
Modeling Carbon Nanostructures with
Empirical Interatomic Potentials

by
Sophia Thiele

A Dissertation
Submitted to the Department of Materials Science and Technology

of the University of Crete

October 2022



Table of Contents
Acknowledgements                                                                                                                                    ..................................................................................................................  3  

Περίληψη                                                                                                                                                     ..................................................................................................................................  4  

Abstract                                                                                                                                                        ....................................................................................................................................  5  

Chapter 1: Introduction: Carbon Structures                                                                                           .............................................................................  6  

1.1Carbon and its Allotropes                                                                                                                ................................................................................................  6  

1.2 Graphene, Graphene Nanoribbons and Diamond                                                                      ..........................................................  7  

1.3 Forms of Hydrocarbons                                                                                                                  ...................................................................................................  9  

Chapter 2: Simulations and Methods                                                                                                    .....................................................................................  10  

2.1 Density Functional Theory (DFT)                                                                                                 ...................................................................................  10  

2.2 Molecular Dynamics                                                                                                                      .....................................................................................................  10  

2.3 Bond Order Potential                                                                                                                    ....................................................................................................  12  

2.4 Radial Distribution Function (RDF)                                                                                              ................................................................................  13  

2.5 Vibrational Spectra & Fast Fourier Transform                                                                          ...............................................................  14  

Chapter 3: Results and Discussion                                                                                                         ..........................................................................................  18  

3.1   Calculation     of     diamond     lattice     constant     with     DFT                                                                   ........................................................  18  

3.2   Calculation     of     diamond     lattice     constant     with     empirical     potentials and cg     algorithm        . . .  19  

3.3   Calculation     of     graphene     lattice     constant     with     DFT                                                                  .......................................................  21  

3.4   Calculation     of     graphene     lattice     constant     with     empirical     potentials and cg algorithm       . .  22  

3.5 NVE Simulation for 10K and 300K                                                                                               .................................................................................  25  

3.6 Small Hydrocarbon Molecules: Methane and Benzene                                                          ................................................  27  

3.7 Hydrocarbon chains                                                                                                                      ......................................................................................................  28  

3.8 Graphene Nanoribbons: Armchair and Zigzag                                                                          ..............................................................  29  

3.9 Vibrational Spectra and Displacements of H-atoms                                                                ......................................................  32  

Chapter 4: Conclusions                                                                                                                            ...........................................................................................................  53  

5.Bibliography                                                                                                                                           .........................................................................................................................  54  

6.Appendix                                                                                                                                                 ..............................................................................................................................  56  

6.1 Appendix A:   Code for Fast Fourier Transform                                                                          ...............................................................  56  

6.2 Appendix B:   Example of input script and data file for LAMMPS                                            ...................................  59  



Acknowledgements

Firstly, I’d like to express my thanks to my thesis supervisor and teacher Professor
Georgios Kopidakis for the suggestion of the subject and for his consistent support
and guidance during the running of this project. I would also like to thank Georgios
Vailakis for providing advice regarding analysis. Without this, the research would not
have been possible. Furthermore I would like to thank the rest of the Quantum Theory
of Materials Group (QTM) who have been a great source of support. Finally, I would
like to thank Professor Stamatis Stamatiadis for helping with this research project.



Περίληψη
Τα υλικά και οι νανοδομές με βάση τον άνθρακα αποτελούν σημαντικό μέρος της
επιστημονικής  έρευνας. Ο  άνθρακας  είναι  πανταχού  παρών  στη  φύση,  από  τους
ζωντανούς  οργανισμούς,  οι  οποίοι  βασίζονται  σε  οργανικές  ενώσεις,  μέχρι  το
σύμπαν,  όπου  είναι  το  τέταρτο  πιο  άφθονο  στοιχείο.  Τα  άτομά  του  έχουν  την
ικανότητα  να  σχηματίζουν  ποικίλους  δεσμούς  με  αποτέλεσμα  τη  δημιουργία
διάφορων αλλότροπων, οι οποίες διαδραματίζουν επίσης κρίσιμο ρόλο στην επιστήμη
και τη μηχανική των υλικών. Η κατανόηση και η προσομοίωση πολλών διαφορετικών
δεσμικών περιβαλλόντων αποτελεί πρόκληση για τη θεωρία και τους υπολογισμούς
και  σημαντική  προσπάθεια  επικεντρώθηκε  στην  ανάπτυξη  αξιόπιστων  και
μεταβιβάσιμων  δια-ατομικών  δυναμικών  για  κλασικές  προσομοιώσεις  μοριακής
δυναμικής (MΔ). Η παρούσα διατριβή αφορά την εφαρμογή της κλασικής ΜΔ με τη
χρήση τέτοιων  εμπειρικών  δυναμικών  για  τη  δημιουργία  υλικών  και  μορίων  που
αποτελούνται από άνθρακα και υδρογόνο, τον προσδιορισμό των βασικών δομικών
και  δυναμικών  ιδιοτήτων  τους  και  τη  σύγκριση  των  αποτελεσμάτων  με  άλλες
θεωρητικές  μεθόδους,  όπως  η  θεωρία  συναρτησιακού  πυκνότητας  και  ισχυρής
δέσμευσης, καθώς και με το πείραμα. Πιο συγκεκριμένα, η δομή, τα μήκη δεσμών
και τα φάσματα δονήσεων για το διαμάντι, το γραφένιο και τις νανοταινίες του, το
μεθάνιο,  το  βενζόλιο  και  τις  αλυσίδες  υδρογονανθράκων  εξετάστηκαν  με
προσομοιώσεις ΜΔ χρησιμοποιώντας δια-ατομικά δυναμικά τάξης δεσμών. Για τις
ΜΔ  χρησιμοποιήθηκε  το  πακέτο  προσομοίωσης  LAMMPS  (Large-scale
Atomic/Molecular  Massively  Parallel  Simulator)  και  αναπτύχθηκε  εσωτερικό
λογισμικό για τον υπολογισμό των δονητικών φασμάτων από τα αποτελέσματα των
προσομοιώσεων ΜΔ με χρήση Fast Fourier Transform. Η συστηµατική σύγκριση των
αποτελεσµάτων δείχνει συνολική συµφωνία µεταξύ των εµπειρικών δυναµικών και
του  πειράµατος,  µε  πολύ  λίγες  εξαιρέσεις,  όπου  θα  πρέπει  να  χρησιµοποιούνται
ακριβέστερες µέθοδοι πρώτων αρχών. Επιπλέον, τα δονητικά φάσματα αναλύονται
ως προς τη θερμοκρασία, τους κανονικούς τρόπους ταλάντωσης και τις εντοπισμένες
διεγέρσεις.



Abstract 
Carbon based materials and nanostructures are an important part of scientific research.
Carbon is ubiquitous in nature, from the living organisms, which are all  based on
organic compounds, to the universe, where it is the fourth most abundant element. Its
atoms have the ability to form diverse bonds resulting in various allotropes which also
play a crucial role in materials science and engineering. Understanding and simulating
several different bonding environments is a challenge for theory and computation and
considerable  effort  focused  on  developing  reliable  and  transferrable  interatomic
potentials for classical molecular dynamics (MD) simulations. This thesis pertains to
the application of classical MD using such empirical potentials to create materials and
molecules  consisting of carbon and hydrogen, determine their  basic structural  and
dynamical properties, and compare the results with other theoretical methods, such as
density functional theory and tight-binding, as well as experiment. More specifically,
structure,  bond  lengths  and  vibrational  spectra  for  diamond,  graphene  and  its
nanoribbons,  methane,  benzene  and  hydrocarbon  chains  were  examined  with  MD
simulations  using  bond  order  interatomic  potentials.  The  simulation  package
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) was used for
the MD and in-house software was developed for the calculation of vibrational spectra
from  the  results  of  MD  simulations  using  Fast  Fourier  Transform.  Systematic
comparison  of  results  shows  overall  agreement  between  empirical  potentials  and
experiment, with very few exceptions, where more accurate first principles methods
should be used. Moreover, vibrational spectra are analyzed in terms of temperature,
normal modes, and localized excitations.



Chapter 1: Introduction: Carbon Structures
1.1Carbon and its Allotropes 
Element: Carbon

Carbon, the 6th element in the periodic table is denoted by letter ‘C.’ Carbon is found
almost everywhere, and it is one of the most abundant materials on earth. It is the 4 th

most common element in the universe and 15th most common on earth’s crust. The
name carbon comes from a  Latin  word “carbo,”  which  means  coal  and charcoal;
hence,  it  is  also derived from the  French word “charbon” which  means  charcoal.
Carbon is the building block of life and its uses have shaped human history, from
fossil fuels to the diamond trade. Today, carbon once again promises revolutionary
applications, thanks to the discovery of nanoscale carbon structures over the past three
decades.  Carbon’s  ability  to  form bonds  with  four  other  atoms  goes  back  to  its
number and configuration of electrons. Carbon has an atomic number of six (meaning
six protons, and six electrons as well in a neutral atom), so the first two electrons fill
the inner shell and the remaining four are left in the second shell, which is the valence
shell. To achieve stability, carbon must find four more electrons to fill its outer shell,
giving a total  of eight  and satisfying the octet  rule.  Carbon atoms may thus form
bonds to as many as four other atoms. For example, in methane (CH4), carbon forms
covalent bonds with four hydrogen atoms. Each bond corresponds to a pair of shared
electrons (one from carbon and one from hydrogen), giving carbon the eight electrons

it needs for a full outer shell. The molecular binding behavior of carbon is not based
on identical molecular orbitals but on hybridization. 

Hybridization was introduced to explain molecular structure when the valence bond
theory failed to properly calculate them. Valence bond (VB) theory assumes that all
bonds are localized bonds formed between two atoms by the donation of an electron
from each atom. This is actually an unacceptable statement as many atoms bond using
delocalized  electrons.  It  is  experimentally  observed  that  bond  angles  in  organic
compounds are close to 109,5o, 120o, or 180o. According to Valence Shell Electron
Pair Repulsion (VSEPR) theory, electron pairs repel each other and the bonds and
lone pairs around a central atom are generally separated by the largest possible angles.
[23]

Specifically  for  the  carbon  element,  in  the  ground  state,  there  are  two  unpaired
electrons in the outer shell (electron configuration: (1s)2(2s)2(2p)2) ), so that one could
assume the ability to bind only two additional molecules. But a binding ability for
four electrons is noticed. The reason is the small energy difference between the 2s-
and the 2p-state, so that it is easily possible to excite one electron from the 2s-state
into the 2p-state. In the presence of an external perturbation, such as a close hydrogen,
the energy difference is overcome. This results in a mixed state formed out of one s-
orbital  and three p-orbitals,  namely px,  py and pz,  is  produced.  Four new hybrid
orbitals  are formed. So when  carbon is  bonded to four other atoms (with no lone



electron pairs), the hybridization is sp3 and the arrangement is  tetrahedral with the
center of masses to be in the corners.  The characteristic angle between the hybrid
orbitals in sp3-configuration is 109.5 degree. On the other side, a carbon atom bound
to three atoms (two single bonds, one double bond) is sp2 hybridized and forms a flat
trigonal or triangular arrangement with 120° angles between bonds.  In particular, the
sp2-hybridization is the combination of one s-orbital with only two p-orbitals, namely
px and py. The additional pz-orbital is perpendicular to the sp2-hybrid orbitals and
forms a π-bond. The third  possible  arrangement  for  carbon is  sp hybridization  in
which the s orbital of the excited state carbon is mixed with only one out of the three
2p orbitals. This hybridization results in a linear arrangement with an angle of 180°
between bonds. [23][26]

Allotropy in Carbon 

One of the most amazing properties of carbon is its ability to make long carbon chains
and rings. This property of carbon is known as catenation. Carbon has many special
abilities out of all one unique ability is that carbon forms double or triple bonds with
itself  and  with  other  electronegative  atoms  like  oxygen  and  nitrogen.  These  two
properties of carbon i.e catenation and multiple bond formation, it has the number of
allotropic forms. Allotrope is nothing but the existence of an element in many forms
which will have different physical properties but will have similar chemical properties
and its forms are called allotropes of allotropic forms. Carbon allotropes are all based
on carbon atoms but exhibit different physical properties, especially with regard to
hardness. Carbon exists in two allotropic form (i) crystalline (ii) amorphous.[29] The
crystalline forms are diamond and graphite whereas the amorphous forms are coal,
charcoal, lamp black etc. Though these allotropes of carbon have a different crystal
structure and different physical properties, their chemical properties are similar and
show similar chemical properties. Both give off carbon dioxide when strongly heated
in the presence of oxygen. 

1.2 Graphene, Graphene Nanoribbons and Diamond 
Graphene 

Graphene is composed of sp2 hybridized carbon atoms arranged in a 2D honeycomb
crystal lattice. Three valence electrons of carbon atoms in graphene form bonds (σ)
with their next neighbours while the fourth electron of each carbon atom localized in
the pz (π) orbitals perpendicular to the planar sheet form highly delocalized bonds (π)
with the others. The name is derived from "graphite" and the suffix -ene, reflects the
fact that the graphite allotrope of carbon contains numerous double bonds. In 2004,
the  material  was  rediscovered,  isolated  and  investigated  at  the  University  of
Manchester,  by  Andre  Geim  and  Konstantin  Novoselov.  In  2010,  Geim  and
Novoselov  were  awarded  the  Nobel  Prize  in  Physics  for  their  "groundbreaking
experiments  regarding  the  two-dimensional  material  graphene".  High-quality
graphene proved to be surprisingly easy to isolate. [1] 



The possibility of wrapping up graphene into 0D fullerenes, rolling it into 1D carbon
nanotubes (CNTs) and stacking of it  into 3D graphite makes graphene the central
building block of all graphitic materials. (see Figure 1.2.1) [2]

Graphene Nanoribbons 

Graphene  nanoribbons  (GNRs)  are  planar,  finite,  quasi-one-dimensional  graphene
structures. They are generally categorized by the structure of their long edges, which
can have an armchair,  a zigzag,  or an intermediate  character  (see Fig.  1.2.2).  [18].
Zigzag GNRs are always metallic,  while armchair  GNRs can be either metallic or
semiconducting. [19]

Figure 1.2.2 [18]: Categorization of graphene nanoribbons

Diamond 

Diamond is a solid form of the element carbon with its atoms arranged in a crystal
structure  called  diamond  cubic.  Diamond  has  the  highest  hardness  and  thermal
conductivity  of  any  natural  material,  properties  that  are  used  in  major  industrial
applications such as cutting and polishing tools. Although diamond is not fragile or
prone to breaking apart, all substances including diamond can fracture or shatter. Due

Figure 1.2.1  [2]:  examples  of  different  carbon nanostructures:   fullerene  (0D),  carbon nanotubes (1D),
graphene (2D), graphite (3D)



to its particular crystal structure, diamond has certain planes of weakness along which
it can be split. Diamond is said to have perfect cleavage in four different directions,
meaning it will separate neatly along these lines rather than in a jagged or irregular
fashion.  This  is  because  the diamond crystal  has  fewer chemical  bonds along the
plane of its octahedral face than in other directions. Diamond cutters take advantage
of cleavage to fashion diamonds efficiently. [22] They are also naturally lipophilic and
hydrophobic, which means the diamonds' surface cannot be wet by water, but can be
easily wet and stuck by oil. [4]

1.3 Forms of Hydrocarbons
Hydrocarbon molecules 

Methane, an outstanding fuel, is a good example of hydrocarbons. These are organic
molecules consisting completely of carbon and hydrogen and are often used as fuels:
the propane in a gas grill or the butane in a lighter. The atoms in hydrocarbons have
bonds between them called covalent bonds. This is a type of chemical bond where
two atoms  are  connected  to  each  other  by  the  sharing  of  two or  more  electrons.
Because hydrocarbons have many such bonds, a large amount of energy is stored,
which  is  released  when  these  molecules  are  burned  (oxidized).  Methane  is  the
simplest hydrocarbon molecule, with a central carbon atom bonded to four different
hydrogen atoms. The geometry of the methane molecule, where the atoms reside in
three dimensions, is determined by the shape of its electron orbitals. The carbon and
the four hydrogen atoms form a shape known as a tetrahedron, with four triangular
faces; for this reason, methane is described as having tetrahedral geometry. [3]

Hydrocarbon chains

Hydrocarbon chains are formed by successive bonds between carbon atoms and may
be branched or unbranched. The whole geometry of the molecule is transformed by
the different geometries of single, double, and triple covalent bonds. Double and triple
bonds change the geometry of the molecule: single bonds allow rotation along the
axis of the bond, while double bonds lead to a planar configuration and triple bonds to
a linear one. These geometries have an important  impact  on the form a particular
molecule can assume. [3]

Hydrocarbon rings

The hydrocarbons discussed so far have been aliphatic hydrocarbons, which consist of
linear  chains  of  carbon  atoms.  A  different  type  of  hydrocarbon,  aromatic
hydrocarbons, be made up of closed rings of carbon atoms. Ring structures are found
in hydrocarbons, sometimes with the presence of double bonds. The benzene ring is
present in many biological molecules including some amino acids and most steroids.
Benzene is a natural component of crude oil and has been classified as a carcinogen.
[3]



Chapter 2: Simulations and Methods
2.1 Density Functional Theory (DFT)
Density-functional  theory  (DFT)  is  a  successful  theory  to  calculate  the  electronic
structure of atoms, molecules, and solids. Its goal is the quantitative understanding of
material  properties  from  the  fundamental  laws  of  quantum  mechanics.  DFT
calculations are performed, in this work, with GPAW[31]. It is an efficient program
package for electronic structure calculations. It is based on DFT implemented within
the projector augmented wave (PAW).

Traditional electronic structure methods attempt to find approximate solutions to the
Schrödinger equation of N interacting electrons moving in an external, electrostatic
potential.  But  it  is  quite  difficult  to  achieve  something  like  this,  even  for  small
systems, and for larger numbers of N the description is not allowed. At the same time
it is a problem that is not at all familiar, so that there are not many research projects,
because the resulting wave functions are complex objects.

A different approach is taken in density-functional theory where, instead of the many-
body wave function, the electron density is used as the fundamental variable. Since
the  density  is  a  function  of  only  three  spatial  coordinates  (rather  than  the  3N
coordinates  of  the  wave  function),  density-functional  theory  is  computationally
possible even for large systems. [8]

DFT calculation provides more accurate result but this calculation is applicable for
small  system  and  based  on  quantum  methods.  On  the  other  hand,  empirical
interatomic potentials calculations are more significant for big systems and based on
classical mechanics. And this is how molecular dynamics come into play.

2.2 Molecular Dynamics
The ease with which computers can be used has allowed the current generation of
scientists to meet the demands of engineers for solutions to complex problems and to
push the boundaries to what is technologically possible. Two distinct sciences have
evolved along with the development of the computer. One is computer science which
examines  the  logic,  design  and  control  of  computers,  the  representation  and
organization of data structures, the design of programming languages and operating
systems, etc. The other is computational science - the science of computation rather
than computers. It is the older of the two, established much earlier under the name of
"numerical methods". This examines the various means by which functions can be
approximated, or differentiated and integrated. It deals with optimization techniques,
finding  the  roots  in  equations,  solving  systems  of  linear,  ordinary  and  partial
differential equations - in fact, any analytical methods face a "bunch" of problems,
numerical methods try to give an answer to them.



Computational science forms the mathematical backbone of computational physics. A
computational  physicist  tries  to  reach  approximate  solutions  to  problems  that  are
otherwise difficult to obtain. For a system with a stable state a computational solution
would  normally  be  a  graph  representing  the  relationship  between  two  or  more
parameters. For a dynamic, time-varying system, computations can trace its behavior
over time and space, in effect recreating the system itself. Such a recreation is usually
called  a  'computer  simulation',  and if  the  simulation  is  necessarily  complete  it  is
referred to as a 'computer experiment'.

Molecular  dynamics  (MD)  is  a  computer  simulation  method  for  analyzing  the
physical movements of atoms and molecules. The atoms and molecules are allowed to
interact for a fixed period of time, giving a view of the dynamic "evolution" of the
system, so the system physical properties are monitored. Those properties are either
macroscopic  system  properties,  [V  (volume),  P  (pressure),  T  (temperature),  N
(number  of  particles)],  or  microscopic  system  properties,  [vi (velocities),  ri

(positions)].[16] In the most common version, the trajectories of atoms and molecules
are determined by numerically solving Newton's equations of motion for a system of
interacting particles, where forces between the particles and their potential energies
are often calculated using interatomic potentials or molecular mechanics force fields.
[10]

This research includes  NVE and NVT simulations.  The micro canonical  ensemble
NVE signifies a system where the number of atoms, the system volume and the total
energy (the sum of potential and kinetic energy) are kept constant. The equations of
motion are solved and the positions and velocities are updated every subsequent time
step.

The canonical ensemble NVT contains all possible states in thermal equilibrium with
a heat bath.  The system remains in the absolute  temperature T but may exchange
energy with the heat bath. Three parameters of the system are fixed throughout the
simulation: the absolute temperature (T), the number of atoms (N), and the volume
(V). [16]

In  this  work  we  used  the  LAMMPS  software.  It  stands  for  Large-scale
Atomic/Molecular Massively Parallel Simulator. It is a classical molecular dynamics
simulation code with a focus on materials modeling. It was designed to run efficiently
on parallel computers. It was developed originally at Sandia National Laboratories, a
US Department of Energy facility. [11] [20]

Before we start with the simulations, we need to build the structures and for this it is
necessary to define the positions of the atoms. The atomic simulation environment
(ASE)[32] is a software package written in the Python programming language with the
aim of setting up, visualizing, steering, and analyzing atomistic simulations. In ASE,
tasks are fully scripted in Python. The powerful syntax of Python combined with the
NumPy array library make it possible to perform very complex simulation tasks.[12] In



this  work  we  used  ASE  to  make  structures  such  as  diamond  and  graphene
nanoribbons.

Depending on whether the system is 2 or 3 dimensions, the positions are determined
by a series of vectors containing the x, y, and z coordinates. In the case of LAMMPS,
the  initial  positions  of  the  atoms can  be  user  defined,  which  involves  a  data  file
containing the position vector of each atom in the system. When setting the initial
positions, it must be taken into account that they correspond to the desired minimized
structure,  else  the  simulation  will  be  inaccurate.  For  this  reason  we  first  start  to
minimize the structures before starting the simulation.

Minimum energy configuration corresponds to the stable state of the system. Stable
states of molecular systems correspond to global and local minima on their potential
energy  surface.  Starting  from  a  non-equilibrium  molecular  geometry,  energy
minimization employs the mathematical procedure of optimization to move atoms so
as  to  reduce  the  net  forces  on  the  atoms  until  they  become  negligible.  Energy
minimization is a numerical procedure for finding a minimum on the potential energy
surface starting from a higher energy initial structure. During energy minimization,
the geometry is changed in a stepwise way so that the energy is reduced. After a
number of steps, a minimum on the potential energy surface is reached.

2.3 Bond Order Potential
In this work we chose to use classical empirical potentials  as they can be used to
model much larger systems, with varying temperature and for longer time, allowing,
for example, the study of point, line and planar defects. However, one of the biggest
drawbacks of classical simulations is that results are only as good as the force-field
used to obtain them. Because of that, the two main problems related to the use of
classical-mechanics simulations are the transferability and the version-control of the
originally developed potentials. Transferability is the ability of a potential to produce
reliable results when simulating conditions other than those used in the fitting process.
Originally, empirical dynamics were created for some specific materials in order to
calculate  properties  (e.g.  mechanical  properties)  at  some  specified  temperature.
Therefore  it  is  important  to  test  if  the  same  potential  performs  for  other  crystal
structures  for a range of temperatures  as it  is  difficult  to  fit  perfectly  transferable
potentials. The second major worry related to the use of classical potentials is the
possibility that the potential form actually implemented in the used code is not exactly
identical  to  the  form  initially  distributed  by  the  developers.  File  formats  change
between codes and errors can be made during transfer or the files can get destroyed.
[27] 

Bond order potential is a class of empirical (analytical) interatomic potentials which is
used in molecular dynamics and molecular statics simulations. Examples include the
Tersoff potential and the Brenner potential. [6]

General form for many body potential:



The first  term is  a  two-body potential,  which can include  repulsive and attractive
terms. The second term is a three-body potential, which prevents the automatic close
packing of the particles in the system. Powerful approach for modeling any type of
bonding.  But  it  can  be  improved  by  including  explicit  information  about  the
surroundings of each atom.

Tersoff proposed a new potential form:

 Multiply  the  two-body  term  by  a  bond-order  term,  bij,  which  is
decided by the local environment (it is a many-body term).

 Bij  weighs  the  bond  strength  and  is  a  monotonically
decreasing  function  of  the  number  of  competing  bonds,  the
strength  of  the  competing  bonds  and  the  cosines  of  the  angles
with competing bonds.

The original Tersoff potential was designed for Silicon and Carbon and was able to
describe single, double, and triple bond configurations, but it was not able to describe
radicals and conjugate versus non-conjugate structures. This led to the development of
the REBO potential (Reactive Empirical Bond Order potential), which is a Tersoff-

like potential, developed by Brenner.[9] 

Second generation of REBO potential: The first generation REBO was improved by
modifying the angular term and adding a torsion term.

Modified angular term: New function, new fit method, flexible in various bond angles
during the chemical reaction.

Added the torsion term: Provides the rotation barrier for double bond and conjugate
bond. [7]

The main difference between the two potentials  is  that  REBO can calculate  bond
energies for atoms of different coordinations. For example, while the Tersoff potential
can  describe  the  covalent  bonding in  a  system of  carbon  atoms  only,  the  REBO



potential  can  handle  a  hydrocarbon  system.  This  makes  REBO  very  useful  in
describing a system of multiple species.

2.4 Radial Distribution Function (RDF)
One way to characterize a structure is by using the Radial distribution function, (or
pair  correlation  function).  RDF  g(r)  in  a  system  of  particles  (atoms,  molecules,
colloids, etc.), describes how density varies as a function of distance from a reference
particle. 

In  other  words,  the  radial  distribution  function  (RDF)  defines  the  probability  of
finding a particle at distance r from another tagged particle. It shows a set of peaks at
positions  that  correspond  to  shells  around  a  given  atom.  The  function  carries
information on the structure of the system. (see Figure 2.4.1) [5]

Figure 2.4.1 [5]: calculation of g(r)

2.5 Vibrational Spectra & Fast Fourier Transform
Vibrational modes

Molecules vibrate. A single molecule can vibrate in various ways and each of these
different motions is called a vibration "mode". Degree of freedom is the number of
variables  required  to  describe  the  motion  of  a  particle  completely.  For  an  atom
moving  in  3-dimensional  space,  three  coordinates  are  adequate  so  its  degree  of
freedom is three. Its motion is purely translational. If we have a molecule made of N
atoms (or ions), the degree of freedom becomes 3N, because each atom has 3 degrees
of freedom. Additionally, since these atoms are bonded together, all motions are not
translational:  some  become  rotational,  some  others  vibration.  For  non-linear
molecules, all rotational motions can be defined in terms of rotations around 3 axes,
the rotational  degree of freedom is 3 and the remaining 3N-6 degrees of freedom



constitute vibrational motion. For a linear molecule however, rotation around its own
axis is no rotation because it  leaves the molecule unchanged. So there are only 2
rotational  degrees  of  freedom  for  any  linear  molecule  leaving  3N-5  degrees  of
freedom for vibration.

The degrees of vibrational modes for linear molecules can be calculated using the
formula:  3N−5.The degrees  of  freedom for  nonlinear  molecules  can be calculated
using the formula: 3N−6

A normal mode of a dynamical system is a pattern of motion in which all parts of the
system move sinusoidally with the same frequency and with a fixed phase relation.
The free motion  described by the normal  modes takes  place at  fixed frequencies.
These fixed frequencies of the normal modes of a system are known as its natural
frequencies or resonant frequencies. A physical object, such as a molecule, has a set
of normal modes and their natural frequencies that depend on its structure, materials
and boundary conditions. [24] The local vibrational modes are the true equivalent of the
normal vibrational modes.

A molecular vibration is a periodic motion of the atoms of a molecule relative to each
other, such that the center of mass of the molecule remains unchanged.[14] Within the
CH2 group, commonly found in organic compounds, the two low mass hydrogens can
vibrate in six different ways which can be grouped as 3 pairs of modes: 1. symmetric
and asymmetric stretching, 2. scissoring, and rocking, 3. wagging and twisting. These
are shown in Figure 4 [13]: 

Figure 2.5.1 [13]: Visualization of all different molecular vibrations

Stretching and Bending modes

A stretching vibration changes  the bond length.  There are  two types of stretching
vibrations. In symmetric stretching, two or more bonds vibrate in and out together. In
asymmetric stretching, some bonds are getting shorter at the same time as others are
getting  longer,  resulting  in  a  change  in  the  dipole  moment  of  the  molecule.  So,
asymmetric stretching appears at a higher wavenumber and absorbs or needs more



energy than symmetric stretching. Bending vibrations are characterized by a change in
the angle between two bonds and are of four types: scissoring, rocking, wagging, and
twisting. (See Figure 2.5.1)

Figure 2.5.2: Graphic representation of the normal modes of benzene and their symmetry classification.
C (H) atoms are shown as large (small) circles. Out-of-plane modes are shown in such a way that atoms
bearing dots (crosses) are displaced forwards (backwards). For the in-plane modes arrows to scale for
each mode indicate atomic displacements in the paper plane. Infrared-active modes are labeled with an
asterisk. [21]

Fast Fourier Transform (FFT)

A given function or signal can be converted between the time and frequency domains
with a pair of mathematical operators called transforms. An example is the Fourier
transform, which converts a time function into a complex valued sum or integral of
sine  waves  of  different  frequencies,  with  amplitudes  and  phases,  each  of  which
represents a frequency component. The "spectrum" of frequency components is the
frequency-domain representation of the signal. [25]

The  "Fast  Fourier  Transform" (FFT)  is  an  important  measurement  method  in  the
science  of audio,  acoustics  measurement  and electromagnetic  signal  processing.  It
converts a signal into individual spectral components and thereby provides frequency
information about the signal. FFTs are used for fault analysis, quality control, and
condition  monitoring  of  machines  or  systems.  Strictly  speaking,  the  FFT  is  an
optimized algorithm for the implementation of the "Discrete Fourier Transformation"
(DFT).  A signal  is  sampled  over  a  period  of  time and divided into its  frequency
components.  These  components  are  single  sinusoidal  oscillations  at  distinct
frequencies each with their own amplitude and phase.

From [15] we see that two parameters are relevant:



 The sampling rate or sampling frequency Δt of the measuring system: if  ∆t is
measured in seconds, then the sampling rate is the number of samples recorded
per second.

 The selected number of samples N: This is always an integer power to the base 2
in the FFT (e.g., N = 211 = 2048 samples)

From the two basic parameters Δt and N, further parameters of the measurement can
be determined.

 Nyquist frequency fc: This value indicates the theoretical maximum frequency that
can be determined by the FFT.

f c=
1

(2* ∆ t )

 Frequency resolution Δf. The frequency resolution indicates the frequency spacing
between two measurement results.

∆ f=
1

(N* ∆ t )

A small Ν results in fast measurement repetitions with a coarse frequency resolution.
A large Ν results in slower measuring repetitions with fine frequency resolution. [15]

Below we listed the parameters we used in this project for FFT calculations:

1. Number of points we kept: 2048

2. Sampling rate Δt: 10-15 seconds

3. Frequency resolution Δf: 16,3 cm-1 or 0,488 THz

4. Steps in MD simulations (LAMMPS): 100000

5. Time unit dt (LAMMPS): 0,0001ps or 0,1fs

6. Every 10 steps we store the positions and velocities in data file(LAMMPS)



Chapter 3: Results and Discussion
3.1 Calculation of diamond lattice constant with DFT

In the Figure below is the Diamond structure of 8000 atoms we made with ASE.

Figure 3.1.1: Diamond Structure of 8000 atoms

We will  start  with the analysis  of the results  of the lattice constant calculation of
Diamond by using the Density Functional Theory (DFT) method, with the software
GPAW. First we measured the energy of a unit cell of the system in Figure 3.1.1 and
after that, by changing the lattice constant manually, we get the energy for each value
and  plot  the  energy  vs  lattice  constant  graph.  Then  by  fitting  a  second  degree
polynomial we calculate the minimum value of the graph and the material's lattice
constant  was  calculated  3.54Å.  For  the  graphs  below  we  used  two  softwares,
SciDAVis and Excel, and for the structure visualization VESTA. 



Figure 3.1.2: Energy vs Lattice constant Graph for Diamond structure with DFT

3.2
Calculation of diamond lattice constant with empirical pote
ntials and cg algorithm 
For the diamond structure of 8000 atoms the change of the lattice constant is done
with the command "lattice" of LAMMPS. From all the values obtained, we plot the
energy/lattice constant graph. Then, with a second degree polynomial we calculated
the  minimum of  the  curve  and  the  theoretical  lattice  constant.  First  we  used  the
Brenner potential and then the Tersoff potential. Below we show in black the curve of
the theoretical points, and in red the approximation of the curve near the minimum
with a second degree polynomial (y = a x2+ bx + c).

 Brenner

Figure 3.2.1: Energy vs Lattice constant Graph for Diamond structure with the Brenner Potential



Therefore from the second degree polynomial:

y=46.778,82 x2−334.388,37 x+538.606,23

We calculate the minimum from:

d y
d x

=2a x+b=0→ x=
−b
2a

→x=
−(−334.388,37 )
2( 46.778,82)

=3,5741428493   Å

a=3,57 Å

The experimental value is: a = 3,57Å

Comparing the theoretical with the experimental value:

%   p er ce n t a ge  d i f f e r enc e  =
(3,57   Å−3,57   Å )

3,57 Å
≃0,00%

Therefore from the second degree polynomial we calculated that the lattice constant is
3,57Å and the experimental value is also 3,57Å. By comparing the theoretical with
the experimental value we have a percentage difference of 0,0 % .

 Tersoff

Figure 3.2.2: Energy vs Lattice constant Graph for Diamond structure with the Tersoff Potential



As in with the Brenner potential we calculated that the lattice constant is 3,57Å. So
we have again a percentage difference of 0.0%. 

Note: In the graphs below we have g(r) in a.u, for arbitrary units,
in the y axes and r, for distance in Angstrom, in the x axes.

The last way to calculate the constant is with energy minimization with conjugate
gradient  (cg)  algorithm with  the  Brenner  Potential,  from  LAMMPS.   After  the
minimization  we  use  the  Radial  distribution  function,  so  that  we  don't  have  to
measure all the distances manually as the graph shows us the distance r of the first
neighbors from the first peak.

For diamond cubic structures the lattice constant is calculated from:  dNN = (a * 4)/ √3
, where dNN is the distance of first neighbors.

Figure 3.2.3: RDF Graph for Diamond structure with Conjugate Gradient (cg) algorithm

In Table  1 are  the theoretical  results,  of  each method,  for the lattice  constants  of
Diamond.

Theoretical Values

Table 1 DFT Brenner Tersoff cg algorithm (with Brenner)

Diamond 3,54Å 3,57Å 3,57Å 3,56Å



3.3 Calculation of graphene lattice constant with DFT 
Similarly we worked for the graphene structure. We started by creating fully periodic
perfect graphene lattice with 400 atoms (Figure 3.3.1). 

Figure 3.3.1: Graphene structure of 400 atoms 

After that we used GPAW to calculate the lattice constant of Graphene with DFT, in the 
same way we did for Diamond bevor. The minimum value of the graph and the 
material's lattice constant was calculated 2.47Å

Figure 3.3.2: Energy vs Lattice constant Graph for Graphene structure with DFT

3.4
Calculation of graphene lattice constant with empirical pot
entials and cg algorithm



We started by measuring the energy of the graphene structure of  Figure 3.4.1. Then
we changed the xyz coordinates and the dimensions of the "box" (with the help of a
program written in Fortarn 95), to change the lattice constant and measure the energy
again. With VESTA we visualize the structure resulting from the change and measure
with maximum accuracy the lattice constant. From all the values obtained, we plot the
energy/lattice constant graph. Then, with a second degree polynomial we calculated
the minimum of the curve and the theoretical lattice constant. 

 Brenner

With the software of VESTA we see the graphene structure and calculate the lattice
constant by measuring the appropriate distances.

Figure 3.4.1: Graphene structure of 400 atoms

Figure 3.4.2: VESTA results of measuring the lengths between the two yellow points of Figure 3.4.1

We continue with the same procedure with other lattice constants. Below we show in
black the curve of the theoretical points, and in red the approximation of the curve
near the minimum with a second degree polynomial (y = a x2+ bx + c).



Figure 3.4.3: Energy vs Lattice constant Graph for Graphene structure with the Brenner Potential

Therefore from the second degree polynomial: a=2,47 Å

The experimental value for graphene is 2,46Å.

Comparing the theoretical with the experimental value:

%   p e r ce n t a ge   d i f f e r enc e  =
(2,46   Å−2,47 Å   )

2,46 Å
≃0,4  %

 Tersoff

We  repeat  the  same  steps  as  before  so  that  we  can  plot  the  “Energy  vs  lattice
constant” graph. 

Figure 3.4.4: Energy vs Lattice constant Graph for Graphene structure with the Tersoff Potential



Therefore from the second degree polynomial we have a=2,53   Å

Comparing the theoretical with the experimental value:

%   p er ce n t a ge  d i f f e r enc e  =
(2,46   Å−2,53   Å )

2,46 Å
≃2,85%

For the graphene structure we observe greater accuracy with the  Βrenner Potential
(percentage difference of 0.40%), while in the Tersoff Potential we have a percentage
difference of 2.85%. In the diamond structure the experimental result agrees exactly
with the theoretical value for both Potentials.

Next  we  calculate  the  lattice  constant  with  the  cg  algorithm,  as  we  did  for  the
Diamond structure.  But we mention here that for honeycomb structures the lattice
constant is calculated from: dNN = a / √3  

Figure 3.4.5: RDF Graph for Graphene structure with Conjugate Gradient (cg) algorithm

In Table  2 are  the theoretical  results,  of  each method,  for the lattice  constants  of
Graphene.

Theoretical Values

Table 2 DFT Brenner Tersoff cg algorithm eith Brenner

Graphene 2,47Å 2,47Å 2,53Å 2,46Å

3.5 NVE Simulation for 10K and 300K
Note: For the graphs below we used Excel. 

After applying NVE simulation first at 10K (blue) and then at 300K (orange), we plot
the RDF graph for Graphene and Diamond structure as we can see below. In the



graphs, in the y axes we have g(r) in a.u, for arbitrary units, and r, for distance in
Angstrom, in the x axes. 

By zooming in on the first peak we can see that the position of the peak (r value)
remains  the  same  at  both  temperatures,  but  at  300K  the  width  of  the  curve  has
increased. This  is  explained  by the  fact  that  with  an  increase  in  temperature,  the
particles  gain  kinetic  energy,  move  faster  and  oscillate  more.  The  actual  average
speed of the particles  depends on their  mass as well  as the temperature – heavier
particles move more slowly than lighter ones at the same temperature.

Figure 3.5.3: RDF Graphs for Graphene structure with NVE.



Figure 3.5.4: RDF Graphs for Diamond structure with NVE.

3.6 Small Hydrocarbon Molecules: Methane and Benzene 

Next we focused on the methane and benzene molecules so we can measure bonds
and angles to compare them with the experimental values and check the accuracy of
LAMMPS cg minimization. As shown in Tables 3 and 4 below, there is no difference
between theoretical and experimental values.

Methane Molecule

Table 3 Theoretical Values Experimental Values

C-H bond 1,09 Å 1,09 Å

H-C-H angle 109,5deg 109,5deg

Figure 3.6.1: Methane molecule Figure 3.6.2: Benzene molecule



Benzene Molecule

Table 4 Theoretical Values Experimental Values

C-H bond 1,09 Å 1,09 Å

C-C-C angle 120 deg 120 deg

C-C bond 1,39 Å 1,39 Å

3.7 Hydrocarbon chains
Below we present three different hydrocarbon chains:

Figure 3.7.1: Hydrocarbon chain of C22H46

Figure 3.7.2: Hydrocarbon chain of C22H44

Figure 3.7.3: Hydrocarbon chain of C22H24

We focused on the structure C22H24 to compare the results with those of the article
[17]. All values have been listed in Table 5. We observed that after minimization, the
double and single carbon-carbon bond have the same length, which we did not expect,
because at C22H44 the double bond at the right end did not change. 

Table 5 Structural  Values Values from [17]

C-C single bond 1,38 Å 1,42 Å

C-C double bond 1,38 Å 1,38 Å

C-H bond 1,09Å 1,10 Å



3.8 Graphene Nanoribbons: Armchair and Zigzag
At this point in the project we present the graphene nanoribbon (GNR) structures with
hydrogens on the outer carbons.  We made the armchair  and the zigzag structures.
Below we have 1a to 1d and 2a to 2d the width 4,6,10 and 20 for each nanoribbon
respectively.

Armchair Graphene Nanoribbon:                                Zigzag Graphene Nanoribon:

1a

Figure 3.8.1: Armchair GNR width 4

1b

Figure 3.8.2: Armchair GNR width 6

1c

Figure 3.8.3: Armchair GNR width 10

2a

2b

2c

Figure 3.8.5: Zigzag GNR width 4

Figure 3.8.6: Zigzag GNR width 6

Figure 3.8.7: Zigzag GNR width 10



1d

Figure 3.8.4: Armchair GNR width 20

The aim is to observe if there is any change in the lattice constant with change in
width. For this we apply the RDF graph so that we do not measure the distances by
hand, as from the first peak corresponding to the first neighbor distance, we calculate
the constant for each width. 

Below we show two examples of the RDF graph for the armchair and zigzag graphene
nanoribbon of width 4. Table 7 and 8 include the width, number of atoms and lattice
constant of each nanoribbon type.  In the graphs below in the y axes we have g(r) in
a.u, for arbitrary units, and r, for distance in Angstrom, in the x axes.

2d

Figure 3.8.8: Zigzag GNR width 20



Table 7

Armchair

Width Number of atoms Lattice Constant (Å)

4 480 2,4257

6 640 2,4275

10 960 2,4604

20 1760 2,4604

Table 8

Zigzag

Width Number of atoms Lattice Constant (Å)

4 600 2,4604

6 840 2,4604

10 1320 2,4604

20 2520 2,4604



3.9 Vibrational Spectra and Displacements of H-atoms
Vibrational Spectra

The  vibrational  spectra  of  the  structures  below  were  computed  by  Fast  Fourier
transform of the velocities (see Appendix A) computed from the trajectories generated
by MD simulations using the LAMMPS package, for 100000 steps. Metal units are
being  used  which  uses  picoseconds  for  time,  Angstroms  for  length,  Kelvin  for
temperature. The force field is set to the REBO potential. An NVE run is to be done
with temperature rescaling to a wanted temperature of 300 or 10 K. The positions and
velocities of all atoms will be written into the dump file every 10 time steps.

It’s important to note that the sampling rate must be greater than the highest frequency
component of the signal to ensure the sampled data accurately represents the input
signal, according to the Nyquist sampling theorem. 

Normal vibrational modes

We  performed  NVT  simulation  at  300K  or  10K  on  the  minimized  structure  for
100000 steps and stored the positions and velocities of each atom at the step in which
the temperature was closer to the desired temperature of 300K or 10K. Then we used
this  data  to  perform  NVE  simulation  to  obtain  the  vibrational  spectrum  of  the
structure.  We should  mention  here that  equilibration  was done before we got  the
spectrum data.

In  methane,  from  Figure  3.9.1,  vibrational  symmetric  stretch  is  2835cm-1 ,while
experimental frequency, is 2917cm-1, vibrational degenerated stretching mode is 3081
cm-1 while for experimental frequency, it is 3019cm-1  (stretch), vibrational mode of
degenerated deformation for experimental frequency, is 1306cm-1 (bend). One more
degenerated  deformation  observed  of  vibrational  mode  is  1737cm-1,  while  for
experimental frequency, it is 1534 cm-1.



The carbons in aromatic rings are unsaturated, which means hydrogens can be added
to these carbons via reaction. For example, benzene, C6H6, can be hydrogenated to
form cyclohexane, C6H12, which is not an easy reaction to perform but has been done.
As a result  of being unsaturated carbons,  the force constant for C-H stretching in
aromatic rings is higher than for saturated carbons. As a result, in general unsaturated
C-H stretches fall above 3000 cm-1, and saturated C-H stretches fall below 3000 cm-1.
This is a useful dividing line to remember for an initial examination of a spectrum.
First, we have to look if there are any peaks between 2800 and 3200cm-1. If there are,
then these are C-H stretching peaks. Next, we look at where the peaks are in this
range.  If  there  are  peaks  above  3000  cm-1 then  the  carbons  in  the  sample  are
unsaturated only. If all of the C-H stretches are below 3000 cm-1 all the carbons in the
sample are saturated. If there are C-H stretches above and below 3000 cm-1 there are
saturated and unsaturated carbons present. The 3000 cm-1 dividing line between the
C-H stretches of unsaturated and saturated carbons has very few exceptions and is a
very reliable rule of thumb.

As we read the spectrum of Figure 3.9.2 of benzene from left to right, we note there
are  some  peaks  between  2800  and  3050cm-1,  making  these  C-H  stretches,  with
saturated and unsaturated carbons, but the main peak in this area is at 2917,19 cm -

1.The peaks at 1524 and 1573cm-1 are examples of ring mode peaks. A ring mode is a
vibration that involves the stretching and contracting of the carbon-carbon bonds in an
aromatic ring. These are typically sharp, but vary in number and intensity depending
upon  the  molecule.  They  usually  fall  between  1620  and  1400cm-1.  The  region
between 1000 and 1200cm-1 is where aromatic ring C-H in-plane bending peaks fall.
These  peaks  are  generally  medium to weak in intensity,  show up in a  very busy
spectral region, and hence are not useful group wavenumbers.

The  peaks  in  Figure  3.9.2,  are  out-of-plane  C-H bends.  Since  aromatic  rings  are
planar, all the hydrogens are in the plane of the molecule. When these hydrogens bend
above and below the plane of the molecule they are undergoing a C-H out-of-plane
bend,  which  is  sometimes  called  a  wag.  This  vibration  gives  rise  to  peaks  that
typically fall between 700cm-1 and 1000cm-1. In the spectrum of benzene, this peak



usually falls at 674 cm-1 because the molecule is unsubstituted. In Figure 3.9.2 we see
peaks between 600 and 1100cm-1.  

In general, the peaks between 600 and 1000 cm-1 are out-of-plane C-H bends. Since
aromatic rings are planar, all the hydrogens are in the plane of the molecule. When
these hydrogens bend above and below the plane of the molecule they are undergoing
a C-H out-of-plane bend, which is sometimes called a wag. This vibration gives rise
to a peak that typically falls between 1000 cm-1 and 700 cm-1 but in the spectrum of
benzene, this peak falls at 674 cm-1 because the molecule is unsubstituted.

C22H24 belongs  to  the  category  of  CnHn+2 and  therefore  we  will  compare  the
vibrational frequencies of the spectrum in Figure 3.9.3 with those of [30] for C2H4

(ethylene). Reading the right graph of Figure 3.9.3 from left to right we observe the
first  sharp  peak  at  835,8cm-1.  Similarly  for  ethylene  there  is  the  H-C-H in-plane
rocking vibration at 835cm-1. In addition, there is a peak at 885 cm-1 which appears in
the vibrational spectrum of ethylene at 875 cm-1 and represents the H-C-H out-of-
plane twisting vibration. We will find the C-C stretching mode of C2H4 at 1827cm-1

but in C22H24 at  1868,3cm-1,  which means that there is a percentage difference of
2,26%.  Finally,  there  is  a  peak  at  2917,2cm-1,  which  must  represent  the  C-H
asymmetric  stretching  vibration,  since  C-H  symmetric  stretching  is  present  in
ethylene at higher frequencies (3210-3217cm-1), which do not exist in our spectrum.





According to  [29],  graphene has  a  vibrational  mode at  1580cm-1 and  diamond at
1332cm-1.  From Figure 3.9.4 and 3.9.5,  we have peaks  at  1671,6 and 1688,0cm -1

respectively. For the diamond structure of 216 atoms we see from Figure 3.9.6 and
3.9.7 peaks at 1475,0 and 1524,2cm-1. In both structures, there is an overestimation of
the potential. All the extra peaks correspond to other vibrational frequencies due to
the various motions in the structure, which we will not study further.



According  to  Figure  8  from  [28],  there  are  three  regions  of  the  experimental
vibrational  frequencies  in  zigzag  graphene  nanoribbons:  (a)  600–1000  cm−1.  (b)
1000–1800 cm−1  and (c) 2950–3150cm−1. More specifically there are peaks at 728,
742, 885, 957, 1147, 1317, 1448, 1531, 1621 and 3052cm-1. In our case of zigzag
GNR (width 10), in the graph of Figure 3.9.8 we note peaks at 524,4 cm-1, between
1458,6 and 1704,4 cm-1, and at 2900,8 cm-1.

Localized excitations

First we changed the position of one specific hydrogen for 0,01Å by hand in each
minimized structure and did a NVE simulation. Then we stored the velocities (vx, vy,
vz) of each atom and for each component we did FFT. We keep N=2048 points. 

 Methane (CH4)

We displace Hydrogen 1 (H1 – atom2) for 0,01Å in the y-axis. Below we can see the
vibrational spectrum for Methane.



The first peak at 2818,86cm-1 corresponds to the antisymmetric stretch and the  larger
one, 2966,36cm-1, to the symmetric stretch

Peak Frequency (Hz) Frequency (cm-1)
1 8,39844*1013 2818,86
2 8,83789*1013 2966,36

 Benzene (C6H6)

We displace Hydrogen 1 (H1 – atom7) for 0,01Å in the x-axis.



Peak Frequency (Hz) Frequency (cm-1)
1 8,74023*1013 2933,58
2 8,78906*1013 2949,97

 C22H24

We displace Hydrogen 4 (H4 – atom26) for 0,01Å in the y-axis. Below we can see the
vibrational spectrum for C22H24.



Peak Frequency (Hz) Frequency (cm-1)
1 8,74023*1013 2933,58

 Zigzag Graphene Nanoribbon (width10)

We displace Hydrogen 72 (H72 – atom792) for 0,01Å in the x-axis. Below we can see
the vibrational spectrum of zigzag GNR (width 10).

Peak Frequency (Hz) Frequency (cm-1)
1 4,54102*1013 1524,15
2 8,74023*1013 2933,58



The first peak at 1524,15cm-1 corresponds to the antisymmetric stretch and the  larger
one, 2933,58cm-1, to the symmetric stretch. 

 Localized vibrational modes 

 Methane

Displacement of atom 2 (H1) in Methane for 0,1Å - Δx vs Time graph

First we move hydrogen H1 by Δx=0,1Å up and do NVE simulation. After 10ps we
see in the graph below the displacement along the y-axis as a function of time for
hydrogen 1 and 2.

Figure 3.9.13: Displacement of atom H1 in the y-direction from the equilibrium position when H1 is
initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.14: Displacement of atom H1 in the y-direction from the equilibrium position when H1 is
initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).



Figure 3.9.15: Displacement of atom H2 in the y-direction from the equilibrium position when atom H1
is initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.16: Displacements of the H-atoms in the y-direction from the equilibrium position when
atom 1 is initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.17: Displacements of the H-atoms in the y-direction from the equilibrium position when
atom 1 is initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).



From Figure 3.9.17 we calculate first the period (T=12fs) and then the frequency at
2797,01cm-1.  In  the  section  before  we  calculated  the  frequency  by  changing  the
position  for  Δx=0,01Å  and  had  two  peaks,  one  at  2818,86cm-1 and  the  other  at
2966,36cm-1. The difference between the results is maybe based on the Δx factor. In
the next structure we will displace the hydrogen for 0,1Å and for 0,01Å for better
comparisons.

 Benzene

Displacement of atom 2 (H1) in Benzene for 0,1Å - Δx vs Time graph

First we move hydrogen H1 by Δx = 0,1Å to the right and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of
time for hydrogen 1 and 3.

Figure 3.9.18: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.19: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps). 



Figure 3.9.20: Displacement of atom H3 in the x-direction from the equilibrium position when H1 is
initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.21: Displacements of the H-atoms in the x-direction from the equilibrium position when H1
is initially displaced by Δx=0.1 Å vs. time  

Figure 3.9.22: Displacements of the H-atoms in the x-direction from the equilibrium position when
atom 1 is initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps). 



From Figure 3.9.22 the frequency is calculated 2797,01 cm-1. 

Displacement of atom 2 (H1) in Benzene for 0,01Å - Δx vs Time graph

First we move hydrogen H1 by Δx = 0,01Å to the right and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of
time for hydrogen 1 and 3.

Figure 3.9.23: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Δx=0.01 Å vs. time 

 Figure 3.9.24: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is 
initially displaced by Δx=0.01 Å vs. time for a short time interval (from 4,400ps to 4,500ps).



Figure 3.9.25: Displacement of atom H3 in the x-direction from the equilibrium position when H1 is
initially displaced by Δx=0.01 Å vs. time 

Figure 3.9.26: Displacements of the H-atoms in the x-direction from the equilibrium position when H1
is initially displaced by Δx=0.01 Å vs. time

Figure 3.9.27: Displacements of the H-atoms in the x-direction from the equilibrium position when 
atom 1 is initially displaced by Δx=0.01 Å vs. time for a short time interval (from 0,000ps to 0,150ps).



Figure 3.9.28: Displacements of the H-atoms in the x-direction from the equilibrium position when 
atom 1 is initially displaced by Δx=0.01 Å vs. time for a short time interval (from 4,400ps to 4,500ps).

Figure 3.9.29: Displacements of the H-atoms in the x-direction from the equilibrium position when 
atom 1 is initially displaced by Δx=0.01 Å vs. time for a short time interval (from 9,000ps to 9,071ps).  

We know that:   f= 1
T
 (1)   and from the diagram in Figure 3.9.29 we calculate the 

period: T=9026 f s−9015 f s=11 f s=11×10−15 sec

Therefore, from relation (1) it follows that:

f=
1

11×10−15 s ec
=0,0909090909×1015H z

And we convert frequency from Hz to cm-1:

f=0,0909090909×1015×3,35641×10−11≃3051,28   cm−1  (2 )



For benzene, four different ways were used to calculate vibrational frequencies. First
we used Fast Fourier Transform (FFT) and molecular dynamics (MD) at 300K where
the atoms acquired random velocities and positions. In the second case we manually
moved a specific hydrogen by Δx=0,01Å and obtained the frequency spectrum from
FFT. In the first method we calculate a frequency of 2917,17cm-1 and in the second
one 2933,58 cm-1. So there is a percentage difference of 0.6%. Then we moved the
hydrogen again by hand by Δx=0,1Å and Δx=0,01Å and from the displacement-time
diagram we calculated first the period and then the frequency. In both of the latter
cases we do not observe satisfying results, as one value (2797,01cm-1 ) is lower than
the  experimental  values  (2800–3200 cm-1),  while  the  other  is  higher  (3051,28cm-

1)compared to the previous values we calculated.

 C22H24

Displacement of atom 26 (H4) in C22H24 for 0,1Å - Δx vs Time graph

First we move hydrogen H4 by Δx = 0,1Å up and do NVE simulation. After 10ps we
see in the graph below the displacement along the y-axis as a function of time for
hydrogen 4 and 18.

Figure 3.9.30: Displacement of atom H4 in the y-direction from the equilibrium position when H4 is
initially displaced by Δx=0.1 Å vs. time 



Figure 3.9.31: Displacement of atom H4 in the y-direction from the equilibrium position when H4 is
initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).

Figure 3.9.32: Displacements of atom H18 in the y-direction from the equilibrium position when atom 
4 is initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.33: Displacements of the H-atoms in the y-direction from the equilibrium position when H4 
is initially displaced by Δx=0.1 Å vs. time 



Figure 3.9.34: Displacements of the H-atoms in the y-direction from the equilibrium position when 
atom 4 is initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).

 Zigzag Graphene Nanoribbon (width 10)

Displacement of atom 792 (H72) in zigzag Graphene Nanoribbon (width 10) for
0,1Å - Δx vs Time graph

First we move hydrogen H72 by Δx = 0,1Å in the x-axis and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of
time for hydrogen 72 and 40. 

Figure 3.9.35: Displacement of atom H72 in the x-direction from the equilibrium position when H72 is
initially displaced by Δx=0.1 Å vs. time 



Figure 3.9.36: Displacement of atom H72 in the y-direction from the equilibrium position when H72 is
initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).

Figure 3.9.37: Displacements of atom H40 in the x-direction from the equilibrium position when 
atom72 is initially displaced by Δx=0.1 Å vs. time 



Figure 3.9.38: Displacements of the H-atoms in the x-direction from the equilibrium position when 
H72 is initially displaced by Δx=0.1 Å vs. time 

Figure 3.9.39: Displacements of the H-atoms in the y-direction from the equilibrium position when 
atom 72 is initially displaced by Δx=0.1 Å vs. time for a short time interval (from 6,986ps to 7,057ps).

In Figure 3.9.28 and 3.9.39 of zigzag GNR, the Δx of H40 appears to be almost zero.
This means that the oscillation does not spread in the structure.



Chapter 4: Conclusions
Conclusions

Ab  initio  and  classical  molecular  dynamics  simulations,  on  materials  that  are
composed of carbon and hydrogen, are performed to characterize lattice constants,
bond lengths and other basic properties. An additional goal was to get and understand
the vibrational spectra of these structures. The main conclusions from this work are as
follow.  After  creating  the  diamond  and  graphene  structures,  we  started  our
calculations using DFT, the classical empirical  Brenner and Tersoff potentials  and
lastly the cg algorithm of LAMMPS together with the RDF function to see if there are
differences in the calculation of the lattice constant. As the results demonstrated, we
noticed that for diamond the lattice constants calculated by the classical dynamics and
the cg algorithm (RDF) were closer to the experimental value (3.57Å) while in the
graphene  structure  there  is  a  major  disagreement  with  the  Tersoff  potential.  All
subsequent  simulations  were  performed  by  applying  the  Brenner  Potential.
Afterwards, the additional oscillation of the atoms with increasing temperature from
10 to 300 Kelvin was observed with RDF. We continued our study focusing on the
bonds and angles in methane, benzene molecules and the hydrocarbon chains. The
experimental  and  theoretical  results  are  in  agreement,  but  we  noticed  something
unusual in the chain C22H24. The double and single carbon-carbon bond had the same
length, which we did not expect, since the double bond at the right edge of C22H44

remained  unchanged. We wanted  to  further  investigate  this  and  applied  the  RDF
function to zigzag and armchair graphene nanoribbons for width 4,6,10 and 20 in each
case. We detect in the case of the armchair GNR a slight difference in the values, but
the constant remains the same for each width in the zigzag GNR structure. When we
studied the bonds in a more detailed way, we realized that the bonds in the outer
carbons are shorter. In the Armchair GNR we have values of 1.38Å and 1.40Å, while
in  the  Zigzag  GNR 1.40Å.  In  both  cases  all  other  C-C bonds  are  1.42Å,  as  the
experimental value. The latter calculations are based on the vibrational spectra and
localized  excitations  of  all  structures.  We noted that  the  Brenner  Potential  is  also
reliable for most vibrational spectra, in overall qualitative agreement with experiment,
but underestimates C-H stretch and overestimates C-C vibration frequencies. Except
for normal modes obtained after thermalization, we examined how initially localized
C-H vibration evolves with time. Regarding to the localized vibrational modes, when
we excited H1 with a large initial amplitude of 0,1Å for methane, benzene, C22H24 and
zigzag  GNR structures,  we observed the  non-linear  effect.  This  indicates  that  the
vibration remains localized on the C-H1 bond, as shown in Figures 3.9.17 - 3.9.22 -
3.9.34  and  3.9.39  for  each  structure  respectively.  In  Figure  3.9.26  of  benzene
molecule, we excited hydrogen H1 with a small initial amplitude of 0,01Å and after
about 2ps hydrogen H3 vibrates with an amplitude of the same order of magnitude,
which means that energy spreads to other C-H bonds as expected.  Figure 3.9.27 is
misleading as vibration is localized at C-H1, because it is for short initial time interval,
but it spreads as time goes by. 
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6.Appendix 
6.1 Appendix A: Code for Fast Fourier Transform 

ELEMENTAL FUNCTION isPowerOf2(n)

IMPLICIT NONE

INTEGER, INTENT (in) :: n

LOGICAL :: isPowerOf2

isPowerof2 = (n /= 0) .AND. (IAND(n,n-1) == 0)

END FUNCTION isPowerOf2

! the m-th fourier coefficient

RECURSIVE SUBROUTINE fft(m, f, C)

IMPLICIT NONE

INTEGER, INTENT (in) :: m

DOUBLE COMPLEX, INTENT (in) :: f(0:)

DOUBLE COMPLEX, INTENT (out) :: C

INTERFACE

FUNCTION isPowerOf2(n)

IMPLICIT NONE

INTEGER, INTENT (in) :: n

LOGICAL :: isPowerOf2

END FUNCTION isPowerOf2

END INTERFACE

INTEGER :: n

DOUBLE COMPLEX :: Ce, Co

DOUBLE COMPLEX :: a

DOUBLE PRECISION , PARAMETER :: pi = 3.14159265358979323846d0

n = SIZE(f)

IF (.NOT.isPowerof2(n)) STOP

IF (n == 1) THEN

C = f(0)



RETURN

END IF

CALL fft(m, f(0:n-1:2), Ce)

CALL fft(m, f(1:n-1:2), Co)

a = EXP(-2.d0 * pi * m * (0d0, 1.0d0) / n)

C = (Ce + a * Co) / 2d0

END SUBROUTINE fft

PROGRAM velocity

IMPLICIT NONE

INTEGER,PARAMETER :: N = 12                 !arithmos atomon

INTEGER,PARAMETER :: N1 = N*3            !posa FFT tha ginoun

INTEGER,PARAMETER :: N2 = 100000       !arithmos run pou ginontai sto LAMMPS

INTEGER,PARAMETER :: N3 = 10               !kathe pote grafei sto data file

INTEGER,PARAMETER :: N4 = 2048           !posa simeia kratame sto FFT gia na einai 
dynami tou 2

DOUBLE PRECISION,PARAMETER :: dt = 0.1d0   !se femtoseconds - time unit 
=0.0001ps= 0.1fs

DOUBLE PRECISION,PARAMETER :: deltat = 1.0d-15 !se seconds - xroniko diastima 
diadoxikon & simeion deltat=N3*dt

DOUBLE PRECISION,PARAMETER :: deltaf = 1.0d0/(N4*deltat)

DOUBLE PRECISION :: ja,xa,ya,za,a(1,3)        !diabazei id x y z kai bazei se pinaka ta vx vy
vz apo to data file

INTEGER :: i1,j1,j2,j3,j4,m,m1,m2,m3,m4,ts,t

DOUBLE PRECISION :: f(N1,N2/N3),freq

DOUBLE COMPLEX :: C, g(N1,N4)

REAL :: P(0:N4-1)

INTERFACE

SUBROUTINE fft(m, f, C)

IMPLICIT NONE

INTEGER, INTENT (in) :: m

DOUBLE COMPLEX, INTENT (in) :: f(0:)

DOUBLE COMPLEX, INTENT (out) :: C



END SUBROUTINE fft

END INTERFACE

OPEN(12,file="FFT_vel_new.data",action="read", status ="old")

OPEN(15,file="fft_frequency_P(m)_N=2048.txt",action="write", status ="replace")

j4 = 0

DO i1 = 1,N2/N3

j4 = j4 + 1

READ(12,*)

READ(12,*)ts ! timestep

t = ts*dt

DO j1 = 1,7

READ(12,*)

END DO

j3 = 0

DO j2 = 1,N

READ(12,*) ja,xa,ya,za,a(1,1),a(1,2),a(1,3)

j3 = j3 + 1

f(j3,j4) = a(1,1)

f(j3+1,j4) = a(1,2)

f(j3+2,j4) = a(1,3)

j3 = j3 + 2

END DO

END DO

DO m1 = 1,N1

m4 = 1

DO m2 = 7953,10000

g(m1,m4)=DCMPLX(f(m1,m2))

m4 = m4 + 1

END DO

END DO

P = 0



DO m3 = 0,N4-1

freq = m3*deltaf

DO m1 = 1,N1

CALL fft(m3,g(m1,:),C)

P(m3) = P(m3) + ABS(C)**2.0d0

END DO

WRITE(15,*)freq,freq*3.35641d-11, P(m3)

END DO

END PROGRAM velocity

6.2 Appendix B: Example of input script and data file for LAMMPS
Given  below  is  an  example  of  an  input  script  used  to  perform  simulations  on
LAMMPS. The simulation to be performed based on the example calls for a 100000
time step run starting from the file “data.NVT300Benzene”.  Metal units  are being
used which uses picoseconds for time, Angstroms for length, Kelvin for temperature,
bars for pressure, and eV for energy. The force field is set to the «rebo» potential. An
NVT run is to be done with temperature rescaling to a desired temperature of 300K.
The  first  dump  file  (pos_vel.data)  will  be  created  every  10  time  steps  and  the
positions and velocities of each atom will be calculated and written into the file. The
second dump file (dump300NVT.*.xyz) stores the coordinates  (x,y,z) of all  atoms
every 100 time steps.  

units                   metal

atom_style         atomic

boundary            p p p

read_data           data.NVT300Benzene

neighbor             0.5 bin

pair_style            rebo

pair_coeff            * * CH.rebo C H

variable               a equal 10

group                   atoms12 id 1 2 3 4 5 6 7 8 9 10 11 12

dump                    d3 atoms12 custom $a pos_vel.data id type x y z vx vy vz

velocity                 all create 300.0 23456789

fix                            1 all nvt temp 300.0 300.0 $(100.0*dt)

dump                     d0 all xyz 100 dump300NVT.*.xyz

dump_modify        d0 element "C" "H"

thermo                  10 



thermo_style       custom step cella cellb cellc pe temp

run                       100000

Given below is an example of a data file. The simulation box size is set from -10 to 10
in  the  x,y,  and z  direction.  The  system contains  12  atoms of  2  atom types.  The
mass of the first  atom type (named 1) is  12 g/mole  and of the second atom type
(named 2) is 1 g/mol. The x, y, and z coordinates of each atom is given. Apart from
the coordinates, an id number is attached to each atom. The columns of 1 pertain to
the atom type number and the molecule id. 

LAMMPS Description

12  atoms

2  atom types

-10.0  10.0 xlo xhi

-10.0  10.0 ylo yhi

-10.0  10.0 zlo zhi

Masses

1 12.0

2 1.0

Atoms

1 1 1.38535 1.75416e-13 0

2 1 0.692676 1.19975 0

3 1 -0.692676 1.19975 0

4 1 -1.38535 1.79813e-13 0

5 1 -0.692676 -1.19975 0

6 1 0.692676 -1.19975 0

7 2 2.47547 5.33367e-15 0

8 2 1.23774 2.14382 0

9 2 -1.23774 2.14382 0

10 2 -2.47547 9.12684e-15 0

11 2 -1.23774 -2.14382 0

12 2 1.23774 -2.14382 0


	Acknowledgements
	Abstract
	Chapter 1: Introduction: Carbon Structures
	1.1Carbon and its Allotropes
	1.2 Graphene, Graphene Nanoribbons and Diamond
	1.3 Forms of Hydrocarbons

	Chapter 2: Simulations and Methods
	2.1 Density Functional Theory (DFT)
	2.2 Molecular Dynamics
	2.3 Bond Order Potential
	2.4 Radial Distribution Function (RDF)
	2.5 Vibrational Spectra & Fast Fourier Transform

	Chapter 3: Results and Discussion
	3.1 Calculation of diamond lattice constant with DFT
	3.2 Calculation of diamond lattice constant with empirical potentials and cg algorithm 
	3.3 Calculation of graphene lattice constant with DFT
	3.4 Calculation of graphene lattice constant with empirical potentials and cg algorithm
	3.5 NVE Simulation for 10K and 300K
	3.6 Small Hydrocarbon Molecules: Methane and Benzene
	3.7 Hydrocarbon chains
	3.8 Graphene Nanoribbons: Armchair and Zigzag
	3.9 Vibrational Spectra and Displacements of H-atoms

	Chapter 4: Conclusions
	5.Bibliography
	6.Appendix
	6.1 Appendix A: Code for Fast Fourier Transform
	6.2 Appendix B: Example of input script and data file for LAMMPS


