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Methodology of Automated Machine Learning

Systems Evaluation

Abstract

Automated Machine Learning (AutoML) is a rapidly rising sub-field of Machine
Learning. AutoML aims to fully automate the machine learning process end-to-
end, democratizing Machine Learning to non-experts and drastically increasing
the productivity of expert analysts. So far, most comparisons of AutoML systems
focus solely on quantitative criteria such as predictive performance and execution
time. In this thesis, we present an multi-level methodology to adequately evaluate
such complex systems. We start off by examining AutoML services for predictive
modeling tasks from a user’s perspective, going beyond predictive performance. We
present a wide palette of criteria and dimensions on which to evaluate and compare
these services as a user. The comparison indicates the strengths and weaknesses
of each service, the needs that it covers, the segment of users that is most appro-
priate for, and the possibilities for improvements. For our quantitative evaluation
methodology, we emphasize on the accuracy of the estimation of predictive per-
formance, as well as a comparison of their hold-out performance. Additionally, we
perform an analysis based on the data characteristics of our benchmark and evalu-
ate how they affect the accuracy and quality of the systems’ outcome. The results
show most systems overestimate their output’s performance, while there are no
major differences between them when it comes to ranking them based on hold-out
performance. In both cases, these results are correlated to the data metafeatures.
Lastly, to evaluate the user experience, we create and conduct a custom user study,
focusing on the user experience and usability of AutoML systems. In this study,
the users are asked to perform a ML analysis using 3 state-of-the-art systems and
grade their ease-of-use. Their responses provide useful feedback to the AutoML
systems’ development teams regarding UX bottlenecks and flawed design decisions.
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Chapter 1

Introduction

Automated Machine Learning (AutoML) is becoming a separate, independent sub-
field of Machine Learning, that is rapidly rising in attention, importance, and
number of applications [31, 47]. AutoML goals are to completely automate the
application of machine learning, statistical modeling, data mining, pattern recogni-
tion, and all advanced data analytics techniques. As an end result, AutoML could
potentially democratize ML to non-experts (Citizen Data Scientists), boost the
productivity of experts, shield against statistical methodological errors, and even
surpass manual expert analysis performance (e.g., by using meta-level learning
[14]). Finally, AutoML could improve replicability of analyses, sharing of results,
and facilitate collaborative analyses.

To clarify the term AutoML, we consider the minimal requirements to be the
ability to return (a) a predictive model that can be applied to new data, and (b)
an estimate of predictive performance of that model, given a data source, e.g., a
2-dimensional matrix (tabular data). Thus, do-it-yourself tools that allow you to
graphically construct the analysis pipeline (e.g. Microsoft’s Azure ML [43]) are
excluded. In addition, we distinguish between libraries and services. The former
require coding and typically offer just the minimal requirements, namely return a
model and a performance estimation. AutoML services, on the other hand, include
a user interface and strive to democratize ML not only to coders, but to anybody
with a computer; they typically offer a much wider range of functionalities.

Algorithmically, AutoML encompasses techniques regarding hyper-parameter
optimization (HPO, [66, 3]), algorithm selection (CASH, [30]), automatic synthesis
of analysis pipelines [48], performance estimation [74], and meta-level learning
[75], to name a few. In addition, an AutoML system could not only automate the
modeling process, but also the steps that come before and after. Pre-analysis steps
include data integration, data preprocessing, data cleaning, and data engineering
(feature construction). Post-analysis steps include interpretation, explanation,
and visualization of the analysis process and the output model, model production,
model monitoring, and model updating. The ideal AutoML system should only
require the human to specify the data source(s), their semantics, and the goal of

1



2 CHAPTER 1. INTRODUCTION

the analysis to create and maintain a model into production indefinitely.

Given the importance and potential of AutoML, several academic and commer-
cial libraries, as well as services have appeared. The first AutoML system was the
academic Gene Expression Model Selector (GEMS) [62]. Recent works formulate
the AutoML problem [78, 79], introduce techniques and frameworks for creating
new AutoML systems [9, 61], survey the existing ones [59, 79] and comparatively
evaluate them [77, 72, 58]. This is a a technically challenging task requiring the
availability of a plethora of datasets with different characteristics [18], extensive
computational time, ability to set time-limits to all software and many others (see
[23] for a discussion on the set up and results of the AutoML Challenge Series).

The problem we want to address is finding a way to properly evaluate and
compare AutoML systems. What we need is to evaluate the quality of the user
experience on these systems, assess the actual quality and correctness of their re-
sults and also grade them based on the functionalities provided to the users. The
contribution of this work is 3-fold. Firstly, we present an evaluation methodology
covering all the aforementioned dimensions. Moreover, we apply this methodology
on multiple AutoML systems and show the results. Lastly, we come to conclu-
sions about the current state of AutoML. We start off by providing a user-centric
framework for comparing AutoML services. We define a set of qualitative criteria,
spanning across six categories (Estimates, Scope, Productivity, Interpretability,
Customizability, and Connectivity) that highlight user-experience beyond predic-
tive performance when selecting or evaluating AutoML services. Using this frame-
work we evaluated seven such services, namely Auger.AI [1], BigML [4], H2O’s
Driverless AI [24], Darwin [10], Just Add Data Bio [70], RapidMiner [53], and Wat-
son [32]. The comparison is meant to indicate the strengths, weaknesses, scope,
and usability of the services, indicating the needs it covers, the tasks it is most
appropriate for, and the opportunities for improvement. Our second contribution
is the creation of a custom user study to be used in order to evaluate the User
Experience (UX) and usability of AutoML services. We propose a simple analysis
flow, supplemented by a custom items form and comprehension questions. Addi-
tionally, we make use of the System Usability Scale (SUS) form, to identify issues
regarding the ease-of-use of AutoML services. We conducted the user study on 19
users of various ML knowledge and coming from different domains, to highlight UX
design flaws and general analysis pipeline errors on 3 AutoML services (BigML,
H2O’s Driverless AI and Just Add Data Bio). This is the first work introducing
a complete framework for the qualitative, quantitative and user-based evaluation
of AutoML systems. The last part of this work is establishing a methodology in
order to evaluate AutoML systems based on the accuracy of their predictive per-
formance estimation, also known as estimation bias, and conduct an out-of-sample
performance comparison between our selected systems. Also, we are interested in
finding trends of these results with the characteristics of the data we included in
our benchmark. We define a set of rules a guidelines for selecting the participat-
ing systems and creating our own data benchmark, spanning across 2 ML task
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outcomes (binary classification and regression). This results in evaluating 5 Au-
toML systems (Autosklearn [15], GAMA [19], h2o.automl [24], JADBio [70] and
TPOT [36]) on 200 datasets.
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Chapter 2

Qualitative evaluation

2.1 Introduction

To properly evaluate the available functionalities of AutoML systems, we propose a
collection of qualitative criteria. We have included 7 AutoML commercial systems
and evaluated them based on their free trials and the documentation provided. To
perform this evaluation we have created a list of criteria spanning across 6 different
categories and give specific grading definitions. The results provide information
regarding the scope and availability of the participating systems, which can aid
users in selecting which of them to use. To this extent, it highlights areas where
all systems might excel or have not invested as much.

2.2 AutoML Services Considered

In the present evaluation study we consider seven current AutoML service plat-
forms that offer a free trial version, so we could base it on first-hand experience.
All of these services, specialize on tabular data, helping us apply the qualitative
criteria on all of them. It was conducted from 01/12/2019 until 07/12/2019
and we used the live versions of the services at the time. In alphabetical
order, the services are:

• Auger.AI[1]: A new service, going live in 2019, Auger.AI boasts to have
high accuracy and a well-implemented API to help users run experiments
with ease.

• BigML [4]: One of the oldest ML services, BigML supports AutoML tasks
and offers extended support, a custom programming language and a cloud
infrastructure for the user.

• Darwin [10]: SparkCognition’s new AutoML service, providing the users
with convenient tools to speed-up their ML tasks.

5
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• Driverless AI (DAI) [24]: One of the most well-known AutoML services,
DAI supports various ML tasks and also has advanced interpretability mech-
anisms.

• Just Add Data Bio (JADBio) [70]: JADBio was launched in November
2019 focusing on the analysis of molecular biological data (small-sample,
high-dimensional) with emphasis on feature selection.

• RapidMiner Studio (RM) [53]: The oldest AutoML service used in our
evaluation, RM provides multiple tools to its users and supports user-created
components. We are looking into the standard version, not including the
available user-created add-ons.

• IBM’s Watson (Watson) [32]: Watson contains multiple components,
but here we focus on the AutoAI experiment toolkit1, being closer to what
we define as AutoML service for tabular data.

Due to registration fees, we were not able to include in our benchmark recent
services such as Google AutoML Tables2. Regarding Data Robot3, we were not
able to obtain the free trial licence advertised on their website.

2.3 Qualitative criteria

To qualitatively evaluate the seven AutoML services, we present 32 user-centric
qualitative criteria spanning across six different categories. The criteria are par-
titioned in the following categories. The Estimates category is concerned with
metrics and estimates’ properties about the predictive power of the final model.
The Scope criteria describe the applicability scope of a service mainly in terms of
data types and ML predictive tasks. The Productivity category is concerned with
the ease of use, while Interpretability is concerned with the ability to interpret the
results of the analysis. The last two categories are Customizability of the analysis
and Connectivity of the service. The criteria are graded on a 4-level scale. F(ail)
(7), C for fulfilling the basic requirements of the criterion, B for providing addi-
tional functionalities and A for achieving a level that should satisfy most users in
our opinion.

2.3.1 Estimates

Criteria for Estimates (Table 2.1), concern the wealth and depth of estimated
quantities regarding the predictive model. ROC curves are a useful visualization
for interpreting the performance of a classification model and are widely used
by the ML community. We grade with B the services that output ROC curves

1https://www.ibm.com/cloud/watson-studio/autoai
2https://cloud.google.com/automl-tables/
3https://www.datarobot.com/
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Table 2.1: Estimates and Scope criteria.

Criteria Auger.AI BigML DAI Darwin JADBio RM Watson

E
st

im
a
te

s ROC curves B B A 7 A B A
STD/CI calculation 7 B B 7 A B 7

Label predictions A A A B A A A
Label probability estimations 7 A A A A A A

S
co

p
e

Outcome types B B B B A B B
Predictor types A A A A B A A

Clustered data handling 7 7 A 7 A 7 7

Missing values handling A A A A A A A

(Auger.AI, BigML and RM) and with A the ones which also output performance
metrics for different points on the curve (DAI, JADBio and Watson). In addi-
tion to the out-of-sample estimate of predictive performance, a service should be
able to report the uncertainty of this estimation (criterion STD/CI calculation in
Table 2.1 standing for standard deviation and confidence interval respectively).
With B, we grade the services that only calculate the STD (BigML, DAI and RM)
and with A the ones calculating the whole probability distribution of performance
and its confidence intervals, a richer piece of information (JADBio). Regarding
Label Predictions on new data, the services that support either individual samples
predictions or batch predictions are graded with B (Darwin), and the ones sup-
porting both with A (the rest of the services). For binary classification tasks, the
services able to generate Label probability estimations get an A (all services except
Auger.AI). Overall, JADBio has a full score on all the criteria, followed by DAI
and RM.

2.3.2 Scope

Scope criteria (Table 2.1) cover the range of input data that can be analyzed. When
it comes to Outcome types, services able to handle binary (classification), multi-
class (classification), continuous (regression) and censored time-to-event outcomes
(survival analysis) score A (JADBio), while the ones not handling survival analyses
score B (the rest of the services). Regarding Predictor types, the services which
support all the standard tabular data and also text or time-series data are graded
with A (all services except for JADBio), while the ones only supporting the former
with B (JADBio). The term Clustered data (not to be confused with clustering
of data) in statistics refers to samples that are naturally grouped in clusters (or
groups) of samples that may be correlated given the predictors. Examples include
matched case-control data in medicine and repeated measurements taken on the
same subject or client. With A, we grade the services able to handle clustered
data (DAI and JADBio). It is important to mention the absence of clustered data
and repeated measurements handling from most of the services. Essentially, most
services assume independently and identically distributed (i.i.d.) data reducing
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their scope. Finally, we grade a service’s ability to handle missing data with A (all
services). In this category, DAI and JADBio lead with the highest score.

2.3.3 Productivity

The Productivity criteria (Table 2.2) concern the ease of use and boost of user
productivity. We start off with Data manipulation functionalities available to pre-
pare and manipulate the input data before analysis. Grade B goes to the services
providing the user with custom data partitioning and preprocessing recommen-
dations (DAI and Darwin) and grade A to the services that additionally provide
data merging, filtering and sub-sampling (BigML, JADBio, RM, Watson). About
Pipeline automation, the services where the best model is automatically selected
according to pre-specified user preferences (e.g., maximize AUC) score A (DAI,
Darwin, JADBio and Watson). The services producing a ranking of all tried mod-
els instead and require the user to select the one that satisfies their criteria the
best score B (Auger.AI, BigML and RM). On one hand, ranking all the models
arguably provides richer information to the user, on the other, it does reduce au-
tomation and could confuse the non-expert. So, our grading in this criterion is
admittedly subjective. We next grade the ability to Early stop or pause an analy-
sis. The services able to do both score A (RM) and in case they have implemented
either one but not the other, they score B (the rest of the services). When it comes
to Collaboration features, we grade a service with A if it has implemented mecha-
nisms to create custom organizations and teams to allow sharing of resources, such
as data and analyses (all services except DAI and Darwin). Lastly, about Docu-
mentation and support, the services providing e-mail support score C (JADBio).
If they also deliver extensive documentation to the user, they score B (Auger.AI
and Darwin) and when they additionally have direct technical support and user
forums, their score is A (BigML, DAI, RM and Watson). In general, Productivity
is a category emphasized by all services, making it relatively straightforward to
any user to complete an ML analysis.

2.3.4 Interpretability

Interpretability criteria (Table 2.2) is arguably on the most important categories
for selecting an AutoML service[45]. The criteria concern (a) Exploring and visual-
izing the data (Data visualization) before conducting the analysis. (b) Monitoring
the execution of the analysis progress (Progress report). (c) Understanding and
interpreting how the final model functions (Final model interpretation). A particu-
lar means to understanding of results is through Feature selection, which deserves
its own criterion, along with the available mechanisms for the Final feature set
interpretation. (d) Understanding and validating the process that took place dur-
ing the analysis (Analysis exploration). Regarding Data visualizations prior to
the analysis, a service which only provides histograms, scores C (JADBio). If it
also implements correlation plots and data heatmaps, its score is B (BigML). The
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Table 2.2: Productivity and Interpretability criteria. <: only for certain models

Criteria Auger.AI BigML DAI Darwin JADBio RM Watson

P
ro

d
u
ct

iv
it

y Data manipulation 7 A B B A A A
Pipeline automation B B A A A B A
Early stop or pause B 7 B B B A B

Collaboration features A A 7 7 A A A
Documentation and support B A A B C A A

In
te

rp
re

ta
b
il
it

y Data visualization 7 B A 7 C A A
Progress report A B A C B A A

Final model interpretation B B A C A B C
Feature selection 7 C C 7 A B 7

Final feature set interpretation C B A C A B C
Analysis exploration A< B B 7 B A A

services with more options get A (DAI, RM and Watson). During the analysis
(Progress report), if a service only reports the completion percentage, it gets the
grade C (Darwin). When it shows additionally a performance estimation of the
best model and keeps track of the analysis procedure, its grade is B (BigML and
JADBio). The highest grade (A) goes to the services that also show variable im-
portance rankings, generated models ranking and hardware usage (Auger.AI, DAI,
RM and Watson).

Once the analysis is complete, the AutoML service should be able to explain
how the final model works. This adds transparency to the model and pinpoints
possible flaws or bias in its decision making, making it more trustworthy. The
interpretability of the results is a subdomain of ML with increasing popularity and
every year multiple new mechanisms are introduced [45, 12]. We have selected a set
of such mechanisms and grade the AutoML services based on how many of them
they have implemented. The mechanisms are: a) the confusion matrix, which is
created based on the predictions made during the training phase, to help the user
understand what type of errors are produced by the final model; b) report of the
performance of the final model using multiple performance metrics; c) residuals
visualization, i.e. the difference between observed and predicted values of the
data; d) PCA procedure [60] to highlight strong patterns of the data and visualize
them on a 2-D space; e) visualization of the final model, when this is possible;
f) techniques to explain the predictions in case of a complex final model (e.g.
LIME-SUP [29], K-LIME, a variant of LIME [56], decision tree surrogate models
[11], etc.). When the service has implemented at least 2 of the above mechanisms,
its corresponding grade is C (Darwin and Watson), while for a service with more
than 2 available mechanisms, its grade is B (Auger.AI, BigML, RM). The grade
A is reserved for the services with more than 4 of the aforementioned mechanisms
implemented (DAI and JADBio).

Feature selection is often the primary goal of an analysis. It leads to simpler
models that require fewer measurements to provide a prediction, which may be
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important in several applications. Most importantly however, feature selection is
used as a tool for knowledge discovery [40] to gain intuition and insight into the
problem (hence, its inclusion in the interpretability category). A pharmacologist
is not only interested in predicting cancer metastasis but also in the molecules
involved in the prediction to identify drug targets; a business person is interested
in the quantities that affect customer attrition to devise new promotions and ad-
vertisements. Such reasoning is theoretically supported by the fact that feature
selection has been connected to the causal mechanisms that generate the data [69].
It is defined as the problem of identifying a minimal-size feature subset that jointly
(multivariately) leads to an optimal prediction model (see [22] for a formal defi-
nition). Thus, feature selection removes not only irrelevant, but also redundant
features. In some data distributions, there may be multiple solutions to the feature
selection. For example, due to low sample size the truly best feature subset may
be statistically indistinguishable from slightly sub-optimal feature subsets. Or, it
could be the case there is informational redundancy that leads to feature subsets
that are equally predictive. While all solutions are equivalent in terms of predictive
performance, returning all solutions is important when feature selection is used as
a tool for knowledge discovery.

The services which offer single feature selection functionality, score C (BigML
and DAI). BigML treats feature selection as a preprocessing step, before the model-
ing process and the estimation of performance protocol. This approach is method-
ologically wrong and leads to overestimating performance (see [26], page 245).
There are different notions of multiple feature selection. When a service returns
several feature subsets as options, but does not provide any theoretical guarantees
of statistical equivalence, its grade is B (RM). On the other hand, when a service
returns several feature subsets that lead to models with statistically indistinguish-
able performance from the optimal, its grade is A (JADBio). Feature selection
by itself is not enough. The services should also provide users with mechanisms
for interpreting and understanding how each feature in the final set affects and
contributes to the decision making of the final model. We base our grading on
a set of Final feature set interpretation mechanisms and how many of them each
AutoML service has implemented. The mechanisms are: a) random forest feature
importance ranking of the participating features [7]; b) LOCO feature importance
[37]; c) partial dependence plots (PDPs) [16]; d) SHAP plots [41]; e) ICE plots
[20]; f) a report of the standardized individual and cumulative importance of the
participating features; g) the actual standardized coefficient for each feature, in
the case of a linear final model; h) information about the resulted feature sets, in
the case of multiple feature selection. A service that has implemented at least 1
of these mechanisms, is graded with C (Auger.AI, Darwin and Watson). If more
than 2 mechanisms are available, the service’s grade is B (BigML, RM) and the
grade A is reserved for the services with 4 or more mechanisms (DAI, JADBio).

Expert analysts would often like to verify the correctness and completeness of
the analysis that took place. It is not only the results (model) that should not
be treated as a black-box, but also how these results were obtained. A service
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Table 2.3: Customizability and Connectivity criteria. G: for RM server, not RM
studio

Criteria Auger.AI BigML DAI Darwin JADBio RM Watson

C
u

st
om

iz
ab

il
it

y Time budget B B A A B 7 7

Resources budget 7 7 A 7 A 7 B
Analysis components customization A A A B B A B

Enforce Model Interpretability 7 7 A 7 B 7 7

Feature selection options 7 A A 7 A B 7

Visualizations customization 7 A B 7 7 A A

C
on

n
ec

ti
v
it

y

Service deployment 7 A A 7 7 AG 7

3rd party storage connection A A A 7 7 A A
API access A A A A A A A

Downloadable results A A A 7 B A B
Analysis components contribution B A A 7 7 A B

Model deployment A A A A 7 A A
Visualizations exportability 7 B B 7 B A A

which displays an Analysis exploration graph, to help the users understand the
methods used in each step scores A (Auger.AI, RM and Watson). If the service
displays all pipelines that were tried, in the form of list instead of as a graph, its
score is B (BigML, DAI and JADBio). When it comes to analysis interpretation,
DAI and JADBio seem to be the best choice, providing the user with advanced
mechanisms for understanding the final results. Some services, do not provide
any information about which analysis pipelines they tried; the analysis process is
essentially a black box to the user. We note that in our opinion, there is room for
improvement regarding interpretability for most of the services.

2.3.5 Customizability

The Customizability category (Table 2.3) grades the ability of the services to cus-
tomize analysis according to user choices and preferences. About Time budget,
we grade with B the services giving the ability to impose a non-strict time limit
on an analysis (Auger.AI, BigML and JADBio) and with A the ones which allow
setting a strict time limit (DAI and Darwin). Our take on this subject is that
every service should give the ability to pose a strict time budget, as an analysis
can be part of a bigger project, running under specific time restrictions. Moving
to the hardware Resources budget, if a service allows the user to select a preset
hardware configuration, it scores B (Watson) and if it allows setting up the exact
hardware specifications, A (DAI and JADBio). Next, we consider the Customiza-
tion of analysis components, i.e. the ability to choose the methods and algorithms
to try, along with their hyperparameters, in each step of the ML pipeline. If
the user is able to fully customize the included components, the service gets A
(Auger.AI, BigML, DAI and RM). If the service provides the user with a set of
limited settings, it gets B (Darwin, JADBio and Watson).

A service that allows the user to Enforce final model interpretability, is graded
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with B (JADBio) and if it provides additional interpretability settings, with A
(DAI). Another customization criterion is about the available Feature selection
options. If the AutoML service allows the user to select the exact number of
selected features, it is graded with A (BigML, DAI and JADBio) and if it allows
the user to set certain parameters, such as the effort put in feature selection,
with B (RM). Finally, we also consider the Visualizations customization options.
When a service gives the user the ability to set user-specific thresholds on certain
visualizations, its grade is B (DAI). If the user can fully customize the resulted
visualizations (e.g. changing the axes, titles, legend, colors), the service’s grade is
A (BigML, RM and Watson). In general, when it comes to customizability, DAI
has a clear edge over the competition, giving the users options to fine-tune and
setup an analysis according to their needs. We distinguish two different schools
of thought on this category. On one hand, services such as DAI, let the user fully
customize the algorithms and hyperparameter values to search during an analysis.
On the other hand, services like JADBio provide the user with a few preference
choices that do not require expert knowledge of ML. The first approach empowers
an expert analyst but it may be intimidating to the non-expert user. There is
a fine line between providing enough choices to an expert to fully customize an
analysis and achieve better results and providing too many choices that make the
process complex and easy to break. For this reason, we would recommend to equip
AutoML services with some kind of warning system that can actually detect when
the selected setup might create problems and notify the user accordingly.

2.3.6 Connectivity

The Connectivity criteria (Table 2.3) grade the options offered to connect a service
with external tools and resources. First, regarding the Service’s deployment at an
external infrastructure, the services supporting it score A (BigML, DAI and RM).
The ones able to Connect to 3rd party storage providers also get an A (all except
from Darwin and JADBio). Furthermore, all services have implemented their own
API (grade A). We also look into the Downloadable results options. In the case
where only part of the results are downloadable, the services are graded with B
(JADBio and Watson) while the ones allowing the user to download all the results
and also generate a summary report, with (A) (all services except JADBio and
Watson). A user might be interested in Adding custom components to the AutoML
service. If it is allowed to the user to add components through a service’s API, the
service is graded with B (Auger.AI and Watson). If the service has moreover im-
plemented a complete system for user-defined components, by creating their own
marketplace or extensions library, its grade is A (BigML, DAI and RM). Creating
the best final model does not always suffice, as the user will probably want to
deploy it in an external service and use it for new data predictions. Most of the
participating services, have added various model deployment options (grade A)
(all except JADBio). The currently implemented ideas are to use data transfer li-
braries, e.g. cURL (Auger.AI, Watson), create actionable models (BigML, Darwin,
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RM) or scoring pipelines (DAI). All of the above provide the same functionality;
predicting labels on new unseen data. Finally, when writing reports or papers with
the results, the visualizations need to be exported. The services which provide less
than 3 export options score B (BigML, DAI and JADBio) and those with more,
score A (RM and Watson). Taking a look at the participating services, most of
them cover the majority of the proposed criteria. The export formats available
for data visualizations are static in all systems, an area that could greatly be im-
proved. Additionally, we find the lack of connections to public repositories, such
as OpenML [73] important, as they can be useful to a user who is interested in
conducting ML analyses for academic reasons.

2.4 Limitations and Discussion

Admittedly, this work has several limitations. We take the opportunity to discuss
some in depth, pointing to important open issues and future work. First of all, we
were not able to evaluate every known AutoML service.
Estimates: While all services provide estimated quantities from the data, the
major question remains: are the estimates returned correct and reliable?
Statistical estimations are particularly challenging with low samples; even more
so with high dimensional data. Is performance overestimated, standard devia-
tions underestimated, probabilities of individual predictions uncalibrated, feature
importance’s accurate, or multiple feature subsets returned not statistically equiv-
alent? Which AutoML services return reliable results one can trust, and which ones
are actually misleading the user and potentially harmful? In case of medical ap-
plications, overestimating performance or confidence in a prediction (uncalibrated
predicted probabilities) is dangerous and could impact human health, while in
business applications it may have significant monetary costs. Such questions re-
quire significant experimentation with all services to answer. Experimentation
should be performed on datasets with a wide range of characteristics, e.g., sample
size, number of features, percentage of missing values, mixture of types of predic-
tors (continuous, discrete, ordinal, zero-inflated, etc.), outcomes, etc. to provide
a full quantitative picture of the pros and cons of each service and its correctness
properties. Unfortunately, most quantitative evaluations are currently performed
on datasets with a limited range of such characteristics or are restricted by time
limitations.
Scope: In this work, we are only concerned with predictive modeling (supervised
learning) tasks and not other ML categories. Each different task would require a
separate set of criteria that applies to it. We do note, however, that BigML, DAI,
RM, and Watson also support clustering, anomaly detection, and some NLP tasks
which are useful to numerous users. A major limitation of our scope grading is
that it misses important criteria concerning the maximum volume of data a service
can handle in reasonable time or memory resources, both in terms of number of
features, samples, or their combination (total volume). Unfortunately, we are not
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able to test the limits of each service as we are confined to analyses that run on the
free trial versions. However, regarding the scalability with respect to feature size,
we note that almost all services have difficulty scaling to thousands of features.
JADBio on the other hand, was created to scale up to the feature size of typical
multi-omics datasets that can reach up to hundreds of thousands of features.
Productivity/Interpretability: Although, we presented a first qualitative as-
sessment, a true measure of productivity increase requires an extensive user study
with representative datasets spanning a wide-range of characteristics (in terms of
the number of features and samples). In such a user-study, one should measure
how much productivity has improved over manual scripting, eventually by trading
off learning performance, and how much insight has been gained by the interpre-
tation tools offered by each service. To assess how an AutoML system performs
against human experts Kaggle4 and other ML competitions could be exploited.
As data and tasks are specific for a competition problem, solutions by human
experts usually take the top positions as they apply domain-specific knowledge
and sometimes create custom methods and mechanisms to help them win these
competitions. Still, AutoML systems that have been tested on such tasks, achieve
comparable performance. AutoML systems are becoming more and more sophisti-
cated, by automating an increasing number of tasks in ML pipelines (e.g., feature
engineering), while supporting meta-level learning techniques. This can lead to
minimizing the gap between human experts and AutoML in competitive environ-
ments [61] and aid in producing high quality ML models for both commercial and
academic purposes.

There are several other criteria categories that are missing from the present
methodology, due to space limitations. These include model monitoring and main-
tenance that regards functionalities to maintain a model into production [42], such
as monitor the health of the production model, raise alarms when there is a drift
in the data distribution, automatically re-train and update the model, and oth-
ers. As ML systems move from computer-science laboratories into the open world,
their accountability [17] and auditing [13] becomes a high priority problem. In
this respect, we need a deep understanding of the ML system behavior and its
failures. Current evaluation methods such as single-score error metrics and confu-
sion matrices provide aggregate views of system performance that hide important
shortcomings. Understanding details about failures is important for finding ways
for improvement, communicating the reliability of systems in different settings and
for specifying appropriate human oversight and engagement [46].

Finally, we would like to mention that each category could be expanded with
many more criteria. Only the criteria that were addressed by at least one of the
services were included. Functionalities that were not addressed by any of the
services examined are missing. One example is the ability to handle continuous
signals and streaming data [52].

4https://kaggle.com
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2.5 Conclusion

AutoML has made tremendous progress since its first embodiment in the GEMS
system. Several AutoML services are already available, routinely analyzing busi-
ness and scientific data for thousands of users. They do increase productivity and
allow non-experts to perform sophisticated ML analyses. Our prediction is that
within a few years, most of data analysis will involve the use of an AutoML ser-
vice or library; scripting as a means to manual ML analysis will gradually become
obsolete or pass to the next level, where it is customizing and invoking AutoML
functionalities.

The proposed criteria intend to turn the spotlight back onto the human user.
Users do not only consider learning performance when choosing a service. They
also consider a plethora of other criteria such as the ones presented. One of the
most important ones is interpretability of results. Users are rarely satisfied with
just a predictive model; they also seek to understand the patterns in their data.
Thus, results should not be a black-box, but explained, visualized, and interpreted.
Users need to examine the analysis process and ensure its correctness or optimal-
ity: AutoML should automate, not obfuscate. The analysis process should be
transparent, verifiable, and customizable by the user. Some of the AutoML ser-
vices examined, clearly abide to these principles but some fail in this set of criteria.
Arguably, it is perhaps interpretation of results and ease-of-use that will determine
the success of an AutoML service, and not necessarily predictive performance.

Current AutoML systems mostly focus on tabular, iid-sampled data. Obvi-
ously however, most of the world’s data is not in this format or sampled as iid.
Ultimately, AutoML competes with the human expert not only in learning perfor-
mance but in scope and the range of problems it can handle. There are ongoing
efforts to develop AutoML solutions for regression or anomaly detection tasks in
time-series, time-course data, and streaming data (e.g., Microsoft Azure [43], Ya-
hoo EGADS [35], Facebook Prophet [64]), or to generate features from relational
tables or CSV/JSON files [21]. Future AutoML systems should also automate
more data preparation tasks including data cleaning (e.g. error correction and
deduplication) [57] and support ML tasks such as reinforcement, transfer and fed-
erated learning, or causal modeling [51] to name a few. Still, interpreting the
results of the analysis in each category is quite challenging and probably requires
a different, specialized set of methods. Works such as this can guide both the users
and development teams into creating comprehensive and useful AutoML systems,
focused on real user needs.
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Chapter 3

User study

3.1 Introduction

The aim of this user study was to evaluate the user experience (UX) and the
usability of the candidate AutoML services by users of varying ML knowledge.
Therefore, it was a strictly qualitative evaluation, not focusing on AutoML aspects
such as predictive performance. Prior to the main part of the study, the users filled
a preliminary form providing information about their background. Following, they
were presented with a brief presentation regarding what is AutoML, tools and
techniques used in ML, and information about the procedure of the user study.
Moving to the main part of the user study, each participant was called to complete
a pre-designed ML analysis, following specific instructions, for all 3 candidate
services, in a 2-hour time frame. The participants were asked to fill out different
forms and answer questions during the user study, evaluating their UX, while
performing the analysis. An overview of the user study can be found at Fig. 3.1.
In the next section, we introduce the AutoML services selected for this user study.
Afterwards, we are providing details about the participants of the study. Next,
we present the details of the analysis, going through all the subtasks the user was
called to complete. Finally, we exhibit the results of our user study and comment
on them.

Figure 3.1: User study overview. The facilitator introduced the users to the study
and basic ML terminology with the first 2 steps. Afterwards, each user was called
to complete the given analysis and fill out the given forms for each of the partici-
pating AutoML systems.

17
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3.2 Included AutoML services

We selected 3 AutoML services for this user study, BigML[4], H2O’s Driverless AI
(DAI)[24] and Just Add Data Bio[70]. We selected these services based on certain
criteria. To begin with, these services are among the most complete, when it
comes to implemented features, and they share a common view on how an AutoML
pipeline should be structured. This makes it easier for a user, who has never used
these services before, to operate them and complete all the tasks in the given
time frame. Secondly, the services at hand are all available online. This allowed
the participants to complete the user study using their own PCs, and eliminated
potential installation or compatibility issues. Additionally, it helped us make sure
that all candidates would have the same experience with the participating services.
Lastly, we were able to get multiple accounts with full unrestricted access to the
free-trial versions of these services, which did not have any limitations in terms
of available functionalities, compared to the full versions. This provided us with
the tools required, to design the ML analysis of the user study as we saw fit, and
made it possible to run the user study with multiple users simultaneously.

3.3 Participants and Location

The user study was conducted with 2 groups of participants, in 2 different sites and
dates. The first group was located at SAP SE, Walldorf, Germany, where 9 people
participated, at the 22nd of August, 2019. The second group was located at the
Computer Science department of the University of Crete, Greece, where we had
10 participants, at the 27th of September, 2019. In both sites, the user study was
conducted in the same manner, having identical material. It is important to notice
that, even though there was a gap of approximately a month between the 2 sessions,
we did not need to do any adjustments to our user study design for the second
session, guaranteeing the comparability of the results. Our aim when creating the
groups was to pose no restrictions, regarding the participants’ background or how
much experience they had had using machine learning. By doing so, a total of 19
people took part in the user study. By gathering the results of our Preliminary

form, we notice the participants originate from different scientific domains (Fig.
3.3). Additionally, they were not ML experts, but, on the contrary, most of them
were complete amateurs or with little experience in applying machine learning (Fig.
3.2). This is important as the whole point of AutoML services is to make the setup
and completion of a ML analysis intuitive and simple to the users, regardless of
their prior ML knowledge. Lastly, to secure an unbiased result and no possible
conflicts of interest, we made sure none of the participants had affiliations with
any of the included AutoML services.
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Figure 3.2: ML knowledge of participants

Figure 3.3: Background knowledge of participants. The user study group was
comprised of mostly ML amateurs and they came from various domains, such as
Physics and Biology.
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3.4 Introductory presentation

Before the users started the analyses on the AutoML services, they were given a
brief 15-minute introductory presentation. This was done, in order to help even
the complete ML amateurs understand basic terminology and how the ML pipeline
is represented in an AutoML service 3.4. Additionally, the analysis procedure was
presented and explained, together with the 4 questions the users were asked to
answer during the analysis procedure. Once the users’ questions were answered,
we displayed the data they were going to use for their analyses, discussing their
format and characteristics to make the procedure even more intuitive.

Figure 3.4: The AutoML pipeline as presented during the introductory presenta-
tion. Multiple details had been omitted, as the main goal of this overview was to
give an understanding to the users as to how they would proceed with the user
study analysis.

3.5 User analysis

Each participant was asked to complete a ML analysis on all 3 available AutoML
services. The analyses were performed on real clinical data of arrhythmia patients,
available at OpenML[73]. The type of the ML task was binary classification, and
the user was asked to conduct an analysis and come up with a model able to
predict whether or not a patient has arrhythmia. Afterwards, they had to use the
resulted model to validate its performance on new unused test data. To be able
to do so, we had previously partitioned the data in parts, namely train and test
and provided them to the users. The users were instructed to use the train part
for the data visualizations and training subtasks, while the test part was reserved
for the validation subtask. This way we were able to check the validity of their
answers to the 4 questions we posed to them in the latter stages of the user study.
On a special note, we understand that using an AutoML service without prior,
or limited, ML knowledge can be an overwhelming experience for the new user,
especially when asked to do so in a limited time frame. To eliminate this problem,
we provided the users with clear and easy-to-understand instructions, so that they
were able to complete all the required subtasks and not get lost in the amount of
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information and functionalities available in the AutoML services. To make them
feel even more comfortable running and completing the analyses, a facilitator was
in the room, answering questions and helping them overcome possible dead ends.
Finally, the order in which each user was called to use the 3 services was selected
at random, to eliminate the possibility of having order bias[76].

3.5.1 Custom form

During the analysis procedure, the user was called to fill out a custom form about
the ease-of-use of each of the AutoML services. It is consisted of 12 items, spread
across the different subtasks. The users were called to select how much they agree
with each item, once they had completed the corresponding subtask. Some items
(8) have positive, while others (4) have negative wording. This technique was
employed so that users did not go on auto-pilot and agree to all statements, also
known as Acquiescent bias[28]. Another type of bias we wanted to avoid, by using
a mixture of positive and negative items, is the Extreme response bias. Similar to
Acquiescent bias, we wanted to deter users from selecting only extreme responses.
This way, we aimed in getting the users pay attention to each individual item and
provide meaningful feedback. We use a 5-point Likert scale[39] for the responses,
which are: 1. Totally Disagree, 2. Disagree, 3. Neither Agree or Disagree,
4. Agree, and 5. Totally Agree

3.5.2 Subtasks and corresponding custom form items

We tried to simulate a standard analysis procedure, where the user ought to a)
upload the data to the AutoML service; b) use the available tools to visualize and
understand the structure of the data; c) set up and start the analysis; d) overview
the analysis procedure; e) examine the final result and f) apply the resulted final
model to validation data and find the true predictive performance. In total, the
user was instructed to complete 6 subtasks. After each subtask, they were called
to fill the corresponding part of the custom form. The subtasks are:

• Subtask 1: Data uploading: Starting off the analysis, the users received
the data and were asked to upload them to the AutoML service. Since this
is a simple task, we had only 1 item in our custom form. The item was:

– The data uploading process in this system is simple and intuitive.

• Subtask 2: Data descriptive statistics and visualizations: Once the
data were uploaded, the users were called to use the mechanisms to get a
better understanding of the data’s characteristics and overall structure, and
also look into how one can export this information. Through our instruc-
tions, the users were able to explore both the statistics, as well as the data
visualizations provided by the AutoML services. The items of the custom
form corresponding to this subtask were:
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– The statistics and visualizations provided helped me get a better un-
derstanding of the data.

– Important statistics or visualizations are missing from the system.

– The meaning of the data visualizations provided by the system is prop-
erly explained.

• Subtask 3: Analysis creation: Once the user understands the data char-
acteristics, the next step is to set up and start the analysis. We provided the
users with specific instructions to help them not get lost and have compara-
ble results. Additionally, we asked from them to take some time and peruse
through the available settings, in order to be able to respond to the custom
form’s items. These items are:

– The process of analysis creation is easy and straightforward.

– The available user - defined settings for the analysis setup are too tech-
nical.

• Subtask 4: Analysis monitoring: While the analysis was being executed,
the users had the chance to look into the information provided by the Au-
toML services. This information opens up the black box of the AutoML
analysis procedure and makes it, along with the final result, easier to trust
by the user. This does not mean a service should give out all the raw infor-
mation, but ideally present it in a way that will help the users understand
each individual step of the analysis and not confuse them.As the analysis
took at least 5-10 minutes to complete on each service, the users were able
to explore the available information and convey their satisfaction via the
items in the custom form. These are:

– The information provided during the analysis monitoring is intuitive.

– The amount of information provided during the analysis monitoring is
insufficient.

• Subtask 5: Result interpretation: After the completion of the analysis,
the users were asked to overview the final results summary and answer the 3
first intepretability questions. We did not emphasize on on interpretability
mechanisms, since going through this information is a meticulous process
requiring time and ML knowledge. A user study could be conducted just
on this part of the AutoML services, with participants with advanced ML
knowledge, in order to assess the quality of the provided interpretability
mechanisms. The custom form item for this subtask is:

– The summary presented is comprehensive.

• Subtask 6: Result validation: The last subtask of our analysis procedure
is using the resulted model to validate its performance on external test data.
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We focused on 2 parts of the validation mechanism, a) how easy it is to
perform it on new data, and b) how intuitive the presentation of these results
is.

– The mechanism for validating the final model is simple.

– The presentation of the results of the validation is confusing.

3.5.3 Comprehension questions

To understand if the users are able to find and extract the most basic information
from the results of an analysis, we decided to ask 4 questions, after subtasks 5
and 6. It is important to note this was done to understand how easy-to-find the
results are for a new user, and not to compare the predictive performance of the
participating AutoML services. The questions were:

• Subtask 5:

– Question 1: Report the performance (Area under the ROC curve/
ROC AUC/ AUC) after the completion of the training phase.

– Question 2: Report the type of the selected final model.

– Question 3: Write down the 2 most important (informative) features
(variables) of the data, as reported by the AutoML service.

• Subtask 6:

– Question 4: Report the performance (Area under the ROC curve/
ROC AUC/ AUC) of the final model on the test dataset.

The users were free to input their answers and were instructed to take some time
to find the correct information.

3.5.4 System Usability Scale (SUS)

After each analysis, the users were called to fill in a System Usability Scale
(SUS) [8] form. SUS is an industry standard when it comes to measuring the ease-
of-use of a service and has been broadly used on multiple different domains[38].
It is consisted of 10 items, Odd-numbered items are all in a positive tone, while
even-numbered items in a negative tone. The items are:

1. I think that I would like to use this system frequently.

2. I found this system unnecessarily complex.

3. I thought this system was easy to use.

4. I think that I would need assistance to be able to use this system.

5. I found the various functions in this system were well integrated.
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6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found this system very cumbersome/awkward to use.

9. I felt very confident using this system.

10. I needed to learn a lot of things before I could get going with this system.

The positive aspects of SUS are:

• It is free to use.

• It is an intuitive scale and the user study’s participants can understand its
item with ease.

• It can be used on small sample sizes and retain the reliability of its results.

• It has been proven to work and can differentiate between usable and unusable
systems.

• It has been broadly used and its results can be interpreted based on the final
result, regardless of the type of the participating systems.

3.6 Results

In this section, we review the results of the user study in 3 parts. In the first part,
we compare and comment on the the scores derived from our custom form and in
the second part, we examine the answers given in the 4 questions we asked the
users. In the final part, we discuss the SUS results.

3.6.1 Custom form results

To score the responses of our custom form and be able to use them in order to
compare the 3 participating AutoML services, we came up with an idea similar to
the SUS score is calculated. So, to the score a service based on the answers of a
user, we follow these steps:

• A = Sum of the positive items’ points - 8

• B = 20 - Sum of the negative items’ points

• Custom Score = A + B

or, in a mathematical representation:

system score =

12∑
i=1

{
response(i) − 1, if item(i) = positive item

5− response(i), if item(i) = negative item
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Figure 3.5: Custom form results. The maximum possible score 48. All systems
share similar results, with DAI leading and JAD having the lowest score.

With this formula, the maximum score a service can achieve is 48. In Fig.
3.5, we see the scores of the participating AutoML services. Even though, all 3
services are close in score, their overall performance is mediocre. Considering the
perfect score is 48, DAI manages to get (32.16), which equals to 67%, BigML
(30.26) (63%) and JADBio gets (28.65) (60%). This is indicative of challenges
users came across, during the completion of the analyses on all 3 services. Of
course, we should not overlook the fact the users were ML amateurs, so the whole
procedure is new to them and can be cumbersome. To find exactly which parts
obfuscated the users, we are looking into the results of each of the subtasks, for
all 3 services:

Subtask 1: Data uploading

• The data uploading process in this system is simple and intuitive.

Even though data uploading is a straightforward task, we see differences on the
user-experience among the 3 participating services. DAI is the only service which
all users agreed this process is easy-to-complete, whereas for JADBio and BigML,
some users found it confusing.

Subtask 2: Data descriptive statistics and visualizations

• The statistics and visualizations provided helped me get a better understand-
ing of the data.
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With this question, we are highlighting the importance of mechanisms able to
explain the data and their characteristics to the users. Even though there are
no major differences in the user-satisfaction, all users found the statistics and
visualizations vital in understanding the data given to them for the analyses.

• Important statistics or visualizations are missing from the system.

Due to the ML expertise level of the users, most of them were unsure as to whether
or not there are data interpretation mechanisms that should be added to any of
the services. However, the ones who answered with a non-neutral response, seem
to be satisfied by what is provided.

• The meaning of the data visualizations provided by the system is properly
explained.
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Having multiple data interpretability mechanisms alone does not suffice. Proper
explanation on how they work and what is their output, is as important as adding
them to the AutoML service in the first place. From the responses, we notice the
majority of users thought the provided explanations were adequate.

• The export options of the visualizations are satisfactory.

With this item we explored the available export options of the data visualizations
provided by the services. Regarding DAI and BigML, the users seemed to be
satisfied with what is available, while JADBio is the only service receiving negative
responses.

After gathering up the results of this subtask, there is no AutoML service with
a clear edge over the rest, when it comes to visualizing and getting information
about the user’s data.

Subtask 3: Analysis creation

• The process of analysis creation is easy and straightforward.

In this subtask the users were called to create an analysis. Reviewing the results,
we understand they found setting up an analysis simple in all participating services.

• The available user - defined settings for the analysis setup are too technical.
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Even though the users were not proficient in using ML, the fact that AutoML
services hide most of the technicalities and advanced options when creating an
analysis, makes the analysis options easy-to-understand and setup for everyone.
This is one of AutoML’s main goals, removing the burden of choosing the correct
settings for an analysis from the users and exposing only high-level options.

Subtask 4: Analysis monitoring

• The information provided during the analysis monitoring is intuitive.

About the information provided during the analysis execution, DAI had the highest
score, with no negative responses, followed by JADBio and BigML, which received
some negative feedback.

• The amount of information provided during the analysis monitoring is insuf-
ficient.
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In this item, we see a notable difference in the responses. Regarding DAI, most of
users where at least partially satisfied with the information provided during the
analysis. For JADBio and BigML, less than half of the users thought that they
were given enough insights on the analysis. In order to make an AutoML system
trustworthy, it has to be transparent during the analysis by communicating as
many analysis progression details as possible.

Subtask 5: Result interpretation:

• The summary presented is comprehensive.

As we mentioned earlier, we did not want to focus on the interpretation of results,
as it is consisted of multiple components and can be time-consuming. For these
reasons, we focus on the final summary of the results. There are no major differ-
ences in the scores, with all of them being positive. This translates to the fact all
services help the users get a clear grasp of the results and create understandable
summaries.

Subtask 6: Result validation

• The mechanism for validating the final model is simple.

• The presentation of the results of the validation is confusing.
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The last subtask was about validating the resulted model on new unseen data.
About the way this mechanism is introduced in these AutoML, DAI and BigML
receive a positive response from the majority of the users, while JADBio seems
to have confused most of them. Still, when it comes to the way the validation
results are presented, all 3 services receive a positive score, meaning that the users
managed to understand them.

3.6.2 System Usability Scale form

Once the analysis was completed, the users were called to complete a SUS form.
The SUS score can range from 0 to 100, but it should not be interpreted as a
percentage, since the average score for a service is 68. The way SUS score is
calculated is simple:

• SUS is composed of 10 items.

• The user is being provided with 5 responses, ranging from 1 (Strongly dis-
agree) to 5 (Strongly Agree)

• For odd-numbered items, subtract one from the user response.

• For even-numbered items, subtract the user responses from 5.

• Add up the converted responses for each user and multiply that total by 2.5.
This converts the range of possible values from 0 to 100 instead of from 0 to
40.

or, by using an equation:

system score = 2.5×
10∑
i=1

{
response(i) − 1, if i is odd

5− response(i), if i is even

In Fig 3.6, you can see the results, accompanied by different scales used to
interpret them. We make 2 observations on them. Firstly, all 3 services scored low,
compared to the max score (100), and they were below the average (68). Secondly,
DAI seems to have the edge over JADBio and BigML in this comparison, scoring
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66.6 points, whereas the former two scored 53.3 and 53.4 respectively. This makes
DAI the only system able to get a D grade (JADBio and BigML score F), and also
being on the high-marginal acceptability range. What this result translates to, is
that all systems get a low usability grade and there is ample room for improvement
in this aspect.

Figure 3.6: SUS form results. The results are explained in 3 different scales, all
proposed by the SUS creators and existing users. DAI has a clear edge over the
other 2 systems, but all 3 score below the true average (68) of this usability form.

Following, we are looking at each of the SUS’ items individually, to gain more
insights on why the systems got these scores.

1 I think that I would like to use this system frequently.

Starting off with our first item, it is about whether or not the users were intrigued
enough by this system, in order to re-use it in the future. As we can see, DAI is
the only system where the vast majority of the participants said they would come
back, with BigML and JADBio following, having a score.

2 I found this system unnecessarily complex.
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When questioned about the complexity of the systems, all had good scores, with
DAI once again having the highest. This is an important finding, as AutoML
systems are trying to remove as much of the technicalities and complexity when
constructing an analysis pipeline. By looking at the results, they are moving to
the right direction and this score should only increase in the future.

3 I thought this system was easy to use.

Complexity and ease-of-use are 2 different things. A simple system can be hard to
use, due to bad design decisions or by missing basic functionalities. On the other
hand, a complex system, such as an AutoML service, wants to make the whole
process as clear as possible to the users and guide them through its entirety. The
results of this item showed that even though the users had no previous experience
on these systems, while some of them had no ML experience at all, the majority
did not find trouble using any of them.

4 I think that I would need assistance to be able to use this system.
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The main idea of AutoML, is that a user should be able to correctly perform an
analysis without the guidance of a ML or AutoML system expert. Viewing the
results, the majority of the users felt confident they would be able to use all 3
systems unassisted, with no system being significantly better or worse than the
others.

5 I found the various functions in this system were well integrated.

Apart from having multiple mechanisms, an AutoML system should additionally
make sure they are correctly integrated. An error can greatly decrease the user
experience and make the system appear less trustworthy and robust. When asked,
the users seemed to be indecisive regarding JADBio, and were much happier with
how the various functionalities were implemented in DAI and BigML.

6 I thought there was too much inconsistency in this system.



34 CHAPTER 3. USER STUDY

This item focuses on whether or not the systems deliver their content in an ac-
cordant way. Making constant changes can impact the UX, as they may lead to
inconsistencies between different parts of the system. This, as a result, makes
navigating through the system harder, as not having a unified approach on how
information is communicated to the users, can lead to confusion. The users should
be able to easily find what they are looking for at any time, thus increasing their
productivity and decreasing their frustration. All participating systems have good
scores in this item, with DAI having the edge, with no negative replies.

7 I would imagine that most people would learn to use this system very quickly.

How easy it is to get started using a system plays an important role when choosing
among multiple options. A steep learning curve can prove to be time-consuming
and a make-or-break factor for both inexperienced and expert users. The results
depict a major difference between the score of DAI and those of JADBio and
BigML, with the participants thinking DAI was the easiest one to get accustomed
to.

8 I found this system very cumbersome/awkward to use.

This item focuses on how easy it was for the users to navigate through the systems
and complete the required tasks. Once again, DAI received the highest score,
with no negative responses, while users seemed to find JADBio and BigML more
awkward to use.
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9 I felt very confident using this system.

When creating an AutoML system, one of the top priorities should be to make
users self-assured about validity of their actions and the correctness of the final
result. This can be done by streamlining all available functionalities. In this item,
we notice all systems had a low score, with BigML gathering the lowest score. This
outcome was expected, as the participants were called to use systems previously
unknown to them, to complete a ML analysis, which is also something they were
not experts of.

10 I needed to learn a lot of things before I could get going with this system.

The last item of the form is about the prior knowledge required to use these
AutoML systems. DAI scores above average, while JADBio and BigML have a
negative score, with the latter having only 2 of the users thinking they could use
it without learning other things in advance. This is an interesting find, as all users
were called to complete the exact same analysis across all participating systems.
This goes to show the importance of creating an easy-to-use system, which the
users can take advantage of by spending the minimum time possible in learning
how to operate it.

To summarize the SUS form results, DAI had the highest score, while JADBio
and BigML had similar results across most of them.Particularly, DAI seemed to
be the most consistent and easy-to-use system, adding to the fact the users would
most likely choose to use it again for their own projects. Still, it is important to
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notice not JADBio or BigML failed in the overall score, being on the marginal-low
range of acceptability scale and that all of the systems scored less than the SUS
average. If we take into account the limitations of using the SUS form in our user
study, i.e. having participants with an amateur ML knowledge using advanced
AutoML systems, we see there is room for improvement in all areas. However, one
specific area all systems could vastly improve, is making the users feel confident
using them, as this can increase the quality of user-experience and their popularity.

3.6.3 Custom questions responses

In this section we comment on the results of the custom questions, which the user
was called to answer during subtasks 6 and 7. The aim of these questions was to see
if the users are able to pinpoint some of the most vital results of a ML pipelines in
the participating systems. What we report as results, is the percentage of correct
answers for every question, across each individual system. More specifically:

• Question 1: Report the performance (Area under the ROC curve/ ROC
AUC/ AUC) after the completion of the training phase.
BigML (15/19 - 79.0%), DAI (19/19 - 100%), JADBio (18/19 - 94.7%)

• Question 2: Report the type of the selected final model.
BigML (18/19 - 94.7%), DAI (9/19 - 47.4%), JADBio (10/19 - 52.6%)

• Question 3: Write down the 2 most important (informative) features (vari-
ables) of the data, as reported by the AutoML service.
BigML (16/19 - 84.2%), DAI (18/19 - 94.7%), JADBio (16/19 - 84.2%)

• Question 4: Report the performance (Area under the ROC curve/ ROC
AUC/ AUC) of the final model on the test dataset.
BigML (12/19 - 63.2%), DAI (19/19 - 100%), JADBio (3/19 - 15.6%)

Starting off with Question 1, the information regarding the training perfor-
mance estimation of the resulted model appears to be easy-to-find on all systems.
However, when it comes to reporting the type of the final model, the users could
not find this information with ease at DAI and JADBio. Continuing, we asked the
users to report the 2 most informative variables (or features) of the data. In this
question, most of the users had no issues locating where this information was lo-
cated on all 3 systems. Lastly, once the users completed the validation subtask, we
asked from them to report the validation performance, as found on the systems.
In this question, we had 3 very different results. Starting off with the highest
performance of correct answers, in DAI, all users replied correctly, whereas, in
BigML, 12 out of 19 users were able to find this information. However, this was
not the case for JADBio, where only 3 out of the 19 users reported the correct
value. Questions like these can directly aid the development teams in identifying
bad design decisions and help them understand how the users view the information
provided by the system.
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3.7 Limitations and conclusions

We discuss the limitations and conclusions of our user study. To begin with,
the results of this user study have been mostly invalidated by now. AutoML is
becoming more and more popular, and so the participating AutoML systems also
evolve to be able to compete. Some have expanded their functionalities, while
others have radically changed their whole UI interface, alternating the delivered
user-experience. Of course, this does not mean that user studies have no point,
just that their results should be considered immediately after being conducted.
Another limitation, is the amount of participants and their characteristics. We
gathered 19 users, with the vast majority of them being complete ML amateur.
This means that we have a limited number of opinions and we miss out on the ML
experts’ opinions, which could differ to a great extent. Continuing with the analysis
each user had to complete, we need to mention we created generic subtasks, trying
to cover most of the key points of an analysis, without putting emphasis on a
particular one. This caused as a result not reviewing other key aspects of AutoML
systems, such as results interpretability mechanisms, final model export options,
and available deployment options, to name a few. Lastly, about the time frame of
the user study, even though 2 hours were enough time for most of the users, some
struggled completing all 3 analyses, so there may be room for adjusting it as well.
In general, AutoML systems have a steeper-than-expected learning curve, mainly
due to the complexity of the problem they try to solve. AutoML teams should
try make the analysis process more intuitive and improve the systems (tutorials,
available documentation, working examples etc.) created to help the the users
understand how to easily and correctly use their systems.
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Chapter 4

Methodology of AutoML
Quantitative Evaluation

4.1 Introduction

In the final chapter, we describe our methodology for quantitatively evaluating Au-
toML systems regarding the correctness and quality of their results, and present
our findings. The first aspect of AutoML systems we want to evaluate is the
accuracy of their predictive performance estimation, also known as estimation
bias. Secondly, we conduct an out-of-sample performance comparison to search
for systems which might have the edge over the rest when it comes to predictive
performance. Lastly, we are interested in finding trends of our results with the
characteristics of the data we included in our benchmark. Our results show most
AutoML systems significantly fail to accurately predict the true performance of
their outcome. Regarding the hold-out performance comparison, there was no sin-
gle winning system for either of the ML tasks we included in our evaluation (binary
classification and regression). Finally, depending on the system, we found all of
the aforementioned results to be statistically significantly correlated to different
data characteristics.

4.2 Related work

There has been an increasing interest in finding ways to adequately evaluate Au-
toML systems. Starting with the scope of these studies, most are focused on the
classification task (both binary and multiclass). This creates a gap as regression
has only been highlighted by one recent study [68] and there are other tasks not
being considered at all (e.g. time-to-event, survival analysis). Moving over to
data used, most studies use tabular data from the OpenML repository (OpenML
benchmarks[18][5] or custom data lists), while a few focus on image data [6][25].
AutoML systems are complex systems providing multiple functionalities to the
users. Apart from comparing them solely based on their hold-out performance,

39
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related work tries to cover other dimensions of them as well. To start off, they
test their ability to consistently deliver similar results when repeating an anal-
ysis [68].Furthermore, there have been works emphasizing on the structure and
complexity of the systems’ outputs[79]. This provides the users with vital infor-
mation, as many could be more inclined to use a system which outputs simpler
results, depending on the problem and application. Lastly, many related studies
are interested in tuning the time limit hyperparameter of AutoML systems. This
way they investigate which is the optimal time budget in order to achieve the best
possible result, based on different problem cases. We decided to focus on creating
a methodology to evaluate AutoML systems based on; a) the accuracy of their
predictive performance estimation, also known as estimation bias and b) an out-
of-sample performance comparison. Also, we were interested in finding trends of
these results with the characteristics of the data we included in our benchmark
and examine their statistical significance.

Table 4.1: Quantitative evaluation surveys of AutoML systems. ML tasks: C: Bi-
nary classification, MC: Multiclass classification, R: Regression, OML∗1: OpenML
benchmark, OML∗2: OpenML100 + OpenMLCC18 + OpenML benchmark, ∗3:
Included both AutoML and AutoDL systems.

Study [18] [79] [68] [6] [25] Our evaluation

S
co

p
e

ML tasks C, MC C, MC C, MC, R C MC C, R
Data types Tabular Tabular Tabular Images Images Tabular
Data benchmark used OML∗1 OML∗2 Custom Custom Custom Custom
Participating datasets 39 73 300 6 2 200
Number of AutoML systems 4 5 6∗3 2 3∗3 5

D
im

en
si

on
s

Hold-out performance Y Y Y Y Y Y
Estimation of predictive performance bias N N N N N Y
Statistical trends of results with data metafeatures N N N N N Y
Similarity of results across repeated analyses N N Y N N N
Noisy data handling N N N N Y N
Output pipeline size & complexity N Y N N N N
Time-performance tradeoff Y N Y N Y N

4.3 Participating AutoML systems

AutoML is an emerging domain with multiple potential applications, so naturally
the number of available open source and commercial AutoML systems is increasing
rapidly. For our study, we selected the participating systems based on the following
criteria:

• The scope of the system must cover the scope of our study. We focus on
binary classification and regression ML tasks. Regarding the data type,
we use tabular data with both continuous and discrete features, as well as
missing values for our experiments.

• A system should provide us with free unrestricted access of its functionalities.
This is obvious when it comes to open source systems, but is often not the
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case for the commercial ones. Most of them do not allow their inclusion in
a public comparative performance evaluation and restrict it through their
licensing. Since we were interested in adding them in this evaluation, we
asked from multiple commercial AutoML systems1 for persmission to include
them to our study. Unfortunately, only JADBio responded.

• We emphasize on AutoML and do not include Automated deep learning
(AutoDL) systems. They belong in the Deep Learning subdomain, hence a
different evaluation including only AutoDL systems ought to be more appro-
priate. This translates to popular AutoDL systems, such as Autokeras [34]
and Ludwig [44], not being included in our evaluation.

• The system should be currently maintained or developed. This restriction
allows us to focus at comparing the popular up-to-date systems and not
highlight known issues with the outdated ones.

• The system ought to report or store the training performance estimation
once the training phase is completed.

Applying all the aforementioned guidelines and restrictions, led us to a total of 5
AutoML systems (4 open source and 1 commercial):

• Autosklearn (ver. 0.6.0)[15], one of the most popular AutoML systems and
provides the users with an automated sklearn [49] estimator replacement.
Autosklearn uses SMAC [30] to optimize its models, metalearning to warm-
start the hyperparameter optimization procedure and its default output is
a 50-model ensemble. For the performance estimation, it uses the Hold-out
protocol.

• GAMA (ver. 20.2.0) [19], a new AutoML system utilizing genetic program-
ming for its optimization procedure. It uses the Cross Validation protocol[55]
to estimate the performance of its output.

• h2o.automl (ver. 3.28.0.2) [24], another well-known AutoML system built
using the H2O open source ML platform. It uses a mixture of grid search
and random search [2] for model optimization and boasts 2 different ensem-
bling techniques, to ensure high predictive performance. To calculate the
performance, it also uses Cross Validation.

• Just Add Data Bio (JADBio) (live version)[70], a commercial system
focusing on feature selection and analyzing low-sample, high-dimensional
data. It uses Repeated Cross Validation with bias correction[71], to correctly
report the performance of its final model.

• TPOT (ver. 0.11.1)[36], another widely-used system using genetic program-
ming for machine learning optimization. The main difference with GAMA

1Auger.AI, BigML, Darwin, Datarobot, DriverlessAI, JADBio
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lies in the evolutionary algorithm it employs in the optimization stage. It
also employs Cross Validation for the performance estimation.

Figure 4.1: The bias plots for all AutoML systems across all experiments, on
both ML tasks. With red we mark the overestimated cases and with black the
underestimated ones. The black horizontal line depicts the 0.9 hold-out perfor-
mance limit.Top: The binary classification experiments results for each AutoML
system. Bottom: The regression experiments results for each AutoML system.
Autosklearn and TPOT show the biggest overestimation trends.
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4.4 Evaluation methodology

In this section we describe our methodology for evaluating the selected AutoML
systems. We start off by presenting our data benchmark creation process. After-
wards, we present the evaluation protocol we follow in our experiments. Lastly,
we describe the tests used to study the statistical significance of our results.

4.4.1 Benchmark datasets selection

In order to adequately evaluate the participating AutoML systems, our objective
was to create a representative benchmark covering a wide range of data character-
istics, for both binary classification and regression ML tasks. To do so, we started
off by defining the dimensions range we considered when selecting datasets.
Regarding the Number of Samples, we included datasets with at least 100 but no
more than 150k samples. The lower bound is set, as a previous study[70], con-
ducted on more than 600 datasets with less than 100 samples, evaluated JADBio
and Autosklearn on this kind of datasets, so there was no need to include them
here. Regarding the upper bound, it is set because a) bigger sample sizes translate
to easier problems[54] and thus, providing little to no useful information regarding
their performance and generalization; b) extremely large sample-size problems are
regularly used for evaluating the scaling aspect of systems.
Continuing, we also limit the Number of features between 10 and 100k. This
way we avoid datasets with too few features, while also allowing the inclusion of
high-dimensional problems, which are usually harder-to-solve and have not been
adequately represented in other AutoML benchmarks [5].
Our benchmark is consisted of datasets from the OpenML repository [73], as it
provides curated data, together with multiple data characteristics in the form of
metafeatures. This aids us in selecting datasets that abide to certain requirements
and cover a wide range of available problems. However, the pool of available
datasets is not uniformly distributed across the Samples/Features grid (Fig 4.2,
thus, a random selection of datasets will result in some areas of the grid not being
represented in the benchmark. We aim for an approximately uniform distribution
of datasets in this Features/Samples grid. To do so, we have created and used a
simple methodology. We started off by sampling 1 dataset from each grid cell and
repeat this across all cells until we have our desired number of datasets. Moreover,
to ensure we also included data with missing values or big imbalance in their class,
we manually added extra datasets. The result of this procedure led to selecting 200
datasets, 100 for binary classification and 100 for the regression task (Figure 4.2).
All selected datasets can be found at Table 6.1 and Table 6.2.
By comparing our benchmark with others which have been used in related works,
we validate that our methodology is successfully managing to create representa-
tive data lists using the OpenML repository datasets. Starting with the binary
classification list, we compare it against the OpenML benchmark.
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Figure 4.2: The datasets available in the OpenML repository and those we sampled
for our benchmark, presented in the Samples/Features grid. Top Left: All avail-
able binary classification datasets in OpenML repository Top Right: All available
regression datassets in OpenML repository Bottom Left: Our selection for the
binary classification task, compared to the union of OpenMLCC18 and OpenML
benchmarks, achieves a better coverage of the dimensions grid. both in terms of
samples and features. Bottom Right: The related study[68] also including this
ML task has oversampled datasets from a particular domain (QSAR datasets) and
included multiclass classification datasets in its benchmark, therefore reducing its
credibility.

4.4.2 Evaluation protocol

We describe our evaluation protocol by starting with our experimental setup. We
set only the mandatory settings for each system, i.e. time budget for each analysis
and the performance metric to optimize for. Regarding the time budget, we de-
cided to set it to 1-hour, as the related work[73][18][68] indicates it is ample time
for analyzing data of small to medium dimensions. For our hardware setup, we
run the experiments of the open source systems (Autosklearn, GAMA, h2o.automl,
TPOT), in GRNet’s HPC phi nodes infrastructure. For each analysis, we utilize
8 CPU cores and 50GB of memory. Since JADBio is a commercial system running
in its own infrastructure, what we can do is also limit the available cores for each
analysis to 8.
When it comes to data preparation for our analyses, the only step we perform is a
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50-50 split, stratified for classification datasets. We use the first 50% for training
and getting the predictive performance estimation of the systems’ output and the
other 50% as a hold-out set used for obtaining the true test performance.
We use 2 different performance metrics for optimizing the AutoML systems and
reporting their train and hold-out performances. For binary classification, we use
the Area under the ROC Curve (AUC). On how it measures the predictive perfor-
mance, AUC considers all pairs of one positive and one negative samples. It equals
to the probability that a positive sample will get a higher score by the model than
the negative one. AUC is a widely used performance metric for binary classifica-
tion analyses, as it measures the quality of scores of the model to rank samples
correctly and is independent of the class distribution. Its baseline performance
is 0.5 and its range is between 0 and 1. For regression we use the Coefficient of
Determination (R2). R2 measures the reduction in uncertainty (variance) of the
predictions by using the model compared to using a trivial model, most commonly
the mean value of predictions. Moreover, it is independent of the scale of mea-
surements, meaning no normalization is needed. R2’s baseline performance is 0,
i.e. always predicts the mean value of the outcome, and its range is between −∞
and 1.
We keep track of 2 measurements to see how well the participating AutoML sys-
tems can estimate their output’s true performance. Firstly, we find the percentage
of cases where the train estimation is larger than the test performance, i.e. the
number of overestimations. Secondly, we calculate the average bias (train - test
performances difference) across all experiments.
Lastly, we compare the hold-out performance of the systems in 2 scenarios. In
the first scenario (Scenario A) we include all participating datasets and penalize
the systems when failing to complete an analysis, by scoring them with the lowest
performance possible. In Scenario B, we only include the datasets all systems
successfully analyzed.

4.4.3 Computing statistical significance

We want to measure the statistical significance of our results for both the accuracy
and the quality of the systems’ output. For the average bias results, we perform 2
one-sample one-sided student’s t-tests[63]. With the first test we examine whether
the AutoML systems statistically significantly overestimate the predictive perfor-
mance of their models:

Ho = average bias is 0

H1 = average bias is greater than 0

While, with the second test, we check for the exact opposite, i.e. if the systems
statistically significantly underestimate their predictive performance:

Ho = average bias is 0

H1 = average bias is less than 0
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In both tests, we safely reject the null hypothesis (H0), if the pvalue is less than
0.05.
For our holdout performance comparison, we use the autorank tool[27] to perform 2
tests to check for the statistical significance of the evaluation results. The first is a
Friedman’s test[50] on the results of all AutoML systems. Its null hypothesis (H0)
states there are no statistically significant differences in the average rankings of the
systems, while the alternative hypothesis (H1), states the opposite. We can safely
reject the H0 and accept the H1, if the pvalue is less than 0.05. If we accept the
H1, then the tool employs the Nemenyi post hoc test[67], to identify the systems
having a statistically significantly different average ranking when compared to the
others. The Nemenyi test also calculates the critical distance, or CD. CD translates
to the minimum difference in the average rankings of 2 systems required in order
to consider their results statistically significantly different.
Lastly, we use the Spearman method to find the linear relations between our results
and the characteristics of benchmark data. We use 3 levels of significance for the
results (0.05, 0.01 and 0.001). To better explain how to interpret the spearman
results, a positive correlation translates to bigger overestimation or lower ranking
in performance, while a negative correlation means more accurate performance
estimation or higher ranking in performance (Fig. 4.3).

Figure 4.3: Explanation of Spearman method results when used for finding corre-
lations between our evaluation results and data characteristics.

4.4.4 Data metafeatures

In order to find if the characteristics of our data have an impact on the bias
and the hold-out performance of the systems, we keep track of metafeatures de-
scribing our data characteristics, which are readily available at OpenML.org. Our
first metafeatures are the Samples size and the Samples to features ratio. These
metafeatures can be critical, as small sample sizes can break the estimation and
lower the performance of ML models, while a bigger sample size usually translates
to better results. Additionally, we keep track of the Features size. In general,
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high-dimensional data need special handling and can cause computational and es-
timation problems. We also keep track of the number of different types of features,
namely Number of Continuous features, Number of Discrete features and Percent-
age of Discrete features. We keep track of these metafeatures, as some data types
require different statistical methods in order to properly handle them during train-
ing. Our last 2 metafeatures are about the percentages of missing values and the
majority class, the latter for classification task. Missing values require special
non-trivial imputations when handling them, while Class imbalancing can have an
impact on the performance of the AutoML’s output.

4.5 Experimental evaluation

In this section we present the average bias and hold-out comparison results, as well
as the results of their correlation to the data characteristics of our benchmark.

Table 4.2: Bias results (average and percentage of overestimations) of all AutoML
systems across both ML tasks. We additionally present the results correspond-
ing to harder problems (≤ 0.9 hold-out performance). With a ∗ we denote the
statistically significant results, with a significance level of 0.05. We observe most
AutoML systems significantly overestimate the true performance of their output
on average.

AutoML system Average bias Overestimated cases (%) Hard cases average bias Overestimated hard cases (%)

C
la

ss
ifi

ca
ti

o
n Autosklearn 0.05∗ 81.25% 0.11 84.21%

GAMA 0.01∗ 63.15% 0.03 65.62%
h2o.automl 0.01∗ 45.74% 0.03 59.46%

JADBio −0.01∗ 31.52% -0.02 28.57%
TPOT 0.04∗ 71.27% 0.08 89.19%

R
eg

re
ss

io
n Autosklearn 0.12∗ 82.61% 0.16 85.07%

GAMA 0.07∗ 55.10% 0.10 64.86%
h2o.automl 0.04∗ 53.00% 0.05 57.14%

JADBio 0.00∗ 39.74% 0.01 43.55%
TPOT 0.08∗ 68.00% 0.11 73.68%

4.5.1 Predictive performance estimation bias

Our first point of interest in this quantitative evaluation is the accuracy of Au-
toML systems. We start off by looking at the results of the classification analyses
and continue with regression. Moreover, we examine whether these results are
correlated to the data characteristics of our benchmark.

4.5.1.1 Binary classification

Looking at the results of our experiments at Figure 4.1, we notice all but one
AutoML systems statistically significantly overestimate the performance of their
models on average. Particularly, Autosklearn overestimates in more than 85% of
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the cases, with an average bias of 0.05. TPOT is another system showing major
discrepancy between its performance estimation in the training phase and the true
hold-out performance. Even though the percentage of overestimations is lower,
it still stands above 75%, with an average bias of 0.04. Moving to GAMA and
h2o.automl, they did better in terms of estimation accuracy, both having an av-
erage bias of 0.01 and the latter overestimating the true performance in half of
the cases. Last but not least, JADBio is the only system giving statistically sig-
nificantly conservative estimations. This is depicted in both the number of cases
it overestimates (32.61%) and in its average bias, which is negative (-0.01). The
experiments results show that for many cases the AutoML systems achieve both
very good train and test performance. Even though this is expected as they all
have implemented sophisticated ML pipelines, it may conceal the true extent of
the performance overestimation problem. To address this issue, we filter out the
experiments in which the AutoML systems achieve over 0.9 AUC in hold-out per-
formance. The results confirm what we stated above, as now most systems see
an increase in the percentage of overestimated results and in their average bias.
This shows that for harder-to-solve problems, the majority of AutoML systems
faces issues with the performance estimation during training. In particular, Au-
tosklearn now overestimates in 84.22% of the experiments and the average bias is
0.11 (increased from 0.05). TPOT also produces worse results, as it overestimates
89.19% of the problems with an average bias of 0.08 (increased from 0.04). GAMA
sees a minor decrease in the number of overestimations (65.62% from 67.47%) and
h2o.automl a small increase (from 50% to 59.46%). However, we observe an in-
creased average bias for both (0.03 from 0.01). The system not following the same
patterns, is JADBio. It is the only one benefiting from our subsampling as it
now outputs even less overestimations of the predictive performance (28.57% from
32.61%) and has an even lower average bias (-0.02 from -0.01), showing it is even
more conservative in harder problems.

4.5.1.2 Regression

Continuing with the regression results, again most systems show a statistically
significantly positive estimation bias (overestimation) and we observe similar be-
haviors. Autosklearn is the system with the most overestimations (82.61% of
the total cases) and with the biggest average bias (0.12). Regarding the rest of
the systems, h2o.automl, GAMA and TPOT have comparable performance, with
TPOT leading in the number of overestimations (68%, average bias 0.08), while
h2o.automl (53%, 0.04) and GAMA (55.1%, 0.07) are closer to 50%. Lastly, JAD-
Bio is the only system reporting conservative estimations for the majority of the
cases (61.26%) and accurately estimates the true performance on average (0.00
bias). For our next step, we once again drop the experiments where the systems
performed well and managed to achieve over 0.9 R2. In this subset of datasets,
all systems have worse performance both in terms of the number of overestimated
cases and average bias. Autosklearn now overestimates the performance in 85.07%
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of the experiments (from 82.61%), TPOT in 73.68% (from 68.00%) and GAMA
in 64.86% (from 55.10%). We see a smaller increase in the number of overestima-
tions for h2o.automl (57.14% from 53.00%) and JADBio (43.55% from 39.74%),
with the latter being the only system giving conservative results in the majority of
them. The bigger change is observed in the average bias of the AutoML systems.
Autosklearn shows the biggest bias increase (0.16 from 0.12), and together with
TPOT (0.11 from 0.08) and GAMA (0.10 from 0.07) reach a bias of at least 0.10.
h2o.automl and JADBio are the only systems that manage to have only a marginal
increase in their bias to 0.05 and 0.01 respectively.
Compared to the binary classification task, systems overestimate the true per-
formance by a larger margin on average and in more cases. Particularly for au-
tosklearn, it fails to estimate the predictive performance of its output, for both
high and low-performing experiments. JADBio is the system with the most reliable
estimations, showing close to optimal performance in both tasks.

Table 4.3: Number of AutoML systems successful experiments in our evaluation.
Most AutoML systems had an over 90% on both ML tasks. JADBio was the only
system with a sub-80% completion rate in one of tasks (regression).

AutoML system Classification Regression

Autosklearn 96 92
GAMA 95 98

h2o.automl 94 100
JAD 92 78

TPOT 94 100

4.5.2 Bias correlation to data metafeatures

We are interested in searching for trends between the accuracy of the systems’
estimations and the data characteristics of our benchmark. To do so, we utilize
the data metafeatures we collected during our benchmark creation process and
user the Spearman method to look for relations between them and the average
bias of the systems. We set the significance level to 0.05. The results show most
estimations of AutoML systems are influenced by specific data characteristics. All
the results can be found at Table 4.4.

4.5.2.1 Binary classification

Going into more details, we start off with the binary classification task. We discuss
the statistically significant results for each system and provide possible explana-
tions for their behavior.

Our first observation is that JADBio’s performance estimations are indepen-
dent of the data characteristics. Moving on, increased Sample size and Samples to
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Table 4.4: Examining the trends of overestimation with data metafeatures. We
performed spearman correlation to detect linear trends. Pvalues are denoted based
on different significance levels (∗1: 0.05, ∗2: 0.01, ∗3: 0.001). JADBio has no trend.
Most automl systems show a reduction of their bias when the sample size increases
and for smaller samples to features ratio. Additionally, there is a trend regarding
the number of missing values and the estimation bias in the regression results.

Task Binary classifcation Regression

Metafeatures Autosklearn GAMA h2o.automl JADBio TPOT Autosklearn GAMA h2o.automl JADBio TPOT

Samples size −0.56∗3 −0.50∗3 −0.10 0.05 −0.44∗3 −0.63∗3 −0.48∗3 −0.33∗3 0.04 −0.49∗3

Features size 0.02 0.08 −0.33∗2 −0.08 −0.07 0.02 −0.02 −0.08 −0.10 −0.14
Continuous features (#) 0.07 0.08 −0.36∗3 −0.13 −0.20 −0.14 −0.10 −0.15 −0.22 −0.28
Discrete features (#) −0.06 −0.19 0.24∗1 0.01 0.20 0.40∗3 0.28∗2 0.17 0.07 0.35∗3

Discrete features (%) −0.06 −0.15 0.27∗2 0.07 0.21∗1 0.37∗3 0.27∗3 0.21∗1 0.08 0.37∗3

Missing values (%) 0.21∗1 −0.05 0.17 0.09 0.18 0.06 0.14 −0.01 0.04 0.21∗1

Samples to Features ratio −0.67∗3 −0.58∗3 −0.18 0.16 −0.56∗3 −0.55∗3 −0.41∗3 −0.25∗1 0.15 −0.34∗3

Majority class (%) −0.38∗3 −0.36∗3 0.14 0.09 −0.24∗1

Features ratio, lead to smaller overestimation effects for Autosklearn, GAMA and
TPOT. This is to be expected, as a bigger sample size translates to more available
information during the training phase, which is used to create high-performing
models and accurately estimate their performance. Focusing more on h2o.automl,
its estimations become more accurate as the number of Features increases. The
same is observed regarding the number of Continuous features. However, when
the number of Discrete features increase, the bias increases. This shows that the
system might come across issues when dealing with a specific type of data (Dis-
crete). Lastly, an interesting finding is that systems have a lower bias as the class
imbalance gets bigger.

4.5.2.2 Regression

Continuing, we look at what influences the average bias of the AutoML systems in
the regression task experiments. Once again, JADBio’s performance estimations
do not trend with any of the data metafeatures, showing the robustness of its
performance estimation protocol. Looking at the impact of the dimensions of the
included datasets, we find the same trends, as Autosklearn, GAMA, h2o.automl
and TPOT have a lower bias as the number of samples and samples to features
ratio increase. In this task, it is more apparent that the type of the data affects
the accuracy of the systems’ performance estimation. In particular, Autosklearn,
GAMA h2o.automl and TPOT become more inaccurate as the Number of Discrete
Features increases. Moreover, TPOT is the only system which sees its average bias
statistically significantly increasing, the bigger the number of missing values in the
data.
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Figure 4.4: Classification model quality rankings comparison. Top: Scenario A
- All participating datasets (Union) Bottom: Scenario B - Common completed
cases across all systems (Intersection). The systems connected with a horizontal
line have no significant differences in their average rankings, at a statistical signifi-
cance level of 0.05. The CD is the minimum difference of average rankings between
systems required to consider their performance significantly distinct. There is no
clear winner among the participating systems in the classification ML task.

4.5.3 AutoML hold-out performance comparison

We evaluate the hold-out performance of the participating AutoML systems and
look for trends of their average ranking with the data characteristics of our bench-
mark. To do so, we split our comparison into 2 scenarios. On the first scenario
(scenario A), we include the entirety of our benchmark and mark with the lowest
ranking the systems that fail to give an output. Forscenario B, we evaluate the dif-
ferences of average rankings only on the datasets all systems successfully analyzed.
To adequately explore the results and look for statistically significant differences
in the rankings of the systems, we use the autorank Python package. Because
our results do not follow a normal distribution, autorank uses the non-parametric
Friedman’s test[50] as omnibus test to decide if there are significant differences be-
tween the median values of the results. Additionally, it uses the post-hoc Nemenyi
test [67] to infer which differences are statistically significant. This holds if the
difference of the mean ranks between systems is greater than the critical distance
(CD) of the Nemenyi test. For both tasks, the CD value is 0.61.
We examine the results of each task, starting with the binary classification. For
both scenarios (Figure4.4) we notice there is no clear winner, as Autosklearn,
GAMA, h2o.automl and JADBio have no significant differences in their average
ranks and, therefore, in their performance. Additionally, we observe Autosklearn
and GAMA manage to be statistically significantly better than TPOT, which is
the lowest performing system.
Moving to the regression task, the differences between the results across the 2
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Figure 4.5: Regression model quality rankings comparison. Top: Scenario A - All
participating datasets (Union) Bottom: Scenario B - Completed datasets across
all systems (Intersection). The systems connected with a horizontal line have no
significant differences in their average rankings, at a statistical significance level
of 0.05. The CD is the minimum difference of average rankings between systems
required to consider their performance significantly distinct. There is no clear
winner among the participating systems in the regression ML task.

scenarios are noticeable. In Scenario A, all systems but JADBio achieve indistin-
guishable performance and have significantly better performance than the latter.
This difference is expected, as JADBio has the lowest completion rate on the re-
gression task (78%, Table 4.3) and by adding these cases to the overall evaluation,
results in a drop of its average ranking from 3.43 to 3.66. In Scenario B, GAMA
and TPOT score significant wins over JADBio and have comparable results with
Autosklearn and TPOT.
The results of these 2 scenarios cannot provide us with a significant winner for
either of these tasks. Still, we can use them to extract useful information. In the
binary classification task, 4 out of 5 systems have comparable performance, with
Autosklearn and GAMA able to achieve a significant win over TPOT. Regarding
the regression task, GAMA and TPOT are statistically significantly better than
JADBio in both scenarios, and the low completion rate of JADBio leads to it being
statistically significantly worse than the rest of the systems in Scenario A. When it
comes to the most stable system in terms of ranking across both ML tasks, GAMA
consistently secures first or second position across both tasks. On the other hand,
TPOT struggles with the binary classification and achieves top-2 positions in the
regression. Moving to JADBio, it fails often in regression, but performs well in
binary classification. Lastly, looking at Autosklearn and h2o.automl rankings,
even though they might differ between the tasks, this deviation is not statistically
significant. It is important to note, the best performing systems have an average
rank of around 2.5. This means that no system has a clear edge over the rest when
it comes to hold-out performance, and therefore no clear victor can be decided.
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Table 4.5: Examining the trends of performance ranking with dataset metalevel
features. We performed spearman correlation to detect linear trends. Pvalues are
denoted based on different significance levels (∗1: 0.05, ∗2: 0.01, ∗3: 0.001) Most
automl systems show a reduction of their bias when the sample size increases and
for smaller samples to features ratio. Additionally, there is a trend regarding the
number of missing values and the estimation bias in the regression results.

Task Binary classifcation Regression

Metafeatures Autosklearn GAMA h2o.automl JADBio TPOT Autosklearn GAMA h2o.automl JADBio TPOT

Samples size −0.32∗2 0.22∗1 −0.11 0.14 −0.06 0.02 −0.02 −0.39∗3 0.46∗3 −0.08
Features size −0.11 0.06 −0.17 0.07 0.12 −0.14 0.05 −0.15 0.25∗1 −0.01
Continuous features (#) −0.039 0.02 −0.09 0.10 0.05 −0.07 0.02 −0.19 0.26∗1 −0.06
Discrete features (#) −0.02 −0.01 0.03 −0.13 0.11 −0.22∗1 0.21∗1 0.19 −0.18 0.21∗1

Discrete features (%) −0.01 −0.04 0.08 −0.12 0.05 −0.22∗1 0.20∗1 0.21∗1 −0.20∗1 0.21∗1

Missing values (%) 0.16 −0.12 −0.08 −0.16 0.14 −0.22∗1 0.25∗1 0.12 −0.21∗1 0.30∗2

Samples to Features ratio −0.27∗2 0.23∗1 −0.18 0.25∗1 −0.13 0.12 −0.10 −0.25∗1 0.28∗2 −0.08
Majority class (%) 0.10 −0.05 0.07 −0.26∗2 0.13

This allows the AutoML users to use additional criteria (e.g. complexity of the final
model, available feature preprocessing methods, level of automation etc.) when
selecting which system to use for their analysis.

4.5.4 Hold-out performance correlation to data metafeatures

We are interested in examining whether our tracked data metafeatures have a
correlation with the average rankings of the participating AutoML systems. This
could be an indication of the type of data each system excels on, based on its char-
acteristics. Starting with the binary classification task, the Samples to Features
ratio is the most informative metafeature. GAMA and JADBio has lower perfor-
mance as the ratio’s value increased, whereas Autosklearn achieved significantly
better results. Lastly, Majority class percentage is another metafeature correlated
with the final ranking of JADBio systems, as it performs significantly better on
highly imbalanced datasets.
In the regression results, we have similar findings regarding the correlation of the
systems’ bias to the data characteristics. Starting with Autosklearn, it achieves
a higher ranking as the Number of Discrete features and Missing values increase.
Continuing, h2o.automl has a higher ranking on bigger Sample size datasets and
together with GAMA and TPOT, they achieve a lower ranking, as the Number of
Discrete features increases. Furthermore, GAMA and TPOTb••s ranking lowers as
the Missing values percentage increases. Lastlym focusing of JADBio, its ranking is
higher when the Number of Missing values and Discrete features increase. However,
it becomes lower, as the Volume of data increases, a result directly related to the
low completion rate of the system in the bigger regression analyses.
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4.6 Limitations and future work

It is natural this study comes with a set of limitations but the methodology we
suggest can easily be extended to cover other capabilities of AutoML systems
as well. To begin with, the scope of our study is limited. We considered only
2 supervised tasks (binary classification and regression), completely leaving out
other widely used tasks, such as multiclass classification or time-to-event, and the
unsupervised tasks. Additionally, we decided to focus only continuous, discrete,
independent and identically distributed tabular data, not including other types,
such as time-series, or different formats, like images. We also need to extend the
list of data in our benchmark by including more datasets, to cover more types of
problems and tasks. The same goes for the selected systems; every year AutoML
is increasing in popularity, with more ideas and systems being implemented for
both open source and commercial use, so we should include as many as possible
in the future. Another limitation is about the validity of our results. As systems
continuously evolve, the results of this study will eventually become obsolete. To
be able to keep them up-to-date, we must automate the evaluation procedure,
similar to what AutoML benchmark[18] has done, and slowly add other evaluation
dimensions, such as the complexity of a system’s output.

4.7 Summary and Conclusion

This is the first work evaluating the estimation bias of multiple AutoML systems
and looking for possible trends of the bias and hold - out performance with specific
data characteristics. What we propose is, a methodology for evaluating AutoML
systems. We have created rules and guidelines on how to select datasets in or-
der to cover multiple different cases and created our own expandable benchmark.
Moreover, we presented a detailed protocol to conduct our evaluation, covering all
selected performance metrics, as well as the statistical tests required. Lastly, our
study is the first to include a commercial system.
By performing this evaluation, we have come across multiple interesting findings.
Regarding the average bias, most AutoML systems overestimate the performance
of their output regardless of the ML task. JADBio is the only system statistically
significantly giving conservative results on both tasks. Moreover, we observe that
for most systems (Autosklearn, GAMA, h2o.automl, TPOT), the bias is correlated
to the characteristics of the data. JADBio, however, shows no trend of its estima-
tions to any metafeature. An important question that needs to be asked, is why it
this happening. During an analysis, AutoML systems try hundreds to thousands
of pipelines in order to find the best performing one. This leads to the multiple
Induction problem[33], also known as winners curse[65] in bidding. When trying
numerous pipelines, the cross-validated accuracy of the winning pipeline is overes-
timated. Most AutoML systems do not take into account this bias, and therefore,
show overestimated results. This is an alarming finding, since the majority of the
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participating systems can potentially misinform their users about the true predic-
tive performance of their output. This can escalate out of proportions, as these
systems tend to be used mostly by non-expert ML users, meaning they have little if
any ML knowledge and cannot easily spot these estimation errors. When AutoML
systems are being used in domains, such as biomedicine or business, overestimat-
ing the true performance can be dangerous and disruptive. To address this issue,
JADBio uses the boostrap bias correction[71] (BBC) method before outputting its
estimation. However, this method comes with its own set of limitations, as BBC
works only with static HPO search strategies, which possibly affects the quality of
the outputted model in terms of predictive performance. Moving to the hold out
performance comparison, there is no statistically significant winner. Moreover, We
found that no system dominates both ML tasks. However GAMA and h2o.automl
seem to be the most consistent in terms of average ranking. Lastly, the predictive
performance of all systems is correlated to some data characteristics.
The take home message for AutoML users is that they should not trust the per-
formance estimations of AutoML systems, excluding JADBio. Also, this work can
help them decide which automl system fits best on their needs, depending on the
characteristics of the data they want to analyze.
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[22] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[23] Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Ser-
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68 CHAPTER 6. APPENDIX

Table 6.1: Selected binary classification datasets for our benchmark. We mention
the Name, ID and other available metafeatures from OpenML.org

Filename ID Number of Samples Number of Features Continuous Features Categorical Features Missing values percentage Majority class percentage Minority class size Samples to Features ratio

0 kr-vs-kp 3 3196 37 0 36 0.000000 52.221527 1527 86.378378
1 mushroom 24 8124 23 0 22 1.327254 51.797144 3916 353.217391
2 colic 25 368 27 7 19 19.394122 63.043478 136 13.629630
3 heart-h 51 294 14 6 7 18.999028 63.945578 106 21.000000
4 hepatitis 55 155 20 6 13 5.387097 79.354839 32 7.750000
5 vote 56 435 17 0 16 5.300879 61.379310 168 25.588235
6 molecular-biology promoters 164 106 59 0 58 0.000000 50.000000 53 1.796610
7 oil spill 311 937 50 49 0 0.000000 95.624333 41 18.740000
8 yeast ml8 316 2417 117 103 13 0.000000 98.593297 34 20.658120
9 vehicle sensIT 357 98528 101 100 0 0.000000 50.000000 49264 975.524753
10 ailerons 734 13750 41 40 0 0.000000 57.614545 5828 335.365854
11 cpu small 735 8192 13 12 0 0.000000 69.763184 2477 630.153846
12 fri c4 500 100 742 500 101 100 0 0.000000 56.600000 217 4.950495
13 meta 757 528 22 19 2 4.338843 89.772727 54 24.000000
14 pbc 810 418 19 10 8 15.600604 55.023923 188 22.000000
15 house 16H 821 22784 17 16 0 0.000000 70.400281 6744 1340.235294
16 bank32nh 833 8192 33 32 0 0.000000 68.957520 2543 248.242424
17 stock 841 950 10 9 0 0.000000 51.368421 462 95.000000
18 wind 847 6574 15 14 0 0.000000 53.255248 3073 438.266667
19 tecator 851 240 125 124 0 0.000000 57.500000 102 1.920000
20 boston 853 506 14 12 1 0.000000 58.695652 209 36.142857
21 colleges aaup 897 1161 17 13 3 1.297056 70.025840 348 68.294118
22 fried 901 40768 11 10 0 0.000000 50.105475 20341 3706.181818
23 spectrometer 954 531 103 100 2 0.000000 89.642185 55 5.155340
24 autos 975 205 26 15 10 1.106942 67.317073 67 7.884615
25 JapaneseVowels 976 9961 15 14 0 0.000000 83.796808 1614 664.066667
26 mfeat-factors 978 2000 217 216 0 0.000000 90.000000 200 9.216590
27 anneal 989 898 39 6 32 63.317343 76.169265 214 23.025641
28 kdd ipums la 97-small 993 7019 61 33 27 10.233114 63.043169 2594 115.065574
29 hypothyroid 1000 3772 30 7 22 5.358784 92.285260 291 125.733333
30 arrhythmia 1017 452 280 206 73 0.322377 54.203540 207 1.614286
31 page-blocks 1021 5473 11 10 0 0.000000 89.767952 560 497.545455
32 gina agnostic 1038 3468 971 970 0 0.000000 50.836217 1705 3.571576
33 hiva agnostic 1039 4229 1618 1617 0 0.000000 96.476708 149 2.613721
34 kc1-top5 1045 145 95 94 0 0.000000 94.482759 8 1.526316
35 pc4 1049 1458 38 37 0 0.000000 87.791495 178 38.368421
36 pc2 1069 5589 37 36 0 0.000000 99.588477 23 151.054054
37 KDDCup09 churn 1112 50000 231 192 38 69.473177 92.656000 3672 216.450217
38 CastMetal1 1447 327 38 37 0 0.000000 87.155963 42 8.605263
39 bank-marketing 1461 45211 17 7 9 0.000000 88.301520 5289 2659.470588
40 lsvt 1484 126 311 310 0 0.000000 66.666667 42 0.405145
41 madelon 1485 2600 501 500 0 0.000000 50.000000 1300 5.189621
42 nomao 1486 34465 119 89 29 0.000000 71.437690 9844 289.621849
43 ozone-level-8hr 1487 2534 73 72 0 0.000000 93.685872 160 34.712329
44 parkinsons 1488 195 23 22 0 0.000000 75.384615 48 8.478261
45 qsar-biodeg 1494 1055 42 41 0 0.000000 66.255924 356 25.119048
46 ringnorm 1496 7400 21 20 0 0.000000 50.486486 3664 352.380952
47 autoUniv-au1-1000 1547 1000 21 20 0 0.000000 74.100000 259 47.619048
48 adult 1590 48842 15 6 8 0.882437 76.071823 11687 3256.133333
49 Dexter 4136 600 20001 20000 0 0.000000 50.000000 300 0.029999
50 cylinder-bands 6332 540 40 18 21 4.625000 57.777778 228 13.500000
51 dresses-sales 23381 500 13 1 11 12.846154 58.000000 210 38.461538
52 higgs 23512 98050 29 28 0 0.000317 52.857726 46223 3381.034483
53 SpeedDating 40536 8378 123 59 63 1.782834 83.528288 1380 68.113821
54 enron 40590 1702 1054 0 1053 0.000000 98.472385 26 1.614801
55 image 40592 2000 140 135 4 0.000000 79.550000 409 14.285714
56 reuters 40594 2000 250 243 6 0.000000 58.450000 831 8.000000
57 scene 40595 2407 300 294 5 0.000000 82.260075 427 8.023333
58 GAMETES Epistasis 2-Way 1000atts 0.4H EDM-1 ED... 40645 1600 1001 0 1000 0.000000 50.000000 800 1.598402
59 clean2 40666 6598 169 168 0 0.000000 84.586238 1017 39.041420
60 threeOf9 40690 512 10 0 9 0.000000 53.515625 238 51.200000
61 churn 40701 5000 21 16 4 0.000000 85.860000 707 238.095238
62 Satellite 40900 5100 37 36 0 0.000000 98.529412 75 137.837838
63 Speech 40910 3686 401 400 0 0.000000 98.345090 61 9.192020
64 Internet-Advertisements 40978 3279 1559 3 1555 0.000000 86.001830 459 2.103271
65 Australian 40981 690 15 6 8 0.000000 55.507246 307 46.000000
66 jungle chess 2pcs endgame rat rat 41005 3660 47 20 26 0.000000 56.147541 1605 77.872340
67 gisette 41026 7000 5001 5000 0 0.000000 50.000000 3500 1.399720
68 APSFailure 41138 76000 171 170 0 8.300208 98.190789 1375 444.444444
69 christine 41142 5418 1637 1599 37 0.000000 50.000000 2709 3.309713
70 jasmine 41143 2984 145 8 136 0.000000 50.000000 1492 20.579310
71 gina 41158 3153 971 970 0 0.000000 50.840469 1550 3.247168
72 kick 41162 72983 33 14 18 6.197832 87.701245 8976 2211.606061
73 USPS 41964 1424 257 256 0 0.000000 50.280899 708 5.540856
74 isolet 41966 600 618 617 0 0.000000 50.000000 300 0.970874
75 cnae-9 41967 240 857 856 0 0.000000 50.000000 120 0.280047
76 semeion 41973 319 257 256 0 0.000000 50.470219 158 1.241245
77 compas-two-years 42193 5278 14 7 6 0.000000 52.955665 2483 377.000000
78 fri c4 250 100 834 250 101 100 0 0.000000 56.000000 110 2.475248
79 mfeat-karhunen 1020 2000 65 64 0 0.000000 90.000000 200 30.769231
80 Click prediction small 1217 149639 12 11 0 0.000000 95.529240 6690 12469.916670
81 Amazon employee access 4135 32769 10 0 9 0.000000 94.210992 1897 3276.900000
82 anthracyclineTaxaneChemotherapy 1085 159 61360 61359 0 0.000000 59.748428 64 0.002591
83 AP Breast Prostate 1122 413 10937 10936 0 0.000000 83.292978 69 0.037762
84 OVA Omentum 1139 1545 10937 10936 0 0.000000 95.016181 77 0.141264
85 AP Omentum Kidney 1147 337 10937 10936 0 0.000000 77.151335 77 0.030813
86 ada 41156 4147 49 48 0 0.000000 75.186882 1029 84.632653
87 eucalyptus 990 736 20 14 5 3.043478 70.923913 214 36.800000
88 SPECTF 1600 267 45 44 0 0.000000 79.400749 55 5.933333
89 tokyo1 40705 959 45 42 2 0.000000 63.920751 346 21.311111
90 triazines 788 186 61 60 0 0.000000 58.602151 77 3.049180
91 segment 958 2310 20 19 0 0.000000 85.714286 330 115.500000
92 analcatdata reviewer 1008 379 9 0 8 40.105541 56.992084 163 42.111111
93 climate-model-simulation-crashes 1467 540 21 20 0 0.000000 91.481481 46 25.714286
94 MiniBooNE 41150 130064 51 50 0 0.000000 71.937661 36499 2550.274510
95 zoo 965 101 18 1 16 0.000000 59.405941 41 5.611111
96 Dorothea 4137 1150 100001 100000 0 0.000000 90.260870 112 0.011500
97 tic-tac-toe 50 958 10 0 10 0.000000 65.344468 332 95.800000
98 wdbc 1510 569 31 30 1 0.000000 62.741652 212 18.354839
99 PieChart1 1451 705 38 37 1 0.000000 91.347518 61 18.552632
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Table 6.2: Selected regression datasets for our benchmark. We mention the Name,
ID and other available metafeatures from OpenML.org

Filename ID Number of Samples Number of Features Continuous Features Categorical Features Missing values percentage Samples to Features ratio

0 2dplanes 215 40768 11 10 0 0.000000 3706.181818
1 a3a 1424 32561 124 123 0 0.000000 262.588710
2 a9a 1430 48842 124 123 0 0.000000 393.887097
3 Ailerons 296 13750 41 40 0 0.000000 335.365854
4 analcatdata gsssexsurvey 506 159 10 4 5 0.377358 15.900000
5 analcatdata ncaa 521 120 20 3 17 0.000000 6.000000
6 analcatdata supreme 504 4052 8 7 0 0.000000 506.500000
7 auto price 195 159 16 14 1 0.000000 9.937500
8 autoMpg 196 398 8 4 3 0.188442 49.750000
9 bank32nh 558 8192 33 32 0 0.000000 248.242424
10 bank8FM 572 8192 9 8 0 0.000000 910.222222
11 benzo32 434 195 33 32 0 0.000000 5.909091
12 bodyfat 560 252 15 14 0 0.000000 16.800000
13 boston corrected 543 506 21 17 3 0.000000 24.095238
14 breastTumor 224 286 10 1 8 0.314685 28.600000
15 cholesterol 204 303 14 6 7 0.141443 21.642857
16 chscase census5 670 400 8 7 0 0.000000 50.000000
17 cleveland 194 303 14 6 7 0.141443 21.642857
18 coil2000 298 9822 86 85 0 0.000000 114.209302
19 connect-4 1591 67557 127 126 0 0.000000 531.944882
20 CPMP-2015-regression 41700 2108 27 23 2 0.000000 78.074074
21 CPMP-2015-runtime-regression 41928 2108 24 22 1 0.000000 87.833333
22 cps 85 wages 534 534 11 3 7 0.000000 48.545455
23 cpu 561 209 8 6 1 0.000000 26.125000
24 cpu act 197 8192 22 21 0 0.000000 372.363636
25 cpu small 227 8192 13 12 0 0.000000 630.153846
26 crimecommunitynums 41968 1994 127 126 0 15.480299 15.700787
27 dataset sales 42183 10738 15 14 0 0.000000 715.866667
28 dataset-autoHorse fixed 42224 201 69 68 1 0.000000 2.913043
29 debutanizer 23516 2394 8 7 0 0.000000 299.250000
30 delta elevators 198 9517 7 6 0 0.000000 1359.571429
31 Diabetes(scikit-learn) 41514 442 11 10 0 0.000000 40.181818
32 diamonds 42225 53940 10 6 3 0.000000 5394.000000
33 echoMonths 222 130 10 6 3 7.461538 13.000000
34 elevators 216 16599 19 18 0 0.000000 873.631579
35 fishcatch 232 158 8 5 2 6.882911 19.750000
36 fri c3 1000 10 608 1000 11 10 0 0.000000 90.909091
37 fri c4 250 100 580 250 101 100 0 0.000000 2.475248
38 fried 564 40768 11 10 0 0.000000 3706.181818
39 GeographicalOriginalofMusic 4544 1059 118 117 0 0.000000 8.974576
40 german.numer 1436 1000 25 24 0 0.000000 40.000000
41 HappinessRank 2015 40916 158 12 9 2 0.000000 13.166667
42 higgs 4532 98050 29 28 0 0.000317 3381.034483
43 house 16H 574 22784 17 16 0 0.000000 1340.235294
44 house 8L 218 22784 9 8 0 0.000000 2531.555556
45 houses 537 20640 9 8 0 0.000000 2293.333333
46 hungarian 231 294 14 6 8 18.999028 21.000000
47 ICU 1097 200 21 20 0 0.000000 9.523810
48 ilpd-numeric 41943 583 11 10 0 0.000000 53.000000
49 kc1-numeric 1070 145 95 94 0 0.000000 1.526316
50 kdd coil 3 570 316 12 8 3 1.476793 26.333333
51 kin8nm 189 8192 9 8 0 0.000000 910.222222
52 LoanDefaultPrediction - 105471 771 764 6 0.966519 136.797665
53 lowbwt 203 189 10 2 7 0.000000 18.900000
54 lungcancer shedden 1245 442 24 20 3 0.000000 18.416667
55 mauna-loa-atmospheric-co2 41187 2225 7 5 1 0.000000 317.857143
56 MIP-2016-PAR10-regression 41938 1090 145 143 1 0.000000 7.517241
57 mnist rotation 41065 62000 785 784 0 0.000000 78.980892
58 Moneyball 41021 1232 15 8 6 19.480519 82.133333
59 mtp 405 4450 203 202 0 0.000000 21.921182
60 mv 344 40768 11 7 3 0.000000 3706.181818
61 NewFuelCar 41506 36203 18 17 0 1.376651 2011.277778
62 nki70.arff 1228 144 77 72 4 0.000000 1.870130
63 no2 547 500 8 7 0 0.000000 62.500000
64 OnlineNewsPopularity 4545 39644 61 59 1 0.000000 649.901639
65 ozone level 301 2536 73 0 72 0.000000 34.739726
66 parkinson-speech-uci 42176 756 754 753 0 0.000000 1.002653
67 pbc 200 418 20 13 6 12.356459 20.900000
68 pbcseq 516 1945 19 12 6 3.065891 102.368421
69 pharynx 213 195 12 1 11 0.085470 16.250000
70 places 509 329 10 8 1 0.000000 32.900000
71 pol 201 15000 49 48 0 0.000000 306.122449
72 puma32H 308 8192 33 32 0 0.000000 248.242424
73 pwLinear 229 200 11 10 0 0.000000 18.181818
74 QSAR-TID-10541 3169 151 1026 1024 2 0.000000 0.147173
75 QSAR-TID-10849 3079 1580 1026 1024 2 0.000000 1.539961
76 QSAR-TID-13004 3789 692 1026 1024 1 0.000000 0.674464
77 QSAR-TID-17061 3267 152 1026 1024 2 0.000000 0.148148
78 QSAR-TID-194 3991 5188 1026 1024 1 0.000000 5.056530
79 QSAR-TID-234 3081 2145 1026 1024 2 0.000000 2.090643
80 QSAR-TID-30008 3183 837 1026 1024 2 0.000000 0.815789
81 rmftsa ladata 666 508 11 10 0 0.000000 46.181818
82 SAT11-HAND-runtime-regression 41980 4440 117 115 1 5.226380 37.948718
83 satellite image 294 6435 37 36 0 0.000000 173.918919
84 SensIT-Vehicle-Combined 1593 98528 101 100 0 0.000000 975.524753
85 sensory 546 576 12 0 11 0.000000 48.000000
86 sleuth case2002 665 147 7 2 5 0.000000 21.000000
87 splice 46 3175 61 60 0 0.000000 52.049180
88 stock 223 950 10 9 0 0.000000 95.000000
89 svmguide3 1589 1243 23 22 0 0.000000 54.043478
90 SWD 1028 1000 11 10 0 0.000000 90.909091
91 tecator 505 240 125 124 0 0.000000 1.920000
92 Titanic 41265 1307 8 7 0 0.000000 163.375000
93 topo 2 1 422 8885 267 266 0 0.000000 33.277154
94 veteran 497 137 8 3 4 0.000000 17.125000
95 w1a 1581 49749 301 300 0 0.000000 165.279070
96 wind 503 6574 15 14 0 0.000000 438.266667
97 wine quality 287 6497 12 11 0 0.000000 541.416667
98 wisconsin 191 194 33 32 1 0.000000 5.878788
99 yprop 4 1 416 8885 252 251 0 0.000000 35.257937
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Table 6.3: Binary classification experiments results. The train results correspond
to the performance estimation after the training phase, while test results corre-
spond to the true hold-out performance.

filename autosklearn train autosklearn test gama train gama test h2o train h2o test jad train jad test tpot train tpot test

0 ada 0.920560 0.909597 0.920115 0.915375 0.912641 0.910055 0.907748 0.912602 0.919111 0.913669
1 adult 0.926999 0.923554 0.919773 0.915515 0.921191 0.926685 0.919565 0.915365 0.923715 0.926818
2 ailerons 0.956998 0.957725 0.955223 0.955605 0.957784 0.958089 0.953299 0.952743 0.957765 0.957696
3 Amazon employee access 0.826967 0.830619 0.827652 0.841161 0.833975 0.825348 0.821252 0.843222 0.841868 0.822666
4 analcatdata reviewer 0.847737 0.632057 0.735311 0.628557 NaN NaN 0.679569 0.627992 0.705676 0.680556
5 anneal 1.000000 0.971389 0.999877 0.993961 0.998606 0.999344 0.999508 0.996475 0.993247 0.988728
6 anthracyclineTaxaneChemotherapy 0.920455 0.465495 0.684508 0.513672 0.527344 0.567819 0.612660 0.542969 0.605000 0.490027
7 AP Breast Prostate 1.000000 0.994186 1.000000 0.986877 0.999003 0.999829 0.996992 0.914286 NaN NaN
8 AP Omentum Kidney 1.000000 0.998817 0.997976 0.998817 0.993491 0.996660 0.993714 0.999211 NaN NaN
9 APSFailure 0.995887 0.991899 0.988389 0.988035 0.988209 0.989656 NaN NaN 0.991317 0.988708
10 arrhythmia 0.905308 0.834174 0.907096 0.889896 0.861917 0.871261 0.861831 0.887610 0.907127 0.844029
11 Australian 0.947401 0.953696 NaN NaN 0.957894 0.899016 0.892410 0.954545 0.971625 0.917399
12 autos 0.988142 0.892583 0.920509 0.953112 0.929668 0.930171 0.873020 0.924126 0.977473 0.905797
13 autoUniv-au1-1000 0.803374 0.654719 0.720920 0.711299 0.689189 0.684511 0.664951 0.723888 0.759096 0.705197
14 bank32nh 0.889551 0.887698 0.889355 0.886767 0.890976 0.896874 0.892210 0.889355 0.887004 0.887514
15 bank-marketing 0.932840 0.934783 0.928896 0.932325 0.928961 0.928989 0.914326 0.919703 0.929972 0.929089
16 boston 0.998251 0.928764 0.970250 0.943629 0.949356 0.920625 0.943926 0.937645 0.965796 0.954053
17 CastMetal1 0.866261 0.682984 0.811033 0.773560 0.831835 0.702213 0.576338 0.725608 0.907291 0.681757
18 christine 0.830743 0.825288 0.801588 0.808424 0.817784 0.809574 0.783516 0.789920 0.809825 0.801961
19 churn 0.937177 0.926825 0.919480 0.915786 0.927838 0.918520 0.892017 0.915372 0.936814 0.906182
20 clean2 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.999991 1.000000 1.000000 1.000000
21 Click prediction small 0.710333 0.710878 0.702645 0.716382 0.707427 0.699033 0.688422 0.701581 0.708565 0.702065
22 climate-model-simulation-crashes 0.984756 0.870445 0.907587 0.800739 0.876078 0.839289 0.863791 0.881183 0.917255 0.791234
23 cnae-9 1.000000 0.999444 0.999722 0.998889 1.000000 0.999444 0.999150 0.998333 1.000000 0.999722
24 colic 0.975973 0.820487 0.947008 0.872591 0.895030 0.899468 0.919371 0.880958 0.933110 0.861879
25 colleges aaup NaN NaN 0.998570 0.999675 NaN NaN 0.999234 0.998687 1.000000 0.998981
26 compas-two-years 0.756108 0.738693 0.732841 0.737042 0.731612 0.731694 0.719881 0.735525 0.743487 0.731292
27 cpu small 0.976494 0.976042 0.975872 0.975639 0.976663 0.975873 0.973743 0.974955 0.978109 0.975945
28 cylinder-bands 0.949393 0.864935 0.879808 0.883125 0.876687 0.827036 0.853583 0.854307 0.911998 0.822818
29 Dexter 0.991429 0.973111 0.983956 0.960089 NaN NaN 0.763479 0.799978 NaN NaN
30 Dorothea NaN NaN 0.508602 0.453330 NaN NaN NaN NaN NaN NaN
31 dresses-sales 0.825000 0.569195 0.640460 0.639901 0.607225 0.489130 0.554661 0.546667 0.689984 0.471002
32 enron 0.997292 0.884432 0.898522 0.873784 0.790343 0.790986 0.718332 0.697815 0.762809 0.664219
33 eucalyptus 0.949097 0.843556 0.887313 0.831847 0.830522 0.814445 0.865170 0.830236 0.865406 0.871451
34 fri c4 250 100 1.000000 0.936364 0.936623 0.893766 0.806494 0.897403 0.792016 0.880779 0.915584 0.904935
35 fri c4 500 100 NaN NaN 0.941929 0.933653 0.928013 0.939684 0.906339 0.910016 0.946055 0.951396
36 fried 0.988708 0.986223 0.985349 0.984608 0.985616 0.987100 0.979123 0.979034 0.983754 0.985732
37 GAMETES Epistasis 2-Way 1000atts 0.4H EDM-1 ED... 0.772899 0.785184 NaN NaN 0.552125 0.511912 0.487115 0.510978 0.573937 0.445653
38 gina 0.988812 0.982460 0.984856 0.984250 0.975431 0.982528 NaN NaN 0.979468 0.984593
39 gina agnostic 0.990532 0.987591 0.984970 0.985687 0.978103 0.981534 0.978781 0.981399 0.979653 0.980843
40 gisette 0.997106 0.996934 0.995554 0.996639 NaN NaN NaN NaN 0.995360 0.994027
41 heart-h 0.962366 0.838218 0.903854 0.917503 0.919310 0.832597 0.862143 0.926937 0.956295 0.902549
42 hepatitis 1.000000 0.734879 0.911885 0.888105 0.886089 0.824795 0.824582 0.918347 0.961271 0.861680
43 higgs 0.794382 0.796516 0.793147 0.801296 0.807450 0.807176 0.796803 0.800802 0.801205 0.800336
44 hiva agnostic 0.865047 0.752268 NaN NaN 0.767232 0.769018 0.818993 0.763784 0.757467 0.773814
45 house 16H 0.962847 0.950832 0.954728 0.949463 0.949994 0.956793 0.953168 0.948860 0.948525 0.954738
46 hypothyroid 1.000000 0.994241 0.999846 0.992881 0.999480 0.998958 0.998524 0.998614 0.999762 0.991998
47 image NaN NaN 0.940287 0.947076 0.950049 0.930583 0.919142 0.939490 0.956338 0.938895
48 Internet-Advertisements 0.988398 0.970128 NaN NaN 0.981224 0.979874 0.975337 0.976536 0.981529 0.976514
49 isolet 1.000000 1.000000 0.999867 1.000000 1.000000 0.999778 0.999383 1.000000 1.000000 0.990933
50 JapaneseVowels 0.999298 0.999526 0.999364 0.999449 0.999237 0.999460 0.998785 0.999753 0.999297 0.999509
51 jasmine 0.883118 0.893590 0.867014 0.887307 0.866582 0.876712 0.860826 0.886396 0.874014 0.867262
52 jungle chess 2pcs endgame rat rat 1.000000 1.000000 NaN NaN 1.000000 1.000000 0.999997 1.000000 1.000000 1.000000
53 kc1-top5 1.000000 0.978261 0.985294 0.905797 0.978261 0.930147 0.688316 0.974638 NaN NaN
54 kdd ipums la 97-small 0.995244 0.992318 0.994139 0.992619 0.992474 0.993209 0.991548 0.992265 0.985470 0.987091
55 KDDCup09 churn 0.716341 0.711292 0.690227 0.705054 0.722887 0.713700 0.711228 0.728711 0.710738 0.705851
56 kick 0.780399 0.780350 0.760670 0.765962 0.774304 0.774662 0.765043 0.766170 0.731611 0.726160
57 kr-vs-kp 1.000000 0.998405 0.999934 0.998293 0.998588 0.996880 0.998870 0.997052 0.999193 0.999498
58 lsvt 0.989796 0.880952 0.920635 0.868481 0.926871 0.848639 0.814287 0.866213 0.977500 0.738095
59 madelon 0.933123 0.929290 0.889664 0.921063 0.872037 0.879347 0.758208 0.784338 0.883136 0.885051
60 meta 0.953586 0.854509 0.903657 0.895921 0.863260 0.811767 0.707497 0.848961 0.921941 0.840131
61 mfeat-factors 1.000000 0.999778 0.999856 0.999467 0.999500 0.998256 0.999568 0.999311 0.999722 0.999044
62 mfeat-karhunen 1.000000 0.999222 0.999900 0.999700 0.994833 0.997589 0.997760 0.997900 0.999278 0.998400
63 MiniBooNE 0.982569 0.983007 0.980526 0.981413 0.982305 0.982120 NaN NaN 0.982148 0.981907
64 molecular-biology promoters 1.000000 0.965812 0.988604 0.984330 0.954416 0.754986 0.844970 0.846154 1.000000 0.881766
65 mushroom 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
66 nomao 0.994905 0.994970 0.993300 0.994071 0.993038 0.993709 NaN NaN 0.993449 0.994110
67 oil spill 0.993243 0.899660 0.964648 0.921237 0.883875 0.957031 0.915105 0.930378 0.938517 0.911719
68 OVA Omentum 0.990146 0.897611 0.962247 0.903427 0.896580 0.910261 NaN NaN NaN NaN
69 ozone-level-8hr 0.963594 0.892397 0.926495 0.925237 0.906887 0.908119 0.910587 0.902454 0.929624 0.908772
70 page-blocks 0.994726 0.993136 0.990826 0.992673 0.993594 0.987262 0.989549 0.992029 0.994214 0.988538
71 parkinsons 1.000000 0.945946 0.972032 0.970158 0.981982 0.956621 0.889151 0.938063 1.000000 0.799658
72 pbc 0.886248 0.746346 0.824329 0.780574 0.778446 0.762257 0.771437 0.745698 0.820010 0.718224
73 pc2 0.975789 0.814768 0.896988 0.859235 0.921083 0.775324 0.748725 0.893610 0.971410 0.826691
74 pc4 0.977554 0.924508 0.948718 0.943188 0.936903 0.941389 0.938502 0.935630 0.949254 0.929205
75 qsar-biodeg 0.970376 0.921011 0.935627 0.930754 0.922287 0.944126 0.926867 0.930698 0.924844 0.930298
76 reuters 0.987557 0.983128 0.984326 0.985767 0.979234 0.983914 0.989990 0.991828 0.980229 0.978067
77 ringnorm 0.997961 0.997277 0.998037 0.996568 NaN NaN 0.997835 0.996923 0.997453 0.997848
78 Satellite 0.999297 0.995569 0.996446 0.993798 0.984967 0.973328 0.965978 0.995118 0.996262 0.947941
79 scene 0.998952 0.992740 0.993418 0.989469 0.980239 0.991606 0.946842 0.955454 0.993927 0.991407
80 segment 1.000000 0.999994 0.999985 1.000000 0.999976 0.999063 0.998936 0.999994 1.000000 0.999945
81 semeion 1.000000 0.999375 1.000000 0.993280 0.999687 1.000000 0.997079 0.999219 1.000000 0.999209
82 SPECTF 0.996825 0.789084 0.921034 0.815364 0.798181 0.804333 0.860407 0.786388 0.909322 0.791055
83 spectrometer 1.000000 0.992047 0.997666 0.993247 0.987020 0.984827 0.983632 0.994598 0.996930 0.997510
84 Speech 0.975125 0.881631 0.800864 0.829986 0.793474 0.808035 0.836018 0.849979 0.864170 0.851719
85 SpeedDating 0.871740 0.872513 0.852970 0.863050 0.865095 0.865992 0.855813 0.871605 0.862697 0.860733
86 stock 0.999188 0.985487 0.994110 0.988601 0.994482 0.997445 0.993886 0.992619 0.996984 0.995405
87 tecator 1.000000 0.980108 0.990622 0.976982 0.984086 0.992896 0.984914 0.974709 0.994346 0.997727
88 threeOf9 1.000000 1.000000 1.000000 1.000000 0.998896 0.999080 0.995029 0.999693 1.000000 1.000000
89 tokyo1 0.997420 0.981605 0.980052 0.984071 0.985653 0.953965 0.974072 0.986246 0.992086 0.964515
90 triazines 0.959402 0.712201 0.909307 0.860526 0.811962 0.822650 0.789903 0.869617 0.910227 0.840456
91 USPS 1.000000 0.999361 0.999274 0.998382 0.997230 0.999148 0.996716 0.997578 0.998070 0.999341
92 vehicle sensIT 0.923826 0.923650 0.921897 0.921579 0.923661 0.924989 NaN NaN 0.920645 0.920991
93 vote 0.997565 0.994225 0.994003 0.996446 0.996979 0.986574 0.981338 0.995647 0.999129 0.583333
94 wind 0.951847 0.944758 0.939545 0.941931 0.942646 0.940746 0.941552 0.943769 0.943613 0.940032
95 yeast ml8 0.967345 0.889681 0.936040 0.913443 0.888670 0.867141 0.829834 0.912900 0.939108 0.871240
96 zoo 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.942857 1.000000 1.000000
97 tic-tac-toe 1.000000 0.999557 1.000000 0.999827 0.997710 1.000000 0.996738 0.990396 1.000000 1.000000
98 PieChart1 0.992500 0.878581 0.852743 0.768734 0.872571 0.790890 0.788366 0.858946 0.917795 0.830021
99 wdbc 1.000000 0.991673 0.999788 0.987720 0.991251 0.999523 0.996772 0.990671 0.992063 0.995707



71

Table 6.4: Regression experiments results. The train results correspond to the
performance estimation after the training phase, while test results correspond to
the true hold-out performance.

filename autosklearn train autosklearn test gama train gama test h2o train h2o test jad train jad test tpot train tpot test

0 2dplanes 0.950085 0.947823 0.948234 9.478484e-01 0.948368 0.947715 NaN NaN 0.948682 9.478484e-01
1 a3a NaN NaN 0.000029 -9.370000e-07 0.437922 0.423751 NaN NaN 0.000000 -9.370000e-07
2 a9a NaN NaN 0.000178 -2.003530e-04 0.430259 0.433101 NaN NaN 0.000000 -2.003530e-04
3 Ailerons 0.844426 0.849280 0.842660 8.487743e-01 0.846203 0.845496 0.837597 0.845300 0.843548 8.487743e-01
4 analcatdata gsssexsurvey 0.736523 -0.058873 0.219816 -4.359572e-01 0.123470 -0.405896 -0.007635 -0.382715 0.250038 -4.359572e-01
5 analcatdata ncaa -0.009513 -0.244697 0.845351 4.183875e-01 -0.431792 -0.210301 -0.380070 -1.882442 0.654247 -7.561709e-01
6 analcatdata supreme 0.987197 0.980342 0.980512 9.809991e-01 0.981112 0.981510 0.977265 0.980840 0.980454 9.809991e-01
7 auto price 0.987197 0.848882 0.883043 7.894307e-01 0.880902 0.808512 0.825325 0.749301 0.927502 7.894307e-01
8 autoMpg 0.933684 0.852854 0.888371 8.234891e-01 0.887098 0.866480 0.895716 0.867934 0.899263 8.234891e-01
9 bank32nh 0.564623 0.551588 0.540222 5.421816e-01 0.594315 0.567778 0.559441 0.539324 0.567352 5.421816e-01
10 bank8FM 0.960201 0.961919 0.960560 9.623406e-01 0.962423 0.964331 0.959945 0.959532 0.963601 9.623406e-01
11 benzo32 0.504836 0.157110 0.309577 7.109068e-02 0.298736 0.164558 0.094044 0.192288 0.326411 7.109068e-02
12 bodyfat 0.988213 0.947249 0.961712 9.860697e-01 0.961252 0.987987 0.949436 0.985496 0.970967 9.860697e-01
13 boston corrected 0.832821 0.789849 0.804931 7.872240e-01 0.715240 0.809159 0.686447 0.811721 0.797423 7.872240e-01
14 breastTumor 0.344039 -0.155506 0.079374 -2.061685e-02 -0.223517 -0.345427 0.014988 0.072279 0.135368 -2.061685e-02
15 cholesterol 0.386261 0.004173 0.049906 -1.228303e-01 -0.218510 -0.362353 -0.057712 -0.081221 0.028303 -1.228303e-01
16 chscase census5 0.020566 -0.072108 0.038440 -5.693800e-02 0.002734 -0.004619 -0.025640 -0.000455 0.028240 -5.693800e-02
17 cleveland 0.657419 0.374300 0.614305 3.122782e-01 0.386512 0.213183 0.456919 0.434471 0.672299 3.122782e-01
18 coil2000 0.061328 0.043434 0.067966 4.254096e-02 0.000254 0.038544 0.060034 0.055768 0.063751 4.254096e-02
19 connect-4 NaN NaN 0.000034 -7.560000e-07 0.665156 0.668400 NaN NaN 0.000000 -7.560000e-07
20 CPMP-2015-regression 0.944621 0.930249 0.931641 9.367511e-01 0.922156 0.930583 0.918229 0.919693 0.936972 9.367511e-01
21 CPMP-2015-runtime-regression 0.371083 0.362246 0.347000 3.475402e-01 0.306083 0.359280 0.198950 0.253678 0.361740 3.475402e-01
22 cps 85 wages 0.450054 0.156129 0.376815 1.975608e-01 0.444580 0.208708 0.258460 0.205082 0.331212 1.975608e-01
23 cpu 0.999708 0.978418 0.985743 9.453963e-01 0.961037 0.901753 0.894700 0.997423 0.983939 9.453963e-01
24 cpu act 0.983665 0.982894 0.984506 9.833933e-01 0.984960 0.984210 0.980745 0.979559 0.983783 9.833933e-01
25 cpu small 0.978140 0.976902 0.978650 9.780977e-01 0.978236 0.977886 0.974567 0.974231 0.977909 9.780977e-01
26 crimecommunitynums 0.555785 0.561352 0.555847 5.331432e-01 0.558059 0.548594 0.485575 0.512828 0.536783 5.331432e-01
27 dataset sales 0.773870 0.789667 0.809132 8.197059e-01 0.801697 0.835368 0.728460 0.746349 0.803840 8.197059e-01
28 dataset-autoHorse fixed 0.958975 0.867300 0.906527 7.816151e-01 0.879936 0.897490 NaN NaN 0.911290 7.816151e-01
29 debutanizer 0.822399 0.752430 0.799694 8.333914e-01 0.762101 0.799955 0.731500 0.739038 0.824381 8.333914e-01
30 delta elevators 0.651399 0.644568 0.642843 6.434138e-01 0.625387 0.635007 0.639879 0.639597 0.647760 6.434138e-01
31 Diabetes(scikit-learn) NaN NaN 0.481122 4.849097e-01 0.413696 0.475645 0.463311 0.456137 0.490987 4.849097e-01
32 diamonds 0.980203 0.980162 0.980821 9.808838e-01 0.981763 0.981651 0.971201 0.971706 0.981334 9.808838e-01
33 echoMonths 0.730556 0.278147 0.522363 4.279333e-01 0.331913 0.498021 0.459503 0.425888 0.500324 4.279333e-01
34 elevators 0.895705 0.899131 0.872884 9.099019e-01 0.891978 0.804711 0.881738 0.875438 0.904168 9.099019e-01
35 fishcatch 0.980813 0.984135 0.902652 9.767629e-01 0.968938 0.916793 0.960591 0.981452 0.981740 9.767629e-01
36 fri c3 1000 10 0.966603 0.951329 0.926965 9.563453e-01 0.929952 0.935258 0.827685 0.824738 0.951268 9.563453e-01
37 fri c4 250 100 0.953711 0.911005 0.733871 8.207397e-01 0.682567 0.672136 0.484751 0.589262 0.835330 8.207397e-01
38 fried 0.956615 0.957324 0.950330 9.542782e-01 0.955653 0.955775 NaN NaN 0.953762 9.542782e-01
39 GeographicalOriginalofMusic 0.785564 0.780751 0.792036 7.914615e-01 0.809836 0.783981 0.770029 0.781654 0.784336 7.914615e-01
40 german.numer 0.338121 0.188194 0.223243 1.974322e-01 0.234352 0.172616 0.219483 0.208786 0.279431 1.974322e-01
41 HappinessRank 2015 1.000000 1.000000 1.000000 9.999999e-01 0.999595 0.999575 0.999997 0.999998 1.000000 9.999999e-01
42 higgs 0.267635 0.263955 0.256264 2.632008e-01 0.280751 0.281519 NaN NaN 0.265594 2.632008e-01
43 house 16H NaN NaN 0.629198 6.072566e-01 0.662429 0.635991 NaN NaN 0.650418 6.072566e-01
44 house 8L 0.659398 0.672787 0.676854 6.827985e-01 0.692773 0.691468 NaN NaN 0.680634 6.827985e-01
45 houses 0.808763 0.793055 0.809253 8.180517e-01 0.850312 0.840862 0.782917 0.777692 0.826368 8.180517e-01
46 hungarian 0.607929 0.462574 0.492862 3.758636e-01 0.430021 0.475086 NaN NaN 0.534355 3.758636e-01
47 ICU 1.000000 -0.013502 0.593095 -1.849905e+00 0.438543 -0.033855 -0.162530 -0.165680 0.827381 -1.849905e+00
48 ilpd-numeric 0.286539 0.121781 0.204533 3.718360e-02 0.226220 -0.026495 0.129527 0.124208 0.186366 3.718360e-02
49 kc1-numeric 0.819453 0.352679 0.781667 2.069835e-01 0.112011 0.090396 -0.324801 0.167734 0.292608 2.069835e-01
50 kdd coil 3 0.305624 0.057717 0.257731 -4.953387e-02 -0.464817 -0.618412 0.048544 0.063575 0.189489 -4.953387e-02
51 kin8nm 0.916116 0.912071 0.757327 8.338447e-01 0.857413 0.876850 0.886760 0.893795 0.823118 8.338447e-01
52 LoanDefaultPrediction 0.052746 0.027256 0.002700 2.232458e-03 -0.043168 0.005355 NaN NaN 0.001114 2.232458e-03
53 lowbwt 0.658200 0.646666 0.622044 5.745034e-01 0.624137 0.486804 0.563992 0.584902 0.584667 6.333592e-01
54 lungcancer shedden 0.413244 0.234145 0.244446 2.750745e-01 0.219061 0.119400 0.139952 0.205553 0.288418 2.750745e-01
55 mauna-loa-atmospheric-co2 0.999267 0.999148 0.999273 9.992855e-01 0.999163 0.999259 0.997125 0.997137 0.999323 9.992855e-01
56 MIP-2016-PAR10-regression 0.354588 0.343488 0.330283 3.801132e-01 0.386078 0.292126 0.090497 0.199494 0.275671 3.801132e-01
57 mnist rotation 0.347968 0.334708 0.298883 2.523194e-01 0.440543 0.434807 NaN NaN 0.254766 2.523194e-01
58 Moneyball 0.945988 0.952824 0.938744 9.520130e-01 0.932932 0.933429 0.939828 0.950385 0.938950 9.520130e-01
59 mtp 0.551569 0.523771 0.500002 5.408654e-01 0.545502 0.574002 0.518560 0.529185 0.527194 5.408654e-01
60 mv 0.999977 0.999974 0.999979 9.999678e-01 0.999966 0.999970 NaN NaN 0.999968 9.999678e-01
61 NewFuelCar 0.998474 0.998360 0.998469 9.986077e-01 0.998558 0.998824 0.998606 0.998820 0.998409 9.986077e-01
62 nki70.arff 0.705168 0.106110 0.536599 2.942097e-01 0.403330 0.278388 0.298491 0.221449 0.455394 2.942097e-01
63 no2 0.642183 0.515281 0.611418 5.639128e-01 0.555740 0.533970 0.498183 0.514822 0.612489 5.639128e-01
64 OnlineNewsPopularity 0.026906 0.024591 0.022556 2.266651e-02 0.232649 -0.020801 NaN NaN 0.034781 2.266651e-02
65 ozone level 0.273696 0.125584 0.028376 1.592058e-01 0.271440 0.059570 NaN NaN 0.211678 1.592058e-01
66 parkinson-speech-uci 0.564673 0.492351 0.484438 3.790009e-01 0.660209 0.516128 0.371383 0.362527 0.535722 3.790009e-01
67 pbc 0.765393 0.679868 0.603921 4.863010e-01 0.533665 0.555724 0.504209 0.559513 0.578851 4.863010e-01
68 pbcseq 0.969652 0.964035 0.924936 9.608404e-01 0.920616 0.955036 0.847168 0.890355 0.988141 9.608404e-01
69 pharynx 0.757788 0.315957 0.547900 3.851159e-01 0.584963 0.274331 0.458018 0.386998 0.631170 3.851159e-01
70 places 0.336711 -0.023505 0.243678 -5.903724e-02 -0.129658 -0.149993 0.124239 0.060509 0.209429 -5.903724e-02
71 pol 0.982332 0.983921 0.985297 9.866268e-01 0.991802 0.991998 0.976825 0.978256 0.986278 9.866268e-01
72 puma32H 0.948734 0.946741 0.935956 9.385457e-01 0.933694 0.936264 0.884204 0.868853 0.938898 9.385457e-01
73 pwLinear NaN NaN 0.889402 8.617689e-01 0.827714 0.828719 0.788436 0.829365 0.871173 8.617689e-01
74 QSAR-TID-10541 0.669418 0.250264 0.466881 3.319923e-01 0.536353 0.233499 0.265147 0.372691 0.155973 3.319923e-01
75 QSAR-TID-10849 0.505181 0.482853 0.476051 4.591149e-01 0.466621 0.486321 NaN NaN 0.470936 4.591149e-01
76 QSAR-TID-13004 0.602427 0.399552 0.565493 3.784108e-01 0.661614 0.382989 NaN NaN 0.552632 3.784108e-01
77 QSAR-TID-17061 0.953444 0.807320 0.882326 8.266515e-01 0.928129 0.815622 0.829189 0.797543 0.864782 8.266515e-01
78 QSAR-TID-194 0.711738 0.707700 NaN NaN 0.722343 0.731620 NaN NaN 0.704520 7.097799e-01
79 QSAR-TID-234 0.685873 0.668730 0.653335 6.061380e-01 0.670283 0.683821 NaN NaN 0.638942 6.061380e-01
80 QSAR-TID-30008 0.399110 0.386144 0.262423 3.420940e-01 0.380416 0.394667 0.233915 0.408344 0.274423 3.420940e-01
81 rmftsa ladata 0.503739 0.505485 0.650247 6.397771e-01 0.710629 0.564846 0.580401 0.630360 0.589662 6.397771e-01
82 SAT11-HAND-runtime-regression 0.653813 0.669612 0.615672 7.312475e-01 0.640220 0.696739 0.647682 0.676002 0.696072 7.312475e-01
83 satellite image 0.902689 0.905195 0.899926 8.995034e-01 0.909112 0.906400 0.895869 0.897909 0.906002 8.995034e-01
84 SensIT-Vehicle-Combined 0.632394 0.632969 0.637937 6.238363e-01 0.649091 0.651342 NaN NaN 0.623628 6.238363e-01
85 sensory 0.261557 0.137996 0.221455 2.229183e-01 0.235012 0.248597 0.148766 0.058455 0.237281 2.229183e-01
86 sleuth case2002 0.185500 0.085488 0.345402 3.839839e-01 0.375166 0.144786 0.316733 0.424992 0.395589 3.839839e-01
87 splice 0.927011 0.892213 0.886026 9.035729e-01 0.882179 0.890844 0.844578 0.858991 0.899572 9.035729e-01
88 stock 0.988509 0.983949 0.987596 9.865390e-01 0.980064 0.985285 0.981477 0.983955 0.989445 9.865390e-01
89 svmguide3 0.481150 0.336668 0.410252 3.722528e-01 0.301758 0.312988 0.358379 0.350387 0.430679 3.722528e-01
90 SWD NaN NaN 0.451091 3.658839e-01 0.436488 0.351577 0.405124 0.356556 0.454674 3.658839e-01
91 tecator 0.998665 0.998052 0.996552 9.982181e-01 0.996541 0.995753 0.996051 0.995840 0.997569 9.982181e-01
92 Titanic 0.495757 0.544274 0.476388 5.671089e-01 0.289854 0.553820 0.427494 0.527648 0.571786 5.671089e-01
93 topo 2 1 0.069028 0.069840 0.050968 8.257449e-02 -0.155664 0.027032 NaN NaN 0.052783 8.257449e-02
94 veteran 0.618567 0.037673 0.254505 5.491190e-03 0.468031 0.043177 -0.028580 0.048614 0.016252 5.491190e-03
95 w1a NaN NaN NaN NaN 0.649156 0.632939 NaN NaN 0.000000 -1.030000e-05
96 wind 0.927011 0.795072 0.782373 7.964196e-01 0.789053 0.800111 0.788856 0.793607 0.790414 7.964196e-01
97 wine quality 0.481150 0.456860 0.456438 4.949813e-01 0.437803 0.498808 0.423714 0.462014 0.458906 4.949813e-01
98 wisconsin 0.427787 0.103395 0.148574 1.049189e-01 0.176749 -0.049034 0.040914 0.079296 0.147728 1.049189e-01
99 yprop 4 1 0.481150 0.088314 0.073699 1.010145e-01 -0.141030 0.084769 0.076026 0.104879 0.073626 1.010145e-01
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