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ABSTRACT

The great advancements in nanotechnology during the 20th century unveiled nu-

merous, previously unattainable, applications involving electromagnetic wave propagation

and control. This led to the emergence of man-made composite structures with engineerable

properties through proper structuring, allowing the exploration of previously unexplored

light-matter interaction aspects. Characteristic examples are Photonic Crystals and Metama-

terials/Metasurfaces. In this thesis, three di�erent photonic systems are investigated: (i) The

position dependence of Local Density of States inside a �nite 3D photonic crystal is calculated,

for di�erent trajectories inside the crystal, and a model was derived to obtain a physical un-

derstanding of the calculated response. (ii) The conditions for perfect absorption for planar

structures comprised of a dielectric between a thin resistive �lm and a metallic back-re�ector

are derived, based on a proper extension of the Transfer Matrix Method. Three distinct cases

are investigated, where the resistive thin �lm is a: (a) uniform metal �lm; (b) graphene layer;

(c) metasurface showing both electric and magnetic surface conductivities. (iii) The scattering

properties of multilayered in�nitely-long cylinders are calculated, based on Mie theory com-

bined with a Transfer Matrix Method formulation, for cylinders incorporating metasurfaces at

their interfaces, and a previously established e�ective medium model is extended for system-

s/metamaterials of such cylinders. Three relevant systems are investigated: (a) single-layered

polaritonic cylinders; (b) multi-layered graphene-based nanotubes; and (c) metasurface-based

cylinders. We found the parameters required for di�erent electromagnetic phases in those

systems, including hyperbolic dispersion, double negative response, epsilon near zero response,

etc.
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CHAPTER 1

INTRODUCTION

Since ancient times people were fascinated by the interaction of matter and light. The �rst-

known studies of optics date back to ancient Greece and Egypt, with characteristic examples

being the studies by Euclid and Hero of Alexandria [1]. A famous example of practical application

of light-matter interaction from the Roman period is the Lycurgus’ cup, which exhibits di�erent

colors when it is illuminated from outside with respect to its colors when it is illuminated from

the inside. However, the physical mechanism behind this e�ect was not known before the

seminal work by Michael Faraday, in the mid-19th century, who studied the optical response of

colloidal solutions of small metallic particles [2].

In 1865, James Clerk Maxwell uni�ed the work by Gauss, Faraday, Ampère and others

into a uni�ed framework, by demonstrating that light is an electromagnetic wave travelling

with speed c = 1/
√
ε0µ0 in free space, where ε0 = 8.854 × 10−12

m
−3

kg
−1

s
4

A
2

is the

permittivity of free space and µ0 = 1.257× 10−6
m kg s

−2
A
−2

is the magnetic permeability

of free space (in SI units) [3]. Maxwell’s work established the basis of classical electrodynamics

that we know today, summarized in the following equations (known as Maxwell equations):

∇ ·D = ρe (1.1)

∇ ·B = 0 (1.2)

∇×E = −∂B
∂t

(1.3)

∇×H = Je +
∂D

∂t
(1.4)

In the above equations ρe is the electric charge density of free charges, Je is the electric current

density, E is the total electric �eld and B is the total magnetic �eld (known as magnetic induc-

tion), respectively. The �elds D and H are auxiliary �elds, with the D known as displacement

�eld and H as magnetic �eld. Throughout this thesis we will assume linear response, that is,

constitutive relations of the form B = µH and D = εE, with ε and µ denoting the electric

permittivity and magnetic permeability of the material, respectively. In general, to solve every

problem in classical electrodynamics we need to solve Maxwell Equations [Eqs. (1.1)-(1.4)] in

conjunction with models for the representation of the materials
1

(through ε and µ) and with

appropriate boundary conditions.

The great advancements in the fabrication processes and nanotechnology during the 20th

century led to the implementation of numerous, previously unattainable, applications involving

electromagnetic wave propagation and control, e.g. in telecommunications, sensing, photo-

voltaics and others. This made a critical contribution to the emergence of man-made composite

1

Note that in the representation of the Maxwell’s equations given by Eqs. (1.1)-(1.4), the free and the bound

charges are separated; the free charges are represented by the current densityJe = σE, withσ being the conductivity

of the medium, while the permittivity is connected only with the bound charges. In a di�erent representation Je, ρe
are zero (if there are not any external to the system charges and currents) and the permittivity and conductivity

represent both bound and free charges (which behave practically in the same way in high frequencies); in this

case permittivity and conductivity are connected through the relation ε = ε0 + iσ/ω, with i being the imaginary

unit and ω the angular frequency. In this work we use both the above mentioned representations of the Maxwell’s

equations, depending on the system studied.
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structures which allow engineering of their properties through proper structuring, allowing

thus the exploration of previously unexplored regimes and/or aspects of light-matter inter-

action. Characteristic examples of such structures are Photonic Crystals, Metamaterials and

Metasurfaces (i.e. ultrathin metamaterial layers), which are the main systems investigated in

the current work.

Photonic Crystals (PCs) are periodic structures with unit cell size comparable to the opera-

tion wavelength of light, which can o�er frequency ranges where no electromagnetic states

are allowed, in a similar manner to band gaps of electrons in semiconducting and dielectric

materials [4]. These frequency ranges are called photonic band gaps [5]. Photonic crystals can

be used, among others, as platforms for quantum optics and cavity quantum electrodynamics

(cQED) applications like emission rate engineering [6], [7].

In contrast to photonic crystals, metamaterials and metasurfaces are comprized of units

(commonly called meta-atoms) with characteristic size much smaller than their operation

wavelength. By exploiting this fact, one can treat these structures as homogeneous media

characterized by e�ective electric permittivity, e�ective magnetic permeability and, for the case

of metasurfaces, with e�ective electric and magnetic sheet conductivites. Metamaterials and

metasurfaces can allow, through proper structuring, permittivity and/or permeability values

unachievable by natural materials; for example engineeranble negative permittivity and/or

permeability, negative refractive index, permittivity and permeability near zero, etc, o�ering

thus very rich physics and unprecedented possibilities in a large variety of applications related

with light-matter interaction (telecommunications, imaging, sensing, etc). The calculation of

the e�ective materials parameters in such systems, which is crucial for the assessment of their

response, can be done in the framework of E�ective Medium Theories, which are simpli�ed

models that o�er a simple physical description of the metamaterial response.

The large potential and the scienti�c and technological impact of photonic crystals and

metamaterials/metasurfaces make the importance of development of analytical and compu-

tational tools for the solution and understanding of the wave interaction with such complex

photonic structures even greater. For numerical analysis, depending on the application and

the computational cost, one can choose one of the appropriate numerical methods for solving

Maxwell equations for the exact system. Such numerical methods include Finite Di�erence

Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM),

Plane Wave Expansion (PWE) and others.

There are however structures which allow analytical or semi-analytical solutions, which

greatly facilitates their understanding and their optimization towards speci�c properties or

applications. The most straightforward solutions can be obtained for planar structures which

are �nite only in one direction. For two- or three-dimensional symmetrical structures, like

cylinders and spheres, it is possible to �nd semi-analytical solutions of Maxwell equations by

expanding the electromagnetic �elds in di�erent structure areas into elemental solutions of the

wave equation, namely the cylindrical and spherical harmonics respectively. This approach

is called Mie theory [8], [9] and it is the starting point for our calculations in Chapters 5 and

6. A method for the calculation of the �elds in the above types of structures, if composed of

multiple layers, is called Transfer Matrix Method [10] (TMM). Since, in principle, we can obtain

semi-analytical expressions for all the quantities of interest, Mie theory in combination with the

transfer matrix method can o�er invaluable physical insight into, otherwise, complex structures

comprising of many layers and di�erent materials. We derive and employ the Transfer Matrix

Method in Chapters 2, 3, 4 and 6 for the calculation of the scattering properties of planar and

cylinders-based structures, including two-dimensional metamaterials and metasurfaces. In

Fig. 1.1 we show schematics of the types of the systems that are studied in this thesis.
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Figure 1.1: Types of photonic systems studied in this thesis: (a) A dielectric sandwitched

between a thin resistive �lm (e.g. metal, graphene, metasurface) and a metallic back-re�ector,

(b) an array of in�nitely-long cylinders and (c) an three-dimensional �nite inverse woodpile

photonic crystal.

1.1 Outline of this thesis
This thesis is organized as follows: In the �rst part (Chapters 2, 3 and 4) we study planar

absorbers made of a dielectric sandwiched between a thin resistive �lm and a metallic back-

re�ector. This type of structure is referred also as a Salisbury screen. In Chapter 2 we derive the

transfer matrix method for planar multi-layered structures incorporating two-dimensional (2D)

materials (e.g. graphene) and/or metasurfaces at each of the interfaces; this is applied in the

studies of the next two chapters. In Chapter 3 we consider structures for the optical part of the

spectrum with the top resistive �lm being a thin metal �lm. On the other hand, in Chapter 4

the top resistive sheet is (a) a graphene layer and (b) a metasurface layer showing both electric

and magnetic response.

In the second part of the thesis, Chapters 5 and 6, we turn our attention to the scattering

response of cylindrical particles in the THz part of the spectrum. In Chapter 5 we employ

Mie theory [8], [9] to derive analytical expressions for the the scattering properties of single

in�nitely-long cylindrical particles and an e�ective medium model based on the well-known in

the solid-state-physics community Coherent Potential Approximation [11]. Then, we apply our

derivations to cylindrical particles made of polaritonic materials (i.e. materials with phonon-

polariton resonances) in the THz part of the spectrum. In Chapter 6 we extend the formalism

for the scattering properties and e�ective medium model used in Chapter 5 to multi-layer

co-centric cylinders with arbitrary number of layers and with 2D materials or metasurfaces at

each interface (between layers).

Last, but not least, in the third part of the thesis, Chapter 7, we turn our attention to photonic

crystals. Speci�cally, we study the position dependence of the local density of states for emitters

placed inside three-dimensional (3D) �nite inverse woodpile photonic crystals. The study is

done by employing the Finite Di�erence Time Domain (FDTD) method.

1.2 Publications in the context of this thesis
1. G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, C.

M. Soukoulis, Perfect absorbers based on metal-insulator-metal structures in the visible
region: a simple approach for practical applications, Appl. Phys. A 123, 77 (2017).

2. A. C. Tasolamprou, A. D. Koulouklidis, C. Daskalaki, C. P. Mavidis, G. Kenanakis, G.

Deligeorgis, Z. Viskadourakis, P. Kuzhir, S. Tzortzakis, M. Kafesaki, E. N. Economou, and

C. M. Soukoulis, Experimental Demonstration of Ultrafast THz Modulation in a Graphene-
Based Thin Film Absorber through Negative Photoinduced Conductivity, ACS Photonics 6,

720 (2019).
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3. C. P. Mavidis, A. C. Tasolamprou, S. B. Hasan, T. Koschny, E. N. Economou, M. Kafesaki,

C. M. Soukoulis, and W. L. Vos, Local density of optical states in the three-dimensional
band gap of a �nite photonic crystal, Phys. Rev. B 101, 235309 (2020).

4. C. P. Mavidis, A. C. Tasolamprou, E. N. Economou, C. M. Soukoulis, and M. Kafesaki Po-
laritonic cylinders as multifunctional metamaterials: Single scattering and e�ective medium
description Phys. Review B 102, 155310 (2020).

5. C. P. Mavidis, A. C. Tasolamprou, E. N. Economou, C. M. Soukoulis, and M. Kafesaki

Single scattering and e�ective medium description for multi-coated and metasurface-coated
cylinders (in preparation).

6. C. P. Mavidis, A. C. Tasolamprou, E. N. Economou, C. M. Soukoulis, and M. Kafesaki

Perfect absorption conditions in metasurface-based perfect absorbers: A transfer matrix
approach (in preparation).



CHAPTER 2

TRANSFER MATRIX METHOD FOR PLANAR LAYERED

STRUCTURES

2.1 Introduction
The transfer matrix method is one of the most convenient approaches to evaluate the �elds

and the scattering properties of layered systems [10], [12]. It relates the �elds at one side of a

layered system with the �elds at the opposite side. In this chapter we derive the transfer matrix

for planar layered structures, as the example system of Fig. 2.1(a). This derivation is the basis

for the majority of our calculations in Chapters 3 and 4, where we will study planar perfect

absorbers. We assume that each medium extends to in�nity in two directions and it is only

�nite in the direction transverse to the media interfaces.

First we will �nd the transfer matrix for an interface between two media, i and j, with

electric permittivities and magnetic permeabilities εi, µi and εj and µj . The geometry is

shown in Fig. 2.1(b). We have chosen the z-axis to be perpendicular to the interface (and to

all interfaces of the layered system). We also take into account electric and magnetic surface

currents je and jm at the interface of the two media. The surface currents o�er us the possibility

to e�ectively include 2D materials and/or metasurfaces in our calculations. Throughout this

chapter we will assume a linear relation between the surface electric and magnetic currents

and the corresponding electric and magnetic �elds:

je = σeEav|surface (2.1)

jm = σmHav|surface (2.2)

where E and H stand for the electric and magnetic �eld respectively, and σe and σm are the sur-

face electric and magnetic conductivity, respectively. The surface currents are de�ned through

the corresponding average �elds at the interface in order to account for the discontinuities. We

assume that at each medium there are forward-propagating electromagnetic �elds (E(+),H(+))
and backward-propagating �elds (E(−),H(−)), travelling towards the positive and negative

z-axis respectively. At each medium the �elds will have a planewave-form with frequency ω
and wavevector k = kxx̂+ kz ẑ :

E = E0e
i(k·r−ωt)

(2.3)

H = H0e
i(k·r−ωt)

(2.4)

At each interface we apply the appropriate boundary conditions for the electric and magnetic

�elds [13], [14]:

ẑ × [Ej −Ei] = −jm,j = −σm(j)
Hi + Hj

2
(2.5)

ẑ × [Hj −Hi] = je,j = σe(j)
Ei + Ej

2
(2.6)
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Figure 2.1: (a) Interface with surface conductivities σe and σm between two media i and j with

electrical permittivities εi, εj , magnetic permeabilities µi, µj . (b) Layered structure consisting

of N layers. We assume that a plane wave is incident from the left of the structure.

Due to the symmetry of the problem we splitted it into two problems: For (a) p-polarization, with

�elds E = Exx̂+Ez ẑ, H = Hŷ, and (b) s-polarization, with �elds E = Eŷ, H = Hxx̂+Hz ẑ,

where x̂, ŷ and ẑ are the unit vectors along the x, y and z axes respectively.

2.2 Transfer Matrix for p polarization
For p polarization the electric and magnetic �elds have the form

E = Exx̂+ Ez ẑ (2.7)

H = Hŷ (2.8)

Using these relations in the boundary conditions (2.5)-(2.6) we can write for the �elds at the

interface

ẑ ×
[
E

(+)
j + E

(−)
j −E

(+)
i −E

(−)
i

]
= −

σm(j)

2

[
H

(+)
j + H

(−)
j + H

(+)
i + H

(−)
i

]
(2.9)

ẑ ×
[
H

(+)
j + H

(−)
j −H

(+)
i −H

(−)
i

]
=
σe(j)

2

[
E

(+)
j + E

(−)
j + E

(+)
i + E

(−)
i

]
(2.10)

The relation between electric and magnetic �elds in a semi-in�nite medium with permittivity ε
can be obtained from Ampere’s law as

∇×H = −∂D
∂t

= −iωεE (2.11)

or

k×H = ωεE (2.12)

For a wave propagating towards the ±z axis with k = kxx̂± kz ẑ:

E(±)
x = ± kz

ωε
H(±)

(2.13)
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Inserting Eq. (2.13) to Eq. (2.9) we get[
− kiz
ωεi

+
σm(j)

2

]
H

(+)
i +

[
kiz
ωεi

+
σm(j)

2

]
H

(−)
i =

[
− kjz
ωεj
−
σm(j)

2

]
H

(+)
j +

[
kjz
ωεj
−
σm(j)

2

]
H

(−)
j

(2.14)

Next, we insert Eq. (2.13) to Eq. (2.10):[
1−

kizσe(j)

2ωεi

]
H

(+)
i +

[
1 +

kizσe(j)

2ωεi

]
H

(−)
i =

[
1 +

kjzσe(j)

2ωεj

]
H

(+)
j +

[
1−

kjzσe(j)

2ωεj

]
H

(−)
j

(2.15)

Now we can write Eqs. (2.14) and (2.15) in matrix form as:(
1− kizσe(j)

2ωεi
1 +

kizσe(j)
2ωεi

kiz
ωεi
− σm(j

2 − kiz
ωεi
− σm(j

2

)(
H

(+)
i

H
(−)
i

)
=

(
1 +

kjzσe(j)
ωεj

1− kjzσe(j)
2ωεj

kjz
ωεj

+
σm(j)

2 − kjz
2ωεj

+
σm(j)

2

)(
H

(+)
j

H
(−)
j

)
(2.16)

By multiplying with the inverse of the 2× 2 matrix in the left-hand side of the equation

above we will end up with the �nal relation for the transfer matrix:(
H

(+)
i

H
(−)
i

)
= L(p)

ij

(
H

(+)
j

H
(−)
j

)
(2.17)

with the transfer matrix L(p)
ij having the following elements:

L(p)(11)
ij = −

(
ζji + sm(ji)

) (
se(ji) + 1

)
+
(
sm(ji) + 1

) (
ζjise(ji) + 1

)
2
(
se(ji)sm(ji) − 1

) (2.18)

L(p)(12)
ij =

(
ζji − sm(ji)

) (
se(ji) + 1

)
+
(
sm(ji) + 1

) (
ζjise(ji) − 1

)
2
(
se(ji)sm(ji) − 1

) (2.19)

L(p)(21)
ij =

−
(
ζji + sm(ji)

) (
se(ji) − 1

)
+
(
sm(ji) − 1

) (
ζjise(ji) + 1

)
2
(
se(ji)sm(ji) − 1

) (2.20)

L(p)(22)
ij =

(
ζji − sm(ji)

) (
se(ji) − 1

)
−
(
sm(ji) − 1

) (
ζjise(ji) − 1

)
2
(
se(ji)sm(ji) − 1

) (2.21)

where ζji = ηj/ηi and ηj = η
(p)
j = kjz/ωεj , and normalized sheet conductivities as se(ji) =

σeηi/2, sm(ji) = σm(j)/2ηi.
For a structure consisting of N + 1 interfaces separated by distances {d1, d2, . . . , dN}, the

total transfer matrix can be written as

Ltot = L01P1(d1)L12P2(d2) . . .PN (dN )LN,N+1 (2.22)

The subscripts 0 and N + 1 in Eq. (2.22) stand for the semi-in�nite "superstrate" (left-layer of

Fig. 2.1(b)) and the "substrate" (right-medium of Fig. 2.1(b)) of the structure. With Pi(di) we

denote the propagation matrix which accounts for the propagation in the space between two

interfaces and can be written as

Pi(z) =

(
e−ikizz 0

0 e+ikizz

)
(2.23)

2.3 Transfer Matrix for s polarization
For s polarization the electric and magnetic �elds will be

E = Eŷ (2.24)

H = Hxx̂+Hz ẑ (2.25)
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Starting from the boundary conditions given by Eqs. (2.9) and (2.10), we get for the �elds at

the interface (since ẑ × ŷ = −x̂):

E
(+)
j + E

(−)
j − E(+)

i − E(−)
i =

σm(j)

2

(
H

(+)
jx +H

(−)
jx +H

(+)
ix +H

(−)
ix

)
(2.26)

H
(+)
jx +H

(−)
jx −H

(+)
ix −H

(−)
ix =

σe(j)

2

(
E

(+)
j + E

(−)
j + E

(+)
i + E

(−)
i

)
(2.27)

From Faraday’s law we can write:

∇×E = −∂B
∂t

= iωµH (2.28)

or

k×E = ωµH (2.29)

For a wave propagating towards the ±z axis with k = kxx̂± kz ẑ:

H(±)
x = ∓kzE

(±)

ωµ
(2.30)

Now we insert Eq. (2.30) into Eq. (2.26):

E
(+)
j − E(−)

j − E(+)
i − E(−)

i =
σm(j)

2

[
− kjz
ωµj

E
(+)
j +

kjz
ωµj

E
(−)
j − kiz

ωµi
E

(+)
i +

kiz
ωµi

E
(−)
i

]
(2.31)

or[
1−

kizσm(j)

2ωµi

]
E

(+)
i +

[
1 +

kizσm(j)

2ωµi

]
E

(−)
i =

[
1 +

kjzσm(j)

2ωµj

]
E

(+)
j +

[
1−

kjzσm(j)

2ωµj

]
E

(−)
j

(2.32)

And �nally from Eq. (2.27):[
kiz
ωµi
−
σe(j)

2

]
E

(+)
i +

[
− kiz
ωµi
−
σe(j)

2

]
E

(−)
i =

[
σe(j)

2
+
kjz
ωµj

]
E

(+)
j +

[
σe(j)

2
− kjz
ωµj

]
E

(−)
j

(2.33)

We can now combine Eqs. (2.32)-(2.33) in matrix form as:(
1− kizσm(j

ωµi
1 +

kizσm(j

ωµi
kiz
ωµi
− σe(j)

2 − kiz
ωµi
− σe(j)

2

)(
E

(+)
i

E
(−)
i

)
=

(
1 +

kjzσm(j)

2ωµj
1− kjzσm(j)

2ωµj
kjz
ωµj

+
σe(j)

2 − kjz
ωµj

+
σe(j)

2

)(
E

(+)
j

E
(−)
j

)
(2.34)

By multiplying with the inverse of the 2× 2 matrix in the left-hand side of the equation above

we will end up with the �nal relation for the transfer matrix:(
E

(+)
i

E
(−)
i

)
= L(s)

ij

(
E

(+)
j

E
(−)
j

)
(2.35)

with

L(s)(11)
ij = −

(
ζji + sm(ji)

) (
se(ji) + 1

)
+
(
sm(ji) + 1

) (
ζjise(ji) + 1

)
2ζji

(
se(ji)sm(ji) − 1

) (2.36)

L(s)(12)
ij = −

(
ζji − sm(ji)

) (
se(ji) + 1

)
+
(
sm(ji) + 1

) (
ζjise(ji) − 1

)
2ζji

(
se(ji)sm(ji) − 1

) (2.37)

L(s)(21)
ij =

(
ζji + sm(ji)

) (
se(ji) − 1

)
−
(
sm(ji) − 1

) (
ζjise(ji) + 1

)
2ζji

(
se(ji)sm(ji) − 1

) (2.38)

L(s)(22)
ij =

(
ζji − sm(ji)

) (
se(ji) − 1

)
−
(
sm(ji) − 1

) (
ζjise(ji) − 1

)
2ζji

(
se(ji)sm(ji) − 1

) (2.39)

with η
(s)
j = ωµj/kjz , ζji = ηj/ηi and normalized sheet conductivities as se(ji) = σeηi/2,

sm(ji) = σm(j)/2ηi.
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2.4 Re�ection and transmission coe�cients
In this section we will derive the re�ection and transmission coe�cients, r and t, as well as

the transmission e�ciencies, R and T , for a multilayer planar structure (see Fig. 2.1(b)). Let us

consider a structure with total transfer matrix L connecting the �elds at the left (incident and

re�ected) with the �elds at the right structure side (transmitted). We assume that Finc + FR =
eikizz + re−ikizz is the total �eld at the left and FT = teikTz(z−∆)

is the �eld at the right side

(F = E for s polarization, F = H for p polarization and ∆ is the total thickness of the structure

under consideration; we assume here that there is no incident wave coming from the right side

of the structure). Using the transfer matrix formulation we can write(
1
r

)
=

(
L(11) L(12)

L(21) L(22)

)(
t
0

)
(2.40)

From Eq. (2.40) we can �nd the re�ection and transmission coe�cients as

r =
L(21)

L(11)
(2.41)

t =
1

L(11)
(2.42)

We can calculate the re�ection and transmission e�ciencies from the time-averaged Poynting

vectors, S in the direction of propagation as [15]

R =
|SR · ẑ|
|Sinc · ẑ|

(2.43)

T =
|ST · ẑ|
|Sinc · ẑ|

(2.44)

(2.45)

where

Sinc =
1

2
Re [Einc ×H∗

inc
] (2.46)

SR =
1

2
Re [ER ×H∗R] (2.47)

ST =
1

2
Re [ET ×H∗T ] (2.48)

and the subscripts inc (or i), R, T indicate the incident, re�ected and transmitted waves respec-

tively. For s-polarization and using Eq. (2.30) we get

Sinc · ẑ =
1

2
Re
[
kiz
ωµi

]
(2.49)

SR · ẑ = −1

2
Re
[
kiz
ωµi

]
|r(s)|2 (2.50)

ST · ẑ =
1

2
Re
[
kTz
ωµT

]
|t(s)|2 (2.51)

Therefore,

T (s) =
Re
[
kTz
µT

]
Re
[
kiz
µi

] |t(s)|2 (2.52)

R(s) = |r(s)|2 (2.53)
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In a similar fashion, for p-polarization we will have

T (p) =
Re
[
kTz
εT

]
Re
[
kiz
εi

] |t(p)|2 (2.54)

R(p) = |r(p)|2 (2.55)

2.5 Speci�c cases
Here we apply the formulas of the previous sections to particular cases/interfaces of interest

in the study of photonic systems.

2.5.1 Interface between two semi-in�nite media
We start from the simple case of an interface between two semi-in�nite media with per-

mittivities εi, εj and permeabilities µi, µj . Also, there is no surface current at the interface,

i.e., σe = 0, σm = 0. We assume an incident plane wave that is travelling from the left of the

structure. In this case the transfer matrix for p polarization will be:

L(p)(11)
ij =

η
(p)
i + η

(p)
j

2η
(p)
i

(2.56)

L(p)(12)
ij =

η
(p)
i − η

(p)
j

2η
(p)
i

(2.57)

L(p)(21)
ij =

η
(p)
i − η

(p)
j

2η
(p)
i

(2.58)

L(p)(22)
ij =

η
(p)
i + η

(p)
j

2η
(p)
i

(2.59)

Therefore, the transmission and re�ection coe�cients will be:

t(p) =
2η

(p)
i

η
(p)
i + η

(p)
j

(2.60)

r(p) =
η

(p)
i − η

(p)
j

η
(p)
i + η

(p)
j

(2.61)
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For s polarization:

L(s)(11)
ij =

η
(s)
i + η

(s)
j

2η
(s)
j

(2.62)

L(s)(12)
ij =

−η(s)
i + η

(s)
j

2η
(s)
j

(2.63)

L(s)(21)
ij =

−η(s)
i + η

(s)
j

2η
(s)
j

(2.64)

L(s)(22)
ij =

η
(s)
i + η

(s)
j

2η
(s)
j

(2.65)

And the transmission and re�ection coe�cients:

t(s) =
2η

(s)
j

ηi + ηj
(2.66)

r(s) =
−η(s)

i + η
(s)
j

η
(s)
i + η

(s)
j

(2.67)

2.5.2 Electric surface current at the interface between two semi-in�nitemedia
Here we consider an interface with electric sheet conductivity σe between two semi-in�nite

media i and j. We obtain

L(p)(11)
ij =

η
(p)
i η

(p)
j σe + η

(p)
i + η

(p)
j

2η
(p
i

(2.68)

L(p)(12)
ij =

−η(p)
i η

(p)
j σe + η

(p)
i − η

(p)
j

2η
(p)
i

(2.69)

L(p)(21)
ij =

η
(p)
i η

(p)
j σe + η

(p)
i − η

(p)
j

2η
(p)
i

(2.70)

L(p)(22)
ij =

−η(p)
i η

(p)
j σe + η

(p)
i + η

(p)
j

2η
(p)
i

(2.71)

If the conductive sheet is in a homogeneous medium (εi = εj and µi = µj) the transmission

and re�ection coe�cients will be:

t(p) =
2

η
(p)
i σe + 2

(2.72)

r(p) =

(
1 +

2

η
(p)
i σe

)−1

(2.73)

And for s polarization:

t(s) =
2

η
(s)
i σe + 2

(2.74)

r(s) = −

(
1 +

2

η
(s)
i σe

)−1

(2.75)
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2.5.3 Electric and magnetic current sheet in a homogeneous medium
Finally we write here the re�ection and transmission coe�cients of a sheet with both

electric and magnetic surface currents in a homogeneous medium (εi = εj and µi = µj). The

transfer matrix elements will be:

L(p)(11)
ij =

−2η
(p)2
i σe − η(p)

i σeσm − 4η
(p)
i − 2σm

η
(p)
i (σeσm − 4)

(2.76)

L(p)(12)
ij =

2η
(p)2
i σe − 2σm

η
(p)
i (σeσm − 4)

(2.77)

L(p)(21)
ij =

−2η
(p)
i σe + 2σm

η
(p)
i (σeσm − 4)

(2.78)

L(p)(22)
ij =

2η
(p)2
i σe − η(p)

i σeσm − 4η
(p)
i + 2σm

η
(p)
i (σeσm − 4)

(2.79)

And the transmission and re�ection coe�cients will be:

t(p) =
4− σeσm

4 + 2η
(p)
i σe + σeσm + 2[η

(p)
i ]−1σm

(2.80)

r(p) =
2
(
η

(p)
i σe − [η

(p)
i ]−1σm

)
4 + 2η

(p)
i σe + σeσm + 2[η

(p)
i ]−1σm

(2.81)

These results are consistent with the derivations in Ref. [14], [16], [17]. Also, for s polarization,

the transfer matrix elements are:

L(s)(11)
ij =

−2
(
η

(s)
i

)2
σe − η(s)

i σeσm − 4η
(s)
i − 2σm

η
(s)
i (σeσm − 4)

(2.82)

L(p)(12)
ij =

−2
(
η

(s)
i

)2
σe + 2σm

η
(s)
i (σeσm − 4)

(2.83)

L(p)(21)
ij =

2
(
η

(s)
i

)2
σe − 2σm

η
(s)
i (σeσm − 4)

(2.84)

L(p)(22)
ij =

2
(
η

(s)
i

)2
σe − η(s)

i σeσm − 4η
(s)
i + 2σm

η
(s)
i (σeσm − 4)

(2.85)

and the transmission and re�ection coe�cients:

t(s) =
4− σeσm

2η
(s)
i σe + σeσm + 4 + 2σm

[
η

(s)
i

]−1 (2.86)

r(s) =
−2η

(s)
i σe + 2

[
η

(s)
i

]−1
σm

2η
(s)
i σe + σeσm + 4 + 2

[
η

(s)
i

]−1
σm

(2.87)

2.6 The pyTransferMatrix package
In this Section we introduce the basic functionality of our transfer matrix package in

Pythonwhich is based on the formalism developed in the previous sections of this chapter. The
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package is under an open-source license and can be found on https://github.com/mahar/pyTransferMatrix.

The core class of the Transfer Matrix package is called TransferMatrix and takes as ar-

guments a list of the layers that comprise the layered structure.

system = tma.TransferMatrix(structure,frequency)

A layer is de�ned by calling the Layer class.

layer = tma.Layer(eps,mu,sigma_e,sigma_m,thickness, kz,frequency, name="")

where eps is the relative electrical permittivity, mu is the relative magnetic permeability and

sigmae, sigmam are the electric and magnetic conductivities at the interface. Also, thickness

is the layer thickness in meters, kz is the transverse component of the wavevector (see Fig. 2.1)

and frequency is the angular frequency. Below we provide an example of application of our

code for the calculation of re�ection and transmission spectra for a one-dimensional photonic

crystal cavity [18].

2.6.1 Example: One-dimensional photonic crystal cavity
As a demonstration of the transfer matrix code we will calculate the re�ection and transmis-

sion of a one-dimensional Bragg stack cavity, consisting of a defect between two identical Bragg

mirrors (1D-photonic-crystals) of 10 unit cells each. The unit cell of the photonic crystals con-

sidered is composed of a slab with thickness a1 = 86 nm and refractive index n1 =
√
ε1 = 2.9

and a slab with thickness a2 = 70 nm and refractive index n2 =
√
ε2 = 3.57. These values of

refractive indices correspond to AlAs and GaAs arount λ = 1000 nm. In the absence of any

defects this structure will exhibit a stop-gap, not allowing any electromagnetic wave to pass

through the structure. If we introduce a defect to the structure, a state will be created inside the

photonic band-gap. In this example we consider a defect with thickness d = 4a1 sandwiched

between 10 unit cells of the photonic crystal on each side. We assume that the whole structure

is placed in air (n0 = 1). The total transfer matrix can be written as:

Ltotal = Lair,1P1(a1)L12P2(a2)L21 . . .L21 · P1(4a1)L21P1(a1) . . .L1,air (2.88)

The re�ection and transmission spectra for normal incidence and N = 10 (on each side of the

cavity) are plotted in Fig. 2.2 along with a schematic of the structure. As one can see there is a

peak at normalized frequency a/λ = 0.156 where a = a1 + a2 is the lattice constant of the

photonic crystal.

1 import numpy as np
2 from scipy import constants
3 import transfermatrix as tma
4

5 # Materials and Lattice constants
6 eps1 = 2.9**2 # AlAs
7 mu1 = 1.0
8 eps2 = 3.57**2 # GaAs
9 mu2 = 1.0

10 a1 = 86e-9
11 a2 = 70e-9
12 N = 10 # Number of Unit cells at each side of the defect
13

14 # 1000 values of Wavelength from 600nm to 1000nm
15 wls = np.linspace(600,1400,1000)*1e-9 # wavelength
16 rad_freqs = 2*np.pi*constants.c/wls # angular frequency
17

18 # Initialize Arrays for reflection R and transmission T
19 # zeros_like(A) creates an array of zeros with the same shape as array A
20 R = np.zeros_like(rad_freqs)
21 T = np.zeros_like(rad_freqs)

https://github.com/mahar/pyTransferMatrix
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Figure 2.2: (a) A defect of thickness 4a1 between two photonic crystals with N unit cells each.

(b) Re�ection and transmission spectra for N = 10 unit cells of a photonic crystal of unit cell

consisting of a slab with thickness a1 = 86 nm and refractive index n1 =
√
ε1 = 2.9 and a slab

with thickness a2 = 70 nm and refractive index n2 =
√
ε2 = 3.57.

22

23 for wi, w in enumerate(rad_freqs):
24 kinc = w/constants.c
25 kz_air = kinc
26 kz1 = kinc*np.sqrt(eps1*mu1)
27 kz2 = kinc*np.sqrt(eps2*mu2)
28

29 air_superstrate = tma.SeminfiniteLayer(1,kz_air,w,name="Air superstrate")
30 air_substrate = tma.SeminfiniteLayer(1,kz_air,w,name="Air substrate")
31

32 top_pc = []
33 bottom_pc = []
34

35 for i in range(N):
36 top_pc.append(tma.Layer(eps1,mu1,0,0,a1,kz1,w, name=""))
37 top_pc.append(tma.Layer(eps2,mu2,0,0,a2,kz2,w, name=""))
38

39 bottom_pc.append(tma.Layer(eps2,mu2,0,0,a2,kz2,w, name=""))
40 bottom_pc.append(tma.Layer(eps1,mu1,0,0,a1,kz1,w, name=""))
41 # --------
42 # cavity layer
43 d_cavity = 4*a1
44 cavity_layer = tma.Layer(eps1,mu1,0,0,d_cavity,kz1,w, name="")
45

46 # Concatenate the lists
47 structure = [air_superstrate]+top_pc+[cavity_layer]+ bottom_pc+[

air_substrate]
48

49 # Setup the calculation
50 system = tma.TransferMatrix(structure,freqs=[w])
51 system.calculate()
52

53 R[wi] = np.abs(system.rs)**2
54 T[wi] = np.abs(system.ts)**2

Listing 2.1: Re�ection and transmission calculation for one dimensional photonic crystal cavity.



CHAPTER 3

METAL-INSULATOR-METAL BASED PERFECT ABSORBERS

3.1 Introduction
During the last decades, perfect absorbers have been widely investigated for many applica-

tions [19]–[21], including photovoltaics [22], [23], thermal imaging [24] and electromagnetic

shielding [21]. Also, perfect absorbers can be designed for either narrowband or broadband

applications in the wavelength range of interest. Mechanisms that can be utilized for the design

of perfect absorbers include destructive interference of the scattered electromagnetic waves

with the incident wave [20], [25], [26] by the device and impedance matching between free

space and a lossy medium [27], [28]. One of the simplest realizations of a perfect absorber is a

planar structure consisting of a lossy dielectric layer between a thin metallic �lm and a optically

thick metallic substrate which acts as a back-re�ector. This type of structures is often referred

in the literature as a Metal-Insulator-Metal (MIM) absorber [26], [29]. The MIM absorber can

be viewed as an asymmetric Fabry-Pérrot cavity with the incident wave being coupled to the

modes of this structure, which originate from the multiple re�ections of the electromagnetic

waves trapped into the dielectric and between the two metallic layers. Assuming that there

is loss present in the structure, perfect absorption in this case is a result of the destructive

interference of the re�ected and the incident electromagnetic waves. We will examine this

mechanism further in Section 3.2). The main advantages of the simple MIM-based structures

over more complicated structures, which may include patterned layers, is the simplicity and

the low cost of fabrication, since it does not require any lithography (such as electron-beam

lithography or nanoimprint lithography) steps, and that they can be readily fabricated over

large areas.

In this chapter we discuss the design of a simple MIM absorber operating in the visible range,

and and we demonstrate and analyze the absorber performance and its extensions towards

broadband response. Our absorber was also fabricated and characterized experimentally (by

experimental colleagues), and its electromagnetic characterization results are in very good

agreement with our theoretical data, verifying the validity of our study and results.

The chapter is organized as follows: In Section 3.2 we introduce the proposed MIM structure

and derive the conditions for perfect absorption, and in Section 3.3 we present our results for

MIM absorbers consisting of a single-, double- and �ve stacks of metal-dielectric layers on top

of the metallic substrate. Finally, in Section 3.4 we summarize our results.

3.2 Structure and theoretical model
The basic Metal-Insulator-Metal (MIM) structure that we study here consists of two metallic

gold layers, with permittivity εAu, separated by a TiO2 dielectric slab, of permittivity εTiO2 and

thickness dTiO2, with the bottom metallic layer being electrically thick in order to not allow

transmission through the structure at the wavelengths of interest. The top metallic �lm has

thickness dAu . The structure is shown in Fig. 3.1.
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Figure 3.1: The Metal-Insulator-Metal (MIM)-based absorber structure under investigation.

A lossy dielectric layer of thickness dTiO2 is sandwitched between a thin metallic �lm with

thickness dAu and an optically thick metallic substrate.

To calculate the absorption of this structure we employ the transfer matrix method that

we introduced in Chapter 2. To simplify our analysis we assume that the metallic substrate is

semi-in�nite. This is justi�ed by the requirement of zero transmission through the structure.

The same result can be obtained if we take a thick-enough metallic substrate, considering

the fact that the skin depth of metals like gold is smaller that 0.1λ0 at the visible part of the

spectrum [30], where λ0 is the free-space wavelength.

The total transfer matrix of this structure is given as matrix product of the transfer matrices

at each interface, Lij , and the propagation matrices Pj(dj) as de�ned in Chapter 2. To simplify

and generalize our notation we will use the following convention for the subscripts of di�erent

areas in our structure: {1: air, 2: thin-metallic �lm, 3: dielectric, 4: metallic substrate}.

Ltot = L12 · P2(d2) · L23 · P3(d3) · L34 (3.1)

Since the transmission coe�cient is zero, t = 0, the absorption is equal to A = 1− |r|2 with r

being the re�ection coe�cient r = L(21)
tot

/L(11)
tot

. From this expression we can derive a condition

for perfect absorption by requiring the re�ection coe�cient to vanish, r = 0 [26], or

L(21)
tot = 0 (3.2)

or

i tan (k2zd2) =
iF+ tan(k3zd3) +G+

iF− tan(k3zd3) +G−
(3.3)

where

F± = L(21)
12

[
L(11)

23 L(12)
34 + L(12)

23 L(22)
34

]
± L(22)

12

[
L(21)

23 L(12)
34 + L(22)

23 L(22)
34

]
(3.4)

G± = L(21)
12

[
−L(11)

23 L(12)
34 + L(12)

23 L(22)
34

]
± L(22)

12

[
L(22)

23 L(22)
34 − L(21)

23 L(12)
34

]
(3.5)

Eq. (3.3) is general and can be applied for any materials, surface conductivities and angles of

incidence for the geometry shown in Fig. 3.1. In the case of the MIM absorber that we study

here we have ε2 = ε4 = εAu and ε3 = εTiO2, µ = µ0 and σe = 0, σm = 0. Eq. (3.3) can be

further simpli�ed [26]

tanh (|k2|d2) =
1

2

√
|ε2|
ε3

tan(k3d3) + 1√
ε3
|ε2| tan(k3d3)− 1

(3.6)

The thickness of the top metallic layer has been set to d2 = dAu = 20 nm. For our

calculations we used experimental data for the permittivities of Au (Johnson and Christy [31])
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Figure 3.2: (a) Experimental (dashed red line) and theoretical (black solid line) absorption

spectra for normal incidence on our Metal-Insulator-Metal Structure with a dTiO2 = 120 nm

TiO2 dielectric layer between two metallic gold �lms and dAu = 20 nm and 120 nm respectively.

(b), (c) Electric �eld amplitudes at the absorption maxima: (b) 537 nm and (c) 952 nm. The colors

indicate the extent of the di�erent materials (Au: yellow, TiO2: gray: Air: white).

and TiO2 (with relative permittivity between 10 and 7 in the wavelength range 450 nm-1250

nm) (Palik [32]). As mentioned already, one of the main advantages of these type of structures

is their ease of fabrication using lithography-free approaches like sol-gel/spin coating for the

dielectric layer and thermal evaporation for the metallic layer [33].

3.3 Results and discussion
The absorption for normal incidence of the MIM structure shown in Fig. 3.1, calculated with

the transfer matrix method, is shown in Fig 3.2(a). Here, the thickness of the top Au layer was

chosen to be 20 nm while thickness of the TiO2 layer is 120 nm. Since there is no transmission

from the structure, the Au substrate is treated as a semi-in�nite layer in our calculations. As one

can see, there are two peaks in the absorption spectrum, at wavelengths 537 nm and 956 nm,

originating from the Fabry-Pérrot resonances on the MIM structure. The �eld pro�les are shown

in Figs. 3.2(b)-(c) for the two absorption peaks. We also plot an experimental measurement of

the absorption for the proposed MIM structure, in Fig. 3.2(a) (red dashed line). There is a very

good agreement between the theoretical and experimental calculations and any di�erences

can be attributed to imperfections of the fabricated structure (e.g. non uniform metal and/or

dielectric layer thickness throughout the structure).

The main advantage of the proposed MIM structure is that one can tune the absorption

peaks by changing the thickness of the TiO2 dielectric spacer. For example, Fig. 3.3(a) illustrates

the thickness of the dielectric spacer needed in order to get absorption peaks higher than 90%.

One can notice the shift of the absorption peaks to longer wavelengths, as the TiO2 spacer

increases [26]. However, the two peaks behave di�erently as the thickness of the TiO2 spacer

increases. The peak at smaller wavelengths has a maximum in absorption at a wavelength

around λ = 550 nm, and the absorption has not monotonic change with the thickness, while

for the second peak (larger wavelengths) the absorption increases with increasing thickness.

Finally, the Full Width at Half Maximum (FWHM) of the absorption peaks can be tuned by

changing the dielectric thickness, and adapted to the desired application. Fig. 3.3(b) illustrates

the FWHM of the absorption peaks (with absorption higher than 90%), varying from 10 to 100

nm. For example, one can notice from Fig. 3.3(b) that the absorption peak centered at 537 nm
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Figure 3.3: Simulations indicating the desirable thickness of TiO2 dielectric layer as a function

of the wavelength that absorption occurs, corresponding to absorption higher than 90% (a), and

FWHM of the absorption peaks with intensity higher than 90%, between 10 and 100 nm (b),

respectively. The color codes (in connection with the right vertical bars) indicate the intensity

(a), or the FWHM (b) of the absorption peaks of the proposed structure, respectively.

Figure 3.4: Absorption spectra for (a) s-polarization and (b) p polarization for di�erent angles of

incidence, varying from 0 to 75 degrees, for the Metal-Insulator-Metal Structure with a 120 nm

TiO2 dielectric layer between two metallic gold �lms.

can be quite sharp (FWHM 10 nm), or relatively broad (FWHM 100nm), by simply changing

the thickness of the TiO2 layer from 175-475 nm to 25-50 nm, respectively. Again, one can see

that the FWHM of the smaller- and the larger-wavelength peaks is di�erent. For instance, for

an absorption peak at a wavelength around 550 nm, the FWHM decreases with the thickness of

the dielectric space. On the other hand, for the larger wavelength peak the dependence of the

FWHM on the TiO2 thickness is much more complicated.

Since, as already stated, the structures of Fig. 3.1 are essentially proposed as broadband

perfect absorbers, their high absorption should be maintained for o�-normal incidence and for

any incident wave polarization. In Fig. 3.4 we plot the absorption spectra for di�erent angles of

incidence for s (electric �eld parallel to the surface) [Fig. 3.4(a)] and p- (magnetic �eld parallel

to the surface) [Fig. 3.4(b)] polarized incident waves, for the structure of Fig. 3.1. As the incident

angle increases the absorption peak displays a shift towards smaller wavelengths but still has

near perfect absorption e�ciency for both polarizations. We note here that perfect absorption

is maintained up to incident angle of 30
o

for both polarization and for both peaks. Also, high
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Figure 3.5: Absorption spectra under normal incidence for a MIM structure comprising of (a) 2

and (b) 5 Au-TiO2 layers. The thickness of the TiO2 layers is set to 150 nm and the thicknesses

of the Au �lms to 15 nm except from the top metallic �lm which has thickness 20 nm. The

absorption of a single MIM stack (blue dashed line) is also plotted for comparison.

values of absorption are maintained for a large range of incidence angles, greater than 30
o
, as

shown in Fig. 3.4.

Using this type of MIM structure as building blocks, one can design a multiband or even a

broadband perfect absorber by cascading multiple MIM stacks [26], [29]. In Fig. 3.5 we plot

the absorption spectra under normal incidence for two [Fig. 3.5(a)] and �ve stacks of Au-TiO2

layers on top of a metallic optically thick substrate. The thickness of the TiO2 dielectric layers

is 150 nm and the thickness of the Au layers is 15 nm except for the top Au layer, which is set

to 20 nm. As one can see, for the case of two metal-dielectric stacks there are two peaks of

high absorption in the 500-700 nm wavelength range. If we further increase the number of

stacks to �ve, more absorption peaks appear closer to each other with maximum absorption

equal to unity and quite high minimum absorption, indicating broader band high absorption.

To illustrate this e�ect, we also plot the absorption of the single MIM structure in Fig. 3.5.

3.4 Conclusions
We have demonstrated a perfect absorber in the visible region based on a MIM structure

of proper geometric dimensions, for both s and p incident polarization, and for angles of

incidence up to 75 degrees. The absorber was fabricated and characterized experimentally

(by experimental colleagues), with characterization results in very good agreement with our

simulations. Moreover, We have provided evidence that our simple and narrowband absorber

can be transformed to a substantially broader one, by simply building several layers of the

proposed MIM structure, while no nanofabrication steps are required; thus, the absorber can

easily be made to cover a large area. The highly e�cient absorption characteristics of the

proposed structures can be potentially deployed for solar cells, optical �lter elements and

others.
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CHAPTER 4

PERFECT ABSORPTION CONDITIONS IN

METASURFACE-BASED PERFECT ABSORBERS

4.1 Introduction
Metasurfaces are arti�cial, electromagnetically ultrathin structures with exotic functionali-

ties that can be engineered through engineering of their periodic architecture and the geometry

and materials of their constituent elementary units, known as the meta-atoms, which are in

fact subwavelength resonant elements. An electromagnetic wave impinging on a metasur-

face induces the excitation of local currents whose distribution is de�ned by the details of

the electromagnetic wave, i.e. frequency, incidence angle and polarization, and by the shape,

size and materials of the meta-atoms. The meta-atom-enabled manipulation of these currents

leads to a controllable electromagnetic response [34], [35] and thus, by properly designing the

meta-atoms, advanced wave control is possible. Indeed a plethora of exotic electromagnetic

metasurface-based functionalities has been demonstrated, from steering, imaging, cloacking

and polarization control to sensing and energy harvesting [36]–[41].

Depending on the frequency of operation, the targeted functionality, the available materials

and the fabrication techniques, metasurfaces can have many di�erent forms. In microwaves

they usually consist of metallic meta-atoms, of the form of rings or wires or patches [42]–[44];

in IR and optical region, where the losses of metals are high, the more common scheme is

metasurfaces of high-index dielectric meta-atoms, of the form of rods, disks or spheres [45]–

[47]. A particularly interesting frequency regime is the THz regime, as it bridges electronics and

photonics, attracting also growing interest in connection with its 6G applications [48], [49]. In

that regime a plethora of metasurface structures has been proposed or demonstrated, based on

the common metallic schemes, but also on more exotic materials like polaritonic materials [50],

[51] and graphene. Graphene is an ideal material for the realization of THz metasurfaces as it

exhibits unique mechanical, thermal, electrical and optical properties that stem from the linear

dispersion of the 2D Dirac Fermions, and allows for a wide tunability. THz graphene-based

plasmonic metasurfaces attract growing attention and have unveiled interesting features for a

large number of applications [52]–[61].

One of the most desired metasurface functionalities is that of enhanced or perfect absorp-

tion by ultrathin metasurface-based structures; there, the properly designed electromagnetic

metasurfaces act as impedance matched sheets, creating also waves that cancel the incident

wave. This impedance-match may be achieved by two resonators that couple separately to

electric and magnetic �elds so as to absorb all incident radiation or more bulky approaches such

as multilayer Salisbury absorbers [19], [53], [56], [62]–[67]. A scheme that has attracted great

attention involves the combination of the Salisbury approach with ultrathin resistive metasur-

faces, i.e. a thin metasurface-insulator-metal re�ective con�guration (i.e. the back-metal plate

is fully re�ective). This kind of con�guration provides an additional design freedom coming

from the cavity (i.e. the dielectric between metasurface and back-metal) and enhances the
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e�ect of the metasurface, leading to enhanced absorption, broader bandwidths and increased

robustness [68]–[71].

The perfect absorption mechanisms in dielectric-metal structures that incorporate meta-

surfaces have been analytically explained with various techniques, for example in terms of

multipole scattering [72], transmission line [70], equivalent circuit approach [73], and others. In

this chapter we derive the transfer matrix formulation for metasurfaces supporting both electric

and magnetic responses, for both s and p polarization, and we derive the conditions in order to

achieve perfect absorption in metasurface-insulator-metal structures, i.e., metasurfaces placed

on top of a dielectric substrate back-plated by a metallic, fully re�ective layer. For the overlying

metasurface we assume cases of variable e�ective surface electric and magnetic conductivities.

In particular we examine the case of a uniform graphene layer/metasurface that exhibits only

electric (and tunable) surface conductivity and four di�erent metasurfaces with unmatched

(i.e. overlapping), matched or partially matched surface electric and magnetic conductivity

resonances. For the case of graphene-based absorber we show that by properly choosing the

thickness of the dielectric and the Fermi level of graphene the structure can absorb 100% of the

impinging electromagnetic radiation; the abosrption levels also present high tunabilty. For the

case of the arbitrary metasurfaces we show that the proper design of the electric and magnetic

surface conductivity response provides control over both the absorption level and the bandwidth

of operation. Moreover we show that when we pair (match) the electric and magnetic surface

conductivity of the metasurface, perfect absorption is achieved independently of the thickness

of the dielectric substrate standing between the metasurface and the back re�ector. The chapter

is organized as follows: in Section 4.2 we present the analytical formulation of the transfer

matrix that leads to the derivation of the perfect absorption conditions; in Section 4.3 we present

the results of the uniform graphene metasurface investigation; in Section 4.4 we present the

analysis of the metasurfaces with both electric and magnetic conductivity, and unveil the case

of the substrate thickness independent absorber; �nally we present the conclusions of our work.

4.2 Transfer matrix and conditions for perfect absorption
We analyse the scattering properties of the metasurface-based structures under investigation

by employing the transfer matrix formalism [10], [12], a powerful tool for analysing the wave

propagation in complex media. By considering an electromagnetic wave incident from the left

side of the structure at angle θ as schematically depicted in Fig. 4.1(a), we can write the transfer

matrix equation as follows: (
F+

1

F−1

)
= Ltotal

(
F+

3

0

)
(4.1)

where F+
1 , F−1 and F+

3 stand for the incident, re�ected and transmitted �eld, respectively,

F = {E,H} is either the electric (for s polarization) or the magnetic (for p polarization) �eld,

and Ltotal is the total transfer matrix of the structure.

As discussed already, in this chapter we are interested in the absorption of the structure

shown in Fig. 4.1(b): a dielectric layer (medium 2) standing between a resistive sheet with

surface electric conductivity σe and surface magnetic conductivity σm and an optically thick

metallic back re�ector (medium 3); the total structure is placed in air (medium 1). The transfer

matrix for this structure reads:

Ltotal = L12P2(d)L23 (4.2)

where Lij denotes the transfer matrix for the interface between media i and j and

Pm(d) =

(
e−ikmzd 0

0 eikmzd

)
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Figure 4.1: (a) Setup for the derivation of the transfer matrix equation for s and p polarizations.

An interface with surface conductivities σe and σm between two semi-in�nite (along x and

y directions) media 1, 2 and Perfect Electric Conductor (PEC) substrate. (b) Schematic of a

metasurface with surface conductivities σe, σm on top of a grounded dielectric of thickness d
with permittivity ε2 and permeability µ2.

stands for the propagation matrix in the medium with permittivity εm, and kmz =
√
k2
m − k2

x

is the z component of the wavevector in mediumm. The interface matrices Lij are polarization-

dependent and can be derived from the boundary conditions between media i and j

n̂×E|interface = −Jm = −σmHav|interface (4.3)

n̂×H|interface = Je = σeEav|interface, (4.4)

where n̂ is the unit vector normal to the interface (n̂ = ẑ) and the subscript av refers to the

averaged �elds at the interface between the two media (see Chapter 2 for more detail). For p

polarization the magnetic and electric �elds are H = Hyŷ and E = Exx̂+Ez ẑ respectively.

For s polarization H = Hxx̂ + Hz ẑ and E = Eyŷ. By imposing the boundary conditions

(4.3)-(4.4) at the interface between the two media we can obtain the elements of the transfer

matrix for an interface, as given by Eqs. (2.18)-(2.21) and Eqs. (2.36)-(2.39) of Chapter 2, for p

and s polarizations respectively.

Having calculated the total transfer matrix of the structure, we can proceed to the derivation

of perfect absorption conditions. Since the transmission vanishes due to the presence of the

back re�ector, the absorption of the structure can be calculated only from the re�ectivity, as

A = 1−|r|2, where r = F+
1 /F

−
1 = L(21)

total
/L(11)

total
. Therefore, perfect absorption by our structure

is obtained for r = 0:

r = 0⇒ L(21)
total

= 0 (4.5)

or

i tan (k2zd) =
L(22)

12 L(21)
23 + L(21)

12 L(11)
23

L(22)
12 L(21)

23 − L(21)
12 L(11)

23

(4.6)
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Figure 4.2: (a) Real and (b) imaginary part of normalized conductivity of graphene for Fermi

energies EF = 0.2 eV, EF = 0.4 eV, EF = 0.8 eV and EF = 1.2 eV. The relaxation time of the

electrons in graphene is τ = 0.1 ps.

If the back-re�ector is a Perfect Electric Conductor (PEC) we can write

η2

η1
i tan (k2zd) =

−sesm + 2sm − 1

sesm − 2se + 1
= G(se, sm) (4.7)

where G(se, sm) is a function of the normalized sheet conductivities se = σeη1/2 and sm =

σm/2η1, η
(p)
j = kjz/ωεj and η

(s)
j = ωµj/kjz .. For the rest of this chapter we will assume that

the dielectric is lossless. In this case the total absorption condition (4.7) can be written as:

α = ReG(se, sm) = 0 (4.8)

β =
η2

η1
tan (k2zd)− ImG(se, sm) = 0 (4.9)

4.3 Uniform graphene perfect absorber
We �rst investigate the case of a Salisbury absorber structures with a uniform sheet of

graphene placed on top of a grounded lossless dielectric. The superstrate medium is considered

to be vacuum (ε1 = ε0, µ1 = µ0). In this case there is no magnetic sheet conductivity, sm = 0,

and therefore the conditions for perfect absorption from Eq. (4.7) are reduced to

Re[σe(ω)η0] = 1 (4.10)

Im[σe(ω)η0] = − 1
√
ε2r

cot
(√

ε2r
ω

c
d
)
, (4.11)

where η0 = cµ0 = 376.73 Ω is the impedance of free space and ε2r = ε2/ε0 stands for the

relative permittivity.

In this section we are using an unpatterned graphene sheet and the surface conductivity is

a function of Fermi energy, EF , the temperature, T , and the relaxation time of the electrons,

τ . For the calculation of the conductivity we use the Kubo formula, derived in the context of

Rapid Phase Approximation [74], as

σe(ω) =
2e2kBT

π~2

i

ω + iτ−1
ln

[
2 cosh

(
EF

2kBT

)]
+
e2

4~

[
H(ω/2) +

4iω

π

∫ ∞
0

dε
H(ε)−H(ω/2)

ω2 − 4ε2

]
,

(4.12)
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Figure 4.3: Absorption spectra under normal incidence for a graphene on a grounded dielectric

substrate of relative permittivity ε2r = 3.9 as function of the thickness of the dielectric and

for Fermi energies (a) EF = 0.2 eV, (b) EF = 0.4 eV, (c) EF = 0.8 eV and (d) EF = 1 eV. The

relaxation time of the electrons in graphene is τ = 0.1 ps.

where

H(ω) =
sinh(~ω/kBT )

cosh(EF /kBT ) + cosh(~ω/kBT )
, (4.13)

where ω is the angular frequency, ~ = 1.055× 10−34
J·s the reduced Planck constant, kB =

1.38 × 10−23
m

2 · kg · s−2 · K−1
the Boltzmann constant, e = 1.602 × 10−19

C the electron

charge and τ the electrons relaxation time (τ is assumed here equal to 0.1 ps). The �rst term of

Eq. (4.12) accounts for the contribution of intraband transitions, which are more relevant in low

frequencies (GHz, THz), while the second term accounts for interband transitions in graphene,

which are more prominent in the optical part of the electromagnetic spectrum. We plot the real

and imaginary parts of conductivity of graphene for di�erent Fermi levels in Fig. 4.2.

As a reference case study we choose the dielectric substrate relative permittivity to be equal

to ε2r = 3.9 (zero imaginary part), a value typical for many polymers in the THz part of the

spectrum. We choose to study the lossless dielectric case so as to to ensure that the obtained

absorption will come exclusively from the monolayer graphene sheet. The absorption spectra

under normal incidence as a function of frequency and dielectric thickness are shown in Fig. 4.3

for Fermi energies EF = 0.2 eV, 0.4 eV, 0.8 eV and 1.2 eV. As one can see, for all cases there is a

series of maxima and minima in the absorption spectra originating from multiple re�ections

inside the dielectric. The maxima of absorption follow Eq. (4.11) and perfect absorption is

achieved when Eq. (4.10) is satis�ed as well. As the Fermi energy grows, the absorption in the

higher order Fabry-Pérrot resonances grow as well. We should note here that as the thickness of

the dielectric layer decreases, the Fermi level required for perfect absorption is increased. Also,

the resonance frequency increases with larder Fermi level. This is expected since a thickness of
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Figure 4.4: (a) Absorption spectrum under normal incidence for a graphene on a grounded

dielectric substrate of thickness d = 20 µm and relative permittivity ε2r = 3.9, for di�erent

Fermi levels, EF = [0.2− 1.2] eV. (b)-(c) Perfect absorption conditions based on (b) Eq. (4.8)

and (c) Eq. (4.9). The relaxation time of electrons in graphene is τ = 0.1 ps.

d ≈ λ/4 (where λ is the wavelength inside the dielectric) is required for perfect absorption in a

Salisbury screen-type perfect absorber [67].

We also plot in Fig. 4.4(a) the absorption spectra in frequency [0.1-10] THz for a structure

with the dielectric substrate thickness equal to d = 20 µm, assuming that the graphene Fermi

levels range inEF = [0.2−1.2] eV. Along with the absorption spectra we plot in the frequencies

[1-4] THz the perfect absorption conditions, α = 0 and β = 0, obtained from Eqs. (4.8)-(4.9)

- see Fig. 4.4(b) and Fig. 4.4(c), respectively. In Fig. 4.4(a) a fast increase in absorption as a

function of the Fermi level is observed, especially in the lowest part of the frequency spectrum.

The �rst absorption peak occurs at f = 2 THz for EF = 0.2 eV and it increases in intensity

quite quickly with increased Fermi level. In fact, absorption becomes greater that 90% for Fermi

levels larger than EF = 0.4 eV, which is a Fermi energy value easily achievable experimentally.

For EF = 0.8 eV perfect absorption is achieved at f = 2.7 THz which is also the frequency

where the conditions α = 0 and β = 0 are satis�ed. Due to the ability to tune the conductive

properties of graphene, which makes it valuable for modulation applications, it is useful to

evaluate the relative change of absorption with respect to the changing Fermi level for di�erent

dielectric thickness values. In Fig. 4.5 we plot the absorption contours as a function of Fermi

level and dielectric thickness for 2 THz and 2.7 THz. For illustration purposes we have chosen

to depict absorption levels greater than 40%. As can be observed, the equi-absorption curves

are ellipsoidal-like in the Fermi energy-thickness plane. The main di�erence between the

two frequencies of operation is that the equi-absorption curves become narrower along the

thickness axis for the 2.7 THz case; we can �nd thicknesses that maximize the relative change

of absorption with respect to Fermi energy change, ∆A/∆EF , a feature very important for

modulators. For instance, for dielectric thickness d = 20 µm and frequency f = 2.7 THz the

absorption moves form 32% forEF = 0.2 eV to 67% forEF = 0.4 eV and 99% forEF = 0.75 eV.
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Figure 4.5: Contour plots of absorption under normal incidence for a uniform graphene Salisbury

screen as a function of the dielectric substrate thickness and the graphene’s Fermi energy, for

frequency of operation: (a) f = 2 THz and (b) f = 2.7 THz. The relative permittivity of the

dielectric is ε2r = 3.9.

4.4 Metasurface-based perfect absorber
In this section we investigate the properties of a Salisbury-typed absorber where the resistive

sheet has both electric and magnetic dipolar response. Similar to the case of the graphene

absorber in the previous section, the dielectric substrate material is considered lossless with

ε2r = 3.9. Assuming that the elements comprising the metasurface are subwavelength and

there is only one electric resonance at frequency ωe and one magnetic resonance at frequency

ωm, the normalized sheet conductivities can be written as [14], [16], [17]:

se =
σeη1

2
=

iκeω

ω2 − ω2
e + iωΓe

(4.14)

sm =
σm
2η1

=
iκmω

ω2 − ω2
m + iωΓm

, (4.15)

where κe, κm stand for the resonance strengths and Γe, Γm are the relaxation rates. We examine

four distinct cases: A) a metasurface with only electric response, i.e. sm = 0; B) a metasurface

where the electric and magnetic sheet conductivities have di�erent resonance frequecies, i.e.,

ωm 6= ωe (with ωm/2π = 17 THz, κe = κm, Γe = Γm); C) a metasurface with matching

resonance frequencies, ωe = ωm, but di�erent resonance strengths (κm = κe/10); and D) a

metasurface with matching normalized sheet conductivities, i.e. se = sm. For all cased we have

chosen parameters κe/2π = 2 THz, ωe/2π = 15 THz and Γe/2π = 1 THz. The normalized

sheet conductivities along with the corresponding absorption spectra as a function of frequency

for all four cases (A-D) are shown in Fig. 4.6 (the absorption spectra are plotted also with respect

to the dielectric thickness).
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Figure 4.6: Real (solid lines) and imaginary (dashed lines) parts of normalized sheet conductivi-

ties a a function of frequency (top row) and corresponding absorption spectra as function of

the thickness of the dielectric and frequency (bottom row) for four di�erent metasurfaces: A:

sm = 0 (�rst column); B: ωm/2π = 17 THz (second column); C: ωm = ωe, κm = κe/10 (third

column) and D: se = sm (fourth column). For all cases the parameters of the electric sheet

conductivity are ωe/2π = 15 THz, κe/2π = 2 THz and Γe/2π = Γm/2π = 1 THz. For the

de�nition of the parameters see main text.

Starting from the case of metasurface A where there is no magnetic response, sm = 0, in

Fig. 4.6(a) and Fig. 4.6(e) we observe that there are values of the dielectric substrate thickness

that give 100% absorption and zero absorption similar to the case of the graphene absorber

studied in Section 4.3. The introduction of magnetic response in the metasurface (cases B and

C) allows for the lifting-of the absorption zeros in the frequency range around the resonances

in sheet conductivities. For the metasurface B where we have conductivities with unmatched

resonance frequencies and matched amplitudes (ωe 6= ωm and κe = κm) we �nd absorption

consistently above 50% in the frequency region around ωe/2π = 15 THz and ωm/2π = 17 THz

(and in-between the two frequencies). On the other hand, for the metasurface C where we have

conductivities with matched resonance frequencies and unmatched amplitudes (ωe = ωm and

κe 6= κm; the magnetic response is weaker but in the same frequency as the electric response),

we get very high absorption for all thicknesses. However, the frequency of maximum absorption

as well as the bandwidth where the absorption is large are highly dependent on the dielectric

thickness. To illustrate this e�ect, we plot in Fig. 4.7 the absorption spectra and the functions α
and β for metasurfaces B and C, for two di�erent thicknesses, d = 2.5 µm and d = 6.3 µm.

Last but not least, we present the case of the metasurface D with matching electric and

magnetic resonances, se = sm, in Fig. 4.6(d) (sheet conductivities) and Fig. 4.6(h) (absorption

spectra). It is observed that absorption is independent of the thickness of the dielectric and it

reaches 100% around ωe = ωm. The independence of absorption on the dielectric thickness

originates from the fact that this type of metasurface completely matches the impedance of the

surrounding medium, resulting in the cancellation of the re�ected radiation, i.e. it satis�es the
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Figure 4.7: Absorption under normal incidence (left column) and conditions α (Eq. (4.8)) (right

column - solid lines) and β (Eq. (4.9)) (right column - dashed lines) for: (a)-(b) a metasurface

(metasurface B) with ωe 6= ωm/2π = 17 THz (κe = κm) and (c)-(d) a metasurface (metasurface

C) with ωm = ωe, κm = κe/10, for two di�erent dielectric thicknesses (note that α is thickness

independent). For all cases the parameters of the electric sheet conductivity areωe/2π = 15 THz,

κe/2π = 2 THz and Γe/2π = Γm/2π = 1 THz. The de�nition of the parameters is given in

the main text.

Kerker condition [75]. From Eq. (4.7), we can see that, on resonance, G(se, se) = −1 leading to

β = tan(k2zd)/
√
ε2r and α = −1. Therefore, the condition (4.8) (α = 0) cannot be ful�lled in

this case. More investigation is needed to clarify this result.

We should note here that although metasurface D (se = sm) provides the best absorption

results among all the cases considered, it is not always possible to design metasurfaces with

exact matching of the electric and magnetic response over a given frequency band. Such

matching is sensitive to both theoretical/fundamental and practical limitations; e.g. magnetic

resonances are usually weaker and more narrow-band than the electric ones; it is important

though to be able to quickly identify the e�ect of the deviations from the optimum metasurface

D on the achievable absorption. The theoretical/analytical framework developed in this chapter

can constitute a valuable tool towards this direction, and more generally, a valuable tool in

the design of metasurface-assisted dielectric-metal structures suitable for absorption or other

desired applications.

4.5 Conclusions
We have derived the transfer matrix formulation for metasurfaces supporting both electric

and magnetic responses for both s and p polarization. Using the transfer matrix framework
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we derived conditions for perfect absorption in structures comprised of a metasurface on top

of a grounded dielectric substrate of variable thickness, and we applied our method for the

cases of a uniform graphene sheet/metasurface and four di�erent metasurfaces. For the case

of graphene-assisted absorber we have shown that by properly choosing the thickness of the

dielectric and the Fermi level of graphene the structure can absorb 100% of the impinging

electromagnetic radiation. Additionally, the high tunability of the conductivity of graphene

allows considerable modulation of the absorption amplitude of the structure. Regarding the

metasurface-assisted absorbers, i.e. metasurface-dielectric-metal structures, we calculated the

absorption spectra as a function of frequency and thickness of the dielectric for metasurfaces

exhibiting both electric and magnetic resonant responses, which are fully matched, partially

matched or unmatched. We found that by properly designing the electric and magnetic response

of the metasurface it is possible to control both the absorption level and the bandwidth of

operation; a particularly interesting case was the one of the fully matched electric and magnetic

resonances, where we found perfect absorption independently of the thickness of the dielectric.

Our formulation and results provide analytical guidelines for the design and optimization of

metasurface-assisted absorbers with narrowband or broadband operation, valuable in a variety

of applications, including electromagnetic shielding, harvesting, detection/sensing, etc.



CHAPTER 5

POLARITONIC CYLINDERS AS MULTIFUNCTIONAL

METAMATERIALS: SINGLE SCATTERING AND EFFECTIVE

MEDIUM DESCRIPTION

5.1 Introduction
The emergence of electromagnetic (EM) metamaterials (MM), i.e. engineerable structured

materials made of sub-wavelength resonant building blocks (meta-atoms) with novel and unique

EM properties and response, made possible the demonstration of novel and unconventional

EM wave phenomena, entailing possibilities to advance or even revolutionize a great variety of

applications related with EM wave control, from telecommunications, to imaging, sensing etc.

Particularly interesting categories of metamaterials that have been designed and demonstrated

so far include: (a) Negative e�ective permeability (mu-negative, MNG) and negative refractive

index metamaterials (NIMs, usually achievable by combining negative e�ective permittivity

and permeability) [76], [77]. NIMs are associated with many counter intuitive phenomena, such

as opposite phase and energy velocity, negative refraction etc., and unique potential in imaging

and telecommunications applications. The �rst realizations of MNG and NIM structures were

obtained employing and properly structuring metals [78], while, later, it was shown that the

same response can be achieved also by metamaterials made of high-index dielectrics [79], [80],

where the strong displacement current undertakes the role that conduction current plays in

metals. (b) Hyperbolic metamaterials (HMMs) [81], [82], i.e. anisotropic metamaterials showing

hypebolic dispersion relation, own to the mixed positive and negative values of their e�ective

permittivity or permeability tensor components [83]. Such metamaterials, which are usually

realized by properly alternating metallic and dielectric layers or by employing metallic rod

systems, show great potential in imaging applications [84]–[86], as they can o�er almost perfect

imaging, even with magni�cation (they can transform evanescent waves to propagating), and in

spontaneous emission enhancement [87], [88] (as they can o�er very high density of EM states).

(c) Metamaterials with permittivity near zero (ENZ) [89]–[91]; such metamaterials, which can be

realized by properly engineering electrical permittivity resonances (e.g. by proper structuring),

are associated with peculiar phenomena and possibilities, e.g. squeezing of EM waves in very

narrow channels, easy wavefront engineering, etc. Moreover, the huge wavelength in such

metamaterials makes them ideal hosts for demonstration of subwavelength phenomena, as

it makes all the wave propagation and scattering features in to them to fall in the extreme

sub-wavelength region, almost for any type of embedded scatterers. As we aim to show in this

chapter, all the above metamaterial categories and their related novel phenomena are achievable

with properly engineered systems of phonon-polariton materials (polaritonic systems) [30], in

particular in systems made of polaritonic cylinders in a dielectric host.

Phonon-polariton (polaritonic) materials [30], [92], [93] is a particularly interesting category

of materials, combining both metallic and dielectric response. They are polar crystals (e.g. NaCl)

where the EM radiation excites lattice vibrations, resonant in the region from THz to far- and
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Figure 5.1: Real and imaginary parts of the relative dielectric function for (a) LiF and (b)

SiC calculated from Eq. (5.1) and using the data from Table 5.1. The gray areas indicate the

frequency regions where the real part of the corresponding dielectric function is negative,

between approximately ωT and ωL.

mid-IR. The coupling of the EM radiation with the lattice vibrations in that region results to a

resonant permittivity response of Lorentz-type, i.e.

ε(ω) = ε∞
ω2 − ω2

L + iωΓ

ω2 − ω2
T + iωΓ

(5.1)

where ε(ω) is the relative permittivity, the resonance frequency ωT is the transverse optical

phonon frequency, Γ is the collision frequency, ωL is the longitudinal optical phonon frequency,

at which the dielectric function practically vanishes (ωL is the analogue of the bulk plasmon

frequency of the metallic case) and ε∞ stands for the asymptotic value of the relative permittivity

at high frequencies (much higher than ωL and lower than the frequencies of the inter-band

electronic excitations). (Note that in this chapter, to keep a simplicity in the formalism, the

symbols ε and µ stand for the relative permittivity and permeability, respectively, and not for

absolute permittivity and permeability - unlike the previous chapters.)

The relative permittivity for two characteristic polaritonic materials, namely LiF and SiC, is

plotted in Fig. 5.1. Examining the permittivity forms of Fig. 5.1, one can easily realize the great

potential of the polaritonic materials in MM-related phenomena and applications. Polaritonic

materials o�er regions of (a) high positive permittivity and thus they can be used for designing

and demonstration of any kind of dielectric metamaterials [94] and metasurfaces; (b) negative

permittivity, similar to that of metals in the optical region (with smaller loss-tangent); thus

they can provide all the properties and possibilities that metallic metamaterials o�er in optics,

e.g. plasmonic e�ects, hyperbolic metamaterial response; (c) permittivity near zero, o�ering a

convenient alternative to complex metamaterial structures that are usually designed to achieve
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epsilon-near-zero (ENZ) response; besides, they can act as bulk ENZ hosts for demonstration of

uncommon scattering and propagation e�ects [95].

An additional merit of the polaritonic materials is that the above mentioned rich response

is exhibited in the THz and far-IR region of the electromagnetic spectrum, a region particularly

interesting for sensing, security, biological and medical imaging, and thermal management, and

also a region where there is considerable lack of advanced optical components (e.g. the THz

gap). Finally, since many of the polaritonic materials are semiconducting, their properties and

response can be highly tunable, e.g. by photoexcitation [30].

The potential of the polaritonic materials in MMs-related applications makes important the

development or adaptation of not only advanced computational tools suitable for the study of

such materials, but also of simpli�ed models able to explore, identify, explain and even predict

the rich variety of phenomena and possibilities allowed by those materials. Such a category

of simpli�ed models are the well known e�ective medium models, describing metamaterials

as homogeneous (e�ective) media. Such models can o�er a a simple physical description of

the response of the structures, revealing the dominant factors determining this response and

their dependence on the structure parameters. Therefore they constitute an invaluable tool

not only for the physical understanding and optimization of a given system but also, and more

importantly, for the design of systems with desired response. The most well established today

analytic e�ective medium model is the Maxwell-Garnett (MG) [96] model, suitable for the

designing and description of structures in the quasistatic region. The MG model has been

extensively applied for either the prediction or the analysis of the metamaterial response of

many di�erent structures, especially of structures composed of metallic scatterers of spherical

or cylindrical shape, in the low-frequency limit, and speci�cally when khR� 1, ksR� 1, with

kh, ks, the wavenumber in the host and scattering material, respectively, and R the scatterers

radius. In the case of systems though made of polaritonic scatterers, as well as in systems of

high permittivity dielectric scatterers [97], [98], the high permittivity of the scatterers (resulting

to small associated wavelength) leads to scattering resonances also in the long-wavelength

region (i.e. resonances in the region khR � 1) the in�uence of which, although crucial for

the wave propagation, can not be described by the simple quasistatic MG model. As a result,

important features of polaritonic or high-index dielectric systems, such as magnetic response

by non-magnetic scatterers, cannot be reproduced. To overcome this problem extended MG

models have been developed (valid in the region khR� 1, ksR ≈ 1) in the three-dimensional

case and have been applied with great success in systems made of spherical scatterers, either

polaritonic or high-index dielectric [99], [100]. For the case of cylindrical scatterers (2D) [101]–

[103], though, the most well-known suitable e�ective medium description is a description

based on �eld homogenization [101], which is not straightforward to apply, while extended

Maxwell-Garnett approaches, to our knowledge, have not been developed and applied in detail

up now. In this chapter, we show that a homogenization approach based on the well known

in the Solid State Physics community Coherent Potential Approximation (CPA) method [11],

[104] can be applied with great success in the case of polaritonic rod systems, demonstrating

a variety of novel and unconvenional metamaterial phenomena in such systems. We have to

note here that various systems of polaritonic rods in a host have been already studied, not only

theoretically but also experimentally, and interesting phenomena and possibilities have been

predicted or demonstrated: It has been shown that by properly designing the radii, heights and

Table 5.1: Lorentz model material parameters for LiF and SiC.

Material ε∞ ωT /2π (THz) ωL/2π (THz) Γ/2π (THz)

LiF [105] 2.027 9.22 19.11 0.527

SiC [106] 6.7 23.79 29.05 0.143
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distances of the rods, one can achieve both negative permeability and negative refractive index

response [102]; moreover, hyperbolic response has been already theoretically demonstrated [93],

[105], [107], as well as exotic phenomena such as toroidal dipolar response [108], [109], epsilon-

near-zero originated waveguiding [110], and others. Finally, the possibility to relatively easily

obtain such systems by, e.g. eutectics self-organization [105], [111], laser micromachining [112],

etc., makes their study even more appealing and indispensable.

The aim of this chapter is to analyze in detail the wave propagation in systems of circular

polaritonic rods (of in�nite height) in a dielectric host and to identify the di�erent interesting

propagation regions and their associated characteristics. Of particular interest is the investi-

gation and analysis of the e�ect of the combination of the material resonances (such as those

shown in Fig. 5.1) with the structure resonances, dependent on the shape and size of the rods.

To that extent, the approaches and many of the results presented here are not applicable only in

the case of phonon-polariton systems but they can be applied in any system made of scatterers

from a resonant material (e.g. exciton-polariton systems, macroscopic MMs forming cylindri-

cal scatterers, etc.); moreover, the results can be transferred easily in the case of high-index

dielectric scatterers [113]–[117].

To analyze the response of the polaritonic rod systems and to understand the e�ect of the

interplay of material and structure resonances, we start from calculation and analysis of the

single rod extinction and scattering cross section; then we use the single rod results in the

application of the CPA approach [104], [118], [119], which is employed for the investigation and

analysis of the multirod systems. As model systems we employ two di�erent polaritonic rod

systems: systems made of LiF rods and systems made of SiC rods (see Fig. 5.1 for the materials

permittivity). Speci�cally, the chapter is organized as follows: In Sec. 5.2 we introduce the

methods used for the calculation of the single rod extinction e�ciencies and the relations for

the e�ective medium determination. In Sec. 5.3 we present the results of single rod scattering

(subsection 5.3.1) and of the e�ective medium (subsection 5.3.2) for our particular systems and

we identify the di�erent attainable interesting MM properties and capabilities. Comparison

of our results with full-wave simulations demonstrate and verify the validity and merit of our

approach in the study of polaritonic and high-index dielectric MMs, validating also further the

feasibility of the interesting attainable e�ects predicted.

5.2 Methods
Although the systems of interest in this work are systems of polaritonic rods in air or in

a dielectric host, the methods discussed in this section are derived for a general system of

(identical) rods in a host, allowing any permittivity and permeability for both the rod and

the host material. This is in order to achieve the widest possible applicability regime of the

derived formulas, allowing their use for prediction or understanding of the properties of other

potentially interesting MM systems or categories.

5.2.1 Single Scattering
We consider a single in�nitely-long cylinder [9], [120] with radius R, composed of a

material with relative electrical permittivity εc and magnetic permeability µc embedded in a

host material with material parameters εh and µh. Along the rest of the chapter the subscripts

h and c in any quantity would refer to host and cylinder respectively. Moreover we consider

propagation in a plane perpendicular to the cylinder axis. Since the cylinder is in�nitely-long

and there is no propagation component parallel to its axis, the problem is two dimensional

and, due to symmetry, it can be decoupled into two separate polarizations, the Transverse

Electric (TE) polarization, with the electric �eld normal to the cylinder axis, and the Transverse
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Figure 5.2: (a) An assembly of cylinders in a host medium (our system of interest) and de�nitions

of the TE and TM polarization and the normal to the cylinders axes plane of incidence. (b)

The unit cell of the system of (a), along with its relevant geometry and material parameters,

i.e. electrical permittivity, ε, and magnetic permeability µ. The subscripts h, c stand for the

host and cylinder material respectively. (c) Geometry for the derivation of the e�ective electric

permittivity, εe�, and e�ective magnetic permeability, µe�: A single cylinder of radius R1 = R
coated by a coating of thickness R2 − R1 made of the host material of the original system,

embedded in the e�ective medium. R2 is such as f = R2
1/R

2
2, where f is the cylinder �lling

ratio in the original system.

Magnetic (TM) polarization, with the magnetic �eld normal to the cylinder axis, as seen in

Fig. 5.2(a). The �elds can be expanded on the basis of cylindrical harmonics inside and outside

of the cylinder and the expansion coe�cients can be found by imposing the appropriate

boundary conditions on the cylinder’s surface [15]. Speci�cally, the parallel to the cylinder

axis component of the scattered magnetic/electric �eld is proportional to

∑∞
m=−∞ a

P
mNem,kh

where Nem,kh = khHm(khρ) cos(mϕ)ẑ denotes the m-th order cylindrical harmonic and

the coe�cient aPm denotes the Mie scattering coe�cient of the m-th mode for polarization

P = {TE,TM}, which is given [9], [120] by

aTE

m =
ηhJm(kcR)J ′m(khR)− ηcJm(khR)J ′m(kcR)

ηcJ ′m(kcR)Hm(khR)− ηhH ′m(khR)Jm(kcR)
(5.2)

aTM

m =
ηhJ

′
m(kcR)Jm(khR)− ηcJ ′m(khR)Jm(kcR)

ηcJm(kcR)H ′m(khR)− ηhHm(khR)J ′m(kcR)
(5.3)

where kh =
√
εhµhω/c is the wavenumber in the host material, kc =

√
εcµcω/c is the

wavenumber in the cylinder and ηc =
√
µc/εc, ηh =

√
µh/εh denote the impendances of

the cylinder and the host material respectively. Jm and Hm stand for the Bessel and Hankel

function (respectively) of the �rst kind and order m, and J ′m and H ′m are their derivatives in

respect to their argument.

The dominant modes for each case can be identi�ed from the extinction e�ciency, Qext,

which is de�ned as the sum of the electromagnetic �eld energy scattered and absorbed by the

cylinder, normalized to the incident energy and the geometric cross section of the cylinder, 2R.
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In terms of the scattering coe�cients it can be written as
1

QP
ext

= − 2

|khR|
Re

[
aP0 + 2

∞∑
m=1

aPm

]
(5.4)

and it can be decomposed into scattering e�ciency, Qsc, and absorption e�ciency, Qabs, given

by

QP
sc

=
2

|khR|

[
|aP0|2 + 2

∞∑
m=1

|aPm|2
]

(5.5)

QP
abs

= QP
ext
−QP

sc
(5.6)

The resonances in the extinction spectra of the cylinders (also known as Mie resonances [8])

can be classi�ed by their polarization P and an integer m associated with the corresponding

cylindrical harmonic. The resonance frequencies or eigenfrequencies of the system can be

calculated by setting the denominators of the scattering coe�cients for each polarization,

Eq. (5.2) for TE and Eq. (5.3) for TM, equal to zero:

1

ηc

Jm(kcR)

J ′m(kcR)
=

1

ηh

Hm(khR)

H ′m(khR)
(5.7)

ηc
Jm(kcR)

J ′m(kcR)
= ηh

Hm(khR)

H ′m(khR)
(5.8)

In the limit khR� 1 (where a system of cylinders behaves as a metamaterial) it is su�cient

to consider only the �rst two fundamental modes, i.e. m = 0 and m = 1, since the contribution

of higher order modes is insigni�cant. In the discussion below, these modes are identi�ed as

TE0, TE1, TM0 and TM1 (for the �elds distribution of those modes see Fig. 5.3). Using recurrence

and other relations of Bessel functions [121] (e.g. J ′0(x) = −J1(x) and H ′0(x) = −H1(x)) we

see that for µh = µc the eigenfrequency relations of the TE0 and the TM1 modes are identical;

therefore, TE0 and the TM1 modes are degenerate.

To explore the eigenfrequency relations of the above modes in the limits of small size

parameters khR and kcR, we use the limiting expressions of Bessel functions [121] listed in

Appendix 5.5.1. For the TM1 mode, in the limit of khR� 1 we have

ηc
J1(kcR)

J ′1(kcR)
= −ηhkhR = −µh

ω

c
R (5.9)

In the quasistatic limit of both khR� 1 and kcR� 1 the TM1 resonance condition becomes

µc = −µh (5.10)

Thus, the TM1 mode does not present resonances in the quasistatic limit, except in the case of

a magnetic host or cylinder. For the TE0 in the limit of khR� 1 we have

1

ηc

J0(kcR)

J ′0(kcR)
= εh

[
ln

(
khR

2

)
+ γ − iπ

2

]
ω

c
R (5.11)

where γ is Euler’s constant. In the quasistatic limit of both khR � 1 and kcR � 1, the

resonance condition has solutions only if 1/µc → 0 in this limit.

In an analogous way one can obtain limiting expressions also for the TM0 mode; in the

limit of khR� 1

ηc
J0(kcR)

J ′0(kcR)
= µh

[
ln

(
khR

2

)
+ γ − iπ

2

]
ω

c
R (5.12)

1

In literature [9], [97] there is no minus sign in the extinction e�ciency; it is due to the de�nition of the

coe�cients am with an extra minus sign (see Appendix 5.5.1).
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In the quasistatic limit, of both khR � 1 and kcR � 1, we can have resonance in the case

that 1/εc → 0, a condition that can be ful�lled in the case of a polaritonic cylinder, with the

resonance frequency to coincide with the phonon polariton resonance frequency of the cylinder

material.

Finally, for the TE1 mode in the limit of khR� 1 we obtain

1

ηc

J1(kcR)

J ′1(kcR)
= − 1

ηh
khR = −εh

ω

c
R (5.13)

In the limit khR� 1 and kcR� 1 the resonance condition becomes

εc = −εh. (5.14)

Equation (5.14), which can be ful�lled in the case of a polaritonic cylinder (owing to its metal-

like behavior in frequencies above the phonon-polariton resonance frequency), is identical to

the resonance condition of a Surface Plasmon Polariton (SPP) mode in a dielectric-metal planar

interface [122].

5.2.2 E�ective medium
We now calculate the components of the e�ective medium permittivity and permeability

tensors for a uniaxial anisotropic system of in�nitely long parallel circular cylinders employing

a Coherent Potential Approximation (CPA) based approach as developed by Wu et. al. [104].

As was already mentioned, unlike the quasistatic Maxwell-Garnett approximation [96], which

is valid only when all khR, kcR and ke�R are much less than unity, the CPA approach allows

application in higher frequency regions, where particle resonances occur (and thus interesting

metamaterial e�ects), allowing treatment of metamaterials made of high-index dielectric or

polaritonic scatterers. A considerable advantage of CPA over other suitable e�ective medium

approaches (like the �eld-averaging method [101], [107]) is that the e�ective parameters are

given in a closed form as we will see below. Moreover, the e�ective parameters do not depend

on the speci�c lattice-type of the system to be described, as it would be in the case of extended

Maxwell-Garnett approaches [123] applied in two-dimensional systems [124].

Regarding our systems, as an implication of symmetry, for a proper choice of axes, that

is the cylinders are oriented along the z axis, the e�ective electric permittivity and magnetic

permeability must be uniaxial, i.e. diagonal tensors with only two free parameters. In dyadic

form they can be written as εe� = ε⊥
e�

(x̂x̂ + ŷŷ) + ε
‖
e�
ẑẑ and µe� = µ⊥

e�
(x̂x̂ + ŷŷ) + µ

‖
e�
ẑẑ

respectively, where x̂, ŷ and ẑ are the unit vectors along the axes, and the symbols ‖ and⊥ denote

that the corresponding �eld (electric for ε and magnetic for µ) is parallel and perpendicular

(respectively) to the cylinders axis.

In order to derive semi-analytical expressions for the components of the e�ective parameters

in the framework of CPA we should require vanishing of the scattering between e�ective and

actual medium. To apply this requirement we consider the scattering con�guration shown in

Fig. 5.2(c), where the actual medium is represented by a coated cylindrical inclusion (of in�nite

height) with core of radius R1 = R and material the same as the original cylinders, and coating

of thickness R2 − R1 made of the host material of the original system; the coated inclusion

is embedded in the homogeneous e�ective medium with relative electric permittivity εe� and

magnetic permeability µe�. The radius R2 of the coated inclusion is de�ned by the �lling ratio,

f , of the cylinders in the original system, as f = R2
1/R

2
2. In order for the e�ective medium of

Fig. 5.2(c) to be the one accurately describing our inhomogeneous system CPA requires the

scattering cross section from the embedded into the e�ective medium coated cylinder to be

identically zero. Hence, all the scattering coe�cients of the coated inclusion must be set equal

to zero, which, after some algebraic manipulations (see Appendix 5.5.1), leads to the following
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condition:

aPm(R1; c, h) = aPm(R2; e�, h) (5.15)

In Eq. (5.15) aPm(R;A,B) stands for the m-th order scattering coe�cient for a cylinder with

radius R made of a material A immersed in a host made of material B for polarization P.

Equation (5.15) de�nes an in�nite system of nonlinear equations which has to be solved self-

consistently for the components εe� and µe� to be obtained. However, in the region of khR < 1,

which is the region of interest for metamaterials, we can limit ourselves only to the �rst two

modes per polarization, m = 0 and m = 1; then, assuming also that ke�R2 � 1 (ke� is the

wavevector norm in the e�ective medium), we can derive semi-analytical relations for all the

components of the e�ective material tensors (see Appendix 5.5.1), which read as

ε
‖
e�

= − 2εh
khR2

[
J ′0(khR2) +H ′0(khR2)aTM

0

J0(khR2) +H0(khR2)aTM

0

]
(5.16)

µ⊥
e�

=
µh
khR2

[
J1(khR2) +H1(khR2)aTM

1

J ′1(khR2) +H ′1(khR2)aTM

1

]
(5.17)

µ
‖
e�

= − 2µh
khR2

[
J ′0(khR2) +H ′0(khR2)aTE

0

J0(khR2) +H0(khR2)aTE

0

]
(5.18)

ε⊥
e�

=
εh
khR2

[
J1(khR2) +H1(khR2)aTE

1

J ′1(khR2) +H ′1(khR2)aTE

1

]
(5.19)

where aPm = aPm(R1; c, h). As can be seen in Eqs. (5.16)-(5.19), each one of the e�ective param-

eters is related with a particular mode in the single scattering cross section. This connection,

justifying the characterization of the modes as electric and magnetic, can be understood also

physically by observing the �eld distribution corresponding to those modes - see Fig. 5.5 and

Section 5.3.1.

Equations (5.16)-(5.19) under certain conditions can lead to resonances in the e�ective

parameters, associated with interesting propagating and scattering e�ects for the composite

structure as we will discuss in the next section. For khR2 � 1 (thus also khR1 � 1) the

resonance conditions/frequencies (obtained by setting the denominators equal to zero and

employing limiting expressions for the Bessel functions - see Appendix 5.5.1) are approximated

as follows.

For ε
‖
e�

(related to TM0 mode):

ηc
J0(kcR1)

J ′0(kcR1)
= µh ln(R2/R1)

ω

c
R1 = −1

2
µh ln(f)

ω

c
R1 (5.20)

For µ⊥
e�

(related to TM1 mode):

ηc
J1(kcR1)

J ′1(kcR1)
=
f + 1

f − 1
µh
ω

c
R1 (5.21)

For µ
‖
e�

(related to TE0 mode):

1

ηc

J0(kcR1)

J ′0(kcR1)
= εh ln(R2/R1)

ω

c
R1 = −1

2
εh ln(f)

ω

c
R1 (5.22)

For ε⊥
e�

(related to TE1 mode):

1

ηc

J1(kcR1)

J ′1(kcR1)
=
f + 1

f − 1
εh
ω

c
R1 (5.23)

One can see that the above relations (5.20)-(5.23) are very similar with the corresponding

conditions for single scattering resonances discussed in the previous subsection. In particular,
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Eqs. (5.21) and (5.23) for low cylinder �lling ratio f lead to resonance frequencies very close to

those of the corresponding TM1 and TE1, respectively, single cylinder resonances - see Eqs. (5.9)

and (5.13) respectively.

Finally, in the quasistatic limit (i.e. for a khR2 � 1, khR1 � 1 and kcR1 � 1), Equations

(5.16)-(5.19) reduce to the well-known MG formulae:

ε
‖
e�

= fεc + (1− f)εh (5.24)

µ
‖
e�

= fµc + (1− f)µh (5.25)

ε⊥
e�

= εh
(1 + f)εc + (1− f)εh
(1− f)εc + (1 + f)εh

(5.26)

µ⊥
e�

= µh
(1 + f)µc + (1− f)µh
(1− f)µc + (1 + f)µh

(5.27)

5.3 Results and Discussion

5.3.1 Single scattering
We begin our analysis by calculating the extinction e�ciency of a LiF cylinder in air (εh = 1,

µh = 1) and in a host with εh = 2, µh = 1, and for a SiC cylinder in air, for both TM and

TE polarizations and various radii. The dielectric functions of both LiF and SiC, which are

shown in Fig. 5.1, are calculated using Eq. (5.1) with parameters tabulated in Table 5.1. The

extinction e�ciency results for the LiF and the SiC cylinders are shown in Figs. 5.3 and 5.4,

respectively. It is apparent that for each polarization there are two dominant resonances in the

low-frequency extinction spectra which originate from them = 0 andm = 1 modes. Using the

notation de�ned in Sec. 5.2.1 we have the TE0, TE1, TM0 and TM1 modes, where the TE0 and

TM1 modes resonate at the same frequency, as was also discussed in Section 5.2.1. Illustrations

of the �elds for each of these four modes are shown in Fig. 5.3(e). From the �eld illustrations

one can characterize the modes as electric in nature (i.e. associated with strong induced electric

�eld in the direction of the incoming �eld), as TM0 and TE1, and magnetic in nature (i.e. with

strong induced magnetic �eld in the direction of the incoming magnetic �eld), as TE0 and TM1.

As can be observed in both Figs. 5.3 and 5.4, only the TE1 mode falls in the negative

permittivity region of the polaritonic materials (shaded region in the plots) and is similar

in nature to the Localized Surface Plasmon Resonance (LSPR) [125] sustained by metallic

particles in the visible part of the spectrum. For very small radii the mode frequency approaches

the quasi-static limit (khR � 1 and kcR � 1) value, where εh = −εc(ωres). This relation

suggests that the resonance frequency of the TE1 mode is a�ected greatly by the environment

of the cylindrical particle. To the contrary, there is no signi�cant dependence of the resonance

frequencies of the TE0, TM1 and TM0 modes on the host parameters (only the values of Qext

change). This result can be partially explained by the fact that we are in the high-index dielectric

regime for the cylinder and that the electric �elds for these modes are concentrated in or at the

surface of the cylinder as related �eld simulations show. On the other hand this is not true for

the TE1 mode, where the electric �eld is dipole-like and highly extends into the dielectric.

We turn now our focus on the dependence of resonances on the radius of the polaritonic

cylinder. In Fig. 5.5 we plot the resonance frequencies for a LiF (panel (a)) and a SiC (panel

(b)) cylinder in air as a function of cylinder radius, indicating also the ratio of absorption

over scattering Qabs/Qsc of each mode (the resonance frequencies were obtained by solving

Eqs. (5.7) and (5.8) numerically for m = 0 and m = 1). For small radii only the modes of

electric nature appear; i.e. TM0 and TE1. For TM polarization, where the incident electric

�eld (parallel to the cylinder) does not experience any "boundaries", the only factor a�ecting

the induced polarization is the polarizabiity of the bulk material; the resulting mode is the
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Figure 5.3: Extinction e�ciency of a LiF cylinder in air [(a),(b)] and in a dielectric with εh = 2
[(c),(d) for TM (left column) and TE (right column) polarizations. The legend shows the cylinder

radius. The shaded areas correspond to the frequency region where the dielectric function of

LiF is negative. (e) Electric (green color) and magnetic (blue color) �eld distributions for the

TM0, TM1, TE0 and TE1 modes.

spherically symmetric TM0 mode, with resonance for small radius values almost at the bulk

material resonance frequency, ωT . The resonance frequency moves to lower values as the radius

of the cylinder increases and the wavelength inside the cylinder becomes comparable to the

radius. This departure of TM0 resonance frequency from ωT is faster for the SiC cylinder due

to the higher permittivity values and the associated smaller wavelength inside the cylinder. In

both TE1 and TM0 modes absorption dominates extinction for small radii, as can be concluded

from Fig. 5.5(a), but for larger radii scattering takes over, as happens also in the case of a metallic

cylinder. In the SiC case (Fig. 5.5(b)) though, the dominance of the scattering over absorption

for the TM0 mode occurs in very small radius values (even smaller than 0.1µm, which is the

threshold value of Fig. 5.5(b)), and the absorption cross-section for R larger than 0.2µm is

practically negligible. This can be explained by the quicker departure of the TM0 mode from

ωT resonance where the losses of SiC are quite high, combined with the much higher quality

factor of SiC compared to LiF (note that for SiC Γ/ωT ≈ 0.006 while for LiF Γ/ωT ≈ 0.057).

The TE0 and TM1 modes, appearing for radius values larger than 0.5µm for LiF and 0.4µm

for SiC, appear also just below optical phonon frequency ωT . Their resonance frequency

changes only slightly with the increase of the radius. Moreover, absorption dominates over

scattering for small radii and as the radius increases scattering starts to take over. For the case of

LiF this happens for radii much larger than those studied here. This is probably not-surprising

taking into account the weak extinction cross-section of the TE0 and TM1 modes and the fact
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Figure 5.4: Extinction e�ciency of a SiC cylinder (of radius 0.1, 0.5 and 0.8 µm) in air for (a)

TM and (b) TE polarizations. The shaded areas correspond to the frequency region where the

dielectric function of SiC is negative.

that their resonance frequency is (and remains) relatively close to the resonance frequency

ωT where the material losses are quite high. Indicative plots of LiF and SiC absorption and

scattering e�ciencies for di�erent cylinder radii are presented in Appendix 5.5.2.

Calculating the quality factor, Q, of the di�erent modes dominating the long wavelength

extinction response of LiF and SiC cylinders, with Q = −Re[ωres]/(2Im[ωres]), we obtain the

result shown in Figs. 5.5(c) for LiF and 5.5(d) for SiC. We observe that for small cylinder radii

the quality factor of the TE1 mode, which is sensitive to the environment and thus suitable for

sensing applications, gets values higher than 20 for LiF and higher than 100 for SiC cylinders.

Such values are higher than the corresponding ones of plasmonic antennas (of the same size

parameter, khR) in the visible [126]–[128], indicating the suitability of polaritonic rods in

sensing applications in the THz and IR part of the EM spectrum. Regarding the "magnetic"

modes TE0/TM1, for LiF their quality factor changes very slowly with increasing radius and

retains values close to 18 (17.59 for R = 0.5µm to 17.12 for R = 1.6µm). For SiC their quality

factor decrease with increasing radius occurs much more quickly due to the much lower Γ/ωT
and the quicker departure of the resonance frequency from the highly lossy region around ωT .

5.3.2 E�ective Medium
We can now turn our attention to the calculation of e�ective medium material parameters

εe� and µe� for systems comprised of polaritonic cylinders in a host. In Fig. 5.6 we plot all

the components of the relative e�ective permittivity and permeability tensors, both real and

imaginary parts, for LiF cylinders in air for the same set of radii discussed in Section 5.2.1 for

single scattering, i.e. 0.3, 1 and 1.5µm, and LiF �lling ratio 30%. We also plot the e�ective
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Figure 5.5: Top panels: Resonance frequencies and absorption over scattering e�ciency

Qabs/Qsc (color) at the resonance frequency of the TM0 (rotated triangles), TE0/TM1 (circles)

and the TE1 (upright triangles) modes as function of the radius for a (a) LiF and a (b) SiC

cylinder in air (εh = 1). The dashed line shows the quasi-static resonance condition for the TE1

εc(ω) = −εh, and the shaded area corresponds to the frequency region where the dielectric

functions of LiF and SiC are negative. Bottom panels: Quality factor −Re(ωres)/(2Im(ωres))
for the modes of a (c) LiF and (d) SiC cylinder in air.

permittivities in the quasistatic limit (khR � 1 and kcR � 1) using the Maxwell-Garnett

approximation (see Eq. (5.24)) [96]. Since µh = µc = 1 the e�ective magnetic permeabilities in

the quasistatic limit are both equal to unity. As one can see in Fig. 5.6, the e�ective permittivities

and permeabilities exhibit Lorentzian-type resonances at frequencies close to their associated

mode eigenfrequencies of a single cylinder, shown in Fig. 5.5. In a similar fashion to the single-

cylinder eigenmodes, the resonances in the e�ective parameters move to lower frequencies and

the maximum values of of εe� and µe� increase for larger radii.

In particular, the so called electric modes, TM0, TE1, lead to e�ective permittivity reso-

nances, while the magnetic modes, TM1, TE0, to e�ective permeability resonances. Since the

magnetic modes do not appear/resonate in the quasistatic regime (i.e. for small cylinder radii)

the permeability resonances are not present in that regime, in agreement also with the MG for-

mulation. In fact the accurate description and reproduction of magnetic e�ects in non-magnetic

composites is one of the great merits of CPA regarding metamaterial e�ects and capabilities.

Regarding the e�ective permittivity of Fig. 5.6, while for small cylinder radius the CPA

results coincide with the (size independent) Maxwell-Garnett results, as we increase the cylinder

radius, exciting more resonances and thus more rich electromagnetic response, the Maxwell-

Garnett is not able to describe the response of the inhomogenous medium and thus to reproduce

the achievable metamaterial properties.

A demonstration of this inability and the accuracy and success of our CPA approach is

given in Fig. 5.7, where we compare the Maxwell-Garnett and the CPA results with full wave

simulations for a polaritonic system that has been realized also experimentally [105]; that is a

system of LiF cylinders (of radius 1.3µm and �lling ratio 6.95%) in a KCl host. The results of

Fig. 5.8, as well as analogous results for systems with smaller or larger cylinder radii, clearly
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Figure 5.6: Real (upper row) and imaginary (lower row) parts of the parallel and perpendicular

components of the relative e�ective permittivity, εe� (�rst and second columns), and permeabil-

ity, µe� (third and fourth columns), for LiF cylinders with �lling ratio 30% in air, for di�erent

radii, R, (mentioned in the legends) using the CPA (lines) and the Maxwell-Garnett approx-

imation (circles). The shaded areas correspond to the frequency region where the dielectric

function of LiF is negative.

demonstrate that CPA can describe with satisfactory accuracy the electromagnetic response of

structures with larger-size cylinders (i.e. of kcR ≈ 1), polaritonic or high-index-dielectric.

We have to add here that the observed in Fig. 5.7 slight discrepancy between CPA and

full-wave simulation results at around 8 THz is due to the fact that in this region kTM

e�
R2 ≈ 3,

which is beyond the regime of validity of CPA - note that the semi-analytical CPA formulas have

been obtained under the condition ke�R2 < 1. Besides that condition, which is speci�c to the

current implementation of the CPA, in general, for for higher frequencies, such as khR2 > 1,

where the structures are not sub-wavelength anymore and higher order modes (not considered

here) along with lattice e�ects start to become important, the CPA (such as almost all the

homogeneous medium descriptions) becomes less and less accurate.

Coming back to our model systems, in Fig. 5.8 we plot the components of the relative

e�ective permittivity and permeability tensors for SiC cylinders in air for radii 0.1, 0.5 and

0.8µm (the same ones discussed in connection with Fig. 5.4). The �lling fraction also here is

chosen to be equal to 30%. As in the case of LiF in air, we observe also here resonant permittivity

and permeability, closely connected with single cylinder resonances, as discussed in the case of

Fig. 5.6. A signi�cant di�erence here is the stronger magnetic response leading to even negative

permeability values; this is a result of the higher permittivity values of SiC compared to LiF

(compare the permittivity values of Fig. 5.1(a) and 5.1(b)), and thus of the stronger displacement

current.

A closer examination of Figs. 5.6 and 5.8 indicates that there is a variety of interesting and

useful metamaterial properties achievable by our polaritonic rod systems. These include (a)

engineerable permittivity response comprising of both high positive values, negative values,

and near-zero values; (b) engineerable permeability, including negative permeability values;

(c) double-negative response, i.e. permittivity and permeability both negative, resulting to

negative refractive index response; (d) hyperbolic response. Below we comment in more detail
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Figure 5.7: Normal incidence, TM re�ection spectra for a slab of LiF cylinders with radius

R = 1.3µm and �lling ratio f = 6.95% in KCl host in a square arrangement. The re�ection is

calculated by the commercial �nite element method electromagnetic solver Comsol Multiphysics,

considering a computational system of 7 unit cell thickness (along propagation direction). The

full wave re�ection results (black line and dots) are compared with results for a homogeneous

e�ective medium of the same thickness as the actual system and e�ective parameters obtained

through CPA (red line) and Maxwell-Garnett approximation (green line). KCl was modelled

using Eq. (5.1) with parameters ε∞ = 2.045, ωT /2π = 4.21THz, ωL/2π = 6.196THz and

Γ/2π = 0.156THz [105].

on the above properties and response, generalizing to any polaritonic-rod-based composite.

Moreover in Appendix 5.5.3 we present also plots of the e�ective permittivity and permeability

components shown in Figs. 5.6 and 5.8 in a smaller vertical-axis range, to reveal and highlight

the values of the e�ective components away from the resonances.

A. Engineerable permittivity response: Although in the bulk polaritonic materials we already

have a rich permittivity response, including both positive, negative and near-zero values,

structuring the polaritonic material in the form of cylinders we have the potential to engineer

the permittivity values, reaching negative values even below the resonance of the corresponding

bulk material (compare, e.g., Fig. 5.1(a) and Fig. 5.6(a) or Fig. 5.1(b) and Fig. 5.8(a)), reaching

desired negative (or positive) values di�erent than those of the bulk material as, e.g., to, adjust

the impedance of the system with that of its surrounding medium, combining properly the

real and imaginary parts of the e�ective ε as, e.g., to reduce losses in the region of operation,

moving the epsilon-near-zero response in the desired frequency range, etc. The e�ective

permittivity values can be engineered by changing either the cylinders radii or the cylinders

�lling ratio. B. Engineerable permeability response: As Fig. 5.8 shows, in properly designed

systems of polaritonic rods, owing to the large permittivity values of the polaritonic materials,

we have the ability to achieve resonant permeability associated with negative values for both

TE and TM polarization if the underlying single-cylinder resonance is strong enough. The

negative permeability response is favored by polaritonic materials of high ε (compare the LiF

with the SiC case), by cylinders of larger radii (as kcR ≈ 1) and by large cylinder �lling ratio.

As in the permittivity case, the e�ective permeability values can be engineered by changing

either the cylinders radii or the cylinders �lling ratio.

C. Double negative response: Regarding the double negative response resulting to negative

refractive index, in the SiC system shown in Fig. 5.8 we see that such a response is achievable (for

TM polarization and normal incidence) for both R = 0.5µm and R = 0.8µm. (For R = 0.8µm

ε
‖
e�

and µ⊥
e�

are both negative between 22.2THz and 22.8THz). Adjusting the cylinder radii or

the �lling ratio, one can engineer this response, engineering thus the e�ective impedance of the

system and the e�ective refractive index. Having the potential to engineer separately refractive

index and impedance o�ers a valuable tool for wave propagation manipulation, as it allows
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Figure 5.8: Real (upper row) and imaginary (lower row) parts of the parallel and perpendicular

components of the relative e�ective permittivity ε (�rst and second columns), and permeability,

µ (third and fourth columns), for SiC cylinders with �lling ratio 30% in air, for di�erent radii,

R (mentioned in the legends), using the CPA (lines) and the Maxwell-Garnett approximation

(circles). The shaded areas correspond to the frequency region where the dielectric function of

SiC is negative.

perfect coupling to the surrounding medium or perfect transmission combined with desired

phase propagation features.

D.Hyperbolic response: Taking into account the dispersion relations for TM and TE modes [129],

i.e.

TM :
k2
⊥

µ⊥
e�
ε
‖
e�

+
k2
‖

µ⊥
e�
ε⊥

e�

=
(ω
c

)2
(5.28)

TE :
k2
⊥

ε⊥
e�
µ
‖
e�

+
k2
‖

ε⊥
e�
µ⊥

e�

=
(ω
c

)2
(5.29)

(where k⊥ and k‖ refer to the perpendicular and parallel to the cylinders axes wavevector

components), along with the results of Figs. 5.6 and 5.8, one can see that the condition for

hyperbolic response for the TM modes for µ⊥
e�
> 0, i.e. ε

‖
e�
· ε⊥

e�
< 0, can be easily achieved for

both the LiF and SiC systems in two di�erent frequency regions even in the quasistatic limit. In

the �rst region, around ωT and near the TM0 resonance frequency, the out-of-plane components

ε
‖
e�

are negative for all radii (at least for R > 0.1µm) while the in-plane components ε⊥
e�

are

positive; the medium in this case is called Hyperbolic Metamaterial Type I (HMM I). The second

region where hyperbolic response due to di�erent signs of the εe� components is feasible is

close to the TE1 resonance, where ε⊥
e�

are negative and ε
‖
e�

positive. The medium in this case is

called Hyperbolic Metamaterial Type II (HMM II) and it is considered more suitable (than HMM I)

for the so-called dark �eld superlensing [84] (requiring �ltering out of the small wavenumbers)

and for the achievement of high Purcell factors [107].

The hyperbolic-response-related merit of our systems (and of many polaritonic systems)

is not restricted though only to TM polarization and the above mentioned features. There

additional and important features stemming from the possibility of also negative µe� besides

negative εe�, which exists in our SiC systems.
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Figure 5.9: Optical phase diagrams for the TM modes for LiF (top row) and SiC (bottom row)

cylinders in air for di�erent radii, R, of the cylinders. The color marks the di�erent attainable

metamaterial-related responses of the systems: Dielectric (White color): Both ε
‖
e�
> 0, ε⊥

e�
> 0,

µ
‖
e�
> 0, µ⊥

e�
> 0, HMM Type I (red): ε

‖
e�
< 0, ε⊥

e�
> 0, HMM Type II (green): ε

‖
e�
> 0, ε⊥

e�
< 0,

Metallic (blue): ε
‖
e�
< 0, ε⊥

e�
< 0, DNG (yellow): ε

‖
e�
< 0,µ⊥

e�
< 0.

As can be observed in Figs. 5.8 and 5.13 (in Appendix 5.5.3), forR = 0.8µm, µ⊥
e�

is negative

in the region 22.2-22.8 THz and µ
‖
e�

is negative at 22.55-22.8 THz; since in these regions ε
‖
e�

is also negative while ε⊥
e�

positive, taking into account the relations (5.28) and (5.29), one can

see that in the region 22.2-22.54 THz there is hyperbolic response (HMM II) also for the TE

polarization, own to the opposite sign of the two µe� components (µ⊥
e�
< 0, µ

‖
e�
> 0. Moreover,

in the region, 22.2-22.8 THz in which for TM polarization and normal incidence we achieve

double negative response, one can see that for o�-normal incidence the dispersion of the

system is hyperbolic (ε
‖
e�
< 0, µ⊥

e�
< 0, ε⊥

e�
> 0) but with negative phase advance in the plane

perpendicular to the cylinders. Such a peculiar feature may be associated with uncommon

and still unexplored propagation characteristics and wave control possibilities. Moreover, the

possibility for hyperbolic response own also to negative permeability components gives a

great �exibility for dispersion engineering for arbitrary polarization (and for unpolarized light),

and, besides, it gives the ability to highly control also the system impedance, issues crucial

for both superlensing applications and applications related to thermal emission and radiation

control [130].

Optical Phase Diagrams - Filling Ratio In�uence
To illustrate further and more clearly the di�erent attainable properties and capabilities of

systems of polaritonic rods, we investigate for our two systems the frequency regions where

the above mentioned interesting MM responses occur as we change the rods �lling ratio, for

the TM modes, based on Eq. (5.28). In Fig. 5.9 we plot for both systems (i.e. LiF and SiC) the

optical phase diagrams, showing the di�erent interesting optical response regions as a function

of �lling ratio and frequency, for various radii. There the di�erent regions are marked with
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di�erent colors: With red the HMM I region, with green the HMM II, with yellow the DNG

region (achievable for TM polarization - normal incident) and with blue the fully metallic

region (ε⊥
e�
< 0 and ε

‖
e�
< 0) for both polarizations. Regarding the hyperbolic response, for

simplicity in the plots we mark only the regions of hyperbolic dispersion originating from the

electric response. The magnetic-response-originated hyperbolic dispersion region is always

embedded in the DNG region, in the same way as discussed in the last paragraph of the previous

subsection, in connection with the data of Figs. 5.8 and 5.13.

As one can see in Fig. 5.9, there is a pattern on the achievable response: high-ε region at low

frequencies is followed by a HMM I region starting near the optical phonon frequency ωT and

extending into the reststrahlen band (ωT < ω < ωL). Moreover, for high frequencies (ω > ωT )

and high �lling ratios there is a region (green areas in Fig. 5.9) where the material exhibits a

purely metallic response (both ε
‖
e�
< 0 and ε⊥

e�
< 0). In addition, the boundaries between the

di�erent optical phases correspond to frequencies where epsilon-near-zero is achievable since

one or more of the components of the e�ective permittivity changes sign. Finally, the DNG

region is always inside the HMM I region and requires polaritonic materials of high permittivity

values (i.e. of strong phonon-polariton resonance) and not extremely subwavelength in size

cylinders; moreover it is favored from larger cylinder �lling ratios.

5.4 Conclusions
Prompted by the constantly growing interest on polaritonic and dielectric metamaterials, we

presented here a detailed study of the electromagnetic response of metamaterial systems formed

by polaritonic rods in a dielectric host, in the THz region of the electromagnetic spectrum.

Employing as model systems systems of LiF and SiC rods, we initially studied the response of

single rod and we calculated the extinction e�ciency for di�erent radii of the rod, in order to

identify the nature and behavior of the major resonances for each polarization. Subsequently,

using the single-rod scattering formulation and data and employing the Coherent Phase Ap-

proximation e�ective medium approach, which can accurately describe an inhomogeneous

medium even beyond the quasistatic regime, we obtained closed formulas for the e�ective

parameters of systems made of polaritonic rods in a host and we applied them in the cases of

LiF and SiC rods. We found that by proper selection of the radius and the �lling ratio of the rods

one can achieve a variety of interesting and useful metamaterial properties in polaritonic rod

systems. These properties include engineerable permittivity (having high positive, negative and

near-zero values), engineerable permeability (of both positive and negative values), hyperbolic

response, double negative response and others. The possibility to achieve this rich variety of

physical properties in the THz region, which is of high technological interest, combined with

the ease of fabrication of many of those systems, makes polaritonic rod metamaterials ideal

candidates for any device aiming THz wave propagation and scattering control.

5.5 Appendices

5.5.1 E�ective Medium Derivation
In this appendix we give a brief derivation of the relations for the e�ective medium. We

consider a coated cylinder (along ẑ direction) with core radius R1 and shell thickness R2 −R1

embedded in an in�nite medium with material parameters εe�, µe�. The system is shown in

Fig. 5.2(c). The core cylinder is made of a material with material parameters εc, µc and the shell

of a material with material parameters εh, µh.
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Figure 5.10: Scattering (solid lines) and absorption (dashed lines) e�ciencies of a LiF cylinder

(of radius 0.3 and 1.5 µm) in air for (a) TM and (b) TE polarization. The shaded areas correspond

to the frequency region where the dielectric function of LiF is negative.

Depending on the incident wave polarization the �elds (in G-CGS system of units) in each

region can be expanded on the appropriate cylindrical harmonics Nemk = kZm(kρ) cos(mϕ)ẑ
andMemk = −m

ρ Zm(kρ) sin(mϕ)ρ̂−kZ ′m(kρ) cos(mϕ)ϕ̂, with k the wavenumber,Zm(kρ) =
Hm(kρ) for outward-going waves and Zm(kρ) = Jm(kρ) for inward-going waves [120]. For

TE polarization (electric �eld perpendicular to the cylinder axis) the �elds outside the coated

cylinder are a sum of the incident (inward) and scattered (outward) �elds, and can be expressed

as

Eout = i

∞∑
m=0

Amke�

[
DTE

mM
(outward)
emke�

+ M
(inward)
emke�

]
(5.30)

Hout =
cke�

ωµe�

∞∑
m=0

Amke�

[
DTE

mN
(outward)
emke�

+ N
(inward)
emke�

]
(5.31)

where DTE

m are the scattering coe�cients and Amk = 1
k

2
1+δm0

im. In an analogous way one

can express the �elds in all the regions of the scattering system, i.e. in the core cylinder and

the coating. The scattering coe�cients and all the coe�cients appearing in the expansion

of the �elds in cylindrical harmonics can be obtained by imposing the appropriate boundary

conditions at the di�erent system interfaces. Applying those conditions one can �nd that the

scattering coe�cient DTE

m take the form

DTE

m =
nhµe�TmJ ′m(ke�R2)− ne�µhKmJm(ke�R2)

ne�µhKmHm(ke�R2)− nhµe�TmH ′m(ke�R2)
(5.32)
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Figure 5.11: Scattering (solid lines) and absorption (dashed lines) e�ciencies of a SiC cylinder

(of radius 0.1 and 0.5 µm) in air for (a) TM and (b) TE polarization. The shaded areas correspond

to the frequency region where the dielectric function of SiC is negative.

where

Km = ΘmH
′
m(khR2) + ΦmJ

′
m(khR2) (5.33)

Tm = ΘmHm(khR2) + ΦmJm(khR2) (5.34)

with

Θm = ncµhJ
′
m(khR1)Jm(kcR1)− nhµcJm(khR1)J ′m(kcR1) (5.35)

Φm = nhµcHm(khR1)J ′m(kcR1)− ncµhH ′m(khR1)Jm(kcR1) (5.36)

and Θm/Φm = aTE

m (R1; c, h) are the scattering coe�cients of a single cylinder of radius R1

with material parameters εc and µc embedded in a host material of parameters εh and µh, i.e. a

cylinder of the original system to be homogenized.

For TM polarization the �elds outside the coated cylinder can be expressed as

Eout =
∞∑
m=0

Amke�

[
DTE

mN
(outward)
emke�

+ N
(inward)
emke�

]
(5.37)

Hout = i
cke�

ωµe�

∞∑
m=0

Amke�

[
DTM

m M
(outward)
emke�

+ M
(inward)
emke�

]
(5.38)

with the mth-order scattering coe�cient given by

DTM

m =
nhµe�UmJm(ke�R2)− ne�µhYmJ ′m(keffR2)

ne�µhYmH ′m(ke�R2)− nhµe�UmHm(ke�R2)
(5.39)
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Figure 5.12: Imaginary (solid lines) and real (dashed lines) parts of the parallel (a) and the

perpendicular (b) components of the relative e�ective permittivity for LiF cylinders with �lling

ratio 30% in air, for di�erent radii, R (mentioned in the legends), using the CPA. The shaded

areas correspond to the frequency region where the dielectric function of LiF is negative.

where

Ym = ΠmHm(khR2) + ΛmJm(khR2) (5.40)

Um = ΠmH
′
m(khR2) + ΛmJ

′
m(khR2) (5.41)

and

Λm = nhµcH
′
m(khR1)Jm(kcR1)− ncµhHm(khR1)J ′m(kcR1) (5.42)

Πm = ncµhJm(khR1)J ′m(kcR1)− nhµcJ ′m(khR1)Jm(kcR1) (5.43)

where Πm/Λm = aTM

m (R1; c, h). Following the CPA main concept, for the medium hosting the

coated inclusion to be the valid e�ective medium (i.e. the medium approximating the original

system of cylinders of εc and µc in the host of εh and µh), we must require the scattering cross

section from the coated inclusion to be identically zero. Hence, all the scattering coe�cients

must be set equal to zero. That is,

DP
m = 0 (5.44)

where P = {TM,TE}. This equation reduces to the much simpler one, that is

aPm(R1; c, h) = aPm(R2; e�, h) (5.45)

In Eq. (5.45) we have only the coe�cients of simple (non-coated) cylinders (given by Eqs. (5.2)

and (5.3)), since the scattering coe�cient aPm(R;A,B) denotes the m-th order coe�cient for a

cylinder of radius R and material parameters εA, µA embedded in a medium with εB , µB .



51

Figure 5.13: Imaginary (solid lines) and real (dashed lines) parts of parallel ((a),(d)) and perpen-

dicular ((b), (c)) components of the relative e�ective permittivity (upper row) and permeability

(lower row) for SiC cylinders with �lling ratio 30% in air, for di�erent radii, R (mentioned in

the legends) using the CPA. The shaded areas correspond to the frequency region where the

dielectric function of SiC is negative.

If we consider only the m = 0 and m = 1 terms in Eq. (5.45), which are the dominant terms

in the long-wavelength limit, we can �nd explicit relations for all components of the permittivity

and permeability tensors in the region ke�R2 < 1. To do so we replace the Bessel functions

with argument ke�R2 (of order 0 and 1 and their derivatives) by their limiting expressions for

small argument, employing the series expansions

J0(x) ≈ 1− x2

4
(5.46)

−J1(x) = J ′0(x) ≈ −x
2

+
x2

16
(5.47)

J ′1(x) ≈ 1

2
− 3

16
x2

(5.48)

H0(x) ≈ 2i

π
[ln(x/2) + γ] + 1 (5.49)

−H1(x) = H ′0(x) ≈ 2i

πx
− x

2
+ iαx (5.50)

H ′1(x) ≈ 2i

πx2
+

1

2
+
i

π
− iα (5.51)

where γ = 0.577215 is the Euler-Mascheroni constant and α = − 1
π

[
ln(x/2) + γ − 1

2

]
.

Employing Eqs. (5.45) and (5.46)-(5.51) (keeping in most of the cases only their lowest order

term) we result to the e�ective medium formulas (5.16)-(5.19) of the main text. In particular,

aTM

0 (R1; c, h) = aTM

0 (R2; e�, h) → ε
‖
e�

(5.52)

aTM

1 (R1; c, h) = aTM

1 (R2; e�, h) → µ⊥
e�

(5.53)

aTE

0 (R1; c, h) = aTE

0 (R2; e�, h) → µ
‖
e�

(5.54)

aTE

1 (R1; c, h) = aTE

1 (R2; e�, h) → ε⊥
e�

(5.55)
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5.5.2 Scattering/absorption
To illustrate more clearly the dependence of the single-cylinder absorption and scattering

e�ciencies on the cylinder radius, which was discussed in connection with Fig. 6.4, we present

here the scattering and absorption e�ciencies for di�erent indicative radii. Fig. 5.10 shows the

scattering and absorption e�ciencies for a LiF cylinder in air, while Fig. 5.11 shows correspond-

ing results for a SiC cylinder. As can be seen in Figs. 5.10 and Fig. 5.11, the results support the

discussion of Section 5.3.1 regarding the tendencies of the scattering and absorption e�ciencies

as the cylinder radius increases.

5.5.3 E�ective parameters
In Figs. 5.12 and 5.13 we plot the imaginary part of the e�ective permittivity and permeability

components for the systems of LiF and SiC cylinders discussed in Section 5.3.2 (for the LiF

case only the e�ective permittivity components are plotted). We also plot there the real part of

those components, copied from Figs. 5.6 and 5.8, for an easy comparison and assessment of the

functionality of the composites. As can be seen from Figs. 5.12 and 5.13, apart of a very narrow

frequency region around the resonance frequencies of the components where the losses are

signi�cant, in all other frequency regions the losses are quite negligible. This shows that, unlike

many plasmonic systems, in polaritonic rod systems resistive losses are not a major problem

hindering their applicability.

Closing, we should note that the results presented for both LiF and SiC systems concern

frequency regions where khR2 < 1, where the contribution of higher order modes and of lattice

(or multiple scattering) e�ects is still not important, and thus the CPA results are expected to be

highly accurate. Beyond this regime (which for LiF systems of R = 1.5 µm, f = 30%, is up to

16 THz and for SiC of R = 0.8 µm, f = 30%, is up to 30 THz) the CPA results are expected to

become less and less accurate. Moreover the peak values of the calculated e�ective permittivity

and permeability (i.e. the values exactly and very close to the position of the resonance) may be

not very accurate, as at those frequencies the CPA restriction ke�R2 might be violated (these

regions though, due to the high associated losses, are not considered suitable in applications

involving polaritonic metamaterials).



CHAPTER 6

SINGLE SCATTERING AND EFFECTIVE MEDIUM

DESCRIPTION FOR GRAPHENE- AND FOR

METASURFACE-COATED AND MULTICOATED CYLINDERS

6.1 Introduction
As mentioned in the previous chapters, electromagnetic metamaterials are arti�cial, struc-

tured materials comprised from subwavelength resonant building blocks, the meta-atoms. Due

to their versatile nature, metamaterials o�er the possibility of novel and unconventional elec-

tromagnetic wave control, and thus advancements in a large variety of applications, including

imaging, sensing, communications, energy harvesting, etc. [41], [131]–[134]. Metamaterials’

exceptional electromagnetic properties stem to a larger degree from the architecture of the

meta-atoms; through this architecture, the distribution of the local currents exited by an im-

pinging electromagnetic wave is engineered, providing the desired response. Meta-atoms may

consist of properly aligned metallic cut wires, behaving as macroscopic resonant electric dipoles

and producing a resonant electric response (resonant permittivity), and/or metallic spilt ring

resonators, leading to resonant circulating currents and the emergence of a resonant magnetic

response [135]. Another approach to create resonant electric and/or magnetic response is by

exploiting the Mie-based resonances in high index dielectric (or semiconducting) meta-atoms;

this approach is typically proposed for applications in high (IR and optical) frequencies [45], [79],

where metals experience detrimentally high losses. Through resonant magnetic and/or electric

response one can engineer a plethora of di�erent and peculiar metamaterial properties, such as

negative, near zero permittivity and/or permeability, negative refractive index, giant chirality,

peculiar anisotropy, asymmetric e�ects and many more [136]–[139]. (Note that because of the

subwavelength meta-atom size metamaterials provide homogeneous-medium-like (e�ective)

properties and response.)

Besides bulk (three-dimensional) metamaterials, many additional exciting functionalities

stem from the electromagnetic wave interaction with thin meta-atom layers, known as meta-

surfaces, which attract a constantly growing research attention. Metasurfaces, by allowing

modulation of the meta-atoms along them, allow the engineering of both phase and ampli-

tude of the electromagnetic �elds impinging on them, acquiring thus the ability to replace

bulk, heavy and di�cult to use conventional optical elements (mirrors, lenses, etc.). Due to

their ultrathin nature and the subwavelentg meta-atom size, metasurfaces can be conveniently

described as e�ective electromagnetic sheets [34]. Metasurfaces comprising of a thin layer

sustaining orthogonal electric and magnetic dipoles, have been utilized for applications as

re�ect-arrays, transmit-arrays, holographic surfaces and others [140]. Moreover, metasurfaces’

�ne electromagnetic features have been shown to enable enhanced detection and sensing, thin

�lm polarizers, multiband shielding and other functionalities [141]–[143].

As mentioned, metamaterials and metasurfaces can be made of metallic, dielectric or semi-

conducting components. They can be also made of a combination of dielectric, semiconducting
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and metallic parts in a properly designed meta-atom architecture and cluster arrangement. A

scheme that has gained signi�cant popularity is structures composed of coated (or even multi-

coated) cylinders or spheres. Such structures are characterized by a relative straightforward

design and have been proposed for a variety of applications due to the increased degree of

design freedom related to the thicknesses and constituent materials in each layer. With proper

selection of geometry and materials, coated cylinders or spheres can lead to overlapping of

di�erent resonances, which is crucial in metasurfaces since it can o�er full transmission or

re�ection and 2π phase modulation (allowing in principle arbitrary wavefront control), or

resonances with engineered quality factors. Applications of such structures include super-

scattering [144]–[148] and electromagnetic cloaking [47], [147], [149]–[155], lenses and many

others [156]. Moreover, metamaterials made of cylindrical meta-atoms, which are the systems

of our interest here, are inherently anisotropic, allowing the possibility of hyperbolic dispersion

relation and negative index [157]. Such structures can be experimentally realized following

the progress of micro and nanotechnology, especially of emerging technologies focused on the

implementation of carbon nanotubes, where there are already metamaterial and photonic crys-

tal orientated developments [158]–[161]. Even more interesting electromagnetic features can

occur in cylindrical meta-atoms coated with tunable sheets bearing individual electric and/or

magnetic resonances to be combined with the response of the coated atom. Such coatings may

involve, for example, a 2D material like uniform graphene or a structured (patterned) graphene

sheet or an electromagnetically thin cluster of cut wires or split ring resonators [149], [154],

[162]–[164], e.g. in a �exible metasurface implementation [165], [166]. It should be mentioned

here that graphene in particular, either in a patterned metasurface form or as a uniform sheet is

very appealing as a coating material due to the ultrathin geometry and the exceptional tunable

properties, especially in the THz wavelengths where we �nd its Drude-like response [56], [57],

[167].

It is clear that an analytical assessment of the electromagnetic response of coated and

multicoated cylinders-based metamaterial structures is important, as it gives the possibility for

the in-depth understanding of the physical mechanisms that lead to the resonant features and

response, and, subsequently, for engineering of this response through structure optimization,

targeting advanced electromagnetic functionalities and applications. Assemblies of resonant

cylinders can be treated as an e�ective homogeneous material in the limit of small characteristic

lengths (radius, unit cell size) compared to the wavelength of interest. Homogenization ap-

proaches applied in systems of coated spheres and cylinders have shown that coatings provide

many interesting e�ects, as for example an increased bandwidth of negative permittivity and

permeability in comparison with their non-coated counterparts [168]. However, to our knowl-

edge, an analytic homogenization approach that can incorporate a random number (larger than

one) of coatings for each cylinder has not been reported in the literature yet. Additionally,

although the scattering properties of cylinders and spheres coated with graphene metasur-

faces have been quite extensively studied, coatings/sheets showing arbitrary resonant electric

and/or resonant magnetic response (representing more complex metasurface-coatings and

allowing delicate interplay of electric and magnetic dipoles, resulting to additional advanced

functionalities) [16], [17], [36], [169]–[173] are much less explored.

The aim of this chapter is to analyze in detail the resonant behaviour and wave propagation

in systems of multilayer cylinders coated with uniform graphene sheets and/or with arbitrary

metasurfaces of both electric and magnetic response; also to provide a homogenization method

for analytically calculating the e�ective electromagnetic properties in such systems. Towards

this direction, we derive an homogeneous e�ective medium approach for in�nitely-long cylin-

drical nanotube clusters with a random number of layers and with the incorporation of both

electric and magnetic sheet conductivities at each interface. Our homogenization approach is

based on the well known in the solid state physics community Coherent Potential Approxima-

tion, CPA [11], [51], [104], [118], [119], introduced and discussed also in the previous chapter.
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Figure 6.1: (a) Top view schematic of N co-centric cylinders and polarization de�nition. We

assume normal incidence. Each cylinder layer is characterized by electric permittivity ε` and

magnetic permeability µ`. The interface between the `-th and the (`+ 1)-th layer is coated,

in the most general case, with a metasurface with arbitrary electric conductivity σe(`) and

magnetic conductivity σm(`). The coated cylider is embedded in a host with electric permittivity

εh and magnetic permeability µh. (b) Schematic of the setup for the e�ective medium derivation

for a system of in�nite parallel cylinders as the one of (a) -see panel (c). In the e�ective medium

setup the original coated cylinder is coated with an additional cylindrical layer made of the host

material of the original system, with radius RN+1 = RN/
√
f , where f is the cylinders �lling

ratio in the original system; the augmented cylinder is embedded in the homogeneous e�ective

medium to be evaluated, with permittivity εe� and permeability µe�. (c) Three-dimensional

view of a metamaterial formed as an array of coated cylinders as the one of (a).

We apply the method in two di�erent systems: (i) uniform graphene-coated cylinders with

tunable response and (ii) cylinders coated with metasurfaces of arbitrary electric and magnetic

resonance. In both systems we study the single meta-atom scattering and the e�ective medium

response which unveils the existence of rich electromagnetic features, i.e., hyperbolic response

of both type I and type II and for both polarizations, double negative response, and epsilon-near-

zero and mu-near-zero response. The chapter is organized as follows: In Sec. 6.2 we present

our method, i.e., starting form the single meta-atom scattering we derive the relations for the

e�ective medium electric permittivity and magnetic permeability tensor components, aiming

to analyze the response of the multilayer nanotube systems and to understand the e�ect of the

interplay of material, metasurfaces and structure resonances (note that the method is developed

for cylindrical meta-atoms with arbitrary number of coatings and with metasurface at each in-

terface). In Sections 6.3.1 and 6.3.2 we apply the method in tunable graphene-coated multilayer

cylindrical nanotubes and in multilayer cylindrical nanotubes with each layer coated with a

metasurface with both electric and magnetic surface response and we show the engineerable

e�ective electric permittivity and magnetic permeability response leading to the emergence of

the alternating optical phases. Finally we present the conclusions on our work.

6.2 Methods
We begin our analysis from the methods derived and/or employed in this work for the

system shown in Fig. 6.1. In the �rst part we present the THz electric and magnetic sheet

conductivities employed. In the second part we present �rst the derivation of a Transfer Matrix

Method, which allows us to calculate the scattering properties of a cylinder composed of N co-

centered layers of di�erent materials, with metasurfaces at the interfaces of these layers. Next,

we derive the CPA-based e�ective medium model for arrays of such multilayered cylinders,

based on the single scattering calculations.



56

Figure 6.2: (a) Real part (times 100) (left axis, blue line) and imaginary part (right axis, red line)

of the sheet conductivity of a uniform graphene sheet modelled by RPA and Eq. (6.1), assuming

Fermi level EF = 0.2 eV and relaxation time τ = 1 ps. (b) Normalized real (solid lines) and

imaginary (dashed lines) parts of electric (se) and magnetic (sm) sheet conductivities calculated

using Eqs. (6.4)-(6.5), assuming parameters ωe/2π = 21 THz, Γe/2π = Γm/2π = 2 THz,

κe/2π = κm/2π = 1 THz and ωm/2π = 18 THz; for the de�nition of those parameters see

main text.

6.2.1 2D Conductivities
In this section we present the electromagnetic properties of the 2D sheets/coatings consid-

ered in this work, i.e., the uniform graphene sheet and the metasurface exhibiting both electric

and magnetic resonance. Although these sheets/coatings are the same discussed in Chapter 4,

in connection with the perfect absorber investigations, we add a short discussion also here for

the sake of completeness.

For the graphene case the conductivity as a function of the Fermi energy, EF , and the

temperature, T , was obtained by Kubo formula, derived in the context of Rapid Phase Approxi-

mation (RPA) [74]; it reads as

σg(ω) = σintra + σinter (6.1)

where the intraband contribution is

σintra(ω) =
2e2kBT

π~2

i

ω + iτ−1
ln

[
2 cosh

(
EF

2kBT

)]
(6.2)

and the interband contribution is

σinter(ω) =
e2

4~
(
1

2
+

1

π
arctan

(
~ω − 2EF

2kBT

)
− i

2π
ln

[
(~ω + 2EF )2

(~ω − 2EF )2 + (2kBT )2

]
). (6.3)



57

Here ω is the angular frequency, ~ = 1.055 × 10−34
Js the reduced Planck constant, kB =

1.38× 10−23
J · K−1

the Boltzmann constant, e = 1.602× 10−19
C the electron charge and τ

the electrons’ relaxation time. Unless otherwise stated, for the majority of this chapter we use

a Fermi level EF = 0.2 eV and a typical relaxation time τ = 1 ps. The real and imaginary part

of the graphene conductivity for these values are shown in Fig. 6.2(a).

Regarding the metasurface sheets (coatings here), usually in the literature, their response

is approximated by a sheet material with e�ective electric and magnetic 2D conductivities

consisting of a summation of Lorentzian resonances [16], [17], [37], [173], [174]. To simplify

our analysis we consider here a metasurface with isotropic surface conductivities and a single

electric and magnetic resonance:

se = σeη0 =
iκeω

ω2 − ω2
e + iωΓe

(6.4)

sm =
σm
η0

=
iκmω

ω2 − ω2
m + iωΓm

(6.5)

where ωe/m are the resonance frequencies, and κe/m, Γe/m are parameters of the lorentzians

(see Chapter 4). For the purpose of the present analysis we have chosen the values of the

parameters involved in the conductivities as fe = ωe/2π = 21 THz, Γe/2π = Γm/2π = 1 THz,

κe/2π = κm/2π = 2 THz and fm = ωm/2π = 18 THz. The real and imaginary part of the

corresponding electric and magnetic conductivities are shown in Fig. 6.2(b).

6.2.2 Single Scattering
Having de�ned the sheet conductivities of the graphene and metasurface coatings we move

to the investigation of a single cylinder system. We consider an in�nitely-long cylinder consist-

ing of N co-centered layers. The system is shown in Fig. 6.1(a). The `-th layer is characterized

by its thickness ∆` = R` − R`−1 (R0 = 0), where R` is the distance from the center to the

perimeter of the `-th layer; its relative electric permittivity is ε`, the relative magnetic perme-

ability is µ`, the electric surface conductivity is σe(`) and the magnetic surface conductivity is

σm(`). The cylinder is embedded in a host material with relative electric permittivity εh and

magnetic permeability µh. We consider wave propagation perpendicular to the cylinder axis.

Since the cylinder is in�nitely-long and there is no propagation component parallel to its axis,

the problem here, as in the case of Chapter 5, is two dimensional and can be decoupled into

two separate polarizations, the transverse electric (TE), with the electric �eld normal to the

cylinder axis, and the transverse magnetic (TM) polarization, with the magnetic �eld normal to

the cylinder axis. In each layer the �elds can be expanded on the basis of cylindrical vector

harmonics. In the `-th layer the �eld F = {E,H} (electic or magnetic) parallel to the cylinder

axis (z direction) will be

F` ∼
∑
ν

[
c`νN

(outward)
eνk`

+ d`νN
(inward)
eνk`

]
, (6.6)

with N
(outward)
eνk`

∼ Hν(k`r) and N
(inward)
eνk`

∼ Jν(k`r) standing for the outgoing and ingoing

cylindrical harmonics respectively [120]. The functions Jν(·) and Hν(·) are the Bessel and

Hankel function of order ν and k` =
√
ε`µ`ω/c. The expansion coe�cients c`ν and d`ν can be

calculated by imposing the appropriate boundary conditions at each interface [13], [14], [175]:

ρ̂× [E`+1 −E`] = −jm(`) = −σm(`)
H` + H`+1

2
(6.7)

ρ̂× [H`+1 −H`] = je(`) = σe(`)
E` + E`+1

2
(6.8)
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where ρ̂ is the unit vector along the radial direction. Here we have chosen a set of Bessel

functions for our descriptions that is not linearly independent, i.e. Jν(x) and Hν(x) instead of

Jν(x) and Yν(x) that are commonly used in the literature, because it is more convenient for

the e�ective medium description in Section 6.2.3.

By applying the boundary conditions, Eq. (6.7) and Eq. (6.8), at each of the interfaces of

the N layers of the cylinder, we construct a matrix equation which connects the �elds in

the innermost layer with the �elds outside the cylinder (incident + scattered �eld), for each

cylindrical wave/harmonic excited. This Transfer Matrix equation reads:

MP

(N),ν

(
bν

0

)
=

(
1

aν

)
(6.9)

where MP

(N),ν is the total transfer matrix for polarization P. With aν we denote the scattering

coe�cient of the scattered wave (for coe�cient 1 of the incident wave) and with bν the coe�cient

for the core layer while ν stands for the excited mode (cylindrical harmonic). For polarization

P = {TE,TM} we can write the transfer matrix TP

`ν which transfers the �elds from the (`)-th

layer to the the �elds in the (`+ 1)-th layer as

TP

`ν

(
d`ν

c`ν

)
=

(
d(`+1),ν

c(`+1),ν

)
(6.10)

For TE polarization the matrix TTE

`ν has the form

TTE

`ν = [DTE

(`+1)ν(R`)]
−1 · [X+

` ]−1 · X−` · D
TE

`ν (R`) (6.11)

where

DTE

`ν (R`) =

(
J ′ν(k`R`) H ′ν(k`R`)

1
η`
Jν(k`R`)

1
η`
Hν(k`R`)

)
. (6.12)

and the surface conductivity matrices (X) are

X±` =

(
1 ±iσm(`)/2η0

∓iσe(`)η0/2 1

)
(6.13)

where η` =
√
µ`/ε` is the impedance of the `-th layer and η0 =

√
µ0/ε0 is the vacuum

impedance.

For TM polarization we get

TTM

`ν = [DTM

(`+1)ν(R`)]
−1 · [X−` ]−1 · X+

` · D
TM

`ν (R`) (6.14)

DTM

`ν (R`) =

(
Jν(k`R`) Hν(k`R`)

1
η`
J ′ν(k`R`)

1
η`
H ′ν(k`R`)

)
(6.15)

The details of the calculations are presented in the Appendix.

The total transfer matrix reads as

MP
(N),ν =

1∏
`=N

TP
`ν (6.16)

From Eq. (6.9), we can de�ne the coe�cients bν (�eld in the core layer) and aν (scattered �eld

coe�cient) as

bν =
1

M(11)
(N),ν

, (6.17)
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aν = M(21)
(N),νbν =

M(21)
(N),ν

M(11)
(N),ν

. (6.18)

The scattering and extinction e�ciencies of the whole structure can all be written in terms of

aν as

QP
ext

= − 2

|khRN |
Re

[
aP0 + 2

∞∑
ν=1

aPν

]
, (6.19)

QP
sc

=
2

|khRN |

[
|aP0 |2 + 2

∞∑
ν=1

|aPν |2
]
. (6.20)

Metasurface-covered cylinder: Having the above equations, one can derive limiting expres-

sions for di�erent systems of practical or theoretical interest. Here we derive expressions for

the resonance frquencies (poles) of the ν = 1 mode of a single-layer cylinder coated with a

metasurface. For a single cylindrical layer (N = 1) with radius R1 = R coated with a surface

with conductivities σe and σm in a host material with electric permittivity εh and magnetic per-

meability µh, the scattering coe�cients will be given based on Eq. (6.18). In the limit khR� 1
and ignoring terms containing the interaction term σeσm, the poles of the TE1 mode can be

found from the expression

1

η1

J1(k1R)

J ′1(k1R)
=

σeη0ηh − ikhR
iηh + khRσmη

−1
0

(6.21)

Further, if we take the quasistatic limit of khR� 1 and k1R� 1, we �nd

ε1
ω

c
R =

iσeη0 + εh
ω
cR

εhiσmη
−1
0

ω
cR− 1

(6.22)

or

ε1εhiσmη
−1
0

(ω
c
R
)2
− (ε1 + εh)

ω

c
R = iσeη0 (6.23)

For the sake of our analysis we ignore the damping term in the conductivities (see Eqs. (6.4)-(6.5)),

i.e. we consider

se/m =
iκe/mω

ω2 − ω2
e/m

(6.24)

For x = k0R = ωR/c � 1 we can write the magnetic sheet conducity as sm = σmη
−1
0 '

iκm(−(c/R) · x/ω2
m − (c/R)3 · x3/ω4

m) + O(x4), and hence, can ignore the �rst term of

Eq. (6.23). In this case, we can use Eqs. (6.23) and (6.24) to get:

− (ε1 + εh)
ω

c
R = i

iκeω

ω2 − ω2
e

(6.25)

or

− (ε1 + εh)
ω

c
R(ω2 − ω2

e) = −κeω (6.26)

or

(ε1 + εh)
R

c
(ω2 − ω2

e) = κe. (6.27)

Finally we �nd that the frequency of the TE1 resonance of the structure is at

ω2
TE1
' ω2

e +
cκe

(ε1 + εh)R
. (6.28)

An equivalent expression can be obtained for the TM1 resonance:

ω2
TM1
' ω2

m +
cκm

(µ1 + µh)R
. (6.29)

For graphene, if we ignore the interband conductivity term in Eq. (6.1), the sheet conductivity

takes the form σg(ω) ' iκg/ω, where κg = 2e2kBT
π~2 ln

[
2 cosh

(
EF

2kBT

)]
; we again get a 1/

√
R

dependence of the TE1 mode resonance frequency.
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6.2.3 E�ective Medium Theory
In this section we derive the components of the e�ective permittivity and permeability

tensors for a uniaxial anisotropic system of in�nitely-long parallel circular multicoated cylinders

of N layers each and surface electric and magnetic conductivities at each interface.

We follow the same approach as the one of Chapter 5, where we calculated the e�ective

medium parameters for a cluster of cylinders without coating and surface conductivities [51],

[104]. To derive the e�ective medium equations in the case of N -coated cylinders we consider

a cylinder of N+1 layers embedded in the e�ective medium, as depicted in Fig. 6.1(b), and we

require the vanishing of the scattering amplitudes. The (N + 1)-th layer of that cylinder is the

host of the original system (with εN+1 = εh and µN+1 = µh) with thickness RN+1−RN . The

radiusRN+1 of the outer layer is determined by the �lling ratio, f , of the cylinders in the original

system, as f = R2
N/R

2
N+1 The host material in the con�guration of Fig. 6.1(b) has permittivity

εe� = ε⊥
e�

(x̂x̂+ ŷŷ)+ε
‖
e�
ẑẑ and permeability µe� = µ⊥

e�
(x̂x̂+ ŷŷ)+µ

‖
e�
ẑẑ. In order to derive

the expressions for the tensor components of e�ective permittivity and permeability we require

that the scattering coe�cients of the scattered �eld in the e�ective medium, a
(e�)
ν vanish. After

algebraic manipulations (see details in Appendix 6.5.2), this requirement leads to expressions

for the coe�cients of the original system, which read as

aP

ν(RN+1; e�, h) = aP

ν ({R1, . . . , RN}; {A1, . . . , AN}, h) (6.30)

where aP

ν(RN+1; e�, h) are the scattering coe�cients of a single-layered cylinder with elec-

tric permittivity εe�, magnetic permeability µe� and radius RN+1, embedded in a host with

electric permittivity εh and magnetic permeability µh. In the right-hand-side of Eq. (6.30),

aP

ν({R1, . . . , RN}; {A1, . . . , AN}, h) are the scattering coe�cient of the original system, con-

sisting of N co-centered cylinders with radii {R1, R2, . . . RN} and materials (including surface

conductivities at each interface) {A1, A2, . . . AN} in the host material (of the original system).

In the metamaterial frequency range, khRN+1 < 1, however, there are only two dominant

modes per polarization, the lower order ones, i.e. the ν = 0 and the ν = 1 mode. In the limit

ke�RN+1 � 1, we can replace the Bessel functions in Eq. (6.30) with their limiting expressions

assuming small arguments [121] - see Chapter 5. Considering only the ν = 0 and ν = 1 modes

per polarization, we can obtain analytical expressions for all the components of the e�ective

electric permittivity and magnetic permeability tensors, which read as

ε
‖
e�

= − 2εh
khRN+1

[
J ′0(khRN+1) +H ′0(khRN+1)aTM

0

J0(khRN+1) +H0(khRN+1)aTM

0

]
(6.31)

µ⊥
e�

=
µh

khRN+1

[
J1(khRN+1) +H1(khRN+1)aTM

1

J ′1(khRN+1) +H ′1(khRN+1)aTM

1

]
(6.32)

µ
‖
e�

= − 2µh
khRN+1

[
J ′0(khRN+1) +H ′0(khRN+1)aTE

0

J0(khRN+1) +H0(khRN+1)aTE

0

]
(6.33)

ε⊥
e�

=
εh

khRN+1

[
J1(khRN+1) +H1(khRN+1)aTE

1

J ′1(khRN+1) +H ′1(khRN+1)aTE

1

]
(6.34)
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Equations (6.31)-(6.34) have the same form as the relations obtained in Chapter 5. Finally, if we

further take the limit khRN+1 � 1, we get

ε
‖
e�

= εh

[
1− f

(khRN )2

4i

π
aTM

0

]
(6.35)

µ⊥
e�

= µh

[
(khRN )2 − f 4i

π a
TM

1

(khRN )2 + f 4i
π a

TM

1

]
(6.36)

µ
‖
e�

= µh

[
1− f

(khRN )2

4i

π
aTE

0

]
(6.37)

ε⊥
e�

= εh

[
(khRN )2 − f 4i

π a
TE

1

(khRN )2 + f 4i
π a

TE

1

]
(6.38)

where f = R2
N/R

2
N+1 is the �lling ratio. Note here that for cylinder without any coating

(N = 1, σe = 0, σm = 0) in the quasistatic limit (i.e. khRN+1 � 1, k1R� 1), Eqs. (6.31)-(6.34)

reduce to the well-known Maxwell-Garnett expressions.

6.3 Results and Discussion

6.3.1 Single scattering

Graphene cylinders
We begin our analysis by calculating the extinction e�ciencies of (i) a single-layered and

(ii) a multi-layered cylinder, coated by homogeneous graphene layers. We assume that all

the cylinder layers are air, i.e. ε` = 1 and µ` = 1, and the same for the host material. The

geometry is comprised, in fact, of co-centered cylindrical cells/sheets with electric surface

conductivity σe = σg calculated using Eq. (6.1) and plotted in Fig. 6.2(a). (Such a geometry can

be considered as a good approximation of a family of single and double-wall carbon nanotubes.)

The extinction e�ciencies for a single graphene cylindrical layer of variable radius, R = 35
nm, R = 45 nm and R = 55 nm, are shown in Fig. 6.3(a), while the extinction e�ciencies for a

double-layered cylinder with variable outer-layer radius R2 are shown in Fig. 6.3(b). For the

single graphene layer [Fig. 6.3(a)] there is only one dominant peak in the extinction spectrum,

originated from the dipolar ν = 1 mode for TE polarization. We denote this mode as TE1. Since,

in this frequency region the imaginary part of the surface conductivity of graphene [Fig. 6.2(a)]

is positive, the mode is similar in nature to the Localized Surface Plasmon Resonance (LSPR)

sustained in metallic rods [125].

For the double-layered case (N = 2) shown in Fig. 6.3(b) we consider a core of constant

radiusR1 = 45 nm and the variable outer layer radius: R2 = 70 nm, R2 = 80 nm andR2 = 90
nm. In this case, the TE1 mode manifests as two distinct resonances at frequencies below

and above the TE1 resonance for the single layer case. Here, we denote these resonances in

order of increasing frequency as TE
(1)
1 and TE

(2)
1 . From the frequency of the modes, one can

conclude that the mode TE
(1)
1 comes predominately from the contribution of the outer layer

(probably shifted due to the presence and interaction with the inner one), while TE
(2)
1 from the

contribution of the core-layer, slightly shifted due to the interaction with the outer layer. A

worth-mentioning feature of Fig. 6.3(b) is the small frequency shift of the TE
(1)
1 peak with the

change of the radius R2, compared, e.g., with the corresponding shift observed in Fig. 6.3(a).

Possible cause of this di�erence might be the presence of the inner layer. We should note
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Figure 6.3: Extinction e�ciencies, Qext, in (a) a single-layer graphene cylindrical tube in air

with varying radius, R, and (b) a double-layered graphene cylinder in air with inner radius

R1 = 45 nm, and variable outer layer radii R2 for TE polarization . All layers exhibit surface

conductivity σg with Fermi level EF = 0.2 eV and relaxation time τ = 1 ps. All cylinder bulk

(inter-surface) layers are made of air.

here that for this case the extinction e�ciency for TM polarization is below 10−2
, with no

resonances for both cases, and it is not shown here.

The dependence of the resonance frequencies on the radii of the graphene cylindrical layers,

which are calculated by �nding the poles of the scattering coe�cients aν [Eq. (6.18)], are shown

in Figs. 6.4(a)-(b). We observe that the resonance frequency in the single-layered cylinder

scales with the radius of the cylinder with a 1/
√
R dependence as we derived in Eq. (6.28) (see

Sec. 6.2.2). The tendency of of TE1 modes for the double-layered case (N = 2) can be explained

in terms of mode hybridization, where the modes coupling leads to a lower-frequency "bonding"

mode and a higher-frequency anti-bonding mode [147], [176]–[178].

Metasurface cylinders
Next, we turn our attention to cylinders formed by metasurfaces having both electric and

magnetic response. We consider two cases: (i) a single-layered cylinder of variable radius and

(ii) a double-layered cylinder of the same metasurface at each layer with �xed inner-layer radius.

The metasurfaces have conductivities, σe(1) = σe(2) and σm(1) = σm(2), presenting a resonance,

as it is shown in Fig. 6.2(b), and ε1 = ε2 = εh = 1. The extinction e�ciencies for both TE and

TM polarizations and for the single- and the double-layered cylinders are shown is Fig. 6.5.
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Figure 6.4: Resonance frequencies of �rst two modes, ν = 0 and ν = 1, per polarization, TE

and TM, for: (a) a single-layered graphene cylinder versus its radius, R; (b) a double-layered

graphene cylinder for di�erent outer-layer radii, R2 and constant core radius R1 = 45 nm

; (c) a single-layered metasurface-formed cylinder of di�erent radii, R; (d) a double-layered

metasurface cylinder with core radius R1 = 100 nm and variable interlayer radii R2. The

characteristic �eld distributions of the z component of the electric (magnetic) �eld for TM (TE)

polarization for the ν = 0 and ν = 1 modes are shown in the insets of (c).

In the single-layered cylinders we investigate cases of varius radii: R = 50 nm, R = 100 nm

and R = 150 nm. There are two resonances for both TE and TM polarizations. The electric in

nature TM0 and the magnetic in nature TE0 modes appear just below the resonance frequencies

of the electric sheet conductivity, fe = ωe/2π = 21 THz, and the magnetic sheet conductivity,

fm = ωm/2π = 18 THz, respectively. Just below fe (fm) the imaginary part of the electric

(magnetic) sheet conductivity of the metasurface is negative [see Fig. 6.2(b)] leading to positive

equivalent electrical permittivity (magnetic permeability); this case is similar to the polaritonic

cylinders for small radii we have discussed in Chapter 5. On the other hand, the dipole-like

modes, TE1 and TM1, fall in the regions of positive imaginary part of electric and magnetic

conductivity respectively.

Next we study the case of the double-layered cylinder formed of the same metasurface, at

inner layer radius R1 = 100 nm and di�erent outer layer radii R2. We observe two dipolar

(ν = 1) electric and magnetic modes,TE
(1)
1 and TE

(2)
1 , TM

(1)
1 and TM

(2)
1 , one of lower and one

of higher frequency than the corresponding modes of a single-layered cylinder, similar to the

graphene case we discussed in the previous paragraph. Note here that the TM
(1)
1 mode [see

Fig. 6.4(d)] is very close in frequency with the TM
(2)
0 mode.

The dependence of the resonance frequencies of the dominant modes on the radius of

the single-layered cylinder and on the radius R2 for the double-layered case, for constant

R1 = 100 nm, is shown in Figs. 6.4(c)-(d). It is interesting to observe in Fig. 6.4(c) and Fig. 6.4(d)

that the TE0 and TM0 modes for the double-layered case also split into two resonances, although
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Figure 6.5: Extinction e�ciencies, Qext, for:(a) and (b), a single-layered (N = 1) metasurface-

formed cylinder of variable radius, R, for TE (a) and TM (b) polarization; (c) and (d), a double-

layered (N = 2) metasurface cylinder with constant core radius R1 = 100 nm and variable

outer-layer radius, R2, for TE (c) and TM (d) polarization. The vertical dashed grey lines

in the panels indicate the resonant frequencies of the metasurface magnetic and the electric

conductivities at fm =18 THz and fe =21 THz, respectively. The symbols associated with each

resonance are explained in the main text.

the spitting is less pronounced than the one of the TE1 (black lines) and TM1 (green lines)

modes. To further elucidate this e�ect we plot the zeroth-th order scattering coe�cients a0,

in Fig. 6.6, for a double-layered cylinder with R1 = 100 nm and R2 = 150 nm as a function

of the magnetic sheet conductivity resonance frequency, fm, with constant fe = 21 THz. For

instance, for the TE polarization, we can observe that the strength of the weaker TE
(2)
0 resonance

becomes more prominent and approaches in frequency the TE
(1)
0 as the resonance frequency fm

approaches fe. Interestingly, even in the case of fe = fm, the two resonances remain distinct as

a result of the interaction of the layers about the electric and magnetic conductivity resonance.

However, the splitting of the TE0 modes is absent when the electric conductivity is zero (see

Fig. 6.12 in Appendix 6.5.3). Similar behaviour is observed in the case of the TM0 mode.

6.3.2 E�ective medium theory and alternating optical phases

Graphene cylinders
We turn our attention now to the e�ective medium parameters εe� and µe� for clusters of

graphene and metasurface cylinders in air, aligned in a square lattice, as presented in Fig. 6.1(c).

The cylinders considered are the ones discussed in the previous section. We examine initially

the uniform graphene cases. In Fig. 6.7 we plot the real and imaginary parts of the tensor
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Figure 6.6: Zeroth-order scattering coe�cients, a0, as a function of the magnetic surface

conductivity resonance frequency fm for (a) TE and (b) TM polarizations for a double-layered

metasurface cylinder (N = 2) with core radius R1 = 100 nm, interlayer distance R2 = 150 nm

and constant electric surface conductivity resonance frequency fe = 21 THz (dashed vertical

line).

components of e�ective electric permittivity εe� = ε⊥
e�

(x̂x̂ + ŷŷ) + ε
‖
e�
ẑẑ for single-layered

graphene cylinders [Fig. 6.7(a) and Fig. 6.7(c)] and double-layered cylinders [Fig. 6.7(b) and

Fig. 6.7(d)] for constant �lling ratio, f =20%, and di�erent radii. As one can see, for both the

single- and the double-layered cases there are lorentzian-shaped resonances for the in-plane

component of the e�ective electric permittivity, ε⊥
e�

, close in frequency to the corresponding

TE1 resonances [see Figs. 6.3 and 6.4(a)-(b)]. Also we can observe a Drude-like response for

the parallel component of e�ective electric permittivity ε
‖
e�

for both arrays of single- and

double-layered graphene cylinders. All the components of the e�ective magnetic permeability

µe� are equal to unity and are not shown here. As the radius of the cylinders increases the

resonance of the ε⊥
e�

moves to lower frequencies. Interestingly, for single-layered cylinders all

the components of the e�ective electric permittivity vanish at the same frequency, close to the

TE1 mode resonance frequency. For instance, for R = 45 nm the Epsilon-Near-Zero (ENZ) is

achieved at 23.7 THz and moves to lower frequencies as the radius of the cylinder increases.

This result along with Eqs. (6.31) and (6.34) suggests that aTM

0 = aTE

1 at that frequency for

the single-layered graphene cylinder. Further examinations showed that the monochromatic

vanishing of both components of e�ective permittivity tensor holds only for the symmetric

case, where the material inside the graphene layer and the host are the same (air here). On the
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Figure 6.7: Real (top row) and imaginary (bottom row) parts of the parallel ε
‖
e�

(dashed curves)

and perpendicular ε⊥
e�

(solid curves) components of the relative e�ective permittivity εe� for:

(a) and (c) a system made of single-layered (N = 1) graphene cylinders of variable radius,

R = 45 nm (blue curves) and R = 55 nm (red curves) in air; (b) and (d) a system of double-

layered (N = 2) graphene cylinders in air, with constant core radius R1 = 45 nm, and for

outer layer radii R2 = 70 nm (green curves) and R2 = 90 nm (purple curves); the cylinders

�lling ratio is in all cases equal to f = 20%.

other hand, for the double-layered cylinders, due to the presence of multiple resonances, there

are several frequencies where the ε⊥
e�

vanishes.

Moreover, as one can notice, there are frequency regions where the in-plane and out-of-

plane components of the e�ective electric permittivity have di�erent signs, i.e. ε⊥
e�
· ε‖

e�
< 0.

This is the condition for hyperbolic response (i.e. dispersion relation of the shape of hyperbola -

see also previous chapter) for TM-polarized waves, as can be seen by taking into account the

the dispersion relations for an anisotropic homogeneous material [129],

TM:

k2
⊥

µ⊥
e�
ε
‖
e�

+
k2
‖

µ⊥
e�
ε⊥

e�

=
(ω
c

)2
, (6.39)

TE:

k2
⊥

µ
‖
e�
ε⊥

e�

+
k2
‖

µ⊥
e�
ε⊥

e�

=
(ω
c

)2
, (6.40)

where k‖ and k⊥ stand for the wave-vector components parallel and perpendicular to the

cylinder axis respectively. For example, for the single-layered graphene cylinders with radius

R = 45 nm [blue curve in Fig. 6.7(a)] the condition for hyperbolic response is achieved up to

28.6 THz, where both ε⊥
e�

and ε
‖
e�

become positive. We can further distinguish the hyperbolic

metamaterial response of our systems into two di�erent frequency regions by considering the

di�erent signs of ε⊥
e�

and ε
‖
e�

. For frequencies below the TE1 resonance the in-plane components
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Figure 6.8: (a) Extinction e�ciency for TE polarization for a single-layered graphene cylinder

with radius R = 45 nm in air, for di�erent Fermi energies, EF . (b) Real part of the in-plane

component of e�ective electric permittivity ε⊥
e�

for a system of single-layered graphene cylinders

as the one of panel (a), in air, with cylinder �lling ratio f =20%.

ε⊥
e�

are positive, while the out-of-plane component ε
‖
e�

is negative; thus we have type I hyperbolic
metamaterial (HMM I). For radius R = 45 nm (blue curve in Fig. 6.7) we have ε⊥

e�
> 0 and

ε
‖
e�
< 0 up to frequency 26.7 THz. On the other hand, in the frequency region 26.7 THz-28.6 THz

and radius R = 45 nm we have ε⊥
e�
< 0 and ε

‖
e�
> 0, thus hyperbolic metamaterial type II

(HMM II) response. The response is more rich for the metamaterial comprised of double-layered

graphene cylinders shown in Fig. 6.7(b) and Fig. 6.7(d). Considering the case with constant core

radius, R1 = 45 nm, and variable outer layer radii, R2 = 70 nm [green curve in Fig. 6.7(b) and

Fig. 6.7(d)] and R2 = 90 nm [purple curve in Fig. 6.7(b) and Fig. 6.7(d)], we see that there are

alternating optical phases (HMM I, metallic, HMM II and dielectric) at frequencies close to the

two TE1 resonances. For instance, for R2 = 70 nm we �nd HMM I response in the frequency

region up to 13.7 THz and 14.6-24.3 THz and HMM II response in the frequency region 28.5 -

32. THz.

We should mention also here that the response of graphene-shells and graphene-coated

rods is highly tunable by changing the Fermi level of graphene. This, as mentioned, can be

accomplished by various methods, including chemical doping, voltage tuning and photoexci-

tation. The dependence of the extinction e�ciency for a single-layered graphene cylinder in

presented in Fig. 6.8(a). Here me modify the Fermi energy of the graphene, EF=0, 0.1, 0.2, 0.3,

0.4 eV. As observed the extinction e�ciency is very small (maximum of Qext = 0.05) for the
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Figure 6.9: Normal incidence, TE transmission spectra for a slab of triple-layered graphene

cylinders with radii R1 = 45 nm, R2 = 90 nm and R3 = 135 nm and �lling ratio f = 20% in

air, in a square arrangement. The transmission is calculated by the commercial �nite element

method electromagnetic solver Comsol Multiphysics, considering a computational system of 7

unit cell thickness (along the propagation direction). The full wave transmission results (red

circles) are compared with results for a homogeneous e�ective medium of the same thickness as

the actual system and e�ective parameters obtained through our CPA-based e�ective medium

approach (black line).

case of zero Fermi level; as the Fermi energy increases the extinction e�ciency becomes larger

and the resonance shifts to higher frequencies.

Fig. 6.8(b); shows the in-plane component of the e�ective electric permittivity ε⊥
e�

for

cylinders with radius R = 45 nm and �lling ratio f =20%, for di�erent Fermi energies EF=0,

0.1, 0.2, 0.3, 0.4 eV. The e�ective permittivity results are presented in parallel with single-

scattering data (Fig. 6.8(a)), to facilitate the understanding of the observed response. We see

that the TE1 resonance of the single scattering setup [Fig. 6.8(a)] is moving towards higher

frequencies as the Fermi level grows, and the resonance becomes stronger in both extinction

e�ciency and e�ective electric permittivity spectra.

Formulation validation
In order to verify the validity and accuracy of the developed e�ective medium approach

we compare is results with equivalent full-wave simulations data. Speci�cally we calculate

the transmission and re�ection spectra through a slab consisting of seven unit cells (along

propagation direction) of a triple-layered (N = 3) graphene cylinder arranged in a square lattice

using the full wave numerical analysis software COMSOL MULTIPHYSICS, and we compare

the results with the response (obtained by transfer matrix calculations) of a slab with electric

permittivity εe� and magnetic permeability µe� and same thickness as the actual system. The

transmission comparison for TE polarization is shown in Fig. 6.9. We �nd excellent agreement

between full wave simulations and the e�ective medium model. As expected, we observe that

there are three frequency regions where the transmission through the structure tends to zero,

in agreement with the frequency regions where ε⊥
e�

becomes negative.
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Figure 6.10: Real (top row) and imaginary (bottom) parts of the tensor components of e�ective

permittivity εe� (�rst column ε
‖
e�

and second column ε⊥
e�

) and e�ective permeability µe� (third

column µ
‖
e�

and fourth column µ⊥
e�

) for a system/metamaterial of single-layered (N = 1)

metasurface-formed cylinders in air, for di�erent radii,R = 100 nm (blue lines) andR = 200 nm

(red lines), and �lling ratio f = 20%. The vertical dashed lines indicate the resonance frequencies

of the magnetic (fm = 18 THz) and electric sheet conductivity (fe = 21 THz).

Metasurface-based cylinders
Next, we turn our attention to the e�ective response of arrays of metasurface-based cylinders,

investigating the single-layered and double-layered cylinder systems as previously; the results

are presented in Fig. 6.10 and Fig. 6.11, respectively. The e�ective medium parameters in a

single-layered cylinder metasurface for both TE and TM polarizations are shown in Fig. 6.10

for two cylinders radii, R = 100 nm (blue curves) and R = 200 nm (red curves). As one

can notice there are frequency regions where the medium becomes double negative (DNG)

resulting in negative refractive index, i.e. both εe� < 0 and µe� < 0. For R = 100 nm and TM

polarization both ε
‖
e�

and µ⊥
e�

are negative between frequencies 28.19 THz and 28.64 THz, with

the magnetic response originating from the metasurface magnetic sheet conductivity resonance.

For the larger cylinder-radius system DNG is achieved for TM polarization, at lower frequencies.

In particular, for R = 200 nm the medium exhibits DNG response in the frequency region

23.73-24.38 THz. On the other hand, for TE polarization there is no DNG response (ε⊥
e�
< 0

and µ
‖
e�
< 0) for the parameters studied here. It is interesting to observe that the metasurface-

cylinders system exhibits HMM response for both TM and TE polarizations. By considering the

anisotropic material dispersion relations of Eqs. (6.39)-(6.40) and the results shown in Fig. 6.10

one can see that there are both HMM I and HMM II responses for both TM and TE polarizations.

In particular, the arrays of metasurface-coated cylinders with R = 100 nm (blue curves in

Fig. 6.10) and �lling ratio f = 20% exhibit HMM I response (µ⊥
e�
ε
‖
e�
< 0 and µ⊥

e�
ε⊥

e�
> 0) in the

frequency range 21.1-28.15 THz and 28.7-29.75 THz and HMM II (µ⊥
e�
ε
‖
e�
> 0 and µ⊥

e�
ε⊥

e�
< 0)

response in the frequency range 28.2-28.6 THz and in the frequency range 29.8-31.7 THz for TM

polarization. Also, for TE polarization there is HMM I response (ε⊥
e�
µ
‖
e�
< 0 and ε⊥

e�
µ⊥

e�
> 0) in
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Figure 6.11: Real (top row) and imaginary (bottom) parts of the tensor components of ef-

fective permittivity εe� (�rst column ε
‖
e�

, second column ε⊥
e�

) and e�ective permeability µe�

(third column µ
‖
e�

, fourth column µ⊥
e�

) for a system/metamaterial of double-layered (N = 2)

metasurface-formed cylinders in air, with core radiusR1 = 100 nm and for di�erent outer-layer

radii, R2 = 150 nm (blue lines) and R2 = 250 nm (red lines), and �lling ratio f = 20%. The

vertical dashed lines indicate the resonance frequencies of the magnetic (fm = 18 THz) and

electric sheet conductivity (fe = 21 THz).

the frequency regions 17.97-26.53 THz and 28.75-29.75 THz, and HMM II response (ε⊥
e�
µ
‖
e�
> 0

and ε⊥
e�
µ⊥

e�
< 0) in the frequency range 28.19-28.7 THz.

We close our analysis by investigating the e�ective medium parameters for the double-

layered metasurface cylinders systems which are shown Fig. 6.11. Similar to the single-layered

cylinder case, we �nd a rich electromagnetic response. The main di�erence compared to the

single-layered cylinders is the number of resonances associated with the TE1 and TM1 modes

(a�ecting the magnetic permeability µ
‖
e�

and electric permittivity ε⊥
e�

components respectively).

There are again regions of alternating optical phase (between HMM I and HMM II) for both

TE and TM polarizations. For instance, for R1 = 100 nm and R2 = 150 nm there is a HMM

I response in the frequency regions 21.17-29.34 THz and in 31.84-32.9 THz and a HMM II

response in the frequency region 32.95-34.64 THz for TM polarization. For TE polarization

there is HMM I response in the frequency regions 17.72-27.33 THz, 31.84-32.9 THz and HMM

II response in the frequency region 31.24-31.79 THz. We should note here that we didn’t �nd

any frequency region of DNG response for the double-layered metasurface cylinders system.

However, our results suggest that DNG response can be achieved also for this case by properly

tuning the structure parameters (radii, �lling ratio, materials).

6.4 Conclusions
We derived analytically the single scattering cross-sections for multilayer co-centric cylin-

ders where every layer can be coated with metasurfaces of arbitrary sheet-conductivities, both
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electric and magnetic. Using this formalism we further derived e�ective medium parameters

for metamaterials composed of the above-mentioned co-centric cylinders.

Next we applied the formalism developed, performing a detailed study of metamaterial

systems composed of (a) graphene nanotubes of one and two concentric layers, and (b) nanotubes

formed from a metasurface having both electric and magnetic response, in the THz region

of the electromagnetic spectrum, and we derived semi-analytical formulas for the e�ective

medium parameters for those systems.

Initially, we calculated the single meta-atom extinction e�ciency for both systems, for single-

layered and double-layered co-center cylindrical con�gurations, assuming variable geometrical

parameters, and We identi�ed the nature of the dominant modes, i.e., the fundamental (ν = 0)

and dipolar (ν = 1) modes, that contribute to the extinction spectrum. Next, we calculated the

e�ective medium parameters of the systems. We found that by properly choosing the number of

layers and radii, the resulting metamaterial systems can exhibit a rich electromagnetic response,

own to the engineerable permittivity and permeability; this rich response includes a variety

of alternating optical phases, i.e., hyperbolic response of both type I and type II for both TE

and TM polarizations, double negative response and regions of epsilon-near-zero and mu-near-

zero response. Our results suggest that the response of the metasurface-coated cylinders can

be exploited for the design of multifunctional materials and devices for the control of THz

electromagnetic radiation. The approach can be employed to every frequency regime with

proper adjustments.

6.5 Appendices

6.5.1 Transfer Matrix Method
In this appendix we derive the transfer matrices used in our analysis. For TE polarization

the magnetic �eld is parallel to the cylinder axis, H=Hz ẑ. The electric and magnetic �elds in

the `-th layer can be expanded on the basis of the cylindrical vector harmonics as:

E` = i

∞∑
ν=−∞

iν

k`

[
c`νM

(outward)
eνk`

+ d`νM
(inward)
eνk`

]
(6.41)

H` =
1

η`

∞∑
ν=−∞

iν

k`

[
c`νN

(outward)
eνk`

+ d`νN
(inward)
eνk`

]
(6.42)

where c is the speed of light in vacuum, k` =
√
ε`µ`

ω
c and η` =

√
µ`/ε`. The coe�cients c`ν

and d`ν can be determined from the boundary conditions at the surface of the cylinder.

The boundary conditions at the interface between the `-th and the (`+ 1)-th layer can be

written as:

Eϕ`+1 − E
ϕ
` = −σm(`)

Hz
` +Hz

`+1

2
(6.43)

Hz
`+1 −Hz

` = −σe(`)
Eϕ` + Eϕ`+1

2
(6.44)

Now, we can connect the �elds with the transfer matrix as:

TP

`ν

(
d`ν

c`ν

)
=

(
d(`+1),ν

c(`+1),ν

)
(6.45)

Where TP

`ν is the transfer matrix that connects the �elds in the `-th and (`+ 1)-th layer of the

multi-layer cylinder for polarization P = {TE,TM}. For TM polarization (the electric �eld is
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parallel to the cylinder axis, E=Ez ẑ) the electric and magnetic �elds in the `-th layer can be

expanded as:

H` = − i

η`

∞∑
ν=−∞

iν

k`

[
c`νM

(outward)
eνk`

+ d`νM
(inward)
eνk`

]
(6.46)

E` =
∞∑

ν=−∞

iν

k`

[
c`νN

(outward)
eνk`

+ d`νN
(inward)
eνk`

]
(6.47)

The boundary conditions between the `-th and the (`+ 1)-th layer can be written as:

Ez`+1 − Ez` = σm(`)

Hϕ
` +Hϕ

`+1

2
(6.48)

Hϕ
`+1 −H

ϕ
` = σe(`)

Ez` + Ez`+1

2
(6.49)

6.5.2 E�ective Medium Theory
In this appendix we derive the the total transfer matrix formulation which reads:

M(N+1),ν

(
bν

0

)
=

(
1

a
(N+2)
ν

)
(6.50)

with M(N+1),ν being the total transfer matrix of the layered in�nitely-long cylinder with N + 1
layers.

M(N+1),ν

(
bν

0

)
=

(
1

a
(N+2)
ν

)
(6.51)

Therefore, the scattering coe�cient a
(N+2)
ν will be:

bν =
1

M(11)
(N+1),ν

(6.52)

a(N+2)
ν = M(21)

(N+1),νbν =
M(21)

(N+1),ν

M(11)
(N+1),ν

(6.53)

In order for an incoming wave to see a truly homogeneous medium, this coe�cient has to

vanish:

a(N+2)
ν = M(21)

(N+1),νbν =
M(21)

(N+1),ν

M(11)
(N+1),ν

= 0 (6.54)

which leads to:

M(21)
(N+1),ν = 0. (6.55)

For a system of N layers the total transfer matrix for the e�ective medium system can be written

as:

M(N+1),ν =
1∏

`=N+1

T`ν = T(N+1),ν

1∏
`=N

T`ν (6.56)

For simplicity we will denote B(N),ν =
∏1
`=N T`ν . This matrix contains information only

about the original system. Using index notation for matrix multiplication Cik =
∑

j A
ijBjk

the generalized-CPA equation will be

M(21)
(N+1),ν = 0 = T(21)

(N+1),νB
(11)
(N),ν + T(22)

(N+1),νB
(21)
(N),ν (6.57)
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Figure 6.12: TE (solid lines) and TM (dashed lines) extinction e�ciencies for a double-layered

metasurface-coated cylinder (N=2) with core radius R1 = 100 nm and variable outer layer radii

R2 for metasurfaces with (a) magnetic surface conductity σm with fm = 18 THz and σe = 0,

and (b) electric surface conductity σe with fe = 21 THz and σm = 0. The vertical dashed grey

lines indicate the resonances of the sheet conductivities.

or

−
T(21)

(N+1),ν

T(22)
(N+1),ν

=
B(21)

(N),ν

B(11)
(N),ν

(6.58)

For the term appearing in the left-hand-side we have, aν(RN+1; e�, h) = −T21
(N+1),ν/T

22
(N+1),ν ,

which is equal to the scattering coe�cient of a single cylinder with electric permittivity εe�,

magnetic permability µe� and radiusRN+1 embedded in a host with electric permittivity εh and

magnetic permeability µe�. The right-hand-side is equal to a
(N)
ν = B21

(N),ν/B
11
(N),ν (scattering

coe�cient of N-layer cylinder) .

6.5.3 Extinction e�ciencies for N = 2 and σe = 0 or σm = 0

Here we brie�y discuss the case of a double-layered cylinder coated with a metasurface for

the case of either σe = 0 or σm = 0. We keep R1 = 100 nm, fe = 21 THz and fm = 18 THz.

The extinction e�ciencies are shown in Fig. 6.12. Comparing these results with Fig. 6.5(c)-(d) of

the main text one can see several di�erences. Starting from the case with σe = 0 [Fig. 6.12(a)],

we can see that the electric modes are absent from the extinction spectrum with only the
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magnetic modes TE0 and TM1 being present. Interestingly, while the splitting in the dipolar

TM1 mode occurs, there is no splitting for the TE0 mode in contrast to the metasurface with

non-zero σe and σm. Similar conclusions can be reached for the case of σm = 0 where only the

electric TM0 and TE1 modes appear in the extinction spectrum.



CHAPTER 7

LOCAL DENSITY OF STATES FOR INVERSE WOODPILE

STRUCTURES

7.1 Introduction
1

Controlling the properties of matter by means of quantum light lies at the heart of quantum

optics and cavity quantum electrodynamics (cQED). A prime example is the control of the

radiative rate of elementary emitters such as atoms, ions, molecules, or quantum dots. Such

control is essential for myriad applications ranging from miniature lasers and light-emitting

diodes [7], [179], via single-photon sources for quantum information processing [180], to

solar energy harvesting [181]. To explore such new applications, a suitably tailored dielectric

environment is required wherein the vacuum �uctuations, that play a central role in spontaneous

emission [182], [183], are controlled. Much after the early realization by Purcell [184] that

an emitter’s environment such as a cavity controls the emission rate, spontaneous emission

control has become one of the main drivers of the burgeoning �eld of nanophotonics [185]–

[189]. Following the seminal predictions by Bykov and by Yablonovitch, emission control

was �rst studied on photonic crystals [6], [7]. Emission control has also successfully been

pursued with many di�erent nanophotonic systems and many di�erent quantum emitters,

for instance, atoms and dye molecules in Fabry—Pérot microcavities [190], [191], quantum

dots in pillar microcavities [192], [193], ions in whispering gallery-mode microspheres [194]–

[196], dye molecules in plasmonic nanocavities and on nanoantenae [197]–[201], or dye in

metamaterials [202], [203].

In the weak-coupling approximation in cQED, that is also known as the Wigner-–Weisskopf

approximation [204], spontaneous emission of an excited quantum emitter is precisely described

by Fermi’s golden rule [205] wherein the radiative decay rate is linearly proportional to the local

density of optical states (LDOS). The LDOS counts the available number of electromagnetic

modes each weighted by its strength, at each point r0, and the projection of their electric �eld

along the axes x,y,z [206]–[208]. The LDOS depends sensitively on the close environment of

the emitter. Interestingly, the LDOS not only controls spontaneous emission and blackbody

radiation, but also plays a role in van der Waals and Casimir dispersion forces and in Förster

resonant energy transfer between di�erent emitters [209]. Since the LDOS represents the

density of vacuum �uctuations, it controls the amount of vacuum noise experienced by a

qubit [210].

From theory, it is well-known that the LDOS is radically inhibited at frequencies within the

3D band gap in an in�nite three-dimensional (3D) photonic crystal [4], [207], [211]–[216]. The

LDOS vanishes at any position in the unit cell, and thus throughout the whole crystal, as well

as for all dipole orientations. Concerning photonic crystal experiments, the �rst studies were

reported on 3D crystals without 3D band gap [217]–[229], or on band gap crystals with low-

e�ciency emitters [230], [231], and in parallel there was a theoretical study on the anomalous

1

This work was conducted in collaboration with University of Twente, Complex Photonic Systems group (Prof.

W. L. Vos)
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Lamb shift [232]. Leistikow et al. studied e�cient quantum dots in inverse woodpile photonic

band gap crystals and observed exponential time-resolved decay, typical of weak coupling [233].

A 10× inhibited spontaneous emission rate was observed inside the band gap. Since the

emission was averaged over many emitters, it was inferred that a single quantum dot at the

center of the crystal would be up to 160× inhibited. To date, however, these results have not

been interpreted by theory or numerical calculations.

It is obvious that experimental studies and devices employ �nite photonic band gap crystals,

where energy can radiate from the boundaries of the �nite crystal. Consequently, states from

the in�nite surrounding vacuum tunnel into the crystal
2
, leading to a non-zero LDOS and

DOS inside the band gap [234], [235]. Therefore, it is natural to wonder how the LDOS in

the gap depends on the position and orientation of the emitter inside the �nite crystal? For

two-dimensional (2D) photonic crystals, Asatryan et al. found in numerical calculations that the

LDOS decreases exponentially from the surface into the crystal [236]. Hermann and Hess found

a strong position and orientation dependence of spontaneous emission within the unit cell of

an inverse opal, and saw that the inhibition in the band gap is of the two order of magnitudes,

even for relatively small crystals [237]. Kole reported an exponentially growing inhibition

towards the center of a spherical inverse opal photonic band gap crystal [238]. Leistikow et al.
proposed that the LDOS averaged over a unit cell decreases exponentially with position for

frequencies inside the 3D band gap, with a characteristic length scale, the so-called LDOS decay

length; no prediction was o�ered though for the dependence within the unit cell [233].

Thus, it appears that calculations of the 3D LDOS in a 3D photonic band gap crystal are

scarce in literature, due to their extensive computational cost and complexity. In this work,

we systematically investigate the position- and orientation-dependent inhibition of the LDOS

in the band gap of 3D inverse woodpile crystals with �nite support. Despite recent progress

on analytical approaches in nanophotonics [239], [240], there are to date no known analytic

solutions for realistic 3D crystals, hence we have embarked on a numerical study to address

the questions above. We study the role of the emitter position and interpret the computational

results by an analytical expression for the expected behavior of the LDOS. We also study the

role of the dipole orientation, and compare it to theoretically known behavior [241]. Since we

decided to investigate the experimental results of Leistikow et al. [233], we have chosen to study

the inverse woodpile crystal structure that was originally proposed by Ho et al. [242]. In our

study, we �nd remarkable physical features, namely, (1) that the LDOS decreases exponentially

as the emitter position goes from the surface towards the center of the crystal, (2) the magnitude

of the exponential length scale, the LDOS decay length `ρ, is mostly determined by far-�eld

radiation e�ects, whereas the amplitude prefactor is mostly determined by near-�eld e�ects,

and (3) the magnitude of the LDOS decay length `ρ is remarkably close to the Bragg length

- that type�es directional transport [243]–[245] - which implies that the LDOS is strikingly

directional.

7.2 Methods

7.2.1 The structure of the �nite crystal
The inverse woodpile photonic crystal has a primitive unit cell that is illustrated in Figure 7.1.

The crystal structure consists of two orthogonal 2D arrays of identical cylindrical pores with

radius rp = 0.24a running parallel to the x and z axes [242].
3

The lattice constants are a

2

A �nite physical system, such as a photonic band gap crystal, that is surrounded by an in�nite vacuum, or a

bath, has in a strict mathematical sense a so-called �nite support.

3

For 2D arrays of pores only, the 2D LDOS has been studied by several interesting papers, notably Refs. [246]–

[248]
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Figure 7.1: Unit cell of the inverse woodpile structure. (a) Bird’s eye view of the tetragonal unit

cell with two cylinders per lattice point, with lattice parameters c in the x-direction, a in the

y-direction, and c in the z-direction. (b) View of the xy face of the unit cell, (c) of the yz face,

and (d) of the xz face.

(in the y-direction) and c (in the x and z directions) in a ratio a/c =
√

2 for the crystal

structure to be cuboid with a diamond-like symmetry. We discuss the LDOS as a function of the

reduced frequency ω̃ that is de�ned as ω̃ ≡ ωa/(2πc0) with c0 the speed of light in vacuum.

The backbone of the crystal has the dielectric constant εb = 12.1, typical of silicon in the

near infrared and telecom spectral ranges. The cylindrical pores are considered to be either

empty (εp = 1) or �lled with a dielectric with εp = 2.25, that is typical for liquids, such as

toluene, which are used to suspend quantum dot emitters in experiments; see Ref. [233]. In the

experimentally relevant spectral range, silicon and toluene are essentially lossless. The �nite

crystals have an extent of N unit cells along each of the x, y, and z axes with a total volume of

V = N3
unit cells.

Figure 7.2(a) shows the band structure of the in�nite crystal with empty pores calculated

using the plane wave expansion method [249]. The shaded area in Figure 7.2(a) indicates

the 3D photonic band gap with a broad relative bandwidth ∆ω̃/ω̃mid = 25.0%, centered at

ω̃mid = 0.585, in good agreement with earlier work [250]–[252]. Figure 7.2(b) shows the

band structure for the crystal �lled with toluene. Due to the decreased dielectric contrast

the 3D photonic band gap has a reduced relative width, ∆ω̃/ω̃mid = 6.4%. The band gap is

centered at a lower frequency, near ω̃mid = 0.49, due to the increased e�ective average dielectric

constant [253]. It is seen that in both air- and toluene-crystal cases the ΓY stop-band is larger

than the ΓX and the ΓZ. This is sensible since in the y-direction one encounters dielectric

contrast for two sets of pores whereas along the x- and y-direction one encounters dielectric

contrast for only one set of pores.

7.2.2 Computation of the local density of states
It is well-known that the LDOS ρ(i)(ω, r0) at a point r0 projected along the i-axis (i =

{x, y, z}) is proportional to the total power P (i)(ω, r0) radiated by an electric point dipole

current source J(ω, r0) = −iωp(ω)δ(r− r0) with dipole moment p(ω) that points along the
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Figure 7.2: Band structures for an in�nite inverse woodpile crystal made of silicon (εb = 12.1)

with cylindrical pores �lled with (a) air (εp = 1.0) and (b) toluene (εp = 2.25). The letters on

the x-axes stand for the high symmetry points of the Brillouin zone shown in the inset. The

blue and pink shaded bars indicate the 3D photonic band gap, from 0.511 to 0.658 in (a) and

from 0.475 to 0.507 in (b).

unit vector êi of the i-axis.
4

It is therefore convenient to normalize the total power emitted

inside a nanostructured medium to the power P
(i)
0 (ω, r0) emitted by a same dipole in a homo-

geneous isotropic medium with the same dielectric constant ε as where the dipole sits in the

nanostructure. The normalized power is equal to the ratio of the LDOS in the nanostructured

medium and the LDOS in a homogeneous medium with dielectric constant ε, and reads [254],

[255]:

ρ(i)(ω, r0)

ρ
(i)
0 (ω, r0)

=
P (i)(ω, r0)

P
(i)
0 (ω, r0)

. (7.1)

Using Poynting’s theorem [15], the power P (i)(ω, r0) radiated by the dipole at position r0 is

equal to inner product of the dipole moment and the local electric �eld E(ω, r0) at the position

of the dipole,

P (i)(ω, r0) =
1

2
ωIm [E(ω, r0) · p∗(ω)] , (7.2)

4

In MEEP the current source is de�ned as J(ω, r0) = p(ω)δ(r− r0) and hence, the power is: P (i)(ω, r0) =
−(1/2)Re[E · p∗(ω)]
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where we use complex notation and consider steady-state (time-average).

To calculate the power radiated by the dipole inside the �nite-size photonic crystals we

used the open-source implementation MEEP [256] of the �nite-di�erence time domain (FDTD)

method [257]. The �nite-size crystal is surrounded by a uniform dielectric bu�er with the

same dielectric constant as that of the low-ε material in the pores. The computational volume

is bounded on all sides by perfectly matched layers of thickness a to emulate in�nite space.

A dipolar point source is placed at the position of interest, r0, with a Gaussian spectrum of

central frequency equal to the mid-gap frequencies, ω̃mid = 0.58 and ω̃mid = 0.49 for empty

and toluene-�lled crystals, respectively. The full width at half maximum (FWHM) of the source

spectrum was chosen to be equal to ∆ω̃ = 0.8 to cover all the spectral features of interest.

To assess possible numerical artifacts of our method, we have compared the computed

LDOS at the center of a dielectric Mie-sphere with analytical results [258], where the details are

presented in the Appendix 7.5.1. For the best resolution (smallest grid size) and for a frequency

range around the central frequency of the Gaussian pulse, we �nd deviation up to 3% outside

Mie resonances, and about 10% near Mie-resonances, as shown in Figure 7.8. The spatial

grid size of ∆ = a/30 was used in the photonic crystal calculations, since this gave a good

match with the analytic test results for a Mie sphere (see Appendix 7.5.1), while keeping the

computation time within reasonable bounds. The calculations were performed on a workstation

with an Intel Core i7 processor with 8 CPU cores at 3.4 GHz clock speed and with 32GB RAM.

To keep the simulations tractable, we studied 3D �nite crystals with a volume V = N3 = 33

unit cells. The simulation times were equal to 600(a/c0); the real computation time was around

5000 s in order to achieve su�cient convergence of our calculations.

7.3 Results and discussion

7.3.1 Local density of states versus emitter position
We turn to the dependence of the LDOS ρ(i)(ω, r0) on the position r0 inside the crystal

at frequencies ω inside the 3D photonic band gap. We study the LDOS along trajectories in

three di�erent high-symmetry crystal directions.First, we consider the LDOS along the axis

of the central pore pointing in the z-direction, as shown in Figure 7.3. Figure 7.3(a) illustrates

the (x = 0, y = 0, z) positions where the LDOS is probed. This set of probe positions are all

in the same embedding medium (either air or toluene), which facilitates the interpretation.

Figure 7.3(b) presents the calculated LDOS for the silicon-air crystal at the mid gap frequency

(ω̃mid = 0.58) and Figure 7.3(c) shows the LDOS for the toluene-�lled crystal at the mid gap

frequency (ω̃mid = 0.49). The silicon-air data strongly decrease from the crystal surface to the

center of the crystal. For x- and z-oriented dipoles, the normalized LDOS tends from about 1 to

5 · 10−2
, corresponding to a relative inhibition of 20× at the center. For the y-oriented dipole,

the normalized LDOS tends from about 0.4 to 5 · 10−2
, corresponding to a relative inhibition of

8× at the center. In the toluene-�lled crystal, see Fig. 7.3(c), similar trends appear, although

with smaller inhibitions, of about 2× to 3×, since the refractive-index contrast and thus the

photonic strength is less than in the air-�lled crystal. Aside, we note that the LDOS near the

crystal surface is slightly enhanced (for x- and z-oriented dipoles) or slightly decreased (for

y dipoles), which we tentatively attribute to surface modes [5] or to the fact that the vacuum

modes are re�ected by the crystal surface thus leading to interference just outside the surface,

similar to the well-known Fresnel interference just outside a mirror [15].

Let us brie�y compare to the experiments by Leistikow et al. [233], who studied the emission

of quantum dots suspended in toluene that were embedded in silicon inverse woodpile structures.

In the corresponding Fig. 7.3(c), we observe a substantial inhibition of the LDOS, in agreement
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Figure 7.3: (a) Schematic of the V = N3 = 33
crystal (N : unit cells number per direction)

from two di�erent perspectives; left: (001) view, right: (100) view. The green line (x = 0, y = 0,

z) connects the positions where the LDOS is probed. (b, c) Normalized LDOS as a function of

position along the z-axis at the mid-gap frequency for a (b) silicon-air crystal (ω̃mid = 0.58)

and (c) a toluene-air crystal (ω̃mid = 0.49) with size N3 = 33
. Blue circles are for x-dipoles,

px, red up-pointing triangles for y-dipoles, py , and green right-pointing triangles for z-dipoles,

pz . The drawn curves are exponential models of the data [Eq. (7.3)], with colors matching the

relevant dipole orientation. The extent of the crystal is indicated by vertical dashed lines.

with the experimental observations. In the current situation, the inhibition at the center of the

crystal is less (2 to 8 times) than in the experiments (more than 10 times), which is sensible

since in the present case the crystal is smaller (N3 = 33
) than the ones in the experiments

(N3 = 123
). There are aspects where no de�nite statements can be made, for instance, since

the current results pertain to a single dipole that has a de�nite orientation, whereas in the

experiment an ensemble of quantum dots was studied that sampled many positions throughout

the whole crystal (80% of the whole volume) and whose dipole orientations were random.

Since the trend of the LDOS versus z-position in Figure 7.3(b) is exponential within the

domain that is computationally tractable here, we interpret the data with a model consisting of

two exponentials:

ρ(i)(z)

ρ0
= Ai(e

z/`
(i)
ρ + e−z/`

(i)
ρ ). (7.3)



81

Air Air Toluene Toluene

Orientation `
(i)
ρ /a Ai `

(i)
ρ /a Ai

êx 0.286 0.021 0.653 0.176

êy 0.449 0.026 0.743 0.151

êz 0.267 0.012 0.973 0.101

Table 7.1: Parameters of Eq. (7.3) to model the normalized LDOS versus position along the z-

direction shown in Fig. 7.3(b) and (c) for crystals withN = 3. Here, `
(i)
ρ is the LDOS decay length

and Ai is the amplitude prefactor. Parameters are given for silicon-air and for silicon-toluene

crystals, and the rows are for dipoles oriented in the x, y, and z directions.

The main characteristic is the LDOS decay length `
(i)
ρ that pertains to dipole orientation êi. In

case of a strong inhibition of the LDOS, as is the case in a broad 3D photonic band gap, `
(i)
ρ

will be small, and `
(i)
ρ increases for less inhibition.

5
As discussed below, the LDOS length `

(i)
ρ is

connected to far-�eld radiation e�ects of the dipole.

In Eq. (7.3) each exponential originates from one of the two opposite (x, y)-surfaces of

the crystal (at z/a = ±1.5/
√

2 = ±1.06), hence the plus and minus signs with twice the

same characteristic LDOS decay length `
(i)
ρ . And Ai is a prefactor that equals half the LDOS at

the center of the crystal (since ρ(i)(z = 0)/ρ0 = 2Ai). As discussed below, Ai appears to be

connected to near �eld e�ects of the dipole. In the modeling of the computed LDOS data with

Eq. (7.3), we exclude the two data points near the surface to avoid complications due to surface

and edge states and Fresnel interference. The solid curves in Fig. 7.3(b) and Fig. 7.3(c) are the

�tted curves according to Eq. (7.3) for both silicon-air and silicon-toluene crystals and each of

the three dipole orientations. The exponential model tracks the calculated LDOS data better in

the toluene-�lled crystal than the air-�lled crystal, likely since in the former case the LDOS

shows a weaker spatial dependence due to the reduced dielectric contrast, hence deviations

are expected to be smaller. The resulting LDOS decay lengths and the prefactors are listed in

Table 7.1 for both air-�lled and toluene-�lled crystals.

7.3.2 Model parameters and far-�eld and near-�eld
Table 7.1 shows that for the air-�lled crystal the LDOS decay lengths are consistently smaller

than for the toluene-�lled crystals for all dipole orientations, êx, êy , and êz . The shorter LDOS

decay lengths are a direct consequence of the higher dielectric contrast in the air-�lled crystal,

which results in a broader gap (see Fig. 7.2) and thus stronger inhibitions. In their study on

silicon-toluene crystals, Leistikow et al. [233] inferred the LDOS decay length to be equal to

about `
(i)
ρ /a = 1. This is in fair agreement (between 3 and 35% greater) with the results in

Table 7.1, which is a gratifying consistency between the experimental and computed results.

When considering all parameters in Table 7.1, it is instructive to discuss the role of the

dipole orientation êi on both the characteristic LDOS length `
(i)
ρ and the amplitude prefactor

Ai. Starting with the air-�lled crystal, we observe that the êx and êz oriented dipoles have

smaller LDOS decay lengths (`
(x)
ρ /a = 0.286, `

(z)
ρ /a = 0.267) than the êy oriented dipole

(`
(y)
ρ /a = 0.449). This result can be rationalized by a simple model wherein we consider a dipole

to have a far-�eld radiation pattern typical of a homogeneous medium, namely predominantly in

its equatorial plane [15] - see Fig. 7.4(a). Hence, the êx dipole radiates predominantly in the yz-

plane in the crystal. The light that would propagate in this plane notably encounters the ΓY and

5

Conversely, the inverse LDOS decay length may be considered to be a qualitative measure for the strength of a

band gap.
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Figure 7.4: Schematic of a dipole (green) and its radiation pattern inside a �nite photonic crystal.

(a) The far-�eld components are maximal in the equatorial plane, where stop bands a�ect the

local density of states. (b) For a dipole at the center of a pore, the near-�eld component is

enhanced by the nearby high-index medium when the dipole is orientated toward this medium.

The near-�eld component is hardly enhanced when the dipole is oriented along the pore axis

(x or z).

the ΓZ high symmetry directions where the gap is wider (and intermediate directions) as seen

in section 7.2.1. Hence, we naturally expect a strong inhibition in the yz-plane, which agrees

qualitatively with the small LDOS decay length for the êx orientation. A similar reasoning

holds for the êz dipole, whose equatorial plane is the xy-plane in the crystal that again includes

the ΓY gap, and thus the LDOS decay length is also small. Conversely, in case of the êy dipole,

the equatorial plane is the xz-plane in the crystal. This plane contains the relatively narrower

ΓX and ΓZ gaps (but not the broad ΓY gap). Hence, less inhibition is expected than for the

other orientations, which agrees well with the observed longer LDOS decay length. Thus, we

conclude that arguments based solely on the far-�eld radiation pattern of the dipole located

within the photonic crystal serve to explain the relative strength of the characteristic LDOS

length observed for di�erent dipole orientations.

We now turn to the role of the dipole orientation on the prefactor Ai. Here, we observe that

the êz dipole exhibits the smallest prefactor (Az = 0.012), whereas the êx and the êy dipoles

have almost twice greater and closely similar prefactors (Ax = 0.021 and Ay = 0.026). To

understand this behavior, we recall that in the near-�eld regime a dipole has the strongest �eld

component E(ω, r0)i in the same direction i as its orientation êi [15], as illustrated in Fig. 7.4(b).

Let us �rst consider the êy dipole orientation that has the maximum �eld in the y-direction

E(ω, r0)y . In the y-direction the E(ω, r0)y �eld crosses the air-silicon interface within a short

distance, equal to ∆y = 0.12a = 0.12× 0.585λ = λ/14. Therefore, this near-�eld experiences

a polarization in the high-index material that enhances the near �eld. The enhanced near-�eld

is apparently scattered to far-�eld radiation (by the interface), which leads to an enhanced

LDOS and thus a larger prefactor Ay . Conversely, the êx and êz dipoles exhibit near �elds in

the x and z-directions where the �eld is completely inside the uniform air-�lled pore. Thus

the concomitant near �elds experience no polarization enhancement by the silicon, hence



83

Figure 7.5: Schematic representation of the position vector r=(rx, ry, rz) and the complex

wavevector k = (k′x + ik′′x, k
′
y + ik′′y , k

′
z + ik′′z ) in the crystal under study, comprising of N = 3

unit cells. Inside the band gap where we calculate the LDOS the imaginary part of k is nonzero.

The position vector lies along the axis de�ned in each of the position dependence case studies

in Fig. 7.3, Fig. 7.6 and Fig. 7.7.

the smaller values of Ax and Az prefactors. Based of this reasoning we conclude that the Ai
prefactors are mainly associated with the near-�eld distributions of the êi oriented dipoles. For

convenience, the results of our discussion are summarized in Table 7.2.

Far �eld Near �eld

px More inhib. (ΓY gap) Strong �eld (⊥ diel.)

py Less inhib. only ΓX ,ΓZ gaps Strong �eld (⊥ diel.)

pz More inhib. (ΓY gap) Weaker �eld (‖ diel.)

Concl.: a�ects `
(i)
ρ Concl.: a�ects Ai

Table 7.2: Table summarizing the discussion of the near and far �eld e�ects on the LDOS decay

lengths `
(i)
ρ and the prefactor Ai. The LDOS decay lengths are mainly a�ected by the far �eld

and the band gaps in the directions of the radiation. The prefactors Ai are mainly a�ected by

near �eld e�ects and by polarization e�ects due to presence of nearby high-index material.

In the case of toluene-�lled crystal, the behavior of the LDOS amplitude Ai is similar as in

the silicon-air crystal. As seen in Table 7.1, the dipole with polarization êz exhibits the smallest

amplitude (Az = 0.101), followed by the dipoles polarized along êy and êx that have similar

amplitudes (0.151 versus 0.176). We thus conclude that the near �eld has the same impact in

this case. The characteristic LDOS length `
(i)
ρ , however, does not exhibit the same pattern as

in the silicon-air case. As shown in Table 7.1 the strongest inhibition in this case, that is the

smaller LDOS length, is found for the êx oriented dipole, followed by the êy dipole, and the êz
dipole. The mismatch between the air and toluene cases is possibly caused by the fact that in

the silicon-toluene crystal, the reduced refractive index contrast probably leads to an increase

of the directional Bragg length, which becomes larger than the crystal size of 3× 3× 3 unit

cells considered here. In the toluene case, it is probably not meaningful to interpret the LDOS

inside the crystal with band structure features, since the in�nite crystal is not reached in the

computations. In the silicon-air crystal, the Bragg length is su�ciently small compared to the

crystal size, thus the in�nite crystal limit is e�ectively reached; hence a reasoning invoking the

interference associated with the band gaps in the band structure is meaningful.
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7.3.3 Comparison between LDOS decay length and Bragg length
To put the LDOS decay length in perspective, we compare it to the well-known Bragg length

LB [243]–[245] that describes the exponential decay of a directional incident light beam with a

frequency inside a photonic gap. This directional decay is described by a nonzero imaginary

part of the wavevector, k′′, due to Bragg di�raction. The imaginary part of the wavevector is

inversely equal to the Bragg length LB .

For silicon-air inverse woodpile crystals with the same pore radii as here, the Bragg length

LB was computed by Devashish et al. [252] by the �nite-element method. For x-polarized

incident plane waves, they foundL
(x)
B = 0.262a, andL

(y)
B = 0.428a for y-polarized illumination.

These values are similar to the LDOS decay lengths, `
(x)
ρ = 0.286a and `

(y)
ρ = 0.449a, in Table 7.1

for x- and y-oriented dipoles, respectively. Considering the di�erence in the underlying physics

of these two lengths, namely the LDOS versus directional propagation, in other words, the

real part of the Green function [259] versus the imaginary part of the Green function, it is

remarkable for the two di�erent length scales to match so closely.

To further support our interpretation, we consider in the schematic in Fig. 7.5 a dipole at

two di�erent positions inside a �nite crystal, where we assume the positions to be on the z-axis

as in Fig. 7.3. The dipole emits in many di�erent directions in wave vector space (in wave vector

space, a crystal as in Fig. 7.3 is more extended in the horizontal wave vector direction). Let us

�rst consider an êx-oriented dipole that radiates mostly in the (y, z)-plane. Since the dipole has

a frequency within the band gap, the radiation in any direction will be exponentially damped,

since the wave vector is in every direction complex. Thus, the radiation in the z-direction is

less damped close to the crystal surface (at position r0,2) than deeper inside, at position r0,1.

Radiation in the perpendicular y-direction is equally damped at the di�erent positions, since in

this direction the dipole is everywhere at the same distance from the crystal-vacuum interface

(similar considerations pertain to the x-direction). Radiation in an oblique direction with wave

vector k will also be increasingly damped when the dipole is located at increasing depth in

the crystal. The behavior seen in Fig. 7.3 suggests that apparently the behavior of the LDOS

with z-position is mostly determined by the z-directed radiation (that is in its purest sense

described by the Bragg length), and hardly by the y-directed or other oblique radiation with

wave vector k. Thus, whereas the LDOS usually integrates over a broad spectrum of �eld modes

with wave vectors corresponding to all directions, apparently the radiation tending in the

closest vacuum-crystal interface dominates the spectrum. On the other hand, the fact that the

LDOS integrates over a broad spectrum, instead of a single wave vector as in the Bragg length,

explains perhaps why the LDOS decay length is somewhat larger than the corresponding Bragg

length.

7.3.4 LDOS along di�erent trajectories
We show in Figures 7.6 and 7.7 the normalized LDOS on the trajectories along x-axis and

the diagonal path on the xz-plane, respectively. In both of these cases the calculations refer only

to the silicon-air crystal. Once again, the position of the emitters are shown in the schematics

of the upper panels of Fig. 7.6 and Fig. 7.7 respectively while the LDOS values are plotted in

the bottom panel. Along these paths, the emitter goes through both the silicon and air regions

inside the crystal. Since in the experiments by Leistikow et al. the LDOS was only probed for

emitters placed in the low-index region, we have not considered the LDOS inside the high-index

silicon. While moving across the air-Si interface, the normalized LDOS does not reveal a smooth

and continuous behavior, which makes it impossible to use a simple exponential model such

as Eq. (7.3). Indeed, similar strongly varying behavior across the low and high-index regions

within a unit cell has already been noted in Ref. [234] for the much simpler case of a �nite-size

Bragg stack (i.e. an "one-dimensional photonic crystal").
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Figure 7.6: (a) Schematic of the V = N3 = 33
crystal (N : unit cells number per direction)

from two di�erent perspectives; left: (001) view, right: (100) view. The blue line (x, y = 0,

z = 0) connecting the positions where the LDOS is probed seen from two di�erent perspectives.

(b) Normalized LDOS as a function of position along the x-axis at the mid-gap frequency

(ω̃mid = 0.58) for a silicon-air crystal with size N3 = 33
. Blue circles are for x-dipoles, px, red

triangles are for y-dipoles, py , blue-green right-pointing triangles are for z-dipoles, pz . The

lines passing through the data points are guides to the eye. The shaded areas are the silicon

backbone.

To highlight this behavior in our 3D crystal, we only draw guides to the eye that mark

the trend of the LDOS in each direction. They are marked as black solid curves in Fig. 7.6(b)

and Fig. 7.7(b). In both cases it appears that LDOS reveal abrupt variations while tending

across the Si regions, which are highlighted in gray. Interestingly, for the x-polarization, when

moving towards the vacuum-crystal interface from the center, LDOS shifts down across the

silicon region when calculated on x-axis (Fig. 7.6(b)) whereas it shifts up when calculated on

the diagonal of the xz-plane (in Fig. 7.7(b)).

7.3.5 Practical consequences
Let us brie�y discuss a number of practical implications of our work, namely how to apply

3D photonic band gaps to emission control, quantum information processing, and photovoltaics.

In the �eld of spontaneous emission control, since the radiative rate is proportional to the

LDOS, controlling the LDOS is a key step [189]. Hence it is clear that a 3D photonic band gap

o�ers an extreme spontaneous emission control. In the �eld of photovoltaics, it is well known

that an e�cient absorber is equivalent to an e�cient emitter [260]. Hence, a 3D photonic band

gap could o�er a control means to photovoltaics. In the �eld of quantum information science,

it is relevant to shield qubits from ubiquitous vacuum �uctuations that lead to decoherence of

the quantum states [210], [261]. One solution to this challenge is to place the qubits (assuming

they are dipolar) in a 3D photonic band gap that covers the relevant frequency range of the

qubits. Our work provides a design rule, namely where to place a dipolar emitter inside a
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Figure 7.7: (a) Schematic of the V = N3 = 33
crystal (N : unit cells number per direction) from

two di�erent perspectives, left: (001) view, right: (010) view. The black line (x, y = 0, z = x)

connecting the positions where the LDOS is probed. (b) Normalized LDOS as a function of

position along the xz-diagonal (y = 0) at the mid-gap frequency (ω̃mid = 0.58) for a silicon-air

crystal with size N3 = 33
. Blue circles are for x-dipoles px, red triangles are for y-dipoles py ,

blue-green right-pointing triangles are for z-dipoles pz . The lines passing through the data

points are guides to the eye and the shaded areas are the silicon backbone.

photonic band gap crystal for a certain emission control, and, equivalently, where to place a

dipole for a certain absorption control, and again equivalently, where to place a qubit for a

certain decoherence control.

For instance, if one requires the density of vacuum �uctuations - hence the LDOS - to

be shielded by a factor 10×, Fig. 7.3 shows that this is feasible for dipoles placed anywhere

between −0.5a ≤ z ≤ +0.5a about the center. For dipoles operating at optical frequencies

corresponding to 1500 nm in the telecom range, this position freedom corresponds to a relatively

large range, of about 700 nm. A slight limitation to our study is that we only consider positions

in the low-index medium of the photonic crystal nanostructure, although these positions occupy

no less than 80 vol% of the whole crystal volume [262]. The results in Fig. 7.3 also show that a

tenfold shielding of the vacuum �uctuations is robust with respect to the orientation of the

transition dipole moment of the dipole.

It is exhilarating that a silicon-air crystal has a signi�cant inhibition of the LDOS, in view

of the relatively small crystal size of only V = 3× 3× 3 unit cells. For dipolar emitters (qubits)

operating at optical frequencies corresponding to 1500 nm, this would corresponds to a small

3D silicon nanophotonic device, with a volume as small as V = 4.2 µm
3
. Such a robustness

with respect to the crystal size is due to the small LDOS decay length that is much less than

one lattice spacing. In parallel to this work, an experimental study of the directional stop bands

of (necessarily �nite) 3D photonic band gap crystals [263] is also reaching the conclusion that

relatively small micron-sized crystals are powerful tools to control directional transport.
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Figure 7.8: (a) LDOS at the center of a sphere for three di�erent resolutions (10 (blue-green

squares), 20 (blue triangles), and 30 points per radius (red circles)) of the FDTD grid versus the

analytical solution (black curve). (b) Di�erence between the FDTD calculated results and the

analytical solution for three di�erent resolutions: 10 grid points per radius (blue-green squares),

20 grid points per radius (blue triangles), and 30 grid points per radius (red circles)).

7.4 Conclusions
We have presented a computational study of the inhibition of the LDOS in the 3D photonic

band gap of a �nite-size 3D photonic crystal. In particular, we focused on crystals with the

silicon inverse woodpile structure that were recently studied experimentally. To this end,

we considered the LDOS dependence on emitter’s position and orientation inside the crystal.

Our calculations showed that except for special cases, it is generally not possible to model

the LDOS decrease away from the vacuum-crystal interface with a simple exponential model.

However, in the cases where the exponential model did work, the LDOS decay length turned

out to be surprisingly similar to the Bragg length. As for the impact of crystal size on the

LDOS suppression, we found that a crystal comprising of only 3x3x3 unit cells, if it is of high

dielectric contrast (silicon-air), already provided more than ten times inhibition of the LDOS

around its center. Therefore, for experiments designed to shield quantum systems from vacuum

�uctuations, very small volume devices may well be su�cient to ful�ll the design requirements

on LDOS suppression.

7.5 Appendices

7.5.1 Numerical calculation of the LDOS
We numerically calculate the LDOS by relating the electric �eld at the location of the

electric point dipole to the power radiated by the dipole - see Eq. (7.2). The electric �eld is

obtained by placing a point dipole source at point r0 with a dipole moment parallel to x, y, or z
axes. The transient amplitude of the dipole moment is described by a short Gaussian pulse to

generate su�cient band width to cover the entire frequency spectrum of interest. After the

initial excitation has vanished, we obtain the electric �eld component parallel to the dipole

moment at r0 versus time t at every time step and take the Fourier transform to obtain the

frequency-resolved �eld E(ω, r0). This approach has also been used in earlier studies; see for

instance Refs. [237], [264]–[266].
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To validate the calculation of the LDOS with MEEP FDTD-code, we compare the results

of FDTD method with analytical results, namely the modi�cation of LDOS at the center of a

dielectric sphere [258], [267]. We consider a sphere of radius a = 1 (reduced units) made of a

dielectric material with real dielectric constant εb = 12.1. Fig. 7.8(a) shows the LDOS predicted

by exact calculations (solid line) which exhibits resonances at reduced frequencies 0.2, 0.35,

0.50, associated with the Mie-resonances of the sphere. The numerical results were obtained

with a Gaussian pulse centered at ω̃ = 0.4 and width ∆ω̃ = 0.9. The numerically computed

LDOS using the FDTD method is shown in the same �gure as discrete points for various grid

resolutions, de�ned as the number of sampling points over a radial distance. Good agreement

is found between the analytical and numerically computed LDOS specially at higher resolution

(30 grid points).

In Fig. 7.8(b), we quantify the convergence between analytical and numerical results by

showing the relative di�erence (in percentage) between the numerical and analytical results.

We observe that the convergence is better at frequencies outside the resonances - up to 3% near

the central frequency 0.4 of the spectrum - than for the frequencies around the resonances,

typically up to 10% near the central frequency 0.4. The most extreme di�erences appear at

the upper edge of the spectrum where the precision is limited by the low intensity of the

excitation pulse in the computation. This is expected due to the fact that the lifetime of the

modes on-resonance is much greater and hence, more computational time is required for these

frequencies. The numerical calculations are in an excellent agreement with the analytical

results, to within 10% near resonances and 3% for o�-resonance frequencies. Therefore, we

conclude that the simulated results provide a faithful representation of the physics under study.
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