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Abstract

Scientific practice typically involves repeatedly studying a system, each time trying to unravel a dif-
ferent perspective. In each study, the scientist may take measurements under different experimental
conditions (interventions, manipulations, perturbations) and measure different sets of quantities
(variables). The result is a collection of heterogeneous data sets coming from different data distribu-
tions. These data sets are analyzed in isolation and results are manually synthesized by the scientific
community into scientific knowledge.

This thesis argues that heterogeneous data sets measuring the same system under study must all
stem from, and therefore reflect, the same underlying causal mechanism, and that they can be co-
analysed based on this premise. We define the problem of identifying one or all causal models that
best fit all available data sets. We call this approach Integrative Causal Analysis.

The standard assumptions of causal modelling connect the statistical properties entailed in the
available data sets to the underlying causal mechanism. Particularly, multivariate statistical relations
of the measured variables constrain the search space of possible underlying causal models. Thus,
the problem can be recast as a constraint satisfaction problem.

We propose an efficient conversion that translates statistical constraints into a SAT instance that
can be solved with state-of-the-art SAT solvers. To improve scalability of our method we employ a
series of approximate or exact steps that restrict the complexity of the conversion. Additionally, we
introduce a scalable method for resolving conflicts arising from statistical errors. Finally, we identify
a minimal example where INCA can produce a non-trivial prediction. We then test this prediction
extensively in public data sets from a wide range of scientific domains, in an attempt to test whether
causally-inspired predictions are verified.

We test our methods in a variety of different data sets and conditions. Results indicate that (a)
our methods are robust and behave reasonably against different input parameters (b) our methods
outperform state-of-the-art alternatives and (c) while causal assumptions cannot be easily verified,
they lead to statistical predictions that are largely validated in real-world data sets.
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Περίληψη

Η επαναλαμβανόμενη μελέτη ενός συστήματος υπό διαφορετικές οπτικές για την εξαγωγή ενός συμπεράσ-

ματος είναι συχνό φαινόμενο στην επιστημονική πρακτική. Σε κάθε μελέτη, ο επιστήμονας συχνά

μετρά διαφορετικές παραμέτρους του ίδιου συστήματος σε διαφορετικές πειραματικές συνθήκες. Το

αποτέλεσμα μίας τέτοιας διαδικασίας είναι ένα σύνολο από ετερογενή σύνολα δεδομένων, που προέρχον-

ται από διαφορετικές κατανομές. Κάθε σύνολο δεδομένων αναλύεται αυτοτελώς, και τα αποτελέσματα

των αναλύσεων συντίθενται σε επιστημονική γνώση από την επιστημονική κοινότητα.

Παρ΄ όλη την ετερογένεια, σύνολα δεδομένων που μετρούν παραμέτρους του ίδιου συστήματος θα πρέπει

να προέρχονται από, και άρα να αποτυπώνουν, τον ίδιο αιτιακό μηχανισμό. Υποστηρίζουμε ότι τέτοια

σύνολα δεδομένων μπορούν να αναλυθούν μαζί βάσει αυτής της αρχής. Στη διατριβή αυτή, ορίζουμε

και προτείνουμε μία λύση για το πρόβλημα του προσδιορισμού ενός ή όλων των πιθανών αιτιακών

μηχανισμών που ταιριάζουν σε όλα τα διαθέσιμα σύνολα δεδομένων ενός συστήματος. Ονομάζουμε

αυτή την προσέγγιση ολοκληρωμένη αιτιακή ανάλυση.

Χρησιμοποιούμε τη γνωστή θεωρία της αιτιακής μοντελοποίησης, που συνδέει τις στατιστικές ιδιότητες

ενός συνόλου δεδομένων με τον αιτιακό μηχανισμό που περιγράφει τις μετρούμενες μεταβλητές στο

σύνολο αυτό. Πιο συγκεκριμένα, οι πολυπαραγοντικές σχέσεις των μετρούμενων μεταβλητών απότελούν

περιορισμούς για τους πιθανούς αιτιακούς μηχανισμούς. Με αυτό τον τρόπο, το πρόβλημα μπορεί να

διατυπωθεί σαν ένα πρόβλημα ικανοποίησης περιορισμών.

Η μεθοδος που προτείνουμε μεταφράζει τους στατιστικούς περιορισμούς που προκύπρουν από τα δε-

δομένα σε λογικές προτάσεις, μετατρέποντας το πρόβλημα έυρεσης πιθανού αιτιακού μηχανισμού σε ένα

πρόβλημα ικανοποιησιμότητας (SAT). Περιορίζουμε την πολυπλοκότητα της μεθόδου με μία σειρά από
ευριστικές ή ακριβείς βελτιώσεις. Εφόσον οι λογικές προτάσεις αντιστοιχούν σε στατιστικές σχέσεις,

πιθανά αιτιακά σφάλματα οδηγούν σε μη ικανοποιήσιμες λογικές προτάσεις. Προτείνουμε μία μέθοδο

για την αντιμετώπιση αυτού του προβλήματος που δεν επιβαρύνει την πολυπλοκότητα του αλγορίθμου.

Τέλος, ταυτοποιούμε μία περίπτωση που η ολοκληρωμένη αιτιακή ανάλυση οδηγεί σε μία μη προφανή

πρόβλεψη. Ελέγχουμε την ισχύ της πρόβλεψης αυτής σε μία ευρεία γκάμα δημόσιων δεδομένων, με

στόχο να ελέγξουμε την επαληθευσιμότητα των υποθέσεων της αιτιακής μοντελοποίησης.

Δοκιμάσαμε τις μεθόδους μας σε μία πληθώρα διαφορέτικών συνθηκών και συνόλων δεδομένων. Τα

αποτελέσματα δείχνουν ότι (α) οι μέθοδοί μας έχουν την αναμενόμενη συμπεριφορά για διάφορες
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παραμέτρους εισόδου (β) οι μέθοδοί μας ξεπερνοούν σε απόδοση τις σύγχρονες εναλλακτικές μεθόδους

και (γ) αν και οι αιτιακές υποθέσεις δεν μπορούν να επαληθευτούν εύκολα, οδηγούν σε προβλέψεις που

επαληθεύονται μαζικά σε πραγματικά σύνολα δεδομένων.
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Chapter 1

Introduction

The abundance of studies measuring overlapping sets of variables under different experi-
mental conditions calls for novel methods of integrative analysis. We argue that all avail-
able data sets can be co-analyzed based on a simple principle: that they should all reflect
the same underlying causal model. In this introduction, we formalize the problem of inte-
grative causal analysis of heterogeneous data sets measuring the same system under study,
present a motivating scenario, and discuss the core assumptions of causal analysis: The
causal Markov condition (CMC) and the causal faithfulness condition (CFC).

Causal discovery is an abiding goal in almost every scientific field. While the concept of causality
has been the subject of a long philosophical debate, reasoning and acting based on perceived causes
and effects is common practice both in science and in everyday life: people quit smoking to reduce
their risk of having a heart attack. This significant attribute of causality, the ability not only to
describe a system but also predict the responses to possible changes, is what makes causal discovery
so appealing for scientists in every discipline.

In order to discover the causal mechanisms of a system, scientists typically have to perform a series
of experiments (interchangeably: manipulations, interventions, or perturbations). Each experiment
adds to the existing knowledge of the system and sheds light to the sought-after mechanism from a
different perspective. In addition, each measurement may include a different set of quantities (vari-
ables), when for example the technology used allows only a limited number of measured quantities.

Certain assumptions that allow causal modelling link a data set measuring a set of quantities to the
causal structure of said quantities, even if the data set is observational. This thesis is concerned
with (a) understanding how these causal assumptions can be used to connect data sets measuring
overlapping quantities and different perturbations of same system under study to the underlying
causal structure (b) using these connections to develop methods that integratively analyze these
data sets and infer causal features and (c) evaluating the predictions of the proposed causal discovery
methods.
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16 Introduction

Thrombosis

Protein C

Contraceptives

Breast Cancer

Protein E

Protein F

Figure 1.1: Motivating Example. Hypothetical causal structure of some variables relevant to
breast cancer. Edges X → Y denote a probabilistic causal relationship between X and Y , direct in
the context of modeled variables.

1.1 Motivation

Assume that Figure 1.1 describes the causal relations of some variables related to breast cancer,
where an arrow A → B denotes direct probabilistic causality : direct in the sense that nothing
mediates this causal relation in the context of the variables present in the graph, and probabilistic in
the sense that if you intervene and change the distribution of A, then the distribution of B will also
change. Several studies attempting to identify risk factors for breast cancer may involve overlapping
subsets of the variables in the causal mechanism, or even intervene in this mechanism and assign
values to the distributions in order to identify causal relations. Imagine, for example, the following
(fictional) scenario (henceforth called the motivating scenario):

• Study 1: A scientist studies the relationship between contraceptives and breast cancer. There-
fore, in a random sample of women, they measure whether a woman suffers from Thrombosis,
uses Contraceptives, the concentration of Protein C in their blood and whether they have
developed Breast Cancer by the age of 60.

• Study 2: Another researcher wants to identify the relation of some proteins in the blood, namely
Protein E and Protein F, to breast cancer. They therefore measure these three variables in a
random sample of women.

• Study 3: A scientist wants to check whether lowering the levels of a protein in the blood,
namely Protein C, can prevent breast cancer. The scientist randomly samples women from
the population, and then randomly assigns them into two groups: The first group is injected
with high levels of the protein in their blood, while the latter is injected with enzymes that
dissolve only the specific protein, effectively removing it from the blood. The scientist also
measures the levels of Protein E in the subjects’ blood, and reports whether the subjects take
contraceptives and/or have thrombosis.

• Study 4: To establish whether Thrombosis is an effects of using contraceptives, a scientist
takes a random sample of women and randomly assigns them into two groups: The first group
use Contraceptives while the second do not. The scientist reports whether the subjects have
developed Thrombosis a certain period.



1.2. Modelling Causality 17

XXXXXXXXXXStudy
Variables Thrombosis Contraceptives Protein C Breast Cancer Protein E Protein F

(Yes/No) (Yes/No) (numerical) (Yes/No) (numerical) (numerical)
Study 1 Yes No 10.5 Yes - -

No Yes 5.3 No - -
observational . . . . . . . . . . . . - -

data No No 0.01 No - -
No Yes 3.7 No - -

Study 2 No No 0 (Ctrl) No 3.4
No Yes 0 (Ctrl) No 2.2

experimental . . . . . . . . . . . . . . .
data Yes Yes 10 (Treat) Yes 7.1

Yes Yes 10 (Treat) No 8.9
Study 3 Yes 3.3 7.6

No 3.8 7.8
observational . . . . . . . . .

data No 4.7 9.4
No 5.1 10.2

Study 4 No No (Ctrl)
No No (Ctrl)

experimental . . . . . .
data Yes Yes (Treat)

No Yes (Treat)

Table 1.1: Tabular depiction of the data sets described in the motivating example. Dif-
ferent colors represent different studies, while randomized values are denoted in bold fonts. While
the four studies measure the same system, the data sets cannot be pulled together due to different
experimental designs and overlapping variable sets.

Typically, these data sets are analyzed in isolation, and the results are manually synthesized by the
scientific community. These data sets, however, despite the differences that prevent their co-analysis,
share something in common: they stem from, and must be consistent to, the same causal mechanism.
While the studies can not be trivially combined, they must somehow reflect the common underlying
causal structure illustrated in Figure 1.1.

1.2 Modelling Causality

Let G be the graph presented in Figure 1.1. G fully describes the direct and indirect (probabilistic)
causal relations among the set of measured quantities V. Given a data set measuring V, one can
estimate the Joint Probability Distribution (JPD) P over V. A set of causal assumptions
connect the graph G with the JPD P.

Before presenting the assumptions, let us review some basic graph terminology. A graph G is an
ordered pair (V,E), where V is a set whose elements are called nodes (or vertices), and E is a set
of ordered pairs of nodes, called edges. If X Y , node X is a parent of node Y and node Y is a
child of node X. A path is a sequence of distinct nodes 〈V0, V1, . . . , Vn〉 s.t for 0 ≤ i < n, Vi and
Vi+1 are adjacent in G. A path from V0 to Vn is directed if for 0 ≤ i < n, Vi is a parent Vi+1. A is
called an ancestor of Y and Y is called a descendant of X in G if X = Y in G or there exists a
directed path from X to Y in G. PaG(X),ChG(X),AnG(X),DescG(X) are used to denote the set
of parents, children, ancestors and descendants of nodes X in G, respectively. A directed cycle in
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G occurs when X → Y ∈ E and Y ∈ AnG(X). A directed graph that contains no directed cycles is
called a Directed Acyclic Graph (DAG).

Causal Bayesian networks which constitute the foundation of graphical causal models were developed
based on the assumption of Acyclicity: i.e., the causal structure of a system is not allowed to have
cycles (causal feedback loops). While this assumption seems very weak, one could argue that in
cross-sectional studies, where all measurements are taken simultaneously, feedback loops are not
an issue. The theory presented in this section describes causality in acyclic systems, therefore the
causal graphs are assumed to be DAGs.

A DAG G is connected to the JPD P through two conditions, the Causal Markov Condition
(CMC) and the Faithfulness Condition (FC). The notation X ⊥⊥ Y | Z is used to denote that
variables in X are independent from variables in Y given Z.

Definition 1.2.1 (Causal Markov Condition) (Spirtes et al., 2000) Let G be a causal graph
with node set V and P be a probability distribution over the nodes in V generated by the causal
structure represented by G. G and P satisfy the Causal Markov Condition if and only if for every
W in V, W is independent of V \ (Descendants(W ) ∪Parents(W )) given Parents(W ).

In essence, the Causal Markov Condition states that a variable is independent its non-effects given
its direct causes. Under the Causal Markov Condition, and according to the chain rule of probability,
the joint probability distribution for a set V admits the following factorization:

P (V) =
∏
V ∈V

P (V |Parents(V )) (1.1)

where P (V |Parents(V )) denotes the probability of V given the (possibly empty) set of nodes that
are direct causes (parents) of V.

If causal DAG G and a JPD P satisfy the CMC then the tuple 〈G,P〉 are called a Causal Bayesian
Network. For a given causal DAG, the CMC yields a set of independence relations. For example,
for the graph of Figure 1.1, the CMC yields the following conditional independencies:

Contraceptives ⊥⊥ {Thrombosis, Protein F}
Protein C ⊥⊥ Protein F | Contraceptives

Thrombosis ⊥⊥ {Contraceptives, Breast Cancer, Protein E, Protein F } | Protein C
Breast Cancer ⊥⊥ {Protein F, Thrombosis, Contraceptives} | Protein C

Protein E ⊥⊥ {Protein C, Thrombosis, Contraceptives} | {Breast Cancer, ProteinF}
Protein F ⊥⊥ {Breast Cancer, Protein C, Thrombosis, Contraceptives}

The CMC also entails some independencies, such as:

Protein F ⊥⊥ Protein C | {Protein E, Breast Cancer}
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The independence model J (P) or simply J is defined as the set of all conditional independencies
A ⊥⊥ B | Z in the joint distribution of P, where A, B and Z are disjoint sets of variables. The Causal
Markov Condition states that, if A is a non-descendant of B in G, then A ⊥⊥ B | Parents(A) ∈ J . In
general a probability distribution P satisfying the Causal Markov Condition for a causal graph G may
include other independence relations besides those entailed by the Causal Markov Condition. If this
is not the case, and the independence model J includes all and only the conditional independencies
entailed by the Causal Markov Condition, the distribution and the graph are said to be faithful to
each other:

Definition 1.2.2 (Faithfulness Condition) (Spirtes et al., 2000) Let G be a causal graph and P
a probability distribution generated by G. 〈G,P〉 satisfies the Faithfulness Condition if and only if
every conditional independence relation true in P is entailed by the Causal Markov Condition applied
to G.

When 〈G,P〉 are faithful to each other, the independencies that hold in P are all and only those
entailed by the Causal Markov Condition. However, some of the entailed independencies are not
obvious by the CMC, such as the conditional independence Protein F ⊥⊥ Protein C | {Protein E,
Breast Cancer} in any probability distribution faithful to the graph in Figure 1.1. Pearl (2000)
proposed a graphical criterion, called d-separation, which can identify all and only the conditional
independencies stemming from applying the Causal Markov Condition to a DAG.

The definition is based on the notion of special nodes in the graph, called colliders: In a DAG G a
node Y is a collider on undirected path p if and only if there are two distinct edges on p containing
Y as an endpoint and both are into Y (X → Y ← Z). Otherwise Y is a non-collider on p. In graph
G, node Y is an unshielded collider on p if Y is a collider on p, V is adjacent to distinct nodes X
and Z on p, and X and Z are not adjacent in G. The notion of collider is strongly associated with
a specific triple and path, i.e. the same node may be a collider in one path and a non-collider in
another.(e.g. if G = ({X,Y, Z,W}, {X → Y, Z → Y, Y → W}, Y is a collider in the path from X
to Z and a non-collider in the path from X to W .

Definition 1.2.3 (d-separation) (Pearl, 1988) For a directed acyclic graph G = (V, E), X,Y,W ∈
V, X ∩ Y = ∅, X,Y /∈ W , then X and Y are d-separated given W in G if and only if there exists
no undirected path p between X and Y , such that

1. Every collider on p has a descendant in W and

2. no other node on p is in W.

If such a path exists, X and Y are said to be d-connected in G given W. Any such path p is called
a d-connecting path for X to Y given W.

This definition is not very intuitive, but is based on some simple ideas regarding the flow of informa-
tion through causally related events. See Pearl (1988, 2000) and Spirtes et al. (2000) for some very
good examples for this graphical criterion. In any case, d-separation is a powerful tool for identifying



20 Introduction

conditional independencies in faithful Bayesian networks directly from the graph, and is also very
useful because of the following theorem:

Theorem 1.2.1 (Pearl, 1988) If JPD P over variables V is faithful to some DAG, then P is faithful
to DAG G with node set V if and only if

1. for all nodes X, Y in G, X and Y are adjacent if and only if X and Y are dependent given
every set of nodes in G that does not include X or Y and

2. for all nodes X, Y , Z such that < X,Y, Z > is an unshielded triple, X → Y ← Z is a subgraph
of G if and only if X, Z are dependent given every set containing Y but not X or Z.

This theorem, also known as the local Markov condition for graph G, constitutes the basic tool
for constraint-based Bayesian network learning.

Condition 1 in Theorem 1.2.1 states that every non-adjacency in the graph G corresponds to a
conditional independence in the JPD P. Imagine that one has gathered a data set over a set of
variables V, and wishes to identify the causal Bayesian network faithful to the JPD P over V.
According to Theorem 1.2.1-1, if there exists a set of variables Z ∈ G, such that X ⊥⊥ Y | Z in P,
then X and Y are not adjacent in any DAG G faithful to P. Even though P is not known, the power
set P (V) can be searched for sets Z for which X ⊥⊥ Y | Z according to a proper test of conditional
independence. Thus, Condition 1 in Theorem 1.2.1 enables identifying the skeleton of a causal graph
given a data set and an appropriate test of independence.

Condition 2 in Theorem 1.2.1 enables the orientation of some edges of a causal graph (it specifically
identifies unshielded colliders). Additional orientations may be possible, based on CMC, FC and
acyclicity. However, not all orientations of a causal graph G are distinguishable by the independence
model J of a faithful distribution. The set of DAGs G that correspond, according to the criterion
of d-separation, to the same conditional independencies are said to form a Markov Equivalence
class, denoted [G]. The graphs in a Markov Equivalence class share the same skeleton and the same
unshielded colliders (Verma and Pearl, 1990).

There exist two types of algorithms for learning causal Bayesian networks from data: Constraint-
based methods, that constraint the search space of possible graphs according to the constraints
described in Theorem 1.2.1, and score-based methods that try to identify the network whose implied
factorization of the JPD is closer to the data. A comparison of these two approaches can be found
in Tsamardinos et al. (2006). This thesis focuses in constraint-based methods.

In general, algorithms for learning causal Bayesian networks return a representative of all graphs
that are statistically indistinguishable, i.e. graphs that have the edges in [G] and the orientations
that are common to all G ∈ [G]. Such graphs are called acyclic partially directed graphs or
PDAGs for short.

Causal Bayesian networks can be used to model interventions. For the causal structure of Figure
1.1, Study 3 describes an intervention: A scientist wants to check whether lowering Protein C can
prevent Breast Cancer, and therefore samples a group from the population, and then randomly
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Thrombosis

Protein C

Contraceptives

Breast cancer

Protein E

Protein F

Figure 1.2: PDAG corresponding to the equivalence class of the causal Bayesian network
depicted in Figure 1.1. Undirected edges correspond to edges that can be directed either way
in different causal Bayesian networks in the Markov Equivalence class of the CBN in Figure 1.1.
However, not all combinations of orientations are allowed: e.g., Breast Cancer and Thrombosis
cannot be simultaneously into Protein C ; this would make Breast Cancer→ Protein C← Thrombosis
an unshielded collider, and the graph would encode a different independence model.

assigns women into two groups: The first group is injected with high levels of the protein in their
blood, while the latter is injected with enzymes that dissolve only the specific protein, effectively
removing it from the blood. What happens to the system under study is that the levels of Protein
C in the graph are no longer causally dependent on the experimental design. Graphically this
is equivalent to removing the edge from Contraceptives to Protein C. This procedure is called a
Randomized Control Trial (RCT) and was first described by Peirce and Jastrow (1885).

The manipulation procedure just described is of course fictional, as is probably the existence of
(ethically approved) medical procedures that can completely determine the presence of a protein in
the human body. Such manipulations where the values of the manipulated variables are set solely
by the experiment are called hard manipulations, or ideal interventions, and while they are
typically neither possible or ethically permitted in most human studies, they are very common in
molecular biology (e.g. gene knock-outs).

Such manipulations are modeled in the context of causal Bayesian networks with the removal of all
edges that are incoming to the manipulated variables. This procedure is called graph surgery by
Pearl (2000), while the resulting graph is called the manipulated graph in Spirtes et al. (2000).
The distribution stemming from setting the values of manipulated variables is faithful to this graph.
In the rest of this thesis, GI is used to denote the graph resulting from G after the manipulation of
variables in I. (Pearl, 2000) has also developed the very elaborate theory of do-caclulus that can
be used to identify post-intervention probabilities from observational causal Bayesian networks.

Predicting the effects of manipulations with the use of “graph surgery” requires a causal Bayesian
network, i.e., a network where the edges denote a probabilistic direct causal relationship in the
context of modeled variables. As mentioned above, some orientations in a network are not distin-
guishable from conditional independencies alone. Thus, when a network is learned from a data set
using an asymptotically correct algorithm, some of the edges can not be oriented. For example,
assuming no statistical errors, the PDAG learnt from a data set D measuring all variables in Figure
1.1 would be the one shown in Figure 1.2.
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Thrombosis

Protein C

Contraceptives

Breast cancer

Protein E

Protein F

Protein X

Thrombosis

Protein C

Contraceptives

Breast cancer

Protein E

Protein F

Protein X

G1 G2

Figure 1.3: Causal insufficiency in causal Bayesian networks. Two different hypotheti-
cal causal structures for the variables measured in the motivating example. Protein X is latent
(unmeasured). Graph G1 on the left entails the same conditional independencies as the graph in
Figure 1.1, and therefore a learning algorithm would ideally learnt the PDAG in Figure 1.2, even
though Protein F does not cause Protein E. No PDAG can correctly represent the conditional
independencies entailed by G2.

Undirected edges in a PDAG are edges that can have either orientation in a faithful DAG (there
exists at least one DAG faithful to the independence model where the edge is oriented as , and
at least one DAG faithful to the independence model where the edge is oriented as ). Thus, one
cannot use undirected edges to predict the effect of interventions on adjacent nodes.

But even the directed edges in a PDAG have causal semantics that depend on an implicit, very
delicate assumption: The assumption of causal sufficiency. According to the Causal Sufficiency
Condition (CSC), no two variables in the CBN share a latent common cause. Failure of causal
sufficiency changes the semantics of the edges in a PDAG learnt from data (or any corresponding
faithful DAG).

In the PDAG shown in Figure 1.2, only edges Breast Cancer → Protein E and Protein F →
Protein E are directed. According to the semantics of causal Bayesian networks, this means that if
one was to change the distribution of Breast Cancer in the population, the distribution of Protein E
would change, as would happen if one intervened and changed the distribution of Protein F . How-
ever, this is not true unless the CSC holds.

For example, imagine that the true causal structure is the one shown in G1 in Figure 1.3 (left), where
another protein, Protein X, causes both Protein F and Protein E. Imagine that this protein is not
included in a study that measures the rest of the variables. The marginal probability distribution
entails the same conditional independencies as the graph in Figure 1.1, and therefore (assuming no
statistical errors) the PDAG one would learn from a this study is still the one depicted in 1.2.

Also notice that a similar scenario could not hold for the edge Breast Cancer → Protein E. imagine
that the true causal structure is the one shown in G2 in Figure 1.3 (right). The presence of an un-
measured factor causing both Breast Cancer and Protein E would make Breast Cancer a collider
on the path from Protein C to Protein F , requiring the orientation Breast Cancer Protein E.
However, since Protein E is also a collider on the path from Breast Cancer to Protein F , the
edge must be oriented in the opposite direction: Breast Cancer Protein E. Thus, there exists
no DAG over the union of variables that can faithfully explain both entailed in the data.
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What is described in the previous examples is the failure of causal Bayesian networks to describe
situations where two of the modeled variables share a latent common cause (confounder): In some
cases, there exists no faithful DAG representation of the independence model (G2 in Figure 1.3). In
other cases (G1 in Figure 1.3), the entailed independence model can still be represented by a faithful
causal graph, even when latent confounders are present. However, the causal semantics of the model
cease to hold.

The causal assumptions made sofar were somewhat based on an intuitive understanding of the
way causality works. Causal sufficiency, however, seems arbitrary and unrealistic for most systems.
Particularly for the task of integratively analyzing data sets measuring overlapping variables, causal
sufficiency can be assumed at most for the union of the overlapping variables, but certainly not for
each individual data set.

1.3 Problem Specification and Proposed Approach

Section 1.2 presented the main assumptions that form the basis of causal discovery algorithms
(at least in the context of causal graphical models), and how these assumptions are used to reverse
engineer the causal structure of a set of variables, given a data set where these variables are observed.

We are interested in a more complicated problem. In the motivating scenario presented in 1.1, some
aspects of the same underlying causal structure is measured in four different studies. How do CMC
and FC connect the heterogeneous data sets to the underlying causal structure and how can one use
them to reverse engineer the causal graph shown in Figure 1.1? Is there a formal way to co-analyze
heterogeneous studies measuring the same system under study and infer the common underlying
causal structure? This thesis formalizes the problem and proposes a sound and complete algorithm
that solves it. To do so, we address the following issues:

First of all, to formalize the problem, one must define in what ways the studies are allowed to
differ. In this thesis, we focus in two major sources of heterogeneity: Different data sets may be (a)
measuring different (albeit overlapping) variable sets and (b) the data sets may be collected under
different ideal interventions of some of the measured variables.

To causally co-analyse data sets with the above heterogeneities, we need causal models that allow
latent confounders, and can model marginalization and interventions. Two extensions of causal
Bayesian networks that allow latent confounders exist: Maximal Ancestral Graphs (MAGs)
and Semi-Markov Causal Models (SMCMs). While both causal models have been introduced
for the same purpose, the correspondence between the two had not been thoroughly studied. Chapter
2 presents the theory of both models and studies the relationship between them.

We then propose the solving the problem by converting it into a constraint satisfaction problem.
Specifically, we introduce an efficient translation of statistical constraints entailed in the available
data sets into path constraints over the possible causal graphs, and a subsequent conversion of these
path constraints into SAT formulae. The resulting SAT instance corresponds to causal graphs that fit
all data sets. Apart from being able to solve the previously unresolved problem of integrative causal
analysis of heterogeneous data sets, this approach has three major advantages over existing causal
discovery approaches: (a) soundness and completeness is guaranteed by the inclusion of all and
only the entailed constraints (b) it can be easily extended to incorporate other types of knowledge
and/or experiments, as long as they can be expressed as graph properties and (c) the resulting
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S

Figure 1.4: Result of integrative causal analysis for the motivating example. Solid lines
denote edges that must be in the underlying causal structure, while dashed lines denote that the
edge may or may not be in the underlying causal structure, i.e., there exist causal graphs with
both configurations that are consistent with all the available studies. Circle endpoints represent
ambiguity in orientation (the endpoint can be either a tail or an arrow in some consistent causal
model). Notice that INCA is able to predict that no dashed or solid edge connects Protein C and
Protein F , even though the two have not been measured together in any of the four studies!

instances can be solved with state-of-the-art SAT solvers, thus exploiting years of research in this
field. This approach, along with some improvements aiming to tackle the (exponential) complexity of
the problem, is presented in Chapter 3. This chapter introduces Algorithm COmbINE, a theoretically
sound and complete algorithm that, in the absence of statistical errors, can learn causal structure
from a collection of data sets that are heterogeneous in the manner stated above; The behaviour of
the algorithm is shown to outperform the only similar state-of-the art literature.

Graphical (path) constraints imposed on the causal graph correspond to statistical facts entailed in
the available data sets, and are obtained by the data sets using appropriate tests of independence. As
a result, some erroneous constraints are expected. These constraints will typically lead to conflicts
that make the SAT instance unsatisfiable. To be able to deal with conflicting constraints, COmbINE
must be equipped with a strategy for selecting the best subset of non-conflicting constraints. Unfor-
tunately, only few algorithms exist for evaluating the confidence of individual constraints, and they
are computationally very expensive. In Chapter 4 we introduce a method for estimating posterior
pairwise probabilities for graph features. The method has no significant computational overhead and
is shown to perform on par, if not better, than its –computationally expensive– alternatives.

Chapter 5 shows how the aforementioned method can be used as a conflict resolution in algorithm
COmbINE. The algorithm is then evaluated in several scenarios in simulated data where (a) the
conflict resolution strategy is shown to outperform state-of-the-art alternatives (a) COmbINE is
shown to be robust and behave reasonably against different input parameters. Finally, to showcase
the availability of real problems that call for integrative causal analysis, the algorithm is employed
to co-analyze a collection of public mass cytometry data sets measuring overlapping variables under
three different interventions.
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In principle, integrative causal analysis of multiple, heterogeneous allows more sound causal infer-
ences than the isolated analysis of each data set. Graph S, shown in Figure 1.4 shows the inferred
causal structure when all four studies of the motivating example are analyzed together with COm-
bINE. Solid lines denote edges that must be in the underlying causal structure, while dashed lines
denote that the edge may or may not be in the underlying causal structure, i.e., there exist causal
graphs with both configurations that are consistent with all the available studies. Circle endpoints
represent ambiguity in orientation (the endpoint can be either a tail or an arrow in some consistent
causal model). Notice that no dashed or solid edge connects Protein C and Protein F in S: Inte-
grative causal analysis is able to predict that the two variables are independent, even though they
have not been measured together in any of the four studies!

A similar inference regards the induction of the presence of an edge between two variables never
measured together. This observation has significant ramifications for data analysis as it implies
that additional causal relations may be inferred from already available data sets, without further
studies. Moreover, it offers a unique opportunity to test whether INCA predictions hold in practice.
Chapter 6, discusses a minimal example where such a prediction is possible: For a pair of specific
input marginal structure (or independence models), each measuring two common variables (X and
W ) and one distinct (Y or Z), COmbINE predicts that Y and Z must be statistically dependent.
This inference is based solely on the assumptions of Markov condition and faithfulness. The rule is
evaluated in 20 data sets that cover a wide range of sample-sizes, dimensionality, types of variables,
and domains. To the best of our knowledge, this is the first attempt of massively validating causally-
inspired assumptions in real data sets. Computational experiments provide evidence that causally-
inspired assumptions often hold to a good degree in many real systems and could be exploited for
statistical inference.





Chapter 2

Modelling Causally Insufficient Systems with
Mixed Causal Models

To link the available data sets to the underlying causal mechanism, we need to formalize
causality. In causally insufficient systems, where latent confounders are possible, the most
common causal models are Semi Markov causal modes (SMCMs) and Maximal Ancestral
Graphs (MAGs). This chapter discusses the semantics of these models, their relationship
to the joint probability distributions of the modelled variables based on the principles of
causality, how each can be used to model experiments, and the correspondence between
them.

Causally insufficient systems are often described using Semi-Markov causal models (SMCMs) (Tian
and Pearl, 2003) or Maximal Ancestral Graphs (MAGs) (Richardson and Spirtes, 2002; Richardson,
2003). Both of them are mixed graphs, meaning they can contain both directed ( ) and bi-
directed ( ) edges. The term mixed causal graph is used here to denote both. In this section,
their common and unique properties are briefly presented. First, a review of the basic mixed graph
notation:

In a mixed graph G, a path is a sequence of distinct nodes 〈V0, V1, . . . , Vn〉 s.t for 0 ≤ i < n, Vi and
Vi+1 are adjacent in G. X is called a parent of Y and Y a child of X in G if X Y in G. A path
from V0 to Vn is directed if for 0 ≤ i < n, Vi is a parent Vi+1. X is called an ancestor of Y and
Y is called a descendant of X in G if X = Y in G or there exists a directed path from X to Y
in G. Notation PaG(X),ChG(X),AnG(X),DescG(X) is used to denote the set of parents, children,
ancestors and descendants of nodes X in G. A directed cycle in G occurs when X → Y ∈ E and
Y ∈ AnG(X). An almost directed cycle in G occurs when X ↔ Y ∈ E and Y ∈ AnG(X). Given
a path p in a mixed graph, a non-endpoint node V on p is called a collider if the two edges incident
to V on p are both into V . Otherwise V is called a non-collider. A path p = 〈X,Y, Z〉, where X
and Z are not adjacent in G is called an unshielded triple. If Z is a collider on this path, the
triple is called an unshielded collider.

MAGs and SMCMs are graphical models that represent both causal relations and conditional inde-
pendencies among a set of measured (observed) variables O, and can be viewed as generalizations

27
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of causal Bayesian networks that can account for latent confounders. MAGs can also account for
selection bias, but in this work selection bias is assumed not present.

2.1 Semi-Markov Causal Models

Semi-Markov causal models (SMCMs), introduced by Tian and Pearl (2003), often also reported
as Acyclic Directed Mixed Graphs (ADMGs), are causal models that implicitly model hidden con-
founders using bi-directed edges. A directed edge X Y denotes that X is a direct cause of Y in
the context of the variables included in the model. A bi-directed edge X Y denotes that X and
Y are confounded by an unobserved variable. Two variables can be joined by at most two edges,
one directed and one bi-directed.

Semi-Markov causal models are designed to represent marginals of causal Bayesian networks. In
DAGs, the probabilistic properties of the distribution of variables included in the model can be
determined graphically using the criterion of d-separation. The natural extension of d-separation to
mixed causal graphs is called m-separation:

Definition 2.1.1 (m-connection, m-separation.) In a mixed graph G = (E,V), a path p between
A and B is m-connecting given (conditioned on) a set of nodes Z , Z ⊆ V \ {A,B} if

1. Every non-collider on p is not a member of Z.

2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no m-connecting path between A and B relative
to Z. Otherwise, they are said to be m-connected given Z. The notation Jm(G) is used to denote
the set of m-separations that hold in G.

Let G be a SMCM over a set of variables O, Π the joint probability distribution (JPD) over the same
set of variables and J (Π) the independence model, defined as the set of conditional independencies
that hold in Π. 〈X,Y|Z〉 is used to denote the conditional independence of variables in X with
variables in Y given variables in Z. Jm(G) is used to denote the set of m-separations that hold
in G. Under the Causal Markov (CMC) and Faithfulness (FC) conditions (Spirtes et al., 2000),
every m-separation present in G corresponds to a conditional independence in J (Π) and vice-versa:
Jm(G) = J (Π).

In causal Bayesian networks, every missing edge in G corresponds to a conditional independence in
J (Π) (resp. an m-separation in G), meaning there exists a subset of the variables in the model that
renders the two non-adjacent variables independent. Respectively, every conditional independence
in J (Π) corresponds to a missing edge in the DAG G. This is not always true for SMCMs. Figure
2.1 illustrates an example of a SMCM where two non-adjacent variables are not independent given
any subset of observed variables.

Evans and Richardson (2010, 2011) deal with the factorization and parametrization of SMCMs for
discrete variables. Based on this parametrization, score-based methods have also recently been
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explored (Richardson et al., 2012; Shpitser et al., 2013), but are still limited to small sets of discrete
variables. The skeleton of a SMCM is not uniquely identifiable by the corresponding conditional
independence model on the same variables (see Figure 2.1 for an example). Richardson and Spirtes
(2002) overcome this obstacle by introducing a causal mixed graph with slightly different semantics,
the maximal ancestral graph.

2.2 Maximal Ancestral Graphs

Maximal ancestral graphs (MAGs) (Richardson and Spirtes, 2002), are ancestral mixed graphs,
meaning that they contain no directed or almost directed cycles, where an almost directed cycle
occurs if X Y and X causes Y . Every pair of variables X, Y in an ancestral graph is joined
by at most one edge. The orientation of this edge represents (non) causal ancestry: A bi-directed
edge X Y denotes that X does not cause Y and Y does not cause X, but (under the faithfulness
assumption) the two share a latent confounder. A directed edge X Y denotes causal ancestry:
X is a causal ancestor of Y . Thus, if X causes Y (not necessarily directly in the context of
observed variables) and they are also confounded, there is an edge X Y in the corresponding
MAG. Undirected edges can also be present in MAGs that account for selection bias. As mentioned
above, no selection bias is assumed in this work ; the theory of MAGs presented here is restricted
to MAGs with no undirected edges.

Like SMCMs, ancestral graphs are also designed to represent marginals of causal Bayesian networks.
Thus, under the causal Markov and faithfulness conditions for a MAG M and a JPD Π, X and Y
are m-separated given Z in an ancestral graph M if and only if 〈X,Y |Z〉 is in the corresponding
independence model J (Π). Still, like in SMCMs, a missing edge does not necessarily correspond to
a conditional independence. The following definition describes a subset of ancestral graphs in which
every missing edge (non-adjacency) corresponds to a conditional independence:

Definition 2.2.1 (Maximal Ancestral Graph, MAG) A mixed graph is called ancestral if it
contains no directed and almost directed cycles. An ancestral graph G is called maximal if for
every pair of non-adjacent nodes (X,Y ), there is a (possibly empty) set Z, X,Y /∈ Z such that
〈X,Y |Z〉 ∈ Jm(G).

Figure 2.1 illustrates an ancestral graph that is not maximal, and the corresponding maximal an-
cestral graph. MAGs are closed under marginalization (Richardson and Spirtes, 2002). Thus, if G
is a MAG faithful to Π, then there is a unique MAG G′ faithful to any marginal distribution of Π.

[L is used to denote the act of marginalizing out variables L, thus, if G is a MAG over variables
O∪L faithful to a joint probability distribution Π, G[L is the MAG over O faithful to the marginal
joint probability distribution of Π. J [L is used to denote the marginal independence model of J ,
i.e. the set of conditional independencies {X ⊥⊥ Y | Z ∈ J : (X ∪ Y ∪ Z) ∩ L = ∅}. Obviously,
the DAG of a causal Bayesian network is also a MAG. For a MAG G over O and a set of variables
L ⊂ O, the marginal MAG G[L is defined as follows:

Definition 2.2.2 (Marginal MAG) (Richardson and Spirtes, 2002) MAG G[L has node set O\L
and edges specified as follows: If X, Y are s.t. ∀Z ⊂ O \ L ∪ {X,Y }, X and Y are m-connected
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A

B C

D A

B C

D
(a) (b)

Figure 2.1: Maximality and primitive inducing paths.(a) Both (i) a semi Markov causal model
over variables {A, B, C, D}; variables A and D are m-connected given any subset of observed
variables, but they do not share a direct relationship in the context of observed variables and (ii) a
non-maximal ancestral graph over variables {A, B, C, D}. (b) The corresponding MAG. A and D
are adjacent, since they cannot be m-separated given any subset of {B,C}. Path 〈A,B,C,D〉 is a
primitive inducing path. This example was presented in Zhang (2008b).

given Z in G, then

if

 X /∈ AnG(Y );Y /∈ AnG(X)
X ∈ AnG(Y );Y /∈ AnG(X)
X /∈ AnG(Y );Y ∈ AnG(X)

 then

 X ↔ Y
X → Y
X ← Y

 in G[L

The following theorem was proved in Richardson and Spirtes (2002):

Theorem 2.2.1 If G is a MAG over V = O ∪ L, then Jm(G[L) = Jm(G)[L.

Proof See proof of Theorem 4.18 in Richardson and Spirtes (2002).

As mentioned above, every conditional independence in an independence model J corresponds to
a missing edge in the corresponding faithful MAG G. Conversely, if X and Y are dependent given
every subset of observed variables, then X and Y are adjacent in G. Thus, given an oracle of
conditional independence it is possible to learn the skeleton of a MAG G over variables O from a
data set. Still, some of the orientations of G are not distinguishable by mere observations. The set
of MAGs G faithful to distributions Π that entail a set of conditional independencies J (Π) form a
Markov equivalence class.

It is well known that two DAGs are Markov equivalent if and only if they share the same adjacencies
and unshielded colliders. Markov equivalent MAGs also share adjacencies and unshielded colliders,
but this is not sufficient to characterize Markov equivalent graphs. The emergence of bi-directed
edges imposes also a set of shielded colliders on the Markov equivalent MAGs. These colliders are
discriminated by discriminating paths:

Definition 2.2.3 (Discriminating path) A path p = 〈X, . . . ,W, V, Y 〉 is called discriminating
for V if X is not adjacent to Y and every node on the path from X to V is a collider and a parent
of Y .
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Discriminating paths, their properties and their connection to Markov equivalence is discussed in
detail in Ali et al. (2009). Unfortunately, two Markov equivalent MAGs may not share the same
discriminating paths. Moreover, a triple may be discriminated to be a collider in MAGM1 but not
in MAGM2 in the same Markov equivalence class. There exists however, a subset of discriminating
paths that (a) are present in all the Markov equivalent MAGs and (b) the colliders discriminated
by these paths are necessary and sufficient for Markov equivalence (Ali et al., 2009). The following
definition from Ali et al. (2009) is relevant:

Definition 2.2.4 (Colliders with order) Let Di, i ≥ 0 be a set of triples of order i in MAG M,
defined recursively as follows:

• Order 0: A triple 〈X,Y, Z〉 ∈ D0 if X and Z are not adjacent.

• Order i: A triple 〈X,Y, Z〉 ∈ Di+1 if,

1. for all j < i+ 1, 〈X,Y, Z〉 6∈ Dj and

2. There is a discriminating path 〈W,V1, . . . , Vn, Y,Q〉 such that either 〈X,Y, Z〉 = 〈Vn, Y,Q〉
or 〈X,Y, Z〉 = 〈Q,Y, Vn〉 and the n colliders:

〈W,V1, V2〉, . . . , 〈Vn−1, Vn, Y 〉 ∈
⋃
j≤i

Dj

If 〈X,Y, Z〉 ∈ Di, the triple has order i. If the triple has order i for some i, then the triple is said
to have order. If 〈X,Y, Z〉 is a triple with order and X Y Z is in M, then the triple is a
collider with order i in M. Otherwise, the triple is a definite non-collider with order in M.
A discriminating path p has order i if all colliders on the path (except from the collider 〈Vn, Y,Q〉
discriminated by the path) have order at most i− 1, and there exists at least one collider with order
i − 1. If a discriminating path has order i for some i, then the discriminating path is said to have
order. In this work (non) colliders with order ≥ 1 are (abusively) called discriminating (definite
non) colliders.

Note that not every triple on a mixed graph has order. The order (if any) of a shielded triple
is the minimum of the orders of all discriminating paths with order for that triple. Triples with
order 0 are the unshielded triples. Discriminating paths with order ≥ 1 are present in all Markov
equivalent MAGs, and therefore colliders with order ≥ 1 are the triples that are colliders in all the
Markov equivalent MAGs. Colliders with order, along with adjacencies, are necessary and sufficient
to characterize Markov equivalent MAGs:

Theorem 2.2.2 Two MAGs over the same variable set are Markov equivalent if and only if they
share the same edges and the same colliders with order.

Proof See proof of Theorem 3.7 in Ali et al. (2009).
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[G] is used to denote the class of MAGs that are Markov equivalent to G. A partial ancestral
graph (PAG) is a representative graph of this class, and has the skeleton shared by all the graphs
in [G], and all the orientations invariant in all the graphs in [G]. Endpoints that can be either arrows
or tails in different MAGs in G are denoted with a circle “◦” in the representative PAG. The symbol

is used as a wildcard to denote any of the three marks. The notation M ∈ P is used to denote
that MAG M belongs to the Markov equivalence class represented by PAG P.

For a M and a probability distribution Π faithful to each other, Jm(M) = J (Π). Thus, the set
of m-separations entailed in M are exactly the conditional independencies that hold in Π. FCI
Algorithm (Spirtes et al., 2000; Zhang, 2008a) is a sound and complete algorithm for learning the
complete (maximally informative) PAG of the MAGs faithful to a distribution Π over variables O
in which a set of conditional independencies J (Π) hold. An important advantage of FCI is that it
employs CMC, faithfulness and some graph theory to reduce the number of tests required to identify
the correct PAG.

2.3 Correspondence between SMCMs and MAGs

Semi Markov Causal Models and Maximal Ancestral Graphs both represent causally insufficient
causal structures. They both entail the conditional independence structure and the causal ancestry
structure of the observed variables. Thus, under CMC and FC, the SMCM G and the MAGM over
a set of variables O entail the same independence model: Jm(S) = Jm(M). They also entail the
same ancestral relationships: X is an ancestor of Y in S if and only if X is an ancestor of Y in M.

Nevertheless, SMCMs and MAGs also have significant differences: SMCMs describe the causal
relations among observed variables, while MAGs encode independence structure with partial causal
ordering. Edge semantics in SMCMs are closer to the semantics of causal Bayesian networks, whereas
edge semantics in MAGs are more complicated. On the other hand, unlike in DAGs and MAGs, a
missing edge in a SMCM does not necessarily correspond to a conditional independence (SMCMs
do not obey a pairwise Markov property).

Figure 2.2 summarizes the main differences of SMCMs and MAGs. It shows two different DAGs,
and the corresponding marginal SMCMs and MAGs over four observed variables. SMCMs have a
many-to-one relationship to MAGs: For a MAG M, there can exist more than one SMCMs that
entail the same probabilistic and causal ancestry relations. On the other hand, for any given SMCM
there exists only one MAG entailing the same probabilistic and causal ancestry relations. This is
clear in Figure 2.2, where a unique MAG, M1 =M2 entails the same information as two different
SMCMs, S1 and S2 in the same figure.

Directed edges in a SMCM denote a causal relation that is direct in the context of observed variables.
In contrast, a directed edge in a MAG merely denotes causal ancestry; the causal relation is not
necessarily direct. An edge X Y can be present in a MAG even though X does not directly cause
Y ; this happens when X is a causal ancestor of Y and the two cannot be rendered independent
given any subset of observed variables. Depending on the structure of latent variables, this edge can
be either missing or bi-directed in the respective SMCM.

Figure 2.2 illustrates examples of both cases. For example, A is a causal ancestor of D in DAG G1,
but not a direct cause (in the context of observed variables). Therefore, the two are not adjacent in
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A B C

L

D

G1:

A B C D

S1:

A B C D

M1:

A B C D

P1:

A B C D

G2:

A B C D

S2:

A B C D

M2:

A B C D

P2:

Figure 2.2: An example two different DAGs and the corresponding mixed causal graphs
over observed variables. On the right: DAGs G1 over variables {A, B, C, D, L} (top) and G2
over variables {A, B, C, D} (bottom). From left to right, on the same row as the underlying causal
DAG, the respective SMCMs S1 and S2 over {A, B, C, D}; the respective MAGs M1 = G1[L and
M2 = G2 over variables {A, B, C, D}; finally, the respective PAGs P1 and P2. Notice that, M1

and M2 are identical, despite representing different underlying causal structures.

the corresponding SMCM S1 over {A,B,C,D}. However, the two cannot be rendered independent
given any subset of {B,C}, and therefore A D is in the respective MAG M1.

A B C
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D
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1
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A B C D
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A B C D

PC
1

:
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A B C D
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A B C D
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Figure 2.3: Effect of manipulating variable C on the causal graphs of Figure 2.2. From
right to left: the manipulated DAGs GC1 (top) and GC2 (bottom), the manipulated SMCMs SC1 (top)
and SC2 (bottom) over variables {A, B, C, D}, the manipulated MAGs MC

1 = GC1 [L (top) and
MC

2 = GC2 (bottom) over the same set of variables, and the corresponding PAGs PC1 (top) and
PC2 (bottom). Notice that edge A D is removed in MC

1 , even though it is not adjacent to the
manipulated variable. Moreover, on the same graph, edge B D is now B D.

On the same DAG, B is another causal ancestor (but not a direct cause) of D. The two variables
share the common cause L. Thus, in the corresponding SMCM S1 over {A,B,C,D} B D is
present. However, a bi-directed edge between B and D is not allowed in MAG M1, since it would
create an almost directed cycle. Thus, B D is in M1.

Also notice that, unlike SMCMs, MAGs only allow one edge per variable pair. Thus, if X directly
causes Y and the two are also confounded, both edges will be in a relevant SMCM (X Y ), while
the two will share a directed edge from X to Y in the corresponding MAG.

Overall, a SMCM has a subset of the adjacencies (but not necessarily edges) of its MAG counterpart.
These extra adjacencies in MAGs correspond to pairs of variables that cannot be m-separated
given any subset of observed variables, but neither directly causes the other, and the two are not
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confounded. These adjacencies can be checked in a SMCM using a special type of path, called
inducing path (Richardson and Spirtes, 2002).

Definition 2.3.1 (Inducing path) A path p = 〈V1, V2, . . . , Vn〉 on a mixed causal graph G over a
set of variables V = O∪̇L is called inducing with respect to L if every non-collider on the path is
in L and every collider is an ancestor of either V1 or Vn. A path that is inducing with respect to the
empty set is called a primitive inducing path.

Obviously, an edge joining X and Y is a primitive inducing path. Intuitively, an inducing path with
respect to L is m-connecting given any subset of variables that does not include variables in L. Path
A B L D is an inducing path with respect to L in G1 of Figure 2.2, and A B D is an
inducing path with respect to the empty set in S1 of the same figure. Inducing paths are extensively
discussed in Richardson and Spirtes (2002), where the following theorem is proved:

Theorem 2.3.1 If G is an ancestral graph over variables V = O∪̇L, and X,Y ∈ O then the
following statements are equivalent:

i. X and Y are adjacent in G[L.

ii. There is an inducing path with respect to L in G.

iii. ∀Z, Z ⊆ V \ L ∪ {X,Y }, X and Y are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002).

This theorem links inducing paths in an ancestral graph to m-separations in the same graph and to
adjacencies in any marginal ancestral graph. The equivalence of (ii) and (iii) can also be proved for
SMCMs, using the proof presented in Richardson and Spirtes (2002) for Theorem 2.3.1:

Theorem 2.3.2 If G is a SMCM over variables V = O∪̇L, and X,Y ∈ O then the following
statements are equivalent:

i. There is an inducing path with respect to L in G.

ii. ∀Z, Z ⊆ V \ L ∪ {X,Y }, X and Y are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002).

The following proposition follows from Theorems 2.3.1 and 2.3.2:
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Proposition 2.3.3 . Let O be a set of variables and J the independence model over O. Let S be
a SMCM over variables O that is faithful to J and M be the MAG over the same variables that is
faithful to J . Let X,Y ∈ O. Then there is an inducing path between X and Y with respect to L,
L ⊆ O in S if and only if there is an inducing path between X and Y with respect to L in M.

Proof (⇒) Assume there exists a path p in S that is inducing w.r.t. L. Then by theorem 2.3.2
there exists no Z ⊆ O \ L ∪ {X,Y } such that X and Y are m-separated given Z in S, and since S
and M entail the same m-separations there exists no Z ⊆ O \ L ∪ {X,Y } such that X and Y are
m-separated given Z in M. Thus, by Theorem 2.3.1 there exists an inducing path between X and
Y with respect to L in M.
(⇐) Similarly, assume there exists a path p in M that is inducing w.r.t. L. Then by theorem 2.3.1
there exists no Z ⊆ O \L ∪ {X,Y } such that X and Y are m-separated given Z in M, and since S
and M entail the same m-separations there exists no Z ⊆ O \ L ∪ {X,Y } such that X and Y are
m-separated given Z in S. Thus, by Theorem 2.3.2 there exists an inducing path between X and Y
with respect to L in S.

Primitive inducing paths are connected to the notion of maximality in ancestral graphs: Every
ancestral graph can be transformed into a maximal ancestral graph with the addition of a finite
number of bi-directed edges. Such edges are added between variables X,Y that are m-connected
through a primitive inducing path (Richardson and Spirtes, 2002). Path A B C D in
Figure 2.1 is an example of a primitive inducing path.

Inducing paths are crucial in this work because adjacencies and non-adjacencies in marginal ancestral
graphs can be translated into existence or absence of inducing paths in causal graphs that include
some additional variables. For example, path A B L D is an inducing path w.r.t. L in G1
in Figure 2.2, and therefore A and D are adjacent in M1. Thus, inducing paths are useful for
combining causal mixed graphs over overlapping variables.

Inducing paths are also necessary to decide whether two variables in an SMCM will be adjacent in
a MAG over the same variables without having to check all possible m-separations. Algorithm 1
describes how to turn a SMCM into a MAG over the same variables.

Algorithm 1 takes as input a SMCM S and adds the necessary edges to transform it into a MAG
M by looking for primitive inducing paths. The procedure can be viewed as a special case of
marginalizing out variables in DAGs, presented in Spirtes and Richardson (1996) and Zhang (2008b).
Similar algorithms are also presented in Sadeghi (2012), where the relationship among different
types of mixed causal graphs representing the same independence model is discussed in detail. The
algorithm is sound, i.e. the output MAG shares the same causal ancestry relations and entails the
same independence model as S:

Theorem 2.3.4 . Let O be a set of variables and J the independence model over O. Let S be a
SMCM over variables V that is faithful to J . Let M = SMCMtoMAG(S). Then S and M share
the same ancestry relations and Jm(S) = Jm(M).

Proof S andM share the same ancestry relations, since during Algorithm 1 a directed edge X Y
is added only if X is an ancestor of Y in S, and no directed edges are removed. To prove that the
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Algorithm 1: SMCMtoMAG

input : SMCM S
output: MAG M

1 M←S;
2 foreach ordered pair of variables X, Y not adjacent in S do
3 if ∃ primitive inducing path from X to Y in S then
4 if X ∈ AnS(Y ) then
5 add X Y to M;
6 else if Y ∈ AnS(X) then
7 add Y X to M;
8 else
9 add Y X to M;

10 end

11 end

12 end
13 foreach X Y in M do
14 remove X Y ;
15 end

Jm(S) = Jm(M), consider a DAG G constructed from S as follows: For every bi-directed edge
X Y , introduce a new node LXY . Remove X Y and add X LXY Y . Let L be the set
{LViVj} be the set of nodes added by this procedure. Obviously, G is a DAG and G and S share
the same ancestry relations and the same m-separations for variables in O, thus Jm(S) = Jm(G)[L.
If 〈X,V1, . . . , Vn, Y 〉 is a primitive inducing path in S, then 〈X,LXV1 , V1, . . . , LVn−1Vn , Vn, LVnY , Y 〉
is an inducing path with respect to L in G and vice versa. Thus, X and Y are adjacent in G[L
if only if there exists a primitive inducing path between X and Y in S, and G shares the same
ancestry relations with S for variables in O, thus by Definition 2.2.2, G[L=M. By Theorem 2.2.1
(Richardson and Spirtes, 2002) Jm(M) = Jm(G[L) = Jm(G)[L= Jm(S).

The algorithm is also complete, since there only exists one such MAG. The inverse procedure,
converting a MAG into the underlying SMCM, is not possible, since one cannot know in general
which of the edges correspond to direct causation or confounding and which are there because of a
(non-trivial) primitive inducing path. Note though that, there exist sound and complete algorithms
that identify all edges for which such a determination is possible (Borboudakis et al., 2012). In
addition, the next section shows that co-examining manipulated distributions can indicate that
some edges stand for indirect causality (or indirect confounding).

2.4 Manipulations under causal insufficiency

An important motivation for using causal models is to predict causal effects. This work focus on hard
manipulations, where the value of the manipulated variables is set exclusively by the manipulation
procedure. The assumption of locality, denoting that the intervention of each manipulated variable
should not directly affect any variable other than its direct target, and more importantly, local
mechanisms for other variables should remain the same as before the intervention (Zhang, 2006), is
also adopted. Thus, the intervention is merely a local surgery with respect to causal mechanisms.
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These assumptions may seem a bit restricting, but this type of experiment is fairly common in
several modern fields where the technical capability for precise interventions is available, such as, for
example, molecular biology. Finally, faithfulness of the manipulated models to the corresponding
manipulated distributions is assumed.

In the context of causal Bayesian networks, hard interventions are modeled using what is referred to
as “graph surgery”, in which all edges incoming to the manipulated variables are removed from the
graph. The resulting graph is referred to as the manipulated graph. Naturally, DAGs are closed
under manipulation. The term intervention target is used to denote a set of manipulated variables.
For a DAG G and an intervention target I, GI is used to denote the manipulated DAG. Parameters
of the distribution that refer to the probability of manipulated variables given their parents are
replaced by the parameters set by the manipulation procedure, while all other parameters remain
intact. ΠI is used to denote this manipulated joint probability distribution, and J I to denote
the corresponding manipulated independence model.

Graph surgery can be easily extended to SMCMs: One must simply remove edges into the manipu-
lated variables. Again, the notation SI is used to denote the graph resulting from a SMCM S after
the manipulation of variables in I. In contrast, predicting the effect of manipulations in MAGs is
not trivial. Due to the complicated semantics of the edges, the manipulated graph is usually not
unique.

This becomes more obvious by looking at Figures 2.2 and 2.3. Figure 2.2 shows two different causal
DAGs and the corresponding SMCMs and MAGs, and Figure 2.3 shows the effect of a manipulation
on the same graphs. In Figure 2.2 the marginals of DAGs D1 and D2 are represented by the same
MAG M1 =M2. However, after manipulating variable C, the resulting manipulated MAGs MC

1

andMC
2 do not belong to the same equivalence class (they do not even share the same skeleton). The

indistinguishability of M1 and M2 refers to m-separation only; the absence of a direct causal edge
between A and D could be detected using other types of tests, like the Verma constraint (Verma and
Pearl, 1990). Moreover, predicting the effects of manipulations is possible for some cases (Zhang,
2008b; Borboudakis et al., 2012; van der Zander et al., 2014; Maathuis and Colombo).

While the effect of manipulations on a MAG M cannot be predicted, given a data set measuring
variables O when variables in I ⊂ O are manipulated, the PAG representative of the actual manip-
ulated MAG MI can be obtained (assuming an oracle of conditional independence) . PI is used to
denote this PAG.

Notice that, PI is used to denote the representative of the Markov equivalence class of models that
are faithful to the manipulated conditional independence model J (ΠI), as opposed to the represen-
tative of the interventional Markov equivalence class of manipulated MAGs. The information on
manipulations, not included in the present use of PI, defines a smaller Markov equivalence class:
For example, in Figure 2.3, MAGs in the interventional Markov equivalence class of MC

1 share the
additional invariant characteristic of a tail into C on the edge C D. This invariant feature how-
ever is not oriented in PC1 . To the best of our knowledge, no sound and complete algorithm for
identifying the maximally informative PAG for the interventional Markov equivalence class of MI

exists (however, orienting all edges out of the manipulated variables is a trivially sound method).

By observing PAGs {PIi} that stem from known, different manipulations of the same underlying
distribution, some refined information for the underlying causal model can be inferred. Let’s suppose,
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for example, that G1 in Figure 2.2 is the true underlying causal graph for variables {A,B,C,D,L}
and that we have the learnt PAGs PA1 and PC1 from relevant data sets. Graph PA1 is not shown, but
is identical to P1 in Figure 2.2 since A has no incoming edges in the underlying DAG (and SMCM).
PC1 is illustrated in Figure 2.3. Edge A D is present in PA1 , but is missing in PC1 even though
neither A nor D are manipulated in PC1 . By reasoning on the basis of both graphs, we can infer
that edge A D in PA1 cannot denote a direct causal relation among the two variables, but must
be the result of a primitive, non-trivial inducing path.



Chapter 3

Learning Causal Structure from Overlapping
Manipulations

Given the core assumptions of causality (i.e., the causal Markov and causal Faithfulness
conditions), the statistical relations of the variables entailed by the available data sets
constraint the configurations of possible paths in the underlying causal mechanism, rep-
resented here with a SMCM. We propose algorithm COmbINE, that efficiently translates
statistical constraints into path constraints and encodes them into a SAT instance, whose
truth-setting assignments correspond to possible underlying causal mechanisms. To tackle
the complexity of the problem, the algorithm utilizes the relationship between MAGs and
SMCMs described in the previous chapter to reduce the number of initial constraints. A
series of additional heuristic or exact improvements are employed to further increase scala-
bility. The algorithm is asymptotically sound and complete, and its oracle version is shown
to outperform SBCSD, a brute-force algorithm that can perform the same inference task.

In the previous section we described the effect of manipulation on MAGs and saw an example of
how co-examining PAGs faithful to different manipulations of the same underlying distribution can
help classify an edge between two variables as not direct.

In this section, we expand this idea and present a general, constraint-based algorithm for learning
causal structure from overlapping manipulations. The algorithm takes as input a set of data sets
measuring overlapping variable sets {Oi}Ni=1; in each data set, some of the observed variables can
be manipulated. The set of manipulated variables in experiment i is also provided and is denoted
with Ii.

In the rest of this work, we make the following assumptions:

A1 We assume that there exists an underlying causal mechanism over a set of variables O that
can be described with a semi Markov causal model G over O. If Π is the joint probability
distribution over O, we assume that Π and G are faithful to each other, i.e. Jm(G) = J (Π).
We also say that G is faithful to the independence model graphJ(Π).

39
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A2 We assume that we collect data sets in N different experiments, where in experiment i we
observe variables Oi ⊆ O, while variables Li = O \ Oi are latent and variables Ii ⊂ O

are manipulated. We also assume O =
⋃N
i=1 Oi. We assume that manipulations are ideal

hard interventions and that they result in removal of all edges in G that are incoming to the
manipulated variables.

A3 We assume faithfulness for the manipulated SMCMs and distributions, i.e. Jm(GIi) = J (ΠIi).

Unless mentioned otherwise, the following notation is used:

• Oi denotes the set of observed variables in experiment i.

• Ii denotes the set of manipulated variables in experiment i.

• O = ∪iOi denotes the union of observed variables.

• Li = O\Oi denotes the set of latent variables (with respect to the union of observed variables)
in experiment i.

• Di denotes a data set for experiment i, sampled from the mechanism described by (GIi ,ΠIi),
measuring variables in Oi.

• Ji denotes the independence model that holds in data set i. In the sample limit, Ji is equal
to the set of m-separations that hold for sets of variables in Oi after manipulating Ii in the
underlying causal model: Ji = J (ΠIi)[Li

= Jm(GIi)[Li
.

• Pi denotes the maximally informative PAG for the (observational) Markov equivalence class of
MAGs faithful to Ji. Thus, for any MAGMi ∈ Pi, Jm(Mi) = Ji. Notice that, since SMCMs
and MAGs over the same variables represent the same independence model, for an oracle of
conditional independence, Pi = [SMCMtoMAG(GIi)[Li ].

Under the assumptions described above, we are interested in combining information across data
sets collected from different manipulations and marginalizations of the same system under study,
to identify features of the possible underlying causal mechanism. If S is a SMCM that describes
this underlying causal mechanism, then this SMCM must agree with all the observed independence
models {Ji}Ni=1. This means that for each experiment, the respective manipulated SIi must entail
all and only the conditional independencies that hold in data set Di (in the sample limit Ji can be
obtained correctly from the data). For the family of independence models {Ji}Ni=1, and a family of
intervention targets {Ii}Ni=1 a possibly underlying SMCM is defined as follows:

Definition 3.0.1 (Possibly underlying SMCM) If {Ji}Ni=1 is a family of independence models
over variable sets {Oi}Ni=1 and {Ii}Ni=1 is a family of intervention targets such that Ii ⊆ Oi ∀i,
then a SMCM S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1 iff:

∀X,Y,Z ⊆ Oi, [X is m-separated from Y given Z in SIi ]⇔ X ⊥⊥ Y | Z ∈ Ji,
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Intuitively, S is a SMCM such that once the effects of manipulations are modeled (i.e. SIi is
constructed), it entails all and only the independencies Ji observed in the corresponding data set.
Thus, S is a possible causal model that explains all data. Since each independence model Ji can be
graphically represented by a PAG Pi, one can recast this definition in graph-theoretic terms: S is a
possibly underlying SMCM if, after graph surgery, results in a marginal MAG that belongs in Pi:

Theorem 3.0.1 If S is a SMCM, {Ji}Ni=1 is a family of independence models, {Ii}Ni=1 is a family
of intervention targets and Pi is the PAG of the Markov equivalence class of MAGs faithful to Ji,
the following statements are equivalent:

• S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

• ∀i,Mi ∈ Pi, where Mi = SMCMtoMAG(SIi)[Li .

Proof

S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1 ⇔ Jm(SIi)[Li= Ji ∀i (by definition).

Jm(SMCMtoMAG(SIi))[Li= Jm(SIi)[Li= Ji ∀i (by Theorem 2.3.4)

Jm(SMCMtoMAG(SIi)[Li) = Jm(SMCMtoMAG(SIi))[Li= Ji ∀i (by Theorem 2.2.1)

Jm(Mi) = Ji ∀i, and by definition of Pi, Mi ∈ Pi ∀i.

As mentioned above, PAGs Pi here denote the maximally informative representatives of the Markov
equivalence class of MAGs that entail independence models Ji, instead of the interventional Markov
equivalence class of MAGs that entail both Ji and the interventional constraints following the ma-
nipulation of targets Ii. Hence, this graphical criterion may seem incomplete, since the actual MAGs
belong to thinner equivalence classes, which include some additional orientations: tails towards any
manipulated variable and additional orientations stemming from the combination of m-separation
and acyclicity with these aforementioned tails. However, MAGs Mi = SMCMtoMAG(SIi)[Li are
constructed after graph surgery has been applied to the (candidate) possibly underlying SMCM and
abide by definition the constraints that correspond to interventional information (i.e. tail orienta-
tions towards manipulated variables), since SIi and SMCMtoMAG(SIi) share the same ancestral
relations. Thus, the resulting MAGs Mi belong (by construction) to the thinner interventional
Markov equivalence class of MAGs, and testing Markov equivalence in the observational sense is a
sound and complete graphical criterion to determine whether a SMCM is possibly underlying for a
family of independence models coupled with a family of intervention targets.

Notice that PAG Pi can be learnt with a sound and complete algorithm such as FCI. We can now
benefit by the compact representation of Markov equivalence classes of MAGs described in Theorem
2.2.2, to check whether a SMCM S is possibly underlying for a family of independence models {Ji}Ni=1

and a family of intervention targets {Ii}Ni=1: Instead of checking all conditional dependencies (resp.
independencies) in Ji to be m-connections (resp. m-separations) in the corresponding SMCM SIi ,
we can construct the corresponding MAGs Mi = SMCMtoMAG(SIi)[Li for each experiment and
check whether they belong to the Markov equivalence class represented by Pi. By Theorem 2.2.2,
we only need to check adjacencies and colliders with order.
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In the next section, we present an algorithm that converts the problem of identifying a SMCM S
that is possibly underlying for a family of observed independence models {Ji}Ni=1 and a family of
intervention targets {Ii}Ni=1 into a constraint satisfaction problem. Specifically, we will create a
satisfiability instance s.t. a SMCM is possibly underlying for {Ji}Ni=1 and {Ii}Ni=1 if and only if it
corresponds to a truth-setting assignment for the SAT instance. For a family of independence models
{Ji}Ni=1 and a family of intervention targets {Ii}Ni=1, several SMCMs may be possibly underlying.
We can then use the equivalent SAT instance to query properties shared by all possibly underlying
SMCMs, or to identify a single possibly underlying SMCM with some desirable characteristics. In
this work, we use the equivalent SAT instance to identify all edges and endpoints that are invariant
in all possibly underlying SMCMs.

3.1 Conversion to SAT

Theorem 3.0.1 implies thatMi has the same edges (adjacencies), and the same colliders with order
(unshielded colliders and discriminating colliders with order) as any MAG in Pi, for all i. We impose
these constraints on S by converting them to a SAT instance. We express the constraints in terms
of the following core variables, denoting edges and orientations in any possibly underlying SMCM
S.

• edge(X, Y ): true if X and Y are adjacent in S, false otherwise.

• tail(X, Y ): true if there exists an edge between X and Y in S that is out of Y , false otherwise.

• arrow(X, Y ): true if there exists an edge between X and Y in S that is into Y , false otherwise.

Variables tail and arrow are not mutually exclusive, enabling us to represent X Y edges when
tail(Y,X) ∧ arrow(Y,X). Each independence model Ji is entailed by the (non) adjacencies and
(non) colliders in each observed PAG Pi. These structural characteristics correspond to paths in
any possibly underlying SMCM as follows:

1. ∀X,Y ∈ Oi, X and Y are adjacent in Pi if and only if there exists an inducing path between
X and Y with respect to Li in SIi (by Theorems 2.3.1 and 2.3.2 and Proposition 2.3.3).

2. If 〈X,Y, Z〉 is an unshielded definite non collider in Pi, then 〈X,Y, Z〉 is an unshielded triple
in Pi and Y is an ancestor of either X or Z in SIi (by the semantics of edges in MAGs).

3. If 〈X,Y, Z〉 is an unshielded collider in Pi, then 〈X,Y, Z〉 is an unshielded triple in Pi and Y
is not an ancestor of X nor Z in SIi (by the semantics of edges in MAGs).

4. If 〈W, . . . ,X, Y, Z〉 is a discriminating collider in Pi, then 〈W . . . ,X, Y, Z〉 is a discriminating
path for Y in Pi and Y is not an ancestor of X nor Z in SIi (by the semantics of edges in
MAGs).

5. If 〈W, . . . ,X, Y, Z〉 is a discriminating definite non collider in Pi, then 〈W . . . ,X, Y, Z〉 is a
discriminating path for Y in Pi and Y is an ancestor either X or Z in SIi (by the semantics
of edges in MAGs).
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adjacent(X,Y,Pi)↔ ∃pXY : inducing(pXY , i)

/?X and Y are adjacent in Pi iff

there exists an inducing path from X to Y with respect to Li in SIi . ?/

collider(〈X,Y, Z〉,Pi)↔ ¬ancestor(Y,X, i) ∧ ¬ancestor(Y, Z, i)
/? Triple 〈X,Y, Z〉 is collider in Pi iff

Y is not an ancestor of X or Z in SIi . ?/

unshielded(〈X,Y, Z〉,Pi)↔
adjacent(X,Y,Pi) ∧ adjacent(Y,Z,Pi) ∧ ¬adjacent(X,Z,Pi)

/? Triple 〈X,Y, Z〉 is unshielded in Pi iff

(X, Y ), (Y , Z) are adjacent in Pi, (X,Z) are not adjacent in Pi. ?/

discriminating(〈V0, . . . , Vn−1, Vn, Vn+1〉, Vn,Pi)↔
¬adjacent(V0, Vn+1,Pi) ∧ ∀j ∈ [0, . . . , n]adjacent(Vj , Vj+1,Pi)∧
∀j ∈ [1, . . . , n− 1]

(
collider(〈Vj−1, Vj , Vj+1〉,Pi)

∧ adjacent(Vj , Vn+1,Pi) ∧ ancestral(Vj , Vn+1, i)
)

/? Path 〈V0, . . . , Vn+1〉 is discriminating for Vn in Pi iff

V0, Vn+1 are not adjacent in Pi, V0, . . . , Vn+1 is a path in Pi,
every node between V0 and Vn is a collider on the path

and a parent of Vn+1 in Pi. ?/

Figure 3.1: Formulae relating properties of observed PAGs to the underlying SMCM S.
In each PAG, all features that are necessary and sufficient for Markov equivalence impose constraints
on possibly underlying SMCMs. Constraints are expressed using the literals and formulae introduced
here. Index i is used to denote properties of an underlying SMCM in experiment i, where variables
Li are latent and variables Ii are manipulated. We use use pXY to denote a path between X and
Y in S. Conjunction and disjunction are assumed to have precedence over implication with regard
to bracketing. Each formula is followed by an explanation in in natural language (in star-slash
comments).

These constraints are expressed using the core variables (edges, tails and arrows), as described in
Figures 3.1 and 3.2. Figure 3.1 describes how features of a PAG are imposed as path constraints in
a possibly underlying SMCM. More specifically, an adjacency, a tail and an arrowhead in a PAG Pi
correspond to an inducing path, a causal ancestry and the lack of causal ancestry on any possibly
underlying SMCM, respectively. Unshielded triples and discriminating paths are expressed on the
basis of these basic PAG features. In each PAG, the observed features depend on the latent and
manipulated variables. When constraints are imposed on the candidate underlying SMCMs, the
latent and manipulated variables in the experiment are taken under consideration: If an adjacency
is observed in Pi in experiment i, where variables Li are latent and Ii are manipulated, then any path
on S that explains this adjacency must be inducing with respect to Li in SIi . Any truth-assignment
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inducing(〈V0, . . . , Vn+1〉, i)↔
(n = 0→ edge(V0, Vn+1))∧(
n > 0→ (∀j ∈ [1, . . . , n] unblocked(〈Vj−1, Vj , Vj+1〉, V0, Vn+1, i))

)
∧

(V0 ∈ Ii → tail(V1, V0)) ∧ (Y ∈ Ii → tail(Vn, Vn+1))

/? Path 〈V0, . . . , Vn+1〉 is inducing with respect to Li in SIi iff

if the path has only two variables, V0 is adjacent to Vn in S
else each triple is unblocked for the endpoints with respect to Li,

if V0 (Vn+1) is manipulated in i then the path is out of V0 (Vn+1) in S. ?/

unblocked(〈Z, V,W 〉, X, Y, i)↔
edge(Z, V ) ∧ edge(V,W )∧
[V ∈ Li → ¬head2head(〈Z, V,W 〉, i) ∨ ancestor(V,X, i) ∨ ancestor(V, Y, i)]∧

[V 6∈ Li → head2head(〈Z, V,W 〉, i) ∧ (ancestor(V,X, i) ∨ ancestor(V, Y, i))]

/? Triple 〈Z, V,W 〉 is unblocked for X, Y with respect to Li iff

(Z, V ) (V , W ) are adjacent in S
if V is latent, if V is head2head then it is an ancestor of X or Y in SIi

if V is not latent, V is a head2head and an ancestor of X or Y in SIi . ?/

head2head(〈X,Y, Z〉, i)↔ Y 6∈ Ii ∧ arrow(X,Y ) ∧ arrow(Z, Y )

/? Triple 〈X,Y, Z〉 is head2head in SIi iff

Y is not manipulated in experiment i, X is into Y , Z is into Y in S. ?/

ancestor(X,Y, i)↔ ∃pXY : ancestral(pXY , i)

/? X is an ancestor of Y in experiment i iff

there exists an ancestral path from X to Y in SIi . ?/

ancestral(〈V0, . . . , Vn+1〉, i)↔
∀j ∈ [1, . . . , n+ 1]

(
Vj 6∈ Ii ∧ (edge(Vj−1, Vj) ∧ tail(Vj , Vj−1) ∧ arrow(Vj−1, Vj))

)
/? Path 〈V0, . . . , Vn+1〉 is ancestral in experiment i iff

every variable (apart from possibly V0) is not manipulated in SIi
every variable is a parent of the next in S. ?/

Figure 3.2: Formulae reducing path properties of the graphs SIi to the core variables:
Graph properties of S in each experiment, inferred by the observed PAGs using the formulae in
Figure 3.1, are now expressed as boolean formulae using the “core” variables edge, arrow and tail.
Index i is used to denote properties of an underlying SMCM in experiment i, where variables Li
are latent and variables Ii are manipulated. Conjunction and disjunction are assumed to have
precedence over implication with regard to bracketing. Each formula is followed by an explanation
in in natural language (in star-slash comments).

to the core variables that does not entail the presence of such an inducing path should not satisfy the



3.2. Algorithm COmbINE 45

Algorithm 2: COmbINE

input : data sets {Di}Ni=1, sets of intervention targets {Ii}Ni=1, FCI parameters params,
maximum path length mpl, conflict resolution strategy str

output: Summary graph H
1 foreach i do Pi ← FCI(Di, params);

2 Hin ← initializeSMCM ({Pi}Ni=1);

3 (Φ,F)← addConstraints (H, {Pi}Ni=1, {Ii}Ni=1, mpl);
4 F ′ ← select a subset of non-conflicting literals F ′ according to strategy str ;
5 H ← backBone (Φ ∧ F ′)

SAT instance. The following constraints are added to ensure that the graphs satisfying constraints
1-5 above are SMCMs:

6. ∀X,Y ∈ O, either X is not an ancestor of Y or Y is not an ancestor of X in S (no directed
cycles).

7. ∀X,Y ∈ O, at most one of tail(X,Y ) and tail(Y,X) can be true (no selection bias).

8. ∀X,Y ∈ O, at least one of tail(X,Y ) and arrow(Y,X) must be true.

Naturally, Constraints 7 and 8 are meaningful only if X and Y are adjacent (if edge(X, Y) is true),
and redundant otherwise.

3.2 Algorithm COmbINE

We now present algorithm COmbINE (Causal discovery from Overlapping INtErventions) that
learns causal features from multiple, heterogenous data sets. The algorithm takes as input a set
of data sets {Di}Ni=1 over a set of overlapping variable sets {Oi}Ni=1. In each data set, a (possibly
empty) subset of the observed variables Ii ⊂ Oi may be manipulated. Each data set entails an
independence model Ji. FCI is run on each data set and the corresponding PAGs {Pi}Ni=1 are
produced. The algorithm then creates a candidate underlying SMCM Hin. Subsequently, for each
PAG Pi, the features of Pi are translated into constraints, expressed in terms of edges and endpoints
in Hin, using the formulae in Figures 3.1 and 3.2 . In the sample limit (and under the assumptions
discussed above), the SAT formula Φ ∧ F produced by this procedure is satisfied by all and only
the possibly underlying SMCMs for {Ji}Ni=1 and {Ii}. In the presence of statistical errors, however,
Φ∧F may be unsatisfiable. To handle conflicts, the algorithm takes as input a strategy for selecting
a non-conflicting subset of constraints F ′ and ignores the rest. Finally, COmbINE queries the SAT
formula for variables that have the same truth-value in all satisfying assignments, translates them
into graph features, and returns a graph that summarizes the invariant edges and orientations of all
possibly underlying SMCMs. We call the graphical output of COmbINE a summary graph.

The pseudocode for COmbINE is presented in Algorithm 2. Apart from the set of data sets described
above, COmbINE takes as input the chosen parameters for FCI (threshold α, maximum conditioning
set maxK), the maximum length of paths to consider and a strategy for selecting a subset of non-
conflicting constraints.
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Initially, the algorithm runs FCI on each data set Di and produces the corresponding PAG Pi. Then
the candidate SMCM Hin is initialized: Hin is the graph upon which all path constraints will be
imposed. Path constraints are realized on the basis of the plausible configurations of Hin. We say
that a path p in Hin is possibly inducing with respect to L, if we can create a graph H′in by
orienting circle endpoints in Hin such that path p is inducing with respect to L in H′in. We say that
a path p in Hin is possibly ancestral, if we can create a graph H′in by orienting circle endpoints in
Hin such that path p is ancestral H′in. To ensure the soundness of the algorithm, if p is an inducing
(ancestral) path in S, it must be a possibly inducing (ancestral) path in Hin. Thus, Hin must have
at least a superset of edges and at most a subset of orientations of any possibly underlying SMCM
S.

An obvious–yet not very smart–choice for Hin would be the complete unoriented graph. However,
looking for possibly inducing and possibly ancestral paths on the complete unoriented graph over
the union of variables could make the problem intractable even for small input sizes. To reduce the
number of possibly inducing and possibly ancestral paths, we use Algorithm 3 to construct Hin.

Algorithm 3 constructs a graph Hin that has all edges observed in any PAG Pi as well as some
additional edges that would not have been observed even if they existed: Edges connecting variables
that have never been observed together, and edges connecting variables that have been observed
together, but at least one of them was manipulated in each joint appearance in a data set. For
example, variables X9 and X15 in Figure 3.4 are measured together in two data sets: D2 and D3.
If X9 X15 in the underlying SMCM, this edge would be present in P3. Similarly, if X15 X9
in the underlying SMCM, the variables would be adjacent in P2. We can therefore rule out the
possibility of a directed edge between the two variables in S. However, it is possible that X15 and
X9 are confounded in S, and the edge disappears by the manipulation procedure in both P2 and
P3. Thus, Algorithm 3 will add these possible edges in Hin. In addition, in Line 5, Algorithm 3
adds all the orientations found so far in all Pi’s that are invariant1. The resulting graph has, in the
sample limit, a superset of edges and a subset of orientations compared to the actual underlying
SMCM. Lemma 3.3.1 formalizes and proves this property.

Having initialized the search graph, Algorithm 2 proceeds to generate the constraints. This pro-
cedure is described in detail in Algorithm 4, that is the core of COmbINE. These are: (i) the
bi-conditionals regarding the presence/absence of edges (Line 4), (ii) conditionals regarding un-
shielded and discriminating colliders (Lines 14, 13, 20 and 19), (iii) constraints that ensure that
any truth-setting assignment is a SMCM, i.e., it has no directed cycles and that every edge has at
least one arrowhead (Lines 8 and 9 respectively). Literal col (resp. dnc) is used to represent both
unshielded and discriminating colliders (resp. unshielded and discriminating non colliders).

The constraints are realized on the basis of the plausible configurations of Hin: Thus, for the
constraints corresponding to adjacent(X,Y, i) the algorithm finds all paths between X and Y in
Hin that are possibly inducing. Then, for the literal adjacent(X,Y, i) to be true, at least one of
these paths is constrained to be inducing; for the opposite, none of these paths is allowed to be

1Other options would be to keep all non-conflicting arrows, or keep non-conflicting arrows and tails after some
additional analysis on definitely visible edges (see Zhang, 2008b; Borboudakis et al., 2012, for more on this subject).
These options are asymptotically correct and would constrain search even further. Nevertheless, orientation rules in
FCI seem to be prone to error propagation and we chose a more conservative strategy giving a chance to the conflict
resolution strategy to improve the learning quality. Naturally, if an oracle of conditional independence is available or
there is a reason to be confident on certain features, one can opt to make additional orientations.
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Algorithm 3: initializeSMCM

input : PAGs {Pi}Ni=1

output: initial graph Hin
1 Hin ← empty graph over ∪Oi;
2 foreach i do
3 Hin ← add all edges in Pi unoriented;
4 end
5 Orient only arrowheads that are present in every Pi;
/* Add edges between variables never measured unmanipulated together */

6 foreach pair X, Y of non-adjacent nodes do
7 if 6 ∃i s.t. X,Y ∈ Oi \ Ii then
8 add X Y to Hin;
9 if ∃i s.t. X,Y ∈ Oi, X ∈ Ii, Y 6∈ Ii then add arrow into X;

10 if ∃i s.t. X,Y ∈ Oi, Y ∈ Ii, X 6∈ Ii then add arrow into Y ;

11 end

12 end

inducing. This step is the most computationally expensive part of the algorithm. The parameter
mpl controls the length of the possibly inducing paths; instead of finding all paths between X and
Y that are possibly inducing, the algorithm looks for all paths of length at most mpl. This plays
a major part in the ability of the algorithm to scale up, since finding all possible paths between
every pair of variables can blow up even in relatively small networks, particularly in the presence of
unoriented cliques or in relatively dense networks.

Notice that the information on manipulations is included in the satisfiability instance through the
encoding of the constraints: For every adjacency between X and Y observed in Pi, the plausible
inducing paths are consistent with the respective intervention targets: No inducing path is allowed
to include an edge that is incoming to a manipulated variable.

As an example, consider the following variation of the instance presented in Figure 3.5. Assume
that variable X is manipulated in experiment 1, and no variable is manipulated in experiment 2.
Since no information concerning experiments is employed up to the initialization of the search graph,
the resulting PAGs are the P1 and P2 shown in Figure 3.5. Thus, in the initial search graph Hin,
X Y and X Z Y are the two possibly inducing paths for X and Y in experiment i. Then
the following constraint will be imposed:

adjacent(X,Y, 1)↔ inducing(〈X,Y 〉, 1) ∨ inducing(〈X,Z, Y 〉, 1)

For path 〈X,Y 〉, the corresponding constraint is reduced to the properties of S as follows:

inducing(〈X,Y 〉, 1)↔
(X ∈ I1 → tail(Y,X)) ∧ (Y ∈ I1 → tail(X,Y )) ∧ edge(X,Y )
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Algorithm 4: addConstraints

input : Hin, {Pi}Ni=1, {Ii}Ni=1, mpl
output: Φ, list of literals F

1 Φ← ∅ foreach X,Y do
2 foreach i do
3 posIndPaths← paths in Hin of maximum length mpl that are possibly inducing with

respect to Li;

4 Φ← Φ ∧
[
adjacent(X,Y,Pi)↔ ∃pXY ∈posIndPaths s. t. inducing(pXY , i)

]
;

5 if X, Y are adjacent in Pi then add adjacent(X,Y,Pi) to F ;
6 else add ¬adjacent(X,Y,Pi) to F ;

7 end

8 Φ← Φ ∧
[
¬ancestor(X,Y ) ∨ ¬ancestor(Y,X)

]
;

9 Φ← Φ ∧
[
¬tail(X,Y ) ∨ ¬tail(Y,X)

]
∧
[
(arrow(X,Y ) ∨ tail(X,Y )

]
;

10 end
11 foreach i do
12 foreach unshielded triple in Pi do
13 Φ← Φ ∧

[
col(X,Y, Z,Pi)→ unshielded(X,Y, Z,Pi) ∧ collider(X,Y, Z,Pi)

]
;

14 Φ← Φ ∧
[
dnc(X,Y, Z,Pi)→ unshielded(X,Y, Z,Pi) ∧ ¬collider(X,Y, Z,Pi)

]
;

15 if 〈X,Y, Z〉 is a collider in Pi then add col(X,Y, Z,Pi) to F ;
16 else add dnc(X,Y, Z,Pi) to F ;

17 end
18 foreach discriminating path pWZ = 〈W, . . . ,X, Y, Z〉 do
19 Φ← Φ ∧

[
col(X,Y, Z,Pi)→ discriminating(pWZ , Y,Pi) ∧ collider(X,Y, Z,Pi)

]
;

20 Φ← Φ ∧
[
dnc(X,Y, Z,Pi)→ discriminating(pWZ , Y,Pi) ∧ ¬collider(X,Y, Z,Pi)

]
;

21 if X, Y , Z is a collider in Pi then add col(X,Y, Z,Pi) to F ;
22 else add dnc(X,Y, Z,Pi) to F ;

23 end

24 end

which is then added in Φ as inducing(〈X,Y 〉, 1)↔ tail(Y,X)∧ edge(X,Y ) since X ∈ I1 is true and
Y ∈ I1 is false. For the path 〈X,Z, Y 〉 the corresponding constraint finally added in Φ is

inducing(〈X,Z, Y 〉)↔
tail(Z,X) ∧ [¬head2head(〈X,Z, Y 〉) ∨ ancestral(Z,X) ∨ ancestral(Z, Y )]

Thus, in a SMCM that satisfies the final formula, if inducing(〈X,Y 〉, i) is true, there will be an
inducing path from X to Y consistent with the manipulation information.

Also notice how this constraint is propagated in the SAT: For example, X Z Y W is a
plausible skeleton for a possibly underlying SMCM. By the constraints mentioned above, X →
Z Y is the inducing path for X and Y with respect to L1 = Z. By the constraints added for the
definite non collider 〈X,Z,W 〉 for P2, Z has to be an ancestor of either X or Y in S∅. Therefore,
the path Z Y W has to be an ancestral path in S, which implies that Y Z in S. Thus,
the orientation Y Z is imposed by a combination of constraints stemming from different PAGs,
for two variables never jointly measured.
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Figure 3.3: COmbINE input - output for the motivating example. Input PAGs and output
summary graph for the motivating example, presented in Chapter 1.

As mentioned above, in the absence of statistical errors, all the constraints stemming from all PAGs
Pi are simultaneously satisfiable. In practical settings however, it is possible that some of the PAGs
have some erroneous features due to statistical errors, and these features can lead to conflicting
constraints. To tackle this problem, Algorithm 4 uses the following technique: For every observed
feature, instead of imposing the implied constraints on the formula Φ, the algorithm adds a bi-
conditional connecting the feature to the constraints. For example, if X and Y are found adjacent
in Pi, then instead of adding the constraints ∃pXY : inducing(X,Y, i) to Φ, we add the bi-conditional
adjacent(X,Y,Pi)↔ ∃pXY : inducing(X,Y, i). The antecedents of the conditionals are stored in a
list of literals F . The conflict resolution strategy is then imposed on this list of literals, selecting
a subset F ′ that results in a satisfiable SAT formula Φ ∧ F ′. The formula Φ ∧ F ′ is expressed in
Conjunctive Normal Form (CNF) so it can be input to standard SAT solvers.

Recall that the propositional variables of Φ correspond to the features of the actual underlying
SMCM (its edges and endpoints). Some of these variables have the same value in all the possible
truth-setting assignments of Φ ∧ F ′, meaning the respective features are invariant in all possibly
underlying SMCMs. Such variables are called backbone variables of Φ∧F ′ (Hyttinen et al., 2013).
The actual value of a backbone variable is called the polarity of the variable. For sake of brevity,
we say an edge or endpoint has polarity 0/1 if the corresponding variable is a backbone variable in
Φ ∧ F ′ and has polarity 0/1. Based on the backbone of Φ ∧ F ′, the final step of COmbINE is to
construct the summary graph S. S has the following types of edges and endpoints:

• Solid Edges: Edges in H that have polarity 1 in Φ∧F ′, meaning that they are present in all
possibly underlying SMCMs.

• Absent Edges: Edges that are not in H or edges in H that have polarity 0 in Φ∧F ′, meaning
that they are absent in all possibly underlying SMCMs.



50 Causal Structure from Overlapping Manipulations

X12

X5

X34

X10

X31

X9

X13

X15

X14

X27

X8

X18

S :

X9

X14

X27

X8

X15

X18

X10

X31

X34

X5

X13

X12

H :

X31

X10

X13

X5

X18
X27

X8

X12

X14

X15

X34

P1 :

X9
X27

X8

X15

X34

X13

X5

X18

X10

X31

X14

X12

P2 :

X10

X31

X14

X12

X9
X27

X8

X15

X34

X13

X5

P3 :

Figure 3.4: An example of COmbINE input - output. Graph S is the actual, data-generating,
underlying SMCM over 12 variables. PAGs P1,P2 and P3 are the output of FCI ran with an
oracle of conditional independence on three different marginals of G. H is the output of COmbINE
algorithm. The sets of latent variables (with respect to the union of observed variables) per data
set are: L1 = {X9}, L2 = {∅}, L3 = {X18}. The sets of manipulated variables (annotated as
rectangle nodes instead of circles in the respective graphs) are: I1 = {X14, X34}, I2 = {X15, X8},
I3 = {X9, X12}. Notice that X10 and X31 are adjacent in P2, but not in P1 or P3. This happens
because there exists an inducing path in the underlying SMCM (X31 X14 X10 in S) that is
“broken” by the manipulation of X14 and X12, respectively. Also notice a dashed edge between X9
and X15, which cannot be excluded since the variables have never been observed unmanipulated
together. Even if the link existed, it would be destroyed in both P2 and P3, where both variables
are observed. All graphs were visualized in Cytoscape (Smoot et al., 2011).

• Dashed Edges: Edges in H that are not backbone variables in Φ ∧ F ′, meaning that there
exists at least one possibly underlying SMCM where this edge is present and one where this
edge is absent.

• Solid Endpoints: Endpoints in H that are backbone variables in Φ ∧ F ′, meaning that this
orientation is invariant in all possibly underlying SMCMs.

• Dashed (circled) Endpoints: Endpoints in H that are not backbone variables in Φ ∧ F ′,
meaning that there exists at least one possibly underlying SMCM where this orientation does
not hold.

We use the term solid features of the summary graph to denote the set of solid edges, absent edges
and solid endpoints of the summary graph.
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X Y Z W

P1 : X Y W

P2 : X Z W
X Y Z W

Figure 3.5: A detailed example of a non-trivial inference. From left to right: The true
underlying SMCM over variables X, Y , Z, W ; PAGs P1 and P2 over {X,Y,W} and {X,Z,W},
respectively; The output H of Algorithm 2 ran with an oracle of conditional independence. Notice
that, the edges in P1 can not both simultaneously occur in a consistent SMCM S: This would make
X Y W an inducing path for X and W with respect to L2 = {Y } and contradict the features
of P2, where X and W are not adjacent. Similarly, X Z W cannot occur in any possibly
underlying SMCM S. The only possible edge structures that explain all the observed adjacencies
and definite non colliders are X Y Z W or X Z Y W . Either way, Y and Z
share an edge in all consistent SMCMs, and the algorithm will predict a solid edge between Y and
Z, even if the two have not been measured in the same data set. This example is discussed in detail
in (Tsamardinos et al., 2012).

Overall, Algorithm 2 takes as input a set of data sets and a list of parameters and outputs a summary
graph that has all invariant edges and orientations of the SMCMs that satisfy as many constraints
as possible (according to some strategy). The algorithm is capable of non-trivial inferences, like for
example the presence of a solid edge among variables never measured together. Figures 3.3 3.4 and
3.5 illustrate the output of Algorithm 2, along with the corresponding input PAGs.

3.3 Soundness and Completeness

We claim that, given an oracle of conditional independence, the SAT-generating procedure described
in Algorithm 4 results in a SAT instance Φ ∧ F that is satisfied by all and only the possibly
underlying SMCMs for {Ji}Ni=1 and {Ii}Ni=1 (i.e., every SMCM that entails the exact same conditional
independencies as those obtained by the oracle for every experiment, after the removal of edges
incoming to the manipulated variables). Lemma 3.3.3 proves that the every possibly underlying
SMCM satisfies Φ ∧ F , while Lemma 3.3.5 proves that if S is a mixed graph satisfying Φ ∧ F , S is
a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

In all subsequent Lemmas, theorems and proofs we employ the assumptions and notation presented
at the beginning of this chapter (Assumptions A1-A3 and notation presented beneath them). We
also assume the algorithms are run with an oracle of conditional independence and infinite maximum
conditioning set size and maximum path length.

Recall that, Theorem 3.0.1 proves that a S is possibly underlying SMCM for {Ji}ni=1 and {Ii}Ni=1

if and only if the result of manipulating Ii, adding necessary edges to create a Markov equivalent
MAG and then marginalizing out variables in Li produces a MAG Mi that belongs to the Markov
equivalence class represented by Pi for all experiments.

The following Lemma proves that no inducing and ancestral paths present in the true underlying
SMCM are ruled out during the construction of the initial search graph, and is necessary for subse-
quent proofs. We prove that Hin has a superset of edges and a subset of orientations compared to
S.
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Lemma 3.3.1 If Hin is the initial search graph returned by Algorithm 3 for {Pi}Ni=1, and S is a
possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1, then the following hold: If p is an ancestral path
in S, then p is a possibly ancestral path in Hin. Similarly, if p is an inducing path with respect to L
in S, then p is a possibly inducing path with respect to L in Hin.

Proof We will first prove that Hin has a superset of edges compared to S, and therefore any path
in S is a path also in Hin. If X and Y are adjacent in S, then one of the following holds:

1. ∃i s.t. X,Y ∈ Oi \ Ii. Then the edge is present in SIi , and X and Y are adjacent in Pi: the
edge is added to Hin in Line 3 of Algorithm 3.

2. 6 ∃i s.t. X,Y ∈ Oi \ Ii. Then the edge is added to Hin in Line 8 of Algorithm 3.

Therefore, every edge in S is present also in Hin. We must also prove that no orientation in H is
oriented differently in S: Hin has only arrowhead orientations, so we must prove that, if X Y in
Hin and X and Y are adjacent in both graphs, X Y in S.

Arrowheads are added to Hin in Lines 5, 9 or 10 of the Algorithm. Arrowheads added in Line 5
occur in all Pi. If X Y in any Pi, this means that Y is not an ancestor of X in SIi . Assume that
X Y in S: If X in Ii, the edge would be absent in SIi and Pi. If X 6∈ Ii, X would be ancestor of
Y in SIi , which is a contradiction. Therefore, if X and Y are adjacent in S, X Y in S.

Arrows added to Hin in Lines 9 and 10 correspond to cases where an edge is not present in any
Pi, @i s.t. X,Y ∈ Oi \ Ii, but ∃i s.t. X,Y ∈ Oi, X ∈ Ii and Y 6∈ Ii. Then an arrow is added
towards X. Assume the opposite holds: X Y in S, then X Y in SIi , and since both variables
are observed in experiment i the edge would be present in Pi, which is a contradiction. Thus, if the
edge is present in S, the edge is oriented into X.

Thus, Hin has a superset of edges of S, and for any edge present in both graphs, the orientations are
the same. Thus, if p is an ancestral path in S, then p is a possibly ancestral path in Hin. Similarly, if
p is a possibly inducing path with respect to L in S, then p is a possibly inducing path with respect
to L in Hin.

We can now prove that if a SMCM S entails all and only the observed conditional independencies
for all experiments (and is therefore a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1), then S
satisfies Φ ∧ F . We say that S satisfies a constraint φ if the truth-values assigned to edge, arrow
and tail variables by their corresponding configuration in S satisfies φ. To simplify the proof, we
first prove the following lemma:

Lemma 3.3.2 If S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1, and X Y is in Pi,
then S satisfies ancestor(X,Y, i). Similarly, if X Y is in Pi, then S satisfies ¬ancestor(Y,X, i).

Proof By Theorem 3.0.1 SMCMtoMAG (SIi)[Li∈ Pi. Thus, if X Y is in Pi, then X is an
ancestor of Y in SIi (there exists an ancestral path from X to Y in SIi). Let p1, . . . , pM be the
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possibly ancestral paths (there exists at least one: if X Y in Pi, then X Y is a possibly
inducing path in Hin) from X to Y in Hin. The constraint ancestor(X,Y, i) is realized in Φ ∧ F
as ancestor(Y,X, i) ∧ [ancestor(Y,X, i)↔ ancestral(p1, i) ∨ ancestral(p2, i) · · · ∨ ancestral(pM , i)].
This is equivalent to ancestral(p1, i) ∨ ancestral(p2, i) · · · ∨ ancestral(pM , i). If a path is ancestral
in SIi , the path is also ancestral in S. By Lemma 3.3.1, if a path is ancestral in S, the path is
possibly ancestral in Hin. Hence, at least one of p1, . . . , pM is ancestral in SIi , and S satisfies
ancestor(X,Y, i).

If X Y is in Pi, then, since SMCMtoMAG (SIi)[Li∈ Pi, there can be no ancestral path from
Y to X in SIi). Let p1, . . . , pM be the possibly ancestral paths (if any) from Y to X in Hin.
The constraint ¬ancestral(Y,X, i) is realized in Φ ∧ F as ¬ancestor(Y,X, i) ∧ [ancestor(Y,X, i)↔
ancestral(p1, i) ∨ ancestral(p2, i) · · · ∨ ancestral(pM , i)]. This is equivalent to ¬ancestral(p1, i) ∧
¬ancestral(p2, i) · · · ∧ ¬ancestral(pM , i). None of these paths are ancestral in SIi , therefore S
satisfies ancestor(X,Y, i).

We can now prove that any possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1 satisfies Φ ∧ F .

Lemma 3.3.3 For an oracle of conditional independence, if S is a possibly underlying model for
{Ji}Ni=1 and {Ii}Ni=1, and Φ∧F is the conjunction of the outputs of Algorithm 4, S satisfies Φ∧F .

Proof By Theorem 3.0.1, since S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1, Mi =
SMCMtoMAG(SIi)[Li∈ Pi ∀i.

1. Constraints added in Lines 8, 9 of Algorithm 4. These constraints are satisfied since S
is an acyclic mixed graph.

2. Adjacency constraints added in Lines 4, 5, 6 of Algorithm 4. Assume that for a
pair of variables X, Y adjacent in Pi, there exist M possibly inducing paths in Hin, namely
p1, , . . . , pM . For this adjacency, the following constraint is added in Φ∧F in Lines 4 and 5 of
Algorithm 4:

adjacent(X,Y,Pi) ∧ [adjacent(X,Y,Pi)↔ inducing(p1, i) ∨ · · · ∨ inducing(pM , i)],

which is equivalent to
inducing(p1, i) ∨ · · · ∨ inducing(pM , i).

SinceMi ∈ Pi, X and Y are adjacent inMi. By Proposition 2.3.3 there exists an inducing path
p∗ between X and Y with respect to Li in SIi . By Lemma 3.3.1, this path is a possibly inducing
path in Hin, thus, ∃i ∈ [1, . . . ,M ] such that p∗ = pi. Thus, the constraint inducing(p1, i) ∨
· · · ∨ inducing(pM , i) is satisfied by S.

Similarly, if X and Y are not adjacent in Pi, the constraint

¬adjacent(X,Y,Pi) ∧ [adjacent(X,Y,Pi)↔ inducing(p1, i) ∨ · · · ∨ inducing(pM , i)]

is added to Φ ∧ F in Lines 4 and 6 of Algorithm 4. The constraint is equivalent to

¬inducing(p1, i) ∧ · · · ∧ ¬inducing(pM , i).
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Since X and Y are not adjacent in Mi, by Proposition 2.3.3 there exists no inducing path
with respect to Li in SIi . Thus, none of the paths (if any) p1, . . . , pM is inducing with respect
to Li in SIi , and the constraint ¬inducing(p1, i) ∧ · · · ∧ ¬inducing(pM , i) is satisfied by S.

3. Unshielded (non) collider constraints added in Lines 13,14, 15,16 of Algorithm 4.
For an unshielded collider X Y Z in Pi, the constraint

col(〈X,Y, Z〉,Pi)∧[
col(〈X,Y, Z〉,Pi)→ unshielded(〈X,Y, Z〉,Pi) ∧ collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

unshielded(〈X,Y, Z〉,Pi) ∧ collider(〈X,Y, Z〉,Pi)

is added in Lines 14 and 15. As shown in Figure 3.1,

unshielded(〈X,Y, Z〉,Pi)↔ adjacent(X,Y,Pi) ∧ adjacent(Y,Z,Pi) ∧ ¬adjacent(X,Z,Pi)

and
collider(〈X,Y, Z〉,Pi)↔ ¬ancestor(Y,X, i) ∧ ¬ancestor(Y, Z, i)

. SinceMi ∈ Pi, X Y Z is an unshielded triple inMi, adjacent(X,Y,Pi)∧adjacent(Y, Z,Pi)∧
¬adjacent(X,Z,Pi) is satisfied (as described above for adjacency constraints). SinceX Y Z
in Pi, by Lemma 3.3.2 constraints ¬ancestor(Y,X, i) ∧ ¬ancestor(Y, Z, i) are satisfied by S.

For an unshielded definite non collider X Y Z in Pi, the constraint

dnc(〈X,Y, Z〉,Pi)∧[
dnc(〈X,Y, Z〉,Pi)→ unshielded(〈X,Y, Z〉,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi)

]
,

is added in Lines 13 and 16 of Algorithm 4, which is equivalent to

unshielded(〈X,Y, Z〉,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi).

Since Mi ∈ Pi, X Y Z is an unshielded triple in Mi, so unshielded(〈X,Y, Z〉,Pi) is
satisfied by S as described above. Moreover, since either Y X in Mi, or Y Z in Mi, by
Lemma 3.3.2 ancestor(Y,X, i) ∨ ancestor(Y,Z, i) is satisfied by S.

4. Discriminating (non) collider constraints added in Lines 19, 20,21, 22 of Algorithm
4. If 〈W, . . . ,X, Y, Z〉 is a discriminating path for Y in Pi, and Y is a collider on the path in
Pi, the following constraint is added in Φ ∧ F and in Lines 19 and 21 of Algorithm 4:

col(〈X,Y, Z〉,Pi)∧[
col(〈X,Y, Z〉,Pi)→ discriminating(pWZ , Y,Pi) ∧ collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

discriminating(pWZ , Y,Pi) ∧ collider(〈X,Y, Z〉,Pi).

SinceMi ∈ Pi, the path is discriminating for Y inMi and the triple is a collider inMi. The
constraint for the discriminating path is analyzed as a conjunction of the individual features
((non) adjacencies and endpoints) of the path as shown in Figure 3.1. Since the path is
discriminating in Mi, all these adjacency and ancestry constraints are satisfied by S, by the
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proof for adjacency constraints and Lemma 3.3.2. In addition, the triple is a collider in Mi,
thus collider(〈X,Y, Z〉,Pi) is satisfied by S as described for unshielded colliders.

Similarly, if 〈W, . . . ,X, Y, Z〉 is a discriminating path for Y in Pi, and Y is a definite non
collider on the path in Pi, the following constraint is added in Φ ∧ F and in Lines 20 and 22
of Algorithm 4:

dnc(〈X,Y, Z〉,Pi)∧[
dnc(〈X,Y, Z〉,Pi)→ discriminating(pWZ , Y,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi)

]
,

which is equivalent to

discriminating(pWZ , Y,Pi) ∧ ¬collider(〈X,Y, Z〉,Pi).
Since Mi ∈ Pi, the path is discriminating for Y in Mi and the triple is a non-collider in Mi.
The constraint for the discriminating path satisfied by S as described above. In addition, the
triple is a non-collider in Mi, thus ¬collider(〈X,Y, Z〉,Pi) is satisfied by S as described for
unshielded definite non colliders.

Thus, S satisfies all constraints in Φ ∧ F .

To prove completeness for Algorithm 4, we must show that the opposite also holds: If S is a truth-
setting assignment of Φ∧F , S entails all and only the conditional independencies observed in {Ji}Ni=1

for each experiment. According to Theorem 3.0.1, we need to show that any truth setting assignment
of Φ∧F results, in each experiment i (after the respective procedures of manipulation, conversion to
MAG and marginalization) in a MAGMi that belongs to the Markov equivalence class represented
by Pi. Thus, we need to show that Mi has the same adjacencies and colliders with order as any
MAG M′ ∈ Pi. Proving that Mi and any M′ ∈ Pi have the same adjacencies is straight-forward.
We then use induction to the order of the triple to show that the two MAGs also share the same
colliders with order. The following lemma proves that discriminating paths with order are present
in all members of the equivalence class, and therefore they are (definite) discriminating paths with
order in Pi (Lemma 3.3.4.) Thus, all (non) colliders with order in Pi are identified and added to
the SAT formula in Lines 19 and 20 of Algorithm 4.

Lemma 3.3.4 If p = 〈W,V1, . . . , Vn, Y,Q〉 is a discriminating path with order r in M, then the
path is a discriminating path with order r in P = [M].

Proof We will show that the path is a discriminating path with order r in any M′ ∈ P. Since
M′ and M are Markov equivalent, the two share the same colliders with order. Thus, every triple
〈Vi−1, Vi, Vi+1〉 is a collider with order in M. Lemma 3.10 in Ali et al. (2009) states that if a path
〈W,V1, . . . , Vn, Y,Q〉 is discriminating for Y in a MAGM, then in any Markov equivalent MAGM′
in which Vi are colliders on the same path, Vi → Q in M′ for i = 1, . . . , N , and therefore the path
is discriminating with order r in M′. Thus, the path is discriminating with order r in all members
of [M]. It is therefore a discriminating path with order r in P.

We can now prove that any truth-setting assignment for Φ ∧ F corresponds to a SMCM S that is
possibly underlying for {Ji}Ni=1 and {Ii}Ni=1.
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Lemma 3.3.5 For an oracle of conditional independence, if Φ∧F is the conjunction of the outputs
of Algorithm 4, and S a mixed graph that satisfies Φ∧F , then S is a possibly underlying SMCM for
{Ji}Ni=1 and {Ii}Ni=1.

Proof We need to prove that (a) S is an acyclic mixed graph and (b)Mi = SMCMtoMAG(SIi)[Li∈
Pi ∀i. To prove the latter, we need to prove that for each i, if M′ ∈ Pi, Mi and M′ are Markov
equivalent. Thus, we must show that Mi and M′ share the same edges and colliders with order.

• S is a SMCM: S satisfies the constraints added in Lines 8 and 9 respectively. Therefore,
S has no tail-tail edges, every endpoint is an arrow or a tail (not exclusively) and S has no
directed cycles.

• Mi and M′ share the same edges: If X and Y are adjacent in M′, then X and Y are
adjacent in Pi. S satisfies the constraints added in Line 4 of Algorithm 4, therefore there exists
an inducing path with respect to Li in SIi . Thus, X and Y are adjacent in Mi. If X and Y
are not adjacent in M′, X and Y are not adjacent in Pi and by the same constraints there
exists no inducing path with respect to Li in SIi , therefore X and Y are not adjacent in Mi.

• Mi and M′ share the same colliders with order: We will prove this by induction to
order r: For order = 0, if 〈X,Y, Z〉 is an unshielded collider inM′, the triple is an unshielded
collider in Pi. Since M′ and Mi share the same edges, X Y Z is an unshielded triple
in Mi. S satisfies the constraints added in Line 13 of Algorithm 4, and therefore Y is not an
ancestor of X nor Z in SIi . Thus, X Y Z in Mi. If the triple is an unshielded collider
inMi, then the triple is unshielded inM′. If the triple is a non-collider inM′, then S satisfies
the constraints added in Line 14 of Algorithm 4, and Y is an ancestor of either X or Z in SIi .
But then the triple is a non-collider inMi, which is a contradiction. Thus,Mi andM′ share
the same colliders with order 0.

For the induction step, we assume thatMi andM′ share the same colliders with order s < r.
We will show that the two MAGs also share the same colliders with order r. We will first
show that a path 〈W,V1, . . . , Vn, Y,Q〉 is discriminating for 〈Vn, Y,Q〉 with order r in Mi iff
the path is discriminating for 〈Vn, Y,Q〉 with order r in M′.
If 〈W,V1, . . . , Vn, Y,Q〉 is discriminating with order r in M′, by Lemma 3.3.4 the path is
discriminating with order r in Pi. S satisfies the constraints added in Lines 20 and 19 and
therefore the path is discriminating in Mi. Moreover, every triple on the path is a collider
with order < r in M′ and by the induction hypothesis M′ and Mi share the same colliders
with order < r, thus the path has order r in Mi.

If 〈W,V1, . . . , Vn, Y,Q〉 is discriminating with order r inMi, then, by the induction hypothesis,
every triple on the path is a collider with the same order < r in M′. We will show that
Vi → Q ∀i, and therefore 〈W,V1, . . . , Vn, Y,Q〉 is a discriminating path with order r in M′.
The proof is similar to that of Lemma 3.10 in Ali et al. (2009). We will use induction on i.
First, consider the (V1, Q) edge in M′. If V1 Q, then W V1 Q forms a collider with
order 0 inM′, but an non-collider with order 0 inMi, which is a contradiction. Thus, V1 Q
in M′.
Suppose that Vj Q for 1 ≤ j ≤ i in M′. Then, the path 〈W,V1, . . . , Vi, Q〉 forms a discrim-
inating path for Vi with the same order < r in both graphs, and 〈Vi−1, Vi, Q〉 is a non-collider
in Mi. By Lemma 3.3.4, the path is a discriminating path with order in Pi, and therefore
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Φ ∧ F includes discriminating path constraints for this path added in Lines 19 and 21 or 20
and 22 of Algorithm 4. Thus, the triple can only be a non-collider inMi if it is a non-collider
in M′. Since Vi−1 Vi in M′, Vi Q ∀i and the path is discriminating in M′ with order
r.

We have shown that Mi and M′ share the same discriminating paths with order r. It is now
easy to show that a triple is a collider with order r in M′ iff it is a collider with order r in
Mi. If 〈Vn, Y, Z〉 is a collider with order r inM′, then there exists a discriminating path with
order r in both graphs and in Pi. Thus, S satisfies the constraints added in Lines 19 and 21
of Algorithm 4, by which Y is not an ancestor of Vn nor Q in SIi , and therefore the triple is a
collider in Mi, and it has order at most r. But by the induction hypothesis, the M′ and Mi

share the same colliders with order < r, thus the triple has order r in Mi. Similarly, if the
triple is a collider with order r in Mi, there exists a discriminating path with order r in M;
and therefore in Pi. Thus, S satisfies the constraints added in Lines 19 and 21 of Algorithm
4 or in Lines 20 and 22 of algorithm 4. Hence, the triple must be in M′, otherwise the triple
would be a non-collider in Mi. In addition, the triple has order at most r in M′ and by the
induction hypothesis the triple can not have order < r inM′, so the triple has order r inM′.
Thus, M′ and Mi share the same colliders with order.

Thus, if S a mixed graph that satisfies Φ∧F , then S is a SMCM and SMCMtoMAG(SIi)[Li∈ Pi ∀i,
so by Theorem 3.0.1, S is a possibly underlying SMCM for {Ji}Ni=1 and {Ii}Ni=1.

We can now prove soundness and completeness of Algorithm 2:

Theorem 3.3.6 (Soundness and completeness of Algorithm 2) If H is the output of Algo-
rithm 2, then the following hold:
Soundness: If a feature (edge, absent edge, endpoint) is solid in H, then this feature is present in
all SMCMs that are possibly underlying for {Ji}Ni=1 and {Ii}Ni=1.
Completeness: If a feature is present in all SMCMs that are possibly underlying for {Ji}Ni=1 and
{Ii}Ni=1, the feature is solid in H.

Proof Soundness: Solid features correspond to backbone variables. By Lemma 3.3.3 every possibly
underlying SMCM S for {Ji}Ni=1 and {Ii}Ni=1 satisfies the final formula Φ∧F . Thus, if a core variable
has the same value in all the possible truth-setting assignments of Φ∧F , this feature is present in all
possibly underlying SMCMs. Completeness: By Lemma 3.3.5 the final formula Φ ∧F of Algorithm
2 is satisfied only by possibly underlying SMCMs. Thus, if a core variable is present in all consistent
SMCMs, the corresponding core variable will be a backbone variable for Φ ∧ F .

3.4 Related Work

Methods for causal discovery have been, for the most part, limited to the analysis of a single data
set. However, the great advancement of intervention and data collection technology has led to a
vast increase of available data sets, both observational and experimental. Therefore, over the last
few years, there have been a number of works that focus on causal discovery from multiple sources.
Algorithms in that area may differ in the formalism they use to model causality or in the type of
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heterogeneity in the studies they co-analyze. In any case, the goal is always to discover the single
underlying data-generating causal mechanism.

One group of algorithms focuses on combining observational data that measure overlapping variables.
The idea that combining causal graphs can lead to additional inferences was introduced in Danks
(2005). Sound and complete procedures for learning the common characteristics of MAGs from data
sets measuring overlapping variables were then presented in Tillman et al. (2008) and Triantafillou
et al. (2010). Tillman et al. (2008) handles conflicts by ignoring conflicting evidence, while the
method presented in Triantafillou et al. (2010) only works with an oracle of conditional independence.
Tillman and Spirtes (2011) present an algorithm for the same task that handles a limited type of
conflicts (those concerning p-values for the same pair of variables stemming from different data
sets) by combining the p-values for conditional independencies that are testable in more than one
data sets. Claassen and Heskes (2010b) present a sound, but not complete, algorithm for causal
structure learning from multiple independence models over overlapping variables by transforming
independencies into a set of causal ancestry rules.

Another line of work deals with learning causal models from multiple experiments. Cooper and
Yoo (1999) use a Bayesian score to combine experimental and observational data in the context of
causal Bayesian networks. Hauser and Bühlmann (2012) extend the notion of Markov equivalence
for DAGs to the case of interventional distributions arising from multiple experiments, and propose
a learning algorithm. Tong and Koller (2001) and Murphy (2001) use Bayesian network theory
to propose experiments that are most informative for causal structure discovery. Eberhardt and
Scheines (2007) and Eaton and Murphy (2007b) discuss how some other types of interventions can
be modeled and used to learn Bayesian networks. Hyttinen et al. (2012a) provides an algorithm
for learning linear cyclic models from a series of experiments, along with sufficient and necessary
conditions for identifiability. This method admits latent confounders but uses linear structural
equations to model causal relations and is therefore inherently limited to linear relations. Meganck
et al. (2006) propose learning SMCMs by learning the Markov equivalence classes of MAGs from
observational data and then designing the experiments necessary to convert it to a SMCM.

Finally, there is a limited number of methods that attempt to co-analyze data sets measuring over-
lapping variables under different experimental conditions. In Hyttinen et al. (2012b) the authors
extend the methods of Hyttinen et al. (2012a) to handle overlapping variables, again under the
assumption of linearity. Hyttinen et al. (2013) propose a constraint-based algorithm for learning
causal structure from different manipulations of overlapping variable sets. The method works by
transforming the observed m-connection and m-separation constraints into a SAT instance. The
method uses a path analysis heuristic to reduce the number of tests translated into path constraints.
Causal insufficiency is allowed, as well as feedback cycles. However, this method cannot handle
conflicts and therefore relies on an oracle of conditional independence. Moreover, the method can
only scale up to about 12 variables. Claassen and Heskes (2010a) present an algorithm for learning
causal models from multiple experiments; the experiments here are not hard manipulations, but
general experimental conditions, modeled like variables that have no parents in the graph but can
cause other variables in some of the conditions.

Hyttinen et al. (2013) presented an algorithm similar to COmbINE named SAT-based causal struc-
ture discovery (SBCSD). SBCSD is also capable of learning causal structure from manipulated
data-sets over overlapping variable sets. In addition, if linearity is assumed, it can admit feedback
cycles. SBCSD also uses similar techniques for converting conditional (in)dependencies into a SAT
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Running time Completed instances/
# # max Median (5 %ile, 95 %ile) total instances

variables parents COmbINE SBCSD SBCSD′ COmbINE SBCSD SBCSD′

10
3 17(1, 113) 149(14, 470)∗ 91(30, 369)∗ 50/50 30/50 48/50
5 80(4, 1192) 365(133, 500)∗ 264(68, 554)∗ 50/50 16/50 32/50

14
3 28(4, 6361)∗ − 451(407, 492)∗ 49/50 0/50 4/50
5 272(23, 16107)∗ − − 43/50 0/50 0/50

Table 3.1: Comparison of running times for COmbINE and SBCSD for networks of 10
and 14 variables. The table reports the median running time along with the 5 and 95 percentiles,
as well as the number of instances (problem inputs) in which each algorithm managed to complete;
∗numbers are computed only on the problems for which the algorithm completed.

instance. However, the algorithm requires all m-connections to constrain the search space (at least
the ones that guarantee completeness), while COmbINE uses inducing paths to avoid that. For
each adjacency X Y in a data set, COmbINE creates a constraint specifying that at least one
path between the variables is inducing with respect to Li. In contrast, SBCSD creates a constraint
specifying that at least one path between the variables is m-connecting path given each possible con-
ditioning set. So, both algorithms are forced to check every possible path, yet COmbINE examines
each path once (with respect to Li), while SBCSD examines it for multiple possible conditioning
sets. The latter choice may be necessary to deal with cyclic structures, but leads to significantly
larger SAT problems when acyclicity is assumed.

Comparison to SBCSD

SBCSD is not presented with a conflict resolution strategy and so it can only be tested by using
an oracle of conditional independence. Equipping SBCSD with such a strategy is possible, but
it may not be straightforward: SBCSD computes the SAT backbone incrementally for efficiency,
which complicates pre-ranking constraints according to some criterion. Since SBCSD cannot handle
conflicts, we compared it to the complete version of our algorithm (infinite maxK and maximum
path length) using an oracle of conditional independence. Since no statistical errors are assumed,
the initial search graph for COmbINE includes all observed arrows. Both algorithms are sound and
complete, hence we only compare running time. SBCSD uses a path-analysis heuristic to limit the
number of tests to perform. However, the authors suggest that in cases of acyclic structures, this
heuristic could be substituted with the FCI test schedule. To better characterize the behavior of
SBCSD on acyclic structures, we equipped the original implementation as suggested2. We denote
this version of the algorithm as SBCSD′. Also note, that the available implementation of SBCSD
by its authors has an option to restrict the search to acyclic structures, which was employed in
the comparative evaluation. Finally, we note that SBCSD is implemented in C, while COmbINE is
implemented in Matlab.

For the comparative evaluation, we simulated random acyclic networks with 10 and 14 variables.
The default parameters were used to generate 50 problem instances for networks with 3 and 5
maximum parents per variable. Both algorithms were run on the same computer, with 4GB of
available memory. SBCSD reached maximum memory and aborted without concluding in several

2However, we do not include the Possible d-Separating step of FCI; this step hardly influences the quality of the
algorithm Colombo et al. (2012). Thus, the timing results of Table 3.1 are a lower bound on the execution time of
the SBCSD algorithm.
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cases for networks of 10 variables, and in all cases for networks of 14 variables. SBCSD′ slightly
improves the running time over SBCSD. Median running time along with the 5 and 95 percentiles
as well as number of cases completed are reported in Table 3.1. The metrics for each algorithm were
calculated only on the cases where the algorithm completed.

The results in Table 3.1 indicate that COmbINE is more time-efficient than SBCSD and SBCSD′.
While the running times do depend on implementation, the fact that SBCSD have much higher
memory requirements indicates that the results must be at least in part due to the more compact
representation of constraints by COmbINE . COmbINE managed to complete all cases for networks
of 10 and most cases for 14 variables, while SBCSD completed less than 50% and 0%, respectively.
SBCSD′ completed most cases for 10 variables but only 4% of cases for 14 variables. Interestingly,
the percentiles for COmbINE are quite wide spanning two orders of magnitude for problems with
maxParents equal to 5 (we cannot compute the actual 95 percentile for SBCSD since it did not
complete for most problems). Thus, performance highly depends on the input structure. Such
heavy-tailed distributions are well-noted in the constraint satisfaction literature (Gomes et al., 2000).
We also note the fact that COmbINE seems to depend more on the sparsity and less on the number
of variables, while SBCSD’s time increases monotonically with the number of variables. Based on
these results, we would suggest the use of COmbINE for problems where acyclicity is a reasonable
assumption and the number of variables is relatively high.



Chapter 4

Estimating posterior probabilities of pairwise
features in causal graphs

The statistical constraints imposed on the underlying SMCM by COmbINE are obtained by
the available data sets using appropriate tests of independence. Statistical errors can result
in conflicting constraints, making the resulting SAT formula unsatisfiable. In this chapter,
we present a method for estimating posterior probabilities for some of these constraints:
Adjacencies and non-adjacencies learnt using constraint-based algorithms. PROPeR, the
proposed method, uses p-values calculated by the constraint-based algorithm and has no
computational overhead. Even though the method is approximate, it produces calibrated
probability estimates and performs on par with more expensive Bayesian methods. The es-
timates obtained by PROPeR can the be used to equip COmbINE with a conflict resolution
strategy.

Constraint-based algorithms such as FCI are a popular choice for learning causal models; they are
fast, scalable, and usually guarantee soundness and completeness in the sample limit. However, for
smaller sample sizes, identification of false constraints poses a challenge: An erroneous identification
of a conditional independence can propagate through the network and lead to erroneous edge iden-
tifications or conflicting orientations even in seemingly unrelated parts of the network. Particularly
for networks with many variables and small sample sizes, error propagation can result in unreliable
networks. Thus, some of the literals included in list F in Algorithm 2 will be false, resulting in
conflicting information.

Algorithm COmbINE as presented in the previous chapter, handles conflicts by admitting a conflict
resolution strategy str which is able to select a list of non-conflicting literals. Many methods may be
used for selecting such a subset, but for most of them one needs to assign a measure of confidence to
each literal. Literals in F include the pairwise features of each observed PAG, i.e. adjacencies and
non-adjacencies. In this chapter, we present a novel approach for obtaining posterior probabilities
for these features.

Constraint-based algorithms query the data for conditional independencies and then use the results
to constrain the search space of possible causal models. Failure to identify which parts of the output

61
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N = 20, α = 0.05, sample size = 100
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Figure 4.1: Representative p-values for adjacencies and non-adjacencies. Normalized his-
tograms of 190 representative p-values identified by the PC skeleton algorithm for a random net-
work of 20 variables. p-values corresponding to adjacencies in the data-generating network (left)
follow a distribution with decreasing density. p-values corresponding to non-adjacencies in the data-
generating network (right) follow a uniform distribution in the interval [α, 1]. A smaller number of
predictions fall in the [0, α] interval. This bias is introduced due to constraint-base search strat-
egy: while the representative p-value is below the threshold, the algorithm performs more tests.
Naturally, in real scenarios, we do not know which p-values come from which distribution

of a constraint-based algorithm are reliable is partly due to the nature of conditional independence
tests: The test returns a p-value, which stands for the probability of getting a test statistic at least
as extreme as the the one actually observed in the data, given that the null hypothesis (conditional
independence) is true. If this probability is lower than a chosen significance threshold (typically
5-10%), the null hypothesis is rejected, and the alternative hypothesis is implicitly accepted. While
lower p-values indicate higher confidence conditional dependencies, the p-value can not be interpreted
as the probability of a conditional independence, and it therefore cannot be used to compare a
conditional dependence to a conditional independence in terms of belief. Thus, the decisions made
by the constraint-based algorithm (accept or reject a conditional independence) cannot be evaluated
in terms of confidence.

We propose Posterior RatiO PRobability (PROPeR), a method for identifying posterior probabilities
for all (non) adjacencies of a causal network learnt with a constraint-based algorithm. We use the
term pairwise relations to denote adjacencies and non-adjacencies in a causal graph (ignoring
orientations).

For each pair of variables, a constraint-based algorithm tries a number of conditional tests of in-
dependence. We use the maximum p-value obtained for every pair of variables as a representative
of the corresponding pairwise relation. Posterior probabilities are then estimated as a function
of these representative p-values. The method has no significant computational overhead, and can
therefore scale up to the same number of variables as the algorithm of choice. Moreover, it does not
depend on any additional assumptions (e.g. acyclicity, causal sufficiency, parametric assumptions)
and can therefore be used with any constraint-based algorithm equipped with an appropriate test
of conditional independence.
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Algorithm 5: PROPeR

input : causal network G over V, representative p-values {pXY }
output: Probability estimates P (X—Y ), P (¬X—Y )

1 Estimate π̂0 from {pXY } using the method described in Storey and Tibshirani (2003);

2 Find ξ̂ that minimizes −∑(X,Y )∈V2 log(π̂0 + (1− π̂0)ξpξ−1XY );

3 foreach (X,Y ) ∈ V2 with representative p-value pXY do

4 E0(pXY )← π̂0

ξ̂pξ̂−1
XY (1−π̂0)

;

5 P (X—Y )← 1
E0(pXY )+1 , P (¬X—Y )← E0(pXY )

E0(pXY )+1 ;

6 end

4.1 Algorithm PROPeR

In this section, we present the PROPeR algorithm for estimating posterior probabilities of pairwise
relations in causal networks. PROPeR takes as input the causal skeleton G returned by a constraint-
based algorithm and a set of representative p-values and outputs a posterior probability estimate for
every adjacency and non-adjacency in G. We use P (X—Y ) and P (¬X—Y ) to denote the posterior
probability of the adjacency and non-adjacency of X and Y in G, respectively.

According to the pairwise Markov condition, a non-adjacency in a causal graph G over variables
V corresponds to a conditional independence given a subset of V. In contrast, an adjacency in G
corresponds to the lack of such a subset: If X and Y are adjacent in G, there exists no subset Z of
observed variables such that X⊥⊥Y | Z. Thus, edge X—Y will be present in P if the data support
the null hypothesis

H0 : ∃Z ⊂ V : X ⊥⊥ Y | Z less than the alternative H1 : ∀Z ⊂ V : X 6⊥⊥ Y | Z (4.1)

For a network with N variables, this complex set of hypotheses involves |2N−2| conditional indepen-
dencies. To simplify Equation 4.1, we use a surrogate conditioning set. For each pair of variables,
during the skeleton search, a constraint-based algorithm performs a number of tests, each for a dif-
ferent conditioning set. To avoid performing all possible tests, most algorithms avoid conditioning
sets that are theoretically not likely to be d-separating the variables, and also use a threshold on
the cardinality of attempted conditioning sets. Let pXY be the maximum p-value of any attempted
test of conditional independence between X and Y , and let ZXY be the corresponding conditioning
set. pXY is used in constraint-based algorithms to determine whether X and Y are adjacent. If
pXY is lower than the threshold α, the edge is present in G. Otherwise, the edge is absent in G. We
approximate Equation 4.1 with the following set of hypotheses:

H0 : X ⊥⊥ Y | ZXY against the alternative H1 : X 6⊥⊥ Y | ZXY , (4.2)

Under H0, the p-values follow a uniform distribution. Under H1, the p-values follow a distribution
with decreasing density. Sellke et al. Sellke et al. (2001) propose using Beta alternatives to model the
distribution of the p-values under the null and the alternative hypotheses, respectively: Beta(1, 1)
is the uniform distribution and describes the distribution of the p-values under the null hypothesis.
Beta(ξ, 1), 0 < ξ < 1 is a distribution defined in (0, 1) with density decreasing in p. It is therefore
suitable to model the distribution of p-values under the alternative hypothesis. Figure 4.1 shows an
example of the distributions of representative p-values under H0 and H1, identified using the PC
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skeleton on data simulated from a known network. Equation 4.2 can be re-formulated on the basis
of the representative p-value:

H0 : pXY ∼ Beta(1, 1) against H1 : pXY ∼ Beta(ξ, 1) for some ξ ∈ (0, 1). (4.3)

We can now estimate whether adjacency is more probable than non-adjacency for a given repre-
sentative p-value p, by estimating which of the Beta alternatives it is most likely to follow. We use
V2 = {(X,Y ), X,Y ∈ V, X 6= Y } to denote the set of unordered pairs of V, i.e. the set of pairwise
relations in a causal skeleton G. Let p = {pXY : (X,Y ) ∈ V2} be the set of the representative
p-values for each pairwise relation. We assume that this population of p-values follows a mixture of
Beta(ξ, 1) and Beta(1, 1) distributions. If π0 is the proportion of p-values following Beta(1, 1), then
the corresponding probability density function is:

f(p|ξ, π0) = π0 + (1− π0)ξpξ−1

For given estimates π̂0 and ξ̂, the posterior odds of H0 against H1 for variables X, Y is

E0(pXY ) =
P (pXY |H0)P (H0)

P (pXY |H1)P (H1)
=

P (pXY |pXY ∼ Beta(1, 1))P (pXY ∼ Beta(1, 1))

P (pXY |pXY ∼ Beta(ξ̂, 1))P (pXY ∼ Beta(ξ̂, 1))
=

π̂0

ξ̂pξ̂−1XY (1− π̂0)
.

(4.4)

Obviously, if E0(pXY ) > 1, non-adjacency is more probable than adjacency for the pair of variables

X, Y . Notice that for some ξ̂ and π̂0, it is possible that E0(pXY ) > 1, while X and Y are adjacent
in G.

Based on the ratios in Equation 4.4, we can obtain the probability estimates:

P (X—Y ) =
1

1 + E0(pXY )
, P (¬X—Y ) =

E0(pXY )

1 + E0(pXY )
(4.5)

To estimate the probabilities in Equation 4.5, we need to obtain estimates for π̂0 and ξ̂. To estimate
π0, we use the method described in Storey and Tibshirani (2003). The authors propose fitting a
natural cubic spline to the distribution of the p-values to estimate the proportion of p-values that
come from the null hypothesis.

The method requires that the p-values are i.i.d., an assumption that is clearly violated for the sample
of p-values obtained during a skeleton identification algorithm: Typically, the tests of independence
attempted by constraint-based network learning algorithms depend on the results of previously
attempted tests. Moreover, each pXY is the maximum among many attempted tests. Finally, the p-
values coming from the null hypothesis are not uniform, since independence is only accepted if p > α.
Thus, the obtained estimate π̂0 may be biased. Nevertheless, we believe that the estimates produced
using this method are reasonable approximations. An example of the distribution of representative
p-values coming from H0 and H1 is illustrated in Figure 4.1.

For a given π̂0, the likelihood for a set of representative p-values {pXY } is

L(ξ) =
∏

(X,Y )∈V2

(π̂0 + (1− π̂0)ξpξ−1XY ).
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The respective negative log likelihood is

− LL(ξ) = −
∑

(X,Y )∈V2

log(π̂0 + (1− π̂0)ξpξ−1XY ). (4.6)

Equation 4.6 can easily be optimized for ξ. Algorithm 5 describes how to obtain probability estimates
for all pairwise relations given their representative p-values.

4.2 Related Work

Friedman et al. (1999) propose a method for estimating probabilities on features of Bayesian net-
works. They use bootstrap to resample the data and learn a Bayesian network from each sampled
data set. The probability of a structural feature is then estimated as the proportion of appearances
of the feature in the resulting networks. Friedman and Koller (2003) present a Bayesian method
for estimating probabilities of features using MCMC samples over variable orderings. The methods
are evaluated in terms of the classification performance (i.e. how accurately they accept or reject a
feature), but not in terms of the calibration of predicted probability estimates.

Koivisto and Sood (2004) and Koivisto (2006) present algorithms for identifying exact posterior
probabilities of edges in Bayesian networks. The methods use a dynamic programming strategy and
constrain the search space of candidate causal models by bounding the number of possible parents
per variable. The algorithms require a special type of non-uniform prior that does not respect
Markov equivalence. Thus, resulting probabilities may be biased. Subsequent methods try to fix
this problem by using MCMC simulations to compute network priors (Eaton and Murphy, 2007b)
or exploiting special types of nodes (Tian and He, 2009). All methods in this category scale up to
about 25 variables, since the minimum time and space requirement of these algorithms is O(n2n).

Claassen and Heskes (2012b) propose a method for estimating Bayesian probabilities of a feature as
a normalized sum of the posterior probabilities of all networks that entail this feature. The method
requires exhaustive search of the space of possible networks, and is therefore not applicable for
networks with more than 5-6 variables. The authors propose using this method as a standalone test
of conditional independence, and also use it to decide on features inside a constraint-based algorithm.
Pena et al. (2004) estimate the confidence of a feature as the fraction of models containing the feature
out of the different locally optimal models.

4.3 Experimental Evaluation of PROPeR

We performed a series of experiments to characterize the behavior of the proposed algorithms.

Calibration of Estimated Probabilities

We initially used simulated data to examine if the returned probability estimates are calibrated.
We generated random DAGs with 10 and 20 variables, where each variable had 0 to 5 parents
(randomly selected). The networks were then coupled with random parameters to create linear
gaussian networks (continuous data) or discrete Bayesian networks (binary data). For continuous
variables, a minimum correlation coefficient of 0.2 was imposed on the parameters to avoid weak
interactions.
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N =10, continuous variables
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N =10, discrete variables
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Figure 4.2: Probability calibration plots for PROPeR, BCCD-P and MCMC+DP for
networks of 10 variables. Bars indicate the quartiles. All methods tend to overestimate prob-
abilities. Bayesian scoring methods are often very confident: For continuous variables, most of
the probability estimates predicted by BCCD-P or MCMC+DP lie in the interval [0.9, 1], while
MCMC+DP exhibits similar behavior for discrete variables also.
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N =20, continuous variables
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N =20, discrete variables
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Figure 4.3: Probability calibration plots for PROPeR, BCCD-P and MCMC+DP for
networks of 20 variables. Bars indicate the quartiles. Similar to the results in Figure 4.2,
Bayesian scoring methods tend to overestimate probabilities. MCMC+DP produced memory errors
and failed to complete in all iterations for the BGE score, and is therefore not inlcuded in the
corresponding plot.



68 Estimating posterior probabilities of pairwise features in causal graphs

We then simulated networks of various sample sizes, to test the method’s behavior in different
settings.

We used the PC skeleton identification step Spirtes et al. (2000) with significance threshold α =
0.05 and maximum conditioning set size 3 (explained below), modified to additionally return the
maximum p-value encountered for each pair of variables. The set of maximum p-values was then used
as input in Algorithm 5 to produce probability estimates for all pairwise relations. We compared
our method against two alternative approaches:

1. BCCD-P: A method based on the BCCD algorithm presented in Claassen and Heskes (2012b).
As mentioned above, the method estimates the posterior probability of a feature as a normal-
ized sum of the posterior probabilities of DAGs that entail this feature. The algorithm scores
all possible DAGs, and the authors use it to estimate probabilities for networks of at most 5
variables. To estimate the probabilities of pairwise relations, we scored the DAGs over vari-
ables X, Y and ZXY , where ZXY is the conditioning set maximizing the p-value of the tests
X⊥⊥Y | Z performed by PC. This means that the cardinality of ZXY cannot exceed 3. For a
fair comparison, we used 3 as the maximum conditioning set of PC in all experiments. The
probability of an adjacency was estimated as: P (X—Y ) =

∑
G`X—Y P (D|G)P (G). Consistent

priors described in Claassen and Heskes (2012b) were pre-calculated and cached. To speed up
the algorithm, we only scored one DAG per Markov equivalence class. For both approaches,
we used the BDe metric for discrete data and the BGe metric for gaussian data. Both metrics
are score-equivalent.

2. DP+ MCMC: The method presented in Eaton and Murphy (2007b) for identifying exact
probabilities for edges in Bayesian networks. The method uses a combination of the DP
algorithm Koivisto (2006) and MCMC sampling to correct the bias from the modular priors.
We used the implementation provided by the authors in the BDAGL package. Maximum
parents was set to 5, and the default parameters suggested by the authors in the package
documentation were used. The method estimates probability estimates for directed edges, so
we used P (X—Y ) = P (X Y ) + P (Y X), P (¬X—Y ) = 1− P (X—Y ).

To produce the probability calibration plots, the resulting predicted probabilities in [0.5, 1] were
binned in 5 intervals. For every pair of variables, P (X—Y ) =1-P (¬X—Y ). Thus, to consider
each estimate once, we only need to consider half of the interval [0, 1]. If N pairwise relations

have probability estimates {P̂i}Ni=1 that lie in interval [γ, γ + 0.1], we expect that
¯̂
Pi × N of the

corresponding relations will be true. The actual probability Pγ for each interval is the fraction of
relations with probability estimates in the given interval that are actually true in the data-generating
graph. Figures 4.2 and 4.3 illustrate the mean estimated versus the mean actual probability for each
bin, as well as the fraction of predictions in each bin for networks with 10 and 20 variables. Running
times for all methods are shown in Figure 4.4.

Overall, results indicate that :

• PROPeR produces reasonable probability estimates, particularly in comparison to the more
expensive BCCD-P and MCMC+DP approaches.



4.4. Using PROPeR to identify networks of high structural confidence 69

100 1000 5000
10−3

10−2

10−1

100

101

102

103

sample size

R
u
n
n
in
g
T
im

e
(s
ec
)

10 discrete variables
PROPeR
BCCDP

MCMC+DP

100 1000 5000
10−3

10−2

10−1

100

101

102

103

sample size

10 continuous variables

100 1000 5000
10−3

10−2

10−1

100

101

102

103

sample size

20 discrete variables

100 1000 5000

10−2

10−1

100

101

102

103

sample size

20 continuous variables

Figure 4.4: Running times for PROPeR, BCCD-P and MCMC+DP.

• MCMC+DP tends to identify very high (resp. very low) probabilities for the pairwise relations,
even for small sample sizes for both metrics (BGE and BDE). BCCD has similar behavior for
the BGE score, but not for the BDE score. This could explain the large deviations (and the
seemingly unpredictable behavior) observed for these algorithms in the first four bins ([0.5
0.9]), since the means are computed over very few data points.

• As far as running times are concerned, both BCCD-P and MCMC+DP algorithms have (the-
oretically) exponential complexity with respect to the number of variables. BCCD-P also
increases exponentially with sample size, but this is probably due to an increase in maximum
conditioning set sizes reported by PC skeleton for larger sample sizes. i.e., BCCD-P iterates
networks with many variables (4-5) for most pairwise relations. This also explains the poor
performance of BCCD-P for the BDE metric and sample size 100: estimates are obtained by
scoring smaller networks. The employed implementation of MCMC+DP failed to complete
any iterations for N=20 and continuous variables.

We must point out that the calibration of the probability estimates is not necessarily related to
the predictive power of the respective approaches, which depends more on the relative ranking of
probabilities among pairwise relations, rather than the actual estimates. For example, MCMC+DP
has been shown to produce rankings of edges with very high AUC Eaton and Murphy (2007b).

4.4 Using PROPeR to identify networks of high structural confidence

PROPeR is not used to improve the algorithm per se, but to produce confidence estimates for
pairwise relations learnt from the algorithm and can be helpful in conflict resolution. However, even
for a single data set, identifying which parts of the learnt network are reliable is of great importance
for practitioners who use causal discovery methods, and are often interested in high-confidence
pairwise connections among variables or in avoiding a specific type of error (e.g. false positive or
false negative edges). It can also be useful for selecting subsequent experiments for a system under
study, by pointing out relationships that are uncertain.

We use the estimates obtained by PROPeR, to identify neighborhoods of high structural confidence
in causal networks. The proposed method, called BiND (β-NeighborhooDs), takes as input a causal
graph G along with representative p-values for every pairwise relation in G and a desired threshold
of confidence β. The algorithm outputs all neighborhoods in G for which all pairwise relations
have confidence estimates above β. Internally, BiND uses PROPeR to obtain probability estimates
for each pairwise relation, creates a graph Hβ where edges correspond to pairwise relations with
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Figure 4.5: An example maximum 0.8-neighborhood identified using Algorithm 6. We
used the DAG of the Alarm network coupled with random parameters to simulate 100 samples.
PC-skeleton was used to obtain the network skeleton G, consisting of 34 edges: 31 true positive
edges (solid lines in the figure) and 3 false positive edges (− · − lines). 15 edges were not identified
by the algorithm, even though they are present in the data-generating graph (false negative edges,
depicted as lines). Algorithm 6 was used to identify the maximum 0.8-neighborhoods of G. One
of the maximum 0.8-neighborhoods, consisting of 24 variables that share 17 adjacencies, is noted:
elliptical blue nodes denote variables in the neighborhood, while the remaining variables are shown
as rectangular grey nodes (the neighborhood is also separated from the rest of the network with a
dashed grey line). The proportion of false inferences within the clique is far lower than the overall
proportion of false inferences: The clique includes only two false negative edges and only one false
positive. Most of the false inferences are pairwise relations between members and non-members of
the neighborhood.

confidence above β, and then uses the Bron-Kerbosch algorithm to identify all maximal cliques in
graph Hβ .

Algorithm 6 takes as input a causal skeleton G, confidence estimates on G’s pairwise relations and a
confidence threshold β and outputs the set of all β-neighborhoods in G. In the previous section we
presented a method for obtaining posterior probability estimates for all pairwise relations in a causal
skeleton. In this section, we will use these estimates to identify neighborhoods of high structural
confidence on the same skeleton. We define a neighborhood of structural confidence β as follows:

Definition 4.4.1 (β-neighborhood) Let G = (V,E) be a causal skeleton, and {PXY , (X,Y ) ∈
V2} the set of probability estimates:

PXY =

{
P (X—Y ), if (X,Y ) adjacent in G

P (¬X—Y ), if (X,Y ) not adjacent in G

A subgraph G′ = (V′,E′) of G is a β-neighborhood iff: ∀X,Y ∈ V′ : PXY > β The size of a
β-neighborhood G′ = (V′,E′) is |V′|.

Thus, a neighborhood of confidence β is a subgraph of the causal network in which the posterior
probability of every pairwise relation is above a given threshold β. For a causal skeleton and a set
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Algorithm 6: BiND

input : causal network G over V, pairwise confidence estimates PXY , confidence threshold β
output: β-neighborhoods {G′}

1 Hβ ← empty graph;
2 foreach (X,Y ), X, Y ∈ V do
3 if PXY ≥ β then add (X, Y ) to Hβ ;
4 end
5 {V′} ← Bron-Kerbosch(Hβ);
6 {G′} ← subgraphs of G over {V′};

of confidence estimates on all pairwise relations, finding a β - neighborhood can be reformulated as
a graph theoretical problem: Let H = (V, Eβ) be an undirected graph with edges defined as follows:

(X,Y ) ∈ Eβ if PXY ≥ β, (X,Y ) 6∈ Eβ if PXY < β (4.7)

Variables X and Y are adjacent in Hβ only if the probability of their respective pairwise relation
in G is above the confidence threshold β. Finding β-neighborhoods in G is equivalent to identifying
cliques in Hβ .

Naturally, a causal skeleton can have many β-neighborhoods. Moreover, if a subgraph G′ = (V′,E′)
of G is a β-neighborhood, then every subgraph of G′ is a β-neighborhood. More interesting inferences
may be made by identifying all maximal β-neighborhoods on a graph:

Definition 4.4.2 Let G=(V, E) be a causal skeleton and G′ = (V′,E′) be a β-neighborhood. G is a
maximal β-neighborhood if @V′′ ⊃ V′ such that the subgraph G′′ = (V′′, E ′′) is a β-neighborhood.

Thus, a maximal β-neighborhood is a β-neighborhood that is not part of a larger neighborhood.
Identifying all maximal β-neighborhoods in G can be solved by finding all maximal cliques in the
corresponding Hβ . Identifying maximal cliques is NP-hard Karp (1972), but algorithms that run
in exponential time or identify approximate solutions are available. We use the Bron-Kerbosch
algorithm Bron and Kerbosch (1973).

Maximal cliques can often be very small; for example, if no larger cliques exist, all adjacencies and all
non-adjacencies with PXY > β are (trivial) maximal cliques of size 2. Another interesting problem
that could be solved using Algorithm 6 is to identify the maximum β-neighborhoods of a causal
skeleton, i.e. the maximal β-neighborhoods with the maximum possible number of variables. This
is equivalent to identifying all maximum cliques in Hβ , and can be easily obtained from the output
of Algorithm 6. Figure 4.5 shows an example maximum clique, identified using Algorithm 6 on
simulated data. The neighborhood includes 24 out of 37 variables. While the neighborhood includes
more than half of the total variables and edges of G, the number of false positive and false negative
edges within the neighborhood is much lower than the corresponding number in the entire skeleton.

To demonstrate the value of BiND, we simulated data of 100 and 1000 samples from random networks
with 20 and 50 variables, as described above. For the causal skeletons identified with the PC
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Figure 4.6: Precision, recall, number and size of maximum cliques identified using BiND
in networks of 20 continuous variables. Bars indicate quartiles. Dashed horizontal lines show
the mean baseline precision and recall (mean precision and recall of the output of PC skeleton. BiND
identifies neighborhoods of higher structural precision and recall than the corresponding baseline,
particularly for small sample sizes.

skeleton algorithm and the posterior probability estimates produced by PROPeR, all maximal β-
neighborhoods for β=0.6, 0.7 and 0.9 were identified using Algorithm 6.

We examined the structural precision (# edges in G′ and the ground truth
# edges in G′ ) and recall

(# edges in G′ and the ground truth
# edges in the ground truth ) of the resulting neighborhoods, compared to the baseline precision

and recall for G. As mentioned above,the maximal cliques can be very small and uninformative,
particularly for high confidence thresholds. We are more interested in identifying large parts of
the networks that we are confident about, and therefore focused in the maximum β-neighborhoods.
Figure 4.6 illustrates the precision, recall and size of maximum β-neighborhoods for networks of
20 and 50 variables, for both discrete and continuous data. The algorithm took 85.56 seconds on
average to identify the maximum 0.6-neighborhoods for 50 variables and 1000 samples (the most
expensive case). Detailed time results are omitted due to space limitations.

Results indicate the following:

• The method identifies subgraphs with lower ratios of false inferences compared to the entire
skeleton.
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• For high confidence thresholds and small sample sizes, the algorithm cannot identify large
neighborhoods.

• The algorithm is particularly useful in small sample sizes, where the overall recall is very low.





Chapter 5

Experimental Evaluation of COmbINE

PROPeR and similar algorithms presented in the previous chapter can be used to produce
confidence estimates for the constraints employed by COmbINE . Based on these confi-
dence estimates, we present four different strategies for selecting a list of non-conflicting
constraints, and test their performance in simulated data sets. We also evaluate the perfor-
mance of COmbINE against several factors that affect the robustness and the scalability
of the algorithm. COmbINE is shown to perform reasonably against most factors, and
scales up to 100 variables. To showcase the availability of real scenarios that can benefit
from integrative causal analysis, we apply COmbINE on public mass cytometry data sets
measuring intracellular proteins in the human immune system under different experiments.

In chapter 3, we presented an algorithm for learning causal structure from data sets measuring
overlapping sets of variables under different manipulations. The algorithm works by converting (non)
adjacencies and (non) colliders with order into a constraint satisfaction instance. The instance is
solved by all and only the SMCMs that could have generated all observed data sets. The algorithm
was also proved to be sound and complete in the sample limit.The algorithm was evaluated against
a similar algorithm that also admits cycles, and was proved to be computationally more efficient.

In this chapter, we also present a series of experiments to characterize how the behavior of COmbINE
performs for varying input parameters and characteristics of the problem instance. In more detail,
we explore (a) the learning accuracy of COmbINE for four different conflict resolution strategies
(b) the learning accuracy of COmbINE as a function of the maximum path length considered by
the algorithm, the density and size of the network to reconstruct, the number of input data sets,
the sample size, and the number of latent variables, and (c) the computational time as a function of
the above factors. Finally, we present a proof-of-concept application on real mass cytometry data
on human T-cells.

5.1 Conflict Resolution

Recall that the literals in list F output by Algorithm 4 correspond to features of the PAGs learnt
using FCI. In realistic settings, where an oracle of conditional independence is not present, some of
these literals will be false due to imperfect statistical knowledge. Thus, output formula of Algorithm

75
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2 is unsatisfiable. To avoid this problem, the Algorithm 2 as presented in chapter 3 admits a conflict
resolution strategy str. The strategy takes as input the list of literals F and returns a modified list
of non conflicting literals F ′. The goal any strategy str is to select a subset of these literals whose
antecedents will not contradict each other.

Probably the most straight-forward would be to try to maximize the number of satisfied literals. This
means satisfying as many adjacencies, non-adjacencies, colliders and non-colliders as possible. Recall
that the SAT instance generated in Algorithm 2 consists of a set of hard-constraints (conditionals,
no cycles, no tail-tail edges), which should always be satisfied (hard constraints), and a set of literals
F . To maximize the number of literals satisfied, while ensuring all hard-constraints are satisfied,
the instance can be transformed a weighted max-SAT instance by assigning weight equal to one to
each literal, and a weight larger than the number of all literals to each hard constraints.

Another approach would be to rank the list of literals in decreasing order of confidence, and then try
to satisfy as many as possible in the given order. List F includes four types of literals, expressing
different statistical information:

1. adjacent(X,Y,Pi): X and Y are not independent given any subset of Oi.

2. ¬adjacent(X,Y,Pi): X and Y are independent given some Z ⊂ Oi

3. col(〈X,Y, Z〉,Pi): Y is in no subset of Oi that renders X and Z independent.

4. dnc(〈X,Y, Z〉,Pi): Y is in every subset of Oi that renders X and Z independent.

Assigning a measure of likelihood or posterior probability to every literal would enable their com-
parison. However, being able to assign a measure of confidence on the same scale for literals that
represent so different statistical information is not an easy task. In chapter 4 we introduced a
method for assigning posterior probabilities to the first two types of literals (adjacencies and non-
adjacencies). Assigning posterior probabilities to (non) colliders is more complicated, since three
(non) adjacencies and a list of conditional independencies are involved in the decision that a triple is
a (non) collider. To simplify the problem, assign colliders and non-colliders with order to the same
rank as the non-adjacency of the corresponding discriminating path’s endpoints. We must point
out, however, that this criterion is merely a heuristic, and measuring confidence in a (non) collider
is a very interesting and complicated problem.

Recall that the posterior probabilities in PROPeR were computed based on the posterior odds

E0(pXY ) =
π̂0

ξ̂pξ̂−1XY (1− π̂0)
.

E0(pXY ) > 1 implies that for the test of independence represented by the p-value p, independence
is more probable than dependence, while E0(pXY ) < 1 implies the opposite. Moreover, the value of
E0(p) quantifies this belief. Conversely, the corresponding posterior odds of H1 against H0 is

E1(p) =
ξ̂pξ̂−1(1− π̂0)

π̂0
.
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We define the maximum posterior ratio (MPR) for a p-value p to be the maximum between
the two:

E(p) = max
{ π̂0

ξ̂pξ̂−1(1− π̂0)
,
ξ̂pξ̂−1(1− π̂0)

π̂0

}
. (5.1)

MPR estimates can be used to heuristically quantify our confidence in the observed adjacencies
and non-adjacencies. A strategy for selecting a list of non-conflicting literals based on MPR es-
timates is presented in Algorithm 7. Let X and Y be a pair of observed variables, and pXY be
the maximum p-value reported during FCI for these variables. Then, if E0(pXY ) > E1(pXY ), the
literal ¬adjacent(X,Y, i) is added to F with confidence estimate E(pXY ). Otherwise, the literal
adjacent(X,Y, i) is added to F with a confidence estimate E(pXY ). The list can then be sorted in
order of confidence, and the literals can be satisfied incrementally. Whenever a literal in the list
is encountered that cannot be satisfied in conjunction with the ones already selected, it is ignored.
Naturally, using MPR estimates is identical to using the maximum PROPeR estimate in terms of
ranking.

Notice that, it is possible that for a p-value E0(pXY ) > E1(pXY ) (i.e., MPR determines indepen-
dence is more probable), even though pXY is smaller than the FCI threshold used. In other words,
given a fixed FCI threshold, dependence maybe accepted; but, when analyzing the set of p-values
encountered to compute MPR, independence seems more probable. The reverse situation is also
possible. The pseudo-code in Algorithm 7 (Lines 6—10) accepts the MPR decisions for depen-
dencies and independencies; this implies that some of the decisions made by FCI will be reversed.
Nevertheless, in anecdotal experiments we found that the literals for which this situation occurs are
near the end of the sorted list; thus, whether one accepts the initial decisions of FCI based on a
fixed threshold, or a dynamic threshold based on MPR usually does not have a large impact on the
output of the algorithm.

Figure 5.1(left) shows how the MPR varies with the p-value for π̂0 = 0.6 and several ξ̂’s. The lowest
possible value of the MPR is 1, and corresponds to the p-value p for which E0(p) = E1(p). Naturally,
for the same ξ, this p-value (where the odds switch in favor of non-adjacency) is larger for a lower
π0. In Figure 5.1 for π0 = 0.6 we can see an example of two p-values that correspond to the same
E: An adjacency represented by a p-value of 0.0038 (0.0038 being the maximum p-value of any test
performed by FCI for the pair of variables) is as likely as a non-adjacency represented by a p-value
of 0.6373 (0.6373 being the p-value based on which FCI removed this edge).

The same potential pitfalls discussed in chapter 4 also apply here: The method used to obtain
π̂0 assumes independent p-values, which is of course not the case since the test schedule of FCI
depends on previous decisions. In addition, each p-value may be the maximum of several p-values;
these maximum p-values may not follow a uniform distribution even when the non-adjacency (null
hypothesis) is true. Finally, given that p-values stem from tests over different conditioning set sizes,
p-values corresponding to adjacencies do not necessarily follow the same beta distribution. Thus,
the approach presented here is at best an approximation.

In the algorithm as presented, a single beta is fit from the pooled p-values of FCI runs over all
data-sets. This strategy is perhaps more appropriate when individual data-sets have a small number
of p-values, so the pooled set provides a larger sample size for the fitting. Other strategies though,
are also possible. One could instead fit a different beta for each data-set and its corresponding set
of p-values. This approach could perhaps be more appropriate in case the PAG structures Pi vary
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Algorithm 7: MPRstrategy

input : SAT formula Φ, list of literals F , list of p-values {pj}(each corresponding to an observed
(non) adjacency)

output: List of non conflicting literals F ′

1 F ′ ← ∅;
2 Estimate π̂0 from {pj} using the method described in Storey and Tibshirani (2003);

3 Find ξ̂ that minimizes −∑j log(π̂0 + (1− π̂0)ξpξ−1j );

4 foreach literal (¬)adjacent(X,Y,Pi) ∈ F with p-value pj do

5 E0(pj)← π̂0

ξ̂pξ̂−1
j (1−π̂0)

, E1(pj)←
ξ̂pξ̂−1
j (1−π̂0)

π̂0
;

6 if E1(pj) < E0(pj) then
7 add ¬adjacent(X,Y,Pi) to F
8 else
9 add adjacent(X,Y,Pi) in F

10 end
11 Score(literal)← max{E0(pj), E1(pj)};
12 end
13 foreach literal collider(X,Y, Z,Pi), dnc(X,Y, Z,Pi) do
14 if X, Y , Z is an unshielded triple in Pi then
15 Score(literal)← Score(X,Z,Pi);
16 else if 〈W . . .X, Y, Z〉 is discriminating for Y in Pi then
17 Score(literal)← Score(W,Z,Pi);
18 end

19 end
20 F ← sort F by descending score;
21 foreach φ ∈ F do
22 if Φ ∧ φ is satisfiable then
23 Φ← Φ ∧ φ;
24 Add φ to F ′;
25 end

26 end

greatly in terms of sparseness. In addition, one could also fit different beta distributions for each
conditioning set size. Figure 5.2 shows the empirical distribution of p-values and the estimated π̂0
based on the p-values returned from FCI on 2, 5 and 10 input data sets, simulated from a network of
14 variables. Figure 5.1 (center) also show the calibration of PROPeR estimates when ξ̂ is estimated
from the pooled p-values, for data simulated from artificial networks.

The advantages of MPR-based strategy are also similar to the ones discussed for PROPeR: The
method is based on p-values and thus, can be applied in different types of data (e.g., continuous and
discrete) in conjunction with any appropriate test of independence. Moreover, since it is based on
cached p-values, and fitting a beta distribution is efficient, it adds minimal computational complexity.

Naturally, other measures of confidence discussed in the previous chapter can also be used to rank
the literals. Two methods for obtaining such measures were discussed in the previous chapter: A
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Figure 5.1: Behaviour and calibration of MPR estimates.(left) Log of the maximum posterior

ratio E(p) versus log of the p-value p for π̂0 = 0.6 and various ξ̂. For ξ̂ = 0.1, an adjacency supported
by a maximum p-value of 0.0038 corresponds to the same E as a non-adjacency supported by a p-
value of 0.6373. The intersection point of the line with the x axis is the p for which E0(p) = E1(p) =
1. (center) Probability calibration plots for confidence estimates obtained using MPR estimates
(1/(1 + E0(p)) for adjacencies, E0(p)/(1 + E0(p)) for non-adjacencies). For each interval of length
0.1 in [0.5, 1], the estimated confidences are plotted against the actual frequency of correctness of
the corresponding constraints. The green lines correspond to estimates obtained using BCCDR (see
section 5.2) The confidence estimates correspond to the experiments presented in Figure 5.3. (right).
Number of confidences in each interval.
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Figure 5.2: Distribution of p-values and estimated π̂0. We used the method of Storey and
Tibshirani (2003) to estimate π̂0 for a sample of p-values corresponding to 2 (left), 5 (center) and 10
(right) input data sets. We generated networks by manipulating a marginal of the ALARM network
(Beinlich et al., 1989) consisting of 14 variables. In each experiment, at most 3 variables were latent
and at most 2 variables were manipulated. We simulated data sets of 100 samples each from the
resulting manipulated graphs. We ran FCI on each data set with α = 0.1 and maxK = 5 and cached
the maximum p-value reported for each pair of variables. We used the p-values from all data sets
to estimate π̂0. The dashed line corresponds to the proportion of p-values that come from the null
distribution based on the estimated π̂0.

Bayesian method (Claassen and Heskes, 2012a) and an exact method (Eaton and Murphy, 2007b).
The latter could not scale up to more than 20 variables, and we therefore did not use it in this
context. The former is included in the comparative evaluation presented in Section 5.2.
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Problem attribute Default value used

Number of variables in the generating DAG 20
Maximum number of parents per variable 5

Number of input data sets 5
Maximum number of latent variables per data set 3

Maximum number of manipulated variables per data set 2
Sample size per data set 1000

Table 5.1: Default values used in generating experiments in each iteration of COmbINE.
Unless otherwise stated, the input data sets of COmbINE were generated according to these values.

Instead of greedily trying to satisfy as many of the ranked constraints as possible, we could try to
identify the subset of non-conflicting literals that maximize the sum of (satisfied) scores. Again, due
to the hard constraints in the output of Algorithm 4, this has to be implemented as a weighted max
SAT instance, where hard constraints have weights that are larger than the sum of literal scores.

5.2 Evaluation of COmbINE in Simulated Data

We now present a series of experiments evaluating COmbINE’ s performance. All experiments
were performed on data simulated from randomly generated networks as follows. The graph of each
network is a DAG with a specified number of variables and maximum number of parents per variable.
Variables are randomly sorted topologically and for each variable the number of parents is uniformly
selected between 0 and the maximum allowed. The parents of each variable are selected with uniform
probability from the set of preceding nodes. Each DAG is then coupled with random parameters to
generate conditional linear gaussian networks. To avoid very weak interactions, minimum absolute
conditional correlation was set to 0.2. Before generating a data set, the variables of the graph are
partitioned to unmanipulated, manipulated, and latent. Mean value and standard deviation for the
manipulated variables were set to 0 and 1, respectively. Subsequently, data instances are sampled
from the network distribution, considering the manipulations and removing the latent variables. All
experiments are performed on conservative families of targets; the term was introduced in Hauser
and Bühlmann (2012) to denote families of intervention targets in which all variables have been
observed unmanipulated at least once.

For each invocation of the algorithm, the problem instance (set of data sets) is generated using
the parameters shown in Table 5.1. COmbINE default parameters were set as follows: maximum
path length = 3, α = 0.1 and maximum conditioning set maxK = 5, and the Fisher z-test of
conditional independence. As far as orientations are concerned, in our experience, FCI is very prone
to error propagation, we therefore used the rule in (Ramsey et al., 2006) for conservative colliders.
Unless otherwise stated, Algorithm 7 is employed to resolve conflicts. SAT instances were solved
using MINISAT2.0 (Eén and Sörensson, 2004) along with the modifications presented in Hyttinen
et al. (2013) for iterative solving and computing the backbone with some minor modifications for
sequentially performing literal queries. In the subsequent experiments, one of the problem parameters
in Table 5.1 is varied each time, while the others retain the values above.

To measure learning performance, ideally one should know the correct output, i.e., the structure that
the algorithm would learn if ran with an oracle of conditional independence, and unrestricted infinite
maxK and maximum path length parameters. Notice that the original generating DAG structure
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cannot serve as the correct output for comparison. This is because the presence of manipulated and
latent variables implies that not all structural features of the generating DAG can be recovered. For
example, for the problem instance presented in Figure 3.5 (middle), the correct output, shown in
Figure 3.5 (right), has one solid edge out of 5, no solid endpoint, one absent, and four dashed edges.
Dashed edges and endpoints in the output of the algorithm can only be evaluated if one knows this
correct output. Unfortunately, the correct output cannot be recovered in a timely fashion in most
problems involving more than 15 variables, as shown in Section 3.4.

As a surrogate, we defined metrics that do not consider dashed edges or endpoints and can be directly
computed by comparing the “solid” features of the output with the original data generating graph.
Specifically, we used two types of precision and recall; one for edges (s-Precision/s-Recall) and one
for orientations (o-Precision/o-Recall). Let G be the graph that generated the data (the SMCM
stemming from the initial random DAG after marginalizing out variables latent in all data sets),
and H be the summary graph returned by COmbINE. s-Precision and s-Recall were then calculated
as follows:

s-Precision =
# solid edges in H that are also in G

# solid edges in H
and

s-Recall =
# solid edges in H that are also in G

# edges in G .

Similarly, orientation precision and recall are calculated as follows:

o-Precision =
# endpoints in G correctly oriented in H

# of orientations(arrows/tails) in H

and

o-Recall =
# endpoints in G correctly oriented in H

# endpoints in G .

Since dashed edges and endpoints do not contribute to these metrics, precision in particular could
be favorable for conservative algorithms that tend to categorize all edges (endpoints) as dashed. To
alleviate this problem, we accompany each precision / recall figure with the percentage of dashed
edges out of all edges in the output graph to indicate how conservative is the algorithm. Similarly,
we present the percentage of dashed (circled) endpoints out of all endpoints in the output graph.
Finally, we note that in the experiments that follow, unless otherwise stated, we report the median,
5, and 95 percentile over 100 runs of the algorithm with the same settings.

Evaluation of Conflict Resolution Strategies

In this section we evaluate our Maximum Map Ratio strategy (MPR) against three other alterna-
tives: A ranking strategy where constraints are sorted based on Bayesian probabilities as proposed
in Claassen and Heskes (2012a) (BCCDR), as well as a Max-SAT (MaxSAT) and a weighted
max-SAT (wMaxSAT) approach.

MPR: This strategy sorts constraints according to the Maximum Map Ratio (Algorithm 7) and
greedily satisfies constraints in order of confidence; whenever a new constraint is not satisfiable
given the ones already selected, it is ignored (lines 21- 25 in Algorithm 7).

BCCDR: BCCDR sorts constraints according to Bayesian probability estimates of the literals in
F as presented in Claassen and Heskes (2012a). The same greedy strategy for satisfying constraints
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Figure 5.3: Learning performance of COmbINE with various conflict resolution strate-
gies. From left to right: Median s-Precision, s-Recall, proportion of dashed edges (top) and o-
Precision, o-Recall and proportion of dashed endpoints (bottom) for networks of several sizes for
various conflict resolution strategies. Each data set consists of 100 samples. The numbers for
wMaxSAT and maxSAT correspond to 22 and 23 cases, respectively, in which the algorithms man-
aged to return a solution within 500 seconds. Coloured bars indicate 5 and 95 percentiles. Asterisks
in the top right figure show the absolute number of literals rejected by each strategy (y axis on
the right). Asterisks on x tick labels indicate cases where the behaviour of MPR and BCCDR are
significantly different (paired t-test of equality of means with unknown but equal variances).

in order is employed. Briefly, the authors of (Claassen and Heskes, 2012a) propose a method for
calculating Bayesian probabilities for any feature of a causal graph (e.g. adjacency, m-connection,
causal ancestry). To estimate the probability of a feature, for a given data set D, the authors
calculate the score of all DAGs of N variables. Let G ` f denote that a feature f is present in DAG
G. The probability of the feature is then calculated as P (f) =

∑
G`f P (D|G)P (G). Scoring all DAGs

is practically infeasible for networks with more than 5 or 6 variables. Thus, for data sets with more
variables, a subset of variables must be selected for the calculation of the probability of a feature.
Following (Claassen and Heskes, 2012a), we use 5 as the maximum N attempted.

The literals in F represent information on adjacencies: (¬)adjacent(X,Y,Pi) and colliders:
(¬)collider(X,Y, Z,Pi). To apply the method above for a given feature, we have to select the vari-
ables used in the DAGs, a suitable scoring function, and suitable DAG priors. For (non) adjacencies
X Y in PAG Pi, we scored the DAGs over variables X, Y and Z, for the conditioning set Z
maximizing the p-value of the tests X⊥⊥Y | Z performed by FCI. Since the total number of vari-
ables cannot exceed 5, the maximum conditioning set for FCI is limited to 3 in all experiments in
this section for a fair comparison. (Non) colliders are assigned the same score as the non adjacency
of their endpoints.
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We use the BGE metric for gaussian distributions (Geiger and Heckerman, 1994) as implemented
in the BDAGL package Eaton and Murphy (2007a) to calculate the likelihoods of the DAGs. This
metric is score equivalent, so we pre-computed representatives of the Markov equivalent networks of
up to 5 nodes, and scored only one network per equivalence class to speed up the method. Priors for
the DAGs were also pre-computed to be consistent with respect to the maximum attempted number
of nodes (i.e. 5) as suggested in Claassen and Heskes (2012a).

MaxSAT: This approach tries to satisfy as many literals in F as possible. To maximize the number
of literals satisfied, while ensuring all hard-constraints are satisfied, each literal is assigned a weight
of 1, and each hard-constraint is assigned a weight equal to the sum of all weights in F plus 10000.
We use the akmaxsat (Kuegel, 2010) weighted max SAT solver to solve the final instance .The
summary graph returned by Algorithm 2 is based on the backbone of the subset of literals selected
by akmaxsat.

wMaxSAT: Finally, we augmented the above technique with a different weighted strategy that
considers the importance of each literal. Specifically, each literal was weighted proportionally to the
logarithm of the corresponding MPR. Again, each hard-constraint was assigned a weight equal to
the sum of all weights in F plus 10000, to ensure that the solver will always satisfy these statements.
The summary graph returned by Algorithm 2 is based on the backbone of the subset of literals
selected by akmaxsat.

We ran all methods for networks of 10, 20, 30, 40 and 50 variables for data sets of 100 samples
to test them on cases where statistical errors are common. For each network size we performed 50
iterations. MaxSAT and wMaxSAT often failed to complete in a timely fashion; to complete the
experiments we aborted the solver after 500 seconds. We note that this amount of time corresponds
to more than 10 times the maximum running time of the MPR method (calculating MPRs and
solving the SAT instance), and more than twice times the maximum running time of the BCCDR-
based method (for 50 variables). Cases where the solver did not complete were not included in the
reported statistics. Unfortunately, the methods using weighted max SAT solving failed to complete
in most cases for 10 variables, and all cases for more than 10 variables.

The results are shown in Figure 5.3, where we can see the median performance of both algorithms
over 50 iterations. Overall, MPR exhibits better Precision and identifies more solid edges, while
BCCDR exhibits slightly better Recall. BCCDR is better for variable size equal to 10, which
could be explained from the fact that MPR is not provided with sufficient number of p-values to
estimate π̂0 and ξ̂. In terms of computational complexity, for networks of 50 variables, estimating
the BCCDR ratios takes about 150 seconds on average, while estimating the MPR ratios takes
less than a second. The more sophisticated search strategies MaxSAT and wMaxSAT do not
seem to offer any significant quality benefits, at least for the single variable size for which we could
evaluate them. Based on these results, we believe that MPR is a reasonable and relatively efficient
conflict resolution strategy.

COmbINE performance with increasing maximum path length

In this section, we examine the behavior of the algorithm when the length of the paths considered
is limited, in which case the output is an approximation of the actual solution. The COmbINE
pseudo-code in Algorithm 2 accepts the maximum path length as a parameter.
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Figure 5.4: Learning performance of COmbINE against maximum path length. From left
to right: s-Precision, s-Recall, percentage dashed edges and o-Precision, o-Recall and percentage of
dashed endpoints (bottom) for varying maximum path length, averaged over all networks. Shaded
area ranges from the 5 to the 95 percentile. Maximum path length 3 seems to be a be a reasonable
trade-off between performance, percentage of dashed features, and efficiency.

Actual H
maxParents 3 maxParents 5

Edges solid dashed absent solid dashed absent

Ĥ

solid 8.0 (4.0, 12.0) 0.0 (0.0, 5.0) 0.0 (0.0, 4.0) 9.0 (3.0, 13.0) 1.0 (0.0, 10.0) 1.0 (0.0, 5.0)
dashed 0.0 (0.0, 3.0) 0.0 (0.0, 4.0) 0.0 (0.0, 2.0) 0.5 (0.0, 4.0) 0.5 (0.0, 3.0) 1.0 (0.0, 2.0)
absent 1.0 (0.0, 4.0) 0.0 (0.0, 3.0) 31.0 (24.0, 36.0) 2.5 (0.0, 8.0) 1.5 (0.0, 9.0) 24.0 (14.0, 34.0)

Endpoints arrow circle tail arrow circle tail
arrow 8.0 (4.0, 12.0) 1.0 (0.0, 5.0) 0.0 (0.0, 3.0) 8.0 (4.0, 13.0) 3.0 (0.0, 8.0) 2 (0.0, 5.0)
circle 1.0 (0.0, 3.0) 3.0 (0.0, 14.0) 0.0 (0.0, 2.0) 1.0 (0.0, 5.0) 3.0 (0.0, 8.0) 1.0 (0.0, 4.0)
tail 0.0 (0.0, 2.0) 0.0 (0.0, 5.0) 4.0 (0.0, 8.0) 1.0 (0.0, 5.0) 1 (0.0, 54.0) 3.0 (1.0, 6.0)

Table 5.2: Confusion matrices reporting edge and endpoint counts of the output of COmbINE Ĥ
versus the actual summary graph H, for 10 variables and 5 data sets of 1000 samples each. H was
obtained using COmbINE with an oracle of conditional independence, and unconstrained maxK and
maximum path length parameters. The table reports median values (bold) along with the 5 and 95
percentiles (in parenthesis). Results are in agreement with the metrics used for larger networks.

Learning performance as a function of the maximum path length is shown in Figure 5.4. Notice that
when the path length is increased from 1 to 2 there is drop in the percentage of dashed endpoints,
implying more orientations are possible. For length equal to 1, only unshielded and discriminating
colliders are identified, while for length larger than 2 further orientations become possible thanks
to reasoning with the inducing paths. When length is 1, notice that there are almost no dashed
edges (except for the edges added in line 5 of Algorithm 3). When the maximum length increases,
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Figure 5.5: Learning performance of COmbINE for various network sizes and densities.
From left to right: Median s-Precision, s-Recall, proportion of dashed edges (top) and o-Precision,
o-Recall and proportion of dashed endpoints (bottom) for varying network size and density. Density
is controlled by limiting the number of possible parents per variable. Coloured bars indicate 5 and
95 percentiles. As expected, the performance deteriorates as networks become denser.

adjacencies in one data set, can be explained with longer inducing paths in the underlying graph
and more dashed edges appear. The learning performance of the algorithm is not monotonic with
the maximum length. Explaining an association (adjacency) through the presence of a long inducing
path may be necessary for asymptotic correctness. However, in the presence of statistical errors,
allowing such long paths could lead to complicated solutions or the propagation of errors.

Overall, it seems any increase of the maximum path length above 3 does not significantly affect
performance. It seems that a maximum path length of 3 is a reasonable trade-off among learning
performance (precision and recall), percentage of uncertainties, and computational efficiency. These
experiments justify our choice of maximum length 3 as the default parameter value of the algorithm.

COmbINE performance as a function of network density and size

In Figure 5.5 the learning performance of the algorithm is presented as a function of network density
and size. Density was controlled by the maximum parents allowed per variable, set by parameter
maxParents during the generation of the random networks. For all network sizes, learning perfor-
mance monotonically decreases with increased density, while the percentage of dashed features does
not significantly vary. The size of the network has a smaller impact on the performance, particularly
for the sparser networks. For dense networks, performance is relatively poor and becomes worse
with larger sizes.
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Figure 5.6: Learning performance of COmbINE for varying number of input data sets.
From left to right: Median s-Precision, s-Recall, Proportion of dashed edges (top) and o-Precision,
o-Recall and proportion of dashed endpoints of (bottom) for varying number of input data sets.
Shaded area ranges from the 5 to the 95 percentile. Increasing the number of input data sets
improves the performance of the algorithm.

We also calculated confusion matrices for edges and endpoints inferred by COmbINE against the
correct output structure H for networks of 10 variables, where H can be obtained by running COm-
bINE with an oracle of conditional independence and unrestricted path length and conditioning set
size. Table 5.2 shows the resulting confusion matrices for maxParents 3 and 5 and 5 data sets of sam-
ple size 1000. Overall, the results are in concordance with the metrics used for larger networks, and
confirm that the method works best for sparser networks. Notice that for dense networks (for N=10
and maxParents =5, the networks have about 40% of all possible edges), there are cases where the
actual correct output includes a large proportion of dashed edges, while constricting the maximum
path length forces the algorithm to accept more solid features (hence the wide percentiles).

COmbINE performance over sample size and number of input data sets

Figure 5.6 shows the performance of the algorithm with increasing the number of input data sets.
As expected, the percentage of uncertainties (dashed features) is steadily decreasing with increased
number of input data sets. Recall also steadily improves, while Precision is relatively unaffected.
Figure 5.7 holds the number of input data set constant to the default value 5, while increasing the
sample size per data set. Recall in particular improves with larger sample sizes, while the percentage
of dashed endpoints drops.
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Figure 5.7: Learning performance of COmbINE for varying sample size per data set.
From left to right: s-Precision, s-Recall, Proportion of dashed edges (top) and o-Precision, o-Recall
and proportion of dashed endpoints of (bottom) for varying sample size per data set. Shaded area
ranges from the 5 to the 95 percentile. Increasing the sample size improves the performance of the
algorithm.

COmbINE performance for increasing number of latent variables

We also examine the effect of confounding to the performance of COmbINE . To do so, we generated
semi-Markov causal models instead of DAGs in the generation of the experiments: We generated
random DAG networks of 30 variables and then marginalized out a percentage of the variables.
Figure 5.8 depicts COmbINE’s performance against 3, 6, and 9 of latent variables, corresponding to
10%, 20% and 30% of the total number of variables in the graph, respectively. Overall, confounding
does not seem to greatly affect the performance of COmbINE. We must point out however, that
s-Recall is lower than the s-Recall with no confounded variables for the same network size (see Figure
5.5).

Running Time for COmbINE

The running time of COmbINE depends on several factors, including the ones examined in the
previous experiments: Maximum path length, number of input data sets and sample size, and,
naturally, the number of variables. Figure 5.9 illustrates the running time of COmbINE against
these factors. As we can see in Figure 5.9, the restriction on the maximum path length is the most
critical factor for the scalability of the algorithm.
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Figure 5.8: Learning performance of COmbINE for varying percentage of confounded
variables. From left to right: s-Precision, s-Recall, percentage of dashed edges (top) and o-Precision,
o-Recall and percentage of dashed endpoints (bottom) for varying number of confounded nodes for
networks of 30 variables. Shaded area ranges from the 5 to the 95 percentile. Overall, the number
of confounding variables does not seem to greatly affect the algorithm’ s performance.

5.3 A case study: Mass Cytometry data

Mass cytometry (Bendall et al., 2011) is a recently introduced technique that enables measuring pro-
tein activity in cells, and its main use is to classify hematopoietic cells and identify signaling profiles
in the immune system. Therefore, the proteins are usually measured in a sample of cells and then
in a different sample of the same (type of) cells after they have been stimulated with a compound
that triggers some kind of signaling behavior. Identifying the causal succession of events during
cell signaling is crucial to designing drugs that can trigger or suppress immune reaction. There-
fore in several studies both stimulated and un-stimulated cells are treated with several perturbing
compounds to monitor the potential effect on the signaling pathway.

Mass cytometry data seem to be a suitable test-bed for causal discovery methods: The proteins
are measured in single cells instead of representing tissue averages, the latter being known to be
problematic for causal discovery (Chu et al., 2003), and the samples range in thousands. However,
the mass cytometer can measure only up to 34 variables, which may be too low a number to
measure all the variables involved in a signaling pathway. Moreover, about half of these variables
are surface proteins that are necessary to distinguish (gate) the cells into sub-populations, but are
not functional proteins involved in the signaling pathway. It is therefore reasonable for scientists to
perform experiments measuring overlapping variable sets.
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Figure 5.9: Running time of COmbINE . From left to right: Running time (in seconds) is
plotted in logarithmic scale against maximum parents per variable and number of variables (top
row); number of data sets and maximum path length (bottom row). Shaded area ranges from the 5
to the 95 percentile. The number of variables and the maximum path length seem to be the most
critical factors of computational performance. Notice that, COmbINE scales up to problems with
100 total variables for limited path length and relatively sparse networks.

Bendall et al. (2011) and Bodenmiller et al. (2012) both use mass cytometry to measure protein
abundance in cells of the immune system. In both studies, the samples were treated with several
different signaling stimuli. Some of the stimuli were common in both studies. After stimulation with
each activating compound, Bodenmiller et al. (2012) also test the cell’s response to 27 inhibitors.
One of these inhibitors is also used in Bendall et al. (2011). For this inhibitor, Bendall et al. (2011)
measured bone marrow cell samples of a single donor. In Bodenmiller et al. (2012), measurements
were taken from peripheral blood mononuclear cell (PBMC) samples of a (different) single donor.
Despite differences in the experimental setup, the signaling pathway of every stimulus and every
sub-population of cells is considered universal across (healthy) donors, so the data should reflect the
same underlying causal structure.

We focused on two sup-populations of the cells, CD4+ and CD8+ T-cells, which are known to play
a central role in immune signaling. The data were manually gated by the researchers in the original
studies. We also focused on one of the stimuli present in both studies, PMA-Ionomycin, which is
known to have prominent effects on T-cells. Proteins pBtk, pStat3, pStat5, pNfkb, pS6, pp38, pErk,
pZap70, pSHP2 and pPlcg2 are measured in both data sets (initial p denotes that the concentration
of the phosphorylated protein is measured). Four additional variables were included in the analysis,
pAkt, pLat and pStat1 measured only in Bodenmiller et al. (2012) and pMAPK measured only in
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Data set Source latent (Li): manipulated(Ii) Donor
D1 Bodenmiller et al. (2012) pMAPK pAkt 1
D2 Bodenmiller et al. (2012) pMAPK pBtk 1
D3 Bodenmiller et al. (2012) pMAPK pErk 1
D4 Bendall et al. (2011) pAkt, pLat, pStat1 pErk 2

Table 5.3: Summary of the mass cytometry data sets co-analyzed with COmbINE. The
procedure was repeated for two sub-populations of cells, CD4+ cells and CD8+ cells.

Bendall et al. (2011). To be able to detect signaling behavior, we formed data sets that contain both
stimulated and unstimulated samples.

As mentioned above, the cells were treated with several inhibitors. Some of these inhibitors target a
specific protein, and some of them perturb the system in a more general or unidentified way. Specific
inhibitors can be abundance inhibitors, which affect the level of measured protein, and activity
inhibitors, which affect the function of measured proteins. The former are closer to ideal hard
interventions. Activity inhibitors have been modelled in several ways in the literature. Sachs et al.
(2005) model them as ideal interventions by manually setting the values to the lowest discretization
level. Itani et al. (2010) propose splitting the target variable in two nodes, one used to represent
the inhbition and the other used to represent the abundance. Mooij and Heskes (2013) propose
modelling activity inhibitions by removing outgoing edges of the target variable. Notice that this
type of modelling can be easily encoded in a SAT representation.

We used abundance inhibitors that we believe can be modeled as hard interventions (i.e. the com-
pounds used to target these proteins are known to be specific and to have an effect in the phos-
phorylation levels of the target). The maximum dosage of each inhibitor was used. For all three
interventions, the distribution of the target variable under zero dosage is differs significantly (ac-
cording to a Kolmogorov-Smirnov test with significance threshold 0.05) from the distribution of the
target variable for the maximum dosage, indicating that the inhibitor has an effect on the abundance
of the target protein. Nevertheless, we must point out that the interventions may not be entirely
ideal. More information on the specific compounds can be found in the respective publications.

We ended up with four data sets for each sub-population. Details can be found in Table 5.3. Protein
interactions are typically non-linear, so we discretized the data into 4 bins. We ran Algorithm 2
with maximum path length 3. We used the G2 test of independence for FCI with α = 0.05 and
maxK=5. We used Cytoscape (Smoot et al., 2011) to visualize the summary graphs produced by
COmbINE, illustrated in Figure 5.10.

Unfortunately, the ground truth for this problem is not known for a full quantitative evaluation of
the results. Nevertheless, this set of experiments demonstrates the availability of real and important
data sets and problems that are suited integrative causal analysis. Second, these experiments provide
a proof-of-concept for the specific algorithm. One type of interesting type of inference possible
with COmbINE and similar algorithms is the prediction of a direct relation of pAkt and pMAPK
in CD4+ cells, even though the variables are not jointly measured in any of the input data sets.
Thus, methods for learning causal structure from multiple manipulations over overlapping variables
potentially constitute a powerful tool in the field of mass cytometry.
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Figure 5.10: A case study for COmbINE: Mass cytometry data. COmbINE was run on 4
different mass cytometry data for two different cell populations: CD4+ T-cells (left) and CD8+ T-
cells (right). In each data set, one variable was manipulated (pAkt, pBTk, pErk, pErk respectively).
Variables pAkt, pLat and pStat1 are only measured in data sets 1-3, while pMAPK is only measured
in data set 4.

We do not make any claims for the validity of the output graphs and they are presented only as a
proof-of-concept, as there are several potential pitfalls. In addition to the potential imperfect manip-
ulations described above, COmbINE also assumes lack of feedback cycles, which is not guaranteed
in this system. We note however, that acyclic networks have been successfully used for reverse
engineering protein pathways in the past (Sachs et al., 2005).





Chapter 6

A non-trivial INCA prediction

Unfortunately, for most real data sets, the causal ground truth is not known and cannot be
established without experiments. Thus, validating the results of causal discovery algorithms
is very difficult. In this chapter, we focus on a minimal scenario where COmbINE can
predict significant association between variables never measured together. Furthermore,
making additional parametric assumptions and employing the rules of path analysis allows
the prediction of the strength of this association (i.e. the correlation coefficient of the two
variables that are not jointly measured). We identify such cases in a 20 real-world data
sets from a variety of scientific domains, and evaluate our predictions in held-out test
data. We also compare against statistical matching, a family of methods able to produce
similar estimates. Results indicate that causal assumptions produce predictions that are
largely validated in real-world data.

In the previous chapters, we presented the scope and motivation of integrative causal analysis of
heterogeneous data sets. We also presented an algorithm that, given a set of overlapping data sets,
can infer the possible underlying causal structures. The invariant characteristics of these causal
structures are summarized using a summary graph. The validity of the algorithm given the causal
Markov and Faithfulness assumptions is tested in simulated scenarios. But how often do these
assumptions hold in actual data sets?

Validating causal discovery algorithms in real-world data sets is hardly possible, since the true causal
structure is rarely established, particularly in multivariate systems. In this chapter, we identify a
small scenario where INCA provides a testable prediction: A significant correlation between variables
that have not been measured in the same data set. We then test this scenario in a variety of real-
world data sets.

6.1 A Testable Scenario

We assume two i.i.d. data sets D1 and D2 are provided on variables O1 = {X,Y,W} and O2 =
{X,Z,W} respectively. We assume that the independence models of the data sets are J1 =
{〈X,W |Y 〉} and J2 = {〈X,W |Z〉}, in other words the one and only independence in D1 is X ⊥
⊥ W | Y , and in D2 is X ⊥⊥ W | Z. Based on the input data it is possible to induce with existing
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X Y W X ⊥⊥ W |Y

X Z W X ⊥⊥ W |Z

Figure 6.1: Definition of the co-analysis problem presented in Section 6.1: two observational i.i.d.
data sets defined on variables O1 = {X,Y,W} and O2 = {X,Z,W} are used to identify the
independence models J1 = {〈X,W |Y 〉} and J2 = {〈X,W |Z〉}. These models are represented by
PAGs P1 and P2 shown in the figure. The problem is to identify one or all MAGs defined on
O = {X,Y, Z,W} consistent with both P1 and P2.

causal analysis algorithms, such as FCI the following PAGs from each data set respectively:

P1 : X ◦ − ◦ Y ◦ − ◦W

and

P2 : X ◦ − ◦ Z ◦ − ◦W.

We will henceforth call this scenario Example 6.1. The PAGs corresponding to the input indepen-
dence models are also shown graphically in Figure 6.1. The problem is to identify one or all MAGs
defined on O = {X,Y, Z,W} consistent with the independence models J1 and J2, or equivalently,
both PAGs P1 and P2.

These two PAGs represent all the sound inferences possible about the structure of the data, when
analyzing the data sets in isolation and independently of each other. But what are the possible causal
structures over the union of variables O = {X,Y, Z,W} that are compatible with both independence
models?

Since Example 6.1 does not include any manipulations, it can be solved by algorithms prior to
SBCSD and COmbINE. The first algorithm to solve the problem is ION (Tillman et al., 2008), which
identifies the set of PAGs (defined over O) of all consistent MAGs. Subsequently, in Triantafillou
et al. (2010), we proposed the algorithm Find Consistent MAG (FCM) that converts the problem
to a satisfiability problem for improved computational efficiency. FCM returns one consistent MAG
with all input PAGs. Similar ideas have been developed to learn joint structure from marginal
structures in decomposable graphs such as undirected graphs (Kim and Lee, 2008) and Bayesian
Networks (Kim, 2010). Going back to Example 6.1, Figure 6.2 shows all 14 consistent MAGs with
the input PAGs in the scenario. The FCM algorithm arbitrarily returns one of them as the solution
to the problem (of course, the algorithm can be easily modified to return all solutions). Figure 6.4
(right) shows the output of ION on the same problem.

COmbINE and SBCSD use SMCMs to represent causal relations. Since SMCMs have a many-to-
one correspondence to MAGs, the set of possibly underlying SMCMs, shown in Figure 6.3, is larger
than the set of possibly underlying MAGs. The summary graph returned by COmbINE is identical
shown in Figure 6.4 (left).
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Figure 6.2: Solution MAGS for the co-analysis problem of Example 6.1: The 14 depicted
MAGs are all and only the consistent MAGs with the PAGs shown in Figure 6.1. In all these MAGs
the independencies X ⊥⊥ W | Y and X ⊥⊥ W | Z hold (and only them). Notice that, even though
the edge X − Y exists in P1 (Example 6.1), some of the consistent MAGs (the ones on the right of
the figure) do not contain this edge: adjacencies in the input PAGs do not simply transfer to the
solution MAGs. The FCM algorithm would arbitrarily output one of these MAGs as the solution of
the problem of Example 6.1.

6.2 Predicting the Presence of Unconditional Dependencies

We now discuss how to implement the identification of the scenario presented in Section 6.1 to
predict the presence of dependencies.

Predictions of Dependencies

Recall that, in Example 6.1 we assume we are given two data sets on variables O1 = {X,Y,W}
and O2 = {X,Z,W}. We then determine, if possible, whether their independence models are
respectively J1 = {〈X,W |Y 〉} and J2 = {〈X,W |Z〉} by a series of unconditional and conditional
tests of independence. If this is the case, we predict an association between Y and Z. The details of
determining the independence model are important. Let us denote the p-value of an independence
test with null hypothesis X ⊥⊥ Y | Z as pX⊥⊥Y | Z. In the algorithms that follow, we make statistical
decisions with the following rules:

• If pX⊥⊥Y | Z ≤ α conclude X 6⊥⊥ Y | Z (reject the null hypothesis).

• If pX⊥⊥Y | Z ≥ β conclude X ⊥⊥ Y | Z (accept the null hypothesis).

• Otherwise, forgo making a decision.

The details are shown in Algorithm 8 named Full-Testing Rule, or FTR for short. We note a couple
of observations. First, the algorithm is opportunistic. It does not produce a prediction whenever
possible, but only for the case presented in Example 6.1. In addition, it makes a prediction only
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Figure 6.3: Solution SMCMs for the co-analysis problem of Example 6.1: The 26 depicted
SMCMs are all and only the consistent SMCMs with the PAGs shown in Figure 6.1. In all these
MAGs the independencies X ⊥⊥W | Y and X ⊥⊥W | Z hold (and only them).

X Y Z W

X Y Z W

X Y Z W

Figure 6.4: Different summaries of the consistent SMCMs for Example 6.1.(left) Summary
graph representing the set of consistent SMCMs of Example 6.1. This graph is the output of the
COmbINE algorithm on the problem of Example 6.1. Alternatively, the set of consistent MAGs
can be represented with two PAGs (right). This is the output of the ION algorithm on the same
problem.

when the p-values of the tests are either too high or too low to relatively safely accept dependencies
and independencies. Second, to accept an independence model, for example, that J1 = {〈X,W |Y 〉}
all possible conditional and unconditional tests among the variables are performed. If any of these



6.2. Predicting the Presence of Unconditional Dependencies 97

Algorithm 8: Predict Dependency: Full-Testing Rule (FTR)

Input: Data Sets D1 and D2 on variables {X,Y,W} and {X,Z,W}, respectively
1 if in D1 we conclude

// determine whether J1 = {〈X,W |Y 〉}
2 X ⊥⊥W | Y , X 6⊥⊥ Y | ∅ , Y 6⊥⊥W | ∅ , X 6⊥⊥W | ∅ , X 6⊥⊥ Y |W , Y 6⊥⊥W | X
3 and in D2 we conclude

// determine whether J2 = {〈X,W |Z〉}
4 X ⊥⊥W | Z , X 6⊥⊥ Z | ∅ , Z 6⊥⊥W | ∅ , X 6⊥⊥W | ∅ , X 6⊥⊥ Z |W , Z 6⊥⊥W | X
5 then
6 Predict Y 6⊥⊥ Z | ∅
7 Predict either (X ◦ − ◦ Y ◦ − ◦ Z ◦ − ◦W ) or (X ◦ − ◦ Z ◦ − ◦ Y ◦ − ◦W ) holds

8 else
9 Do not make a prediction

10 end

tests is inconclusive or contradictory to J1, the latter is not accepted and no prediction is made.
In the terminology of Spirtes et al. (2000), we test for a detectable failure of faithfulness. Similar
ideas have also been devised in Ramsey et al. (2006) and Spanos (2006). This rule characteristic
is important in case one would like to generalize these ideas to larger graphs and sets of variables:
performing all possible tests becomes quickly prohibitive, and the probability of statistical errors
increases.

If however, one assumes the Faithfulness Condition holds among variables {X,Y, Z,W}, then it
is not necessary to perform all such tests to determine the independence models. Algorithms for
inducing graphical models from data, such as FCI and PC (Spirtes et al., 2000) are based on this
observation to gain computational efficiency. The Minimal-Testing Rule, MTR for short, performs
only a minimal number of tests that together with Faithfulness may entail that J1 = {〈X,W |Y 〉}
and J2 = {〈X,W |Z〉} and lead to a prediction. The details are shown in Algorithm 9.

Algorithm 9: Predict Dependency Minimal-Testing Rule (MTR)

Input: Data Sets D1 and D2 on variables {X,Y,W} and {X,Z,W}, respectively
1 if in D1 we conclude

// determine whether J1 = {〈X,W |Y 〉}
2 X ⊥⊥W | Y , X 6⊥⊥ Y | ∅ , Y 6⊥⊥W | ∅
3 and in D2 we conclude

// determine whether J2 = {〈X,W |Z〉}
4 X ⊥⊥W | Z , X 6⊥⊥ Z| | emptyset , Z 6⊥⊥W | | emptyset
5 then
6 Predict Y 6⊥⊥ Z | ∅
7 Predict either (X ◦ − ◦ Y ◦ − ◦ Z ◦ − ◦W ) or (X ◦ − ◦ Z ◦ − ◦ Y ◦ − ◦W ) holds

8 else
9 Do not make a prediction

10 end
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Heuristic Predictions of Dependencies Based on Transitivity

Is it really necessary to develop and employ the theory presented to make such predictions? Could
there be other simpler and intuitive rules that are as predictive, or more predictive? For example,
a common heuristic inference people are sometimes willing to make is the transitivity rule: if Y is
correlated with X and X is correlated with Z, then predict that Y is also correlated with Z. The
FTR and MTR rules defined also check these dependencies: X 6⊥⊥ Y | ∅ in D1 and X 6⊥⊥ Z | ∅ in D1,
so one could object that any success of the rules could be attributed to the transitivity property often
holding in Nature. We implement the Transitivity Rule (TR), shown in Algorithm 10 to compare
against the INCA-based FTR and MTR rules. Obviously, the Transitivity Rule is not sound in
general,1 but on the other hand, FTR and MTR are also based on the assumption of faithfulness,
which may as well be unrealistic. The verdict will be determined by experimentation.

Algorithm 10: Predict Dependency Transitivity Rule (TR)

Input: Data Sets D1 and D2 on variables {Y,X} and {X,Z}, respectively
1 if in D1: Y 6⊥⊥ X | ∅ and in D2: X 6⊥⊥ Z | ∅ then
2 Predict Y 6⊥⊥ Z | ∅
3 else
4 Do not make a prediction
5 end

Empirical Evaluation of Predicting Unconditional Dependencies

We have applied and evaluated the three rules against each-other as well as random predictions (prior
probability of a pair being dependent) on real data, in a way that becomes testable. Specifically,
given a data set D we randomly partition its samples to three data sets of equal size, D1, D2, and
Dt. The latter is hold out for testing purposes. In the first two data sets, we identify quadruples of
variables {X,Y, Z,W} for which the Full-Testing and the Minimal-Testing Rules apply. Notice that,
the two rules perform tests among variables {X,Y,W} in D1 and among variables {X,Z,W} in D2;
the rules do not access the joint distribution of Y,Z. Similarly, for the Transitivity Rule we identify
triplets {X,Y, Z} where the rule applies. Subsequently, we measure the predictive performance of
the rules. In more detail:

• Data Sets: We selected data sets in an attempt to cover a wide range of sample-sizes, di-
mensionality (number of variables), types of variables, domains, and tasks. The decision for
inclusion depended on availability of the data, ease of parsing and importing them. No data
set was a posteriori removed out of the study, once selected. Table 6.1 assembles the list of
data sets and their characteristics before preprocessing. Some minimal preprocessing steps
were applied to several data sets. Details can be found in Tsamardinos et al. (2012).

• Tests of Independence: For discrete variables we have used the G2-test (a type of likelihood
ratio test) with an adjustment for the degrees-of-freedom used in Tsamardinos et al. (2006) and
presented in detail in Tsamardinos and Borboudakis (2010). For continuous variables we have
used a test based on the Fisher z-transform of the partial correlation as described in Spirtes

1The Transitivity Rule should be sound when the marginal of the three variables is faithful to a Markov Random
Field.
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Name Reference # istances # vars Group Size Vars type Scient. domain
Covtype Blackard and Dean (1999) 581012 55 55 N/O Agricultural

Read Guvenir and Uysal (2000) 681 26 26 N/C/O Business
Infant-mortality Mani and Cooper (2004) 5337 83 83 N Clinical study

Compactiv Alcalá-Fdez et al. (2009) 8192 22 22 C Computer science
Gisette Guyon et al. (2006a) 7000 5000 50 C Digit recognition

Hiva Guyon et al. (2006b) 4229 1617 50 N Drug discovering
Breast-Cancer Wang (2005) 286 17816 50 C Gene expression

Lymphoma Rosenwald et al. (2002) 237 7399 50 C Gene expression
Wine Cortez et al. (2009) 4898 12 12 C Industrial

Insurance-C Elkan (2001) 9000 84 84 N/O Insurance
Insurance-N Elkan (2001) 9000 86 86 N/O Insurance

p53 Danziger et al. (2009) 16772 5408 50 C Protein activity
Ovarian Conrads (2004) 216 2190 50 C Proteomics

C&C Frank and Asuncion (2010) 1994 128 128 C Social science
ACPJ Aphinyanaphongs et al. (2006) 15779 28228 50 C Text mining
Bibtex Tsoumakas et al. (2010) 7395 1995 50 N Text mining

Delicious Tsoumakas et al. (2010) 16105 1483 50 N Text mining
Dexter Guyon et al. (2006a) 600 11035 50 N Text mining
Nova Guyon et al. (2006b) 1929 12709 50 N Text mining

Ohsumed Joachims (2002) 5000 14373 50 C Text mining

Table 6.1: Data Sets included in empirical evaluation of Section 5. N- Nominal, O - Ordinal, C -
Continuous.

et al. (2000). The two tests employed are typical in the graphical learning literature. In some
cases ordinal variables were treated as continuous, while in others the continuous variables
were discretized (Tsamardinos et al., 2012, see) so that every possible quadruple {X,Y, Z,W}
was either treated as all continuous variables or all discrete and one of the two tests above
could be applied.

• Significance Thresholds: There are two threshold parameters: level α below which we accept
dependence and level β above which we accept independence; the TR rule only employs the α
parameter. For FTR these thresholds were always set to αFTR = 0.05 and βFTR = 0.3 without
an effort to optimize them. Some minimal anecdotal experimentation with FTR showed that
the performance of the algorithm is relative insensitive to the values of αFTR and βFTR and
the algorithm works without fine-tuning. Notice that FTR requires 10 dependencies and 2
independencies to be identified, while MTR requires 4 dependencies and 2 independencies,
and TR requires 2 dependencies to be found. Thus, FTR is more conservative than MTR
and TR for the same values of α and β. The Bonferroni correction for MTR dictates that
αMTR = αFTR × 4

10 = 0.02, while for TR we get αTR = αFTR × 2
10 = 0.01 (TR however, does

not require any independencies present so this adjustment may not be conservative enough).
We run MTR with threshold values αMTR ∈ {0.05, 0.02, 0.002, 0.0002}, that is equal to the
threshold of FTR, with the Bonferroni adjustment, and stricter than Bonferroni by one and
two orders of magnitude. The βMTR parameter is always set to 0.3. In a similar fashion for
TR, we set αTR ∈ {0.05, 0.01, 0.001, 0.0001}.

• Identifying Quadruples: In low-dimensional data sets (number of variables less than 150), we
check the rules on all quadruples of variables. This is time-prohibitive however, for the larger
data sets. In such cases, we randomly permute the order of variables and partition them into
groups of 50 and consider quadruples only within these groups. The column named “Group
Size” in Table 6.1 notes the actual sizes of the variable groups used.
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• Measuring Performance: The ground truth for the presence of a predicted correlation is not
known. We thus seek to statistically evaluate the predictions. Specifically, for each predicted
pair of variables X and Y , we perform a test of independence in the corresponding hold-out
test set Dt and store its p-value pX⊥⊥Y | ∅. The lower the p-value the higher the probability
the pair is truly correlated. We consider as “accurate” a prediction whose p-value is less than
a threshold t and we report the accuracy of each rule.

Definition 6.2.1 (Prediction Accuracy) We denote with MR
i and URi the multiset and set re-

spectively of p-values of the predictions of rule R applied on data set i. The p-values are computed
on the hold-out test set. The accuracy of the rule on data set i at threshold t is defined as:

AccRi (t) = #{p <= t, p ∈MR
i }/|MR

i |.

We also define the average accuracy over all data sets (each data set is weighted the same)

Acc
R

(t) =
1

20

20∑
i=1

AccRi (t)

and the pooled accuracy over the union of predictions (each prediction is weighted the same)

AccR(t) = #{p <= t, i = 1 . . . 20, p ∈MR
i }/

∑
i

|MR
i |.

The reason MR
i is defined as a multiset stems from the fact that a dependency Y 6⊥⊥ Z | ∅ may be

predicted multiple times if a rule applies to several quadruples {Xi, Y, Z,Wi} or triplets {Xi, Y, Z}
(for the Transitivity Rule). The number of predictions of each rule R (i.e., |MR

i |) and the number
of unique pairs X − Y predicted correlated (i.e., |URi | ) are shown in Table 6.2. In some cases (e.g.,
data sets Read and ACPJ) the Full-Testing Rule does not make any predictions. Overall however,
the rules typically make hundreds or even thousands of predictions.

Overall Performance: The accuracies at t = 0.05, Acci(t), Acc(t), and Acc(t) for the three rules as
well as the one achieved by guessing at random are shown in Figure 6.5. The Bonferroni adjusted
thresholds for MTR and TR were used: αFTR = 0.05, αMTR = 0.02, αTR = 0.01. Over all predic-
tions, the Full-Testing Rule achieves accuracy 96%, consistently higher than guessing at random, the
MTR and the TR. The same results are also depicted in tabular form in Table 6.3, where addition-
ally, the statistical significance is noted. The null hypothesis is that AccFTRi (0.05) ≤ AccRi (0.05),
for R being MTR or TR. The one-tail Fisher’s exact test (Fisher, 1922) is employed when compu-
tationally feasible, otherwise the Pearson χ2 test (Pearson, 1900) is used instead. FTR is typically
performing statistically significantly better than all other rules.

Sensitivity to the α parameter: The results are not particularly sensitive to the significance thresholds
used for α for MTR and TR. Figures 6.8 (a-b) show the average accuracy Acc and the pooled accuracy
Acc as a function of the alpha parameter used: no correction, Bonferroni correction, and stricter
than Bonferroni by one and two orders of magnitude. The accuracy of MTR and TR improves as
they become more conservative but never reaches the one by FTR even for the stricter thresholds
of αMTR = 0.0002 and αTR = 0.0001.
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# predictions |MR
i | # unique predictions |URi |

Data Set FTR0.05 MTR0.02 TR0.01 FTR0.05 MTR0.02 TR0.01

Covtype 222 33277 54392 59 810 1431
Read 0 9 4713 0 9 260

Infant Mortality 22 2038 3736 10 427 1170
Compactiv 135 679 3950 69 193 231

Gisette 423 35824 134213 330 12340 31648
hiva 554 65967 151582 366 16174 34977

Breast-Cancer 1833 141643 470212 1371 68077 228610
Lymphoma 7712 188216 394572 4473 51794 122857

Wine 4 73 431 3 44 66
Insurance-C 1839 30569 40173 394 2212 3264
Insurance-N 226 18270 47115 95 1002 2527

p53 46647 1645476 1995354 15181 95195 129372
Ovarian 539165 1604131 2015133 41600 48376 52646

C&C 99241 416934 301218 4168 5048 5050
ACPJ 0 219 16574 0 190 15994
Bibtex 1 3982 25948 1 1858 16087

Delicious 856 32803 105776 524 6042 21351
Dexter 0 2 117 0 2 116
Nova 0 124 3473 0 115 3280

Ohsumed 0 64 5358 0 60 5227

Table 6.2: Number of predictions |MR
i | and number of unique predictions |URi | with “Bonferroni”

correction for rules FTR, MTR and TR. The rules typically make hundreds or even thousands of
predictions.

Sensitivity to t: The results are also not sensitive to the particular significance level t used to define
accuracy. Figure 6.6 graphs AccRi (t) over t = [0, 0.05] for two typical data sets as well as Acc(t) and
Acc(t). The situation is similar and consistent across all data sets considered, which are shown in
Figure 6.7. The lines of the Full Testing Rule rise sharply, which indicates that the p-values of its
predictions are concentrated close to zero.

Explaining the difference of FTR and MTR: Asymptotically and when the data distribution is
faithful to a MAG, the FTR and the MTR rules are both sound (100% accurate). However, when
the distribution is not faithful, the performance difference could become large because FTR tests for
faithfulness violations as much as possible in an effort to avoid false predictions. This may explain
the large differences in accuracies observed in the Infant Mortality, Gisette, Hiva, Breast-Cancer,
and Lymphoma data sets. When the distribution is faithful, but the sample is finite, we expect
some but small differences. For example when MTR falsely determines that X 6⊥⊥ Y | ∅ due to a
false positive test, the FTR rule still has a chance to avoid an incorrect prediction by additionally
testing X 6⊥⊥ Y | W . To support this theoretical analysis we perform experiments with simulated
data where the network structure is known. Specifically, we employ the structure of the ALARM
(Beinlich et al., 1989), INSURANCE (Binder et al., 1997) and HAILFINDER (Abramson et al., 1996)
Bayesian networks. We sample 20 continuous and 20 discrete pairs of data sets D1 and D2 from
distributions faithful to the network structure using different randomly chosen parameterizations for
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Figure 6.5: Rules accuracy per data set. Accuracies Acci for each data set, as well as the average
accuracy Acc (each data set weighs the same) and the pooled accuracy Acc (each prediction weighs
the same). All accuracies are computed as threshold t = 0.05. FTR’s accuracy is always above 80%
and always higher than MTR, TR, and random guess.

the continuous case, and the original network parameters for the discrete case. We do the same for
sample sizes 100, 500, 1000. Subsequently, we apply the FTR and MTR rules with αFTR = 0.05
and αMTR = 0.02 (Bonferroni adjusted) on each pair of D1 and D2 and all possible quadruples of
variables. The true accuracy is not computed on a test data set Dt but on the known graph instead
by checking whether Y and Z are d-connected given X and W . The mean true accuracies over
all samplings are reported in Figure 6.9. The difference in performance on the faithful, simulated
data is usually below 5%. In contrast, the largest difference in performance on the real data sets
is over 35% (Breast-Cancer), while the difference of the pooled accuracies is 10%. Thus, violations
of faithfulness seem to be the most probable explanation for the large difference in accuracy on the
real data.

Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• Notice that even if all predicted pairs are truly correlated, the accuracy may not reach 100%
due to the presence of Type II errors (false negatives) in the test set.

• The FTR rule performs the test for the X-W association independently in both data sets.
Given that the data in our experiments come from exactly the same distribution, they could
be pooled together to perform a single test; alternatively, if this is not appropriate, the p-values
of the tests could be combined to produce a single p-value (Tillman, 2009; Tsamardinos and
Borboudakis, 2010).

• The results show that the Full-Testing Rule accurately predicts the presence of dependencies,
statistically significantly better than random predictions, across all data sets, regardless of
the type of data or the idiosyncracies of a domain. The rule is successful in gene-expression
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Data Set FTR0.05 MTR0.02 TR0.01 Random Guess
Covtype 1.00 1.00 0.91∗∗ 0.83∗∗

Read - 1.00 0.97 0.82
Infant Mortality 0.95 0.64∗∗ 0.36∗∗ 0.11♠

Compactiv 1.00 0.98 0.96∗ 0.93∗∗

Gisette 0.95 0.71♠ 0.59♠ 0.14♠

hiva 0.94 0.61♠ 0.44♠ 0.30♠

Breast-Cancer 0.84 0.49♠ 0.34♠ 0.20♠

Lymphoma 0.82 0.57♠ 0.39♠ 0.23♠

Wine 1.00 0.85 0.81 0.80
Insurance-C 0.97 0.75♠ 0.66♠ 0.37♠

Insurance-N 0.97 0.94∗ 0.86∗∗ 0.34♠

p53 0.97 0.87♠ 0.71♠ 0.54♠

Ovarian 0.99 0.98♠ 0.95♠ 0.91♠

C&C 0.96 0.88♠ 0.80♠ 0.77♠

ACPJ - 0.26 0.07 0.02
Bibtex 1.00 0.68 0.31 0.12∗∗

Delicious 1.00 0.87♠ 0.68♠ 0.23♠

Dexter - 0.50 0.05 0.02
Nova - 0.08 0.06 0.03

Ohsumed - 0.14 0.05 0.02

ACCR 0.96 0.69∗∗ 0.55∗∗ 0.39∗∗

ACCR 0.98 0.88♠ 0.74♠ 0.16♠

Table 6.3: Rules accuracy after “Bonferroni” correction. ACCRi (t) at t = 0.05 with “Bon-
ferroni” correction for rules FTR, MTR, TR and Random Guess. Marks *, **, and ♠ denote a
statistically significant difference from FTR at the levels of 0.05, 0.01, and machine-epsilon respec-
tively.

data, mass-spectra data measuring proteins, clinical data, images and others. The accuracy of
predictions is robustly always above 0.80 and over all predictions it is 0.96; the difference with
random predictions is of course more striking in data sets where the percentage of correlations
(prior probability) is relatively small, as there is more room for improvement.

• The Full-Testing Rule is noticeably more accurate than the Minimal-Testing Rule, due to test-
ing whether the Faithfulness Condition holds in the induced PAGs. The result is important
considering that most constraint-based algorithms assume the Faithfulness Condition to in-
duce models, but do not check whether the induced model is Faithful. These results indicate
that when the latter is not the case, the model (and its predictions) may not be reliable. On
the other hand, the FTR rule is also noticeably more conservative: the number of predictions
it makes is significantly lower than the one made by MTR. In some data sets (e.g., Compactiv,
Insurance-N, and Ovarian) by using the MTR vs. the FTR one sacrifices a small percentage of
accuracy (less than 3% in these cases) to gain one order of magnitude more predictions. How-
ever, caution should be exercised because in certain data sets MTR is over 35% less accurate
than FTR.
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Figure 6.6: Averaged and pooled accuracy per rule, for varying dependence threshold.

Average accuracy ACC
R

(t) and pooled ACCR (t). Predicted dependencies have p-values concen-
trated close to zero. The performance differences are insensitive to the threshold t in the performance
definition.

• The Full-Testing Rule is more accurate than the Transitivity Rule. Thus, the performance
of the Full-Testing Rule cannot be attributed to simply performing a super-set of the tests
performed by the Transitivity Rule.

• Predictions are the norm case and not occur in contrived or rare cases only. Even though there
were few or no predictions for a couple of data sets, there are typically hundreds or thousands
of predictions for each data set. This is the case despite the fact that we are only looking
for a special-case structure and the search for these structures is limited within groups of 50
variables for the larger data sets. The results are consistent with the ones in Triantafillou et al.
(2010), where larger structures were induced from simulated data.

• FTR makes almost no predictions in the text data:2 this actually makes sense and is probably
evidence for the validity of the method: it is semantically hard to interpret the presence of a
word “causing” another word to be present.3

• FTR is an opportunistic algorithm that sacrifices completeness to increase accuracy, as well
as improve computational efficiency and scalability. General algorithms for co-analyzing data
over overlapping variable sets, such as ION (Tillman et al., 2008), IOD (Tillman and Spirtes,
2011) and cSAT (Triantafillou et al., 2010) could presumably make more predictions, and more
general types of predictions (e.g., also predict independencies). However, their computational
and learning performance on a wide range of domains and high-dimensional data sets is still
an open question and an interesting future direction to pursue.

2The only predictions in text data are in Bibtex (1 prediction) and in Delicious (856), which are the only text
data sets that are actually not purely bag-of-words data sets but include variables corresponding to tags. 66% of the
predictions made in Delicious involves tag variables, as well as the single prediction in Bibtex.

3However, causality between words is still conceivable in our opinion: deciding to include a word in a document
may change a latent variable corresponding to a mental state of the author, which in turn causes her to include some
other word.
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Figure 6.7: Accuracy per data set and rule, for varying dependence threshold. Accuracies
AccRi (t) as a function of threshold t for all data sets along. Overall, the performance differences are
insensitive to the threshold t in the performance definition.

6.3 Predicting the Presence of Conditional Dependencies

The FTR and the MTR not only predict the presence of the dependency Y 6⊥⊥ Z | ∅ given two data
sets on O1 = {X,Y,W} and O2 = {X,Z,W}; the rules also predict that either X◦−◦Y ◦−◦Z◦−◦W
or X ◦ − ◦ Z ◦ − ◦ Y ◦ − ◦W is the model that generated both data sets (see Algorithms 8 and 9).
Both of these models also imply the following dependencies:

Y 6⊥⊥ Z | X,
Y 6⊥⊥ Z |W,
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Figure 6.8: Rules accuracies for varying independence threshold. Average accuracy
Acc(0.05) (left) and pooled accuracy Acc(0.05) (right) for each rule as a function of α thresholds
used: αMTR ∈ {0.05, 0.02, 0.002, 0.0002} and αTR ∈ {0.05, 0.01, 0.001, 0.0001} corresponding to no
correction, Bonferroni correction, and stricter than Bonferroni by one and two orders of magnitude
respectively. FTR’s performance is higher even when MTR and TR become quite conservative.
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Figure 6.9: Conservative testing increases accuracy. Difference between ACCFTR and
ACCMTR for discrete (left) and continuous (right) simulated data sets. Results calculated using
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is larger than 5% only in two cases with low sample size (ALARM and HAILFINDER networks);
however, the difference steeply decreases as the sample size increases. No prediction was made for
HAILFINDER with discrete data and 100 samples. The difference between FTR and MTR on
faithful data is relatively small.

Y 6⊥⊥ Z | {X,W}.
In other words, the rules predict that the dependency between Y and Z is not mediated by either
X or W inclusively. To test whether all these predictions hold simultaneously at threshold t we
compute:

p∗ = max
S⊆{X,W}

pY⊥⊥Z | S
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and test whether p∗ ≤ t. The above dependencies are all the dependencies that are implied by
the model but not tested by the FTR given that it has no access to the joint distribution of Y
and Z. Note that we forgo providing a value for p∗ when any of the conditional dependencies can
not be calculated, that is, when there are not enough samples to achieve large enough power, see
Tsamardinos and Borboudakis (2010). The accuracy of the predictions for all dependencies in the
model, named Structural Accuracy because it scores all the dependencies implied by the structure
of model, is defined in a similar fashion to Acc (Definition 6.2.1) but based on p∗ instead of p:

SAccRi (t) = #{p∗ <= t, p ∈MR
i }/|MR

i |.

The averaged and pooled SAcc for each FTR, MTR (with “Bonferroni” correction) and randomly
selected quadruples is shown in Figure 6.10; SAcc for each data set is shown in Appendix 6.11. There
is no line for the TR as it concerns triplets of variables and makes no predictions about conditional
dependencies. Both FTR and MTR have maximum p-values p∗ concentrated around zero. The
curves do not rise as sharp as those in Figure 6.6 since the p∗ values are always larger than the
corresponding pY⊥⊥Z | ∅.

Summary, Interpretation, and Conclusions
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Figure 6.10: Averaged and pooled structural accuracy per rule, for varying dependence

threshold. Averaged structural accuracy SACC
R

(t) and pooled structural accuracy SACCR (t).

FTR outperforms MTR on most of the data sets, and thus SACC
FTR

(t) > SACC
MTR

(t). How-
ever, since MTR ouperforms FTR on few data sets with a large number of predictions and so
SACCMTR (t) is slightly better than SACCFTR (t) for t <= 0.05.

The results show that both the FTR and MTR rules correctly predict all the dependencies (condi-
tional and unconditional) implied by the models involving the two variables never measured together.
These results provide evidence that these rules often correctly identify the data generating structure.

6.4 Predicting the Strength of Dependencies

In this section, we present and evaluate ideas that turn the qualitative predictions of FTR to quan-
titative predictions. Specifically, for Example 6.1 we show how to predict the strength of dependence
in addition to its existence. In addition to the Faithfulness Condition, we assume that when the
FTR applies on quadruple {X,Y, Z,W}, all dependencies are linear with independent and normally
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Figure 6.11: Structural accuracy per data set and rule, for varying dependence threshold.
Structural Accuracies SAccRi (t) as a function of threshold t for all data sets.

distributed error terms. However, the results of these section could possibly be generalized to more
relaxed settings, for example, when some of the error terms are non-Gaussian (Shimizu et al., 2006,
2011). When the Full-Testing Rule applies, we can safely assume the true structure is one of the
MAGs shown in Figure 6.2. Given linear relationships among the variables, we can treat these MAGs
as linear Path Diagrams (Richardson and Spirtes, 2002). We also consider normalized versions of
the variables with zero mean and standard deviation of one. Let us consider one of the possible
MAGs:

M1 : X
ρXY←−−− Y ρY Z−−−→ Z

ρZW−−−→W
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where ρXY is the regression coefficient of regressing X on Y , that is,

X = ρXY Y + ε

and ε is the error term. Since we have standardized the variables, and since the above equation is
simple linear regression, ρXY coincides with the Pearson linear correlation between variables X and
Y . Thus, there is no need to distinguish the two.4 Now notice that in all MAGs in Figure 6.2 there
are no colliders. Thus, as in M1 above, all regressions are simple regressions and all standardized
regression coefficients coincide with their respective correlation coefficients, and so, for the rest of
the section we will not differentiate between the two.

The rules of path analysis (Wright, 1934) dictate that the correlation between two variables, for
example, ρXY equals the sum of the contribution of every d-connecting path (conditioned on the
empty set); the contribution of each path is the product of the correlations on its edges. For M1 the
above rule implies (among others):

ρXZ = ρXY × ρY Z
because from X to Z there is a single path going through Y . Recall that the 14 consistent MAGs
are represented by the following PAGs:

P1 : X ◦ − ◦ Y ◦ − ◦ Z ◦ − ◦W

and

P2 : X ◦ − ◦ Z ◦ − ◦ Y ◦ − ◦W.
All MAGs consistent with P1 entail the same constraints on the coefficients using path analysis;
similarly all MAGs consistent with P2.5 Specifically, if P1 is the true structure we get the constraints

ρXZ = ρXY × ρY Z , (6.1)

ρYW = ρY Z × ρZW . (6.2)

On the other hand, if P2 is the true structure we obtain:

ρXY = ρXZ × ρY Z , (6.3)

ρZW = ρY Z × ρYW . (6.4)

We use ρ, r̂, and r to denote actual, predicted, and sample correlations, respectively. The quantities
that we observe are the sample correlation coefficients, denoted by r, for the pairs of variables
measured together. Thus, we can compute the quantities rXY , rXZ , rYW , rZW from the data and
we would like to predict ρY Z without available data. From Equations 6.1, 6.2, 6.3, 6.4 above we
obtain four possible estimators:

If P1 is true : r̂1Y Z ≈
rXZ
rXY

from Equation 6.1 and r̂2Y Z ≈
rYW
rZW

from Equation 6.2, (6.5)

4If Y was a collider then it would have been regressed on multiple variables; in this case ρXY should be the partial
regression coefficient which in general does not coincide with the partial correlation coefficient, even for standardized
variables.

5In general, the consistent MAGs may disagree on the unknown correlations. In this case, these parameters may
not identifiable. However, one could analyze all possible MAGs to provide bounds on the unidentifiable quantities in
a similar fashion to Balke and Pearl (1997) and Maathuis et al. (2009).
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if P2 is true : r̂3Y Z ≈
rXY
rXZ

from Equation 6.3 and r̂4Y Z ≈
rZW
rYW

from Equation 6.4 (6.6)

where the superscripts correspond to the equation used to produce the estimate. Notice that, each
possible PAG provides two equations to predict ρY Z , that is, the parameter is overidentified. Also,
the following important relation holds between the estimators:

r̂1Y Z =
1

r̂3Y Z
and r̂2Y Z =

1

r̂4Y Z
.

This observation allows us to distinguish between PAGs P1 and P2: if r̂1Y Z , r̂
2
Y Z ∈ [−1,+1], then their

reciprocals r̂3Y Z , r̂
4
Y Z 6∈ [−1,+1] and so, they are not valid estimates for a correlation. Thus, we can

infer that P1 is the true structure and employ only r̂1Y Z , r̂
2
Y Z for estimation. Otherwise, the reverse

holds r̂3Y Z , r̂
4
Y Z ∈ [−1,+1], P2 is the true structure and only r̂3Y Z , r̂

4
Y Z should be used for estimation.

Due to sampling errors it is plausible that we obtain conflicting information: r̂1Y Z ∈ [−1,+1] but
r̂2Y Z 6∈ [−1,+1] (and so r̂3Y Z 6∈ [−1,+1] and r̂2Y Z ∈ [−1,+1]). In that case, we forgo making any
predictions.

The ramifications of the above analysis are important. In the case where all variables are jointly
measured, the distribution is faithful, the relations are linear and the error terms follow Gaussian
distributions, the set of statistically indistinguishable causal graphs is determined completely by
the independence model and not by the parameterization of the distribution. However, in the case
of incomplete data, where some variable sets are not jointly observed, the set of indistinguishable
models also depends on the parameters of the distribution, even for linear relations and Gaussian
error terms. In our scenario, by analyzing the estimable parameters we can further narrow down
the set of equivalent consistent MAGs.

At this point in our analysis, we are left with two valid estimators, either r̂1, r̂2 or r̂3, r̂4. All
estimators are computed as ratios. We report the mean of the two valid estimators as the predicted
r̂Y Z for a more robust estimation. The above procedure is formalized in Algorithm 11, named
FTR-S.

Empirical Evaluation of the Predictions of Correlation Strength

As in Section 6.2, we partition each data set with continuous variables to three data sets D1, D2, and
a test set Dt. We then apply Algorithm 11 and predict the strength of correlation r̂Y Z for various
pairs of variables; we compare the predictions with the sample correlation rY Z as estimated in Dt.
The results for one representative data set (Lymphoma) are shown in Figure 6.12(a): there is an
apparent trend to overestimate the absolute value of the sample correlation.

There are several possible explanations for the bias of the method, including violations of normality,
linearity, faithfulness, and even the known bias in the estimation of sample correlation coefficients
(Zimmerman et al., 2003) that are used for making the predictions in Algorithm 11. In order to
pinpoint the culprit, we generated data where all assumptions hold from the model M1 shown in
the beginning of this section, where we set the correlations ρXY , ρY Z , ρZW and the noise terms
are independently and normally distributed. We used the entire spectrum of positive correlation
coefficients for all three correlations to examine how the bias varies as a function of these correlations.
We generated 1000 data sets of different sample sizes of 50, 70 and 100 samples. We then used
Equation 6.1 to estimate rY Z in each experiment. This set of experiments revealed no significant
bias for any of the experimental settings (results are not shown for brevity).



6.4. Predicting the Strength of Dependencies 111

Algorithm 11: Predict Dependency Strength(FTR-S)

Input: Data sets D1 and D2 on variables {X,Y,W} and {X,Z,W}, respectively
1 if Full-Testing Rule(D1, D2) does not apply then return;
2 ;
3 In D1 compute rXY , rYW ;
4 In D2 compute rXZ , rZW ;
5 r̂1 ← rXZ

rXY
;

6 r̂2 ← rYW
rZW

;

7 r̂3 ← rXY
rXZ

;

8 r̂4 ← rZW
rYW

;

9 if r̂1, r̂2 ∈ [−1, 1] then
10 Predict X ◦ − ◦ Y ◦ − ◦ Z ◦ − ◦W ;

11 Predict correlation r̂Y Z = 1
2 (r̂1 + r̂2);

12 end
13 else if r̂3, r̂4 ∈ [−1, 1] then
14 Predict X ◦ − ◦ Z ◦ − ◦ Y ◦ − ◦W ;

15 Predict correlation r̂Y Z = 1
2 (r̂3 + r̂4);

16 end
17 else
18 Make no prediction
19 end

We next tested whether the bias is an artifact of the filtering by the FTR at Line 1 of the FTR-S
algorithm. We re-run this procedure, but this time we kept only the predicted correlations that
passed the FTR. By comparing Figure 6.12(a) produced on real data, and 6.12(b) on simulated
data, we observe a similar behavior, indicating that FTR filtering seems a reasonable explanation
for the bias.

An explanation of this phenomenon now follows. Suppose M1 : X
ρXY←−−− Y

ρY Z−−−→ Z
ρZW−−−→ W is

the data generating MAG. We expect that r̂Y Z = rXZ
rXY

(the equality r̂Y Z = rYW
rZW

also holds but we
ignore it to simplify the discussion). When sample correlations among {X,Y, Z,W} pass the FTR,
this means that both rXZ and rXY are above a cut-off threshold, as given by the Fisher test. For
example, for a data set with 70 samples, two variables are considered dependent (ρ 6= 0) if their
sample correlation is more that 0.2391 (in absolute value), whereas for a data set with 50 samples,
this threshold is 0.2852.

Filtering with the Fisher test introduces a bias in the estimation of r. The bias of the estimation
without filtering, ru is Bru = E[ru − ρ] = ru − ρ, while the bias of the estimation with filtering rf
is Brf = E[rf − ρ] = rf − ρ, where |rf | ≥ t. The threshold t, as mentioned above, is the threshold
determined by the Fisher test and depends on sample size. The lower the sample size, the higher
the threshold t, and so the higher the introduced bias Brf . In addition, the lower the |ρ| the higher
the bias Brf .

Figure 6.13 illustrates these points pictorially. In this example, the distribution of the sample
correlation r of two variables for sample size 70 when the true correlation is ρ ∈ {0.2, 0.4}. For
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Figure 6.12: Bias in estimation of the correlation coefficient. (a) Predicted (r̂Y Z) vs sample
(rY Z) correlation for the Lymphoma data set. There is an obvious trend to over-estimate the
correlation in absolute value. (b) Simulated results from model M1 when ρXZ and ρYW are lower
than 0.4 and observed correlations are found significant (FTR applies). The FTR constraint that the
observed correlations are significant reproduces a similar behavior in the simulated data, explaining
the bias.

unfiltered estimations, the bias is Bru is 0.0052 and -0.0011 for ρ equal to 0.2 and 0.4 respectively,
whereas for filtered estimations the corresponding values Brf are 0.1187 and 0.0127.

Going back to the prediction r̂Y Z = rXZ
rXY

notice that the numerator is always lower (in absolute
value) than the denominator. Therefore, when filtered, it is, on average more overestimated than
the denominator. This implies that, on average, the fraction leads to overestimating the absolute
value of ρY Z . The lower the values of |rXZ | and |rXY |, the larger we expect this bias to be. The
situation is similar for all fractions involved in Equations 6.5 and 6.6. This hypothesis is confirmed
in the data as illustrated in Figure 6.14 where the predictions are grouped by the mean absolute
values of the denominators used in their computation.

The bias should be a function of sample size, the absolute value of the correlations employed for its
computation, and the significance thresholds of the FTR rule. However, a full theoretical treatment
of the bias is out of the scope of the work. In the experiments that follow we remove the linear
trend to over-estimate (calibrate) by regressing the sample correlations rY Z on the predicted r̂Y Z :
the final calibrated prediction is s × r̂Y Z + i. For each data set the intercept i and slope s of the
regression are estimated by training on the remaining data sets (leave-one-data-set-out validation).
The effect of this calibration is shown in Figure 6.15. To avoid repetition, the detailed set of results
is presented in the comparative evaluation to statistical matching in Section 6.6.



6.4. Predicting the Strength of Dependencies 113

−0.2 0 0.2 0.4 0.6

ru = 0.2052

rf = 0.3187

Sample Correlations when ρ = 0.2

p-value<0.05
p-value>0.05

0 0.2 0.4 0.6 0.8

ru = 0.3989

rf = 0.4127

Sample Correlations when ρ = 0.4

p-value<0.05
p-value>0.05

(a) (b)

Figure 6.13: Overestimation of the sample correlation coefficient r is larger for lower ρ.
Histograms of the sample correlations for (a) ρ = 0.2 and (b) ρ = 0.4 for sample size 70. Red bars
correspond to cases where the Fisher test returns a p-value > 0.05, whereas blue bars correspond to
p-values < 0.05. The dashed lines indicate the mean sample correlation for filtered and unfiltered
correlations. The lower the ρ , the more overestimated the sample correlations that pass the Fisher
test, therefore the difference between the two means is larger.

Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:

• FTR coupled with parametric assumptions can be used to predict the strength of dependency
(correlation), providing quantitative predictions. This is equivalent to constructing a prediction
model for variables not jointly observed.

• In the case of incomplete data, where some variable sets are not jointly observed, the set of
indistinguishable models also depends on the parameters of the distribution, even for linear
relations and Gaussian error terms. In contrast, in the case where all variables are jointly
measured and the distribution is faithful the set of statistically indistinguishable causal graphs
is completely determined by the independence model (again, also assuming linearity and Gaus-
sian error terms).

• In this simple scenario, given the correct structure, path analysis of the induced MAGs provides
easy solutions for predicting the strength of dependence. However, searching for the correct
MAG models by applying the FTR incurs bias on the predictions that should be taken into
account.
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Figure 6.14: Bias is reduced for larger values of the denominator.Predicted vs sample cor-
relations over all data sets, grouped by the mean absolute values of the denominators used in their
computation: predictions computed based on large correlations have reduced bias. Red regions
correspond to higher density areas.

6.5 Related Work

Whole sub-fields have been developed to address the problem of integrative analysis, that we review
briefly. Meta-Analysis focuses on the co-analysis of studies with similar sampling and experimental
design characteristics with the purpose of making inferences about a single association. Meta-
Analysis in Statistics (O’Rourke, 2007) combines the results of several studies to address a set of
related research hypotheses. While meta-analysis focuses on a pair-wise association of a variable
with an outcome of interest, a recent interesting extension addresses the problem of estimating the
multivariate associations (for example, in the form of a regression model) with the target variable
(Samsa et al., 2005); such methods often appear under the names of meta-regression and univariate
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Figure 6.15: Calibration of the predictions.Predicted vs sample correlations on all data sets (a)
before, and (b) after calibration.

synthesis (Zhou et al., 2009). The main idea of the latter is to assume a parametric form of the
regression model and estimate the sufficient statistics from several homogeneous (in terms of being
conducted on the same population, experimental conditions, sampling, etc.) studies that may not
measure all variables (risk factors in this context). Both statistical matching and meta-analysis’s
scope does not extend to other sources of heterogeneity of the data sets, such as different experimental
conditions.

In Computer Science and Machine Learning, the field of Transfer Learning (Pan and Yang, 2010)
represents a main effort in integrative analysis. In Transfer Learning, successful search control strate-
gies, model priors, and other characteristics transfer among different domains and/or tasks. When
the task (target) is the same but the domains (populations) are different, this type of Transfer Learn-
ing is called Domain Adaptation. In this case, typically one would like to translate the estimated
conditional distribution Ps(Y |X) used for prediction in a source distribution to a target distribution
Pt(Y |X) that may be different (e.g., has a different marginal class distribution). Given that such
methods are typically non-causal based, they cannot transfer to data sets where manipulations have
been performed (causal methods could transfer predictive models to manipulated distributions as we
show in Tsamardinos and Brown 2008, also shown in Maathuis et al. 2010). In addition, the input
space for the predictors X has to be common. When the domain is the same (same distribution), but
the tasks (target variables) are different, the type of Transfer Learning is called Multi-Task Learning.
This type of learning attempts to simultaneously build models for several tasks in an effort to use
one for leveraging the performance on the others. Typically this is performed by using a shared
representation and learning common induced features. Again, these inferences are limited as they
can only combine studies under the same sampling and experimental conditions on the same sets of
variables.

Other fields may seem related in a first glance, but are orthogonal to the proposed research. The field
of Relational Learning (Getoor and Taskar, 2007) does not really address the problem of learning from
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different data sets/studies over different samples, rather than a single data set (the one stemming
from implicitly propositionalizing the database) in the form of relational tables. Similarly, the field
of Distributed Learning (Cannataro et al., 2002) is restricted to designing time and communication-
efficient analysis of what is essentially a single data set stored in different locations.

Other related work includes efforts to combine models (that may be developed from different data
sets) on the same system but on different scales (Gennari et al., 2008). Typically, such methods
involve mechanical models using differential equations and are not concerned with statistical models.
In addition, these methods concern vertical integration at different temporal or spatial scales, while
INCA proposes a horizontal integration of studies.

To the best of our knowledge, the only approach that can predict the correlation of variables not
jointly measured is Statistical Matching (D’Orazio et al., 2006), an integrative analysis procedure
for data sets defined over overlapping variable sets. Statistical matching addresses two main tasks
named the micro approach and the macro approach. The micro approach aims to impute the miss-
ing values and construct a complete synthetic file, whereas the macro approach aims to identify
some characteristics of the joint probability distribution of the variables not jointly observed. Nat-
urally, construction of the synthetic data set premises the estimation of the parameters of the joint
distribution. We focus on the macro approach as it presents an alternative to the FTR and MTR.

The problem set up is as follows: variables Y∪X are measured in data set D1, while variables Z∪X
are measured in data set D2. Thus X are the commonly measured variables. The goal is to estimate
the variances and covariances of X ∪Y ∪ Z. The problem cannot be solved without additional as-
sumptions (Rubin, 1974; D’Orazio et al., 2006). Depending on nature of the assumptions, statistical
matching is able to produce either intervals or point-estimates for the covariances between Y and
Z. The most common assumptions are discussed and compared with FTR in Section 6.6.

6.6 Comparison Against Statistical Matching

The most typical assumption in the literature able to produce point estimates is the Conditional
Independence Assumption: Y ⊥⊥ Z | X. This is an arbitrary assumption that has been long
debated. Alternatively, one can limit the shape of the distribution by imposing parametric forms,
such as multivariate normality. The latter type of assumptions, for the typical distributions, do
not lead to identifiable estimations, but instead provide bounds on the missing covariances. Other
approaches do exist that require prior knowledge, for example, Vantaggi (2008) assumes knowledge
of structural zeros and Cudeck (2000) of the structure of latent factors; such approaches however,
are not directly comparable with FTR and MTR on this task. In this section we briefly present the
main theory and techniques used in statistical matching, and then attempt to empirically compare
against FTR.

Statistical Matching Based on the Conditional Independence Assumption

The most common assumption that allows identification of the unknown parameters is the condi-
tional independence assumption (CIA): Y ⊥⊥ Z | X. The conditional independence assumption
is usually paired with some parametric assumption. The most common assumption for the shape
of a continuous distribution of the variables involved in the model is multivariate normality. In this
case, the parameters of the JPD are the mean vector and the covariance matrix. The covariance
Matrix for X ∪Y ∪ Z can be written as:
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Σ =

ΣXX ΣXY ΣXZ

ΣYX ΣYY ΣYZ

ΣZX ΣZY ΣZZ


where the unknown parameter is ΣYZ. The CIA assumption imposes that the covariance matrix of
Y and Z given X is null, thus,

ΣYZ = ΣYXΣXX
−1ΣXZ.

In case we have standardized variables, and Y = {Y } and Z = {Z}, the covariance matrix becomes

Σ =

ρXX ρXY ρXZ
ρYX 1 ρY Z
ρZX ρZY 1


and so

ρY Z = ρYXρXX
−1ρXZ .

This formula can be used to produce a prediction r̂Y Z for the correlation coefficient of the not
commonly observed variables Y and Z. Recall that, we assume we are given a data set D1 on
variables X∪ Y and a data set D2 on X∪Z. The parameters ρXY and ρXZ can be estimated from
D1 and D2 respectively, while the parameters ρXX can be estimated from either or both data sets.

In an applied setting, there is usually also a preprocessing step attempting to identify a subset of
the common variables to be used in the matching process. This step serves mainly computational
efficiency and interpretability purposes and does not affect the asymptotic properties of the proce-
dure. The main method suggested in D’Orazio et al. (2006) is to disregard all variables in X that
are independent with both Y and Z. The details are described in Algorithm 12.

Algorithm 12: Predict Correlation: Statistical Matching Rule (SMR)

Input: Data sets D1 and D2 on variables {V ∪ Y } and {V ∪ Z}, respectively
1 ψ1 ← {V ∈ V : V ⊥⊥ Y | ∅} in D1

2 ψ2 ← {V ∈ V : V ⊥⊥ Z | ∅} in D2

3 X← V \ (ψ1 ∩ ψ2)

4 Predict r̂Y Z = ˆΣYX
ˆΣXX
−1 ˆΣXZ

Even though the conditional independence assumption seems quite arbitrary, it is intuitively justified
in certain cases. When the number of common variables is large it is unlikely that Y provides
additional information for Z, than what X already provides. In other words, we expect Y ⊥⊥ Z | X
to hold or hold approximately. Using graphical model theory one can better formalize this intuition:

Theorem 6.6.1 Consider a Bayesian network of maximum degree k faithful to a distribution defined
over a set of variables V = X ∪ Y ∪ Z, |V| = N . Then, the CIA Y ⊥⊥ Z | X holds if and only if
Y 6∈Mb(Z), where Mb(Z) is the Markov Boundary of Z in the context of variables V; if Y and Z
are chosen at random the probability of the CIA being violated is upper bounded by k2/N .

Proof In a faithful distribution over V, each variable Y has a unique Markov Boundary Mb(Y )
(Pearl, 2000) that coincides with the parents, children, and parents of children (spouses) of Y in
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any network faithful to the distribution. It is also easy to see that Y ∈ Mb(Z) ⇔ Z ∈ Mb(Y ).
Finally, the Mb(Y ) and any of its supersets d-separates Y from any other node Z. Thus, when Z 6∈
Mb(Y ), then conditioned on the remaining variables (superset of Mb(Y )) Y becomes d-separated
and independent of Z. Thus, the CIA holds. Conversely, if Z ∈Mb(Y ) then it is either a neighbor
of Y or a spouse. If it is a neighbor it cannot be made independent of Y conditioned on any subset
of the variables (Spirtes et al., 2000). If it is a spouse of Y , then conditioned on the remaining
variables (which includes the common children) it is d-connected to Y and thus dependent. Thus,
the CIA does not hold.

Now, the Markov Boundary of Y is a subset of the nodes that are reachable from Y within two
edges. If the network has degree at most k the probability that a randomly chosen Y belongs to the
Markov Boundary of Z is less than k2/N .

Thus, when the sparsity remains the same, the probability of a violation of the CIA between two
randomly selected variables decreases with the number of participating variables N . The theoretical
results is illustrated in Figure 6.16 on simulated data. The figure shows the results of the statistical
matching procedure described in Algorithm 12 for simulated continuous data from a network based
on the ALARM network (Beinlich et al., 1989).6 To recreate the scenario above we generated two
data sets D1 and D2 of 1000 samples each from the distribution of the network. We then applied
the statistical matching rule described in Algorithm 12 for each pair of variables, considering that
the rest of the variables in the network are jointly measured in both data sets. Finally, we generated
a third data set to test the predictions of the method. The pairs of variables are partitioned in two
categories: pairs of variables that belong to each other’s Markov Boundary, and pairs of variables
that do not belong to each other’s Markov Boundary. As expected, the results are poorer for the
pairs of variables that belong to each other’s Markov Boundary, with a mean absolute error of
0.1649± 0.1088, compared to a mean absolute error of 0.0326± 0.0271 for pairs that do not belong
to each other’s Markov Boundary.

In the context of Maximal Ancestral Graphs, defining the Markov Boundary is more complicated and
its cardinality cannot be likewise bounded (Pellet and Elisseeff, 2008). Nevertheless, we still expect
that, in a sparse network containing a large number of jointly measured variables, the probability
that Y ∈ Mb(Z) is low. We therefore expect that, when the number of common variables is large,
the CIA will often hold for randomly-chosen pairs of variables that have not been observed together.
If, however, the set of variables measured in common is small, we have no good reason to expect
that the conditional independence assumption holds.

Empirical Evaluation of SMR and FTR-S

In this section, we empirically compare the SMR and FTR-S methods for predicting the correlation
r̂Y Z between two variables Y and Z never jointly observed. Both SMR and FTR-S procedures
provide such predictions, however, they follow different approaches that makes their comparison not
straightforward:

• SMR provides a prediction for all cases. FTR-S provides a prediction given it identifies a
specific structure that entails a significant correlation.

6The ALARM network a well-known network with 37 variables. We used the skeleton of ALARM to simulate a
conditional linear gaussian network with random parameters.
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Figure 6.16: Statistical matching predictions with and without valid assumptions. Pre-
dicted vs actual sample correlations using the Statistical Matching Rule for simulated data from the
ALARM network. For each pair of variables, prediction is based upon the subset of the remaining
35 variables that are determined significantly correlated with either Y or Z at level 0.05 . The CIA
holds when Y 6∈Mb(Z) in which case the mean absolute error is 0.0326± 0.0271; in contrast, when
Y ∈Mb(Z) the CIA does not hold and the mean absolute error is 0.1649± 0.1088.

Data Sets SMRG SMRQ FTR-S
ACPJ 445121 509000 0

Breast-Cancer 436093 356000 1005
C&C 5050 1000 70367

Compactiv 231 1000 108
Insurance-C 3486 1000 1372
Lymphoma 180074 147000 3897
Ohsumed 124505 122000 0
Ovarian 52675 43000 273456

Wine 66 495 4
p53 132299 108000 33934

Table 6.4: Number of predictions

• SMR can be applied to sets X with more than two commonly measured variables and get
leverage from all available information. FTR-S on the other hand is applicable only when the
number of common variables is two.

We applied the SMR method on all continuous data sets, simulating two scenarios. In the first sce-
nario, SMR is applied on two data sets D1 and D2 defined over a quadruple of variables {X,Y, Z,W},
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Data Sets SMRG SMRQ FTR-S
ACPJ 0.01 ± 0.01 0.02 ± 0.01 -

Breast-Cancer 0.11 ± 0.08 0.13 ± 0.10 0.18 ± 0.13
C&C 0.05 ± 0.03 0.19 ± 0.18 0.18 ± 0.13

Compactiv 0.04 ± 0.06 0.19 ± 0.20 0.14 ± 0.12
Insurance-C 0.03 ± 0.08 0.09 ± 0.14 0.14 ± 0.12
Lymphoma 0.12 ± 0.09 0.14 ± 0.11 0.17 ± 0.14
Ohsumed 0.01 ± 0.02 0.02 ± 0.02 -
Ovarian 0.15 ± 0.10 0.16 ± 0.11 0.09 ± 0.07

Wine 0.09 ± 0.10 0.15 ± 0.17 0.22 ± 0.14
p53 0.03 ± 0.05 0.07 ± 0.10 0.14 ± 0.12

Over data sets 0.06 ± 0.06 0.12 ± 0.11 0.16 ± 0.12
Over predictions 0.07 ± 0.08 0.07 ± 0.09 0.11 ± 0.10

Table 6.5: Mean Absolute Error (MAE) between the calibrated predictions r̂Y Z and
sample-estimated rY Z . (average value ± standard deviation). SMRG refers to the Statistical
Matching Rule applied on all pairs of variables in the same group, considering the remaining 48
variables in the group as common variables. SMRQ is the Statistical Matching Rule applied on
quadruples of variables randomly chosen from the same group. Finally, FTR-S consists in the Full
Testing Rule modified for estimating the strength of the dependency, see Algorithm 11.

where only X,W are jointly measured in both. The pairs of D1, D2 are simulated by considering
randomly chosen variable quadruples from each variable group of each data set of Table 6.1; as in
all experiments, D1 and D2 contain a disjoint third of the original samples. This scenario simulates
a case where SMR is applied on low dimensional data; we denote it as SMRQ . In this case, SMR
has the same information available for making predictions as FTR-S. Since the number of possible
quadruples is computationally prohibitive, we apply SMRQ on 1000 randomly chosen quadruples
from each variable group of each data set.7

In the second scenario, SMR is applied to data sets of higher-dimensionality. Specifically, we apply
SMR to all pairs of variables in the same group (see Section 6.2), considering the remaining 48
variables in the group as the common variables X. We name this case SMRG . The same leave-
one-data-set-out calibration method was used for both SMR cases and FTR-S. Figures 6.17, 6.18,
6.19 and 6.20 plot the predicted vs. the sample estimates of the correlations for SMRG , SMRQ and
FTR-S for all the continuous data sets used in the study. The figures also present the coefficient of
determination R2, the percentage of variance explained by the predictions. R2 is also interpreted as
the reduction in uncertainty obtained by using a linear function of r̂ to predict r vs. predicting r by
its expected value E(r). Table 6.7 shows the correlation between predicted and sample estimates
for all methods and data sets. Notice that R2 is simply computed as the square of the correlation.
Other metrics of performance (Mean Absolute Error and Mean Relative Absolute Error) are also
presented in, Tables 6.5 and 6.6, respectively

7Notice that FTR is typically executed much more efficiently than SMRQ, because of the possible pruning of
the search space, for example, if X and Y are independent, there is no need to test whether the rule applies on any
quadruples of the form 〈X,Y, Z,W 〉. For the SMRQ rule instead, one needs to exhaustively consider all quadruples.
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Data Sets SMRG SMRQ FTR-S
ACPJ 13.17 ± 87.17 27.22 ± 141.50 -

Breast-Cancer 5.74 ± 624.51 2.79 ± 90.41 1.39 ± 4.51
C&C 1.52 ± 39.16 3.53 ± 44.98 1.30 ± 16.80

Compactiv 0.39 ± 1.43 1.79 ± 9.39 0.46 ± 0.53
Insurance-C 2.79 ± 11.04 2.10 ± 5.15 2.44 ± 18.04
Lymphoma 4.51 ± 182.18 3.66 ± 181.90 5.77 ± 145.88
Ohsumed 4.62 ± 30.53 7.72 ± 8.95 -
Ovarian 7.32 ×109 ± 1.68 ×1013 0.58 ± 5.51 0.20 ± 0.44

Wine 1.31 ± 2.24 1.78 ± 5.65 0.38 ± 0.06
p53 34.95 ± 7982.92 19.86 ± 4544.32 4.76 ± 290.58

Over data sets 7.32 ×109 ± 1.68 ×1013 7.10 ± 503.78 2.09 ± 59.61
Over predictions 2.79 ×109 ± 3.28 ×1012 14.36 ± 1320.98 0.87 ± 87.92

Table 6.6: Mean Relative Absolute Error (MRAE) between the calibrated predictions
r̂Y Z and sample-estimated rY Z . (average value ± standard deviation) SMRG refers to the Sta-
tistical Matching Rule applied on all pairs of variables in the same group, considering the remaining
48 variables in the group as common variables. SMRQ is the Statistical Matching Rule applied on
quadruples of variables randomly chosen from the same group. Finally, FTR-S consists in the Full
Testing Rule modified for estimating the strength of the dependency, see Algorithm 11. For the
Ovarian data set the SMRG rule provides predictions for cases with nearby-zero sample estimated
rY Z , and these predictions generate extremely high MRAE values. Once excluded such cases, the
SMRG MRAE on the Ovarian data set is 0.54 ± 12.16, while the MRAE averaged over all data sets
and over all predictions is 6.95 ± 897.33 and 10.45 ± 2498.28, respectively.

Data Sets SMRG SMRQ FTR-S
ACPJ 0.05 [0.04; 0.05] 0.00 [0.00; 0.01] -

Breast-Cancer 0.55 [0.55; 0.55] 0.25 [0.24; 0.25] 0.88 [0.87; 0.90]
C&C 0.99 [0.99; 0.99] 0.68 [0.65; 0.71] 0.91 [0.91; 0.91]

Compactiv 0.97 [0.96; 0.98] 0.49 [0.44; 0.54] 0.88 [0.83; 0.92]
Insurance-C 0.83 [0.82; 0.84] 0.47 [0.42; 0.51] 0.90 [0.89; 0.91]
Lymphoma 0.60 [0.60; 0.60] 0.32 [0.31; 0.32] 0.50 [0.47; 0.52]
Ohsumed 0.02 [0.01; 0.03] 0.01 [0.00; 0.01] -
Ovarian 0.62 [0.62; 0.63] 0.50 [0.50; 0.51] 0.14 [0.14; 0.14]

Wine 0.83 [0.74; 0.90] 0.58 [0.52; 0.64] 0.99 [0.47; 1.00]
p53 0.91 [0.91; 0.91] 0.45 [0.44; 0.45] 0.87 [0.87; 0.87]

Mean over data sets 0.64 [0.62; 0.65] 0.38 [0.35; 0.40] 0.76 [0.68; 0.77]
On all predictions 0.73 [0.73; 0.73] 0.58 [0.57; 0.58] 0.89 [0.89; 0.89]

Table 6.7: Correlations among predicted r̂Y Z and sample-estimated rY Z ; the 95% confidence inter-
vals are shown in brackets.
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Figure 6.17: FTR vs statistical matching (part a). Predicted vs Sample Correlations for SMRQ ,
SMRG , FTR-S

Summary, Interpretation, and Conclusions

The CIA assumption is the most common assumption in statistical matching to produce point-
estimates of the unknown distribution parameters. In comparison to FTR-S, we note the following:
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Figure 6.18: FTR vs statistical matching (part b). Predicted vs Sample Correlations for
SMRQ , SMRG , FTR-S



124 A non-trivial INCA prediction

R2:0.000

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

predicted correlation

s
a
m

p
le

c
o
r
r
e
la

t
io

n

SMRG

R2:0.000

−1 −0.5 0 0.5 1

predicted correlation

SMRQ

R2:non applicable

−1 −0.5 0 0.5 1

predicted correlation

FTR-S

(a) Ohsumed

R2:0.388

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

predicted correlation

s
a
m

p
le

c
o
r
r
e
la

t
io

n

SMRG

R2:0.252

−1 −0.5 0 0.5 1

predicted correlation

SMRQ

R2:0.020

−1 −0.5 0 0.5 1

predicted correlation

FTR-S

(b) Ovarian

R2:0.697

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

predicted correlation

s
a
m

p
le

c
o
r
r
e
la

t
io

n

SMRG

R2:0.342

−1 −0.5 0 0.5 1

predicted correlation

SMRQ

R2:0.972

−1 −0.5 0 0.5 1

predicted correlation

FTR-S

(c) Wine

Figure 6.19: FTR vs statistical matching (part c). Predicted vs Sample Correlations for SMRQ ,
SMRG , FTR-S
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Figure 6.20: .
FTR vs statistical matching (part d). Predicted vs Sample Correlations for SMRQ , SMRG ,
FTR-S

• When predictions are based on only 2 common variables, statistical matching based on the
CIA (SMRQ) is unreliable in several data sets and particularly the text categorization ones:
the correlation of predicted vs. sample estimates in ACPJ, Breast-Cancer, and Ohsumed is
less than 0.3 (Table 6.4). In general, SMR tends to predict a zero correlation between the two
variables Y and Z: the point-clouds in Figures 6.17, 6.18, 6.19 and 6.20 are vertically oriented
around zero. While SMR gives a prediction in every case, it is too liberal in its predictions and
the CIA is often violated, as expected by Theorem 6.6.1. Over all predictions, the correlation
of predicted vs. sample estimates is 0.58.

• When predictions are based on larger sets of common variables statistical matching based on
the CIA (SMRG) is more successful. Over all predictions, the correlation of predicted vs.
sample estimates is 0.73. The method still fails however, on the text data (ACPJ, Ohsumed)
where the predictions are not correlated at all with the sample estimates. On the other hand,
FTR-S does not make any predictions on these data sets.

• FTR-S’s predictions are highly correlated with sample estimates (0.89 correlation), which is
the highest correlation achieved by any of the three methods. However, we point out that these
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metrics are computed on different sets of predictions and their comparative interpretation is
not straightforward.

• FTR-S is a novel alternative to statistical matching based on the CIA. FTR-S predictions are
better correlated with the sample estimates of the unknown parameters, particularly when the
number of common variables is low; we thus recommend that FTR-S should be preferred than
existing statistical matching alternatives making the CIA in such cases.

Statistical Matching Based on the Assumption of Multivariate Normality

The conditional independence assumption attempts to overcome the lack of joint information of
the variables of interest. However, it can often be a misspecified assumption as pointed out in the
literature (D’Orazio et al., 2006) and the simulated results above. An alternative approach, is to
limit oneself to an assumption involving only the shape of the distribution. The most common
distributional assumption adopted by statistical matching techniques for continuous variables is
multivariate normality. Of course, multivariate normality alone does not allow the estimation of
the parameters of the model. It does, however, impose some constraints on the parameters. These
constraints stem from the positive semi-definiteness of the covariance matrix in multivariate normal
distributions, thus, they naturally apply to any distribution with a positive semi-definite covariance
matrix.

Let us consider again standardized variables {X, Y, Z} and assume their joint is distributed as mul-
tivariate normal with correlation / covariance matrix Σ (which is symmetric)

Σ =

ρXX ρXY ρXZ
ρYX 1 ρY Z
ρZX ρZY 1

 .
The unknown quantity in the problem is parameter ρY Z . One can start from the requirement that
Σ must be positive semi-definite to prove that ρY Z must lie within the interval C±

√
(D) (Moriarity

and Scheuren, 2001), where

C =

p∑
i=1

p∑
j=1

ρY Xi ×Bi,j × ρZXj

and

D = [1−
p∑
i=1

p∑
j=1

ρY Xi ×Bi,j × ρY Xj ]× [1−
p∑
i=1

p∑
j=1

ρZXi ×Bi,j × ρZXj ]

where p is the cardinality of set X, and B is the inverse of ρXX, and Bi,j is B’s i, j element. This
constraint is equivalent stating that the partial correlation ρY Z|X parameter can range freely in the
interval [-1, 1]. Instead, the CIA specifies that ρY Z|X = 0, that is, the mid-point of the interval.

The formula above can be applied to quadruples of variables to produce bounds for the unknown
parameter ρY Z . The usefulness of such a prediction depends, of course, on the length of the predicted
interval. In case the interval does not include 0, we may also say that the method predicts an
unconditional independence for Y and Z. This procedure is described in Algorithm 13. In practice,
we apply Algorithm 13 using the sample estimates r̂ in place of the unknown population parameters
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ρ. The sample estimates are the maximum likelihood ones. The uncertainty of the estimation could
be considered in the computation of the intervals by considering the worst case over all correlation
estimates r̂ that belong in the 95% confidence interval of their corresponding ρ. However, in this
case the algorithm would produce wider intervals and thus fewer predictions.

Algorithm 13: Predict Dependency and Its Strength: Multivariate Normality Rule (MNR)

Input: Data sets D1 and D2 on variables {X,Y,W} and {X,Z,W}, respectively
1 Compute sample correlation matrix Σ (except unknown quantity ρY Z) ;

2 MNI ← [C −
√

(D), C +
√

(D)];
3 if 0 6∈ MNI then
4 Predict Y 6⊥⊥ Z | ∅ ;
5 end
6 Predict r̂XY ∈ MNI

Empirical Evaluation and Comparison of MNR and FTR

In order to evaluate how often MNR provides a prediction, we applied Algorithm 13 on real data.
Applying Algorithm 13 on all possible combinations of four variables is prohibitive. Thus, to evaluate
the MNR we randomly sampled 1000 quadruples from each group of 50 variables in each data set,
for all data sets with continuous variables; For the Wine data set we generated all possible 495
quadruples out of its 12 variables.

Table 6.8 reports MNR performances on the randomly chosen quadruples. The columns of the table
present the total number of randomly chosen quadruples (1000 × the number of chunks, except
for the Wine data set), the number of predictions made by MNR on these random quadruples, the
accuracies AccMNR and AccFTR at threshold t = 0.05. We then calculate (project) the expected
number of predictions by the MNR rule, had it been applied on all possible quadruples. The final
column presents the ratio of the number of predictions by the FTR rule over the expected number
of predictions made by the MNR rule on all possible quadruples.

First, notice that MNR, similarly to FTR, does not provide any predictions for the text data sets
ACPJ and Ohsumed data sets. Second, the rule is in general, highly accurate and on par with FTR.
The most important observation however, is that the MNR does not outperform FTR in the number
of predictions. The number of predictions made by FTR ranges from about 25% to 50% of those
made by MNR (in four out of eight data sets) to 4 to 6 times more than MNR in the remaining data
sets.

To examine whether the predictions of MNR rule overlap with those of FTR, we applied the MNR
rule on the quadruples where FTR makes a prediction. The comparison is shown in Table 6.9. MNR
is able to predict a dependence only for 1% to 25% of FTR predictions. The results in both Tables
6.8 and 6.9 clearly indicate that the two methods share only a small subset of common predictions,
and thus neither method subsumes the other.

Summary, Interpretation, and Conclusions

We now comment and interpret the results of this section:
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Data Set # rand. quads #MNR predictions ACCMNR ACCFTR #FTR predictions
sampled on sampled quads / #expected MNR predictions

on all quads
Breast-Cancer 356000 2 0.50 0.84 3.98

C&C 1000 45 1.00 0.96 0.02
Compactiv 1000 30 1.00 1.00 0.62
Insurance-C 1000 4 0.75 0.97 0.24
Lymphoma 147000 12 0.67 0.82 2.79

Ovarian 43000 391 0.99 0.99 5.99
p53 108000 39 1.00 0.97 5.19

Wine 495 7 1.00 1.00 0.57

Table 6.8: Comparison between FTR vs. MNR in predicting unconditional dependencies
on randomly sampled quadruples. The columns are: the data set name, the total number of
randomly sampled quadruples (1000 × the number of chunks, except for the Wine data set), the
number of predictions made by MNR on those, the accuracies AccMNR and AccFTR at threshold
t = 0.05. The final column presents the ratio of the number of predictions by the FTR rule over the
expected number of predictions made by the MNR rule on all possible quadruples. The number of
predictions made by FTR ranges from about 25% to 50% of those made by MNR to 4 to 6 times
more than MNR.

Data Set #FTR #MNR predictions % common ACC
predictions restricted to cases predictions of both MNR

FTR makes a prediction and FTR
Breast-Cancer 1833 32 0.02 1.00

C&C 99241 10640 0.11 1.00
Compactiv 135 28 0.21 1.00
Insurance-C 1839 15 0.01 1.00
Lymphoma 7712 681 0.09 0.97

Ovarian 539165 59327 0.11 1.00
p53 46647 413 0.01 1.00

Wine 4 1 0.25 1.00

Table 6.9: Comparison between FTR vs. MNR in predicting unconditional dependencies
on the cases where both rules apply.

• It is possible to predict the presence of dependencies and bound their strength with distribu-
tional assumptions other than faithfulness, such as multivariate normality.

• The sets of predictions entailed by assuming faithfulness (FTR) and multivariate normality
(MNR) do not overlap to a significant degree and neither method subsumes the other and they
could be considered complementary. For example, the MNR makes a prediction only in the
1% to 25% of cases where FTR applies. In addition, in some data sets MNR makes only 2%
of the number of FTR predictions, while in others MNR makes 6 times more predictions.



Chapter 7

Discussion

This chapter presents an overview of the thesis’ contributions to the field, and discusses
the challenges and future directions of causal analysis.

This thesis tries to address the issue of integratively analyzing data sets that can be heterogeneous
in terms of measured variables and experimental conditions. We argue that causality connects
all observed data sets to the underlying causal structure, and propose the approach of Integrative
Causal Analysis (INCA), which attempts to identify one or all causal models that are consistent
with all available data sets. In this framework, we propose a set of INCA algorithms that address
the problem from different perspectives: from COmbINE, that solves the general problem for up to
100 variables, to FTR-S, a local and extremely conservative algorithm that opportunistically works
on two overlapping data sets and a total of four variables.

7.1 Summary of contributions

Integrative analysis of multiple data sets is a goal of several subfields of statistics and machine
learning. A more detailed review of relevant methods is presented in Section 6.5. However, different
experimental designs cannot be formally represented outside the framework of causality. Thus,
co-analyzing data sets coming from different manipulated distributions has been addressed mainly
within the field of causal discovery. Related work in the field of causal discovery is discussed in
Section 3.4.

This thesis proposes several algorithms that address different causal discovery tasks. The empirical
results show that the proposed algorithms’ predictions are reasonable, indicating the potential of
the approach. But more importantly, what we consider as the main contribution of this thesis to
the scientific field of causal discovery lies in several concepts that underly the algorithms and can
help pioneer promising directions in the field of causal discovery.

Overall, this thesis makes the following contributions to the field of causal analysis from multiple
heterogeneous data sets:

129
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• A thorough analysis of causal models under causal insufficiency, and a detailed com-
parison between Maximal ancestral graphs and Semi-Markov Causal Models. While the two
causal graphical models are the most common representations of causally insufficient systems,
a direct comparison of the two like the one presented in Chapter 2 had not been attempted.
SMCMs admit a straight-forward interpretation, but no learning algorithm exists in the general
case. On the other hand, invariant characteristics of MAGs can be identified using constraint-
based methods, but their very complicated semantics do not always allow predicting the effect
of manipulations . Thus, it is important that the correspondence between the two types of
models is understood.

• The introduction of SAT-based causal analysis. The conversion of a causal discovery
problem to a SAT instance makes the methods easily extendable to other inference tasks. For
example, for the particular problems discussed in this thesis, one could opt to obtain all the
SMCMs that are possibly underlying for a given data set; there is no other known procedure for
this task. Alternatively, one could easily query whether there are solution models with certain
structural characteristics of interest (e.g., a directed path from A to B); this is easily done
by imposing additional SAT clauses expressing the presence of these features. Incorporating
certain types of prior knowledge such as causal precedence information can also be achieved
by imposing additional path constraints. In essence, any information that can be expressed as
graph constraints on the causal structure can be added to the SAT formula. In addition, using
satisfiability instead of custom constraint–satisfaction instances offers the leverage from the
efficiency of state-of-the-art solvers, and connects the algorithms’ efficiency to the ever-growing
research on SAT solvers. SAT-based causal analysis, introduced in Triantafillou et al. (2010)
has since been adopted by different causal discovery groups (Claassen and Heskes, 2010b;
Hyttinen et al., 2013).

• It proposes query-based causal discovery to avoid the explosion of possible solutions.
The first algorithms dealing with the problem of causal structure learning from overlapping
variable sets (Tillman, 2009) attempted to identify all possible solutions, thus limiting their
scalability since the number of possible solutions is at least exponential to the input size. We
propose that the algorithms output instead a summary of the structural characteristics of the
underlying SMCM, distinguishing between the characteristics that are identifiable from the
data (e.g., causal relations that are postulated as present), and the ones that are not (e.g.,
relations that could be present or not).

• It introduces a new algorithm for estimating posterior probabilities in networks
learnt using constraint-based methods. The algorithm fits a probability density function
to the a list of p-values computed during the search stage of the algorithm, and therefore has
the significant advantage of having no computational overhead, so it can practically scale to
any input size. In addition, the algorithm can be used with any constraint-based algorithm and
any type of data, provided a suitable test of conditional independence. Despite its scalability,
the method is shown to produce probability estimates that are comparable, if not better, to
more expensive exhaustive Bayesian methods. Equipping constraint-based causal discovery al-
gorithms with a method that can provide some measure of confidence on their output improves
their usability. Estimating posterior probabilities based on p-values can be of use in several
causal discovery tasks, including conflict resolution, improving orientations, and experiment
selection.

• It advocates that being local and conservative improves the application of causal–
discovery methods to real–world data sets. While constraint–based algorithms are fast
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and scalable, they are typically sensitive to error propagation. In addition, since they employ
causal assumptions (particularly faithfulness and acyclicity) to limit the search space and accel-
erate the search, they are very susceptible to violations of these assumptions. These weaknesses
question their applicability to real data sets, where noise and violation of the assumptions is
very common. Local and conservative algorithms as an antidote to these problems is inves-
tigated in Chapter 6, where we identify a local rule where the INCA idea provides testable
predictions. Specifically, it predicts the presence and strength of an unconditional dependence,
and a chain-like causal structure (entailing several additional conditional dependencies). The
idea is then implemented in three versions of increasing conservatism: the Minimal-Testing
Rule (MTR), the Full-Testing Rule (FTR) and FTR-S that additionally predicts the strength
of the dependence (and filters out additional predictions). The results indicate that exhaus-
tively testing all conditional independencies and keeping only conservative predictions increases
the validation of the rules in hold–out test–sets.

• A proof of concept that causal assumptions can make testable predictions and
can be exploited for novel statistical inferences. In the experiments in Chapter 6, the causal
semantics of the models are not employed to predict the effect of manipulations; their ability
to represent independencies, based on the assumption of Markov condition and faithfulness
is. The results support that the assumptions often hold to a good degree of approximation
in many real systems. While this is not a direct proof in favor of the causal semantics of
the models, we do note that both assumptions have been inspired by theories of probabilistic
causality.

7.2 Limitations and Future Work

While inducing causal models from observational data has been long debated (Pearl, 2000; Spirtes
et al., 2000; Pearl, 2009), there has been a growing enthusiasm for causal Bayesian networks and
related methods over the past few years, particularly in the domain of molecular biology, as a result
of: (a) the success of applications in machine learning tasks like feature selection (see for example
Aliferis et al., 2010) (b) the bulk of public data sets produced, driven by the exponential increase
in the capacity of data–production technologies and (c) some very successful applications of causal
Bayesian networks in molecular biology (e.g. Sachs et al., 2005; Schadt et al., 2005; Maathuis et al.,
2010) that advertised automatic causal discovery from high-throughput data.

However, significant progress is needed before successful causal predictions in real applications be-
come the norm. Application of causal discovery methods may be more challenging than it initially
appears to be due to the implicit possible violations of the methods’ underlying assumptions. Apart
from (some of the) causal assumptions described in Chapter 1, each causal discovery algorithm makes
additional data–related assumptions, including independent, identically distributed data, limitations
in measurement error, measurements representing random variables, and parametric assumptions re-
lated to the statistics used for independence testing or scoring. However, within the machine–learning
community, algorithms are typically tested in ideal settings: valid assumptions, sparse generating
networks, abundant samples, data types and parametric assumptions for which appropriate statistics
are available.

It is therefore important to investigate the extent to which possible violations affect the algorithms’
outcomes. This has been done for some of the assumptions (Chu et al., 2003; Ramsey et al.,
2006). Moreover, algorithms that work with relaxed sets of assumptions are also becoming popular
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(Richardson, 1996; Shimizu et al., 2006; Hoyer et al., 2008; Lacerda et al., 2008; Hoyer et al., 2009;
Peters et al., 2011). A detailed review of such methods is presented in Eberhardt (2013).

Other approaches can be helpful in increasing the applicability of causal discovery methods in real
data sets. In Chapter 6, we advocated that being local and conservative increases the success of
causally–inspired predictions. Maathuis et al. (2010) also follow a local approach to successfully
identify lower bounds of causal effects.

Benchmarking could also help increase the reliability of causal methods. Unfortunately, in most real
applications the causal ground truth is unknown. Hopefully however, the increasing amount and
decreasing cost of data production will eventually lead to accessible and annotated data repositories
where the reproducibility and predictions of causal algorithms can be tested.

Causal discovery methods can provide novel findings and useful insights into the problem at hand.
To do so however, scientists have to make sure that the assumptions, limitations and technicalities
of the methods, as well as the idiosyncrasies of each specific application, are duly taken into account.
Thus, another important step towards increasing the applicability of causal discovery methods is to
have scientists that are knowledgeable in both areas.

Despite these open challenges, causal discovery methods constitute a valuable ally in the scientific
process. Scientists can save significant time and money normally spent in intensive experiments,
and use automated causal discovery applied on existing data as a guide for scientific design. Taking
into account the increasing interest and the recent advances in causal discovery methods, we expect
that automated causal discovery will soon become part of the standard data analysis arsenal.
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A Hauser and P Bühlmann. Characterization and Greedy Learning of Interventional Markov Equiv-
alence Classes of Directed Acyclic Graphs. JMLR, 13, August 2012.

PO Hoyer, S Shimizu, AJ Kerminen, and M Palviainen. Estimation of causal effects using linear non-
gaussian causal models with hidden variables. International Journal of Approximate Reasoning,
49(2):362 – 378, 2008.

PO Hoyer, D Janzig, JM Mooij, J Peters, and B Schölkopf. Nonlinear causal discovery with additive
noise models. In Advances in Neural Information Processing Systems 21, pages 689–696. 2009.

A Hyttinen, F Eberhardt, and PO Hoyer. Learning linear cyclic causal models with latent variables.
JMLR, 13:3387–3439, 2012a.

A Hyttinen, F Eberhardt, and PO Hoyer. Causal discovery of linear cyclic models from multiple
experimental data sets with overlapping variables. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, 2012b.

A Hyttinen, PO Hoyer, F Eberhardt, and M Järvisalo. Discovering cyclic causal models with latent
variables: A general sat-based procedure. In Proceedings of the 29th Conference on Uncertainty
in Artificial Intelligence, 2013.

S Itani, M Ohannessian, K Sachs, GP Nolan, and MA Dahleh. Structure learning in causal cyclic
networks. In JMLR Workshop and Conference Proceedings, volume 6, pages 165 – 176, 2010.

Th Joachims. Learning to Classify Text Using Support Vector Machines: Methods, Theory and
Algorithms. (The Kluwer International Series in Engineering and Computer Science). Springer,
2002.

RM Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972. ISBN 9783540682745.

SH Kim. Markovian combination of subgraphs of DAGs. In Proceedings of The 10th IASTED
International Conference on Artificial Intelligence and Applications, pages 90–95, 2010.

SH Kim and S Lee. New Developments in Robotics, Automation and Control. In-Tech, Vienna,
Austria, 2008.

M Koivisto. Advances in exact Bayesian structure discovery in Bayesian networks. In Proceedings
of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 241–248, 2006.

http://funapp.cs.bilkent.edu.tr
http://funapp.cs.bilkent.edu.tr


Bibliography 137

M Koivisto and K Sood. Exact Bayesian structure discovery in Bayesian networks. JMLR, 5:
549–573, 2004.

A Kuegel. Improved exact solver for the weighted max-sat problem. In Workshop Pragmatics of
SAT, 2010.

G Lacerda, P Spirtes, J Ramsey, and P Hoyer. Discovering cyclic causal models by independent com-
ponents analysis. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence,
2008.

MH Maathuis and D Colombo. A generalized backdoor criterion. Annals of statistics, to appear.
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