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NepiAnyn

Ta vAIKA Kot ot vovodoués pe Paon tov dvBpaka omoTteAovV SNUAVTIKO PEPOG TNG
EMOTNUOVIKNG €pevvag. O dvBpakag eivar mavtayod mopmv ot Oon, arnd Tovg
Lovtavodg opyavicpovg, ot omoiol Pacilovial og 0opyavikég eVAOOEL, UEYPL TO
ovumav, 6mov eivar 10 TéTOPTO MO GpOovo otoryeio. Ta droud tov £yovv TNV
wKovotnto. vo oynuotiovv mowidovg OeoHOVG e OMOTEAEGHO. TN OMpuovpyio
SPOp®V AALOTPOTT®V, 01 0Ttoieg dradpapatiCovv eniong Kpico poOLo GTNV EMGTHUN
KoL T Unyovikny Tov vAkov. H katavonon kot 1 T1pocopoimon ToAADV dlopopETIK®V
deopik®V mepPoridviov anotedel TPOKANON Yoo T Bempio Kot TOVG VTOAOYIGLOVG
Kol ONUOVTIK] TpoomdBela  emkevipddnke oty  avantuén  afdmotov Kot
HETAPPACIU®OV  Sl0-ATOUIK®OY SUVOIKAOV Y10 KAOGIKEG TPOGOUOIDCELS HOPLOKNG
dvvapukng (MA). H mapovca datpi agopd tv epapproyn g kKAaotkng MA pe
YPNON TETOLOV EUTEIPIKMOV SUVOLIKOV Yo TN ONUovpyio LAIK®V Kot popiov mov
amoteAovvTol and avOpako Kol VOPOYOVO, TOV TPOGOIOPICUO TOV PACIKOV SOLK®V
Kot SLVOUIK®V WOI0TATOV TOLG KOl TH GUYKPION TOV OMOTEAECUATOV HE GAAES
Beopntikég peBodovg, Ommg 1 Bewplon GLVAPTNCIOKOD TLKVOTNTOG KOL 1GYLPNG
déopevong, kabdg kot pe 1o meipapa. ITo cvykekpuéva, n doun, o UNKN OEGUMOV
KOl TOL QOGHOTO OOVIGEMV Y10 TO OUAVTL, TO YPOPEVIO KOl TIG VOVOTOVIEG TOV, TO
pebdvio, 1o PevloMo kot TIC 0aAvcideg vopoyovavOpdkwv efetdotnrKoyv  pE
TPOGOUOIDGES MA ¥pNGIUOTOIDOVTAG dlo-0TOMKE duvapukd Taéne deopmv. Ma Tig
MA  ypnowomomfnke 10 mWokéto mpocopoiwong LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) kot avartoyOnke eocwtepikd
AOYIGLUKO Y10 TOV VTTOAOYIGHO TOV SOVNTIKOV QUCUATOV OO TO OTOTEAECUATO TWV
npocopoidcewv MA e yprion Fast Fourier Transform. H cuetnpoatikny cvykpion twv
ATOTEAECGUATOV OElYVEL GCLVOMKN GLUP®VIK UETAED TOV EUTEPIKAOV OLVOUIKOV KOl
TOV TEWPANOTOC, LE TOAD Alyeg eEoupéoelg, Omov Bo mpémel vo YPNOLLOTOI0VVTaL
axpiBéotepeg pnéBodol mpatv apymv. EmmAéov, ta dovntikd @douoto availvoviol
¢ TPog T Beppokpacio, TOLG KOVOVIKODS TPOTOVS TOAAVTWOONG KO TIG EVIOTIGUEVES
dleyépoels.



Abstract

Carbon based materials and nanostructures are an important part of scientific research.
Carbon is ubiquitous in nature, from the living organisms, which are all based on
organic compounds, to the universe, where it is the fourth most abundant element. Its
atoms have the ability to form diverse bonds resulting in various allotropes which also
play a crucial role in materials science and engineering. Understanding and simulating
several different bonding environments is a challenge for theory and computation and
considerable effort focused on developing reliable and transferrable interatomic
potentials for classical molecular dynamics (MD) simulations. This thesis pertains to
the application of classical MD using such empirical potentials to create materials and
molecules consisting of carbon and hydrogen, determine their basic structural and
dynamical properties, and compare the results with other theoretical methods, such as
density functional theory and tight-binding, as well as experiment. More specifically,
structure, bond lengths and vibrational spectra for diamond, graphene and its
nanoribbons, methane, benzene and hydrocarbon chains were examined with MD
simulations using bond order interatomic potentials. The simulation package
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) was used for
the MD and in-house software was developed for the calculation of vibrational spectra
from the results of MD simulations using Fast Fourier Transform. Systematic
comparison of results shows overall agreement between empirical potentials and
experiment, with very few exceptions, where more accurate first principles methods
should be used. Moreover, vibrational spectra are analyzed in terms of temperature,
normal modes, and localized excitations.



Chapter 1: Introduction: Carbon Structures
1.1Carbon and its Allotropes

Element: Carbon

Carbon, the 6™ element in the periodic table is denoted by letter ‘C.” Carbon is found
almost everywhere, and it is one of the most abundant materials on earth. It is the 4t
most common element in the universe and 15th most common on earth’s crust. The
name carbon comes from a Latin word “carbo,” which means coal and charcoal;
hence, it is also derived from the French word “charbon” which means charcoal.
Carbon is the building block of life and its uses have shaped human history, from
fossil fuels to the diamond trade. Today, carbon once again promises revolutionary
applications, thanks to the discovery of nanoscale carbon structures over the past three
decades. Carbon’s ability to form bonds with four other atoms goes back to its
number and configuration of electrons. Carbon has an atomic number of six (meaning
six protons, and six electrons as well in a neutral atom), so the first two electrons fill
the inner shell and the remaining four are left in the second shell, which is the valence
shell. To achieve stability, carbon must find four more electrons to fill its outer shell,
giving a total of eight and satisfying the octet rule. Carbon atoms may thus form
bonds to as many as four other atoms. For example, in methane (CHg4), carbon forms
covalent bonds with four hydrogen atoms. Each bond corresponds to a pair of shared
electrons (one from carbon and one from hydrogen), giving carbon the eight electrons

it needs for a full outer shell. The molecular binding behavior of carbon is not based
on identical molecular orbitals but on hybridization.

Hybridization was introduced to explain molecular structure when the valence bond
theory failed to properly calculate them. Valence bond (VB) theory assumes that all
bonds are localized bonds formed between two atoms by the donation of an electron
from each atom. This is actually an unacceptable statement as many atoms bond using
delocalized electrons. It is experimentally observed that bond angles in organic
compounds are close to 109,5°, 120°, or 180°. According to Valence Shell Electron
Pair Repulsion (VSEPR) theory, electron pairs repel each other and the bonds and

lone pairs around a central atom are generally separated by the largest possible angles.
[23]

Specifically for the carbon element, in the ground state, there are two unpaired
electrons in the outer shell (electron configuration: (1s)%(2s)?(2p)?) ), so that one could
assume the ability to bind only two additional molecules. But a binding ability for
four electrons is noticed. The reason is the small energy difference between the 2s-
and the 2p-state, so that it is easily possible to excite one electron from the 2s-state
into the 2p-state. In the presence of an external perturbation, such as a close hydrogen,
the energy difference is overcome. This results in a mixed state formed out of one s-
orbital and three p-orbitals, namely px, py and pz, is produced. Four new hybrid
orbitals are formed. So when carbon is bonded to four other atoms (with no lone



electron pairs), the hybridization is sp® and the arrangement is tetrahedral with the
center of masses to be in the corners. The characteristic angle between the hybrid
orbitals in sp3-configuration is 109.5 degree. On the other side, a carbon atom bound
to three atoms (two single bonds, one double bond) is sp? hybridized and forms a flat
trigonal or triangular arrangement with 120° angles between bonds. In particular, the
sp>-hybridization is the combination of one s-orbital with only two p-orbitals, namely
px and py. The additional pz-orbital is perpendicular to the sp?-hybrid orbitals and
forms a m-bond. The third possible arrangement for carbon is sp hybridization in
which the s orbital of the excited state carbon is mixed with only one out of the three
2p orbitals. This hybridization results in a linear arrangement with an angle of 180°
between bonds. [23126]

Allotropy in Carbon

One of the most amazing properties of carbon is its ability to make long carbon chains
and rings. This property of carbon is known as catenation. Carbon has many special
abilities out of all one unique ability is that carbon forms double or triple bonds with
itself and with other electronegative atoms like oxygen and nitrogen. These two
properties of carbon i.e catenation and multiple bond formation, it has the number of
allotropic forms. Allotrope is nothing but the existence of an element in many forms
which will have different physical properties but will have similar chemical properties
and its forms are called allotropes of allotropic forms. Carbon allotropes are all based
on carbon atoms but exhibit different physical properties, especially with regard to
hardness. Carbon exists in two allotropic form (i) crystalline (ii) amorphous.!?’! The
crystalline forms are diamond and graphite whereas the amorphous forms are coal,
charcoal, lamp black etc. Though these allotropes of carbon have a different crystal
structure and different physical properties, their chemical properties are similar and
show similar chemical properties. Both give off carbon dioxide when strongly heated
in the presence of oxygen.

1.2 Graphene, Graphene Nanoribbons and Diamond
Graphene

Graphene is composed of sp? hybridized carbon atoms arranged in a 2D honeycomb
crystal lattice. Three valence electrons of carbon atoms in graphene form bonds (o)
with their next neighbours while the fourth electron of each carbon atom localized in
the pz () orbitals perpendicular to the planar sheet form highly delocalized bonds ()
with the others. The name is derived from "graphite" and the suffix -ene, reflects the
fact that the graphite allotrope of carbon contains numerous double bonds. In 2004,
the material was rediscovered, isolated and investigated at the University of
Manchester, by Andre Geim and Konstantin Novoselov. In 2010, Geim and
Novoselov were awarded the Nobel Prize in Physics for their "groundbreaking
experiments regarding the two-dimensional material graphene". High-quality
graphene proved to be surprisingly easy to isolate. [!]



The possibility of wrapping up graphene into 0D fullerenes, rolling it into 1D carbon
nanotubes (CNTs) and stacking of it into 3D graphite makes graphene the central

building block of all graphitic materials. (see Figure 1.2.1) []
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Fullerene |Carbon Nanotube

Graphene

Graphite

Figure 1.2.1 PI: examples of different carbon nanostructures:

graphene (2D), graphite (3D)
Graphene Nanoribbons

fullerene (0D), carbon nanotubes (1D),

Graphene nanoribbons (GNRs) are planar, finite, quasi-one-dimensional graphene
structures. They are generally categorized by the structure of their long edges, which
can have an armchair, a zigzag, or an intermediate character (see Fig. 1.2.2). U8,
Zigzag GNRs are always metallic, while armchair GNRs can be either metallic or

semiconducting. [1°]
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Figure 1.2.2 [181: Categorization of graphene nanoribbons

Diamond

Diamond is a solid form of the element carbon with its atoms arranged in a crystal
structure called diamond cubic. Diamond has the highest hardness and thermal
conductivity of any natural material, properties that are used in major industrial
applications such as cutting and polishing tools. Although diamond is not fragile or
prone to breaking apart, all substances including diamond can fracture or shatter. Due



to its particular crystal structure, diamond has certain planes of weakness along which
it can be split. Diamond is said to have perfect cleavage in four different directions,
meaning it will separate neatly along these lines rather than in a jagged or irregular
fashion. This is because the diamond crystal has fewer chemical bonds along the
plane of its octahedral face than in other directions. Diamond cutters take advantage
of cleavage to fashion diamonds efficiently. [2? They are also naturally lipophilic and
hydrophobic, which means the diamonds' surface cannot be wet by water, but can be
easily wet and stuck by oil. [4

1.3 Forms of Hydrocarbons
Hydrocarbon molecules

Methane, an outstanding fuel, is a good example of hydrocarbons. These are organic
molecules consisting completely of carbon and hydrogen and are often used as fuels:
the propane in a gas grill or the butane in a lighter. The atoms in hydrocarbons have
bonds between them called covalent bonds. This is a type of chemical bond where
two atoms are connected to each other by the sharing of two or more electrons.
Because hydrocarbons have many such bonds, a large amount of energy is stored,
which is released when these molecules are burned (oxidized). Methane is the
simplest hydrocarbon molecule, with a central carbon atom bonded to four different
hydrogen atoms. The geometry of the methane molecule, where the atoms reside in
three dimensions, is determined by the shape of its electron orbitals. The carbon and
the four hydrogen atoms form a shape known as a tetrahedron, with four triangular
faces; for this reason, methane is described as having tetrahedral geometry. [l

Hydrocarbon chains

Hydrocarbon chains are formed by successive bonds between carbon atoms and may
be branched or unbranched. The whole geometry of the molecule is transformed by
the different geometries of single, double, and triple covalent bonds. Double and triple
bonds change the geometry of the molecule: single bonds allow rotation along the
axis of the bond, while double bonds lead to a planar configuration and triple bonds to
a linear one. These geometries have an important impact on the form a particular
molecule can assume. Bl

Hydrocarbon rings

The hydrocarbons discussed so far have been aliphatic hydrocarbons, which consist of
linear chains of carbon atoms. A different type of hydrocarbon, aromatic
hydrocarbons, be made up of closed rings of carbon atoms. Ring structures are found
in hydrocarbons, sometimes with the presence of double bonds. The benzene ring is
present in many biological molecules including some amino acids and most steroids.

Benzene is a natural component of crude oil and has been classified as a carcinogen.
[3]



Chapter 2: Simulations and Methods

2.1 Density Functional Theory (DFT)

Density-functional theory (DFT) is a successful theory to calculate the electronic
structure of atoms, molecules, and solids. Its goal is the quantitative understanding of
material properties from the fundamental laws of quantum mechanics. DFT
calculations are performed, in this work, with GPAWDB!. It is an efficient program
package for electronic structure calculations. It is based on DFT implemented within
the projector augmented wave (PAW).

Traditional electronic structure methods attempt to find approximate solutions to the
Schrédinger equation of N interacting electrons moving in an external, electrostatic
potential. But it is quite difficult to achieve something like this, even for small
systems, and for larger numbers of N the description is not allowed. At the same time
it is a problem that is not at all familiar, so that there are not many research projects,
because the resulting wave functions are complex objects.

A different approach is taken in density-functional theory where, instead of the many-
body wave function, the electron density is used as the fundamental variable. Since
the density is a function of only three spatial coordinates (rather than the 3N
coordinates of the wave function), density-functional theory is computationally
possible even for large systems. 8]

DFT calculation provides more accurate result but this calculation is applicable for
small system and based on quantum methods. On the other hand, empirical
interatomic potentials calculations are more significant for big systems and based on
classical mechanics. And this is how molecular dynamics come into play.

2.2 Molecular Dynamics

The ease with which computers can be used has allowed the current generation of
scientists to meet the demands of engineers for solutions to complex problems and to
push the boundaries to what is technologically possible. Two distinct sciences have
evolved along with the development of the computer. One is computer science which
examines the logic, design and control of computers, the representation and
organization of data structures, the design of programming languages and operating
systems, etc. The other is computational science - the science of computation rather
than computers. It is the older of the two, established much earlier under the name of
"numerical methods". This examines the various means by which functions can be
approximated, or differentiated and integrated. It deals with optimization techniques,
finding the roots in equations, solving systems of linear, ordinary and partial
differential equations - in fact, any analytical methods face a "bunch" of problems,
numerical methods try to give an answer to them.



Computational science forms the mathematical backbone of computational physics. A
computational physicist tries to reach approximate solutions to problems that are
otherwise difficult to obtain. For a system with a stable state a computational solution
would normally be a graph representing the relationship between two or more
parameters. For a dynamic, time-varying system, computations can trace its behavior
over time and space, in effect recreating the system itself. Such a recreation is usually
called a 'computer simulation', and if the simulation is necessarily complete it is
referred to as a 'computer experiment'.

Molecular dynamics (MD) is a computer simulation method for analyzing the
physical movements of atoms and molecules. The atoms and molecules are allowed to
interact for a fixed period of time, giving a view of the dynamic "evolution" of the
system, so the system physical properties are monitored. Those properties are either
macroscopic system properties, [V (volume), P (pressure), T (temperature), N
(number of particles)], or microscopic system properties, [vi (velocities), r;
(positions)].l'®] In the most common version, the trajectories of atoms and molecules
are determined by numerically solving Newton's equations of motion for a system of
interacting particles, where forces between the particles and their potential energies

are often calculated using interatomic potentials or molecular mechanics force fields.
[10]

This research includes NVE and NVT simulations. The micro canonical ensemble
NVE signifies a system where the number of atoms, the system volume and the total
energy (the sum of potential and kinetic energy) are kept constant. The equations of
motion are solved and the positions and velocities are updated every subsequent time
step.

The canonical ensemble NVT contains all possible states in thermal equilibrium with
a heat bath. The system remains in the absolute temperature T but may exchange
energy with the heat bath. Three parameters of the system are fixed throughout the
simulation: the absolute temperature (T), the number of atoms (N), and the volume
(V). L6l

In this work we used the LAMMPS software. It stands for Large-scale
Atomic/Molecular Massively Parallel Simulator. It is a classical molecular dynamics
simulation code with a focus on materials modeling. It was designed to run efficiently
on parallel computers. It was developed originally at Sandia National Laboratories, a
US Department of Energy facility. [111[20]

Before we start with the simulations, we need to build the structures and for this it is
necessary to define the positions of the atoms. The atomic simulation environment
(ASE)3?] is a software package written in the Python programming language with the
aim of setting up, visualizing, steering, and analyzing atomistic simulations. In ASE,
tasks are fully scripted in Python. The powerful syntax of Python combined with the
NumPy array library make it possible to perform very complex simulation tasks.[!?] In



this work we used ASE to make structures such as diamond and graphene
nanoribbons.

Depending on whether the system is 2 or 3 dimensions, the positions are determined
by a series of vectors containing the X, y, and z coordinates. In the case of LAMMPS,
the initial positions of the atoms can be user defined, which involves a data file
containing the position vector of each atom in the system. When setting the initial
positions, it must be taken into account that they correspond to the desired minimized
structure, else the simulation will be inaccurate. For this reason we first start to
minimize the structures before starting the simulation.

Minimum energy configuration corresponds to the stable state of the system. Stable
states of molecular systems correspond to global and local minima on their potential
energy surface. Starting from a non-equilibrium molecular geometry, energy
minimization employs the mathematical procedure of optimization to move atoms so
as to reduce the net forces on the atoms until they become negligible. Energy
minimization is a numerical procedure for finding a minimum on the potential energy
surface starting from a higher energy initial structure. During energy minimization,
the geometry is changed in a stepwise way so that the energy is reduced. After a
number of steps, a minimum on the potential energy surface is reached.

2.3 Bond Order Potential

In this work we chose to use classical empirical potentials as they can be used to
model much larger systems, with varying temperature and for longer time, allowing,
for example, the study of point, line and planar defects. However, one of the biggest
drawbacks of classical simulations is that results are only as good as the force-field
used to obtain them. Because of that, the two main problems related to the use of
classical-mechanics simulations are the transferability and the version-control of the
originally developed potentials. Transferability is the ability of a potential to produce
reliable results when simulating conditions other than those used in the fitting process.
Originally, empirical dynamics were created for some specific materials in order to
calculate properties (e.g. mechanical properties) at some specified temperature.
Therefore it is important to test if the same potential performs for other crystal
structures for a range of temperatures as it is difficult to fit perfectly transferable
potentials. The second major worry related to the use of classical potentials is the
possibility that the potential form actually implemented in the used code is not exactly
identical to the form initially distributed by the developers. File formats change

between codes and errors can be made during transfer or the files can get destroyed.
[27]

Bond order potential is a class of empirical (analytical) interatomic potentials which is
used in molecular dynamics and molecular statics simulations. Examples include the
Tersoff potential and the Brenner potential. [©]

General form for many body potential:
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The first term is a two-body potential, which can include repulsive and attractive
terms. The second term is a three-body potential, which prevents the automatic close
packing of the particles in the system. Powerful approach for modeling any type of
bonding. But it can be improved by including explicit information about the
surroundings of each atom.

Tersoff proposed a new potential form:

e Multiply the two-body term by a bond-order term, bij, which is
decided by the local environment (it is a many-body term).

e Bjj weighs the bond strength and is a  monotonically
decreasing  function of the number of competing bonds, the
strength of the competing bonds and the cosines of the angles
with competing bonds.
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The original Tersoff potential was designed for Silicon and Carbon and was able to
describe single, double, and triple bond configurations, but it was not able to describe
radicals and conjugate versus non-conjugate structures. This led to the development of
the REBO potential (Reactive Empirical Bond Order potential), which is a Tersoff-

like potential, developed by Brenner.]

Second generation of REBO potential: The first generation REBO was improved by
modifying the angular term and adding a torsion term.

Modified angular term: New function, new fit method, flexible in various bond angles
during the chemical reaction.

Added the torsion term: Provides the rotation barrier for double bond and conjugate
bond. [

The main difference between the two potentials is that REBO can calculate bond
energies for atoms of different coordinations. For example, while the Tersoff potential
can describe the covalent bonding in a system of carbon atoms only, the REBO



potential can handle a hydrocarbon system. This makes REBO very useful in
describing a system of multiple species.

2.4 Radial Distribution Function (RDF)

One way to characterize a structure is by using the Radial distribution function, (or
pair correlation function). RDF g(r) in a system of particles (atoms, molecules,
colloids, etc.), describes how density varies as a function of distance from a reference
particle.

palr) = <Z > ol m)>
j=1
(171)

In other words, the radial distribution function (RDF) defines the probability of
finding a particle at distance r from another tagged particle. It shows a set of peaks at
positions that correspond to shells around a given atom. The function carries
information on the structure of the system. (see Figure 2.4.1) [

Figure 2.4.1 BI: calculation of g(r)

2.5 Vibrational Spectra & Fast Fourier Transform
Vibrational modes

Molecules vibrate. A single molecule can vibrate in various ways and each of these
different motions is called a vibration "mode". Degree of freedom is the number of
variables required to describe the motion of a particle completely. For an atom
moving in 3-dimensional space, three coordinates are adequate so its degree of
freedom is three. Its motion is purely translational. If we have a molecule made of N
atoms (or ions), the degree of freedom becomes 3N, because each atom has 3 degrees
of freedom. Additionally, since these atoms are bonded together, all motions are not
translational: some become rotational, some others vibration. For non-linear
molecules, all rotational motions can be defined in terms of rotations around 3 axes,
the rotational degree of freedom is 3 and the remaining 3N-6 degrees of freedom



constitute vibrational motion. For a linear molecule however, rotation around its own
axis is no rotation because it leaves the molecule unchanged. So there are only 2
rotational degrees of freedom for any linear molecule leaving 3N-5 degrees of
freedom for vibration.

The degrees of vibrational modes for linear molecules can be calculated using the
formula: 3N—5.The degrees of freedom for nonlinear molecules can be calculated
using the formula: 3N—6

A normal mode of a dynamical system is a pattern of motion in which all parts of the
system move sinusoidally with the same frequency and with a fixed phase relation.
The free motion described by the normal modes takes place at fixed frequencies.
These fixed frequencies of the normal modes of a system are known as its natural
frequencies or resonant frequencies. A physical object, such as a molecule, has a set
of normal modes and their natural frequencies that depend on its structure, materials
and boundary conditions. [?*] The local vibrational modes are the true equivalent of the
normal vibrational modes.

A molecular vibration is a periodic motion of the atoms of a molecule relative to each
other, such that the center of mass of the molecule remains unchanged.!'*] Within the
CH: group, commonly found in organic compounds, the two low mass hydrogens can
vibrate in six different ways which can be grouped as 3 pairs of modes: 1. symmetric
and asymmetric stretching, 2. scissoring, and rocking, 3. wagging and twisting. These
are shown in Figure 4 [13]:

in-plane:
molecular
vibrations , DQ
N bending _.f’
(deformation \
| vibrations) scissoring rocking
stretching &
(valence bond vibrations): out-of-plane:
symmetrical asymmetrical o _—
stretching stretching geing 8

Figure 2.5.1 [131: Visualization of all different molecular vibrations

Stretching and Bending modes

A stretching vibration changes the bond length. There are two types of stretching
vibrations. In symmetric stretching, two or more bonds vibrate in and out together. In
asymmetric stretching, some bonds are getting shorter at the same time as others are
getting longer, resulting in a change in the dipole moment of the molecule. So,
asymmetric stretching appears at a higher wavenumber and absorbs or needs more



energy than symmetric stretching. Bending vibrations are characterized by a change in
the angle between two bonds and are of four types: scissoring, rocking, wagging, and
twisting. (See Figure 2.5.1)
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Figure 2.5.2: Graphic representation of the normal modes of benzene and their symmetry classification.
C (H) atoms are shown as large (small) circles. Out-of-plane modes are shown in such a way that atoms
bearing dots (crosses) are displaced forwards (backwards). For the in-plane modes arrows to scale for
each mode indicate atomic displacements in the paper plane. Infrared-active modes are labeled with an
asterisk. [21]

Fast Fourier Transform (FFT)

A given function or signal can be converted between the time and frequency domains
with a pair of mathematical operators called transforms. An example is the Fourier
transform, which converts a time function into a complex valued sum or integral of
sine waves of different frequencies, with amplitudes and phases, each of which
represents a frequency component. The "spectrum" of frequency components is the
frequency-domain representation of the signal. [23]

The "Fast Fourier Transform" (FFT) is an important measurement method in the
science of audio, acoustics measurement and electromagnetic signal processing. It
converts a signal into individual spectral components and thereby provides frequency
information about the signal. FFTs are used for fault analysis, quality control, and
condition monitoring of machines or systems. Strictly speaking, the FFT is an
optimized algorithm for the implementation of the "Discrete Fourier Transformation"
(DFT). A signal is sampled over a period of time and divided into its frequency
components. These components are single sinusoidal oscillations at distinct
frequencies each with their own amplitude and phase.

From [15] we see that two parameters are relevant:



The sampling rate or sampling frequency At of the measuring system: if At is
measured in seconds, then the sampling rate is the number of samples recorded
per second.

The selected number of samples N: This is always an integer power to the base 2
in the FFT (e.g., N = 2! = 2048 samples)

From the two basic parameters At and N, further parameters of the measurement can
be determined.

Nyquist frequency fc: This value indicates the theoretical maximum frequency that
can be determined by the FFT.

1
(2*At)

fC:

Frequency resolution Af. The frequency resolution indicates the frequency spacing
between two measurement results.

__ 1
(N*At|

Af

A small N results in fast measurement repetitions with a coarse frequency resolution.
A large N results in slower measuring repetitions with fine frequency resolution. [3]

Below we listed the parameters we used in this project for FFT calculations:

1.

2.

Number of points we kept: 2048

Sampling rate At: 1015 seconds

Frequency resolution Af: 16,3 cm! or 0,488 THz
Steps in MD simulations (LAMMPS): 100000
Time unit dt (LAMMPS): 0,0001ps or 0,1fs

Every 10 steps we store the positions and velocities in data file(LAMMPS)



Chapter 3: Results and Discussion
3.1 Calculation of diamond lattice constant with DFT

In the Figure below is the Diamond structure of 8000 atoms we made with ASE.

Figure 3.1.1: Diamond Structure of 8000 atoms

We will start with the analysis of the results of the lattice constant calculation of
Diamond by using the Density Functional Theory (DFT) method, with the software
GPAW. First we measured the energy of a unit cell of the system in Figure 3.1.1 and
after that, by changing the lattice constant manually, we get the energy for each value
and plot the energy vs lattice constant graph. Then by fitting a second degree
polynomial we calculate the minimum value of the graph and the material's lattice
constant was calculated 3.54A. For the graphs below we used two softwares,
SciDAVis and Excel, and for the structure visualization VESTA.
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Figure 3.1.2: Energy vs Lattice constant Graph for Diamond structure with DFT

3.2

Calculation of diamond lattice constant with empirical pote
ntials and cg algorithm

For the diamond structure of 8000 atoms the change of the lattice constant is done
with the command "lattice" of LAMMPS. From all the values obtained, we plot the
energy/lattice constant graph. Then, with a second degree polynomial we calculated
the minimum of the curve and the theoretical lattice constant. First we used the
Brenner potential and then the Tersoff potential. Below we show in black the curve of
the theoretical points, and in red the approximation of the curve near the minimum
with a second degree polynomial (y = a x>+ bx + ¢).

e Brenner
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Figure 3.2.1: Energy vs Lattice constant Graph for Diamond structure with the Brenner Potential



[12/5/2022 9:53 ny Plot: "Graph1"]

Polynomial fit of dataset: Table2_-55.928, using function: al+al*x+a2*x"~2
¥ standard errors: Unknown

Fromx=34tox=3,7

al =538.606,231282871 +/- 18.436,6415137714

al =-334.388,37304843 +/- 10.397,9600876109

a2 =46.778,8225611857 +/- 1.465,41582571795

Chi™2 = 8.494,59294024219

R~2 = 0,995514627157991

Therefore from the second degree polynomial:
y=46.778,82 x°—334.388,37 x+538.606,23
We calculate the minimum from:

dy —b —(—334.388,37)
— =7 =02 x=——=Dx=
dx 2 aX D=0 X=X = 6.778,82)

=3,5741428493 A

a=3,57A
The experimental value is: a = 3,57A
Comparing the theoretical with the experimental value:

% percentage dif ference =[3’57 ;‘5_7312‘57 AJ:O,OO%

Therefore from the second degree polynomial we calculated that the lattice constant is
3,57A and the experimental value is also 3,57A. By comparing the theoretical with
the experimental value we have a percentage difference of 0,0 % .

e Tersoff

Energy vs Lattice Constant for Diamond Structure
-5,5e+04

-5,66+04-]
-5,65-+04 |

-5,7e+041

Energy (eV)

-5,75e+04
-5,8e+04 1

-5,85e+04

-5,9e+04 1

-5.95e+04 ’:\ L B B I L A R B R |
3,2 3,3 3,4 3,5 3,6 3,7 3,8 39
Lattice Constant (R)

Figure 3.2.2: Energy vs Lattice constant Graph for Diamond structure with the Tersoff Potential



As in with the Brenner potential we calculated that the lattice constant is 3,57A. So
we have again a percentage difference of 0.0%.

Note: In the graphs below we have g(r) in a.u, for arbitrary units,
in the y axes and r, for distance in Angstrom, in the x axes.

The last way to calculate the constant is with energy minimization with conjugate
gradient (cg) algorithm with the Brenner Potential, from LAMMPS. After the
minimization we use the Radial distribution function, so that we don't have to
measure all the distances manually as the graph shows us the distance r of the first
neighbors from the first peak.

For diamond cubic structures the lattice constant is calculated from: dnn = (a * 4)/ B3

, where dnn is the distance of first neighbors.

Diamond

Figure 3.2.3: RDF Graph for Diamond structure with Conjugate Gradient (cg) algorithm

In Table 1 are the theoretical results, of each method, for the lattice constants of
Diamond.

Theoretical Values

Table 1 Brenner Tersoff cg algorithm (with Brenner)

Diamond




3.3 Calculation of graphene lattice constant with DFT
Similarly we worked for the graphene structure. We started by creating fully periodic
perfect graphene lattice with 400 atoms (Figure 3.3.1).

Figure 3.3.1: Graphene structure of 400 atoms

After that we used GPAW to calculate the lattice constant of Graphene with DFT, in the
same way we did for Diamond bevor. The minimum value of the graph and the
material's lattice constant was calculated 2.47A
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Figure 3.3.2: Energy vs Lattice constant Graph for Graphene structure with DFT

3.4
Calculation of graphene lattice constant with empirical pot
entials and cg algorithm



We started by measuring the energy of the graphene structure of Figure 3.4.1. Then
we changed the xyz coordinates and the dimensions of the "box" (with the help of a
program written in Fortarn 95), to change the lattice constant and measure the energy
again. With VESTA we visualize the structure resulting from the change and measure
with maximum accuracy the lattice constant. From all the values obtained, we plot the
energy/lattice constant graph. Then, with a second degree polynomial we calculated
the minimum of the curve and the theoretical lattice constant.

e Brenner

With the software of VESTA we see the graphene structure and calculate the lattice
constant by measuring the appropriate distances.

Figure 3.4.1: Graphene structure of 400 atoms

- -
1(C166-C128) = 2.45949(0) A

léé Cle¢ C 5.69000 6.8377¢ 0.00000 (0, O, O)+ x, Vv,
128 cl2e C 7.81000 ©.60804 0Q.00000 (0, 0, O)+ x, v,

(]

Figure 3.4.2: VESTA results of measuring the lengths between the two yellow points of Figure 3.4.1

We continue with the same procedure with other lattice constants. Below we show in
black the curve of the theoretical points, and in red the approximation of the curve
near the minimum with a second degree polynomial (y = a x2+ bx + ¢).
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Figure 3.4.3: Energy vs Lattice constant Graph for Graphene structure with the Brenner Potential

Therefore from the second degree polynomial: ;-9 47 4

The experimental value for graphene is 2,46A.
Comparing the theoretical with the experimental value:

12,46 A-2,474 |
2,46 A

% percentage dif ference = ~0,4 %

e Tersoff

We repeat the same steps as before so that we can plot the “Energy vs lattice
constant” graph.
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Figure 3.4.4: Energy vs Lattice constant Graph for Graphene structure with the Tersoff Potential



Therefore from the second degree polynomial we have ;-»53 A

Comparing the theoretical with the experimental value:

12,46 A-2,53 A
2,46 A

% percentage dif ference = ~2.85%

For the graphene structure we observe greater accuracy with the Brenner Potential
(percentage difference of 0.40%), while in the Tersoff Potential we have a percentage
difference of 2.85%. In the diamond structure the experimental result agrees exactly
with the theoretical value for both Potentials.

Next we calculate the lattice constant with the cg algorithm, as we did for the
Diamond structure. But we mention here that for honeycomb structures the lattice

constant is calculated from: dnnv=a/ vlg

Graphene

Figure 3.4.5: RDF Graph for Graphene structure with Conjugate Gradient (cg) algorithm

In Table 2 are the theoretical results, of each method, for the lattice constants of
Graphene.

Theoretical Values

Table 2 Brenner Tersoff cg algorithm eith Brenner

Graphene

3.5 NVE Simulation for 10K and 300K

Note: For the graphs below we used Excel.

After applying NVE simulation first at 10K (blue) and then at 300K (orange), we plot
the RDF graph for Graphene and Diamond structure as we can see below. In the



graphs, in the y axes we have g(r) in a.u, for arbitrary units, and r, for distance in
Angstrom, in the x axes.

Diamond Graphene
| 1l 2
] 1 2 3 4 5 6 ¢ ' ! ! ‘ ¢
f r
10K —+— 30K +— 10K —+— 300K
Figure 3.5.1: RDF Graphs for Diamond structure with NVE Figure 3.5.2: RDF Graphs for Graphene structure with NVE

By zooming in on the first peak we can see that the position of the peak (r value)
remains the same at both temperatures, but at 300K the width of the curve has
increased. This is explained by the fact that with an increase in temperature, the
particles gain kinetic energy, move faster and oscillate more. The actual average
speed of the particles depends on their mass as well as the temperature — heavier
particles move more slowly than lighter ones at the same temperature.

Graphene
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Figure 3.5.3: RDF Graphs for Graphene structure with NVE.
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Figure 3.5.4: RDF Graphs for Diamond structure with NVE.

3.6 Small Hydrocarbon Molecules: Methane and Benzene

Figure 3.6.1: Methane molecule Figure 3.6.2: Benzene molecule

Next we focused on the methane and benzene molecules so we can measure bonds
and angles to compare them with the experimental values and check the accuracy of

LAMMPS cg minimization. As shown in Tables 3 and 4 below, there is no difference
between theoretical and experimental values.

Methane Molecule

Table 3 Theoretical Values Experimental Values

C-H bond 1,09 A

1,09 A

H-C-H angle 109,5deg 109,5deg




Benzene Molecule
Table 4 Theoretical Values Experimental Values

C-H bond

C-C-C angle

C-C bond

3.7 Hydrocarbon chains
Below we present three different hydrocarbon chains:

WA A A X

Figure 3.7.1: Hydrocarbon chain of C22H46
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Figure 3.7.2: Hydrocarbon chain of C22H44
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Figure 3.7.3: Hydrocarbon chain of C22H24

We focused on the structure C22H24 to compare the results with those of the article
[17]. All values have been listed in Table 5. We observed that after minimization, the
double and single carbon-carbon bond have the same length, which we did not expect,
because at C22Has the double bond at the right end did not change.

Table 5 Structural Values Values from [17]

C-C single bond 1,38 A 1,42 A

C-C double bond 1,38 A 1,38 A

C-H bond 1,09A 1,10 A




3.8 Graphene Nanoribbons: Armchair and Zigzag

At this point in the project we present the graphene nanoribbon (GNR) structures with
hydrogens on the outer carbons. We made the armchair and the zigzag structures.
Below we have la to 1d and 2a to 2d the width 4,6,10 and 20 for each nanoribbon
respectively.

Armchair Graphene Nanoribbon: Zigzag Graphene Nanoribon:

2e%0202020%02¢2

Figure 3.8.1: Armchair GNR width 4
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Figure 3.8.2: Armchair GNR width 6

2¢

Figure 3.8.3: Armchair GNR width 10

Figure 3.8.7: Zigzag GNR width 10



1d

Figure 3.8.4: Armchair GNR width 20

Figure 3.8.8: Zigzag GNR width 20

The aim is to observe if there is any change in the lattice constant with change in
width. For this we apply the RDF graph so that we do not measure the distances by
hand, as from the first peak corresponding to the first neighbor distance, we calculate
the constant for each width.

Below we show two examples of the RDF graph for the armchair and zigzag graphene
nanoribbon of width 4. Table 7 and 8 include the width, number of atoms and lattice
constant of each nanoribbon type. In the graphs below in the y axes we have g(r) in
a.u, for arbitrary units, and r, for distance in Angstrom, in the x axes.

Graphene Nanoribbon (Armchair-width m=4) Graphene Nanoribbon (Zigzag - width n=4)

5 o 1 2 3 a s

Ihi_ﬁx 1 ir A S

Figure 3.8.9: RDF Graph for Armchair and Zigzag Graphene Nanonbbon width 4 structure with
Conugate Gradient (cg) algorithm.



Table 7
Armchair
Width Number of atoms Lattice Constant (A)
4 480 2,4257
6 640 2,4275
10 960 2,4604
20 1760 2,4604
Table 8
Zigzag
Width Number of atoms Lattice Constant (A)
4 600 2,4604
6 840 2,4604
10 1320 2,4604
20 2520 2,4604
A A We observe in the armchair case a
F = 1.490 1,40 < . P b
o= o] 284 a8 ;Hi e “o difference in the results, while in the
C{ o Cj'f'la'w e b""o" oy Zigzag structure the constant remains the
B d » C) ' . E A same for each width. If we look in more
v n ¥ N T COL Y T detail at the carbon-carbon bonds in the
\.\b g../ \.._) _;__A &) - - =] .
-\l“‘ W ", 0 E O structures, we observe something that
V ‘“:' "" “"’ . ~" r - - could explain this phenomenon. As can
s I :
Q ,:";' C:' D z E r . be seen from the Figures 3.8.11 and
=Q =Q T E T 3.8.12, the bonds in the outer carbons are
C\'i‘ D=Q C) - m"i ™ ¢ shorter. In the Armchair GNR we have
D Q o {:j - T values of 1.38A and 1.40A, while in the
g 1400 4140 N E Zigzag GNR 1.40A. In both cases all
Q e W AR A A TF
' ; E i T Y other C-C bonds are 1.42A, as the
1,407 1,40 q;.-l,f:; '-gi_'ﬁ‘ experimental value.

Figure 3. 8.11: Armchair Graphene

Nanoribbon — Width 10

Figure 3.8.12: Zigzag Graphene
Nanoribbon — Width 10
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3.9 Vibrational Spectra and Displacements of H-atoms
Vibrational Spectra

The vibrational spectra of the structures below were computed by Fast Fourier
transform of the velocities (see Appendix A) computed from the trajectories generated
by MD simulations using the LAMMPS package, for 100000 steps. Metal units are
being used which uses picoseconds for time, Angstroms for length, Kelvin for
temperature. The force field is set to the REBO potential. An NVE run is to be done
with temperature rescaling to a wanted temperature of 300 or 10 K. The positions and
velocities of all atoms will be written into the dump file every 10 time steps.

It’s important to note that the sampling rate must be greater than the highest frequency
component of the signal to ensure the sampled data accurately represents the input
signal, according to the Nyquist sampling theorem.

Normal vibrational modes

We performed NVT simulation at 300K or 10K on the minimized structure for
100000 steps and stored the positions and velocities of each atom at the step in which
the temperature was closer to the desired temperature of 300K or 10K. Then we used
this data to perform NVE simulation to obtain the vibrational spectrum of the
structure. We should mention here that equilibration was done before we got the
spectrum data.

Methane: NVT simulation: T = 300.05118 K.

Vibrational Spectrum (Methane) Vibrational Spectrum (Methane)
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Figure 3.9.1: Vibrational spectrum of methane molecule

In methane, from Figure 3.9.1, vibrational symmetric stretch is 2835c¢cm-! ,while
experimental frequency, is 2917cm!, vibrational degenerated stretching mode is 3081
cm’! while for experimental frequency, it is 3019cm-! (stretch), vibrational mode of
degenerated deformation for experimental frequency, is 1306cm™! (bend). One more
degenerated deformation observed of vibrational mode is 1737cm!, while for
experimental frequency, it is 1534 cm!.

3500



Benzene: NVT simulation: T=301.75682 K.

Vibrational Spectrum (C6HE) Vibrational Spectrum (C6H6)
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Figure 3.9 2: Vibrational spectrum of benzene molecule

The carbons in aromatic rings are unsaturated, which means hydrogens can be added
to these carbons via reaction. For example, benzene, CsHs, can be hydrogenated to
form cyclohexane, CsHi2, which is not an easy reaction to perform but has been done.
As a result of being unsaturated carbons, the force constant for C-H stretching in
aromatic rings is higher than for saturated carbons. As a result, in general unsaturated
C-H stretches fall above 3000 cm™!, and saturated C-H stretches fall below 3000 cm™.
This is a useful dividing line to remember for an initial examination of a spectrum.
First, we have to look if there are any peaks between 2800 and 3200cm!. If there are,
then these are C-H stretching peaks. Next, we look at where the peaks are in this
range. If there are peaks above 3000 cm’' then the carbons in the sample are
unsaturated only. If all of the C-H stretches are below 3000 cm! all the carbons in the
sample are saturated. If there are C-H stretches above and below 3000 cm™! there are
saturated and unsaturated carbons present. The 3000 cm™! dividing line between the
C-H stretches of unsaturated and saturated carbons has very few exceptions and is a
very reliable rule of thumb.

As we read the spectrum of Figure 3.9.2 of benzene from left to right, we note there
are some peaks between 2800 and 3050cm-!, making these C-H stretches, with
saturated and unsaturated carbons, but the main peak in this area is at 2917,19 cm-
I.The peaks at 1524 and 1573cm™! are examples of ring mode peaks. A ring mode is a
vibration that involves the stretching and contracting of the carbon-carbon bonds in an
aromatic ring. These are typically sharp, but vary in number and intensity depending
upon the molecule. They usually fall between 1620 and 1400cm™'. The region
between 1000 and 1200cm! is where aromatic ring C-H in-plane bending peaks fall.
These peaks are generally medium to weak in intensity, show up in a very busy
spectral region, and hence are not useful group wavenumbers.

The peaks in Figure 3.9.2, are out-of-plane C-H bends. Since aromatic rings are
planar, all the hydrogens are in the plane of the molecule. When these hydrogens bend
above and below the plane of the molecule they are undergoing a C-H out-of-plane
bend, which is sometimes called a wag. This vibration gives rise to peaks that
typically fall between 700cm™' and 1000cm'. In the spectrum of benzene, this peak
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usually falls at 674 cm! because the molecule is unsubstituted. In Figure 3.9.2 we see
peaks between 600 and 1100cm.

In general, the peaks between 600 and 1000 cm™! are out-of-plane C-H bends. Since
aromatic rings are planar, all the hydrogens are in the plane of the molecule. When
these hydrogens bend above and below the plane of the molecule they are undergoing
a C-H out-of-plane bend, which is sometimes called a wag. This vibration gives rise
to a peak that typically falls between 1000 cm™' and 700 cm™! but in the spectrum of
benzene, this peak falls at 674 cm-! because the molecule is unsubstituted.

C22H24: NVT simulation: T= 304.15038K

Vibrational Spectrum (C22H24) Vibrational Spectrum (C22H24)
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Figure 3.9 3: Vibrational spectrum of C22H24

C2Ha4 belongs to the category of CyHn+2 and therefore we will compare the
vibrational frequencies of the spectrum in Figure 3.9.3 with those of [30] for C2Ha
(ethylene). Reading the right graph of Figure 3.9.3 from left to right we observe the
first sharp peak at 835,8cm!. Similarly for ethylene there is the H-C-H in-plane
rocking vibration at 835cm!. In addition, there is a peak at 885 cm"1 which appears in
the vibrational spectrum of ethylene at 875 cm™! and represents the H-C-H out-of-
plane twisting vibration. We will find the C-C stretching mode of C2Hs at 1827cm!
but in Cx2Hzs at 1868,3cm!, which means that there is a percentage difference of
2,26%. Finally, there is a peak at 2917,2cm’!, which must represent the C-H
asymmetric stretching vibration, since C-H symmetric stretching is present in
ethylene at higher frequencies (3210-3217cm!), which do not exist in our spectrum.



Graphene (400 atoms): WVT 300K simulation: T = Jﬂﬂ.dl}.'!ﬂl-d

Vibratienal Spactrum [Graphena 400 atorms) Vibrational Spectrum (Graphene 400 atoms)
120 Lea
130 [ Bt
100 1 100 }

.l

B i w0

B £ &0

A Al

2 w

i o

0 OO0 AGBO G000 BO000 10000 13000 14000 16000 LE000 R 500 g 1500 2000 1500 o
Frequency [cm-1] frequency [crm-1)
Figwre 3.9 4: Vibrational spectrum of Graphens
NVT 10K simulation: T = 10.254534K
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Figure 3.9 5: Vibrational spectrum of Graphene
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Diamond 216 (atoms): NVT 300K simulation: T = 308.96538K
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Figure 398 Vibrational spectrum of Diamond

NVT 10K simulation: T = 10.248795K
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Figure 3.9.7: Vibrational spectrum of Diamond

According to [29], graphene has a vibrational mode at 1580cm™! and diamond at
1332cm!. From Figure 3.9.4 and 3.9.5, we have peaks at 1671,6 and 1688,0cm-!
respectively. For the diamond structure of 216 atoms we see from Figure 3.9.6 and
3.9.7 peaks at 1475,0 and 1524,2cm™!. In both structures, there is an overestimation of
the potential. All the extra peaks correspond to other vibrational frequencies due to
the various motions in the structure, which we will not study further.
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Figure 3.9 8: Vibrational spectrum of zigzag Graphene Nanoribbon

According to Figure 8 from [28], there are three regions of the experimental
vibrational frequencies in zigzag graphene nanoribbons: (a) 600-1000 cm™'. (b)
1000-1800 e¢m™! and (c) 2950-3150cm™!. More specifically there are peaks at 728,
742, 885, 957, 1147, 1317, 1448, 1531, 1621 and 3052cm™'. In our case of zigzag
GNR (width 10), in the graph of Figure 3.9.8 we note peaks at 524,4 cm™!, between
1458,6 and 1704,4 cm’!, and at 2900,8 cm™'.

Localized excitations

First we changed the position of one specific hydrogen for 0,01A by hand in each
minimized structure and did a NVE simulation. Then we stored the velocities (vx, vy,
vz) of each atom and for each component we did FFT. We keep N=2048 points.

¢ Methane (CHy)

We displace Hydrogen 1 (H; — atom2) for 0,01A in the y-axis. Below we can see the
vibrational spectrum for Methane.
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Figure 3 9.9: Vibrational spectrom of methans molacole

one, 2966,36cm’!, to the symmetric stretch

Peak Frequency (Hz) Frequency (cm™)
1 8,39844*10'3 2818,86
2 8,83789*1013 2966,36

Benzene (CsHp)

We displace Hydrogen 1 (H; — atom7) for 0,01A in the x-axis.
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Figure 3.9.10: Vibrational spectrum of benzene molecule

Peak Frequency (Hz) Frequency (cm™)
1 8,74023*1013 2933,58
2 8,78906*1013 2949,97
o CxnHxu
H20 H16 H12 HB H4 H1 H5 H9 H13 H17 H22

H24 H18 H14 H10 HB H2 H3 H7 HiA1 H15 H19

We displace Hydrogen 4 (Hs — atom26) for 0,01A in the y-axis. Below we can see the
vibrational spectrum for C22Hoa.
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Figure 3.9 11: Vibrational spectrum of C22H24

Frequency (Hz) Frequency (cm™)
1 8,74023*10'3 2933,58

e Zigzag Graphene Nanoribbon (width10)

H58 H59 H72 H67 HE8 HE9 H70

We displace Hydrogen 72 (H7, — atom792) for 0,01A in the x-axis. Below we can see
the vibrational spectrum of zigzag GNR (width 10).
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Figure 3. 9.12: Vibrational Spectrum of zigzag GINE.



The first peak at 1524,15cm! corresponds to the antisymmetric stretch and the larger
one, 2933,58cm’!, to the symmetric stretch.

Localized vibrational modes

e Methane
Displacement of atom 2 (Hi) in Methane for 0,1A - Ax vs Time graph

First we move hydrogen H; by Ax=0,1A up and do NVE simulation. After 10ps we
see in the graph below the displacement along the y-axis as a function of time for

hydrogen 1 and 2.
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Figure 3.9.13: Displacement of atom HI in the y-direction from the equilibrium position when H1 is
initially displaced by Ax=0.1 A vs. time
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Figure 3.9.14: Displacement of atom H1 in the y-direction from the equilibrium position when H1 is
initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).
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Figure 3.9.15: Displacement of atom H2 in the y-direction from the equilibrium position when atom H1

is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.16: Displacements of the H-atoms in the y-direction from the equilibrium position when

atom 1 is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.17: Displacements of the H-atoms in the y-direction from the equilibrium position when
atom 1 is initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).



From Figure 3.9.17 we calculate first the period (T=12fs) and then the frequency at
2797,0lcm’. In the section before we calculated the frequency by changing the
position for Ax=0,01A and had two peaks, one at 2818,86cm™' and the other at
2966,36cm!. The difference between the results is maybe based on the Ax factor. In
the next structure we will displace the hydrogen for 0,1A and for 0,01A for better
comparisons.

¢ Benzene
Displacement of atom 2 (Hi) in Benzene for 0,1A - Ax vs Time graph

First we move hydrogen Hi by Ax = 0,1A to the right and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of
time for hydrogen 1 and 3.
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Figure 3.9.18: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Ax=0.1 A vs. time
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Figure 3.9.19: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).
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Figure 3.9.20: Displacement of atom H3 in the x-direction from the equilibrium position when H1 is

initially displaced by Ax=0.1 A vs. time

Ax of H1 and H3 vs Time

o
S

'y

12000

Ax (Angstrom)

—e—H1

-0,1 1 5
Time (fs) —s—H3

Figure 3.9.21: Displacements of the H-atoms in the x-direction from the equilibrium position when H1

is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.22: Displacements of the H-atoms in the x-direction from the equilibrium position when
atom 1 is initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).



From Figure 3.9.22 the frequency is calculated 2797,01 cm™'.
Displacement of atom 2 (Hi) in Benzene for 0,01A - Ax vs Time graph

First we move hydrogen H; by Ax = 0,01A to the right and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of

time for hydrogen 1 and 3.
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Figure 3.9.23: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is

initially displaced by Ax=0.01 A vs. time
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Figure 3.9.24: Displacement of atom H1 in the x-direction from the equilibrium position when H1 is
initially displaced by Ax=0.01 A vs. time for a short time interval (from 4,400ps to 4,500ps).
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Figure 3.9.25: Displacement of atom H3 in the x-direction from the equilibrium position when H1 is

initially displaced by Ax=0.01 A vs. time
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Figure 3.9.26: Displacements of the H-atoms in the x-direction from the equilibrium position when H1

is initially displaced by Ax=0.01 A vs. time
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Figure 3.9.27: Displacements of the H-atoms in the x-direction from the equilibrium position when
atom 1 is initially displaced by Ax=0.01 A vs. time for a short time interval (from 0,000ps to 0,150ps).
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Figure 3.9.28: Displacements of the H-atoms in the x-direction from the equilibrium position when
atom 1 is initially displaced by Ax=0.01 A vs. time for a short time interval (from 4,400ps to 4,500ps).
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Figure 3.9.29: Displacements of the H-atoms in the x-direction from the equilibrium position when
atom 1 is initially displaced by Ax=0.01 A vs. time for a short time interval (from 9,000ps to 9,07 1ps).

We know that:  r=_— (1) and from the diagram in Figure 3.9.29 we calculate the

1
T
period: 7 —9026 f5s—9015f s=11fs=11x10 “sec
Therefore, from relation (1) it follows that:

f= ;_15 =0,0909090909<10"° H z
11X10 “sec

And we convert frequency from Hz to cm!:

f =0,0909090909x 10" 3,35641x10 "'=3051,28 cm " (2)



For benzene, four different ways were used to calculate vibrational frequencies. First
we used Fast Fourier Transform (FFT) and molecular dynamics (MD) at 300K where
the atoms acquired random velocities and positions. In the second case we manually
moved a specific hydrogen by Ax=0,01A and obtained the frequency spectrum from
FFT. In the first method we calculate a frequency of 2917,17cm-! and in the second
one 2933,58 cm!. So there is a percentage difference of 0.6%. Then we moved the
hydrogen again by hand by Ax=0,1A and Ax=0,01A and from the displacement-time
diagram we calculated first the period and then the frequency. In both of the latter
cases we do not observe satisfying results, as one value (2797,01cm™!) is lower than
the experimental values (2800-3200 c¢cm'), while the other is higher (3051,28cm-
Ncompared to the previous values we calculated.

e (C22H24
Displacement of atom 26 (Hs) in C22H24 for 0,1A - Ax vs Time graph

First we move hydrogen Ha by Ax = 0,1A up and do NVE simulation. After 10ps we
see in the graph below the displacement along the y-axis as a function of time for
hydrogen 4 and 18.
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Figure 3.9.30: Displacement of atom H4 in the y-direction from the equilibrium position when H4 is
initially displaced by Ax=0.1 A vs. time
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Figure 3.9.31: Displacement of atom H4 in the y-direction from the equilibrium position when H4 is
initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).
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Figure 3.9.32: Displacements of atom H18 in the y-direction from the equilibrium position when atom
4 is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.33: Displacements of the H-atoms in the y-direction from the equilibrium position when H4
is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.34: Displacements of the H-atoms in the y-direction from the equilibrium position when
atom 4 is initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).

e Zigzag Graphene Nanoribbon (width 10)

Displacement of atom 792 (H7;) in zigzag Graphene Nanoribbon (width 10) for
0,1A - Ax vs Time graph

First we move hydrogen H7, by Ax = 0,1A in the x-axis and do NVE simulation. After
10ps we see in the graph below the displacement along the x-axis as a function of

time for hydrogen 72 and 40.

Ax (Angstrom)

Ax of atom 792 (H72) vs Time

0,12

=]
=]
[

o o
288

0,02

o

-0,02 12000

]
& 8

&8
P

Time (fs)

Figure 3.9.35: Displacement of atom H72 in the x-direction from the equilibrium position when H72 is
initially displaced by Ax=0.1 A vs. time
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Figure 3.9.36: Displacement of atom H72 in the y-direction from the equilibrium position when H72 is
initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).
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Figure 3.9.37: Displacements of atom H40 in the x-direction from the equilibrium position when
atom?72 is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.38: Displacements of the H-atoms in the x-direction from the equilibrium position when

H72 is initially displaced by Ax=0.1 A vs. time
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Figure 3.9.39: Displacements of the H-atoms in the y-direction from the equilibrium position when

atom 72 is initially displaced by Ax=0.1 A vs. time for a short time interval (from 6,986ps to 7,057ps).

In Figure 3.9.28 and 3.9.39 of zigzag GNR, the Ax of H4o appears to be almost zero.
This means that the oscillation does not spread in the structure.



Chapter 4: Conclusions

Conclusions

Ab initio and classical molecular dynamics simulations, on materials that are
composed of carbon and hydrogen, are performed to characterize lattice constants,
bond lengths and other basic properties. An additional goal was to get and understand
the vibrational spectra of these structures. The main conclusions from this work are as
follow. After creating the diamond and graphene structures, we started our
calculations using DFT, the classical empirical Brenner and Tersoff potentials and
lastly the cg algorithm of LAMMPS together with the RDF function to see if there are
differences in the calculation of the lattice constant. As the results demonstrated, we
noticed that for diamond the lattice constants calculated by the classical dynamics and
the cg algorithm (RDF) were closer to the experimental value (3.57A) while in the
graphene structure there is a major disagreement with the Tersoff potential. All
subsequent simulations were performed by applying the Brenner Potential.
Afterwards, the additional oscillation of the atoms with increasing temperature from
10 to 300 Kelvin was observed with RDF. We continued our study focusing on the
bonds and angles in methane, benzene molecules and the hydrocarbon chains. The
experimental and theoretical results are in agreement, but we noticed something
unusual in the chain C2;2Hz4. The double and single carbon-carbon bond had the same
length, which we did not expect, since the double bond at the right edge of C22Hus
remained unchanged. We wanted to further investigate this and applied the RDF
function to zigzag and armchair graphene nanoribbons for width 4,6,10 and 20 in each
case. We detect in the case of the armchair GNR a slight difference in the values, but
the constant remains the same for each width in the zigzag GNR structure. When we
studied the bonds in a more detailed way, we realized that the bonds in the outer
carbons are shorter. In the Armchair GNR we have values of 1.38A and 1.40A, while
in the Zigzag GNR 1.40A. In both cases all other C-C bonds are 1.42A, as the
experimental value. The latter calculations are based on the vibrational spectra and
localized excitations of all structures. We noted that the Brenner Potential is also
reliable for most vibrational spectra, in overall qualitative agreement with experiment,
but underestimates C-H stretch and overestimates C-C vibration frequencies. Except
for normal modes obtained after thermalization, we examined how initially localized
C-H vibration evolves with time. Regarding to the localized vibrational modes, when
we excited Hy with a large initial amplitude of 0,1A for methane, benzene, C22Ha4 and
zigzag GNR structures, we observed the non-linear effect. This indicates that the
vibration remains localized on the C-Hi bond, as shown in Figures 3.9.17 - 3.9.22 -
3.9.34 and 3.9.39 for each structure respectively. In Figure 3.9.26 of benzene
molecule, we excited hydrogen H; with a small initial amplitude of 0,01A and after
about 2ps hydrogen H3 vibrates with an amplitude of the same order of magnitude,
which means that energy spreads to other C-H bonds as expected. Figure 3.9.27 is
misleading as vibration is localized at C-Hj, because it is for short initial time interval,
but it spreads as time goes by.
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6.Appendix
6.1 Appendix A: Code for Fast Fourier Transform

ELEMENTAL FUNCTION isPowerOf2(n)
IMPLICIT NONE

INTEGER, INTENT (in) :: n

LOGICAL :: isPowerOf2

isPowerof2 = (n /= 0) . AND. (IAND(n,n-1) == 0)
END FUNCTION isPowerOf2

! the m-th fourier coefficient

RECURSIVE SUBROUTINE fft(m, f, C)
IMPLICIT NONE

INTEGER, INTENT (in) :: m

DOUBLE COMPLEX, INTENT (in) :: f(0:)
DOUBLE COMPLEX, INTENT (out) :: C
INTERFACE

FUNCTION isPowerOf2(n)

IMPLICIT NONE

INTEGER, INTENT (in) :: n

LOGICAL :: isPowerOf2

END FUNCTION isPowerOf2

END INTERFACE

INTEGER :: n

DOUBLE COMPLEX :: Ce, Co

DOUBLE COMPLEX :: a

DOUBLE PRECISION , PARAMETER :: pi = 3.14159265358979323846d0
n = SIZE(f)

IF (.NOT.isPowerof2(n)) STOP

IF (n==1) THEN

C =1(0)



RETURN

END IF

CALL fft(m, f(0:n-1:2), Ce)

CALL fft(m, f(1:n-1:2), Co)
a=EXP(-2.d0 * pi * m * (0d0, 1.0d0) / n)
C=(Ce+a*Co)/2d0

END SUBROUTINE fft

PROGRAM velocity

IMPLICIT NONE
INTEGER,PARAMETER :: N =12
INTEGER,PARAMETER :: N1 = N*3
INTEGER,PARAMETER :: N2 = 100000
INTEGER,PARAMETER :: N3 =10

INTEGER,PARAMETER :: N4 = 2048
dynami tou 2

larithmos atomon

Iposa FFT tha ginoun

larithmos run pou ginontai sto LAMMPS
'kathe pote grafei sto data file

Iposa simeia kratame sto FFT gia na einai

DOUBLE PRECISION,PARAMETER :: dt=0.1d0 !se femtoseconds - time unit

=0.0001ps=0.1fs

DOUBLE PRECISION,PARAMETER :: deltat = 1.0d-15 !se seconds - xroniko diastima

diadoxikon & simeion deltat=N3*dt

DOUBLE PRECISION,PARAMETER :: deltaf = 1.0d0/(N4*deltat)

DOUBLE PRECISION :: ja,xa,ya,za,a(1,3)
vz apo to data file

!diabazei id x y z kai bazei se pinaka ta vx vy

INTEGER ::1i1,j1,j2,j3,j4,m,m1,m2,m3,m4,ts,t

DOUBLE PRECISION :: f(N1,N2/N3),freq
DOUBLE COMPLEX :: C, g(N1,N4)
REAL :: P(0:N4-1)

INTERFACE

SUBROUTINE fft(m, f, C)

IMPLICIT NONE

INTEGER, INTENT (in) :: m

DOUBLE COMPLEX, INTENT (in) :: f(0:)

DOUBLE COMPLEX, INTENT (out) :: C



END SUBROUTINE ftt

END INTERFACE
OPEN(12,file="FFT vel new.data",action="read", status ="old")
OPEN(15,file="fft frequency P(m) N=2048.txt",action="write", status ="replace")
j4=0

DO il = 1,N2/N3

d=j4+1

READ(12,*)

READ(12,*)ts ! timestep

t = ts*dt

DOjl1=1,7

READ(12,*)

END DO

j3=0

DOj2=1,N

READ(12,*) ja,xa,ya,za,a(1,1),a(1,2),a(1,3)
j3=j3+1

(j3,j4) = a(1,1)

f(j3+1,j4) = a(1,2)

f(j3+2,j4) = a(1,3)

j3=33+2

END DO

END DO

DO ml=1,N1

m4 =1

DO m2 =7953,10000
g(m1,m4)=DCMPLX(f(m1,m2))

m4 =m4 + 1

END DO

END DO

P=0



DO m3 =0,N4-1

freq = m3*deltaf

DO ml =1,N1

CALL fft(m3,g(ml,:),C)

P(m3) = P(m3) + ABS(C)**2.0d0

END DO
WRITE(15,*)freq,freq*3.35641d-11, P(m3)
END DO

END PROGRAM velocity

6.2 Appendix B: Example of input script and data file for LAMMPS
Given below is an example of an input script used to perform simulations on
LAMMPS. The simulation to be performed based on the example calls for a 100000
time step run starting from the file “data. NVT300Benzene”. Metal units are being
used which uses picoseconds for time, Angstroms for length, Kelvin for temperature,
bars for pressure, and eV for energy. The force field is set to the «rebo» potential. An
NVT run is to be done with temperature rescaling to a desired temperature of 300K.
The first dump file (pos_vel.data) will be created every 10 time steps and the
positions and velocities of each atom will be calculated and written into the file. The
second dump file (dump300NVT.*.xyz) stores the coordinates (x,y,z) of all atoms
every 100 time steps.

units metal

atom_style atomic

boundary pPPDP

read data data.NVT300Benzene

neighbor 0.5 bin

pair_style rebo

pair_coeff ** CH.rebo CH

variable aequal 10

group atoms12i1d 1234567891011 12
dump d3 atoms12 custom $a pos_vel.data id type X y z vx vy vz
velocity all create 300.0 23456789

fix 1 all nvt temp 300.0 300.0 $(100.0*dt)
dump do0 all xyz 100 dump300NVT.*.xyz

dump_modify

thermo

dO0 element "C" "H"
10



thermo_style  custom step cella cellb cellc pe temp

run 100000

Given below is an example of a data file. The simulation box size is set from -10 to 10
in the x,y, and z direction. The system contains 12 atoms of 2 atom types. The
mass of the first atom type (named 1) is 12 g/mole and of the second atom type
(named 2) is 1 g/mol. The X, y, and z coordinates of each atom is given. Apart from
the coordinates, an id number is attached to each atom. The columns of 1 pertain to
the atom type number and the molecule id.

LAMMPS Description

12 atoms

2 atom types

-10.0 10.0 xlo xhi

-10.0 10.0 ylo yhi

-10.0 10.0 zlo zhi

Masses

112.0

21.0

Atoms
111.385351.75416e-13 0
210.692676 1.19975 0
31-0.692676 1.19975 0
41-1.385351.79813e-13 0
51-0.692676 -1.19975 0
610.692676 -1.19975 0
72247547 5.33367e-150
821.237742.14382 0
92-1.237742.14382 0
102 -2.47547 9.12684e-15 0
112-1.23774 -2.14382 0
122 1.23774 -2.14382 0
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