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Chapter 1: Introduction

1.1 What is an active galactic nucleus

An active galactic nucleus (AGN) is the central region of a galaxy where we observe energetic
phenomena that cannot be attributed directly to stars. At least ∼ 10% of galaxies in the near
Universe host AGN. We list below the main observational properties of these active galactic nuclei.

1.2 AGN observational properties

In this subsection, we present the fundamental observational properties of AGN.
1) AGN show a bright star-like nucleus that, in some cases, can exceed the luminosity of the

host galaxy. To be more specific, AGN luminosity ranges from ∼ 1042erg s−1 to ∼ 1047erg s−1, while
the luminosity of a typical galaxy is about ∼ 1044erg s−1.

2) AGN show broadband emission at a wide range of frequencies. Figure (1) shows the spectral
energy distribution (SED) of an AGN as a function of the frequency. As we can see, the spectrum
extends from the radio frequencies (109Hz) all the way up to the γ−ray frequencies (1020Hz). The
SED of a normal galaxy is also shown for comparison. The normal galaxy emits at a significantly
smaller part of the electromagnetic spectrum since its radiation originates mainly from stars. At
the ultraviolet (UV) part of the spectrum (1015 − 1016Hz), the emission of the normal galaxy falls
off. On the other hand, the AGN emission increases with increasing frequency, in the UV band.
This is a major difference between AGN and normal galaxies. This part of the AGN spectrum is
known as the ”big blue bump”.

3) Figure (2) shows the mean spectrum created by averaging the spectra of over 700 AGN, in
the optical and UV region. The strong increase of the emitted flux at short wavelengths can be seen
clearly. Another important characteristic of AGN spectra is the presence of strong emission lines.
These lines can be divided into two groups: the narrow lines, which have widths corresponding
to velocities of several hundred kilometers per second, and the broad lines that have widths up to
104km s−1.

4) A fraction of AGN (∼ 10% of their population) is characterized by strong radio emission.
This is due to the synchrotron mechanism, and in some cases originates from two large, lobe-shaped
regions. The lobes are located on either side of the galaxy center and are more or less symmetrical.
Their extend can be as large as megaparsecs (1Mpc = 106pc, 1pc=3.086 × 1016m). The radio
emission of such objects can be a million times stronger than the radio emission of a normal galaxy.
Radio emission also originates from jet-like structures. The jets sizes range from astronomical units
(AU) to megaparsecs and can produce radiation from radio waves to γ-rays in some cases. They
seem to originate from the nucleus and have an outwards direction towards the radio lobes. The
particles in these structures have bulk motions close to the speed of light.

5) Last but foremost, AGN are variable in every waveband they have been observed. The
time-scale and the amplitude of the observed variations decrease and increase, respectively, with
increasing frequency. Figure (3) shows the continuum and the emission-line light curves (left panels)
of NGC 5548, which is a nearby AGN. The top two left panels show the ultraviolet and optical fluxes
as a function of time. It is clear that they both change considerably with time. The bottom three
panels show the variations of three broad emission lines. Interestingly, the pattern of these variations
follows the variations of the continuum with a time delay. The right panels show the so-called cross-
correlation function between the continuum variations at λ = 1350Å, and the continuum at 5100Å,
and the 3 emission lines, whose light curves are plotted in the left panels. Cross-correlation is a
statistical tool which is used to measure how well two light curves are correlated at various time
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Figure 1: The spectral energy distribution (SED) of the AGN in NGC 3783 from radio to γ−ray
frequencies as black dots. The solid line is the SED of a normal galaxy, (figure taken from Peterson,
1997).

scales. The amplitude of this function indicates how good the correlation is. The fact that the
amplitude of the functions plotted in the right panel of Fig.(3) is close to 1 indicates that the light
curves plotted in the left panel are indeed well correlated. In addition, the time-scale at which the
maximum of the cross-correlation appears indicates the delay between the variations in the various
energy bands.

1.3 AGN taxonomy

Active galactic nuclei can be divided into various types. The classification reflects their obser-
vational properties rather than the actual underlying physical differences between various classes,
as we do not yet fully understand the physics of the AGN phenomenon.

AGN can be divided into radio-loud and radio-quiet sources, depending on whether we observe
strong radio emission or not. The radio-quiet subclass includes Seyfert galaxies and quasars (also
known as quasi-stellar objects QSOs). Seyfert galaxies exhibit strong, high-ionization emission lines
and time-variable continuum emission in the infrared, optical, UV, and X-ray bands. Morphological
studies suggest that Seyferts occur in spiral galaxies. They can be further divided into type 1 and
type 2 Seyferts. Type 1 shows broad and narrow emission lines, while in type 2 only the narrow
lines are present. The observational properties of quasars and Seyferts are similar with the former
being more luminouns. Due to this property, quasars can be observed at great distances. A fraction
of quasars can also be radio-loud sources that show emission from a jet.

The radio-loud subclass includes radio galaxies and Blazars. Radio galaxies are mainly hosted in
elliptical galaxies and can be separated into broad-line radio galaxies and narrow-line radio galaxies
as the radio-loud counterparts of Seyferts type 1 and type 2 respectively. Blazars include optically
violent variables (OVVs), which are characterized by large flux variations and high polarization,
and BL Lac objects, which share some of the OVVs properties and are distinguished by the absence
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Figure 2: A mean AGN spectrum formed by averaging the spectra of over 700 AGN, at optical and
ultraviolet wavelengths, (figure taken from Peterson, 1997).

of emission or absorption lines. The variability of Blazars is thought to originate from a strong
relativistically beamed component which is oriented close to the line of sight.

Lastly, we note that there are efforts to unify the different models of AGN. These are based
on the assumption that the observational characteristics of AGN are strongly dependent on the
orientation of the system and that a single physical object can explain the observations when
viewed from different angles.

1.4 The central “engine” of AGN

The AGN variability can help us estimate the size of the central nucleus. The top left panel
of Fig.(3), shows that there is a noticeable change in the flux of the source (say by a factor of 2
or so) on a time-scale of ∼ 25 days. Such a noticeable change must involve a significant variation
in the properties of the source as a whole. This means that the nucleus cannot be larger than the
variability time-scale multiplied by the maximum speed by which the information travels, i.e. the
speed of light. Taking a typical time-scale of 25 days, ∆t ≈ 20× 105 sec, we can then set an upper
limit to the size of the source as R ≤ c∆t = 6× 1016cm. This is of the order of ∼ 0.02 pc.

A rough estimate of the nucleus mass can be made using the virial theorem. For a potential
energy of the form V ∝ Rn the virial theorem takes the form 2 < K >= n < U >. Considering
a central mass M and gravitationally bound material of mass m at a distance R, we can write
down the expressions for the kinetic and potential energy: < K >= mυ2/2, < U >= −GMm/R.
Substituting < K >, < U >, and n = −1 in the virial equation, and solving for the mass M we
find M ≈ υ2R/G. If the width of the emission lines observed in AGN spectra is due to Doppler
broadening, then a typical value for the velocity is υ = 104km s−1. For the distance R we use the
minimum size of the nucleus derived earlier, i.e. R ∼ 25 light-days. This oversimplified analysis
leads to a mass of M ∼ 5 × 108M⊙, where M⊙ = 2 × 1030kg is the mass of the sun. This means
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Figure 3: Light curves (left panels) and cross-correlation functions (right panels) for NGC 5548
(figure taken from Peterson, 1997).

that around a billion sun-like stars must lie in a region significantly smaller than 1pc to explain the
mass of the AGN. Such a system would most likely be unstable. For this reason, a supermassive
black hole (SMBH) is a more possible explanation. After all, the size of a black hole (BH) is given
by the Schwarzschild radius Rs = 2GM/c2, and for M ∼ 5 × 108M⊙, we find Rs ∼ 2 × 1014cm,
which is well below the parsec limit.

To fuel AGN we need an efficient energy production mechanism. If we assume a mass m
travelling from infinity to a distance r from the central mass M , then the potential energy released
is U = GMm/r. For a given mass M this energy increases as the small mass m reaches closer
to the central mass, i.e. the distance r decreases. This distance r is minimized when the central
object is a black hole. Assuming that the mass m travels up to the innermost stable circular orbit
around the supermassive black hole, which is equal to 3Rs, then the potential energy released is
U = GMm/(3Rs) = 0.17mc2. This means that approximately 17% of the mass is converted to
energy. For reference, nuclear processes in stars have an efficiency of 0.7%. It turns out that the
release of gravitational energy by infalling matter is the most efficient mechanism for converting
mass to energy, and thus it can explain the large energy output that AGN show.

Based on the previous estimates for the size and the mass of an AGN, as well as the arguments
on the energy production mechanism, it is reasonable to assume that the central engine of the AGN
phenomenon is a supermassive black hole, surrounded by material that releases gravitational energy
as it accretes into the black hole. As we discuss at the start of the next chapter, the material lies
in an accretion disc that is heated to high temperatures. The aim of this work is to study the
spectrum that the accretion discs around supermassive black holes emit.
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Chapter 2: The structure and the emitted spectrum of the

disc

2.1 Formation of the disc and the innermost stable circular orbit

Suppose a mass M , a supermassive black hole in our case, and gas particles spread out around
it. The particles have random initial velocities and thus angular momentum. As a result, most of
them cannot fall directly into the black hole. Instead, they follow circular trajectories, since that is
the path of least energy around a spherically symmetric potential for a given angular momentum.
These paths intersect, which leads to the collision of particles. The collisions tend to cancel the
up and down motion of the gas which slowly accumulates to the plane perpendicular to the total
angular momentum of the gas. The result is a disc where particles spin in circular orbits. However,
for a non-rotating black hole the disc does not extend up to the event horizon. The innermost stable
circular orbit (ISCO) is located at

Risco =
6GM

c2
= 3Rs, (1)

where Rs = 2GM/c2 is the Schwarzschild radius. This is because lowering the orbit beyond that
point does not release enough potential energy to accelerate the particle to the speed necessary to
maintain a stable circular orbit.

2.2 Viscosity

The basic assumption for the source of the enormous luminosity of AGN is accretion of matter
to a supermassive black hole. As we mentioned above, gas in the disc is expected to rotate around
the BH. If we assume Keplerian orbits, then

Ω(R) =

√
GM

R3
, (2)

where Ω(R) is the angular velocity at radius R, where R is the distance from the central mass, M .
The circular velocity is then

υϕ(R) = RΩ(R) . (3)

Equation (2) implies differential rotation, meaning that material in adjacent radii rotates with
different angular velocities. In such conditions, internal friction between particles that are in relative
motion arises. This resistance to the differential motion is known as viscosity. The work done by the
shear stresses on the gas, due to viscosity, is dissipated to the disc as heat. The heat is then radiated
away and thus the gas loses energy. However, the source of the gas energy is the gravitational
potential. This means that viscosity turns gravitational potential energy into radiation. As a
result, the gas moves closer to the black hole. This way, a negative radial velocity, υR, appears, and
matter is accreted towards the BH.

In order to better demonstrate the role of viscosity, let us consider an annulus at radius R. Due
to viscosity, there are torques acting on the annulus by the outer and inner disc parts. It turns
out that the torque τ(R) exerted to the annulus at radius R, by the outer neighbouring annulus is
given by the expression

τ(R) = 2πR︸︷︷︸
circumference

· νΣ(R)R
dΩ

dR︸ ︷︷ ︸
viscous force per unit length

· R︸︷︷︸
lever

, (4)
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Figure 4: The surface density evolution for a ring of mass m at a distance R0. The dimensionless
parameters for the position and the time are x = R/R0 and τ = 12νtR−2

0 , where ν is the viscosity,
(figure taken from Pringle, 1981).

where Σ(R) is the surface density of the disc and the factor of proportionality ν is the kinematic
viscosity. Equation (4) shows that, since Ω(R) decreases outwards, τ(R) is negative and thus the
inner rings lose angular momentum to the outer ones. As a result, mass spirals closer to the black
hole. This can also be seen by taking the expression for the specific angular momentum of the
Keplerian disc (angular momentum per unit mass)

l = R2Ω(R) =
√
GMR . (5)

This indicates that if a ring loses angular momentum it must move inward to remain in a Keplerian
orbit (i.e. if l decreases then R must decrease as well).

Figure (4) shows the evolution of the surface density of a ring of mass m, which is originally
located at radius R = R0. We observe that as time passes, the mass in the initial ring spreads out to
smaller and larger radii. Most of the matter is accreted inwards because it loses angular momentum
due to viscosity. At the same time, angular momentum must be conserved, so a smaller amount of
matter moves outwards to larger radii, carrying the angular momentum that the accreting matter
lost.

2.3 Dissipation of energy by the viscous torques

Considering the ring of gas between R and R+∆R, shown in Figure (5), the net torque acting
on it is

τ(R +∆R)− τ(R) =
∂τ

∂R
dR , (6)
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Figure 5: Viscous torques act-
ing on an annulus of width
∆R.

where τ(R + ∆R) is the torque exerted on the annulus by the
outer ring, which slows down the annulus, while τ(R) is due to the
inner ring, which speeds up the annulus. Multiplying eq.(6) by the
angular velocity of the ring Ω(R) we get the rate of working by the
torque

Ω
∂τ

∂R
dR = [

∂(τΩ)

∂R
− τΩ′]dR , (7)

where Ω′ = dΩ/dR. If we integrate the term [∂(τΩ)/∂R]dR over
the whole disc we get [τΩ]Router

Rinner
. This implies that the term

∂(τΩ)/∂R gives the work done by the torque determined at the
edges of the disc. An expression for the local rate of work is given
by the term τΩ′dR. This work heats up the disc and will be, ul-
timately, radiated away. To calculate the power per unit surface
area, Q(R), that is provided by the torques, we divide τΩ′dR by
the surface of the ring, keeping in mind that each ring has two
plane faces, and thus a total area of 4πRdR. We find that

Q(R) =
τ(R)Ω′

4πR
. (8)

Then, we can substitute τ(R) from eq.(4) to get

Q(R) =
1

2
νΣ(R)(RΩ′)2 . (9)

Our goal is to compute the energy spectrum emitted by the disc. To do so, it is important to
compute Q(R), since it holds the information for the power that the disc can radiate. Therefore,
we need to know ν and Σ(R). If the main mechanism behind viscosity is turbulence, then ν has
the form of ν ∼ h · u, where h is the size and u the speed of the largest eddies. Shakura & Sunyaev
(1973) introduced the dimensionless parameter α and wrote ν as

ν = αcsH , (10)

where cs is the sound speed, H is the disc thickness and a ≤ 1. This parametrization allows us to
study accretion discs efficiently, without complete knowledge of the underlying mechanism behind
viscosity. We note that ν can be a function of R for discs of non-constant H or cs. In the next
section, we discuss the disc surface density, Σ(R).

2.4 Radial disc structure

We use the conservation of mass and angular momentum to derive an expression for the surface
density Σ(R) of the disc, i.e. mass per unit surface. We consider the case of a constant accretion
rate, which means that the disc is characterized by a steady-state structure and the disc parameters
do not vary with time, i.e. ∂/∂t = 0 in all equations.

2.4.1 Conservation of mass

Let us consider an annulus of gas with inner radius R and outer radius R +∆R, as in Fig.(5).
The mass of the annulus is 2πR ·∆R ·Σ(R). Since matter is accreted towards the central compact
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object, the rate of change of the mass in the annulus is equal to the flow of matter from neighboring
annuli

∂

∂t
(2πR ·∆R · Σ) = υR(R, t) · 2πR · Σ(R, t)− υR(R +∆R, t) · 2π(R +∆R) · Σ(R +∆R, t) . (11)

The first term on the right hand side of the equation is the mass that leaves the annulus, while
the the second term is the mass that is being added to the annulus. Note that the radial velocity
υR is negative, since matter moves inward. We divide both terms by ∆R and then take the limit
∆R → 0 to get,

∂

∂t
(RΣ) = −lim∆R→0

υR(R +∆R, t) · (R +∆R) · Σ(R +∆R, t)− υR(R, t) ·R · Σ(R, t)

∆R
⇒ (12)

R
∂Σ(R)

∂t
+

∂

∂R
[RΣ(R)υR(R)] = 0 . (13)

This is the equation of mass continuity. Using the steady-state assumption eq.(13) becomes

∂

∂R
[RΣ(R)υR(R)] = 0 ⇒ RΣ(R)υR(R) = constant . (14)

We note that since M(R) = 2πR∆RΣ(R), then the accretion rate at R is given by

Ṁ = 2πR
∆R

∆t
Σ ⇒ Ṁ = −2πRυR(R)Σ(R) . (15)

The minus sign accounts for the fact that Ṁ is positive when υR is negative. Conservation of mass,
i.e. eq.(14), implies that Ṁ is the same at all radii.

2.4.2 Conservation of angular momentum

The angular momentum of the same annulus is 2πR ·∆R · Σ(R) · R2Ω(R). Due to the flow of
matter and the fact that matter carries angular momentum, we have flow of angular momentum
as well. Therefore, the change in the angular momentum of the annulus is caused by the flow
of angular momentum from neighboring annuli, and the viscous torques τ(R), from the adjacent
annuli

∂

∂t
(2πR ·∆R · Σ ·R2Ω) = υR(R, t) · 2πR · Σ(R, t) ·R2Ω(R)

− υR(R+∆R, t) · 2π(R+∆R) ·Σ(R+∆R, t) · (R+∆R)2Ω(R+∆R) + τ(R+∆R)− τ(R) . (16)

The first term of the right hand side equals the angular momentum that is carried away from the
annulus, while the second term is the angular momentum that flows into the annulus. The term
τ(R+∆R) is the torque from the outer ring, and τ(R) is the torque from the inner ring. Dividing
by ∆R and taking the limit for small ∆R like before we have

R
∂

∂t
(ΣR2Ω) +

∂

∂R
(RΣυRR

2Ω) =
1

2π

∂τ

∂R
. (17)

Using the steady disc assumption eq.(17) becomes

∂

∂R
(RΣυRR

2Ω) =
1

2π

∂τ

∂R
. (18)
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Let us integrate the equation above,∫
∂

∂R
(RΣυRR

2Ω)dR =
1

2π

∫
∂τ

∂R
dR +

C

2π
⇒ (19)

R3Σ(R)υR(R)Ω(R) =
τ

2π
+

C

2π
(20)

We use eq.(4) to substitute τ in the above equation. We find

R3Σ(R)υR(R)Ω(R) = νΣ(R)R3dΩ(R)

dR
+

C

2π
⇒ (21)

νΣ(R)
dΩ(R)

dR
= Σ(R)υR(R)Ω(R) +

C

2πR3
. (22)

To evaluate the constant C we can use the fact that at the inner edge of the disc, Risco, the gradient
of the angular velocity vanishes, i.e. dΩ/dR = 0. This yields:

0 = Σ(Risco)υR(Risco)Ω(Risco) +
C

2π(Risco)3
⇒

C = −2πRisco · Σ(Risco) · υR(Risco) · (Risco)
2 · Ω(Risco) . (23)

We can simplify this by using the relation for the accretion flow Ṁ given in (15). Setting R = Risco

in eq.(15) and substituting in the expression for C we get

C = Ṁ · (Risco)
2 · Ω(Risco) . (24)

We can use the formula for the angular velocity of a circular Keplerian orbit from eq.(2), to get

C = Ṁ
√

GMRisco . (25)

We substitute C in (22) and take the derivative (dΩ/dR) = −(3/2)
√
GM/R5 to find

−3

2
νΣ(R)

√
GM

R5
= Σ(R)υR(R)

√
GM

R3
+

Ṁ
√
GMRisco

2πR3
⇒

Σ(R) = − 2

3ν
Σ(R)υR(R)R− 1

3πν
Ṁ

√
Risco

R
. (26)

We notice from (15) that Σ(R)υR(R)R = −Ṁ/(2π). Also, we can replace Risco with 3Rs since that
is the innermost stable circular orbit, in the case of a non-rotating black hole. We thus reach to the
following expression for the surface density of the disc

Σ(R) =
Ṁ

3πν

(
1−

√
3Rs

R

)
. (27)

2.5 Dissipation of energy by the viscous torques-Revisited

Now, we can use eq.(27) to substitute Σ(R) in eq.(9) and take the derivative of Ω(R) to find

Q(R) =
3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
. (28)

This is a significant result since Q(R) turns out to be independent of the kinematic viscosity ν.
This result means that despite our ignorance of the physical nature of viscosity we can calculate
the required quantities for the computation of the disc spectrum. This will be the case, as long as
ν can be adjusted to provide the steady mass flux Ṁ , that is necessary to heat the disc.
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2.6 The disc energy spectrum

We can compute the energy spectrum of the accretion disc, assuming that each disc annulus radi-
ates as a black body. The blackbody emitted power per unit area is given by the Stefan–Boltzmann
law

j(R) = σT 4(R) (erg s−1 cm−2) , (29)

where σ is the Stefan–Boltzmann constant and T (R) the temperature at radius R. We can find an
analytic formula for this temperature by equating j(R) to the dissipation rate Q(R) given by (28),
as follows:

σT 4(R) =
3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
⇒ (30)

T (R) =
[3GMṀ

8πR3σ

(
1−

√
3Rs

R

)]1/4
. (31)

Knowing T (R), the specific intensity of each annulus of the disc will be given by the Planck function

Bν [T (R)] =
2hν3

c2
1

ehν/kT (R) − 1
(erg s−1 cm−2 Hz−1 sr−1). (32)

Let us assume that the disc is located at a distance D from an observer at O, as shown in Fig.(6).
Then the specific radiative flux (also called net flux) of the whole disc at frequency ν is obtained
by integrating over all solid angles subtained by the observer at O, i.e.

F (ν) =

∫
BνcosθdΩ (erg s−1 cm−2 Hz−1) . (33)

Substituting the differential solid angle in spherical coordinates dΩ = sinθdθdϕ and integrating over
dϕ we get

F (ν) = 2π

∫ θ2

θ1

Bνcosθsinθdθ , (34)

where θ1, θ2 are illustrated in Figure (6). We can make the change of variables θ → R using

tanθ =
R

D
⇒ dθ = cos2θ

dR

D
, sinθ =

R√
R2 +D2

, cosθ =
D√

R2 +D2
. (35)

Figure 6: Disc illustration.

Then the integral becomes

F (ν) =
2π

D2

∫ Router

Rinner

Bν [T (R)]RdR , (36)

where Rinner and Router are the boundaries of the disc. We
also used the approximation R2 + D2 ≈ D2. Lastly, if ξ
is the angle between the line of sight of the observer at O
and the normal to the disc plane, then we should multiply
eq.(36) by a factor of cosξ. We also use eq.(32) to end up
with

F (ν) =
4πhν3cosξ

c2D2

∫ Router

Rinner

RdR

ehν/kT (R) − 1
. (37)
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2.7 Computation of the disc spectrum

Using equation (31) we can compute the disc temperature at any radius, and with equation (37)
we can calculate the flux of the disc at any frequency, ν. We thus have all the information we need
to compute the disc energy spectrum. To do so, we divide the disc into small annuli, and we consider
a range of frequencies at which we will compute F (ν), by numerically calculating the integral of
eq.(37). Ideally, we would divide the disc into infinitely narrow annuli so that the computation of
the integral is accurate. However, the runtime of the script to compute the disc energy spectrum
should also be reasonable. With that in mind, we will figure out the optimal way to break up the
disc into rings by studying its temperature profile.

2.7.1 The temperature profile

The temperature of each disc annulus is calculated by eq.(31). To make this calculation simpler
we introduce the dimensionless parameters

r ≡ R

Rs

, ṁ ≡ ηṀc2

LEdd

, (38)

where η = 0.057 is the efficiency of accretion into a non-rotating black hole, and LEdd is the
Eddington luminosity given by

LEdd =
4πGMmpc

σT

, (39)

with mp being the proton mass and σT the Thomson scatteting cross section. Then, using eq.(38),
equation (31) becomes

T (r) =
[3
8

c3mp

ησTσ

1

Rs

ṁ

r3
(1−

√
3

r
)
]1/4

. (40)

Figure (7) shows a plot of the temperature versus the dimensionless radius r, for M = 107M⊙,
and ṁ = 0.05. Both axes on this plot are in logarithmic scale. The disc temperature in Fig.(7) is
calculated at Nr = 200 radii, which are equidistant in the log space, i.e.

log(ri) = log(rin) + i
[log(rout)− log(rin)]

Nr

(41)

where rin = 3 and rout = 5000.
The temperature at r = rin is zero, since we have assumed that the torque vanishes at risco.

Fig.(7) shows that, initially the temperature increases quickly and reaches a maximum at

dT

dr
= 0 ⇒

[3
8

c3mp

ησTσ

ṁ

Rs

]1/4 d

dr

[ 1

r3/4
(1−

√
3

r
)1/4

]
= 0 ⇒

−3

4

1

r7/4
(1−

√
3

r
)1/4 +

1

r3/4
1

4
(1−

√
3

r
)−3/4(

√
3

2

1

r3/2
) = 0 ⇒

− 2
√
r(1−

√
3

r
) +

√
3

2
= 0 ⇒ r =

49

36
3 = 4.08 . (42)

The temperature at r = 4.08 equals Tmax = 1.292 × 105K, for our case of M, ṁ. At larger radii,
the temperature decreases as T (r) ∝ r−3/4, because as we move to the outer parts of the disc Q(R)
decreases as well. This is expected since the gravitational energy released from matter far away
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Figure 7: The disc temperature radial profile (M = 107M⊙, and ṁ = 0.05).

from the center is small compared to that of matter accreting close to the black hole. To get a
better understanding of this effect, let us consider the gravitational potential around a mass M
given by V = −GM/R (erg/g). The change in the potential energy of a unit mass particle as it
moves from 1100Rs to 1000Rs will be ∆V1 = GM/11000Rs. The potential energy released by the
same particle as it moves from 200Rs to 100Rs will be ∆V2 = GM/200Rs, which is 55 times larger.
Thus, more energy per mass is released in the central regions of the disc, hence the disc will be
significantly hotter in the inner parts.

Equation (40) shows that the disc temperature increases with increasing ṁ. This is because, the
rate of the gravitational power that is released, at each radius, depends on the rate of the mass that
is accreted, i.e. V̇ = −GṀ/R. We also note that T (r) is inversely proportional to Rs, i.e. the black
hole mass. Larger BH masses, will imply lower temperatures at all radii, for the same accretion
rate. To understand this, let us consider the potential change ∆V2 = GM/200Rs that we calculated
before. Substituting Rs = 2GM/c2 we find ∆V2 = c2/400, which means that the potential energy
released by a unit mass travelling from 200Rs to 100Rs is the same for all BH masses. However,
the distance travelled, i.e. 100Rs, is longer for a heavier BH. This means that the same amount of
energy is dissipated to a larger area, and thus the disc temperature is lower for heavier masses.

Figure (7) shows that the curvature of the temperature profile is very steep at small radii. To
investigate this issue, we calculate the percentage difference of the temperature at successive radii
as follows:

|∆T |
T

=
|T (ri+1)− T (ri)|

T (ri+1)
100% , (43)

where ri, ri+1 are the disc radii defined by eq.(41). This way eq.(43) represents the percentage
change in temperature between the outer radius, ri+1, and the inner radius, ri, of each disc annulus.
Figure (8) shows a plot of |∆T |/T as a function of the radius (orange points), up to r = 50. The
temperature between the inner and outer border of the innermost annuli may change by a factor of
5−85%. This implies that the numerical calculation of the integral in (37) is prone to large round-off
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Figure 8: Percentage difference of temperature between outer and inner radii of the disc annuli
below r = 50 (and below r = 10 in the embedded plot). The horizontal line in both plots indicates
the 3% limit.

errors, due to the large temperature gradient of the innermost rings. On the other hand, the disc
annuli at radii around the temperature peak appear well approximated by a constant temperature,
as |∆T |/T is smaller than 1− 2% in this case. At larger radii, the temperature difference increases
slowly with radius and reaches a value of ∼ 3% at r ∼ 50, which remains constant at larger radii.
To account for the large temperature variations in the inner disc, we divided the part below r = 4
to more annuli so that the temperature difference between ri+1 and ri is fixed at 3%. This is done
by solving numerically the equation

|∆T |
T

=
|T (ri+1)− T (ri)|

T (ri+1)
= 0.03 , (44)

where T (r) is given by eq.(40). We start with r1 = risco and we compute r2 by solving eq.(44).
Then we proceed to the next annulus, where we compute r3 using the previously calulated r2, and
so on until we reach ri+1 > 4. Then we divide the remaining disc in 200 rings, using eq.(41). We
end up with a disc consisting of 265 annuli. Blue points in Figure (8) show |∆T |/T for the new
annuli. The differences are indeed fixed at 3%(dashed line) at r < 4, while at larger radii they are
smaller than 3%.

2.7.2 The disc spectrum

The energy spectrum of the disc is computed by eq.(37). Using dimensionless parameters, eq.(37)
becomes,

F (ν) =
4πhν3R2

scosξ

c2D2

∫ rout

rin

rdr

ehν/kT (r) − 1
. (45)
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We computed F (ν) at Nν = 500 frequencies, which are equidistant in log space, i.e.

log(νi) = log(νlow) + i
log(νhigh)− log(νlow)

Nν

, (46)

where νlow = 1013Hz (λ = 30µm; this is a wavelength in the infrared part of the spectrum), and
νhigh = 3×1016Hz (λ = 100Å; this is a wavelength in the ultraviolet part of the spectrum). At each
frequency νi we solved the integral in eq.(45) numerically using the trapeziodal rule. Therefore,
integral (45) becomes

F (νi) ≈
4πhν3

i R
2
scosξ

c2D2

N∑
j=0

1

2
(

rj
ehνi/kTj − 1

+
rj+1

ehνi/kTj+1 − 1
)∆rj , (47)

where N = 264 (since we start counting from j = 0), rj and rj+1 are the inner and outer radius of
the previously defined 265 rings and ∆rj = rj+1 − rj.

In Figure (9) we present the spectrum for the case of ṁ = 0.05, M = 107M⊙, for an accretion disc
at a distance D = 1Mpc = 3.086× 1024cm and inclination and ξ = 0o (i.e. face on). The spectrum
we observe in Fig.(9) is the result of the superposition of all the annuli spectra. The vertical
dashed lines indicate the frequencies at which the black body emission from the outer annulus
and the annulus with the highest temperature peak. At frequencies lower than ν1 = 6 × 1013Hz,
the spectrum increases approximately as F (ν) ∝ ν2. This is because that part of the spectrum
is equal to the sum of the Rayleigh-Jeans emission, i.e. 2kTν2/c2, of all the annuli spectra. At
frequencies higher than ν2 = 7.6 × 1015Hz, the spectrum falls off as F (ν) ∝ ν3e−hν/kT . The main
contribution to the spectrum here is the Wien part of the ring with the highest temperature. At
frequencies between ν1 and ν2, the spectrum slightly increases as F (ν) ∝ ν1/3, up to the frequency
νpeak = 2.2 × 1015Hz where it reaches a maximum. We also notice that νpeak is smaller than ν2.
This means that although the innermost rings with the highest temperatures have not yet reached
their maximum, the spectrum has already started to fall off. This happens because the radiation
of each annulus depends on its area as well and the area of the innermost rings is small.

In Figure (10), we have plotted the spectrum in units of erg/sec/cm2, i.e. we show the emitted
disc power as a function of the frequency. To compute this we simply multiply each point of Fig.(9)
by its respective frequency. Figure (10) shows where most of the power is emitted. In our case, this is
at a frequency of νpeak = 6.7×1015Hz, which corresponds to a wavelength of λpeak = 450Å. In other
words, for a BH mass of M = 107M⊙, which accretes at a rate of ṁ = 0.05, most of the radiated
power is released in the UV part of the spectrum. This is consistent with the observations of the ”big
blue bump” in AGN spectra. Note that the maximum of Fig.(10) does not change when we convert
frequencies to wavelengths since at the maximum we know that νpeakF (νpeak) = λpeakF (λpeak) and
for this reason we can calculate λpeak from λpeak = c/νpeak. This is not the case for the maximum
of Fig.(9).

15



Figure 9: Energy spectrum of an accretion disc with accretion rate ṁ = 0.05, around a central
black hole of mass M = 107M⊙, at a distance of D = 1Mpc, and inclination ξ = 0.

Figure 10: Same as in Fig.(9) but in units of νF (ν) (i.e. erg/sec/cm2).
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Chapter 3: The “modified” black body disc energy

spectrum

3.1 The “modified” spectrum of the disc

In reality, disc spectra are more complicated than just the sum of black body spectra at the
temperature given by eq.(31). This is because the black body is an idealization of a body that
can absorb all the incident radiation and is at thermodynamic equilibrium with its environment,
meaning that it emits as much radiation as it absorbs and has a constant temperature. This is not
the case for physical objects like stars and accretion discs, since they are not in thermal equilibrium
with the space around them. Clearly, the disc temperature and density vary along the vertical
direction z. Therefore, to compute the emergent spectrum we need to perform radiative transfer
through the vertical structure at each radius, considering all the interactions between photons and
matter, such as bound-free and free-free absorption, Thomson and Compton scattering.

A way to include some of these opacity effects while not having to deal with the full radiative
transfer is to consider the radiative flux of the disc at each frequency to be that of a modified black
body, given by (Rybicki & Lightman, 1979)

Iν =
4hν3/c2

(ehν/kTs − 1)(1 +
√

1 + κτ/κff )
(erg s−1 cm−2 Hz−1 ster−1) , (48)

where Ts is the disc surface temperature, and κT , κff are the opacities for Thomson scattering
and free-free absorption, respectively. Equation (48) is valid for a medium in which scattering,
absorption, and emission occur. It assumes that the medium is homogeneous and isothermal. This
is a good approximation for each annulus of a thin disc because we take their width to be small.
It further assumes that scattering is isotropic. In the case of an accretion disc where Thomson
scattering dominates, this assumption is valid. Equation (48) also ignores bound-free opacity. This
is a reasonable approximation since at high temperatures, such as those in the innermost parts of
the disc, the matter, which is mostly made up of hydrogen and helium, is fully ionized and thus
there are only free-free transitions. To be more specific, fully ionized hydrogen is expected for
temperatures around 10000K. Figure (7) shows that in the case when M = 107M⊙ and ṁ = 0.05,
T ≤ 10000K at radii larger than 200Rs. At larger radii, the temperature can be low enough for
bound-free and bound-bound transitions to be present, however we will not consider the opacity
effects due to those effects.

In the cases where Thomson scattering is negligible compared with free-free absorption, Iν
approaches the spectrum of a black body, Bν . On the other hand, when κT ≫ κff the spectrum
becomes that of a modified black body, i.e. Iν = 2Bν

√
κff/κT . The opacities are given by,

κT =
σT

mp

= 0.4 (cm2 g−1) (49)

κff = 1.5× 1025ρT−7/2
s

1− e−x

x3
g(x, T ) (cm2 g−1) , (50)

where x = hν/kT and g(x, T ) ≈ 1. Equation (49) shows that κT is constant, i.e. it does not depend
neither on frequency nor on the disc properties. On the other hand, κff depends strongly on the
disc temperature and density. It also decreases strongly with increasing frequency, which means
that κff may dominate the spectrum at low frequencies.

In principle, the spectrum can be constructed using equation (36) with Iν instead of Bν and
following the process of section 2.7.2. However, in this case, there is not an explicit formula for
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the temperature, since we cannot use the Stefan-Boltzmann law for the black body flux. The
temperature, Ts, appearing in eq.(48), should be representative of the disc surface temperature.
This is because the observed spectrum is formed at the thin surface layer at a distance from the
surface which is less than the thermalization optical depth of one. Ts should be determined by
equating the total emitted flux, meaning the integral of Iν over all frequencies and solid angles, to
the gravitational dissipation rate per unit surface area, i.e.

π

∫ ∞

0

Iνdν = Q (erg s−1 cm−2) . (51)

The equation above implies that the rate of gas heating is balanced by the cooling rate of the radia-
tive process, and is called the energy balance equation. The π factor emerges from the assumption
that each disc annulus radiates uniformly, i.e. from the integration∫

IνcosθdΩ = Iν

∫ 2π

0

∫ π/2

0

cosθ sinθdθdϕ = πIν . (52)

Substituting the expressions for Iν and Q in eq.(51) we get

4πh

c2

∫ ∞

0

ν3dν

(ehν/kTs − 1)(1 +
√
1 + κτ/κff )

=
3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
. (53)

We perform the change of variables x ≡ hν/kTs, r ≡ R/Rs, ṁ ≡ ηṀc2/LEdd to find

4π
k4T 4

s (r)

h3c2

∫ ∞

0

x3dx

(ex − 1)(1 +
√
1 + κτ/κff )

=
mpc

3

στRs

3

8
r−3ṁ(1−

√
3

r
) (54)

To solve the equation above for the disc surface temperature at each radius we need κff , which
depends on the disc density ρ(r). In the next section we show how to calculate ρ(r).

3.2 Calculation of the disc density

In this section, we write down equations that will help us derive an analytic expression for
the disc density. These equations include the hydrostatic equilibrium in the vertical direction, the
conservation of angular momentum, the equation of state, i.e. an expression for the pressure in the
disc, the equation of radiative diffusion, and the energy balance.

3.2.1 Vertical structure

Since there is no flow perpendicular to the disc the equation of hydrostatic equilibrium holds

1

ρ

∂P

∂z
=

∂

∂z

[ GM

(R2 + z2)1/2
]
, (55)

where z is the vertical extend of the disc. This equation states that the pressure gradient is balanced
by the vertical gradient of the gravitational potential of the central massive object. Taking the
derivative we find

1

ρ

∂P

∂z
= − GMz

(R2 + z2)3/2
. (56)
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If we assume that the disc is vertically thin, which means that R ≫ z, then

1

ρ

∂P

∂z
= −GM

R3
z . (57)

Under the same assumption we can write

∂P

∂z
≈ P (H)− P (0)

H
≈ −P (0)

H
, (58)

since P (0) ≫ P (H). If we also assume that the disc pressure does not vary with depth, then

P = ρ
GM

R3
H2 . (59)

This is an expression that connects pressure, density and the disc height at each radius.

3.2.2 Conservation of angular momentum

In Chapter 2 we found the following expression for the surface density of the disc

Σ(R) =
Ṁ

3πν

(
1−

√
3Rs

R

)
. (60)

The equation above includes the viscosity of the disc, which we assume is equal to ν = αcsH, and
α = 0.1. The sound speed in the medium is given by c2s = P/ρ. If we further assume that the disc
density does not vary considerably with z then, using the definition of the surface density, i.e.

Σ =

∫ H

0

ρdz ≈ ρH , (61)

we can find an additional equation between P , ρ and H by substituting ν, cs and Σ into eq.(60), as
follows

H2
√

Pρ =
Ṁ

3πα

(
1−

√
3Rs

R

)
. (62)

At this point, we have two equations, eq.(59) and eq.(62), but three unknown quantities, namely
H,P, ρ. The next step then, is to derive an expression for the pressure.

3.2.3 Equation of state

The pressure in the disc is due to gas and radiation. Assuming ideal gas, we have

Pgas = nkT , (63)

where T is equal to the average temperature along the z axis, n is the number of particles per unit
volume, k the Boltzmann constant, and we have assumed that the effects of the temperature change
with depth are not important. We can use n = ρ/µmp to eliminate n and get

Pgas =
ρkT

µmp

, (64)

where µ is the mean mass per particle measured in units of hydrogen mass mH . It is called the
mean molecular mass, and is equal to 1 for neutral hydrogen, while for ionized hydrogen it is equal
to 1/2. In our case, we will use µ = 1/2.
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The radiation pressure is, assuming black body radiation,

Prad =
4σT 4

3c
. (65)

Therefore the total pressure will be

P =
2ρkT

mp

+
4σT 4

3c
. (66)

We have derived three equations that connect the height, the pressure, the density and the tem-
perature of the disc. To solve for the density we need an extra equation that can be found by
considering the diffusive radiation transport equation along the z-axis.

3.2.4 Radiative transfer

We start from the Rosseland approximation for the total energy flux, F (z) (i.e. Iν(z) integrated
over all frequencies at each z), as it is transported along the disc height, also known as the equation
of radiative transfer:

F (z) = −16σT 3

3αR

∂T

∂z
, (67)

where αR is the Rosseland mean absorption coefficient, which is a weighted average of the absorption
and scattering coefficients over all frequencies, and is equal to αR = ρκR, where κR is the Rosseland
mean opacity.

Since ∂T 4/∂z = 4T 3∂T/∂z, and

∂T 4

∂z
≈ T 4(z = H, r)− T 4(z = 0, r)

H − 0
≈ −T 4(z = 0, r)

H
, (68)

then, eq.(67) becomes

F =
4σ

3αRH
T 4 . (69)

Since the optical depth of the disc is given by

τd = ρHκR , (70)

eq.(69) becomes

F =
4σ

3τd
T 4 . (71)

As we already said, the main contributions to the opacity of the disc come from free-free ab-
sorption and electron scattering. According to Frank, King & Raine (1992), the Rosseland mean
opacity can be well approximated by the Kramer’s law,

κR = 6.6× 1022ρT−7/2 (cm2 g−1) , (72)

at radii,

R ≥ 4.3× 10−14Ṁ2/3M1/3
(
1−

√
3Rs

R

)2/3

. (73)
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At smaller radii the most important contribution is Thomson scattering, i.e.

κR ≈ κT = 0.4 (cm2 g−1) . (74)

For a typical AGN with a black hole of mass M = 107M⊙ and accretion rate ṁ = 0.05, which
translates to Ṁ = 1.26 × 1024g/s, we find that free-free absorption dominates at radii larger than
1.36× 1016cm = 4530Rs. Larger accretion rates and more massive black holes imply that the disc
region where opacity will be mainly determined by free-free absorption extends further out, as we
can tell from eq.(73). Therefore, for a disc that extends up to 5000Rs, we assume that Thomson
scattering is the main opacity source throughout the disc. Then the optical depth can be written
as

τd = ρHκT = ρHσT/mp . (75)

Since we derived an expression that connects the temperature with the energy flux, all that is
left is the energy balance equation

F = Q ⇒ 4σ

3τd
T 4 =

3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
. (76)

Now, the system of the disc equations is completed. We list all of them below:

P = ρ
GM

R3
H2 , (77)

H2
√

Pρ =
Ṁ

3πα

(
1−

√
3Rs

R

)
, (78)

P =
2ρkT

mp

+
4σT 4

3c
, (79)

4σ

3τd
T 4 =

3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
, (80)

τd =
ρHσT

mp

. (81)

We can use the above equations to compute ρ(r), which we will use to compute κff , according to
eq.(50), and Ts from eq.(54). We solve below the equations above in the case when either the gas
pressure or the radiation pressure is the dominant pressure component in the disc.

3.3 The radiation pressure dominated solutions

First we consider the disc region where Prad ≫ Pgas, which means that P ≈ 4σT 4/3c. Here, we
present the solutions for H/R,P, ρ, T, and τd, as a function of radius. Their derivation is shown in
Appendix A. The solutions are as follows:

H

R
(r) =

3

4
r−1(ṁ/η)J(r) , (82)

ρ(r) =
128

√
2

81

mp

σTRs

α−1r3/2[(ṁ/η)J(r)]−2 = 1.9× 10−13(αM8)
−1r3/2[(ṁ/η)J(r)]−2 (g cm−3) , (83)
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P (r) = Prad(r) =
4
√
2

9

mpc
2

σTRs

α−1r−3/2 = 4.8× 107(αM8)
−1r−3/2 (g cm−1 s−2) , (84)

T (r) =
(√2

3

c3mp

σσTRs

)1/4

α−1/4r−3/8 = 3.72× 105(αM8)
−1/4r−3/8 (K) , and (85)

τd(r) =
32
√
2

27
α−1r3/2[(ṁ/η)J(r)]−1 , (86)

where J(r) = 1−
√
3/r, M8 = M/(108M⊙).

Let us, also, calculate the effective optical thickness of the medium defined as τeff =
√

τa(τa + τs),
where τa = κffρH and τs = κTρH are the absorption and scattering optical thickness respectively.
Since Thomson scattering is the main contribution to opacity we can make the approximation
τeff ≈ √

τaτs. We compute τa using eq.(72), eq.(83) and eq.(85) and τs from eq.(86) to find

τeff (r) = 5.31× 10−5α−17/16M
−1/16
8 r93/32[(ṁ/η)J(r)]−2 . (87)

When τeff ≪ 1 the medium is said to be effectively thin. This means that most photons can escape
the medium by random walking before they are absorbed. On the contrary, when τeff ≫ 1 the
medium is effectively thick and thus we have thermal equilibrium between radiation and matter.

Lastly, we calculate the radiation to gas pressure ratio so we can identify the disc region where
radiation pressure dominates. Since the gas pressure is given by eq.(60), then the ratio is

Prad

Pgas

=
9

64
(
3
√
2

2
)1/4

1

k
(σσTRsm

3
pc

5)1/4α1/4r−21/8[(ṁ/η)J(r)]2

= 41.2× 105(αM8)
1/4r−21/8[(ṁ/η)J(r)]2 . (88)

Equations (82)-(88) have been derived assuming that radiation pressure dominates, therefore they
are valid only when the ratio is greater than unity, i.e. Prad/Pgas > 1.

3.4 The gas pressure dominated solutions

When Pgas ≫ Prad the solutions become

H

R
(r) = 1.7× 10−3(αM8)

−1/10r1/20[(ṁ/η)J(r)]1/5 , (89)

ρ(r) = 1.65× 10−5(αM8)
−7/10r−33/20[(ṁ/η)J(r)]2/5 (g cm−3) , (90)

P (r) = Pgas(r) = 2.13× 1010(αM8)
−9/10r−51/20[(ṁ/η)J(r)]4/5 (g cm−1 s−2) , (91)

T (r) = 7.8× 106(αM8)
−1/5r−9/10[(ṁ/η)J(r)]2/5 (K) , and (92)

τd(r) = 3.28× 105α−4/5M
1/5
8 r−3/5[(ṁ/η)J(r)]3/5 , (93)

τeff (r) = 473α−4/5M
1/5
8 r3/20[(ṁ/η)J(r)]1/10 . (94)
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The radiation to gas pressure ratio in this case is

Prad

Pgas

= 438(αM8)
1/10r−21/20[(ṁ/η)J(r)]4/5 . (95)

The above ratio must be below unity for the gas dominated solutions to hold.

3.5 The pressure ratio

Figure (11) shows plots of the pressure ratio, Prad/Pgas, for M8 = 0.01, 0.1, 1, 10, and ṁ =
0.005, 0.05, 0.5. The solid red line in the top left panel of Fig.(11) shows the pressure ratio given
by eq.(88), i.e. when radiation pressure dominates in the case of ṁ = 0.05. The dashed red line in
the same panel shows the same ratio when gas pressure dominates, i.e. Prad/Pgas calculated using
eq.(95). The two lines intersect at two radii, say req,1 and req,2, with req,1 ≪ req,2 (req,1 is very close
to risco and it is hard to see on the plot). Both the solid and the dashed red lines show Prad > Pgas

between req,1 and req,2, while Prad < Pgas at all other radii. This implies that the disc is radiation
pressure dominated between req,1 and req,2, and gas pressure dominated outside this region. It is
for this reason that we plot the radiation pressure dominated solutions between req,1 and req,2 in all
panels of Fig.(11), and the gas pressure solutions at all other radii. Figure (11) also shows that req,2
increases with increasing ṁ. Below a certain small accretion rate, the gas pressure should dominate
at all radii. At the same time, for a given accretion rate, req,2 appears to increase with the BH mass
as well.

The radii req,1 and req,2 should be the solutions to the equation Prad = Pgas, or equivalently
Prad/Pgas = 1. Using eq.(88)1, we find

41.2× 105(αM8)
1/4r−21/8[(ṁ/η)J(r)]2 = 1 ⇒

r21/8

J(r)2
= 41.2× 105(αM8)

1/4(ṁ/η)2 ⇒

r

J(r)16/21
= 331(αM8)

2/21(ṁ/η)16/21 (96)

Solving eq.(96) numerically we can calculate req,1, req,2 for any black hole mass and sufficiently large
accretion rates ṁ. For small accretion rates, we get no solutions, which means that gas pressure
dominates over the whole disc. Radii req,1 and req,2 divide the disc into three regions. The first
one is a very small annulus close to the inner edge, r < req,1, where gas pressure dominates (barely
visible in Fig.11). Then for req,1 < r < req,2 radiation pressure is dominant, while for the rest of the
disc, gas pressure prevails.

Figure (12) shows a plot of req,1 and req,2 versus ṁ for all the BH masses we consider. The
points at the bottom of the graph show the smaller roots req,1, while the points at the top indicate
the larger ones, req,2. Both axes in Fig.(12) are in logarithmic scale. This implies that a power-law
relation of the form

req,2(ṁ,M8) = A×
( ṁ

0.05

)s
, (97)

can describe well the dependence of req,2 on M8 and ṁ. If we take the logarithm of each side of
eq.(97), then we get

log(req,2) = logA+ s× log(
ṁ

0.05
) . (98)

1We could also arrive to the same result by solving Prad/Pgas = 1 using eq.(95), or even setting eq.(84) equal to
eq.(91).
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Figure 11: Pressure ratio Prad/Pgas for black hole masses M8 = 0.01, 0.1, 1, 10 and accretion rates
ṁ = 0.005, 0.05, 0.5.

Figure 12: The radius req as a function of the accretion rate ṁ for black holes of different masses.
Points at the bottom indicate req,1, while points at the top indicate req,2. The dot-dashed lines are
the best-fit lines (99)-(102). The dashed lines simply connect the req,1 points.
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Figure 13: A, s as function of M8. Solid lines show the best fit models to the data.

We therefore fit a straight line to the data plotted in Fig.(12) to determine A, s. The best fit results
are as follows:

req,2(ṁ,M8 = 0.01) = 128.4×
( ṁ

0.05

)0.839
(99)

req,2(ṁ,M8 = 0.1) = 164.9×
( ṁ

0.05

)0.825
(100)

req,2(ṁ,M8 = 1) = 209.6×
( ṁ

0.05

)0.815
(101)

req,2(ṁ,M8 = 10) = 265.8×
( ṁ

0.05

)0.807
, (102)

and the respective best fit models are plotted with the dot-dashed lines in Fig.(12). We notice that
A increases for larger M8, while s decreases. To study this behaviour we plot A and s as a function
of M8 in Figure (13). The figure shows that there is a linear relation between these two parameters
and log(M8). We therefore fitted the data plotted in Fig.(13) with lines of the form

A(M8) = c1 × log(M8) + c2 (103)

s(M8) = c3 × log(M8) + c4 , (104)

The best fit results are as follows:

A(M8) = 45.69× log(M8) + 215.02 (105)

s(M8) = −0.0106× log(M8) + 0.8162 , (106)

and the solid lines in Fig.(13) show these best-fit lines. Clearly, both A(M8) and s(M8) are well
described by equations (105) and (106), respectively.
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Figure 14: H/R, n, P, T, τd, τeff for a black hole of mass M8 = 0.1 and accretion rates ṁ =
0.005, 0.05, 0.5
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3.6 The disc parameters

Figure (14) shows plots of the disc parameters H/R, n, P, T, τd and τeff as a function or r. These
plots were computed using eqs.(82)-(87) when Prad > Pgas and eqs.(89)-(94) when Pgas > Prad. The
radii req,1, req,2 which determine the radiation/gas pressure dominated regions were calculated using
eq.(96).

On the top left panel, we present the ratio H
R
(r). We notice that when radiation pressure

dominates the ratio rises significantly. This increase in vertical thickness takes up a larger part of
the disc as the accretion rate increases. This is because the radiation zone expands as mentioned
before. We note that the highest values of H/R are of order 0.1 − 0.2, which are still consistent
with the thin disc approximation. The top right panel shows the number density, n, as a function
of the radius. The number density is equal to the mass density ρ divided by the proton mass mp

and multiplied by 2, to take into account the electrons from the ionized hydrogen. It decreases
logarithmically with increasing radius in the gas pressure dominated part of the disc. It also
decreases considerably in the radiation pressure part, where H/R increases significantly.

The middle panels show the pressure and the temperature radial profiles. The disc pressure
and temperature are maximum at a radius very close to risco. As radius increases, both quantities
drop as power laws of r (with pressure dropping faster than temperature). This is because the
dissipation rate of the gravitational energy, Q, decreases as we move outwards. This leads to
smaller temperatures at the outer disc. Since pressure is proportional to temperature it will present
the same behaviour. Temperature and pressure increase for larger accretion rates. This can be
explained by the increase of Q, since it is directly proportional to ṁ, as we can see in eq.(28). It is
worth mentioning that the dependence on the accretion rate disappears for both the temperature
and the pressure when radiation is dominant. This probably happens because the work that the
torques do is used to expand the disc, as the top left panel in Fig.(14) shows, instead of being
dissipated as heat.

The bottom panels show the disc optical depth. Both τd and τeff drop significantly when
radiation dominates since the disc becomes less dense, leading to fewer interactions between photons
and matter. Despite that, the scattering optical depth greatly exceeds unity for all r, meaning that
the disc is optically thick for Thomson scattering. For the effective optical depth, however, we
notice that when ṁ = 0.5 the disc becomes effectively thin. This means that photons from these
parts of the disc can escape before being absorbed or scattered. This happens inside a small part
of the radiation pressure zone, extending from r ≈ 3.1 to r ≈ 44. The rest of the radiation zone is
effectively thick for all ṁ.

Plots of the disc parameters as a function of radius are similar for other BH masses as well. The
black hole mass is merely altering the extent of the radiation zone, while the qualitative shape of
the disc parameters plots remains the same.

3.7 Computation of the modified disc spectrum

3.7.1 The surface temperature profile

Before we calculate the disc energy spectrum we need to calculate the surface temperature of
the disc. This is done as follows:

1. we split the disc into 265 annuli (each annulus has an inner radius ri and an outer radius
ri+1), just like we did in section 2.7.1,

2. we calculate the radii where Prad = Pgas, using eq.(96),
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3. we solve eq.(54) numerically for each radius ri, using the fsolve function of the python library
scipy. To solve for Ts, we must calculate the expression

4π
k4T 4

s

h3c2

∫ ∞

0

x3dx

(ex − 1)(1 +
√

1 + κτ/κff (x, ρ, Ts))
=

mpc
3

στRs

3

8
r−3ṁ(1−

√
3

r
) . (107)

The integral of the above expression is computed over the interval [0.01, 20] using the trape-
zoidal rule, i.e. ∫ ∞

0

f(x)dx ≈
∫ 20

0.01

f(x)dx =
N∑
i=0

f(xi+1) + f(xi)

2
∆xi , (108)

where ∆xi = xi+1 − xi and

f(x) =
x3

(ex − 1)(1 +
√

1 + κτ/κff (x, ρ, Ts)
. (109)

In our case, N=99, and the points xi are calculated by log(xi) = log(xlow) + i[log(xhigh) −
log(xlow)]/100, with xlow = 0.01 and xhigh = 20. We note that f(x) falls off very quickly
for very small and large x, and it is for this reason that the interval [0.01, 20] is a good
approximation of [0,∞]. The function f(x) also depends on κff and therefore the disc density.
At radii req,1 < ri < req,2 we compute the density using eq.(83), while for ri < req,1, ri > req,2
we use eq.(90).

Figure (15) shows a plot of Ts as a function of the radius forM = 107M⊙ and ṁ = 0.05. The vertical
dashed lines indicate the radii where Prad = Pgas. In this case, req,1 = 3.03 and req,2 = 174.5. We
also plot the temperature that we computed in section 2.7.1, where we assumed that the spectrum
of the disc is a multi black body (mBB) spectrum . At radii r < 50, Ts is higher than the mBB
temperature. This is expected since the black body is the most efficient emitter. At larger radii,
however, the two temperatures coincide, which means that the disc spectrum at these radii is similar
to the mBB spectrum.

3.7.2 The ”modified” black body (MBB) disc spectrum

To calculate the MBB spectrum, we start from eq.(36) with Iν instead of Bν , i.e.

F (ν) =
2π

D2

∫ Router

Rinner

IνRdR . (110)

Substituting Iν from eq.(48) (and multiplying by the cosξ factor) we find

F (ν) =
8πhν3cosξ

c2D2

∫ Router

Rinner

RdR

(ehν/kTs(R) − 1)(1 +
√

1 + κτ/κff [ν, Ts(R), ρ(R)])
, (111)

and changing to the dimensionless variable r ≡ R/Rs we get

F (ν) =
8πhν3R2

scosξ

c2D2

∫ router

rinner

rdr

(ehν/kTs(r) − 1)(1 +
√

1 + κτ/κff [ν, Ts(r), ρ(r)])
. (112)
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Figure 15: Temperature of a modified black body (MBB) and a multi black body (mBB) disc for
accretion rate ṁ = 0.05 and central black hole mass M = 107M⊙.

The calculation of the spectrum is very similar to that of section 2.7.2. We consider 500 frequencies
νi from νlow = 1013Hz to νhigh = 3 × 1016Hz with logarithmic step, using eq.(46). Then, for each
frequency νi, we calculate the integral in eq.(112) numerically using the trapezoidal rule, i.e.

F (νi) ≈
8πhν3

i R
2
scosξ

c2D2

264∑
j=0

f(rj+1) + f(rj)

2
∆rj , (113)

where
f(rj) =

rj

(ehνi/kTs(rj) − 1)(1 +
√
1 + κτ/κff [νi, Ts(rj), ρ(rj)])

, (114)

f(rj+1) =
rj+1

(ehνi/kTs(rj+1) − 1)(1 +
√

1 + κτ/κff [νi, Ts(rj+1), ρ(rj+1)])
. (115)

Of course, rj and rj+1 are the inner and outer radii of the same 265 annuli used previously, and ∆rj
their width.

Figure (16) shows the modified black body spectrum for the case of M = 107M⊙, ṁ = 0.05 for
an accretion disc at a distance D = 1Mpc and inclination ξ = 0o. We also show the multi black
body spectrum that we constructed in 2.7.2 for comparison. We notice that at frequencies smaller
than ∼ 1015Hz, the spectra are almost identical, while the spectra differ at higher frequencies. At
higher frequencies, the disc emits more power when we consider the modified black body emission.
This is because the disc in this case reaches higher temperatures in the innermost rings, as we can
see in Fig.(15).

We also plot the spectrum in units of [νF (ν)] = erg/sec/cm2 in Figure (17). From this figure
we find that the maximum power of the MBB emission is νF (ν)|max ≈ 6.1 × 10−7 erg/sec/cm2

and appears at νmax ≈ 5.8 × 1015Hz, while for the mBB power we find νF (ν)|max = 7.4 × 10−7

erg/sec/cm2, at νmax ≈ 6.7× 1015Hz.
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Figure 16: The modified black body (MBB) and the multi black body (mBB) disc spectrum when
ṁ = 0.05 and M = 107M⊙.

Figure 17: Same as in Fig.(16) but in νF (ν) units (erg/sec/cm2).
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Figure 18: Relative difference |FmBB −FMBB|/FmBB between mBB and MBB spectra. The dotted
lines show the frequencies where the spectra intersect (νeq,1 = 3.38 × 1015Hz and νeq,2 = 1.28 ×
1016Hz).

Figure (18) shows the relative difference between the two spectra, i.e. |FmBB − FMBB|/FmBB,
as a function of the frequency. It is clear that at low frequencies, the differences are negligible,
while they become significant at frequencies higher than ∼ 1015Hz. We also indicate the frequencies
νeq,1 = 3.38× 1015Hz and νeq,2 = 1.28× 1016Hz where the spectra intersect.

To get a better understanding of why MBB becomes noticeably different than the mBB spectrum,
Fig.(19) shows a plot of the frequency ν0, at which κff (r, ν0) = κT , as a function of the radius.
As mentioned before, for κff ≫ κT the modified spectrum approaches the black body spectrum,
while the spectra differ considerably when κT ≫ κff . For frequencies higher than ν0, κT is larger
than κff , since κff is a decreasing function of frequency. Figure (19) shows that ν0 > 8 × 1014Hz
at all radii. Therefore, for lower frequencies, the free-free opacity dominates at every part of the
disc and thus black body emission is a good approximation for the spectrum of each disc annulus.
At higher frequencies, the spectrum begins to deviate from the black body one as κT becomes the
main contribution to opacity.
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Figure 19: The frequency ν0 for which the free-free opacity and the Thomson opacity become equal,
κff (r, ν0) = κT , as a function of the disc radius. The red dashed line indicates the frequency
ν = 8× 1014Hz.
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Chapter 4: The f parameter

4.1 Introduction

So far, we have assumed that all the gravitational power released by accretion is used to heat
the disc, and is ultimately radiated away. However, AGN can be strong X-ray emitters, and can
produce powerful outflows, which may carry a substantial kinetic power. Both the X-ray emission
and the outflows could be powered by the energy released by accretion in the disc. In this section,
we study the disc structure and the resulting disc spectrum when a fraction of the gravitational
power is given to the previously mentioned effects.

For this reason, we introduce the dimensionless parameter f , which represents the fraction of the
power that is not dissipated to the disc. The rest of the gravitational energy, i.e. fraction (1− f),
is dissipated in the disc itself and is radiated away. In effect, in the previous chapters we studied
the disc spectrum assuming that f = 0 throughout the disc. As a result, all power was radiated
away, producing the disc spectrum. Here, we will consider cases where f ̸= 0.

Generally, f does not have to be constant throughout the disc. In the inner region, f can be
close to unity, while in the outer part it may approach zero. To better understand how f may vary
with radius, we consider the parameter

A(r) =

∫ r

rin

Q(r)2πrdr
/∫ rout

rin

Q(r)2πrdr , (116)

where rin = 3 and rout = 5000. A(r) equals the gravitational power that is dissipated up to a radius
r, divided by the total gravitational power released by accretion. Substituting the expression of
Q(r), from eq.(54), into eq.(116) we find

A(r) =

∫ r

3

r−2J(r)dr
/∫ 5000

3

r−2J(r)dr = 0.11

∫ r

3

r−2J(r)dr . (117)

We notice that A(r) is independent of the BH mass and the accretion rate, and depends solely on
the radius r and the inner and outer radius of the disc.

Figure (20) shows A(r) as a function of r. We calculated A(r) at 1000 radii in the interval [3, 50]
with logarithmic step. The dashed lines in this figure show the radii at which A(r) equals 1%, 5%,
10%, 20%, and 50%. We observe that A approaches unity fairly quickly. This is because most of
the gravitational energy is released from accretion in the inner parts of the disc.

4.2 The new disc parameters

In this chapter we compute the disc energy spectrum for various cases of f ̸= 0. To do this
we need to calculate the disc parameters, Ts, ρ, as we explained in the previous chapter. The
introduction of f will alter the equations that determine the disc parameters. More precisely, when
f ̸= 0 the energy balance equation, given in (80), becomes,

4σ

3τd
T 4 = [1− f(R)]

3

8π

GMṀ

R3

(
1−

√
3Rs

R

)
. (118)

This reduces the available energy that the disc can radiate away. As a result, the disc parameters
calculated in sections 3.3 and 3.4 change by a factor of [1− f(r)] in various exponents. In the case
where Prad ≫ Pgas the equations (82)-(88) become

H

R
(r) =

3

4
r−1(ṁ/η)J(r)[1− f(r)] , (119)
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Figure 20: A(r) as a function of r. The dashed lines mark the radii (in Rs) where A(r) is equal to
1%, 5%, 10%, 20%, and 50%.

ρ(r) = 1.9× 10−13(αM8)
−1r3/2[(ṁ/η)J(r)]−2[1− f(r)]−3 (g cm−3) , (120)

P (r) = Prad(r) = 4.8× 107(αM8)
−1r−3/2[1− f(r)]−1 (g cm−1 s−2) , (121)

T (r) = 3.72× 105(αM8)
−1/4r−3/8[1− f(r)]−1/4 (K) , (122)

τd(r) =
32
√
2

27
α−1r3/2[(ṁ/η)J(r)]−1[1− f(r)]−2 , (123)

τeff (r) = 5.31× 10−5α−17/16M
−1/16
8 r93/32[(ṁ/η)J(r)]−2[1− f(r)]−49/16 , and (124)

Prad

Pgas

= 41.2× 105(αM8)
1/4r−21/8[(ṁ/η)J(r)]2[1− f(r)]9/4 . (125)

In the gas pressure regime, i.e. Pgas ≫ Prad, we find

H

R
(r) = 1.7× 10−3(αM8)

−1/10r1/20[(ṁ/η)J(r)]1/5[1− f(r)]1/10 , (126)

ρ(r) = 1.65× 10−5(αM8)
−7/10r−33/20[(ṁ/η)J(r)]2/5[1− f(r)]−3/10 (g cm−3) , (127)

P (r) = Pgas(r) = 2.13× 1010(αM8)
−9/10r−51/20[(ṁ/η)J(r)]4/5[1− f(r)]−1/10 (g cm−1 s−2) , (128)
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T (r) = 7.8× 106(αM8)
−1/5r−9/10[(ṁ/η)J(r)]2/5[1− f(r)]1/5 (K) , (129)

τd(r) = 3.28× 105α−4/5M
1/5
8 r−3/5[(ṁ/η)J(r)]3/5[1− f(r)]−1/5 , (130)

τeff (r) = 473α−4/5M
1/5
8 r3/20[(ṁ/η)J(r)]1/10[1− f(r)]−7/10 , and (131)

Prad

Pgas

= 438(αM8)
1/10r−21/20[(ṁ/η)J(r)]4/5[1− f(r)]9/10 . (132)

The equation that determines the radii at which Prad = Pgas also changes. Setting eq.(125) to unity
we find

r

J(r)16/21
= 331(αM8)

2/21(ṁ/η)16/21[1− f(r)]6/7 . (133)

4.3 The f-parameter effects

To study the disc spectrum when f ̸= 0 we consider following four cases:

• case 1: f = 0 throughout the disc, which is what we assumed in chapters 2 and 3,

• case 2: f = 0.99 for r < r2 = 4.68 and f = 0 for the rest of the disc,

• case 3: f = 0.99 for r < r3 = 12.33 and f = 0 for the rest of the disc,

• case 4: f is decreasing with increasing radius as: f(r) = (
√
router −

√
r)/

√
router .

Cases 2 and 3 describe scenarios where 10% and 50% of the total accretion power is taken from
the disc, respectively. This power may be used to power the X-ray source, or to launch outflows,
assuming that X-rays are emitted close to the central BH, and the most powerful outflows originate
from the inner disc. In case 4, f is close to unity in the inner disc and it approaches zero as we
move on to the outer parts, meaning that more and more of the gravitational energy is given to the
disc at large radii.

Figure (21) shows plots of H/R, n, Prad/Pgas, T, τd, τeff as a function of the radius, for the cases
1,2 and 3 and accretion rates ṁ = 0.05, 0.5. The layout of the panels in Fig.(21) is the same as in
Fig.(14) of section 3.6, but we have replaced the disc pressure panel with a panel which shows the
Prad/Pgas ratio. After all, the behaviour of the pressure is very similar to that of the temperature.

At the top left panel, we present the height of the disc. For cases 2 and 3 the inner disc is very
thin, and thus we notice high densities. At radii r2 = 4.68, for case 2, and r3 = 12.33, for case 3,
the disc height suddenly increases and the density falls off. The reason for this discontinuity, is the
assumed, abrupt change of f from 0.99 to 0. This change also affects pressure. As we can see from
the middle left panel, when f = 0.99 we have a gas dominated zone, which shifts to a radiation zone
as soon as f drops to zero. The temperature is shown in the middle right panel. The inner disc
temperature in cases 2 and 3 is significantly larger than the temperature in case 1. In the bottom
panels, we present the scattering and the effective optical depth. Both remain above unity, except
for the case of ṁ = 0.5 in the bottom right panel. Cases 2 and 3 show larger values of τd and τeff
at small radii in comparison with case 1. At radii larger than r2 and r3, the disc parameters are
identical to these of case 1.

Figure (22) shows the disc parameters for the cases 1 and 4, for ṁ = 0.05, 0.5. We notice that
the radiation zone disappears completely in case 4, for the smallest accretion rate, i.e. ṁ = 0.05.
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Figure 21: H/R, n, Prad/Pgas, T, τd, τeff for a BH of massM8 = 0.1 and accretion rates ṁ = 0.05, 0.5,
for case 1: f = 0 at all r, case 2: f = 0.99 at r < 4.68, and case 3: f = 0.99 at r < 12.33.
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Figure 22: H/R, n, Prad/Pgas, T, τd, τeff for a BH of massM8 = 0.1 and accretion rates ṁ = 0.05, 0.5,
for case 1: f = 0 at all r, and case 4: f = (

√
5000−

√
r)/

√
5000.

Overall, in case 4 the disc height is smaller, and thus disc density, and temperature, as well as the
scattering and effective optical depth are higher. In fact, the disc remains effectively optically thick,
even when the radiation pressure dominates for ṁ = 0.5, as can be observed in the bottom right
panel of Fig.(22).

4.3 The disc spectrum and the f parameter

Knowing how the disc equations change with the introduction of f , we can compute the disc
energy spectrum using eq.(112), and following the same procedure as in section 3.7.2. As we
explained in that section, we need to calculate Ts(r) first. When f = 0, Ts(r) is defined by eq.(54).
But in the case when f ̸= 0, this equation has to be modified accordingly, as follows

4π
k4T 4

s (r)

h3c2

∫ ∞

0

x3dx

(ex − 1)(1 +
√

1 + κτ/κff )
= [1− f(r)]

mpc
3

στRs

3

8
r−3ṁ(1−

√
3

r
) . (134)

We solved the equation above numerically, as described in section 3.7.1. Figure (23) shows the
temperature radial profiles for the four cases of f considered so far. Since Ts(r) depends on the
amount of power that is available for the disc heating, case 1 (dashed blue line), where all the
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Figure 23: Surface temperature of accretion disc for a BH of mass M8 = 0.1 and accretion rate
ṁ = 0.05 for different cases of f .

gravitational power is radiated away, corresponds to the largest temperature. The dotdashed red
and solid green lines, i.e. case 2 and 3, show the smallest temperatures at small radii where f = 0.99.
As expected, when f drops to zero, they coincide with the blue line. In case 4 (black dotted line)
the temperature remains relatively small throughout the disc, since power is taken away from the
disc at all radii. At the outermost radius, all temperatures converge.

Having the surface temperature, we can calculate the disc spectrum. Figure (24) shows the
resulting disc spectra, in the frequency range 1013 − 3 × 1016Hz. The case 1 and 2 spectra, i.e.
blue and red curves, are almost identical. We notice that the blue curve is slightly above the
red one at high frequencies, due to the higher temperatures in case 1. Only a small part of the
total gravitational power is taken away from the disc in case 2, and this effect cannot alter the
spectrum considerably. On the other hand, the green spectrum has noticeably smaller values at
high frequencies, since half of the gravitational power is taken away from the disc. The case 4
spectrum is significantly lower than the other cases, at all frequencies. Actually, the SED shape in
the optical/UV band is significantly different in the last case as well (the slope of F (ν) between
∼ 1014Hz and ∼ 1015Hz is approximately F (ν) ∝ ν−1/3 in case 4).

Figure (25) shows the energy spectra in units of νF (ν) for the same cases of f . We notice,
that the maximum emitted power decreases with increasing f , and the respective frequency of the
peak power is shifted to smaller frequencies. This is because the spectrum at high frequencies is
determined by the inner parts of the disc, which have high temperatures. As the gravitational
energy released in those parts is not radiated away, these parts do not contribute to the disc energy
spectrum. As a result, the peak of the spectrum shifts to smaller frequencies. The peaks of the cases
1, 2, 3, and 4 are located at νpeak,1 ≈ 5.8 × 1015Hz, νpeak,2 ≈ 4.8 × 1015Hz, νpeak,3 ≈ 3.1 × 1015Hz,
and νpeak,4 ≈ 2.2× 1015Hz respectively.

38



Figure 24: Disc spectra for a BH of mass M8 = 0.1 and accretion rate ṁ = 0.05 for different cases
of f .

Figure 25: Same as in Fig.(24) but in νF (ν) units.
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Chapter 5: Summary and conclusions

The main objective of this work was to study the energy spectrum of an accretion disc around
SMBHs, beyond the simple assumption of black body emission. We considered the more realistic
scenario where absorption and scattering effects take place, and we also examined how the spectrum
changes when a percentage of the accretion power is taken from the disc and is (possibly) used to
power the X-ray source and/or outflows.

We started by making standard assumptions for the disc rotation, and we used the conservation
of mass and angular momentum for a disc annulus, to derive an expression for the gravitational
power released, due to viscosity. Assuming the available accretion power is used to heat the disc,
we studied its temperature profile and energy spectrum, by assuming that each disc annulus emits
as a black body.

In chapter 3, we considered the more realistic case that free-free absorption and Thomson scat-
tering take place in the disc, and thus the emission is that of a modified black body. To calculate
the disc spectrum in this case, we need to compute the surface temperature and the density of the
disc. To derive the latter we proceeded by solving the disc equations in the radiation pressure and
gas pressure regimes, as was initially performed by Svensson & Zdziarski(1994). We investigated
how the gas and radiation pressure parameters vary as a function of radius, for various accretion
rates, and we determined the disc parameters accordingly. Then, we numerically computed the
surface temperature by solving the energy balance equation for the “modified” emission. Using the
resulting temperature we calculated the modified black body spectrum and checked how it compares
with the simple black body case.

Lastly, we assumed that a fraction of the gravitational power, say f , is not dissipated to the
disc, and could be given to the X-ray source, outflows, and winds. We then investigated how the
introduction of f affects the disc parameters in the radiation and gas pressure regimes. Then,
we computed the disc temperature profile and the energy spectrum assuming three different cases
regarding the dependence of f on disc radius, and we compared the results.

Our findings from this work can be summarized as follows:
1. We provided equations that can be used to calculate the radius where the radiation and gas

pressure become equal, for any black hole mass and accretion rate. We calculated req,1 and
req,2 using eq.(96) and we plotted req,2 as a function of ṁ for all the BH masses we considered.
We fitted a relation of the form

req,2(ṁ,M8) = A×
(
ṁ/0.05

)s
(135)

to the req,2 versus ṁ data. The model fitted the data well with

A(M8) = 45.69× log(M8) + 215.02 (136)

s(M8) = −0.0106× log(M8) + 0.8162 . (137)

Equations (135), (136) and (137) can be used to compute directly the radius where Prad = Pgas,
for any values of M8 and ṁ (in the range [0.01, 10] and [0.005, 0.5] respectively), without
solving numerically eq.(96). We note that these equations provide req,2. The inner radius
where Prad = Pgas is close to risco, and thus one can safely assume that the inner disc is
radiation pressure dominated. This assumption becomes more accurate for large values of
M8, ṁ.

2. We computed the disc surface temperature profile and the energy spectrum of the modified
black body emission case and compared it with the black body case. The temperature in the
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modified case is larger at the inner part of the disc, i.e. at R < 100Rs. The disc spectra
when we assume black body and modified black body emission agree well below ∼ 1014Hz.
At higher frequencies the two spectra differ by more than ∼ 1%. At frequencies higher than
∼ 1015Hz the difference is of the order of ∼ 10%, and increases with increasing frequency
reaching ∼ 100% in the far-UV. This happens because, in the case when we assume modified
black body emission, the temperature is high in the inner disc. As a result, the emitted power
at high frequencies is higher in this case. In addition, Thomson scattering dominates high-
frequency emission, since free-free absorption falls off at high frequencies. Consequently, the
intensity of modified black body emission is not well approximated by the Planck function
which leads to noticeable differences between the two cases.

3. We computed the disc surface temperature profile and the modified disc spectrum when a
fraction f of the accretion power is not dissipated to the disc, but it may be given to the
X-ray source and outflows. Apart from the already studied case where f = 0 throughout the
disc (case 1) we considered 3 new cases, i.e. case 2: f = 0.99 for r < 4.68 and f = 0 for the
rest of the disc, case 3: f = 0.99 for r < 12.33 and f = 0 for the rest of the disc, and case 4:
f = (

√
router −

√
r)/

√
router. In all cases, we also assumed modified black body emission. Our

results are as follows:

(a) The disc temperature decreases at those disc regions where f ̸= 0. Since we assumed
that in these regions f ≈ 1, the disc temperature decreases significantly.

(b) The disc spectrum, in general, is affected at high frequencies, i.e. at frequencies higher
than ∼ 1015Hz (or at wavelengths smaller than 4000Å), in cases 2 and 3. The emitted
power decreases when f ̸= 0, as expected. In case 3, where half of the accretion power
released in the disc is taken away, the disc emission decreases exponentially below ∼
1000Å.

(c) The effects of f on the disc temperature and spectrum are even more significant in case
4. The disc temperature is smaller at all radii (when compared with the temperature in
case 1). Consequently, the case 4 disc spectrum is significantly different when compared
with the disc spectrum in all other cases, and not only because the emitted power starts
decreasing exponentially at a lower frequency. In fact, this frequency is roughly similar in
the case 3 and 4 spectra. The main effect in the case 4 disc spectrum is that the emitted
power decreases at all wavelengths higher than ∼ 30000Å(in the near infrared part of
the spectrum). The amount of power “lost” from the emitted disc spectrum increases
with increasing frequency. As a result, it is the slope of the overall spectrum, both in
[ν, F (ν)] and in the [ν, νF (ν)] representations that changes considerably.

Most of the theoretical disc spectra that are used to fit experimental data do not take into
account the possibility that f may not be zero. Our results show that such a possibility has
significant effects to the expected disc spectrum, in the optical and UV bands, and it should
be taken into consideration when fitting data.
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Appendices

Appendix A: Solution of the disc equations

Here we derive the expressions (82)-(88) for the disc height, density, pressure, temperature,
scattering optical depth, effective optical depth and the pressure ratio in the radiation domination
regime. We solve eq.(77) for the density

P = ρ
GM

R3
H2 ⇒ ρ =

P

H2

R3

GM
. (138)

We can also get an expression for the temperature as follows

P = Prad =
4σ

3c
T 4 ⇒ T 4 =

3c

4σ
P . (139)

Next, we take eq.(80) and substitute the optical depth τ = ρHσT/mp and the temperature

4σ

3τ
T 4 =

3

8π

GMṀ

R3
J(R) ⇒ cmp

σT

P

ρH
=

3

8π

GMṀ

R3
J(R) , (140)

where J(R) =
(
1−

√
3Rs

R

)
. Then we substitute eq.(138) for the density into eq.(140). It turns out

that the pressure cancels out and we get an expression with only the disc height as the unknown,

cmp

σT

H
GM

R3
=

3

8π

GMṀ

R3
J(R) ⇒ H =

3

8π

σT

cmp

ṀJ(R) . (141)

Then we substitute the density into eq.(78) and solve for the pressure

H2
√

Pρ =
Ṁ

3πα
J(R) ⇒ H2

√
P 2

H2

R3

GM
=

Ṁ

3πα
J(R) ⇒

P =
Ṁ

3πα

√
GM

R3

1

H
J(R) . (142)

We use the expression for H we just derived to find the pressure

P =
8

9

cmp

σT

α−1

√
GM

R3
. (143)

We can now find the density from eq.(138)

ρ =
512π2

81
(
cmp

σT

)3α−1Ṁ−2J(R)−2

√
R3

GM
. (144)

Then we find the temperature from eq.(139)

T =
(2
3

c2mp

σσT

α−1

√
GM

R3

)1/4

(145)

Next, we solve for the optical depth

τ =
64π

27

c2mp

σT

α−1Ṁ−1J(R)−1

√
R3

GM
. (146)
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The effective optical depth is given by

τeff =
√

κffρHτ ⇒ τeff = 180.4(
m41

p c42

σ41
T σ−7

)1/16α−17/16[ṀJ(R)]−2(
R3

GM
)31/32 . (147)

To find the pressure ratio we need the gas pressure

Pgas =
2ρkT

mp

⇒ Pgas =
1024π2

81
(
2

3
)1/4k(

c14m9
p

σσ13
T

)1/4α−5/4[ṀJ(R)]−2(
R3

GM
)3/8 . (148)

Then the pressure ratio is

Prad

Pgas

=
9

128π2
(
3

2
)1/4(

σσ9
T

c10m5
p

)1/4α1/4[ṀJ(R)]2(
R3

GM
)−7/8 . (149)

To get these expressions to the form of (82)-(88) we need to introduce the dimensionless variables
of section 2.7.1, .i.e.

r ≡ R

Rs

, ṁ ≡ ηṀc2

LEdd

, (150)

with

LEdd = 2π
mpc

3

σT

Rs , (151)

and Rs = 2GM/c2. Equation (141) becomes

H

R
=

3

8π

σT

cmp

Ṁ
1

R
J(R) ⇒ H

R
=

3

8π

σT

cmp

Leddṁ

ηc2
1

rRs

J(r) ⇒

H

R
=

3

8π

σT

cmp

2π
mpc

3

σT

Rs
1

Rsc2
ṁ

η

1

r
J(r) ⇒ H

R
=

3

4
r−1 ṁ

η
J(r) , (152)

which is eq.(82). Note that

J(R) =
(
1−

√
3Rs

R

)
=

(
1−

√
3Rs

rRs

)
=

(
1−

√
3

r

)
= J(r) . (153)

Let us also perform the substitutions for the density

ρ =
512π2

81
(
cmp

σT

)3α−1(
ṁ

c2η
2π

mpc
3

σT

Rs)
−2

√
r3R3

s

c2Rs/2
J(r)−2 ⇒

ρ =
512π2

81
(2π)−2

√
2
c3m3

pm
−2
p c−2R−2

s Rs

σTσ
−2
T c

α−1[
ṁ

η
J(r)]−2

ρ =
128

√
2

81

mp

σTRs

α−1r3/2[
ṁ

η
J(r)]−2 . (154)

Then we can substitute mp = 1.6726× 10−24g, σT = 6.652× 10−25cm2 and

Rs =
2GM

c2
=

2G

c2
M

108M⊙
108M⊙ = 2.95× 1013M8 , (155)

where G = 6.6743×10−8cm3g−1s, c = 2.998×1010cm/s, M⊙ = 1.989×1033g and M8 = M/(108M⊙)
to find

ρ = 1.9× 10−13(αM8)
−1r3/2[(ṁ/η)J(r)]−2 (g cm−3) . (156)

The rest of the expressions for P, T, τ, τeff , Prad/Pgas can be found similarly.
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