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Abstract

We investigate the finite-energy Airy wave packets and beams appearing in applied optics and optical engi-
neering, and we show that all of them can be represented as the convolution of the non-spreading, infinite-
energy wave packet constructed by Berry and Balazs with an appropriated Gaussian function. Moreover,
we show that the convolution with any square integrable function produces a finite-energy Airy beam, and
therefore, in principle, there are infinitely many possibilities in the experimental construction of Airy beams.

KeyWords. Schrödinger equation, Quantum mechanics, Gaussian wave packets, Airy wave packets, Airy
beams, Dispersion, WKB method
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Περίληψη

Στην εργασία αυτή μελετάμε τα κυματοπακέτα και τις δέσμες Airy που έχουν πεπερασμένη ενέργεια, και
χρησιμοποιούνται στην εφαρμοσμένη οπτική. Αποδεικνύουμε ότι όλα αυτά τα κυματοπακέτα μπορούν
να αναπαρασταθούν ως συνέλιξη του μη διασπειρόμενου κυματοπακέτου των Berry και Balazs, το οποίο
έχει άπειρη ενέργεια, με μια κατάληλη Γκαουσιανή συνάρτηση. Επιλπλέον, δείχνουμε ότι η συνέλιξη του
κυματοπακέτου των Berry και Balazs με οποιαδήποτε τετραγωνικά ολοκληρώσιμη συνάρτηση παράγει μια
δέσμη Airy πεπερασμένης ενέργειας, και γι’ αυτό τον λόγο, θεωρητικά, υπάρχουν άπειρες δυνατότητες στην
πειραματική κατασκευή των δεσμών Airy.
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CHAPTER1

Introduction

1.1 Airy wave packets in quantum mechanics

In a remarkable development, Berry & Balazs [BB] constructed an Airy wave packet which has infinite
energy and it propagates with constant acceleration andwithout spreading. They showed that the acceleration
of the wave packet is not in conflict with Ehrenfest’s theorem, which embodies Newton’s second law for
classical particles and it suggests that no wave packet can accelerate in free space, because the packet has
infinite energy and ill-defined mean values. Dispersion in the Schrödinger equation, embodies the ability of
classical particles to travel at different speeds, and it suggests that all wave packets with finite energy must
change their shape as they propagate in free space. A concise explanation of the eventual spread of wave
packets with finite energy, and the necessity of taking into account the appropriate mathematical structure,
instead of using formal manipulations of unbounded operators, has been given by Klein [Kl] (see also [HS]).

Airy wave packets have been the subject of many interesting investigations from various perspectives.
Greenberger [Gre1] has studied the behaviour of the Airy wave packet from the viewpoint of equivalence
principle [Gre2], [Na]. More precisely he has interpreted thewave packet as a stationary state of Schrödinger’s
equation in the uniform gravitational field, and he used an extended Galilean transformation to the free fall
system, to explain the acceleration. In this respect the Airy packet is no “less” trivial than the plane wave
solution, which is the stationary solution for the force-free case.

From a different perspective, Unnikrishnan & Pau [UP] started from the definition of a nonspreading
packet, as that having the modulus of its wave function invariant under time-dependent space translations,
and they employed the evolution operator and Baker-Campbell-Hausdorff formula for non-commuting op-
erators, in order to construct the Berry-Balazs wave packet in a “purely quantum mechanical way”. More
recently, Vyas [Vy] motivated by the shape preservation of the Airy wave packet, reconsidered this wave
packet as a particular Perelomov coherent state. He showed that, in contrary to harmonic-oscillator coherent
states, the Airy wave packet is the unique one that does not transverse the classical trajectories as it happens
in systems without acceleration, but it moves along the accelerated caustic of the classical trajectories. Be-
sieris, Shaarawi & Ziolkowksi [BSZ] have constructed a class of nonspreading solutions in three dimensions
both for the free Schrödinger equation and the wave equation with constant speed. These solutions involve
accelerating Airy envelopes and they are characterized by an asymmetric structure, in contrary to spherically
symmetric packets moving with constant velocities.

However, Airy wave packets do not fit in the standardL2 framework of quantummechanics, and, besides
their own mathematical interest, they can be considered only as building blocks of square integrable wave
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2 CHAPTER 1. INTRODUCTION

functions. Moreover, the experimental synthesis of wave packets carrying infinite energy is impossible,
and the unavoidable truncation of amplitudes results to the realization of beams with small, but non zero,
dispersion. Berry & Balazs [BB] theselves have proposed in the, seemingly forgotten, appendix of their
pioneering paper, that any square-integrable wave function constructed from Airy wave packets must obey
Ehrenfest’s theorem. They suggested that such wave functions can be derived by convolving their wave
packet with a time-independent Gaussian function, thus constructing an Airy beam, i.e. a superposition of
Airy wave packets 1.

In the physics and optics literature, we find several approaches to construct finite energy Airy beams.
Siviloglou & Christodoulides [SC] have modified the initial data by multiplying the Airy function with
appropriately decay exponential function to ensure containment of the infinite Airy tail and thus enabled
the experimental realization of such beams [SBDC]. Besieris and Shaarawi [BS] explained that the same
solution can by obtained by complex scaling of the Berry-Balazs wave packet. They computed the mean
values and the dispersion of the derived wave packet and they argued that it remains essentially dispersion-
free for long time. Lekner [Lek] showed that a Galilean boost to a reference frame moving with complex
velocity transforms Berry-Balazs wave packet into a square integrable wave packet. When the velocity is
purely imaginary ones regains the Siviloglou-Christodoulides wave packet.

1.2 Scope and structure of the thesis

In this work we reconsider the various square-integrable wave packets appearing in physics’ and optics’
literature. We prove that the finite energy solutions ψ(x, t) proposed by Siviloglou & Christodoulides [SC],
Besieris & Shaarawi [BS] and Lekner [Lek], can be expressed as the convolution of the Berry-Balazs wave
packet ψBB(x, t) with an appropriate Gaussian function gϵ(x),

ψ(x, t) = ψBB(x, t)∗x gϵ(x),

where
gϵ(x) =

1√
2πϵ2

e−x2/2ϵ2 ,

ϵ > 0 being a parameter which is different for each particular solution. Therefore, all square integrable
solutions can be expressed as weighted superpositions (Airy beams) of Berry-Balazs wave packets distrib-
uted along the whole x-axis (Airy beams). The destructive interference of the tails of the superposed Airy
functions leads to a wave function with finite energy. Obviously, as ϵ→ 0, gϵ(x) → δ(x), and therefore all
solutions reduce to he Berry-Balazs wave packet.

In chapter 2 we present some basic elements of quantum mechanics in one dimension, in particular,
the notions of mean value, dispersion and the Fourier integral representation of the solution of the free
Schrödinger equation, and we make some comments on the dispersion effect and the delocalization of wave
functions, and their relation with the group and phase velocity.

In chapter 3we introduce the standardGaussianwave packet. This is the simplest andmost basic example
of a wave packet with finite energy. This wave packet remains Gaussian as it evolves, but its width increases
with time due to the dispersion, so that its shape eventually deteriorates and the packet becomes delocalized.

In chapter 4 we present the nonspreading Airy wave packet constructed by Berry and Balazs. This wave
packet is the solution of the free Schrödinger equation with Airy initial data. Since the Airy function is
not square integrable, this wave packet has infinite energy, and therefore is not physically realizable. From
the theoretical point of view, it has very rich dynamics, the most interesting property being that, in a certain

1They also mentioned that the obtained wave function is Weyl’s ”eigendifferential”, that is an eigenfuction belonging to the
continuous spectrum of the Airy equation [Ke]. See also [Grein], Sec. 5.1, for a informal introduction to the notion of ”eigendiffer-
entials”
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sense, the wave packet accelerates without external force. Moreover, like plane waves for the wave equation,
it can be thought of as a building block of Airy beams. From the practical point of view it is exactly the last
feature that makes the Berry-Balazs wave packet important in applied physics and optics.

In chapter 5 we present the Gaussian Berry-Balazs wave packet, and we explain how the solutions pro-
posed by Siviloglou & Christodoulides, Besieris & Shaarawi, and Lekner, are expressed in the form of the
Gaussian Berry-Balazs wave packet, by identifying the appropriate Gaussian functions.



CHAPTER2

Elements of one-dimensional quantum mechanics

A quantum mechanical particle of mass m moving along the real line under the action of a potential field
V (x), is described by a complex wave function ψ(x, t) (also referred to as the state of the particle), in the
sense that the probability to find the particle in the interval (x, x+ dx) at the time moment t ≥ 0 is given by
|ψ(x, t)|2dx. In other words, the position of the particle is considered as a random variable with probability
density |ψ(x, t)|2. Since, for any fixed time t, we certainly (with probability one) find the particle somewhere
on the axis, it follows that

∫
R |ψ(x, t)|2dx = 1 for any time t ≥ 0, that is ψ(x, t) ∈ L2(R,C; dx) .

The wave function is governed by the time-dependent Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V (x) , x ∈ R , t > 0 , (2.1)

and it satisfies a given initial condition ψ(x, t = 0) = ψ0(x) ∈ L2, which defines the initial probabil-
ity density. The parameter ℏ is Planck’s constant, which is appropriately scaled, so that equation (2.1) is
dimensionless.

2.1 Quantum mechanical operators and mean values

Let x̂ be the position operator, acting as the multiplication x̂f(x) = xf(x), and p̂ the momentum operator
acting by differentiation p̂f(x) = −iℏ∂xf(x) on reasonably smooth functions. By formal substitution of x̂
and p̂ in place of x and p, respectively, into Hamilton’s function we get

H(x̂, p̂) =
1

2m

(
−iℏ∂x

)2
+ V (x) = − ℏ2

2m

∂2ψ

∂x2
+ V (x) =: Ĥ . (2.2)

We observe that Ĥ is the differential operator (Hamiltonian operator) in the r.h.s. of the Schrödinger equation
(2.1). This formal calculation is the simplest way to map phase space functions to formally self-adjoint
operators acting on functions of the position, and the simplest case of the so called quantization procedure.

Although H(x, p) is the most important classical observable, in quantum mechanics we consider also
phase functionsA(x, p) representing more complicated classical observables. Such functions are associated
to more general self-adjoint operators Â by certain quantization procedures, but it is important to note that the
formal rule Â = A(x̂, p̂) is not, in general, correct. This fundamental fact becomes apparent when someone
considers, for example, the function A(x, p) = xp = px since the operators x̂ and p̂ do not commute.

1



2 CHAPTER 2. ELEMENTS OF ONE-DIMENSIONAL QUANTUM MECHANICS

For a time independent operator Â, we define the mean value of the corresponding classical observable
A, when the quantum particle is described by the wavefunction ψ(x, t), as the real- valued function of time1

⟨A⟩t =
(
ψ(·, t), Âψ(·, t)

)
L2

=

∫ ∞

−∞
ψ∗(x, t)Âψ(x, t)dx , (2.3)

where
(
· , ·
)
L2 denotes the L2-inner product. For notational simplicity we write ⟨A⟩ instead of ⟨A⟩(t).

Usually we normalize the wavefunction so that∫ ∞

−∞
ψ∗(x, t)ψ(x, t)dx = 1 , (2.4)

and therefore the mean value of the identity operator is equal to one for any state.
In particular, the mean values of the position and momentum operators

x̂f(x) = x f(x) (multiplication operator) , (2.5)

p̂f(x) = −iℏ∂x f(x) (differentiation operator) , (2.6)

are given by

⟨x⟩t =
∫ ∞

−∞
ψ∗(x, t)xψ(x, t)dx , (2.7)

⟨p⟩t =
∫ ∞

−∞
ψ∗(x, t)

(
−iℏ∂x

)
ψ(x, t)dx . (2.8)

Therefore, the position mean value ⟨x⟩t =
∫∞
−∞ x|ψ(x, t)|2dx is the expected position of the quantum par-

ticle at time t. For a general function h(x), the mean value is

⟨h(x)⟩t =
∫ ∞

−∞
ψ∗(x, t)h(x)ψ(x, t)dx . (2.9)

Moreover, the mean values of x̂2 and p̂2 are given by

⟨x2⟩t =
∫ ∞

−∞
ψ∗(x, t)x2ψ(x, t)dx , (2.10)

⟨p2⟩t =
∫ ∞

−∞
ψ∗(x, t)

(
−iℏ∂x

)2
ψ(x, t)dx . (2.11)

Obviously ⟨x2⟩t =
∫∞
−∞ x2|ψ(x, t)|2dx is the second moment of the position random variable. Then, the

dispersion of the position and momentum random variables are given by

∆xt =
√
⟨x2⟩t − ⟨x⟩2t , (2.12)

and
∆pt =

√
⟨p2⟩t − ⟨p⟩2t , (2.13)

respectively. The dispersion ∆xt is referred also as the width, since it is a measure of the geometrical
spreading of the wave functionψ due to the dispersion of the quantummechanical wave. Applying Schwarz’s
inequality we derive the uncertainty principle

∆xt∆pt ≥
ℏ
2
. (2.14)

1The subscript t means that ⟨A⟩t is a function of time
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2.2 Ehrenfest’s theorem

A fundamental idea of quantum mechanics is that in the so-called classical limit, that is, as the parameter
ℏ → 0, the quantum particle behaves classically, and its motion is described in the standard phase spaceR2

xp,
x being the position and p being the momentum of the particle, by Hamilton’s equations

dx

dt
= ∂pH(x, p) =

p

m
,

dp

dt
= −∂xH(x, p) = −V ′(x) , (2.15)

where H(x, p) = p2

2m + V (x) is Hamilton’s function, which is equal to the total mechanical energy of the
particle. For a classical particle it is assumed that the initial position x(0) = x0 and the initial momentum
p(t) = p0 are known.

It turns out that the mean values ⟨x⟩ , ⟨p⟩ satisfy the so-called Ehrenfest equations, which are quite
similar, but, in general, not identical, to Hamilton’s equations, and under certain conditions they have exactly
the same form. By differentiating the formula (2.3), we express the time derivative d

dt⟨A⟩ in terms of the
wavefunction, and using the Schrödinger equation and its complex conjugate, we derive the formula

iℏ
d

dt
⟨A⟩t =

(
ψ , [Â, Ĥ]ψ

)
L2 , (2.16)

where [Â, Ĥ] = ÂĤ−ĤÂ is the commutator of the operators Â, Ĥ . Applying (2.16) for Â = x̂ and Â = p̂,
we derive the system

d⟨x⟩t
dt

=
⟨p⟩t
m

,

d⟨p⟩t
dt

= ⟨−V ′(x)⟩t . (2.17)

This result is known as Ehrenfest’s theorem. Since the mean value of the potential depends on the wave
function ψ(x, t), Ehrenfest’s system (2.17) is not closed, and, in general, it cannot be solved for the mean
values of the position and momentum.

However, using Taylor’s expansion of V ′(x) near ⟨x⟩t, we get the approximation

⟨V ′(x)⟩ ≈ V ′(⟨x⟩t) +
1

2
(∆xt)

2V ′′′(⟨x⟩t). (2.18)

For quadratic potentials, the second term of the above approximation vanishes identically, and in this case
Ehrenfest’s system has exactly the form of Hamilton’s equations and it is closed, since for t = 0, the mean
values ⟨x⟩0 , ⟨p⟩0 can be computed from ψ0. For well behaved general potentials, we can omit the second
term in (2.18) when the width ∆xt is small, and then we can also get a closed system. The validity of this
approximation is the main mathematical question in relation with the validity of the classical limit.

2.3 The free-particle Schrödinger equation

In the sequel we will deal with the construction of wavepacket solutions of the free-particle Schrödinger
equation, i.e., the case when V ≡ 0. Such solutions can be constructed by using the Fourier transform. The
derived Fourier integrals can be either computed explicitly for particular initial data like Gaussian and Airy
functions, or, they can be approximated by the method of stationary phase, for more general initial data.
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2.3.1 Solution of the free Schröedinger equation

Consider the free-particle Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
, x ∈ R , t > 0 , (2.19)

with initial conditions
ψ(x, 0) = ψ0(x) . (2.20)

Let
ψ̂(ξ, t) =

∫ ∞

−∞
e−iξxψ(x, t)dx (2.21)

be the Fourier transform of ψ(x, t). By taking the Fourier transform of (2.19), we obtain the ordinary differ-
ential equation

∂ψ̂(ξ, t)

∂t
= − iℏ

2m
ξ2ψ̂(ξ, t) , (2.22)

with initial conditions
ψ̂(ξ, 0) = ψ̂0(ξ) , (2.23)

where ψ̂0 is the Fourier transform of the initial data. The solution of the (2.22) is

ψ̂(ξ, t) = ψ̂0(ξ)e
− iℏ

2m
ξ2t . (2.24)

By using the inverse Fourier transform

ψ(x, t) =
1

2π

∫ ∞

−∞
ψ̂(ξ, t)eixξdξ , (2.25)

we derive the solution of the problem (2.19), (2.20) as the Fourier integral

ψ(x, t) =
1

2π

∫ ∞

−∞
ψ̂0(ξ)e

−i
(

ℏ
2m

ξ2t−ξx
)
dξ . (2.26)

Remark. If the initial data have finite energy, that isψ0 ∈ L2, by Parseval’s theorem ψ̂0(ξ) ∈ L2, and then by
(2.24) we have that ψ̂(ξ, t) ∈ L2 for any fixed t, which implies that ψ(x, t) ∈ L2 (conservation of energy).
This is the case, when, for example, the initial data is a Gaussian function (see Chapter 3).

If however, we want to use more general data, we must assume that the initial data is a Schwartz distri-
bution, ψ0 ∈ S ′, and use the distributional Fourier transform in order to construct ψ(x, t) as a distribution,
for any fixed t. Then, in many cases, by elaborating the Fourier integral, we are able to show that ψ(x, t) is
a smooth function. This is the case when the initial data is the Airy function (see Chapter 4).
Remark. Introducing the dispersion relation

ω(ξ) =
ℏ
2m

ξ2t− ξx , (2.27)

we rewrite (2.26) in the typical form of

ψ(x, t) =
1

2π

∫ ∞

−∞
ψ̂0(ξ)e

−iΦ(ξ;x,t)dξ , Φ(ξ;x, t) = ω(ξ)t− ξx . (2.28)

By the method of stationary phase, it follows that for any given (x , t), the main contribution in the integral
(2.28) comes from the roots of the stationarity equation

∂ξΦ(ξ;x, t) = ω′(ξ)t− x = 0 , (2.29)

that is from the points where the group velocity υg = ω′(ξ) is equal to x/t. We observe that the phase
velocity υph = ω(ξ)/ξ does not coincide with the group velocity. This is the very reason for the dispersion
(i.e. the deterioration of the shape) of any localized wave function, which is a fundamental common feature
of all dispersive waves [Whi].
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2.3.2 Evolution of mean values

Integrating by parts the integral (2.26) we get

xψ(x, t) =
1

2π

∫ ∞

−∞
xψ̂0(ξ)e

−i( ℏξ
2t

2m
−xξ)dξ

=
i

2π

∫ ∞

−∞
ψ̂0(ξ)e

−i( ℏxi
2t

2m
−xξ)(

−iℏξt
m

)dξ +
i

2π

∫ ∞

−∞

∂ψ̂0(ξ)

∂ξ
e−i( ℏξ

2t
2m

−xξ)dξ (2.30)

and using equation (2.7) we obtain

⟨x⟩t =
1

2π

∫ ∞

−∞
ψ̂∗
0(ξ)

ℏξt
m
ψ̂0(ξ)dξ +

1

2π

∫ ∞

−∞
ψ̂∗
0(ξ)i

∂ψ̂0(ξ)

∂ξ
dξ . (2.31)

Differentiating (2.26) with respect to x we obtain that

⟨p⟩t =
∫ ∞

−∞
ψ∗(x, t)(−iℏ)∂ψ(x, t)

∂x
dx =

1

2π

∫ ∞

−∞
ψ̂∗
0(ξ)ℏξψ̂0(ξ)dξ = ⟨p⟩(0)v . (2.32)

Therefore,

⟨x⟩t =
⟨p⟩0
m

t+ ⟨x⟩0 . (2.33)

It must be emphasized that the fact that ⟨p⟩t = ⟨p⟩0 is anticipated by Ehrenfest’s theorem since V ≡ 0. Note
that when ψ̂0(ξ) is real, that is ψ̂0(ξ) = ψ̂∗

0(ξ), the second term

⟨x⟩0 =
1

2π

∫ ∞

−∞
i
∂ψ̂2

0(ξ)

∂ξ
dξ , (2.34)

in the right hand side of (2.31) vanishes, if ψ̂0(ξ) vanishes as ξ → ±∞, and the mean value reduces to

⟨x⟩t =
⟨p⟩0
m

t . (2.35)
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The Gaussian wave packet

In this chapter we present some basic results about the dynamics of the Gaussian wave packet, which is the
most basic example of spreading wave packet.

3.1 Construction of the Gaussian wave packet

3.1.1 Simple Gaussian initial data

The Gaussian wave packet is the solution of the free-particle Schrödinger equation (2.19),

ih
∂ψ

∂t
= − h2

2m

∂2ψ

∂x2
,

with Gaussian initial data ,

ψ(x, 0) = ψ0(x) = Ne−a0x2
, a0 ∈ C , ℜ a0 > 0 . (3.1)

The constant N is chosen so that the energy of the packet is normalized,
∫∞
−∞ |ψ(x, 0)|2dx = 1, which

implies

N =
(2ℜa0

π

)1/4
.

By the standard Gaussian integration formula∫ ∞

−∞
e−ax2+ibxdx =

√
π

a
e−

b2

4a , ℜ a > 0 , (3.2)

we calculate the Fourier transform of the initial condition

ψ̂0(ξ) = N

∫ ∞

−∞
e−a0x2−ixξdx = N

√
π

a0
e
− ξ2

4a0 . (3.3)

Then, from the integral representation (2.26), and using again (3.2), we obtain the solution

ψ(x, t) =
N

2π

√
π

a0

∫ ∞

−∞
e
− ξ2

4a0 e−i ℏξ
2

2m
teiξxdξ =

N√
1 + 2iℏa0t

m

exp
(
− x2

4( 1
a0

+ iℏt
2m)

)
. (3.4)

6
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We introduce now the dynamic quantities

at =
a0

1 + 2iℏa0t
m

, (3.5)

and
γt =

iℏ
2
ln
(
1 +

2iℏa0t
m

)
, (3.6)

and we rewrite (3.4) in the form
ψ(x, t) = Ne−atx2+iγt/ℏ (3.7)

Since clearly ℜ a > 0 , t ≥ 0, the solution (3.7) is a Gaussian function, that is, the initial Gaussian wave
function propagated by the Schrödinger equation remains Gaussian for all time.

3.1.2 General Gaussian initial data. The Gaussian Ansatz

The wave packet (3.7) can be also constructed by a different technique, of asymptotic nature, which is ap-
plicable in the construction of an approximate wave packet solution also in the case when the potential is not
zero. According to this technique one assumes the Ansatz

ψG(x, t) = Ne−at(x−xt)2+
i
ℏpt(x−xt)+

i
ℏγt (3.8)

where xt , pt , at and γt are time-dependent quantities, which will be defined in order for (3.8) to satisfy
(2.19) approximately.

Differentiating (3.8) we get the derivatives

∂2ψG(x, t)

∂x2
=

[(
−2at(x− xt) +

i

h
pt

)2

− 2at

]
ψG(x, t)

∂ψG(x, t)

∂t
=

[
−ȧt(x− xt)

2 + 2at(x− xt)ẋt +
i

h
(x− xt)ṗt −

i

h
ptẋt +

i

h
γ̇t

]
ψG(x, t) . (3.9)

Then, by substituting these derivatives into (2.19) and equating the various powers of (x − xt) to zero, we
derive the following equations for the unknown dynamical quantities entering the assumed Ansatz

ẋt =
pt
m
, (3.10)

ṗt = 0 , (3.11)

ȧt = −2ih

m
a2t , (3.12)

γ̇t = − p2t
2m

+ ptẋt −
ℏ2at
m

. (3.13)

Note that (3.10)-(3.11) are Hamilton’s equation for the free Hamiltonian H(x , p) = p2

2m corresponding to
the free Schrödinger equation (2.19). 1

Assuming that the initial position and momentum xt=0 = x0 , pt=0 = p0, we integrate the equations
(3.10)-(3.13), and we obtain the following dynamical quantities that define the evolution of the wavepacket

pt = p0 , (3.14)

1 In the general case, where the potential V (x) is not zero and smooth, the Hamitlonian is H(x , p) = p2

2m
+ V (x), and eq.

(3.11), has the form ṗt = −V ′(x). In this case one needs to expand V (x) near xt, before equating powers of (x− xt) to zero.
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xt = x0 +
p0
m
t , (3.15)

at =
a0

1 + 2iℏa0t
m

, (3.16)

γt =
p20
2m

t+
iℏ
2
ln
(
1 +

2iℏa0t
m

)
. (3.17)

Note that if x0 = p0 = 0, the solution (3.8) reduces to (3.7).

Remark. If we normalize the wave function (3.8) so that
∫∞
∞ |ψ(x, t)|2dx = 1, we obtain

N =
(2ℜ at

π

)1/4
eℑ γt/ℏ . (3.18)

It is straightforward to show that ∂tN = 0, and thus N =
(
2ℜ a0
π

)1/4
, since γt=0 = 0.

3.2 Mean values of Gaussian wavepackets

By (2.7) with ψ = ψG, the mean value of the position is

⟨x⟩t =
∫ ∞

−∞
x|ψG(x , t)|2dx = N2

∫ ∞

−∞
xe−(at+a∗t )(x−xt)2+

i
ℏ (γt−γ∗

t )dx

= (
2ℜ at
π

)1/2xt

∫ ∞

−∞
e−y2(at+a∗t )dy = xt , (3.19)

and by (2.8) the mean value of the momentum is

⟨p⟩t = pt (3.20)

Moreover, by (2.10), (2.11), and (2.12), (2.13, we get

⟨x2⟩t =
1

4ℜ at
+ x2t , (3.21)

⟨p2⟩t = 2ℏ2at −
2ℏ2a2t
at + a∗t

+ p2t =
ℏ2|at|2

ℜ(at)
+ p2t , (3.22)

and

∆xt =
√
⟨x2⟩t − ⟨x2⟩t =

√
1

4ℜ at
, (3.23)

∆pt =
√
⟨p2⟩t − ⟨p⟩2t =

ℏ|at|√
ℜ at

. (3.24)

When a0 is real, by (3.16) we get

ℜ at =
a0

1 +
4ℏ2a20t2

m2

, |at| =
a0√

1 +
4ℏ2a20t2

m2

, (3.25)

and thus

∆xt =
1

2

√
1 + 4ℏ2a20t2/m2

a0
, ∆pt = h

√
a0 . (3.26)
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Therefore, the initial Gaussian waveform deteriorates linearly with t as t→ ∞.This spreading phenomenon
is common for any quantum mechanical wave packet with finite energy [Kl](see also [Bo], Ch. 3 & Ch.
10). As the wave packet propagates, its energy content is dispersed to larger space area, and eventually is
delocalized. However, the uncertainty

∆xt∆pt =
ℏ
2

√
1 +

4h2a20t
2

m2
≥ ℏ

2
(3.27)

is minimum at t = 0, and it satisfies the uncertainty principle for all time.



CHAPTER4

The Berry-Balaz’s wavepacket

In this chapter we present the construction of the Berry-Balaz’s wavepacket (in the sequel abbreviated as the
BB wave packet), and we study some aspects of its geometrical optics. The BB wave packet is the solution
of the free-particle Schrödinger equation (2.19) with initial data

ψ0(x) = Ai
( Bx
ℏ2/3

)
, (4.1)

where Ai(x) is the Airy function, and B > 0 is a scaling parameter.

4.1 Construction of the BB wave packet

The Airy function is defined by the Fourier transform [Leb]

Ai(x) =
1

2π

∫ ∞

−∞
eiξ

3/3+iξxdξ , (4.2)

which must be initially interpreted as the distributional Fourier transform of eiξ3/3 in S ′. However, by
appropriate use of Cauchy’s theorem for complex integration, it can be shown that Ai(x) is a C∞ function
[Horm]. Moreover, since eiξ3/3 /∈ L2, it follows that Ai(x) /∈ L2, an unpleasant fact which becomes clear
also from the asymptotic behaviour of Ai(x) as x→ −∞.

Therefore, in order to construct the solution of the problem (2.19), (4.1), we must work with the distribu-
tional Fourier transform, although the formal calculus is quite similar with that for the L2 case. The Fourier
transform of ψ0 is

ψ̂0(ξ) =
ℏ2/3

B
ei

ℏ2ξ3

3B3 , (4.3)

and by (2.26) the BB wave packet is given by the Fourier integral

ψBB(x, t) =
ℏ2/3

2πB

∫ ∞

−∞
ei
(
ξx− ℏξ2t

2m
+ ℏ2ξ3

3B3

)
dξ . (4.4)

By elaborating the exponential term of the last integral, we express the BB wave packet in terms of a shifted
Airy function, which is modulated by an oscillating exponential, as follows

ψBB(x, t) = Ai
( B

h2/3
(x− B3t2

4m2
)
)
e

iB3t
2mh

(
x−B3t2

6m2

)
. (4.5)

10



4.2. GEOMETRICAL OPTICS OF THE BB WAVEPACKET 11

We observe that since the exponential term has modulus one, ψBB , like its initial datum, is not square
integrable. As a result of the infinite energy content of the BB wavepacket, |ψBB(x, t)| propagates along the
x-axis without distortion of its shape, and it also accelerates with acceleration

dx

dt
=
B3t2

2m2
.

4.2 Geometrical optics of the BB wavepacket

In order to make precise the meaning of the acceleration of the wavepacket, we will construct the WKB
expansion ofψBB for ℏ ≪ 1, and we will check that the derived phases and amplitudes satisfy the equations of
geometrical optics, namely the Hamilton-Jacobi equation and the transport equation. Then, we will compute
the rays and their caustic, and we will show that what really accelerates is the caustic of the WKB solution.
The principal terms of asymptotic expansion for the function Ai(x) as x→ ∞ read as follows [Leb], [VS]

Ai(x) ≈ 1
2π

−1/2x−1/4e−
2x3/2

3 , (4.6)

Ai(−x) ≈ π−1/2x−1/4 cos
(
2
3x

3/2 − π
4

)
. (4.7)

Thus the initial datum (4.1) is exponentially small as x → +∞, while as x → −∞ it is highly oscillating
with algebraically decaying amplitude. The BB wavepacket (4.5) has similar behaviour for any fixed time
t. Then, for x < 0, the initial datum has the expansion

ψ0(x) = Ai
(
− B

h2/3
| x |

)
≈ h1/6

π1/2B1/4
| x |−1/4 cos

(2
3

B3/2

h
| x |3/2 −π/4

)
= C

(
A+(x)e

i
h
S+(x) +A−(x)e

i
h
S−(x)

)
, (4.8)

where S±(x) are the phases

S±(x) = ±2

3
(−Bx)3/2 , (4.9)

A±(x) are the amplitudes

A+(x) =
(∂2S+(x)

∂x2

)1/2
=

B√
2
(−Bx)−1/4 , A−(x) =

(∂2S−(x)
∂x2

)1/2
= i

B√
2
(−Bx)−1/4 , (4.10)

and

C =
e−

iπ
4 h1/6√
2πB

. (4.11)

Now we rewrite (4.5) in the form

ψBB(x, t) = Ai
(F (x, t)
h2/3

)
e

i
h
Φ(x,t) , (4.12)

where

F (x, t) = B
(
x− B3t2

4m2

)
, (4.13)

and

Φ(x, t) =
B3t

2m

(
x− B3t2

6m2

)
. (4.14)
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Then, by the asymptotic formulas (4.6) , we find that in the illuminated zone F > 0, the Airy term has the
approximation

Ai(−|F (x, t)|
h2/3

) ≈ h1/6e−iπ
4

2
√
π|F (x, t)|1/4

(
e

i
h

2
3
|F (x,t)|3/2 + e−

i
h

2
3
|F (x,t)|3/2ei

π
2

)
, (4.15)

and therefore the BB has the following WKB expansion

ψBB(x, t) ≈ C
(
A+(x, t)e

i
h
S+(x,t) +A−(x, t)e

i
h
S−(x,t)

)
, (4.16)

where
S±(x, t) = Φ(x, t)± 2

3
(−F (x, t))3/2 , (4.17)

and
A+(x, t) =

B√
2(−F (x, t))1/4

, (4.18)

A−(x, t) = i
B√

2(−F (x, t))1/4
. (4.19)

Obviously, the phases and the amplitudes satisfy their initial conditionsS±(x, 0) = S±(x) andA±(x, 0) = A±(x).
By direct calculation we can chek that S±(x, t) satisfy the Hamilton-Jacobi equation

∂tS +
1

2m

(
∂xS

)2
= 0 , (4.20)

and that the amplitudes A±(x, t) satisfy the transport equation

∂tA
2 +

1

m
∂x

(
A2∂xS

)
= 0 . (4.21)

Let
dx

dt
=

p

m
, x(0) = x0 (4.22)

dp

dt
= 0 , p(0) =

∂S±(x0)

∂x
= ∓(−B3x0)

1/2 =: p0 (4.23)

the Hamiltonian system for the characteristics of the Hamilton-Jacobi equation (4.20). The solutions of this
system are

x±(t;x0) = x0 ∓ (−B3x0)
1/2t/m , (4.24)

p±(t : x0) = ∓(−B3x0)
1/2 , (4.25)

and x = x±(t;x0) are the rays (projections of the characteristics onto the x-axis) emanating from the initial
point x0 at time t = 0. By the solutions x0 = x0(x, t) of x = x±(t;x0), for a given (x , t), it is easy to
check that along these rays the momentums (slopes of the ray) satisfy

p±(t;x0) =
∂S±(x , t)

∂x
. (4.26)

The caustic is the envelope of the rays on the space-time plane x− t and it is defined as the set of point
where the Jacobian of the transformation x0 7→ x±(t;x0) vanishes, that is

J(t;x0) =
∂x±(t;x0)

∂x0
= 0 (4.27)
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Eliminating the parameter x0 from the equations (4.24) and (4.27), we obtain the equation of the caustic

x(t) =
B3t2

4m2
. (4.28)

Obviously the caustic is accelerating with acceleration

dx

dt
=
B3t

4m2
.

It is interesting to observe that on the caustic the differentials of (4.13) and (4.14) vanish, and therefore, on
the caustic dψBB(x, t) = 0. This means that the boundary between the illuminated and the shadow zone of the
BBwave packet moves along the caustic. Thus, the freely moving BBwave packet (V ≡ 0) follows a curved
trajectory, which is incombatible with its acceleration. This counter intuitive situation is a consequence of
the infinite energy of the wave. Balazs and Berry [BB] have explained by simple geometrical arguments that
their nonspeading wave packet is the only one that has these properties. However, every physically realisable
wave packet must have finite energy, and therefore it eventually spreads and its initial shape deteriorates as
it is dictated by the dispersion of the quantum mechanical system [Kl].



CHAPTER5

Airy-type wave packets with finite energy

In this chapter we explain that all Airy-type wave packets with finite energy, which have been proposed in
Physics’ and Optics’ literature, can be represented as the convolution of an appropriate Gaussian function
with the BB wave packet.

5.1 The Gaussian Berry-Balasz wavepacket

In the appendix of their paper, Berry andBalazs [BB] constructed anAiry-typewave packet with finite energy
by convolving the BB wave packet with a Gaussian function. This modified wave packet is a weighted
superposition of BB wave packets, and in this sense we think of it as an Airy beam. Following this idea we
consider the Gaussian Berry-Balasz wave packet (in the sequel abbreviated as GBB wave packet)

ψGBB(x, t) =
1√
2πσ2

e−x2/2σ2∗x ψBB(x, t)

=
1√
2πσ2

∫ ∞

−∞
e−(x−x′)2/2σ2

ψBB(x
′, t)dx′ , σ > 0 . (5.1)

The considered wave packet is slightly different than that proposed by Berry and Balazs [BB], because in
the sequel we want to examine the limit σ → 0, and for this reason we are obliged to admit that the energy
of the wave packet (see (5.5) below) depends singularly on σ.

It is easy to check that ψGBB(x, t) satisfies the Schrödinger equation. By differentiating the convolution
with respect to x and t, we get

∂tψGBB(x, t) =
1√
2πσ2

e−x2/2σ2∗x ∂tψ(x, t) , (5.2)

∂2xψGBB(x, t) =
1√
2πσ2

e−x2/2σ2∗x ∂2xψ(x, t) , (5.3)

and thus we have

iℏ∂tψGBB(x, t) +
ℏ2
2m∂

2
xψGBB(x, t)

= 1√
2πσ2

e−x2/2σ2∗x
(
iℏ∂tψBB(x, t) +

ℏ2
2m∂

2
xψBB(x, t)

)
= 0 , (5.4)

14
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since ψBB(x, t) satisfies the Schrödinger equation.
By a long but straightforward calculation we find that∫ ∞

−∞
|ψGBB(x , 0)|2dx =

ℏ1/3

2π1/2B2

ℏ
σ
, (5.5)

thus ψGBB ∈ L2 for any σ > 0. The mean value of position is given by

⟨x⟩t =
∫ ∞

−∞
x|ψGBB(x, t)|2dx = − ℏ1/3

4π1/2B5

ℏ3

σ3
, (5.6)

and it is time independent, therefore the Gaussian BB wave packet obeys Ehrenfest’s theorem. We observe
that the mean position is consistently negative, because the Airy function carries larger mass at x < 0 than
at x > 0, and the Gaussian function is an even function.

Moreover, the dispersion is given by

(∆xt)
2 = ⟨x2⟩t − ⟨x⟩2t = κ+ λt2 , (5.7)

where

κ =
ℏ4/3

8
√
πσB2

(
σ2 +

ℏ4/3

σ4B6

(
3− ℏ4

2
√
πσB2

))
, λ =

1

2m2σ2ℏ2/3
,

are constants depending on the various parameters. It follows that the dispersion of the GBB wave packet,
increases linearly with time for large time, which is qualitatively similar to the behaviour of the Gaussian
wave packet.
Remark. Since

gσ(x) =
1

(2πσ2)1/2
e−x2/2σ2 → δ(x) , as σ → 0 , (5.8)

distributionally, it follows from (5.1) that

ψGBB(x, t) → ψBB(x, t) , as σ → 0 , (5.9)

for any fixed time t > 0, which is intuitively correct. Moreover, as σ → 0, the energy (5.5) of ψGBB tends to
infinity, which is also correct since ψBB has infinite energy. Finally, the mean position (5.6) moves to infinity,
since most of the infinite energy of ψBB “accumulates” there.

5.2 The Siviloglou-Christodoulides’ (SC) solution

Siviloglou andChristodoulides [SC] have constructed anAirywave packet with finite energy by using special
initial data of finite energy. More precisely, by putting ℏ = 1, m = 1 and B = 1, for simplifying the
calculation, they solved the free-particle Schrödinger equation (2.19)-(2.20),

i
∂ψSC

∂t
+

1

2

∂2ψSC

∂x2
= 0 , x ∈ R , t > 0 , (5.10)

with initial condition
ψSC(x, 0) := ebxAi(x) , b > 0 , (5.11)

where the exponential factor ensures the containment of slowly decaying Airy tail for negative x. In fact, by
standard calculation, we get ∫ ∞

−∞
|ψSC(x, 0)|2dx =

1√
8πa

e
2
3
b3 , (5.12)
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which implies ψSC(x, 0) ∈ L2 for any b > 0. The Fourier transform of ψSC(x, 0) is

ψ̂SC(ξ) = e−bξ2e
i
3
(ξ3−3b2ξ)eb

3/3 , (5.13)

so by (2.26) we obtain the following integral representation of the SC solution

ψSC(x, t) =
1

2π

∫ ∞

−∞
e−bξ2+ b3

3
+ i

3
(ξ3−3bξ2)e−i(ξ2t−xξ)dξ . (5.14)

By writing the exponential in terms of the cubics (b− iξ)3 and ( t2 −y)
3 , y = ξ+bi, and using the definition

of the Airy function, we obtain the SC solution in the explicit form

ψSC(x, t) = Ai
(
x− t2/4 + ibt

)
ebx−

bt2

2
+i(b2t/2+xt/2−t3/12) . (5.15)

It is simple to check that for b = 0 the SC solution coincides with the BB wave packet (compare with (4.5)
for ℏ = 1 andm = 1), as it should, because for b = 0, SC(x, 0) = ψBB(x, 0).

Here the following question arises naturally. Is there a relation between the initial data proposed by
Siviloglou and Christodoulides and ψGBB(x, 0), or are they essentially independent of each other? By ei-
ther using the Airy transform[VS], p.84, or by straightforward calculation involving certain interchanges of
Fourier integrals, we derive that

ψGBB(x, 0) = exp
( 1

4α3

(
z +

1

24α3

))
Ai
( z
α
+

1

16α4

)
, (5.16)

where

z =
x

σ
√
2

and α =
h2/3

Bσ
√
2
. (5.17)

Then, we make the change of variableX = z
α + 1

16α4 and we rewrite the last formula in the form

ψGBB(x, 0) = e−
1

192α6 e
X

4α2Ai(X) , X =
Bx

h2/3
+
B4σ4

4h8/3
, (5.18)

which is essentially a translation along thex-axis of the the initial data proposed by Siviloglou&Christodoulides.
In this sense the SC solution is a particular case of the GBB wave packet.

In the sequel, we will explain that ψSC(x, 0) can be represented as the convolution of the Airy function
with a certain function g(x), and thus the SC solution can be also represented as the convolution of g with
ψGBB(x, t). Let us consider the relation

ϕ(x)Ai(x) = g(x)∗xAi(x) , (5.19)

for a given function ϕ, such that ϕ(x)Ai(x) is square integrable. This assumption implies that g(x) must
also be square integrable. We will show that g is expressed as the following integral transform of ϕ

g(x) =

∫ ∞

−∞
Ai(z)Ai(z − x)ϕ(z)dz . (5.20)

Note that g(x) = Ai(x)ϕ(x)∗xAi(x) is the Airy transform of Ai(x)ϕ(x).
We first apply the Fourier transform on the relation (5.19), and we get

ĝ(ξ) =

(
1

2π
ϕ̂(ξ)∗ξei

ξ3

3

)
e−i ξ

3

3 ,
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which implies the representation

g(x) =
1

(2π)2

∫ ∞

−∞
eiξx

∫ ∞

−∞
ϕ̂(ξ − σ)ei

σ3−ξ3

3 dσ dξ . (5.21)

Then, by the change of variables u = ξ − σ , v = ξ + σ we transform g as follows

g(x) = 1
2(2π)2

∫∞
−∞

∫∞
−∞ ei

xv
2 ei

ux
2
−uv2

4
−iu

3

12 ϕ̂(u)dvdu

= 1
2(2π)2

∫∞
−∞

∫∞
−∞ ei

xv
2 ei

ux
2
−uv2

4
−iu

3

12

(∫∞
−∞ e−izuϕ(z)dz

)
dvdu ,

and we write it as the integral tranformation

g(x) =

∫ ∞

−∞
K(x, z)ϕ(z)dz , (5.22)

with kernel

K(x, z) =
1

2(2π)2

∫ ∞

−∞
ei

xv
2

(∫ ∞

−∞
e−iu

3

12
+iu
(
x/2−z−v2/4

)
du)
)
dv . (5.23)

By the definition of the Airy function and simple changes of variables, we may writeK as a single integral

K(x, z) =
22/3

2(2π)

∫ ∞

−∞
eixv/2Ai

(
22/3(v2/4 + z − x/2)

)
dv

=
22/3

2π

∫ ∞

−∞
eixtAi

(
22/3(t2 + z − x/2)

)
dt . (5.24)

Now, by applying the formula for the product of Airy functions ([VS], eq. (2.151))∫ ∞

−∞
Ai
(
22/3(t2 +

u+ v

2
)
)
ei(u−v)tdt = 21/3πAi(u)Ai(v) , (5.25)

and u = z , v = z − x, we express the kernelK in the explicit form

K(x, z) = Ai(z)Ai(z − x) . (5.26)

Substituting (5.26) into (5.22) we complete the derivation of (5.20).

Remark. If we abandon the assumption of square integrability, forϕ(x) ≡ 1 into (5.20), and the orthogonality
relation for the Airy functions ([VS], eq. (3.108)),∫ ∞

−∞
Ai(u− x)Ai(v − x)dx = δ(u− v) ,

we get

g(x) =

∫ ∞

−∞
Ai(z)Ai(z − x)dz = δ(x) . (5.27)

Then, eq. (5.19) is satisfied distributionally since

Ai(x) = δ(x)∗xAi(x) . (5.28)
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5.3 The Besieris-Shaarawi’s (BS) solution

Besieris and Shaarawi [BS] have observed that the SC solution can be derived from the BB wave packet by
the transformation

x→ x− b2 , t→ t− i 2b , b > 0

More precisely, they observed that

ψBS(x, t) := ψBB(x− b2, t− i 2b) = e−
b3

3 ψSC(x, t) . (5.29)

We will show that the BS solution is also a GBBwave packet, since it can be represented as a convolution

ψBS(x, t) = gb(x)∗xψBB(x, t) , (5.30)

with the b-dependent Gaussian function

gb(x) =
1√
4bπ

e−
(x−b2)2

4b . (5.31)

By taking the Fourier transformwith respect to x of the equation (5.29), and using the standard properties
of the Fourier transform of the convolution and of shifted functions, we get

ψ̂BS(ξ, t) = e−ib2ξψ̂BB(ξ, t− i2b) . (5.32)

Then, by appropriately using (2.24) and (4.3), we get

ψ̂BB(ξ, t− i2b) = e−bξ2 ψ̂BB(ξ, t) . (5.33)

We rewrite the last equation in the form

ψ̂BS(ξ, t) = ψ̂BB(ξ, t)ĝb(ξ) , (5.34)

where
ĝb(ξ) = e−bξ2−iξb2 . (5.35)

By inverting the Fourier transform ψ̂BS(ξ, t) we get the convolution formula (5.30), where gb is the inverse
Fourier transform of ĝb(ξ),

gb(x) :=
1

2π

∫ ∞

−∞
eiξx−bξ2−iξb2dξ =

1√
4bπ

e−
(x−b2)2

4b . (5.36)

From the above Fourier integral representation of gb it follows that as b → 0, gb(x) → δ(x) and therefore
we get

ψBS(x, t) → ψBB(x, t) , as b→ 0 , (5.37)

which is consistent with (5.29) for b = 0.

5.4 Lekner’s (L) solution

Lekner [Lek], inspired by the fundamental role of coordinate transformations in quantum mechanis [Bal],
has investigated the relation between the BB wave packet and the SC solution by employing a Galilean
transformation with complex velocity.
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First, by rewriting the BB wave packet in the form

ψBB(x, t) = Ai
(
q(x− 1

2
at2)

)
exp
(
i
mat

ℏ
(x− 1

3
at2)

)
,

where q = B
ℏ2/3 can be thought of a real wave number, and a = B3

2m2 is the acceleration of the wave packet,
Lekner considered the wavepacket

ψL(x, t) = ψBB(x− ct, t)ei
mc
h

(x− 1
2
ct) . (5.38)

This wave packet is derived by applying the real Galilean transformation

x→ x− ct , t→ t , c ∈ R , (5.39)

on ψBB, and it is then augmented by the phase factor

ei
mc
ℏ (x− 1

2
ct) . (5.40)

Obviously, this wave packet, like ψBB, has infinite energy since the phase factor has modulus one.
Then, he observed that if the velocity of the moving frame is complex, c = u − iv , v > 0 the phase

factor contributes the real factor
e

mv
ℏ x , (5.41)

which ensures the containment of slowly decaying Airy tail for negative x. In the special case u = 0, ψL,
for ℏ = m = B = 1, reduces to the SC solution.

In terms of the components of the complex velocity, Lekner’s wavepacket (5.38) reads as follows

ψL(x, t) = Ai
(
q(x− ut+ ivt− 1

2
at2)

)
ei

mat
ℏ

(
x−ut− 1

3
at2
)
e

mv
ℏ

(
x−ut+ i

2
vt−at2

)
e

mu
ℏ

(
x− 1

2
ut
)
. (5.42)

The energy of the wave packet is finite, and is given by∫ ∞

−∞
|ψL(x, t)|2dx =

∫ ∞

−∞
|ψL(x, 0)|2dx =

∫ ∞

−∞
Ai2(qx) e

2mvx
ℏ dx =

√
ℏ

23/2
√
πmvq

e
2(mv)3

3(ℏq)3 . (5.43)

It is interesting to observe that only the imaginary part v = ℑ(c) of the velocity conrtibutes to the energy of
the wave packet, and as v → 0 the energy becomes infinite since the factor (5.41) disappears.

We will show now that Lekner’s wave packet is also a GBB wave packet, since it can be represented a s
convolution

ψL(x, t) = gc(x) ∗x ψBB(x, t) , (5.44)

with the c-dependent Gaussian function

gc(x) =
B3/2

√
4πℏmci

e−im
3c3

3ℏB3 exp

(
−
B3
(
x+ m2c2

B3

)2
4ℏmic

)
, (5.45)

which encodes the effect of the complex Galilean transformation
By taking the Fourier transform of (5.38) with respect to x we get

ψ̂L(ξ, t) = ei
mc2t
2h

−iξctψ̂BB(ξ −mc/h, t) , (5.46)
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and using the Fourier transform of ψBB we have

ψ̂L(ξ , t) =
h2/3

B e−i
(

ht
2m

(ξ−mc/h)2− h2

3B3 (ξ−mc/h)3
)

= ψ̂BB(ξ, t)ĝc(ξ) , (5.47)

where
ĝc(ξ) = e−i

(
hmc
B3 ξ2−m2c2

B3 ξ+m3c3

3hB3

)
. (5.48)

Finally, by inverting the Fourier transform (5.47) we obtain (5.44). The inverse Fourier transform of ĝc is
given by

gc(x) =
e−im

3c3

3hB3

2π

∫ ∞

−∞
e−ihmc

B3 ξ2+i(x+m2c2

B3 )ξdξ

=
B3/2

√
4πℏmci

e−im
3c3

3ℏB3 exp

(
−
B3
(
x+ m2c2

B3

)2
4ℏmic

)
.

The branch of the complex square root is chosen so that ℜ(ic) > 0. From the Fourier integral representation
of gc it follows that as c→ 0, gc(x) → δ(x) and therefore we get

ψL(x, t) → ψBB(x, t) , asc→ 0 , (5.49)

which is consistent with (5.42) for c = 0. The mean values of position and momentum of ψL are given by

⟨x⟩t =
∫ ∞

−∞
x|ψL(x, t)|2dx =

v2

2a
− ℏ

4mv
+ ut , (5.50)

and
⟨p⟩t = −iℏ

∫ ∞

−∞
ψ∗
L(x, t)∂xψL(x, t)dx = mu . (5.51)

Obviously, the L solution obeys Ehrenfest’s theorem. In particular, for u = 0, the mean position of the L
solution is constant, but it is negative only if v < Bℏ1/3/22/3m, and the mean momentum is zero, thus
showing a behaviour similar to that of the GBB wave packet. Moreover, we have

⟨x2⟩t =
∫ ∞

−∞
x2|ψL(x, t)|2dx =

v2

4a
+
v2ut

a
+ (ut)2 − hut

2mv
+

ℏat2

2mv
+

3ℏ2

16(mv)2
+

hv

4ma
, (5.52)

and thus the dispersion of the position is given by

(∆xt)
2 = ⟨x2⟩t − ⟨x⟩2t =

ℏ2

8(mv)2
+

ℏv
2ma

+
ℏat2

2mv
. (5.53)

It follows that the dispersion of the L solution, like that one of the GBB wave packet, increases linearly with
time for large time.
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Discussion of the results

We have shown that all the Airy-type wave packets (Airy beams) with finite energy which appear in applied
physics and optics literature can be expressed as the convolution of the non square integrable Berry-Balazs
wave packet ψBB(x, t) with an appropriate Gaussian function gϵ(x),

ψ(x, t) = ψBB(x, t)∗xgϵ(x),

where
gϵ(x) =

1√
2πϵ2

e−x2/2ϵ2 ,

and ϵ > 0 is a parameter depending on the particular solution (GBB, SC, BS or L). The underlying reason is
that the convolution

f(x) = g(x)∗xAi(x)

defines a square integrable function f when g ∈ L2. In fact, by taking the Fourier transform of the last
equation,

f̂(ξ) = ĝ(ξ) exp
(
iξ3 /3

)
,

and using Parseval’s theorem, it follows f̂ ∈ L2, since ĝ ∈ L2. Therefore, any function g ∈ L2 can be used
to generate by convolution a square integrable Airy beam.

Recall now that in the analysis of the SC solution we have seen that (see eqs. (5.19),(5.20)),

ϕ(x)Ai(x) = g(x)∗xAi(x) ,

implies

g(x) =

∫ ∞

−∞
Ai(z)Ai(z − x)ϕ(z)dz , (6.1)

when ϕ(x)Ai(x) ∈ L2. Thus, the following natural question arises. Given g ∈ L2, can we find ϕ such that
the above pair of relations hold? In other words, can we always choose initial data in the SC way, which, in
a sense, implies that the SC solution and the Gaussian BB wave packet are equivalent?

By the definition and the L2 properties of the Airy transform ([VS], Sec. 4.2.1), we can prove that for
any g ∈ L2, ϕ(x)Ai(x) ∈ L2 . Since Ai(x) has zeros on the negative real axis, ϕ is not necessarily smooth.
Although the properties of ϕ itself have some mathematical interest, the initial data of the SC solution is
ϕ(x)Ai(x). Therefore, there is a one-to-one correspondence between g and the SC initial data, and in this

21
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sense the GBB wave packet and the SC solution are equivalent. In an analogous way we can show that the
BS solution and the L solution are equivalent to a SC solution with appropriate initial data which can be
constructed as above from the corresponding function g.

It is a remarkable property of all finite energy Airy wave packets that the dispersion has the form
∆xt =

√
α+ βt2, the constants α , β depending on the various parameters entering each particular so-

lution, and, for large time, it increases linearly with time, thus complying with the corresponding behaviour
of the Gaussian wave packet.

A final remark concerns the semiclassical scaling of the GBB, and it related to the the open problem of
the semiclassical limit of Airy beams. Recall that the L2 norm of ψBB is ℏ-dependent and it is given by eq.
(5.5) ∫ ∞

−∞
|ψGBB(x , 0)|2dx =

ℏ1/3

2π1/2B2

ℏ
σ
.

It follows that in order to retain the natural Airy scale in the initial data

ψ0(x) = Ai
( Bx
ℏ2/3

)
,

and at the same time the energy of the wave packet be finite as ℏ → 0 (semiclassical limit), we must choose
σ = ℏ4/3. Thus, the Gaussian function (5.8) involved in construction of ψGBB, is required to be

gσ(x) =
1√
2π

1

ℏ4/3
exp

(
−1

2

( x

ℏ4/3
)2)

.

It follows that the necessary width of the Gaussian function is O(ℏ4/3), and it is much smaller that the Airy
scale O(ℏ2/3), which implies that the Airy beams are semiclassically very narrow.
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