

Ontology Based Semantic Annotation of Business

Processes with Semi-Automated Suggestions and

Processing of Semantic Queries in Business Process

Models

Ioanna S. Ramoutsaki

Thesis submitted in partial fulfillment of the requirements for the

Masters' of Science degree in Computer Science

University of Crete

School of Sciences and Engineering

Computer Science Department

Voutes Campus, GR-70013 Heraklion, Crete, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.
The work has been supported by the Foundation for Research and Technology _ Hellas
(FORTH), Institute of Computer Science (ICS).

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

Ontology Based Semantic Annotation of Business Processes with Semi-

Automated Suggestions and Processing of Semantic Queries in Business Process

Models

Thesis submitted by

Ioanna S. Ramoutsaki

in partial fulfillment of the requirements for the

Masters' of Science degree in Computer Science

THESIS APPROVAL

Author:

Ioanna S. Ramoutsaki

Committee approvals:

Dimitris Plexousakis
Professor, Thesis Supervisor

Antonis Savidis

Professor, Committee Member

Kostas Magoutis

Assistant Professor, Committee Member

Departmental approval: _______________________________________

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, December 2016

Abstract

Despite increasing software support for Business Process Modeling, there are still

misunderstandings, mainly because of terminology mismatches in business process

models. Enriching business process models with semantic annotations derived from

concepts of a domain ontology aims at overcoming this weakness of Business Process

Modeling.

 In this work, we present an approach for adding semantic annotations to

business process elements, especially in activities (tasks and sub-processes) of

business processes, as they are the main elements of a business process model, using

an ontology-based data matching strategy. Semantic annotations are automatically

suggested to the business designer, based on a composed measure of similarity

between ontology concepts and the activity label of the process to be annotated. The

combined similarity measure is an aggregation of the degrees returned from three

similarity measures, aka string, linguistic and syntactic. Each one of the

aforementioned is a priori assigned a specifically weight by the system. Finally,

filtering techniques are used to display options with high relevance only.

 By adding semantic information to process elements the precision of business

process models increases, making them more intelligible to people and machine-

readable, enabling automated reasoning services, such as querying the process space.

For this purpose, we propose an automated approach for querying a business process

model repository for semantically relevant elements and models. A basic BPMN

ontology in OWL format has been developed for the needs of querying.

 Our approach has been implemented in SeMFIS tool, which has been extended

to represent the new functionalities of automated semantic annotations of business

process models. The BPMN language has been used for the representation of business

process models, the OWL format for ontologies and the SPARQL for queries.

Σημασιολογικός υπομνηματισμός βασιζόμενος σε οντολογία

επιχειρησιακών διεργασιών με ημι-αυτοματοποιημένες

προτάσεις και επεξεργασία σημασιολογικών επερωτήσεων

σε μοντέλα επιχειρησιακών διεργασιών

Περίληψη

 Παρόλο που έχουν αυξηθεί τα λογισμικά υποστήριξης για την μοντελοποίηση

των επιχειρησιακών διεργασιών, υπάρχουν ακόμα προβλήματα κατανόησης τους,

κυρίως εξαιτίας της αναντιστοιχίας ορολογιών στα μοντέλα επιχειρησιακών

διεργασιών. Εμπλουτίζοντας τα μοντέλα των επιχειρησιακών διεργασιών με

σημασιολογικούς υπομνηματισμούς που προέρχονται από έννοιες μιας ειδικής

οντολογίας αποσκοπεί στην αντιμετώπιση αυτής της αδυναμίας της μοντελοποίησης

επιχειρησιακών διεργασιών.

 Σε αυτή την εργασία παρουσιάζουμε μία προσέγγιση για την προσθήκη

σημασιολογικών υπομνηματισμών στα στοιχεία των επιχειρησιακών διεργασιών, και

ειδικότερα στις "δραστηριότητες" των επιχειρησιακών διεργασιών (που αποτελούνται

από τις "εργασίες" και τις "υπο-διεργασίες"), καθώς αυτές είναι τα κύρια στοιχεία

ενός μοντέλου επιχειρησιακής διεργασίας, χρησιμοποιώντας μία στρατηγική

αντιστοίχισης δεδομένων βασιζόμενη σε μία οντολογία. Οι σημασιολογικοί

υπομνηματισμοί προτείνονται αυτόματα στον σχεδιαστή, ακολουθώντας μία μέθοδο

που βασίζεται σε ένα σύνθετο μέτρο ομοιότητας μεταξύ των εννοιών της οντολογίας

και του ονόματος της "δραστηριότητας" της διεργασίας που πρόκειται να

υπομνηματιστεί. Το σύνθετο μέτρο ομοιότητας προκύπτει από την συνάθροιση τριών

βαθμών που επιστρέφονται από τρία μέτρα ομοιότητας, των συμβολοσειρών, των

γλωσσικών και των συντακτικών, στα οποία έχουν εκ των προτέρων αποδοθεί

συντελεστές βαρύτητας από το σύστημα. Τέλος, στο τελικό μέτρο ομοιότητας

χρησιμοποιούνται τεχνικές φιλτραρίσματος ώστε να εμφανιστούν στον χρήστη μόνο

οι επιλογές που εμφανίζουν υψηλή συνάφεια με το όνομα της επιλεγμένης

"δραστηριότητας".

 Η προσθήκη σημασιολογικής πληροφορίας στα στοιχεία μία διεργασίας έχει

ως αποτέλεσμα την αύξηση της ακρίβειας των μοντέλων επιχειρησιακών διεργασιών,

καθιστώντας τα πιο κατανοητά στον άνθρωπο και αναγνώσιμα από την μηχανή,

επιτρέποντας τη χρήση αυτοματοποιημένων υπηρεσιών "εξαγωγής συμπερασμάτων",

όπως την χρήση επερωτήσεων στο χώρο των διεργασιών. Για το σκοπό αυτό,

προτείνουμε μία προσέγγιση όπου αυτόματα θα γίνονται επερωτήσεις σ' ένα

αποθετήριο μοντέλων επιχειρησιακών διεργασιών για την εύρεση σημασιολογικά

σχετικών στοιχείων και μοντέλων. Μία οντολογία, σε μορφή OWL, με τα βασικά

στοιχεία της BPMN γλώσσας έχει αναπτυχθεί για τις ανάγκες της υπηρεσίας των

επερωτήσεων.

 Η προσέγγιση μας έχει υλοποιηθεί στο εργαλείο SeMFIS, το οποίο έχει

επεκταθεί ώστε να συμπεριλάβει τις νέες λειτουργίες των αυτοματοποιημένων

σημασιολογικών υπομνηματισμών στα μοντέλα επιχειρησιακών διεργασιών. H

BPMN γλώσσα έχει χρησιμοποιηθεί για την αναπαράσταση των μοντέλων

επιχειρησιακών διεργασιών, η OWL μορφή για τις οντολογίες και η γλώσσα

SPARQL για την υπηρεσία των επερωτήσεων.

Ευχαριστίες

Πρώτα από όλα θα ήθελα να ευχαριστήσω θερμά τον υπεύθυνο καθηγητή μου κ.

Πλεξουσάκη όχι μόνο για την υποστήριξη, την καθοδήγηση, τις πολύτιμες συμβουλές

και τον χρόνο που μου αφιέρωσε αλλά και γιατί μου έδειξε εμπιστοσύνη και δέχτηκε

να γίνει ο επόπτης μου.

 Θα ήθελα επίσης να ευχαριστήσω τον κ. Σαββίδη και τον κ. Μαγκούτη για

την προθυμία τους να συμμετάσχουν στην τριμελή επιτροπή. Στη συνέχεια θα ήθελα

να ευχαριστήσω την Δασκαλάκη Ευαγγελία από το Ινστιτούτο Πληροφορικής του

Ιδρύματος Τεχνολογίας και Έρευνας για το πολύτιμο υλικό που μου πρόσφερε αλλά

και για τις συμβουλές της για τον τρόπο υλοποίησης της εργασίας μου.

 Ένα μεγάλο ευχαριστώ στην οικογένεια μου που με την αγάπη, την

κατανόηση και την υπομονή τους στηρίζουν κάθε νέα μου προσπάθεια. Θα κάνω

ιδιαίτερη μνεία στον πατέρα μου, Στυλιανό, γιατί χωρίς το δικό του πιστεύω για τη

δύναμη της γνώσης δεν θα είχα τα φτερά να συνεχίσω τις σπουδές μου.

 Ένα ευχαριστώ οφείλω και στους φίλους μου για την στήριξή τους στις

δύσκολες ώρες και την αμέριστη συμπαράστασή τους.

 Το μεγαλύτερο όμως ευχαριστώ οφείλω στον σύντροφο μου, Βαγγέλη, ο

οποίος ήταν καθ' όλη την διάρκεια των σπουδών μου δίπλα μου, να με στηρίζει, να

υπομένει και να επιμένει, υπενθυμίζοντας μου πάντα ποιος είναι ο στόχος μου. Χωρίς

αυτόν δεν θα τα είχα καταφέρει.

Στη μνήμη του μπαμπά μου Στυλιανού,

Στον σύντροφό μου Βαγγέλη,

Στον γιο μου Γιάννη

I

Contents

Introduction 1

1.1 Motivation .. 2

1.2 Approach .. 2

1.3 Thesis Overview ... 4

Background and Related Work 5

2.1. Business Process Modeling Languages ... 5

2.2. Main Notions of Business Process Modeling Notation (BPMN) 7

2.3. Ontologies .. 9

2.4. RDF/ RDFS .. 10

2.5. Web Ontology Language: OWL .. 12

2.6. Semantic Annotation .. 16

2.7. Business Process Modeling Tools .. 16

2.8. Related Work .. 23

Basic BPMN Ontology 35

3.1. A brief Overview .. 35

3.2. The Construction of Basic BPMN Ontology .. 36

Presentation of the Process Following for Semi-Automated Semantic Annotations to

Business Processes 43

4.1. String Matching Algorithms ... 44

4.2. Linguistic Metrics ... 48

4.3. Syntactic Metrics .. 49

4.4. Combined Similarity Measures .. 49

4.5. Suggesting accurate domain ontologies and annotated BPMN processes 55

Presentation of new functionalities of SeMFIS tool 59

5.1. Brief Description of Architecture of SeMFIS tool ... 59

5.2. Semi-Automated Suggestions for Ontology-Based Semantic Annotation of BPMN

process models .. 61

5.3. OWL / RDF Export .. 68

5.4. Sparql Queries .. 74

II

Conclusion and Future Work 79

A Appendix 81

A.1 Requirements ... 81

A.2 SPARQL Queries Syntax .. 83

III

List of Figures

2.1: Start, Intermediate, end Event respectively. .. 7

2.2: Task of a process ... 7

2.3: Gateway ... 8

2.4: Data Object .. 8

2.5: Sequence Flow .. 8

2.6: Message Flow .. 8

2.7: Association .. 8

2.8: Data Association.. 8

2.9: Pool .. 8

2.10: Lane ... 8

2.11: Group ... 9

2.12: Text Annotation ... 9

2.13: Activiti Components .. 17

2.14: Screenshot of BPMN2 Modeler tool ... 18

2.15: Camunda BPM Architecture ... 19

2.16: Adonis CE Business Process Management Toolkit .. 20

2.17: A fragment of a process model in Meastro for BPMN tool .. 21

2.18: SeMFIS Model Editors for a Business Process Model, an OWL Ontology Model and a

Semantic Annotation Model (from left to right, top to bottom) .. 22

2.19: Concepts of Business Process Ontology (BPO) .. 24

2.20: Ontology Framework .. 24

2.21: Business Annotations .. 25

2.22: Framework for the semantic annotation of business process models 26

2.23: Semantically annotated process model "Customer order processing" 27

2.24: Main components of semantic extension for business process modeling tools 28

2.25: WSMO Studio enhancing with a BPMO editor .. 29

2.26: Business Processes Knowledge Base .. 30

2.27: Extending Business Processes Knowledge Base ... 30

2.28: C-FOAM model for ontology-based data matching .. 32

3.1: Semantic Annotation on task "choose a product" ... 37

3.2: An Overview of the "is-a" taxonomy of basic BPMN Ontology rooted at Base_Elements

 ... 38

3.3: Knowledge Base of Business Processes .. 41

4.1: Flow Chart of Matching Process ... 50

4.2: Semantic annotations list for the BPMN Task label "search for product" 52

4.3: Semantic annotations list for the BPMN Task label "choose_product" 53

4.4: Manually selection of semantic annotation ... 54

4.5: Flow chart of matching process for suggesting most accurate domain ontologies and/or

accurate annotated BPMN model .. 56

4.6: The user can select one of the accurate domain ontologies or one of the accurate

annotated BPMN elements. Here he has selected the annotated_onLineShop 1.0 57

file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787289
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787290
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787291
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787292
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787293
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787294
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787295
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787296
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787297
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787298
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787299
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787300

IV

4.7: In this box, only the most accurate concepts of the selected annotated BPMN model are

appeared and the user can select one of them .. 58

5.1: SeMFIS Architecture based on ADOxx Platform ... 60

5.2: Excerpt of a semantically annotated BPMN model... 61

5.3: Creating a business process diagram based on BPMN 2.0. Specification....................... 62

5.4: Selecting an accurate annotated BPMN model or ontology of SeMFIS database 63

5.5: Selecting semantic annotation from already annotated BPMN model 64

5.6: Selecting annotations from a selected domain ontology ... 65

5.7: Warning message for manually searching semantic annotations 66

5.8: Manually selection of semantic annotations .. 66

5.9: Semantic annotation in the BPMN task "choose a product" ... 67

5.10: Transfer on the specific concept of the selected ontology after clicking on the semantic

annotation "to_select_product" .. 67

5.11: The original BPMN diagram "eShopping 1.0" (top) and the corresponding annotated

diagram "annotated_eShopping 1.0" (bottom) .. 68

5.12: The first step of OWL/RDF export is the xml export of selected ontology or annotated

BPMN model ... 69

5.13: Warning message for OWL/RDF export ... 70

5.14: Excerpt of "onLineShopDomainOntology" ontology in owl format 72

5.15: Excerpt of "Annotated_eShopping 1.0" annotated BPMN model in owl format 73

5.16: SPARQL queries functionality .. 76

5.17: Select one of the standardized SPARQL queries or define your own query with the 8

selection ... 76

5.18: The user is interested to find all the activities which have semantic annotation with the

class "to_search_for_product" ... 76

5.19: Results of the query 1, giving as input field the class "to search for product" 77

5.20: Clicking on the second result, it transfers us on the task "search for a product" of model

"annotated_eShopping 1.0" ... 77

5.21: The frame where a user can make his/her own SPARQL query 78

A.1.1: Virtuoso subfolders .. 82

file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787347

V

List of Tables

3.1 Basic BPMN Ontology metrics .. 38

5.1 basic syntax of SPARQL queries ... 74

5.2 Example of a SPARQL query .. 75

A.2.1: SPARQL Queries Syntax ... 83

1

Chapter 1

Introduction

Business Process Management (BPM) is a top-down methodology designed to

organize, manage, analyze and reengineer the business processes running in

enterprises [1]. The BPM is characterized by a lifecycle which begins with the process

modeling phase. In this step the business designers create process models using a

modeling tool. In the next step, namely implementation, the process model is

translated by IT engineers to a workflow model, which runs on a process engine. The

following step, the execution phase where the process engine executes the workflow

model by delegating the process tasks to human workers or automated IT applications.

Finally, monitoring tools are used by business analysts to measure the process

performance which is called analysis phase [1].

 Despite of increasing software support for BPM, there is still lack of

automation in the BPM lifecycle. Specifically, there are general difficulties when it

comes to bridge the gap between the business and IT views on the business processes.

This happens because business analysts and IT experts do not speak the same

language, do not share the same concepts of process or the same tools [1,2].

 The Semantic Business Process Management (SBPM) is a new approach

which attempts to close the Business - IT gap by integrating and utilizing semantic

technologies in order to improve the level of automation in the modeling and

management of business processes. Semantically annotated process models could

enable support for the modeler in various tasks including reusing parts of process

models when creating new one, detecting cross-process relations, providing a basis for

knowledge transfer [1,2,3].

 Within this context, this work focus on augmenting business processes with

semi-automated suggestions of semantic annotations in the process modeling phase of

BPM lifecycle using an ontology-based data matching strategy. The integration of

semantic annotations in modeling tools will support the graphical modeling of

business processes with concepts derived from domain ontologies which specify

business process models more precisely, make them machine-readable, allow better

understanding, documenting, querying and design choices that cannot be expressed in

a purely syntactic way [4]. A lot of modeling languages and modeling tools have been

implemented for the representation of processes. In this work, the Business Process

2 CHAPTER 1. INTRODUCTION

Modeling Notation language (BPMN), as a standard notation for capturing the

business processes in the early phases of systems development, has been used to

express the business process models and SeMFIS tool, as a flexible engineering

platform for semantic annotations of conceptual models, has been extended to

represent the new functionalities of automated semantic annotations of business

process models (SBPM).

1.1 Motivation

Organizations have already invested heavily in business process management

creating, most of the times, extensive business models [8]. However, enterprises face

problems which cannot be solved with current business process management

technologies because of the limited degree of mechanization in BPM, creating inertia

in the necessary evolution and dynamics of business processes. In other words, both

querying and manipulating the process space regularly requires human labor, leading

many times to slow, costly and imperfect situations. It also does not provide a uniform

representation of an organization's process space on a semantic level, which would be

accessible to intelligent queries [6]. Moreover, when enterprises decide to

interconnect business processes to perform common tasks, similar labeled process

elements have to be identified to avoid misunderstandings. Although, using formal

languages, such as BPMN, Petri Net, UML activity diagram for modeling business

processes, purely syntactic composition problems of inter-organizational business

environments may be solved, a missing semantic representation of process elements

can prevent further interconnectivity and interoperability of business processes [7].

Therefore, Hepp et al. [9] suggest using the most significant results from the area of

Semantic Web like ontologies, query languages, reasoners to provide additional

support to the business process community. By describing business process models in

a machine readable and interpretable format which enables semantic annotations and

computer reasoning, the automation of process composition can be facilitated, helping

organizations achieve the desired effectiveness, agility and ability to exploit

opportunities. These also promise appropriate business process discovery,

interoperability and interconnectivity which help to save costs and time when

establishing inter-organizational business collaborations, as well as to accelerate

finding appropriate composable business process models faster than manually

discovering business process models [7].

1.2 Approach

During the graphical design, each business element is labeled according to arbitrarily

information, resulting often in unclear labels, characterized by mismatching and

overlapping terms and leads many times in loss of domain semantic knowledge.

Labeling is not a rigorous task performed by the business designers and frequently it

is carried out with a degree of freedom, having as a result label inconsistency. In other

1.2. APPROACH 3

words, bad labeling and irrelevant information or limited information lead to

inconsistent business process models, creating difficulties in the explanation, analysis

and reusing of the model. The same situation also occurs when the same label is used

for different elements or different labels is used for describing the same element [10].

 Our purpose is to add semi-automated semantic annotations to business

process elements, especially in activities (tasks and sub-processes) of business

processes, as they are the main elements of a business process model, in order to

augment business processes with concepts taken from a domain ontology clarifying

the meaning of these process elements. The final product is a new semantically

annotated business process model in which its activities have been tagged with

linkable concept descriptions taken from a domain ontology, starting with the symbol

"@" in business process diagram.

 In order to match labels of business process activities with domain ontology

concepts we measure the similarity between them, exploiting three similarity

measures: (1) string similarities, (2) linguistic similarities and (3) syntactic

similarities. In order to compute the string similarity degree we compare the number

of common characters in the process element name and concept name, using different

string algorithms. The linguistic similarity degree (natural language parsing) of the

process element labels and of the concept names relies on a dictionary, called

WordNet, to determine synonyms between them. In the same dictionary based also

the syntactic similarity degree which detects homonyms and hyponyms, exploiting the

context of names. Finally, a threshold filter determines whether a match is considered

as confident or not. If the average similarity of a match is below the threshold then it

is not considered as a match, otherwise it is and an annotation suggestion provided to

the business designers for the semantic annotation of business process activities with

concepts from an accurate domain ontology. Semantic annotations and the process

which follows to find them are analyzed in details in chapter 4.

 Finally, having created a basic ontology for BPMN in OWL format (more

details in chapter 3) we express standardized queries in an ontology query language,

called SPARQL language, using the Virtuoso repository. Moreover, the business

designers have the opportunity to express their own queries if they have the

knowledge.

 The SeMFIS tool from the BOC Group organization has been extended in

order to implement all the above features and processes. All the new functionalities of

SeMFIS tool are presented in chapter 5.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

The Thesis structure is as follows:

 In chapter 2 we will recall the definitions of most popular Business Process

Modeling Languages, Business Process Modeling Tools, ontologies, OWL/RDF, and

semantic annotation. We will also refer the main notions of BPMN, as this language is

used to our work. Furthermore, we will review the related scientific work done within

the past years.

 In chapter 3 we will present a basic ontology for BPMN 2.0 elements which

will be used to querying the enrichment with semantic annotations business process

models by means of Virtuoso Server.

 Chapter 4 we will describe our approach for measuring String, Linguistic and

Syntactic similarity between business process activity labels and domain ontology

concept names. We aggregate these similarity measures to a combined similarity

measure and filter it with a threshold to determine the semantic annotations of

business process activities which will be suggested to business designers.

 Application of our approach will be illustrated in chapter 5. In particular, this

chapter focus on new functionalities of SeMFIS extended tool.

 In chapter 6 the conclusions are drawn and an outlook on future research is

presented.

5

Chapter 2

Background and Related Work

In this chapter, definitions about Business Process Modeling Languages, Ontologies,

RDF/RDFS, OWL and Semantic Annotations are introduced. More emphasis are

given to description of Business Process Modeling Notation (BPMN), as it is the

language which is used in this work. Followed by a short presentation for some

representative tools for creating business process models and finally, most recent

related work are presented.

2.1. Business Process Modeling Languages

The business processes are conceptually modeled using various conceptual Business

Process Modeling Languages (BPMLs). A comprehensive list with most popular

Business Process Modeling Languages which have either future potential or are well-

established in research range from Petri Nets (Petri 1962), Event-Driven Process

Chain (EPC) (Scheer 2000) and UML Activity Diagram (AD) (Object Management

Group 2004) to the Business Process Modeling Notation (BPMN) (Object

Management Group 2004).

 Despite their common aims, in [12] Van der Aalst distinguishes three language

categories: (1) Formal languages, are based upon theoretical formalisms providing

unambiguous semantics for describing business process models and allowing for

analysis. In this category included Petri Nets. (2) Conceptual languages, do not

characterized by the rigorous semantics of the formal languages. These languages are

typically informal with some fuzziness in the modeling and do not allow analysis.

However, these languages provide robust graphical notations and consequently enable

convenient and intuitive modeling. For these reasons, they are preferred by business

analysts in the initial phase of design business process model. In this category

included EPC, UML AD, BPMN. (3) Execution languages, includes more technical

languages that are concerned with business process execution, such as Business

Process Execution Language (BPEL) and for this reason we do not conclude them in

our research.

Petri Nets: in [7], Petri Nets are described as a widely accepted graphical language

for the specification, simulation and verification of behavior of information systems.

6 CHAPTER 2. BACKGROUND AND RELATED WORK

A Petri Net is a directed bipartite graph consists of two types of nodes, places and

transitions. Places represent conditions (possible states of the system), designed by

circles. Transitions present events that may occur or actions which cause change of

state, designed by rectangles.[13] The directed arcs describe which places are pre-

and/or post-conditions for which transitions. No arc may connect a place to another

place or a transition to another transition. It is one of several mathematical modeling

languages for the description of dynamic systems.

Event Driven Process Chain (EPC): The EPC [13, 14, 19] is a modeling language

for the graphical representation of a sequence of steps of a business process with the

goal to be easily understood. It is a directed and connected graph, whose nodes are

functions, events and logical connectors (AND/ OR/ XOR). Functions model the

activities of a business process, while events are created by processing function or by

actors outside of the model. Functions and events are related with connections

(arrows) and logical connectors. Additional information like "document" or "role"

complete the process description.

UML 2.0 Activity Diagram (AD): Activity diagrams are graphical representations of

workflows of stepwise activities and actions with support for choice, iteration and

concurrency. In the Unified Modeling Language, activity diagrams are designed for

modeling business processes and flows in software systems. [13] Activity diagrams

are constructed from a limited number of shapes, connected with arrows. Arrows run

from the start towards the end and represent the order in which activities happen,

showing the overall flow of control. The advantage [19] of such diagrams is that they

are comprehensible by software engineers responsible for the implementation of

business supporting components. Instead, the closeness to computing languages

makes it difficult to be used by business analysts who do not have experience in

software design.

Business Process Modeling Notation (BPMN): BPMN [15,16,17] is a state of the

art graphical language for generating business process diagrams, which are based on a

flowcharting technique tailored for creating graphical models of business process

operations. The primary goal of BPMN [20, 19, 18, 17] is to provide a simple and

intuitive notation that is readily understandable by all business users. In particular, the

business analysts can create the initial drafts of the processes, technical developers

responsible for implementing the technology that will perform those processes can

easily and precisely convey the business analysts' ideas to technological

implementation and finally business people can easily manage and monitor those

processes. Thus, BPMN creates a standardized bridge for the gap between the

business process design and process implementation. Another goal also is to enable

portability of process definitions, so that users can take process definitions created in

one vendor's environment and use them in another vendor's environment.

 It is the mentioned combination of easiness of use with the precision of a

formally well defined notation system which is responsible for the enormous success

2.1. BUSINESS PROCESS MEDELING LANGUAGES 7

of BPMN, making it an international standard to model business processes. For this

reason, we have selected the BPMN language for our research.

2.2. Main Notions of Business Process Modeling Notation

(BPMN)

In our research, we use the BPMN 2.0 specification [20] which resolves BPMN 1.2

inconsistencies and ambiguities and extends the scope and capabilities of the BPMN

1.2 in: (1) formalizing the execution semantics for all BPMN elements, (2) defining

an extensibility mechanism for both process model extensions and graphical

extensions (3) refining event composition and correlation and (4) extending the

definition of human interactions. It also provides multiple diagrams, which are

designed for use by the people who design and manage BPMN and mapping them to

an execution language of BPM Systems (Web Service Business Process Execution

Language - WSBPEL 2.0).

 A Business Process Diagram is made up of a set of graphical elements so as to

be distinguishable from each other and to utilize shapes that are familiar to most

designers. In [20, 16] is emphasized that one of the drivers for the development of

BPMN is to create a simple and understandable mechanism for creating Business

Process models, while at the same time being able to handle the complexity inherent

to Business Processes. The approach taken to handle these two conflicting

requirements was to organize the graphical aspects of the notation into specific

categories. This provides a small set of notation categories so that the reader of a

BPMN diagram can easily recognize the basic types of elements and understand the

diagram. Within the basic categories of elements, additional variation and information

can be added to support the requirements for complexity without dramatically

changing the basic look and feel of the diagram. The five basic categories of elements

are:

1. Flow Objects: are the main graphical elements to define the behavior of a

Business Process and consist of three core elements - events, activities and

gateways.

1.1. Event: is represented by a circle and is something that

"happen" during the course of a business process. It effects

the flow of the process and usually have a cause (trigger) or

an impact (result). There are three types of Events, based on

when they effect the flow, at the start of process (start event), during the

process (intermediate event) or at the end of process (end event).

1.2. Activity: is represented by a rounded-corner rectangle and is a

generic term for work that company performs in a process. An

activity can be atomic or non-atomic (compound). The types of

activities are Task and Sub-Process.

Figure 2.1: Start, Intermediate,
end Event respectively.

Figure 2.2: Task of a process

8 CHAPTER 2. BACKGROUND AND RELATED WORK

1.3. Gateway: is represented by the diamond shape and is used to

control the divergence and convergence of sequence flow in a

process. Thus, it will determine branching, forking, merging and

joining of paths. Internal markers will indicate the type of behavior

control.

2. Data: is represented with the four elements - data objects, data inputs, data

outputs and data stores.

2.1. Data Objects: provide information about what activities require to be

performed and /or what they produce. They can represent a singular

or a collection of objects. Data Input and Data Output represent the

same information for processes.

3. Connecting Objects: used to connect flow objects to each other or other

information in a diagram creating the basic skeletal structure of a business

process. The connecting objects consist of four types - sequence flows, message

flows, associations and data associations.

3.1. Sequence Flow: is represented by a solid line with a solid arrowhead and is

used to show the order that activities will be performed

in a Process.

3.2. Message Flow: is represented by a dashed line with an

open arrowhead and is used to show the flow of

messages between two separate Process Participants

(business entities or business roles) that send and receive them. In BPMN,

two separate Pools in the Diagram will represent the two Participants.

3.3. Association: is represented by a dotted line and is used

to link information and Artifacts with flow objects.

3.4. Data Association: is represented by a dotted line with a

line arrowhead and is used to associate data objects with

flow objects.

4. Swimlanes: is a mechanism to organize activities into separate visual categories

in order to illustrate different functional capabilities or responsibilities. BPMN

supports two types of swimlane objects - pool and lane.

4.1. Pool: represents a Participant in a

Process. It is also acts as a graphical

container for partitioning a set of

activities from other Pools.

4.2. Lane: is a sub-partition within a Pool

and will extend the entire length of the

Pool, either vertically or horizontally.

Lanes are used to organize and categorize

activities.

5. Artifacts: are used to provide additional information about the process making it

more readable. There are two standardized types of Artifacts - group and text

Figure 2.3: Gateway

Figure 2.4: Data

Object

Figure 2.5: Sequence Flow

Figure 2.6: Message Flow

Figure 2.7: Association

Figure 2.8: Data Association

Figure 2.9: Pool

Figure 2.10: Lane

2.2. MAIN NOTIONS OFBUSINESS PROCESS MEDELING NOTATION 9

annotation - but modelers of modeling tools can add as many artifacts as

necessary allowing some flexibility to extend the basic notation.

5.1. Group: is represented by a rounded corner rectangle drawn with

a dashed line. It is a grouping of graphical elements that can be

used for documentation or analysis purposes, but does not affect

the Sequence Flow.

5.2. Text Annotations: are a mechanism for a modeler to provide

additional text information for the reader of a BPMN

Diagram.

2.3. Ontologies

The term ontology [22] has its origin in philosophy and specifically, the word element

"onto-" comes from the Greek "ὤν", "ὄντος" which mean "being", "that which is". In

computer science, ontologies are developed to provide a machine-readable semantics

of information sources that can be communicated between different agents (software

and humans). Instead of "ontology" we now speak of "an ontology".

 Many definitions of ontologies have been given in the last decade, but one that

best characterizes the essence of an ontology is based on the T.R. Gruber definition

(1993), later refined by R. Studer (1998): An ontology is a formal and explicit

specification of a shared conceptualisation. According to [23] the meaning

"conceptualisation" refers to an abstract model of some phenomenon in the world

which identifies the relevant concepts of that phenomenon. "Explicit" means that the

type of concepts used and the constraints on their use must explicitly defined.

"Formal" refers to the fact that the ontology should be machine readable. Hereby

different degrees of formality are possible. Finally the meaning "Shared" reflects the

notion that an ontology captures consensual knowledge, that is, it is not restricted to

some individual, but accepted by a group.

 Another core meaning of an ontology, given in [22], is that it is a model for

describing formally a domain of discourse that consists of a set of terms (that is the

vocabulary of ontology), relationships between these terms and an inference

mechanism for it. The notion "terms" denote important concepts of the domain (that is

classes of objects) while the notion "relationships" includes hierarchies of classes. In

particular, a hierarchy specifies a class C to be a subclass of another class C' if every

object in C is also included in C'. For example, speaking about a university camp,

staff members, students, courses are some important concepts while the fact that all

academic staff are staff members or that a postgraduate are student characterizes an

hierarchy for the university people. Apart from subclass relationships, ontologies may

include information about: (1) Properties such as "a student attends courses", (2)

Value Restrictions such as "only faculty members can teach courses", (3) Disjointness

Statements like the statement "faculty and general staff are disjoint" and (4)

Specification of Logical Relationships between Objects like "every department must

Figure 2.11: Group

Figure 2.12: Text
Annotation

10 CHAPTER 2. BACKGROUND AND RELATED WORK

include at least ten faculty members". Thus, ontologies are a structured source of

knowledge (a taxonomy) permitting the standardization of concepts, supporting the

interoperability at the semantic level and reasoning [10].

 The ontologies are classified in different types depending on their generality of

level. Among others, the following ontology types can be distinguished [23]: (1)

Upper level ontologies or General ontologies capture general knowledge about the

world providing basic notions and concepts for things like events and states. (2)

Domain ontologies capture the concepts of a particular area of interest or a specific

topic, for example digital domain or medical domain.

 In [24] is referred that Ontologies can also be expressed in Description Logics

(DL), a well-known family of knowledge representation formalisms. In particular, an

ontology can be regarded as a typical DL knowledge base which consists of two

components: a "TBox and a "ABox". TBox represents the background knowledge

and the knowledge about the terminology relevant for the described domain, including

the concepts, their properties and their relations as a set of asserted axioms while

ABox represents the individuals that are instances of concepts of the ontology in the

form of membership statements.

 The Web, World Wide Web Consortium (W3C) has proposed a DL‐based web

ontology language: the OWL. It is a formal description for creating, publishing and

distributing ontologies [19]. It provides a set of vocabulary as constructs, enabling

people to define concepts, properties, individuals, and their relations. Typically, a

property in OWL can be distinguished in two categories: (1) data type property which

allows people to describe specific attributes of a concept, such as "date of birth", "age

of person" and (2) object property which enables people to link two concepts with a

semantic relation, like “teaches” between “professor” and “student”. Corresponding to

the notions of TBox and ABox in DL, ontology encoded in OWL can also be

partitioned into two parts: ontology schema and ontology data. Definitions of

concepts, properties and their relations in the owl file(s) are treated as ontology

schema. Instances of these concepts (that is individuals) are treated as ontology data

[24].

2.4. RDF/ RDFS

RDF (Resource Description Framework) [22, 65] is essentially a graph-based data

model for the web. It is used to represent information about resources on the web, as

well as for things that can be identified on the web, even when they cannot be directly

retrieved on the web, like a person. The main intention of RDF data model is to be

used for situations in which information about web resources needs to be machine-

accessible and machine-processable, meaning that it needs to be processed by

applications, rather than being only displayed to people.

2.4. RDF/ RDFS 11

 Its basic building block [22,62, 65] is a triple, called statement, which is a triad

(s, p, o) where s is called subject, p is called property and o is called object. The

subject represents a resource, meaning a "thing" that we want to talk about, e.g.

books, people, places, animals and so on. It is a URI (a Universal Resource Identifier)

or a Blank Node, both of which denote resources. Resources indicated by Blank

Nodes are called anonymous resources and they are not directly identifiable by the

RDF statement. A URI can be a URL (Unified Resource Locator, web address) or

some other kind of unique identifier. The basic URI syntax consists of a URI scheme

name, e.g. http, mailto, file, followed by a colon character and then by a scheme

specific part, as shown below:

<URI scheme name> : <scheme specific part>

In general, an identifier does not necessarily enable access to a resource and are not

limited to identify things that have network locations. It can also identify diverse

objects, such as telephone numbers and ISBN numbers. Properties are a special kind

of resources. They describe relations between resources, more precisely between the

subject and the object of the statement, for example "has_age" or "has_title". An RDF

statement offers only binary predicates (properties). We can think an RDF triple (x, P,

y) as a logical formula P(x,y) where the binary predicate P relates the object x to the

object y. Properties are also identified by URIs. An object could also be a resource

identified by a URI, a Blank Node or a literal. There are two kinds of literals: (1)

atomic values (strings) which have a lexical form and optionally a language tag, e.g.

"25", "name"@en and (2) RDF typed literals which are formed by pairing a string

with a URI that identifies a specific datatype, e.g.

"25"^^http://www.w3.org/2001/XMLSchema#integer. They just indicate explicitly

what data type would be used to interpret a given literal. The "^^" notation indicate

the type of the given literal. The data types, which are used most widely in RDF

documents, are predefined by XML schema, including integers, Booleans, floats,

times and dates.

 A set of RDF triples forms an RDF graph. It is a directed graph with labeled

nodes and arcs. The arcs are directed from the "subject" resource of the statement to

the "object" value of the statement and represent relations between the nodes. This

kind of graph is actually a semantic network. RDF statements are expressed most

widely using the following machine-readable formats: RDF/XML, Turtle, N3, Json,

RDFa (embedded in HTML pages) [22, 65].

 RDF Schema (RDFS) [63] provides a data-modeling vocabulary for RDF

data. As referred at [64], it is a set of classes with certain properties using to extend

RDF data model, providing basic elements for the description of ontologies, otherwise

called RDF vocabularies, intended to structure RDF resources. A class [22] can be

defined as a set of resources. An individual object that belongs to a class is called

instance of that class. Classes are themselves resources. The relationship between

instances and classes in an RDF statement is expressed using the property "rdf: type".

12 CHAPTER 2. BACKGROUND AND RELATED WORK

RDFS also establishes relationships between the classes themselves defining a

hierarchy of classes. The property "rdfs: subClassOf" is used to state that one class is

subclass of another class. If a class A is a subclass of a class B, then all instances of A

will also be instances of B. The term super-class is used as the inverse of subclass. An

important point of RDFS is that it fixes the semantics of "is a subclass of". This means

that it is not up to an application to interpret "is a subclass of", its intended meaning

must be used by all RDF processing software. Hierarchical relationships can also be

established between properties. This is done with the property "rdfs: subPropertyOf"

which denotes that P is a subproperty of Q if Q(x,y) whenever P(x,y). Except of the

properties "rdf:type", "rdfs:subClassOf" and "rdfs:subPropertyOf", which have

already been described, other main RDFS constructs are the following classes and

properties.

The classes are:

 rdfs:Class, the class of all classes.

 rdfs:Resource, the class of all resources.

 rdfs:Property, the class of all properties.

 rdfs:Literal, the class of literal values such as strings and integers.

The additional properties are:

 rdfs:domain for a property P, specifies the class of those resources that may

appear as subject in an RDF triple whose predicate is that property P.

 rdfs:range for a property P, specifies the data type or the class of those

resources that may appear as object in an RDF triple whose predicate is that

property P.

2.5. Web Ontology Language: OWL

The expressivity of RDF/RDFS [22, 66] is too weak to describe resources in sufficient

detail. RDF is limited to binary predicates and RDF Schema is limited to subclass and

subproperty hierarchy, domain and range restrictions and instances of classes.

However, a number of other features are missing for describing the semantic of

knowledge precisely. Some of the most important features are:

Localized range and domain constraints: In RDFS we cannot declare range

restrictions that apply to some classes only. For example, we cannot say that the range

of property "eat" in cows is "plants", while for other animals may also be "meat".

Disjointness of classes: In RDFS we can only state subclass relationships. For

example, we can say that "female" is subclass of "person". But we cannot say that

"female" is disjoint with "male".

2.5. WEB ONTOLOGY LANGUAGE: OWL 13

Existence/ Cardinality constraints: In RDFS we cannot declare restrictions on how

many distinct values a property may take. For example, we cannot say that a person

has exactly two parents or that all instances of "person" have a mother that is also a

person.

Boolean combinations of classes: In RDFS we cannot build new classes by combining

other classes using union, intersection and complement. For example, we may want to

define the class "person" to be the disjoint union of the classes "male" and "female".

Special characteristics of properties: In RDFS we cannot define that a property is

transitive, e.g. the property "isPartOf", inverse, e.g. the property "hasPart" is inverse

of "isPartOf", unique, e.g. the property "isMotherOf", or symmetrical, e.g. the

property "touches".

Reasoning support: RDFS is difficult to provide reasoning as there are no "native"

reasoners for non-standard semantics.

 Thus, there is the need for an ontology language that is more powerful and

richer than RDF Schema. A language which allows users to write explicit and formal

conceptualizations of domain models, offering the above features and more. A such

language must keep the following requirements:

well-defined syntax: It is a necessary condition for machine-processing of

information.

formal semantics: There should be no doubt about the meaning of knowledge. This

means that the semantics does not refer to subjective intuitions, nor is it open to

different interpretations by different people or machines.

As far as ontological knowledge is concerned, the formal semantics allow people to

reason about:

 Class membership: If x is an instance of class A and A is a subclass of B, then

we can infer that x is an instance of B.

 Equivalence of classes: If a class A is equivalent of class B and class B is

equivalent of class C, then A is equivalent to C, too.

 Consistency: Suppose we have declared x to be an instance of class A and that

A is a subclass of B C, A also is a subclass of D, and B and D are disjoint.

Then we have an inconsistency because A should be empty but has the

instance x.

 Classification: If we have declared that certain property-value pairs are a

sufficient condition for membership in a class A, then if an individual x

satisfies such conditions, we can conclude that x must be an instance of A.

Semantics also is a prerequisite for efficient automated reasoning support. The latter is

important because it allows to someone without missing time to:

14 CHAPTER 2. BACKGROUND AND RELATED WORK

 check the consistency of the ontology and the knowledge in general.

 check for unintended relationships between classes.

 automatically classify instances in classes.

 After a number of researches, W3C Organization defined the OWL (Web

Ontology Language) as the standard ontology language of the Semantic Web. A

language that can be supported by efficient reasoners while being sufficiently

expressive to express large classes of ontologies. OWL can be consider as an

extension of RDF Schema, in the sense that OWL builds upon RDF and RDF

Schema. Instances are defined using RDF descriptions and most RDFS modeling

primitives (rdfs:subClassOf, rdfs:Class, rdfs:domain, rdfs:range etc.) are used.

 OWL [67] provides three increasingly expressive sublanguages: (1) OWL Lite

is intended for users who need a classification hierarchy and simple constraints. For

example, it only permits cardinality values of 0 or 1. (2) OWL DL is intended for

users who want the maximum expressiveness retaining at the same time

computational completeness and decidability, meaning that all computations will

finish in finite time. It includes all OWL and RDF language constructs, restricting

how they may be used. For example, while a class may be a subclass of many classes,

a class cannot be an instance of another class. It is optimized kind of OWL language

for reasoning and knowledge modeling. (3) OWL Full is intended for users who want

the maximum expressiveness and the syntactic freedom of RDF. For example, in

OWL Full a class can be treated simultaneously as a collection of individuals and as

an individual in its own right. OWL Full also allows an ontology to augment or

change the meaning of the pre-defined RDF or OWL vocabulary. The main

disadvantage of OWL Full is that it does not conclude complete and efficient

reasoning support.

The main constructs of an OWL Ontology [22, 67] are:

Header: It concludes the "rdf:RDF" element which specifies a number of namespaces.

For example:

<rdf:RDF

 xmlns:owl ="http://www.w3.org/2002/07/owl#"

 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:xsd ="http://www.w3.org/2001/XLMSchema#">

and the "owl:Ontology" element, which contains comments, version and inclusion of

other ontologies. For example:

<owl:Ontology rdf:about="">

2.5. WEB ONTOLOGY LANGUAGE: OWL 15

 <rdfs:comment>An example OWL ontology</rdfs:comment>

 <owl:priorVersion

 rdf:resource="http://www.mydomain.org/uni-ns-old"/>

 <owl:imports

 rdf:resource="http://www.mydomain.org/persons"/>

 <rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

Classes and class hierarchy: Classes are defined using the "owl:Class" element. There

are also two pre-defined classes, "owl:Thing" and "owl:Nothing", where the first one

is the most general class, containing everything and the last one is the more specific,

the empty object class. We can also define relations between classes and specifically:

(1) Disjointness of classes with the element "owl:disjointWith" and (2) Equivalence of

classes using the element "owl:equivalentClass".

Properties: There are two kinds of properties: (1) Object properties, which relate

objects to other objects and (2) Data type properties, which relate objects to datatype

values. It adopts XML Schema data types e.g. integers, floats, strings, Boolean, time,

date, etc.

Property restrictions: They deal with how properties can be used by instances of a

class. All restrictions are used within the context of an "owl:Restriction" element. The

"owl:onProperty" element, which is contained on "owl:Restriction" element, indicates

the restricted property. OWL defines two types of restriction declarations. One type

limits which values can be used by property and are: (1) "owl:allValuesFrom", which

is used to specify the class of possible values the property specified by

"owl:onProperty" can take, (2) "owl:hasValue", which states a specific value that the

property specified by "owl:onProperty" must have and (3) "owl:someValuesFrom",

which does not restrict all values of the property specified by "owl:onProperty" to be

instances of the same class. The other type of restriction declarations defines

cardinality restrictions and are: (1) "owl:minCardinality", which states at least one

individual by the property specified by "owl:onProperty", (2) "owl:maxCardinality",

which states at most one individual by the property specified by "owl:onProperty" and

(3) "owl:Cardinality", which specifies a precise number.

Characteristics of properties: OWL defines some special properties applied to object

properties which are: (1) "owl:TransitiveProperty", which defines a transitive

property, e.g. "is greater than", (2) "owl:SymmetricProperty", which defines a

symmetric property, such as "has same grade as", (3) "owl:FunctionalProperty",

which defines a property that has at most one unique value for each object, such as

16 CHAPTER 2. BACKGROUND AND RELATED WORK

"age", "height" and (4) "owl:InverseFunctionalProperty", which defines a property for

which two different objects cannot have the same value, such as "hasAFM".

Boolean combinations: OWL supports Boolean combinations - union, intersection and

complement - of classes using the "owl"unionOf", "owl:intersectionOf" and

"owl:complementOf" elements respectively.

Enumerations: The "owl:oneOf" element is used to define a class by listing all its

elements.

Individuals: Instances of classes are declared as in RDF, using the "rdf:type" element.

OWL does not adopt the unique-names assumption, which means that if two instances

have a different name or ID, it does not imply that they are different individuals. As a

consequence, in order to declare that two individuals are equal, OWL uses the element

"owl:sameAs", while to declare that two individuals are unequal, it uses the element

"owl:differentFrom". If we want to declare that a number of individuals are mutually

distinct, the OWL uses the "owl:AllDifferent" element. It is used in conjunction with

the "owl:distinctMembers" element to state that all members of a list are distinct and

pairwise disjoint.

2.6. Semantic Annotation

Generally speaking, the term "Annotation" implies to attach data to other piece of data

adding more specific information (that is a description) about it [25]. The term

"Semantic Annotation" is a clear and easy to understand by both, human and

machines, specification which is used to add meaning taken from an ontology to a

specific data. We can distinguish three categories of semantic annotations: (1) Manual

annotations performed by one or more users allowing them to choose manually the

annotation which will be added to a specific object, (2) Semi-Automatic annotations

based in automatic suggestions by tool allowing to user to choose one annotation by

the suggested ones or manually annotated the specific object and (3) fully automatic

annotations based in exclusive proposal by tool without manual intervention.

 In [25] a formal definition is given according to which an Annotation is a

quadruple (as, ap, ao, ac) where as is the subject of the annotation (the annotated data)

ao is the object of the annotation (the annotating data) ap is the predicate (the

annotation relation) that defines the type of relationship between as and ao, and ac is

the context in which the annotation is made.

2.7. Business Process Modeling Tools

In order to be able business analysts to design the graphical representation of business

process models, a business process modeling tool is needed. Some of these tools

2.7. BUSINESS PROCESS MODELING TOOLS 17

which use BPMN 2.0 Specification are Activiti, Eclipse BPMN2 Modeler, Camunda,

Adonis CE, Maestro for BPMN, SeMFIS.

 Activiti [27] is a light-weight workflow and Business Process Management

(BPM) Platform targeted at business people, developers and system administrators. It

sponsored by enterprise content management giant Alfresco. Its core is a super-fast

and rock-solid BPMN 2.0 process engine for Java. It is open-source and distributed

under the Apache license. Specifically it is licensed under the Apache License 2.0 to

encourage widespread usage and adoption of the Activiti BPM engine and BPMN 2.0.

Activiti runs in any Java application, on a server, on a cluster or in the cloud because

it is just a jar file. The main components of activiti which are combined to form a

complete solution from BPMN are showed in the following Figure:

Figure 2.13: Activiti Components

 Activiti Modeler can be used to author BPMN 2.0 compliant processes

graphically using a browser. The process files are stored by the server in a database

model repository while the Activiti Designer is an Eclipse plugin which allows you to

model BPMN 2.0 processes within your IDE-environment. Although it supports

Modeler, Simulation and Execution, it has two drawbacks: (1) data elements are not

supported and (2) it permits limited supported formats, that is read and save internally

in BPMN format without exporting capabilities.

 Eclipse BPMN2 Modeler [28] is a graphical modeling tool for authoring

business processes. The primary goal of BPMN2 Modeler was to provide a graphical

workflow editing framework, which can be easily customized for any BPMN 2.0

compliant execution engine. It was built by eclipse org. as a mission of the eclipse

Service Oriented Architecture (SOA) project and it distributed under the Eclipse

Public License 1.0. It is a cross-platform product meaning that it runs both on

windows and on Linux, as well as on other platforms. The BPMN2 Modeler is built

on the Eclipse Plug-in Architecture and provides several extension points for

18 CHAPTER 2. BACKGROUND AND RELATED WORK

customizing the editor's appearance and behavior. Nevertheless, at this time, it

provides incomplete support for data elements which means that it does not support

data store, data input/output elements and data collection. Supported formats for

reading is BPMN2 and for writing are BPMN2, BMP, GIF, JPG, PNG, PDF.

Figure 2.14: Screenshot of BPMN2 Modeler tool

 The core of Camunda BPM [29] is an execution engine for BPMN, CMMN

and DMN. It is lightweight and requires less than 3MB of disk space. It can run in any

Java Virtual Machine (JVM). It is distributed under the Apache License 2.0 and runs

on Windows, Linux and Mac.

2.7. BUSINESS PROCESS MODELING TOOLS 19

Figure 2.15: Camunda BPM Architecture

 Camunda Modeler is a desktop application for editing BPMN process

diagrams supporting BPMN 2.0 Specification. It is very easy to use, which means that

business analysts can use it as well as developers, working on the same diagrams.

Besides the visual modeling, Camunda Modeler also allows you to edit all properties

that are necessary for the technical execution. Since Camunda Modeler works directly

on the BPMN and DMN XML files, developers can easily combine it with their

preferred IDE (for example Eclipse, Netbeans). BPMN 2.0 modeling based on

bpmn.io which is probably the most awesome modeling framework in the known

universe. However, it partially supports data elements which means that it does not

support data store, data input/output and data collection. It also does not support

BPMN2 comments.

 Adonis Community Edition (CE) [31] is the free version of Adonis BPM

tools, without any time limitation. Most of the BPM software are quite expensive, but

Adonis community edition is completely free for both personal as well as commercial

uses. It is developed by the BOC Group which was founded as a spin-off of the

University of Vienna. It lets you model business processes easily, supporting BPMN

2.0 Specification. It also allows analysis, simulation, evaluation and Sharing BPM

models. Unfortunately, it runs only on windows platform.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.16: Adonis CE Business Process Management Toolkit

 As far as Modeling is concerned, Adonis CE lets you model your entire

organization: processes, products, resources and see how they interrelate. It is quite

easy in terms of use, which makes it quite easy for even new BPM modelers to

quickly start modeling. Models can be saved as HTML, or even embedded in Word

documents and presentations and general it provides options to export them in

different formats such as ADL, XML, XPDL. It is also quite good in analyzing those

models to find process bottlenecks and other inefficiencies in the system, as well as it

provides simulation option so as to be able to find costs of processes, staff

requirements, bottlenecks and other inefficiencies. Adonis CE stores all the model

data in SQL Server free edition that comes with Adonis download and it is easy in

installation.

 Maestro for BPMN [61] is a SAP research modeling tool which has already

been extended by Born et al. to enable semantic annotation of the business processes

(a fragment of process model using Maestro for BPMN tool is shown in Figure 2.17).

For this reason, it makes use of the sBPMN ontology from SUPER project.

Specifically, if a new BPMN task is created on the drawing pane, an instance of the

concept "Task" is created in the in-memory working ontology, enabling reasoning

over it. More details on how they have achieved semantic annotations to business

process models are presented in the "related work" section.

2.7. BUSINESS PROCESS MODELING TOOLS 21

Figure 2.17: A fragment of a process model in Meastro for BPMN tool

Although it supports the graphical representation of business process models using

BPMN specification, it also supports ontologies expressed in WSML/WSMO format,

whereas we make use of OWL format. In addition, it is not freely available for using.

 SeMFIS [30] means Semantic based Modeling Framework for Information

Systems and it is a flexible engineering platform for semantic annotations of

conceptual models that supports the representation and analysis of annotations with

ontologies. SeMFIS has implemented using the Microsoft Windows-based ADOxx

meta modeling platform which is professionally developed by BOC Group, a spin-off

of the University of Vienna, and it has been on the market for more than fifteen years.

Thus, SeMFIS can be easily added to the large variety of other modeling methods

based on this platform or used as an additional service for other tools. The standard

installation of SeMFIS is connected with the relational database of Microsoft SQL

Server. It is freely available for use via the OMiLAB.org website at

http://www.omilab.org/web/semfis.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.18: SeMFIS Model Editors for a Business Process Model, an OWL Ontology Model and a

Semantic Annotation Model (from left to right, top to bottom)

 SeMFIS intention was to provide a link between the field of conceptual

modeling (like a business process model) and the field of ontologies. SeMFIS does

not require a specific type of modeling language or the modification of an existing

modeling language because of the decoupling of the semantic annotations in separate

semantic annotation models, as shown in Figure 2.18 on bottom model for the

creation of which the top models, business process model on the left and owl ontology

on the right, contributed. The most important features are provided by SeMFIS

platform are: Model Editors, Scripting and Analysis functionalities, import and export

interfaces.

 For the graphical representation of any conceptual model which is supported

by SeMFIS, business process models, semantic annotations and any supported

ontology type, SeMFIS has available its own model editor, as shown in Figure 2.18.

Via the scripting functionality, statements in the domain-specific ADOscript

language can be executed in order to extend SeMFIS functionalities. As far as

analysis component is concerned, SeMFIS uses it in order to express queries in AQL

format (ADOxx Query Language). Finally, SeMFIS provides import and export

interfaces for exchanging model information in different file formats. However, only

XML Import/Export interface is used to exchange information from arbitrary model

types and ADL Import/Export Interface to exchange information with other ADOxx

based tools that do not offer an XML interface.

 In our work, we select the SeMFIS tool for the following reasons: (1) It has

been implemented using the freely available ADOxx meta modeling platform and it is

supported by the freely available AdoScript language for extending its functionalities.

(2) It is a flexible platform which can be used to create both business process models

(supporting BPMN 2.0 Specification) and Ontologies (supporting OWL language)

2.7. BUSINESS PROCESS MODELING TOOLS 23

using any time its own model editor. (3) As far as business process models are

concerned, it already has a "semantic annotation" attribute on the objects' notebook

which can be added manually on objects by the user. (4) Nevertheless it has a separate

semantic annotation model type for linking objects of business process models with

concepts of ontologies, it is useful only for expert users. Most of the times, business

designers do not know about ontology technologies, so it is a useless functionality for

them.

 For all these reasons, exploited the "semantic annotation" attribute and the

freely available use of ADOxx meta modeling platform, as well as the freely available

AdoScript documentation, we use the SeMFIS tool in order to present our semi-

automatic suggestions for semantic annotations on activity labels of business process

models creating at the same time a new semantic annotated business process model so

as not to modify existing ones. More details about extended functionalities are

presented in chapter 5.

2.8. Related Work

The idea of adding semantic annotations to business process models is not new and

has already been proposed by several authors, for different process languages and

goals. We can roughly classify the existing proposals into two big groups. The first

group consists of those who add semantic annotations to specify the dynamic behavior

exhibited by a business process [5, 60]. The second group is composed of those who

add semantic annotations to specify the meaning of process elements in order to

improve the automation of business process management [2, 3, 4, 7, 8, 14, 36, 37]. In

our work we follow the second perspective in order to give a more precise and

comprehensive meaning in the activity labels of business process models and to allow

the use of semantic technologies, like querying, on business processes via semantic

annotations.

 In [5], Markovic and Pereira present an expressive formalism for describing

business process models to support reuse of existing business fragments during

modeling. They distinguish two main aspects of a process description: dynamic and

static aspect. As for the dynamic aspect, they have selected to use process algebra, the

π-calculus, for capturing the behavior of the process, that is process control flow.

Within the static aspect of the process description they want to describe other

workflow perspectives, e.g. organizational and informational perspectives.

Specifically, they want to describe processes in terms of their input/output data,

business function, business domain, organizational roles which perform certain

process parts. For this reason, they use WSML (Web Service Modeling Language) as

a representation language for the ontologies that capture static aspects of the process

model description. Finally, they propose the Business Process Ontology (BPO), which

captures both dynamic and static aspects of a process model description. The concepts

24 CHAPTER 2. BACKGROUND AND RELATED WORK

in BPO are visualized in Figure 2.19, using WSMO (Web Services Modeling

Ontology) Studio.

Figure 2.19: Concepts of Business Process Ontology (BPO)

In order to integrate behavioral with other workflow perspectives, BPO imports

concepts from several other ontologies, forming the ontology framework shown in

Figure 2.20.

Figure 2.20: Ontology Framework

Imported ontologies describe concepts used to create semantic annotations for

concrete process definitions. Specifically, for describing the functional perspective,

they have designed the Business Functions Ontology. For describing the domain (e.g.

product area, client area, etc) inside the organization where the process is used, they

2.8. RELATED WORK 25

designed the Business Domain Ontology. Business Roles Ontology includes concepts

representing roles in the organization e.g. manager, engineer, secretary, etc. while

Process Resources Ontology describes the resources (e.g. documents, systems,

machines) which are required to operate the activities in processes. Finally, the

semantic annotation of processes is done by five relations as shown in Figure 2.21:

hasBusinessGoal, hasBusinessFunction, hasBusinessDomain, hasBusinessRole and

hasProcessResource. These semantic annotations can be used for various querying

and reasoning purposes e.g. finding process fragments, verification, execution, etc.

Figure 2.21: Business Annotations

 In [60], Smith and Proietti propose a rule-based framework for reasoning

about process-related knowledge expressed by using standards for business process

modeling like BPMN specification and ontology definition like OWL language. In

order to present the behavioral semantics, they follow an approach inspired to the

Fluent Calculus, a well-known calculus for action and change. In the Fluent Calculus,

the state of the world is represented as a collection of fluents, which means terms

representing atomic properties that hold at a given instant of time. A fluent is an

expression of the form f(a1, ..., an) where f is a fluent symbol and a1, ..., an are

constants of variables. They define semantic annotations for modeling the behavior of

individual process elements in terms of preconditions under which a flow element can

be executed and effects on the state of the world after its execution. Preconditions and

effects called functional annotations and can be used to model input/output relations

of activities with data items, which are the standard way of representing information

storage in BPMN diagrams. Specifically, a precondition specifies the status a data

item must possess when an activity is enabled to start and is formulated by means of

the relation: pre(A,C,P), which specifies the fluent expression C, called enabling

condition, which must hold to execute an element A in the process P. An effect

specifies the status of a data item after having completed an activity and is formulated

by means of the relation: eff(A, E
-
, E

+
, P), which specifies the set E

-
 of fluents, called

negative effects, which do not hold after the execution of A and the set of fluents E
+
,

26 CHAPTER 2. BACKGROUND AND RELATED WORK

called positive effects, which hold after the execution of A in the process P. They

assume that E
-
 and E

+
 are disjoint sets.

 Both of the above works [5, 60] are focused on dynamic behavior of business

process elements where we have not researched at all in this work.

 In [14], Thomas and Fellmann consider the problem of enhancing individual

model elements of event-driven process chains (EPC) with semantic annotations using

concepts of a formal ontology. They propose a framework which joins process model

and ontology by means of properties (such as the "semType" of a process element).

Specifically, they propose a multi-level approach which comprises an ontology level,

a metadata level and a model level, as shown in Figure 2.22. Metadata is generated

from models. This metadata contains references to the model elements of the initial

model, as well as to the concepts of the ontology. Ontologies and metadata are

interdependent. Concepts from the ontology are used in the metadata to specify the

meaning of the labels of the model elements. The ontologies used must contain the

required concepts or they must be added to the ontologies in the course of the creation

of the metadata.

Figure 2.22: Framework for the semantic annotation of business process models

 In the Figure 2.23 is presented the linkage of an ontology and the EPC model

elements instances of "customer order processing" model which is accomplished by

the usage of "semType" properties. These properties specify the semantics of an EPC

model element through a relation to an ontology instance with formal semantics

defined by the ontology.

2.8. RELATED WORK 27

Figure 2.23: Semantically annotated process model "Customer order processing"

 They do not refer what metrics are used for the creation of "semType" properties.

Their work differs from our approach. We create directly connections between

activity labels of business process models and concepts of a domain ontology using

three types of similarity measures - string, linguistic and syntactic - as well as

filtering. If an accurate domain ontology does not exist a priori, nothing happens until

an accurate domain ontology is created.

 In [2], Born et al. propose a tool for the user-friendly integration of domain

ontology information in the process modeling. They have made extensions to the SAP

research modeling tool Maestro for BPMN for the needs of their implementation. In

order to match elements of graphical business process model with concepts of domain

ontologies, they exploit (1) information about domain objects, actions, states and

transitions from the ontology, (2) structural knowledge from the process and (3) a

combination of string distance metrics and matching methods considering synonyms

and homonyms. Figure 2.24 illustrates the main components of their semantic

extension for business process modeling tools. Especially, BPMN data objects and

associations are used to describe the activities of a process model more precisely by

defining associated objects and their state transitions: Data objects identify the objects

an activity deals with and associations link the data objects to the corresponding

activities in the process diagram. The user may specify pre- and post conditions for

the activities in natural language and may define the objects as well as the objects'

states before and after an associated activity has been executed within the graphical

model.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.24: Main components of semantic extension for business process modeling tools

 Two kind of ontologies are used to achieve the semantic support of modeling

activities. First, they have extended the sBPMN ontology of the SUPER project so as

to provide possibilities to define states of a data object before and after corresponding

activities have been executed, to link objects, states and activities to elements of

domain ontologies describing them and to capture natural language pre- and post

conditions for activities. Second, they define a possible structure of domain ontologies

which cover information concerning domain objects and states which help to model

business processes more precisely. Utilizing appropriate domain ontologies, the

matchmaking functionalities address the problem of deriving a list of proposals for a

selected model element that a user has chosen for semantic annotation. To solve this

problem, they propose a combination of string distance metrics and matching methods

using synonyms and homonyms, as well as they use process diagram context

information and domain ontology knowledge for even better results. They do not refer

what exactly string algorithms and matching methods have been used in their

approach.

 In the SUPER project [8], Dimitrov et al. propose the SUPER ontology stack

for the creation of semantic annotations of both BPMN and EPC process models in

order to support automated composition, mediation and execution. The core of the

SUPER ontology stack is comprised of five ontologies: (1) an Upper Process

Ontology (UPO) which defines top-level concepts such as task, condition, etc. (2) a

Business Process Modeling Ontology (BPMO) which extends the UPO into a full

2.8. RELATED WORK 29

process ontology providing abstractions over different business process modeling

notations such as BPMN and EPC and (3) sBPMN, sEPC and sBPEL which are

"ontologised" versions of subsets of the BPMN, EPC and WS-BPEL, respectively.

They extend the WSMO studio with a BPMO editor for adding BPMO semantic

annotations to existing business process models and for creating new semantic

models.

Figure 2.25: WSMO Studio enhancing with a BPMO editor

Figure 2.25 depicts the user interface of WSMO Studio enhancing with BPMO editor.

It is based on the BPMN graphical notation extended with BPMO specific modeling

primitives and integrated with existing WSMO Studio functionality. The semantically

annotated business processes are produced simply by drag & drop existing semantic

elements (concepts and instances from reference ontologies) into the relevant element

of the process model (activity, data flow elements). They do not refer the formalism

and the metrics which are based to produce the semantic annotations for business

process models. In addition, WSMO tool supports ontologies expressed in WSML/

WSMO format, whereas we make use of OWL format.

 In [36] and [3], Francescomarino et al. propose the representation of

semantically labeled business processes as part of a knowledge base that formalizes

business process structure, business domains and a set of criteria describing correct

semantic annotations on labels. In [36], they provide an ontology integration scheme,

where to add semantic annotations to a business process, based on a set of merging

axioms that connect BPMN ontology and domain ontology. The merging axioms are

30 CHAPTER 2. BACKGROUND AND RELATED WORK

in fact a set of constraints which define criteria for correct/ incorrect semantic

annotations. An example of such a merging axiom is that a BPMN element of type x

can be annotated only with a concept equivalent or more specific than y, where x

denotes a concept of BPMN ontology and y denotes a concept of domain ontology. In

order to express this kind of constraints and to support automatically verify on them,

they propose to encode all the information about semantically annotated processes

into a logical knowledge base, called Business Processes Knowledge Base (BPKB),

which is composed of the following four modules, as shown in Figure 2.26:

 BPMN ontology: formalizes the structure of a Business Process Diagram.

 Domain Ontology: is a set of ontologies that describes a specific business

domain.

 Merging axioms: state the correspondence between the BPMN ontology and

the domain ontology.

 BPD instances: contain the description of a set of Business Process Diagrams

in terms of instances of the BPMN/ domain ontology.

Figure 2.26: Business Processes Knowledge Base

In [3], they extend the structure of Business Processes Knowledge Base, as shown in

Figure 2.27, to incorporate constraints used to formalize structural requirements

which refer to descriptive properties of the annotated process diagram and not to its

execution.

Figure 2.27: Extending Business Processes Knowledge Base

They focus on three types of process specific constraints that can be expressed over

the Business Process Diagrams: containment constraints (x contains y), enumeration

2.8. RELATED WORK 31

constraints (x contains at least/ at most/ exactly n objects of type x) and precedence

constraints (x is always preceded by y). Finally, they describe a tool for the automated

transformation of an annotated business process into an OWL ontology and evaluate

how standard DL reasoners can be used to automatically verify these constraints as

ontology consistency violations. We make use of a variant of Business Processes

Knowledge Base in order to provide process querying mechanisms in our

implementation (more details in section 5).

 In [7], Ehrig et al. present an approach for (semi-)automatic detection of

synonyms and homonyms of process element names in order to support semantic

process model interoperability and interconnectivity by measuring the similarity

between process models semantically modeled with the Web Ontology Language

(OWL). For this purpose, they have developed an OWL-DL based description of Petri

nets. In order to achieve their goal, they use three similarity measures: (1) syntactic

measure, where they compare the number of common characters in the element names

using a variant of Levensthein edit distance method, (2) linguistic measure, where the

similarity degree based on the WordNet dictionary to determine synonyms sets and

(3) structural measure where they consider the context of concept instances and makes

it possible to detect homonyms. Finally, they aggregate the three similarity measures

to a combined similarity measure as follows: The combined similarity simcom between

two concept instance names c1 and c2, let c1 be a particular concept instance name of

SBPM1 and c2 be a concept instance name of SBPM2, is an aggregation of the degrees

returned from the syntactical, linguistic and structural similarity measures having a

particular weight each one, wsyn, wling and wstr, that can be individually assigned by

users or learned for example using machine learning based approaches on a training

set, as indicated in the following formula:

The similarity between two semantic business process models SBPM1 vs. SBPM2 is

defined by semantic relationships, which they consider by the two sets of concept

instances C1 and C2 of SBPM1 and SBPM2.

 equivalence: sim(SBPM1, SBPM2) = 1 iff C1 =C2,

 disjointness: sim(SBPM1, SBPM2) = 0 iff C1 C2= ,

 intersection: sim(SBPM1, SBPM2) [0...1] iff C1 C2 = {x|(x C1) (x

C2)} C1 C2.

Based on these semantic relationships they specify the overall similarity between two

semantic business process models as the maximum combined similarity between c1

and concept instances c2j of SBPM2, as indicated in the following formula:

32 CHAPTER 2. BACKGROUND AND RELATED WORK

 Very close to our work is the [37]. Ciuciu et al. have developed a tool, called

Knowledge Annotator (KA), to provide semantic support to the business modelers

during the design of secure business process models. The tool uses ontology-based

data matching algorithms and a strategy in order to infer the recommendations the

best fitted to the user request, from a dedicated knowledge base and an ontology of

security constraints. The goal of ontology-based data matching is to find the

similarities between two data sets each of which corresponds to one part of the

ontology. The selected strategy is the Controlled Fully Automated Ontology Based

Data Matching Strategy (C-FOAM). It is a hybrid strategy which combines (1) string

matching algorithms, (2) lexical matching algorithms and (3) at least one graph-based

matching algorithm. Specifically, the C-FOAM is based on two modules: (1) the

Interpreter module and (2) the Comparator module, as shown in Figure 2.28.

Figure 2.28: C-FOAM model for ontology-based data matching

The Interpreter, at first, makes use of the domain ontology and string matching

algorithms to interpret the end users' input. In case that the data object, which belongs

to the string matching algorithms results, is denoted by several terms, it then makes

use of the lexical dictionary, WordNet, to take into account synonyms of them. If a

given object term could not be found in the ontology and lexicon, the best fitting data

object is returned from the ontology using fuzzy matching based on string similarity.

The similarities should be above a certain threshold which is set in the application

configuration of their tool. If the data object is found based on fuzzy matching then a

penalty percentage will be used on the matching score. Finally, the interpreter will

return the correct concept(s) defined in the ontology or lexical dictionary and an

annotation set of the concept. The Comparator computes the similarity between two

found data objects annotated with binary facts from the ontology base. It uses a graph

based algorithm or a combination of different graph-based algorithms to find the

similarities between the two annotation sets. The Ontology which is used by the tool is

modeled following the Developing Ontology Grounded Methodology and

Applications (DOGMA).

 More closely to our work is the [4]. Francescomarino and Tonella have

proposed a technique to support the business community with automated suggestions

of semantic annotation of process models expressed in BPMN, based on a measure of

similarity between ontology concepts and the labels of the process elements to be

annotated. Their approach relies on linguistic analysis of the process element labels

2.8. RELATED WORK 33

and of the ontology concepts names. Matching is based on a measure of information

content similarity. Specifically, they use a linguistic analyzer, the MINIPAR, to

tokenize the process elements labels and the ontology concepts. Moreover, for each

word it identifies the grammatical category (e.g. verbs, nouns, adjectives) as well as

the grammatical relationship (e.g. verb-object, article-noun, specifier-specified) and

the head word guiding such a relationship, if any. They also use the WordNet

dictionary to categorize terms according to their meaning (sense) and synonym set

(synset). More specific, they use it to solve the semantic ambiguity of ontology

concepts by mapping them to unique synsets. The Lin's formula is used to compute

the information content similarity between two terms t1 and t2:

where MCSA is the information content of the Most Specific Common Abstraction

between the terms t1 and t2. The identified synset will be the one with the best

average of maximum information content similarity value computed over all the

relative concepts. Once the ontology concepts are linked to a single WordNet sense,

the choice of the suggestions is based on the semantic similarity between pairs of

BPMN element labels and ontology concepts. The semantic similarity of a pair (l, c)

can be based on the semantic similarity between pairs of words respectively in l (Wl =

{wi Dict|l = w1 ... wn}) and in c (Wc = {wj Dict| c = w1 ... wm}). They define the

candidate set of pairs CSP as CSP Wl X Wc such that each word wi Wl and wj

Wc appears at most once in CSP and the total semantic similarity is maximized by

CSP. They also give weights to the semantic similarity measures (e.g. the verb has

greater importance that the object, in turn more important than the specifier). Once the

semantic similarity measure is known for all pairs, they determine the subset of such

pairs which maximizes the total semantic similarity. The result is a suggested

semantic annotation for each BPMN element. We make use of three similarity

measures (string, linguistic, syntactic), as well as we use weighs and filtering

techniques for more precise results.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

35

Chapter 3

Basic BPMN Ontology

3.1. A brief Overview

As already has been mentioned, the BPMN language provides powerful graphical

representations of business processes that enable human users to model such

processes. Nevertheless, its lack of formalized semantics has already led some authors

in the development of a BPMN Ontology. In [15], M. Rospocher et al. represent an

ontology for the Business Process Modelling Notation which provides a classification

of all the elements of BPMN, together with the formal description of the attributes and

conditions that state how to combine BPMN elements to form a valid BPD, as they

described in BPMN Specification of OMG.

 Of course, this is not the only ontology which has been developed for business

process modeling. A number of ontologies for business process modeling have

already been proposed, the main objectives of which vary to some extent. Others

focus on specific business process language, such as in [15] as it has already been

mentioned above and in [14] where O. Thomas and M. Fellmann have developed an

ontology for semantic EPC. On the other hand, other authors have developed more

general ontologies for business processes, such as in [33] where L. Cabral et al.

present the Business Process Modeling Ontology (BPMO) which captures domain-

independent organizational aspects and control-flow constructs of business notation,

process interaction features from BPEL, and service description and invocations for

Semantic Web Services (SWS) and in [34, 35] where the General Process Ontology

(GPO) is presented. GPO provides a common conceptualization of the concepts used

in different process modeling languages.

 Due to difficulties to follow the BPMN Ontology, presented in [15] which is

the nearest in our investigation, we developed our own basic BPMN Ontology for the

facilitating of this research. The basic BPMN Ontology is an ontological

formalization of the BPMN specification which encodes the classification of the most

basic elements of BPMN, together with the formal representation of the most useful

attributes and conditions describing how the elements can be combined to obtain a

BPMN process model compliant with the BPMN Specification.

36 CHAPTER 3. BASIC BPMN ONTOLOGY

3.2. The Construction of Basic BPMN Ontology

 The main purpose of basic BPMN Ontology is to formalize the structural parts

of the BPMN language, meaning to describe the most basic elements of BPMN

diagrams and how they can be used to compose these diagrams. It is not intended to

model the dynamic behavior of a BPMN process, that is how the execution flow

proceeds within it. We develop the basic BPMN Ontology in order to exploit it in the

context of semantically annotated business processes and as a consequence to support

semantically queries on them. For example we would like to be able to retrieve all

processes that contains sub-processes about "cart management".

 The development of the basic BPMN Ontology was driven and facilitated by

the availability of the BPMN Specification as it is described in [20]. In particular, the

BPMN Specification is derived in sections each of which describes in details each

BPMN element, containing usually the following content:

 a detailed description of the element, together with some general properties

and conditions about it.

 a table with the attributes of the element, including its name, its value type and

a description about its usage and its special conditions of usage.

 a detailed description about the conditions which must hold for connecting the

element with other elements of the BPMN language.

 examples in XML schema describing the element during the execution of

process.

The basic BPMN Ontology does not make usage of all the elements, properties,

attributes and conditions which are described in BPMN Specification. It formalizes

only the most basic of them in order to be used for querying purposes.

 The following steps were followed to build the basic BPMN Ontology (they

are in correspondence with the steps modelling process as described in [15]).

 In the First Step we manually processed the BPMN Specification to identify

all the basic elements of the language. We then associated each of these elements to a

class in the ontology and at the same time formalized the initial taxonomy of these

classes, that is we defined the "is-a" relationship. For example, we defined the class

Flow_Objects and that it has three subclasess which are Activity, Gateway and Event.

 In the Second Step we filtered the attributes table corresponding to each

element, selected the most important and useful for our research and formalized them

either as an object property or a datatype property, based on the following general

criteria:

(a) The value type of the attribute is another BPMN element: In this case, we

formalized the attribute as an object property having as property domain the class

associated with the current element and as property range the class corresponding to

3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 37

the element mentioned as value type of the attribute. For example, the attribute

SourceRef of the BPMN element Associations has as value type the BPMN elements

Artifact and Flow_Objects.

(b) The value type of the attribute is a datatype with no restrictions: In this case, we

formalized the attribute as a datatype property having as property domain the class

associated with the current element and as property range an OWL datatype

compatible to the one specified in the value type of the attribute. For example, the

attribute "Text" of the BPMN element "Text Annotation" has as value type "String".

 For each attribute, we also formalized its multiplicity details as an OWL

cardinality restriction on the class having the attribute. Particularly, (0..1) multiplicity

is encoded as "at most one" OWL cardinality restriction, (1..n) multiplicity is encoded

as "at least one" OWL cardinality restriction and finally (1) multiplicity is encoded as

"exactly one" OWL cardinality restriction.

 In the Third Step we added a new attribute for the class of the BPMN element

"Activity" and its subclasses "Task and "Sub_Process", namely "Semantic

Annotation" and defined it as a datatype property having as property domain the class

"Activity" and as property range the value type "anyURI" which is a link to a concept

of a domain ontology. For example, as shown in Figure 3.1, on task "choose a

product" has been added as semantic annotation the class "to select product" from the

domain ontology "onLineShopDomainOntology
1
" which is linkable with this concept

of these domain ontology.

Figure 3.1: Semantic Annotation on task "choose a product"

 The basic BPMN Ontology consists of 120 Classes, 36 Object Properties and

15 Data Properties, as shown in table 1. It is not an exhaustive effort of modeling all

the attributes, properties and conditions of the BPMN elements as they are presented

in BPMN Specification of OMG. We concentrated only to the most basic and useful

elements, attributes, properties and conditions which help us to proceed our

investigation about semantic annotations on BPMN diagrams. A more detailed

development of ontology could be a future work.

1
 The domain ontology "onLineShopDomainOntology", as well as the excerpts of "on-Line Shop"

business process have been copied from http://selab.fbk.eu/OnLineShop/

38 CHAPTER 3. BASIC BPMN ONTOLOGY

Table 3.1: Basic BPMN Ontology metrics

Basic BPMN Ontology Elements No

Classes 120

Object Properties 36

Datatype Properties 15

 The core component of the basic BPMN Ontology is the Base_Elements

Class, divided into seven disjoint sub-classes. Six of them contains the main elements

used to describe Business Process Diagrams, which also further divided onto sub-

classes. These BPD main element set includes "Flow_Objects" class which is the

union of the classes Activity, Gateway and Event, "Connecting_Objects" class which

is the union of the classes Sequence_Flows, Message_Flows, Associations and

Data_Associations, "Swimlanes" class which is the union of the classes Lane and

Pool, "Artifact" class which is the union of the classes Group and Text_Annotation,

"Data_Objects" class which is the union of the classes Data_Input, Data_Output and

Data_Store and finally "Message" class. The seventh sub-class, namely

"Supporting_Elements", contains additional types of elements, mainly used to specify

the attribute values of graphical objects. For example, the supporting element

"Loop_Characteristics" is used to define the graphical object Activity and signifies

that the Activity has looping behavior, i.e. it is repeated sequentially. Except the

"Base_Elements" Class, the basic BPMN Ontology contains also the

"BPMN_Diagrams" class which contains the basic types of business process

diagrams, namely BPMN_process, Choreography and Collaboration. The basic

BPMN Ontology does not include elements and attributes which represent

Choreography diagrams. A graphical representation of the hierarchy of the classes of

the basic BPMN Ontology rooted at Base_Elements class is shown in Figure 3.2.

Figure 3.2: An Overview of the "is-a" taxonomy of basic BPMN Ontology rooted at Base_Elements

3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 39

 As far as the Object Properties are concerned, a short description is followed

for the most useful of them:

 has_BaseElements property and its inverse isBaseElementsOf property are

used to define the BPMN core elements that are used in graphical

representation of a process or sub-process. They have property domain the

"BPMN_Process" class and the "Base_Elements" class respectively and

property range the "Base_Elements" class and "BPMN_Process" or

"Sub_Process" class respectively.

 has_Artifact property defines that in a process, sub-process or collaboration

may be added as many artifacts as user defines or not. It has property domain

"BPMN_Process" or "Sub_Process" or "Collaboration" class and property

range the "Artifact" class.

 has_AssociationSourceRef property defines the Base Element which the

Association is connecting from. It has property domain the "Associations"

class and property range the "Artifact" or "Flow_Objects" class.

 has_AssociationTargetRef property defines the Base Element that the

Association is connecting to. It has property domain the "Associations" class

and property range the "Artifact" or "Flow_Objects" class.

 has_DataAssociationSourceRef identifies the source of the Data Association.

It has property domain the "Data Associations" class and property range the

"Data_Objects" class.

 has_DataAssociationTargetRef identifies the target of the Data Association. It

has property domain the "Data Associations" class and property range the

"Flow_Objects" class.

 has_messageFlow identifies the two separate pools in a collaboration diagram

which the flow of the messages are represented in between two participants

which are prepared to send and receive them. It has property domain the

"Collaboration Diagram" and property range the "Message_Flows" class.

 has_messageFrom property identifies the participant of which sends a

message while the has_messageTo property identifies the participant on which

the message has been sent. They have property domain the class "Message"

and property range the class "Participant".

 has_messageRef property defines the Message that is passed via the Message

Flow. It has property domain the classes "Message_Flows", "Receive_Task"

or "Send_Task" and property range the class "Message".

 has_messageSourceRef property defines the node that the message flow is

connecting from while has_messageTargetRef property defines the node that

the message flow is connecting to. The first one has property domain the class

"Message_Flows" and property range the classes "Activity",

"Message_End_Event" or "Message_InterThrow_Event". The other one has

property domain the class "Message_Flows" and property range the classes

"Activity", "Poll" or "Message_InterCatch_Event".

40 CHAPTER 3. BASIC BPMN ONTOLOGY

 has_sequenceFlow property identifies the flow objects which participate in a

sequence flow (that is the order that the activities will be performed in a

process). It has property domain the class "Flow_Objects" and property range

the class "Sequence_Flows".

 has_sequenceSourceRef property defines the node that the sequence flow is

connecting from while the has_sequenceTargetRef property defines the node

that the sequence flow is connecting to. The first one has property domain the

class "Sequence_Flows" and property range the classes "Activity", "Gateway",

"Start_Event", "InterCatch_Event", "InterThrow_Event",

"NonInterrupt_Intermediate_Event" or "NonInterrupt_Start_Event". The other

one has property domain the class "Sequence_Flows" and property range the

classes "Activity", "Gateway", "End_Event", "InterCatch_Event",

"InterThrow_Event", or "NonInterrupt_Intermediate_Event".

 Finally, as far as Datatype Properties are concerned, the most significant for

our investigation is the property has_SemanticAnnotation which identifies the

semantic annotation that has been added in an activity of a process. It has property

domain the class "Activity" and property range the value type "anyURI" which is a

link to a concept of a domain ontology.

 We could also represent the semantically annotated processes as part of a

knowledge base (KB), in correspondence with the [36], which is composed of the

following three modules:

(1) The basic BPMN Ontology which is a general ontology and provides a

formalization of the structural part of business process diagrams, meaning that it

describes the most basic BPMN elements and how they can be connected for the

construction of BPDs.

(2) The Domain Ontology which consists of a set of ontologies that describes a

specific business domain.

(3) The BPD Instances which contain the description of a set of semantically

annotated BPDs in terms of instances of the basic BPMN ontology and the domain

ontology. Every element of the semantically annotated business process is represented

as an individual of a class.

The first two modules constitute the terminological part, that is the TBox, which

represents the background knowledge and the knowledge relevant for the described

domain and the last one constitutes the changeable part, that is the ABox, which

contains knowledge about the individuals of a specific business process description,

as shown in the Figure 3.3.

3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 41

Figure 3.3: Knowledge Base of Business Processes

 The reason of encoding a BPD as a set of instances of the basic BPMN

Ontology is that reasoning services can be then implemented on it. One of them, that

is represented on this work, is the querying on the BPD instances. Specifically, given

an instantiated basic BPMN ontology, we provide process querying mechanisms that

exploits the information formalized in the basic BPMN ontology. We used SPARQL

for encoding the queries which run on the instantiated BPMN ontology.

42 CHAPTER 3. BASIC BPMN ONTOLOGY

43

Chapter 4

Presentation of the Process Following for Semi-

Automated Semantic Annotations to Business

Processes

In this chapter, we provide a more detailed presentation of similarity measures

following to annotate business process models with semantically semi-automated

suggestions derived from domain ontology (ies). To help business designers annotate

their process models, different matchmaking functionalities are used to link the model

elements and specifically activity labels (task and sub-process) of them to available

domain concepts. The similarity metrics that we exploit in order to support business

analysts with semantic annotation suggestions semi-automatically generated are:

String metrics, linguistic metrics and syntactic metrics. The linguistic and syntactic

metrics are based on one of the most known English dictionaries, the WordNet.

 WordNet is a large lexical database of English which was developed at

Princeton University. It contains nouns, verbs, adjectives and adverbs which are

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.

Synsets are interlinked by means of conceptual-semantic and lexical relations. The

majority of the WordNet’s relations connect words from the same part of speech

(POS). Thus, the WordNet consists of four sub-nets, one each for nouns, verbs,

adjectives and adverbs. In particular:

 The main relation among words in WordNet is synonymy, that is words that

denote the same concept and are interchangeable in many contexts. Synonymy are

grouped into unordered sets, called synsets. Each synset contains a brief definition,

called gloss and, in most cases, one or more short sentences illustrating the use of the

synset members. Words with several distinct meanings are represented in as many

distinct synsets. Thus, each form-meaning pair in WordNet is unique.

 Furthermore, WordNet contains encoded relation among synsets called IS-A

relation, hyperonymy or hyponymy. It links more general synsets to increasingly

specific ones. For example, the synset "cutlery" is linked with "spoon" and "teaspoon"

meaning that the category cutlery includes spoon, which in turn includes teaspoon and

conversely concepts like spoon and teaspoon make up the category cutlery. All the

44 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

noun hierarchies end up to the root node "entity". Hyponymy relation is also

transitive. For example, if a teaspoon is a kind of spoon and a spoon is a kind of

cutlery, then a teaspoon is also a kind of cutlery.

 WordNet contains also a part-whole relation which is called Meronymy and

holds between synsets like "seat" and "legs". Parts are inherited from their

superordinates. For example, if a chair has legs, then an armchair has legs as well.

Parts are not inherited "upward" meaning that if chairs and kinds of chairs have legs,

it does not mean that all kinds of furniture have legs.

 Except from nouns, verb synsets are organized into "IS-A" hierarchies as well.

Verbs towards the bottom of the trees (troponyms) express increasingly specific

manners characterizing an event, as in "communicate-talk-whisper". In contrast,

Adjectives are organized in terms of antonymy. Pairs of "direct" antonyms like wet-

dry and young-old reflect the strong semantic contract of their members. Each of

these polar adjectives in turn is linked to a number of "semantically similar" ones like

dry is linked to parched, arid, dessicated and bone-dry and wet to soggy, waterlogged,

etc. As for adverbs, the WordNet contains only few of them (hardly, really, etc.), as

the majority of English adverbs are straightforwardly derived from adjectives via

morphological affixation (surprisingly, strangely, etc.)

 For our implementation we used the eclipse IDE [55] and two java libraries for

WordNet. The jwnl 1.4-rc3 java library[38] [39] [40] is an API which was developed

by John Didion at Stanford University for not only accessing WordNet data in a

programmatic way but also for finding relationships of a given type between two

words. The jwi 2.3.3 [41] is a smaller java library which has been developed by MIT

for WordNet accessing. We used it in order to get the parts of speech of each word

and to compare only words of the same part of speech, e.g. verbs-verbs, nouns-nouns,

since the reduction of the comparisons would allow us to limit the time at our disposal

and the memory usage. Finally, we exploit only the "synonymy" and the "is-a"

relationships of WordNet both for nouns and verbs.

 In the following subsections we describe the above similarity metrics in more

details, as well as the whole procedure which was followed to find similarities

between BPMN process labels and domain ontology concepts.

4.1. String Matching Algorithms

Various string matching algorithms are used to calculate the similarity between two

words or short sentences based on the string similarity of their description. In this

work, we used character based metrics, token based metrics and phonetic similarity

metrics. In particular, the following string algorithms are used:

4.1. STRING MATCHING ALGORITHMS 45

N-gram algorithm [42]: N-gram is a contiguous sequence of n items (e.g. letters,

words) from a given sequence of text. In fact, N-grams are overlapping substrings.

The sequences of the N-grams are saved in a string array of N-grams. A n-gram of

size 1 is called "unigram", size 2 is called "bigram" or "digram", size 3 is called

"trigram". Larger sizes are referred to by the value of n, e.g. "four-gram" and so on. In

our research we used the token based similarity metrics: "Bigram or Digram

Algorithm" and "Trigram Algorithm". According to Bigram or Digram Algorithm

[43], strings are compared as sequences of two adjacent characters. It is a n-gram with

n=2. For example, if we want to find the similarity between the two short sentences:

"select product" and "choose product", the algorithm will generate two string arrays

with the following sequences: [{se}, {el}, {le}, {ec}, {ct}, {t }, { p}, {pr}, {ro},

{od}, {du}, {uc}, {ct}] and [{ch}, {ho}, {oo}, {os}, {se}, {e }, { p}, {pr}, {ro},

{od}, {du}, {uc}, {ct}]] respectively and will compare the corresponding sequences.

Thereafter the number of common sequences are used to Dice's coefficient statistic

formula [44] for comparing the similarity between the two sentences, as shown in (1).

 (1)

Where the |X| and |Y| are the number of sequences in the two short sentences. The QS

is the quotient of similarity which ragnes from 0 to 1.

In correspondence, in the Trigram Aglorithm [45], which is a special case of the n-

gram where n=3, strings are compared as sequences of three adjacent characters with

the same way as described in the Bigram Algorithm.

Levenshtein Distance Algorithm [46] [47]: It is a string metric for measuring the

difference between two sequences. In fact, the Levenshtein distance between two

words is the minimum number of single-character edits (i.e. insertions, deletions or

substitutions) required to transform one word into the other. Mathematically, the

Levenshtein distance algorithm between two strings s1 and s2 with lenghts |s1| and

|s2| respectively is given by the formula, as shown in (2):

 (2)

where the is the distance between the first i characters of s1 string and

the first j characters of string s2. The is equal to 0 when and

equal to 1 otherwise. Furthermore, the first element of the minimum corresponds to

deletion, from s1 to s2, the second element corresponds to insertion and the last one to

match or mismatch, depending on whether the respective symbols are the same. For

example, the Levenshtein distance between "kitten" and "sitting" is 3, since the

following three edits change one into the other.

46 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

1. kitten to sitten : substitution of "s" for "k".

2. sitten to sittin : substitution of "i" for "e".

3. sittin to sitting : insertion of "g" at the end.

Jaro - Winkler Distance Algorithm [48] [49]: It is a string metric for measuring the

similarity between two, especially short, sentences. It is based on the number and

order of the common characters between two strings. Mathematically, the jaro

distance dj between two strings s1 and s2 is given by the formula, as shown in (3):

 (3)

where c is the number of common characters and t is half the number of

transpositions. Two characters of the strings s1 and s2 respectively, are considered

common only if they are the same and not farther than floor(max(|s1|,|s2|)/2). Each

character of s1 is compared with all its matching characters in s2. As number of

transpositions (t), it is defined the number of common characters but in different

sequence order divided by 2. For example, if we want to compare the string "crate"

with the string "trace", they have "r", "a" and "e" as common characters, i.e. c=3.

Although the letters "c" and "t" appear in both strings they are farther than 1, as

floor(5/2)>1, so transpositions t=0. Winkler added on jaro distance algorithm a prefix

scale p which gives more favorable ratings to strings that match for the beginning for

a set prefix length l. Therefore, given two strings s1 and s2, their jaro - winkler

distance dw, as shown in formula (4), is:

 (4)

where dj is the jaro distance between the two strings s1 and s2. l is the length of

common prefix at the start of the string up to a maximum of 4 characters, as it has

been defined by Winkler. p is a constant scaling factor for how much the score is

adjusted upwards for having common prefixes. The standard value for this constant in

Winkler's work is p = 1/10. The higher the jaro-winkler distance for two strings is, the

more similar the strings are. The score is normalized in such a manner that 0 equates

to no similarity while 1 is an exact match. For example, if we want to compare the

string s1 "martha" and the string s2 "marhta", we find that they have 6 common

characters, i.e. c=6, the length of string s1 is |s1|=6, the length of string s2 is |s2|=6,

there are mismatched characters "th" of string s1 and "ht" of string s2 leading to t =2/2

= 1. So, the jaro score is:

adding the Winkler's standard weight p=1/10 and finding that the length of common

prefix between the two strings is l=3, the jaro - winkler score is:

4.1. STRING MATCHING ALGORITHMS 47

Jaccard Similarity Algorithm [50] [48]: It is a token based metrics which is used to

measure the similarity between two finite sets. It is defined as the size of the

intersection divided by the size of the union of the two sets. Given two strings S and T

respectively, the formula which gives the Jaccard Coefficient j(S, T), as shown in (5),

is:

 (5)

where the intersection of the two strings, denoted as , gives the number of

common characters in both strings while the union of the two strings, denoted as

 , gives all the characters which are in either string. The jaccard similarity

coefficient ranges from 0 to 1. For example, the similarity between the strings "kitten"

and "sitting" is:

while the jaccard coefficient for the strings "apple" and "apple pie" is:

Char Frequency Similarity Algorithm [53]: It is a string metric for quickly

estimating how similar two strings are. Specifically, it searches the occurrences of

characters in two strings and computes the similarities based on the character

occurrence list. For example, the char frequency similarity between the words "select"

and "action" is 0.334.

Soundex Algorithm [51] [52]: It is a phonetic algorithm for indexing names or

general words by sound, as pronounced in English. The goal is for homophones

(pronounced the same as another word but differs in meaning, and may differ in

spelling) to be encoded to the same representation so that they can be matched despite

minor differences in spelling e.g. beer - bear. It is especially useful in the case where

words can be misspelled or have multiple spellings where soundex algorithm can find

similar sounding terms. The algorithm mainly encodes consonants. A vowel is

encoded only if it is the first letter. The main principle used by Soundex is based on

the six phonetic classifications of human speech sounds (bilabial, labiodental, dental,

alveolar, velar, and glottal). Each consonant is grouped in one of the above six

categories depending on where you put your lips and tongue to make the sound of

each one. It aims to find a code for every word. This code consists of a letter followed

of three numerical digits. The letter is the first letter of the word and the digits encode

the remaining consonants of the word. The steps to find the soundex code is as follow:

48 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

1. Retain the first letter of the word and drop all other occurrences of a, e, i, o, u,

y, h, w.

2. Replace consonants with digits as follows (after the first letter):

1 = b,f,p,v.

2 = c,g,j,k,q,s,x,z.

3 = d,t.

4 = l.

5 = m,n.

6 = r.

3. If two or more letters with the same number are adjacent in the original name

(before step 1), only retain the first letter. Also two letters with the same

number separated by 'h' or 'w' are coded as a single number, whereas such

letters separated by a vowel are coded twice. This rule also applies to the first

letter.

4. If you have too few letters in your word that you cannot assign three numbers,

append with zeros until there are three numbers. If you have more than 3

letters, just retain the first 3 numbers.

For example, the words "Ashcroft" and "Asicroft" are encoded in A261 and A226

respectively. In the first word the chars "s" and "c" would receive a single number of

2 and not 22 since an "h" lies in between them, whereas in the second one the chars

"s" and "c" would receive a double number of 2 (22) since a vowel "i" lies in between

them. In the case of words "Ashcroft" and "Ashcraft" both yield A261 for the same

reasons as described above. In the first example the soundex returns 0 (zero) score

whereas in the second one it returns 1.

 Matching at string level is easy to implement and does not require a complex

knowledge resource. A natural language description of the objects/or concepts and/or

its composing elements is sufficient [37].

4.2. Linguistic Metrics

More complex but also more accurate metrics [54]. They calculate the similarity of

two words or short sentences based on the semantic similarity of their descriptions.

They rely on a dictionary to determine synonyms. The dictionary which is

incorporated in our work is the WordNet. As it has already underlined above, it [26] is

one of the most known English language thesaurus allowing to categorize terms

according to their meaning and synonym set, called synset.

In detail, given two short sentences, for example an activity label and a domain

ontology concept, we tokenize them, meaning that we identify the words and the

punctuation symbols which constitute the sentence, and extract two list of words

4.2. LINGUISTIC METRICS 49

respectively. From these lists, we have removed unnecessary common tokens like

"the", "a", "an", "of", "and", "for" and "to" because they do not have any sense in the

comparison procedure. Then, for each word, we identify the grammatical category in

which it belongs. Specifically, the set of the classification of grammatical categories is

{verb, noun, adjective, adverb} following the four categories of WordNet. With this

way, we compare only the terms of each list of the same grammatical category, that is

verb-verb, noun-noun, etc., lessening the unnecessary comparisons. Finally, we find

the synonym terms using the corresponding relation of the WordNet and the similarity

score of each similarity pair which range from 0 to 1. For example, we find that the

short sentences: "choose a product" and "to_select_product" are synonyms with

similarity score at 1.

4.3. Syntactic Metrics

In order to further improve the matching procedure, we also exploit the "is-a"

relationship of the WordNet dictionary. Hypernyms or hyponyms (which constitute

the "is-a" taxonomy) are used to take into account more generic or more specific

terms of a given term. For example, if we search for semantic annotation into the task

label "choose a product", the system will retrieve not only the synonym term

"to_select_product" from the selected domain ontology but also the more generic and

more specific terms from the same selected domain ontology, ranked according to the

calculated similarity score which range from 0 to 1 in descending order (how the

similarity score is calculated described in the next sub-section):

{"to_select_product_quntity", "to_select_product_category", "product",

"product_quantity, "product_category", "product_data", "product_availability", "to

select_quantity", "to_select_cateogory"}.

4.4. Combined Similarity Measures

In order to suggest the most relevant semantic annotations to business analysts, the

system must compute a combined similarity degree between a BPMN activity label

and concepts of a selected domain ontology. The combined similarity degree is an

aggregation of the degrees returned from the string, linguistic and syntactic metrics as

explained above. For aggregating the results, parameters can be set for weighting the

strength of each string matching algorithm. In addition, for computing the final

aggregated result, a filtering method of the results has been implemented in order to

accurately and efficiently detect the semantic annotations for BPMN activity labels.

The whole matching process consists of eight phases as shown in Figure 4.1: (a)

Loading, (b) String Matching, (c) Weighting String Algorithms, (d) Linguistic

Matching, (e) Syntactic Matching, (f) Mappings, (g) Filtering (threshold), (h) Outputs.

50 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

Figure 4.1: Flow Chart of Matching Process

 At this point, it is important to note that the end user of the matching process

is a business analysts who may possibly lack a sufficient background knowledge of

ontologies and matching algorithms. For this reason, we do not give him the

permission to customize parameters like selection string algorithms, weights and

thresholds for the matching process. Because of his lack of knowledge, the opposite

course of action would lead to insufficient customization followed by insufficient

results.

 The first phase of the matching process is the loading of a BPMN activity

label and all concepts of a selected domain ontology. When the user types an activity

label, the system (SeMFIS) searches for the most accurate domain ontologies of its

database (how it is processed by the system so as to purpose accurate ontologies is

described in a following section). If there is one, the user selects it and the system

loads the activity label and all concepts of the selected domain ontology to the

matching process. If not, nothing is done until a suitable domain ontology is inserted

by the protégé via SeMFIS plugin in xml format or it is created in the system's

database in owl format or when an existing domain ontology is updated with suitable

classes.

 The second and third phase of the matching process is the implementation of

all the string matching algorithms which has already specified above (bi-gram, tri-

gram, Levenstein, Jaro-Winkler, Jaccard, char frequency, soundex). However, all the

aforementioned algorithms do not have the same weight in the matching process.

Thus, bi-gram, tri-gram and soundex algorithm have fixed weight 0.5, Levenshtein

distance algorithm has fixed weight 0.7 and Jaro-Winkler, Jaccard and char frequency

algorithm have fixed weight 0.8. It should be noted at this point that the fixed weights

of the available matching algorithms are indicative. They are customized after testing

4.4. COMBINED SIMILARITY MEASURES 51

and by using our own experience. Of course, they can be customized again in the

future. Each one of the above algorithms gives a score of similarity ranged from 0.0 to

1.0.

 The fourth and fifth phase of matching process are the implementation of

linguistic and syntactic metrics using the "synonyms" and "is-a" relation functions of

the English dictionary WordNet. The weight of these two metrics can be considered

1.0. The score of similarity ranged from 0.0 to 1.0.

 After applying all matching algorithms, in the next phase of matching process,

a weighted average of similarities is calculated with the following formula (6):

 (6)

where sim = {sim1,sim2, ... , simi} are the calculated value similarities from all

matching algorithms and W = {w1, w2, ... , wi} are the corresponding weights of each

matching algorithm which are fixed from the system whereas n is the number of

similarity measures which are used in our implementation.

 The same process is followed for all the matching annotations for each

matching pair between the loaded activity label and each of the loaded concepts of the

selected domain ontology and the similarity scores are stored in a similarity matrix.

 In the next step of matching process, a fixed threshold has been defined by the

system in 0.5. The fixed threshold is indicative, and so are the fixed weights of the

available matching algorithms as stated earlier. It is customized after testing and, of

course, it can be re-customized in the future.

 When there are no more matching pairs to compare, the system checks the

calculated similarity score of each matching pair and if it is above the given threshold,

then the domain ontology concept of this pair is considered an accurate match and

might be added into the result map.

52 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

Figure 4.2: Semantic annotations list for the BPMN Task label "search for product"

 In the final phase of matching process, a list of the semantic annotations which

are above the 0.5 threshold are presented to the user. Thus, every loaded BPMN

activity label in the matching process is allowed to match with more than one loaded

domain ontology concept (1:n). That of course is based on the fact that we search not

only for the exactly synonym concepts of the loaded activity label but also for parents

and children of it. The list is ranked from the most accurate semantic annotation to

less accurate one (that is annotations with similarity score from 1.0 to 0.5) as shown in

the Figure 4.2. As we can see from the Figure 4.2, the top of the list is occupied by

suggested annotations derived from string matching algorithms such as

{to_search_for_product, product, to_search_for, to_add_product, product_category,

product_quantity, etc} which have higher scores of our method and following

4.4. COMBINED SIMILARITY MEASURES 53

suggested annotations derived from syntactic metrics ("is-a" relationship) such as

{order, action, object, stock, to_store, to_read_policy, stock_data, etc} with a score of

up to 0.5.

Figure 4.3: Semantic annotations list for the BPMN Task label "choose_product"

 In the Figure 4.3, we can see another example of automatically suggested

annotations where have been involved all three metrics of our method (string,

linguistic, syntactic). Specifically, in this Figure we want to match an annotation to

the task label "choose product". The system suggests a list of ranked annotations from

the most accurate annotation to the less one. The synonym sentence

{to_select_product} is derived from linguistic metrics, as the verb "select" is synonym

with the verb "choose" and it is in the top of the list as it has the highest score of all

the concepts. Following concepts which are derived from linguistic and syntactic

metrics such as {to_select_product_quantity, to_select_product_category} which are

54 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

"children" of the sentence "to_select_product", as well as concepts which are

substrings of the label name such as {product, product_data}.

 The user can select only one suggested annotation from the list or none

choosing the "cancel" button. If he/ she chooses the "cancel" button, the notebook of

the specific task opens into the "semantic annotation" chapter and the user could

select manually a domain ontology and then a concept which he/ she considers most

accurate for the specific task, as shown in the Figure 4.4. In this Figure, the "semantic

annotation" chapter of the task "read policy" has automatically opened and the user

matches manually the annotation "to_read_policy" (blue rounded rectangle) from the

ontology "onLineShopDomainOntology" (red rounded rectangle) in the task label

"read policy".

Figure 4.4: Manually selection of semantic annotation

4.5. SUGGESTING ACCURATE DOMAIN ONTOLOGIES AND ANNOTATED

BPMN PROCESSES 55

4.5. Suggesting accurate domain ontologies and annotated

BPMN processes

As shown in Figure 4.1, the SeMFIS may have a lot of domain ontologies in its

database which have either been created immediately in the system by ontology

experts or have been inserted in it from the protégé program via the SeMFIS plugin.

Before the system puts forward automatic semantic annotations, it searches for the

most accurate domain ontologies in its database where the semantic annotations could

be extracted from, and suggests them to the user in order to select one. (The whole

procedure on how the system searches for the most accurate domain ontologies is

described with details below). If an appropriate domain ontology does not exist in its

database, the system does not make any automated suggestion. It also discloses

already annotated BPMN models which have been annotated with domain ontology

concepts related with the activated activity label and suggests them too. If the user

selects an already annotated BPMN model the system saves time as it does not need to

search in all concepts of a domain ontology but only between the concepts which have

already been annotated in the selected annotated BPMN model.

 The whole procedure of detecting the most accurate domain ontologies of the

database, as well as the most accurate annotated BPMN models, if they exist, is

approximately the same as the automatic detection of semantic annotations. We use

the same similarities measures, that is all the string algorithms, linguistic and syntactic

metrics, as well as their fixed corresponding weights, as they have already been

underlined earlier. The only difference is that we implement a two phase filtering

method in the final similarity score, instead of one, in order to detect the most

accurate domain ontologies and annotated BPMN models. The Figure 4.5 shows the

whole procedure.

56 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

Figure 4.5: Flow chart of matching process for suggesting most accurate domain ontologies and/or

accurate annotated BPMN model

 The system compares the activated activity label with all concepts of each

domain ontology and existing annotated BPMN model in database using sequentially

all the string matching algorithms with the fixed weights of each one (bi-gram 0.5, tri-

gram 0.5, Levenstein 0.7, Jaro-Winkler 0.8, Jaccard 0.8, char frequency 0.8, soundex

0.5), linguistic and syntactic metrics. The final similarity score is a weighted average

of above similarity measures which are given from the following formula (7) and is

described with more details in section 4.4.

 (7)

where sim = {sim1,sim2, ... , simi} are the calculated value similarities from all

matching algorithms and W = {w1, w2, ... , wi} are the corresponding weights of each

matching algorithm which are fixed from the system whereas n is the number of

similarity measures which are used in our implementation.

 The same process is followed for all the matching pairs between the loaded

activity label and each of the loaded concept of each domain ontology and existing

annotated BPMN model in database. The similarity scores are stored in a similarity

matrix.

 In the next step of matching process, a first fixed threshold (in 0.5) is

implemented to the calculated similarity score of each matching pair. If the score is

above the given threshold, then the domain ontology concept of this pair is considered

4.5. SUGGESTING ACCURATE DOMAIN ONTOLOGIES AND ANNOTATED

BPMN PROCESSES 57

an accurate match and might be added into the list with results. This list is sorted from

the concepts with the highest score to lowest one (that is from 1.0 to 0.5).

 The following step of matching process implements a second fixed threshold

(in 0.7). This threshold is also indicative and emerges from in-depth testings at

different results every time. In this phase, the system checks the similarity score of the

first concept in the above list and if it is beyond the given (0.7) threshold, then the

domain ontology or annotated BPMN model, in which this concept is subject to, is

considered accurate and it is added in the final list with the most accurate domain

ontologies and annotated BPMN models.

 In the Figure 4.6, we can see the suggested domain ontologies, as well as the

suggested annotated BPMN models for annotating the activities of the "eShopping

1.0" BPMN process model. Specifically, in this example, we annotate the task "search

for a product". While drawing the process activity and before the process of its name

is completed, the system searches its database to verify if there are accurate domain

ontologies for this activity or even already semantically annotated BPMN models with

the same concepts. If there are, the system displays them in a model select box and the

user can select one of them, either an annotated BPMN model or an ontology. In our

example, it has found that there is an accurate annotated BPMN model named

"annotated_onLineShop 1.0" and two accurate domain ontologies named

"onLineShopDomainOntology 1.0" and "onLineShopNew 1.0".

Figure 4.6: The user can select one of the accurate domain ontologies or one of the accurate annotated

BPMN elements. Here he has selected the annotated_onLineShop 1.0

58 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR

SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

 As we can notice on the left side of the Figure, inside the light turquoise

rounded rectangles, in the "Explorer" of SeMFIS tool, there are also other annotated

BPMN models (annotated_CartManagement, annotated_testing), as well as other

ontologies (MarineTLOontology, pizza, pizzaOntology) in the SeMFIS database but

none of them has related subjects (namely concepts with a score over of 0.7) and for

this reason they are not being displayed in the model select box.

 If the user selects the annotated BPMN model "annotated_onLineShop 1.0"

for the automatically semantic annotation of the current BPMN activity, the system

will display the most accurate semantic annotations of this process diagram, as shown

in Figure 4.7. The list is ranked from the annotation with the highest score

("to_search_for product") to the annotation with the lowest score ("stock_data").

Figure 4.7: In this box, only the most accurate concepts of the selected annotated BPMN model are

appeared and the user can select one of them

Comparing the Figures 4.7 and 4.2 will notice that the accurate concepts which are

suggested by the selected annotated model are much less from them which are

suggested by the selected domain ontology meaning that the user gains in time and

effort since the system does not need to search through the entire sum of concepts of

a domain ontology but only between the concepts which have already been annotated

in the selected annotated BPMN model.

59

Chapter 5

Presentation of new functionalities of SeMFIS tool

In this chapter, we focus on new functionalities we added as part of our investigation

in the modeling environment of SeMFIS tool which are: (1) automatically semantic

annotations, (2) RDF/OWL export and (3) querying. In summary, the new

functionalities of SeMFIS tool should assist the end user in:

 Adding semi-automatically semantic annotations on existing BPMN process

models, that is adding linkable references to domain ontology concepts, and

subsequently creating new annotated BPMN models, keeping intact the

original ones. These semantic tags assign the important information to

perform an early analysis of the process in order to find critical patterns and

can be used to guide the user to recognize problems at design time and

features which can be useful in further refinements of the process

specification [36].

 Exporting the existing ontologies in database and the annotated BPMN

models that are created in RDF/OWL format.

 Querying the existing semantically annotated BPMN models, mainly for

reusing them or fragments of them which will decrease the effort and time

required for modeling of any new processes.

 In the following sub-sections we provide a detailed account of each one of the

three new functionalities of SeMFIS tool, preceded by a brief description of the

SeMFIS architecture tool.

5.1. Brief Description of Architecture of SeMFIS tool

SeMFIS tool [30] has been implemented using the Microsoft Windows-based ADOxx

meta modeling platform. ADOxx is professionally developed by BOC Group, a spin-

off of the University of Vienna. An overview of the architecture of the current version

of SeMFIS tool is shown in Figure 5.1.

 At the bottom rests the repository with the modeling subsystem and the

Microsoft SQL Server relational database. The modeling subsystem is a Microsoft

60 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Windows application written in C++ and is responsible for handling the persistence of

the models in the database, for executing ADOscript statements and for managing the

user authentication.

 On top of the repository there are the application components for (1)

modeling, which handles the model editors, (2) analysis, which provides the AQL

query functionality, (3) the web service interface, which accepts SOAP calls

containing ADOscript statements and (4) import/export of model information via

XML/ADL format. The protégé plugin is integrated via the XML interface of the

import/export application component.

 Finally, the user interaction is accomplished through a standard Microsoft

Windows desktop user interface.

Figure 5.1: SeMFIS Architecture based on ADOxx Platform

 We have extended SeMFIS features and specifically Modeling, Analysis and

Import/Export functionalities adding characteristics of Semantic Technologies like

ontologies, repositories and SPARQL queries. We managed it using ADOscript

statements of ADOxx community, the Java language in NetBeans IDE Platform and

the Virtuoso - Openlink server. In order to connect with Virtuoso we used Jena jars

and Sesame libraries, whereas to convert XML format to OWL one we used jfact-

1.2.1.jar, owlapi-distribution-3.5.0.jar, owlexplanation-1.1.2.jar and telemetry-

1.0.0.jar libraries. Virtuoso had also to be installed locally to our computer.

5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED

SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 61

5.2. Semi-Automated Suggestions for Ontology-Based Semantic

Annotation of BPMN process models

Semantically annotating business processes [11] is focusing on enriching the

elements of the process with concepts taken from a domain ontology either already

available in SeMFIS database or is created/ updated for the specific process domain

by ontology experts. Semantic annotations can be used to augment business process

models with different information. In our work, they are used to define the domain

semantics of the activities of a BPMN process diagram, meaning that they are used to

characterize the nature of each process activity according to a domain ontology.

Figure 5.2 depicts an excerpt of a semantically annotated BPMN model
2
, where the

activities of a business process model have been enriched with automatically

semantic annotations.

Figure 5.2: Excerpt of a semantically annotated BPMN model

 Semantic annotations are linkable, meaning that if you click on them, they will

transfer you in the specific concept of the domain ontology which they were exported

from. Any semantic annotation is proceeded by the symbol "@" in order to separate it

from plain text annotations which start with the symbol "[". Specifically, the syntax

of a semantic annotation is specified by the symbol "@", followed by an annotation

term (domain concept) and then by the name and - if existing - by the version of the

domain ontology, which was preselected for the annotation process.

<< @ Annotation Term (Class) - Name and Version of Domain Ontology (Ontology

Model) >>

2
 The example of "on-Line Shop" business process has been copied from

http://selab.fbk.eu/OnLineShop/

62 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

 Using the modeling component of SeMFIS tool, a business analyst can create

a business process diagram based on BPMN 2.0 Specification as shown in Figure 5.3.

Figure 5.3: Creating a business process diagram based on BPMN 2.0. Specification

 While drawing a process activity and before the process of its name is completed, the

system searches its database to verify if there are accurate domain ontologies for this

activity or even already semantically annotated BPMN models with the same

concepts. If there are, the system displays them in a model select box and the user can

select one of them, either an annotated BPMN model or an ontology. For example,

regarding the activity "choose a product" of BPMN process diagram "e-shopping" in

Figure 5.4, the user can select either the already semantically annotated BPMN model

"annotated_onLineShop 1.0" or a domain ontology between the

"onLineShopDomainOntology 1.0" and the "onLineShopNew 1.0" of the model

select box. As we can notice on the left side of the figure, inside the light turquoise

rounded rectangles, in the "Explorer" of SeMFIS tool, there are also other annotated

BPMN models (annotated_CartManagement, annotated_testing), as well as other

ontologies (MarineTLOontology, pizza, pizzaOntology) in the SeMFIS database but

none of them has related subjects and for this reason they are not being displayed in

the model select box. The procedure on how the system selects the annotated BPMN

models and the ontologies where the former will be displayed on the model select

box has previously been described in the section 4.5. If there are not accurate

annotated BPMN models or ontologies, the system proceeds the process diagram,

leaving the user to draw the next desirable BPMN element. The next time where a

user will use the system or whenever he/she clicks on the button "FindAnnotations"

5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED

SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 63

of the top menu, it automatically searches for all not semantically annotated BPMN

models in case a candidate ontology has been created or has been imported in the

database or even if an existing ontology in the database has been updated with

candidate concepts. Then the system searches so as to find any correlations between

these BPMN models and detects which are the most associated diagrams with the

concepts of the new ontologies or the updated ones. Afterwards, the system presents

them in a model select box where the user will select the diagram which he/she wants

to annotate and the semantic annotation process starts automatically. If the system

cannot find a suggestion for an activity label, the user can search manually for

semantically annotated this activity label, as described below and shown in Figure

5.8. Then the automatically semantic annotation process is continued until all the

activity labels are annotated. In the end, the system asks the user if he/she wants to

create the corresponding semantically annotated BPMN model. If he/she clicks "ok",

the new, semantically annotated BPMN model is created in the SeMFIS database,

keeping the original one as well. If the user clicks "cancel", he/she will be able to

create the semantically annotated model at any other time he/she wishes clicking on

the "Annotated_BPMN" button of the top menu, as described below.

Figure 5.4: Selecting an accurate annotated BPMN model or ontology of SeMFIS database

 If the user selects an annotated BPMN model for the automatically semantic

annotation of the current BPMN activity, as shown in Figure 5.4 in the red rounded

64 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

rectangle, the system will display the most accurate semantic annotations of this

process diagram, as shown in Figure 5.5.

Figure 5.5: Selecting semantic annotation from already annotated BPMN model

The advantage of choosing an already annotated BPMN model is that the user gains

in time and effort since the system does not need to search through the entire sum of

concepts of a domain ontology but only between the concepts which have already

been annotated in the selected annotated BPMN model.

 If the user selects an ontology for the automatically semantic annotation of the

current BPMN activity, as shown in Figure 5.4 in the green rounded rectangle, the

system will display the most accurate semantic annotations (according the similarity

measures which have already been described in the section 4.4) of this ontology, as

shown in Figure 5.6.

5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED

SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 65

Figure 5.6: Selecting annotations from a selected domain ontology

 In the case where the user cannot find an accurate semantic annotation of the

recommended list, the system gives him/her the opportunity to search manually for

semantic annotations from any domain ontology he/she wishes. Specifically, the user

will have to click the "Cancel" button and a warning message for manually searching

will be displayed on the monitor, as shown in Figure 5.7. Then, by clicking on the

"ok" button, the "notebook" of the current BPMN activity opens in the "Semantic

Annotation" Chapter, as shown in Figure 5.8. Clicking on the "blue cross" in the

"Semantic annotation" box, a window opens where the user can select an ontology

from the "Target model" list (left side of the window) and then an object of the

selected ontology from the "Target object" list (right side of the window). Finally, if

he/she clicks on "add reference" button, the selected concept is added as semantic

annotation in the current BPMN activity. Clicking on the "apply" button, the whole

procedure is completed and the semantic annotation is displayed above the current

BPMN activity in the monitor, as shown in the Figure 5.9.

66 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Figure 5.7: Warning message for manually searching semantic annotations

Figure 5.8: Manually selection of semantic annotations

5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED

SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 67

Figure 5.9: Semantic annotation in the BPMN task "choose a product"

 As it already has been indicated, if the user clicks on the semantic annotation,

in our example on the annotation "@to_select_product (Class) -

onLineShopDomainOntology 1.0 (Ontology Model)", the system will transfer him/her

in the specific concept of the selected ontology, as shown in the Figure 5.10.

Figure 5.10: Transfer on the specific concept of the selected ontology after clicking on the semantic

annotation "to_select_product"

 When the user finishes the process diagram or whenever he/she wants during

drawing the diagram, he/she can click the "Annotated_BPMN" button from the top

menu and the system automatically produces the corresponding annotated BPMN

model. With this way, business analysts have both the original process diagram

(without semantic annotations) and the corresponding annotated diagram with all the

selected semantic annotations, as shown in the Figure 5.11. If the user decides to

change the label of an already existing activity, then the system searches for new

semantic annotation for this activity and the annotated model is updated automatically

with the new semantic annotation either the change is made to the original model or to

the corresponding annotated one. The new label of the already existing activity is

updated in both models at the same time. If the user has left the original diagram

incomplete and decides to complete it another time, the system again searches for

semantic annotations for the new activity labels which are added in the original

model. In order to transfer them in the corresponding annotated model, the user has to

click on the "Annotated_BPMN" button and the corresponding annotated model is

updated with the new BPMN elements, as well as the new semantic annotations which

disappear from the original one.

68 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Figure 5.11: The original BPMN diagram "eShopping 1.0" (top) and the corresponding annotated

diagram "annotated_eShopping 1.0" (bottom)

5.3. OWL / RDF Export

SeMFIS tool [30] provides import and export interfaces, via the application

component for import/export, for exchanging model information in ADL and XML

formats. In addition, it has integrated a Protégé plugin via the XML interface for

importing owl ontologies from the Protégé platform. The XML import/export is used

to exchange information from arbitrary model types. It is therefore more generic and

well suited for exchanging information with other tools and platforms. On the other

hand, the ADL import/export interface is used for exchanging information with other

ADOxx based tools that do not offer an XML interface.

 At this moment, the SeMFIS tool does not support an OWL/RDF export

interface for exchanging information with tools and platforms which support owl/rdf

formats and do not offer an XML interface. Therefore, integrating OWL/RDF export

interface in the SeMFIS tool, will help it to collaborate with platforms and

repositories which support owl format, allowing better understanding, documenting

and querying on semantically annotated BPMN models, as will see in the next section.

 The OWL/RDF export functionality has been added to import/export

component of SeMFIS tool, in "model" menu (top, left menu) under the XML export.

In the first step, when the user clicks on it, an XML export window appears in the

monitor as shown in the Figure 5.12. The user can select to export either an ontology

5.3. OWL/ RDF EXPORT 69

or a semantically annotated BPMN model. If the last one includes sub-models, the

user has to check the command "including referenced models" in order to be

integrated in the xml file. In the frame "Export file", the user selects where to save the

xml file and subsequently its name. Finally, clicking on "Export" button, an xml file is

created in the path which has been defined by the user and an information box appears

for the exported file.

Figure 5.12: The first step of OWL/RDF export is the xml export of selected ontology or annotated

BPMN model

The user cannot export any other model type. In this case, a warning message appears

which informs the user that only annotated BPMN models and ontologies can be

exported, as shown in the Figure 5.13, and the "XML export" window appears again.

70 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Figure 5.13: Warning message for OWL/RDF export

 In the second step, if the user has selected to export an ontology, a message

informs him/her about saving ontology in owl format and afterwards the user have to

select where to save the owl file adding in the end of its name the suffix ".owl". An

excerpt of exporting the "onLineShopDomainOntology" ontology in owl format is

shown in Figure 5.14.

 If the user has selected to export a semantically annotated BPMN model,

except from the xml file which is exported by the user, the system also exports

automatically the general ontology "basicBPMN_Ontology" which has been

described in chapter 3. Hereafter, the owl file is exported and is saved as described in

the above paragraph. The new owl file is the general ontology

"basicBPMN_Ontology" enhanced with a set of instances which has been derived

from the selected semantically annotated BPMN model. An excerpt of exporting the

"Annotated_eShopping 1.0" annotated BPMN model in owl format is shown in Figure

5.15.

5.3. OWL/ RDF EXPORT 71

72 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Figure 5.14: Excerpt of "onLineShopDomainOntology" ontology in owl format

5.3. OWL/ RDF EXPORT 73

Figure 5.15: Excerpt of "Annotated_eShopping 1.0" annotated BPMN model in owl format

74 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

5.4. Sparql Queries

SeMFIS tool has also integrated the analysis component of the ADOxx platform

which is used for composing and executing queries expressed in AQL (ADOxx Query

Language). AQL is not as powerful language as SQL for relational databases and

SPARQL for semantic web. It can be used for easily gathering information from the

models in a relational database but not for retrieving data from repositories in the

semantic web. Technically speaking, it is a difficult language in learning, so it is

limited to a small BPMN community which focuses on applications based on ADOxx

platform and has knowledge about ADOscript and therefore about AQL language.

 On the other hand, SPARQL is a declarative semantic query language for

databases for retrieving and manipulating data stored in RDF format. It was made a

standard by the World Wide Web Consortium (W3C) and one of the key technologies

of the semantic web. For this reason we decided to use SPARQL query language for

retrieving information out of the RDF/OWL files which are exported by the SeMFIS

tool, as analyzed in the previous section.

 At this point, it is essential to briefly introduce the SPARQL query language.

Still, before that, it will come in handy to remember what an RDF Triple is. Assuming

there is a pair wise disjoint infinite sets I, B, and L (IRIs, Blank nodes, and Literals,

respectively). An RDF triple is a tuple (v1, v2, v3) (I B) × I × (I B L) where

v1 is the subject and can be IRIs or Blank node, v2 is the predicate and can be IRIs

and v3 is the object and can be IRIs, Blank node or literal. Most forms of SPARQL

query [58] contain a set of triple patterns called a basic graph pattern. Triple patterns

are like RDF triples except that each of the subject, predicate and object may be a

variable prefixed by the symbol "?" or "$". A basic graph pattern matches a sub-graph

of the RDF data when RDF terms from that sub-graph may be substituted for the

variables and the result is RDF graph equivalent to the sub-graph. An RDF graph is a

set of RDF assertions, manipulated as a labeled directed graph. So, queries describe

sub-graphs of the queried RDF graph. The basic syntax of a SPARQL query is:

Table 5.1: basic syntax of SPARQL queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT clause

(FROM <http://....)

WHERE { clause

}

MODIFIER clause

5.4. SPARQL QUERIES 75

The PREFIX keyword associates a prefix label (like rdf:) with an IRI (like

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>). Most of the times the above

prefixes are the standard predefined namespace prefixes into SPARQL Endpoints for

SPARQL queries, so the user does not need to rewrite them. But the user, of course,

can add as many prefixes as the vocabularies (ontologies) he/she uses. SELECT

clause retrieves variables and their bindings as a table. FROM clause is optional and

indicates the sources for the data against which to find matches. WHERE clause

defines patterns to match against the data. MODIFIER clause modifies the result set,

for example the modifiers ORDER BY, OFFSET or LIMIT re-organize rows whereas

GROUP BY combines them.

 Let us see an example of a SPARQL query. Suppose we want to find all the

Tasks of a process which have semantic annotation with the class

"to_search_for_product" as well as the process which it belongs in. The syntax of

SPARQL query is:

Table 5.2: Example of a SPARQL query

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/basicBPMN_Ontology#>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:has_SemanticAnnotation.

basicBPMN_Ontology:to_search_for_product.

?activity basicBPMN_Ontology:isBaseElementOf ?process.

}

As illustrated by the above Table, the prefix "basicBPMN_Ontology" is added by the

user to indicate the ontology that contains the patterns of WHERE clause; SELECT

clause indicates the variables where the data will be retrieved as a table; the FROM

clause gives us a specific graph in which the results will be searched. The WHERE

clause instead denotes the triple patterns that match the data we want to retrieve from

the specific graph "BPMNontology".

 In order to be able to work with SPARQL queries, we had to upload owl files

which are exported from the SeMFIS tool in a server which manages RDF data. We

selected for this reason the Virtuoso - Open Source because it is a scalable cross-

platform server that combines Relational, Graph, and Document Data Management

with Web Application Server and Web Services Platform functionality. So, it is a

hybrid universal server where triple store access is available via SPARQL.

 In analysis component of SeMFIS tool, under the AQL queries, we added the

SPARQL queries functionality, as shown in Figure 5.16. Clicking on it, all the

annotated BPMN models in the SeMFIS explorer are converted to an RDF/OWL file

76 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

automatically and then the latter is uploaded to Virtuoso - Open Source server.

Subsequently, a box with standardized SPARQL queries appears

in the screen giving the user the opportunity to select one of

them, as shown in the Figure 5.17. We have made 7 standardized

queries with the most useful components for a member of a

BPMN community. The 7 standardized queries are:

1. Give all the activities which have semantic annotation

with the class ... as well as the process which belongs in.

2. Give all distinct activities inside a sub-process and the sub-process.

3. Give all the distinct activities of a process which consist sub-process of

another process.

4. Get all activities which are connected with the activity ... with the relation ...

5. How many BPMN processes are related with ...

6. Give all the models that include the sub-process: ...

7. Give all the common sub-processes of a whole of models.

Figure 5.17: Select one of the standardized SPARQL queries or define your own query with the 8

selection

In some of queries, the user has to add additional information on what interests

him/her. For example, if the user selects the query 1, an input field asks from the user

to add the class which he/she is interested for (e.g. "to search for product"), as shown

in the Figure 5.18.

Figure 5.18: The user is interested to find all the activities which have semantic annotation with the

class "to_search_for_product"

Figure 5.16: SPARQL queries

functionality

5.4. SPARQL QUERIES 77

The final results of a query are represented as a table with links where we can see the

type of activity (e.g. Task), the activity label (e.g. search for a product) and the model

which contains it (e.g. annotated_onLineShop 1.0), as shown in the Figure 5.19.

Figure 5.19: Results of the query 1, giving as input field the class "to search for product"

If you click on one of the aforementioned links, it transfers you in the specific activity

or process which automatically turns red, as shown in Figure 5.20, where we have

clicked on the first result and the system has transfered us on the model

"annotated_onLineShop 1.0" and specifically in the red task with the label "search for

product".

Figure 5.20: Clicking on the first result, it transfers us on the task "search for product" of model

"annotated_onLineShop 1.0"

Finally, we give the opportunity to a business member, who has the knowledge, to

make his/her own SPARQL query selecting the eighth query called "User defined

sparql queries" of the "Standardized SparQL Queries" box. A new frame appears

having a predefined prefix for our basic BPMN ontology, as well as the basic syntax

of a SPARQL query, as shown in Figure 5.21. We have also predefined the graph

where the query will be done in order to save time but the user can delete it and search

in each and every one of the graphs of Virtuoso server.

78 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

SeMFIS TOOL

Figure 5.21: The frame where a user can make his/her own SPARQL query

 Querying the process space with a machine readable representation of a logical

expression which defines a subset of facts of the process space is a very important

task. It can help the BPMN community to reuse parts of business process models

when creating a new one, to detect cross-process relations and to reinforce the

interconnectivity and interoperability saving costs and time when establishing inter-

organizational business collaborations.

79

Chapter 6

Conclusion and Future Work

In this thesis, we presented an approach for the integration of semantic annotations in

modeling tools to support the graphical representation of business process models

with concepts derived from domain ontologies. These annotations clarify the activity

labels of a model by associating it to candidate domain concepts. The goal of semantic

annotations is to make these business process models more precise, to increase the

refinement of business process modeling and finally to enable querying process model

repositories. Moreover, a semantically annotated model is both comprehensible to

humans and accessible to machines because of the integration with ontologies.

 For this purpose, we have extended the SeMFIS tool, using the freely available

ADOxx platform, supporting the implementation of semantic annotations on business

process activities (tasks, sub-processes), which have created with BPMN 2.0

language, via semi-automated suggestions. Specifically, at the time where a user

designs a business process model, the tool will retrieve and recommend semantic

annotations for the activities of this business process model using an ontology based

data matching strategy. The user will have the choice either to use one of the

automated suggestions or to search manually for it. The matching strategy is based on

calculating a combined similarity measure between a BPMN activity label and

concepts of a selected domain ontology. The combined similarity measure consists of

string algorithms where the strength of each one has been weighted, as well as

linguistic and syntactic metrics using the WordNet dictionary. Finally, a threshold has

been implemented in the final result in order to accurately and efficiently detect the

semantic annotations for BPMN activity labels. In our implementation, the existence

of suitable domain ontologies in SeMFIS database is uncertain. Whenever the

concepts of one or more ontologies, which is created or inserted in the semfis

database, match with the activity labels of a business process model, the system

automatically suggests this ontology as candidate for annotating, using the same

procedure of similarity measures followed for suggested semantic annotations.

 Apart from adding semi-automatically suggested semantic annotations on

existing BPMN process models, we have also extended the SeMFIS tool to export the

existing ontologies in its database, as well as the annotated BPMN models which are

created in it, using an RDF/OWL format so as to make them machine-accessible. For

this purpose, we have created a basic BPMN ontology which encodes the

80 CHAPTER6. CONCLUSION AND FUTURE WORK

classification of the most basic elements of BPMN, together with the most useful

attributes and conditions describing how the elements can be combined to obtain a

BPMN process model. Finally, we exploited the basic BPMN ontology to querying,

using SPARQL language, the existing semantically annotated BPMN models, mainly

for reusing them or fragments of them which will decrease the effort and time

required for modeling any new processes.

 In our future work, we will validate our approach employing more users to

implement it and larger repositories. Our approach was performed for processes

modeled in BPMN 2.0 language. Further generalization of our strategy for other

process modeling notations is an upcoming work, too.

81

Appendix A

Appendix

A.1 Requirements

In order to be able to use the extended SeMFIS tool, with its new functionalities, the

user have to install the following software:

 WordNet 3.0 for Windows English dictionary

 Virtuoso - Open Link Server

WordNet Installation

 The WordNet 3.0 for Windows English dictionary is available for

downloading at: http://wordnet.prenceton.edu/wordnet/publications/ and the user

have to install it under the path: "C:\WordNet-3.0\dict".

Virtuoso Installation

 The user have to download Virtuoso - Open Link pre-built binaries from:

https://sourceforge.net/projects/virtuoso/files/virtuoso/6.1.8/virtuoso-opensource-x64-

20131211.zip/download for Windows 64 bit and

https://sourceforge.net/projects/virtuoso/files/virtuoso/6.1.8/virtuoso-opensource-x86-

20131211.zip/download for Windows 32 bit.

 The pre-built binaries of Virtuoso for windows require the Microsoft Visual

C++ 2010 redistributable package be installed. If the user has not installed it earlier,

he/ she can download it from the following locations:

http://www.microsoft.com/download/en/details.aspx?id=5555 for 32-bit windows and

http://www.microsoft.com/download/en/details.aspx?id=14632 for 64-bit windows.

 In order to install the pre-binaries of Virtuoso the following instructions must

be followed:

 Unzip in a folder (e.g. C://virtuoso-opensource/). This will create a directory

virtuoso-opensource, containing the following subfolders:

http://wordnet.prenceton.edu/wordnet/publications/

82 APPENDIX A APPENDIX

Figure A.1.1: Virtuoso subfolders

 Start the system control panel

o Right click "My Computer" → "Properties" → "Advanced System

Setting".

 Click to "Advanced" → "Environment Variables", create a new system

environment variable called VIRTUOS_HOME and put as value the folder

path of virtuoso (e.g. C://virtuoso-opensource/).

 Locate the PATH system environment variable and click to edit it.

 Add the string below to the end of the existing path value:

o ;%VIRTUOSO_HOME%/bin;%VIRTUOSO_HOME%/lib

 IMPORTANT: do not over write the existing path value. Doing so will disrupt

all use of your Windows environment.

 Click ok or exit buttons until you have fully exited the System Control Panel.

 Download the following php.ini file and manually place it in the "database"

directory of Virtuoso: ftp://download.openlinksw.com/support/vos/php.ini

 Run a command line window as administrator: e.g. search "cmd", right click

on "cmd.exe", click "run as administrator".

 Verify your virtuoso binary by typing in the command: "virtuoso-t-?"

 Go to the folder "database": e.g. run the command

cd %VIRTUOSO_HOME%/database

 Create a new Windows Service with the following command:

virtuoso-t +service create +instance MyVirtuosoInst +configfile virtuoso.ini

 A new service with the name "Virtuoso_MyVirtuosoInst" has been created.

 Once created, you can manage the Virtuoso server through the standard

windows services manager (start → control panel → administrative tools →

services or component services). It will be listed as OpenLink Virtuoso Server

[Instance name].

 Start the Virtuoso Server: e.g. virtuoso-t +instance MyVirtuosoInst +service

start.

Limitations

A.1 REQUIREMENTS 83

The Ontologies which are created, inserted or updated on SeMFIS database should not

contain classes, properties or instances with the word "check" in its name. If there is

one, it must be changed with another synonym word.

The BPMN process model names should not contain underlines (e.g. on_line_shop)

otherwise there will be problem with automation of the annotated BPMN model

names. It is better to separate words that make up a BPMN model name with the first

letter of each word to be capitalized (e.g. onLineShop).

A.2 SPARQL Queries Syntax

The syntax of the seven standardized SPARQL queries is:

Table A.2.1: SPARQL Queries Syntax

Java SPARQL Queries syntax SPARQL Queries syntax

switch(sparqlQueries){

case "1. Give all the activities which have semantic

annotation with the class ... as well as the process which

belongs in.":

 myPanel.add(new JLabel("Give all the activities which

have semantic annotation with the class\n"));

String inputField =

(String)JOptionPane.showInputDialog(null, myPanel,

"input field", JOptionPane.PLAIN_MESSAGE);

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

 "\n" +

"select ?activity ?process\n"

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

 "{?activity a basicBPMN_Ontology:Task.}\n" +

"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.}\n"

"?activity

basicBPMN_Ontology:has_SemanticAnnotation

basicBPMN_Ontology:"+inputField.replace(" ",

"_")+".\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.\n" +

"}";

break;

Query 1. "Give all the activities which have semantic

annotation with the class ... as well as the process

which belongs in."

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Task.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.}

?activity

basicBPMN_Ontology:has_SemanticAnnotation

basicBPMN_Ontology:inputField.replace(" ", "_")

?activity basicBPMN_Ontology:isBaseElementOf

?process

}

case "2. Give all distinct activities inside a subprocess

and the subprocess.":

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n"

"\n" +

"select DISTINCT ?activity ?subprocess\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"{?activity a basicBPMN_Ontology:Task.}\n" +

"UNION\n" +

Query 2. "Give all distinct activities inside a

subprocess and the subprocess."

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT DISTINCT ?activity ?subprocess

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Task.}

84 APPENDIX A APPENDIX

 "{?activity a basicBPMN_Ontology:Sub-Process.}\n" +

"?sub a basicBPMN_Ontology:Sub-Process.\n" +

"?sub basicBPMN_Ontology:has_SubprocessRef

?subprocess.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?subprocess.\n" +

"}";

break;

UNION

{?activity a basicBPMN_Ontology:Sub-Process.}

?sub a basicBPMN_Ontology:Sub-Process.

?sub basicBPMN_Ontology:has_SubprocessRef

?subprocess.

?activity basicBPMN_Ontology:isBaseElementOf

?subprocess.

}

case "3. Give all the distinct activities of a process which

consist subprocess of another process.":

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

 "\n" +

"select DISTINCT ?activity ?subprocess\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"{?activity a basicBPMN_Ontology:Task.}\n" +

"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.}\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.\n" +

"?sub basicBPMN_Ontology:isBaseElementOf ?pr2.\n"

+

"?sub basicBPMN_Ontology:has_SubprocessRef

?subprocess.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?subprocess.\n" +

 "}";

break;

Query 3. " Give all the distinct activities of a process

which consist subprocess of another process."

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT DISTINCT ?activity ?subprocess

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Task.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.}

?activity basicBPMN_Ontology:isBaseElementOf

?process.

?sub basicBPMN_Ontology:isBaseElementOf ?pr2.

?sub basicBPMN_Ontology:has_SubprocessRef

?subprocess.

?activity basicBPMN_Ontology:isBaseElementOf

?subprocess.

}

case "4. Get all activities which are connected with the

activity ... with the relation ...":

String[] relationOptions = {"Associations",

"Data_Associations", "Message_Flows",

"Sequence_Flows"};

JTextField inputTextField = new JTextField(20);

myPanel.add(new JLabel("Get all activities which are

connected with the activity\n"));

myPanel.add(inputTextField);

myPanel.add(Box.createVerticalStrut(60)); // a spacer

myPanel.add(new JLabel("with the relation:\n"));

inputField = (String)JOptionPane.showInputDialog(null,

myPanel, "input field",

JOptionPane.PLAIN_MESSAGE, null, relationOptions,

relationOptions[0]);

if(inputField.contentEquals("Associations")) {

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"{?activity a basicBPMN_Ontology:Text_Annotation.\n"

+

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

"UNION\n" +

Query 4. " Get all activities which are connected with

the activity ... with the relation ..."

Syntax:

Associations

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Text_Annotation.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

UNION

{?activity a basicBPMN_Ontology:Group.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

?x basicBPMN_Ontology:has_AssociationSourceRef

basicBPMN_Ontology:inputTextField.getText().replac

e(" ", "_").

?x basicBPMN_Ontology:has_AssociationTargetRef

?activity.

}

Data_Associations

PREFIX basicBPMN_Ontology:

A.2 SPARQL QUERIES SYNTAX 85

"{?activity a basicBPMN_Ontology:Group.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

"?x basicBPMN_Ontology:has_AssociationSourceRef

basicBPMN_Ontology:"+inputTextField.getText().repla

ce(" ", "_")+".\n" +

"?x basicBPMN_Ontology:has_AssociationTargetRef

?activity.\n" +

"}";

} else if(inputField.contentEquals("Data_Associations"))

{

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"?activity a basicBPMN_Ontology:Data_Object.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.\n" +

"?x

basicBPMN_Ontology:has_DataAssociationSourceRef

basicBPMN_Ontology:"+inputTextField.getText().repla

ce(" ", "_")+".\n" +

"?x

basicBPMN_Ontology:has_DataAssociationTargetRef

?activity.\n" +

"}";

} else if(inputField.contains("Message_Flows")) {

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"{?activity a basicBPMN_Ontology:Task.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

 "UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

"?x basicBPMN_Ontology:has_MessageSourceRef

basicBPMN_Ontology:"+inputTextField.getText().repla

ce(" ", "_")+".\n" +

"OPTIONAL{?x

basicBPMN_Ontology:has_MessageTargetRef

?activity.}\n" +

"?x basicBPMN_Ontology:has_MessageTargetRef

?y.\n" +

"?z basicBPMN_Ontology:has_SequenceSourceRef

?y.\n" +

"?z basicBPMN_Ontology:has_SequenceTargetRef

?activity.\n" +

"}";

}else if (inputField.contains("Sequence_Flows")) {

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

?activity a basicBPMN_Ontology:Data_Object.

?activity basicBPMN_Ontology:isBaseElementOf

?process.

?x

basicBPMN_Ontology:has_DataAssociationSourceRef

basicBPMN_Ontology:inputTextField.getText().replace

(" ", "_").

?x

basicBPMN_Ontology:has_DataAssociationTargetRef

?activity.

}

Message_Flows

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

?x basicBPMN_Ontology:has_MessageSourceRef

basicBPMN_Ontology:inputTextField.getText().replace

(" ", "_").

OPTIONAL{?x

basicBPMN_Ontology:has_MessageTargetRef

?activity.}

?x basicBPMN_Ontology:has_MessageTargetRef ?y.

?z basicBPMN_Ontology:has_SequenceSourceRef ?y.

?z basicBPMN_Ontology:has_SequenceTargetRef

?activity.

}

Sequence_Flows

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

{?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.

?activity basicBPMN_Ontology:isBaseElementOf

?process.}

?x basicBPMN_Ontology:has_SequenceSourceRef

basicBPMN_Ontology:inputTextField.getText().replace

86 APPENDIX A APPENDIX

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"{?activity a basicBPMN_Ontology:Task.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf

?process.}\n" +

"?x basicBPMN_Ontology:has_SequenceSourceRef

basicBPMN_Ontology:"+inputTextField.getText().repla

ce(" ", "_")+".\n" +

"{?x basicBPMN_Ontology:has_SequenceTargetRef

?activity.}\n"+

"UNION\n" +

"{?x basicBPMN_Ontology:has_SequenceTargetRef

?y.\n" +

"?z basicBPMN_Ontology:has_SequenceSourceRef

?y.\n" +

"?z basicBPMN_Ontology:has_SequenceTargetRef

?activity.}\n" +

"}";

}

break;

(" ", "_").

{?x basicBPMN_Ontology:has_SequenceTargetRef

?activity.}

UNION

{?x basicBPMN_Ontology:has_SequenceTargetRef ?y.

?z basicBPMN_Ontology:has_SequenceSourceRef ?y.

?z basicBPMN_Ontology:has_SequenceTargetRef

?activity.}

}

case "5. How many BPMN processes are related with

...":

myPanel.add(new JLabel("How many BPMN processes

are related with\n"));

inputField = (String)JOptionPane.showInputDialog(null,

myPanel, "input field",

JOptionPane.PLAIN_MESSAGE);

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?process\n"

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"?process a basicBPMN_Ontology:BPMN_Process.\n" +

"FILTER regex(?process, \".*"+inputField+"*.\",

\"i\")\n" +

"}";

break;

Query 5. "How many BPMN processes are related

with"

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

?process a basicBPMN_Ontology:BPMN_Process.

FILTER regex(?process, \".*"inputField"*.\", \"i\")

}

case "6. Give all the models that include the subprocess:

...":

myPanel.add(new JLabel("Give all the models that

include the subprocess\n"));

inputField = (String)JOptionPane.showInputDialog(null,

myPanel, "input field",

JOptionPane.PLAIN_MESSAGE);

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

Query 6. " Give all the models that include the

subprocess:"

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

?sub a basicBPMN_Ontology:Sub-Process.

?sub basicBPMN_Ontology:isBaseElementOf ?process.

A.2 SPARQL QUERIES SYNTAX 87

"select ?process\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"?sub a basicBPMN_Ontology:Sub-Process.\n" +

"?sub basicBPMN_Ontology:isBaseElementOf

?process.\n" +

"?sub basicBPMN_Ontology:has_SubprocessRef

basicBPMN_Ontology:"+inputField+".\n" +

"}";

break;

?sub basicBPMN_Ontology:has_SubprocessRef

basicBPMN_Ontology:inputField

}

case "7. Give all the common subprocesses of a whole of

models.":

sparqlQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/3/

basicBPMN_Ontology#/>\n" +

"\n" +

"select ?subprocess\n" +

"FROM <http://localhost:8890/BPMNontology> \n"+

"where {\n" +

"?sub1 a basicBPMN_Ontology:Sub-Process.\n" +

"?sub1 basicBPMN_Ontology:has_SubprocessRef

?subprocess.\n" +

"?sub1 basicBPMN_Ontology:isBaseElementOf ?pr1.\n"

+

"?sub2 a basicBPMN_Ontology:Sub-Process.\n" +

"?sub2 basicBPMN_Ontology:has_SubprocessRef

?subprocess.\n" +

"?sub2 basicBPMN_Ontology:isBaseElementOf ?pr2.\n"

+

"FILTER (?pr1 != ?pr2)\n" +

"}";

break;

Query 7. "Give all the common subprocesses of a

whole of models."

Syntax:

PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/

3/basicBPMN_Ontology#/>

SELECT ?subprocess

FROM <http://localhost:8890/BPMNontology>

WHERE {

?sub1 a basicBPMN_Ontology:Sub-Process.

?sub1 basicBPMN_Ontology:has_SubprocessRef

?subprocess.

?sub1 basicBPMN_Ontology:isBaseElementOf ?pr1.

?sub2 a basicBPMN_Ontology:Sub-Process.

?sub2 basicBPMN_Ontology:has_SubprocessRef

?subprocess.

?sub2 basicBPMN_Ontology:isBaseElementOf ?pr2.

FILTER (?pr1 != ?pr2)

}

88 APPENDIX A APPENDIX

89

Bibliography

 [1] Branimir Wetzstein, Zhilei Ma, Agata Filipowska, Monika Kaczmarek, Sami

Bhiri, Silvestre Losada, Jose-Manuel Lopez-Cobo, Laurent Cicurel, "Semantic

business process management: A lifecycle based requirements analysis", In

Proc. of Workshops on Semantic Business Process and Product Lifecycle

Management (SBPM 2007) at the 4th European Semantic Web Conference

(ESWC 2007), pages 1–11. CEUR WS, 2007.

 [2] Born, M., Dorr, F., Weber, I., "User-friendly Semantic Annotation in Business

Process Modeling", In: Web Information Systems Engineering (WISE)

Workshops, 2007, p. 260-271.

 [3] C. Di Francescomarino, C. Ghidini, M. Rospocher, L. Serafini, P. Tonella,

"Semantically-Aided Business Process Modeling", in: ISWC 2009, Vol. 5823

of LNCS, Springer, Berlin, Heidelberg, 2009, pp. 114–129

 [4] C. Di Francescomarino, P. Tonella, "Supporting Ontology-Based Semantic

Annotation of Business Process with Automated Suggestions", in: Enterprise,

Business-Process and Information Systems Modeling, volume 29 of Lecture

Notes in Business Information Processing, Springer, 2009, pp. 211–223.

 [5] Markovic, I., Pereira, A.C., "Towards a Formal Framework for Reuse in

Business Process Modeling", In Workshop on Advances in Semantics for Web

services (semantics4ws), in conjunction with BPM '07, Brisbane, Australia,

September 2007.

 [6] Hepp, Martin; Leymann, Frank; Bussler, Chris; Domingue, John; Wahler,

Alexander and Fensel, Dieter (2005), "Semantic business process

management: a vision towards using semantic web services for business

process management", In: IEEE International Conference on e Business

Engineering, 18-20 Oct 2005, Beijing, China.

 [7] M. Ehrig, A. Koschmider, A. Oberweis, "Measuring similarity between

semantic business process models", in APCCM ’07: Proceedings of the fourth

Asia-Pacific conference on Comceptual modelling. Darlinghurst, Australia,

Australia: Australian Computer Society, Inc., 2007, pp. 71–80.

 [8] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov, "A bpmo based

semantic business process modelling environment", In Proceedings of the

90 BIBLIOGRAPHY

Workshop on Semantic Business Process and Product Lifecycle Management

at the ESWC, volume 251 of CEUR-WS, 2007.

 [9] Hepp, M., Roman, D. (2007), "An ontology framework for semantic business

process management", Proceedings of Wirtschaftsinformatik 2007, Karlsruhe,

Germany, pp. 1-18.

 [10] Vazquez, B., Martinez, A., Perini, A., Estrada, H., Morandini, M., "Enriching

Organizational Models through Semantic Annotation", In Proceedings of the

Iberoamerican Conference on Electronics Engineering and Computer Science,

2013.

[11] Francescomarino, C. Di, Rospocher, M., Ghidini, C., & Valerio, A., "The Role of

Semantic Annotations in Business Process Modeling", In Proceedings of the

18th International Conference on Enterprise Distributed Object Computing

Conference (EDOC ’14), Ulm, Germany, September 1-5, 2014 (pp. 181–189).

IEEE Computer Society Press.

[12] van der Aalst WMP (2013), "Business Process Management: A

Comprehensive Survey", ISRN softw Eng 2013.

[13] B. List, B. Korherr, "An evaluation of conceptual business process modelling

languages", In H. Haddad, editor, Proceedings of the 2006 ACM Symposium

on Applied Computing (SAC), Dijon, France, April 23-27, 2006, pages 1532–

1539. ACM, 2006.

[14] O. Thomas and M. Fellmann, "Semantic epc: Enhancing process modeling

using ontology languages", In Proceedings of the Workshop on Semantic

Business Process and Product Lifecycle Management (SBPM), pages 64–75,

June 2007.

[15] Rospocher, M., Ghidini, C., Serafini, L., "An Ontology for the Business

Process Modelling Notation", In: Formal Ontology in Information Systems -

Proceedings of the 8th FOIS. vol. 267, pp. 133–146. IOS Press (2014).

[16] White, S.A., "Introduction to BPMN", Business Process Trends, July 2004.

[17] Malik, S., Bajwa I.S., "Back to Origin: Transformation of Business Process

Models to Business Rules", in Business Process Management Workshops,

Springer, 2013, pages 611-622.

[18] G. Della Penna, R. Del Sordo, B. Intrigila, N. Mezzopera, M. T. Pazienza, "A

Lightweight Formalism for the Integration of BPMN Models with Domain

Ontologies", 2013.

[19] Weissgerber, A., "Semantically-enriched business process modeling and

management", Ph.D. thesis, Universitat des Saarlandes, Germany (2011).

BIBLIOGRAPHY 91

[20] Object Management Group (OMG), "Business Process Model and Notation

(BPMN)", Version 2.0, January 2011, OMG Document Number: formal/2011-

01-03. This file was downloaded from: http://www.omg.org/spec/BPMN/2.0/PDF

[21] Dijkman, Remco M., Dumas, Marlon, & Ouyang, Chun (2008) "Semantics

and analysis of business process models in BPMN", Information and Software

Technology, 50(12), pp. 1281-1294. This file was downloaded from:

http://eprints.qut.edu.au/7115/

[22] Antoniou, G., Van Harmelen, F. "A Semantic Web Primer", p.10, 61-88, 109-

143, 2004, Massachusetts Institute of Technology.

[23] Fensel, D. " Ontologies: Silver Bullet for Knowledge Management and

Electronic Commerce", February 2000, Springer-Verlag.

[24] Daskalaki, Ev. "Development and Experimental Evaluation of an Ontology to

Ontology Schema & Instance Matching System", Master Thesis – University

of Crete, Department of Computer Science”, October 2011.

[25] Oren, E., Hinnerk Möller, K., Scerri, S., Handschuh, S., Sintek, M.(2006).

What are Semantic Annotations?. Technical report, Digital Enterprise

Research Institute (DERI), National University of Ireland, Galway.

[26] George A. Miller (1995). WordNet: A Lexical Database for English.

Communications of the ACM Vol. 38, No. 11: 39-41. Christiane Fellbaum

(1998, ed.) WordNet: An Electronic Lexical Database. Cambridge, MA: MIT

Press. Available at: http://wordnet.prenceton.edu/wordnet/publications/

[27] Activiti at: http://activiti.org/

[28] Bpmn2-modeler at: https://www.eclipse.org/bpmn2-modeler/

[29] Camunda at: https://camunda.org

[30] Fill, H.-G., "SeMFIS: a Flexible Engineering Platform for Semantic

Annotations of Conceptual Models", Semantic Web Journal, IOS press, 2015.

[31] Adonis at: https://uk.boc-group.com/adonis/

[32] K. Grolinger, M.A.M. Capretz, A. Cunha, S. Tazi, "Integration of Business

Process Modeling and Web Services: A Survey", Service- Oriented

Computing and Applications (SOCA), 2013. The final publication is available

at link.springer.com: http://link.springer.com/article/10.1007%2Fs11761-013-

0138-2

[33] Cabral, L., Norton, B., Domingue, J., (2009) "The business process modelling

ontology", In: 4th International Workshop on Semantic Business Process

http://www.omg.org/spec/BPMN/2.0/PDF
http://eprints.qut.edu.au/7115/
http://wordnet.prenceton.edu/wordnet/publications/
http://activiti.org/
https://www.eclipse.org/bpmn2-modeler/
https://camunda.org/
https://uk.boc-group.com/adonis/

92 BIBLIOGRAPHY

Management (SBPM 2009), Workshop at ESWC 2009, 1 June 2009, Crete,

Greece.

[34] Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Solvberg, A., (2006)

"Semantic annotation framework to manage semantic heterogeneity of process

models", Advanced information systems engineering. Springer, Berlin,

Heidelberg, pp. 433-446.

[35] Lin, Y., Ding, H., (2005) "Ontology-based semantic annotation for semantic

interoperability of process models", In: Proc Int Conf Comput Intell Model

Control Automat.

[36] Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.,

"Reasoning on Semantically Annotated Processes", In: Bouguettaya, A.,

Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 132–146.

Springer, Heidelberg (2008).

[37] Ciuciu, I. G., Tang, Y. and Meersman, R. (2011), "Towards Retrieving and

Recommending Security Annotations for Business Process Models Using an

Ontology-based Data Matching Strategy", in Proc. of the first international

symposium on data-driven process discovery and anlysis (SIMPDA'11), IFIP

working group 2.6 and 2.12, ISBN 978- 88-903120-2-1, vol. 1, pp. 71-81,

Campion d'italia, Italy, June 29th ~ July 1st, 2011.

[38] JWNL 1.4-rc3, a java WordNet library available at:

http://sourceforge.net/projects/jwordnet/files/

[39] JWNL javadoc at:

https://web.stanford.edu/class/cs276a/projects/docs/jwnl/javadoc/

[40] Short JWNL tutorial at: http://blog.roland-kluge.de/?p=430

[41] JWI 2.3.3, a Small java WordNet library available at:

http://projects.csail.mit.edu/jwi/

[42] N-gram Algorithm: https://en.wikipedia.org/wiki/N-gram

[43] Bigram Algorithm: https://en.wikipedia.org/wiki/Bigram

[44] Dice's Coefficient formula:

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

[45] Trigram Algorithm: https://en.wikipedia.org/wiki/Trigram

[46] Levenshtein Distance Algorithm:

https://en.wikipedia.org/wiki/Levenshtein_distance

[47] W. Cohen, P. Ravikumar, and S. Fienberg, "A comparison of string metrics for

matching names and records", In Proceedings of the workshop on Data

http://sourceforge.net/projects/jwordnet/files/
https://web.stanford.edu/class/cs276a/projects/docs/jwnl/javadoc/
http://blog.roland-kluge.de/?p=430
http://projects.csail.mit.edu/jwi/
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Bigram
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/Trigram
https://en.wikipedia.org/wiki/Levenshtein_distance

BIBLIOGRAPHY 93

Cleaning and Object Consolidation at the International Conference on

Knowledge Discovery and Data Mining (KDD), 2003.

[48] W. Cohen, P. Ravikumar, and S. Fienberg, "A comparison of string distance

metrics for Name - Matching Tasks", In Proceedings of the IJCAI-2003

Workshop on Information, 2003.

[49] Jaro - Winkler Distance Algorithm:

https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

[50] Jaccard Similarity Algorithm: https://en.wikipedia.org/wiki/Jaccard_index

[51] Soundex Algorithm: https://en.wikipedia.org/wiki/Soundex

[52] Soundex Algorithm:

http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm

[53] Char Frequency Similarity:

http://rosettacode.org/wiki/Most_frequent_k_chars_distance#Java

[54] Humm, G. B., Fengel, J., (2012): "Semantics-based Business Process Model

Similarity", In: Abramowicz, W., Krikscieuniene, D., Sakalauskas, V. (eds.):

Proceedings of the 15th International Conference on Business Information

Systems (BIS 2012), LNBIP 117. Springer Berlin Heidelberg, pp. 36–47

[55] Eclipse - luna tool at https://eclipse.org/luna/

[56] Becker, M., Laue, R., "Analysing differences between business process

similarity measures", In: 1st International Workshop on Process Model

Collections, pp. 39–49 (2011).

[57] Embley, W.,D., Jackman, D, Xu, L., "Multifaceted exploitation of metadata

for attribute match discovery in information integration", In: Proc Int

Workshop on Information Integration on the Web, pp. 110–117, 2001.

[58] Sparql Query Language for RDF: https://www.w3.org/TR/rdf-sparql-

query/#basicpatterns

[59] OpenLink Virtuoso: https://www.w3.org/2001/sw/wiki/OpenLink_Virtuoso

[60] Smith, F., & Proietti, M. (2013), "Rule-based behavioral reasoning on

semantic business processes", In Proc. of the 5th International Conference on

Agents and Artificial Intelligence, SciTePress Digital Library.

[61] Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I.,

Scicluna, J., Weber, I., Zhou, X., "Semantic annotation and composition of

business processes with Maestro", In: European Semantic Web Conference

(ESWC) Demo Track, June 2008

https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Soundex
http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm
http://rosettacode.org/wiki/Most_frequent_k_chars_distance%23Java
https://eclipse.org/luna/
https://www.w3.org/TR/rdf-sparql-query/%23basicpatterns
https://www.w3.org/TR/rdf-sparql-query/%23basicpatterns
https://www.w3.org/2001/sw/wiki/OpenLink_Virtuoso

94 BIBLIOGRAPHY

[62] RDF Description at: https://www.w3.org/RDF/

[63] RDF-Schema Description at: https://www.w3.org/TR/rdf-schema/

[64] RDF-Schema Description at: https://en.wikipedia.org/wiki/RDF_Schema

[65] Slides of the course CS561, Computer Science Department (CSD), University

of Crete (UOC), Yannis Tzitzikas, Spring 2015.

[66] Slides of the course CS561, Computer Science Department (CSD), University

of Crete (UOC), Yannis Tzitzikas, Spring 2015.

[67] OWL at https://www.w3.org/TR/owl-features/

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://en.wikipedia.org/wiki/RDF_Schema

