ob-

jective of the various SW Programming Environments developed during the last years [9].

A core issue for understanding their functionality and performance is the representation

in Main Memory of RDF/S1 (or OWL2) schemas and instances. Although most of the

current Main Memory RDF/S Management Systems (MMRMS) are developed in some

object-oriented language, they do not abstract at the same level of detail the complexity

of the RDF/S data model (i.e. triple-based vs. object-based views of RDF/S). Further-

more, they do not offer the same programming facilities (e.g. access paths to RDF/S

schemas and data) while they do not rely on the same data structures (e.g. HashMaps

vs. ArrayLists, etc.) for implementing them. Despite some informal surveys [4, 31], an

extensive evaluation of MMRMS functionality and performance is still missing.

More precisely, we compare experimentally the memory requirements and access re-

sponse times of the data structures employed internally by each MMRMS. In this respect,

1www.w3.org/RDF
2www.w3.org/2004/OWL

33

we rely on the widely used LUBM Benchmark [22] to generate synthetic data sets as

well as a home-made query workload covering to our opinion a great part of the access

functionality requested by existing SW middleware services and end-user applications.

The main conclusion drawn from our experiments is that Sesame, Jena and JRDF best

suit to SW applications that stick with the URI-based triple view of an RDF/S model,

with Sesame being the best in terms of memory requirements and performance. On the

other hand, SWKM best suits to those applications that either need to manage RDF/S

schemas and data in the context of a name- or graph-space or demand an object view on

the schema and data.

3.2 RDF/S Benchmark

3.2.1 RDFS version of the LUBM schema

In this Section we present the Benchmark that we used for evaluating experimen-

tally the performances of MMRMSs. It is based on LUBM [22], originally proposed for

benchmarking the performances of OWL (or DAML [21]) repositories which comprises:

• an OWL schema, called univ-bench (ub), for describing universities, departments

and related activities.

• a synthetic generator of instances of the ub schema

• a set of fourteen queries expressed in SPARQL3.

More precisely, we rely on an RDFS version of the ub schema as well as the LUBM

synthetic instance generator. As it will be presented in the sequel, we consider a new

set of SPARQL queries that are more suited to test the efficiency of the Main Memory

representation of RDF/S schema and instances supported in MMRMSs. In particular we

take into account a) the RDF/S abstractions offered by each system (i.e. triple vs object-

based view) and b) the available access paths to the manipulated RDF/S schema and

instances (i.e. find the triples of an RDF/S model vs. the objects of a given namespace).

It should be stressed that in our experimental study we are interested in the average

3http://www.w3.org/TR/rdf-sparql-query/

34

Inf. Need SPARQL expression

Q1 classes of the model SELECT ?x WHERE{?x rdf:type rdfs:Class}
Q2 properties of the model SELECT ?x WHERE{?x rdf:type rdf:Property}
Q3 subclasses of class c SELECT ?x WHERE{?x rdfs:subClassOf c}
Q4 superclasses of class c SELECT ?x WHERE{c rdfs:subClassOf ?x}
Q5 subproperties of property p SELECT ?x WHERE{?x rdfs:subPropertyOf p}
Q6 superproperties of property p SELECT ?x WHERE{p rdfs:subPropertyOf ?x}
Q7 Is c1 subclass of c2 ? ASK {c1 rdfs:subClassOf c2}
Q8 all triples of the model SELECT ?x, ?y, ?z WHERE {?x ?y ?z}
Q9 triples with subject c SELECT c, ?y, ?z WHERE {c ?y ?z}
Q10 triples with predicate c SELECT ?x, c, ?z WHERE {?x c ?z}
Q11 triples with object c SELECT ?x, ?y, c WHERE {?x ?y c}
Q12 triples with subject c1 and predicate c2 SELECT c1, c2, ?z WHERE {c1 c2 ?z}
Q13 triples with predicate c1 and object c2 SELECT ?x, c1, c2 WHERE {?x c1 c2}
Q14 triples with subject c1 and object c2 SELECT c1, ?y, c2 WHERE {c1 ?y c2}
Q15 triples with subject c1, predicate c2 and object c3 SELECT c1, c2, c3 WHERE {c1 c2 c3}
Q16 all class instances of a model SELECT ?x WHERE{?x rdf:type ?y . ?y rdf:type rdfs:Class}
Q17 all property instances of a model SELECT ?x, ?p, ?y WHERE{?x ?p ?y .

?x rdf:type ?z . ?z rdf:type rdfs:Class . ?y rdf:type ?w .
{{ ?w rdf:type rdfs:Class} UNION {?w rdf:type rdfs:Literal}} }

Q18 class instances of c class SELECT ?x WHERE{?x rdf:type c}
Q19 property instances of p property SELECT ?x, p, ?y WHERE{?x p ?y .

?x rdf:type ?z . ?z rdf:type rdfs:Class . ?y rdf:type ?w .
{{?w rdf:type rdfs:Class} UNION {?w rdf:type rdfs:Literal}}}

Q20 property instances connecting c1 and c2 SELECT c1, ?x, c2 WHERE{c1 ?x c2}
Q21 (k=1) class instances connected with c SELECT ?x WHERE { {{c ?y ?x} UNION {?x ?y c}} .

through a path of length k ?x rdf:type ?y . ?y rdf:type rdfs:Class}
Q22 all namespaces SELECT prefix(?x) WHERE {{?x rdf:type rdfs:Class} UNION

{?x rdf:type rdf:Property}}
Q23 triples of a given namespace (ub) SELECT ?x WHERE{?x ?y ?z . FILTER regex(?x, “ub”)}
Q24 classes of a given namespace (ub) SELECT ?x WHERE{?x rdf:type rdfs:Class . FILTER regex(?x, “ub”)}
Q25 properties of a given namespace (ub) SELECT ?x WHERE{?x rdf:type rdf:Property . FILTER regex(?x, “ub”)}
Q26 triples of a given graphspace (gs) SELECT ?x FROM NAMED 〈gs〉 WHERE {?x ?y ?z}
Q27 classes instances of a graphspace (gs) SELECT ?x FROM NAMED 〈gs〉 WHERE {?x rdf:type ?y .

?y rdf:type rdfs:Class}
Q28 property instances of a graphspace (gs) SELECT ?x, ?p, ?y FROM NAMED 〈gs〉 WHERE {?x ?p ?y .

?x rdf:type ?z . ?z rdf:type rdfs:Class . ?y rdf:type ?w .
{{?w rdf:type rdfs:Class} UNION {?w rdf:type rdfs:Literal}}}

Table 3.1: Benchmark Queries

performance of MMRMSs access methods over all classes and properties of the ub schema

(vs. specific one as in the original LUBM queries).

The RDFS version of the ub schema we use4 is depicted in Figure 3.1. To simplify the

presentation we illustrate only the main classes (from a total of 43 classes) and properties

(from a total of 32 properties). For instance, property degreeFrom represents the fact

that a Person has graduated from a University. Moreover, every GraduateStudent is also

a Person, while every Department is also an Organization.

Besides syntax transformations (from OWL to RDFS clas-ses and properties) we

have rewritten the owl:intersectionOf constructs. Given that the intersection of class

4athena.ics.forth.gr:9090/RDF/lubm/schema/univ-bench.rdfs

35

Person

advisor

Faculty

Professor

Course

Publication

University

Research

ResearchGroup TeachingAssistant

Organization

xsd:intage

degreeFrom

xsd:string

emailAddress
rdf:Resource

titleaffiliateOf

hasAlumnus

member

publicationAuthor

affiliatedOrganizationOf

orgPublication

publicationResearch

researchProject teachingAssistantOf

teacherOfArticle Book

EmployeeGraduateStudent

property
isA

Person

advisor

Faculty

Professor

Course

Publication

University

Research

ResearchGroup TeachingAssistant

Organization

xsd:intxsd:intage

degreeFrom

xsd:stringxsd:string

emailAddress
rdf:Resourcerdf:Resource

titleaffiliateOf

hasAlumnus

member

publicationAuthor

affiliatedOrganizationOf

orgPublication

publicationResearch

researchProject teachingAssistantOf

teacherOfArticle Book

EmployeeGraduateStudent

property
isA
property
isA

Figure 3.1: Univ-Bench Schema

ub#Person with an anonymous class (derived from an owl:Restriction) is always sub-

sumed by ub#Per-son, we replaced the owl:inter-sectionOf statements with the corre-

sponding class ub#Person. Finally, we omitted all owl:inverseOf constructs.

3.2.2 Instance Generation

The LUBM synthetic instance generator takes as input the number of universities we

want to produce and outputs the description of a number of departments per university.

Information regarding each department (i.e. instances of the ub schema) is stored in a

different RDF/XML file. For example, it generates instances of Students and Professors

per university department. For our experiments, we generated incrementally a data set of

10 departments of a single university. More precisely, Dept(1) comprises the data set of

the first department, Dept(2) comprises the datasets of both first two departments and

so forth. The size, in terms of triples, of the generated datasets ranges between 9,000 and

68,000 (while the schema triples are 226).

3.2.3 Query Workload

Table 3.1 illustrates the 28 queries of our benchmark formulated in SPARQL. Since

all queries employ the ub schema we omit in queries the corresponding namespace prefix.

It should be stressed that all 28 queries are evaluated as Java programs (and not using

a SPARQL engine) using the access methods supported by each MMRMS. The queries

are organized in four representative groups of the access functionality supported by all

systems of our benchmark:

36

• Schema Queries on a Model (Q1-Q7).

This group comprises queries asking for the classes (or properties) of the model (as

Java objects) or the subsumption relationships between them.

• Triple Queries on a Model (Q8-Q15).

These queries retrieve the triples of a model using filtering conditions on their sub-

ject, predicate, object or any combination of them. Symbols c, c1, c2, c3 in Q8-Q15

denote resource URIs. We should notice that for Q3-Q6 we compute all the sub-

classes (resp. subproperties) of a class (resp. property) and not only the direct ones.

In a similar fashion, Q7 asks if c1 is a subclass (direct or indirect) of c2.

• Instance Queries on the Model (Q16-Q21)

This group comprises queries returning class / property instances (as Java objects).

The pattern {?y rdf:type rdfs:Class} is needed in order to filter out from the re-

sult of Q16 the instances of metaclass like rdfs:Class. In similar fashion, we con-

sider in the result of Q17 only the triples whose subject is a class instance (i.e.

{?z rdf:type rdfs:Class}) and the object is either a class instance or a literal (i.e.

{?w rdf:type rdfs:Class} UNION

{?w rdf:type rdfs:Literal}}). We should stress, that for Q8-Q15, we consider as in-

stances of a class c, the c instances union the instances of every subclass (direct or

indirect) of c.

• Triple and Schema Queries on the Namespace or Graph-space (Q22-Q28).

To formulate Q22 we employed a function prefix for obtaining the namespace of the

given class or property, not actually supported by SPARQL.

We should notice that we evaluate every query for all possible input values (e.g. class

or property of the ub schema) and compute the average. For instance, in the case of Q3,

that retrieves all the subclasses of c, we assume as c each of the 43 ub schema classes. In

this manner, we do not need to further investigate the effect of the specific distributions

that LUBM datasets exhibit.

37

3.3 Experimental Evaluation

Experiments were carried out on a Windows XP computer with Intel Pentium IV

processor, at 3.0GHz and 1GB main memory. Sun’s Java SE 6, with 768MB Java Heap

Size was used. As far as the tested MMRMS are concerned, the last stable version of each

of them was used (i.e. Sesame 1.2.7, Jena 2.5.3, JRDF 0.5.0 and SWKM 1.0.)

3.3.1 Load Time & Memory Requirements

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

Dept(N)

Load Time

SESAME
JENA
JRDF

SWKM (XML)
SWKM (TRIG)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

M
em

or
y

(M
B

)

Dept(N)

Memory Requirements

SESAME
JENA
JRDF

SWKM

 0.0001

 0.001

 0.01

 0.1

 1

T
im

e(
m

se
c)

Query

Q1 − Q7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Sesame
Jena

JRDF
SWKM

Figure 3.2: Load Time (left) / Memory Requirements (center) / Q1-Q7 (right)

The left (resp. center) part of Figure 3.2 illustrates for each system the time (resp.

the memory requirements) to load in Main Memory. Loading time depends on the perfor-

mances of the employed parsers to analyze the RDF/S input in a specific syntax (XML,

TriG, N3) as well as the number and structure of Java objects that need to be initialized.

Thus, MMRMS with high memory requirements (as SWKM) have also increased time

for loading. As we will see in the following subsections, this is the price to pay in order

to provide multiple access paths to RDF/S schemas and instances. The two ends of this

functionality/performance tradeoff are Sesame and SWKM. More precisely, SWKM con-

sumes 2-6 times (for Dept(1)-Dept(10) respectively) more memory than Sesame while its

loading time is 6-42 times slower (for Dept(1)-Dept(10) respectively) than Sesame. Note

also that Sesame performance gains are due to the SAX parser compared to less efficient

RDF/XML parsers employed by the other three systems. As we can see in Figure 3.2

while a 55 − 15% (for Dept(1)-Dept(10) respectively) of the loading time in SWKM is

devoted to RDF/XML parsing, it drops to 24−3% when SWKM TriG parser is used. The

rest of SWKM loading time is essentially devoted to the construction of the numerous

38

indices presented in Section 2.5.2.1.

Among the rest, JRDF holds more indices than Sesame and Jena, and thus it requires

approximately 3 times more memory, while its loading time is higher than Sesame but

lower than Jena. That delay of Jena is due to the invariants of the internal HashMap

implementation, that cause a decrease of performance for both adding and searching (put

and get) methods. Sesame, instead, uses Java ArrayLists that offer very fast performance

when adding triples. Furthermore, Sesame relies on standard Java HashMaps for nodes,

which provides a much faster implementation than the one implemented in Jena.

3.3.2 Query Response Time

3.3.2.1 Schema Queries on Models

Q1-Q7 are schema queries and therefore one would expect that their evaluation would

be independent of the size of the instance triples. This holds for Sesame, JRDF and

SWKM, but not always for Jena. In particular, the Jena performance for Q3 and Q7

depends on the size of instance descriptions. This is due to the fact that Jena does not

allow for triple search by predicate. As a matter of fact, in order to respond to Q3, Jena

needs first to retrieve all the triples of the model ({x y c}) and then to iterate on the result

in order to filter out triples not having a rdfs:subClassOf predicate (y). The search space

in this context essentially comprises both schema and instance triples where the latter are

significantly larger than the former. The same is also true for Q7 for Jena. Therefore, in

the case of Q3 and Q7 the right part of Figure 3.2 reports the Jena response time when

Dept(5) has been loaded (i.e. an average size of the employed datasets). Additionally,

the left and the center part of Figure 3.3 illustrates Jena performance for Q3 and Q7 with

respect to all loaded departments.

Sesame outperforms all other systems for Q1 and Q2. When all classes (or properties)

of the model need to be retrieved, the objectTriples (see also Figure 2.3) list of every

node is scanned to find those triples matching the predicate rdf:type. Since this list does

not contain irrelevant triples, the cost of returning the classes (or properties) is essentially

the time to obtain the subjects from the triples. This justifies the performance excellence

39

of Sesame for Q1 and Q2.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q3

SESAME
JENA
JRDF

SWKM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q7

SESAME
JENA
JRDF

SWKM

 0.0001

 0.001

 0.01

 0.1

 1

 10

T
im

e(
m

se
c)

Query

Q8 − Q15

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Sesame
Jena

JRDF
SWKM

Figure 3.3: Q3 (left) / Q7 (center) / Q8-Q15 (right)

Queries Q3-Q7 require transitive closure computations over the collections of triples in

order to retrieve both direct and indirect subsuming classes (or properties). Given that the

size of the ub schema is small and there are introduced only few subsumption relationships,

the effect of these transitive closure computations is not so important in the performance

figures of Figure 3.2. The good performance of SWKM for Q7 is due to the encoding of

subsumption relationships using an interval based labeling scheme [6] which allows us to

avoid costly transitive closures. Then, checking whether a class c1 is subsumed by c2 is

reduced to a simple interval containment check using two integers representing the start

and the end of each interval. Thus, unlike all other systems subsumption check in SWKM

takes constant time (2 integer comparisons) irrespective of the schema size and the relative

position of classes in the subsumption hierarchy (i.e. direct or indirect subclasses). Of

course, the construction of labels is performed during loading (object-based view creation)

and it is linear to the number of encoded schema classes (or properties).

3.3.2.2 Triple Queries on Models

One can retrieve from a model all its triples or a subset based on either the subject,

the predicate or the object or any combination of the above. The MMRMS under

consideration return an iterator over the results. As one can observe in the right part

of Figure 3.3 (drawn on log-scale), Sesame features the best overall performance for Q8-

Q15. In order to evaluate Q9-Q15 Sesame first searches the URINodes, LiteralNodes

and BlankNodes to find the resources given as input. For instance, for Q9, it retrieves

the resource c and then returns an Iterator over the subjectTriples attribute (see also

40

Figure 2.3).

Instead, Jena searches the subjectToTriples, predicateToTriplesor objectToTriples

map (see also Figure 2.4) with key the given subject, predicate or object respectively and

returns an Iterator over the returned collection.

JRDF’s implementation of these queries varies on the type of nodes used as parame-

ters. Two lookup operations are needed for each node (i.e., subject, predicate or object)

specified in the query: one in the NodePool, to get the id of the node, and one in one of

the three (i.e., spoMap, posMap, ospMap) matching indices, using the retrieved id.

As described in Section 2.5.2.1, in SWKM, indices on schema related triples are split

by their predicate. So, in order to retrieve triples, the first step is to identify the relevant

indices based on the predicate, or use them all if no predicate was specified. The selection

of the correct indices and the merging of results found in them creates an overhead that

slows SWKM in these types of queries.

3.3.2.3 Instance Queries on Models

Figure 3.4 illustrates the response times for Q16-Q21 (drawn in log-scale). On overall,

for this kind of queries, SWKM outperforms all other systems. The second most efficient

system is Sesame, while Jena and JRDF follow by far.

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q16

SESAME
JENA
JRDF

SWKM

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q17

SESAME
JENA
JRDF

SWKM

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q18

SESAME
JENA
JRDF

SWKM

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q19

SESAME
JENA
JRDF

SWKM

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q20

SESAME
JENA
JRDF

SWKM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

T
im

e
(m

se
c)

k

Q21

1 2 3

Sesame
Jena

JRDF
SWKM

Figure 3.4: Queries 16-21

41

The performance excellence of SWKM stems from the fact that it relies on different

HashMaps for different kinds of triples (e.g. with predicate rdf:type, rdfs:subClassOf etc.).

As a consequence, in order to answer Q16, SWKM needs only to return the collection of

values of classInstances (see Figure 2.8). Instead, Sesame needs first to retrieve two

collections, one comprising all the model triples with object the c class and the other

comprising all the model triples with predicate rdf:type. Then, it iterates over the smaller

of the two collections, which in our testbed is the first, to check whether the predicate

equals to rdf:type. Jena searches triples of the model with object the class c and then

iterates over the result to check whether the predicate is rdf:type. Finally, JRDF first

searches the posMap (see Figure 2.7) with key the predicate rdf:type. The returned value

is a HashMap whose key is the object and value the subject of the triple. JRDF iterates

over the key set of that HashMap and for every search key that is a class it appends the

values to the result. In order to find whether a uri is a class or not, JRDF searches the

posMap with key the predicate rdf:type. The returned value is a HashMap whose key is

the object and value the subject of the triple. JRDF searches that HashMap with key the

object rdfs:Class.

SWKM outperforms Sesame up to 3 orders of magnitude for Q19. In order to retrieve

the property instances of the model, SWKM exploits the HashMap with key the property

and value the collection of triples with the property instances (i.e. Q19 answer). Instead,

the other three systems first retrieve the triples of the given predicate and then iterate

over them to check whether the subject is a class instance and the object a class instance

or a literal. For Q19 Sesame performance is closer to SWKM (only 27% slower) given that

two class instances, i.e. c1 and c2 a triple of the form {c1 ?x c2} is always guaranteed to be

a property instance. As a result Sesame, but also Jena and JRDF, do not need to match

the additional patterns (i.e., {?z rdf:type rdfs:Class} and {?w rdf:type rdfs:Class} UNION

{?w rdf:type rdfs:Literal}) of Q19. Note that although Q20 is computationally simpler

than Q19, SWKM performance is almost the same since all triples of the corresponding

property instances are stored in the specific HashMap during loading. Q21 response time

is only slightly affected by the size of instance triples. Specifically, all systems search a

HashMap given the triple subject as key. The effect of the HashMap size in the performance

42

of the get method is negligible. As a consequence, we present in the bottom right part of

Figure 3.5 the performance of the four systems for Q21 as composite plot. As expected,

response times increase as long as k increases, due to the additional patterns that should

be considered. However, the relative order of systems remains the same, reaffirming in

this manner the qualitative results drawn from Q16-Q20.

3.3.2.4 Triple and Schema Queries on NS and GS

As we can see in Figure 3.5, SWKM performance is orders of magnitude better than

other systems for queries Q22-Q25 and therefore the plots are drawn in log scale. SWKM

performance gains for queries retrieving triples, classes or properties of a specific names-

pace stems from the representation of RDFS namespaces as Java objects whose state refer

to the contained triples. In addition RDF/S models maintain references to the names-

paces by which are composed. For this reason the evaluation by SWKM of Q22 implies

only a direct return of the namespace collection and thus is independent of the size of

the instance triples. On the other hand, Sesame and Jena only store the namespaces

as strings in the nodes of the triples. As a result, the only way to acquire namespace

information is to retrieve all the model triples and then, identify the loaded namespaces

on the corresponding state of nodes. Consequently, their performance depends on the

size of instance triples. Unlike the rest of the systems, JRDF does not hold in any way

separate references to namespaces. Thus, the only way to retrieve the namespaces of a

model is to directly parse the URI of the contained resources. For these reasons, Sesame

(resp. Jena and JRDF) is four (resp. five) orders of magnitude slower than SWKM. Note

that Sesame is faster than Jena because, as was described in Section 3.3.2.2, the iteration

over all the model triples returned by Sesame is faster than by Jena.

The same qualitative conclusions are drawn from Q23-Q25. SWKM first retrieves the

namespace object and then retrieves only the triples stored in it. Instead, the rest of the

systems, to answer queries Q23-Q25 need first to retrieve the model triples and then filter

them with the given namespace.

Finally, the bottom right part of Figure 3.5 illustrates the performance of SWKM for

queries Q26-Q28 retrieving triples, classes or properties of a specific graphspace. The rest

43

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q22

SESAME
JENA
JRDF

SWKM

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q23

SESAME
JENA
JRDF

SWKM

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q24

SESAME
JENA
JRDF

SWKM

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

se
c)

Dept(N)

Q25

SESAME
JENA
JRDF

SWKM

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10
T

im
e

(m
se

c)
Dept(N)

Graphspaces (SWKM)

Q26
Q27
Q28

Figure 3.5: Queries 22-28

systems are absent from the plot, since RDF named graphs are not yet supported. As

one can observe, SWKM is more efficient when searching for class or property instances

rather than for triples of a graphspace.

3.3.3 Summarizing the Results

The basic conclusions drawn from the experimental evaluation of the four MMRMS are

directly mapped to the design choices of their creators. SW developers that want to

work only on the URI-based triple view of an RDF/S model can rely on Sesame for its

performance (tops in Q1 to Q6, right part of Figure 3.2) and low memory requirements

(center part of Figure 3.2). If they need to work in the context of individual name- or

graphspaces though, they have to rely on SWKM since it exhibits the best performance;

moreover SWKM is the only one that supports graphspaces. When the SW developers

want to work on top of an object view they should rely on SWKM (Q16 - Q21, Figure 3.3),

which is the only one that offers that possibility and exhibits a 2 to 4 times better

performance from the second best; this comes with 8 times more memory usage than the

other systems. It should also be noted that in contrast to Sesame and SWKM that show

their strengths and weaknesses by positioning themselves in first places in various queries,

44

Jena and JRDF do not take the lead in any category related to performance neither can

they compete with Sesame for smaller memory footprints.

3.4 Conclusions

We compared four well known MMRMS with respect to their functionality and per-

formance. The Benchmark we proposed, allowed us to investigate the effect of the design

and implementation choices of current MMRMS to their performance. Features and lim-

itations of their programmatic functionality were investigated and their correlation with

their efficiency was studied. Additionally, the trade off between the variety of the pro-

vided logic views on RDF/S data and the memory requirements was illustrated. The

problem of employing the optimal indices that would maximize systems performance on

queries assuming both RDF/S triple and object views and minimize as long as possible

the memory requirements, deserves further research. The experimental results presented

in this work consist the first step towards this direction.

45

46

Chapter 4

Semantic Web Knowledge

Middleware (SWKM) Services

This section delves into the design, architecture and implementation decisions of the

SWKM middleware in particular, as well as its versioning services specification and im-

plementation decisions.

4.1 Introduction

The SWKM platform is a semantic management server-side stack, implemented in

Java and C++. Its purpose is to provide its users scalable middleware services for man-

aging voluminous representations of Semantic Web data (schemata and data expressed in

RDF/S).

A major goal of the platform, which influences the design and implementation of

almost all layers of the platform is to enable powerful and general declarative querying

and update capabilities to the user. We will iterate briefly over this focal point, and then

we will enumerate and and specify the SWKM services follow that define the platform’s

architecture.

The initial database schema (whatever its particular flavor) is created by the Importer

Service. RDF Schema information is stored into the database through the Importer Ser-

vice too, as currently RUL can only update RDF data instances, not schema information.

47

Also, the Importer Service offers bulk uploading of multiple data to the database, for

any RDF-relational mapping, instead of having to issue multiple RUL statements to the

RQL/RUL interpreter. Currently, PostgreSQL, an Object-Relational DBMS1, is being

used.

Figure 4.1: An architectural overview of the SWKM services

In Figure 4.1 we see a diagram of the middleware architecture. In Figure 4.2 we see

a middleware deployment and the interaction with a client, and an example ”learner”

application”.

1http://www.postgresql.org/

48

deployment Ov erall Deployment Diagram

«execution environment»
Tomcat / Glassfish

PostgreSQL

SKMK Middleware

Client

SWKM Client

E-Learning
Application

SOAP

0..*

Figure 4.2: Deployment of SWKM middleware and Client interaction

4.2 Overview and Design Choices

For the purpose of giving the platform the maximum interoperability, it was chosen to

offer all services as an array of SOAP-enabled2 Web Services. Here we will provide a de-

tailed reference of the current Web Services architecture, which broadly defines the various

ways that the SWKM middleware platform can be integrated with other applications.

First of all, all described signatures and types are based on the ones appearing at the

XML (SOAP) layer of the communication stack, and this is an accurate representation of

them since the web services of SWKM are based on SOAP over HTTP. For the notation of

the types, standard RELAXNG3 is used in this document, in particular its non-XML flavor,

as it was deemed much more readable than its equivalent XML Schema counterpart.

A key point of SWKM platform is its (web) statelessness: every user request boils

down to a self-contained document that fully describes the request, and no server-side

state management is needed. The latter point contributes to the platform’s web interface

horizontal scalability, that is, scalability gained by adding more web servers. Having no

state (per user) in the web server means there is no need to spend time replicating it to

every server; each server can interchangeably serve any client. Also, the memory footprint

of the platform is lower. On the downside, this means more state moving back and forth

between the server and the client, but in our case, this is typically low, and only minimally

2http://www.w3.org/TR/soap/
3http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

49

contributes to the networking costs.

A feature that raises the above discussion is the ability of the user to customize

database settings; for example, if there are two different databases used as repositories

for the SWKM platform, the user can define the one to be targeted by a service call. If

the user does not define such settings, the defaults are used. At most one repository can

be used by a request, for validity reasons; such constraint are only applied in a single

repository-wide manner. These settings can be defined as following (in RELAXNG, as men-

tioned above):

element dbSettingsElement {
element dbName { text }?,

element host { text }?,

element port { xsd:integer }?,

element protocol { text }?,

element representation { text }?,

element username { text }?,

element password { text }?

}
This element can be attached to most services (only to the Registry service it is not

applicable - we considered the latter case to not add significant value). It is not advisable

to send username and password credentials over the network though, from a security point

of view. A more recommended approach would be to simply send another database name

(possibly also database network address) to be used, which can still be accessed with the

default username and password (stored in the server), or even provide a different username

which has the same password as the default user (any missing value is supplanted by the

defaults, even the password; if the resulting settings are illegal, the database call will fail).

Another data type that appears in several services and would make sense to describe

here is the Delta. A Delta is conceptually two sets of triples; one set of ”added” triples and

one of ”deleted” triples. Where are these triples added or deleted from (if at all) is service-

specific. Each triple set is actually defined by a string following the TriG4 syntax. This is

4http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/

50

less verbose than having a nested XML element for each triple. The Delta type definition:

element deltaElement {
element added{ text },

element deleted { text }
}

All provided services are synchronous, or RPC-styled (Remote Procedure Call). That

is, a client sends a request and waits for the response (which can be empty, or a failure

description). So, each service method can be described by two XML types: its input,

and its output (since these are matched one to one). The notation will be that the input

element will have the same name as the service method; the output element will have the

same name with an appended ”Response” to it.

With this common understanding, we can continue with the services themselves.

4.3 SWKM Services

4.3.1 Importer Service

Importer Service

RDF documents RDF documents

Validator

Store

RDF documents

Repository

If valid

Store With
Dependencies

RDF documents RDF documents
plus their
dependencies

error

Importer Service

RDF documents RDF documents

Validator

Store

RDF documents

Repository

If valid

Store With
Dependencies

RDF documents RDF documents
plus their
dependencies

error

Figure 4.3: Importer service

The Import Service is responsible for loading the contents of a valid and well formed

name or graph space (along with their version ID). It is also responsible for creating

the necessary database constructs (tables, relationships, indices) that allow for efficient

retrieval and manipulation by the RQL/RUL interpreter.

51

The service uses the main memory representation described earlier. It firstly load the

RDF content into the main memory, check validation constraints on it, and if it is deemed

valid, commits it to the repository The RDF model is afterwards unloaded from the main

memory.

This service consists of two programmatic interfaces, Store and Store with dependen-

cies.

4.3.1.1 A note in resolving dependencies for storing

There are two processes of resolving dependencies: passive resolution and eager reso-

lution. The following actions are executed in strict order:

• Try to find the needed RDF space in the supplied parameters of the request

• If failed, try to find it in the underlying storage

• If failed, try to download it from the network (use its URI as the address)

• If not found, raise an error

Passive resolution is used in plain store operation. The following actions are executed

in strict order:

• Try to find the needed RDF space in the supplied parameters of the request

• If failed, try to find it in the underlying storage

• If not found, raise an error

Next, we define the Store operation, which uses passive resolution, and Store with

dependencies operation, which uses eager resolution.

The signature of the Store operation is:

52

element store {
element URI { text }*,

element document { text }*,

element format { text },

element dbSettings { dbSettingsElement }?

}
element storeResponse { }

It imports in the underlying storage the specified (by their URIs) namespaces and/or

graphspaces. Each URI element corresponds to a document element, where as a document

we define the contents of the corresponding namespace or graphspace. The format pa-

rameter must have the value of either ”TRIG” or ”RDF/XML”, the two supported RDF

serialization formats. All documents are strings in the format specified by the format

parameter. Henceforth, the corresponding URI element of an element in ’documents’ will

be referred to as ”the URI of the document”.

If a document defines an RDF namespace, the URI of that namespace will be the URI

of the document. In case of TRIG format, the document may define one or more RDF

graphspaces, which are locally identified by a graph id. Each graphspace’s URI will be

created by concatenating the document’s URI and the graph id. These resulting URIs

can be used to retrieve back the stored RDF spaces.

In case of TRIG format, at most one namespace is allowed per document (that names-

pace’s URI will be the respective URI specified for the document), but there is no limi-

tation in the number of graphspaces. In case of RDF/XML format, each document can

have at most one namespace and at most one graphspace (possibly both). The namespace

will get the URI of the document. The graphspace will be unnamed, i.e. there will be

no way to fetch it through the Exporter service, but its contents will still be accessible

through the Query service. If the intention is to store a graphspace, TRIG format must

be used.

Preconditions:

• The array of URIs has exactly the same number of elements as the array of data.

• Format is either ”TRIG” or ”RDF/XML”

53

• If an RDF space declares its own URI (in a syntax-specific way), it must be the

same as the respective entry in the array of URIs

After the successful execution of the operation, the underlying storage will contain all

supplied RDF spaces, identified by their respective URIs (see above).

If the underlying storage already contains a namespace or graphspace identified by

a URI that this operation was about to create, the pre-existing RDF space is kept and

used and cannot be superseded by any RDF space with the same URI. Each RDF space

may depend on other RDF spaces. This operation resolves dependencies passively (as

explained in a later section).

Validation of all resolved namespace and/or graphspaces will always take place before

actual importing. If validation fails, an error will be raised, and the operation will be

cancelled. It is also noted that the operation semantics are all-or-nothing, i.e. in case of

a failure (for example, due to corrupted data, or a validation failure), no partial storing

will take place; either all provided namespaces and graphspaces will be stored in the

underlying storage, or none at all.

The signature of the Store with dependencies operation is:

element storeWithDependencies {
element URI { text }*,

element document { text }*,

element format { text },

element dbSettings { dbSettingsElement }?

}
element storeWithDependenciesResponse { }

This is mostly similar to the above operation, but differs in the way interdependencies

between RDF name or graph spaces are handled.

It imports in the underlying storage the specified namespaces and/or graphspaces,

along with their dependencies, as explained later. This operation resolves dependencies

eagerly.

54

The semantics of the parameters are identical to the ones in the Store operation, as

well as its preconditions.

After the successful execution of the operation, the underlying storage will contain

all supplied RDF spaces, identified by their respective URIs (see above), and all their

dependencies.

4.3.2 Exporter Service

Exporter Service

Name or
graphspace URIs

Repository

With Data?

With Dependencies?

Output Format

Trig Writer

RDF/XML
Writer

Exporter Service

Name or
graphspace URIs

Repository

With Data?

With Dependencies?

Output Format

Trig Writer

RDF/XML
Writer

Figure 4.4: Exporter service

The Exporter Service is responsible for dumping into a byte sequence (in RDF/XML

serialization or TRIG triple-based formats) the contents of the name or graph spaces given

as input. The user of the service needs only to specify which one needs to be exported.

The programmatic signature of this operation is:

55

element fetch {
element nameOrGraphspaceURI { text }*,

element format { text },

element withDependencies { xsd:boolean },

element withData { xsd:boolean},

element dbSettings { dbSettingsElement }?

}
element fetchResponse {

element nameOrGraphspaceURI { text }*,

element document { text }*

}
Preconditions:

• Format is either ”TRIG” or ”RDF/XML”

• requested URIs exist in the underlying storage

The RDF contents of the requested name or graph spaces are returned in the appro-

priate format. If dependencies is true, all transitively name or graphspaces dependent

to any returned space are also returned. If data is true, all data instances of any schema

information returned are returned too (i.e., if a requested namespace contains a class, its

instances, whatever the graphspace that contains them, will also be returned).

4.3.3 Query Service

The Query Service is responsible for executing RQL queries. The service will return its

results in an RDF/XML or Trig serialization as a bag of resources. The query results can

contain both schema and data information from one or several name and graph spaces.

There are two flavors of this operation, Query and QueryMultiple:

56

Query Service

Query (RQL)

Repository

Output Format

RQL
Interpreter

Query Query Multiple

QueriesQuery

Query Service

Query (RQL)

Repository

Output Format

RQL
Interpreter

Query Query Multiple

QueriesQuery

Figure 4.5: Query service

element query {

element RQL { text },

element format { text },

element dbSettings { dbSettingsElement }?

}

element queryResponse {

element result { text }

}

element queryMultiple {

element RQL { text }*,

element format { text },

element dbSettings { dbSettingsElement }?

}

element queryMultipleResponse {

element result { text }*

}

QueryMultiple evaluates multiple queries concurrently, for performance reasons. The

Query Service relies on the RQL Interpreter which is used for both parsing and executing

the query at hand, as well as on its multithreading capabilities for supporting concurrency.

4.3.4 Update Service

Update Service

Update (RUL)

Repository

RQL
Interpreter

Update Update
Multiple

UpdatesUpdate

Repository modified?
(true / false)

Update Service

Update (RUL)

Repository

RQL
Interpreter

Update Update
Multiple

UpdatesUpdate

Repository modified?
(true / false)

Figure 4.6: Update service

57

The Update Service is responsible for executing RUL updates involving one or several

name or graph spaces. Updating includes construction, modification and deletion of

objects in the repository and returns a Boolean value ”true” or ”false” for successful

(commit) or unsuccessful (abort) execution.

As in the Query service, two flavors of this operation are provided, Update and Up-

dateMultiple:

element update {

element RUL { text },

element dbSettings { dbSettingsElement }?

}

element updateResponse {

xsd:boolean

}

element updateMultiple {

element RUL { text }*,

element dbSettings { dbSettingsElement }?

}

element updateMultipleResponse {

element result { xsd:boolean }*

}

In the case of the multiple updates signature, the supplied updates run in parallel but

they should all finish before the results are returned to the client. Note that if the updates

are mutually dependent, the results of this operation are unspecified, as no guarantee of

order of update execution can be made.

4.3.5 Comparison Service

Comparison Service

Export Service

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 2 RDF APIs

TRIG

nameGraphSpaceURI1

Name/Graph spaces

nameGraphSpaceURI2

Name/Graph spaces

Internal Diff Implementation

delta
Function

Transform
to Trig files
of insertions
& deletions

Set of performed
updates

nameGraphSpaceURI1

deltaFunction

nameGraphSpaceURI2

TRIG

Output:

Two TRIG
files (delta)

Comparison Service

Export Service

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 2 RDF APIs

TRIG

nameGraphSpaceURI1

Name/Graph spaces

nameGraphSpaceURI2

Name/Graph spaces

Internal Diff Implementation

delta
Function

Transform
to Trig files
of insertions
& deletions

Set of performed
updates

nameGraphSpaceURI1

deltaFunction

nameGraphSpaceURI2

TRIG

Output:

Two TRIG
files (delta)

Figure 4.7: Comparison service

The Comparison Service is responsible for comparing two collections of name or graph

58

spaces already stored in the repository and compute their delta in an appropriate form.

The result of the comparison is a ”delta” (or ”diff”) describing the differences between the

two collections of name or graph spaces, i.e., the change(s) that should be applied upon

the first in order to get to the second. The intended use of the service is the comparison

of two different versions of the same name or graph space to identify their differences;

comparing unrelated name or graph spaces (i.e., name or graph spaces which are not

different versions of the same name or graph space) would give results which have no

intuitive meaning.

Note that the problem of comparing two name or graph spaces is very different from the

problem of comparing the source files (e.g., TRIG files) which describe them. This is true

because (a) a name (or graph) space carries semantics, as well as implicit knowledge which

is not part of the source file (i.e., the particular serialization format of some RDF content);

(b) there are alternative ways to describe syntactically the same construct (triple) in a

name or graph space (for instance, in most cases, order of appearance does not matter),

which could result to erroneous differences if resorting to a source file comparison method;

and (c) source files may contain irrelevant information, e.g., comments, which should be

ignored during the comparison.

The programmatic interface to this service is:

element diff {
element URI1 { text }*,

element URI2 { text }*,

element deltaFunction { text },

element dbSettings { dbSettingsElement }?

}
element diffResponse {

element delta { deltaElement }
}

As shown in Figure 4.7, the Comparison Service exposes a single service which is used

59

to compare two collections of name or graph spaces and return their delta (diff) according

to the selected delta function.

The input of the method is the two collections of the name or graph spaces to be

compared, as well as a parameter indicating the mode of the comparison (delta function).

These two collections are passed using the nameGraphSpaceURI1[] and nameGraphSpaceURI2[]

parameters. Each such parameter is an array of strings, each string containing the URI of

a name or graph space (so each of nameGraphSpaceURI1[] and nameGraphSpaceURI2[]

represents a collection of name or graph spaces). It should be emphasized that the com-

parison is not performed upon the name and graph spaces in the input only, but also

upon the name and graph spaces that they depend on. In other words, the compared

conceptualizations occur by taking the union of the triples in the URIs indicated by

nameGraphSpaceURI1[] (and nameGraphSpaceURI2[]) plus the triples in the name or

graph spaces that the input name or graph spaces depend on.

The deltaFunction parameter indicates the type of the delta function to be used in

the comparison. The semantics of this are described in [50].

The output of the above operation is a pair of strings representing the delta of the two

models. In particular, the first string of the pair represents the RDF triples that exist in

the second model but don’t exist in the first, whereas the second represents the triples

that exist in the first but not in the second. This way, the delta can be viewed as an

update request (see also the Change Impact Service below), which, when applied to the

first model, will (should) result to the second; under this viewpoint, the first string of the

output can be viewed as the added triples, while the second can be viewed as the deleted

triples. Both strings should encode those triples in TRIG format.

In Figure 4.8 we see the interaction of the Comparison service with Exporter and the

Main Memory Model.

4.3.6 Change Impact Service

The Change Service is responsible for determining the changes that should occur on

a name or graph space in response to a change request. Given the change request, the

change service attempts to apply it to the target name or graph space; in several cases,

60

sd Compa risonServ ice

:Cli ent :Exp ort Se rvi ce

m 1
: Main Mem oryRDFM odel

m2
:M ainM em oryRDFMo del

:Di ff:Export Service

dif f(URI1, UR2, de ltaFunction)

fet ch(URI1)

return mo dell 1 in RDF/XML or TRI G

l oad(mod el1)

fet ch(URI2)

return mo del2 in RDF/XML

l oad(mod el2)

com pute Diff(m odel 1, m odel 2, de ltaFunction)

return set o f chang e op erat ions

ret urn cha nge operation s in TRIG

Figure 4.8: Comparison service interaction with Exporter and Main Memory Model

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Figure 4.9: Change Impact service

the naive application of a change request upon a name or graph space could potentially

result to an RDF KB that is meaningless, invalid or does not obey the RDF formation

rules [34].

The programmatic interface of the service is:

61

element changeImpact {
element delta { deltaElement },

element nameOrGraphspaceURI { text }*,

element namespaceClosureMode { text },

element dbSettings { dbSettingsElement }?

}
element changeImpactResponse {

element delta { deltaElement }
}

The input to this service is an RDF knowledge base and the update request. The RDF

knowledge base is specified using any, arbitrarily large, collection of name and/or graph

spaces. The change request could affect any of the triples in this collection. However,

the side-effects could potentially affect triples in other, depended or depending name or

graph spaces; as a result, in order for the change request to be processed in a correct way,

all the depended and depending name and graph spaces should be taken into account.

Therefore, the RDF knowledge base in this case is the union of all the triples that appear

in all the name or graph spaces that are directly or indirectly depending (or are depended)

on the given ones.

Having said that, the caller of the service is given the option to restrict changes and

side-effects to happen in the given collection of name or graph spaces, plus, of course,

those name or graph spaces that the members of this collection depend on; it should be

clear that this option may not give the best possible results, as certain side-effects may

not be computed. In this case, the RDF knowledge base consists only of the union of all

triples that appear in the given name and graph spaces plus those that they depend on.

The update request is specified using the string parameters added and deleted, rep-

resenting the set of triples that should be added and deleted respectively from the RDF

knowledge base (i.e., the original update request). The triples are encoded using TRIG

syntax. The added and deleted triples are combined with the parsed output of the Export

Service in order to determine the types of update operations that need to be executed

upon the RDF knowledge base and are ultimately fed, along with the RDF knowledge base

62

that was produced by the parsed output of the Export Service, to the Internal Change

Impact Implementation to produce the output. A related restriction is that all the schema

resources (classes, properties) that are used inside the added and deleted parameters (i.e.,

all the schema resources that appear in the update request) should have the same URI

(including version ID - see the versioning service below) as (one of) the URI(s) of the input

describing the RDF knowledge base (i.e., one of the URIs in the nameGraphSpaceURI[]

parameter); in a different case, an error is reported by the service.

The output of the service is a set of primitive update operations (i.e., another update

request) that captures all the effects and side-effects of the original change request upon

the target KB. In the example of Figure 2, the output would contain the deletion of

B (direct effect), the deletion of the two IsAs (side-effect) and the explicit addition of

the previously implicit IsA (side-effect). These effects and side-effects are returned to

the caller, in order to be visualized and either accepted or rejected. If the updates are

accepted, the Update Service should be called in order to physically execute the updates

upon the RDF knowledge base.

Note that, in many cases, there may be more than one possible outputs (i.e., side-

effects) that satisfy the above properties; in such cases, the service will select the action

that has the minimal possible impact upon the original RDF KB, without negating its

validity. In other words, the result of the change should be ”as close as possible” to the

original KB, according to the ”Principle of Minimal Change” [Gar92].

In Figure 4.10 we see the interaction of the Change Impact service with Exporter and

the Main Memory Model.

4.3.7 Registry Service

The role of the Registry Service is to record and manage metadata information about

ontologies, schemas or namespaces stored in the knowledge repository. Furthermore,

the registry offers the possibility to keep track of the development lifecycle of a schema

through the support of storing versions, their metadata and the relationships among them.

Both schema and version information follow the Ontology Description Schema that is

stored in the knowledge repository and is appropriately instantiated for each schema and

63

sd Change Serv ice

:Change Service :ChangeImpact:Export Servi ce:Client :MainMemoryRDFModel

changeImpact(Added, Del eted, Mode, nameGraphSpaceURI)

fetch(nameGraphSpaceURI)

model in XML/RDF or TRIG

load(model in XML/RDF or TRIG)

return main memory model

computeImpact(model, Added, Del eted, Mode)

return set of change requests

return effects and side effects i n two TRIG fil es

Figure 4.10: Change service interaction with Exporter and Main Memory Model

Registry Service

RDF/Trig
Ontology
Descriptions

Registry
MM-schema

Update Statement
Predefined RUL

Query Statement
Predefined RQL

Import
Service

Query
Service

Update
Service

Output:
RDF/XML
Trig

File

descriptions

queries

OR Registry Service

RDF/Trig
Ontology
Descriptions

Registry
MM-schema

Update Statement
Predefined RUL
Update Statement
Predefined RUL

Query Statement
Predefined RQL
Query Statement
Predefined RQL

Import
Service

Query
Service

Update
Service

Output:
RDF/XML
Trig

File

descriptions

queries

OR

Figure 4.11: Registry service

version stored. Applications using the registry have the possibility to update and retrieve

information about the already recorded schemas and their versions by using the available

service methods. Note that currently the Registry Service offers support for namespaces

only.

A comparison of some of the existing registries is presented in [16]. All of the men-

tioned systems provide certain searching facilities, but only some of them support editing

functions that modify stored information about ontologies and add new ones (such as

WebOnto [17], Ontolingua [18] and Ontology Server [2]). Moreover, only a few provide

reasoning mechanisms that make it possible to derive a query-answering mechanism such

as WebOnto and Ontolingua. Furthermore, only one of the systems, SHOE[24], supports

64

a versioning mechanism in order to maintain the changes of ontologies in the registry.

Our ontology registry provides all of the aforementioned functionalities, since it is using a

query/update service based mechanism. Furthermore, it supports versioning in its more

general sense as it will be described later.

The Registry Service is implemented as a web service and the different functionalities

offered by it are implemented as web methods. However, this web service is not a self-

contained module but rather depends on and uses the services provided by the knowledge

repository, such as the Import, Update and Query Services. In particular, the Import

Service is used to persistently store ontological descriptions, the Update Service is used

to update the metadata information on the ontologies (which is stored in the Ontology

Registry Schema, which is an ontology itself and described below) and the Query Service

is used to query the metadata information stored in the Ontology Registry Schema (for re-

trieval purposes). The dependencies between the Registry Service and the aforementioned

services are schematically depicted in Figure 4.11.

As already mentioned, the Registry Service is using its own ontology, encoded in

RDF/S, in order to explicitly describe every other ontology stored in the Knowledge

Repository. This ontology is called the Ontology Registry Schema and is described in

detail later in this section (see Figure 4.12). For every ontology stored in the Knowledge

Repository, an instance of the proper type is created and stored under the Ontology

Registry Schema. The Registry is also supporting versioning of schemas by allowing for

each ontology the creation of multiple instances of the corresponding class Version and

relating these instances to the proper instance of the class Schema. Thus, the metadata

stored for each namespace are divided into two main categories regarding to whether

their values are changing with each version (e.g., the number of classes or the related

namespaces) or they are permanent characteristics of the namespace (e.g., the encoding

or the URI prefix). This, in turn, imposes the rule that at least one version should exist in

the Knowledge Repository for any stored namespace and its instance should be correctly

related to the instance representing the namespace in the registry.

Since keeping track of versions has a significant role in the lifecycle of a schema, the

registry includes a sophisticated versioning mechanism, accounting for and supporting

65

the fact that different versions of a schema can be developed in parallel. Thus, during

the lifecycle of a schema its versions can create a Direct Acyclic Graph (DAG). This

means that a version might depend on more than one versions, which might be considered

as merging two or more versions. Similarly, two or more versions might depend on a

single one, which might be considered as forking or parallel development. This way

the maximum possible flexibility is provided and all known versioning schemes can be

easily supported. Besides the versioning mechanism, the registry additionally offers the

possibility to document the changes that occur on a schema when moving from one version

to the next one(s). These changes have the format of the results of the Comparison Service

that compares two RDF models.

Finally, as mentioned above, the Registry Service offers the possibility to retrieve

ontology metadata information from the repository and also update the information that

is already stored. In order to retrieve data from the registry, one can either type an RQL

query, or use a query from a set of predefined ones. The latter type (the predefined queries)

are exposed through a set of web service methods and are highly configurable by the

developer of the service allowing for the necessary flexibility and taking advantage of the

knowledge of the Ontology Registry Schema. Similarly, in order to update the information

stored in the Registry a set of implemented web methods is exposed accounting for most

actions that might be needed by the user and assuring the necessary consistency of the

information in the Registry, imposing for example the rule of necessitating at least one

version per schema; nevertheless, the user can always post updates in RUL, in which case

(s)he bares also the responsibility for keeping the consistency rules.

The schema of Ontology Registry consists of five basic classes: Schema, Version,

Change, foaf#Person and foaf#Organization.

• The Schema class represents a stored namespace (or ontology or schema) and in-

cludes, besides the URI of the schema, information about the creator, the title, the

purpose, the keywords etc. Regarding the organization of the concepts described

by a namespace, the kind of their interrelations and the level of conceptualization,

66

Figure 4.12: The Registry Schema

further classification is offered through the subclasses of class Schema. These sub-

classes are the following: Ontology, Thesaurus, Taxonomy, SemanticNetwork, Do-

mainOntology, UpperOntology, TaskOntology, CoreOntology, ApplicationOntology,

FederatedThesaurus, FacetedThesaurus and NetworkedThesaurus.

• The Version class is correlated to class Schema by the property hasVersion and

describes attributes of a schema that might change between versions such as statis-

tical characteristics of a schema (number of classes, number of properties, maximum

length of a hierarchy). As one might see, this class also contains properties that cor-

relate one schema to another with the relationships import, extend and instanceOf.

Moreover, class Version has a property with predefined values that is used to indicate

the intended uses of a version regarding its evolution during the version lifecycle.

The predefined values are instances of VersionType class. The evolution can be seen

in two ways: versions that are going to be developed in parallel and versions that

are developed sequentially and depend on one another. Thus, the VersionType class

can take the form of one of the following subclasses: Permanent (not to be merged

in the future), Temporal (might be merged in the future) and Revision (replacing

its previous versions).

67

• The Change class is correlated with class Version through the property chang-

eRequest and describes the insertions/deletions of RDF statements that have led

to the creation of this version (in the form of add/delete statements like the ones

produced by the Comparison Service).

• The (FOAF#)Person and (FOAF#)Organization classes from the schema FOAF

are correlated to both classes Schema and Version through the properties creator,

publisher and contributor respectively.

Moreover, some additional classes have been specified that are related to the language,

encoding, and physical language used in the document describing a specific namespace.

The main classes and properties of Ontology Registry Schema are illustrated in Figure

9. The recording of a schema namespace by the Registry Service might also include the

storing into the registry not only of the instances of classes Schema and Version but also

instances of the classes Change, foaf#Person, foaf#Organization, Language, Encoding

and PhysicalLanguage.

The Registry Service offers functionalities for:

• Storing information into the Ontology Registry Schema

• Updating information in the Ontology Registry Schema

• Retrieving information related to any object stored under the Ontology Registry

Schema

As already mentioned, the methods exposed by the Registry Service are using the

underlying methods offered by the SWKM platform, more specifically the Import, Update

and Query Services. The Registry Service builds on top of these services in order to provide

a more intuitive interface between the Knowledge Repository and the applications using

the registry. These methods try to hide the possible complexity of producing the right

(and optimized) RQL queries or RUL updates by predefining the correct ones, account

for the consistency and imposing the necessary rules (which otherwise would have to be

imposed manually) and exploit on the knowledge of the Ontology Registry Schema which

the application need not know in detail.

68

So the available methods (web services) of the Ontology Registry API for inserting

information into the Registry are:

element insertPersonURI {

element classURI { text },

element personURI { text }*,

element property { text }

}

element insertPersonURIResponse { }

element insertSchemaURI {

element className { text },

element instanceURI { text },

element versionId { text }

}

element insertSchemaURIResponse { }

element existInstanceURI {

element className { text },

element instanceURI { text }

}

element existInstanceURIResponse { }

element insertOrganization {

element classURI { text },

element property { text },

element file { text },

element format { text }

}

element insertOrganizarionResponse { }

element insertOrganizationURI {

element classURI { text },

element personURI { text }*,

element property { text },

}

element insertOrganizationURIResponse { }

element insertPerson {

element classURI { text },

element personURI { text }*,

element property { text },

element file { text },

element format { text }

}

element insertPersonResponse { }

69

element insertProperty {

element className { text },

element instanceURI { text },

element propertyName { text },

element propertValue { text },

element rangeType { text }

}

element insertPropertyResponse { }

element insertSchema {

element className { text },

element correlateToUri { text },

element instance { text }

}

element insertSchemaResponse { }

element insertInstanceURI {

element className { text },

element correlateToUri { text },

element instance { text }

}

element insertInstanceURIResponse { }

The corresponding ones for updating information already stored in the Registry (in-

cluding deletion of instances from the registry, update of the range properties with the

constraint that the properties have literals as a range, etc.) are:

70

element removeInstance {
element className { text },

element instanceURI { text }
}
element removeInstanceResponse { }

element editInstanceURI {
element className { text },

element oldURI { text },

element newURI { text }
}
element editInstanceURIResponse { }

element editProperty {
element className { text },

element instanceURI { text },

element propertyName { text },

element oldValue { text },

element newValue { text },

element rangeType { text }
}
element editPropertyResponse { }

Additionally, the Registry Service uses the Query Service in order to retrieve data

from the registry by evaluating RQL queries. The user can directly pose RQL queries

through the query method of the Query Service or use the method that is implemented

by the Registry Service API, called:

71

element evaluatePredefinedQuery {
element queryCategory { text },

element queryId { text },

element param { text }*,

element format { text}
}
element evaluatePredefinedQueryResponse {

text

}
that can be used when the application needs to use one of the predefined queries which

are in turn dynamically specified by the service developer in an XML file.

72

4.3.8 Versioning Service

The Versioning Service is responsible for constructing a new persistent version of a

name or graph space already stored in the repository, in effect allowing the creation of

several versions of an ontology or knowledge base, while keeping the logical relationships

between each of its versions, i.e., which version was created as an evolution of which

pre-existing one etc. It should be noted that the use of the Versioning Service is an

indispensable part of any persistent change upon a name or graph space, as whenever a

change upon a name or graph space becomes persistent, the resulting (updated) name or

graph space should not overwrite the existing one, but should result to the creation of a

new version of the name or graph space under question.

The versioning service in SWKM comes in two flavors, ”Import Version” and ”Cre-

ate and Import Versions” operations. ”Import Version” operation can be thought as

a coordinator over the Importer and the Registry services, that stores a document and

updates the Registry with versioning information, transactionally. ”Create and Import

Versions” offers less generic functionality, but more efficient, as it is creates versions based

on deltas, i.e. on the actual differences between subsequent versions (which typically are

much smaller than the complete contents of the versions themselves).

4.3.8.1 Import Version Operation

Versioning Service: Import Version

nameGraphSpaceURI

URI prefix for the new URI

newVersionFile
Trig or RDF/XML

Import Service

Create New
Version ID

URI prefix +
new Version ID

M.M.
Validation

Output: new
Version URI
(with
embedded new
Version ID)

nameGraphSpaceURI

newVersionFile
format

Registry Service

Parent URIs

nameGraphSpaceURI
storedParentNameGraphSpaceURI

Validate URI
prefixes

If ok

Parent
information

Versioning Service: Import Version

nameGraphSpaceURI

URI prefix for the new URI

newVersionFile
Trig or RDF/XML

Import Service

Create New
Version ID

URI prefix +
new Version ID

M.M.
Validation

M.M.
Validation

Output: new
Version URI
(with
embedded new
Version ID)

nameGraphSpaceURI

newVersionFile
format

Registry Service

Parent URIs

nameGraphSpaceURI
storedParentNameGraphSpaceURI

Validate URI
prefixes

If ok

Parent
information

Figure 4.13: Import Version Operation

The Import Version operation offers versioning at the level of single name or graph

73

spaces. To this end, it takes as input the information regarding the version’s URI, the

parent versions’ URI and the contents of the new version and creates a persistent version

of the name or graph space in the given URI, with a new version ID. More specifically, the

URI of a version is extended with a version tag that allows us the discrimination between

various versions of a single name or graph space.

One of the requirements of the method is that the new version and its parents should

have the same URI prefix, as they are assumed to be different versions of the same name

or graph space. Therefore, the validity of the input URIs should be verified before making

the new version persistent. The validity comprises not only checking the the URI prefixes

match, but the parents are already registered in the Registry, possibly by a previous

invocation of the versioning service.

Success of the validation (and the import) is a prerequisite for the new version to be

recorded in the registry. If validation succeeds, the Registry Service is used to record the

new version of the name or graph space. The final output of the service is a URI that

includes the URI prefix and the version ID of the new version. A user may choose an

arbitrary version ID (instead of allowing the automatic generation of one).

The interface to this operation is:

74

element importVersion {
element document { rdfDocumentElement },

element parent { text }*,

element dbSettings { dbSettingsElement }?

}
element importVersionResponse {

element versionUri { text }
}
element importVersionWithSpecificId {

element document { rdfDocumentElement },

element parent { text }*,

element targetVersionId { text },

element dbSettings { dbSettingsElement }?

}
element importVersionResponse {

element versionUri { text }
}
element rdfDocumentElement {

element URI { text },

element content { text },

element format { text }
}

The input consists of an RDF document parameter, which groups the RDF content

itself, along with its base URI and its serialization syntax. The base URI is used to

determine the URI prefix to be used in the new version’s URI. The parent[] parameter is

a list of strings, each containing the URI of one of the parent(s) of the current version. If

there is no previous version of the given name or graph space (i.e., if the currently created

version is the first one), then there are no parents, so the list is empty. Notice that the

URI prefix could also be determined using the parents’ prefixes, but this approach would

fail for versions with no parents (i.e., for new name or graph spaces).

The RDF content is a string describing all the triples of the new version of the name

75

or graph space. These triples should be stored as the content of the new version. The

format of the string in newVersionFile could be either TRIG or RDF/XML; the exact

format is determined using the format parameter.

The output of the above method is a string containing the full URI, which includes

both the URI prefix (i.e., the common URI prefix that is shared among all the versions

of this name or graph space) and the version ID of the new version. This URI could be

later used by the caller in order to get the contents of the new version, through a call to

the Export Service.

4.3.8.2 Create and Import Versions Operation

Versioning Service: Create And Import Versions

Parent
version URI

Import Service

Main Memory
Model

Output:
new URI +
new
Version ID

Namespace URIs

Parent (stored)
version URI

Registry Service

Parent version URI

Validate URI
prefixes

If ok

Parent
information

Update Semantics
(PLAIN | INFERRED)

Export Service

Update
Semantics

Model Updater

Delta

Delta

Updated
Model

Versioning Service: Create And Import Versions

Parent
version URI

Import Service

Main Memory
Model

Output:
new URI +
new
Version ID

Namespace URIs

Parent (stored)
version URI

Registry Service

Parent version URI

Validate URI
prefixes

If ok

Parent
information

Update Semantics
(PLAIN | INFERRED)

Export Service

Update
Semantics

Model Updater

Delta

Delta

Updated
Model

Figure 4.14: Create and Import Versions Operation

The Create And Import Version operation offers the functionality of specifying new

versions not by their entire contents, but by the difference with an existing version, i.e.

by specifying added and deleted triples (a delta). It also takes multiple URIs, unlike

Import Version operation which only accepts one. Furthermore, these URIs can only be

namespaces, not graphspaces, since it is yet unclear of the semantics of this operation in

that case.

When a request is made, we first use the Exporter service to load the contents of all

specified namespaces, and all their dependencies, transitively. We then create a main

memory model by the results. Then, the question is where and how to apply the delta

in order to create new namespace versions. The triples of the delta themselves are not

76

explicitly associated to a namespace. Instead, we use the convention to add the triples

to the namespace of the subject of the triple; the same convention followed to assign

triples to namespaces when creating main memory models with SWKM. So we define an

implicit association of every triple to a namespace (the same would be problematic with

graphspaces since there could be data instances triples with subject URIs that denote

resources, and not schema defined in a namespace). This answers the ”where” but not

the ”how”. We offer two ways of applying triples to a namespace: either with a direct

way, or by also considering (and adding) inferred triples (this option is controlled by the

”updateSemantics” request parameter). Note that existing namespaces are not affected in

any way by this operation; where needed, new namespaces are created by copying existing

namespaces and applying the delta changes to the copies.

We do not allow triples to be added or deleted from (copies of) namespaces that do

not appear in the arguments of the operation as this could create subtle side-effects that

could go unnoticed there were made by mistake. Now, for each namespace that has at

least one added or deleted triple, a new version of it is created, which is the result of

the initially stored namespace and the addition and deletion of some triples (the initial

namespace of course remains unchanged). The reason to have the operation defined with

multiple namespaces instead of one (like Import Version) is because some interdependent

namespaces could need to change in one step, so that their outcome is consistent. For

example, if two namespaces that depend on each other change independently, then each

one will now depend on the old version of the other one.

The interface of this operation is:

77

element createAndImportVersions {
element existingVersionURI { text }*,

element delta { deltaElement },

element updateSemantics { text },

element dbSettings { dbSettingsElement }?

}
element createAndImportVersionsResponse {

element existingVersionURI { text }*,

element newVersionURI { text }*

}
Some care for updating dependencies between specified namespaces is taken. All

new versions will contain updated links (if there existed) to other new versions from the

same operation. Old namespaces will continue to depend on the name or graphspaces

they depended before this operation. For example, assume the user specifies namespaces

NS1, NS2, NS3, and a delta that only affects NS1 and NS2. Also assume that NS2

and NS3 both depend on NS1 (i.e. NS2 → NS1, NS3 → NS1). After the operation,

since delta affected only the two first namespaces, these namespaces will be created:

NS1′, NS2′. Also, NS2′ will now point to NS1′. But since NS3 was not affected by the

delta, it will still point to the older NS1, even if it was declared in the operation and

participated in the main memory model where this changes occurred. This is due to the

model (which also takes cares of storing) ignoring changes in main memory representation,

when there is an already stored namespace with the same URI - in this case, it silently

ignores the changed namespace. So, whether after this operation, the latest version of each

namespace will depend on the newer versions wherever they depended on the old, is based

on whether the particular delta affects the dependent namespace: if it does, references

will be updated, otherwise they will be left unchanged pointing to the old spaces.

We will explain the design forces behind this implementation, assess this service in

Section 5.4.

In Figure 4.15 we see the interaction of the Change Impact service with Exporter and

the Main Memory Model.

78

sd Versioning Serv ice

:Client :Versioning Service :Import Service :Registry Service

:MainMemoryRDFModel

opt

[valid URI prefixes and versionContent]

opt

[successful import]

importVersion(URI,parentURI,versionContent, format)

validateURIprefixes(URI, parentURI)

createNewVersionID

isValid(versionContent)

import(newVerionID, versionContent)

updateRegistry()

return full URI of new version

Figure 4.15: Versioning service interaction with Exporter, Main Memory Model and Im-
porter

4.4 Usage of Services Example

In this section we will work through a simple example on working with the services.

Assume we have a simple schema describing students and professors, shown below. We

define a Student and a Professor class, and then a ”hasSupervisor” property with domain

”Student” and range ”Professor”.

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xml:base="http://example.org/studentsAndProfessors.rdf#">

<rdfs:Class rdf:ID="Student">

79

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Professor">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Property rdf:ID="hasSupervisor">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#Professor"/>

</rdfs:Property>

</rdf:RDF>

We would store this schema as a namespace in SWKM repository using a call of this

form:

String document = ...; //store in a variable the above document

importer.store("http://example.org/studentsAndProfessors.rdf#",

document, "RDF/XML", false);

Now assume we also have a schema defining departments, which simply have a list of

persons, which can be either students or professors.

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xml:base="http://example.org/departments.rdf#">

<rdfs:Class rdf:ID="Person">

<rdfs:subClassOf

80

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdf:Description

rdf:about="http://example.org/studentsAndProfessors.rdf#Student">

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdf:Description

rdf:about="http://example.org/studentsAndProfessors.rdf#Professor">

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdfs:Class rdf:ID="Department">

<rdfs:subClassOf

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Property rdf:ID="hasMember">

<rdfs:domain rdf:resource="#Department"/>

<rdfs:range rdf:resource="#Person"/>

</rdfs:Property>

</rdf:RDF>

This schema effectively extends the previous one. We can store it like this:

String document = ...; //store in a variable the above document

importer.store("http://example.org/departments.rdf#", document, "RDF/XML", false);

If the repository didn’t contain the first schema, then the second would fail to be

stored, as it depends on the first.

We can review the stored classes by executing the simple ”Class” RQL query:

81

String result = query.query("RDF/XML", "Class");

Printing the result would yield something like:

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<rdf:Bag rdf:about="#Bag_!">

<rdf:li rdf:type="http://www.w3.org/2000/01/rdf-schema#Class"

rdf:resource="http://example.org#studentsAndProfessors.rdf#Student" />

<rdf:li rdf:type="http://www.w3.org/2000/01/rdf-schema#Class"

rdf:resource="http://example.org#studentsAndProfessors.rdf#Professor" />

<rdf:li rdf:type="http://www.w3.org/2000/01/rdf-schema#Class"

rdf:resource="http://example.org#departments.rdf#Person" />

</rdf:Bag>

</rdf:RDF>

Lets store some data instances as well, conforming to these schemata. We create this

document:

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdfsuite="http://139.91.183.30:9090/RDF/rdfsuite.rdfs"

xmlns:std="http://example.org#studentsAndProfessors.rdf#"

xmlns:dep="http://example.org#departments.rdf#"

82

xml:base="http://example.org#data.rdf">

<std:Student rdf:about="http://example.org#DimitrisAndreou">

<std:hasSupervisor>

<std:Professor

rdf:about="http://example.org#VasilisChristophedes"/>

</std:hasSupervisor>

</std:Student>

<dep:Department rdf:about="http://example.org#UnivOfCrete"/>

<rdf:Description rdf:about="http://example.org#UnivOfCrete">

<dep:hasMember

rdf:resource="http://example.org#DimitrisAndreou"/>

<dep:hasMember

rdf:resource="http://example.org#VasilisChristophedes"/>

</rdf:Description>

</rdf:RDF>

And we store it like this:

importer.store("http://example.org/data.rdf#", document,

"RDF/XML", false);

We could again see the stored instances with RQL queries. Now, lets use the Exporter

service instead.

List<String> uris =

Arrays.asList("http://example.org#departments.rdf#");

exporter.fetch(uris, "RDF/XML", false, false);

83

This call would fetch the departments.rdf document we imported earlier, with prob-

able syntactic differences, but with semantically equivalent content. Observing that this

document depends on studentsAndProfessors.rdf, we can get both documents by spec-

ifying that we want all dependencies to be fetched too:

List<String> uris =

Arrays.asList("http://example.org#departments.rdf#");

exporter.fetch(uris, "RDF/XML", true, false);

This would fetch both documents back. Another option is to also fetch the data instances

that are described with the schemata requested, as following:

List<String> uris =

Arrays.asList("http://example.org#departments.rdf#");

exporter.fetch(uris, "RDF/XML", true, true);

This would fetch both documents (namespaces) and a graphspace containing a student

instance, a professor instance, and a property instance connecting the two.

Lets create a second version of the Departments document, one that incorporate a

new type of Person, "Staff". We will name it with a different URI,

"http://example.org/departments2.rdf#" so that it will not interfere with the old

one.

<?xml version="1.0"?>

<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xml:base="http://example.org/departments2.rdf#">

<rdfs:Class rdf:ID="Person">

<rdfs:subClassOf

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

84

</rdfs:Class>

<rdfs:Class rdf:ID="Stuff">

<rdfs:subClassOf

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdf:Description

rdf:about="http://example.org/studentsAndProfessors.rdf#Student">

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdf:Description

rdf:about="http://example.org/studentsAndProfessors.rdf#Professor">

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdf:Description rdf:about="#Staff">

<rdfs:subClassOf rdf:resource="#Person"/>

</rdf:Description>

<rdfs:Class rdf:ID="Department">

<rdfs:subClassOf

rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdfs:Class>

<rdfs:Property rdf:ID="hasMember">

<rdfs:domain rdf:resource="#Department"/>

<rdfs:range rdf:resource="#Person"/>

</rdfs:Property>

85

</rdf:RDF>

In summary, we added a new Staff class, and an is-a relation of it to class Person. We

can store this second departments document as we did the first. Then, we can compare

it to the first one, by the Comparison service:

Delta delta = comparison.compare(

new String[] { "http://example.org/departments.rdf#" },

new String[] { "http://example.org/departments2.rdf#" }, "Delta_explicit");

The returned delta would contain a set of added triples (the new class instantiation

and the is-a relation) and an empty set of deleted triples.

We could give this delta to the Change Impact service, like so:

Delta newDelta = changeImpact.changeImpact(

new String[] { "http://example.org/departments.rdf#" }, delta);

And the service would yield a more complete Delta, one which would contain implicit

triples that would occur if we applied the given delta.

Until now, we tried to create two versions of the Departments document in an ad-

hoc fashion. This way we cannot ask later whether these versions are related, and how.

Instead, we can use the Versioning service to store these versions. Assuming an empty

repository, and document1 containing the first version and document2 containing the

second, we would write:

String document1 = ...;

String document2 = ...;

String v1 = versionManager.importVersion("http://example.org/departments.rdf#",

new String[] { }, document1);

String v2 = versionManager.importVersion("http://example.org/departments.rdf#",

new String[] { v1 }, document2);

86

Note that the importVersion invocation yields a version URI assigned to the importer

version. The second invocation uses the returned URI to declare that the second version is

a subsequent version of the first. The first URI could be ”http://example.org/departments.rdf 1#”

while the second "http://example.org/departments.rdf 2#".

Now, we can ask the subsequent (”kid”) versions of the first namespace, an operation

that will yield the second version, like this:

String result = registry.evaluatePredefinedQuery("Versioning", "findKids",

new String[] { v1 }, "RDF/XML");

This would yield all subsequent versions of v1, in RDF/XML format.

4.5 Evaluation of the SWKM platform

Here we will explore the relative strengths and weaknesses of the SWKM middleware,

in comparison with the rest of the middleware platforms discussed in chapter 2.

4.5.1 Strengths

SWKM is well integrated with powerful declarative query and update languages (RQL

and RUL respectively), providing an easy way to developers to access and update data

in the repository, without needing an array of less general services. For example, Sesame

offers an explicit service that removes triples matching a simple (subject, predicate, object)

triple pattern, which is an attempt to fill the gap of a full-fledged update language.

Kowari’s iTQL language offers comparable functionality, with declarative RDF inserts and

deletes, but no updates (sometimes the latter can be emulated with a deletion followed

by an insertion). But iTQL, unlike RQL/RUL, also offers administrating services, like

creating and dropping models, taking backups of the database or restoring the database

from a backup, etc.

SWKM makes it easy and efficient to export the contents of namespaces and graphspaces

(through the Exporter service), as internally these are used to organize and group RDF

87

information, which would be impractical to do via querying. Graphspace support is still

lacking or upcoming in other platforms.

SWKM uses SOAP via HTTP protocol to make its services as accessible as possible,

since this protocol is currently highly supported in all main-stream languages (one of its

main design goals was language neutrality/interoperability).

Last, but not least, the SWKM offers a comprehensive array of services that apart

from basic imports and exports, queries and updates, offer facilities for evolution, finding

differences, organizing ontologies and versioning, all in one integrated platform. SWKM

attempts to be a one-stop solution for the most common requirements of Semantic Web

applications, without requiring developers to install multiple add-ons or extensions to the

server to support them.

4.5.2 Weaknesses

A major limitation of the SWKM platform is lack of support for distributed (or global)

transactions. That is, an import request or an update cannot participate in an external,

wider transaction, and this can be very problematic in case that such a transaction fails

and is rolled back; then the SWKM repository would have to be manually restored, which

can be a very complicated task. SWKM is technically limited by the fact that the un-

derlying RQL/RUL engine runs on its own process, in a different platform (C++) than

that of the rest of SWKM, and database connections cannot be shared simultaneously

through Java and C++ without inordinate amount of work. Kowari tackles this problem

by implementing the XA protocol, which enables global two-phase commits. Even with-

out that support, Kowari exposes transaction operators in iTQL, so one could integrate

manually Kowari into global transactions even without XA support. The problem that

each basic service of SWKM operates strictly on its private transaction is apparent even

inside SWKM services. For example, in Import Version operation of the Versioning Ser-

vice, two main operations are executed: importing a namespace or graphspace into the

repository, and notifying the Registry service of a new relationship, which in turn uses

the Update service to record it. If the update fails for any reason, and we want to then

the service will leave the repository in an inconsistent state; both a version will be stored

88

and not recorded in the Registry. 5

Sesame and Jena both offer programmatic control for transactions in their respective

libraries, though their middlewares cannot be directly integrated in wider transactions.

Notably, a major design goal of Sesame 2 is better support for transactions.

Another limitation is that SWKM currently supports only RQL/RUL, but ignores

standardization efforts which resulted in the SPARQL query language and protocol. This

may limit its adoption, as clients will feel less secure using proprietary languages than a

W3C standard.

5A work-around for this particular case would be to try atomically the Registry call first, then atomi-
cally the Import call, and if the latter fails, manually undo the changes of Registry happened in the first
step.

89

90

Chapter 5

Related Work

This section examines the state of the art in benchmarking main memory representa-

tions and in versioning services and tools for the Semantic Web.

5.1 Related Work on Benchmarking RDF/S Main

Memory Models

To the best of our knowledge, the benchmark presented here is the first extensive

benchmarking of MMRMS. Instead, previous related work compare either RDF/S reposi-

tories implemented in secondary memory [43, 5, 37] or native and RDBMS-based RDF/S

repositories with MMRMS [22, 36]. However, how to choose representative systems from

each category is an open issue. As a matter of fact, our experimental study demonstrates

quite divergent performance of the four MMRMS we evaluate, which is not actually re-

flected in the fourteen queries of the LUBM Benchmark [22]. Finally [29] compares the

performance of MMRMS with respect to semantic association discovery queries. Un-

like [29], we employ a complete query workload that allows for testing a wide broad of

client programs information needs.

More precisely, in [43] we evaluated the performance of taxonomic queries (combining

Q3 and Q18 of Table 3.1) for three popular database representations (i.e. schema-aware,

91

schema-oblivious and a hybrid one) of RDF/S schemata and instances employed by ex-

isting RDF/S repositories (i.e. RDFSuite1, Jena-DB2, Sesame-DB3, DLDB4, RStar5,

KAON6, PARKA7, 3Store8). The conclusion drawn from these experiments was that the

most space and time efficient representation was the hybrid one supported by RDFSuite.

In the same direction a recent work [5] reaffirmed the same performance advantages of

the schema-aware approach over the schema-oblivious one (i.e. the triple-based view)

supported by the majority of secondary memory RDF/S repositories. Furthermore, [37]

compares four RDBMS-based RDF/S repositories (i.e. Jena-DB, Sesame-DB, SOR9 and

KAON) with three native ones (i.e. YARS10, AllegroGraph11, OWLIM12). According to

this study SOR outperforms all other systems taking benefit from the performances of

the DB2 query optimizer.

On the other hand, [22] compared two main-memory, (i.e. Sesame-MM, OWLJessKB13)

with two secondary memory OWL systems (i.e. DLDB-OWL, Sesame-DB). The emphasis

was to evaluate the OWL reasoning components in terms of the tradeoff between expres-

siveness and tractability in Description Logic reasoners. Moreover, [36] compared two

MMRMS (i.e. Sesame-MM and Jena-MM), with two RDBMS-based (i.e. Sesame-DB and

Jena-DB), and three native ones (i.e. Sesame-Native, Kowari14, YARS). Specifically, the

main conclusions drawn from [36] are that: a) native systems provide solid performance

on large data applications but lack of sufficient inference capability, b) RDBMS-based sys-

tems need a further work on performance improvement, although providing nice support

of inference, and c) MMRMS have serious scalability problems and can meet the needs

only of small-scale SW applications.

1athena.ics.forth.gr:9090/RDF/
2jena.sourceforge.net/index.html
3www.openrdf.org/index.jsp
4swat.cse.lehigh.edu/downloads/dldb-owl.html
5www.alphaworks.ibm.com/tech/semanticstk
6kaon.semanticweb.org/
7www.cs.umd.edu/projects/plus/Parka/
8www.aktors.org/technologies/3store/
9http://www.alphaworks.ibm.com/tech/semanticstk

10sw.deri.org/2004/06/yars/
11agraph.franz.com/allegrograph/
12www.ontotext.com/owlim/
13edge.cs.drexel.edu/assemblies/software/owljesskb/
14www.kowari.org/

92

Finally, [29] studies four MMRMS, i.e. Jena-MM, Sesame-MM, Redland15 and Brahms16.

Brahms is a special purpose MMRMS, specifically developed to support efficiently seman-

tic association discovery (i.e., finding a connecting path of semantic annotations between

two resources). Here, we focused on general purpose MMRMS and we have included in

our query workload semantic association discovery queries.

5.2 Related Work on Versioning

This section briefly discusses other systems and tools that offer versioning related

services.

5.2.1 Ontoview

OntoView [33] is a web-based system17 inspired by CVS [8] that helps users to manage

changes in ontologies. OntoView stores the contents of the versions, metadata, conceptual

relations between constructs in the ontologies and the transformations between them. The

internal version management is partly based on change specifications and the versions of

ontologies themselves, but also uses additional human input about the meta-data and

types of changes (as described below). It allows users to differentiate between ontologies

at a conceptual level and to export the differences as adaptations or transformations.

Two types of change are distinguished. There can be changes in the logical definition

of a concept which are not meant to change the concept, and, the other way around, a

concept can change without a change in its logical definition. An example of the first

case is attaching a slot “fuel-type” to a class “Car”. Both class-definitions still refer to

the same ontological concept, but in the second version it is described more extensively.

On the other hand, a natural language definition of a concept might change, e.g. the

new definition of “chair” might exclude ”reclining-chairs” without a logical change of the

concept. The former kind of change is referred in the literature as explication change,

while the latter conceptual change. Since at the syntactic level, the same data can be

15librdf.org/
16lsdis.cs.uga.edu/projects/semdis/brahms/
17A web demo is available here: http://test.ontoview.org/ but is currently not functional

93

the result of any of these types of change, more (human) input is needed to classify the

change.

OntoView accepts changes and ontologies via several methods. Ontologies can be read

in as a whole, either by providing a URL or by uploading them to the system. The user

has to specify whether the provided ontology is new or that it should be considered as

an update to an already known ontology. In the first case, the user also has to provide a

“location” for the ontology in the hierarchical structure of the OntoView system.

Then, the user is guided through a short process in which he is asked to supply the

meta-data of the version (as far as this can not be derived automatically, such as the date

and user), to characterize the types of the changes, and to decide about the identifier of

the ontology.

OntoView provides an explicit treatment for version identifiers. Typically, the XML

Namespace mechanism is used to uniquely identify an ontology. This most of the times

refers to a web location, i.e. the URL of the ontology file. OntoView distinguishes

between this location identifier, and the logical identifier of the version, allowing them

to vary independently. Each version will always have a unique location identifier, but

not all versions will have a unique logical identifier; only versions which were created by

conceptual changes do. So, creating a version by non-conceptual changes (for example,

by adding comments to ontology constructs) do not cause the ontology and its elements

to change identifiers.

OntoView also provides a web ”diff” view for comparing two versions of an ontology

(see Figure 5.1). The actual diff tool of CVS is used to implement that. This is a

line-based tool, where the order of text is significant. So to produce a meaningful dif-

ference for ontologies where there is no inherent ordering, the ontology is canonicalized

at the syntactic level before being given to the diff tool. In this web view, the user can

characterize each difference, as explained previously.

The main advantage of storing the conceptual relations between versions of concepts

and properties is the ability to use these relations for the re-interpretation of data and

other ontologies that use the changed ontology. To facilitate this, OntoView can ex-

port differences between ontologies as separate mapping ontologies, which can be used as

94

Figure 5.1: Comparing two ontologies in OntoView

adapters for data sources or other ontologies. These mapping ontologies thus impose a

certain view or perspective on data source or other ontology.

In summary, the described system allows users to track the conceptual relations and

transformations between concepts in different versions. Users are able to specify the

conceptual implication of each difference between subsequent versions. Most important

functions of OntoView (planned or implemented):

• read in ontologies, ontology transformations, and/or mappings

• view a specific version of an ontology

• differentiate ontologies (diff):

– show changed formal definitions

– show changed comments

– show types of change: conceptualization or explication

• allow users to assign properties to differences

• export ontology transformations (i.e., description of the changes required to make

an ontology identical to another)

95

• consistency checking of version combinations (i.e., ’is the combination of two specific

ontology versions valid or produces contradictions?’)

Currently it is based on CVS, and its underlying, syntactic-level, diff tool.

5.2.2 SemVersion

SemVersion [48] is a Java library for providing versioning facilities to RDF data. It

is based on RDF/RDFS, so it can be used for any ontology language built or adapted to

this data model.

Semversion offers an easy to use (and thus, integrate with) API that closely follows

the usual functions and concepts of CVS [8]. To commit a new version, a user can either

provide the complete contents of the version (which is an RDF model, i.e., simply a set

of triples), or a diff, that is, the change that is to be applied on a preexisting version

to create the new one. A main (”trunk”) version is distinguished, also matching typical

practices in CVS-like versioning systems.

Branching and merging are also supported. Merge is only offered with union semantics,

as is the case with CVS. There is also some primitive support for reporting conflicts, but

not resolving them programmatically.

The version storage of SemVersion is based on top of a quad store (also referred to as

named graphs), which is repository of quadruples, instead of triples. This allows to create

named sets of triples, which in turn, represent versions, while the ”name” of the version

(the forth dimension of the quad) is the version identifier (URI) itself. This identifier can

be easily used to annotate a particular version with semantic data, such as provenance,

comments, etc.

At the implementation level, persistence is handled by RDF2Go 18, which provides

common storage interfaces over triple- and quad-stores (SemVersion uses the abstraction

of the latter), such as Jena 19, Sesame 20, YARS 21, NG4J 22, etc. SemVersion stores each

18http://ontoware.org/projects/rdf2go/
19http://jena.sourceforge.net/
20http://www.openrdf.org/
21http://sw.deri.org/2004/06/yars/
22http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

96

version of an RDF model as unique independent graph that contain the whole model.

SemVersion also handles the problem of uniquely identifying blank nodes. Blank

nodes cannot be globally identified, as they lack a URI, and this poses a challenge at

diff algorithms. This is overcome by adding a property to the blank nodes leading to a

URI, effectively treating them, from that point on, as normal nodes. This procedure is

called blank node enrichment. Other tools that process the RDF data are expected not

to remove this property, so this will survive the roundtrip ”extract a version from the

repository, manipulate it in some ontology editor, reinsert the changes at the repository

to create a new version”, so that SemVersion can understand whether two blank nodes are

the same. If this URI is missing, then SemVersion treats the node as new (since creating

a new node from an external tool would be missing this, of course).

Two type of diff s are provided, structural and semantic. ”Structural” means a set

comparison of the triple sets, while ”semantic” means including into the triple sets all

inferred triples.

No declarative query language is supported for the contents of the stored versions,

but supposedly the underlying storage providers may offer native querying capabilities,

although usage of this effectively breaks the encapsulation of the implementation details

of how versions are actually stored.

5.2.2.1 The MarcOnt Ontology Builder Case

SemVersion is applied in the case of the MarcOnt initiative [35]. MarcOnt initiative

is concerned with developing an ontology for librarians through collaboration of multiple

parties, and translators between the various existing library ontologies, like MARC2123,

BibTeX24 and DublinCore25. A key tool in MarcOnt initiative, with the purpose of

enabling the collaborative process, is the an ontology builder, integrated to the MarcOnt

portal.26. SemVersion is used to implement the aforementioned builder.

Concurrent versions of the MarcOnt ontology are built out of suggestions proposed by

23http://www.loc.gov/marc/
24http://www.bibtex.org/
25http://dublincore.org/
26Currently, an online demo is offered here: http://portal.marcont.org/

97

community members (see Figure 5.2).

Figure 5.2: Multiple concurrent ontology branches

These suggestions themselves can evolve over time. After a voting process, some are

applied and a new ontology version is created.

The MarcOnt ontology builder allows the user to create and manipulate ontologies

online, viewing the difference between versions both syntactically and semantically (as

defined previously), searching versions by using keywords, vote for versions created by

peers and see the current ranking of the version, view some basic metadata about a

particular ontology (who and when submitted it, and a comment).

Various viewers of the ontology are provided: a tree, with collapsing and expanding

nodes (this could be somewhat problematic in multiple inheritance cases as nodes have

to be replicated in order to be represented as a tree; although multiple inheritance is not

used widely), a text editor with OWL, N3 and N-TRIPLE support, a table with triples,

and a graph viewer using an applet (unfortunately, this currently is not working; probably

98

it would be the most interesting of the views). Finally, a web page is offered that can

create mapping rules from one version to another, i.e. map a class X of a version to a

class Y of another (in case where class X was renamed to Y in the second version).

5.2.3 Blackboard Collaboration Architecture of ConcepTool

Work of Compatangelo et al. [13] regards the management of version changes in a

collaborative setting, using a blackboard architecture. In the described system, clients

locally update ontologies, and the changes are transparently propagated to the central

server, where a new version is created and is made available to the rest of the clients.

Overall, several management services are described, which are summarized:

• Access and update rights and control

• Changes annotation/justification

• User profiling (assessing the contribution of each user, updating a user ”reputation”,

which can later be reviewed by other peers, and taken into account when selecting

alternative design paths)

• Reasoning about changes

The system offers access and update policies. JavaSpace [20] was leveraged to imple-

ment the blackboard architecture. 27

5.2.4 MORE

Huang and Stuckenschmidt [27] present a novel approach in ontology versioning, which

attempts to provide basic support for the problem of an evolved ontology’s compatibility

with application. The main use case is the following: the user imports a new version of

some ontology into the system, and can then ask what facts of previous versions no longer

hold in the last version, and what facts are new to the last version.

27Currently the software is unavailable (the download link at
http://www.csd.abdn.ac.uk/research/IKM/projects/ConcepTool/ is not maintained), and cannot
be properly evaluated.

99

Figure 5.3: Blackboard Architecture

Since the main use case involves retrospective reasoning (from the point of view of the

latest imported version), they define a set of logic past-oriented operators for reasoning

about derivable statements in different versions. Namely:

• PreviousV ersion(f) operator states that a fact f holds just one state before the

current state.

• SomePriorV ersion(f) operator states that f holds sometimes in the past with

respect to the current state.

• AllPriorV ersions(f) operator states that f holds always in the past with respect

to the current state.

• AllV ersions(f) operator which is as AllPriorV ersions but considers additionally

the current version too.

• Since(f, y) operator states that f holds since y holds too.

Then, they use linear temporal logic for reasoning about commonalities and differences

between different versions, restricted to those operators. For the implementation of eval-

uating a query in this temporal logic, the standard model checking algorithm, which has

been proven an efficient approach[12].

Supported queries can be divided in two categories: reasoning queries and retrieval

queries. The former concerns with an answer either ”yes” or ”no”, and the latter concerns

100

an answer with a particular value, like a set of individuals which satisfy the query formula.

Namely, the evaluation of a reasoning query is a decision problem, whereas the evaluation

of a retrieval query is a search problem. Both types are supported by the same underlying

temporal logic.

Some examples of reasoning queries:

• ”Are all facts still derivable?” ==> PreviousV ersion(f) ∧ f

• ”What facts are not derivable anymore?” ==> PreviousV ersion(f)∧ ⇁ f

Some examples of retrieval queries, assuming child(c, c′) is a condition that defines

that concept c′ is subsumed by concept c, and there are no other concepts between them,

and S is the (linear) versioning space and o an ontology:

• ”newChildren(S,o,c)” ==> {c′|S, o ≡ child(c, c′)∧ ⇁ PreviousV ersion(child(c, c′))}

• ”obsoleteChildren(S,o,c)” ==> {c′|S, o ≡⇁ child(c, c′)∧PreviousV ersion(child(c, c′))}

• ”invariantChildren(S,o,c)” ==> {c′|S, o ≡ child(c, c′)∧PreviousV ersion(child(c, c′))}

The same definitions can be extended into the cases like parent concepts, ancestor

concepts, descendant concept and equivalent concepts.

Along these lines, a reasoner for multi-version ontologies called MORE has been imple-

mented. The system is a mediator between an application and description logic reasoners

(see Figure 5.4), and provides server-side XML-based services for uploading different ver-

sions of an ontology and posing queries to these versions. Requests to the server are

analyzed by the main control component that also transforms queries into the underly-

ing temporal logic queries if necessary. The main control element also interacts with the

ontology repository and ensures that the reasoning components are provided with the

necessary information and coordinates the information flow between the reasoning com-

ponents. The actual reasoning is done by model checking components for testing temporal

logic formulas that uses the results of an external description logic reasoner for answering

queries about derivable acts in a certain version.

101

Figure 5.4: MORE System

The MORE prototype is implemented in Prolog and uses the XDIG interface[28],

an extended DIG description logic interface for Prolog28. MORE is designed to be a

simple API for a general reasoner with multi-version ontologies. It supports extended DIG

requests from other ontology applications or other ontology and metadata management

systems and supports multiple ontology languages, including OWL and DIG29. This means

that MORE can be used as an interface to any description logic reasoner as it supports the

functionality of the underlying reasoner by just passing requests on and provides reasoning

functionalities across versions if needed. Therefore, the implementation of MORE is

independent of those particular applications or systems.

Its main weakness is that linear temporal logic can only be used in linear version

spaces, or in tree version spaces with past-based logic queries (a version’s ancestors form

a single line), and it is difficult to extend this work to function for future-based logic

queries (that would imply tree version spaces, due to branches), or DAGs (due to version

branches and merges). Scalability in non-linear logic queries evaluation could also become

an issue.

5.2.5 DIP

In the context of project DIP 30 (”Data, Information, and Process Integration with

Semantic Web Services”), funded by European Union, an ontology versioning tool31 has

been created.

28http://wasp.cs.vu.nl/sekt/dig
29http://dl.kr.org/dig/
30http://dip.semanticweb.org/
31http://www.omwg.org/tools/versioning/v1.0/FactSheet.html

102

Contrary to most other systems, DIP versioning is based on WSML ontology lan-

guage32, also developed in the context of the DIP project. The primary goal of WSML is

the desire to formally model Web Services and capture their operational semantics, so as

to enable . There are several variants of the language, namely:

• WSML-Core, which lies at the intersection of Description Logics and Logic Pro-

gramming, and can thus function as the basic interoperability layer between both

paradigms

• WSML-DL, a Description Logic language, with similar expressive power to OWL-

DL [Patel-Schneider et al., 2004].

• WSML-Flight, with features oriented towards Logic Programming

• WSML-Rule, a full-blown Logic Programming language

• WSML-Full, a superset of WSML-DL and WSML-Rule, i.e. the merge of both

paradigms,

DIP offers a suite of SW related tools, most packaged as Eclipse plug-ins [3]. Col-

lectively, they handle editing and browsing ontologies, persistence, mapping concepts

between pairs of them, versioning and reporting. We will concentrate on the versioning

tool in particular.

Each version in DIP can be in one of two states: a committed (stable) one or a

version in progress. A committed version is guaranteed to be immutable, so one can

safely use it. It can only be ’modified’ (that is, creating a modified copy, not altering

the original version) by creating another version, possibly by ’branching’ the former one.

On the other hand, a ’version in progress’ is modifiable and not meant to be published

yet. (Note that this notion is not strictly necessary; a versioning system could deal only

with committed versions, and let an engineer work on a local, private copy of an ontology

before committing the finalized version of it). A user can add a comment at each commit,

and also can choose an arbitrary version identifier for the committed ontology, as long as

this is not already used. A commit dialog can be seen at Figure 5.5.

32Although formal mappings from WSML to RDF and OWL are provided

103

Figure 5.5: A commit dialog in DIP versioning tool.

The ontology editor tracks changes as they happen, and can propose a mapping from

the initial ontology to the modified one. This only works for elements which did not change

substantially. The user may also view the underlying change log, which is represented in

the library as, rather surprisingly, a string, which is then parsed to create a mapping.

For version persistence, DIP versioning uses the Ontology Representation and Data

Integration (ORDI 33) framework, which provides a storage abstraction. There have

been developed implementations that are based, respectively, on top of Sesame, FOR

repository34 and YARS repository35.

The tool’s abilities in summary include:

• Extending a version to produce a new one

• Logging every update into a change log, that can be parsed to produce an ontology

• Creating a mapping between concepts of subsequent versions of an ontology

33http://www.ontotext.com/ordi/v0.4/FactSheet.html
34The fact sheet of the closed-source repository is available here:

http://sw.deri.org/2005/03/diprdf/UnicornRepositoryFactSheet.html
35http://sw.deri.org/2005/03/diprdf/FactSheet

104

• Parses the change log to create a textual description of the possible consequences

and compatibility issues that can a rise from the changes described in that log

• Removing redundant entries from change logs (for example, replacing twice the same

concept)

Regarding the storage of versions, no versioning-specific storage strategy has been devel-

oped; the underlying storage is simply manipulated to store each version as an independent

copy.

5.2.6 GVS

GVS [1] is a recent tool by Hewlett Packard labs, based on the Jena framework36. The

versioning dimensions offered by GVS are the following ones:

• Author (or Source) - who created a version

• Time - the physical moment that the version was added to the storage layer of GVS

The main operations are adding (’asserting’) and deleting (’revoking’) graphs, at par-

ticular times. The main query capability it to ask for a GraphOverTime object, by giving

a set of sources, in the sense that the returned object represents the history of an RDF

graph. A ’GraphOverTime’ gives access to graph instances, as were asserted at certain

time periods (i.e., at periods where they were asserted but not yet, if ever, revoked).

The main difference of this work to others is the choice of the level of granularity.

The problem of granularity is well explained in [15]. RDF documents and named graphs

are too coarse for some particular application needs, such as in tracking provenance of

an RDF graph. In this case, the overlap of the graph at hand with other graphs is a key

to identify its provenance. But a named graph can’t be used to express an overlap, as it

will generally contain irrelevant triples too, unless explicitly calculating the intersection.

On the other hand, triple-level is too fine-grained, due to the case of blank nodes. For

example, see the RDF graphs of Figure 5.6. The first one shows an unnamed resource

(blank node) with surname ’Ding’ and first name ’Li’. The second graph is identical, while

36jena.sourceforge.net/

105

the third described another ’Ding’ person, in particular ’Zhongli Ding’. If the triple-based

overlap was meant to be used, the first and the third graph would appear that they share

a common triple, while in fact the triples describe different people. This is due to the

lack of universal identity of blank nodes; their identity is only derived by the connected

to them named resources or literals. Clearly, when blank nodes are involved, equality of

triples can’t reliably be used as identification of equal RDF content.

Figure 5.6: The three RDF graphs above show personal information from three sources.
The first one asserts that a person who has first name ’Li’ and surname ’Ding’.

In [15], the decomposition is defined as follows. An RDF graph decomposition con-

sists of three elements (W,d, m): the background ontology W , the decompose operation

d(G,W) which breaks an RDF graph G into a set of sub-graphs G∗ = G1, G2, ..., Gn

using W , and the merge operation m(G∗,W) which combines all elements in G∗ into the

a unified RDF graph G′ using W . In addition, a decomposition must be lossless such that

for any RDFgraph G, G = m(d(G,W),W).

RDF molecules are defined as the finest and lossless subgraphs of a graph G according

to a decomposition (W,d,m). Worth of note is that this concept is very similar to the

notion of Minimum Self-contained Graphs (MSG), described in [45], one of the differences

being that molecules also consider an arbitrary reasoning -the ”background ontology”-

while MSG deals only with RDF).

GVS uses RDF/S as the background ontology W , and according to this, it decomposes

a given graph (which represents the version to be inserted) into its molecules. These can

be simply merged to create the original graph. The contents of a version are uniquely

identified by the set of the molecule identifiers that comprise the version. The molecules

are stored once (there is no need to store identical duplicates), in the same manner that

a triple-based versioning system would store all unique triples somewhere, and then store

sets of references to the triples to express a version, so not having to store multiple times

106

the actual bytes of a triple.

GVS offers two storage kinds: a memory-based, and a filesystem-based, both backed

with Jena’s Graph abstraction. Files are stored in plain N-TRIPLES format.

For tracking history, GVS records and provides a sequence of time events, i.e. when

changes occured, and by which source.

Performance-wise, GVS is rather primitive currently, as it does not use indexes (except

for the main-memory-only case) for tracking the events of additions and deletions of

graphs. An obvious optimization would be to leverage a relational database instead of

files directly, so to be able to more easily create such indexes.

Querying capabilities are also thin. Apart from tracking the history of the graph

assertions of a particular source (note that a source cannot add separate graphs - if a

new graph is added without the previous one removed, then the graph returned will be

the union of the two), GVS offers the ability to track the graphs of a union of sources.

With this, valid (unrevoked) graph contents, asserted by at least one source at a specific

past moment, are also reported. This presumably could be extended with other boolean

operations, like intersection, which would mean ”the contents asserted by all specified

sources”. Assertions can then be queried by triple-based patterns with Jena.

In terms of security, it offers optional write restrictions per user, but currently no reads

can’t be restricted. The security policy itself is described as an RDF graph37.

Other features, not so much related to versioning, are a RESTful API (graphs can be

obtained via HTTP GET, updated via HTTP PUT, asserted/revoked via HTTP POST).

5.2.7 Summary Comparison

Table 5.1 presents a number of basic features which are then used for providing an

overview of the functionality offered by each of the previously described systems.

The Change Log is a registry that records the actions that occurred in the versioning

system, for example the steps taken to create a new version from an older one. If the

actions are completely recorded, one could traverse this log and apply the actions in the

37Possibly to demonstrate that an RDF data model is so convenient to use that it should be preferred
to other formats

107

Features Description

Structural Diff The ability to compute the direct (set-)difference of two versions
Semantic Diff Ability to compute the difference over the closure of the involved models/versions (i.e. in-

ferred triples are also taken into account)
Change Log The maintainance of the sequence of applied changes
Change-based
Deltas

Can changes be expressed in terms of change operations?

Concept Mapping
between versions

Automatic or semi-automatic association of concepts in one version to its next, in order to
facilitate migration etc.

Storage approach How is the problem of storing versions handled from a high level view?
Storage tools What persistence tools are used?
Declarative Query
Language

The ability to evaluate declarative queries over the contents of versions

Branch The ability to spawn multiple versions from a single one
Merge The ability to combine multiple versions to create a new one

Table 5.1: Features of the comparison

order that they occurred and reach the same result. The change log is also useful for a

user that wants to understand the changes made by someone else, to see the way they

work and possibly spot errors.

By Change-based Deltas we mean the feature by which a user can create a version

from a preexisting one by specifying declaratively the change that would create the new

one. For example, this could be a update query in a language such as RUL, or simply

sets of added and deleted triples produced by a diff algorithm. If the user cannot define

a new version in terms of older ones and changes upon them, then the only remaining

option is to import the entire contents of the new version to be created, which should be

less efficient (and as the user typically would not create the entire contents from scratch,

it is implied that the capability of applying changes to an RDF model is already available

to him).

By Concept Mapping between versions we mean the association of concepts that can

be derived from the Change Log or the application of Changed-based deltas (depending

on the expressive power of the language used for the deltas), so the existence of at least

one of these is a requirement for this feature.

The overview of available functionality is presented in Table 5.2.

We will briefly expand on how each toolkit fares for each distinguished feature we

highlight, as synopsized in the above table.

108

Features Systems
OntoView SemVersion Blackboard /

ConcepTool
DIP MORE GVS SWKM

Structural
Diff

yes yes no no no no yes

Semantic
Diff

no yes no no yes no yes

Change Log no no no yes no no no
Change-
based Deltas

yes yes yes yes no no yes

Concept
Mapping
between
versions

no no no yes no no no

Storage tools CVS RDF2Go ? ORDI (Sesame
/ YARS /
FOR)

? File system RDFSuite
(Post-
greSQL)

Storage ap-
proach

Delta-based State-based State-based,
also stores diffs
when a version
is created by
applying one

State-based,
also stores
change-logs in
main memory
while working

State-
based

Delta-
based with
molecule
decomposi-
tion

State-
based

Declarative
Query Lan-
guage

no yes (as long
as underlying
store supports
it)

no yes (as long
as underlying
store supports
it)

yes no yes

Branch yes yes yes yes no no yes
Merge no yes no no no no yes

Table 5.2: Features comparison of versioning systems and tools

5.2.7.1 Structural Diff

OntoView, SemVersion and SWKM, all offer basic structural diff between models.

OntoView’s support is the weakest, as it simply depends on the textual diff tool of CVS

and on canonicalizing the RDF serialization (so, for example, indentation does not create

erroneous differences). SemVersion and SWKM abstract completely from the serialization

form used to represent SW data.

5.2.7.2 Semantic Diff

SemVersion, MORE, and SWKM offer a diff functionality that understands to some

degree the semantics of RDF. This is closely related to inference and subsumption rela-

tions; the semantic diff algorithm can understand when implicit knowledge (triples) are

added or removed.

109

5.2.7.3 Change Log

From the inspected tools, only DIP offer a change monitoring editor. That is, the DIP’s

editor keeps track of changes as the user makes them. This approach has, in principle,

the potential to capture more fully the semantics of the change operations; instead of

expressing the change with low level primitives (add triples, remove triples), high level

user interface gestures can be leveraged, for example to more accurately describe the

user’s intention ”move this hierarchy under this new ancestor” rather than ”remove these

is-a relations, add these”.

5.2.7.4 Change-based Deltas

OntoView, SemVersion, ConcepTool, DIP and SWKM all have the ability to express a

new version to be stored, as a function of a preexisting version and some change operations,

instead of enumerating the whole contents of each new version. Of course, each system

varies greatly in exactly how the changes are expressed. For example, OntoView represents

changes as added and deleted text lines in the serialization of a model. SemVersion

represent a change as a pair of added and deleted models, which consist of triples. SWKM

uses pairs of added and deleted triples, in TriG serialization format.

5.2.7.5 Concept Mapping between versions

Only DIP offers rudimentary support for automatic mapping between concepts in

subsequent version. To do so, it takes advantage of change logs which are generated by a

visual editor during the work of an ontology engineer.

5.2.7.6 Storage Tools

Most tools use existing RDF repositories to store versions. Since an RDF repository

already abstracts storage for RDF models, this is a good idea. SemVersion uses RDF2GO

for storage, which abstracts several RDF repositories in a unified API. SWKM’s storage

relies on PostgreSQL (by mapping RDF schema and data to an RDBMS database). GVS

uses a custom scheme based on the file system. DIP uses ORDI which, like RDF2GO, is

110

an abstraction over RDF repositories, and specifically over YARS, FOR, and Sesame.

5.2.7.7 Storage Approach

From a high level, these tools can be separated by the approach they take in order

to store a version: store an independent copy of each version? Do something smarter to

reduce storage requirements? But what happens with retrieval time?

We generally categorize SemVersion, ConcepTool, DIP, MORE and SWKM as stated-

based, as they all create a full copy for each new version, even if the version shares much

with a preexisting version. OntoView, naturally, stores only the (textual) deltas, as this

is the way the underlying CVS works. GVS takes a very different route by storing only

unique RDF ”molecules” (see Section [?]); thus versions do not store redundant copies

of their shared content. As of yet, it suffers from relatively bad performance for both

storing and retrieval. Whether the cause is the work-in-progress state of GVS or the more

fundamental reason of too fine granularity remains to be seen.

5.2.7.8 Declarative Query Language

Here we are concerned with whether the versions created with each tool can be declar-

atively queried. SemVersion delegates query evaluation to the underlying repositories (ab-

stracted by RDF2GO), which offer various query engines (for instance, through Sesame:

SPARQL, RDQL, RQL etc). Along the lines is also DIP, which delegates to its supported

repositories (abstracted by ORDI) the evaluation of queries. SWKM is integrated with

an RQL and RUL interpreter, and versions created by it can be queried with these lan-

guages (note that currently the queries do not pass through the versioning layer, so it

is up to the user to preserve the existing versions without modifications by a RUL up-

date query). MORE offers a logic based query language, but it is not general enough for

application purposes; it is targeted at identifying the consequences of changes between

versions, incompatibilities, etc.

111

5.2.7.9 Branch

Branching a version to spawn a new one is offered in OntoView, SemVersion, Concep-

Tool, DIP and SWKM. MORE works only in a linear versioning space, and GVS does

not have the notion of predefined versions that can be branched; versions are just facts

asserted by someone at some time interval. So, a logical ”version” is only defined given a

specific time interval and users that assert facts.

5.2.7.10 Merge

Merging is supported in SemVersion, with an attempt at some primitive conflict res-

olution. In SWKM merging is not directly related to the versioning service. The merged

version is to be created using the SWKM’s main memory model, and then importing the

created version, also defining two or more parents (which were merged). No specific facil-

ity is offered in SWKM for merging support, but only the general purpose main memory

model and the generic service that stores new, arbitrary versions.

For an elaborate treatment of existing theoretical works related with ontology evolu-

tion and versioning, we refer you to a recent survey [19]. We will briefly mention here

two important proposals that offer and understanding of the problems of versioning and

possible approaches to a solution.

In [25] Heflin and Hendler discuss the problems associated with managing ontologies in

distributed environments. They introduce SHOE, a web-based knowledge representation

language that supports multiple versions of ontologies. SHOE includes annotations for

making explicit the backward-compatibility relations between versions, allowing (but not

enforcing) a computer agent to determine compatibility between versions.

Heflin and Pan [26] propose formal semantics of three types of inter-ontology links:

commitment to an ontology by a resource, extension of one ontology by another, and

backward-compatibility of an ontology with a prior version.

Klein and Fensel [32] compared ontology versioning to database schema versioning [40].

They described prospective and retrospective use (interpreting data with a newer or older

version than the one they were initially created, respectively).

112

5.3 Open Issues

Issues that worth further research include:

• ability to manage versions of any user-defined granularity

• declarative version definition language

For example ability to define a version as a the result of applying a number of

operators over existing versions.

• provision of query services that involve more than one versions.

For instance one might want to evaluate a query over the contents of a set of versions.

Another aspect is the ability to query the metadata that are related to the various

ontology versions (like time, author, compatibility, ancestry). For instance one

might want to find all ontologies that are children of one particular ontology versions

A and at the same time are compatible with another particular ontology versions

B.

• efficient index structures for storing KBs aiming at reducing the storage space re-

quirements

Most of the existing works on versioning in the context of the Semantic Web propose

high level services for manipulating versions but none of these have so far focused

on the performance aspect of these services (they mainly overlook the storage space

perspective). Two key performance aspects of a version management system is

the storage space and the time needed for creating (resp. retrieving) a new (resp.

existing) version. This is an interesting line for further research.

• provision of integrated graphical user interfaces for aiding the user-enacted version

management tasks

113

5.4 Evaluation of the SWKM Versioning Service

We’ll now sum up SWKM versioning offering and make an evaluation of it, compared

to other systems. The basic traits of SWKM versioning can be epitomized in these points:

• The granularity of versions is set to that of namespaces and graphspaces, i.e. only

namespaces and graphspaces may have versions, not models, nor triples (unless, of

course, one was willing to assign a distinct graphspace per triple)

• Each version is stored as a complete, distinct copy in the repository (as is also the

case with OntoView, Semversion, but notably not GVS)

– In case of namespaces, the triples themselves are different, as the namespace

URI changes (and for each triple contained in a namespace, at least the subject

has the same namespace prefix which is changed from version to version, thus

creating distinct triples) so they can’t be shared

– In case of graphspaces, where triples are treated more liberally in the sense that

their namespace URIs don’t have to much that of the container graphspace,

the values of the triples are shared, but nevertheless each version stores an

physically distinct set of pointers to these values

• Some automatic link (dependency) update between namespaces is provided for new

namespace versions, as long as they are created by Create And Import Versions

operation. Apart from that, the user must manually update the dependencies as he

wishes.

We shall explain the technical circumstances and challenges that lead into these design

decisions. First of all, keep in mind that, in SWKM, namespaces define schema triples;

a schema triple cannot exist without being part of a namespace, and it is part of exactly

one namespace (the one with the same namespace URI prefix as its subject, for example

the triple ”ns1 : A rdf : subClassOf ns2 : B” belongs to namespace ns1).

Each version needs to be identified by a URI that corresponds to a namespace or

graphspace containing it (we will call absolute URI from now one the URI which con-

tains versioning identification information, and relative URI a URI that does not). One

114

advantage of using absolute URIs is that the existing Exporter interface works regard-

less whether the name or graphspace is versioned or not (recall that Exporter takes as

input only URIs, not version identifiers). If the URI of each version was relative, then

existing code that relied on Exporter could become unspecified as soon as a used name

or graphspace became versioned.

Another option would be to change the Exporter interface, so that it includes ver-

sion identifiers per each URI to be exported, and possibly special identifiers to denote

the ”latest” (or ”trunk”) version or initial version, and a dummy version identifier that

demanded an unversioned URI or raise an error.

Ideally, we would desire not to be forced to use absolute URIs if not necessary, and

handle versioning as metadata on top of relative URIs. Absolute URIs create problems

with maintaining anything external that was dependent on those URIs; with relative URIs

there is nothing to maintain, but then there is less control over what a URI really means - it

needs a resolution step via some versioning context. To give an example, consider the case

of having query template strings. With relative URIs, the queries can be readily applied

to any specific version, which would be specified via another path. With absolute URIs,

the process is rendered quite problematic: the string templates themselves would have to

change (practically, this means replacing the original namespace URI with the one that

includes the new version identifier) to target each version, and this string-based work can

be cumbersome with complicated query language syntaxes. One, though, could argue that

there is not much value having unchanged queries that target multiple versions; for one

reason, they would probably break in some versions due to changes, or worse, syntactically

they would still work, but with different semantics (if concept meaning subtly changed

from a version to the next).

Another consequence of having absolute version URIs, combined with granularity that

is not coarse enough to capture multiple interdependent namespaces and graphspaces, is

the link management between name and graphspaces that evolve. Suppose that there is

an ontology defined inside a namespace, which evolves to a multitude of versions. Also

suppose that there are multiple other namespaces and graphspaces which refer to (de-

pend on) said namespace. If the new versions are to be imported with Import Version

115

operation, the user is responsible for creating new versions of the dependent name or

graphspaces that would then depend on the newer versions instead of the old. As we

explained earlier, manual updates may be in some cases required (i.e. not handled auto-

matically), and currently SWKM platform does not offer a means to answer the question

”what is depending on this version”, which would allow custom measures to be taken for

dependencies. Nor Registry could be used for this purpose as its usage is optional; not

all dependencies are necessarily recorded there.

If instead relative URIs would be used, it would be possible that links would not have

to be changed in-place; rather, when dependent spaces were aggregated to a coherent

model, a versioning context would have to be provided (e.g. a mapping of relative URIs

to unique version identifiers), to make validation possible. Or else, if the granularity was

set coarser, that is, to the level of providing versions of entire models, then the user would

have the option to nest all links completely inside a single version, and it would be possible

to manage them completely and transparently.

It is to be noted that in practice, absolute versioned URIs are not uncommon at all.

Some obvious examples are:

• http://www.w3.org/2001/XMLSchema#

• http://www.w3.org/2000/01/rdf-schema#

• http://www.w3.org/1999/02/22-rdf-syntax-ns#

All these encode versioning identification in the namespace URI. As we see, this simple

technique is very valuable for wide publicity without ambiguity with regards to the version

referred. So, we think it is necessary to allow the use of relative URIs (like SemVersion)

and to have the ability to create absolute URIs to mark specific, important versions, so

others can reliably depend on them. This is similar to tagging a release in a CVS or

Subversion system - that is, giving a stable and readable name to a version.

As noted previously, coarsening the granularity level could allow even more useful

cases, without sacrificing currently existing possibilities. But such an approach puts much

more pressure on the persistence level and algorithms: for instance, assume versioning on

models would be provided. Chances are that some parts change more often than others.

116

Storing a copy of the entire model for each version could prove too much of a burden,

when some parts of it could be reused as-is because they were unchanged. In terms of

storage, techniques to be able to partition version contents in such a way that much of

it is reused (instead of copied) wherever possible is an area that needs attendance. Of

course, such an effort would complicate the evaluation of queries, which would have to be

evaluated on distributed parts of a version which have to be combined, instead of a single

uniform space which could be queries directly.

117

118

Chapter 6

Conclusion

6.1 Synopsis and Key Contributions

In a nutshell, the contribution of this thesis lies in:

• benchmarking several different main memory representations, and

• designing and implementing versioning services for SW data

Specifically, several contemporary RDF management system/middleware platforms

were analyzed in terms of architecture and supported services. The various abstractions of

main memory models of each platform were compared, and conclusions and useful advice

about which model is more preferable for typical use cases were given. In addition, this

thesis provided a detailed description of the SWKM platform architecture, its available

middleware services and implementation, and in particular its versioning services. Various

design decisions behind the versioning services were discussed, by also comparing with

other systems where relevant, and insights were provided on the related problems of

implementing versioning facilities.

6.2 Directions for Further Research

Regarding main memory APIs an issue that is worth further research is the investi-

gation of index structures that can offer efficient query evaluation for both RDF/S triple

119

and object views, and have low memory space requirements.

Regarding versioning, issues that are interesting for further investigation:

• ability to manage versions of any user-defined granularity

• declarative version definition language

For example ability to define a version as a the result of applying a number of

operators over existing versions.

• provision of query services that involve more than one versions.

For instance one might want to evaluate a query over the contents of a set of versions.

(The Registry service can already cope with one querying one version at the time).

Another aspect is the ability to query the metadata that are related to the various

ontology versions (like time, author, compatibility, ancestry). For instance one

might want to find all ontology versions that are children of one particular ontology

version A and at the same time are compatible with another particular ontology

version B.

• efficient index structures for storing a large number of versions, aiming at reducing

the storage space requirements

Most of the existing works on versioning in the context of the Semantic Web propose

high level services for manipulating versions but none of these have so far focused

on the performance aspect of these services (they mainly overlook the storage space

perspective). Two key performance aspects of a version management system is

the storage space and the time needed for creating (resp. retrieving) a new (resp.

existing) version. This is an interesting line for further research. Specifically for

SWKM, it would be interesting to adopt graphspaces as the storage unit for version

parts, which would open up possibilities for providing a multitude of options for the

storage/efficiency trade-off. This way a more fine grained persistence for versions

could be implemented, so that one could only need to store parts of versions that

actually change, instead of creating entire copies of the versions in the storage.

120

Doing this in a way that it is still possible to transparently evaluate queries over

the contents of a version is both a challenging and a promising possibility.

• provision of integrated graphical user interfaces for aiding the user-enacted version

management tasks

121

122

Bibliography

[1] Graph versioning system. http://gvs.hpl.hp.com/.

[2] Ontology server research. http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm.

[3] Eclipse platform technical overview, 2003.

[4] SWAD-Europe Deliverable 7.1: RDF API requirements and comparison, 2003.

[5] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable

semantic web data management using vertical partitioning. In Procs of the VLDB’07,

Vienna, Austria.

[6] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of transitive

relationships in large data and knowledge bases. In Procs of the SIGMOD ’89.

[7] Sofia Alexaki. Storage of RDF metadata for Community Web Portals.

Master’s thesis, Computer Science Department - University of Crete, 2000.

http://139.91.183.30:9090/RDF/publications/sofia.pdf.

[8] B. Berliner. CVS II: Parallelizing software development. In Proceedings of the

USENIX Winter 1990 Technical Conference, pages 341–352, Berkeley, CA, 1990.

USENIX Association.

[9] C. Bizer and D. Westphal. Developers Guide to Semantic Web Toolkits for different

Programming Languages, 2007.

[10] Jeen Broekstra and Arjohn Kampman. SeRQL: A Second Generation RDF Query

Language.

123

[11] Jeremy Carroll, Christian Bizer, Patrick Hayes, and Patrick Stickler. Named graphs,

provenance and trust. In Procs of the WWW’05, Chiba, Japan.

[12] Edmund M. Clarke and Bernd-Holger Schlingloff. Model checking. pages 1635–1790,

2001.

[13] Ernesto Compatangelo, Wamberto Vasconcelos, and Bruce Scharlau. The ontology

versioning manifold at its genesis: a distributed blackboard architecture for reasoning

with and about ontology versions. Technical report, 2004.

[14] Li Ding and Tim Finin. Characterizing the Semantic Web on the Web. In Procs of

the ISWC’06, Athens, GA, USA.

[15] Li Ding, Tim Finin, Yun Peng, Paulo Pinheiro da Silva, and Deborah L. McGuinness.

Tracking RDF Graph Provenance using RDF Molecules. Technical report, UMBC,

April 2005.

[16] Y. Ding and D. Fensel. Ontology library systems: The key to successful ontology

reuse, 2001.

[17] John Domingue. Tadzebao and webonto: Discussing, browsing, editing ontologies on

the web.

[18] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server: A tool for collaborative

ontology construction, 1996.

[19] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis,

and Grigoris Antoniou. Ontology change: classification and survey. Knowledge

Engineering Review, 2007. (to appear).

[20] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles, patterns,

and practice. Addison-Wesley, 1999.

[21] Y. Guo, J. Heflin, and Z. Pan. “Benchmarking DAML+OIL Repositories”. In Procs

of the ISWC’03, Florida, USA.

124

[22] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large

owl datasets. In Procs of the ISWC’04, Hiroshima, Japan.

[23] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of rdf query lan-

guages, 2004.

[24] J. HEFLIN and J. HENDLER. Dynamic ontologies on the web. 2000.

[25] Jeff Heflin and James A. Hendler. Dynamic ontologies on the web. In AAAI/IAAI,

pages 443–449, 2000.

[26] Jeff Heflin and Zhengxiang Pan. A model theoretic semantics for ontology versioning.

2006.

[27] Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: A tempo-

ral logic approach. In Proceedings of the 2005 International Semantic Web Conference

(ISWC05), 2005.

[28] Zhisheng Huang and Cees Visser. Extended dig description logic interface support

for prolog. Deliverable D3.4.1.2, SEKT, 2004.

[29] Maciej Janik and Krys Kochut. Brahms: A workbench rdf store and high performance

memory system for semantic association discovery. In Procs of the ISWC’05.

[30] G. Karvounarakis, V. Christophides, and D. Plexousakis. Querying Semistructured

(Meta)data and Schemas on the Web: The case of RDF & RDFS. Technical Re-

port 269, ICS-FORTH, 2000. Available at: http://www.ics.forth.gr/proj/isst/RDF/-

rdfquerying.pdf.

[31] Siorpaes Katharina and Hepp Martin. Requirements and state-of-the-art document

for a scalable ontology, instance data and mapping management infrastructure. my-

ontology project deliverable, DERI, 2007.

[32] M. Klein and D. Fensel. Ontology versioning for the semantic web, 2001.

125

[33] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. “Ontology versioning and change

detection on the web”. In Procs of the 13th European Conference on Knowledge

Engineering and Knowledge Management (EKAW02), pages 197–212. Springer, 2002.

[34] George Konstantinidis, Giorgos Flouris, Grigoris Antoniou, and Vassilis

Christophides. Ontology evolution: A framework and its application to rdf. 2007. In

Proceedings of the Joint ODBIS and SWDB Workshop on Semantic Web, Ontologies,

Databases (SWDB-ODBIS-07).

[35] Sebastian Ryszard Kruk, Marcin Synak, and Kerstin Zimmermann. Marcont initia-

tive. bibliographic description and related tools utilising semantic web technologies,

2005.

[36] Baolin Liu and Bo Hu. An evaluation of rdf storage systems for large data applica-

tions. In Procs of the SKG’05.

[37] Robert Lu, Chen Wang, Li Ma, Yong Yu, and Yue Pan. Performance and Scalability

Evaluation of Practical Ontology Systems. In Procs of the Joint ODBIS & SWDB.

Colocated with VLDB’07.

[38] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis. ”RUL: A Declar-

ative Update Language for RDF”. In Procs. 4th Intern. Conf. on the Semantic Web

(ISWC-2005), Galway, Ireland, November 2005.

[39] Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker. Ac-

tiveRDF: Object-Oriented Semantic Web Programming. In Procs of the WWW’07.

[40] John F. Roddick. A survey of schema versioning issues for database systems. Infor-

mation and Software Technology, 37(7):383–393, 1995.

[41] Andy Seaborne. RDQL - A Query Language for RDF.

[42] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking Database

Representations of RDF/S Stores. In Procs. of the 4th International Semantic Web

Conference (ISWC’05).

126

[43] Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking Database

Representations of RDF/S Stores. In Procs of the ISWC’05.

[44] Yannis Theoharis. On Power Laws and the Semantic Web. Master’s thesis, Computer

Science Department, University of Crete, February 2007.

[45] Giovanni Tummarello, Christian Morbidoni, Paolo Puliti, and Francesco Piazza.

Signing individual fragments of an rdf graph. In Proceedings of the World Wide

Web conference, 2005.

[46] Yannis Tzitzikas and Dimitris Kotzinos. “(Semantic Web) Evolution through Change

Logs: Problems and Solutions”. In Proceedings of the Artificial Intelligence and

Applications , AIA’2007, Innsbruck, Austria, February 2007.

[47] Max Völkel. Writing the semantic web with java, 2005.

[48] Max Volkel, Wolf Winkler, York Sure, Sebastian Ryszard Kruk, and Marcin Synak.

”SemVersion: A Versioning System for RDF and Ontologies”. Heraklion, Crete, May

29 • June 1 2005. Procs. of the 2nd European Semantic Web Conference, ESWC’05.

[49] David Wood, Paul Gearon, and Tom Adams. Kowari: A platform for semantic web

storage and analysis. 2005. XTech Conference.

[50] D. Zeginis, Y. Tzitzikas, and V. Christophides. On the foundations of computing

deltas between rdf models. 2007. In Proceedings of the 6th International Semantic

Web Conference (ISWC-07).

[51] A. Zhdanova, R. Krummenacher, J. Henke, and D. Fensel. Community-driven ontol-

ogy management: Deri case study. Compiegne, France, 2005. IEEE Computer Society

Press. Proc of the IEEE/WIC/ACM International Conference on Web Intelligence.

127

