Ontology Based Semantic Annotation of Business
Processes with Semi-Automated Suggestions and
Processing of Semantic Queries in Business Process
Models

loanna S. Ramoutsaki

Thesis submitted in partial fulfillment of the requirements for the
Masters' of Science degree in Computer Science
University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes Campus, GR-70013 Heraklion, Crete, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.

The work has been supported by the Foundation for Research and Technology _ Hellas
(FORTH), Institute of Computer Science (ICS).






UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

Ontology Based Semantic Annotation of Business Processes with Semi-
Automated Suggestions and Processing of Semantic Queries in Business Process
Models

Thesis submitted by
loanna S. Ramoutsaki
in partial fulfillment of the requirements for the
Masters' of Science degree in Computer Science

THESIS APPROVAL

Author:

loanna S. Ramoutsaki

Committee approvals:

Dimitris Plexousakis
Professor, Thesis Supervisor

Antonis Savidis
Professor, Committee Member

Kostas Magoutis
Assistant Professor, Committee Member

Departmental approval:

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, December 2016






Abstract

Despite increasing software support for Business Process Modeling, there are still
misunderstandings, mainly because of terminology mismatches in business process
models. Enriching business process models with semantic annotations derived from
concepts of a domain ontology aims at overcoming this weakness of Business Process
Modeling.

In this work, we present an approach for adding semantic annotations to
business process elements, especially in activities (tasks and sub-processes) of
business processes, as they are the main elements of a business process model, using
an ontology-based data matching strategy. Semantic annotations are automatically
suggested to the business designer, based on a composed measure of similarity
between ontology concepts and the activity label of the process to be annotated. The
combined similarity measure is an aggregation of the degrees returned from three
similarity measures, aka string, linguistic and syntactic. Each one of the
aforementioned is a priori assigned a specifically weight by the system. Finally,
filtering techniques are used to display options with high relevance only.

By adding semantic information to process elements the precision of business
process models increases, making them more intelligible to people and machine-
readable, enabling automated reasoning services, such as querying the process space.
For this purpose, we propose an automated approach for querying a business process
model repository for semantically relevant elements and models. A basic BPMN
ontology in OWL format has been developed for the needs of querying.

Our approach has been implemented in SeMFIS tool, which has been extended
to represent the new functionalities of automated semantic annotations of business
process models. The BPMN language has been used for the representation of business
process models, the OWL format for ontologies and the SPARQL for queries.






YNNOCLOA0YIKOS VTOpVIROTICNOS Paolopnevog o€ ovToAoyio
EMYELPNOLOKAV OLEPYUCLAOV UE NUL-CVTONUTOTON|UEVES
TPOTAGCELS KO EMEEEPYUGIO CNUOAGLOAOYIKOV ETEPOTNCEOV
OE€ LOVTELU ETLYELPNCLOKAOV OLEPYACLAV

[Tepiinyn

[Taporo mov £xovv avéndel Ta Aoyiopkd VTOGTAPIENS Yo TV HovTeEAOTOiNoN
TOV EMYEPNOLOKOV OEPYAGIOV, VIAPYOLY aKOUN TPOoPANUOTO KATAVONGNS TOVG,
Koplog eouticg TG OVOVTIOTOWIOG OPOAOYLOV GTOL HOVIEAD EMLYELPNCLOKAOV
dtepyaosiwv. Epmlovtifoviog to HOVIEAD TOV ETYEPNCOKDOV OlEPYACIOV UE
ONUAGIOAOYIKOVG VTOUVNUOTIGUOVS 7OV TPoEPYovVTaL omd £VVOlEC WOG ELOTKNG
OVTOAOYI0G OITOCKOTEL GTNV AVTILETMMION QTG TNG AOLVANING TNG LOVIEAOTTOINGNG
ETMLYEPNOLOKDOV OEPYAUCIDV.

Xe ovtn v gpyocio mapovcslalovpe pio TPocEyyon Y TV TpocsHnkn
GNUOGIOAOYIKADV VITOUVILOTICUOV GTO GTOLXEIN TOV EMYEPNCLOKDOV JEPYUCLDV, KO
€101KOTEPQ OTIC "OPASTNPLOTNTEC" TOV ENLYEPNCLOUKDOV OEPYUSLOV (TOV AmMOTEAOVVTOL
amd TG "epyacies” kot Tig "vmo-depyocies”), kabmg avtéc elvar Ta KOplo GToryEln
evOC  HOVTEAOL  EMYEPNOOKNG  OlEPYACING, YPNOLUOTOIOVIOS MO  GTPOTNYIKY
avtiotoiylong oedopévov  Paclouevn oe pia ovroroyia. Ot onuacloAoykol
VIOUVNLOTICHOL TPOTEIVOVTOL AVTOHOTO GTOV GYeEdGTH, aKoAovOdvTag pic pnébodo
oL Pacileton o€ €va cHVOETO HETPO OHOIOTNTAG HETOED TV EVVOLOV TNG OVTOAOYING
KOl TOL OVOUOTOg TNg "dpaoctnprotnrag” TG dlepyaciog mov TPOKELTAL VO
vropvnuatiotel. To odvOeto pétpo opotdTTOG TPOKVTTEL OO TNV GLVAOPOIGT TPV
Babumv mov emotpépovior amd Tpion HETPO OUOOTNTOS, TOV GLUPOAOCEIPDOV, TOV
YAOGGIK®OV KOl TOV CLUVIOKTIK®V, GTO OOl £Y0VV €K TV TPOTEPWOV amodobel
ouvteleotés Papumtog and 1o cvotnue. Télog, ot1o TEMKO HETPO OUOLOTNTOG
YPNOCLOTOLOVVTOL TEYVIKEG PIATPOPICUATOS DGTE VO, ELPOVIGTOVV GTOV YPNOTN UOVO
ol emAOYEG TOL gHEAvICOLY VYNAN oLVAEEW. HE TO OVOUO. TNG EMAEYUEVNG
"dpactnpomrag'.

H mpocHnkm onuascioroyikng minpogopiog ota ctotyeio pio diepyoasiog €xet
¢ amoTélecpa TNV avéNon g aKPiPELOS TOV HOVTEAWDV EMYEIPNCLOKADV JEPYACLOV,
KaoTOVTOG TO MO KOTOVONTO GTOV GVOP®TO Kol OVOYVAOOCLUN OTd TNV pnyovn,
EMTPETOVTOG T YPNOT CVTOUATOTOMUEVOV VINPECIOV "e&ay®YNG GCLUTEPACUATOV",
OT®OG TNV YPNON EMEPOTNCEMV GTO YDPO TOV Olepyaswdv. [a to okomd ovTo,
nmpoteivovpe pia mpocéyyion oOmov avtopato Bo yivovior emepmTNoES G €va
amofETPLO HOVIEA®MV EMYEPNOOKAOV OEPYACIDOV YLl TNV EVPECT GNUOGIOAOYIKA



OYETIK®V otolyelwv Kol povtélmv. Mia oviohoyia, oe popery OWL, pe to Pacikd
otoyeio g BPMN yAdocag €xel avamtuybel yio 11 avdykes g vanpeciog tov
EMEPMTICEWMV.

H mpocéyyion pog €xet viomombei oto epyareio SEMFIS, to omoio &yet
enektofel OOTE VO GLUTEPIAGPEL TIG VEEG AEITOLPYIEC TOV OVTOUOTOTONUEVOV
ONUAGIOAOYIKOV VTOUVIUOTICUAOV GTO HOVIEAD EMXEPNClOK®V Olepyaciov. H
BPMN yAm®cca éxet ypnowwomombel yio TV ovomopdcTocT] TGOV HOVIEA®V
enelpnookov depyasitwv, n OWL popen yu 11 ovtoloyieg kot m yA®ooo
SPARQL yio v vanpecia tov enepmTNoEmV.



Evyapiotiec

[Tpdrta amd 6Aa Bo NOeha va gvyapiotiom Bepud tov vrevbovvo Kabnynt pov K.
[TAe&ovodikn Oyt LoOVo Yo TV LIOSTAPIEN, TV KaB0OYNoN, TIC TOAVTILES CLUPOVAEG
KOl TOV ¥pOVO TTOL LoV OPLEPMGE CAAG KOt Y1aT LoV £J€1EE EUTIGTOGVUVI Kol OEYTNKE
va, Yivel 0 ETOTTNG LLOV.

®a NBera emiong va evyoapotom tov K. ZofPidn kot tov k. Maykovtn yo
™V Tpobupia TOVG VO, GUUUETAGYOVY GTNV TPLUEAT EMTPOTN. LT GLVEXELD B Ol
va guyaplotno® v Aackaidkn Evayyelio ond to Ivetitovto ITAnpogopikng tov
[opvpatog Teyvoroyiag kat Epguvag yio 10 moAOTIHO VAKSO OV pov TpdSpepe OAAL
KoL Y1 TIG GUUPOVAEG TNG Yo TOV TPOTO VAOTOINOMG TNG EPYUGING LLOV.

‘Evo peyddlo euyoplotd otV OWKOYEVEIL MOV TOV HE TNV OyOmY, TNV
KOTOVONON Kol TNV VTOHOVH] Toug otnpilovv kdbe véa pov mpoomdbeio. Oa KAvw
wWwitepn pveio 0TOV TOTEPOL OV, ZTLALOVO, Y1OTL YOPIG TO OIKO TOV MIGTEVM Y1 TN
dvvaun g yvoong dev Ba giya To TEPE VoL cLUVEXIC® TIG OTOVOEG LOV.

‘Eva evyopiotd ogeil®m kot otovg @ikovg pov yu v otpi&n Tovg oTIg
OVOKOAEC MPEG KO TNV AUEPIGTN GCUUTOPACTAGY| TOVG.

To peyordtepo OpMC evyaplot® 0QeiAw otOov GOVTpoeo pov, Bayyéin, o
omoiog NTav ko' OAn TV SIPKELD TV GTOLOMV LoV dimAa Lov, va pe otnpilel, va
VTOUEVEL Kot va. EMUEVEL, vtevOL{ovTag pov hvta mo1og eival o 6tdyog pov. Xwpig
avtov oev Ba Ta elya KOTAPEPEL.






2T VRN TOD UTOUTTA LoD 2TOALGVOD,
210V aOVTPoeo uov Boyyéln,

27ov y1o pov vy






Contents

Introduction 1
1.1 IMIOTIVATION <.ttt bbbttt b e b st s e eneene b 2
A AN o] o 10 o [P 2
1.3 THESIS OVEIVIEW ...ttt ettt 4

Background and Related Work 5
2.1. Business Process Modeling LanQUAGES ........c.ceererueruerierienieieeeeniesiesressesseseseeeeneeseenes 5
2.2. Main Notions of Business Process Modeling Notation (BPMN).........ccccceeoeevevieneennene. 7
A T @ ) (o] [0 [ =TSRSS 9
2.4, RDF/ RDFS ...ttt sttt st sttt st et e stense e eneeneeneesens 10
2.5. Web Ontology Language: OWL .......cccccveieirerirenienesieieiee et 12
2.6. SEMANTIC ANNOTATION ....viiiriertereertetet ettt nae 16
2.7. Business Process Modeling TOOIS .......ccvieeiiiiieeieceeesteeeee ettt 16
2.8. ReIALE WOTK ...ttt 23

Basic BPMN Ontology 35
3.1 A DT OVEIVIEW ...ttt 35
3.2. The Construction of Basic BPMN ONtOlOgY.......ceovvreerieriereeriineenieseeiesieeeesseseeeeenns 36

Presentation of the Process Following for Semi-Automated Semantic Annotations to

Business Processes 43
4.1, String Matching AlGOTItNMS .......cc.ecieiiiiieece e st 44
4.2, LINQUISEIC IMEBLIICS......eiieeeieieeeeetert ettt ettt sttt sttt et e e e e 48
e T 17 T [0\ 1= ot TSP 49
4.4, Combined Similarity MEASUIES .......c.ccveiriecieriieeeiesteeeeste et erte st et e e seesesre e 49
4.5. Suggesting accurate domain ontologies and annotated BPMN processes.................... 55

Presentation of new functionalities of SeMFIS tool 59
5.1. Brief Description of Architecture of SEeMFIS t0O0l ........c.ccoeeieiieieieeeeeeee, 59
5.2. Semi-Automated Suggestions for Ontology-Based Semantic Annotation of BPMN
PrOCESS MOUEBIS ...ttt ettt sttt et st e et e eesaeetesbeenteseeaeenseseeeneeneas 61
5.3. OWL / RDF EXPOIt ....eeieieieieeieeese ettt sttt sttt ee e e 68
5.4, SPArQl QUETIES ..eeeeieceeeiiete ettt ettt ettt et ettt e et e st e e sa e besreessesbeessesteesaenbesanensenes 74



Conclusion and Future Work

A Appendix

A.1 Requirements

A.2 SPARQL Queries Syntax



List of Figures

2.1: Start, Intermediate, end Event reSPectively. ........coeeveveiiecineceeeeeee e 7
2.27 TASK OF @ PIOCESS ...ttt ettt sttt ettt be bbbt n e e e e eneeneas 7
2.3 GAIBWAY ....eeutieeeeeiteeiteste sttt sttt b et s bt et b et b bRt e e e bt ae e r e e Rt et nr e be e resre e e e 8
P B L - W @ o T OSSO 8
2.57 SEQUENCE FIOW ...ttt 8
2.67 IMESSAGE FIOW....c..iuiiiieiieiieieei sttt nne s 8
2.77 AASSOCIALION ...ttt sttt ettt ettt sttt s b st st et e et e st e bt e bt sbe st et et e s e e eneeneenenneas 8
2.8: Data ASSOCIALION. ... ccuerteeeieierieiesteete e st ete st ete et et eseesseesesteeseessesseensesseensesseensensesseensenns 8
FZ8 e oo TSP 8
2,007 LAINE ..ttt et e b e bt s a e sttt e b e e be e e beesae e et e et e e nbeenheesanenaee 8
2,107 GIOUP utieutetieitet sttt ettt sttt s ettt s b et s bt e st e bt e a et e s bt e e s bt bt e bt s bt et n bt et e st e ebe e benheenne e 9
N A - A AN 11 To] = U1 o] TSR 9
2.13: ACHVItE COMPONENTS....cueiiiieeteeiecte ettt ettt e ste s e e te st e e e e sbesreebesbesasesbesreensessessaensens 17
2.14: Screenshot of BPMN2 Modeler t00] .........cocuviveeienirieeseceeeceeeseee e e 18
2.15: Camunda BPM AICHITECTUIE .......eoveieieieieeeieeiesesie ettt 19
2.16: Adonis CE Business Process Management TOOIKIt ...........cccooeeeevenieceneseece e 20
2.17: A fragment of a process model in Meastro for BPMN 0Ol .........ccccocevevinienienininennene 21
2.18: SeMFIS Model Editors for a Business Process Model, an OWL Ontology Model and a
Semantic Annotation Model (from left to right, top to bottom) .......ccceeeeevveeceniceeeeee, 22
2.19: Concepts of Business Process Ontology (BPO) ......ccccecvvereerieeerieneeeerie e se e 24
2.20: ONtOIOGY FrAmMBWOIK .....ecueiiieieeiccie ettt ettt sttt e st resteereenae s 24
2.21: BUSINESS ANNOTALIONS ......eevetirierteteieieteitee ettt ettt ettt s bbb st se st e e ene s e 25
2.22: Framework for the semantic annotation of business process models..........cccccvveueeniene 26
2.23: Semantically annotated process model "Customer order processing" .........ccccevveeennene 27
2.24: Main components of semantic extension for business process modeling tools............. 28
2.25: WSMO Studio enhancing with a BPMO ditor ..........ccoevveeeiiiieiececeeceseee e 29
2.26: Business Processes KNOWIEAQE BaSE .........coeiueeeeiieeiecciesieceesie et ste e sreevnene 30
2.27: Extending Business Processes Knowledge Base.........cccvvveverireerienieeeeneseeseseseenens 30
2.28: C-FOAM model for ontology-based data matching...........ccceeeeeeveiieceeneseeeceeeens 32
3.1: Semantic Annotation on task "choose a Product” ...........ccoeeeeeverierenieeene e 37
3.2: An Overview of the "is-a" taxonomy of basic BPMN Ontology rooted at Base_Elements
................................................................................................................................................. 38
3.3: Knowledge Base 0f BUSINESS PrOCESSES.......cccvirieeeriieieiesieeeesieseeetesteesesseseessesseeneses 41
4.1: Flow Chart of MatChing PrOCESS .....ceecveiieeieeieeeesee et ere e e et e e st e eeas 50
4.2: Semantic annotations list for the BPMN Task label "search for product” ...................... 52
4.3: Semantic annotations list for the BPMN Task label "choose_product”.......................... 53
4.4: Manually selection of semantic anNOatioN ...........ccooveieienienener e 54
4.5: Flow chart of matching process for suggesting most accurate domain ontologies and/or
accurate annotated BPMN MOel .........ooooimioiieieeeee e 56
4.6: The user can select one of the accurate domain ontologies or one of the accurate
annotated BPMN elements. Here he has selected the annotated_onLineShop 1.0.................. 57


file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787289
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787290
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787291
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787292
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787293
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787294
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787295
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787296
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787297
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787298
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787299
file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787300

4.7: In this box, only the most accurate concepts of the selected annotated BPMN model are

appeared and the user can select 0Ne OF theM........cc.ooieiiiiiieee e 58
5.1: SeMFIS Architecture based on ADOXX Platform ........cccccovveeeviniennseeereeeeeseeenen 60
5.2: Excerpt of a semantically annotated BPMN model...........cccoeoeviiieciiicceniceeeseee, 61
5.3: Creating a business process diagram based on BPMN 2.0. Specification....................... 62
5.4: Selecting an accurate annotated BPMN model or ontology of SeMFIS database .......... 63
5.5: Selecting semantic annotation from already annotated BPMN model...........ccccceeueeeeee. 64
5.6: Selecting annotations from a selected domain ontology ..........ccceeeeveveeveesieceeneseeeene, 65
5.7: Warning message for manually searching semantic annotations............c.ccccceevveveennene 66
5.8: Manually selection of semantic anNotations...........ccceevevieriecienieseece e 66
5.9: Semantic annotation in the BPMN task "choose a product” ...........ccovvevvevieeevieneenenne. 67
5.10: Transfer on the specific concept of the selected ontology after clicking on the semantic
annotation "t0_SEIEC PrOAUCT"..........cveiiiiieece ettt nas 67
5.11: The original BPMN diagram "eShopping 1.0" (top) and the corresponding annotated
diagram "annotated_eShopping 1.0" (DOOM) .....ccoviiiieiiieeeeceeeeee e 68
5.12: The first step of OWL/RDF export is the xml export of selected ontology or annotated
BPMN MOUEL......eiiiiieieee et sttt st sttt e eseenas 69
5.13: Warning message for OWL/RDF EXPOIt.......ccccuetririrerienieieieieenesiesie e 70
5.14: Excerpt of "onLineShopDomainOntology" ontology in owl format...........c.cccecveuenene. 72
5.15: Excerpt of "Annotated_eShopping 1.0" annotated BPMN model in owl format........... 73
5.16: SPARQL queries FUNCLIONAITLY ........ccceiruerierieieieereeestestee e 76
5.17: Select one of the standardized SPARQL queries or define your own query with the 8
SBIBCTION ...ttt et b bbbttt b e bbbttt aeene e 76
5.18: The user is interested to find all the activities which have semantic annotation with the
Class "to_Search_for_ProdUCT" ...........ceeiiiieee ettt 76
5.19: Results of the query 1, giving as input field the class "to search for product".............. 77
5.20: Clicking on the second result, it transfers us on the task “search for a product” of model
"annotated _eSNOPPING 1.0 ...c.ee oottt ettt sr e esreeneenne s 77
5.21: The frame where a user can make his/her own SPARQL qUErY .......cccovevvvevevreirrennenne. 78
A.LL: VirtuoS0 SUDTOIUETS .....eeuiiieiieiieieresesee ettt 82


file:///C:/Users/ioanna/MasterThesis/Ramoutsaki_I_master_thesis.docx%23_Toc467787347

List of Tables

3.1 Basic BPMN ONtology MELIICS ......ccviiiiiriireieieisese st 38
5.1 basic syntaX 0f SPARQL QUEIES .......ecveiiiiieie et st ste sttt ste e 74
5.2 Example 0f @ SPARQL QUETY .....ooiiiiiiiieiiiieieieieese et 75
A.2.1: SPARQL QUEIIES SYNTAX ...eeviiieiiiieiietisteeite st ete e eteestesteeae e sasessesbeesesseesaensesseensenns 83












Chapter 1

Introduction

Business Process Management (BPM) is a top-down methodology designed to
organize, manage, analyze and reengineer the business processes running in
enterprises [1]. The BPM is characterized by a lifecycle which begins with the process
modeling phase. In this step the business designers create process models using a
modeling tool. In the next step, namely implementation, the process model is
translated by IT engineers to a workflow model, which runs on a process engine. The
following step, the execution phase where the process engine executes the workflow
model by delegating the process tasks to human workers or automated IT applications.
Finally, monitoring tools are used by business analysts to measure the process
performance which is called analysis phase [1].

Despite of increasing software support for BPM, there is still lack of
automation in the BPM lifecycle. Specifically, there are general difficulties when it
comes to bridge the gap between the business and IT views on the business processes.
This happens because business analysts and IT experts do not speak the same
language, do not share the same concepts of process or the same tools [1,2].

The Semantic Business Process Management (SBPM) is a new approach
which attempts to close the Business - IT gap by integrating and utilizing semantic
technologies in order to improve the level of automation in the modeling and
management of business processes. Semantically annotated process models could
enable support for the modeler in various tasks including reusing parts of process
models when creating new one, detecting cross-process relations, providing a basis for
knowledge transfer [1,2,3].

Within this context, this work focus on augmenting business processes with
semi-automated suggestions of semantic annotations in the process modeling phase of
BPM lifecycle using an ontology-based data matching strategy. The integration of
semantic annotations in modeling tools will support the graphical modeling of
business processes with concepts derived from domain ontologies which specify
business process models more precisely, make them machine-readable, allow better
understanding, documenting, querying and design choices that cannot be expressed in
a purely syntactic way [4]. A lot of modeling languages and modeling tools have been
implemented for the representation of processes. In this work, the Business Process



2 CHAPTER 1. INTRODUCTION

Modeling Notation language (BPMN), as a standard notation for capturing the
business processes in the early phases of systems development, has been used to
express the business process models and SeMFIS tool, as a flexible engineering
platform for semantic annotations of conceptual models, has been extended to
represent the new functionalities of automated semantic annotations of business
process models (SBPM).

1.1 Motivation

Organizations have already invested heavily in business process management
creating, most of the times, extensive business models [8]. However, enterprises face
problems which cannot be solved with current business process management
technologies because of the limited degree of mechanization in BPM, creating inertia
in the necessary evolution and dynamics of business processes. In other words, both
querying and manipulating the process space regularly requires human labor, leading
many times to slow, costly and imperfect situations. It also does not provide a uniform
representation of an organization's process space on a semantic level, which would be
accessible to intelligent queries [6]. Moreover, when enterprises decide to
interconnect business processes to perform common tasks, similar labeled process
elements have to be identified to avoid misunderstandings. Although, using formal
languages, such as BPMN, Petri Net, UML activity diagram for modeling business
processes, purely syntactic composition problems of inter-organizational business
environments may be solved, a missing semantic representation of process elements
can prevent further interconnectivity and interoperability of business processes [7].
Therefore, Hepp et al. [9] suggest using the most significant results from the area of
Semantic Web like ontologies, query languages, reasoners to provide additional
support to the business process community. By describing business process models in
a machine readable and interpretable format which enables semantic annotations and
computer reasoning, the automation of process composition can be facilitated, helping
organizations achieve the desired effectiveness, agility and ability to exploit
opportunities. These also promise appropriate business process discovery,
interoperability and interconnectivity which help to save costs and time when
establishing inter-organizational business collaborations, as well as to accelerate
finding appropriate composable business process models faster than manually
discovering business process models [7].

1.2 Approach

During the graphical design, each business element is labeled according to arbitrarily
information, resulting often in unclear labels, characterized by mismatching and
overlapping terms and leads many times in loss of domain semantic knowledge.
Labeling is not a rigorous task performed by the business designers and frequently it
is carried out with a degree of freedom, having as a result label inconsistency. In other



1.2. APPROACH 3

words, bad labeling and irrelevant information or limited information lead to
inconsistent business process models, creating difficulties in the explanation, analysis
and reusing of the model. The same situation also occurs when the same label is used
for different elements or different labels is used for describing the same element [10].

Our purpose is to add semi-automated semantic annotations to business
process elements, especially in activities (tasks and sub-processes) of business
processes, as they are the main elements of a business process model, in order to
augment business processes with concepts taken from a domain ontology clarifying
the meaning of these process elements. The final product is a new semantically
annotated business process model in which its activities have been tagged with
linkable concept descriptions taken from a domain ontology, starting with the symbol
"@" in business process diagram.

In order to match labels of business process activities with domain ontology
concepts we measure the similarity between them, exploiting three similarity
measures: (1) string similarities, (2) linguistic similarities and (3) syntactic
similarities. In order to compute the string similarity degree we compare the number
of common characters in the process element name and concept name, using different
string algorithms. The linguistic similarity degree (natural language parsing) of the
process element labels and of the concept names relies on a dictionary, called
WordNet, to determine synonyms between them. In the same dictionary based also
the syntactic similarity degree which detects homonyms and hyponyms, exploiting the
context of names. Finally, a threshold filter determines whether a match is considered
as confident or not. If the average similarity of a match is below the threshold then it
is not considered as a match, otherwise it is and an annotation suggestion provided to
the business designers for the semantic annotation of business process activities with
concepts from an accurate domain ontology. Semantic annotations and the process
which follows to find them are analyzed in details in chapter 4.

Finally, having created a basic ontology for BPMN in OWL format (more
details in chapter 3) we express standardized queries in an ontology query language,
called SPARQL language, using the Virtuoso repository. Moreover, the business
designers have the opportunity to express their own queries if they have the
knowledge.

The SeMFIS tool from the BOC Group organization has been extended in
order to implement all the above features and processes. All the new functionalities of
SeMFIS tool are presented in chapter 5.



4 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

The Thesis structure is as follows:

In chapter 2 we will recall the definitions of most popular Business Process
Modeling Languages, Business Process Modeling Tools, ontologies, OWL/RDF, and
semantic annotation. We will also refer the main notions of BPMN, as this language is
used to our work. Furthermore, we will review the related scientific work done within
the past years.

In chapter 3 we will present a basic ontology for BPMN 2.0 elements which
will be used to querying the enrichment with semantic annotations business process
models by means of Virtuoso Server.

Chapter 4 we will describe our approach for measuring String, Linguistic and
Syntactic similarity between business process activity labels and domain ontology
concept names. We aggregate these similarity measures to a combined similarity
measure and filter it with a threshold to determine the semantic annotations of
business process activities which will be suggested to business designers.

Application of our approach will be illustrated in chapter 5. In particular, this
chapter focus on new functionalities of SeMFIS extended tool.

In chapter 6 the conclusions are drawn and an outlook on future research is
presented.



Chapter 2

Background and Related Work

In this chapter, definitions about Business Process Modeling Languages, Ontologies,
RDF/RDFS, OWL and Semantic Annotations are introduced. More emphasis are
given to description of Business Process Modeling Notation (BPMN), as it is the
language which is used in this work. Followed by a short presentation for some
representative tools for creating business process models and finally, most recent
related work are presented.

2.1. Business Process Modeling Languages

The business processes are conceptually modeled using various conceptual Business
Process Modeling Languages (BPMLs). A comprehensive list with most popular
Business Process Modeling Languages which have either future potential or are well-
established in research range from Petri Nets (Petri 1962), Event-Driven Process
Chain (EPC) (Scheer 2000) and UML Activity Diagram (AD) (Object Management
Group 2004) to the Business Process Modeling Notation (BPMN) (Object
Management Group 2004).

Despite their common aims, in [12] Van der Aalst distinguishes three language
categories: (1) Formal languages, are based upon theoretical formalisms providing
unambiguous semantics for describing business process models and allowing for
analysis. In this category included Petri Nets. (2) Conceptual languages, do not
characterized by the rigorous semantics of the formal languages. These languages are
typically informal with some fuzziness in the modeling and do not allow analysis.
However, these languages provide robust graphical notations and consequently enable
convenient and intuitive modeling. For these reasons, they are preferred by business
analysts in the initial phase of design business process model. In this category
included EPC, UML AD, BPMN. (3) Execution languages, includes more technical
languages that are concerned with business process execution, such as Business
Process Execution Language (BPEL) and for this reason we do not conclude them in
our research.

Petri Nets: in [7], Petri Nets are described as a widely accepted graphical language
for the specification, simulation and verification of behavior of information systems.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

A Petri Net is a directed bipartite graph consists of two types of nodes, places and
transitions. Places represent conditions (possible states of the system), designed by
circles. Transitions present events that may occur or actions which cause change of
state, designed by rectangles.[13] The directed arcs describe which places are pre-
and/or post-conditions for which transitions. No arc may connect a place to another
place or a transition to another transition. It is one of several mathematical modeling
languages for the description of dynamic systems.

Event Driven Process Chain (EPC): The EPC [13, 14, 19] is a modeling language
for the graphical representation of a sequence of steps of a business process with the
goal to be easily understood. It is a directed and connected graph, whose nodes are
functions, events and logical connectors (AND/ OR/ XOR). Functions model the
activities of a business process, while events are created by processing function or by
actors outside of the model. Functions and events are related with connections
(arrows) and logical connectors. Additional information like "document™ or "role"
complete the process description.

UML 2.0 Activity Diagram (AD): Activity diagrams are graphical representations of
workflows of stepwise activities and actions with support for choice, iteration and
concurrency. In the Unified Modeling Language, activity diagrams are designed for
modeling business processes and flows in software systems. [13] Activity diagrams
are constructed from a limited number of shapes, connected with arrows. Arrows run
from the start towards the end and represent the order in which activities happen,
showing the overall flow of control. The advantage [19] of such diagrams is that they
are comprehensible by software engineers responsible for the implementation of
business supporting components. Instead, the closeness to computing languages
makes it difficult to be used by business analysts who do not have experience in
software design.

Business Process Modeling Notation (BPMN): BPMN [15,16,17] is a state of the
art graphical language for generating business process diagrams, which are based on a
flowcharting technique tailored for creating graphical models of business process
operations. The primary goal of BPMN [20, 19, 18, 17] is to provide a simple and
intuitive notation that is readily understandable by all business users. In particular, the
business analysts can create the initial drafts of the processes, technical developers
responsible for implementing the technology that will perform those processes can
easily and precisely convey the business analysts' ideas to technological
implementation and finally business people can easily manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the
business process design and process implementation. Another goal also is to enable
portability of process definitions, so that users can take process definitions created in
one vendor's environment and use them in another vendor's environment.

It is the mentioned combination of easiness of use with the precision of a
formally well defined notation system which is responsible for the enormous success



2.1. BUSINESS PROCESS MEDELING LANGUAGES 7

of BPMN, making it an international standard to model business processes. For this
reason, we have selected the BPMN language for our research.

2.2. Main Notions of Business Process Modeling Notation
(BPMN)

In our research, we use the BPMN 2.0 specification [20] which resolves BPMN 1.2
inconsistencies and ambiguities and extends the scope and capabilities of the BPMN
1.2 in: (1) formalizing the execution semantics for all BPMN elements, (2) defining
an extensibility mechanism for both process model extensions and graphical
extensions (3) refining event composition and correlation and (4) extending the
definition of human interactions. It also provides multiple diagrams, which are
designed for use by the people who design and manage BPMN and mapping them to
an execution language of BPM Systems (Web Service Business Process Execution
Language - WSBPEL 2.0).

A Business Process Diagram is made up of a set of graphical elements so as to
be distinguishable from each other and to utilize shapes that are familiar to most
designers. In [20, 16] is emphasized that one of the drivers for the development of
BPMN is to create a simple and understandable mechanism for creating Business
Process models, while at the same time being able to handle the complexity inherent
to Business Processes. The approach taken to handle these two conflicting
requirements was to organize the graphical aspects of the notation into specific
categories. This provides a small set of notation categories so that the reader of a
BPMN diagram can easily recognize the basic types of elements and understand the
diagram. Within the basic categories of elements, additional variation and information
can be added to support the requirements for complexity without dramatically
changing the basic look and feel of the diagram. The five basic categories of elements
are:

1. Flow Objects: are the main graphical elements to define the behavior of a
Business Process and consist of three core elements - events, activities and
gateways.

1.1. Event: is represented by a circle and is something that ™ -~
"happen” during the course of a business process. It effects '\_ Y, l\IQ\_,j;lf O
the flow of the process and usually have a cause (trigger) or  Figure 2.1: Start, Intermediate,

. end Event respectively.
an impact (result). There are three types of Events, based on
when they effect the flow, at the start of process (start event), during the
process (intermediate event) or at the end of process (end event).

1.2. Activity: is represented by a rounded-corner rectangle and isa
generic term for work that company performs in a process. An 1
activity can be atomic or non-atomic (compound). The types of | )

activities are Task and Sub-Process. Figure 2.2: Task of a process



8 CHAPTER 2. BACKGROUND AND RELATED WORK

1.3. Gateway: is represented by the diamond shape and is used to
control the divergence and convergence of sequence flow in a
process. Thus, it will determine branching, forking, merging and

joining of paths. Internal markers will indicate the type of behavior Figure 2.3: Gateway
control.

2. Data: is represented with the four elements - data objects, data inputs, data
outputs and data stores.

2.1. Data Objects: provide information about what activities require to be
performed and /or what they produce. They can represent a singular j
or a collection of objects. Data Input and Data Output represent the
same information for processes. Figure 2.4 Data

3. Connecting Objects: used to connect flow objects to each other or other
information in a diagram creating the basic skeletal structure of a business
process. The connecting objects consist of four types - sequence flows, message
flows, associations and data associations.

3.1. Sequence Flow: is represented by a solid line with a solid arrowhead and is
used to show the order that activities will be performed >
in a Process. Figure 2.5: Sequence Flow

3.2. Message Flow: is represented by a dashed line with an
open arrowhead and is used to show the flow of Figure 26 Message Flow
messages between two separate Process Participants
(business entities or business roles) that send and receive them. In BPMN,
two separate Pools in the Diagram will represent the two Participants.

3.3. Association: is represented by a dotted line and is used
to link information and Artifacts with flow objects.

3.4. Data Association: is represented by a dotted line witha
line arrowhead and is used to associate data objects with  Figure 2.8: Data Association
flow objects.

4. Swimlanes: is a mechanism to organize activities into separate visual categories
in order to illustrate different functional capabilities or responsibilities. BPMN
supports two types of swimlane objects - pool and lane.

4.1. Pool: represents a Participant in a
Process. It is also acts as a graphical
container for  partitioning a set of
activities from other Pools.

4.2. Lane: is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally.
Lanes are used to organize and categorize Figure 2.10: Lane
activities.

5. Artifacts: are used to provide additional information about the process making it
more readable. There are two standardized types of Artifacts - group and text

Figure 2.7: Association

@
£
T

-4

Figure 2.9: Pool

Name
Name | Name




2.2. MAIN NOTIONS OFBUSINESS PROCESS MEDELING NOTATION 9

annotation - but modelers of modeling tools can add as many artifacts as
necessary allowing some flexibility to extend the basic notation.
5.1. Group: is represented by a rounded corner rectangle drawn with | !
a dashed line. It is a grouping of graphical elements that can be ' |
used for documentation or analysis purposes, but does not affect Fiowre 24T, Eroup
the Sequence Flow.
5.2. Text Annotations: are a mechanism for a modeler to provide
additional text information for the reader of a BPMN CLMCONT N procy
Figure 2.12: Text
Diagram. Annotation

Text Annotation Allows

2.3. Ontologies

The term ontology [22] has its origin in philosophy and specifically, the word element
"onto-" comes from the Greek "@v", "dvrog™ which mean "being”, "that which is". In
computer science, ontologies are developed to provide a machine-readable semantics
of information sources that can be communicated between different agents (software
and humans). Instead of "ontology" we now speak of "an ontology".

Many definitions of ontologies have been given in the last decade, but one that
best characterizes the essence of an ontology is based on the T.R. Gruber definition
(1993), later refined by R. Studer (1998): An ontology is a formal and explicit
specification of a shared conceptualisation. According to [23] the meaning
"conceptualisation™ refers to an abstract model of some phenomenon in the world
which identifies the relevant concepts of that phenomenon. "Explicit” means that the
type of concepts used and the constraints on their use must explicitly defined.
"Formal” refers to the fact that the ontology should be machine readable. Hereby
different degrees of formality are possible. Finally the meaning "Shared" reflects the
notion that an ontology captures consensual knowledge, that is, it is not restricted to
some individual, but accepted by a group.

Another core meaning of an ontology, given in [22], is that it is a model for
describing formally a domain of discourse that consists of a set of terms (that is the
vocabulary of ontology), relationships between these terms and an inference
mechanism for it. The notion "terms" denote important concepts of the domain (that is
classes of objects) while the notion "relationships™ includes hierarchies of classes. In
particular, a hierarchy specifies a class C to be a subclass of another class C' if every
object in C is also included in C'. For example, speaking about a university camp,
staff members, students, courses are some important concepts while the fact that all
academic staff are staff members or that a postgraduate are student characterizes an
hierarchy for the university people. Apart from subclass relationships, ontologies may
include information about: (1) Properties such as "a student attends courses"”, (2)
Value Restrictions such as "only faculty members can teach courses”, (3) Disjointness
Statements like the statement "faculty and general staff are disjoint” and (4)
Specification of Logical Relationships between Objects like "every department must



10 CHAPTER 2. BACKGROUND AND RELATED WORK

include at least ten faculty members”. Thus, ontologies are a structured source of
knowledge (a taxonomy) permitting the standardization of concepts, supporting the
interoperability at the semantic level and reasoning [10].

The ontologies are classified in different types depending on their generality of
level. Among others, the following ontology types can be distinguished [23]: (1)
Upper level ontologies or General ontologies capture general knowledge about the
world providing basic notions and concepts for things like events and states. (2)
Domain ontologies capture the concepts of a particular area of interest or a specific
topic, for example digital domain or medical domain.

In [24] is referred that Ontologies can also be expressed in Description Logics
(DL), a well-known family of knowledge representation formalisms. In particular, an
ontology can be regarded as a typical DL knowledge base which consists of two
components: a "TBox and a "ABox". TBox represents the background knowledge
and the knowledge about the terminology relevant for the described domain, including
the concepts, their properties and their relations as a set of asserted axioms while
ABox represents the individuals that are instances of concepts of the ontology in the
form of membership statements.

The Web, World Wide Web Consortium (W3C) has proposed a DL-based web
ontology language: the OWL. It is a formal description for creating, publishing and
distributing ontologies [19]. It provides a set of vocabulary as constructs, enabling
people to define concepts, properties, individuals, and their relations. Typically, a
property in OWL can be distinguished in two categories: (1) data type property which
allows people to describe specific attributes of a concept, such as "date of birth", "age
of person" and (2) object property which enables people to link two concepts with a
semantic relation, like “teaches” between “professor” and “student”. Corresponding to
the notions of TBox and ABox in DL, ontology encoded in OWL can also be
partitioned into two parts: ontology schema and ontology data. Definitions of
concepts, properties and their relations in the owl file(s) are treated as ontology
schema. Instances of these concepts (that is individuals) are treated as ontology data
[24].

2.4. RDF/ RDFS

RDF (Resource Description Framework) [22, 65] is essentially a graph-based data
model for the web. It is used to represent information about resources on the web, as
well as for things that can be identified on the web, even when they cannot be directly
retrieved on the web, like a person. The main intention of RDF data model is to be
used for situations in which information about web resources needs to be machine-
accessible and machine-processable, meaning that it needs to be processed by
applications, rather than being only displayed to people.



2.4. RDF/ RDFS 11

Its basic building block [22,62, 65] is a triple, called statement, which is a triad
(s, p, 0) where s is called subject, p is called property and o is called object. The
subject represents a resource, meaning a "thing" that we want to talk about, e.g.
books, people, places, animals and so on. It is a URI (a Universal Resource Identifier)
or a Blank Node, both of which denote resources. Resources indicated by Blank
Nodes are called anonymous resources and they are not directly identifiable by the
RDF statement. A URI can be a URL (Unified Resource Locator, web address) or
some other kind of unique identifier. The basic URI syntax consists of a URI scheme
name, e.g. http, mailto, file, followed by a colon character and then by a scheme
specific part, as shown below:

<URI scheme name> : <scheme specific part>

In general, an identifier does not necessarily enable access to a resource and are not
limited to identify things that have network locations. It can also identify diverse
objects, such as telephone numbers and ISBN numbers. Properties are a special kind
of resources. They describe relations between resources, more precisely between the
subject and the object of the statement, for example "has_age" or "has_title". An RDF
statement offers only binary predicates (properties). We can think an RDF triple (X, P,
y) as a logical formula P(x,y) where the binary predicate P relates the object x to the
object y. Properties are also identified by URIs. An object could also be a resource
identified by a URI, a Blank Node or a literal. There are two kinds of literals: (1)
atomic values (strings) which have a lexical form and optionally a language tag, e.g.
"25", "name"@en and (2) RDF typed literals which are formed by pairing a string
with a URI that identifies a specific datatype, e.g.
"25"Mhttp://lwww.w3.0rg/2001/XMLSchematinteger. They just indicate explicitly
what data type would be used to interpret a given literal. The "A" notation indicate
the type of the given literal. The data types, which are used most widely in RDF
documents, are predefined by XML schema, including integers, Booleans, floats,
times and dates.

A set of RDF triples forms an RDF graph. It is a directed graph with labeled
nodes and arcs. The arcs are directed from the "subject” resource of the statement to
the "object” value of the statement and represent relations between the nodes. This
kind of graph is actually a semantic network. RDF statements are expressed most
widely using the following machine-readable formats: RDF/ XML, Turtle, N3, Json,
RDFa (embedded in HTML pages) [22, 65].

RDF Schema (RDFS) [63] provides a data-modeling vocabulary for RDF
data. As referred at [64], it is a set of classes with certain properties using to extend
RDF data model, providing basic elements for the description of ontologies, otherwise
called RDF vocabularies, intended to structure RDF resources. A class [22] can be
defined as a set of resources. An individual object that belongs to a class is called
instance of that class. Classes are themselves resources. The relationship between
instances and classes in an RDF statement is expressed using the property "rdf: type".



12 CHAPTER 2. BACKGROUND AND RELATED WORK

RDFS also establishes relationships between the classes themselves defining a
hierarchy of classes. The property "rdfs: subClassOf" is used to state that one class is
subclass of another class. If a class A is a subclass of a class B, then all instances of A
will also be instances of B. The term super-class is used as the inverse of subclass. An
important point of RDFS is that it fixes the semantics of "is a subclass of". This means
that it is not up to an application to interpret "is a subclass of", its intended meaning
must be used by all RDF processing software. Hierarchical relationships can also be
established between properties. This is done with the property "rdfs: subPropertyOf*
which denotes that P is a subproperty of Q if Q(Xx,y) whenever P(x,y). Except of the
properties "rdf:type”, "rdfs:subClassOf" and "rdfs:subPropertyOf", which have
already been described, other main RDFS constructs are the following classes and
properties.

The classes are:

e rdfs:Class, the class of all classes.

e rdfs:Resource, the class of all resources.

o rdfs:Property, the class of all properties.

e rdfs:Literal, the class of literal values such as strings and integers.

The additional properties are:

e rdfs:domain for a property P, specifies the class of those resources that may
appear as subject in an RDF triple whose predicate is that property P.

e rdfsirange for a property P, specifies the data type or the class of those
resources that may appear as object in an RDF triple whose predicate is that
property P.

2.5. Web Ontology Language: OWL

The expressivity of RDF/RDFS [22, 66] is too weak to describe resources in sufficient
detail. RDF is limited to binary predicates and RDF Schema is limited to subclass and
subproperty hierarchy, domain and range restrictions and instances of classes.
However, a number of other features are missing for describing the semantic of
knowledge precisely. Some of the most important features are:

Localized range and domain constraints: In RDFS we cannot declare range
restrictions that apply to some classes only. For example, we cannot say that the range
of property "eat" in cows is "plants”, while for other animals may also be "meat".

Disjointness of classes: In RDFS we can only state subclass relationships. For
example, we can say that "female” is subclass of “person”. But we cannot say that
"female™ is disjoint with "male”.




2.5. WEB ONTOLOGY LANGUAGE: OWL 13

Existence/ Cardinality constraints: In RDFS we cannot declare restrictions on how
many distinct values a property may take. For example, we cannot say that a person
has exactly two parents or that all instances of “person” have a mother that is also a
person.

Boolean combinations of classes: In RDFS we cannot build new classes by combining
other classes using union, intersection and complement. For example, we may want to
define the class "person” to be the disjoint union of the classes "male" and "female".

Special characteristics of properties: In RDFS we cannot define that a property is
transitive, e.g. the property "isPartOf", inverse, e.g. the property "hasPart” is inverse
of "isPartOf", unique, e.g. the property "isMotherOf", or symmetrical, e.g. the
property "touches".

Reasoning support: RDFS is difficult to provide reasoning as there are no "native"
reasoners for non-standard semantics.

Thus, there is the need for an ontology language that is more powerful and
richer than RDF Schema. A language which allows users to write explicit and formal
conceptualizations of domain models, offering the above features and more. A such
language must keep the following requirements:

well-defined syntax: It is a necessary condition for machine-processing of
information.

formal semantics: There should be no doubt about the meaning of knowledge. This
means that the semantics does not refer to subjective intuitions, nor is it open to
different interpretations by different people or machines.

As far as ontological knowledge is concerned, the formal semantics allow people to
reason about:

e Class membership: If x is an instance of class A and A is a subclass of B, then
we can infer that x is an instance of B.

e Equivalence of classes: If a class A is equivalent of class B and class B is
equivalent of class C, then A is equivalent to C, too.

e Consistency: Suppose we have declared x to be an instance of class A and that
A is a subclass of BNC, A also is a subclass of D, and B and D are disjoint.
Then we have an inconsistency because A should be empty but has the
instance X.

o Classification: If we have declared that certain property-value pairs are a
sufficient condition for membership in a class A, then if an individual x
satisfies such conditions, we can conclude that x must be an instance of A.

Semantics also is a prerequisite for efficient automated reasoning support. The latter is
important because it allows to someone without missing time to:



14 CHAPTER 2. BACKGROUND AND RELATED WORK

e check the consistency of the ontology and the knowledge in general.
e check for unintended relationships between classes.
e automatically classify instances in classes.

After a number of researches, W3C Organization defined the OWL (Web
Ontology Language) as the standard ontology language of the Semantic Web. A
language that can be supported by efficient reasoners while being sufficiently
expressive to express large classes of ontologies. OWL can be consider as an
extension of RDF Schema, in the sense that OWL builds upon RDF and RDF
Schema. Instances are defined using RDF descriptions and most RDFS modeling
primitives (rdfs:subClassOf, rdfs:Class, rdfs:domain, rdfs:range etc.) are used.

OWL [67] provides three increasingly expressive sublanguages: (1) OWL Lite
Is intended for users who need a classification hierarchy and simple constraints. For
example, it only permits cardinality values of 0 or 1. (2) OWL DL is intended for
users who want the maximum expressiveness retaining at the same time
computational completeness and decidability, meaning that all computations will
finish in finite time. It includes all OWL and RDF language constructs, restricting
how they may be used. For example, while a class may be a subclass of many classes,
a class cannot be an instance of another class. It is optimized kind of OWL language
for reasoning and knowledge modeling. (3) OWL Full is intended for users who want
the maximum expressiveness and the syntactic freedom of RDF. For example, in
OWL Full a class can be treated simultaneously as a collection of individuals and as
an individual in its own right. OWL Full also allows an ontology to augment or
change the meaning of the pre-defined RDF or OWL vocabulary. The main
disadvantage of OWL Full is that it does not conclude complete and efficient
reasoning support.

The main constructs of an OWL Ontology [22, 67] are:

Header: It concludes the "rdf:RDF" element which specifies a number of namespaces.
For example:

<rdf:RDF
xmins:owl ="http://www.w3.0rg/2002/07/owl#"
xmlins:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.0rg/2001/XLMSchema#">

and the "owl:Ontology" element, which contains comments, version and inclusion of
other ontologies. For example:

<owl:Ontology rdf:about="">



2.5. WEB ONTOLOGY LANGUAGE: OWL 15

<rdfs:comment>An example OWL ontology</rdfs:comment>
<owl:priorVersion
rdf:resource="http://www.mydomain.org/uni-ns-old"/>
<owl:imports
rdf:resource="http://www.mydomain.org/persons"/>
<rdfs:label>University Ontology</rdfs:label>
</owl:Ontology>

Classes and class hierarchy: Classes are defined using the "owl:Class" element. There
are also two pre-defined classes, "owl:Thing" and "owl:Nothing", where the first one
is the most general class, containing everything and the last one is the more specific,
the empty object class. We can also define relations between classes and specifically:
(1) Disjointness of classes with the element "owl:disjointWith" and (2) Equivalence of
classes using the element "owl:equivalentClass".

Properties: There are two kinds of properties: (1) Object properties, which relate
objects to other objects and (2) Data type properties, which relate objects to datatype
values. It adopts XML Schema data types e.g. integers, floats, strings, Boolean, time,
date, etc.

Property restrictions: They deal with how properties can be used by instances of a
class. All restrictions are used within the context of an "owl:Restriction” element. The
"owl:onProperty" element, which is contained on "owl:Restriction” element, indicates
the restricted property. OWL defines two types of restriction declarations. One type
limits which values can be used by property and are: (1) "owl:allVValuesFrom", which
is used to specify the class of possible values the property specified by
"owl:onProperty" can take, (2) "owl:hasValue", which states a specific value that the
property specified by "owl:onProperty" must have and (3) "owl:someValuesFrom",
which does not restrict all values of the property specified by "owl:onProperty” to be
instances of the same class. The other type of restriction declarations defines
cardinality restrictions and are: (1) "owl:minCardinality"”, which states at least one
individual by the property specified by "owl:onProperty”, (2) "owl:maxCardinality",
which states at most one individual by the property specified by "owl:onProperty” and
(3) "owl:Cardinality”, which specifies a precise number.

Characteristics of properties: OWL defines some special properties applied to object
properties which are: (1) "owl:TransitiveProperty”, which defines a transitive
property, e.g. "is greater than", (2) "owl:SymmetricProperty”, which defines a
symmetric property, such as "has same grade as", (3) "owl:FunctionalProperty",
which defines a property that has at most one unique value for each object, such as




16 CHAPTER 2. BACKGROUND AND RELATED WORK

"age”, "height™" and (4) "owl:InverseFunctionalProperty"”, which defines a property for
which two different objects cannot have the same value, such as "hasAFM".

Boolean combinations: OWL supports Boolean combinations - union, intersection and
complement - of classes using the "owl"unionOf", "owl:intersectionOf" and
"owl:complementOf" elements respectively.

Enumerations: The "owl:oneOf" element is used to define a class by listing all its
elements.

Individuals: Instances of classes are declared as in RDF, using the "rdf:type" element.
OWL does not adopt the unique-names assumption, which means that if two instances
have a different name or ID, it does not imply that they are different individuals. As a
consequence, in order to declare that two individuals are equal, OWL uses the element
"owl:sameAs", while to declare that two individuals are unequal, it uses the element
"owl:differentFrom". If we want to declare that a number of individuals are mutually
distinct, the OWL uses the "owl:AllIDifferent" element. It is used in conjunction with
the "owl:distinctMembers" element to state that all members of a list are distinct and
pairwise disjoint.

2.6. Semantic Annotation

Generally speaking, the term "Annotation™ implies to attach data to other piece of data
adding more specific information (that is a description) about it [25]. The term
"Semantic Annotation" is a clear and easy to understand by both, human and
machines, specification which is used to add meaning taken from an ontology to a
specific data. We can distinguish three categories of semantic annotations: (1) Manual
annotations performed by one or more users allowing them to choose manually the
annotation which will be added to a specific object, (2) Semi-Automatic annotations
based in automatic suggestions by tool allowing to user to choose one annotation by
the suggested ones or manually annotated the specific object and (3) fully automatic
annotations based in exclusive proposal by tool without manual intervention.

In [25] a formal definition is given according to which an Annotation is a
quadruple (as, ap, &, ac) Where as is the subject of the annotation (the annotated data)
a, Is the object of the annotation (the annotating data) a, is the predicate (the
annotation relation) that defines the type of relationship between as and a,, and ac is
the context in which the annotation is made.

2.7. Business Process Modeling Tools

In order to be able business analysts to design the graphical representation of business
process models, a business process modeling tool is needed. Some of these tools



2.7. BUSINESS PROCESS MODELING TOOLS 17

which use BPMN 2.0 Specification are Activiti, Eclipse BPMN2 Modeler, Camunda,
Adonis CE, Maestro for BPMN, SeMFIS.

Activiti [27] is a light-weight workflow and Business Process Management
(BPM) Platform targeted at business people, developers and system administrators. It
sponsored by enterprise content management giant Alfresco. Its core is a super-fast
and rock-solid BPMN 2.0 process engine for Java. It is open-source and distributed
under the Apache license. Specifically it is licensed under the Apache License 2.0 to
encourage widespread usage and adoption of the Activiti BPM engine and BPMN 2.0.
Activiti runs in any Java application, on a server, on a cluster or in the cloud because
it is just a jar file. The main components of activiti which are combined to form a
complete solution from BPMN are showed in the following Figure:

Modeling Runtime Management

Activiti Modeler

Activiti Designer Activiti Engine

Activiti Explorer

Activiti REST

Activiti Kickstart

Figure 2.13: Activiti Components

Activiti Modeler can be used to author BPMN 2.0 compliant processes
graphically using a browser. The process files are stored by the server in a database
model repository while the Activiti Designer is an Eclipse plugin which allows you to
model BPMN 2.0 processes within your IDE-environment. Although it supports
Modeler, Simulation and Execution, it has two drawbacks: (1) data elements are not
supported and (2) it permits limited supported formats, that is read and save internally
in BPMN format without exporting capabilities.

Eclipse BPMN2 Modeler [28] is a graphical modeling tool for authoring
business processes. The primary goal of BPMN2 Modeler was to provide a graphical
workflow editing framework, which can be easily customized for any BPMN 2.0
compliant execution engine. It was built by eclipse org. as a mission of the eclipse
Service Oriented Architecture (SOA) project and it distributed under the Eclipse
Public License 1.0. It is a cross-platform product meaning that it runs both on
windows and on Linux, as well as on other platforms. The BPMN2 Modeler is built
on the Eclipse Plug-in Architecture and provides several extension points for



18 CHAPTER 2. BACKGROUND AND RELATED WORK

customizing the editor's appearance and behavior. Nevertheless, at this time, it
provides incomplete support for data elements which means that it does not support
data store, data input/output elements and data collection. Supported formats for
reading is BPMN2 and for writing are BPMN2, BMP, GIF, JPG, PNG, PDF.

1 Propartien (2
Default Process
Dascription. |, process Cisgram descrioes b ssquencs or flow of Adivties in an crganization with the objective of camying ou

Duta tarrn workc & Process is depicied as a graph of Flow Blemenis, which are a sai of Acikitias, Evenis, Gataways, and Sequence
Disgram Flows that define finfle sxeotion semantics Processes con be defined at any level from enterpraewide Processests -

Deintions - AHnbatey

hiadicn Il peocess_]

Fame  Delauft Proosss
Pracem Typs | larm
h Exscutazin
k Closed

¥ Lwe Sak List

f Parymart racaned

ok Pdletie
¢ Saduct
§ Mg

O = Comedhoes <
= Saquanca Flow

£ Chrthir [ a0 L= Taska
Task

i S ) Uhar Tusk
e ! .
- i e e hom "O‘ &L Sovipe Task
- frticl removed SlBisines Aue

= A RyS

Incliniea
- = il Gateniy

y [
— S Enchysive
- ! Cbaniy
i G Pambnl Gatrwar;
T 2 L = Evanty E

=1
@ qu--, + St Evend
() End Exunt:

=l Theows Eveni
.
Zabch Bt
L Byt D it e

Dty bams
hes

Figure 2.14: Screenshot of BPMN2 Modeler tool

The core of Camunda BPM [29] is an execution engine for BPMN, CMMN
and DMN. It is lightweight and requires less than 3MB of disk space. It can run in any
Java Virtual Machine (JVM). It is distributed under the Apache License 2.0 and runs
on Windows, Linux and Mac.



2.7. BUSINESS PROCESS MODELING TOOLS 19

Business Analyst f Operator
Developer End User (technical/business) Administrator
|
g S | N B
, ; Custom ; . .
Tasklist | Application | Cockpit Admin
_________ e : e
REST REST § Jova REST REST
|
I
REST / Java API
''''''''''''''''' - Engine

| (BPMN, CMMN, DMN)

Dat-a-Eése

E File Repository .

T

Figure 2.15: Camunda BPM Architecture

Camunda Modeler is a desktop application for editing BPMN process
diagrams supporting BPMN 2.0 Specification. It is very easy to use, which means that
business analysts can use it as well as developers, working on the same diagrams.
Besides the visual modeling, Camunda Modeler also allows you to edit all properties
that are necessary for the technical execution. Since Camunda Modeler works directly
on the BPMN and DMN XML files, developers can easily combine it with their
preferred IDE (for example Eclipse, Netbeans). BPMN 2.0 modeling based on
bpmn.io which is probably the most awesome modeling framework in the known
universe. However, it partially supports data elements which means that it does not
support data store, data input/output and data collection. It also does not support
BPMN2 comments.

Adonis Community Edition (CE) [31] is the free version of Adonis BPM
tools, without any time limitation. Most of the BPM software are quite expensive, but
Adonis community edition is completely free for both personal as well as commercial
uses. It is developed by the BOC Group which was founded as a spin-off of the
University of Vienna. It lets you model business processes easily, supporting BPMN
2.0 Specification. It also allows analysis, simulation, evaluation and Sharing BPM
models. Unfortunately, it runs only on windows platform.



20 CHAPTER 2. BACKGROUND AND RELATED WORK

© AN Commumety Ldition: Business Process Manegrment Tostidt (Adming

Mode Doomentynos Exirss  Wwdie  Help SO0 Managesent Oftos

IportExport FECIN - JAX 98

—-
7 Contr ok shananes iR by [RBushivss e  iadel
L
i Chach ignas Chach sgnabaw [ Fheen poui hawe 15 recaiiw,) Sgrakant e aesiats Ovder cod
2 bvodxt e M e ’ :
-~ T o Ohach. # acvound o Socked ¢ T hée oo
— ‘1‘]“““ o D o B iWinnce plabie e Ovdm co
o o "...4. Sernd M coder bach o B cutiomer Send the coder back 1 the cvde & vol iskeioed ¢ = 1ent bac it Cowrle
foct t
J Tl bookey m— —_— —_—
— —
. 1 )
- e
E—=f=x}
L 2 oune oy T Ty —
B ~— e — oa nemr
. | = s =
> ranrs on o (—
y ' * o ,
3 : " e
- ] Y ! »
fe— | i i ¥ L) » v - - v
= 03 trest 3 .
() = P ® ® ® © R/ R
e s ~ o oo — Sarvren -

Figure 2.16: Adonis CE Business Process Management Toolkit

As far as Modeling is concerned, Adonis CE lets you model your entire
organization: processes, products, resources and see how they interrelate. It is quite
easy in terms of use, which makes it quite easy for even new BPM modelers to
quickly start modeling. Models can be saved as HTML, or even embedded in Word
documents and presentations and general it provides options to export them in
different formats such as ADL, XML, XPDL. It is also quite good in analyzing those
models to find process bottlenecks and other inefficiencies in the system, as well as it
provides simulation option so as to be able to find costs of processes, staff
requirements, bottlenecks and other inefficiencies. Adonis CE stores all the model
data in SQL Server free edition that comes with Adonis download and it is easy in
installation.

Maestro for BPMN [61] is a SAP research modeling tool which has already
been extended by Born et al. to enable semantic annotation of the business processes
(a fragment of process model using Maestro for BPMN tool is shown in Figure 2.17).
For this reason, it makes use of the sBPMN ontology from SUPER project.
Specifically, if a new BPMN task is created on the drawing pane, an instance of the
concept "Task" is created in the in-memory working ontology, enabling reasoning
over it. More details on how they have achieved semantic annotations to business
process models are presented in the “related work™ section.



2.7. BUSINESS PROCESS MODELING TOOLS 21

M 545 Erararch - Marsira far BEMH 1,4

Ri GX Min Tek
DweEd S0 Mo ¥y B §88 s v~ PRey TF 5% Es3F
£ e - = x|EF . =l
LT L — |
083
e
'f.» :.*) b [:.lnll.‘u.
* ij QU TR e
[ T
o e (5 o rnca e e v
Ho® |

e

_l
il
Hl
v L)
+

Figure 2.17: A fragment of a process model in Meastro for BPMN tool

Although it supports the graphical representation of business process models using
BPMN specification, it also supports ontologies expressed in WSML/WSMO format,
whereas we make use of OWL format. In addition, it is not freely available for using.

SeMFIS [30] means Semantic based Modeling Framework for Information
Systems and it is a flexible engineering platform for semantic annotations of
conceptual models that supports the representation and analysis of annotations with
ontologies. SeMFIS has implemented using the Microsoft Windows-based ADOxx
meta modeling platform which is professionally developed by BOC Group, a spin-off
of the University of Vienna, and it has been on the market for more than fifteen years.
Thus, SeMFIS can be easily added to the large variety of other modeling methods
based on this platform or used as an additional service for other tools. The standard
installation of SeMFIS is connected with the relational database of Microsoft SQL
Server. It is freely available for use via the OMILAB.org website at
http://www.omilab.org/web/semfis.



22 CHAPTER 2. BACKGROUND AND RELATED WORK

4] ADOw: Modelling Toolkit (semfis) [EREE =

Model Web Senvice Inerface  Window  Help
&% ¢ [F) et (B8 I § X

Explorer - Model groups Mo...

| Business process model (Business process model) ==& | 1 Risk_ontology (Ontology Model (=& =]

g8s 450 = )
EHD Model Decision = "Neutral'
B) Business process model Decision = "Ves"
[£] Complex Semantic Annot; A
Risk_ontology 1
[ E T 1 _
™ ecision = No* L
Force_Majeure Generic_Risk Technical_Failure  Organizational_Shc
A -
y e o - n n
Probability Impact
ol | Activity ¢
Navigator < : .
4 = =]=]
|-_<;_ = b
. J—‘O Q[ Modeltype: Ontology Model 3
....... - ) R ¥ i
D s E | Clss: Class
o F | instance: Anrcandition_Feilue
equal
to
> »

<No Variant> | Flow | 86.82%

Figure 2.18: SeMFIS Model Editors for a Business Process Model, an OWL Ontology Model and a
Semantic Annotation Model (from left to right, top to bottom)

SeMFIS intention was to provide a link between the field of conceptual
modeling (like a business process model) and the field of ontologies. SeMFIS does
not require a specific type of modeling language or the modification of an existing
modeling language because of the decoupling of the semantic annotations in separate
semantic annotation models, as shown in Figure 2.18 on bottom model for the
creation of which the top models, business process model on the left and owl ontology
on the right, contributed. The most important features are provided by SeMFIS
platform are: Model Editors, Scripting and Analysis functionalities, import and export
interfaces.

For the graphical representation of any conceptual model which is supported
by SeMFIS, business process models, semantic annotations and any supported
ontology type, SeMFIS has available its own model editor, as shown in Figure 2.18.
Via the scripting functionality, statements in the domain-specific ADOscript
language can be executed in order to extend SeMFIS functionalities. As far as
analysis component is concerned, SeMFIS uses it in order to express queries in AQL
format (ADOxx Query Language). Finally, SeMFIS provides import and export
interfaces for exchanging model information in different file formats. However, only
XML Import/Export interface is used to exchange information from arbitrary model
types and ADL Import/Export Interface to exchange information with other ADOXxx
based tools that do not offer an XML interface.

In our work, we select the SeMFIS tool for the following reasons: (1) It has
been implemented using the freely available ADOxx meta modeling platform and it is
supported by the freely available AdoScript language for extending its functionalities.
(2) 1t is a flexible platform which can be used to create both business process models
(supporting BPMN 2.0 Specification) and Ontologies (supporting OWL language)



2.7. BUSINESS PROCESS MODELING TOOLS 23

using any time its own model editor. (3) As far as business process models are
concerned, it already has a "semantic annotation™” attribute on the objects' notebook
which can be added manually on objects by the user. (4) Nevertheless it has a separate
semantic annotation model type for linking objects of business process models with
concepts of ontologies, it is useful only for expert users. Most of the times, business
designers do not know about ontology technologies, so it is a useless functionality for
them.

For all these reasons, exploited the "semantic annotation™” attribute and the
freely available use of ADOxx meta modeling platform, as well as the freely available
AdoScript documentation, we use the SeMFIS tool in order to present our semi-
automatic suggestions for semantic annotations on activity labels of business process
models creating at the same time a new semantic annotated business process model so
as not to modify existing ones. More details about extended functionalities are
presented in chapter 5.

2.8. Related Work

The idea of adding semantic annotations to business process models is not new and
has already been proposed by several authors, for different process languages and
goals. We can roughly classify the existing proposals into two big groups. The first
group consists of those who add semantic annotations to specify the dynamic behavior
exhibited by a business process [5, 60]. The second group is composed of those who
add semantic annotations to specify the meaning of process elements in order to
improve the automation of business process management [2, 3, 4, 7, 8, 14, 36, 37]. In
our work we follow the second perspective in order to give a more precise and
comprehensive meaning in the activity labels of business process models and to allow
the use of semantic technologies, like querying, on business processes via semantic
annotations.

In [5], Markovic and Pereira present an expressive formalism for describing
business process models to support reuse of existing business fragments during
modeling. They distinguish two main aspects of a process description: dynamic and
static aspect. As for the dynamic aspect, they have selected to use process algebra, the
n-calculus, for capturing the behavior of the process, that is process control flow.
Within the static aspect of the process description they want to describe other
workflow perspectives, e.g. organizational and informational perspectives.
Specifically, they want to describe processes in terms of their input/output data,
business function, business domain, organizational roles which perform certain
process parts. For this reason, they use WSML (Web Service Modeling Language) as
a representation language for the ontologies that capture static aspects of the process
model description. Finally, they propose the Business Process Ontology (BPO), which
captures both dynamic and static aspects of a process model description. The concepts



CHAPTER 2. BACKGROUND AND RELATED WORK

in BPO are visualized in Figure 2.19, using WSMO (Web Services Modeling

Ontology) Studio.

Concurrent
ExclusiveChoice
MultiplePath
Restriction
Match Replication
; Pattern
Local Summation i
Process
Prefix
ProcessCall
Channel
) Identifiable
Communication Variable
Input MessageType
Output ey e T e S s e Y
< http:ffwww.ip-super.orgfontologies/BPDOJ20070710#
e -
«™ Ontology /
Concept ControlFlow ¥
@ Instance ProcessFragment
DataFlow

<> Relation [

Figure 2.19: Concepts of Business Process Ontology (BPO)

In order to integrate behavioral with other workflow perspectives, BPO imports
concepts from several other ontologies, forming the ontology framework shown in

Figure 2.20.
Business Business . Process
. . Business Roles
Functions Domain Ontolo Resources
Ontology Ontology 9y Ontology
b N 4 4
A .

Business Process

Imports
Ontology

Figure 2.20: Ontology Framework

Imported ontologies describe concepts used to create semantic annotations for
concrete process definitions. Specifically, for describing the functional perspective,
they have designed the Business Functions Ontology. For describing the domain (e.g.
product area, client area, etc) inside the organization where the process is used, they



2.8. RELATED WORK 25

designed the Business Domain Ontology. Business Roles Ontology includes concepts
representing roles in the organization e.g. manager, engineer, secretary, etc. while
Process Resources Ontology describes the resources (e.g. documents, systems,
machines) which are required to operate the activities in processes. Finally, the
semantic annotation of processes is done by five relations as shown in Figure 2.21:
hasBusinessGoal, hasBusinessFunction, hasBusinessDomain, hasBusinessRole and
hasProcessResource. These semantic annotations can be used for various querying
and reasoning purposes e.g. finding process fragments, verification, execution, etc.

&= ’.—I:Etp_ﬁﬁvw Jip-super.orgfontologies/BPDO{2007071 0—4_#_: =

- _-hasBusinessRole—f ) l f':f-I;asProcessResourEét )
v ] v
A A
" hasBusinessFunction v T e Bitine G
< Ontology T— —— ‘ =P
Concept [
@ Instance pere——
<> Relation hasBusinessDomain

Figure 2.21: Business Annotations

In [60], Smith and Proietti propose a rule-based framework for reasoning
about process-related knowledge expressed by using standards for business process
modeling like BPMN specification and ontology definition like OWL language. In
order to present the behavioral semantics, they follow an approach inspired to the
Fluent Calculus, a well-known calculus for action and change. In the Fluent Calculus,
the state of the world is represented as a collection of fluents, which means terms
representing atomic properties that hold at a given instant of time. A fluent is an
expression of the form f(a;, ..., a,) where f is a fluent symbol and aj, ..., a, are
constants of variables. They define semantic annotations for modeling the behavior of
individual process elements in terms of preconditions under which a flow element can
be executed and effects on the state of the world after its execution. Preconditions and
effects called functional annotations and can be used to model input/output relations
of activities with data items, which are the standard way of representing information
storage in BPMN diagrams. Specifically, a precondition specifies the status a data
item must possess when an activity is enabled to start and is formulated by means of
the relation: pre(A,C,P), which specifies the fluent expression C, called enabling
condition, which must hold to execute an element A in the process P. An effect
specifies the status of a data item after having completed an activity and is formulated
by means of the relation: eff(A, E", E*, P), which specifies the set E” of fluents, called
negative effects, which do not hold after the execution of A and the set of fluents E”,



26 CHAPTER 2. BACKGROUND AND RELATED WORK

called positive effects, which hold after the execution of A in the process P. They
assume that E" and E" are disjoint sets.

Both of the above works [5, 60] are focused on dynamic behavior of business
process elements where we have not researched at all in this work.

In [14], Thomas and Fellmann consider the problem of enhancing individual
model elements of event-driven process chains (EPC) with semantic annotations using
concepts of a formal ontology. They propose a framework which joins process model
and ontology by means of properties (such as the "semType" of a process element).
Specifically, they propose a multi-level approach which comprises an ontology level,
a metadata level and a model level, as shown in Figure 2.22. Metadata is generated
from models. This metadata contains references to the model elements of the initial
model, as well as to the concepts of the ontology. Ontologies and metadata are
interdependent. Concepts from the ontology are used in the metadata to specify the
meaning of the labels of the model elements. The ontologies used must contain the
required concepts or they must be added to the ontologies in the course of the creation
of the metadata.

Concepflion Representation

Ontologies

b=y oW

Metadata

-b---k4  ROF

Maodels

I I B

Figure 2.22: Framework for the semantic annotation of business process models

In the Figure 2.23 is presented the linkage of an ontology and the EPC model
elements instances of "customer order processing” model which is accomplished by
the usage of "semType" properties. These properties specify the semantics of an EPC
model element through a relation to an ontology instance with formal semantics
defined by the ontology.



2.8. RELATED WORK 27

ﬁ A@r (:hE‘ierr QEF-'@mOr
o
© }\__ = .r:’m\_b« — /afz\ —_ Uses
Deer related I/.,G:Ies event ¢ Production ™) l"-:— 12 sen 109 r’:.e'll'c.an:n "‘\,.. _—
b Task _ NI N \.EE”* .
= ==
processk eperuson

Cradit
wiortniness| |
e

Credt
Worthingss

ec-mguaLc-

Instances

semType  semType se-rlhpe semTyps| semType semType

8 _,/"i/ ,L_f_——ﬂ:m__ \
'E | Event 1 | |F|.nc>'lm 1| Connectar | Event 2 | Event 3 |FJr-:'.bn :| |FJI"C—’.0I‘| zl Carmecian Event 4 |
— flow— fow—T o= —— Nlow— = 4 —_— i [

———flo—
Sand oner
aceepted confirmation
Process
1 Order Sand order
rejected Tejection
Mapping EPC-MogeiOniology Instantiation specialisation .

Progerty- EPC control

Figure 2.23: Semantically annotated process model "Customer order processing"

They do not refer what metrics are used for the creation of “"semType" properties.
Their work differs from our approach. We create directly connections between
activity labels of business process models and concepts of a domain ontology using
three types of similarity measures - string, linguistic and syntactic - as well as
filtering. If an accurate domain ontology does not exist a priori, nothing happens until
an accurate domain ontology is created.

In [2], Born et al. propose a tool for the user-friendly integration of domain
ontology information in the process modeling. They have made extensions to the SAP
research modeling tool Maestro for BPMN for the needs of their implementation. In
order to match elements of graphical business process model with concepts of domain
ontologies, they exploit (1) information about domain objects, actions, states and
transitions from the ontology, (2) structural knowledge from the process and (3) a
combination of string distance metrics and matching methods considering synonyms
and homonyms. Figure 2.24 illustrates the main components of their semantic
extension for business process modeling tools. Especially, BPMN data objects and
associations are used to describe the activities of a process model more precisely by
defining associated objects and their state transitions: Data objects identify the objects
an activity deals with and associations link the data objects to the corresponding
activities in the process diagram. The user may specify pre- and post conditions for
the activities in natural language and may define the objects as well as the objects’
states before and after an associated activity has been executed within the graphical
model.



28 CHAPTER 2. BACKGROUND AND RELATED WORK

Matchmaking
.=/ Functionalities [&.

k‘ \\\\
. Offer

Business . T

Process Model '« created (Offer) Ontolo
[BPMN} \* sent (Offer) ay
L)
H 1
i ':
grounded in! 1 selected from

NS

10w Oibject 1t = Transon
2 = Shate A= Acfion

Figure 2.24: Main components of semantic extension for business process modeling tools

Two kind of ontologies are used to achieve the semantic support of modeling
activities. First, they have extended the sSBPMN ontology of the SUPER project so as
to provide possibilities to define states of a data object before and after corresponding
activities have been executed, to link objects, states and activities to elements of
domain ontologies describing them and to capture natural language pre- and post
conditions for activities. Second, they define a possible structure of domain ontologies
which cover information concerning domain objects and states which help to model
business processes more precisely. Utilizing appropriate domain ontologies, the
matchmaking functionalities address the problem of deriving a list of proposals for a
selected model element that a user has chosen for semantic annotation. To solve this
problem, they propose a combination of string distance metrics and matching methods
using synonyms and homonyms, as well as they use process diagram context
information and domain ontology knowledge for even better results. They do not refer
what exactly string algorithms and matching methods have been used in their
approach.

In the SUPER project [8], Dimitrov et al. propose the SUPER ontology stack
for the creation of semantic annotations of both BPMN and EPC process models in
order to support automated composition, mediation and execution. The core of the
SUPER ontology stack is comprised of five ontologies: (1) an Upper Process
Ontology (UPO) which defines top-level concepts such as task, condition, etc. (2) a
Business Process Modeling Ontology (BPMO) which extends the UPO into a full



2.8. RELATED WORK 29

process ontology providing abstractions over different business process modeling
notations such as BPMN and EPC and (3) sBPMN, sePC and sBPEL which are
"ontologised" versions of subsets of the BPMN, EPC and WS-BPEL, respectively.
They extend the WSMO studio with a BPMO editor for adding BPMO semantic
annotations to existing business process models and for creating new semantic
models.

Fe EAL Proect Wediw e N

\
- x TR RET N __y_<z°°m manager | £l pewo Hwso
/
Nrwostor U B Moy - TR —~ '
= =il - S — Palatte
. 3 [y Setect
3 o ~ S P 1 -
et . | () Parael Skt 5yrctronae & Merge
& opra0 = L . »
s =3 i e e —— b
o / ¢ \ ! o Segumtiis Flow
‘| Project explorer | S T
x v \
- P e Pale o
=5 S o 2 | ( tte >
B ererronstOndeng lyeo | /”D M ! F— foo
- ¥ vk . b B i ( de"‘"g arca \ { | A‘\”J’O"Al
- Yooy \ s i | )
= S \ /1 Megaton Proces:
S Sanghes %3 o | il e squmace & \ ‘ &
3 ) SAWTA Dere ——— £ " \ | Bt Paierrs. ¢
Saoun | \ { /4 Customey orewests \ -
2 Sat Evert
o \ ® g0 udasetrodst A | v
kol yovp—- | ; 3 i C)fnipon
0 Bk adlToa(ctes, » i PSSP - A\ |
- fovpud “ | ; \ | Daferved Chokn
4 \ | Exchmive Cho
W0 O i i ; \ | PMugle Chox
- | b if N d
* S i ::mi((t’kn!n ~ :m;::g. L :@-’ p | 4 Paskisol
» ooy - itags S F} =$ ¥
+ @ wersainaTim Lrciconien : ‘,\ y. i % M‘::
v @ Shoorg ¢ i i & Mikple Merge
“ @ e | ! \ 4 i ) Syneheonaation
~ @ sucreensn = €| i v | Bodk patters  #
* : e o, ol Tat
& @ psbude ( N "5
) Par el Sple-
& © wiieonl WSMO explorer ) D
+ @ GouGeRecoine_ — 3 Dwferred Chews-
o @ pdimTretske 7 ] Mergn
* @ ostedyeTrs 5 Exchive Chowoe-
& @ gadudencodym Mo
= @ poaModerDeamt B Repent
"2 capttodarfiegues TR RN e
D recodroderiiogm B et
@ chorGosModenfiequest
+ @ pabetwriorit
b P pdwtvoiseqes
» @ guscioolm |
* @ nssann le . »

& @ genisoashopng L _deste
2 I polloaubirat ) et E ouen

- —~ L =

pa N
(Properties view )

PRy . SSRE— o

Figure 2.25: WSMO Studio enhancing with a BPMO editor

Figure 2.25 depicts the user interface of WSMO Studio enhancing with BPMO editor.
It is based on the BPMN graphical notation extended with BPMO specific modeling
primitives and integrated with existing WSMO Studio functionality. The semantically
annotated business processes are produced simply by drag & drop existing semantic
elements (concepts and instances from reference ontologies) into the relevant element
of the process model (activity, data flow elements). They do not refer the formalism
and the metrics which are based to produce the semantic annotations for business
process models. In addition, WSMO tool supports ontologies expressed in WSML/
WSMO format, whereas we make use of OWL format.

In [36] and [3], Francescomarino et al. propose the representation of
semantically labeled business processes as part of a knowledge base that formalizes
business process structure, business domains and a set of criteria describing correct
semantic annotations on labels. In [36], they provide an ontology integration scheme,
where to add semantic annotations to a business process, based on a set of merging
axioms that connect BPMN ontology and domain ontology. The merging axioms are



30 CHAPTER 2. BACKGROUND AND RELATED WORK

in fact a set of constraints which define criteria for correct/ incorrect semantic
annotations. An example of such a merging axiom is that a BPMN element of type x
can be annotated only with a concept equivalent or more specific than y, where x
denotes a concept of BPMN ontology and y denotes a concept of domain ontology. In
order to express this kind of constraints and to support automatically verify on them,
they propose to encode all the information about semantically annotated processes
into a logical knowledge base, called Business Processes Knowledge Base (BPKB),
which is composed of the following four modules, as shown in Figure 2.26:

e BPMN ontology: formalizes the structure of a Business Process Diagram.

e Domain Ontology: is a set of ontologies that describes a specific business
domain.

e Merging axioms: state the correspondence between the BPMN ontology and
the domain ontology.

e BPD instances: contain the description of a set of Business Process Diagrams
in terms of instances of the BPMN/ domain ontology.

_____________________________________

I
; BPMN -~ Merging 3 Domain
! Ontology \ Axioms / Ontology

Instance Of Instance Of

Figure 2.26: Business Processes Knowledge Base

In [3], they extend the structure of Business Processes Knowledge Base, as shown in
Figure 2.27, to incorporate constraints used to formalize structural requirements
which refer to descriptive properties of the annotated process diagram and not to its
execution.

BPMN Ontology Domain Ontology
B e )] ' Constraints
| ® : BRI O |
! - { i Merging Axioms i B iﬂfg‘_;,
| &/ P R Sttt 3 ok
! Lo “ R 1 2 —©
E o ;\ﬁ i Process Specific ™ ‘_/: | Y
i g | Constraints e (O
| BPMN axoms | : 2 Le
: H
L1 o el : s
instantiates BPD instances nstantiates
—e() i
=4 v i
O— ®—() |
. {
= ) J i
Abox :

Figure 2.27: Extending Business Processes Knowledge Base

They focus on three types of process specific constraints that can be expressed over
the Business Process Diagrams: containment constraints (X contains y), enumeration



2.8. RELATED WORK 31

constraints (X contains at least/ at most/ exactly n objects of type x) and precedence
constraints (x is always preceded by y). Finally, they describe a tool for the automated
transformation of an annotated business process into an OWL ontology and evaluate
how standard DL reasoners can be used to automatically verify these constraints as
ontology consistency violations. We make use of a variant of Business Processes
Knowledge Base in order to provide process querying mechanisms in our
implementation (more details in section 5).

In [7], Ehrig et al. present an approach for (semi-)automatic detection of
synonyms and homonyms of process element names in order to support semantic
process model interoperability and interconnectivity by measuring the similarity
between process models semantically modeled with the Web Ontology Language
(OWL). For this purpose, they have developed an OWL-DL based description of Petri
nets. In order to achieve their goal, they use three similarity measures: (1) syntactic
measure, where they compare the number of common characters in the element names
using a variant of Levensthein edit distance method, (2) linguistic measure, where the
similarity degree based on the WordNet dictionary to determine synonyms sets and
(3) structural measure where they consider the context of concept instances and makes
it possible to detect homonyms. Finally, they aggregate the three similarity measures
to a combined similarity measure as follows: The combined similarity simc,m between
two concept instance names c¢; and ¢y, let ¢, be a particular concept instance name of
SBPM; and c, be a concept instance name of SBPM,, is an aggregation of the degrees
returned from the syntactical, linguistic and structural similarity measures having a
particular weight each one, Wsyn, Wiing and W, that can be individually assigned by
users or learned for example using machine learning based approaches on a training
set, as indicated in the following formula:

Wsyn*SiMsyn (€1,62)+ Wiing*SiMying(C1,62)+ WserSimser(c1,62)

Wsynt Wiing tWstr

SiMeom (cl' CZ) =

The similarity between two semantic business process models SBPM; vs. SBPM; is
defined by semantic relationships, which they consider by the two sets of concept
instances C; and C, of SBPM; and SBPM,.

e equivalence: sim(SBPM;, SBPM,) = 1 iff C; =C,,

e disjointness: sim(SBPMj, SBPM,) = 0 iff C;nC,=0,

e intersection: sim(SBPM;, SBPM,) € [0...1] iff C:nC, = {X|(x € C1) A (X €
Cz)} N Cq # Co.

Based on these semantic relationships they specify the overall similarity between two
semantic business process models as the maximum combined similarity between c;
and concept instances c,; of SBPMy, as indicated in the following formula:

n
. 1 )
simgsppy (C1, C3) = n Z(maxjelm(Smeom(cl' Cz)))
i=1



32 CHAPTER 2. BACKGROUND AND RELATED WORK

Very close to our work is the [37]. Ciuciu et al. have developed a tool, called
Knowledge Annotator (KA), to provide semantic support to the business modelers
during the design of secure business process models. The tool uses ontology-based
data matching algorithms and a strategy in order to infer the recommendations the
best fitted to the user request, from a dedicated knowledge base and an ontology of
security constraints. The goal of ontology-based data matching is to find the
similarities between two data sets each of which corresponds to one part of the
ontology. The selected strategy is the Controlled Fully Automated Ontology Based
Data Matching Strategy (C-FOAM). It is a hybrid strategy which combines (1) string
matching algorithms, (2) lexical matching algorithms and (3) at least one graph-based
matching algorithm. Specifically, the C-FOAM is based on two modules: (1) the
Interpreter module and (2) the Comparator module, as shown in Figure 2.28.

Pre-processing by the Ontology-based
Interpreter Comparator
Matching at Matching at ey
: : ; Similarity
-3 Graph Matchin
string level lexical level P 9 Socrs
Score + Score +
Penalty Penalty

Figure 2.28: C-FOAM model for ontology-based data matching

The Interpreter, at first, makes use of the domain ontology and string matching
algorithms to interpret the end users' input. In case that the data object, which belongs
to the string matching algorithms results, is denoted by several terms, it then makes
use of the lexical dictionary, WordNet, to take into account synonyms of them. If a
given object term could not be found in the ontology and lexicon, the best fitting data
object is returned from the ontology using fuzzy matching based on string similarity.
The similarities should be above a certain threshold which is set in the application
configuration of their tool. If the data object is found based on fuzzy matching then a
penalty percentage will be used on the matching score. Finally, the interpreter will
return the correct concept(s) defined in the ontology or lexical dictionary and an
annotation set of the concept. The Comparator computes the similarity between two
found data objects annotated with binary facts from the ontology base. It uses a graph
based algorithm or a combination of different graph-based algorithms to find the
similarities between the two annotation sets. The Ontology which is used by the tool is
modeled following the Developing Ontology Grounded Methodology and
Applications (DOGMA).

More closely to our work is the [4]. Francescomarino and Tonella have
proposed a technique to support the business community with automated suggestions
of semantic annotation of process models expressed in BPMN, based on a measure of
similarity between ontology concepts and the labels of the process elements to be
annotated. Their approach relies on linguistic analysis of the process element labels



2.8. RELATED WORK 33

and of the ontology concepts names. Matching is based on a measure of information
content similarity. Specifically, they use a linguistic analyzer, the MINIPAR, to
tokenize the process elements labels and the ontology concepts. Moreover, for each
word it identifies the grammatical category (e.g. verbs, nouns, adjectives) as well as
the grammatical relationship (e.g. verb-object, article-noun, specifier-specified) and
the head word guiding such a relationship, if any. They also use the WordNet
dictionary to categorize terms according to their meaning (sense) and synonym set
(synset). More specific, they use it to solve the semantic ambiguity of ontology
concepts by mapping them to unique synsets. The Lin's formula is used to compute
the information content similarity between two terms t1 and t2:

2 «log (p(MCSA(t1,t2)))
log (p(t1)) + log (p(t2))

where MCSA is the information content of the Most Specific Common Abstraction
between the terms t1 and t2. The identified synset will be the one with the best
average of maximum information content similarity value computed over all the
relative concepts. Once the ontology concepts are linked to a single WordNet sense,
the choice of the suggestions is based on the semantic similarity between pairs of
BPMN element labels and ontology concepts. The semantic similarity of a pair (I, c)
can be based on the semantic similarity between pairs of words respectively in | (W, =
{w; € Dict|l = wj; ... wy}) and in ¢ (W, = {w; € Dict| ¢ = w; ... Wp}). They define the
candidate set of pairs CSP as CSP € W, X W, such that each word w;€ W, and w;€
W, appears at most once in CSP and the total semantic similarity is maximized by
CSP. They also give weights to the semantic similarity measures (e.g. the verb has
greater importance that the object, in turn more important than the specifier). Once the
semantic similarity measure is known for all pairs, they determine the subset of such
pairs which maximizes the total semantic similarity. The result is a suggested
semantic annotation for each BPMN element. We make use of three similarity
measures (string, linguistic, syntactic), as well as we use weighs and filtering
techniques for more precise results.

ics(t1,t2) =




34

CHAPTER 2. BACKGROUND AND RELATED WORK



Chapter 3

Basic BPMN Ontology

3.1. A brief Overview

As already has been mentioned, the BPMN language provides powerful graphical
representations of business processes that enable human users to model such
processes. Nevertheless, its lack of formalized semantics has already led some authors
in the development of a BPMN Ontology. In [15], M. Rospocher et al. represent an
ontology for the Business Process Modelling Notation which provides a classification
of all the elements of BPMN, together with the formal description of the attributes and
conditions that state how to combine BPMN elements to form a valid BPD, as they
described in BPMN Specification of OMG.

Of course, this is not the only ontology which has been developed for business
process modeling. A number of ontologies for business process modeling have
already been proposed, the main objectives of which vary to some extent. Others
focus on specific business process language, such as in [15] as it has already been
mentioned above and in [14] where O. Thomas and M. Fellmann have developed an
ontology for semantic EPC. On the other hand, other authors have developed more
general ontologies for business processes, such as in [33] where L. Cabral et al.
present the Business Process Modeling Ontology (BPMO) which captures domain-
independent organizational aspects and control-flow constructs of business notation,
process interaction features from BPEL, and service description and invocations for
Semantic Web Services (SWS) and in [34, 35] where the General Process Ontology
(GPO) is presented. GPO provides a common conceptualization of the concepts used
in different process modeling languages.

Due to difficulties to follow the BPMN Ontology, presented in [15] which is
the nearest in our investigation, we developed our own basic BPMN Ontology for the
facilitating of this research. The basic BPMN Ontology is an ontological
formalization of the BPMN specification which encodes the classification of the most
basic elements of BPMN, together with the formal representation of the most useful
attributes and conditions describing how the elements can be combined to obtain a
BPMN process model compliant with the BPMN Specification.

35



36 CHAPTER 3. BASIC BPMN ONTOLOGY

3.2. The Construction of Basic BPMN Ontology

The main purpose of basic BPMN Ontology is to formalize the structural parts
of the BPMN language, meaning to describe the most basic elements of BPMN
diagrams and how they can be used to compose these diagrams. It is not intended to
model the dynamic behavior of a BPMN process, that is how the execution flow
proceeds within it. We develop the basic BPMN Ontology in order to exploit it in the
context of semantically annotated business processes and as a consequence to support
semantically queries on them. For example we would like to be able to retrieve all
processes that contains sub-processes about "cart management”.

The development of the basic BPMN Ontology was driven and facilitated by
the availability of the BPMN Specification as it is described in [20]. In particular, the
BPMN Specification is derived in sections each of which describes in details each
BPMN element, containing usually the following content:

e a detailed description of the element, together with some general properties
and conditions about it.

e atable with the attributes of the element, including its name, its value type and
a description about its usage and its special conditions of usage.

e adetailed description about the conditions which must hold for connecting the
element with other elements of the BPMN language.

e examples in XML schema describing the element during the execution of
process.

The basic BPMN Ontology does not make usage of all the elements, properties,
attributes and conditions which are described in BPMN Specification. It formalizes
only the most basic of them in order to be used for querying purposes.

The following steps were followed to build the basic BPMN Ontology (they
are in correspondence with the steps modelling process as described in [15]).

In the First Step we manually processed the BPMN Specification to identify
all the basic elements of the language. We then associated each of these elements to a
class in the ontology and at the same time formalized the initial taxonomy of these
classes, that is we defined the "is-a" relationship. For example, we defined the class
Flow_Objects and that it has three subclasess which are Activity, Gateway and Event.

In the Second Step we filtered the attributes table corresponding to each
element, selected the most important and useful for our research and formalized them
either as an object property or a datatype property, based on the following general
criteria:

(@) The value type of the attribute is another BPMN element: In this case, we
formalized the attribute as an object property having as property domain the class
associated with the current element and as property range the class corresponding to




3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 37

the element mentioned as value type of the attribute. For example, the attribute
SourceRef of the BPMN element Associations has as value type the BPMN elements
Artifact and Flow_Obijects.

(b) The value type of the attribute is a datatype with no restrictions: In this case, we
formalized the attribute as a datatype property having as property domain the class
associated with the current element and as property range an OWL datatype
compatible to the one specified in the value type of the attribute. For example, the
attribute "Text" of the BPMN element "Text Annotation™ has as value type "String".

For each attribute, we also formalized its multiplicity details as an OWL
cardinality restriction on the class having the attribute. Particularly, (0..1) multiplicity
is encoded as "at most one” OWL cardinality restriction, (1..n) multiplicity is encoded
as "at least one™ OWL cardinality restriction and finally (1) multiplicity is encoded as
"exactly one™ OWL cardinality restriction.

In the Third Step we added a new attribute for the class of the BPMN element
"Activity" and its subclasses "Task and "Sub_Process”, namely "Semantic
Annotation™ and defined it as a datatype property having as property domain the class
"Activity" and as property range the value type "anyURI" which is a link to a concept
of a domain ontology. For example, as shown in Figure 3.1, on task "choose a
product” has been added as semantic annotation the class "to select product” from the
domain ontology "onLineShopDomainOntology™ which is linkable with this concept
of these domain ontology.

4@ to_select_product {Class) - onLineShopDomainOntology 1.0

choose a product | —¥ —

Fxclusive

Figure 3.1: Semantic Annotation on task “choose a product"

The basic BPMN Ontology consists of 120 Classes, 36 Object Properties and
15 Data Properties, as shown in table 1. It is not an exhaustive effort of modeling all
the attributes, properties and conditions of the BPMN elements as they are presented
in BPMN Specification of OMG. We concentrated only to the most basic and useful
elements, attributes, properties and conditions which help us to proceed our
investigation about semantic annotations on BPMN diagrams. A more detailed
development of ontology could be a future work.

! The domain ontology "onLineShopDomainOntology", as well as the excerpts of "on-Line Shop"
business process have been copied from http://selab.fbk.eu/OnLineShop/



38 CHAPTER 3. BASIC BPMN ONTOLOGY

Table 3.1: Basic BPMN Ontology metrics

Basic BPMN Ontology Elements | No
Classes 120
Obiject Properties 36
Datatype Properties 15

The core component of the basic BPMN Ontology is the Base Elements
Class, divided into seven disjoint sub-classes. Six of them contains the main elements
used to describe Business Process Diagrams, which also further divided onto sub-
classes. These BPD main element set includes "Flow_Objects" class which is the
union of the classes Activity, Gateway and Event, "Connecting_Objects™ class which
is the union of the classes Sequence Flows, Message Flows, Associations and
Data_Associations, "Swimlanes” class which is the union of the classes Lane and
Pool, "Artifact" class which is the union of the classes Group and Text_Annotation,
"Data_Objects"” class which is the union of the classes Data_Input, Data_Output and
Data_Store and finally "Message" class. The seventh sub-class, namely
"Supporting_Elements”, contains additional types of elements, mainly used to specify
the attribute values of graphical objects. For example, the supporting element
"Loop_Characteristics” is used to define the graphical object Activity and signifies
that the Activity has looping behavior, i.e. it is repeated sequentially. Except the
"Base_Elements” Class, the basic BPMN Ontology contains also the
"BPMN_Diagrams™ class which contains the basic types of business process
diagrams, namely BPMN_process, Choreography and Collaboration. The basic
BPMN Ontology does not include elements and attributes which represent
Choreography diagrams. A graphical representation of the hierarchy of the classes of
the basic BPMN Ontology rooted at Base_Elements class is shown in Figure 3.2.

Data_Store
3
= ;
\ \ 1 -
v R -~ Text_Annotation
% 4 BPMN_Process "
5 ~7| @ Connecting_Obje . o — [ PP ]4_ { — ]
‘ Message_Flows | =¥ cts { | 5 e,
F—mﬁ BBSG_EI?ments -

g Data_Associatio

g __ Participant_Ass
- Sl ociation

—

' / + B
Loop_Characteri Expression

stics * @ Participant

Figure 3.2: An Overview of the "is-a" taxonomy of basic BPMN Ontology rooted at Base_Elements




3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 39

As far as the Object Properties are concerned, a short description is followed
for the most useful of them:

e has_BaseElements property and its inverse isBaseElementsOf property are
used to define the BPMN core elements that are used in graphical
representation of a process or sub-process. They have property domain the
"BPMN_Process” class and the "Base Elements" class respectively and
property range the "Base Elements” class and "BPMN_Process" or
"Sub_Process" class respectively.

e has_Artifact property defines that in a process, sub-process or collaboration
may be added as many artifacts as user defines or not. It has property domain
"BPMN_Process" or "Sub_Process" or "Collaboration” class and property
range the "Artifact"” class.

e has_AssociationSourceRef property defines the Base Element which the
Association is connecting from. It has property domain the "Associations"
class and property range the "Artifact” or "Flow_Objects" class.

e has_AssociationTargetRef property defines the Base Element that the
Association is connecting to. It has property domain the "Associations” class
and property range the "Artifact” or "Flow_Objects" class.

e has_DataAssociationSourceRef identifies the source of the Data Association.
It has property domain the "Data Associations™ class and property range the
"Data_Objects" class.

e has_DataAssociationTargetRef identifies the target of the Data Association. It
has property domain the "Data Associations" class and property range the
"Flow_Objects" class.

e has_messageFlow identifies the two separate pools in a collaboration diagram
which the flow of the messages are represented in between two participants
which are prepared to send and receive them. It has property domain the
"Collaboration Diagram™ and property range the "Message_Flows" class.

e has_messageFrom property identifies the participant of which sends a
message while the has_messageTo property identifies the participant on which
the message has been sent. They have property domain the class "Message"
and property range the class "Participant”.

e has_messageRef property defines the Message that is passed via the Message
Flow. It has property domain the classes "Message_Flows", "Receive_Task"
or "Send_Task" and property range the class "Message".

e has_messageSourceRef property defines the node that the message flow is
connecting from while has_messageTargetRef property defines the node that
the message flow is connecting to. The first one has property domain the class
"Message_Flows" and property range the classes "Activity",
"Message_End_Event" or "Message_InterThrow_Event". The other one has
property domain the class "Message_Flows" and property range the classes
"Activity", "Poll" or "Message_InterCatch_Event".



40 CHAPTER 3. BASIC BPMN ONTOLOGY

e has_sequenceFlow property identifies the flow objects which participate in a
sequence flow (that is the order that the activities will be performed in a
process). It has property domain the class "Flow_Objects" and property range
the class "Sequence_Flows".

e has_sequenceSourceRef property defines the node that the sequence flow is
connecting from while the has_sequenceTargetRef property defines the node
that the sequence flow is connecting to. The first one has property domain the
class "Sequence_Flows" and property range the classes "Activity", "Gateway",
"Start_Event", "InterCatch_Event", "InterThrow_Event",
"Nonlinterrupt_Intermediate_Event” or "NonInterrupt_Start_Event". The other
one has property domain the class "Sequence_Flows™ and property range the
classes  "Activity”, "Gateway", "End_Event", "InterCatch_Event",
"InterThrow_Event"”, or "NonlInterrupt_Intermediate_Event".

Finally, as far as Datatype Properties are concerned, the most significant for
our investigation is the property has_SemanticAnnotation which identifies the
semantic annotation that has been added in an activity of a process. It has property
domain the class "Activity" and property range the value type "anyURI" which is a
link to a concept of a domain ontology.

We could also represent the semantically annotated processes as part of a
knowledge base (KB), in correspondence with the [36], which is composed of the
following three modules:

(1) The basic BPMN Ontology which is a general ontology and provides a
formalization of the structural part of business process diagrams, meaning that it
describes the most basic BPMN elements and how they can be connected for the
construction of BPDs.

(2) The Domain Ontology which consists of a set of ontologies that describes a
specific business domain.

(3) The BPD Instances which contain the description of a set of semantically
annotated BPDs in terms of instances of the basic BPMN ontology and the domain
ontology. Every element of the semantically annotated business process is represented
as an individual of a class.

The first two modules constitute the terminological part, that is the TBox, which
represents the background knowledge and the knowledge relevant for the described
domain and the last one constitutes the changeable part, that is the ABox, which
contains knowledge about the individuals of a specific business process description,
as shown in the Figure 3.3.



3.2. THE CONSTRUCTION OF BASIC BPMN ONTOLOGY 41

3 TBox W
[ basic BPmn | [ bomain |
Ontology Ontolo
R TP Sy By o QY_}
VI“ q
""':.I.r)stance o.f..v" ABox
I BPD Instances |
o mececans

Figure 3.3: Knowledge Base of Business Processes

The reason of encoding a BPD as a set of instances of the basic BPMN
Ontology is that reasoning services can be then implemented on it. One of them, that
is represented on this work, is the querying on the BPD instances. Specifically, given
an instantiated basic BPMN ontology, we provide process querying mechanisms that
exploits the information formalized in the basic BPMN ontology. We used SPARQL
for encoding the queries which run on the instantiated BPMN ontology.




42

CHAPTER 3. BASIC BPMN ONTOLOGY



Chapter 4

Presentation of the Process Following for Semi-
Automated Semantic Annotations to Business
Processes

In this chapter, we provide a more detailed presentation of similarity measures
following to annotate business process models with semantically semi-automated
suggestions derived from domain ontology (ies). To help business designers annotate
their process models, different matchmaking functionalities are used to link the model
elements and specifically activity labels (task and sub-process) of them to available
domain concepts. The similarity metrics that we exploit in order to support business
analysts with semantic annotation suggestions semi-automatically generated are:
String metrics, linguistic metrics and syntactic metrics. The linguistic and syntactic
metrics are based on one of the most known English dictionaries, the WordNet.

WordNet is a large lexical database of English which was developed at
Princeton University. It contains nouns, verbs, adjectives and adverbs which are
grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.
Synsets are interlinked by means of conceptual-semantic and lexical relations. The
majority of the WordNet’s relations connect words from the same part of speech
(POS). Thus, the WordNet consists of four sub-nets, one each for nouns, verbs,
adjectives and adverbs. In particular:

The main relation among words in WordNet is synonymy, that is words that
denote the same concept and are interchangeable in many contexts. Synonymy are
grouped into unordered sets, called synsets. Each synset contains a brief definition,
called gloss and, in most cases, one or more short sentences illustrating the use of the
synset members. Words with several distinct meanings are represented in as many
distinct synsets. Thus, each form-meaning pair in WordNet is unique.

Furthermore, WordNet contains encoded relation among synsets called 1S-A
relation, hyperonymy or hyponymy. It links more general synsets to increasingly
specific ones. For example, the synset "cutlery" is linked with "spoon" and "teaspoon™
meaning that the category cutlery includes spoon, which in turn includes teaspoon and
conversely concepts like spoon and teaspoon make up the category cutlery. All the

43



44 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

noun hierarchies end up to the root node "entity". Hyponymy relation is also
transitive. For example, if a teaspoon is a kind of spoon and a spoon is a kind of
cutlery, then a teaspoon is also a kind of cutlery.

WordNet contains also a part-whole relation which is called Meronymy and
holds between synsets like "seat" and "legs". Parts are inherited from their
superordinates. For example, if a chair has legs, then an armchair has legs as well.
Parts are not inherited "upward" meaning that if chairs and kinds of chairs have legs,
it does not mean that all kinds of furniture have legs.

Except from nouns, verb synsets are organized into "IS-A" hierarchies as well.
Verbs towards the bottom of the trees (troponyms) express increasingly specific
manners characterizing an event, as in "communicate-talk-whisper”. In contrast,
Adjectives are organized in terms of antonymy. Pairs of "direct" antonyms like wet-
dry and young-old reflect the strong semantic contract of their members. Each of
these polar adjectives in turn is linked to a number of "semantically similar" ones like
dry is linked to parched, arid, dessicated and bone-dry and wet to soggy, waterlogged,
etc. As for adverbs, the WordNet contains only few of them (hardly, really, etc.), as
the majority of English adverbs are straightforwardly derived from adjectives via
morphological affixation (surprisingly, strangely, etc.)

For our implementation we used the eclipse IDE [55] and two java libraries for
WordNet. The jwnl 1.4-rc3 java library[38] [39] [40] is an APl which was developed
by John Didion at Stanford University for not only accessing WordNet data in a
programmatic way but also for finding relationships of a given type between two
words. The jwi 2.3.3 [41] is a smaller java library which has been developed by MIT
for WordNet accessing. We used it in order to get the parts of speech of each word
and to compare only words of the same part of speech, e.g. verbs-verbs, nouns-nouns,
since the reduction of the comparisons would allow us to limit the time at our disposal
and the memory usage. Finally, we exploit only the "synonymy" and the "is-a"
relationships of WordNet both for nouns and verbs.

In the following subsections we describe the above similarity metrics in more
details, as well as the whole procedure which was followed to find similarities
between BPMN process labels and domain ontology concepts.

4.1. String Matching Algorithms

Various string matching algorithms are used to calculate the similarity between two
words or short sentences based on the string similarity of their description. In this
work, we used character based metrics, token based metrics and phonetic similarity
metrics. In particular, the following string algorithms are used:



4.1. STRING MATCHING ALGORITHMS 45

N-gram algorithm [42]: N-gram is a contiguous sequence of n items (e.g. letters,
words) from a given sequence of text. In fact, N-grams are overlapping substrings.
The sequences of the N-grams are saved in a string array of N-grams. A n-gram of
size 1 is called "unigram”, size 2 is called "bigram™ or "digram”, size 3 is called
"trigram". Larger sizes are referred to by the value of n, e.g. "four-gram" and so on. In
our research we used the token based similarity metrics: "Bigram or Digram
Algorithm" and "Trigram Algorithm". According to Bigram or Digram Algorithm
[43], strings are compared as sequences of two adjacent characters. It is a n-gram with
n=2. For example, if we want to find the similarity between the two short sentences:
"select product™ and "choose product”, the algorithm will generate two string arrays
with the following sequences: [{se}, {el}, {le}, {ec}, {ct}, {t }, { p}, {pr}, {ro},
{od}, {du}, {uc}, {ct}] and [{ch}, {ho}, {oo}, {os}, {se}, {e }, { p}, {pr}, {ro},
{od}, {du}, {uc}, {ct}]] respectively and will compare the corresponding sequences.
Thereafter the number of common sequences are used to Dice's coefficient statistic
formula [44] for comparing the similarity between the two sentences, as shown in (1).

__ 2|Xny|
05 = K @)

Where the |X| and |Y| are the number of sequences in the two short sentences. The QS
is the quotient of similarity which ragnes from 0 to 1.

In correspondence, in the Trigram Aglorithm [45], which is a special case of the n-
gram where n=3, strings are compared as sequences of three adjacent characters with
the same way as described in the Bigram Algorithm.

Levenshtein Distance Algorithm [46] [47]: It is a string metric for measuring the
difference between two sequences. In fact, the Levenshtein distance between two
words is the minimum number of single-character edits (i.e. insertions, deletions or
substitutions) required to transform one word into the other. Mathematically, the
Levenshtein distance algorithm between two strings s1 and s2 with lenghts |s1| and
|s2| respectively is given by the formula, as shown in (2):

max(i, j) if min(i,j) =0
levsl,sz (i - 1'j) +1

min levg 2 (i,j —1) +1 otherwise
k levsl‘sz(i - 1,] - 1) + 1(511':#52]')

)

levsl,sz (i,j) =

where the levg, 5, (i,)) is the distance between the first i characters of sl string and
the first j characters of string s2. The 1(51i¢52}.) is equal to 0 when s1; = s2; and

equal to 1 otherwise. Furthermore, the first element of the minimum corresponds to
deletion, from sl to s2, the second element corresponds to insertion and the last one to
match or mismatch, depending on whether the respective symbols are the same. For
example, the Levenshtein distance between "kitten" and "sitting" is 3, since the
following three edits change one into the other.



46 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

1. Kitten to sitten : substitution of 's" for "k".
2. sitten to sittin : substitution of "i" for "e".
3. sittin to sitting : insertion of "g" at the end.

Jaro - Winkler Distance Algorithm [48] [49]: It is a string metric for measuring the
similarity between two, especially short, sentences. It is based on the number and
order of the common characters between two strings. Mathematically, the jaro
distance dj between two strings s1 and s2 is given by the formula, as shown in (3):

0 ifc=0
dj =11 (L + =+ C—_t) otherwise
3 \|s1] |s2]| c

©)

where c¢ is the number of common characters and t is half the number of
transpositions. Two characters of the strings s1 and s2 respectively, are considered
common only if they are the same and not farther than floor(max(|s1|,|s2])/2). Each
character of sl is compared with all its matching characters in s2. As number of
transpositions (t), it is defined the number of common characters but in different
sequence order divided by 2. For example, if we want to compare the string “crate”
with the string "trace"”, they have "r", "a" and "e" as common characters, i.e. c=3.
Although the letters "c" and "t" appear in both strings they are farther than 1, as
floor(5/2)>1, so transpositions t=0. Winkler added on jaro distance algorithm a prefix
scale p which gives more favorable ratings to strings that match for the beginning for
a set prefix length I. Therefore, given two strings sl and s2, their jaro - winkler
distance d, as shown in formula (4), is:

d,=d; + (Ip(1 - dj)) 4)

where d;j is the jaro distance between the two strings sl and s2. | is the length of
common prefix at the start of the string up to a maximum of 4 characters, as it has
been defined by Winkler. p is a constant scaling factor for how much the score is
adjusted upwards for having common prefixes. The standard value for this constant in
Winkler's work is p = 1/10. The higher the jaro-winkler distance for two strings is, the
more similar the strings are. The score is normalized in such a manner that 0 equates
to no similarity while 1 is an exact match. For example, if we want to compare the
string s1 "martha™ and the string s2 "marhta”, we find that they have 6 common
characters, i.e. c=6, the length of string sl is |s1|=6, the length of string s2 is |s2|=6,
there are mismatched characters "th™ of string s1 and "ht" of string s2 leading to t =2/2
= 1. So, the jaro score is:

16 6 6—-1

d]’ == §<E+E+T> == 0944

adding the Winkler's standard weight p=1/10 and finding that the length of common
prefix between the two strings is I=3, the jaro - winkler score is:



4.1. STRING MATCHING ALGORITHMS 47

dy =0.944 + (3% 0.1 % (1 —0.944)) = 0.961

Jaccard Similarity Algorithm [50] [48]: It is a token based metrics which is used to
measure the similarity between two finite sets. It is defined as the size of the
intersection divided by the size of the union of the two sets. Given two strings Sand T
respectively, the formula which gives the Jaccard Coefficient j(S, T), as shown in (5),
is:

|SNT|
|SUT|

js,T) = (5)
where the intersection of the two strings, denoted as |S N T|, gives the number of
common characters in both strings while the union of the two strings, denoted as
|S UT|, gives all the characters which are in either string. The jaccard similarity
coefficient ranges from 0 to 1. For example, the similarity between the strings "kitten™
and "sitting" is:

4
jaccard = 5= 0.44
while the jaccard coefficient for the strings "apple™ and "apple pie" is:
_ 5
jaccard = 5= 0.56

Char Frequency Similarity Algorithm [53]: It is a string metric for quickly
estimating how similar two strings are. Specifically, it searches the occurrences of
characters in two strings and computes the similarities based on the character
occurrence list. For example, the char frequency similarity between the words "select"
and "action" is 0.334.

Soundex Algorithm [51] [52]: It is a phonetic algorithm for indexing names or
general words by sound, as pronounced in English. The goal is for homophones
(pronounced the same as another word but differs in meaning, and may differ in
spelling) to be encoded to the same representation so that they can be matched despite
minor differences in spelling e.g. beer - bear. It is especially useful in the case where
words can be misspelled or have multiple spellings where soundex algorithm can find
similar sounding terms. The algorithm mainly encodes consonants. A vowel is
encoded only if it is the first letter. The main principle used by Soundex is based on
the six phonetic classifications of human speech sounds (bilabial, labiodental, dental,
alveolar, velar, and glottal). Each consonant is grouped in one of the above six
categories depending on where you put your lips and tongue to make the sound of
each one. It aims to find a code for every word. This code consists of a letter followed
of three numerical digits. The letter is the first letter of the word and the digits encode
the remaining consonants of the word. The steps to find the soundex code is as follow:



48 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

1. Retain the first letter of the word and drop all other occurrences of a, €, i, 0, u,

y, h, w.
2. Replace consonants with digits as follows (after the first letter):
1=b,fpv.
2 =¢,0,),k,0,8,X,2.
3=dt.
4=1.
5=m,n.
6=r.

3. If two or more letters with the same number are adjacent in the original name
(before step 1), only retain the first letter. Also two letters with the same
number separated by 'h' or 'w' are coded as a single number, whereas such
letters separated by a vowel are coded twice. This rule also applies to the first
letter.

4. If you have too few letters in your word that you cannot assign three numbers,
append with zeros until there are three numbers. If you have more than 3
letters, just retain the first 3 numbers.

For example, the words "Ashcroft” and "Asicroft” are encoded in A261 and A226
respectively. In the first word the chars "s" and "c" would receive a single number of
2 and not 22 since an "h" lies in between them, whereas in the second one the chars
"s" and "c" would receive a double number of 2 (22) since a vowel "i" lies in between
them. In the case of words "Ashcroft" and "Ashcraft” both yield A261 for the same
reasons as described above. In the first example the soundex returns O (zero) score
whereas in the second one it returns 1.

Matching at string level is easy to implement and does not require a complex
knowledge resource. A natural language description of the objects/or concepts and/or
its composing elements is sufficient [37].

4.2. Linguistic Metrics

More complex but also more accurate metrics [54]. They calculate the similarity of
two words or short sentences based on the semantic similarity of their descriptions.
They rely on a dictionary to determine synonyms. The dictionary which is
incorporated in our work is the WordNet. As it has already underlined above, it [26] is
one of the most known English language thesaurus allowing to categorize terms
according to their meaning and synonym set, called synset.

In detail, given two short sentences, for example an activity label and a domain
ontology concept, we tokenize them, meaning that we identify the words and the
punctuation symbols which constitute the sentence, and extract two list of words



4.2. LINGUISTIC METRICS 49

respectively. From these lists, we have removed unnecessary common tokens like
"the", "a", "an", "of", "and", "for" and "to" because they do not have any sense in the
comparison procedure. Then, for each word, we identify the grammatical category in
which it belongs. Specifically, the set of the classification of grammatical categories is
{verb, noun, adjective, adverb} following the four categories of WordNet. With this
way, we compare only the terms of each list of the same grammatical category, that is
verb-verb, noun-noun, etc., lessening the unnecessary comparisons. Finally, we find
the synonym terms using the corresponding relation of the WordNet and the similarity
score of each similarity pair which range from 0 to 1. For example, we find that the
short sentences: "choose a product” and "to_select product™ are synonyms with
similarity score at 1.

4.3. Syntactic Metrics

In order to further improve the matching procedure, we also exploit the "is-a"
relationship of the WordNet dictionary. Hypernyms or hyponyms (which constitute
the "is-a" taxonomy) are used to take into account more generic or more specific
terms of a given term. For example, if we search for semantic annotation into the task
label "choose a product”, the system will retrieve not only the synonym term
"to_select_product” from the selected domain ontology but also the more generic and
more specific terms from the same selected domain ontology, ranked according to the
calculated similarity score which range from 0 to 1 in descending order (how the
similarity ~score is calculated described in the next sub-section):
{"to_select_product_quntity", "to_select_product_category", "product”,
"product_quantity, "product_category”, "product data”, "product availability”, "to

select_quantity", "to_select_cateogory"}.

4.4. Combined Similarity Measures

In order to suggest the most relevant semantic annotations to business analysts, the
system must compute a combined similarity degree between a BPMN activity label
and concepts of a selected domain ontology. The combined similarity degree is an
aggregation of the degrees returned from the string, linguistic and syntactic metrics as
explained above. For aggregating the results, parameters can be set for weighting the
strength of each string matching algorithm. In addition, for computing the final
aggregated result, a filtering method of the results has been implemented in order to
accurately and efficiently detect the semantic annotations for BPMN activity labels.
The whole matching process consists of eight phases as shown in Figure 4.1: (a)
Loading, (b) String Matching, (c) Weighting String Algorithms, (d) Linguistic
Matching, (e) Syntactic Matching, (f) Mappings, (g) Filtering (threshold), (h) Outputs.



50 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

Load Concepts selected from -
ofa  F s Domain ontologies
Domain Ontology in DB

String matching Linguistic Metrics ?yrjtacttic Wetrics
algorithms Synonyms KA LEXOnomy

G

Load
BPMN activity label

Return semantic
annotations

Figure 4.1: Flow Chart of Matching Process

At this point, it is important to note that the end user of the matching process
is a business analysts who may possibly lack a sufficient background knowledge of
ontologies and matching algorithms. For this reason, we do not give him the
permission to customize parameters like selection string algorithms, weights and
thresholds for the matching process. Because of his lack of knowledge, the opposite
course of action would lead to insufficient customization followed by insufficient
results.

The first phase of the matching process is the loading of a BPMN activity
label and all concepts of a selected domain ontology. When the user types an activity
label, the system (SeMFIS) searches for the most accurate domain ontologies of its
database (how it is processed by the system so as to purpose accurate ontologies is
described in a following section). If there is one, the user selects it and the system
loads the activity label and all concepts of the selected domain ontology to the
matching process. If not, nothing is done until a suitable domain ontology is inserted
by the protégé via SeMFIS plugin in xml format or it is created in the system's
database in owl format or when an existing domain ontology is updated with suitable
classes.

The second and third phase of the matching process is the implementation of
all the string matching algorithms which has already specified above (bi-gram, tri-
gram, Levenstein, Jaro-Winkler, Jaccard, char frequency, soundex). However, all the
aforementioned algorithms do not have the same weight in the matching process.
Thus, bi-gram, tri-gram and soundex algorithm have fixed weight 0.5, Levenshtein
distance algorithm has fixed weight 0.7 and Jaro-Winkler, Jaccard and char frequency
algorithm have fixed weight 0.8. It should be noted at this point that the fixed weights
of the available matching algorithms are indicative. They are customized after testing



4.4. COMBINED SIMILARITY MEASURES o1

and by using our own experience. Of course, they can be customized again in the
future. Each one of the above algorithms gives a score of similarity ranged from 0.0 to
1.0.

The fourth and fifth phase of matching process are the implementation of
linguistic and syntactic metrics using the "synonyms™ and "is-a" relation functions of
the English dictionary WordNet. The weight of these two metrics can be considered
1.0. The score of similarity ranged from 0.0 to 1.0.

After applying all matching algorithms, in the next phase of matching process,
a weighted average of similarities is calculated with the following formula (6):

Z%zo simi* Wi

sim = .
Z‘l]"l:O Wl

(6)

where sim = {simy,sim,, ... , sim;} are the calculated value similarities from all
matching algorithms and W = {wy, wy, ..., wi} are the corresponding weights of each
matching algorithm which are fixed from the system whereas n is the number of
similarity measures which are used in our implementation.

The same process is followed for all the matching annotations for each
matching pair between the loaded activity label and each of the loaded concepts of the
selected domain ontology and the similarity scores are stored in a similarity matrix.

In the next step of matching process, a fixed threshold has been defined by the
system in 0.5. The fixed threshold is indicative, and so are the fixed weights of the
available matching algorithms as stated earlier. It is customized after testing and, of
course, it can be re-customized in the future.

When there are no more matching pairs to compare, the system checks the
calculated similarity score of each matching pair and if it is above the given threshold,
then the domain ontology concept of this pair is considered an accurate match and
might be added into the result map.



52 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

search for product (Task)

Mame:
search for product D
Show name - 5 €
22
@ center Select a Concept I
bel
- BEew Annotations for: "search for product™
to_search_for_product
Task type: product _ o
Mot specified to_search_for -
to_add_product
Global task product_category o
Order: product_guantity (3 |

product_data 1
to_remove_product
to_select_product

product_availability 1 Je
to_select_product_category
to_select_product_quantity
arder

action
to_provide_product_data
Comment: shipping i)
to_store_shipping_method
ohject

shipping_method

stock

to_store -
to_read_policy
to_store_method
stock_data
to_select_shipping_method

0

Description: *

1/2

Close ” Reset
oo

E

Figure 4.2: Semantic annotations list for the BPMN Task label "search for product"

In the final phase of matching process, a list of the semantic annotations which
are above the 0.5 threshold are presented to the user. Thus, every loaded BPMN
activity label in the matching process is allowed to match with more than one loaded
domain ontology concept (1:n). That of course is based on the fact that we search not
only for the exactly synonym concepts of the loaded activity label but also for parents
and children of it. The list is ranked from the most accurate semantic annotation to
less accurate one (that is annotations with similarity score from 1.0 to 0.5) as shown in
the Figure 4.2. As we can see from the Figure 4.2, the top of the list is occupied by
suggested annotations derived from string matching algorithms such as
{to_search_for_product, product, to_search_for, to_add_product, product_category,
product_quantity, etc} which have higher scores of our method and following



4.4. COMBINED SIMILARITY MEASURES 53

suggested annotations derived from syntactic metrics (“is-a" relationship) such as

{order, action, object, stock, to_store, to_read_policy, stock data, etc} with a score of
up to 0.5.

choose product (Task)
Marme:
choose product Desc
Show name Ohje
@ center Doc
1 below
Tirr
Task type: " h Sir
typ — Select a Concept 2 1 L =
Mot specified - :
Sir
Global task Annctations for "choose product™ o c
to_select_product 5
Order: to_select_product_guantity I L1
] to_select_product_category
o product
Description: * to_search_for_product l )
product_guantity -
to_remove_product
product_categorny
to_add_product
product_data -
] product_availability
EriLile to_provide_product_data 3 e
to_select_guantity T
to_select_category
Close ] I Reset 6-"?}

Figure 4.3: Semantic annotations list for the BPMN Task label “choose_product”

In the Figure 4.3, we can see another example of automatically suggested
annotations where have been involved all three metrics of our method (string,
linguistic, syntactic). Specifically, in this Figure we want to match an annotation to
the task label "choose product”. The system suggests a list of ranked annotations from
the most accurate annotation to the less one. The synonym sentence
{to_select_product} is derived from linguistic metrics, as the verb "select" is synonym
with the verb "choose™ and it is in the top of the list as it has the highest score of all
the concepts. Following concepts which are derived from linguistic and syntactic
metrics such as {to_select_product_quantity, to_select_product_category} which are



54 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

"children” of the sentence "to_select product”, as well as concepts which are
substrings of the label name such as {product, product_data}.

The user can select only one suggested annotation from the list or none
choosing the "cancel™ button. If he/ she chooses the "cancel” button, the notebook of
the specific task opens into the "semantic annotation” chapter and the user could
select manually a domain ontology and then a concept which he/ she considers most
accurate for the specific task, as shown in the Figure 4.4. In this Figure, the "semantic
annotation™ chapter of the task "read policy” has automatically opened and the user
matches manually the annotation "to_read policy” (blue rounded rectangle) from the
ontology "onLineShopDomainOntology" (red rounded rectangle) in the task label
"read policy".

read policy (Task) =l &
Semantic annotation: @}‘\ =
Description
read policy (Task) - Semantic annotation - Add object reference =l = S
Documents
Target model: A Target object: riad :
=0 Models & to_provide_payment_data - Times/Costs
EH sefis_group B to_provide_policy_data Simulation settings
basicBPMM_Ontology B to_provide_product_data
MarineTL Ocntolo E to_read_policy ] Simulation results
onlLineShopDomainOntology & to_remove Semantic Annotation
[&] onLineShopMew 1.0 B to_remove_product =
pizza & to_search_for
pizzaOntology B to_search_for_product
I3 test & to_select g
& to_select_category M
& to_zelect_method
B to_select_payment_method
B to_select_product i
1| 1 F P — e k
Add reference
Reference targets: xDH
Apply Cancel l [ Help

Figure 4.4: Manually selection of semantic annotation



4.5. SUGGESTING ACCURATE DOMAIN ONTOLOGIES AND ANNOTATED
BPMN PROCESSES 55

4.5. Suggesting accurate domain ontologies and annotated
BPMN processes

As shown in Figure 4.1, the SeMFIS may have a lot of domain ontologies in its
database which have either been created immediately in the system by ontology
experts or have been inserted in it from the protégé program via the SeMFIS plugin.
Before the system puts forward automatic semantic annotations, it searches for the
most accurate domain ontologies in its database where the semantic annotations could
be extracted from, and suggests them to the user in order to select one. (The whole
procedure on how the system searches for the most accurate domain ontologies is
described with details below). If an appropriate domain ontology does not exist in its
database, the system does not make any automated suggestion. It also discloses
already annotated BPMN models which have been annotated with domain ontology
concepts related with the activated activity label and suggests them too. If the user
selects an already annotated BPMN model the system saves time as it does not need to
search in all concepts of a domain ontology but only between the concepts which have
already been annotated in the selected annotated BPMN model.

The whole procedure of detecting the most accurate domain ontologies of the
database, as well as the most accurate annotated BPMN models, if they exist, is
approximately the same as the automatic detection of semantic annotations. We use
the same similarities measures, that is all the string algorithms, linguistic and syntactic
metrics, as well as their fixed corresponding weights, as they have already been
underlined earlier. The only difference is that we implement a two phase filtering
method in the final similarity score, instead of one, in order to detect the most
accurate domain ontologies and annotated BPMN models. The Figure 4.5 shows the
whole procedure.



56 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

Load Concepts

of each from

Domain ontologies
or annotated BPMN models
inDB

Domain Ontology
or semantic annotations of
each annotated BPMN model

Syntactic Metrics
"is-a" taxonomy

Load String matching
BPMN activity label algorithms

Linguistic Metrics
Synonyms

Gomer)
1st threshold
2nd threshold

accurate domain ontologies
and annotated BPMN models

D,

Figure 4.5: Flow chart of matching process for suggesting most accurate domain ontologies and/or
accurate annotated BPMN model

The system compares the activated activity label with all concepts of each
domain ontology and existing annotated BPMN model in database using sequentially
all the string matching algorithms with the fixed weights of each one (bi-gram 0.5, tri-
gram 0.5, Levenstein 0.7, Jaro-Winkler 0.8, Jaccard 0.8, char frequency 0.8, soundex
0.5), linguistic and syntactic metrics. The final similarity score is a weighted average
of above similarity measures which are given from the following formula (7) and is
described with more details in section 4.4.

i .
Yh=o Simj* w;

sim = .
Z"h:() Wl

(7)

where sim = {simy,sim,, ... , sim;} are the calculated value similarities from all
matching algorithms and W = {wy, wy, ..., wi} are the corresponding weights of each
matching algorithm which are fixed from the system whereas n is the number of
similarity measures which are used in our implementation.

The same process is followed for all the matching pairs between the loaded
activity label and each of the loaded concept of each domain ontology and existing
annotated BPMN model in database. The similarity scores are stored in a similarity
matrix.

In the next step of matching process, a first fixed threshold (in 0.5) is
implemented to the calculated similarity score of each matching pair. If the score is
above the given threshold, then the domain ontology concept of this pair is considered



4.5. SUGGESTING ACCURATE DOMAIN ONTOLOGIES AND ANNOTATED
BPMN PROCESSES S7

an accurate match and might be added into the list with results. This list is sorted from
the concepts with the highest score to lowest one (that is from 1.0 to 0.5).

The following step of matching process implements a second fixed threshold
(in 0.7). This threshold is also indicative and emerges from in-depth testings at
different results every time. In this phase, the system checks the similarity score of the
first concept in the above list and if it is beyond the given (0.7) threshold, then the
domain ontology or annotated BPMN model, in which this concept is subject to, is
considered accurate and it is added in the final list with the most accurate domain
ontologies and annotated BPMN models.

In the Figure 4.6, we can see the suggested domain ontologies, as well as the
suggested annotated BPMN models for annotating the activities of the "eShopping
1.0" BPMN process model. Specifically, in this example, we annotate the task "search
for a product”. While drawing the process activity and before the process of its name
is completed, the system searches its database to verify if there are accurate domain
ontologies for this activity or even already semantically annotated BPMN models with
the same concepts. If there are, the system displays them in a model select box and the
user can select one of them, either an annotated BPMN model or an ontology. In our
example, it has found that there is an accurate annotated BPMN model named
"annotated_onLineShop 1.0" and two accurate domain ontologies named
"onLineShopDomainOntology 1.0" and "onLineShopNew 1.0".

:2| Model Edit View FindAnnotations Annotated BPMMN Debug Window Help

PAaesnz s | aBsS00f 0sdadee s anms [@Ea@a B4 F
Explorer - Model groups (%]

%) search for a product (Task) = P
BEeaslszo|zsiE|@ E
=13 Models
B 53 semfis_group
Qj annotated_CartManagement ]

Hs o

Nare:

search for a product Description

Show name

ﬁ annotated_eShopping 1.0

‘@ annotated enlineShop 1.0
[&] basicBPMN_Ontology

2 CartManagement
2] eShopping 1.0

@ center
) below

Task type:
Not specified

MODEL_SELECTEOX

Please select models:

[=1 | Business process diagrams (BPMMN 2.0)
Qj annotated_onlineShop 1.0

Object properties
=

Documents

=

Times/Costs

S

Simulation settings
=

@ eShopping 1.0
=2 Ontology Models 2

onlineShopDomainOntology 1.0 Semantic Annotation

onlineShopMew 1.0 -

[ MarineTLOentology ]
@ enLineShop 1.0
enLineShopDomainOntology 1.0
enlineShopMew 1.0
‘@] patient docter
pizza
[€] pizzaOntology
‘@] testing
1D test

Simulation results

Global task

Order
0

Description: *

l_—|/—|t—\ﬁ.«:\

Comment:

[ aose ||

Reset ]

172
00

Figure 4.6: The user can select one of the accurate domain ontologies or one of the accurate annotated
BPMN elements. Here he has selected the annotated_onLineShop 1.0



58 CHAPTER 4. PRESENTATION OF THE PROCESS FOLLOWING FOR
SEMI-AUTOMATED SEMANTIC ANNOTATIONS TO BUSINESS PROCESSES

As we can notice on the left side of the Figure, inside the light turquoise
rounded rectangles, in the "Explorer" of SeMFIS tool, there are also other annotated
BPMN models (annotated_CartManagement, annotated testing), as well as other
ontologies (MarineTLOontology, pizza, pizzaOntology) in the SeMFIS database but
none of them has related subjects (namely concepts with a score over of 0.7) and for
this reason they are not being displayed in the model select box.

If the user selects the annotated BPMN model "annotated_onLineShop 1.0
for the automatically semantic annotation of the current BPMN activity, the system
will display the most accurate semantic annotations of this process diagram, as shown
in Figure 4.7. The list is ranked from the annotation with the highest score
("to_search_for product") to the annotation with the lowest score (*'stock_data™).

Select a Concept 2

Annotations for: "search for a product™

to_search_for_product
to_add_product
to_select_product
to_select_product_category
to_provide_product_data
to_read_policy

stock_data

| QK | | Cancel

Figure 4.7: In this box, only the most accurate concepts of the selected annotated BPMN model are
appeared and the user can select one of them

Comparing the Figures 4.7 and 4.2 will notice that the accurate concepts which are
suggested by the selected annotated model are much less from them which are
suggested by the selected domain ontology meaning that the user gains in time and
effort since the system does not need to search through the entire sum of concepts of
a domain ontology but only between the concepts which have already been annotated
in the selected annotated BPMN model.



Chapter 5

Presentation of new functionalities of SeMFIS tool

In this chapter, we focus on new functionalities we added as part of our investigation
in the modeling environment of SeMFIS tool which are: (1) automatically semantic
annotations, (2) RDF/OWL export and (3) querying. In summary, the new
functionalities of SeMFIS tool should assist the end user in:

e Adding semi-automatically semantic annotations on existing BPMN process
models, that is adding linkable references to domain ontology concepts, and
subsequently creating new annotated BPMN models, keeping intact the
original ones. These semantic tags assign the important information to
perform an early analysis of the process in order to find critical patterns and
can be used to guide the user to recognize problems at design time and
features which can be useful in further refinements of the process
specification [36].

e Exporting the existing ontologies in database and the annotated BPMN
models that are created in RDF/OWL format.

e Querying the existing semantically annotated BPMN models, mainly for
reusing them or fragments of them which will decrease the effort and time
required for modeling of any new processes.

In the following sub-sections we provide a detailed account of each one of the
three new functionalities of SeMFIS tool, preceded by a brief description of the
SeMFIS architecture tool.

5.1. Brief Description of Architecture of SeMFIS tool

SeMFIS tool [30] has been implemented using the Microsoft Windows-based ADOXxXx
meta modeling platform. ADOxx is professionally developed by BOC Group, a spin-
off of the University of Vienna. An overview of the architecture of the current version
of SeMFIS tool is shown in Figure 5.1.

At the bottom rests the repository with the modeling subsystem and the
Microsoft SQL Server relational database. The modeling subsystem is a Microsoft

59



60 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

Windows application written in C++ and is responsible for handling the persistence of
the models in the database, for executing ADOscript statements and for managing the
user authentication.

On top of the repository there are the application components for (1)
modeling, which handles the model editors, (2) analysis, which provides the AQL
query functionality, (3) the web service interface, which accepts SOAP calls
containing ADOscript statements and (4) import/export of model information via
XML/ADL format. The protégé plugin is integrated via the XML interface of the
import/export application component.

Finally, the user interaction is accomplished through a standard Microsoft
Windows desktop user interface.

AD O Platform Protégé Platform
.8 Protégé
% g - User interaction (Windows) 4 x Desktop
E Application
Modeling [~ Analysis
5 £
85
25
< . . XML/ADL SeMFIS
Wflsefremce H import/ Protége
nierace Export Plugin

Modeling subsystem (CORE)

i

Repository

Relational Database

Figure 5.1: SeMFIS Architecture based on ADOxx Platform

We have extended SeMFIS features and specifically Modeling, Analysis and
Import/Export functionalities adding characteristics of Semantic Technologies like
ontologies, repositories and SPARQL queries. We managed it using ADOscript
statements of ADOxx community, the Java language in NetBeans IDE Platform and
the Virtuoso - Openlink server. In order to connect with Virtuoso we used Jena jars
and Sesame libraries, whereas to convert XML format to OWL one we used jfact-
1.2.1.jar, owlapi-distribution-3.5.0.jar, owlexplanation-1.1.2.jar and telemetry-
1.0.0.jar libraries. Virtuoso had also to be installed locally to our computer.



5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED
SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 61

5.2. Semi-Automated Suggestions for Ontology-Based Semantic
Annotation of BPMN process models

Semantically annotating business processes [11] is focusing on enriching the
elements of the process with concepts taken from a domain ontology either already
available in SeMFIS database or is created/ updated for the specific process domain
by ontology experts. Semantic annotations can be used to augment business process
models with different information. In our work, they are used to define the domain
semantics of the activities of a BPMN process diagram, meaning that they are used to
characterize the nature of each process activity according to a domain ontology.
Figure 5.2 depicts an excerpt of a semantically annotated BPMN model?, where the

activities of a business process model have been enriched with automatically
semantic annotations.

- to_select_product category (Class) - orLiraSI‘opBw{ winOntology 1.0 (Ontology Model)

choose product »
group

o Exclusive

1 L
@ to_search_for_product {Class}-oGrEF'gﬂgéﬁérﬂéluSﬁr%o gy 1.0 (Ontology Model) 4@ to_select_product (Class) - onLineShopDomainOntology 1.0
R

L ] 1 g
1
—®| searbh for product —®| choose a product | —" —
- 1
1
1

[+] Exclusive Exclusive

. 1
Exclusive *.'@- to_resd_poiky (Clas‘!} - onLineShopDomainOntology 1 g%ﬁy@%-ﬂ&i??ﬂ GEIEWEY-144944
Gateway-144951 : '

customer

Be policy of e-shop

Figure 5.2: Excerpt of a semantically annotated BPMN model

Semantic annotations are linkable, meaning that if you click on them, they will
transfer you in the specific concept of the domain ontology which they were exported
from. Any semantic annotation is proceeded by the symbol "@" in order to separate it
from plain text annotations which start with the symbol "[". Specifically, the syntax
of a semantic annotation is specified by the symbol "@", followed by an annotation
term (domain concept) and then by the name and - if existing - by the version of the
domain ontology, which was preselected for the annotation process.

<< @ Annotation Term (Class) - Name and Version of Domain Ontology (Ontology
Model) >>

? The example of "on-Line Shop™ business process has been copied from
http://selab.fbk.eu/OnLineShop/



62 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

Using the modeling component of SeMFIS tool, a business analyst can create
a business process diagram based on BPMN 2.0 Specification as shown in Figure 5.3.
ADOxx Mudellw - -

ﬁ- Model Edit V= EindAnnotations Annotated_BPMM Debug Window Help

Bae @) @ESCIE | 05dS9| e s s

Explorer - Model groups @ m . . L%Hec ly ned B C \
= o e e —— = . Favourrtes ently o urrently opel
%:’T‘Elﬁ"“@(j]|;?.z|@ B L
= L3 Models ‘ | — ‘
a@— e ——
' EI"II'10| Mew ¥ | ) Model group
@) anno
Rename... F2
QI] anno g, e !I] Company map
y ttributes Alt+Enter
' anno R S Class / Object Diagram
basic -
2] Carth gy Cut Ctrl+X Business process model
@ esho 2y Copy Ctrl+C | @] Business process diagram (BPMM 2.0
Marir Copy as reference target Ctrl+Alt+C Service pool
' Dn::fr 1Y Paste Cirl+V | @] Document model
onLir
onLir ¥ Delete... Delete | =) Working environment model
] . O] F Ontology Model
FI.EtIE Explorer view mode * B
plzza Ontology Model
A
lﬁ.] EI:::_ () Model types... Term Maodel
1] testir ] Manage model groups... [#] Semantic Annotation Madel
D test N el | |

Figure 5.3: Creating a business process diagram based on BPMN 2.0. Specification

While drawing a process activity and before the process of its name is completed, the
system searches its database to verify if there are accurate domain ontologies for this
activity or even already semantically annotated BPMN models with the same
concepts. If there are, the system displays them in a model select box and the user can
select one of them, either an annotated BPMN model or an ontology. For example,
regarding the activity "choose a product” of BPMN process diagram "e-shopping" in
Figure 5.4, the user can select either the already semantically annotated BPMN model
"annotated_onLineShop 1.0 or a domain ontology between the
"onLineShopDomainOntology 1.0" and the "onLineShopNew 1.0" of the model
select box. As we can notice on the left side of the figure, inside the light turquoise
rounded rectangles, in the "Explorer” of SeMFIS tool, there are also other annotated
BPMN models (annotated CartManagement, annotated_testing), as well as other
ontologies (MarineTLOontology, pizza, pizzaOntology) in the SeMFIS database but
none of them has related subjects and for this reason they are not being displayed in
the model select box. The procedure on how the system selects the annotated BPMN
models and the ontologies where the former will be displayed on the model select
box has previously been described in the section 4.5. If there are not accurate
annotated BPMN models or ontologies, the system proceeds the process diagram,
leaving the user to draw the next desirable BPMN element. The next time where a
user will use the system or whenever he/she clicks on the button "FindAnnotations"



5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED
SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 63

of the top menu, it automatically searches for all not semantically annotated BPMN
models in case a candidate ontology has been created or has been imported in the
database or even if an existing ontology in the database has been updated with
candidate concepts. Then the system searches so as to find any correlations between
these BPMN models and detects which are the most associated diagrams with the
concepts of the new ontologies or the updated ones. Afterwards, the system presents
them in a model select box where the user will select the diagram which he/she wants
to annotate and the semantic annotation process starts automatically. If the system
cannot find a suggestion for an activity label, the user can search manually for
semantically annotated this activity label, as described below and shown in Figure
5.8. Then the automatically semantic annotation process is continued until all the
activity labels are annotated. In the end, the system asks the user if he/she wants to
create the corresponding semantically annotated BPMN model. If he/she clicks "ok",
the new, semantically annotated BPMN model is created in the SeMFIS database,
keeping the original one as well. If the user clicks "cancel”, he/she will be able to
create the semantically annotated model at any other time he/she wishes clicking on
the "Annotated_BPMN" button of the top menu, as described below.

i| Model Edit View FindAnnotations Annotated BPMN Debug Window Help

R e @ Gmm— | 4BSCOE|osEdad e s nms|EEa@s B0 41 #Hk
Explorer - Model groups choose a product (Task) B %

Bad ~&0] 2 £ iE] 420
B 3 Models Name: )
13 semfis aroun choose a product Description
Qj annotated_CartManagement o [
] ow name perties
@l annntated_DnL.mESth 10 ' MODEL_SELECTBOX =l X RP
@] annotated_testing @ center Es
1G] basicBPMN_Untology ® below }
2 CartManagement Please selec.t models: : Ets
{1 eShooning 1.0 =03 Business process diagrams (BEMN20) -
MarineTLOontelogy fla=k typef . ] 2] annolatcd,onlineShopl.D E settings
onlincShop 1.0 Not specified @] eShopping 1.0 E1 results
onLineShopDomainOntology Global task '3 Ontology Models
onlineShophew 1.0 ohaltask onlineShopDomainOntology 1.0 Eiﬂn\jtati\jn .
_Qj patient_docter Order: ) onlineShophew 1.0 | [HERlE
18] pizza 0
pizzaOntology
3] testing Description: * B
O test
Comment: B
(=9
-
’ Close ] ’ Reset I 01-"’20

Figure 5.4: Selecting an accurate annotated BPMN model or ontology of SeMFIS database

If the user selects an annotated BPMN model for the automatically semantic
annotation of the current BPMN activity, as shown in Figure 5.4 in the red rounded



64 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

rectangle, the system will display the most accurate semantic annotations of this
process diagram, as shown in Figure 5.5.

:ﬂ Model Edit View FindAnnotations Annotated BPMN Debug Window Help

Fae stk e ABESCCR 0 dId

oo xnn®is || s Bolon @k
B = ||

Explorer - Model groups (%] choose a product (Task)
- ) = i | =
E%ﬁlﬂ@@)li%:—il@@ EET
= 3 Models Hame:
= semfis_group E choose 2 product Description
Qj annotated_CartManagement | § -
- Sh
Qj annotated_enLineShop 1.0 A oW name Qbject properties
Q] annotated_testing 1 @ center Documents
basicBPMN_Ontology 1 () below : =
[ cartManagement 1 Times/Costs
Qj eShopping 1.0 — Task type: r -, e Sirmul .
- pe: Simulation settings
MarineTLOentology Not specified | Select a Concept @ u .
{3 onLineShop 1.0 P Simulation results
onLineShopDomainCntology 1.0 Global task Annotations for. "choose a product™ (5] —— ———
onLinsShophlew 1.0 { > :
patient_doctor Order: A to_select_product_category ) o
pizza 'E 0 to_search_for_product
pizzaOntology L to_search_for_product
testing ( Eecenptiony 4| |te_add_product p f0e
[ test to_provide_product_data -
E to_select_quantity
Comment: i L 0
A
e 0

Figure 5.5: Selecting semantic annotation from already annotated BPMN model

The advantage of choosing an already annotated BPMN model is that the user gains
in time and effort since the system does not need to search through the entire sum of
concepts of a domain ontology but only between the concepts which have already
been annotated in the selected annotated BPMN model.

If the user selects an ontology for the automatically semantic annotation of the
current BPMN activity, as shown in Figure 5.4 in the green rounded rectangle, the
system will display the most accurate semantic annotations (according the similarity
measures which have already been described in the section 4.4) of this ontology, as
shown in Figure 5.6.



5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED
SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 65

;i| Model Edit View FindAnnotations Annotated_BPMN Debug Window Help

Explorer Model groups %] mmoose a product (Task)
Beal~z0lzxiElo M aael
B 3 Models e
=D semfis_group 4 choose a product Description
Qj annotated_CartManagement 1
7 Sh = "
Qj annotated_onlineShop 1.0 | oW name Object properties
QJ annotated_testing 1 @ center Documents
basicBPMN_Ontology 1 ) below —
CartManagement 1 Times/Costs
2 eShopping 1.0 - T =
= ask type: 3 Simulation settings
MarineTLOontology e | Select a Concept I& 1 ° — 2
X Mot specified - " -
@ onlineShop 1.0 Simulation results
onL?neShopDomaiﬂOﬂtology1-0 Global task Annotations for: "choose a product”: (5] Semantic Annctation
B onineShophiew 1.0 z =
@ patient_doctor Order: || |to_select_product_quantity 3 o
pizza ( 0 to_select_product_category
pizzaOntology . product L
testing ( Description: * | to_search_for_product E oo
1 test product_quantity <
E to_remove_product
product_category
E to_add_product
product_data -
Comment: product_availability 2 L oo
o =

Figure 5.6: Selecting annotations from a selected domain ontology

In the case where the user cannot find an accurate semantic annotation of the
recommended list, the system gives him/her the opportunity to search manually for
semantic annotations from any domain ontology he/she wishes. Specifically, the user
will have to click the "Cancel" button and a warning message for manually searching
will be displayed on the monitor, as shown in Figure 5.7. Then, by clicking on the
"ok" button, the "notebook™ of the current BPMN activity opens in the "Semantic
Annotation" Chapter, as shown in Figure 5.8. Clicking on the "blue cross" in the
"Semantic annotation™ box, a window opens where the user can select an ontology
from the "Target model” list (left side of the window) and then an object of the
selected ontology from the "Target object™ list (right side of the window). Finally, if
he/she clicks on "add reference” button, the selected concept is added as semantic
annotation in the current BPMN activity. Clicking on the "apply" button, the whole
procedure is completed and the semantic annotation is displayed above the current
BPMN activity in the monitor, as shown in the Figure 5.9.




66
SeMFIS TOOL

CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF

tated_BPMN Debug Window Help

Mame:

choose a product

Show name

@ center

Task type:

Mot specified

[] Global task

=)

=
ADOxx Maodelling Toolkit (semfis1)

Description: *

Comment:

@ Annotation could not be set automatically, select one manually

AT A T U A L
o

Figure 5.7: Warning message for manually searching semantic annotations

ted BPMN Debug Window Help

IGO0 G| o i FEE Qs Bl [Fk
choose a product (Task) | = PG | |_
:|? Semantic annotation: &]}( H30
3 Description
:? Object properties

choose a product (Task) - Semantic annotation - Add object reference | =l s Documents
Target model: 7 Target ohject: il Times/Costs
=3 Models Bl to_select_category o

=3 semfis_group
basicBPMMN_Ontology
MarineTLOontology

onlLineShopMNew 1.0

onlineShopDomainOntelogy 1

& to_select_method
B to_select_payment_method
B to_select_product
B to_select_product_category
B to_select_product_guantity

pizza @ to_select_quantity
pizzaOntology @ to_select_shipping_method
D test & to_store
& to_store_customer_data E|
& to_store_data
& to_store_method
B to_store_payment_data -
< | I 3 4| 1 | »
| Add reference
Reference targets: X0
& to_select_product (Class) (2] onlineShopDomainOntology 1.0 (Ontology Model)
[ Apply l [ Cancel l [ Help ]
L 1 T <>

Simulation settings

Simulation results

Semantic Annotation
-

Figure 5.8: Manually selection of semantic annotations



5.2. SEMI-AUTOMATED SUGGESTIONS FOR ONTOLOGY-BASED
SEMANTIC ANNOTATION OF BPMN PROCESS MODELS 67

Figure 5.9: Semantic annotation in the BPMN task "choose a product"

As it already has been indicated, if the user clicks on the semantic annotation,
in our example on the annotation "@to_select product (Class) -
onLineShopDomainOntology 1.0 (Ontology Model)", the system will transfer him/her
in the specific concept of the selected ontology, as shown in the Figure 5.10.

1] basicBPMIN_Untology Nemesnaze | |} to_update to_warn_customer to_provide_policy_data

data

Q‘] CartManagement
@) eShopping 1.0 C C C C
MarineTLOentology =
Q‘] onlLineShop 1.0 CI
onLineShopDomainOntology 1.0 ! to_update_stock_data to_provide_cart_data  to_store_payment_data
onLineShopMew 1.0 @

patient_doctor C C C C
pizza @
pizzaOntology to_select to_select_category to_ask_for ta_compute_price
Q‘] testing 0

I test

a
H
H

payment_method to_compute to_select_product

B
B
B
B

Navigator (B3] to_select_guantity to_checkout to_provide_data action

customer to_add_product category

B

]

]

?
H
H
a

Figure 5.10: Transfer on the specific concept of the selected ontology after clicking on the semantic
annotation "to_select_product"

When the user finishes the process diagram or whenever he/she wants during
drawing the diagram, he/she can click the "Annotated BPMN" button from the top
menu and the system automatically produces the corresponding annotated BPMN
model. With this way, business analysts have both the original process diagram
(without semantic annotations) and the corresponding annotated diagram with all the
selected semantic annotations, as shown in the Figure 5.11. If the user decides to
change the label of an already existing activity, then the system searches for new
semantic annotation for this activity and the annotated model is updated automatically
with the new semantic annotation either the change is made to the original model or to
the corresponding annotated one. The new label of the already existing activity is
updated in both models at the same time. If the user has left the original diagram
incomplete and decides to complete it another time, the system again searches for
semantic annotations for the new activity labels which are added in the original
model. In order to transfer them in the corresponding annotated model, the user has to
click on the "Annotated BPMN" button and the corresponding annotated model is
updated with the new BPMN elements, as well as the new semantic annotations which
disappear from the original one.

AR - AR - AR A A



68 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

= Lauvianayeinene
@ eShopping 1.0
MarineTLOontology

:ﬂ onlineShop 1.0
onLineShopDomainOntology 1.0
onLineShophew 1.0

Qj patient_doctor

pizza

pizzaOntology

L
@
=]
: O
E Q—“' show home page |—#
Exclusive

Gateway-161392

» provide product
information

@ to_search_for_product (Ciass) - onLineShopDomainGninkesie r@tumogpiaimdeionLineShopDomainOntology 1.0 (Ontoiogy M

search for a product | ——®| choose a product

1@ stock_data (Class) - enLineShopDomainOntliogy 1.0 (Ontology Model

|/‘ search for a product | ——®| choose a product

2
@) eShopping 1.0
@
2

Q
&
=]
@]
E Q‘P show home page | ——®
Exclusive @

Gateway-161392 B
» provide product
information

Figure 5.11: The original BPMN diagram "eShopping 1.0" (top) and the corresponding annotated
diagram "annotated_eShopping 1.0" (bottom)

to_prowide_product_data (Glass) - onLineShopDomainOntology 1.0 (Ontology Model)

5.3. OWL / RDF Export

SeMFIS tool [30] provides import and export interfaces, via the application
component for import/export, for exchanging model information in ADL and XML
formats. In addition, it has integrated a Protégé plugin via the XML interface for
importing owl ontologies from the Protégé platform. The XML import/export is used
to exchange information from arbitrary model types. It is therefore more generic and
well suited for exchanging information with other tools and platforms. On the other
hand, the ADL import/export interface is used for exchanging information with other
ADOxx based tools that do not offer an XML interface.

At this moment, the SeMFIS tool does not support an OWL/RDF export
interface for exchanging information with tools and platforms which support owl/rdf
formats and do not offer an XML interface. Therefore, integrating OWL/RDF export
interface in the SeMFIS tool, will help it to collaborate with platforms and
repositories which support owl format, allowing better understanding, documenting
and querying on semantically annotated BPMN models, as will see in the next section.

The OWL/RDF export functionality has been added to import/export
component of SeMFIS tool, in "model™ menu (top, left menu) under the XML export.
In the first step, when the user clicks on it, an XML export window appears in the
monitor as shown in the Figure 5.12. The user can select to export either an ontology



5.3. OWL/ RDF EXPORT 69

or a semantically annotated BPMN model. If the last one includes sub-models, the
user has to check the command "including referenced models” in order to be
integrated in the xml file. In the frame "Export file", the user selects where to save the
xml file and subsequently its name. Finally, clicking on "Export"” button, an xml file is
created in the path which has been defined by the user and an information box appears
for the exported file.

XML export ﬂ
Models |Attribute profiles
Models: £
=10 Models -

=13 semfis_group
Qj annotated_CartManagement
Ql] annotated_eShopping 1.0
Ql] annotated_onLineShop 1.0
Ql] annotated_testing
basicBPMMN_Ontology
21 CartManagement
21 eShopping 1.0
MarineTLOontology
21 onLineShop 1.0
onLineShopDemainOntology 1.0
onLineShopMew 1.0
Q‘] patient_doctor
pizza
- o~

m

Export

Including models

[T]Including referenced models References...

Including model groups

Recursive (model groups)

[T]Including referenced attribute profiles

W File

Export file:

Ch\Usershioanna\Desktop'\annoteShopping.xml

[ — H — H Help ]

Figure 5.12: The first step of OWL/RDF export is the xml export of selected ontology or annotated
BPMN model

The user cannot export any other model type. In this case, a warning message appears
which informs the user that only annotated BPMN models and ontologies can be
exported, as shown in the Figure 5.13, and the "XML export" window appears again.



70 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

ADOnex Modelling Toolkit (semifis1) "T85 8°% LI_TEg—iI

~ | Could select only annotated BPMN model or Ontology model for
' OWL/RDF export

| OK | | Cancel |

Figure 5.13: Warning message for OWL/RDF export

In the second step, if the user has selected to export an ontology, a message
informs him/her about saving ontology in owl format and afterwards the user have to
select where to save the owl file adding in the end of its name the suffix ".owl". An
excerpt of exporting the "onLineShopDomainOntology™” ontology in owl format is
shown in Figure 5.14.

If the user has selected to export a semantically annotated BPMN model,
except from the xml file which is exported by the user, the system also exports
automatically the general ontology "basicBPMN_Ontology" which has been
described in chapter 3. Hereafter, the owl file is exported and is saved as described in
the above paragraph. The new owl file is the general ontology
"basicBPMN_Ontology" enhanced with a set of instances which has been derived
from the selected semantically annotated BPMN model. An excerpt of exporting the
"Annotated_eShopping 1.0" annotated BPMN model in owl format is shown in Figure
5.15.



5.3. OWL/ RDF EXPORT 71

<?xml version="1.0"7%>

<!DOCTYPFE xdf:RDF [
<!'ENTITY onLineShopOnt "http:/ onLineShopOntology/ ™>
<1ENTITY owl "http://www.w3.org/2002,/07 /owlg">
<!ENTITY rdf "http://www.w3.orqg/1999/02/23-rdf-syvntax-nsf">
<!ENTITY xdfs "http://www.w3.o0rg/2000/01/rdf-schemaf">

1>

<rdf:RDF zmlns="http://onlineShopCntology/"
xml :base="http://onLineShopCntology/"
zmlns:onlineShopOnt="http://onlineShopOntology,/™

xmlns:owl="http:/ /www.w3.0rqg/2002/07/ /owlE"
gmlns:rdf="http:/ www.w3.0rqg/1999/02/22 rdf-syntax-—nsg"
xmlns rdfs="http://www.w3.0rqg/2000/01/rdf-schema"”

>
<owl:Cntology rdf:about="http://onLineShopCntology/"/>
<l--
FEFEEELEEET S EEf L i i i iiid it it rddd i b iiiriidididisfrididiiirdirieieds
i
/{ Classes
£
FEFEEELFEET IR EEFF P T TS A E A T PRI EE AL E A PR F T EEE AL PR AP EFAArred s
-

<owl:Class gdf:about="fonlineShoplnt;to provide payment data”>
<pdfs:subClass0f pdf:resource="&onLineShopOnt;to_provide data"/>
</owl:Cla=zs>

<owl:Class pdf:about="LZonLineShopOnt;to_ search for product">
<zdfs:subCla=s=s0f gdf:resource="&onLineShopOnt;to_search for"/>
</owl:Classx>



72 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

<owl:Class rdf:about="&onLineShopOnt:payment™>
<rdfs:subClassC0f rdf:resource="gonLineShopCnt;object"/>
</owl:Class>

<owl:Class pdf:about="&onlLineShopOnt;to select product quantity™>
<rdfs:subClas=s0f gdf:resource="&onlLineShoplnt;to_select guantity"/>
</owl:Class>

<owl:Class gdf:about="fonlineShopOnt;to read policy">
<rdfs:subClass0f pdf:resource="gonLineShoplnt:Thing™/>
</owl:Class>

<owl:Class rpdf:about="&onlLineShoplnt;to manage cart">
<rdfs:subClass0f rdf:resource="&onLineShoplnt;to_manage™/>
</owl:Class>

<owl:Class gdf:about="fonLineShopOnt;to ask for policy">
<zdfz:subCla==0f gdf:resource="&onLineShoplmt;to_ask for"/>
</owl:Class>

<owl:Class gdf:abouc="&onlineShopOnt;to create cart">»
<rdfs:subClass0f rdf:resource="sonlLineShoplnt:to create™/ >
</owl:Class>

<owl:Class xrdf:about="&onLineShopCnt;price™>
<rdfs:subClass0f pdf:resource="gonLineShopOnt;object™/>
</owl:Class>

<owl:Class gdf:about="ZonlineShoplnt;to select payment method":>
<rdfs:subClass0f pdf:resource="&onlineShoplnt;to_select method"/>
</owl:Class>

<owl:Class rpdf:about="&onLineShoplnt;to remove":>
<rdfs:subClass0f pdf:resource="gonLineShopOntiaction”/»

</owl:Class>

Figure 5.14: Excerpt of "onLineShopDomainOntology" ontology in owl format



5.3. OWL/ RDF EXPORT 73

<owl:Class gdf:about="ibasicBPMN Ontology;Flow_Objects">
<rdfg:subClassCf pdf:resource="g&basicBPMN Ontology;Base Elements"/>
<rdfs:subClassOof>
<owl:Restriction>
<owl:onProperty ;g;:Iesource="&basicEPMN_Ontology;has_SequenceFlow"I}
<owl:onClass ;g;:resource="&basicBFHN_Gntology:5equence_Flows"f}
<owl:minCardinality rdf:datatvpe="sxsd:nonNegativelnteger">0 < owl:minCardinalitw>
</owl:Restriction>
</zdfs:subClas=s0Lf>
<rdfs:subClass0Of>
<owl:Restriction>
<owl :onProperty ;g;:Iesource="&basicEPMN_Ontology:has_Name"f>
<owl:Cardinality rdf:datakvpe="&xsd;nonMNegativeInteger">1 </owl:Cardinality>
<owl:onDataRange xpdf:resource="axgd;string™/>
</owl:Restriction>
</rdfs:subClassCf>
</fowl:Class>

<owl:Class gdf:about="&basicEBPMN Cntology;Iwimlanss">
<rpdfs:subClas=s0f pdf:resource="&basicBPMN Ontology:Base Elements"/>
<rdfz:subClassCf>
<owl:Restriction>
<owl :onPropertcy ;g;:resource="&basicEPMN_Gntology;has_Name"f>
<owl:Cardinality rpdf:datarvpe="&xsd,;nonMNegativelnteger">1l </owl:Cardinality>
<owl:onDataRange pdf:resource="&xgd;stcring",/>
</fowl:Restriction>
</rdfs:sukbClas=sCf>
</owl:Class>

<owl:Class pdf:about="&basicBPHMN Cntology;Message">
<pdfs:subClas=0f pdf:resource="&basicBPMN Ontology:Base_ Elements"/>
<rdfz:subClass0f>
<owl:ERestriction>
<owl:onProperty ;g;:resource="&basicEPHN_Gntongy;has_HessageFIom"f>
<owl:onClass ;g;:resource="&basicEPHN_Ontology:Participant"ﬁ>

<rnwl sCardinality rdf:datatwnme="sxsd:nomNemativeTntedsr™>1 < /nwl :Cardinalitvs>
f/ Individuals//
s
LEEETEEEA TS E T F L EEEE R AL i i i i riid i idid i rdbddrid i i i idididrdrbiriitires
-2

<owl:NamedIndividual rdf:about="&basicEFMN Ontologyr;annotated eShopping 1.0">
<zdf:type pdf:resource="&basicBPMN Ontology:BPMN Process"/>
</owl :HamedIndividualz>

<owl:NamedIndividual rdf:about="gbasicEFMN Ontology:;3tart Event-107603">
<rdf:tvpe &g;:resource="&basicBPHM_Gntology:Start_Event"/>
<isBaseElementOf ;g;:resource="&basicEFMN_Ontology;annotated_eShopping_l.0"/>
</owl:NamedIndividual>

<owl:NamedIndividual pdf:about="&basicEPMN Ontology;show _home page™>
<rdf:tvpe ;g;:resource="&basicBPMN_Ontology:Iask"/>
<has SemanticAnnotation gpdf:resource="&basicBPMN Ontology;stock data"/>
<isBaseElementCf rdf:rescurce="&basicBEPMN Cntology:annotated eShopping 1.0"/>
</owl :NamedIndividual>

<owl:NamedIndividual rpdf:about="£basicEBEPMN Ontology;search for a product”>
<rdf:type rdf:resource="&basicBPHMN Ontology;Task"/>
<has_SemanticAnnotation &g;:resource=”&basicEPMN_Dntology;to_search_for_product"/}
<isBaseElementCOf ;g;:resource="&basicEPHN_Gntology;annotated_eShopping_l.0"/}
</owl:NamedIndividual>

<owl:NamedIndividual pdf:about="&basicEPFMN Ontology;provide_product_information™:>
<rdf:tvpe ;g;:resource="&basicEPHN_Ontology:Iask"/}
<has SemantichAnnotation ;g;:Iesource="&basicBPMN_Dntology;to_provide_product_data"f>
<isBaseElementCf rdf:rescurce="&basicBEPMN Cntology:annotated eShopping 1.0"/>

</owl :NamedIndividual>

Figure 5.15: Excerpt of "Annotated_eShopping 1.0" annotated BPMN model in owl format



74 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

5.4. Sparql Queries

SeMFIS tool has also integrated the analysis component of the ADOxx platform
which is used for composing and executing queries expressed in AQL (ADOxx Query
Language). AQL is not as powerful language as SQL for relational databases and
SPARQL for semantic web. It can be used for easily gathering information from the
models in a relational database but not for retrieving data from repositories in the
semantic web. Technically speaking, it is a difficult language in learning, so it is
limited to a small BPMN community which focuses on applications based on ADOxx
platform and has knowledge about ADOscript and therefore about AQL language.

On the other hand, SPARQL is a declarative semantic query language for
databases for retrieving and manipulating data stored in RDF format. It was made a
standard by the World Wide Web Consortium (W3C) and one of the key technologies
of the semantic web. For this reason we decided to use SPARQL query language for
retrieving information out of the RDF/OWL files which are exported by the SeMFIS
tool, as analyzed in the previous section.

At this point, it is essential to briefly introduce the SPARQL query language.
Still, before that, it will come in handy to remember what an RDF Triple is. Assuming
there is a pair wise disjoint infinite sets I, B, and L (IRIs, Blank nodes, and Literals,
respectively). An RDF triple is a tuple (v1, v2,v3) € (U B) x I x (1U B U L) where
v1 is the subject and can be IRIs or Blank node, v2 is the predicate and can be IRIs
and v3 is the object and can be IRIs, Blank node or literal. Most forms of SPARQL
query [58] contain a set of triple patterns called a basic graph pattern. Triple patterns
are like RDF triples except that each of the subject, predicate and object may be a
variable prefixed by the symbol "?" or "$". A basic graph pattern matches a sub-graph
of the RDF data when RDF terms from that sub-graph may be substituted for the
variables and the result is RDF graph equivalent to the sub-graph. An RDF graph is a
set of RDF assertions, manipulated as a labeled directed graph. So, queries describe
sub-graphs of the queried RDF graph. The basic syntax of a SPARQL query is:

Table 5.1: basic syntax of SPARQL queries
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

SELECT clause
(FROM <http://.... )
WHERE { clause

}
MODIFIER clause




5.4. SPARQL QUERIES 75

The PREFIX keyword associates a prefix label (like rdf:) with an IRI (like
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>). Most of the times the above
prefixes are the standard predefined namespace prefixes into SPARQL Endpoints for
SPARQL queries, so the user does not need to rewrite them. But the user, of course,
can add as many prefixes as the vocabularies (ontologies) he/she uses. SELECT
clause retrieves variables and their bindings as a table. FROM clause is optional and
indicates the sources for the data against which to find matches. WHERE clause
defines patterns to match against the data. MODIFIER clause modifies the result set,
for example the modifiers ORDER BY, OFFSET or LIMIT re-organize rows whereas
GROUP BY combines them.

Let us see an example of a SPARQL query. Suppose we want to find all the
Tasks of a process which have semantic annotation with the class
"to_search_for_product” as well as the process which it belongs in. The syntax of
SPARQL query is:

Table 5.2: Example of a SPARQL query

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/basicBPMN_Ontology#>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>

WHERE {

?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:has_SemanticAnnotation.
basicBPMN_Ontology:to_search_for_product.

?activity basicBPMN_Ontology:isBaseElementOf ?process.

¥

As illustrated by the above Table, the prefix "basicBPMN_Ontology" is added by the
user to indicate the ontology that contains the patterns of WHERE clause; SELECT
clause indicates the variables where the data will be retrieved as a table; the FROM
clause gives us a specific graph in which the results will be searched. The WHERE
clause instead denotes the triple patterns that match the data we want to retrieve from
the specific graph "BPMNontology".

In order to be able to work with SPARQL queries, we had to upload owl files
which are exported from the SeMFIS tool in a server which manages RDF data. We
selected for this reason the Virtuoso - Open Source because it is a scalable cross-
platform server that combines Relational, Graph, and Document Data Management
with Web Application Server and Web Services Platform functionality. So, it is a
hybrid universal server where triple store access is available via SPARQL.

In analysis component of SeMFIS tool, under the AQL queries, we added the
SPARQL queries functionality, as shown in Figure 5.16. Clicking on it, all the
annotated BPMN models in the SeMFIS explorer are converted to an RDF/OWL file




76 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

automatically and then the latter is uploaded to Virtuoso - Open Source server.
Subsequently, a box with standardized SPARQL queries appears 1 apox modeiing Tosi Camfel TADOR 58
in the screen giving the user the opportunity to select one of  @i[Znslsi] findannotations Annotated 82MN
them, as shown in the Figure 5.17. We have made 7 standardized Méflﬁ‘ff:ft R 1 G
queries with the most useful components for a member of a B spara queies

BPMN community. The 7 standardized queries are: O o printer sett Conte At

39 Printer settings...

1. Give all the activities which have semantic annotation Figu?g?imé; SpARQE'Eﬁeries
with the class ... as well as the process which belongs in. functionality

2. Give all distinct activities inside a sub-process and the sub-process.

3. Give all the distinct activities of a process which consist sub-process of
another process.

4. Get all activities which are connected with the activity ... with the relation ...

5. How many BPMN processes are related with ...

6. Give all the models that include the sub-process: ...

7. Give all the common sub-processes of a whole of models.

B Ll Ll

Standardised SparQL Queries Ffrmrrrrr'rm @

1. Give all the activities which have semantic annotation with the class ... as well as the process which belongs in. | -

1. Give all the activities which have semantic annotation with the class ... as well as the process which belongs in.
2. Give all distinct activities inside a subprocess and the subprocess.

3. Give all the distinct activities of a process which consist subprocess of another process.

4, Get all activities which are connected with the activity ... with the relation ... E M
5. How many BPMHN processes are related with ...

6. Give all the models that include the subprocess: ...
7. Give all the common subprocesses of a whole of models. I
8. User defined spargl queries...

last ct

Figure 5.17: Select one of the standardized SPARQL queries or define your own query with the 8
selection

In some of queries, the user has to add additional information on what interests
him/her. For example, if the user selects the query 1, an input field asks from the user
to add the class which he/she is interested for (e.g. "to search for product"), as shown
in the Figure 5.18.

e

input field

- — - - - - -

Give all the activities which have semantic annotation with the class

to search for product |

OK Cancel

| =

Figure 5.18: The user is interested to find all the activities which have semantic annotation with the
class "to_search_for_product"



5.4. SPARQL QUERIES 7

The final results of a query are represented as a table with links where we can see the
type of activity (e.g. Task), the activity label (e.g. search for a product) and the model
which contains it (e.g. annotated_onLineShop 1.0), as shown in the Figure 5.19.

My Query Results (= 2|
Activitytype | Reference |

|Activity Task: search for a product (of model annotated gnlineShep 1.0 [Business process diagram (BPMN 201 = | (i

|Activity Task: search for a product (of model annotated eShopping 1.0 [Business process diagram (BPMN 2.071) [

|Activity Task: search for product (of model annotated cnlineShop 1.0 [Business process diagram (BPMM 2.01])

| save. || Prnt. || search. || Close || Hep |

Figure 5.19: Results of the query 1, giving as input field the class "to search for product"

If you click on one of the aforementioned links, it transfers you in the specific activity
or process which automatically turns red, as shown in Figure 5.20, where we have
clicked on the first result and the system has transfered us on the model
"annotated_onLineShop 1.0" and specifically in the red task with the label "search for
product".

- . ey SDELENV NS | ST PR ; . -
4@ to_s=arch_far_product (Class) - anl RES A St gy 1.0 {Ontology Model) 4@ to_sslect_product (Class) - onLineShopDomaint

. . B

I

]
—®| searkh for product ——®| choose a product | —#
1

o LW i

F= | 2.2

My Query Results

Activitytypel Reference |

|Activity Task: search for a product (of model annotated onlineShop 1.0 [Business process diagram (BPMN 20171 =

|Activity Task: search for a product (of model annotated eShopping 1.0 [Business process diagram (BPMM 2.01])

|Activity Task: search for product (of medel annotated onlineShop 1.0 [Business process diagram (BPIMIM 2.0

4 [ m P

[ Save.. H Print... ” Search.. ” Close H Help ]

Figure 5.20: Clicking on the first result, it transfers us on the task "search for product” of model
"annotated_onLineShop 1.0"

Finally, we give the opportunity to a business member, who has the knowledge, to
make his/her own SPARQL query selecting the eighth query called "User defined
spargl queries” of the "Standardized SparQL Queries" box. A new frame appears
having a predefined prefix for our basic BPMN ontology, as well as the basic syntax
of a SPARQL query, as shown in Figure 5.21. We have also predefined the graph
where the query will be done in order to save time but the user can delete it and search
in each and every one of the graphs of Virtuoso server.



78 CHAPTER 5. PRESENTATION OF NEW FUNCTIONALITIES OF
SeMFIS TOOL

| £ User defined spargl queries... ml l
PREFIX basicBPMM_Ontology: <hftp:ifwww.semanticweb.orglfioannalontologies/d & |
SELECT

I FROM =http:Mocalhost2890/BPMMNontolagy=
WHERE {
b |
4| Il [v] |
Execute Clear Exit

Figure 5.21: The frame where a user can make his/her own SPARQL query

Querying the process space with a machine readable representation of a logical
expression which defines a subset of facts of the process space is a very important
task. It can help the BPMN community to reuse parts of business process models
when creating a new one, to detect cross-process relations and to reinforce the
interconnectivity and interoperability saving costs and time when establishing inter-
organizational business collaborations.



Chapter 6

Conclusion and Future Work

In this thesis, we presented an approach for the integration of semantic annotations in
modeling tools to support the graphical representation of business process models
with concepts derived from domain ontologies. These annotations clarify the activity
labels of a model by associating it to candidate domain concepts. The goal of semantic
annotations is to make these business process models more precise, to increase the
refinement of business process modeling and finally to enable querying process model
repositories. Moreover, a semantically annotated model is both comprehensible to
humans and accessible to machines because of the integration with ontologies.

For this purpose, we have extended the SeMFIS tool, using the freely available
ADOxx platform, supporting the implementation of semantic annotations on business
process activities (tasks, sub-processes), which have created with BPMN 2.0
language, via semi-automated suggestions. Specifically, at the time where a user
designs a business process model, the tool will retrieve and recommend semantic
annotations for the activities of this business process model using an ontology based
data matching strategy. The user will have the choice either to use one of the
automated suggestions or to search manually for it. The matching strategy is based on
calculating a combined similarity measure between a BPMN activity label and
concepts of a selected domain ontology. The combined similarity measure consists of
string algorithms where the strength of each one has been weighted, as well as
linguistic and syntactic metrics using the WordNet dictionary. Finally, a threshold has
been implemented in the final result in order to accurately and efficiently detect the
semantic annotations for BPMN activity labels. In our implementation, the existence
of suitable domain ontologies in SeMFIS database is uncertain. Whenever the
concepts of one or more ontologies, which is created or inserted in the semfis
database, match with the activity labels of a business process model, the system
automatically suggests this ontology as candidate for annotating, using the same
procedure of similarity measures followed for suggested semantic annotations.

Apart from adding semi-automatically suggested semantic annotations on
existing BPMN process models, we have also extended the SeMFIS tool to export the
existing ontologies in its database, as well as the annotated BPMN models which are
created in it, using an RDF/OWL format so as to make them machine-accessible. For
this purpose, we have created a basic BPMN ontology which encodes the

79



80 CHAPTERG6. CONCLUSION AND FUTURE WORK

classification of the most basic elements of BPMN, together with the most useful
attributes and conditions describing how the elements can be combined to obtain a
BPMN process model. Finally, we exploited the basic BPMN ontology to querying,
using SPARQL language, the existing semantically annotated BPMN models, mainly
for reusing them or fragments of them which will decrease the effort and time
required for modeling any new processes.

In our future work, we will validate our approach employing more users to
implement it and larger repositories. Our approach was performed for processes
modeled in BPMN 2.0 language. Further generalization of our strategy for other
process modeling notations is an upcoming work, too.



Appendix A

Appendix

A.1 Requirements

In order to be able to use the extended SeMFIS tool, with its new functionalities, the
user have to install the following software:

e WordNet 3.0 for Windows English dictionary
e Virtuoso - Open Link Server

WordNet Installation

The WordNet 3.0 for Windows English dictionary is available for
downloading at: http://wordnet.prenceton.edu/wordnet/publications/ and the user
have to install it under the path: "C:\WordNet-3.0\dict".

Virtuoso Installation

The user have to download Virtuoso - Open Link pre-built binaries from:
https://sourceforge.net/projects/virtuoso/files/virtuoso/6.1.8/virtuoso-opensource-x64-
20131211.zip/download for Windows 64 bit and
https://sourceforge.net/projects/virtuoso/files/virtuoso/6.1.8/virtuoso-opensource-x86-
20131211.zip/download for Windows 32 bit.

The pre-built binaries of Virtuoso for windows require the Microsoft Visual
C++ 2010 redistributable package be installed. If the user has not installed it earlier,
he/ she can download it from the following locations:
http://www.microsoft.com/download/en/details.aspx?id=5555 for 32-bit windows and
http://www.microsoft.com/download/en/details.aspx?id=14632 for 64-bit windows.

In order to install the pre-binaries of Virtuoso the following instructions must
be followed:

e Unzip in a folder (e.g. C://virtuoso-opensource/). This will create a directory
virtuoso-opensource, containing the following subfolders:

81


http://wordnet.prenceton.edu/wordnet/publications/

82

APPENDIX A APPENDIX

Local Disk (C:) » wirtuoso-opensource »

p
ary - Share with + Burn New fold

MName

bin
database
doc
hosting
lib

vad

vsp

Figure A.1.1: Virtuoso subfolders

Start the system control panel

o Right click "My Computer" — "Properties" — "Advanced System

Setting".

Click to "Advanced" — "Environment Variables", create a new system
environment variable called VIRTUOS _HOME and put as value the folder
path of virtuoso (e.g. C://virtuoso-opensource/).
Locate the PATH system environment variable and click to edit it.
Add the string below to the end of the existing path value:

o ;%VIRTUOSO_HOME%/bin;%VIRTUOSO_HOME%/lib
IMPORTANT: do not over write the existing path value. Doing so will disrupt
all use of your Windows environment.

Click ok or exit buttons until you have fully exited the System Control Panel.
Download the following php.ini file and manually place it in the "database"
directory of Virtuoso: ftp://download.openlinksw.com/support/vos/php.ini

Run a command line window as administrator: e.g. search "cmd", right click
on “cmd.exe", click "run as administrator".

Verify your virtuoso binary by typing in the command: "virtuoso-t-?"

Go to the folder “"database™: e.g. run the command
cd %VIRTUOSO_ HOME%/database

Create a new Windows Service with the following command:
virtuoso-t +service create +instance MyVirtuosolnst +configfile virtuoso.ini

A new service with the name "Virtuoso_MyVirtuosolnst™ has been created.
Once created, you can manage the Virtuoso server through the standard
windows services manager (start — control panel — administrative tools —
services or component services). It will be listed as OpenLink Virtuoso Server
[Instance name].

Start the Virtuoso Server: e.g. virtuoso-t +instance MyVirtuosolnst +service
start.

Limitations



A.1 REQUIREMENTS

83

The Ontologies which are created, inserted or updated on SeMFIS database should not
contain classes, properties or instances with the word "check" in its name. If there is
one, it must be changed with another synonym word.

The BPMN process model names should not contain underlines (e.g. on_line_shop)
otherwise there will be problem with automation of the annotated BPMN model
names. It is better to separate words that make up a BPMN model name with the first
letter of each word to be capitalized (e.g. onLineShop).

A.2 SPARQL Queries Syntax

The syntax of the seven standardized SPARQL queries is:

Table A.2.1: SPARQL Queries Syntax

Java SPARQL Queries syntax

SPARQL Queries syntax

switch(sparglQueries){

case "1. Give all the activities which have semantic
annotation with the class ... as well as the process which
belongs in.":

myPanel.add(new JLabel("Give all the activities which
have semantic annotation with the class\n"));

String inputField =
(String)JOptionPane.showlnputDialog(null, myPanel,
"input field", JOptionPane.PLAIN_MESSAGE);
sparqlQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n”

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Task.}\n" +
"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.}\n"
"?activity
basicBPMN_Ontology:has_SemanticAnnotation
basicBPMN_Ontology:"+inputField.replace(" ",
"M+ +

"?activity basicBPMN_Ontology:isBaseElementOf
?process.\n" +

1

break;

Query 1. "Give all the activities which have semantic
annotation with the class ... as well as the process
which belongs in."”

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Task.}
UNION

{?activity a basicBPMN_Ontology:Sub-Process.}
?activity
basicBPMN_Ontology:has_SemanticAnnotation
basicBPMN_Ontology:inputField.replace(" ", " ")
?activity basicBPMN_Ontology:isBaseElementOf
?process

}

case "2. Give all distinct activities inside a subprocess
and the subprocess.":

sparqglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n"

"\n" +

"select DISTINCT ?activity ?subprocess\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Task.}\n" +
"UNION\n" +

Query 2. "Give all distinct activities inside a
subprocess and the subprocess."

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT DISTINCT ?activity ?subprocess

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Task.}




84

APPENDIX A APPENDIX

"{?activity a basicBPMN_Ontology:Sub-Process. }\n" +
"?sub a basicBPMN_Ontology:Sub-Process.\n" +

"?sub basicBPMN_Ontology:has_SubprocessRef
?subprocess.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf
?subprocess.\n" +

i

break;

UNION

{?activity a basicBPMN_Ontology:Sub-Process.}
?sub a basicBPMN_Ontology:Sub-Process.

?sub basicBPMN_Ontology:has_SubprocessRef
?subprocess.

?activity basicBPMN_Ontology:isBaseElementOf
?subprocess.

}

case "3. Give all the distinct activities of a process which
consist subprocess of another process.":
sparglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select DISTINCT ?activity ?subprocess\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Task.}\n" +
"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.}\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process.\n" +

"?sub basicBPMN_Ontology:isBaseElementOf ?pr2.\n"
+

"?sub basicBPMN_Ontology:has_SubprocessRef
?subprocess.\n" +

"?activity basicBPMN_Ontology:isBaseElementOf
?subprocess.\n" +

"}

break;

Query 3. " Give all the distinct activities of a process
which consist subprocess of another process."

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT DISTINCT ?activity ?subprocess

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Task.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.}
?activity basicBPMN_Ontology:isBaseElementOf
?process.

?sub basicBPMN_Ontology:isBaseElementOf ?pr2.
?sub basicBPMN_Ontology:has_SubprocessRef
?subprocess.

?activity basicBPMN_Ontology:isBaseElementOf
?subprocess.

}

case "4. Get all activities which are connected with the
activity ... with the relation ...":

String[] relationOptions = {"Associations",
"Data_Associations", "Message Flows",
"Sequence_Flows"};

JTextField inputTextField = new JTextField(20);
myPanel.add(new JLabel("Get all activities which are
connected with the activity\n"));
myPanel.add(inputTextField);
myPanel.add(Box.createVerticalStrut(60)); // a spacer
myPanel.add(new JLabel("with the relation:\n™));
inputField = (String)JOptionPane.showlnputDialog(null,
myPanel, "input field",
JOptionPane.PLAIN_MESSAGE, null, relationOptions,
relationOptions[0]);
if(inputField.contentEquals("Associations™)) {
sparglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Text_Annotation.\n
+

"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"UNION\n" +

Query 4. " Get all activities which are connected with
the activity ... with the relation ..."

Syntax:

Associations

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Text_Annotation.
?activity basicBPMN_Ontology:isBaseElementOf
?process. }

UNION

{?activity a basicBPMN_Ontology:Group.

?activity basicBPMN_Ontology:isBaseElementOf
?process. }

?x basicBPMN_Ontology:has_AssociationSourceRef
basicBPMN_Ontology:inputTextField.getText().replac
e("","_").

?x basicBPMN_Ontology:has_AssociationTargetRef
2activity.

¥

Data_Associations
PREFIX basicBPMN_Ontology:




A.2 SPARQL QUERIES SYNTAX

85

"{?activity a basicBPMN_Ontology:Group.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"?x basicBPMN_Ontology:has_AssociationSourceRef
basicBPMN_Ontology:"+inputTextField.getText().repla
ce(" ", "_"M)+"\n" +

"?x basicBPMN_Ontology:has_AssociationTargetRef
?activity.\n" +

} else if(inputField.contentEquals("Data_Associations™))
{

sparqlQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"?activity a basicBPMN_Ontology:Data_Object.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process.\n" +

"X
basicBPMN_Ontology:has_DataAssociationSourceRef
basicBPMN_Ontology:"+inputTextField.getText().repla
ce("","_")+"\n" +

"X
basicBPMN_Ontology:has_DataAssociationTargetRef
?activity.\n" +

R

} else if(inputField.contains("Message_Flows™)) {
sparglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Task.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"?x basicBPMN_Ontology:has_MessageSourceRef
basicBPMN_Ontology:"+inputTextField.getText().repla
ce(" ", "_")+"\n" +

"OPTIONAL{?x
basicBPMN_Ontology:has_MessageTargetRef
?activity. \n" +

"?x basicBPMN_Ontology:has MessageTargetRef
2y.\n" +

"?z basicBPMN_Ontology:has_SequenceSourceRef
2y.\n" +

"?z basicBPMN_Ontology:has_SequenceTargetRef
?activity.\n" +

1

Yelse if (inputField.contains("Sequence_Flows")) {
sparglQueryString = "PREFIX basicBPMN_Ontology:

<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

?activity a basicBPMN_Ontology:Data_Object.
?activity basicBPMN_Ontology:isBaseElementOf
?process.

X

basicBPMN_Ontology:has DataAssociationSourceRef
basicBPMN_Ontology:inputTextField.getText().replace
"
basicBPMN_Ontology:has_DataAssociationTargetRef
?activity.

}

Message Flows

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:isBaseElementOf
?process.}

UNION

{?activity a basicBPMN_Ontology:Sub-Process.
?activity basicBPMN_Ontology:isBaseElementOf
?process. }

?x basicBPMN_Ontology:has_MessageSourceRef
basicBPMN_Ontology:inputTextField.getText().replace
("),

OPTIONAL{?x
basicBPMN_Ontology:has_MessageTargetRef
?activity.}

?x basicBPMN_Ontology:has_MessageTargetRef ?y.
?z basicBPMN_Ontology:has_SequenceSourceRef ?y.
?z basicBPMN_Ontology:has_SequenceTargetRef
?activity.

}

Sequence_Flows

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?activity ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

{?activity a basicBPMN_Ontology:Task.

?activity basicBPMN_Ontology:isBaseElementOf
?process. }

UNION

{?activity a basicBPMN_Ontology:Sub-Process.
?activity basicBPMN_Ontology:isBaseElementOf
?process.}

?x basicBPMN_Ontology:has_SequenceSourceRef
basicBPMN_Ontology:inputTextField.getText().replace




86

APPENDIX A APPENDIX

<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?activity ?process\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"{?activity a basicBPMN_Ontology:Task.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"UNION\n" +

"{?activity a basicBPMN_Ontology:Sub-Process.\n" +
"?activity basicBPMN_Ontology:isBaseElementOf
?process. \n" +

"?x basicBPMN_Ontology:has_SequenceSourceRef
basicBPMN_Ontology:"+inputTextField.getText().repla
ce("","_")+"\n" +

"{?x basicBPMN_Ontology:has_SequenceTargetRef
?activity. }\n"+

"UNION\n" +

"{?x basicBPMN_0Ontology:has_SequenceTargetRef
2y.\n" +

"?z basicBPMN_Ontology:has_SequenceSourceRef
?2y.\n" +

"?z basicBPMN_Ontology:has_SequenceTargetRef
?activity. }\n" +

R

}

break;

(II Il' II_II).
{?x basicBPMN_Ontology:has_SequenceTargetRef

?activity.}

UNION

{?x basicBPMN_Ontology:has_SequenceTargetRef ?y.
?z basicBPMN_Ontology:has_SequenceSourceRef ?y.
?z basicBPMN_Ontology:has_SequenceTargetRef
2activity.}

}

case "5. How many BPMN processes are related with
myPanel.add(new JLabel("How many BPMN processes
are related with\n"));

inputField = (String)JOptionPane.showlnputDialog(null,
myPanel, "input field",
JOptionPane.PLAIN_MESSAGE);

sparglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?process\n”

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"?process a basicBPMN_Ontology:BPMN_Process.\n" +
"FILTER regex(?process, \".*"+inputField+"*.\",
\"IV\n" +

B

break;

Query 5. "How many BPMN processes are related
with ..."

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

?process a basicBPMN_Ontology:BPMN_Process.
FILTER regex(?process, \".*"inputField"*.\", \"i\'"")

}

case "6. Give all the models that include the subprocess:
myPanel.add(new JLabel("Give all the models that
include the subprocess\n™));

inputField = (String)JOptionPane.showlnputDialog(null,
myPanel, "input field",
JOptionPane.PLAIN_MESSAGE);

sparqglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

Query 6. " Give all the models that include the
subprocess: ...."

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?process

FROM <http://localhost:8890/BPMNontology>
WHERE {

?sub a basicBPMN_Ontology:Sub-Process.

?sub basicBPMN_Ontology:isBaseElementOf ?process.




A.2 SPARQL QUERIES SYNTAX

87

"select ?process\n"” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"?sub a basicBPMN_Ontology:Sub-Process.\n" +
"?sub basicBPMN_Ontology:isBaseElementOf
?process.\n" +

"?sub basicBPMN_Ontology:has_SubprocessRef
basicBPMN_Ontology:"+inputField+".\n" +

R

break;

?sub basicBPMN_Ontology:has_SubprocessRef
basicBPMN_Ontology:inputField

}

case "7. Give all the common subprocesses of a whole of
models.":

sparglQueryString = "PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/3/
basicBPMN_Ontology#/>\n" +

"\n" +

"select ?subprocess\n” +

"FROM <http://localhost:8890/BPMNontology> \n"+
"where {\n" +

"?subl a basicBPMN_Ontology:Sub-Process.\n" +
"?subl basicBPMN_Ontology:has_SubprocessRef
?subprocess.\n" +

"?subl basicBPMN_Ontology:isBaseElementOf ?pr1.\n"
+

"?sub2 a basicBPMN_Ontology:Sub-Process.\n" +
"?sub2 basicBPMN_Ontology:has_SubprocessRef
?subprocess.\n" +

"?sub2 basicBPMN_Ontology:isBaseElementOf ?pr2.\n"
+

"FILTER (?prl !'= ?pr2)\in" +

"}

break;

Query 7. "Give all the common subprocesses of a
whole of models."”

Syntax:

PREFIX basicBPMN_Ontology:
<http://www.semanticweb.org/ioanna/ontologies/2016/
3/basicBPMN_Ontology#/>

SELECT ?subprocess

FROM <http://localhost:8890/BPMNontology>
WHERE {

?subl a basicBPMN_Ontology:Sub-Process.

?subl basicBPMN_Ontology:has_SubprocessRef
?subprocess.

?subl basicBPMN_Ontology:isBaseElementOf ?prl.
?sub2 a basicBPMN_Ontology:Sub-Process.

?sub2 basicBPMN_Ontology:has_SubprocessRef
?subprocess.

?sub2 basicBPMN_Ontology:isBaseElementOf ?pr2.
FILTER (?prl !=?pr2)

}




88

APPENDIX A APPENDIX



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Branimir Wetzstein, Zhilei Ma, Agata Filipowska, Monika Kaczmarek, Sami
Bhiri, Silvestre Losada, Jose-Manuel Lopez-Cobo, Laurent Cicurel, "Semantic
business process management: A lifecycle based requirements analysis"”, In
Proc. of Workshops on Semantic Business Process and Product Lifecycle
Management (SBPM 2007) at the 4th European Semantic Web Conference
(ESWC 2007), pages 1-11. CEUR WS, 2007.

Born, M., Dorr, F., Weber, 1., "User-friendly Semantic Annotation in Business
Process Modeling”, In: Web Information Systems Engineering (WISE)
Workshops, 2007, p. 260-271.

C. Di Francescomarino, C. Ghidini, M. Rospocher, L. Serafini, P. Tonella,
"Semantically-Aided Business Process Modeling”, in: ISWC 2009, Vol. 5823
of LNCS, Springer, Berlin, Heidelberg, 2009, pp. 114-129

C. Di Francescomarino, P. Tonella, "Supporting Ontology-Based Semantic
Annotation of Business Process with Automated Suggestions”, in: Enterprise,
Business-Process and Information Systems Modeling, volume 29 of Lecture
Notes in Business Information Processing, Springer, 2009, pp. 211-223.

Markovic, 1., Pereira, A.C., "Towards a Formal Framework for Reuse in
Business Process Modeling”, In Workshop on Advances in Semantics for Web
services (semantics4ws), in conjunction with BPM '07, Brisbane, Australia,
September 2007.

Hepp, Martin; Leymann, Frank; Bussler, Chris; Domingue, John; Wahler,
Alexander and Fensel, Dieter (2005), "Semantic business process
management: a vision towards using semantic web services for business
process management"”, In: IEEE International Conference on e Business
Engineering, 18-20 Oct 2005, Beijing, China.

M. Ehrig, A. Koschmider, A. Oberweis, "Measuring similarity between
semantic business process models", in APCCM ’07: Proceedings of the fourth
Asia-Pacific conference on Comceptual modelling. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2007, pp. 71-80.

M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov, "A bpmo based
semantic business process modelling environment”, In Proceedings of the

89



90

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

Workshop on Semantic Business Process and Product Lifecycle Management
at the ESWC, volume 251 of CEUR-WS, 2007.

Hepp, M., Roman, D. (2007), "An ontology framework for semantic business
process management”, Proceedings of Wirtschaftsinformatik 2007, Karlsruhe,
Germany, pp. 1-18.

Vazquez, B., Martinez, A., Perini, A., Estrada, H., Morandini, M., "Enriching
Organizational Models through Semantic Annotation”, In Proceedings of the
Iberoamerican Conference on Electronics Engineering and Computer Science,
2013.

Francescomarino, C. Di, Rospocher, M., Ghidini, C., & Valerio, A., "The Role of
Semantic Annotations in Business Process Modeling”, In Proceedings of the
18th International Conference on Enterprise Distributed Object Computing
Conference (EDOC ’14), Ulm, Germany, September 1-5, 2014 (pp. 181-189).
IEEE Computer Society Press.

van der Aalst WMP (2013), "Business Process Management: A
Comprehensive Survey", ISRN softw Eng 2013.

B. List, B. Korherr, "An evaluation of conceptual business process modelling
languages”, In H. Haddad, editor, Proceedings of the 2006 ACM Symposium
on Applied Computing (SAC), Dijon, France, April 23-27, 2006, pages 1532—
1539. ACM, 2006.

O. Thomas and M. Fellmann, "Semantic epc: Enhancing process modeling
using ontology languages”, In Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management (SBPM), pages 6475,
June 2007.

Rospocher, M., Ghidini, C., Serafini, L., "An Ontology for the Business
Process Modelling Notation", In: Formal Ontology in Information Systems -
Proceedings of the 8th FOIS. vol. 267, pp. 133-146. 10S Press (2014).

White, S.A., "Introduction to BPMN", Business Process Trends, July 2004.

Malik, S., Bajwa I.S., "Back to Origin: Transformation of Business Process
Models to Business Rules”, in Business Process Management Workshops,
Springer, 2013, pages 611-622.

G. Della Penna, R. Del Sordo, B. Intrigila, N. Mezzopera, M. T. Pazienza, "A
Lightweight Formalism for the Integration of BPMN Models with Domain
Ontologies”, 2013.

Weissgerber, A., "Semantically-enriched business process modeling and
management”, Ph.D. thesis, Universitat des Saarlandes, Germany (2011).



BIBLIOGRAPHY 91

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]

[33]

Object Management Group (OMG), "Business Process Model and Notation
(BPMN)", Version 2.0, January 2011, OMG Document Number: formal/2011-
01-03. This file was downloaded from: http://www.omg.org/spec/BPMN/2.0/PDF

Dijkman, Remco M., Dumas, Marlon, & Ouyang, Chun (2008) "Semantics
and analysis of business process models in BPMN", Information and Software
Technology, 50(12), pp. 1281-1294. This file was downloaded from:
http://eprints.qut.edu.au/7115/

Antoniou, G., Van Harmelen, F. "A Semantic Web Primer", p.10, 61-88, 109-
143, 2004, Massachusetts Institute of Technology.

Fensel, D. " Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce"”, February 2000, Springer-Verlag.

Daskalaki, Ev. "Development and Experimental Evaluation of an Ontology to
Ontology Schema & Instance Matching System", Master Thesis — University
of Crete, Department of Computer Science”, October 2011.

Oren, E., Hinnerk Moller, K., Scerri, S., Handschuh, S., Sintek, M.(2006).
What are Semantic Annotations?. Technical report, Digital Enterprise
Research Institute (DERI), National University of Ireland, Galway.

George A. Miller (1995). WordNet: A Lexical Database for English.
Communications of the ACM Vol. 38, No. 11: 39-41. Christiane Fellbaum
(1998, ed.) WordNet: An Electronic Lexical Database. Cambridge, MA: MIT
Press. Available at: http://wordnet.prenceton.edu/wordnet/publications/

Activiti at: http://activiti.org/
Bpmn2-modeler at: https://www.eclipse.org/bpmn2-modeler/
Camunda at: https://camunda.org

Fill, H.-G., "SeMFIS: a Flexible Engineering Platform for Semantic
Annotations of Conceptual Models", Semantic Web Journal, 10S press, 2015.

Adonis at: https://uk.boc-group.com/adonis/

K. Grolinger, M.A.M. Capretz, A. Cunha, S. Tazi, "Integration of Business
Process Modeling and Web Services: A Survey", Service- Oriented
Computing and Applications (SOCA), 2013. The final publication is available
at link.springer.com: http://link.springer.com/article/10.1007%2Fs11761-013-
0138-2

Cabral, L., Norton, B., Domingue, J., (2009) "The business process modelling
ontology"”, In: 4th International Workshop on Semantic Business Process


http://www.omg.org/spec/BPMN/2.0/PDF
http://eprints.qut.edu.au/7115/
http://wordnet.prenceton.edu/wordnet/publications/
http://activiti.org/
https://www.eclipse.org/bpmn2-modeler/
https://camunda.org/
https://uk.boc-group.com/adonis/

92

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]
[43]

[44]

[45]
[46]

[47]

BIBLIOGRAPHY

Management (SBPM 2009), Workshop at ESWC 2009, 1 June 2009, Crete,
Greece.

Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Solvberg, A., (2006)
"Semantic annotation framework to manage semantic heterogeneity of process
models”, Advanced information systems engineering. Springer, Berlin,
Heidelberg, pp. 433-446.

Lin, Y., Ding, H., (2005) "Ontology-based semantic annotation for semantic
interoperability of process models”, In: Proc Int Conf Comput Intell Model
Control Automat.

Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.,
"Reasoning on Semantically Annotated Processes”, In: Bouguettaya, A.,
Krueger, 1., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 132-146.
Springer, Heidelberg (2008).

Ciuciu, I. G., Tang, Y. and Meersman, R. (2011), "Towards Retrieving and
Recommending Security Annotations for Business Process Models Using an
Ontology-based Data Matching Strategy", in Proc. of the first international
symposium on data-driven process discovery and anlysis (SIMPDA'11), IFIP
working group 2.6 and 2.12, ISBN 978- 88-903120-2-1, vol. 1, pp. 71-81,
Campion d'italia, Italy, June 29th ~ July 1st, 2011.

JWNL 1.4-rc3, a java WordNet library available at:
http://sourceforge.net/projects/jwordnet/files/

JWNL javadoc at:
https://web.stanford.edu/class/cs276a/projects/docs/jwnl/javadoc/

Short JWNL tutorial at: http://blog.roland-kluge.de/?p=430

JWI 2.3.3, a Small java WordNet library available at:
http://projects.csail.mit.edu/jwi/

N-gram Algorithm: https://en.wikipedia.org/wiki/N-gram
Bigram Algorithm: https://en.wikipedia.org/wiki/Bigram

Dice's Coefficient formula:
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient

Trigram Algorithm: https://en.wikipedia.org/wiki/Trigram

Levenshtein Distance Algorithm:
https://en.wikipedia.org/wiki/Levenshtein_distance

W. Cohen, P. Ravikumar, and S. Fienberg, "A comparison of string metrics for
matching names and records”, In Proceedings of the workshop on Data


http://sourceforge.net/projects/jwordnet/files/
https://web.stanford.edu/class/cs276a/projects/docs/jwnl/javadoc/
http://blog.roland-kluge.de/?p=430
http://projects.csail.mit.edu/jwi/
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Bigram
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/Trigram
https://en.wikipedia.org/wiki/Levenshtein_distance

BIBLIOGRAPHY 93

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Cleaning and Object Consolidation at the International Conference on
Knowledge Discovery and Data Mining (KDD), 2003.

W. Cohen, P. Ravikumar, and S. Fienberg, "A comparison of string distance
metrics for Name - Matching Tasks", In Proceedings of the IJCAI-2003
Workshop on Information, 2003.

Jaro - Winkler Distance Algorithm:
https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

Jaccard Similarity Algorithm: https://en.wikipedia.org/wiki/Jaccard_index
Soundex Algorithm: https://en.wikipedia.org/wiki/Soundex

Soundex Algorithm:
http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm

Char Frequency Similarity:
http://rosettacode.org/wiki/Most_frequent_k chars_distance#Java

Humm, G. B., Fengel, J., (2012): "Semantics-based Business Process Model
Similarity", In: Abramowicz, W., Krikscieuniene, D., Sakalauskas, V. (eds.):
Proceedings of the 15th International Conference on Business Information
Systems (BIS 2012), LNBIP 117. Springer Berlin Heidelberg, pp. 36-47

Eclipse - luna tool at https://eclipse.org/luna/

Becker, M., Laue, R., "Analysing differences between business process
similarity measures”, In: 1st International Workshop on Process Model
Collections, pp. 39-49 (2011).

Embley, W.,D., Jackman, D, Xu, L., "Multifaceted exploitation of metadata
for attribute match discovery in information integration”, In: Proc Int
Workshop on Information Integration on the Web, pp. 110-117, 2001.

Spargl Query Language for RDF: https://www.w3.org/TR/rdf-spargl-
query/#basicpatterns

OpenLink Virtuoso: https://www.w3.0rg/2001/sw/wiki/OpenLink_Virtuoso

Smith, F., & Proietti, M. (2013), "Rule-based behavioral reasoning on
semantic business processes”, In Proc. of the 5th International Conference on
Agents and Artificial Intelligence, SciTePress Digital Library.

Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, 1.,
Scicluna, J., Weber, 1., Zhou, X., "Semantic annotation and composition of
business processes with Maestro”, In: European Semantic Web Conference
(ESWC) Demo Track, June 2008


https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Soundex
http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm
http://rosettacode.org/wiki/Most_frequent_k_chars_distance%23Java
https://eclipse.org/luna/
https://www.w3.org/TR/rdf-sparql-query/%23basicpatterns
https://www.w3.org/TR/rdf-sparql-query/%23basicpatterns
https://www.w3.org/2001/sw/wiki/OpenLink_Virtuoso

94

[62]
[63]
[64]
[65]

[66]

[67]

BIBLIOGRAPHY

RDF Description at: https://www.w3.0rg/RDF/
RDF-Schema Description at: https://www.w3.org/TR/rdf-schema/
RDF-Schema Description at: https://en.wikipedia.org/wiki/RDF_Schema

Slides of the course CS561, Computer Science Department (CSD), University
of Crete (UOC), Yannis Tzitzikas, Spring 2015.

Slides of the course CS561, Computer Science Department (CSD), University
of Crete (UOC), Yannis Tzitzikas, Spring 2015.

OWL at https://www.w3.org/TR/owl-features/


https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://en.wikipedia.org/wiki/RDF_Schema

