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Frequently Used Notation
1. N={1,2,...}.
2. Zy = {0} UN.
3. Ry =[0,+00).

4. R? is the d-dimensional Euclidean space and

d
<337y> 122%‘%‘7 SC,yGIRd

i=1

the Euclidean inner product.

5. Z% is the d-dimensional integer lattice.

6. T := ]Rd/zd = [0,1)? is the d-dimensional torus.

7. §F = the cardinal of the set E.

8. Given any sets F C M we denote by 15 : M — {0, 1} the indicator function of E

given by

1 ifrekl

0 ifee M\ E.
9. For any function f: X — (—o00,00] we denote by Dy its proper domain:
Dy ={z € X|f(x) < +o0}.
10. For any polish space M:
IPM denotes the space of all Borel probability measures on M.
mM denotes the space of all measurable functions on M.
B(M) denotes the space of all bounded Borel measurable functions on M.
BC(M) denotes the space of all bounded continuous functions on M.

D(R., M) denotes the Skorohod space of all right continuous paths z : Ry — M
with left-hand limits.

11. Given any probability measure y € IPM and a measurable function f : M — N we
denote by f.p:=po f~! € PN the push forward of p through f or in other words the
law of the random variable f under pu.

12. For any a,b > 0 we denote by C**(R, x T?) the space of all functions f : Ry x
T¢ — R that are C® is time and C® in space. Of course here when we say that a



function is C'* in a variable means that f is [a] times continuously differentiable in that
variable, where [a] is the integer part of a, with its derivatives of maximal order being
Holder continuous of exponent a — [a].



Introduction-Overview

In this thesis we examine physical systems exhibiting phase transition via the emergence
of condensation by using interacting particle models. The macroscopic description of
the system is obtained by the interacting particles model in the hydrodynamic limit.
Our study is centered around condensing Zero Range Processes, which are probably the
simplest interacting particle models exhibiting condensation. In the hydrodynamic limit
the evolution of condensing Zero Range Processes is expected to approach a saturated
non-linear diffusion. The main results of the thesis are the proof of the hydrodynamic
limit of condensing Zero Range Processes when starting from a sub-critical profile, in
which case it is proved that no condensation will occur, and the validity of Fick’s law at
the macroscopic level as a limit of the microscopic conservation laws.

The main aim of the theory of hydrodynamic limits of stochastic interacting particle
systems is to describe the macroscopic evolution of the thermodynamic characteristics
(e.g. density, pressure, temperature, etc.) of the system in appropriate space and time
scales, as solutions of a partial differential equation (PDE), the so called hydrodynamic
equation. One way this is made precise is via the principle of conservation of local
equilibrium: First, the equilibrium states of the system are characterized by the thermo-
dynamic characteristics g = (p!,---, p™) € R™, m € N, so that for each thermodynamic
characteristic p’€ IR™ we have a global equilibrium v corresponding to p. A local equi-
librium state of profile p' is a state that near each macroscopic point w it is close to
the global equilibrium state v; that corresponds to the value g(u). According to the
principle of local equilibrium one expects, and thus aims to prove, that starting from a
local equilibrium of profile gy, at the appropriate space and time scales, at each later
time ¢ > 0 the system remains in local equilibrium of profile p, where g;(u) = (¢, u)
is the solution of a system of evolutionary partial differential equations (PDEs), the so
called hydrodynamic equation, with initial condition g(0,-) = 7.

In this thesis we are interested in the hydrodynamic behavior of condensing Zero
Range Processes (ZRPs). ZRPs are interacting particle systems such that each particle
X jumps at an exponential rate g(k) that depends only on the number k of particles
that occupy the same site as particle X through some function g : Z; — R, which is
called the local jump rate. Particles that jump change position according to a translation
invariant transition probability p(z,y) = p(y — ). After their introduction by Spitzer
in 1970, ZRPs have attracted a lot of attention, one reason being that for particular
choices of local jump rate functions g they exhibit phase transition phenomena.



Since we are interested in the hydrodynamic limit of ZRPs we consider ZRPs whose
particles evolve in the finite lattice ’]I“]i\, :={0,..., N—1}2. Then the ZRP with jump rate
g: 7y — Ry and elementary step distribution p € PZ? is the Markov jump process
on the state space

M, = ZT™

of configurations of particles on T4, with generator LY : D(LY) C B(M%,) — B(M¢%)
given by
Nf)y = Y {rm™) = f(n)rg(n)pn (y — ),

z,yeTY,

where
Nz, if 2 ¢ {z,y}
7Y =, — 1, if z=a ,

Ny + 1, ifz=y

if 9, # 0 and, say, n™Y = n otherwise, and py(2) = p(z + NZ?) for all z € T%.
For particular decreasing local jump rate functions g there exists a critical value
pe = pe(g) < 400 of the density such that there exist equilibrium states characterized by

the density p iff p < p.. In particular the translation invariant equilibrium distributions

of the ZRP are the product measures 7Y = 7Y, with common marginal Dé € PZ, given

® .9
by
1 go’“
i kY= ———F~_  keZ
s Z(p) g\(k) -

for all ¢ > 0 such that the series Z(p) = > 7=, gﬁl;v) converges. It is known that the
mean density

R(g) = / 0(0)dY

1
©

by reparametrizing the equilibrium distributions by its inverse ® := R~

is smooth strictly increasing function of ¢ and so
1

of the occupation variable under
we obtain the
grand canonical ensemble

V,])V = z’/g(p), for p > 0 such that Z(®(p)) < +o0.

We will refer to ZRPs for which the radius of convergence . of the partition function
Z is infinite as non-condensing. ZRPs such that

Ye < 400 and p.:= sup R(p) = +oo
p<¥c

will be called weakly condensing, while ZRPs for which p. < +o0o will be called strictly
condensing. The lack of equilibrium states corresponding to densities p > p. constitutes
a main problem in the description of the hydrodynamic behavior of strictly condensing
ZRPs, since the formulation via the notion of local equilibrium faces difficulty in ob-
serving densities higher than the critical density. Furthermore, even weakly condensing
ZRPs exhibit pathological behavior.



So far two main methods have been developed for proving hydrodynamic limits of
interacting particle systems. The Entropy method developed by Guo, Papanikolaou and
Varadhan in [20] and the Relative Entropy method developed by H.T. Yau in [33]. Both
methods have been applied to prove the hydrodynamic limit of ZRPs. The Entropy
method has been applied to non-condensing ZRPs with super-linear jump rate function
g(k) > apk for some ap > 0, while the Relative Entropy method has been applied to
weakly condensing ZRPs which satisfy lim,_,,_ Z(¢) = +00, when started from initial
distributions with sufficiently regular bounded profile. An exposition of the proofs is
contained in chapters 5 and 6 of [25] respectively.

In this thesis (chapter 3) we extend the Relative Entropy method to all mean zero
asymmetric condensing ZRPs with bounded jump rates, by interpreting the boundedness
assumption on the initial profile as boundedness away from the critical density. This was
achieved by extending the One-Block estimate, a main tool in all known approaches to
the hydrodynamic limit of ZRPs, to condensing ZRPs. This extension of the One-Block
estimate is made possible by the result in the equivalence of Ensembles contained in
section 1.4, which has been originally proved in [19]. The hydrodynamic equation is the
non-linear diffusion equation

atp = A:r(b(p)v (1)

where @ : Ry — Ry is extended to be constantly equal to ¢. = ®(p.) densities p > pe.
This result has been accepted for publication in the Journal of Statistical Physics.

We expect that in order to describe the condensation phenomenon, the solutions of
the hydrodynamic equation should be allowed to be measure-valued. The simple consid-
erations in section 3.2 also point to this. This poses a major difficulty at the macroscopic
level since one has to make sense of the equation (1) for degenerate (eventually constant)
non-linear functions ® and for measure-valued solutions p : Ry — M (T%). One such
promising interpretation of this equation is as a gradient flow in the space of finite mea-
sures with fixed total mass equipped with L?-Wasserstein metric. Due to the relevance of
the continuity equation in the definition of gradient flows in Wasserstein spaces of proba-
bility measures, we proved that a sub-sequential hydrodynamic limit of condensing ZRPs
can be given via the continuity equation

Oy = div, W

where 7 is a finite non-negative measure and W is a vector valued measure. One advan-
tage of the continuity equation is that it easily allows the consideration of measure-valued
solutions.

Our approach on the deriving the continuity equation at the macroscopic level starts
by following the Entropy method of Guo-Papanikolaou-Varadhan in considering the mar-
tingales associated to the ZRPs on the discrete toruses T4, by the martingale problem to
prove the relative compactness of the laws of the image of the ZRPs under the empirical
density

alV = % Z n(x)d =

d
zeTg,



as N — oo. In the equation above defining the empirical density we have associated to
each microscopic point x € ’]I‘Jdv the macroscopic point + € T?. In these considerations
we focus on the case of the nearest neighbor elementary step distribution. The real
valued process

AP = (G, ) = (Go, ') /Ot(5s+N2LN)<Gs,7rN>(ﬂﬁv)ds (2)

defined on the filtered space (D(R, M%), (fgv)tZO,IP“éV) is a martingale, where P#0'
is the diffusively rescaled law of the ZRP, ' is a sequence of initial distributions which
is allowed to have a condensate at some macroscopic point u € T?, i.e.

1
possibly  liminf — [ n([Nu])du) >0 for some u € T,
Nooo Nd

and (F}) is the minimal right continuous filtration to which the ZRP is adapted. By
Doob’s inequality the martingale Aiv s asymptotically negligible:

lim su ANG >6=0, Vi>D0.
N—>°O{O<t£T| | }

Computing LY (G, 7)), a discrete integration by parts gives

B0 = 3 5 [0(42) - 6()] o) - oo+ )]

Jlmed

One more integration by parts gives

Ve = g3 3 (0T ro(H52) -26(%)Jatie)

j=1 IETd

= # > ANG(%)Q(H(:E)),

d
zeTg,

where

26(5) =33 [T 1 6(*52) 26 (3)

is the discrete Laplacian of G. By using a Taylor expansion of G around & one gets for
G € C3(R; x TY) together with the asymptotic negligibility of the martingale AY one
gets that

N
lim IP*o { sup
N—o0 0<t<T

/ t [(8:Gs,m) + (AGs, o) ]ds
0

> 5} =0. (3)
for all G € C3([0, T] x T?), where

0'17 Nd Z 77w % (4)

‘Ler



is the empirical jump rate and o = 0717\"; . Equality (3) together with the Aldous criterion
for relative compactness of laws on the Skorohod space yields the relative compactness
of the laws of the ZRPs on the discrete toruses T4,.

Next the application of the Entropy method proceeds by using estimates on the
evolution of the entropy of the time marginals u¥ of the law of the ZRPs with respect
to an invariant state to replace the integral term

t
/ (AG,,0NVds
0

by a function of the empirical measure in order to close the equation. This is the context
of the replacement lemma in sections 5.1 to 5.5 in [25]. As described in [25] section 5.3
the Replacement Lemma breaks up in the proof of the One-Block and the Two-Block
estimates. Although we have extended the One-Block estimate to condensing ZRPs
the, we haven’t managed to extend the Two-Block estimate because the cut-off of large
densities in equation (5.1) of section 5.5 in [25] is not possible if the invariant distributions
do not have full exponential moments, as in the case of condensing ZRPs. Furthermore
due to the possible existence of a condensate in the initial distributions even in the case
of a constant jump rate function the coupling techniques for attractive processes cannot
be applied.

For the reasons above, we turn our attention to the two important, although non-

N

conserved, quantities present in the microscopic level: the empirical jump rate ¢*¥ and

the empirical current

d
WY = i 3 S o) ol e)esds = —xar S YV gln(a))ig

zeTy, j=1 z€T4,

and try to prove their relative compactness in the hydrodynamic limit in order to obtain
the continuity equation. Taylor expansion of G together with the asymptotic negligibility
of the martingale A,{V G imply that also

lim PHo sup

t
{ / [(0,Gs, ) + (VGs, WN)]ds
N—o0 0<t<T 0

25}0 (5)

for all G € C2([0,T] x T?). Once the required relative compactness of (the law of the
images of the ZRPs through) the empirical current has been obtained, the limit above
will lead to the continuity equation at the macroscopic level.

Due to the non-conserved character of the empirical jump rate and the empirical
current, the Skorohod topology seems to be two strong to allow for the required relative
compactness. For this reason we consider the empirical jump rate process. For this
reason we consider these processes as random variables taking values in appropriate L™
spaces of Banach-valued functions equipped with their w*-topology. For the empirical

N

diffusion rate process o' we choose the state space

L3 (0,T; M(T?)) == L'(0, T; C(T?))",
for T > 0, and for the empirical current process W we choose the space

Ly (0,T;CHT% RY)Y) = L10, T; CH (T RY))™,

10



both equipped with their w*-topologies. The results on LP-spaces of Banach-valued
functions that we require are contained in [10]. However in this way the limiting current
that we get is at each time an element of the dual space C!(T% R?)* and further
regularity estimates are required to prove that it is a measure. These regularity estimates
are contained in section 4.5 and are in fact an adaptation of the estimates in section 5.7
of [25] to the case at hand. In this way we obtain the continuity equation

Oyt = —div, W = Ao (6)

as a sub-sequential hydrodynamic limit, which in addition expresses the macroscopic
empirical current as the gradient of the macroscopic empirical jump rate.

We close this introduction with an overview of the material contained in this thesis.
Chapter 1 contains the definition of ZRPs and preliminary material. In section 1.1 we
define ZRPs and in section 1.2 we describe their equilibrium distributions. In section 1.3
we study some topological spaces that will be useful throughout the thesis. In particular
subsection 1.3.2 contains a generalization of the results of section 2.1 of [25] in the weak
convergence of probability measures on the space of configurations sz over the infi-
nite lattice to the weak convergence with respect to functions with bounded polynomial
growth. In section 1.4 we present the proof on the equivalence of ensembles given origi-
nally in [19] and in section 1.5 we describe some simple well-known examples of ZRPs.
Finally in section 1.6 we extend the static large deviations principle for the empirical
embeddings under the equilibrium distributions v, p € (0, pc). This result generalizes
a well-known result for non-condensing ZRPs, proved in p. 74 of [25], to condensing
ZRPs. In contrast to the non-condensing case the large deviations functional takes fi-
nite values in measures that are not absolutely continuous with respect to the Lebesgue
measure. This is one of the facts that leads to expect that measure-valued solutions to
the hydrodynamic equation are required to describe the condensation phenomenon.

In chapter 2 we present various ways of formalizing the notion of local equilibrium
and define hydrodynamic limits via the principle of local equilibrium. All these notions
are well-known and contained in [25].

Chapter 3 contains our first main result, the proof of the hydrodynamic limit of con-
densing ZRPs with sub-critical initial profiles. In section 3.1 we generalize the One-Block
estimate, in section 3.2 we see how one can easily apply the classic results in quasilinear
linear parabolic equations obtained in [26] to eventually constant non-linearities in the
case that the initial condition is sub-critical and finally in section 3.3 we apply the rela-
tive entropy method to prove the hydrodynamic limit.

Finally, in chapter 4 we present our results in the continuity equation. In section
4.1 we review the results on the relative compactness of the laws of the empirical den-
sity of the ZRP following section 5.1 in [25]. In section 4.2 following standard argu-
ments of the Entropy method we prove the limits (3) and (5) showing that the equation
OymN = —diviW¥ = Ac¥ holds at the microscopic level. Then we proceed on describing
the appropriate choice of state spaces for the empirical current and the empirical jump-
rate processes that will allow us to prove relative compactness results to conclude that
the continuity equation (6) remains valid at the macroscopic limit. Then in section 4.3
we give the definition of the continuity equation in the appropriate context that corre-
sponds to the choice of the state spaces of the empirical current and jump rate processes

11



and in section 4.4 we prove the relative compactness of the laws of the ZRP under the
triples (7™, W o™) as well as that all limit points are concentrated in triples satisfying
the continuity equation (6). Next in section 4.5 we prove regularity results for the limits
curves W and o that allow us to conclude that the limiting empirical currents W; are
in fact vector measures and that the empirical jump rates o, are in the Hilbert-Sobolev
space H'(T?), and we finish this chapter in section 4.6 with a conjecture on what we
believe the hydrodynamic equation should be when one starts from an initial profile that
has a fully formed condensate at one site.

We close this introduction with a small overview of the Appendix. In chapter A.1
we review mostly without proofs some basic facts on Skorohod spaces that will be used
extensively in chapter 4. In A.2 we review the martingales associated to Markov pro-
cesses via the martingale problem in the context of Markov jump processes. These
martingales e.g. (2) play an essential role in the Entropy method and are used to obtain
estimates that yield the relative compactness of the empirical density and on exhibiting
the validity of the continuity equation at the microscopic. In section A.3 we review the
definition of relative entropy and some of its basic properties. Among others we prove
give generalize the variational characterization of relative entropy to the case of general
convex functionals h in place of the usual function = — xlogx, without assuming that
h has superlinear growth. More general results have been proved for instance in [5], but
the proof here uses elementary arguments and is based on a detailed description of the
Legendre transform of real valued convex functions. These results are then used in the
generalization of the static Large Deviations principle for the empirical embeddings of
the ZRP to the condensing case given in section 1.6. Finally in A.4 we review classic
results of topological measure theory that loosely speaking generalize the classic theory
of probability measures on polish spaces to the class of Radon measures on completely
regular topological spaces. These results are used in the relative compactness arguments
for the empirical current and the empirical jump rate.

12



Chapter 1

Zero Range Processes

1.1 Basic Definitions

Zero range process (ZRPs) on a countable space M are a class of interacting particle
systems (IPSs) for which the rate that a particle leaves a site x € M depends only on
the number k of particles sharing the same site  through some appropriate function
g : Zy — Ry, called the local jump rate function, and after a particle leaves a site
it chooses a destination according to a transition probability p. In this way, particles
interact only with particles sharing the same site, whence comes the terminology ZRP.

In particular we will consider ZRPs in which the particles live in the discrete toruses

7

d
— N eN
NZ) ; c N,

TS ::{0,1,...,N—1}d’£(

jump with rate function g : Zy — Ry and move according to a translation invariant
transition probability p(z,y) = p(y—z), 7,y € Z¢, p € PZ4, (i.e. we identify probability
distributions p € PZ< with transition probabilities p : Z? — PZ<,) through the natural
projections [y : Z¢ — T4,

[2ly =2+ NZ% = {w € Z4w — 2 € N7},

i.e. their steps are governed by the translation invariant probability py := [/|n« op given
for all 2,y € T¢ by the formula

pr(@,y) =pn(y—x) =ply — 2+ NZ) = > ply -z + Na). (1.1)
PvA

We shall further assume that the support of the distribution p = p(0,-) € PZ9 spans 7
over Z, so that the transition probability py : T4 — PT% is irreducible, i.e. for any
T,y € ’I[‘ﬁlv there exist m € N and zg,21,...,2m € ’]I“}V such that g =z, z,,, = y and

HPN(mk — xp-1) >0,
i=1

for all N € IN, and that p has finite range, i.e. for some constant A > 0 we have p(y) =0
for all y € Z® such that |y| > A.

13



Of course in such a ZRP the state space, i.e. the space of all possible configurations

of particles is the space
d
My = (Z4) ™,

i.e. the space of all functions 7 : T4 — Z so that given a configuration n € M4, and
T € ’]I‘ﬁl\,, 7z is the number of particles at site « in the configuration . We will denote
by n(x) : ]Mﬁlv — Zy4, x € T‘Ji\, the natural projections

n(x)(n) = -

Of course the product topology on M4, is the discrete topology and M¢% is a Polish
space. Also, we will denote by |- | : 7% — Z. the L'-norm

=Y Inal-

cd
zeTg,

d
Of course for n € M4, C ZT~,

Inl = Z Na

d
zeT§,

is the total number of particles in the configuration 7.

In what follows given a configuration n € M% and x € T¢ such that 5, # 0 we
denote by n™¥ the configuration obtained by moving a particle from x to y € ’]I"Iiv. Of
course if x = y then n™Y = n and by convention if 7, = 0 we define n*Y = . We note
that the transition n — 1n™¥ preserves the total number of particles, i.e. [n|1 = [7™Y|1
for all n € M4, and all 2,y € T4,. We will describe the ZRP as a Markov jump process
on the countable space ]M?V, so we will recall the basic definitions.

Definition 1.1.1 Let M be a countable measurable space with {x} measurable for all
x € M. For any measurable strictly positive bounded function A : M — (0, +00) and
any Markov kernel p : M — IPM such that

ple, M\{z})=1VzeM (1.2)

there exists a unique Markov kernel P : M — PD(R, M) such that the canonical
process X = idp(r. ) is a Markov family on the state space M such that for all z € M,
with respect to P* the following hold:

(a) The sequence {7, }nez, of stopping times defined inductively by

T0=0, 7, := inf{t > Tho1 ‘Xt #* X,

n—1

}, neN (1.3)
is strictly increasing to +oo, that is almost surely

Tn < Tpy1 < +00 VneZy, and lim 7, =400,

nT+oo

(b) The skeleton chain (&,)n>0 := (Xr,)n>0 is a discrete time Markov family with
transition probability p : M — PP M starting from z.

14



(¢) The sequence 7}, := Tp41—Tn, n € Z, is independent and exponentially distributed
with parameters A(,), n € Z, that is

[(Té)nzo]*Px( ) |(§n)n20) = ®6XP>\(5")» §o =,

n>0

where for all A > 0 we set
expy 1= )\e*)‘t]l[oﬁoo)(t)dt
the exponential distribution of parameter \.

This Markov process ({X;}i>0, (P*)zenm) is called the Markov jump process with strictly
positive bounded jump rate A : M — (0, +00) and transition probability p : M — P M,
and its distribution P = X, o P : M — PD(R4+, M) is uniquely determined by the
pair (p, A).

By (c) it obviously follows that with respect to P* the stopping time 7 is ex-
ponentially distributed with parameter A(z) = 1/E®r > 0 for all x € M, that is
71+ P = expy(,). One can easily extend the above definition for jump rate functions
A: M — R, that are allowed to take the value 0 in the case that the pair (p, A) in
place of (1.2) satisfies

(@) plz. A £ 0)\{2}) =1 Voe (A£0}, () po=0 Yoe{A=0} (14)

Indeed, intuitively, jump rate A(z) = 0 at a site x € M means that a particle leaves
the site « at rate 0, that is it never leaves z, and by (1.4) it follows that a particle
moving according to p starting from x € {\ # 0} will always stay in {\ # 0}. Therefore
p"{A # 0} =1 for all € {\ # 0} and thus the transition probability p : M — PM
can be restricted to a transition probability px := p|razey @ {A # 0} — P{)\ # 0}.
So it makes sense to give the following definition, where for any continuous function
f: M — N between polish spaces we denote by f : D(R,, M) — D(R,,N) the
continuous mapping induced on the Skorohod spaces associated to the polish spaces
M, N by the formula

() = f(3(1), € DRy, M).

Definition 1.1.2 Let A : M — R, be a measurable non-negative bounded function
and let p : M — PM be a Markov kernel such that (1.4) holds. The Markov kernel
P:M — PD(R4, M) given by

P {mpf if A(z) £0
5(xt=x)tem+ if AM(z) =0 ,

where Py : {A # 0} — PD(R, {\ # 0}) is the Markov jump process on {A # 0} with
transition probability py and strictly positive jump rate function A[{y.o; and

’i)\ = i{A#O} : {)\ # 0} — M

is the natural inclusion, is called the Markov jump process with non-negative bounded
Jump rate A and transition probability p.
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Of course with respect to Markov jump process P : M — PD(Ry, M) with non-
negative bounded jump rate A and transition probability p the canonical process X on
D(R ., M) satisfies properties (a), (b) and (c) of definition 1.1.1 with respect to P* for
all z € {\ # 0}, while for € {\ = 0} we have that with respect to P*,

(a’) The sequence of stopping times {7, }ncz, defined in (1.3) is almost surely 79 = 0,
Tn = 00, n € N.

(V') The skeleton chain defined inductively by

X, if 7, < 400

fn,1 if Ty = +00
is almost surely constant at x.

As we shall see next in the generator of Markov jump process with non-negative
bounded jump rate A : M — Ry is the bounded operator L : B(M) — B(M) given
by

Lf(z) =Y (f(y) - f(@)Az)p(x,y).

yeM

Definition 1.1.3 Let S; : X — X, ¢ > 0, be a contraction semigroup on the Banach
space X. The function L : D;, € X — X defined on the set

—1
Dy = { fe X’ the limit 13%1M exists in X }
by the formula
Lf = tim O =0f
tl0 t

is called the generator of the contraction semigroup S = (S;)¢>o0-

Obviously Dy, is a linear subspace of X and L : D, — X is a (not necessarily
bounded) densely defined and closed linear operator. Now, to any Markov family

()(7 P) = (X = idD(]R+,M)a {P% S ]PD(IR_,.,M)}weM)
is associated the Markov semigroup P; : M — PPM, t > 0, given by
Py(z,y) .= P{X; =y}

As a Markov semigroup, (P;) induces a contraction semigroup P, : B(M) — B(M),
t > 0, on the Banach space B(M) and the generator L of this contraction semigroup is
called the generator of (X, P) in B(M).

Proposition 1.1.1 Let (X, P) be a Markov jump process on the state space M with
bounded non-negative jump rate A : M — Ry and transition probabilityp : M — P M.
Then the generator of (X, P) is the bounded linear operator L : D, = B(M) — B(M)
given by

Lf(z) =Y (f(y) = f(@)A)p(z,y). (1.6)

yeM
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Proof We set \ := sup,enr A(x) the least upper bound of the jump rates suppose that
X > 0, since otherwise we have nothing to prove. We note first that L is indeed bounded
since if for any f € B(M) we have that

ILf@) < 2] flle D Ma)p(x,y) < 27 fu-

yeM

Therefore || Lf||., < 2\ f|lu for all B(M) and thus L is bounded with ||L| < 2.

So, as a bounded operator, L induces the contraction semigroup P, := e'f, t > 0,
on B(M) and obviously the generator of (P;):>o is L. Therefore it suffices to show that
(Py)¢>0 coincides with Markov semigroup of (X, P), i.e. that

P f(z) = E*f(Xy)

forallz € M, t >0 and f € B(M). To do this we describe the Markov jump process
(X, P) in an alternative way. We define the transition probability p : M — PM by

s = (1 22)5,0) + X0, (1.7)

and let P : M — P(M%+ x D(Ry,Z)) such that with respect to P” the natural
projections
§= (fn)nZO t M x D(R+7Z+) — MZ+7

N = (Ny)izo : M™* x D(Ry,Z1) — D(Ry,Z1)

are independent processes, £ is a discrete time Markov chain with transition probability
p starting from x and N is a Poisson process of parameter A > 0 (starting from 0), for
all z € M. Then with respect to P the process

Y : M%+ x D(Ry,Zy) — DRy, M)
defined by Y; :=¢y,, t > 0, is a Markov jump process of parameters (p, \), that is
YoP=XoP.

Note that by the definition of p we have that L = A\(p — I) where p — I is the discrete
generator of the chain ¢ and therefore if we denote by IE? the expectation with respect
to P* we have that

E"f(X)) = ZW (€n) LN, =n) =Zwa<sn>-Pw{Nt=n}

— —)\t anf —Atz /\tp
= = edtemf(ﬂ?) = eth(ﬂf) = Ptf(ﬂﬁ)

forallz € M, ¢t >0 and f € B(M) and completes the proof. O
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According to the formula (1.6) the generator L of a Markov jump process with
bounded jump rate A and transition probability p on the state space M is given in
matrix form by

(L(l‘,y))m,yeM = (L]l{y}(x))x,yGM = ()\(x)p(x,y) - Mx)éw(y))l’»yeM
= (M(z,9) = 2:(¥), yenr

In matrix form the statement that the generator of (X, P) is the bounded operator
L:B(M)— B(M) given in (1.6) can be written as

Py(@,y) = Ouy = tL(x,y) | 110
zeM t

(1.8)

or in other words
P(z,y) = 6y + tL(z,y) + o(t), uniformly over x € M.

We note that for each € M the number A(z) = —L(z, x) is the rate at which particles
leave the site x since
P{X;#z} 1-P{X;=uxa} Pi(x,z)—1
t - t T
and that for x,y € M, x # y, the number \(x)p(z,y) = L(z,y) is the rate at which the
transition x — y is made, since
PH{X; =y} _ Py(z,y) — Oy
t t
Obviously any generator L of some Markov jump process with bounded jump rate A and

— —L(z,x)

— L(z,y).

transition probability p satisfies the properties
(a) L(z,y) >0 Ve #y, (b) L(z,z)<0 VzeM, and (¢) L1y, =0 (1.9)

and the function A(z) = —L(z, z) is bounded. Furthermore, since we have required that
with respect to p points € M of zero jump rate A(z) = 0 do not communicate with
points of strictly positive jump rate we have by the matrix formula of L that

AMz)#£0, M(y) =0 = L(z,y)=0 (1.10)

for all x,y € M. As we shall see next, any M x M matrix satisfying these properties is
the matrix of the bounded generator of some Markov jump process with bounded rates.

Proposition 1.1.2 Let L = (L(m,y))l yem € RM*M be an M x M matriz satisfying
(1.9) and (1.10). Then L defines a bounded operator L : B(M) — B(M) by the formula

Lf(x) =Y L(x,y)f(y), zeM
yeM
iff the function A(x) = —L(z,z), x € M, is bounded, and in this case L is the generator
of a unique (up to distribution) Markov jump process with non-negative bounded jump
rates, namely the Markov jump process with non-negative bounded jump rate function A
and transition probability p: M — PPM given by

) = 5 L0 ()L ) 0) + 820 o () (1)
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Proof Indeed, if L defines a bounded operator on B(M) then we have that
Lz, 2)| = [L1gay (@)] < [ Ly lle < (L0 ey lle = 2]

and on the other hand if the function A is bounded then for all f € B(M) we have that

Li)= 3 Ly + @)L S (fy) - f@)Lay)

yeEM:y#x yeEM:y#x

and therefore
ILf@)] < 2fll S Llx.y) C 22 £l
YyYFT
where again A := >,/ A(z).

We prove now the second claim. First we note that uniqueness is obvious since
in general a contraction semigroup is uniquely determined by its generator. For the
existence we note that the function p defined in (1.11) is indeed a transition probability
by property (1.9¢) of L that obviously satisfies (1.4b) and p(z, M \ {z}) = 1 for all
x € {\ # 0}. Now, due to assumption (1.10) we have that (1.4a) is also satisfied and
therefore the requirement (1.4) in the definition of Markov jump process of non-negative
bounded jump rates is satisfied. Therefore there exists a Markov jump process (X, P)
with non-negative bounded jump rate function A\ and transition probability p and it
remains to show that the generator of (X, P) is L. So, let L : B(M) —» B(M) be the
generator of (X, P). Then by the matrix formula of L we have that

Liz,y) = A@)p(@,y) = AMx)day
Lz, y)Linzoy (2)1an {23 () + M) 0y Lin=oy — A(@)dzy
= L(z,y)1az0y (@) Lan (2} (¥) — AM(@)0ay
and for y = z it follows that L(z,z) = —A(z) = L(x, ) while for y # x we have that

T

x

L(J},y) = L(xvy)]l{/\;ﬁO}(x) = L(x,y)

since if A(x) = 0 then L(x,y) =0 for all y € M, and the proof is complete. O

Remark: The hypothesis in proposition 1.1.2 that the matrix L satisfies (1.10) is needed
only to ensure that the kernel p defined in (1.11) satisfies (1.4a) and not just

p(z,z) =0 Vaze{\#0} (1.12)

since in the definition of Markov jump processes with non-negative jump rates we have
assumed that points of zero jump rate cannot be reached by points of positive jump rate.
However assumption (1.10) is not necessary in the definition of Markov jump processes
with non-negative bounded jump rates and was made since it simplifies the presenta-
tion and is satisfied by the ZR process. In this more general definition of Markov jump
processes with non-negative bounded jump rates assumption (1.4a) is replaced by as-
sumption (1.12), Markov jump processes can reach points in {\ = 0} from points in
{\ # 0} and from then on they remain constant, and proposition 1.1.2 holds without
the need of assumption (1.10).
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Definition 1.1.4 Let M be a countable measurable space with {2} measurable for all
x € M. A matrix (L(x,y))x,yeM € RM*M guch that (1.9) holds and such that the
function A : M — Ry given by A(z) = —L(z, ) is bounded will be called a bounded
Markov jump process generating matriz on M.

According to proposition 1.1.2 and the subsequent remark, given any countable state
space M, there is a bijective correspondence between the set (of distributions) of Markov
jump processes with non-negative bounded jump rates on M and the set of bounded
Markov jump process generating matrices on M. In other words, in order to define a
Markov jump process with non-negative bounded jump rates one needs only specify ad-
missible transition rates for a Markov jump process with bounded jump rates i.e. numbers
L(z,y) >0, x,y € M, y # x, such that the function A : M — R given by

Az) == Z L(z,y) =: —L(x, x)
yyFT

is bounded. Of course then this is the Markov jump process with jump rate function A
and transition probability p given by (1.11) and its generator is the bounded operator
L: B(M)— B(M) induced by L.

Moreover when M is equipped with an unbounded discrete metricd : M x M — R
and a distinguished point o € M, a bounded Markov jump process generating matrix
L= (L(z, y))I’yeM such that transition probability p associated to L by (1.11) satisfies

per@= [ ) <l Veen (113

for some r > 0 induces bounded operators in the larger space B, (M) = B, (M, d) of all
functions f : M —» R such that there exists C' > 0 such that |f(z)| < C(1+ d(o,z)")
equipped with the norm

|/ ()]

su 5
zGJ\PiI 1 + |$|T

Hf”uﬂ = Hf”o,u,r =

where for simplicity in notation we set |z| := d(o,z), |zy| := d(x,y), x,y € M. Note
that the space B, (M) as a set does not depend on the base point o € M while the norm
I []u,- does. It is easy to see that the spaces B,.(M) are Banach spaces and by (1.13) L
induces a bounded linear operator L = L, : B.(M) — B, (M), since for all x € M we
have that

|Lf ()] TN W) = @) 5 1+ Jyl"
Tz = > Wp(x,y) < M Sl D (1+ ol +1)p(:r,y)
yeM yeM

_ 1 _
u,r 1 1 " ) < 2 u,r
Ml (14 1577 + 3 Wit »)) <235l

and 50 ||Lf|lu2 < 2A||f|lu2- As we shall see, when (1.13) is satisfied for some r > 0, the
Markov semigroup (P;);>o of the Markov jump process defined by the generating matrix
L induces a contraction semigroup P; : B,.(M) — B,(M) in the larger space B,(M)
and the generator of (P;);>¢ in B, (M) is the bounded operator L : B,.(M) — B,(M).
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We note first that inequality (1.13) for some r > 0 characterizes the transition prob-
abilities p : M — PP M that induce either linear contractions p : B,.(M) — B.(M) or
linear contractions p : P,.M — IP,.M with respect to the norm

Iilrver o= [ (141l )l
on M, (M).

Proposition 1.1.3 Letp: M — IPM be a transition probability in the polish space M .
Then the following are equivalent.

(a) p satisfies (1.13) forr > 0.

(b) p induces a linear contraction p : B,.(M) — B,(M).

(¢c) p induces a linear contraction p : P,. M — P,.M.

Proof(a)=>(b): Let f € B,.(M). Then

Ipf ()] = / £ (y)ldp®(y) < ”fHu,r/(l + Y1) dp* (y) < 1 flur (L + J2]7)

for all x € M. Therefore pf € B, (M) with ||pfllu,r < || f]lu,r and so p is a contraction.
(b)=(c) Let px € P, M. By (b) for any f € B,(M) we have that pf € B, (M) and so
we can define an operator p: P.M — IPM by

/fd(up) = /pfdu, V f € B.(M).

Then we obviously have that

ﬂwwmwz/mwwwms/mwm>

and therefore up € P.M and p: P.M — P,.M is a contraction.
(¢)=(a) Since p: P, M — P,.M is a contraction for all z € M we have that

o) = [ depw) < fol
for all x € M as required. t

Proposition 1.1.4 Let (X, P) be a Markov jump process with bounded jump rate func-
tion A : M — Ry and transition probability p satisfying (1.18) for r > 0. Then the
semigroup of (X, P) induces a contraction semigroup Py : B.(M) — B.(M) and the
generator of (X, P) in B,.(M) i.e. the generator of (P;)i>0 in B,.(M) is the bounded
operator L : B.(M) — B,.(M) given by (1.6).

Proof We note first that the transition probability p : M — PPM defined by (1.7)
satisfies (1.13). Indeed, for all z € M we have that

ol @ = [lorar = (1= 2o+ 28 [y <oy

for all x € M.
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We show next that E|X;|” = P| - |" € B.(M). We describe again (X, P) as a the
Markov jump process (Y, P) where P : M —s P(M?%+ x D(R4, 7)) is a kernel such
that with respect to P? the natural projections

€= (E)ns0 : MP+ x D(Ry, Zy) — M2+,

N = (Ni)iz0 : M"* x D(Ry,Z+) — D(Ry,Z+)

are independent processes, £ is a discrete time markov chain with transition probability
p starting from x and N is a Poisson process of parameter A > 0 (starting from 0), for
all z € M. Then obviously p*| - | < p*~!p| - |" <p*~1|-|" < ... <|-|" and therefore

ElX,|" = Ely| = ZE €k Ly (N2)) ZP Ny = k)E[&|"
k=0 k=0
N 2t
= e M gy,
k=0

So for all f € B,.(M) all z € M we have that
1Pef ()] S ETIF VD] < F o BT+ [Y2]") < N llur (T4 [2]7)

and thus || P fl|u,r < || fllu,r for all f € B,.(M). Therefore P, is a contraction and (P;);>¢
is a contraction semigroup in the Banach space B,.(M).

We show finally that the generator of (P;) is L : B.(M) — B.(M). Since L is a
bounded operator it induces the semigroup (Q;);>0 := (e'£);>0 on B,.(M) and we have
to prove that (Q;)i>0 = (P)i>0. But as we have seen L = A\(p — I) and therefore for all

f € B.(M) and x € M we have that

z) =Y E"f(&)P(N; =k) = e Z
k=0

k=0

—eth(x)thf(x). O

Finally it is useful to remark that if a kernel satisfies (1.13) for some r > 0 then it
also satisfies (1.13) for all orders less than r.

Proposition 1.1.5 Let p: M — IPM be a transition kernel satisfying (1.13) for some
r > 0. Then p satisfies (1.13) for all 0 < g < r.

Proof Indeed, as we know for probability spaces (2, F, P) the function and measurable
functions f € (Q, F, P) the function

[0, +00) > 7= || fllzr(p)

is an increasing function of r and therefore if p satisfies (1.13) then for all 0 < ¢ < r and
all x € M we have that

0=(/ |y|q«1pm<y>>g <(/ |y|rdpm<y>>z = (ol (@) < () = [al,

that is (1.13) holds for all 0 < ¢ < r as required. O
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We turn now to the definition of the Zero Range process.
Definition 1.1.5 Any function g : Z, — R such that

g(0)=0, g(k)>0, VkeN, (1.14)
19l = Sup lg(k +1) — g(k)| < +o0 (1.15)
+

will be called a local jump rate function.

Let now g : Z, — R, be a local jump rate function and p : Z¢ — PZ? be a
translation invariant and irreducible transition probability. As we have already stated,
we would like to define the Zero Range processes on the lattice T4, N € N, with
local jump rate function g and elementary step distribution p as a Markov jump process
on the state space ]Mﬁl\, of all possible configurations of particles on the discrete torus
T% in a way that it models a system of particles evolving according to the following
stochastic dynamics: Given an initial configuration of particles 7y € M% at time zero,
an exponential alarm clock with parameter g(no ) starts at each site z € T%. At the
first time 7; that an alarm clock rings at a non-empty site x, i.e. with 79 ; # 0, a particle
leaves the site x at which the clock rang and moves instantly to the site y € T% with
probability py(z,y) = p(y — x + NZ?), and thus the new configuration 7, := 15" is
created with probability py (z,y). Then the parameters of the clocks are updated to the
new values ¢g(m ), © € Ty, and the process goes on to yield a path

Ry €t n = Ml ()
k=0

in the space of configurations M%. Of course due to the memory loss property of the
exponential distribution one can assume if he likes that clocks are reset during the pa-
rameter update process. Note that in the stochastic dynamics described above preserve
the total number of particles |ng| of the initial configuration.

According to the stochastic dynamics described above, the rate at which the transi-
tion n +— ™Y, 2,y € T, y # x, is made is LY (9, n™¥) = g(n.)p(z,y) and a transition
n + ¢ cannot be made of ¢ is not of the form ¢ = n™¥ for some x,y € T4%,. Therefore
we would like to define the Zero Range process as a Markov jump process

(77N71PN) = (77N = idD(IRJr,le‘V)v {IP?\? € IPD(RnL?M?lV)}noEM}{,)

by specifying the transition rates

— Tty
LN (. ¢) = {g(m)pzv(y% ¢=n e #0, y # 0’ G (1.16)

0, else

Then the jump rate function A : M4, — R of (n"V,Px) would be given by

An(n) == —=LN(m) == > L,Q) = pa(THN{O}) Y gln).  (1.17)

C:¢#n zeTY,
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Note that since the support of p spans Z¢ we have that py(Tx \ {0}) > 0 for N > 2
and therefore Ay (n) = 0 iff n = 0 € M% is the configuration with no particles. Since p
is assumed to have finite range < A for N > A we have that

pv(TH\ {0}) = p(Z7\ NZ%) = p([-A, A"\ NZ*) = p([-A, A]) = 1
and since we are interested in large values of N we will omit the term py (T4 \ {0}) in

the formula for LY (n,7n), n € M4,. The transition probability py : M4 — PM%, of
(n™N,Py) would then be given by py(0,-) = dp and

L(n,n™Y) if C Ty d
- 77 ) L € T 9 77:6 7& 07 Yy 7é z
PN (1,€) { ) N :

(1.18)
0 otherwise

for all n # 0.

However this does not fit exactly to the definition of Markov jump process with
bounded jump rates since Ay is not bounded, unless the local jump rate function g is
bounded. Of course when g is bounded we have that

An == sup An(n) < N%gllu < +oc.
neMg,

Nevertheless we can still define a Markov process with jump rate function Ay and
transition kernel py if we note that Ay is bounded on the communication classes of
the transition probability py. Indeed, since the dynamics of the ZRP preserve the total
number of particles we can easily see that the communication classes of the generator
LN, or equivalently of the transition probability py, are the hyperplanes

MYy g ={neMy|InL =K}, KecZ,

consisting of configurations with a fixed number of particles and so Ay is bounded on
each hyperplane ]M?V’K, since by assumption (1.15) we have that g(k) < ||¢||.k for all
k € Z, and therefore

sup Av(n)= sup Y gna) < sup g lulnh =gl K
EMY i n€MY k perd, neMy,

for all N € N, K € Z, . In this way LV defines bounded generating matrices
N,K (TN M4 M
(L (7’],())"74_611\/[?\/’1{ = (L (,'774.))777C€M(11\7,K e R N,k XMy i

and therefore for all K > 1 we can define a Markov jump process (™%, Py ) separately
on each communication class ]1\/[?\,7 x of p%V, with bounded positive jump rate Ay x =
)‘N‘M‘fv,x : IM‘}\,J( — (0, 00) and transition kernel py k : ]pN|1MdN1K : M‘Ii\ﬂK — ]PII\/[‘]{,,K7
where Py k : MY o — PD(Ry, M ;) and ™% is the canonical cadlag process, and
consider the process Py : M4, — PD(R.,M4,) defined by

P7 — 6(7]t50)t20’ ifn=20
N EK*PJ\’]’K if’l]EMN’K, K>1.

Then the process P 5 defined this way is obviously a cadlag feller process and we consider
it as a Markov jump process with unbounded rates, according to the following more
general definition.
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Definition 1.1.6 (a) Let A : M — R be a measurable non-negative bounded func-
tion and let p : M — PPM be a Markov kernel such that (1.4) holds and X is bounded
on the communication classes { M} jen of p. The Markov kernel P : M — PD(R4, M)
given by

P* =i, P} ifxe M, jeN,

where P; : M; — PD(R4, M;) is the Markov jump process on M; with transition
probability p; : M; — IPM; and strictly positive bounded jump rate function \; :=
Alag; and ij @ Mj < M is the natural inclusion, is called the Markov jump process with
partially bounded non-negative jump rate A and transition probability p.

(b) A matrix (L(z, y))zjyeM € RM*M guch that (1.9) holds and such that the function
A: M — Ry, given by A(z) = —L(x, ) is bounded on the communication classes of L
will be called a partially bounded Markov jump process generating matriz on M.

Obviously, to any partially bounded Markov jump process generating matrix L on M
corresponds a unique Markov jump process (X, P) with partially bounded non-negative
jump rate A : M — R4 and transition probability p : M — PM given by (1.11). Of
course the uniqueness of (X, P) follows from the fact that (X, P) is uniquely determined
on each of the communication classes M; by proposition 1.1.2. We can give now the
following definition for Zero Range Processes.

Definition 1.1.7 Let g : Z, — R, be a local rate function and p : Z¢ — PZ? be a
translation invariant and irreducible transition probability. The Markov jump process on
the state space M% defined by the partially bounded Markov jump process generating
matrix LY on M4 given by the transition rates (1.16) is called the zero range process with
elementary step distribution p and jump rate function g, or simply zero range process
with parameters (p,g).

Of course then the ZR process (X, P) is the Markov jump process on M¢, with
partially bounded jump rate function Ay : ]M‘}V — R4 given by (1.17) and transition
probability py : M% — PM% given by (1.18). However, in this case, unless Ay is
bounded, the generator of (X, P) in B(M$%/) is not a bounded operator. In particular in
general we have that D, # B(M%,). However note that for each K € Z the formula of
the generator L™ defines bounded generators LY : B(M% ) — B(IM‘}W K)-

In order to have as large as possible domain for the generator L of (X, P) we consider
the generator in the spaces B,.(M%), € R. For this we note that the communication

classes of (X, P) coincide with the spheres of the |- | = |- |; norm on M%, and therefore
for each r» € R we have that
oL+ ) = > @+ K E P, Q)
¢CeMd,
= 3 @+ Er DN (.0 = @+ fnlyE
CGM?V,IT/M

So (X, P) induces a transition semigroup on the Banach space B,(M%) and we can
speak about the generator LY : Dy — B, (M%) of (X, P) in B,.(M%) for all r € R.
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Proposition 1.1.6 Let (X, P) be the ZR process with elementary step distribution p and
Jjump rate function g on IM‘fV. Then for all r € R the operator LY = LY in BT(IM‘J{,)
given by the formula

Nfm)y = Y [f0™Y) = fm)]g(ne)pn (z,y) (1.19)

z,yeT‘f\,

defines a bounded operator L™ : B,_1(M%) — B,.(M%,) with |LY| < 4||¢||. and the
generator LY of (X, P) in B,(M%) is given in its domain Dyx C B.(M%) by (1.19) and
e "B, _o(M4) C Dy for all v € R. Furthermore, the generator of (X, P) in B,.(M%)
with respect to the topology of uniform convergence on bounded subsets contains the
operator Ly : B,_1(M%) — B,(M$%), that is

P—1
(P t )f w0 N f
uniformly on bounded subsets of M, for all f € B._1(M%,).

Proof Let r € R. We show first that LYV defines a bounded operator from B,_1 (M%)
to B,.(M%). So let f € B,_1(M%). Then, we have that

ILNfm)l < >0 |F @) = f(n)|g(ne)pn ()

z,yeTY,
< 2 flluror Y, (@A gl EE T g () p ()
x,ye’]I“JiV
< 2 fllur—1llg w1+ [nlIm =)=y

But if » > 1 then we have that
(14 [n|I"= 0y C=Dp) = (14 g™~ Y)n| < 21 + [n]") = 2(1 + |} yeem

since Supgez, % < 2. On the other hand, if 0 < r < 1 then

— — 77\ |’f’| sgnr
1+ |r—1]\sgn(r—1) — | <14+ r_ 1+ s
(L [n[") In| T = Inl" =@ +Inly")
since supKeZ+ m S 1 while if » < 0 then

—1|\s — ‘77| 1 [rl\s
1+ |n [r—1]\sgn(r—1) nl = <2 =2(1+|n sgnr_
It follows that
LN F )] < A F e allg (1 + mly)eer

for all n € M% and therefore LY f € B,(M%) and formula (1.19) defines a bounded
operator LY : B,_1(M%) — B,.(M%,) with [|[LY|| < 4[|¢’| -
We prove next that e*HlBr_g(]M‘fv) C Dy by showing that given f € e*|'|1BT_2(IM§1V)
we have that
& -Df

LN
; f

=0.

lim
10

u,r
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Indeed, if f € e I'h B, (M%) then el f € B, 5(M%) and therefore there exists a
constant C' > 0 such that

IF ()] < C(1 + ||I=2!)sent=2) =In
for all n € M4, and so it follows that for all n € M4, we have

(P — 1) f(n) — tL™ f(n) ‘ Dayers, [F(r5Y) = fm)](Pe(n, n™¥) — tLY (n, 1)) ‘

t t
v Py(n,n"¥) — tLN (n,n"Y)
< Y ’y)f(n)l‘ ! t
N27#0, y#z
< 20 Fllur—1 (1 + |72 )sen=2) g=Inl 5
P, T,y —tLN T,y
% Z (1, 7™Y) (n, n*Y) .
t
CE,yG']I“Ii\,:nI;éO, y#T
LN

But on each communication class ]M‘]jv’  we have that P, = e**" and therefore if we set
Q: = %(Pt —tLN), then for all n € M%, for all z,y € T4, such that n, # 0, z # vy,

. Py(n,n"") —tLN(n,n"*)| _ 1|~ 1" .
[@uln ]| = = | S S E )
t t] = k!
R LI
= {Zﬂ Z H’L (Ciflagi)‘
k=2 G Grn €MY | =1
1o t* b b
- ZZE Z H AN (Gi-1) H LN (Cio1,G)
= GG €Ny, l¢i_ = 7(1‘ CiizliéCi
R b
- 227 Z H Cl 1 H PN Cz 17(1)
k=2"" (i, G €M | =1 Ci,l;égi
Lo (g lluln)) d
s %ZT Z H P (Ci-1,Gi)
k=2 C1;~~~7Ck71€IMN ] C #C
-1 i
Lo (g lluln))”
= 2D ™)
k=2 ’

where of course in the above formulas (5 = 1 and (x = n™Y. So we have that

Sl < % Zt”g” LD —

z,yeTy, z,yeTy,
N2 7#0, y#x nz;ﬁO yséz
(tlly' || [n|)* (tllg' || [nl)*
5 lluln |Z
k=2

= ||gl||u|n‘(et“q ”u"’” . 1)

for all n € M4,.
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It follows that for all n € M4, we have the inequality

’(Pt — 1) f(n) —tL" f(n)
l

‘ <AC flur—1llg Nl (1 =+ || "= thysenE=D g=lnl(tlg llulnl _ 1),

But then for all ¢ < m we have that —|n| < t||¢’||.|n| and therefore

P -1 _ tLN |
< 4t0”f||u,7—1||g/||i(1 —+ |7’]|‘T_1|)Sgn(r—1)|n|
= 8tc|‘f||u,r71||g/||i(1 + |77|\7"|)Sgnr

1
gl

for all n € M4 and all 0 < ¢ < Therefore, for all ¢ < m we have that

tJ.0
<8O || fllur—1llg']|2 == 0,

u,r

[GEIY

t

which proves that e""BT_g(IM‘]iV) C Dpw.

We prove next that the generator of (X,P) in B,(M%) with respect to uniform
convergence on bounded subsets contains the operator LYV : Br,l(]MﬁlV) — BT(]M?V).
Indeed, let f € B,(M%) such that LY f € B,.(M%,). Then by the previous estimates we
have that

’(Pt — 1) f(n) —tL" f(n)
t

‘ < AC| S llurllg Il (L + [Ty (et bl — 1)

and therefore if A C M4, is bounded, that is if A C {|-|; < K} for some K € Z., then

(P, —1)f(n) —tLN f(n)
¢

sup
neA

‘ <AC| f | (1 + KT (KISl — 1) B8 0,

as required. Furthermore this implies that the generator LY of (X, P) in B,(M%,) is
given on its domain Dy~ by formula (1.19) since convergence in the |- ||, ,-norm implies
uniform convergence on bounded subsets. O

By general Markov theory we have that for each K € IN there exists a unique extremal
invariant distribution 1/}‘37 x for LY, Vj‘f,’ LY =0, supported by M‘]i\ﬂ - Of equal interest
is the monoparametric family of translation invariant equilibrium distributions defined
on the whole space M% := sz which we discuss in the next section.
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1.2 The extremal translation invariant
equilibrium distributions

We set 7, : M4 — M4, x € T4, the translation operator given by (7,1), = s+, and
recall that a probability measure u € PM4; is called translation invariant if 7. = u for
all z € T4,. Obviously any product measure with equal factors some common measure
«a € PZ. is translation invariant, since if, say v = a®Th ¢ ]PIM‘}V and x € ’]T‘Iiv, then

() =v(mn) = [] e((mn)y) = [[ ater) = ] eOn) =vm).

yeTd, yeTq, yeTd,

We want to check whether there exists a product equilibrium distribution v € P; M4,
for the ZRP. Since the elementary transition probability is translation invariant we expect
the marginals «a, = n(z).v € P1Z,, = € Tﬁi\,, to be all equal to some distribution
a € P17, and of course then v is translation invariant. So suppose that v € PM$%
a translation invariant product equilibrium distribution for the ZRP with parameters
(p, g), of the form v = a®TN for some a € P17, . Then vL" = 0 and so for any k € Z,

/LN []l{k} (n(x))}du = /]l{n(x):k}dVLN = O7 (1.20)
and for all n € M%,
LYy (@) = D7 [Lu@=m ") = L=y ()] 900, ) (2)
y,2€TY
= Y L= ") = L= )] 9(n2)pn (2)
zeTY,
> [ ne)=ry (") = Lig@)=y ()] g0 )on (2 — y)
y#£T
= Z (L @) =k+13 (1) = Lin@)=r} (1) ] 9(n2)pN (2)
zeT%,
+ > [Ln)=k—13(1) = Ln@)=e (0] g(my)on (2 = v)
yF#T

= (Lp@=k+13 — Liny=ky) (1) - 9(02)

+(Lin@@)=k—1} = Lney=xy) () Y_ 9(ny)pn (@ — y).(1.21)
yF#T
Since v is a translation invariant product measure, the r.v. n(z), * € T4, are iden-
tically distributed with common marginal o = 7(0),v = n(z).v € P1Z,. Since we
assume v € P1M%, and g(k) < ||¢'||.k by assumption (1.15), we have that g(n(z)) <
llg'[lun(z) € L'(v) for all z € T%,. So the quantities | g(n,)dv(n) are non-negative real
numbers independent of x € ’I[“Iiv, say

/g(n(m))duz/gda —pcR,, VzeT%.

In addition, due to assumption (1.14) we can only have ¢ = 0 when o = ¢g € PZ,, in
which case v = 69 € PM$ is the Dirac distribution concentrated on the configuration 0
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with no particles, the unique absorbing point of the ZRP. In this case v is the trivial
invariant Dirac distribution concentrated on the unique absorbing point of the ZRP, so
let us assume that ¢ > 0. Then, integrating both sides of equality (1.21) with respect to v
and taking into account (1.20) and that the random variables n(z), € T4, are i.i.d.

we get that
0 = /(]l{n(w):kJrl} — Lgyy=ky) - 9(n(x))dv
+ Z/ (l{n(w):k—l} - l{n(x):k})g(n(y))dz/ -pn(z —y)
y#T

= gk Vu{n() = k+1} — g(B){n(x) = k}
3 (wln(@) = k- 1} — vin() = k}) / o(n())dv - px(x — 1)

y#z
= glk+Dalk+1)—gk)ak)+¢- (a(k—1) - a(k)).

Therefore we get that if v = a®T% is to be an invariant distribution then it must satisfy
glk+ Dak+1) — g(k)a(k) = pa(k) — pa(k — 1) (1.22)

for all k € Zy where of course a(—1) = 0. For k = 0, the above equation becomes
g(1)a(1) = pa(0) and therefore

P
o(l) = a(0)——.
(1) = a(0) -5
Then for k = 2 equation (1.22) becomes g(2)a(2) —g
g(1)a(1) = pa(0) this implies that

(Da(1) = pa(l) — pa(0), and since

a(2) = a<1>£) — a(0)—2—

So it follows easily by induction that if v = a®T% is to be an invariant distribution then
it must satisfy

alk) = a(O)gL VkeN, (1.23)

where for any function g : Z; — R, satisfying (1.14) we denote by ¢! : Z, — R4
the function given by

where of course the empty product is equal to 1. Finally, if a distribution o € P1Z 1\ {do}
is to satisfy (1.23) for all £ > 1 we must necessarily have that «(0) > 0, and since « is
assumed a probability measure, by (1.23) we must necessarily have that

=« Ooa =« 3 <pk =a - 7 :
a0+ 30t =a0) (14360 ) a0 3 2

k=1 =1

30



In particular we have that the series Y, " /g!(k) must be convergent and that if an
equilibrium distribution v is to be of the form v = a®Tx for some a € P17, then the
power series

o k
2(0) = Zu(9) =3 o (1.24)
k=0 7"

must be finite at ¢ := [ gda and the one site marginal o must be given by the formula

all) =~ F e, (1.25)

Definition 1.2.1 The function Z = Z; : Ry — [1,00] defined by the power series in
(1.24) is called the normalizing partition function associated to g : Zy — Ry. We will
denote by Dz = {¢ € R4|Z(p) < +oo} the proper domain of the partition function Z.

According to the above, in order to have a chance of finding invariant distributions
for the ZRP of the form v = a®T7V7 a € P17, the function g must be such that the
partition function Z, has non-trivial domain of convergence. By the root test, the radius
of convergence ¢. = ¢, = p(g) :=sup Dz, of Z, is

Pe = S S liminf {/g!(k), (1.26)

. k 1 k——+o00
lim sup mIG)

k—+oco

and so along our basic assumptions (1.14) and (1.15) for g, we will also assume in what
follows that the function g is such that

liminf {/¢!(k) > 0. (1.27)

k—+oo

Of course whenever g is bounded from below by some positive number ¢ > 0, as is the
case when g is increasing, condition (1.27) is satisfied since then g!(k) > &* and therefore
¢q > € > 0. Another condition that guarantees that the normalizing partition function
Z4 has non-trivial domain of convergence is the existence of constants ¢, p > 0 such that

7 := liminf ¢*kPg!(k) > 0.

k—+oo

Indeed, then, if 0 < € < 7 there exists ko € N such that c*kPg!(k) > ¢ for all k > ko and

S0
1 1
@g = liminf {/g!(k) > - liminf {/ % =->0.
c

k——4oc0 C k—+oo

An example of a function g not satisfying assumption (1.27) is given by g(k) = +, k > 1,

¢(0) = 0, since then g!(k) = % and we can easily from the ratio test for sequences that

. ck kP
lim —— =
k—+o00 k!

Since mainly we will consider functions ¢ : Zy — R, satisfying the basic assump-
tions (1.14), (1.15) and (1.27), we will use the following terminology.
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Definition 1.2.2 A function ¢g : Z4+ — Ry is called a local rate function if it satisfies
assumptions (1.14), (1.15) and (1.27).

So, according to the discussion above, the partition function Z has non-trivial domain
of convergence Dz C [0, ¢.], ¢ = @4 > 0, whenever g is a local rate function. Of course
by our convention ¢!(0) = 1 we have that

Z(0) = =1<Z(p)

1
9'(0)
for all p € D% = (0, p.), and since Z is given by a power series it is analytic, and thus
C*, on [0, p.), with all of it’s derivatives strictly positive, since for all m € Z we have
that

dm e k! ka—m

7?0 = 2 g 7
for all ¢ € (0,¢.). In particular the partition function Z is strictly increasing and
strictly convex on [0,¢.). Recall that a convex function Z : R — (—o00, 0] is lower
semicontinuous iff it is one-sidedly continuous at each endpoint of it’s proper domain Dy
contained in Dy and diverging to +oo at each endpoint of Dz not belonging to Dz, and
let us collect the basic properties of normalizing partitions functions in the following.

Proposition 1.2.1 Let g : Z;+ — Ry be a local rate function and let . > 0 be the
radius of convergence of the partition function Zg : Ry — [1,00] defined by g. Then

[0,0.) €Dz C[0,], (1.28)

the partition function Zy : Ry — [1, +00] is a lower semicontinuous, strictly increasing
and strictly convex function, C* on [0, ¢.) with all of it’s derivatives strictly positive.

Proof Only the lower semi-continuity of Z remains to be proved. This follows from
Abel’s theorem on power series. Indeed, Z is increasing and so the limit limyq,, Z(p)
exists in [1, 00|, and since the coefficients ﬁ of the power series defining 7, are positive
and ¢, > 0, the converse of Abel’s theorem also holds, that is

Z(pe) < 400 = liTm Z(p) < +00,
elec

and in this case

Z(pe) = ;lTrg Z(p).

But because Z is convex, with proper domain Dy satisfying (1.28), and left continuous
at zero, this proves the lower semi-continuity of Z. O

Furthermore, note that if we allow increasing limits to take the value +oo, then we
have that

Z(p0) = lim Z()

regardless of whether ¢, € Dz or not. Note, also, that even when ¢, € Dz the partition
function may not be differentiable from the right at ¢., i.e. we may well have Z'(p.) =
4o00. In fact, Abel’s theorem applies to the behavior of the derivatives of Z at the critical

point ¢..
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Proposition 1.2.2 Let g : Z;+ — Ry be a local rate function and let . > 0 be the
radius of convergence of the partition function Zg : Ry — [1,00] defined by g. Then,
for any m € Z, we have that

& k! <,0k_m
7™ () = sup  ZM () = lim 2™ (p) = —_—
(pe) = sup Z(M(g) = lim Z2(p) k;n ) i)

where the above limits are limits in [0, 00], i.e. they are allowed to take the value +o0.

Proof The proof follows from Abel’s theorem as in the case m = 0 in the previous
proposition and we will not repeat it. O

Next, we give a name to the one site marginal o € PZ, of our candidate for a
product translation invariant equilibrium distribution of the ZRP.

Definition 1.2.3 Let g : Z, — Ry be a local rate function and let Z be the partition

function associated to g. For any ¢ € Dy, the distribution ﬁé = ﬂéyg € PZ defined by

1 k
7L{k} = - L4 ke, (1.29)

() gl(k)’
will be called the one-site zero range (ZR) distribution with rate g and parameter o.

A product distribution 175) g € PM¢% with common marginal D; € PZy, ¢ € Dz,

will be called a ZR distribution on the discrete torus T4, with rate g and parameter .

In the physics literature, the parameter ¢ is known as the fugacity. Of course,
according to the above definition the ZR distribution on the discrete torus T% with
local rate function g and parameter ¢ is given by the formula

_ _ 1 Pl 1 Sp‘n‘l
Zogn) = 11 7p0m) = 11 =

Nd | Nd | ’
veT?, (N g 9'0)  Z(@)N gH(n)

for all n € M4, where of course we have set g!(n) := [Tera 9'(n2)-
Our first task is to prove that the translation invariant measures v, , ¢ € Dz, that
we have defined are indeed equilibrium distributions for the ZRP.

Proposition 1.2.3 Let Z, : Ry — [1,+00] be the partition function associated to
some local rate function g : Zy — Ry. Then, for every ¢ € Dz, the ZR distribution
175 € PM4, on the discrete torus T% is an equilibrium distribution for the ZRP with
parameters (p, g).

Proof Of course if ¢ = 0 we have nothing to prove, so we assume that ¢ € (0, ¢.) and
we will prove that D;YLN =0, i.e. that

Y mAvm) = > B 0™ (", n),
z,y€TY, y#

for all n € M4,.
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Obviously, by the formula of 7Y, for all n € M%;, = € spt(n) := {z € T%[n. > 0}
and y € T4 \ {z}, we have that

e ™) g g(n) (1.30)
vim  gin™v) gy +1)
and therefore it suffices to prove that
9\Nz *
Av(n)= Y ((jL)l)LN(n Yon)
w,yET‘I{, 9y

for all n € M4,. But

LY (™%, m) = LY (n™, (n™¥)**) = g(ny + 1)pn (@ — 1) (1.31)
for all n € M4, = € spt(n), y € T \ {z}, and therefore we have

9\Nz x
> MLN(W o)=Y gl)pn(z—y) = An(n),
zyery, W v e

for all n € M4, as required. O

So indeed there exists a monoparametric family of translation invariant product
equilibrium distributions for the ZRP, the family {7} gtweny, of the ZR-distributions

on the discrete torus. Of course by the discussion that led us to the formula of the

1
©

of translation invariant product equilibrium distributions of the ZRP with parameters

distributions v, € IPZ., this family is the unique, up to reparametrization, family
(p, g). Furthermore, the adjoint process of the ZRP with respect to any of the measures
Dgg, ¢ € Dy, is easily described.

Proposition 1.2.4 Let p € PZ< be an elementary step distribution and g : Z, — Ry

N
0,9
¢ € Dy, of a ZRP with parameters (p, g) is a ZRP with parameters (p, g), where p € P74

is the reflection of p € PZ with respect to the origin, i.e. p(z) = p(—z) for all z € 7.
Consequently, if the elementary probability distribution p is symmetric with respect

be a local rate function. The adjoint process, with respect to any of the measures U

to the origin then the ZRP with parameters (p, g) is self-adjoint with respect to any of
the measures ﬂgg, w €Dyg,.

Proof Let ¢ € Dz, be fixed. We have to prove that if LN, LN are the generators of
ZRPs on T¢ with parameters (p, g) and (p, g), respectively, then

vy (m LN (n, Q) = ) (LN (¢,m), ¥ n,¢ € My

But this is obvious, since we have only to consider the case where { = n®¥ for some
n €M%, z €spt(n), y € T4 \ {z}, and by (1.30) and (1.31) we have that

vy (LY (,n™Y) = Y ()ga)pn (Y — ) = 2p(n)g () (x — y)
= o(")g(ny + Vpn (@ —y) = 2o (™) LY (0™, m). O
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As defined, the distributions ﬂfx g+ ¢ € Dz, are not parametrized by the density of
particles, since if

R(¢) = [ nfa)any = [ kdrki), e Dz,
the mean number of particles with respect to v, at site x € Tﬁl\,, we have that

& k /
R(p) = Z(lcp) Zk:gf(k) = WZZ(;‘?, V0 <<, (1.32)

k=0

and therefore R(p) = ¢ iff Z(¢) = Z'(¢). But Z(0) =1 and so Z = Z' iff Z = exp, and
therefore the distributions 7, , are parametrized by the density of particles iff g = idz_
in which of course 7} is a Poisson distribution. Note that by equation (1.32) we have

that ’ 7
/kduw(k) =R(p) = <,OZ(S(0<,)0)

for all ¢ € [0, ¢.), and therefore v, 4 has first order moments for all ¢ € [0, ¢.). On the

< 400,

other hand, if p. = ¢.(g) € Dz,, in which case the distribution D}DC, o is defined for the

critical value ¢, it is not necessary that
baruéc has finite first moment. In fact, in this case we have by Abel’s theorem on power
series that R(p.) < +oo iff Z'(¢.) < 400, in which case R(v.) = @2 (pe)/Z(@c).

Indeed, if Z(p.) < 400 then R(p.) < 400 iff Z(pe)R(pe) < +00 and

k

N

converges for all ¢ € [0,p.). Therefore, since the coefficients ﬁ in the above power
series are non-negative and [0, ¢.) 3 ¢ — R(p)Z(p) = pZ'(y) is increasing, we have by
Abel’s theorem that

<400 <= lim R(p)Z(p) < +o0,

pTpe

Rloo)Z(p) =S k2
(Sac) (‘Pc):];) g'(k’)

in which case of course R(¢.)Z(¢.) = limgty,, R(p)Z(p). Furthermore, since by the
lower semi-continuity of Z we have that lim,y,, Z(¢) = Z(@.), if we allow limits to take
the value +00, whenever Z(p.) < +00 we have that

T _ _ (ch'(goc) 0
Ripo) = Iim Rlg) = [ ko o) = 225 € 0. +od] (1.33)

The following proposition allows us to reparametrize the family {17;}%.,61)2 so as to
obtained a family that is parametrized by the density of particles

Proposition 1.2.5 The density of particles R : [0,0.) — Ry defined in (1.32) is a
smooth and strictly increasing function of the fugacity .
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Proof Obviously R(0) = 0 and R is smooth in [0, ¢.) with first derivative

o 2 = Kk, Lok
R'(p) = Z(p)? 1;) g!(k‘)sﬁ + Z(¢) =, g!(k’)@

Therefore R'(p) > 0 iff

o0

.- LA
2002 g 2202 e

Multiplying the above inequality by ¢ € (0, p.) it follows that R'(y) > 0 for ¢ € (0, ¢.)

iff )
(S57tm) (5m)~ (54m)

Furthermore, by multiplying by W the above inequality becomes

(Jors) <o) ).

which is exactly the Cauchy-Schwartz inequality for the functions idz, , 1 in LQ(D;), and
holds as a strict inequality since v} € P1Z and id%+ and 1 are not v}-almost surely
collinear. (]

Now, since the density of particles R : [0,¢.) — [0,00) is strictly increasing, it is
injective with image the subinterval [0, p.) of R, where

pe = lim R(p) = sup R(p)
eTee 0<p<p.

and it’s inverse ® := R~! : [0, p.) — [0, ¢.) is well defined. So if we define the family
{¥,}o<p<p. CP1Zy by

V; = ﬂé(p)? (134)

where {930}0§¢<goc is the family of ZR distributions with local rate function g given in

(1.29), then
[ 0 = [ ks (6) = B(@(0) =

i.e. the family {v, s}o<p<p. € P Z+ is parametrized by the density of particles. We
will refer to a distribution v, = V<I>( p 0= p < pc asa (normalized) one-site ZR
distribution with density p. Likewise we will refer to a distribution I/f])v € PM% of the
form v, := HMT% o, as a normalized g-ZR distribution with density p.

It is worth to remark that by the definition of ® = R~! we have that ®(p) is the
mean local rate with respect to «,, that is

/ gdv, = Z g(k

k:l

— &(p). (1.35)
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Of course if p. = 400 then there exists a normalized one-site ZR distribution with
density p for all non-negative numbers p € R;. On the other hand, if p. < +oco then
for all p > p. there does not exist a one-site ZR distribution with density p. However as
we will see, if p. := limyp,, R(p) < 400, then . € Dz, and therefore by (1.33) there
exists a normalized one-site ZR distribution with density equal to the critical density p.,

namely the one-site ZR distribution v,_ := i}

». With fugacity .

Proposition 1.2.6 Let {D;7g}ogw<¢c C IP1Z be the family of one-site ZR distributions
associated to the local rate function g : Zy — Ry and let R : [0,0.) — Ry be the
density of particles defined in (1.82). If

pe = lim R(yp) < 400, (1.36)
PTee

then 9. € Dyz,, Z is differentiable at ¢. from the left and

B N 0 Z' () _ ol
pe = Rlpo) = 25— [ail, (0 (137)

Proof As we have already seen, whenever p. € Dy we have that R(p.) < +oo iff
Z' (p¢) < 400 and (1.37) holds. So we have to prove the implication

pe < +oo = @.€Dy. (1.38)

First we show that if p. < 400 then ¢, < +00. Let’s suppose to derive a contradiction
that ¢, = +00. By (1.32) we obviously have that

Rp) = (logZ(p))', V0<p<g,
and therefore since p. < 400, there exists M € N such that
M
(log Z(p))' < L Vo € (0,¢c). (1.39)

So, for each ¢ > 1 we have that

® / d
log Z() ~log 2(1) = [ (1o 2()) 20 < M [ 5 = Mo,

or equivalently that

But then,

_9Z'(¢) 1 Z'(p) 1 M+1 o4
=200 S ZM M Z ZM a0

which contradicts the fact that p. < 4+oc0. Therefore if p. < 400 then we necessarily
have that ¢, < +00. But for any 0 < € < ¢, we have by (1.39) that

R(p)

+00,

log Z(¢) —log Z(e) = /W (logZ(w))/dw < Mlog¢ — Mloge,

€
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for all ¢ € (g, p.), or equivalently

20)<26)(2)", veoelp),

and therefore by the lower semicontinuity of Z we have that

oM

Z(pe) = lim Z(¢) < 2(e) 25,

PTee

< +00,
that is ¢. € Dy as required. O

As we have seen so far, the normalized ZR distributions a,, 0 < p < p., as well as
the ZR distribution V;C corresponding to the critical density p. whenever defined, have
always finite first order moments. According to the next proposition the normalized
ZR distributions have finite moments of any order for all densities p < p., while at the

critical density p = p. we do not necessarily have finite moments of all orders.

Proposition 1.2.7 Let {V;}0§p<pa be the family of normalized one-site ZR distributions
associated to some local rate function g : Zy — Ry with partition function Z : Ry —
[1,00]. Then, for all p € [0, p.) the one-site ZR distribution «, has finite exponential

moments. Furthermore, if p. < +00, in which case I/})C is defined, and

ne:=sup{m € Z | ZM () < +o0},
where Z") (p,) = SUP)< <, Z™) (), then v
infinite moments of order > n. + 1.

_ has finite moments of order n., and

Proof Let p < p.. Then ®(p) < ¢, and so there exists # > 0 such that e?®(p) < ..
But then, the Laplace transform MV; of 1/; evaluated at 6 is

o k
Mo‘p(9> = /eakdap(k) = . Z <(I)(p)€0) = Z(é(p)ee) < 400,

and therefore 1/[1, has finite exponential moments.

1C € IP1Z, when it is defined. Note that

We consider now the case of l/;C =0,

k
c

o~ m P
D K

|
= g\

= Z(pe) / K™dv), (k) (1.40)

for all m € N. On the other hand, since Z is C*° on [0, ¢.) we have that

N (k+m)! ok ad kK pkm (m)
2R ikt m) k;n & —m)! gi(k) (p) < oo (141)
Also, for every k,m € N, k > m, we have that
pm— M (k) (1.42)
- (]C — m)| dm—1 ’ .
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where ¢, —1(k) := Z?;Bl a;m—1k® is a polynomial of order m — 1. For each m € Z
now, we consider the function g,, : Zy — R given by the formula

g!(m+1) o
g () = {00572;; b=t
kgm—i—k ’ k 2 2

Then obviously go = ¢g and

_gim+1) _g(m+2) gm+k)  glim+Ek)
gul(k) = m+D)! L mte Ry !(m+k)!

mLJrk)l/k =1 for all m € Z, we have

that the functions g,,, m € Z, have all the same critical fugacity ¢,,, = ¢. = ¢(g). In

for all m,k € Z,. Furthermore since limy_, (

particular, g, is a local rate function for all m € Z and by (1.41) we have that

e} k 00 k
Z = = =7 .
k=0 k=0
Now we can easily see that the set
A:={m e N|Z"™)(p,) < 400} (1.43)

is some subsegment {1,2,...,n.} of N. Indeed, since p. < 400 we have that 1 € A and,
as we will show, if Z("™)(p,) = 400 for some m € N then Z(™+t1(p.) = +o0. Indeed,
suppose that Z,, (p.) = Z(™)(p.) = +0o. Then by propositions (1.2.5) and (1.2.6) we

m

have that the function R,, : [0, ¢.) — R given by

pZm ) (o)
Rin(p) = T Z0(p)

is increasing to 400 as ¢ 1T ¢., and therefore since limg4,, Z(™) (p) = +o0 and @, < +00
we must necessarily have that limgy,. Z™+) (p) = +o0.

;u has finite n.-th moment. Of course as we have seen V;C
has finite first order moments. So it suffices to prove that if V;C has finite m-th moments
for some m < n, — 1, then it also has (m + 1)-th moments. But by (1.40) and (1.42) we

have that

We will prove now that v

m—1 k 0 k
m m (p m—+1 QOC
Z(%)/k gl () = S pm P o+
pe kzzo g'(k) k:%;rl g'(k)
—1
_ mzkmﬂ e i k! ok
~ gi(k) A= (B —m—1)! g!(k)
e k
ok
+ qm (k)
2o, B
= Zm:km“i@]g + et Zm D (o) + i Gm (k) at 7
2 2, W e



which is finite since the first term in the last sum is obviously a finite number, the second
term is finite since m + 1 < n. and the set A in (1.43) is a segment, and the third term
is finite since ¢, has polynomial growth of order m and by the inductive hypotheses

1 1

v, € P, Z,. This equation proves also that v

) e does not have finite n-th moments. (0

This proposition does not tell us what happens for moments of order p € (n.,n.+1).
Also, note that by the above proof for all p € [0, p.) the moment generating function
M, of v}, given by

b, :=log ¢. — log ®(p) > 0.

In particular when ¢, = +o00 then 1/; has full exponential moments for all p > 0, that
is M, (9) = feakdu;(k:) < 4oo for all # € R, p > 0. On the other hand, for the critical

1

density p = p. we have that b,, = 0 and v, does not have exponential moments. Next

we will see some basic properties of the family the normalized one-site ZR distributions.

Proposition 1.2.8 The family {V;}pejc C PyZy, I. := [0,p]] N R, of normalized
one-site ZR distributions defined through any local rate function g : Z4 — Ry is 1-

Wasserstein continuous (that is with respect to functions h : Z; — R of linear growth,
h(z) < C(1 + |z])).

Proof Since Z is countable, the family {v}},c;, € P1Z is weakly continuous iff the
function
I.2p Y 1/; (k)

is continuous for all k € Z,. But fi is given by the formula

which is obviously continuous in [0, p.). Furthermore, if p., in which case ¢. € Dz and
in particular . < 400, since Z is continuous on [0, ¢.] it suffices to prove that

lim ®(p) = pe.
pTpe

But this is obvious. The limit exists since @ is strictly increasing, and if for some ¢ > 0
we had that sup<,<, ®(p) < ¢. — € then we would have that

€ 5
c — >®(R c T 5 = %c— 5>
pe =2 (R(pe—5)) =¢e— 5
which is absurd. This proves that {V;}pe 1. is weakly continuous and since the density

function I. 3 p — [kdv}(k) = p is obviously continuous the family {v}},es, is 1-
Wasserstein continuous. g
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Proposition 1.2.9 The family {I/;}pejc CPZy, I.:=[0,p:] NR, of normalized one-
site ZR distributions defined through any local rate function g : 7y — Ry is increasing.

Proof We have to prove that for any bounded and increasing function f : Z, — R we
have that

p1<ps — /fclu;1 S/fdyé. (1.44)

Since any bounded increasing function f : Z; — R can be written as uniformly
bounded pointwise limit f = lim,;, 400 fm Of the increasing functions f,,, := f A f(m),
m € Z, it suffices to prove (1.44) for increasing functions f € B(Z;) that are in
addition eventually constant. That is, it suffices to prove the claim for functions f of
the form

i=1
for some m € N and some increasing sequences {n; }", C Z4, no =0, and {z;}", C R

Then if we set x_1 := 0, we have that

m
[= Z(xz —xi-1)1z \f0,..ni—1}>
i=0
and therefore it is obvious that it suffices to prove (1.44) for functions f € B(Z4) of
the form f = 1. \{0,... .m—1}, M € Z4, where of course {0,...,—1} = (). In other words,
since ® := R~! is strictly increasing, it suffices to prove that for each m € Z,, the

function F,, : (0,¢.) — R given by the formula

L= ok
Fulp) =0({m,m+1,...}) = 0 k;n g(!p(k)
is increasing. Obviously
Fon(p) = Fnpa(p) + %gi:o
for all m € Z, ¢ € (0,,) and therefore
Frae) = o)t i~ i
= FL(o)+ Z(lwg,?ﬂ; (R(p) —m)

forallm € Z, ¢ € (0,¢.). In particular, for fixed ¢ € (0, ¢.) the sequence {F},(¢)}mez,
is increasing on the set {0,1,..., R(yp) + 1} and decreasing on the set {R(p) +1,...}.
Therefore, for all ¢ € (0,p.) and all m € Z, we have that

Fale) 2 min{ Fio), i Fr(e)} =minfo. m Fuo)}  (145)

m——+oo m——+oo
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But the derivative of F,, is

oo ~1
"(¢) 90 ‘P
F’ = k
o=
o0 k o0 -1
and since the series >~ % and Y .~ W converge we obviously have that
/!
o T ) =
for each fixed ¢ € (0,¢.). Together with (1.45) this proves that F) (¢) > 0 for all
m € Zy, ¢ € (0,p.) as required. O

By the coupling characterization of the partial order of probability measures it follows
that for all py, po € I.. such that p; < ps there exists a monotone plan,, ,, € (v} Vps ;2)
that is a probablhty measure 7, ,, € IP1(Zy x Z4) with first and second marginals the

measures l/p , and u , respectively such that

Tpy1opa {(k,m) S/ /A ‘ k< m} =1.

Here, given two Borel probability measures p, v € PX in a polish space X the set II(u, v)
denotes the set of all measures in IP(X x X) with first and second marginals equal to p
and v respectively. For the following proposition we recall that the 1-Wasserstein metric
on the set of Borel probability measures on a Polish space (X, d) is given by

Wilun) = _int [ de.in(e.p).

The infimum is always attained, and any minimizer is called an optimal plan. For more
a detailed description of the Wasserstein metrics the reader is referred to [31], chapter
7.

Proposition 1.2.10 Let {U;}pgc be the family of normalized one-site ZR distribution
associated to the local rate function g. Any monotone plan w,, ,, € (v} o1 pz) p1 < pa,

is optimal and
Wi(v,,,v,,) = Ip1 = p2] (1.46)

for all p1, pa € I.. Furthermore, for any Lipschitz function f : Zy — Ry with Lipschitz
constant L¢, the function F : 1. — R4 given by the formula

_ s — ; — ‘I)(P)k
nm—/wp—ﬂ%mgywmw

is Lipschitz with Lipschitz constant < Ly.

Proof Let p1, p2 E I. be such that p; < ps and let 7,, ,, € (v} be a monotone

plan from Vl to 1/ . Then,

Pl’ PQ)

N

Wilvhovk) < [ = mldmy,pu(om) = [ (m = ks )

/malu;2 (m) — /k:u;l(k:) = pa — p1,
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and therefore

Wi(v,,,vp,) < o1 — p2l
for all py, p2 € I.. On the other hand, the barycentric projection b : P;1 R — R given
by b(p) = f]R xdu(x) is a contraction with respect to the 1-Wasserstein distance and so
if we denote by i : Z — R the natural embedding, then

it )

1 = p2| = [b(ixvy,) = blixvy,)| < Wilivw,, i,

p1?
for all p1,p2 € I.. Butif i x ¢ : Z4 x Z; — R x R is the product of the injection ¢

with itself and 7o € TI(v} ,v},) is an optimal plan then

(i x i)umo € M(ivv) ,isv),)

is a transport plan from z'*y;1 to i*V; , and therefore

Wl(i*V;17i*V;2) < /|ac —yld(i x 1)smo(z,y) = / |k — m|dmo(k,m) = Wl(Vfl)l,l/; ).

This proves (1.46) and that 7, ,, is optimal.
We prove now the second claim. Let L; be the Lipschitz constant of f. Then, for all
p1,p2 € Ie, p1 < pa, if m,, p, € (v} ,v})) is a monotone plan, we have that

W@ﬂn@n\/u@>fWMMmmmmﬂ

IN

Lf / |k - mldﬂphpz (kvm) = L.f<p2 - P1)7

and therefore F' is Lipschitz with constant < Ly. O

The above properties of the one-site ZR distributions extend easily to the ZR distri-
butions on the discrete toruses T4, N € N.

Proposition 1.2.11 The family {v,},cr. C P1M¢ of normalized ZR distributions on
the discrete torus T% is increasing. Any monotone plan v,, ,, € IL(v,,,v,,) is optimal,
and

Wi (vp, s vp,) = N py = pal-

Furthermore, for any Lipschitz function f : M4, — R with Lipschitz constant Ly the
function F : I, — R given by

F@=/ﬂW%w

18 Lipschitz with constant Nde.

Proof The fact that {v,},cz, is increasing follows from the fact that the family of its
common marginal {1/;} is increasing. Indeed, let p1, p2 € I. be such that p; < py and

let 7, p, € H(z/;1 , 1/;2) be a monotone plan from 1/})1 to V})Q. But then the measure

d
Voros = || Tpre € P1(Zy x Z)TH 2 Py (ME x MY). (1.47)
zeTY,
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is a transport plan from v,, to v,, through the identification

d
(Zy x Zy)™~ (nxaCac)xeT(]iv = ((nx)zeﬂr‘}va (Cx)xeva) e My x My,  (1.48)

and it is monotone, since

mem{(nao € My x Mg ‘ n=< C} = mepz( m {n, One < Cz}>

d
zeTg,

= I vnl®Olm <G}

d
zeTg,

H Tprpal(kym) € Z3 |k <m} = 1.
LEE’]I“}V

. 1 1 . .
Furthermore, since the measure m,, ,, € II(v,,,v,,) is optimal, as we know the prod-

uct measure v,, ,, defined in (1.47) through the identification in (1.48) is an optimal
transport plan from v,, to v,,, that is

Wivp,,vp,) = /|77 Clidvp, p, (0, ¢ Z /|77 )| dvp, p,

zeT,

- Z/m mldry, o (km) = NOWLL 0L ).

z€TY,

This proves the first claim. Next, if f : M4, — R is Lipschitz with Lipschitz constant
Ly, that is
[f(n) = F(OI < Lgln = Ch

for all ,¢ € IME{,, then for any p1, ps € I, p1 < p2, we have that

| ( p2 | < /|f |dVP1 P2(777C) < LfW:l(Vﬂl,P2) < Nde|p1 _p2"

This proves that F' is Lipschitz with constant < N¢L ¢ and completes the proof. O

As we have seen, when p, < p., the distribution u =n(z). l/’J)\i has finite exponential
moments. We will see next the form that Cramer’s theorem takes for the i.i.d. sequence
{n(z)}pega of V;—distributed r.V., pe < pe.

Proposition 1.2.12 Let v, < PM< be the ZR-range distribution on the full lattice
with density p. < p.. Then the i.i.d. sequence {n(x)},czae satisfies the large deviations
principle with rate function

(pApe Z(®(pApe
(p) =A%y (p) = {Plog wols —log sy, p20
p*

1 .
+o0, p<0

P

Proof The logarithmic moment generating function Al,; : R — (—o00, 0] is given by

Z(®(p+)e?)

Ayi (0) =log M,1 (6) = log 2(000))

44



By Cramer’s theorem on R the i.i.d. sequence of v, -r.v. {n(z)},cz« satisfies the large
deviation principle with rate function I,, the Legendre transform

L. (p) = Ajs (p) = 33}3{9/) — A (0)}

of the logarithmic moment generating function of V;*. Obviously the logarithmic m.g.f.
A,1 has proper domain Dy , such that (—00,b,,) €Dy, C (—00,b,,], where
* Yo Yo

®(pe)
b,, :=1log¢. —logP(p.) =log ,
and its derivative in (—o0,b,, ) is given by
" ®(p.) 2" ("®(p))
(0) = = R("®(p.)).
”5*( ) Z (9 (p,)) (e (ps))

Obviously A/, (—o0) = limgy— oo A

1
Yp

() =0and A, (by,) = limgpy,, Al: (0) = pe,
* * P P
and as we know the Legendre transform AY, is given on the interval

P

(Oa Pc) = (A/u;* (700)7Ai/;* (bP*)) c DA*l ’

Ypx

by the formula
Ajs (p) = p(Ays )7 M) = Auy (AL ) (P))

Now since ® = R™! it is obvious that (A/, )~': (0, p.) — R is given by the formula
P

- ®(p)
/ 1
1 p) =log
(ML) 0) = Tow g
and therefore
®(p) Z(®(p))
o (p) = plog —log —7——~, Vpe(0,pe).
A ARV ICTPS) (0.
On the other hand, whenever p, < +00 we have that Z(p.) < +o0o and thus
Z(®(ps)ebe Z(®(pe
A (by,)=1o (2(p-)e’-) = log (2(pc)) < +o00.
o Z(®(p.)) Z(®(p.))

So b,, € Dy, and therefore A%, is given on [p.,+oc) by the formula
P

P

q’(pc) Z<¢(pc))
1 (p)=by, - p—N,1 (by,) = plog —log .
Since A%, (0) = —logv, (0) and A%, (p) = +oo for all p < 0, the claim is proved. O

Finally, we note that the knowledge that the normalized ZR distributions on the
discrete toruses are invariant distributions for the ZRP allows us to obtain a formula for
the extremal invariant distributions Vj‘f,’ x € PM4, concentrated on the communication
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classes ]Mﬁiv, x consisting of configurations with a fixed number of particles K € Z. In-
deed, let {uév }per, be the family of ZR distributions on the discrete torus T4 associated
to the local rate function g. For any p € I., the distribution

Ligy(1-1h)
voll - | = K}

is an invariant distribution of the ZRP, since if |n|; # K then

W MY LN ) = Y v Mg (OLY(Gn) =0
¢eM

v My o=V ([l = KY) = dv,

N,Inly

since Z/,J)V ’]Mj‘lv x is concentrated by definition on configurations with K particles, while
if |n|; = K, then

W MG LY () = Y v MR (LN (¢m)
CE]M?V)K
1
- - LN
VN{|n|1 — K} qe%d: (C 77)
1
= LN =0.
v {Inl = K} Cgﬂvl:d (¢;n)

So by the uniqueness of the extremal invariant distributions 1/1‘(,7 x we have that for any
p € IC7

v () =v ([l = K3,

Therefore for each n € ]M?\L x we have that

1
V(1) 91

V?{/,K(n) = Z

nEMY 5 vp(1) ZneMN K g’(n)

The family {vy K € lP]M‘]iV’K} is called the canonical ensemble.
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1.3 Useful Topological Spaces

In the study of the hydrodynamic behavior of ZRPs we need to consider limits of dis-
tributions on the configuration spaces Mﬁl\, as the inverse particle’s distance N tends to
infinity. We do so by embedding the configuration spaces M4 in the space MZ, := sz
of configurations over the full lattice, via the periodic embeddings

MY 31 = () sers, © en(n) = (Mz]y )zens € M

induced by the the quotient mappings []n : Z¢ — T%. We will always suppress ey
from the notation identifying ex (M%) with M%.

To study the evolution of the particles density under the dynamics of the ZRPs we
will also consider the empirical embeddings of configurations in the space M (T%) of
positive measures on the macroscopic torus. These are defined by

1
= i D medz € ML(TY), neMy.

d
zeTg,

In this section we will describe the basic properties of the product topology on M< , the
Wasserstein topologies on the spaces le]l\/Ig07 p > 0, of probability measures with finite
p-th moments on M? and the weak topology on M (T9)

Before proceeding with the description of these topologies we describe some relevant
identifications that will be used throughout without being mentioned. For each N € N

e (- [2) [ [

Obviously §Zy = N and the restriction of the quotient mapping [-]y : Z¢ — T4, given
by [2]n = z + NZ9 on the set Z% is a bijection. It’s inverse jy : T4 — Z¢ C Z¢
defines an injection of the discrete torus T4 in the full lattice T, := Z<. We will

we set

consider the discrete toruses ’]I“fv embedded in the full lattice through the injections jy,
N € N. Through these embeddings, as N — +oc the discrete toruses T4 converge as
normed groups to the full lattice T4 := Z< in the pointed Hausdorff convergence, since
if we denote by | - |y : Ty — Ry,

|z|§ := min{z, N — x},
the translation invariant norm of the group Ty and by |- |N o : ’]I“Iiv — R the induced

{so-norm on T4,
|2|Nyoo = max |zi|n
i=1,...,d

FRRE)

we have that for all N, R € Z such that N > 4R,

where By (0, R) is the ball of center 0 and radius R in T4, with respect to |- |00, and
the ball B (0, R) C Z? is with respect to the usual £>*° metric, |2|e = max;—1__4 |zi.
Through the identifications T4, = Z¢, described above we can identify the space M4,
with the space Zf(’lv and then the natural projections pV : M4, — ZZdN can be viewed
as pV : ML — IM‘}V and obviously py ceny = ideN.
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d
1.3.1 The Space M% :=Z%

We will denote the | - [-ball of radius ¢ in Z¢ by AY := {z € Z%||z| < (} = Ty

Proposition 1.3.1 The space of configurations MY on the full lattice Z¢ is a polish
when equipped with the product topology. A polish metric inducing the product topology
of M4 is d : M4 x M — [0,1] given by

d(nuC) — Z h( 1 |77:v_<z|

wezd Z]o0) 14 |12 — Cal

where h : Zy — R4 is the mapping given by
h(f) = 2" 5(A7 \ A7),
with the convention that A%, = ().

Proof It is obvious by the definition of d that

o0

_ 1 |na:_<m| 1 —
OO 2@, 2, TGl S

zeANAY_| £=0

Is is also obvious that d is symmetric and that d(n,{) = 0 iff n = {. As usual with
metrics of the form of d the triangle inequality follows by the fact that the function
t— 1%%’ t > 0 is increasing and the elementary inequality 7 i‘;i ; < %H + 13-
Next we verify that d metrized the product topology 7 of M% . By definition the

product topology is weakest topology on M% with respect to which the natural projec-
tions n(x) : Moo — Z4, x € Z%, given by n(x)(n) = n, are continuous. We will show
first that the natural projections 7(z) are d-continuous. So let {nV}3*_;, € MZ be a
sequence of configurations d-converging to n € M% . Given z € Z< there exists then

N, € N such that
1

2h(|xl)”

N>N, = d(nN,n)<

Then for every N > N, we have that

L (@) - ) . |
Rl T4 TV @) — ()]~ A < gy

Consequently |V (z) — n(z)| < 1 which since configurations n € M% take only integer

values implies that n™¥ (z) = n(z) for all N > N,. Since x € Z¢ was arbitrary this proves
that the product topology 7 is contained in the topology 75 induced by the metric d.
For the converse inclusion, suppose that {n’};c; C M% is a net converging in product
topology to 7 € MZ, and let & > 0. There exists £ € N such that };°, || 55+ < € and
since 77 — n in the product topology there exists jo € J such that

ze Ay, j=g0 7 (z) =n(z).

But then for all j > j, we have that

o0

iy 1 7 (z) — n(x)| 1
W= 2 55 2 i@ —nw)] S, 2 3 <

0=t 41 cEANAL_ (=t +1
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which proves that d(7,7) — 0 and so d metrizes the product topology on M% .
We prove next that M is a complete and separable metric space when equipped
with the metric d. For the separability, a countable dense subset of MZ is the set

A= U Ay, where Ay :={ne¢ Mgo|n|zd\[\g =0}.
=

d
Indeed, each A, & Zﬁe is countable as a finite product of countable spaces and so A is
countable as a countable union of countable sets. Is also easy to check that A is dense
in M? . Indeed, given n € MZ and ¢ > 0 we pick /. € N such that e 1 i <€
and define ¢ € Mg by ¢ =71,s . Then ([ya =7|sa and so

[e.°]

B | In(e) - ¢(@)] |
WO= 2 15 2 Tepw-c@) S 2 7o <°

t=tc+1 ) peAd\AL, (=t+1

which proves that A is dense in M.

We prove finally that d is a complete metric. So let {n¥} € MZ be d-Cauchy
sequence. Then for each x € Z< there exists N, € N such that d(n",n™) <
all N,M > N,. Since configurations are integer valued this implies that

1
whany for

NM>N, = nN@x)=n"(2).

Defining the configuration n € MZ by n, = 7= it is easy to see that d(n’¥,n) — 0
as N — oo. Indeed, given £ > 0 we choose £ € N such that 72, 547 < £ and set
No = max, g Ny < +00. Then obviously 7™[ya =17|ya for all N > Ny and therefore

d(n™,m) < e which since ¢ > 0 was arbitrary proves that d is a complete metric. O

Proposition 1.3.2 Let ey : M4, — M% denote the periodic embeddings ey (n)(x) =
n(x + NZ) and let py : ML — M$; be the natural projections, N € N. Then the
functions Iy = ey opy : ML — M4, N € N, converge uniformly on M2 to the
identity function idpya_ : Me — M.

Proof Let ¢ > 0 and choose ¢y € Z, such that Z?ieo_H 2@% < e. Recalling the

identification T4, = Z4, C Z¢ we have that In(n)|ra, = nlpe for all N € N and all
n € MZ and so for all N > (2{y + 1) we have that

oo oo

1 I z) —n(x 1
d(In(m),m) < Y " ) 1|+13(;727(7)(>m) n(@)| < > <o

- T
£=Lo+1 zEAN\AL_ n(w) fo+1

for all n € M¢ which proves the the uniform convergence Iy — idppd - 0

Obviously the space M% is not compact since Z, is not. However the compact
subsets of M? can be easily characterized. This characterization can be stated in a nice
form by considering the natural pointwise partial order:

n<¢ <= nx)<{(z) forall z ez
This partial order gives rise to the corresponding integrals

n,¢) = {6 € Mx|n< &< ()
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Definition 1.3.1 A set B C M is called <-bounded if B C [0, (] for some ¢ € M%..

Proposition 1.3.3 A set K C M% is compact iff it is closed and <-bounded.

Proof We assume first that K is compact. Then K is closed as a compact subset of a
Hausdorff space. Furthermore the functions n(z) : My, — Z, x € Z9, are continuous
in the product topology and so by the compactness of K we have that
(z 1= sup 1, = maxmn, < +oo
neK neK
and for the configuration ( € M, defined above we obviously have that K C [0,(]. This
proves that K is <-bounded and completes the proof of this implication.

We suppose for the converse that K is closed and that there exists ¢ € M% such
that K C [0, (]. By Tychonov’s theorem the product space

0,¢= [T fo.1,.... ¢}

TEZY

is compact. Now, the product topology of [0, (] coincides with the topology it inherits
as a subspace of MZ and therefore K is relatively compact. Since it is also closed by
assumption, it is compact. O

We conclude this discussion on the topology of M%, with two more propositions to
further illuminate its structure.

Proposition 1.3.4 The space M% contains no relatively compact neighborhoods.

Proof The family N'(n) = {V(n,¢)|¢ € Z,} where

Vn,0):={Ce Mcolo|C|Ag = TIAg}

is a basis of neighborhoods around 1 € M%, and no such neighborhood can be relatively
compact. Indeed, given any such neighborhood V' (1, ¢), the sequence of configurations
¢" = nlpg + ml{@41)e,} is contained in V(n,€) and ¢("((€ + 1)er) = m — oo as
m — 00 so that ("™ can not have a convergent subsequence. O

Proposition 1.3.5 The space M2, is totally disconnected, i.e. the only continuous curves
v :[0,1] — MZ are the constant ones.

Proof Let v : [0,1] — M% be a continuous curve. In order to prove that v is constant
it suffices to show that for each ¢ > 1 we have

Y(®)lag = 7(0)]ag (1.49)

for all t € [0,1]. So let £ € Z, be fixed. For each t € [0,1] the set V(y(t),£) is
an open neighborhood of «(t) and so by the continuity of v the family {V;};c[o,1) where
Vi ==y~ 1(V((t),£)) is an open cover of the compact set [0, 1]. So by choosing a partition
A={0=s59<s1 << 8y =1}of [0,1] with mesh |A| := maxi<;j<m(s; —sj-1) less
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than the Lebesgue number of the covering {V}}te[oﬂ we have that there exist t1,...,t,, €
[0, 1] such that [s;_1,s;] € V;, forall j = 1,...,m. But then we obviously have that

Y([sj-1,5;]) SV (y(t),£) forall j=1,...,m

which proves (1.49). By the definition of the neighborhoods V (7, £) this implies that ~
is constant on any of the intervals [s;_1, s;] and thus it is constant. O

1.3.2 The Spaces P,M?%, p >0

In this subsection we study topological spaces resulting from equipping the set PIM¢
of all Borel probability measures on M%  with the topology of weak convergence with
respect to the duality with bounded and continuous functions and more generally with
respect to the duality with continuous functions of p-th polynomial growth.

Given any topology on PM% we can consider limits of sequences {yx} of distributions
such that uy € PM%, N € N by using the periodic embeddings ey : M% — M% to
induce embeddings

PM% 5 py — ey € PME

via the push forward of measures. Here the measure ey, un is given by

ensin(A) = pn{n € M§ |77 € A}

for each Borel subset A C ]Mgo. In other words, the measure ey, puy € IPIMgO is character-
ized by the requirement that its projection on ]PIM?V equals p through the identification
Z‘Ii\, = ’]I“Iiv, i.e. the requirement that for any ¢ € IMJdV we have

eN*MN{’f] e ML ‘m = (la]n> VT € Zﬁlv} = un{C},
and the requirement that the measure ey, un is periodic with period NZ¢,
eN*,uN{nelM‘io‘x—yENZd = 1y :ny} =1

We will always omit the embeddings en, from the notation by identifying measures
UN € IPIM‘}V with measures exn,u”™ € PM? . So whenever we write the measures u~ €
IP}M?V converge as N — 0o to the measure p € PM% we will always mean the measures
eN*uN in place of uy.

We begin with some initial considerations on the weak topology and then we will
proceed with a unified treatment of the weak topologies of all orders. As the space MZ
is polish, by the general theory of weak convergence of probability measures we know that
the weak topology on PIM% is metrizable and that for any sequence {u¥} yen € PMZ |
lim p =p in PM4 — ]\}Enoo/fduN = /fdu V f € BC(M%).

N—oc0

As we shall see, a basic property of this topology is that in order to characterize the
weak convergence of probability measures in PM<, the subspace of all cylinder functions
f: M2 (i.e. functions depending only on a finite number of coordinates) suffices in place
of the whole space BC(MZ,). For any subset J C Z¢ we will denote by p; : M4 — Z]
the natural projection on J.
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Definition 1.3.2 A function f : M% — R is called a cylinder function if it is of the
form f = fo py for some finite set J C Z% and some function f: Zi — R. The set
of all (bounded) cylinder functions on M%, will be denoted by Cyl(MZ) (Bcyi(M%)
respectively).

We note that since for any finite set J C Z¢ the space Z_{ has the discrete topology
and the natural projections are continuous by the definition of the topology of M2, any
cylinder function is continuous, Cyl(M%,) € C(Ms). In fact any cylinder function is
uniformly continuous. Indeed, note that for any ¢ € Z,

1
d(TI’C)<m = 77|AgEC|Ag-

d
“+% — R, then choosing § < 5L

- ~ A
Consequently if f = f o py, for some function f : 7 S (70)

we have for all n,¢ € M% that

170 = £ = 1Fnlag ) = FClag )l =0,

which proves the uniform continuity of f.

To explain the need of the following proposition ?? in approximating continuous
functions by cylinders functions we describe an example of a continuous function on
M4, that is not uniformly continuous, and thus can not be approximated uniformly by
continuous functions. In dimension d = 1 let A, denote the set of all configurations that
have exactly £ particles at each site x € Ay and set Ay, := Ujio Ap. We will show that
the function f :=14_ : M4 — {0,1} is not continuous but not uniformly continuous.
For the continuity of f let first n € Aw. Then n € Ay for some ¢ € Z, and then
nla, = £. But for every sequence 7, — 1 we can choose ny, € N such that 7, =n = ¢
on Ay and so n, € Ay C Ay which shows that f(n,) — f(n). Let on the other hand
1 ¢ A and let {n,}nen be a sequence converging to n. We choose £y > 7(0) and since
N, — 1 we can choose ng € N such that nn|Aeo = 1. Then for any n > ng we have
that n, ¢ A since n, ¢ Ugozo due to the fact that n,|a,, = 1la,, and 0, ¢ Uy, since
7(0) < £y. This proves the continuity of f. To prove that it is not uniformly continuous
it suffices to show that for every § > 0 there exist 1, € M% such that d(n,¢) < § and
fn) =1#0= f(¢). For this, given 6 > 0 one chooses ¢ € Z, such that #(@ < 6 and
n = é]lA“ C=n+1,.

We proceed now with a unified study of the weak topologies of the spaces IPp]MLoio
consisting of measures with p-th moments. The most interesting cases for us will be
the cases p = 0 that corresponds to the weak topology and p = 1 that is related to
convergence of density, the conserved quantity. Of course since the metric d of M% is
bounded it can not be used to define the moments and the p-Wasserstein topologies on
the spaces le]Mgo. Due to this, for every p > 0 we set

P,M .= {,u € PM4 ‘ /n(x)pdu < +oo forallz e Zd},

By(Mx) = ﬂ El(ﬂ)

HEPRME,
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and
BpC(Mgo) = Bp(Mgo) N C(]Mgo),

where as usual the calligraphic £ denotes that we do not identify a.s. equal functions.
Proposition 1.3.6 For every p > 0,

B,(M%) = {femMgo‘ElﬁeZJr, A,B > 0suchthat |[f| < A+ B Y n(m)p}.

zGAf

Proof It is immediate by the definitions that the set in the right hand of the equality
above is contained in B,(M%). For the converse inclusion we must prove that if a
measurable function f : M4 — R does not belong in the set in the right hand side then
it does not belong in B,(MZ), i.e. that there exists 4 € P,M,, such that f ¢ £(u).
Indeed, since f does not belong in the right hand side, for each ¢ € Z, there exists
ne € MZ such that

ol > 2 (14 3 me(@)).

zEAS
But then if we consider the probability measure

oo

1 1
p=-S ——— 5, € PM?,
e 2 35, o < M

where ¢ > 0 is the appropriate renormalizing constant, it is easy to check that p € P,M,

and f ¢ L(p). O

It is obvious by the definition that PoIM?% = PM% and according to this last propo-
sition it is obvious that BoC(M%, ) = BC(MZ ). Consequently the wo-topology on PIM¢,
is exactly the topology of weak convergence of probability measures.

Definition 1.3.3 Let p > 0. The p-th order Wasserstein topology w, on le}Mgo is the
weak topology defined by the family of linear functionals B,C(M%) i.e. the weakest
topology with respect to which all the functions

P,ML 5 s / fdpeR, feB,C(ML)

are continuous.

It is obvious that P,M,, C P,My, and B,(Mu) C B,(M%) whenever p < g and
therefore the restriction of the w, topology is stronger than the restriction of the w,
topology on IPq]Mgo. We will show next that the sub-space

Cyld := B, (M) N Cyl(MZL) < B, (ML)

of all cylinder functions of p-th polynomial growth suffices for the description of the w,
topology on ]Pp]Mgo. It is easy to see that with the notation

B,(Z7]) := {fEm]Mgo‘HA,BZOsuchthat | §A+BZU($)p}
zeJ

53



the cylinder functions of p-th polynomial growth are obviously
Cylz ={Vve mM<, | v = TUop, for some ¥ € B,(Z]), J CZ? finite }.

Definition 1.3.4 A sequence {f,,} C B,(M%) converges B,-pointwise to f € B,(IM%)
if f,, converges pointwise to f and it is uniformly Bp-bounded i.e. there exist constants
¢ € Zy and A, B > 0 such that

sup |fn]| <A+ B Z n(x)P.
neN z|<t

The By-closure of a set F C B,(M%) is the set
By-cl(F) == {f € B,(M%) |3 {fs} C F such that f, — f B,-pointwise}.
Proposition 1.3.7 For every p > 0,
B,C(MZ,) C B,-l(Cyl}).

If in addition the function f € B,C(M%) is uniformly continuous then there exists a
sequence {hp}5%, C Cylz such that h, > f and h, — f € B(M%) for alln € N and
hyn, — f uniformly (and thus also By-pointwise).

Proof We prove first that B,C(M<,) is contained in the B,-pointwise closure of Cylg.
So let f € B,C(M%) and we will exhibit a sequence {fi}ren C Cylg converging B,-
pointwise to f as £ — oco. By proposition 1.3.2 we know that if

ey : Zﬁ? — JMgo and py : ]MgO — Zﬁg
denote the periodical embeddings ey (n)(x) = n(x-+(2¢+1)Z?) and the natural projections
respectively then the functions I, : ep o py : M4 — M< | ¢ € Z converge uniformly to
idya . But then the functions fy := foly = (foes)opy, £ € Zy, are cylinder functions
and converge pointwise to f. So to complete the proof of the claimed inclusion it suffices
to show that f, € B,(M%) for all £ € Z,; and that the sequence {f,} is uniformly
By-bounded. Since f € B,(M%) there exist ¢y € Z; and A, B > 0 such that

fI<A+B > )y

IEA%
and then for every £ > ¢y we have that

[fel=Ifoled SA+B Y (n@)ol)? =A+B Y ).

TEAZ TEAY

Consequently we can exhibit {frys, }rez, C Cylg as the required B,-pointwise converg-
ing to f sequence. Anyway, for ¢ < £y we always have that

(20 + 20+ 1)) +1)°
(20 + 1)

fl<A+B S n@p < A+ BRO+3)T Y n@).

w€AF, zEAF,
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We suppose next that f is uniformly continuous and we will show how to obtain from
the sequence {fy} a sequence that satisfies the required properties. First it is obvious
that {f} satisfies fo — f € B(M%) and ||fr — f|l. — 0. Indeed, since f is uniformly
continuous given € > 0 there exists d. > 0 such that

d(n,¢) <o = [f(n)—f(Ql<e
and since e/ o p; converges uniformly to idya there exists £ € N such that

(>0 = sup d(n,eropi(n)) <.
nEML,

and then obviously for all £ > /. we have that
Ife = fllu= sup |f(ecope(n)) — f(n)| <e,
neEM,

which shows that fy — f € B(Mw) and || f¢ — f|l« — 0.
Finally, using once again the uniform continuity of f there exists for each £ € N a
number d, > 0 such that

1

d(n,¢) <de = |f(n) = FOl <. (1.50)

For each £ € N we choose m, € N such that ZE’LWH 2,6% < 6¢ and define the sequence

h* = fm, + %, L€ Zy, L € N. Obviously the sequence {h;} thus defined converges

uniformly to f and we will show that h* > f. Indeed, since €, © P, (1)|ae = 7|ad
me me

for £ € Z and all € M% we have that

o0

1
d(eme Opme(n)vn) < E W < dy
k=me+1

for all (¢,n) € Z x 72" and therefore by (1.50) we obtain

| f(€me © Pm,(0)) — f(n)] < % for all £ € Z,.

Consequently
1
hézfoemgopmg‘i’z > f,

which completes the proof. O

Proposition 1.3.8 For any f € B,C(M%) the exists a sequence {he}eez, € Cylg such
that he > f for all £ € Zy and hy — [ By-pointwise.

Proof Since f € B,(M%) there exists {5 € Z and A, B > 0 such that

fI<A+B > n@).

d
zEAZUJrl

Then the function
f= !
1+ ZmEAd n(x)p

£o+1
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is obviously in B(M%) with ||f|l. < AV B. Then by standard results in Moreau-Yosida
approximations (see for instance display 5.1.4 in p.107 in [2]) the sequence {f;} defined
by

fe(n) = sup {f(¢) —Ld(n.¢)}

CEMY,

defines a sequence of bounded Lipschitz functions such that f, > f for all £ € N and
fe 1 f Bo-pointwise as £ — oo with

~[flle < F < fe < N1 fllu-

In particular each f; is uniformly continuous and therefore by applying the previous
proposition there exists for each £ € N a sequence { fk ttken C chl(IMd ) such that
fk ¢ > foforall k,£ € N and hmkﬂoo ||f;€ ¢ — fella = 0. So for each £ € N we can choose
k¢ € N such that | fr,c — fellu < . We set hy := f, ¢ and then obviously {hs} C Cyld,
he > f for all £ € N and {h} is uniformly bounded by

B B L 1 B B
ellw = | (fre,e — fo) + fellu < 7t I fellw < 14+ Fllw-

Furthermore hy — f pointwise. Indeed, let 1 € JMOC, e > 0. We choose ¢; € N such
that 7. < 5 and since fe — [ pointwise there exists 2 > N such that | fy(n) — f(n)| < §
for all £ > ¢5. But then for all £ > {1 V {5,

iel) = F0)| < e = Jelu +17e) = Fn)| < 5 +5 <=,

which proves that f, — f pointwise in M< .
Then if we set

he=(1+ E:n@ﬁ0h52(1+ E:nmﬁ)f=f

TEAY €AY

we obviously have that hy — f pointwise and {h,} is uniformly B,-bounded with

sup |he| < (1+ AV B) <1 + ) n(x)”),

a:eA‘ZO
which completes the proof. O
Along the lines in the beginning section 5.1 in [2] one has the following

Lemma 1.3.1 Let (M,d) be a metric space and let 29 C B,C(M) be such that

[ sin

am{/hWJheahhgf} (1.51)

iﬁ{/ﬁtheamh>f} (1.52)

for all f € B,C(M), p € P,M. Then the weak topologies induced on IP,M by the
families =y and B,C(M) coincide.
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Proof Obviously, since =g C BPC(]MgO), the topology induced on IP, M by =y is weaker
than the w,, topology on P, M. For the converse, suppose that [ hdu; — fX hdu for
all h € 2y and all nets {y;}; in P, M and let f € B,C(M%). Then on one hand,

supmf/fduZ > sup buplnf/hdul = sup /hd,u:/fd,u,
he

iel j=>i Zo, h<f i€l J=1 h€Zg, h<f

while on the other hand

1nfsup/fd,ul inf mfsup/hdpi = inf /hd,u: /fd,u.

i€l j>; h€Zo, h>f i€l j>; h€Zo, h>f
Consequently
lim_sup/fdui < /fdug lim‘inf/fd,ui,
which shows that lim; [ fdu; = [ fdu. O

It is now easy to show that the cylinder functions are sufficient for the description of
the w,-topologies on P,IM%_.

Proposition 1.3.9 For all p > 0 the families ]Ple\/[go and Cylz define the same weak
topology on IPlego.

Proof According to the previous lemma and since Cyli = —Cylz it suffices to show that

/fd,u:inf{/‘lfdu‘\lfe(lylﬁ, xpzf}

for all f € B,C(M%) and all u € P,M%. So let f € B,C(M%), u € P,M% be given.
By the previous proposition there exists a sequence {Uy}ren such that

V.l f Bp-pointwise

and therefore since p € IPpJMgO we have by the dominated convergence theorem that

/fd,u:klim /\Ilkduzinf{/\lfdu‘\ll eCyll, ¥ Zf}.
—00

The converse inequality is obvious and therefore the proof is complete. O

d
For each ¢ € Z, the space Zj\_"' is finite dimensional and so by standard results for
the Wasserstein metrics ([31], chapter 7) for each p > 0 the w,-topology on the space

d
IPp(Zﬁz, which is the weak topology defined by the family B,(M%) = B,C(M%) is
polish, with a complete and separable metric being the Wasserstein metric
W)= int ([ =t anto <>) A,

where II(u,v) denotes the set of all transport plans from g to v and |- |, is the metric

AL
on Z,* given by

=

il = (X ntor)

zeAY
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d
For the case p = 0 the weak topology on ]PZQ\_E can be metrized ([31], chapter 7 again)
by the metric

Wioluov)i= _int ( [ n=clean 1d7r(n,<)>-

mell(p,v

Since cylinder functions are sufficient for the description of the w, topologies we
immediately have the following corollary.

Corollary 1.3.1 Let p > 0. A net {u'}icr in P,MZ converges to p € P,M% iff
Af
Pespti — pep € Pp(Z7")
) Ad
in the w, topology of P, (Z").

Corollary 1.3.2 Let y € P,M%, p > 0, and let {p;}icr € P,MZL be a net. Then
Wi — p with respect the w, topology on ]Pp]MgO iff i — p weakly and

lim n(z)Pdp; = / n(x)Pdu, ¥z el
tJmg, M2

Corollary 1.3.3 The w, topology on ]Plego, p > 0 has a countable base and in partic-
ular sequences are sufficient for the description of the w, topology.

Proof By standard results on the weak topology of measures (see e.g. section 5.1 in [2]
again) there exists a countable family Z of bounded Lipschitz functions on M¢ that de-
fines the weak topology. But then by the previous corollary it follows that the countable
family ZU {n(z)|z € Z4} defines the w, topology and the claim is proved. O

As we will see next, the space ]Pp]l\/[g07 p > 0, is a polish space. The case p = 0 is
immediate since the weak topology of probability measures on a polish space is always
polish by standard results in the weak topology on probability measures. The same is
also true for the Wasserstein weak topologies but here we do not exactly consider the
Wasserstein topology corresponding to the metric d of M, and this is the reason for the
following proposition.

Proposition 1.3.10 The space (leMgo,wp), p >0, is a polish space. A complete and
separable metric defining the topology w, is the metric W, : P,M% x P,M% — R,
given by

oo

1 Wep(pesit, pesv)
Wy (p,v) = T~
p(1:v) ; 2601 1 + Wo p (pewpt, Des?)

d
where pp : ML — Zf , 0 € 7, denotes the natural projection.

Proof By standard arguments for metrics of this type that we have already described
in proposition 1.3.1 it follows that W), is indeed a metric. Furthermore convergence
Wy (N, 1) — 0 is equivalent to requiring that We ,(pexpt® , peept) — 0 for all £ € Z
and so according to corollary 1.3.1 this metric metrizes the w, topology. So we have to
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prove that the w, topology is separable and the metric W, complete.

We prove first that the metric W, is complete. So let {uV} C P,M% be a W,-Cauchy
sequence. For notational simplicity we set pp := pg.u for each £ € Z, u € PMZ, and we
will show that the sequence {u¥ } ven is a Wy ,-Cauchy sequence for each ¢ € Z,.. Given
€ > 0 we can choose Ny . € N such that Wp(uN,uK) < o< forall N,K > Ny and

20FT Tte
then N K
%% 4
ep(p 1\771% )K < QHIWp(NN»#K) < €
T Wep (06, i) T+:
for all N, K > Ngy.. But then since the function Ry > t — IL—H is strictly increasing

we have that Wy, (u), uk) < e for all N,K > N, . which shows that the sequence
{ul} Nen is a Cauchy sequence for each £ € Z .

Now, since {,uév tnen is a Cauchy sequence there exists for each ¢ € Z, a measure
e € ]P,,(Z?_g) such that p — p, in the w, topology of IPp(Zﬁg). We will show that
the sequence {ju¢}sez, is a projective sequence of probability measures i.e. that

pgﬂpgﬂ =p; forallleZy,

d
/41 ZA2+1
i

where p, +1

d
— Zﬁe denotes the natural projection. Indeed, since p, = pj
Pl = pl¥ for all ¢ € Zy, and for any f €

*

Des1, for each ¢ € Z, we have that pg
d d
BP(Zﬁz) we have that fopi™ € Bp(Zﬁ”l). Therefore since p) — g for all £ € Z

in the w, topology we for any f € Bp(Zﬁ\rd) that
041 o+1 . (415 N . N
/fdpef Het1 = /fom+ dppgyr = ngnoo/foz?f dpgyr = ngnoo/fdue

— [ fdu,

d
and since this is true for all f € B(Zﬁ‘f) proves that the sequence {1,}7°, is projective.
Now since {u¢}tren, by Kolmogorov’s extension theorem (see e.g. [11] p.68, § 51)
there exists u € PMZ such that pp.p = pe € P,M% for all £ € Z,. Then obviously
p € P,M% and since by construction we have that

Pipg. = pp — b = Peslt

in the w, topology it follows by corollary 1.3.1 that u¥ — u in the w, topology of
]Ppll\/[gO which proves the completeness of W,.
Likewise the separability of the w, topology on lelMgo follows by the separability of

d d
the spaces IPP(Z?_@ ), £ € Z+. Indeed, let D, C IPP(ZQZ) be the a countable dense subset
d d
of le(Zi\e ). Recalling that ey : Zﬁe — M, denotes the periodic embedding we set

D:= U 65*(D£)

LeEZ 4

and we will show that D, which is obviously countable, is dense in IPp]MgO. So let
p € P,MZ and let V be a neighborhood of u. Since for any f € B,C(M%) the
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sequence {fo} := {f oesops} converges By-pointwise to f we have by the dominated
convergence theorem that

/fd(eeom)*u:/fedu ij/fdu

for all f € B,C(M%) and therefore (eg o ps)ept — p as £ — oo in the wjy-topology.
Consequently for large enough ¢y € Z, we have that (eg, ope, )«p € V. But on the other
hand, since

FEB,CML) = foe, € B,OZY)

it follows that for each fixed ¢ € Z the function

Af d
eps t P(Zy) — PpME,
Ad
is continuous. But then by the continuity of ey, and since Dy, is dense in IPp(ZJréO) we
can choose (g € Dy, close enough to py,.p so that eq .po € V. O

Definition 1.3.5 A set X C PMZ is said to have uniformly integrable p-th moments,
p >0, if

lim sup/
R0 uelk J{S <o (@)P=RY 512,

n(x)Pdp = 0.

It is easy to see that a sequence {u™} C IPp]M‘éO converges in the w, topology iff it
converges weakly and it has uniformly integrable p-th moments and that a set £ C
P,M< is relatively compact iff it is tight and has uniformly integrable p-th moments.

1.3.3 The Space M (T%)

We denote by M, (T9) the space of finite positive Borel measures on the torus T¢
equipped with the topology of weak convergence of measures, according to which a
sequence {uV} € M (T4) converges to u € M (T9) iff

[t — [ gan

for all f € C(T9). By the Riesz representation theorem (theorem 7.2 in [16]) the dual
of the space (C(T?),|| - ||,) where || - ||, is the uniform norm || f||,, := sup,era | f(u)] is
exactly the space M(T?) of all finite Borel charges equipped with the total variation
norm ||u| = pt(T?) + p=(T?) where p = u+ — p~ denotes the Hahn decomposition
of . By definition the w*-topology of M(T?) = C(T%)* is the weakest topology on
M(T?) that makes all the linear functionals £; : M(T?) — R, f € C(T?), defined by

Cp(p) = / fdu
continuous. It is obvious that the cone M (T?) is a w*-closed subset of M(T?) and
therefore the topology of weak convergence of non-negative measures on M (T?) is

exactly the restriction of the w*-topology of M(T9) = C(T%)* in My (T%). As is
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known (see for instance theorem 3.25 in [7] and the remark following it) the w*-topology
on the dual of a Banach space X is never metrizable on the whole space X™*. It is
metrizable on norm-bounded subsets of X* iff X is separable. Nevertheless the weak
topology on the cone M (T4) is metrizable. We will describe in this section two useful
metrics inducing the topology of M (T4).

Since T? is compact the space C(T?) is separable and so there exists a sequence
{fi}32, € C(T?) with f; = 1 that is dense in C(T%). Using this sequence we define a
metric § in M (T9) by the formula

o0

N vl
) = ) S T )] 159

Proposition 1.3.11 The function § : M (T?) x M (T?) — [0,1] defined in (1.53)
is a complete and separable metric on M, (T?) that metrizes the weak topology.

Proof The proof that J is a metric is standard. We prove next that § metrizes the weak
topology of M, (T9). On one hand, if u¥ — p weakly, then (u, fi) — (fx,p) for
all k € N. So, given £ > 0, if we choose kg € N such that ZzikOH 2% < g/2, we can
then choose Ny € IN such that

N>Ny = A [N = fi)| < /2,
and then we obviously have that 6(u™, u) < e for all N > Ny. Therefore weak conver-
gence implies convergence in the § metric.
On the other hand, if 6 (1, ) — 0 then p¥ — pweakly. Indeed, if 5(u™, p) — 0,
then imy o0 (™ — p, fx) = 0 for all kK € N. In particular, since f; = 1 we have that
N(T?) — pu(T?). Therefore, given € > 0 and f € C(T?) we can choose kg € N such
that || f — frollu < €/2[1 + 2u(T?)], and then choose Ny € N such that

N>No = (" = fi)| V[N (T = (T < 1A (£/2).
But then for all N > Ny we have that

_ d
N B < 10 = s Fiod] + Qe = a1 = fil) < & 4 ST MY

=272 11 2u(Td)
e e (T + (T e el+p(T?) +p(T?

g
272 1y2u(Td) —272 142u(T% O

IN

which since ¢ > 0 and f € C(T?) were arbitrary proves the weak convergence uv — p.
Next, M (T¢9) is separable. A dense subset is the set

{ i aid
i=1

consisting of all linear combinations of Dirac masses at points x € D, where D C T? is

T nElN, ai€Q+7 xzeD}

a countable dense subset of T¢, with positive rational coefficients.
We prove next that the metric 6 is complete. So let {u’V} be a §-Cauchy sequence.
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Then for all k£ € N the real sequence {(u”, fx)}nen is Cauchy in R, and therefore for
all k € N there exists the limit limy oo (4, fx) =: Iy € R. We define next a function
I:{fxlk € N} — R by I(fx) = I;. Since f; = 1, we have that I} = limy_ . pu¥ (T¢)
and in particular 0 < pV(T?) < C for all N € N for some constant C' > 0. Therefore
for all N,m,k € N we have that

’</J'N7fk:> - <MN7fm>‘ < Cka - fm”u

and so

1CFe) — Il = Jim [, fi) = ™, F)] < Clic— Fl

for all m,k € N. Therefore the function I : {fx|k € N} — R is Lipschitz and as such
has a Lipschitz extension I : C(T¢) — R. We note next that I is linear. Indeed, let
a,b € R and f,g € C(TY). Since {fi}ren is dense in C(T?) there exists a subsequence
{hi} of {fi} such that ||hx — af — bg|l. — 0 and since the sequence {u™(T%)} is
bounded above by C' > 0, we have that

sup [(u™, af +bg) — (™, hi)| < Cllhi — af — byllu,

NeN
that is (u™, hy) — (uV,af + bg) uniformly over N € N. Therefore we can exchange
the order of limits and write

T . N
= N L )

I(af +bg) = lim lim (4™, hy)

Also there exist subsequences {fi, }ren and {gx }xen such that f, — f and g, — g in
C(T) and then

k—oo

b = afe = bgrllu < [|hr — af = bgllu + laf + bg — afi — bgxll. — 0.
It follows that
(™, iy = alp®, fi) + 6™, ge) + (™ b — afi — bgk)
and therefore

lim lim (u™, k) =a lim lim (@, fir) +b lim  lim (4, ).
N G ) = i i e i) 0 it G k)
Then since the convergences (1%, fi.) — (u, f) and (u™, gx) — (W, g) as k — o
are uniform over N we can exchange the order of limits once more to obtain that

I(af + bg) :akli)ngof(fk)+b lim I(gx) = al(f) +bl(g).

k—o0

Now, since I : C(T9) — R is a bounded linear functional on C(T%), there exists by
Riesz’s theorem p € M, (T?) such that I = (u,-), and since by the definition of I we
have that

A}igloo(uN,fk> =1I(fx) = (i, fr)

for all K € N and {f;} is dense in C(T?) it follows that uv — 1 weakly as required.[]

The weakly compact subsets of M (T?) are easily described.
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Proposition 1.3.12 A subset K C M (T?) is relatively compact iff

sup pu(T?¢) < +oc. (1.54)
pnerx

Proof Indeed, the function M (T?%) 3 p +— pu(T9) = [1du is weakly continuous by
definition and therefore if K is compact, its supremum over K is finite. On the other
hand, suppose that (1.54) is satisfied. Then since K consists of non-negative measures,

sup ||ul|lry = sup u(T?) < +o0.
pneKr pner

Thus K is norm bounded in C(T¢)* and therefore by Alaoglou’s theorem according to
which norm bounded subsets of a dual Banach space X* are always w*-relatively com-
pact, we have that cly«(B) C cly«(My(T%) is compact. But M (T?) is w*-closed,
and therefore given any sequence {u, } in B we can extract a subsequence that converges
to some p € M (T9). This proves the relative compactness of B in M (T%) and com-
pletes the proof. O

Another useful metric on M, (T?) is given by the restriction of Dudley’s norm || - ||p
which is defined on the whole space M(T?) of finite charges on T% by

o =sup { [ fau| £ € Lin(T), 171 < 1, (1.55)
where || - || gz, : Lip(T%) — Ry is the bounded-Lipschitz norm on Lip(T¢) given by

AL = 1fllu + £ ]|Lip- (1.56)
Examples:

1. For all x € T? we have that ||0,|p = 1.

Proof Since the constant function ¢; =1 has ||¢1||pr = 1 we obviously have that
16z]lp > (c1,62) = 1.
On the other hand, for all f € Lip(T¢) such that ||f| sz < 1 we have that
(f02) = f(2) = f(2) = F(0) + F(0) <[ flluip|zlre + I fllu <[ fllB <1
and therefore

6zllp = sup (f,dz)=1.
Ifllpr<1

2. For all 2,y € T? we have that
2
2fe ~ s < 16 = 8,llp < o~ .
Proof On one hand, for all f € Lip(T?) with || f||zz < 1 we have that

(£,02 = 0y) = f(z) = f(y) < | fllLiplz — ylra < |2 — ylpa,
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which proves the right hand inequality. On the other hand, the function f, : T¢ — [0, 1]
defined by f,(u) = —(2/3)|x — u|pa satisfies || fz||pr < 1 and

2
||6a: - JyHD > <f:675x - 5y> = g‘x - y|’]I“i-

As we know, the restriction of Dudley’s norm on PT? metrizes the weak convergence
on PT4.

Proposition 1.3.13 The metric dp : M4 (T%) x M, (T%) — R on M (T?) defined
by
dp(p,v) = |p=vp

is a metric on M, (T?) that metrizes the weak convergence of measures.

Proof We prove first that if dig(u’, ) — 0 then u — u weakly. Indeed, for any
¢ € C(T?) with Lip(¢) < 1 we have that

} [ o - u)’ = [odw™ ~ v [0 ) < el ) — 0

and therefore if for any non-constant Lipschitz function ¢ : T¢ — R we set ¢ :=
Lip(¢) !¢ we have that

[ o = Lipt) [ Gdu™ — Lin(s) [ b = [ oa

for all Lipschitz functions ¢ : T¢ — R. As is well known ([2], chapter 5) this implies
the weak convergence u’¥ — pu.

We suppose next that u” — u weakly and we will prove that dp(u?, ) — 0.
Since uV — u weakly we have that u™(T?) — u(T?). Since dgr is induced by a
norm we have that

dp(u™, ) = dp (8o + p™, 0 + 1)

and so we can make the additional assumption that p(T%) A g (T?) > 0 for all N € N.
So we can set ji := p(T4) "'y and g = pN(T9) " 'uN. Then gV, N € N, and j are
probability measures and for all f € C(T?) we have that

/fdﬂNW(lM/fduNHM(qlrd)/fdu/fdﬂ

and therefore 1V — [ weakly. Since as we know the dp metric metrizes the weak
convergence of measures on PT¢, it follows that

lim dKR(ﬂN,ﬂ) =0.
N—oco
Therefore
11N —pllo = M (THaY = w(Tillp
< MY — pN (T allp + |p™ (T i — (Tl

N—oco

= pM(Tdp(E™, 1) + [ (T?) = (Tl alp =570,
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as required. O

Sometimes it is useful to understand measures in M (T?) as equivalence classes of
measures on RY. More generally, we denote by M(IR%; R¥) the set of all R*-valued
measures with finite total variation and define an equivalence relation -~ on M(RR%; R¥)
by

Loy = /fdu:/fdu V f e C(RY)

where by C(IR%) we denote all the continuous Z?-periodic functions on R?, i.e. f € C(R%)
iff f(x) = f(y) whenever x —y € Z?. We denote the equivalence classes of «~ by [u]. If
we denote by p : R4 — T 22 [0,1)¢ the usual covering map defined by p(z) = = — [z],
where [z] = ([z1],...,[24]) denotes the integer part of x = (z1,...,24) € R?, it is easy
to see that pu « v iff p.u = pv € M(T% RF). Indeed, suppose that y «~ v. Then for
any function f € C(T?) we have that the function f op is in 5(]Rd) and therefore

/fdp*u=/fOPdu=/f0pdV=/fdp*v,

which shows that p,p = p.v. On the other hand, if f € a(le) then obviously f = foiop
where i : T¢ = [0,1)% < R is the inclusion and so if p,u = p.v then

[ tin= [(sotapan= [(7ondpw= [ sav

which shows that p «~ v.
It follows that the push forward p. : M(R% RF) — M(T? RF) induces a well
defined bijection
pa s MEBSRY s M(TYRF)

on the quotient space by pi([u]) = p«p. Finally, by the definition of the equivalence re-
lation « it is obvious that equivalence classes [u] € M(BER) /. can be used to integrate
periodic functions f € C(R?) by the formula

[t = [ san= [zt = [ (1o idpn,

where of course p is any representative of the equivalence class [p]. For simplicity we
state the next proposition for the case of non-negative valued measures.

Proposition 1.3.14 The mapping p, : M (R%) — Mj(Td) induced by the covering
map p : RY — T? induces a homeomorphism p, : M+®) /) — M (T?) between the
-quotient of the weak topology of M, (IR?) and the weak topology of M (T%).

Proof Let 7 : M (R%) — M+(]Rd)/, be the quotient mapping. Since p.u = p.v
whenever p v~ v and p, is continuous it follows by the universal property of quotient
mappings that p; : M+(Rd)/m — M (T) is a continuous mapping. Furthermore p,
is obviously bijective, with inverse the function

Pt (w) = [iepl, € My (T,
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Now as we know, a set A C M+(]Rd)/m is open in the quotient topology iff 71 (.A) is open
in the weak topology of M (R9). It follows that a sequence {[un]}nen C M+®")/
converges to some [u] € M+(]Rd)/m iff there exist v, € [uy,] for all n € N and v € [u]
such that v, — v in the weak topology of M, (R?). In particular whenever {u,} C
M (T9) converges to u € M (T?) we have that i,p,, — i, which shows that p, '
is continuous and thus p, is a homeomorphism as claimed. O

Corollary 1.3.4 Let {iy}nen U {n} € M (R?). The following are equivalent:
(2) Pufln — Pufh as N — 00 in the weak topology of M (T?).
(b) For all u € C(T%) < C>=(R?) it holds that

lim [ udy, = /udu.

n—oo

(c) There exist vy « pin, for alln € N and v« p such that lim,, o v, = v in M4 (R?).
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1.4 Equivalence of Ensembles

The main result of this section, theorem 1.4.1 on the equivalence of ensembles is taken
from the article [19]. More refined results have been proved in [3, 4]. First, the definition
ZR distributions on the discrete toruses Tﬁl\,, N € N, extends obviously to the full lattice
VAS

Definition 1.4.1 Let g: Z; — Ry be a local rate function and let I. be the interval
of the admissible densities for the one-site ZR distributions {V;}, p € I, associated to
the local rate function g. For each p € I the distribution v, = v, , € P; M given by

oo L 1
Vp = H Vo9

z€Z4
is called a (normalized) ZR distribution on the full lattice 7 with rate g and density p.

Of course v is the unique distribution on M2, that makes the natural projections
. d d
n(z): M, — Zy, =z € Z°,

i.i.d. random variables with common distribution the one-site ZR distribution Vfl). Also,

through the identification T4, =2 Z‘Ji\,, we have nivu;fo = l/év, N e N.

Definition 1.4.2 The family of ZR distributions {#;°} ,¢1, associated to some local rate
function g is known as the grand canonical ensemble of the ZRP with rate function g.

Definition 1.4.3 The family {Vj‘fL K} (N, K)ENXTZ . of the extremal invariant distributions
of the ZRP with local rate function g which are concentrated on the communication
classes M ., given by

1 1 1
d d
VK= oror Y 0 ZINGE)= Y
K= Z(NI K ! !
(N K) went . 9 (1) nent Y ()

is called the canonical ensemble of the ZRP.

As we have seen the grand canonical ensemble is translation invariant. The same is
also true for the canonical ensemble.

Proposition 1.4.1 Let {vn x € ]PIM?V}(N’K)E]NXZ+ be the canonical ensemble of the
ZRP with local rate function g. Then the distributions vn ik, (N,K) € N x Z; are
translation invariant, that is for all (N, K) € N X Z, we have that

d
Tz+xVN,K = VN,K, V(EG’]I‘N.

Proof Obviously for each (N, K) € N x Z, and each n € My, z € T4, we have that

el = > Tan(y) = Y nl@+y) = lnl,

yeTY yeTY
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and so TI(M?\LK) = M?V,K for all (N,K) € Z,, v € T%. So, for each n ¢ ]M%K we
have that
vN k(1) =0 =vN Kk (T-21) = TasVN, Kk (1)-

On the other hand, for all n € M‘Ii\,’K and all x € T4, we have that
Wren) = [] 9em) = TI 9'evs) = T 9'(ne) = g'm)
yeTq, yeTq, zeTY,

and therefore

1 1 B 1 1 B -
Z(Nd,K) gl (T—am) - Z(Nd,K) 9'(n) = VN,K(U)~

Tgc*l/l\ﬂK(T]) - VN,K(T—QCT]) =

In what follows we will always consider the spaces of configurations M4, on the dis-
crete toruses, and the respective spaces of probability measures IPJM‘}V embedded in the
space of configurations M% on the full lattice and in the respective space of probability
measures PMZ via the periodic embeddings considered in the previous section. Fur-
thermore, we let 7l : M4 — M¢, N > L, denote the natural projections and set
vk i =nly

N,K -— T VN,K-
Theorem 1.4.1 (Equivalence of Ensembles) Let {vn x }rxez, and {v)},cio,p)nr, be
the canonical and grand canonical ensemble of the ZRP. Then for fired L € N, for all
p >0 it holds that

L —
NEI—I‘,-IDO H(VN [pN4] |Vp/\pc) =0.

In particular by Pinsker’s inequality (proposition A.3.5) ||V]%, (N~ |lrvy — 0 and

P/\Pc ‘

consequently uﬁ, [pNd] z/pL weakly as N — oo.

Ape
Proof Let n: M4 — ]M;l, ¢ € N, be the natural projections. Of course it suffices to
prove that for each £ € N

_ L
NLHE n*VN[ N =V, (1.57)

weakly in PM{¢. So we let £ € N and set l/ﬁ,’K = nun i for all (N,K) € N x Z,. By
Pinsker’s inequality, for any measurable space M, the total variation norm on PM is
bounded by twice the relative entropy,

[V — ullpy < 2H(v|n), ¥ p,vePM,

and therefore since convergence in total variation is stronger that weak convergence, it
is obvious that it suffices to prove that

£ _
NLHEOO,H(VN de]|Vp/\pc) =0.

Since by the definition of v/}, p € I., we have that

N (Y — 1 ®(p)lnh
= Z@E g "
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for all n € M, it follows that vy r is absolutely continuous with respect to Vév with
density

Nd
dVNJ(( ) = N,k (1) Z(@(p))

vy VN (1) g, (1) = Z(N% K)®(p)K Inag, . ()-

fyx(n) =

Furthermore, for all N € N, K € Z,, we obviously have

(71 d K
pATNE N¢ 9'(n) e
Z(2(p)) neM% o 7 Z(2(p))
and so 1
fne(M) = 1y n).
1) VAV(M?V,[de]) MN*["NL”( )
Therefore the relative entropy of vy g with respect to IJIJ,V , p € 1., is given by
H(v |VN) = log fn xdv - Z log fn k( )L
N,K|Vp = g JN,KAVN K = Z(Nd,K) ; g JN, K\ 9!(77)
77€]MN,K
= —logv,) (M} k). (1.59)

By the super-additivity of the relative entropy, proposition A.3.6 in the appendix,

H(VN,K|1/Z,V) > Z H(n(m)*l/N,K|1/;).

J:ET‘}V
Since vy, k is translation invariant, in particular it has equidistributed marginals, that

is n(2)«vn . = n(0).vn k for all z € T4, and therefore it follows that

1 1
7H(VN7K|I/[1)) =~ log V[],V(M?\LK).

H(n(0)wvn x|vy) < N

We prove next that more generally, for any N € N, A C ’IF‘}V C Z% and p € I, we
have

1
’H(VJ/\\LK | V,/;\) < — a7 log Vﬁ(M?V,K)a (1.60)
[5x]
where for all (N,K) € N x Z,, p € I, and A C T% we have set

A _ (. T% A 1
v = (1 )*”N,K’ Yp '_®Vﬁ’
xeEA

and we denoted by
nk Zi — Zj\_
the natural projection for each A C F' C Z¢. To this end, we prove that the quantities
A A d
Hvn i |vp), ACTYR,
depend on the subset A only through its cardinality #A, i.e. that

MNFCZY $A=4F = Hng|v))=Hix|v)) (1.61)
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Indeed, suppose that A, F C T¢, are such that A = #F. There exists then a bijection
o0 : A — F which in turn induces the mapping o = o* : Zf — Zf\F on the respective
spaces of configurations given by

(0N = No@), V€A

In its turn the transformation ¢ = ¢* induces the mapping o, : IPZf — ]PZQ\_ through
the push forward of measures on the spaces of distributions. Obviously for each p € I,
and each n € Zﬁ we have that

ol () =vi (o) = [[ vis-20) = [] va(na) = v> (). (1.62)
yeF TEA
We will prove that
T (1.63)

for then it will follow that H(V]’},,K |v)) = H(vy k | vI') as claimed, proving (1.61).
We prove now equality (1.63). By definition, for all N € N, A C T4, and n € Zi‘ we

have that

V]QLK(U) =vnk{¢ €M |¢lr =1}

Obviously, if [n|1 := |na1 = Y ,ea e > K we have that V]‘},’K(n) = 0, while on the
other hand for any ¢ € ]M‘}V such that | = 7 we have that

9= II 9 =11am) Tl ') =amg'Clrea)s

z€TY, z€EA z€TI\A
and so if 0 < |n|a,1 < K we have that
1 1 1
A
v N)=—————— —_
S ST DS I
CeZ N [Chi=K—[nla 1

Therefore, if we set

ZINK) = ) L,

|
VT Th=K gt(n)

for every subset A C T4, C Z? and any K € Z,, then we can write that

1 Z(T4\AK = [nas)
Nk = NI 2 9l(n)

5y-

77€Z$:\77\A,1§K

Note that the quantity Z(A, K) = Z(§A, K) depends only the cardinality A of A and
according to this notation we have that Z(N¢, K) = Z(T%,, K) for all (N, K) € NxZ,.
So since for all n € Zi we have that

onlar =Y No@ = >_ My = Inlra

TzEA yeF
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and similarly

g'on) = [ 9'e@) = ] 9'(my) = 9'(),

zEA yeF

it follows that indeed o.vf ;o () = 0= vy (1) if n € Z4, [n); > K and

_ 1 Z(Nd—ﬁF,K—|O'_177F’1)
U*V]IG,K(TI) = VJ{;,K(U 177) = Z(N4, K) gl(c—1n)
_ 1 Z(Nd — uAvK - ‘77|A,1) _ VA (77)
Z(N4,K) g'(n) A

for all n € Z% such that |n|; < K, which proves (1.63).
Now indeed (1.61) follows easily by equalities (1.62) and (1.63), since

A F F -1 F
dvy i B do.vy x B Z/N’K(O' ) B dvy i

GOVNEK (N _ 1
dv) (n) = do.vf (n vE(o=1n) dvl (o)

for all n € ZQ and therefore since o* : Zf: — Zﬁ is a bijection we have that

dVIQ/K _ dV{/K _
Hvn |vy) = D0 vimlog—"5(m) = 3 vh k(o™ n)log — (07 )
nezsy P nezsy P

dviy
= > vRx(mlog— () = H(vk k| ).
nezt P
Now, by the implication (1.61) just proved and the super-additivity of the relative
entropy it easily follows that (1.60) holds. Indeed, given any subset A C T4, there exist
[N?/4A] € N in number disjoint subsets A; C T4, i = 1,...,[N9/4A] such that §A; = §A
for all i = 1,...,[N?/gA]. Then if we set

[N4/4A]
Ay =T%\ | A
i=1

the discrete torus T4, is the disjoint union of the sets A;, i = 1,...,[N¢/4A] and A, and
so by the super-additivity the relative entropy

[N /EA] [N?/4A]
Honklv)) = D HNM) +HENKI) = Y HvN v
=1 i=1

Nd
[ﬁiA} H(VI[\\Z,K|V;/;\)7
for all (N, K) € N x Z4 and all p € I.. Therefore, by (1.59) it follows that

H(h clvd) < mwmmw ) = —[Njwlog VY (M),

which proves (1.60) as required. In particular it follows that for all p > 0 and all N € N,
we have that

1
H(Vz{r,[pzvd] ‘Vﬁ/\pc) < —W log Vg\pc (]M?v,[pzvd])a (1.64)
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d
where as in the beginning of the proof we use the notation VJQ K= 1/;\1;"}{.

Now, by (1.64) it is obvious that to complete the proof it suffices to prove that

oo 1
lim inf = log Vonpe (M% 1 na) = 0, (1.65)
for then we have that
: 0 4 d 1: 1 Nd 4 0
s (v Vi) = £ lmsup 5 [T [ MOl
1
d 1: N d
ot (g e )
1
d i N d
= 00 fminf 15 logvpn, (M jova) <0,

as required. In the rest of the proof we separate cases on whether the density p > 0 is
below, equal to, or above the critical density p..

Case 1: Subcritical density p < p.. Since p < p,, the distribution 1/; has finite moments
of all orders, and it particular it has finite variance 0'3 > 0. So by the local central limit
theorem in the lattice case we have that

d 1 _(I*ZN‘Z)Z
lim sup |oc,N2v . =zl — e 203N —0
N oo ety |F pAl v = o} N
and therefore
¢ | Nimord 1 — UeN—pN)?
li Nz M - 202N -0 1.66
yhim VR (M ) o VZAN ’ (1.66)

Now, obviously ([pN9] — pN%)?/202N? — 0 as N — 400, and so there exists N; € N
such that exp [~ ([pN9] — pN9)?/262N?] > 3 for all N > Ny, and by (1.66) there exists
N5 € N such that

N J 1 _ <[de12—/)(1;“">2
v M - ¢ 2(TPN
p M) = N

But then for all N > Ny := N7 V N we have that

1

d
N > N. — N2 - -
= 40,27

<

e 1 _UeNY—pNT2 g 1
N (M s = e 202N S S — 1.67
p ( N,[pN‘i]) Up\/w 4 ZUp\/W ( )

and therefore

1 1 1
lim inf — log v/ (M4 > liminf — log ———— =0,

Notoo Nd p (M (o) N=rtoo N % 95 \/orNd
which proves (1.65) and completes the proof for the case of subcritical densities p < p..
Case 2: Critical density p = p.. In this case v}

p
If 02 := V(v}) < +oo then the previous estimate by the local central limit theorem

. does not have exponential moments.
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remains in force. Nonetheless, even when the variance O’% of l/;c is infinite, by the more
general local limit theorem for stable limits we get a bound of the form

N (nrd ¢

Vo (MN,[de]) > Nd

for some constant ¢ > 0 and all N large enough, completing the critical case.
Case 3: Supercritical density p > p.. In this case, for all p > p. we have that

yN (M ) > u;i{nml,l:[pc(zv—l)d], 5 n(fc>=[de]—[pc(N—1)d]}
|z|co=N

_ *NP_(N_1)¢
= ”g 1(M?V,[pC(N—1)d]>(V;C) N=(N-1) ([PNd]—[Pc(N—l)d])a

where (l/;c)*N is the N-fold convolution product of v} . Therefore, for all N € N we
have that

.. 1 N d P 1 N-1 d

o inf g log v (Miv pvey) - 2 i inf g log ™" (M, (v-1)9)

L 1 LN
+ lim inf < log (v, )™ ([oN] = [pe(N = 1)1),

where we have set N := N? — (N —1)? for all N € N. Now the first term is obviously
equal to zero by the critical case and so it suffices to prove that

. . 1 1 \«N? d d
}\}gfgmlog(%c) (PN = [pe(N=1)7]) > 0 (1.68)

We will prove (1.68) first for dimension d = 1. Of course, if d = 1 then N} =1 for all
N € N and so (1.68) becomes

R
liminf < logwy, ([pN] = [pe(N = 1)]) > 0.

Since the critical one-site ZR distribution 1/;

proper domain Dy , = (—o0,0] for its moment generating function, it has heavy right
Pc

tails. Since v

tailed distributions on lattices this is equivalent to requiring its density with respect to

. does not have exponentials moments, with

is supported on the lattice Zy, by a basic characterization of heavy

the counting measure on Z; to be heavy tailed, i.e. that

lim sup eGNV;C(N), vea>o0,
N—+oo

and in its turn this is equivalent to

. 1 1
1\{1_1}r_1|r1OC N logv, (N)=0.

In the particular case of the ZR distribution this can be seen directly since as we recall

by (1.26) the critical fugacity ¢, is ¢, = liminf;_, 1o ¥/g!(k) > 0 and

S0N
g!(N)

1., 1 1 1
Nlogupc(N) = —log + =logp. — N log g!(N)

—lo
N *®Zp) N *®
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Therefore the limit

1
lim —logg!(N) = hm log \/g =logy. >0
N—+oco N

exists and

: 1 1 _ : N/ _
lim Nlog v, (N) = log e, Nl_l}r_r:()() log 4/ g!(N) =

N——+oc0

Moreover, as we will show for any bounded sequence {kn}nen C Zy of integers, say
supyen kv <M € Z, and any r > 0 we have that

: 1 1
NE)IEOO N logv, ([rN]+kn) = 0. (1.69)

Indeed, in this case we have that
[TN]-‘:—]CN

1 1 ¢

log —— + — log ———————
N % Z(p0) T N B g ([rN] + k)
1

1 rN|+k
~ . ]N M logp. —log V/g!([rN] + k)

log
Z(pe)

and therefore, since g has a bounded discrete derivative ¢’ (k) := g(k+1) —g(k), k € Z,
as a local rate function by (1.15), if ¢, > 1 we have that

1
i logv) ([rN]+ky) =

[rN]
N

: 1 1 _ T i [rN] | )
I logy, (V] +ky) = loge, i tog (/g (N + )

~ logef |1 [ log Wwvm)-...-g<[rN]+kN>]

kN

T _ a3y :
log ;. 1~ Tim log | lg/lI% il;[l([rN]H)

Y

kN

_ r T N . _
= logyl |1 ]}}Trrololog E([TN]—&-@) 0,

which implies that limy+eo 4 log v, ([rN] + kn) = 0 as required. Furthermore, as we
shall see, by a simple rescaling we can always assume that ¢. > 1 which will complete
the proof of (1.69). Indeed, for any local rate function ¢ : Zy — Ry and any A > 0
the function Ag is a local rate function with critical fugacity

g = liminf {/(A\g)!( —hmmf\/ g'(k) = Aoy

k—4o00

and obviously their partition functions are related by Zx,(-) = Z,(-/\) and therefore if
we choose \ = 471 then v, =7, = ;A A can be considered as a ZR distribution
corresponding to the critical fugacity ¢y = 1. In turn this proves (1.68) for the case of

dimension d = 1, since for any p > p. we have that

[PN] = [pe(N = )] = [(p— pe)N] + ki, VN €N,
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for some bounded sequence {ky}nen C Z.

We prove next that (1.68) for general d > 1. Note that loosely speaking N¢ is of
order N9~! for large N € N while whenever b > a > 0 the term bN¢ — a(N — 1)? is of
order N?. For all N,d € N and p > 0 we set

d

z*:ki = [de] - [pc(N - l)d]}

i=1

14(11\[7/J = {(kl,...,kN;i) € Zf*

and then

(W )N ([pN] — [pe(NV — 1)7) = > vy (k) ovy (k).
(k1eeeskya) €A,

For fixed p > p. we set

[PN] — [pe(N — 1)d]}

mpn.,d -= |: Nd
*

for all N,d € N. Then [pN9] — [po(N — 1)¥] = my gN& + vy q for some remain 0 <
UN,d < N¢ for all N € N and

W )N ([pNY = [po(N = 1)) > v} (mya)¥* " 0) (ma + on.a)

for all N € N. Therefore

d d _
108 ()™ (N - [oe(N-1)) > 52

1
log ylc (’I’T‘U\Ld)-‘rﬁ IOg ylc (mN7d+UN7d)'

It is easy to see that

sup [[(p — pe)N] = my.a| < +00
NeN

N¢-1
Nd

NE—

. 1
and so since %7 — las N — +oo, we have

by (1.69) that

behaves like % as N — +oo,ie. N

d

*

e 1 1 P S
liminf =7 log vy, (mava) = liminf vy ([(p = po)N] + k) = 0

with kn :=my.q — [(p — pec)N], N € N. It follows that

NP | «N4 N |
lim inf Na log(ev,,)* ™ ([pN9] = [pe(N — 1)%]) > liminf mlog V;C(mN,d + UnN.q)

N—+oo N—+oco

and therefore it suffices to prove that

1
}\}girg; Na log 1/;6 (mng+vnag) > 0.

But this follows by the following obvious generalization of (1.69): For any d € N, r > 0
and any sequence {ky} nen C Z such that for some M € N,

~M<ky<M+N¥' VNeN
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we have that

1 .
Wl galosvh (rN] + k) = 0

This completes the proof of the supercritical case, and the proof is complete. O

The equivalence of ensembles gives us some useful limits. For instance, the equiva-
lence of ensembles is equivalent to the existence for all A C Z9, p > 0 and 1 € Zﬁ, of
the limit

Z(T?V\A’[de}_lml)_ A ](77) Nﬁ;” A

(n) = ®(p A pe)lh
ZNT[pNTglly) VN Yonac =

Z(2(p A pe)* gl (n)

Obviously this is equivalent to the existence for all ¢,k € Z and all p > 0 of the limit

2NV LN k) @(php)
NL+oo Z(N4,[pN]) B Z(®(p A pc))e' (70)

Proposition 1.4.2 Let {Z(Nd,I()]>(1\M<)€11\1Xz+ be the partition function of the canon-
ical ensemble of the ZR process on the discrete toruses T4, N € N. Then

1
lim < log Z(N, [pN]) = log Z(®(p A pc)) — plog ®(p A pe)

N——+oco
for all p > 0.

Proof By (1.58) we have that

1 1
Nd log Z(Ndv [PNd]) = Nd log Vi)\;\pc (Ml]i\’,[de])
Nd
+log Z(®(p A pe)) — [de ] log ®(p A pe)

and the proof follows since in the course of the proof of the equivalence of ensembles we
have proved the limit

UN

_ 1
lim —logwpy, (M (,xe) = 0. O

N—+4oco N4

In appendix 1, corollary 1.7 in [25] a different version of the equivalence of ensembles

is proved under the additional assumption that Z(p.) = +oo: For each pg < 400, for

all cylinder functions (i.e. functions that depend on a finite number of coordinates) with
finite second moment with respect to the measures v;°, p € [0, pol, it holds that

/deN,K—>/fdz/§° as N,K — oo and K/N?% = p

uniformly over all p € [0, po], where 15° := (u;)®zd € PMY, = IPZT. An elegant ex-
tension of this result has been recently given in [18], where it is shown that for subcritical

densities p < p,. theorem 1.4.1 can be applied to yield weak convergence in duality with
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respect to functions f € LP(v;°) for all p > 1. Of course this cannot be true for p > p.
if p. < 400 since even for the linear cylinder function 7(0)

‘/U(O)dVNVK — P> pe as N,K — oo and K/N? = p.

In other words, at the thermodynamic limit we have a mean total loss of mass equal to
p — pe at each site. As it has been proved, in many cases the excess mass of all the sites
is concentrated on a single random site. We refer to [19, 3, 4] for a detailed description
of this phase separation in the context of the Evans model. Evans’ model was defined
n [15]. Some particular cases of the Evans model are described briefly in the end of the
next section.

If the local jump rate g is bounded, then the equivalence of ensembles yields that

yim [ gm(0)dvyx = /g(n(O))dVﬁipc =®(p A pe),

K/N%—o0

for all p > 0. As noted in [19], this shows that for bounded local jump rate functions g
the mean jump rate function ® should be extended on all of R by

D(p) =P(p A pe), for all p > 0. (1.71)

It turns out that this choice of ® is the right one in order to extend the one-block
estimate to ZRPs with finite critical density. We will always consider ® to be extended
in this way for densities p > pc.
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1.5 Simple Examples of Zero Range Processes

In this section we study some simple examples of ZR, processes.

System of i.i.d. Continuous Time Random Walks

The simplest Zero Range Process on M‘f\ﬂ x is the particle system comprised of K par-
ticles executing i.i.d. continuous time random walks in ’IF‘}V with mean 1 exponential
jump times according the modulo N projection Z?¢ — ’]I‘Jdv of an elementary step dis-
tribution p € PZ%. It’s simplicity stems from the independence of the random walks
describing the motion of the particles since due to the independence there is no inter-
action between the particles. It corresponds to the ZR process with local rate function
g = idg, : Zy — Zy and elementary step distribution p. In this case, of course
Z = Zy = exp, p. = +00, and thus also p. = +00.

More generally, any local rate function g : Zy — R having superlinear growth,
i.e. any local rate function g for which there exists ag > 0 such that g(k) > agk gives
rise to a grand canonical partition function Z with critical fugacity ¢. = 400 since in
this case we have that

for all ¢ > 0.

Returning to the case g = idz, we obviously have that R(y) = ¢, and so for all
@ > 0 the one site ZR distribution 17;#, € PZ. is parametrized by the density of the
particles. In particular the one site ZR distribution u; p € PZy, p >0, is the Poisson
distribution with parameter p,

P

1 —p

Vgp =€ E i Ok-
k=0

The ZR range distributions on the torus T‘Ji\, is the Poisson product distribution on the
torus, that is

[nl1
N 1 —pN* Z P d
Vp = ® Vp=¢ . ! 677 € IPMN’

zeTd nemMy,
where
nt= I m!= ] 9'(e) =g'(n).
a:E’]I“Ii\, IGT‘I’Z\,

This describes the grand canonical ensemble of the system of i.i.d. random walks.
The canonical ensemble is given in this case by

1/n!
) = T g =N By ),
y ZT}EMEI\],K 1/7]] N,K N,K

since the canonical partition function Z : (22°\{0}) x Z, —» Ry is given by the formula

1 1 K! AE
ZINK) = Y =% > m:(ﬁK)!'

WEZ¢1|TI|1:K nEZﬂ::\nh:K
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In this case, by (1.70) the equivalence of ensembles amounts to the existence of the limit

d _ dl _ diard _ p\[pN4—k
Notoo  Z(N4,[pN4]) N—+oo ([pN4] — k)INdlPN]

for all ¢,k € Z4 and p > 0, which in this case can also be easily checked directly.

Systems of Queues

If g = 1N then a ZRP on T‘]i\, with parameters (p, g) models a system of N queues with
exponential service times in which whenever a customer is served in his queue he goes
to another queue according to the transition probability py € PT%,, where of course py
is the modulo N projection of the elementary step distribution p € PZ given in (1.1).

In this case we obviously have that g!(k) = 1 for all k € Z, and therefore the grand
canonical partition function is given by

- 1
Z(p) = ZSOk “1_-2
k=0 ®

In this case we obviously have that ¢, = 1 with Z(p.) = +oo and thus p. = +00 by
proposition 1.2.6. The density function R :[0,1) — R is given by

Z(p)  1-9¢

and the fugacity function ® := R~ : Ry — [0,1) is given by

R(p) = eZ'(p) @

P
D(p) = ——.
(p) )

Therefore in this case the one-site ZR distribution is defined for all p > 0 by the formula

1 < k
Vo= ( p1) Ors
pF+1=\p+

a geometric distribution with success probability p—}rl. The ZR distributions on the
toruses T¢, are given by

1 P [n]1
N
Vp = Nd Z ( 1) O
(p+1) peme P T

for all N € N. This describes the grand canonical ensemble.
Since g! = 1 we have that g!(n) = 1 for n € M% and therefore the canonical ensemble
{Vj(,y KN KENXZ . consists of uniform distributions and the canonical partition function

Z:(22°\ {0}) x Z, —> R, is given by

Z(A, K) = (ﬁA *}f - 1) .
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In this case by (1.70) the equivalence of ensembles amounts to the existence of the limit

N?— 0+ [pNY) —k -1
lim ( [pN?] — k >: 1 ( p )k
N—+o00 N 4+ [pN] -1 (p+1)f\p+1
( (PN )

for all £,k € Z and all p > 0, which again can easily be checked directly.

ZR Processes with Finite Critical Density

In this subsection we will describe a monoparametric family név = {njﬁ\ft}tz()v 8 €,
of ZR processes on the discrete torus T% for which the critical density p. is finite for
appropriate values of the parameter /3.
To begin with, we define for each 5 € R the local rate function gg : Z; — R4 by
the formula
k if k=0,1,

g@(k):{(k)ﬁ fr> o

E—1
Then for all € R and k£ > 1 we have that

gol(k) = gs(1) - -+ - ga(k) = 1.2ﬁ.(g)ﬁ..... (%)5 _ 8

Therefore the partition function Zg := Z,, is given by the formula
o0
N

kB
k=1

and obviously the critical fugacity ¢g := @.(8) := g, = 1 for all 3 € R. Note that

oo

=0 I8

for B =0, gs = 1 is the local rate function studied in the previous example. As we
know from proposition 1.2.6 the critical density pg := p.(8) := sup,.; Rg(y¢), where
Rg : [0,1) — R is the density function associated to gg, is < +o0 iff . =1 € DZ/
and obviously

k—1

=> ;jﬂ—l

k=1

Zk“[fl Zg 1() = 1).

k=1

ﬁ\'—‘

Therefore 1 € Dz, iff 1 € Dz, , and since the series Y~ ﬁ diverges for 8 < 1 and
converges for > 1 we get by Abel’s theorem on power series that pg < 400 iff 3—1 > 1,
that is

pg < too <= [(>2

The density function Rg : [0,1) — R is given by

vZ5(0) _ Zs-1(p) 1

Bolo) =700 = Zs(p)
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and the critical density is given as a function of the parameter 5 > 2 by the formula

_ o _Zpa() -1 (BT

where ((8) := Y37 75, 3 > 1, is the zeta function.

B> 2, (1.72)

Proposition 1.5.1 The critical density function p. : (2,4+00) — Ry defined in (1.72)
1s strictly decreasing and

li — li —
ﬂligpc(ﬁ) +00, ﬂ'rlfloopc(ﬁ) 5

Proof By standard theorems for interchanging the order of differentiation and integra-
tion we get that the derivative of the zeta function is given in (1, +00) by the formula

, 1N )=l = logk
¢(s) = (Zk> =9 (1?) —-> =<, (1.73)
k=1 k=1 k=1

Indeed, let € > 0 and set & : N x (14 ¢,00) :— Ry the function given by h(k,s) = .
Then

d logk logk
dsh(k,s)‘— e ngE, Vs>14¢e keN
and a sufficient condition for the validity of the interchange of differentiation and inte-

gration in equality (x) is the integrability of k +— }ﬁ% with respect to counting measure

i.e. that
= logk

klte
k=1

< 400

But this is easily seen, since

Zlogk =~ 2 logki X 2 2 £
= < —_—— < ,
2 i 2 kI TE ks ; kT3 6@“(1 * 2) < e

This proves (1.73) for all s > 1 + ¢ and since £ > 0 was arbitrary it follows that (1.73)
holds for all s > 1.
It follows that p, is differentiable in (2, +00) with
¢'(B-1)(C(B) +1) —¢(B-1)¢'(B)
2
(€(8)+1)

pu(B) =

and therefore p/, < 0 on (2, 400) iff

¢(B=1)¢(8) —¢(B—1)¢(B) <= (B-1)
for all 8 > 2. Since —¢’ < 0 in (1, +00) it suffices to prove that

¢'(B=1)¢(B) < C(B—1){(B),

or equivalently that

((B-1) (8)
for all g > 2.
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But inequality (1.74) will follow if the function
¢'(s)
¢(s)

is increasing, or equivalently if ( is log-convex. But this is easily seen to be true since
for all s, > 1 and p € (0,1) we have that

(1,00) 35—

<
Clos+(L=p)t) = > ooy
k=1

and therefore by applying Holder’s inequality with conjugate exponents ¢ := %, ¢ =—
we get that

Cps+(1-p)t) < (i ,j)(i ,j) = (s)7¢()'

k=1 k=1

for all s,¢ > 1 and p € (0, 1), which proves the logarithmic convexity of ¢. Finally the
required limits are obvious since limg ;1 ((s) = 400 and limgyyo ((s) = 1. O

Another example with finite critical density, the Evans Model In [15] Evans
introduces ZRPs with local jump rate function

b
g (k) = 11{@1}(1 + E) b>0. (1.75)

It is well known ([19]) that . =1 for all b > 0, ¢. ¢ Dz iff b € [0,1] and that for b > 2,

1
©

critical density p. < co. A precursor of the Evans model was already studied in [13].
We refer to [15, 19] for a detailed description of the Evans model.

the first moment of the grand canonical distribution v, _is finite, thus leading to a finite
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1.6 Large Deviations of the Empirical Embeddings

Let g : Zy — Ry be alocal rate function and let {v)'} ¢, € PM§; be the family of the
ZR distributions associated to the rate function g, where I.. := [0, p.] "R is the interval
of admissible densities. As usual, for each N € N we denote by 7V : M4, — MT(T4?)
the empirical embeddings
1
™ (n) = N > s,
zeTY,

where M*(T?) is the set of finite non-negative Borel measures on the torus T?. We fix
P« € (0, p.) and set

pn =m v € PMT(TY) (1.76)
for all N € N.

Definition 1.6.1 Let X be a polish space and let {a,}nen C (0,400) be a sequence
such that a,, — 0. A sequence {u,} C PPX satisfies the large deviations principle
(LDP for short) with speed {a,,} if there exists a lower semi-continuous convex functional
I: X — R, with compact sub-levels, called the rate functional of the LDP such that

lim sup a,, log 1, (F) < — inf I(x)

n—+0o TEF

for any closed FF C X
lim inf a, log iy, (U) > — inf I(z)

n—+00 zeU

for any open U C X.

A standard reference on the theory of large deviations is [12]. Our goal in this section
is to obtain the large deviations principle for the sequence of measures {uy}nven with
speed ﬁ

Proposition 1.6.1 The sequence {un} is exponentially tight, that is for all ¢ < +o0
there exists a precompact set K. C M*(T?) such that

. 1
lzirm SUp —73 log uy (MT(T \ K.) < —c. (1.77)
—+o0

Proof As we know, a set K C M™T(T4) is precompact iff

sup (u, 1) < +o0.
pneK

By proposition 1.2.12 we know that the family {n(x)},cz« satisfies the LDP on the
probability space (MZ, v,.) and in particular the sequence

1
qN = L\fd Z n(w)] vy, NeEN

d
zeTy
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is exponentially tight. Therefore, given ¢ < +o0o there exists A, > 0 such that

1 1
lim sup — log ¥ { — A b < —c. 1.78
e v e 2> ) < e )
x N

By the characterization of the precompact sets of M*(T%) the set
Ko = {pe M (T |(n1) < A}

is precompact in M*(T9) and

pun{MHPTH\ K.} = v {aV ¢ K} =0 {(zV,1) > A}
1
JET%
Therefore (1.77) follows from (1.78). O

We prove next the large deviations upper bound. We recall first the following general
upper bound. Let X be a topological vector space with topological dual X*. We will
denote by (f,z) = f(x), (f,x) € X* x X the duality between X and X*. Then for any
sequence {an} of positive numbers such that ay — 0 any sequence of distributions
{un}%¥_; C PX satisfies the weak large deviations upper bound with speeds ay and
rate function I : X — [0, +00] given by

I(z) = sup {(f,=) —A(f)}

fex

where A : X* — [—00, +00] is given by

A(f) = limsupan A,y (f/an)
N—+o0

and A, : X — (—00, 0] is the logarithmic m.g.f. of un given by

A (1) =log [ = dy (o).

Proposition 1.6.2 The sequence {ux} C PM™*(T?) given in (1.76) satisfies the large
deviations upper bound with speeds ay = w7 and rate function I, : M*(T?) — [0, 0]
given by

nom= sw { [ swarto- [ Ay (). (179

fec(T?) "
where A,,; is the logarithmic m.g.f. of the one site ZR distribution with density p. < pe.

Proof The space M(T*?) of all finite signed measures is a topological vector space when
equipped with the weak topology with topological dual the space of continuous functions
on T4, i.e. M(T9)* = C(T?) and in this case A : C(T¢) — [~o00, +oc] is given by the
formula

1
A(f) = limsup — A, (N9f).
(1) = limsup 50, (V)
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Therefore since M*(T9) is a closed subset of M(T%) we have by the exponential tight-
ness of {ux} and the general weak large deviations upper bound that {ux} satisfies the
large deviations upper bound with rate function

hm=sw { [ fwart -4},

fec(Td)

But for all N € N we have that
log/eNd(f’”>duN(7r) = 10g/eNd<f’”N>duF],\i

log/eZIerN n(x)f(%)dué\i = log/ H e"(x)f(%)duﬁ

d
zeTq

Z log/ek'f(w/N)dV;*(k) = Z A”é* (f<%)>

zeTg zeTY

AHN (Ndf)

and so we obviously have that

1
NdAHN (NUf) = Nd Z /Td Z A ) [%7w$1)(u)du

zeTY zeTY

for all f € C(T?), where 1:= (1,...,1) € R%. As we know from proposition 1.2.12, the
logarithmic m.g.f. A,,}? is given by the formula

Ayi (0) =1log Z(e®(p.)) — log Z(D(p.))

and has proper domain Dy . such that

Px

(—OO,b*) g DA,,l g (—OO,b*],
P

where b, = logp. — log®(p,). In what follows we separate three cases on whether
by = 400 or by < +oc and by € Dy, or by < +oc and by ¢ Dy, and we will show
P Px

that for all f € C(T%),
. 1 x
s A (1G) = [, A () (150

b, = +oo: Let f € C(T9). In this case A,1 is a smooth function on R and by the
continuity of f we have that

Z Avi, (f(%))l[%,w”) VIR AL, (f) (1.81)

d
zeTg,

pointwise on T¢. Since T? is compact, f is bounded, and so

Z Moy (G g )

< sup A (0) < +oo.
<<l
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Therefore (1.80) follows from the bounded convergence theorem.
by < +00, by € Da, : Let f € C(T) and suppose that f(u) > b, for some u € T
Then since f is contiﬁ*uous there exists an open neighborhood V,, of w such that f(v) > b,
for all v € V,, and since A,1 is bounded from below by —log Z(®(ps)) and Ay =+o0
on (by,00) we have that

A, () = <log Z(@(p))mra(P\ V) + [ Ay (£ = o6,

P
u

On the other hand, there exists Ny € N such that for all N > Ny there exists yy € ’]I‘ﬁlv
such that yn/N € V,, and therefore for all N > Ny we have that

1 2 A () = b (N e X A (1(3) =+
€Ty 2€T4\ {yn}

Therefore (1.80) holds in the case that f(u) > b, for some u € T¢. We consider next the
case where f(u) < b, for all u € T¢. In this case by the continuity of Ay1 on (—o0,b.]
and the continuity of f we have again that (1.81) holds pointwise on T¢ and

> A (PG g =)

i
zeT§,

< sup A, (0) < +oo,

sup < 1
_”fHuSGSb* "

NeN

and therefore (1.80) holds by the bounded convergence theorem.

by < 400, by ¢ Da, : As in the previous case, if f(u) > b, for some u € T¢ we have
P

that

lim 5 > Ay (F(5)) =+o0 = | Ay (F(w)du.
zeTY,

In particular we have that

= sw [ e -an}

fec(T?), f<b.

So let f € C(T?) such that f(u) < b, for all u € T¢. We set

vvi= 3 A (£ g =)

and by the continuity of A, : (—o0,b,] — (— 00, +00] and the continuity of f we have
that vy — Ayé (f) pointwise on T<. Therefore by Fatou’s lemma we have that

/A,,;* (f(u))du < liminf Yy (u)du < A(f)

N—+o00 Td

and so we have that

L)< s {Td Flu)dn(u) — / Ay;*(f(u))du}.

fEC(T), f<b.

It remains to prove the converse inequality. First we note that for all f € C(T?) such
that f(u) < b, for all u € T¢ we have by the compactness of T? that sup,cra f(u) < by
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and thus in this case A(f) = [ Ay; (f)dmra by the bounded convergence theorem.
Therefore for all € > 0 we have that the supremum

pm o= s [ s - [ay ()]

feC(T?), f<bi—e

o { [ swast) -2} < 1.0

fEC(T?), f<bi—e

and so it suffices to prove that
lim I7 (7) = sup { flw)dm(u) — /Al,l (f(u))du}
e40 feo(rd), f<b. LJe "

Indeed, the limit lim. o I; (7) exists since I;,(7) is increasing as e decreases to 0 and
obviously lim. o I5 () < I, (m). On the other hand, given § > 0 let f € C(T*) such
that f(u) < b, for all u € T¢ and such that

Px

> s A gt - [ ay () -

fEC(T?), f<bu T

- fuw)dm(u) 7/AV1 (f(u))du

Then
1w = [ A= lwant) = [ Ay (174 B = l(w)n

and obviously

lim | 1f A (b = 2)[(w)drm(u) = | f(u)dr(u)
€ Td Td

by the bounded convergence theorem. Next, since Al,; is increasing the family

(A ([f A (b = 2)]) }eso

is increasing as € | 0 and thus since AV}J is bounded below we have by the monotone

convergence theorem that

lim [ A, ([f A (b — )](u))du = / A (f(u))du.

el0

Therefore we have that

lim IS (7) > /Td fw)dm(u) —/Al,;* (f(w))du

10 P

> sup { flw)dm(u) — / A (f(u))du} — 0,
fec(rd), f<b, LJ1a Td
which since § > 0 was arbitrary proves the claim. O

We prove next a large deviations lower bound.
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Proposition 1.6.3 Let {VPN*,Q}N@N be the family of ZR distributions with density p, > 0
where g is a local rate function g : Zy — Ry such that the liminf defining the critical
fugacity p. € (0,400] exists as a limit, i.e. such that

0 <= hmlnf Vg lim +/g!(k).

k—+o00

Then the sequence {jun} C PM™*(T?) given in (1.76) satisfies the large deviations lower
bound with speeds ay = w= and rate function I, : MT(T?%) — [0, 00] given by

) = [ A (G ()t (T o 52

med

where A* is the Fenchel-Legendre transform of the logarithmic m.g.f. of Vp , Pr < Pe
and ™ = ﬂ'(u + Tg, Tae K Ma, Ts L mra is the Radon-Nikodym decomposition of m
with respect to mmya.

Proof To prove the LDP lower bound it suffices to prove that for any 7 € M*(T?) we
have that

1
— > — .
liminf =5 log v (Ur) 2 ~1,. (), ¥ Ur € U(7), (1.82)

where U(7) is the set of all open neighborhoods of 7 € M™(T?) with respect to the
weak topology. We consider first the case of absolutely continuous measures with respect
to Lebesgue measure on the torus, that is we will prove (1.82) first for measures = €
MF(T?) := {r € MFT(T?) |7 < mya}. By a slight abuse of notation we will continue
to denote by 7 the density of m with respect to the Lebesgue measure mr a4 on the torus.
We will show first that we can make the additional assumption that the density 7w €
LY(T9) is strictly positive. Indeed, suppose that we have proved (1.82) for all measures
7 = mdmya € M, (T?) with strictly positive density. Then given any m = wdmya €
MT(T9) and an open neighborhood U, of m we define the family {m.}.~o C M/, (T¢)
given by 7. := [7 V e]dmya. Then given G € C(T9) for all € € (0,1) we have that

G- (wVe) < |Gllu(rVe) < [Gllu(r +1) € LY(T)

and G- (mVe) — G -7 as € — 0. Therefore

/Gdﬂ'E = /G[W\/E]dm’]rd — /Gﬂ'dm']rd = /Gdﬂ'

by the dominated convergence theorem which gives as that m. — 7 in the weak topology
of M*+(T%). Then since U, is open in the weak topology there exists ey € (0,1) such
that m. € U, for all € < gy and therefore U, € U(r.) for all € < gy and so by (1.82) we
get that for all € € (0,&g),

1
liminf <7 log uy (Ux) 2 —I(me) (1.83)

But A}, is decreasing in [0, p.] and so the family {A}, (7 V €)}cc(0,e0np.) 18 increasing
p
as e > 0 is decreasing to 0. Since A%, > 0 everywhere this gives us by the monotone

P

convergence theorem that

I(r.) /A WVEmed—)/A m)dmpa = 1()
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and therefore taking the limit as ¢ | 0 in (1.83) we get that m € M, (T?) satisfies (1.82)
as required.

So in what follows we consider measures m € M (T?) with strictly positive density.
We set 7 := mAp. and consider the measures l/;r\z_) € PM¢4, with slowly varying parameter
associated to the profile 7 : T¢ — R, i.e.

= @ v
= V= .
) T(z)

d
zeTg,

Then for all N € N, € M% we have that

duﬁ (n) = H Z(q)(ﬂ—m/ ))(I)(p*)
N — Nz
AT rers, Z(2(p))@ (7o)
Therefore we have that
dv N
pun(Uz) = / dV,é\i :/ g p* duw()
{nNeU-} {mNeU-} Vﬂ()
B(p) 1"y
zeTd, {mNeUx} €T, =/N
and so
1 1 _
WIOgMNa]ﬂ') = —IOgZ(‘I’(P*))"FW > log Z(®(7a/n))
xe’]I‘jiV

(7 N)
*Zmev]rt]iv n(z) log TB(pr) dl/

+ilog/ e
Nd (eNeU.) 7()

logZ p* / Z logZ JJ/N)) (£,

zeTY,

+1 )med

Nl B(7) ;N
N¢ [log Sy 4 dl/é_v()

+ ! I g/
— 10 e
Nd {(xNeU,}

We make now the additional assumption that the density 7 is continuous. Then

Glim EET; log Z(®(Tu/n)) 15 wix) = log Z(®(7))
TN

and therefore by Fatou’s lemma we get that

1
liminf —logun(Ur) > —log Z(®(p+)) +/ log Z (®(7 A pe))dmya
N—+o0 Nd Td

1 —N? [ log 2@ gxN N
aminf 77 log /{WNGU - T vy

Furthermore, the function log g((,i)) is continuous and therefore for any £ > 0 the set

<e}

4= {u € MH(TY| ‘ [1og ;i)) d(pu — )
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is open in M*(T?) and

_nd P (%) N _nd (%) N
/ N [ log g5y dm dl/fjrv(-) > / N [ log g,y dm dl/,—]r\?.)
{rNeU,} {rNeU.NA}
d. _pnd & (%)
> e Neem VT e <I><p*>d”/ avl).
{rNeU.NA.}
It follows that

L 1 _ad ®(%) ;N

lim inf —- log e N S log 3¢5 dm duﬁ,)

No+too N {xNeUn}

O(m A pe) . 1 N
> e —_ Lo — N
= /10g (I)(,O*) dmt Jl\lfgfg N4 tos »/{WNGUWHAE} dVTr(')

and therefore if we show that

N | N
N> .
fminf 77 log /{ﬂNEUmAE}de(-) =0 (1.84)

for any € > 0, then we get that
1
lim inf N logun(Uz) > —log Z(®(p.)) —|—/ log Z(®(m A pe))dmepa
Td

N—+o0
(7 A pe)
—/10g Wdﬂ'—f
B 1o O(m A pe) o Z(q)(ﬂ-/\pc))
/{ ‘o ®(p.) ‘o Z(®(p.))

—/ s (m(w))du—e = —I, () —¢,
’]I‘d

which since € > 0 is arbitrary, proves the claim.

Now, we set 17/])\’ = Uppp, for all p > 0. Since the profile r : T — R, is continuous,
the sequence {V,—Ir\?)}N eEN = {177]:](‘)} ~Nen of the measures with slowly varying parameter
with respect to the profile m € C(T) and the family {)'} ,>¢ is associated to the profile

x, that is
. - N > _
Nhrn uﬂ(.){‘ / fdm / frdmma 5} =0

for all f € C(T%) and all ¢ > 0. On the other hand, since U, is an open neighborhood

of 7 € M*(T¢?) there exists continuous functions fi,..., fy € C(T%) and &5 > 0 such
that

k

M {u e MH (T | ‘/fid(uﬂ) < e} C U,

i=1

for all € € (0,e0). But then with fr41 := log % we have that

<e}

k+1

U2 {ueacray|| [ -
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for all € € (0,ep), and therefore

k+1
dV%,VA > V;TV_ ( {‘/fid(wN—w) <5})
/{wNeUﬂmAe} ) ) Q
k+1
> 1—2%(4){‘/]2(1#—/fmdmw >5}.
i=1
Therefore we have that
lim inf dl/ﬁ,) >1

N—=+oo JirNeU,nA}

which gives us (1.84), as required.
We will show now that we can remove our additional assumption that the density

7 is continuous. We do this in two steps. First we extend the lower bound to all
measures 7 € M/ (T¢) with bounded density with respect to the Lebesgue measure
and then we remove the assumption of boundedness. For the first step we claim that
it suffices to prove that for each bounded function m € B(T?) there exists a sequence
{Tm}men € CO(T?) such that 7, dmps — mdmypae in the weak topology of M*(T?)
and

mE}I}rlOO I, (mmdmya) =1, () (1.85)
Indeed, then given a measure m € M7 (T?) with bounded density dr = wdmrya there
exists a sequence {7, }men € C(T9) such that 7,,dmps — 7 in the weak topology
of M*(T9) and satisfying (1.85). Then, given an open neighborhood U, C M™(T¢)
of 7 there exists mg such that m,dmya € U, for all m > mg. Then U, is an open
neighborhood of m,,dmya for each m > mgy and by the lower LDP bound for measures
with continuous densities it follows that

o 1
}\lzfgfg N log un (Ux) = =1, (Tmdmya)

for all m > mg, and by taking the limit as m — 400 it follows by (1.85) that

N |
liminf 5 log iy (Ur) 2 —1,. (7)

as required. But indeed, by Lusin’s theorem, for each bounded function 7 € B(T¢?) there
exists a sequence {7, }men C C(T?) such that m, — 7 mye-a.s and sup,,en [|[Tm llu <
|7|lu- Then, for every function G € C(T?) we have that

’/Gﬂ'mdmjrd —/Gﬂ'med

by the bounded convergence theorem which implies that w,,dmre — wdmya weakly

< ¢l / I — ldmopa ™25 0

in M*(T?) and since A,y is continuous and sup,,en [Tmllu < [|7]lu < +o0 we get by
the bounded convergence theorem again that

I, (mmdmya) = /Td Afy (T (w))du — s (m(u))du =1, (mdmya),

P Td P
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that is (1.85) as required.

We remove finally the assumption of boundedness. Obviously, in order to do this it
suffices to prove that for any measure 7 = mdmra € M, (T?) there exists a sequence of
bounded functions {7} pren € B(T9) such that mp;dmpa — 7 in the weak topology
of M*(T?) and I(mprdmypa) — I(7). Given m = wdmra € M, (T?) such a sequence
is given by mpr ;=7 A M, M € N. Indeed, thus defined, {mps}rren is increasing and for
any G € C(T?) we have by the monotone convergence theorem that

/G?TMmed = 7||G||u/7TMmed +/(G+ HG”u)ﬂ'Mdm’]I‘d

Y5 Gl [ i+ [(@+IGlmdmas = [ Gar,
’]I‘d

and so myrdmypa converges weakly to 1 € M*(T?). On the other hand, as we know
Ai;* is non negative and increasing on the interval [p.,o0), which implies that the
sequence {Azg* (mar) }men is increasing for large M and non-negative and therefore by
the monotone convergence theorem again we get that

L. (ardimps) = / A%y (mag)dmps —» / “ (m)dmeps = I(m),

as required and the proof is complete.

We prove next the lower bound for measures 7 € M+ \ M7 (T9). We consider first a
measure of the form m = 76, 4+ pdmya, © € T?, a > 0, for some strictly positive density
p € C(T?) and a neighborhood U, of 7 in M*(T%). We have that

pn (Unx) 2/ Ln(Nap)=prney v,
{rNeU,}

But by considering MT(T%) as a subset of the topological vector space M(T?) of all

finite Borel measures on the torus, there exist a neighborhood U, C M(T?) of the

absolutely continuous measure pdmrs € M(T?) and a neighborhood Uy of the zero

measure such that

Uy 2 (U, + Uy + rd;) N MT(T?).
On the set {n([Nz]) = [rN9]} we have that

d d
N [TN9] 1 _ [rN“] ~N
yeTY,, y#[Nz]

d
[Tji,vd ) e — rd, weakly and therefore there exists Ny € IN such that

N

Now obviously

rN¢
N>Ny — [Jvid}é%—r(;we{]o.
Then for all N > Ny we have that

{n(INz]) = PNy 0 {x™ € Un} 2 {n([Na]) = [PN} 0 {7 € U, }
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since if N > Ny and 7 belongs in the set in the right hand side we have that

o IV 8o+ Ug+U,) N MH (T4 C U

=4 N21+7r € (réz +Up+U,) (T*) C Ux

and therefore for all N > Ny we have by the independence of 1y, yajy (n([Nz])) and 7V
that

\%

1
log py (Ur) - = Wlog/l{n([NzD:[rNd]}]1{%NeUp}deX

1 1
= —log [ 1 - dvl) +—1 v’y
Nd %8 / (n(INa))=[rN 4} AV, + 37g 108 /{ avewy PO

1
= —logv! ([rN9) + 1og/ dvly.
Nd Px Nd {%NGU‘;} P

1
Nd

By the definition of the one-site ZR distributions we have that

1 [rN9]
Z(‘I)(P*)) Nd

1 1 1
Nd log Vl*([TNd]) = Nd log log @(p.) — mlogg!([TNd])

and therefore if we assume that the lim inf defining the critical fugacity exists as a limit,
i.e. that

0< = hmmf Vg lim /g!(k)

k~>+oo
it follows that

I

' 1 . rN i
lim 7 logy, ([PN)) = rlog®(p.) - lim : log "™/ g!([rN4))

N—+oco N—+oco Nd

©(ps)

Pe

rlog

On the other hand it is easy to see that the sequence u Ni=7N N satisfies the same large

deviations lower bound as the sequence py := 7N v, ab least for absolutely continuous

measures, i.e. for any measure pdmyas € M7 (T?) and any neighborhood U, of pdmra
we have that

1 *
liminf 25 log7in(Uy) = ~1,.(p) = = [ A7, (p)dma. (1.86)

Therefore we get by what we have proved for absolutely continuous measures that

1 Pe —
Rl w0 > = |l i+ 5. (] = )

Since we want to add any finite number of Dirac masses we need a slightly more
general version of (1.86) which we prove now: Let A = {z1,...,2,,} € T¢ m € N, be
any finite set of points. For each N € N we set Ay := {[Nx1],...,[Nz,,]} C T4 and
we define the empirical embeddings

1
V= — Z n(y)dx :M¢ — MT(T?), NeN.
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Then the sequence fiy := 7 VFJJV satisfies (1.86) for any absolutely continuous measure

pdmya and any neighborhood U, C MT(T9) of pdmypa. As in the proof of the same
lower bound for {uy} it suffices to consider the case where the density p is strictly
positive and continuous. Then, making again the change of measure

dvN

vl = L~ dply
= N ey
LS

where 17[],\’ = y},ﬂpc for all p > 0, we get that

1
liminf S5 108 7in () > —1os Z(2(p.)) + | 108 Z(B(p A po))dmrs

.. 1 _N¢ 2(pNApe) 3 N
lim inf — log o~ N [log Zpistdr d;jf\(f_),
N—+oo N {7FNeU,} L

Then if we set
1 m
N._ N _~N _
¢ =TT =N 2—1 n([in])(s[N;;i]

for each N € N, the random variables 7V and ¢V are independent and therefore

.. 1 _nNa L(pApe) g N
lim inf —- log e~ N Jlog S5, 557 dm df/A(f.)
N—+oo N {(FNeU,} .

.. 1 —N¢ [ log (p(,pApC)d%N —N
> i s,y o

P(pApc)
+hm1nf—log/ —N* [log %555 qudﬂé\(r_).

N—+4o0o N

For the first term we consider for each € > 0 the open neighborhood

on s [ i <

and obviously

lim inf € log/ o N [ log Toestdm d
N—+oco Nd {%NeU }

®(p A pe) . _N
> e — - @ -+ N
=° /plog ®(ps) s fl\lfmﬁ}rnoof Nd ‘o /{%N €U,NU.} o)

for all € > 0. Since U, N U, is open in the weak topology of M+(’]I‘d) there exist eg > 0
and functions fi,..., fi, fe41 € C(T9), k € N, with fi41 = log = p/\p") such that

k+1

UpmAggi_ml{uewmrd)i\/fid(u—m] <e}

for all 0 < € < g9. But then, for all € € (0,&¢) we have that

. >1-Y o {‘/fld?rN /fzpdm a
/{%NeUmeE} o() Z () T
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and so it suffices to prove that

Nlél}rlmu {‘/fdw /fpmed >6}—0

for all f € C(T?) and all € > 0. But this indeed holds, since for all € > 0 we have that

Dé\(,_){’/fd%]v_/fpqurd >5} < pé\é_){'/quN'>;?}
+Dﬁ-){‘/fdﬂjv/fpqurd > ;}

and the second term in the right hand side of the inequality above converges to zero
since the family {1/ } is associated to the profile p € C(T?), while for the first term
we note that for all 6 > 0 we have that

uﬁ.>{‘/quN‘ zs} < i/‘/quN

This proves that

A | N
— >
Nl v log /{%NeUWS} oty 20

for all € > 0 and therefore the first term in the right hand side of (1.87) satisfies

1 —N¢ [log 2lerec) gzN N (p A pe)
R () > — _
T log/{%weup}e Woty = = | plog =g,y dme

It follows by (1.87) that

. 1 ~ .. 1 N9 [log 2eree) goN
lim inf ~— log i (U) = —Ip*(p)—k}\l]girgﬁlog/e N 1o 525k a™

N——+oco

and so to prove (1.86) as required, it suffices to show that

1 _ ox E(pApe)
lim inf N log/ N? [ log Zh0Ls qudDé\é‘) > 0.

N —+o00

But this is indeed true since by Jensen’s inequality we have that

1 _N% (1 I’(pApc) da™N p AN pc _
Ni log/ Jlog =575 da dy // log ————— () dué\([,)
D(pApe)

for all N € N and the term in the right hand side converges to 0 by (1.88) since log —3 B (o)
is a continuous function. This proves (1.86) for any finite number of Dirac masses.

By using this more general form of (1.86) and the same estimates as in the case of
one Dirac mass one can easily prove the lower bound when © = pdmpa + 75 € MT(T9)
is the sum of an absolutely continuous measure m,. = pdmTa and a finite sum of Dirac

k . .
mMasses Ty = » .| 70, T;i € T, in which case we have that

it 5 tow o (0) = = | (o tow g0+ [ 5. (ot = 1, (o),

1=1
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For the general case let m = pdmya 4+ w5 be the Radon-Nikodym decomposition of
an arbitrary measure 7 € M*(T4). Since the set

k
{ Z Ti(sa:ia

i=1

ri >0, :cier,keJN}

is dense in the weak topology of M*(T?) there exists a sequence {7 ,, }nen of the form
Ton = ngl Tin0z,, for all n € N such that 7, — 75 as n — +o0o. Now, obviously

Ty i= pdmmpa + Tg p — pdmpa + Ty

weakly, and so given a neighborhood U of 7 there exists ng such that m, € U, for all
n > ng. Therefore, by the LDP lower bound (1.82) for measures 7 € M™*(T4) with
singular part equal to a finite sum of Dirac masses we get that for any neighborhood U
of 7 there exists ng € N such that

. 1

}\}Igirg) Nd log un (Ur) = =1, ()

for all n > ng. But 7s,(T9) — 74(T%) by the weak convergence s, — ms and
therefore

i = lim |m, d Pe w| = I(m).
Jim 1) = i r(T)10g 5725+ [ A (p(a)a] = 16

It follows that

1
hmlan—loguN(U )>— lim I, (m,) =—1I, ()

N—+o00 n—-+o0o

as required, which completes the proof of the large deviations lower bound. O

As we will see next, the rate functions in the upper and lower LDP bounds proved in
fact coincide and therefore the above large deviations bounds give us the full large devi-
ations principle for the empirical embeddings. This is seen by the variational character-
ization of the generalized entropy functionals, according to which, given any lower semi-
continuous convex function h : R — [0, +00], the h-entropy Hj, : MT(T¢) — [0, +¢]
defined by

Hy(m) i= Hi(rlmaa) i= [ h( I )d s + { lim hﬂ 7 (T,

dmpa t4o00

where m = m,. + 75 is the Radon-Nikodym decomposition of 7 with respect to the
Lebesgue measure on the torus T¢, provides the solution of the variational problem

Hy(7)= sup {/fd7r—/h69 du}
fec(md)

for all 7 € M*(T?), where h® : R — (—o0, +00] is the right semi-Legendre transform
of h given by

h®(s) = igg {st —h(t)}.
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Note that since 7 is a non-negative measure only the values of h on [0, +00) are relevant
for the definition of Hj, and therefore if h is given by h = +oo on (—00,0) and h=h

n [0,400) then H; = Hj, and h® = E*, where h* is the Legendre-Fenchel transform of
the lower semicontinuous convex functional & : R —» [0, +o0].

Proposition 1.6.4 Let {Z/F])\Lg}Ne]N be the family of ZR distributions of density ps < pe,
where g is a local rate function g : Zy — Ry such that the liminf defining the critical
fugacity p. € (0,400] exists as a limit, i.e. such that

0<pe:= hmlnf vy lim +/g!(k),

k—>+o<>

and let A,, be the logarithmic m.g.f. of the one site ZR distribution with density p..
Then the sequence {un} € PMT(T?) of the empzmcal embeddings ofu given by (1.76)
satisfies the large deviations principle with speeds — ~a and rate functwn HA;* , given by

A (p)

H - = A (mae(uw))du + | lim —2
Ap*(ﬂ) Ta p*(ﬂ' ()) |:PT+OO P

]wsmrd»

where m = Tgcdmmpa + Ts, Ts L mpa is the Radon-Nikodym decomposition of m with
respect to mmpa.

Proof By the formula of A} we know that /f\:;: = A} and so

A® = A5 T = A=A
Px  TTPx T TTpx T TP

Therefore, by the variational characterization of the generalized entropy functionals it

follows that
Hy, (1) = sup { [sav— [ 4, <f>med},
o fec(T)

and thus H)- coincides with the rate function given in the LDP upper bound for {pun}
It remains to prove that H. Ax, coincides also with the LDP lower bound, and for this it
suffices to prove that

*

. A (p) bc
lim = log .
phtoo  p ®(ps)

(1.89)

By the variational characterization of the h-relative entropy functionals we know that
for any lower semicontinuous and convex function h : R, — [0, +00] we have

li h(t) +OO, Dh@ = R7
im —< = )
t—too 1 supyep, b (t), Dre # R

In our case h = A} and therefore Dy = D)y, . But as we know

(—OO,b*) g DAP* g (—OO,b*]

where b, := log B0 and therefore Do = Dy, = R iff . = +00, and in this case we

trivially have that
A (p) @
lim 2~ =+4o00=1lo E—
phioo p ®3(p.)
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On the other hand, Dpe = Dy, # R iff p. < 400 and since in any case we have that
(0,00) € Dy, , we have in this case that

A7, (p)
lim —2~~ = lim (A* ) .
pT1+oo P pTlJroo( P )_ (P)

Now, we know that if p. = 400 then

Z(®(p))
Z(@(p*))

for all p > 0, and therefore we have in this case that

(p) | () Z'(2(p)P(p)
3(p.) o)

®(p) N p<1>’(p)

D(p.) T 2(p)

i} s c
(p) Pj> ] %

B(p.) %)

Finally, if p. < 400, then as we know for all p > p, we have that

N5 (p) = p;;g ~ log

(A;.)'(p) = log

log

log

* _ Pe Z(pe)
Ay (p) = plog (o) o8 Z(0(0.))

and therefore in this case we have that (A% )'(p) = log T for all p > p.. This proves

that in any case (1.89) holds and so the rate functions for the upper and lower LDP
bounds coincide and the required large deviation principle is proved. O
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Chapter 2

Formulations of the Notion of
Local Equilibrium and
Hydrodynamic Limits

The notion of local equilibrium is central in describing the hydrodynamic limit of in-
teracting particle systems. Loosely speaking a local equilibrium is a state that locally,
i.e. near each macroscopic point, looks like a an equilibrium state. In this section we
describe various ways to formulate the notion of local equilibrium.

2.1 Strong Local equilibrium

Recall that we denote by {v,,. }per., the family of the product and translation invariant
equilibrium distributions of the ZRP on the discrete torus T%. Its marginal distributions

are given by

k
n(x).v,)(k) = mgim, T e ’Jl’;i\,.

Furthermore, given p € [0, p.] "Ry we denote by v5° € PMZ the corresponding distri-

bution on the space of configurations supported by the infinite lattice Z?.

Definition 2.1.1 A sequence {ux € PM%} is called a strong local equilibrium of profile
p: T4 — Ry if

T[Nu]«MN — V;fu)
in the weak topology of PM4 for all continuity points u € T of the function p.

A particular example of a strong local equilibrium is given by the so-called families
of slowly varying profile with respect to a function p : T4 — R

Definition 2.1.2 Let p: T? — R, be a function. The family {I/[J)\é.)}NE]N given by

N . __ 1 d
voiy =11 vacg) €PNy,
z€TY,
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is called the {family of distributions with slowly varying parameter of profile} p.

Proposition 2.1.1 Given any function p : T* — R, the family {V’J)\é_)} of distribu-
tions with slowly varying parameter of profile p is a strong local equilibrium.

Proof Let u € T? be a continuity point of p. Since 1/;],\(’,) is a product distribution it

suffices to check that for each z € Z<,

d N N—00
77(2 +NZ )*(T[Nu]*l/p()) = V;(z+[Nu1lr+NZd) — V;(u) S IPZ+

d
But this is obvious since W

— u as N — oo and the family v!p A PepeR is
continuous with respect to the parameter p. O

Once we have a notion of local equilibrium we can speak of the conservation of local
equilibrium and define the notion of a hydrodynamic limit. We do so in the context of
ZRPs.

Definition 2.1.3 Let {n"} denote the family of ZRPs on the discrete toruses with jump
rate g : Z, — R, and elementary transition probability p € PZ? and let {QN }ier "
denote the transition probability of 7. We say that a strong local equilibrium {uy}
of profile py : T¢ — R, is conserved by the evolution of the ZRP in the time scale
{0n} Nen if there exists a measurable function p : Ry x T¢ — R, called the hydro-
dynamic limit, such that for each ¢ € R4 the sequence {Quo,, }nen is a strong local
equilibrium of profile p;.

Usually we ask of the function p : Ry x T¢ — R, to be the solution of an evolu-
tionary Cauchy problem with initial condition py. The equation satisfied by p is then
called the hydrodynamic equation of the ZRP. It is easy to see that if p; : T¢ — R, is
continuous for each fixed ¢ > 0 then the hydrodynamic limit is unique. Indeed, let {ux}
be an initial strong local equilibrium and let p,p : Ry x T¢ — Ry be two hydrody-
namic limits in the same timescale {0x}nen of the ZRP starting from {py}. Then we
have that

o0 1

: N
Vo) = 0 T(Nu)«QtonHN = Vilu)

for each (t,u) € (0,00) x T¢ which since the family v,° is parametrized by the density
implies that

prlu) = / 0(0)dp(y = / 0(0)dvp(y = plu).

2.2 Weak Local Equilibrium

Usually one works with weaker notions of local equilibrium in order to describe the
hydrodynamic behavior of interacting particle systems. One way this is done is by
replacing the convergence T|ny«iN — Vy(u) for each continuity point of the profile
p: T4 — R, by the convergence of the spatial mean

1
BN 12/ TINuJ«HNAU = ~— Z Testiy € PM%
pa N
zeTY,
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to the spatial mean
D7 = % du € PMZ.
Yo() /d Vo(u) 4t 00

It is easy to see that at least for a.s. continuous profiles such a notion of local equilib-
rium is weaker than the strong local equilibrium. We will refer to this motion of local
equilibrium by saying that {un} is a itlocal equilibrium of profile p is spatial mean.

Proposition 2.2.1 Let {un} be a strong local equilibrium with respect to an a.s. con-
tinuous profile p : TY — Ry.. Then with the notation above iy — Up(.)-

Proof Since weak convergence in PIM% is determined by the duality with respect to
bounded cylindrical functions it suffices to show that

/\I/dﬂN — /\Pdﬂp(.)

for all bounded cylindrical functions ¥ : M4 — R. So let ¥ € By (M4,). Since p is
a.s. continuous and {uy} is a strong local equilibrium we have that

hN(u) :Z/\I’dT[Nu]*p,N —>/\1/dl/p(.)

for almost all u € T<. But {hy} is obviously uniformly bounded by ||¥||~, and so the
bounded convergence theorem yields

/‘IldﬂN :/hN(u)du—> /Td/\lfdvp(u)dUZ/\I/df/p(.)

as required. O

For any cylinder function ¥ : M2 — R we will denote by U Ry — R the
function defined by

U (p) :/‘I’deApc-

Since the family {v,r,. }per, is weakly continuous the function U is continuous for any
cylinder function ¥, and obviously if ¥ is bounded then so is ¥ with |||l < [|¥]|0o-
Of course with this notation we have that

/\Ildﬂp(,) = /T U(p(u))du.

Furthermore, given any cylinder function ¥ : M% — R and any z € Z¢ we define its
translation 7, ¥ by z via the formula

.V (n) = ¥(r.n).

In this way we have that

/\PdﬂN :/(% 3 Tw\I/)d,uN

z€TY,

101



where as usual we identify T¢, with the subset Z4, := {—[5],--- ,[§]—1}%. In this way
the requirement of the weak convergence of the spatial means {fiy} to the spatial mean

Up(.y can equivalently rephrased by requiring the stochastic means with respect to {yy}

— 1
\IIN = W Z Tx\p
z€TY,

of the spatial means

to converge to the spatial mean [, U (p(u))du for all cylinder functions ¥ : M% — RR,
i.e. by requiring that

Jim B 8 = [ (o)) du (2.1)

for all cylinder functions ¥ : ]Mglo — IR. In the definition of weak local equilibrium,
instead of the convergence in (2.1) one imposes the stronger requirement that the spatial
mean UV converges in probability with respect to the sequence {uy} to the constant
[ W (p(u))du for all cylinder functions ¥ : M4 — R.

Definition 2.2.1 Let p : TY — R, be a measurable profile. A sequence {uy €
PM¢% } ven is called a weak local equilibrium of profile p if

J}EnwuN{’@N _/Td \Tl(p(u))du’ > 5} =0

for all ¥ € chl(IMd

(oo}

) and all 6 > 0.

Proposition 2.2.2 If {un} is a weak local equilibrium of profile p : T4 — Ry then it
is also a local equilibrium of profile p in the spatial mean, i.e. iy — 17;?).

Proof Let ¥ € By(M%) and let 6 > 0. We set § := f; U(p(u))du. Since {un} is weak
local equilibrium there exists Ng € N such that

- 0
N>Ny, = UV — 0] >5/2} < :
Z No pn | | /2} < 2(1¥)lse + 0+ 1)

Then for each N > Ny we have that

- _ . 1)
[y -] < [ 19 i < [ BN — Ol + 3
{1V —0]>5/2} 2
- 6
< (1¥]lo + O)un {9 — 6] > 6/2} + 5 <90
as required, since we obviously have that |U% ||, < ||[¥|| for all N € N. O

Following [25] we prove next that the notion of weak local equilibrium is indeed
weaker than the notion of strong local equilibrium, at least for almost surely continuous
profiles.

Proposition 2.2.3 Let {un} be a strong local equilibrium with respect to an a.s. con-
tinuous profile p : T — R... Then {un} is a weak local equilibrium of profile p.
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Proof Let U € chl(IMgo) be a cylinder function. By Chebyshev’s inequality it suffices
to prove that

lim /)\IIN / U du’duN—O
N — o0 Td
A generally useful remark is that for each ¢ € Z the global spatial mean
1 _
Na 2 v
z€TY,

of the local spatial mean ¢ of ¥ is equal to the global spatial mean. Indeed, by changing
the order of summation,

1 _
ya 2 U = Nd 2 2£+1 2. Y

zeTd zeTg yex+AY
1 T, NV
yET?V wa—&-Ag

Consequently, in order to prove that the sequence {uy} is a weal local equilibrium it
suffices to show that

liminf lim /‘ > Rt / W (p(u))du

l—o00 N—oo
z€TY,

d,LLN =0.

Furthermore, since ¥ is continuous due to the weak continuity of the family {v)n,. }per.
and since p is an a.s. continuous function we have that

Jim > g o () (p(5)) = T (p(w))
xGTdN

for a.s. all u € T?, and so by the bounded convergence theorem
x N—oco = d
Nd > v > g0 @e(e(5) 3 |, Y (p(u))du.
zeTY, zeTY,

So in order to prove the claim it suffices to show that

liminf lim —— Z /|Tz\1ﬂ U %))|dm\;:0. (2.3)

l—00 N—oo N
zGT’i

Next, denoting for each N € N and ¢ € Zy by hy: T¢ — R, the function defined
by

haln) = 3 / ¥~ B (o) e g ()
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the limit in (2.3) can be rewritten as

liminf lim ho(u)du.
£—o00 N—oo Jpa

But since {ux} is a strong local equilibrium, for every continuity point u € T? of p we
have that

i o) = [ 18 = B (p(w) |z,

and therefore since the family {hy ¢}~ ¢ is uniformly bounded by 2||¥||, by the bounded
convergence theorem we can pass the limit as N — oo inside the integral to obtain that
in order to complete the proof it suffices to show that

.. ~y N
llen_l)(l)I‘}f/Td/Nf - !dyp(u)du—O. (2.4)

By the bounded convergence theorem again, it follows that in order to prove (2.4) it
suffices to show that for all u € T,

llmlnf/‘2£+1d27y\lf \Il(())dy()—O (2.5)

|ly|<e

As we will see next this follows by the law of large numbers. Of course since v ()
is translation invariant, the functions {7,¥} cya are equidistributed under 57 () with

common mean value

E,x (1) =By ¥ = ¥ (p(u)),

and so if ¥ was a function of one coordinate, i.e. if it was of the form ¥(n) = ¥ (n(z0))
for some zy € Z% the limit above would be exactly the law of the large numbers. In
general, as a cylinder function, ¥ will depend on a finite number of coordinates and so
for y1,y2 € Z? that are a sufficiently large distance apart the functions Ty, ¥ and 7, ¥
will be independent. It is well known that one can use this fact to apply the law of large
numbers in this more general case, as follows. Since ¥ is a cylinder function, there exists
ZO € 7. such that VU is of the form ¥ = v o 7’0, where for each ¢ € Z, we denote by

D 74— ZAZ =~ T9,,, the natural projection. Then whenever |z —y| > 2{; + 1 the
functlons '\ and 7, ¥ are independent. For each ¢ € Z, we set /, := 2{ + 1 and with
this notation in order to complete the proof it suffices to show that for all u € T¢,

lim ! Z T, ¥ = \Il(p(u)) in L'(v o))

k=00 (0 + k(200 + 1)) ly|<Cotk(200-+1)

Note that
(6o + k(260 + 1)) = (£0)2k¢ (2.6)
and so the ball Azo+k(2eo+1) is the union of (2k + 1)? balls of radius £y. So if we set

LY = {z € ] hiae 112 — ¥ € (200 + 1)Z%}

104



for each y € A{ , then $LF = k¢ for each y € Af, and
d _ k
Nfyireorn = 11 Iy
yGAgO
So the sum of all the 7,¥’s over all y € AIV,OJHC (205+1) Can be written as
2, mU=) ) my
ly|<lo+k(2€0+1) ly|<lo zeLk

By definition LY has (2k +1)? elements and the family {Tz‘I’}zeL’; is obviously i.i.d. and
therefore by the L2-weak law of large numbers and (2. 6) we get

1
(6o + k(20 + 1)) 2, mi= id Z kd >, ¥

ly|<€o+k(260+1) ly|<to * zeLk

which converges in L? (up(u)) as k — oo to

( @ >w U (p(u)).

* Jyl<to

This proves (2.5) as required and completes the proof. O

In the literature the notion of weak local equilibrium is usually defined is a seemingly
stronger (but in fact equivalent) form. To state it in a more compact way will use the
following notation. For any bounded cylinder function 1 : M% — R we denote by 7™"¥
the random measure 7% : M4 — M (T?) given by V¥ = <7 erT‘}\, Wiz . The

following equivalent characterization of weak local equilibrium holds.

Proposition 2.2.4 Let p : T¢ — R, be a measurable function. A sequence pu~ €
PM4,, N € N is weak local equilibrium of profile p iff for all bounded cylinder functions
U: ML — R and all G € C(T?) it holds that

ngnoo,u { /G(u)dﬁN"I’(u)— - G(u){lv/(p(u))du

Proof The one implication is obvious, the condition of this proposition of the constant

>(5}:O7 Vo> 0.

function G = 1 is exactly the condition in the definition of weak local equilibrium. For
the other implication let G € C(T?), ¥ € Beyi(M4) and § > 0. Of course, if G is
identically equal to zero we have nothing to show and so we assume that |G|l > 0.

Note that N
(G, 7MYy = / G(w)dr™Y (u) = / G<[ “])T[Nu]xpdu
i\ N

for any G € C(T?) and any ¥ € B.y1(M%) and therefore by adding and subtracting the
function u — G(u)7;y,) ¥ inside the integrand we get

(G, 7YY = (G, B (p)dmpa)| = ‘/T [G N“ )T[Nu]\I/fG(u)\Tl(p(u))}du

ol [ | o) — ()

+||G|oo‘w - [ ¥t

IN
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By the continuity of G and the bounded convergence theorem we have that

G(M) - G(u)’du ~0.

li
1um N

N—o00 Td

d

oo

Furthermore, this term is deterministic, i.e. independent of n € M%_ and therefore for

large enough N € N we have that

un {[(G. 7N T) — (G, W(p)dmypa)| > 6} < uw{\‘f’N - /T ¥ (p(w)du| > 2||G5||oo}

which tends to zero as N — oo since {un} is a weak local equilibrium. O

It is useful to know to what extent the profile of a weak local equilibrium is unique.

Proposition 2.2.5 Let py, p> € L1 (T?) be profiles and let p¥ € PM%, N € N. If the
sequence {uN'} is both a weak local equilibrium of profile py and of profile ps, then
pLApe=p2Ape as in T

Proof Let G € C(T?) and for each K € N set Uy := n(0) A K. Since {uV} is a weak
local equilibrium of profile p;, i = 1,2, for each § > 0 there exists N5 = N3(G) € N such

that
— ) 1
N2N; = an{ (G — (G Uk (p)dmaa)| > S} < 4,
for i = 1,2. Then,

i, { | (G Wi (pr)dmga) — (G Wi (po)dmpa)| > 6
<> un {y<G aNYEY (G W (pr)dmpa)| > é} <1
= 7 7 2 2
Since the event {|(G, Wi (p1)dmrya) — <G,\/Ij\;(p2)qurd>| > ¢} is deterministic, this
implies that |(G, /\IT[(/(pl)med> — (G, /\IT](/(pQ)medH < § and since § > 0 was arbitrary
we have in fact that
(G, Wic(pr)dmpa) = (G, Wic(pa)dimya).
Since G € C(T?) was also arbitrary this holds for all G € C(T%), which implies that
Ef;(pl) = Ef;(pg) a.s. in T¢
for all K € IN. So the set

oo

E:= m {/\ITI;(pl) = /‘ITI;(PZ)}
K=1

is of full measure in T¢, i.e. m(E) = 1, and
(I'\;((pl(u)) = (I'\;(pg(u)) forallu e E, K € N. (2.7)

But for each p € [0, 00) the monotone convergence theorem that

lim Ux(p)= lim [ n(0)A Kdl/;/\pc = /U(O)dl/;/\pc =pApe,

K—oo K—o0

and so taking the limit as K — oo in (2.7) yields that pi(u) A p. = p2(u) A p. for all
u € E, which completes the proof since E is of full measure in T<. O
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2.3 Local Equilibrium in the Entropy Sense

Definition 2.3.1 Let p: TY — R be a measurable function. A sequence uV € PM$%
is an entropy local equilibrium of profile p if

1 N
i g H () = 0.

According to the proof of corollary 1.3 in [25] the notion of entropy local equilibrium
is stronger than the notion of weak local equilibrium.

Proposition 2.3.1 Let uV € PM% be a sequence of probability measures. If {u™N} is a
local equilibrium with respect to a continuous profile p : T — Ry in the entropy sense
then it is also a weak local equilibrium of profile p.

Proof Let H € C(T?). By Chebyshev’s inequality it suffices to prove that

. 1
i [l 3 A (5)mr - [ Hew o)
zeTY,

for all ¥ € Cyl,(M%,). Since p is assumed continuous, we have that

i S 1)) - [ oo

duy =0 (2.8)

and therefore in order to prove (2.8) it suffices to prove that
~ x
hmsup/‘Nd Z H )[TZ\I!—\I/<p<N))HdﬂN—O (2.9)

for all ¥ € Cyl,(MZ). We recall that for each ¥ € Cyl, (M%) and each £ € Z, we
denote by W the local spatial mean of ¥ of radius £. Then obviously for each z € ’]I“]i\,

) _
we have that (7,¥) = 7,(¥%). It is easy to see by a summation by parts that for all
¢ € Z4 we have

limsup/’ 7 I)[Tx\lf—Tx ‘duN—O
N—oc0 N E']I‘d

and therefore in order to show the claim it suffices to prove that

1
limsuplimsup/m Z
zeTY,

U \Tl(p(%» ‘d,w —0. (2.10)

{— 00 N—o00

and ¥ € Cyl,(M%,). By the relative entropy inequality, for every v > 0 the integral in
(2.8) is bounded above by

1 1 Y3, 7o W =T (p(z/N))|
WH(UNW?{)) + TN 1Og/6 €T dv).).
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The first term tends to zero as N — oo since {uy} is a local equilibrium in the entropy
sense. So we have to show that for each v > 0, the second term in the sum above which
we will denote by J., (NN, ¢), vanishes as N — oo and then £ — oo.

For simplicity we assume in what follows that £y = 0, i.e. that ¥(n) = ¥(n(0))
for some bounded function ¥ : Z, — R. Then ¥’ is a function of the random
vector (n(w)) seAd and so the random variables 7, U¢ and 7, ¥* are independent whenever
|z —y| > 2¢+ 1. We will take advantage of this fact to decompose the expectation in
the term J7(N,{) to simpler terms. We assume without loss of generality that 2¢ + 1
divides N and set

Gu,\) == |A = ¥ (p(w))], (u,\) € T x R,

Then the sum in the exponential can be written as
z+(20+ 1)y
> G(5mt) =2 Y (T e, V)
IET IEA‘; yGEiV’L]

where we have set EN* := {y € T4 : 2 + (20 + 1)y € T%}. Then by the generalized
Holder inequality and the independence for each fixed = € ’1[“]1\, of the random variables
Tx+(2g+1)y\pé, Yy E€ EN’Z, we have that

> GOy o L)
JV(N,t) = N log/ H ¢! “uemdt seen g, N
zeA?
1
e+ @etDy oo ¢ ernd
< log H </ y(20+1)* 2 epNt GO R Tor ey ¥ )dyfj)\(,.)>
zEAS
- 1 YD) N GEECEDY L, T
BECESUTP YR /< vy
xe

1 2011)4G(ZHEHDY N
- T S % 1og/ev< YO r s, V) gy Y
xEAd yGENZ

1 d L3
R (26+1)4 |7, ¥ =¥ (p(x/N))| 7,,N
= 20+ 1)iNd Zd 1Og/e7 ' Wit

1 ¢
_ Y(26+1) U —T (p(z/N))|
= @0+ 1)IN Zleog/e dTV()

20+~ (p([Nu]/N
_ w/wlog/ev AU TGNV g N g,

Now, since the profile p is continuous, the sequence Vﬁé‘) is a local equilibrium of

profile p, that is for each macroscopic point v € T¢ we have that T[Nu]yﬁ,) — vy

weakly in PM? | and therefore the upper bound for .J, (N, ¢) given above converges as

N — oo to )
1 YD T =T (p(W)] 71,0 oy
s e ol

Now, since V¥ is bounded, by the elementary inequality e < 1+ z + %xQem we get

Y =T < 1 4B — T (pw))| + 292027 | W||2, 2V I Nl
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where as usual we have set ¢, = 2¢+1. Then by the elementary inequality log(1+z) < z
we get

log / e IV =l gye | < e / [0 — W (p(u))[dr5,) + 27202 2V
It follows that for all v > 0 and all ¢ € Z,

limsup J,, (N, ¢) / /|\I/€ 7 )\dz/ )du+2»y£d||\1;||2 27649 loo

N —o00

Applying this for each ¢ € Z, with v = 0(2¢ + 1)~¢, for arbitrary § > 0, we get that

lim sup J, (N, £) / /|\IJZ U )|d1/p(u)du +20||9|% 2011¥ |l
N— o0 Td
Then by the law of the large numbers and the bounded convergence theorem it follows
that
lim sup lim sup J, (N, £) < 20| W||% eIVl

{— 00 N—oc0

which since 8 can be taken arbitrarily close to 0, proves that

hm limsup J(N,¢) =0

=00 N0

as required and completes the proof. O

2.4 Weak Local Equilibrium of First Order

The notions of strong and weak local equilibrium can be also considered by using the
wy, topologies in the spaces IPp]Mglo and the space of cylinder functions of polynomial
growth considered in subsection 1.3.2 respectively. We do so in this chapter in the case
p = 1 which is the most interesting due to its connection with the conserved quantity,
the density.

In all of this section {Vé\’}pe]pL+ = {V}é\;\pc }oer, will be the grand canonical ensemble
of a ZRP on the discrete torus T4, N € N. Is we have already seen, the family {1/[])\' }oeRy
is weakly continuous and since it is parametrized by the density,

/n(x)deApcdylj)v =pApec

for all p € Ry. Consequently the family {V,J)V }oer, is always w;-continuous.

Definition 2.4.1 Let p : T — R, be any function. A sequence {u" € P1M%} is
called a wi-strong local equilibrium if

N N—oc0™®
TINGE =V pu)npe

in the w; topology of P1M% for every continuity point u € T? of p.

In complete analogy to proposition 2.1.1 we have the following
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Proposition 2.4.1 Given any function p : T* — R, the family {1/;\(’_)} of distribu-
tions with slowly varying parameter of profile p is a wi-strong local equilibrium.

Definition 2.4.2 Let p: T? — R measurable. A sequence {u" € P1M%} is a state
of wy-local equilibrium of profile p in spatial mean if

1 N / N / 00
— Tex b = TINu| du — v udu
Nd EZW pa U pa P
el N
in the w; topology of P1 M.

We note that for any integrable profile p € L*(T¢) we have for each z € Z% that

<77(a:),/Td V;?u)du> = /IE,,;?“) (n(z))du = /Td p(u) A pedu < 400

and thus
Up(y 1= /Td Vot du € P1IMY.

As in the case of bounded cylinder functions given any cylinder function ¥ € Cylﬁl
we will denote by

T(p) ::/\I/dygf\pc

the expected value of W over vp3 , , p € Ry. Since W is in Cyl? there exist ¢y € Z, and
a constant C' > 0 such that || < C(1+ 2 jal<to n(z)) and therefore

0| < /|qf|dy;° <C+C Y /n(x)dy;;c =C+C20h+1)%pApe.  (211)
|| <£o
So U € B1C(Ry4) if p, = +00 and ¥ € BC(Ry) if p. < +oc.
Proposition 2.4.2 Let p: T¢ — Ry be an a.s. continuous and integrable profile. If

{uN} is a wy-strong local equilibrium of profile p and satisfies in addition the uniform
integrability condition

. . 1 N
Jim - lim > n(@)dp™ =0, (2.12)
acE’]I“}v:]E“N[n(m)]>JM

then {u™} is wy-local equilibrium of profile p in spatial mean.
Proof By proposition 2.2.1 we know that
1
_N . N _
wETJdV

in the weak topology. Taking into account that the measures i’V and U,y both have
equidistributed one-site marginals in order to prove that the convergence above holds in
the wy topology it suffices to show that

lim [ n(0)dpY = /n(O)de(.) = /Td p(u) A pedu.

N —o00
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Considering the function A" : T — R given by

WY () = / n([(Nu])d™

/ n(0)dY = /T WY ()

and by the assumption that {u"} is a w;-strong local equilibrium and the profile p a.s.

we have

continuous the function h"¥ converges a.s. to

[ 000z, = ow) n .
Furthermore, since
N r x+1
- 5
(N > M} U NN
:cE’]I‘}’\']:EMN[n(x)]>M

we also have that

/ N AN (w)dpN = i Z /n(x)dMN
{hN>M} z€T:E, N [n(x)]>M

and so the uniform integrability condition (2.12) is exactly the uniform integrability
of the sequence {h"}yen. Consequently the claim follows by the Vitalli convergence
theorem. 0

It is worth noting that in the case that {u’} is the sequence of distributions with
slowly varying parameter of some profile p then the uniform integrability condition (2.12)
reduces to the uniform integrability in L'(T¢%) of the sequence {p([N-]/N)}nen is auto-
matically satisfied whenever the {1} is the sequence {Vé\é_)} of distributions with slowly
varying parameter of some a.s. continuous and bounded profile.

Definition 2.4.3 Let p: T? — R, be measurable. A sequence {u" € P)pM%} is a
wi-weak local equilibrium of profile p if for any ¥ € Cyl‘f and any § > 0 we have that

: 1 =
A}E)HOONN{‘M Z Tx\I’—/Td‘I’(P(U))dU >5} = 0.

IGT‘;\,
As in the case of weak local equilibrium, the notion of wi-weak local equilibrium can

be stated in the following seemingly stronger way.

Proposition 2.4.3 A sequence {™N'} is a wy-weak local equilibrium of measurable profile
p iff for any G € C(T%), ¥ € Cyl¢ and § > 0,
} o

N“Eéo{'zvld 3 G(%)TI\I/— » G(u)¥ (p(w))du
zeTY,
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Proof The idea is similar to the one in the proof of proposition 2.2.4 and we omit the
details. g

Proposition 2.4.4 Let p: T¢ — Ry be an a.s. continuous profile such that the se-
quence {hN} = {p(%) A pe}nen is uniformly integrable in LY(T?). If a sequence
{uN'} is wy-strong local equilibrium of profile py and satisfies the uniform integrability
condition (2.12) then {u™} is also a wy-weak local equilibrium of profile p.

—N
Proof Setting ¥ := ﬁ ZEGT% 7.V, by Chebyshev’s inequality it suffices to prove

that
Jm [ [~ [ o) <o

for all ¥ € Cylf. So let U € Cyl1 be given. Since p is assumed a.s. continuous and
uniformly integrable by Vitalli’s convergence theorem we have that hY — p A p. in
LY(T9). By (2.11) there exists a constant C' = C(¥) > 0 such that

U] < CL+pApe)

and so if we set h = \f/(p([Nu]/N)), u € T4 N € N, then hY is dominated by
C(1+h") which is uniformly integrable. So {h }nen is uniformly integrable and since
obviously hY — 1¥(p) we have by that h§ — U(p) in L}(T?). In particular

N—o00

wa & H(5) = [ pwm [ w0,

d
zeTg,

and as in proposition 2.2.3, by (2.2) to complete the proof it suffices to prove that
liminf lim — ot - (%)) }d N =
SN DY /T W =0

L. 1
Where \IJ = W Z\y\ﬁ[ Ty\Ij.
For this we consider the function

-2 /‘T\Pé ¥ (o))" iz ) @)

xET

RN-f . T? — R, given by

Since {uN} is a w;-strong local equilibrium, ¥ € Cyl{ and h) — U(p) a.s. we have

that
/“Ilz U ))‘dT[Nu*/.L —>/|\I/Z ~( )|dup(u

for almost all u € T?. So if we show that {g"**}yen is uniformly integrable for each
fixed ¢ € 7 we will obtain that the above convergence is in L!(T%), and in particular
that

[ 5 [ st Sl = ot =Sz

zeTY,
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But

hgrggolf/w/’\Ile—\fl(p(u))‘dyg?u)du

by the law of large numbers, the fact that the function u — [ |\Ilz — \T!(p(u)) |d1/;’(°u) is

dominated by the function 20 (p) € L'(T%) and the dominated convergence theorem.

So in order to complete the proof it remains to show that {g"V**}yen is uniformly
integrable. As we will see this follows by the uniform integrability condition (2.12).
First, ¢"V** is bounded above by

[t ttnaon® + 3 (o520,

the second function in the right hand side is uniformly integrable and the first function
in the right hand side is bounded above by

1 C
v < v 1
< G |_(2£+1d||<£(+z77(x+y))

|z|<£o
1
C£<1+(2mg+1)d Z 77(2))

|z]<my

IN

for some constants Cy = Cp(¥) and my = m(¥) depending on ¢ € Z and ¥. Conse-
quently, in order to complete the proof it suffices to show that the sequence {f™*}nen
defined by

V() = (2m£+ @+ )7 Z/ (INu] + y)dp™

ly|<my,

is uniformly integrable for each fixed ¢ € Z .
For simplicity in the notation and since ¢ is fixed we will write fN = fN-f and m = my
in the proof of the uniform integrability of {fV**} yen. We also set

and
En(M) := {a: e T ‘ Jy € A4, such that /77(3: +y)du > M}

Then obviously Sy (M) C Enx(M) and

1
AfN>M}fN(U)dU = Nd Z (2m+ @m+ 1) Z/ (z +y)d,

z€SN (M) ly|<m
1

< Y G L [ olern
zeEN(M) ly|<m

Then if we set

Ino (M) = {|z| < m‘ /n(m+z)duN > M}
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we have for every |y| < m that
DN ETCRRAE SN DR K ICRY
z€EEN (M) J,ETd 2€IN,z (M)
and if |y| < m is such that [n(z + y)du’ < M, then
Z / (x+y)du™ < M - $In (M) < Z / (z + 2)du™,
2€IN (M) 2€IN,o(M)
while if |y| < m is such that [ n(z + y)du™ > M then
Z / (@ +y)dp™ < 2m+1)" / x+2)d (2.13)
2€IN o ( 2€IN, (M)

In any case (2.13) holds for all |y| < ¢. Now, given € > 0, using the uniform integrability
condition (2.12) we choose M > 0 and Ny € N such that

1
N>Ny = Z n(x)dp <

£
2d
z€TE: [ n(x)duN>M (2m + 1)

and then

/Td N gn sy

IN

2m+dZZ/ T +y)d

ly|<m z€EN (M)

e D SIS /w

ly|<m zeT% z€ln,. (M)

WXy ¥ /x+z

ly|<m zeTd, 2€1N,2(

= 72m+1 Z Z / x—l—z

xe’][‘d z€IN (M)

_ 7(27”]\;;1) 3 3 /n(w+y)duN

[2|<m zeTd: [ n(z+y)duN >m

m d
= DD SR R

|2[<m 2€T4: [ n(@)du™ >m

m 2d
_ 2m+1) Z /n(x)duN<E,

Nd
z€T4: [ n(z)duN>m

IN

IA

which proves the uniform integrability of {f"**}yen and completes the proof. O
Corollary 2.4.1 Let p : T¢ — R, be an a.s. continuous profile such that the se-

quence {p([N-]/N) A pc}nen is uniformly integrable in L*(T9). Then the sequence of
distributions with slowly varying parameter of profile p is a wi-weak local equilibrium.
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2.5 Association to a Profile

In the case that p. = 400 the association to a profile is the variant of the notion of weak
local equilibrium that results from the notion of weak local equilibrium by replacing the
arbitrary bounded cylinder function ¥ : M¢, — IR in its definition by only one cylinder
function, the unbounded cylinder function 7(0) : M4, — R. Of course since the family
{v°}per, is parametrized by the density we have that 1(0)(p) = p for all p € Ry. So
the precise definition is as follows.

Definition 2.5.1 Let {u¥ € P;IM% } yen be a sequence of distributions. We say that
the sequence {uV} yen is associated to the macroscopic profile p € L*(T?) if

lim pN{|(G,7N) — (G, pdmya)| >} =0 (2.14)

N —o0

for all G € C(T?) and all £ > 0.

In condition (2.14) above the dependence on the grand canonical ensemble {v°} jeRr

disappears. In this sense one can then interpret condition (2.14) as saying that the

empirical distributions 7V := ﬁ ZzeT% d= converge in probability to the measure

pdmya. Adopting this viewpoint one can then adapt the definition above for any measure
p € M, (T?) even in the cases that p. < 400, as follows

Definition 2.5.2 Let {u" € lPllMdN}NelN be a sequence of distributions. We say that
the sequence {uN} yen is associated to the macroscopic profile p € M (T9) if
lim N {(G, 7)) — (G, p)| >¢e} =0 (2.15)

N—o00

for all G € C(T?) and all £ > 0.

Definition 2.5.3 We say that the sequence {u" € IPlIM‘fV}NG]N is associated to the
macroscopic profile u € M (T?) in the Kantorovich-Rubinstein sense if

Jim Wi (m N, 8,) =0

where W, denotes the Wasserstein metric on Py M (T?) induced Dudley’s metric dp
on M, (T9).

Proposition 2.5.1 If {uN} is associated to the macroscopic profile u € M, (T?) in the
Kantorovich-Rubinstein sense then it is associated to the profile .

Proof Since the only transport plan between a probability measure and a Dirac mass
is the product measure, we have that

WY 6, = [ In = o du¥
and therefore by Chebyshev’s inequality we have that

1 1
W ko> e} < 2 [ I pllp du® = SWH NN, 6,) — 0
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for all € > 0. Then, for all G € Lip(T%) we have that
(G 7™) = (G, < |Gllellm™ — ullp
and therefore we have that
PG 7)) = (G| > e} < V{7 — pllp > ¢/(IGl 5L + 1)} — 0

for all G € Lip(T?) and all £ > 0.
Let now G € C(T?). For each k € N we pick G, € Lip(T?) so that |G — Gl < 1.
Then

pN NG, T — )| > e} < NG = G — )| > /2 + iV {[(Gr, 7N — )| > e/2})
for all k&, N € N and all € > 0 and therefore

limsup pV {[(G, 7" — p)| > e} < limsup N {|(G — Gi, 7" — p)| > ¢/2}

N—oc0 N—oo

for all k € N and all € > 0.
It remains to prove that whenever {G} C C(T?) is such that limg oo |Gglle = 0,
then

lim limsup pV {|(Gy, 7™ — p)| > e} =0 (2.16)

k—oo N_oo

for all e > 0. So let v > 0 be arbitrary. First, since {Gy} converges uniformly to zero
there exists a constant C; > 0 such that |Gy |, < Oy for all k € N and since 1 € Lip(T%)
there exists N1 € IN such that

N>N = V{1, — ) >e/201} <.
We set Ay := {|(1,7" — u)| < e/2C1} for all N > Ny. Then,
€ €
PN (G w — ) > e} < pN {{C T > S (G| > 5}

for all k € N, N > Ny, and if we pick k; € N such that |G|l < &/2u(T?) for all k € ky
then we have for all £ > k1, N > N; that

WG ) > e} < (G )] > 5)
MN(AN N {\(Gk,wNH > %}) + 1N (AY)
u (A 0 {xV (T > 2||Gkau b+

IN

IA

Now, since

€
sup sup ﬂ,];’(’]I‘d) < pu(T) + oY < 400,
N>NyneAn 1

if we choose k9 > k1 such that

g
> (T4 + 5=

k> ks ° 5

>ky = o
2[|Gllu
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then we have that

NG, 7N — )| > e} <y, VN >Ny, V> ko

Therefore
k>ky = limsupp™ {|(Gy, 7" — p)| > e} <,
N—o0
which since v > 0 was arbitrary proves (2.16) and completes the proof. O
Examples

L. Let {v)¥},>0 = {v)},.}p=0 be the sequence of normalized invariant distribution of a
ZRP with critical density p. < +o0o. For each p > 0 and each u € T? we consider the
configuration né\fu € M4, given by

Mo = (PN L nvugy -
Then for all p > 0, u € T? the sequence {Nﬁfu}NelN defined by
uﬁ,\{u = 577’1)\{“ c PM%
is associated in the Kantorovich-Rubinstein sense to the macroscopic profile
Hou = poy € My (T,

since we have that

Wi idn) = [ I = mpalodilu(a) = In, o
N N
= Hi[de](s%—p(su P i;OO.

2. Let po : T — R, be a bounded and a.s. continuous function. Then the sequence of
VPNO o € IPIM?V} ~Nen of product measures with regularly varying parameter associated
to the profile pg is associated to the macroscopic profile p := pg A pedma.

Proof. This is immediate from corollary 2.4.1. Indeed, the sequence {po([N']/N)}nven
is uniformly bounded and thus uniformly integrable and since the uniform integrability
condition (2.12) reduces in the case of the sequence {VpNo (1} to the uniform integrability
of {po([N-]/N)} nven the conditions of corollary 2.4.1 are satisfied. So V,J)\;(,)}NGN 1S wi-
weak local equilibrium and applying this to the cylinder function 7(0) the claim follows.

3. Let po € LY (T% 10, pc]) be an integrable profile and let u € T? be a macroscopic
point of continuity of pg. Then the sequence {u% Oop 4y Nen defined by

TIN\{[Nu]}\ ~
V,])\(:(J,p,u = 0[N ® ® Vpo(&) =" 5[de]®M;\£’(Tf)7p € P(Z+XZ+N\{[ ]}) = ]PM?V,
€T\ {[Nul}

117



ie. vV

0 (). is the probability measure given by

v 3 = Spna(iva) [T Voo(2) (1),
[ Nu)

is associated to the macroscopic profile
f1:= podmepa + pdy € My (T).

Proof. For every function G € C(T?), ¢ > 0, we have that

B lGr ) = s[5 1D ] )
coand] X (RN - LLonl>3)
< Zlo(Beh e - o)

o] 5 oG4~ [ onl- )

Now the first term obviously converges to zero. For the second term, since the event
under consideration does not depend on the number of particles at the site [Nu], we
have that it is equal to

N z\ () €
ol 2 6(5) N ‘/dGPO’ﬁ}
o#[Nu] T
which is bounded above by

dofl T a(3)5e - [Loml> T raofle(F) "R 5

zeT§,

Now, the first term in the sum above converges to zero as N — oo by the previous
example while by Chebyshev’s inequality the second term is bounded above by

alo (O [ vaanics = ale (5l (),

which tends to zero since u € T? is a continuity point of py and G' € C(T¢9).
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2.6 The O(N9%)-Entropy assumption

In practice the initial local equilibrium from which we start the ZRP is required to have
entropy of order O(N?) with respect to the equilibrium distributions {v,_}nen for some

p« € (0, pe).

Definition 2.6.1 A sequence {u}’ € PM%} satisfies the O(N?)-entropy assumption

. 1
C(ps) = hIIVnsup m’}-{,(umuﬁ) < 400 for some p, € (0, p.). (2.17)
— o0

Of course if {u)’} satisfies the O(N9)-entropy assumption for p, € (0, p.) then
L H ) < +
Sup — vy, 00.
b N Ho [Vp
Indeed, since the O(N%)-entropy assumption is satisfied there exists Ny € N such that

1
N>Ny = m”"[(ﬂm”]\i) < Cps) +1

and then obviously

sup —H(up vy ) < [Clps) +1]V

1 1 NI N
Sub H(pp V) < +oo.

max —
N=1,...No—1 N¢

By an application of the relative entropy inequality it easy to see that if the relative
entropy assumption is satisfied for some p, € (0, p.) then it is satisfied for all p € (0, p..).

Proposition 2.6.1 If the sequence {ulY € PM%} satisfies (2.17) for some p. € (0, p.)
then (2.17) is satisfied for all p € (0, py).

Proof Indeed, for all p*, p € (0, p.) and all § > 0 we have by the entropy inequality that

N| N dp™ N| N d”ﬁ N
H(u"v,) = [log— gdu™ = H(p"|v,,) + [ log - K du
o P

1 AR
H(MN|VIZ)+9{1og/ (25 ) dvi +H(MN|V;{)}
P

0+1_ N oo 1 dv)Ne
TH(u |Vp*)+610g/(dyév) dv,,

IN

and therefore if (2.17) holds for p, and we set K, := supyen ﬁH(,uNWPN*) < 400 then

1
1 0+1 1 dvN \ 9 ~a
ap — H(N oY) < 20K, 4 = sup 1 /( "*)dN .
g a0 < S o (f () 0

So in order to prove that (2.17) holds for p it suffices to prove that

) dug edN ~d
swplog ([ () wnt) ™ < o0




for some appropriately chosen constant 6 > 0. But for all n € M%,, N € N we have that

tho-(2202)" ()

p

and therefore
(o) - (Zza) (J () "o0)

- (Zaaey) [ (5 wion

= (m)o/ekmogmd%(k)

1 v \ 0 N Zod(p) 1 o(p.)
~ sup 1 2N N )T —log 22 L 2 h (61 *
0 Og(/(dugv) d> * Zoaip) o (P50 )

where A, is logarithmic m.g.f. of the one site ZR distribution 1/;*. Now obviously the

It follows that

first term on the sum in the right hand side of the equality above is finite for all values
of p € I. while the second term is finite iff

®(py)
0 log €Dy, 2.18
a(p) < P (215)
and as we know
—00,b if Z(ip,) = .
Dy, — (mo0,by.)  if Z{pe) = +oo. by, i—log 7
—00,b,. ] if Z(pe) < +o0 P (ps)

Obviously b,, > 0 since we assume p, < p.. So, since ® is increasing, if p € [ps, p.] "R
we have that log[®(p.)/®P(p)] < 0 and so in this case we have that (2.18) holds for all
6 > 0, while on the other hand if p € (0, p.) we have that log[®(p.)/®(p)] > 0 and in
order for (2.18) to hold it suffices to choose

log 56

P(ps)
log <I>(pp)

0<b<

Note that according to what we have proved, we have for all p., p € (0, p.) that

Zod(p) . 0+1 1 O(p.)
< — L —
K, < log Zod(p) +1%f{ 7 K, + eAp* (910g () )
_ Zo®(p) . .1 ®(p+)
where the infimum is taken over all § > 0 satisfying (2.18). O

By similar computations one can show that any local equilibrium of continuous profile
poT? — [0, p.) in the entropy sense satisfies the O(N%)-entropy assumption.
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Proposition 2.6.2 Let py : T — [0,p.) be a continuous profile. Any sequence
{ud Y nen of initial distributions that is a local equilibrium in the entropy sense of profile
po satisfies the O(N®)-entropy assumption.

Proof For convenience we pick a € (p. — €, p.) where p. — € is an upper bound on the
initial profile pg. Then by the relative entropy inequality we have that

dv N
_H(/j,éV|VpNO(_))+/10g dpzé)duo

dug
O

1+ H 4 W) gy 2.19
+ ) H 0 [Vao()) + Sl [ (pn ) Wy (219)

for every v > 0 and the first term (1 4 %)H(uéﬂuﬁ)\g(_)) in the right hand side of the

inequality above is of order o(N?) by assumption. For the second term, we compute
N

first the Radon-Nikodym derivative %. For all n € M4

IN

dv a o(x Nz u(po(z N
n = [ 2Btz N Palpale/N)

Z(®(po(z/N)))®(a)m Za(po(x/N))

z€TY z€TY

and thus since 1/% o is a product measure we have that
vy )\ N)) “mT
po () N _ o(po(z/N) o
/ (W) deo(') - H / «(po x/N ) po(m/N) (1)
a er

L 10g’yk‘<1> (po(x/N))d k).
11 7 po(x/N))v Voo (/) (K)

zeT,
Therefore
1 ()" gl 1
pol- N _
Wlog/( ) o = §1 X 7o)
zeTY,
1
TN Y Apgtaerny (7108 @alpo(z/N)))
zeT¢

where for each p € [0,p.), A, : R — (—00, +00] is the logarithmic moment generating
function of 1/; e PZy:

Ay(r) = log/erkdu;(kz) = log ZZ(?;{();')O))). (2.20)

We recall that for each p € (0, p.) the logarithmic moment generating function A, has
proper domain Dy, that satisfies (—o0,b,) C Dy, C (—00,b,] with

Pe
b, := log € (0, 00).
’ ©(p)
Now, since we have assumed that a € (p. — ¢, p.) and sup,cya po(v) < pc — € and D is

increasing, we have that ®,(po(z/N)) = w <1 for all z € T%. Consequently,
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we have that ylog @, (po(xz/N)) € (—00,0] C Dy
~v > 0, since the finite real valued functions

po(@/N) for all v > 0. So for any fixed

T 5 u— Z(®(po(u))), T 5 u— Aoy (710g @4 (po(w)))

are continuous, taking limsup as N — oo we get

1 1
hmsup — H(uY I/(JIV < / log ———du + f/ A, () (v]og @, u)))du < oo
Nd (IU/O ‘ ) T4 g Za(Po(U)) v Ja po( )('Y g (,00( )))
as required. O

As the following examples show the sequences of product measures with slowly vary-
ing parameter associated to a profile satisfy the O(N%)-entropy assumption.

Proposition 2.6.3 Let {1/ ()}N@N be the sequence of product measures with slowly

varying parameter associated to some bounded and a.s. continuous profile py € B(T?).
Then

. 1
lim —H(VI])Y)(,)WFIZ) = Hp,, (po A pelmpa) < 400 (2.21)

for all ps € (0, p.) and so the sequence {I/é\g(_)} satisfies the O(N®)-entropy assumption.

Proof Since the measures are product, by proposition A.3.6 we have for all N € N that

H(VpNO()|l/J\£): Z H(Vpo(ac/N)/\pc‘Vp*)'
zeTY

Now for all p € [0, p.] "R we obviously have that

v Z(®,, )0k
H,lv,,) = /logyp((];)) dv,(k) = /log ZECDP)?I)kdyp(k)

P P

Z(®,.) ®
— 1 Px 1 P :A*
¢ Z@,) + plog 3, vy, (P)

*

and therefore

SO0 =52 5 8. (m(5) Aoe) = [ 85 (o(IVal/N) A

z€TY,

As we know by proposition 1.2.12 the function Al*,p* is always finite and smooth on all
of R4, and therefore since we assume the profile pg to be bounded and almost surely
continuous, the required limit in (2.21) follows by the bounded convergence theorem. O

According to he following proposition the O(N?)-entropy assumption is satisfied even
by initial distributions that can have a condensate at some macroscopic point u € T¢.
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Proposition 2.6.4 Let {Vx 2290 () }N@N be the sequence of product measures with slowly
varying parameter associated to some bounded and a.s. continuous profile py € B(T?)
and a Dirac mass p at x € TY, i.e.

T Nz
Vhoww =N ® Q) Voy(p) = Spna) ® vt € P(By X T, WMINaH & g,
veTd\{[Na]}

and let py denote the measure

to = poz + (po A pe)dmipa.
Then

1
NE)IEOO WH(V%,I,AV?,{) = Ha,, (polmra) (2.22)

for all p, € (0, p.). In particular, whenever ¢. < +o0o we have that Hy, (po|mya) < 400

and therefore the sequence {v} . ,} has entropy of order O(N?).

PO, P
Proof For all N € N we have that

HEY W) = H(Opyalv,.) + HENspEv N (2.23)

POT,PIT Px |l/

POP

Now with the usual convention 0log0 = 0 in the definition of relative entropy we obvi-
ously have for any K € Z. that

(k) | 5K(k>
H(0k|v,,) = / dv,, —logrv,, (K
( |P) (k) p*(k) P() P( )
(ps) ™ 9'(K)
= -1 = log Z (P (p« 1
0g (Z (K 0g Z(®(p.)) + log AL
X/g (K
= log Z(®(p.)) + K log (I>(p())
for all p € [0, p.] "R and therefore
1 1 [pN?) NN ([pN D)
mH((S[de]\Vp*) = N4 log Z(®(ps)) + Nd log B(p.)
N—oc0 ¢c
—  plog (2.24)
®(ps)
Furthermore, we obviously have that
Nz
Hyalvy D) = B W) = Hpaova o lv5.)

= 1) - A, (B £ ).

Since the profile pg : T — R is assumed bounded and A; s continuous and finite
on R4 we obviously have that




and therefore by (2.24), (2.23) and the previous proposition it follows that

. 1 N * ¢c
W N o) = | A, (Po(u) A pe)du + plog (o) = T, (Holmza),
and obviously Ha, (polmya) < +oo whenever ¢. < +oo. O

We close this section with another interesting example of distributions that satisfy
the O(N?)-entropy assumption. For simplicity we consider the 1-dimensional case d = 1
and the subsequence of the squares of the scaling parameter N.

Proposition 2.6.5 For each N we set
Ay = {EN]k=0,...,N —1} C Tys.
Let p: T — R(Dz) C [0, pc] be a continuous profile and consider the distributions
VN2 = ( (09 %N]) ® ( (09) u;(w/Ng)) € PMy:, N€N.
TEAN z€T 2 \AN
Then for any p. € (0, p¢),

Pe
®(ps)

and in particular vy> € PMp2 satisfies the O(N?)-entropy assumption if p. < +00.

. 1 2
]\;gnoo WH(VN2|V/I)\1 ) = Has (plmya) +alog

Proof Since the measures are product measures,

1 2 1 1
W/H(VN?\V,ZX) = Nz Zﬂ(fs[aNHV;*)*‘ﬁ > H@ Ny v)
TEAN IGTNQ\AN
1 1
= NH((s[aN]‘Vl*)er Z H(Vpo /w2y V)
wGTNz\AN

From the previous example we have for the first term that

. 1 1 _ Pe
]\;gnoo NH((S[aN] Vp*) = alog (D(p*) .
For the second term, as in the previous example we write
1 1 1 1 1 1 1 1 1
= 2 M) =155 D0 HWenm) = 3z Do Mg .-
z€T 2 \AN z€T o TEAN

As we have also seen in the previous examples, the first term in the right hand side
above converges to

[ 5. o)

as N — oo while for the second term we have

% > HWp NV = % > A, (P(%))

TEAN k=0
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which converges to 0 as N — oo since

N-1
. 1 k .
iy 2 A (o(¥)) - /TAp* (p(w))du.
This completes the proof. O

The term alog 30 implies that the entropy density “sees” the mass a of the singular
part of the measures vy2, N € N. On the other hand the measures vV> are associated
to the absolutely continuous profile u := (p + a)dmya. Indeed, let

p:My2 — TN, g Mys —s ZoNVAY

denote the natural projections. Then, given § > 0, G € C(T%) and ¢ € R,

and likewise

{77 € MNz

= 3 (-

TEAN

= q_l{fe ZENz\AN‘ _—

¢ Ax
Therefore we can write
v {[(G, 7N — )| > 6} < VN2{ ;2 gNG(;;Q)n(x)—a | Gluydu >g}
+VN2{‘N2 3 G(Af;)n(x)— | Glu)p(u)du| > g}
- 5;3;3?{‘]\}2 3 G(%)C(m)—a/TG(u)du >g}

Z G(]\%)%?—/TG(u)p(u)du

S0
5 (-
By Chebyshev’s inequality the first term is bounded above by
N—-1
21 k\ [aN]

which obviously converges to zero as N — co. Since the event in the second term does
not depend on the coordinates in Ay, we can write the second term as

0| 3 o(i) %2 - [ ctonn > 5},

?‘Z\;ngG(]@)[aN] —a/TG(u)du
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which is bounded above by
1) N2 )
{ }: (; N? t/)G 4}‘+Vm0{ > 4}.

€Ty
Now the first term above obviously tends to zero since {1/ } is a wy-weak local equi-

> ()%

T€EAN

librium and thus associated to the measures pdma, Whlle the second term is bounded
above according to Chebyshev’s inequality by

A S o] [y = o Y le(E)(2)
SN2 S N2 p() SN2 p N N

which converges to zero + lef:_ol !G(%Hp(%) — JpaGp < +00 as N — oo due to
the fact that G and p are continuous functions.

These considerations show that this family of initial distributions is in some sense
pathological since it is perceived different by the entropy and different by the notion of
association to a profile.
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Chapter 3

The Relative Entropy Method

In this chapter we apply the Relative Entropy method of H.T. Yau to prove the hydrody-
namic behavior of condensing ZRPs starting from a weak local equilibrium of sub-critical
profile.

Theorem 3.0.1 (Hydrodynamic Limit) Suppose that the local jump rate function g of
the ZRP is bounded and let ® be the mean jump rate function associated to g. Then any
initial entropy local equilibrium plY € PM%, N € N, of profile py € C?*9 (’]I‘d; (O,pc))
for some 6 > 0 is conserved in the diffusive timescale along the unique solution p :
R, x T — (0, p.) of the initial value problem

{8tp =Ax®(p) in (0,00) x T (3.1)

p(0,-) = po.

In other words, if H(Név|’/,],\£(.)) = o(N?) then H(u,ﬁvi)\f(‘)) = o(N%) for all t > 0,
where pY == ud Sz, pi(+) = p(t,-), and in particular

N“i“oo”N{‘z\}dggg% - /T G(p(u))du] > 5+ = 0

for all ¥ € Beyi(ML), all G € C(T?) and all t,e > 0.

Remark 3.0.1 As will be seen in the proof, one can assume the initial profile pg to be
only of class C(T% [0, p.)), provided that the unique classical solution p of the hydro-
dynamic equation (3.1) with initial condition p(0,-) = po is such that the functions

1A (ps)lloe + [1D?[2(p1)]ll0

(a) t+log®(m¢) and (b) t+ ()

(3.2)

belong in L2 (Ry), where my := min, cpa pg(u), [|D? fll := max|q =2 |0* flo, 6 € (0, 1],
and | f|p is the -Holder semi-norm of the function f. By the properties of the solutions of
the hydrodynamic equation (3.1) given in proposition 3.2.4 of the next section, the func-
tions in (3.2) belong in L (R4 ) whenever the initial profile is of class C2+9(T¢%; (0, p.))-

loc
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3.1 The One Block Estimate

For each configuration n € M‘fv we denote by n’ the spatial mean of 1 over microscopic
boxes of radius ¢ given by

1 1
Wz(ff) = m Z n(y) = W Z n(y)

yE+A] yeTE:|y—=z|<e

and obviously n‘(z) = 7.[n°(0)]. Our goal in this section is to investigate conditions
on the jump rate g : Z; — Ry of a nearest neighbor ZRP and its sequence of initial
distributions {u}’ € PM$%} that allows the replacement in probability and in duality
with respect to functions in L'(0,T; C(T%)) of the empirical jump rate process

1
of =g D 9(m(@), tel=[0.T] (3:3)
zeTY,
by the process
1
U;N’e’q> = Z @(nf(iv))5%7 tel, (3.4)
:L’GTdN

over large microscopic boxes, i.e. as £ — oo, in the sense that

T
lim 1imsupPN{‘/ (fo, o — oMY g
0

=00 N—oo

>epr=0 3.5
} (35)

for all f € LY(I;C(T?)) and all & > 0, where here, and in all of this section, PV €
PD(I; M%) denotes the diffusively rescaled distribution of the nearest neighbor ZRP
with jump rate g, starting from puf’ € PM% and the mean jump rate function ® will
be always considered extended according to (1.71), as suggested by the equivalence of
ensembles.

Definition 3.1.1 Let g be a local jump rate function and let C C L(I;C(T9)). We
say that g satisfies the time dependent one block estimate in C with respect to a sequence
of initial distributions {pd’} if the limit (3.5) holds for all f € C and all € > 0.

The main result proved in this section is the validity of the One-Block estimate for
all bounded local jump rate functions g with respect to any sequence {ul’} of initial
distributions satisfying the O(N%)-entropy assumption:

limsup H(ud [vY) =: C(a) < +oo,

N—o0
for some, and thus for all, a € (0, p.).
Proposition 3.1.1 Let g be a bounded local jump rate function. Then the One-Block

estimate in L1(0,T;C(T?)) is satisfied for any sequence {u € P1M% }nen of initial
distributions with finite first order moments that satisfies the O(N?)-entropy assumption.
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The proof of this result is the content of this section. The One-Block estimate
had been proved so far only for non-strictly condensing ZRPs, i.e. ZRPs satisfying the
assumption

lim Z(p) = +o0.
PTee

Here we manage to remove this assumption by using the results on the equivalence of
ensembles proved originally in [19] and reviewed here in section 1.4.

We begin by proving that in the case of bounded local jump rates g the time depen-
dent one block estimate in L(I;C(T%)) is equivalent to the time dependent one block
estimate in any subset C C L!(I; C(T?)) that is dense in L!(I; C(T?)).

Proposition 3.1.2 Let g be a bounded local jump rate function, let {ud’} be a sequence
of initial distributions and let C be dense in L*(I;C(T%)). If g satisfies the time de-
pendent one block estimate in C with respect to {ud'}, then g also satisfies the time
dependent one block estimate in L*(I; C(T?)) with respect to {ul'}.

Proof Indeed, let f € L*(I;C(T?)) and & > 0. Since C is dense in L*(I;C(T?)) there
exists h € C such that

T
€
N :/ A —
||f ||L (I;C(T?)) 0 ||ft t“ 2(||g||u+¢c)

Then since [[oV |7y < [|g]l. and ||o™V4®||7v < ¢. we have that

_|_

T T c
[ e e ma < | [ hol - o tas 4 5
0 0

and therefore

T T
PN{‘/ (fo, 0N — N2 g >5} <PN{‘/ (hs, 0N — N 42 s >;}
0 0

Since g satisfies the time dependent one block estimate in C and h € C it follows by this

>£}:0.

Since f € LY(I;C(T?)) and & > 0 were arbitrary this proves that g satisfies the time
dependent one block estimate in L (I; C(T4)).

inequality that

T
lim limsupPN{‘/ <f370év _ Ué\/,/f,<1>>d8
0

=0 Nooo

3.1.1 Replacement by Spatial Averages

We prove in this section that we can replace the empirical diffusion-rate process o¥ by
its ¢-spatial mean process

ot = = (gom) (z)dz (3.6)
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d
where for each 7 € M4, we denote by (gon)* the f-spatial mean of the function gon € IRq_iN

given by
1
000
yEerA?
in the sense that
T
lim limsupPN{’/ (fr,ol — of’%dt‘ > E} =0 (3.7
=0 Nooo 0

for all f € L1(I;C(T%)) and all € > 0.
For all f € C(T%) we have that

(f,oN — Nty = % > f(;)(g(n(x))m > g(n(y)))

zeTY, yex+A¢

= 3 2 () g X ()
z€T, yEx+AY

- w 2w, 2 &) ()]

and therefore if the jump rate g is Lipschitz then for all f € L!(I; C(T%)) and measurable
subsets £ C I we have that

[ oot = oty < e Py L) - 565)

y€I+Ae

m(z)dt.  (3.8)

Lemma 3.1.1 For all f € LY(I;C(T%)) and all ¢ > 0 there exists a measurable and
a.s. strictly positive function § = 6(e, f) € L (I) such that implication

ryeT |-yl <6 = |filz)—fily)|<e (3.9)
holds for allt € I.
Proof We consider the function § = §(¢) : C(T%) — [0,1] given by d; := sup Ay where
Ap={5€0,1]|zyeTh, lo—yl<s = |f(z)— () <ec}

for all f € C(T?). We note that A; is obviously an interval with [0,87) C A; C [0, d/].
In fact Ay = [0, 8], since if z,y € T% are such that |z —y| < dy, there exists dp > 0 such
that | — y| < dg < 07 and then &y € Ay and therefore |f(z) — f(y)| < €, which proves
that dy € Ay. Furthermore, every f € C(T?) is uniformly continuous which shows that
§¢ >0 for all f € C(T?) and since §y € Ay we have that

z,y €T jo—y| <y = |f(x)-fly)l<e

for all f € C(T?).
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Let now f € L'(I;C(T%)). We consider a measurable representative of f which
we continue to denote by f : I — C(T?) and we define the function § = (e, f) by
§ = §o f. By the previous paragraph it is obvious that the function § satisfies the
required properties and it remains to prove that it is measurable.

Since f is strongly measurable, for the measurability of 6 : I — [0, 1] it suffices to
prove that the function ¢ : C(T¢) — [0, 1] is lower semicontinuous with respect to the
uniform norm on C(T9). So let {f,} C C(T?) be a sequence such that || f, — f|l. — 0
for some f € C(T9) and set

¢ = liminf §y, .

n— oo

Let 6 € (1,00) be arbitrary and let 6 > 0. There exists then a subsequence of { fi, } such
that 06y, < d for all n € N and therefore for each n € N we can choose z,,,y, € Y,
such that

1)
[T — yn| < 9 and |fkn($n) — [, (Yn)| > €.

Then since T¢ is compact there exists x,y € T¢ and subsequences {z,,, } and {ym, }
such that z,,, — « and y.,, — y as n — oo and since f, — f uniformly it
follows that lim, e ft,,, (Tm,) = f(z) and lim, o fr,,, (Ym,) = f(y). Then for those
x,y € T¢ we have that

1)
p-yl <5 <8 and |f(@) - f)l 2,

which proves that 6 > ;. Since 6 > 6 was arbitrary, this proves that d; < 69, and
letting 6 € (1, 00) tend to 1 it finally follows that

0 <9 =liminf f,.

n— oo

Thus the lower semicontinuity of ¢ is proved and the proof is complete. O

Lemma 3.1.2 Let {u)’ € PM%} be a sequence of initial distributions associated to a
macroscopic profile g € My (T?). Then

lim li NN 1)y > Al =o. 3.10
lim i sup g {(=",1) > A} (3.10)

If in addition the distributions plY have finite first order moments, i.e. u € P1M% for
all N € N, then

li NN 1) > AV = 0. 3.11
Airfoo;‘é%“‘){(” 1) > A} (3.11)

Proof Since {u"} is associated to po we have that

li N N 1) — Td _
. p {{m™N, 1) = po(T| > 6} =0

for all § > 0. In particular, given € > 0, there exists Ny € IN such that

N>Ny = ,uN{|<7rN71>—,uo(’]I‘d)|>1}§5.
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Then for all N > Ny and all A > 1o(T?) + 1 we have that
N{rV,1) > A} < (1) > (T + 1} < ) {17, 1) — juo(T9)] > 1} <,

which proves the (3.10). Next, if in addition the measures p’ have finite first order
moments, then for all N =1,..., Ny — 1 and all A > 0 we have that

1 1 Atoco
W0 > 4y < 5 [ 0ded = i [ o) 25 o

Therefore for all N = 1,..., No—1 there exists Ay > 0 such that p { (7", 1) > Ay} <e
and if we set Ag := Ay V...V An,_1 V (10(T%) + 1) we obviously have that

A>Ay = Sup,uo{ Nl >A}<5
which proves (3.11) and completes the proof. O

Using these lemmas and (3.8) we can prove the following.

Proposition 3.1.3 Let g be a Lipschitz jump rate and let {ul € PM%} be a sequence
of initial distributions associated to some macroscopic profile po € M (T?%). Then for
all f € LY(I;C(TY)) and all € > 0 it holds that

T
lim limsupPN{’/ (fe, ol — a,f\w)dt’ > 5} =0.
0

=00 Noo

Proof Indeed, let f € L'(I;C(T?)) and & > 0 be arbitrary. Since ||f|l, € L'(I), for
each ¢ € N there exists d; > 0 such that

1
E E 1) Wdt < ——— ———
68[7 m( )< 14 - ~/E‘Hft|| < 4||g/||u(2£+1)d

We consider also the function &, = § ( given by the previous lemma.

prramerasyat))

. .1
{6 =0} = ({6 < 7
keN

is a null set it follows that for all £ € IN there exists k, € N such that m{gg < é} < dy.
Then, by (3.8) we have for all N,¢ € N that

ol
oo — wN“mt] < / fullume (@)t
‘/{sz%} ' ' (2NE+ N Z o<t}

y€$+Az

2||9’Hu/
= | fellu|me |t
N {8e< &} b

kg

Since the set

P"—a.s.
=5 )¢/l 1) / il
{6e<2}

ke

IN

%(26 + 1)~ 1),
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On the other hand, for each £ € N there exists Ny € N such that

¢ 1
N>N Lol
=N = N

Then, for all £ € N and all N > N, we have that

) -1 (L) !
(5) ()] < T w2l - 172
for all t € {0, > ki[} and all z,y € T4 such that |z — y| < ¢, and therefore
x Y ) 1
( > |a(y) ff(N)D]le} < 3T
yExz+AY

It follows that for all # € N and all N > N, we have

1

N N4

— ydt < _——— E dt
‘/{5@>k1}<ft70t o) ‘ - 2T(2N{ + N)d /{52>kl} ()

d
zeTq

N—U..S. 1 —
{522 )

1
< e Y1),

Therefore, for all £ € N and all N > Ny, we have that

T
/(ft,th’gﬂiv’g’g>dt’§(2€+1)d<7ré\', ),  PNas.
0

It follows that for all # € IN and all N > N, we have that

(ft, 0% o, )dt] > ¢
0

IN

PN 1) > e(20+ 1)}

,uév{(ﬂN, 1) >e(20+ 1)d}

and

T
limsupPN{‘ / (fr,oN — otN’é)dt’ > 5} < limsup p { (7™, 1) > e(2¢ + 1)}
0

N—o0 n— 00

But as we have seen, since {u’ € P1M%} is associated to macroscopic profile o €
M (T9) we have that

lim limsupuév{<7rN, 1) > e(20 + 1)d} =0,

=00 N—oo

and the proof is complete. O
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3.1.2 Entropy Production and The Dirichlet Form

The following estimates play a central role in the proof of the One-Block estimate.

Proposition 3.1.4 Let g be a local rate function and let {ul) € ]PllM‘]iv} be a sequence
of initial distributions satisfying the entropy assumption for some p. € (0, p.) and some
constant C,, > 0. Let (StN)teRJr denote the transition semigroup of the diffusively
rescaled nearest neighbor ZR process with local rate function g on the discrete torus T4.
We set pl¥ := pll SN for allt € Ry. Then pl¥ < l/[])\i for allt € R4 and if we denote
by fi¥ = ftN’p* the density of u¥ with respect to I/é\i we have for all t € Ry that

1 t N N 1 t N C
H(/ fs ds‘yp ) < Cp*Nda DN(/ fs ds) < iNd—2,
to ) t Jo 2t

where Dy =D n(y") : LY, — Ry and Dy is the Dirichlet form of the ZRP on T%.

Proof We prove first that ¥ < Vé\i for all t > 0. Since the sequence {u{’} of the initial
distributions satisfies the entropy assumption we have that

’H(,ué”uﬁ) <0, N"< o0

which by proposition A.3.7 implies that p¥ < 1/[],\1 for all ¢ > 0 with density given by

Ldvl by,

since S{ is self-adjoint in LQ(I/é\i) due to the fact that the n.n. ZRP is symmetric. Since
by the same proposition the microscopic entropy H (1 |yé\i ) is a non-increasing function
of time we have that

H(py' lvpl) < Hpg' vyl) < Cp NY

and therefore by the linear convexity of the relative entropy we have that
L[ on N Ly N L N|, N d
H( - [ fodslv,, | =H| - [ psds|v,, | <~ [ H(ps v, )ds < C, N°.
t o * t 0 P t 0 Px
Furthermore, by (A.84) we have that
t t
2N? [ D (F)ds < WO ) + 2N | Div(1)ds < MGl o) < €, N
0 0
and therefore by the convexity of the functional Dy we have that
1 [t 1 [t
Dy 7/ Nas) < 7/ DN(f;V)dsg%Nd—Z. O
t Jo t Jo 2t

3.1.3 Reduction to a Static Problem

In this section we will see how by using the estimates of the previous subsection one can
reduce the time dependent problem of whether a Lipschitz local jump rate g satisfies
the time dependent one block estimate to a static one, i.e. one that does not depend on
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time.

We begin by noting that by proposition 3.1.3 in order to prove that a Lipschitz local
jump rate function g satisfies the time dependent one block estimate in C'(I x T¢) C
LY(I;C(T%), I :=[0,T], T > 0, it suffices to prove that

lim lim sup PV

R R

for all h € C(I x T9) and all ¢ > 0. For each £ € N we consider the cylinder function
Ve ]M‘Ji\, — R given by

V= (gom(0) — @(n( >|\%+1d2 n4<0>>\

yeAS

and as usual we write V/f(n) = V¥(n,) for all n € D(Ry; M%,).
Let f € O(I x T%). Then

T T
N,t,g N.0,® Nt R
] [ thomits >dt]s||f||c<w> e
0 0

We denote by m® := ﬁ ZIGTdN 0= the normalized counting measure on ’JI‘?V and set
LYT%) = Ll( N). Then the measures o™:* and 7V:*® are absolutely continuous with
respect to m? and

dO.N,Z dﬂ.N,é,fb

dm®  dmN ‘

HUN’Z _ ﬂ_N,E,d)HTV _ H

1 14
L) - N IR
N JJET?\]

Therefore
T
2 ‘,
‘/O <ht,7T£N 9 _ N ‘1>>dt’ < ||h||C(I><Td)/ Nd Z Tzvzdt
zeTY,
Consequently, for all h € C(I x T?) and all € > 0 we have that

T
PN{‘/ <ht,7rt1v,e,g_7rivé¢>dt‘ >5} < PN{/ i Z T, Viidt > ||h|\ }
0 u

z€TY,

||h||u //T Z VZdthN
5 o Nd Ta bt

zeTY,

Ihllu/ / ¢ pN
= - Y mVidPNdt
N zeT

IIhllu// 0N
= 3 va dy, dt,
N zeTY

and therefore in order to prove that the local jump rate g satisfies the time-dependent

IN

one block estimate it suffices to prove that

hm hmbup/ / N Tngdut dt <0. (3.12)
er

=00 N0
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Now, the limit above can be easily reduced to a static one by considering the time

v_ 1 [

of {uN}ier. Since pl¥ < l/é\i for all t € Ry, the time average iy is obviously absolutely
continuous with respect to Vﬁ with density

average

o= TVN = —/ftth

and so in this notation the double integral in (3.12) can be written as

/ /Nd Tszduivdt / Z T Vidpy _/Nd (VO N avy
ETd er

and therefore in order to prove (3.12) it suffices to prove that

hm hmsup/ Z ns quydl/ <0. (3.13)

=00 N0 veTd,

By the estimates of proposition 3.1.4 for the time averaged density f%v we know that

there exists a constant Cy > 0, say Cy := C),, v Ce« guch that

2T7

H(fr [v)) < CoN? and Dy (fr) < CoN42,
where for each positive density f € L}s-,l(V;I)\i ) € PM4, we abbreviate by

Hy(f) = Hy.p. (f) = H(flvp)) = H(fdv, v,))

its relative entropy with respect to uz,\i . Therefore in order to prove (3.13) it suffices to
prove that for all finite constants Cy > 0 we have that

lim lim sup / y Txvé)fdl/;],\i <0, (3.14)
—00 N-—ooo HN(f)<CoNd N veTd,
Dn(f)<CoN*~?

where the supremum is taken among densities f € L} ;(v)).
Definition 3.1.2 Let g be a local jump rate function. We say that g satisfies the static
one block estimate if the limit (3.14) holds for some p, € (0, p.) and all positive constants
Co > 0.

In this terminology we can state the results proves in this section as follows.

Proposition 3.1.5 Let g be a Lipschitz local jump rate function. If g satisfies the static
one block estimate then it satisfies the time dependent one block estimate in C(I x T%)
with respect to any sequence of initial distributions {ul’} that satisfies the O(N?)-entropy
assumption.
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3.1.4 Proof of the Static One Block Estimate

In this section we prove the static one block estimate.

Cutting off large densities

We begin with a technical lemma that allows us to cut off large densities in the integral
appearing in the defining limit of the static one block estimate.

Lemma 3.1.3 For all finite constants Cy > 0 and all p. € (0,p.) there exists a finite
constant Cy = C1(Cy, p«) > 0 such that

sup sup /Nd )fdl/ < (1 < .
NeN Hy(f)<CoN4 xETd

Proof By the entropy inequality we have that for all f € L ( ) and all p > 0,

[ gy < }vd{log [y )
= log/ H eﬂn(w)d HN(f)

a:GTd

L Co A C
< flog/e"”@dup* L0 M’
p P p

where A, = A, is the logarithmic m.g.f. of v,, € PZ,. But since p. < pc, as we

know v, has exponential moments with [0, log q)g’pc*)) C Dy, and therefore we can take
as C1 = C1(Coy, p«) the constant

A, C
Cy = inf —=—— (p) + Co = inf Ap.(p) + Co (p) + Co

p>0 p PEDA,, p

< 400

Corollary 3.1.1 Let g be a local rate function. If for some p. € (0,p.) and all finite
constants a, Cy > 0 we have

lim sup lim sup sup / i TxVe — anz(m)]fdulﬂ\i <0 (3.15)
£—o0 N—oco Dy(f)<CoNd—2 N acE']I‘d

then g satisfies the static one block estimate.

Proof Let Cy > 0 be a finite constant and let p. € (0, p.) such that (3.15) holds. B
the previous lemma there exists a constant C; = C1(Cp, p.) > 0 such that

sup sup /<WN, 1>fd1/é\i < (C; < 0.
NEN Hy (f)<CoNd

Then foralla > 0 and all f € L} ; (v} ) such that Hy(f) < CoN%and Dy(f) < CoN?2
we have that

/Nd S (VOfdv) = /< N favl + /Nd > [V —an'(x)] fdv)
zeTY, zeTY,
< aC'1—|—D (fb<u£ . 2/Nd kA% —anf(a:)]fdyj\i

zeTY,
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for all N,¢ € N. Therefore

lim sup lim sup sup / N TwVé)fdy <aCh,
l—oo  N—0o  Hy(f)<CoN¢ wer
DN (f)<CoN9~2
which since a > 0 is arbitrary proves that g satisfies the static one block estimate. O

These results allows us to restrict the integral in the static one block estimate to
configurations with mean spatial density bounded by some finite constant. Indeed, since
g is assumed bounded, it has in particular sub-linear growth rate, i.e.

9(k)

lim sup = 0.

k— o0

Therefore, for each a > 0 there exists a constant Cy(a) > 0 such that
g(k) < Cal(a) + ak
for all k € Z,. Consequently for all b > 0,

2(p) = [ 9y, (h) < Cala) +a- (01 po

for all p > 0, and therefore for all @ > 0 V* is bounded above by

T 2 10w) + 20 (0) <262(5) + Gu'(0)

yeA?

It follows that the function
v~ anf(0) < 265(5) - 50°(0)
is negative on configurations n € M4, satisfying

15 > Ca(a) := *02( %),
and therefore we can bound the function V¢ — an®(0) above by

VE=an'(0) < [V = an ()] 1)<y <V Loy <cstay
Therefore for each a > 0, we can bound the integral in (3.15) above by
/Nd (7 VE = an'(x)] fdv) /Nd val]]‘{ﬂz(ac)ﬁca(a)}fdl/;];\i
ETd IGTd

It follows that if

fixm lim sup / > mV <oy fdv) <0, (3.16
=00 Nooo DN(f)<CoNd 2 Nd xer {n*(2)<Cs} Px ( )

for some p, € (0, p.) and all finite constants Cy, C5 > 0 then (3.15) holds for all a > 0
and thus the static one block estimate is satisfied. In other words we have proved

Proposition 3.1.6 Let g be a local jump rate function with sublinear growth rate. If
(3.16) holds for some p, € (0, p.) and all finite constants Cy, Cs5 > 0 then g satisfies the
static one block estimate.
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Reduction to microscopic cubes

Notice that by definition the cylinder function V*1 {nt(0)<Cy} is a function of the natural
projection
£ =22 s 7 = MY teZ
p My =4y — (20+1)> € Liy.

This step of the proof consists in taking advantage of this fact to project the density f
over a configuration space that does not depend on the scale parameter V.

In the rest of the proof we fix an arbitrary p, € (0, p.) and prove that (3.16) holds.

N
P+

/Nd Txvz]].{né(w)gc?’}fdvg :/Ve]]-{nz(O)SCg}f_dyé\ia (317)
zeTY,

Since the measure v, is translation invariant we can write the integral in (3.16) as

where here f = fV denotes the average of all translations of f,

1

d
zeTg,

For each density f € L (v 1\1 ) we denote by fle the quotient conditional expectation
with respect to the probablhty measure V of f given the projection p’, that is the
£, N

TV, -a.s. uniquely defined function h : IM(%H)d — R with the property that

h op[ = ]Eué\i (f‘pz)7

where here E,, N denotes the expectation with respect to 1/ . Then since V* Lipeoy<cyy is
a function of p and thus o(p’)-measurable, by the deﬁnltlon of conditional expectation
we can replace f by f|¢(p%) in the right hand side of (3.17) and write

/WMW%%J@ /VMMWQJM) /thm@JWﬁﬂ’

where of course in the right hand side, with a slight abuse of notation V* Lipeoy<cyy I8

identified with its restriction on ]M( . Obviously the measure

20+1)4
¢ N _ AL (2041) d
DilVy, =Vp! =V, S IPJM(%_H)

does not depend on the Scaling parameter N. In what follows we set £, := 2¢ 4 1 for all
¢ € 74 and we write z/ for p* N . In this notation, for all constants Cy, C3 > 0 we can
rewrite inequality (3.16) as

lim lim su su /VZIL flodv’ <0. 3.18
L—o0 N—)oopDN(f)SgoNd—z {7]2(0)§03}f|€ P ( )

Consequently, in order to prove that g satisfies the static one block estimate it suffices
to show that (3.18) holds for all constants Cy, C3 > 0.

Before proceeding further it will be good to have an explicit expression for f|, for
each f € L}ﬁl(ué\i ). Such an explicit expression is given by the following lemma.
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Lemma 3.1.4 We let {(Q;, F;, Pi) }ier be a family of probability spaces and set
Q7 F, P7) = ®(Qi7]:iapi)

ieJ
for all J C I. For notational simplicity we set (0, F, P) := (Q, FI, P1) and for each
J C I we denote by my : Q& — Q; the natural projection. Then for each random variable
X € LYQ,F,P) and all J C I we have that

E(X|r;) =X’ ony
where X7 : 7 — R s the function defined by X7 (wy) = [ X(wy, 0)dPp ;(0).

Proof Let ﬂjl : Y — PQ denote the disintegration of P with respect to m; P = P;.
Since P is a product measure, 7T;1 is given by the formula

—1
ijwJ:(sw‘]XP[\JEIPQ, WJGQJ,

and let dx : 2 — PR denote the kernel given by dx(w) = dx(.). We claim that the
Markovian kernel dx o le : Q7 — PR is the quotient conditional distribution of X
given 77, i.e. that for all functions F' € B(Q/ x R) we have that

/ Fd(ry, X / / (ws,@)dlox 0 75 Lo, (a)AP; (w):

Indeed, the term in the right hand side in equality above is equal to
// wy, X (w))dry, (w)dPy(wy) = //F(WJ, X(wr,wp\g))dPp g (wp s)dPy(w.r)
/F(’]TJ(OJ),X(CU))dP((JJ)

/ Fd(r;, X

as required. It follows that the quotient conditional expectation E(X |7s) of X given 7

is given by the formula
B(X[r)ws) = [x oy (id)(ws) = / idnd[ox 077 '],

// idrdbx (uydry,, (w) = /X(wJaWI\J)dPI\J(wI\J)a

which proves the claim. O

According to this lemma, the quotient conditional expectation f|, € Llﬁl(ugi) of a
density f € Lﬂr)l(yﬁ ) is given by the formula

F10(6) /f £.)dvR A ().

Furthermore, since in this particular case we have that I/p: (&) >0 for all £ € IMZ , wWe
can rewrite the formula of f|, as

Fle(e) = el@ [ 1066950y (3.19)
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Indeed, for all £ € IMZ we have that

[ro0ag = [[ 160466 @i @it i)
= () / F(6, G (¢) = 0 () F1u(©),

and (3.19) is proved.

Estimates on the Dirichlet form of f|,

The third step of the proof consists in obtaining information regarding the density f|,
from the estimate Dy (f) < CoN9=2 on the Dirichlet form of f. To this end, for each
pair of sites z,y € 'JI‘;’ZV we denote by L, , the part of the generator corresponding to
jumps across the bond {z,y}, that is

Loy f(n) = {f(n™") — f(0)}g(n)p(y — ) + {f (") — f(n)}g(ny)p(x — y).

We denote furthermore by DY the part of the (normalized) Dirichlet form Dy corre-
sponding to jumps over the bond {x,y}, that is for all f € L1+,1(V,J)\i) we define:

DRY(f) = =(Lay VoV D2y ) = / VI = Fm) Y g(na)p* (y — 2)dw (),

where p*(2) = %

is the symmetrization of the elementary step distribution p. To
verify this explicit formula for the piece of the Dirichlet form let L} , denote the adjoint
of L, in LQ(V}JZ). Then, since L, , (7, C)l/é\i (n) = L;y(c,n)yﬁ (¢) for all n,¢ € M$ we

have for all functions f € L?(v)Y) that

2f Loy firzeyy = (fiLayfreey) + (Lo yfs freey)
= > fWUQ) = FM Ly, Qv (n)
n,¢EME
+ D LU = FOI Ly Sy (0)
n,(eEME,
= = > Q= FMP VY () Lay(0,€)
n,(EME,
= = > 0™ = FMP v () Ly (n,0™Y)
neM¢%,
= D @) = FP vl () Lay (.07,
neMg

But by the change of variables ¢ := n¥* the second term in the sum above becomes

ST = FP v (M Lay (™) = > [FQ) = FCP v (C"Y) La y (¢, €)

neM4, ceMy

= D Q) = FCIP N (OLE,(C.¢™Y).

¢eMd,
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_ J;y+L

So denoting by Lj , := =¥ the symmetrization of L, , we have that

DY) = =(VT LoV Dizeyy = > ANVT0™9) =V F) v L5, (n,07).

nE]M?V

But L ,(n,n"Y) = g(nz)p(z —y) and so L3 ,(n,n™") = g(n.)p*(y — =) which proves the
claimed formula for the Dirichlet form.
We denote next by By the set of all admissible non-oriented bonds in T4, i.e.

By = {{x,y} - ’I[“fv |p5(y—x) > 0}.

With this notation we have that

L= > Lg, and Dy= > Dy

{z,y}eBN {z,y}eBN

Note that the Dirichlet form is translation invariant, i.e.

DN(Tzf) = DN(f)

for all z € T4, and all f € LY ;(v))). Indeed, it is easy to see that 7. (n™¥) = (r.n)*~*¥~*
and therefore since vV is translatlon invariant and the Dirichlet form is given by a sum

over all bonds we haxple that
DN(Tzf) = Z D?\/ly(Tzf)
{z,y}€BN
= > Ply-o) Y ) [VEfr) - Vel } vy (n)
{zy}eBN neMY,
= Y pw-0 Y g [VEG T VI | )
{z,y}eBN neMY,
= Y v Y o) [VIOE - VT | v ) = Da(h).
{z,y}eBN neM¢,

It follows by the convexity of the Dirichlet form that for every density f € L a1 p*)

D7) =Dy (§a X 7f) = 3 X Dwlrad) = Da()

zeT4 zeT%

Taking advantage again of the convexity of the Dirichlet form and the translation
invariance of f, we prove next a bound of order N2 for the Dirichlet form restricted to
bonds in A¢ of f|s. Since the Dirichlet form is convex and since conditional expectation
is an average, we have that

D7Y(fle) = DR (fleop") < DFY(F)

for all bonds {z,y} € B,,, where we identify A¢ with ’]I‘;l*. By this inequality it follows
that

Di(fly< S DR

{wyy}e%i*
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On the other hand, by the translation invariance of f, p*, and l/g, we have for all z € T
that

D?:V-i-z,y-i-z (JE) _ Z \/ z+z,y+z \/f :| nerz)ps (.’17 + z, y + Z)Vf])\i (77)

neMé, -

= > _\/Tz.f_‘<77x+z’y+z) —\/7=f(n) } 9((T=m)2)p* (y — 2)v) (121

neM4, -
= ) \/ ((r=m) \/f (7=m) } ((rm)a)p® (y — 2)wp. (2m)
neM¢, -
r 2
= Y e - W(n)} 9o (y — 2w (1) = DEV(F).
neMg, -
Therefore,
{z,y}eBN zeTY, 2:p°(2)>0 ps(2)>0
and thus
D(fl) < > S oDt <+t Y DYI(f

p*(2)>0 zeAYN(AY—2) ps(z)>0

204+ 1)IN"IDN(f).

Consequently, for every density f € L1 a1, ™) with Dirichlet form bounded by CoN%~2
we have that

D(fle) < Co(20 +1)'N~? = C4(Co, ON 2. (3.20)
It follows that
Sup /VZ]]'{UZ(O)SC;S}ﬂEdVﬁ: < ~ sup /Vel{n[(O)SCg}f‘Zde;:,
DN(f)SC()Nd72 DZ(f|£)§C4(C0,E)N*2

and therefore in order to prove (3.18), and thus the one block estimate, it suffices to
prove that

lim lim sup sup /Vz]l{ne(o)<cg}fdyﬁi <0, (3.21)
700 Nooo DE(£)<Ca(Co)N—2 o

where here the supremum is taken among all densities f € L}nl(uﬁ:).

The Limit as N — oo

The next step consists in examining the behavior of the supremum in (3.21) as N — oo.
Relying on the relative compactness provided by the indicator function 1,¢)<c,} and
on the lower semicontinuity of the Dirichlet form we can bound the limsup as N — oo

of this last supremum by the supremum over all densities f € Li,l(”ﬁi) with vanishing
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Dirichlet form D*(f) = 0.

From the presence of the indicator function and since V¥ is positive, we can restrict
last supremum to densities f € L} ;(v5:) supported by the set {£ € M{ [¢°(0) < Cs}.
Now, the set {& € M{ [£/(0) < Cs} is a compact subset of M{ and thus the set of
all densities supported by this set is also compact in the weak topology of probability
measures. Therefore, for each fixed N € N there exists a density fV € L}hl(uﬁi) with
DY(fN) < C4(Co, ()N 2, supported by the set {& € M{ [¢/(0) < C3} that reaches the
supremum:

/Vﬁﬂ{gl(")ﬁ%}flvdyﬁi = sup /Ve]l{zf(o)scg}fduﬁl
DA (f)<Cy(Co,t)N—2

We can choose next a subsequence {f*~} of {fV} such that

N—o0

lim V ]]-{5”(0)<Cg}f dl/ = hmsup/V ]]-{5”(0)<C3}f dl/

Since all densities fV are supported by the set {¢ € IM?* |€£(0) < C3}, the sequence { fF~v )
is relatively compact and so we can choose a further subsequence {f™*~} converging
weakly to some density [ € L}ﬁl(ugz) supported by the set {£ € ]M;‘i 1€4(0) < C3}. By
the lower semicontinuity of the Dirichlet form it follows that

DY(f>°) < liminf D*(f™*~ ) < liminf C4(Co, ()N "2 =0
N—oo N—oo

and since the function V*1 (£4(0)<C3) © JMZ — R is continuous it follows by the weak
convergence "N — f°° that

N—o00

i / Vileroy<cay MV dvy: = / Ve o)< f vy

Consequently,

lim sup sup /Vz]l{&f(mscs}fd’/ﬁi = /Vzl{éf(mscg}food’/ﬁia
N—oo DE(f)<Cy(Co,t)N—2

and therefore in order to prove (3.21), and thus also the one block estimate, it suffices

to prove that

4 e _
zlin;o Des(%) O/V Lieeoy<cyy fdv,: = 0. (3.22)

Decomposition along hyperplanes with a fixed number of particles

By proposition A.3.10 it is obvious that any probability density f € Li’l(ygi) with
Dirichlet form D¢(f) = 0 is constant on each hyperplane with a fixed number of particles.
It is convenient therefore to decompose each density f along these hyperplanes with
particles density bounded above by C3. To this end, for each density f € L1 ( +) with
Dirichlet form D*(f) = 0 we denote by Ck (f) the constant value of f on the hyperplane
consisting of configurations with K particles.
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Recall that we denote by {VN,K}(N,K)GJNXZ+ the canonical ensemble of the ZRP

1 1
> 10 =K) = 7 2

zeTY, neM4,

given by

N
I/NJ( = I/p*< .

for all p, € (0, p.). Then obviously for all p, € (0, p;) we have that

= v (n‘ 3 (@) = K> VN K- (3.23)
K=0 zeTq,

Identifying A‘g with ’I[‘g*7 where as always ¢, := 2{+ 1 we consider the distribution vy, k.
Then, with this notation we can write

/ Vieosonfdry = 3 vﬁ:( > ) =K) / VA Lgroyconfdve, x

K=0 zeA?
(20+1)4Cs
= Z CK(fWﬁZ( Z {(z) = K) /VédVé*,K
K=0 zend
(2¢+1)%C3
=: K(f)/VedW*,K-
K=0

Now obviously we have that

> Cx Z /f (S peng t@=K) 4V —/del* =1

K=0 K=0
and therefore by applying the bounded convergence theorem on the probability mea-
sure {Cx(f)}kez, and the sequence of functions b° : Z, — Ry given by b*(K) =
Lyo,...,2041)dC5) () Ik Vtdv,, k it follows that in order to complete the proof of the one
block estimate it suffices to show

lim sup sup /V Ydve, k(§) = 0. (3.24)
L—oo K<(20+1)4C3

An application of the Equivalence of Ensembles

The final step in the proof of the one block estimate consists in applying the equivalence
of ensembles to prove (3.24). Since the measure vy,  is concentrated on configurations
with K particles, the integral appearing in (3.24) is equal to

/Vfdw*,K = /‘ TR Z 5@( )) e
jal<e
- /‘@%ﬁg(ﬁ(w) —@(ﬁ) dve, .

We fix now a positive integer k that shall increase to infinity after £ and decompose the set
A¢ in cubes of side-length 2k +1 as follows: We consider the set A := [(2k+1)Z4|NAJ
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and enumerate its elements, A = {z1,..., 24}, so that |z;| < |z;| whenever ¢ < j. For
1<i<gqlet B; :=z; + Ag. Then by construction we have that B; N B; = () for i # j
and U7, B; C Ad. Then if we set By := A¢\ UL, B; we have that §By < Cyked—1
for some universal constant depending only on the dimension d. Indeed, by definition

g = [354]4, and
By = (20+1)%—q(2k+1)* < (20+1)" —2%(¢ — k)*
d—1
1\d N % + 1 1\d-m-1,  fym
_ d —\ _ _ — d = _
= e0'[(1+5) -(1-7) | =e0'=5; n;) (1+5) (1-7)
a-1 1y d—m—1
< d—1 1 < pd—1 d=17 < (9d 1.pd—1
< (20 (2k+1)n;)(1+2) < 012k 4 1)3971d < (34d)ked,

where in the calculations above using the fact that k tends to infinity after ¢ we assume
that 1 < k < ¢. Consequently, inequality 1By < Cykf?~! holds with constant Cy := 3%d.
Through the decomposition A‘Z = ngo B; we can write

/Vedw*,K = /’@gﬂ;ﬁg(&@)) —¢(ﬁ) dve, .k
=L/Mg§i;;bmmy449ﬁﬂwﬂdwx
< Ygig | 2 Dot o (gt e
:=§@/g;@mwmqmﬁpmm
- g;ﬁ;/ﬁ;ggf@@»-@gwﬁgw)qu

Assuming the local jump rate g to be bounded, since $By < Cykl*~! we can bound
above the term in the last sum corresponding to ¢ = 0 by

Cyhtd—1 _ fpd—1
o (lgll + ®(C1L A po)) = C

(20 + 1) (204 1)
Therefore the integral [ VedV[M x can be bounded above by
4q d—1
’ AS / 1 K — Kkt
d < i — —®l——)|d —_
/V oK = A ; IA %;_9(5(:”)) ((2z+ 1)d) Ve T O Gy

Since the distribution of the random vector ((£(z))ses,, VZ”K) does not depend on ¢
and since

B {2E+1}d< (20 +1)4
= 2k+1] = @k+1)
it follows that

[ Vi< [ i 3 o6w) - (75 0)

|z|<k
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Therefore, since
o k‘ﬁd_l
lim sup sup C—==0,
tso0 K<(204+1)dcy  (20+ 1)d
in order to prove (3.24) and complete the proof of the one block estimate with respect
to continuous functions in the case that the local jump rate g is bounded, it suffices to

prove that

dve, k =0.

K
m i (7)
Jm g s f \%Hdz S
K<(2041)%Cs |z|<k

For notational simplicity we denote the supremum above by

Sm. k)= sup /‘ 1y 2 9EE) _‘b(ﬁ)
K<(2041)%

dI/g“K =0.

|z|<k

For each fixed (m,k) € N x N we can pick a sequence {(¢{™F K™¥*)}, cx such that
mk > m and KMk < (20m% 4 1)405 for all n € N that achieves the supremum, i.e.
such that

Kok
S(m, k) = nlgrolo/' 2k + 1) Z ((2617’}“ + 1)d)

|z| <k

dy(ﬂf k)hK'Ian,k-.

Since the sequence {p™*1, i defined by

Km,k
ppti= ———,  neN,
(26577 +1)4
is contained in the compact interval [0, Cs], for each fixed (m, k) € N x N we can pick a
sequence {n;}jen = {n;nk} such that pﬁj’k converges to some p"™* € [0, C3] as j — oo.
Then since g is assumed bounded it follows by the equivalence of ensembles that

(m, k) / ‘ s 2 9(E@) —2(™h)

| <k

k
dl/p,,tl, K-

Furthermore, for each fixed k € N, the sequence {p™ k} e is also contained in [0, C5]

mj,k

and thus we can choose a sequence {m;}jen = {m )} such that p converges to

some p* € [0, C3], and therefore by the weak continuity of the grand canonical ensemble,

i, Sm, k) = /’2k+1dz (")

Consequently, in order to complete the proof of the one block estimate it suffices to prove

that
k—>oo/‘2k+1dz )

|z|<k

k
dv’y.
ok

where since {p*}ren C [0,Cs], ®(-) = (- A p.) and v. = v.,,,, We can assume of course
that {p*} converges to some p € [0,p.] as k — oo. Now, to prove (3.25) it suffices
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to show that the law of large numbers holds in Ll(z/;’o) uniformly over all parameters
p €10, p], i.e. that

]\}gnoo 6stép ]/‘Nd g(n(z)) —@(p)|dvy® = 0. (3.26)
P Pe ZGTd

But since the random variables g(n(z)), € Z%, are uniformly bounded by |g||. and
i.i.d. with respect to v;° for all p € [0, pc], this holds by the following simple uniform
L?-weak law of large numbers, and thus the static one block-estimate for bounded local
jump rate functions g is proved.

Lemma 3.1.5 Let (2, F) be an arbitrary probability space and let {X;}ien be a sequence
of random variables on (Q, F) uniformly bounded by some constant M > 0. Let also
P CP(Q,F) be any family of probability measures such that the X;’s are independent
and identically distributed with respect to any P € P and denote by up := Ep Xy the
common mean of the X;’s with respect to P € P. Then

1 n
=NTX, -

Proof Indeed, since the X;’s are are uniformly bounded by M, for each P € P we have
that |up| < M and thus

2
lim sup Ep =0.
N0 pep

Vp(X1) =Ep|X; — pupl? < 2Bp(X2 + p2) < 4M2.

Therefore, for each P € P we have that

n 2
ZX up| =Vp (:LZ;XJ -3 ZWP *WP(Xl) < 4]\714

which shows that

2

< 4M? 5o

— 0,

sup Ep

PcpP n

1 n
n ZXi — HUp
i=0

as required. 0
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3.2 A Degenerate Non-Linear Diffusion

In this section, using the sub-criticality of the initial profile we apply the classic results
in uniformly parabolic equations (e.g. [26]) to degenerate non-linear parabolic equations
of the form 0;p = Ax®(p) with increasing non-linearities ® that may be finally constant,

d
AZ = Z ai]@fj

ij=1

where

and ¥ € R?™? is a symmetric positive definite matrix. To be more precise, for each
pe € [0,00), k > 2, we denote by Cf,fc the set of all functions ® : Ry — Ry such that

2(0) =

(a
(

b) @ is C* on the interval [0, p.),

d

)
)
(c) @ is C! from the left on the interval (0, p.],
(d) ®(p) > 0forall 0 < p < pg, and

)

(e

We begin by considering first the notion of classical solutions.

D(p) = P(p A p.) for all p > 0.

Definition 3.2.1 Let py : T — R, be a measurable function. We say that a mea-
surable function p: Ry x T¢ — Ry is a classical solution of the initial value problem

{atp = As®(p), (3.27)

p(0,-) = po,
if
(a) the set {p; > p.} is open for all t > 0,
(

b) pis C' in time for each fixed u € T,

(c) @(p;) € C%(T?) for all t € R, and

)
) P
)
(d) p satisfies (3.27).

Since the function ®(p;) is C?, and ® is continuous on [0, p.] and C* for k > 2 on
[0, p.), it follows that p; A p. is continuous on T¢ and C? on the set {p; < p.}. Note
that since p; A p. is continuous, the fluid phase set {p; < p.} = {pt A pec < pc} is open
for each time ¢t > 0.

Proposition 3.2.1 Let p be a solution of the Cauchy problem (3.27) starting from any

measurable profile po : T4 — Ry and let u € T?. If there erists t € Ry such that
pe(w) > pc then the function t — p"(t) := p(t,u) is constant.
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Proof Indeed, let t € Ry such that p;(u) > p.. Since the set {p; > p.} is assumed open
and p is continuous in time there exists ¢ > 0 such that ps(u) > p. for all s € (t—¢,t+¢).
Then, given s € (t —e,t + ¢), since {ps > p.} is open there exists ds, > 0 such that
D(u,6s,u) € {ps > pe}. But then ®(p,)|p(u,s, ) = pe and therefore Ax®(p,)(u) = 0 for
all s € (t—e,t+¢). Sosince p solves (3.27) we have that 9sp(u) = 0 for all s € (t—e,t+¢)
and so p" is constant in (¢ —e,t + €).
Then the number
st (t, u) = sup{s > t|ps(u) = pi(u)}

is obviously s (t,u) >t + ¢ and it is easy to see that in fact sy (t,u) = +o00. Indeed,
suppose to derive a contradiction that s := s4(t,u) < +00. Then since p* is continuous
in time we have that ps, (u) = p;(u), and so repeating the argument applied initially to
the pair (¢, u) for the pair (s, u), we get that there exists &’ > 0 such that ps(u) = ps_ (u)
for all s € (s — €', s+ + €’) which contradicts the definition of s;. Similarly one sees
that

sy (t,u) :=1inf{s € [0,]|ps(u) = p:(0)} = 0. O

According to this proposition, in the case of initial conditions py : T¢ — R taking
supercritical values, i.e. such that {py > p.} # 0, the problem (3.27) can be considered
as the initial and boundary value problem

atp = AE(I)(p) in (07 OO) X {PO < pc}ﬂ
p(oa ) = pPo in {pO S pC}7
P = Pc in IR+ X a{po > pc}

where in this problem we allow as solutions only functions p : T¢ — [0, p.] that take
values in the interval [0, p.] and 9 denotes the topological boundary operator.

So at a first stage we consider the problem (3.27) only for lower semi-continuous initial
conditions pg satisfying pg < p.. The following is obvious from proposition (3.2.1).

Corollary 3.2.1 Let p: T? — Ry be a solution of problem (8.27) starting from some
measurable profile po : T4 — Ry such that py < p.. Then p < p. in Ry x T4,

Given any solution p : Ry x T% — R of problem (3.27) starting from some lower
semi-continuous initial profile py : T¢ — [0, p.], the set {p = p.} € Ry x T is the
degenerate region, which we interpret as the region of space containing the condensed
phase and {p; = p.} C T? is the degenerate region at time ¢. Of course

{p=rct = {t} x {pe = pe}-
teR ¢
We denote by
By = Bi(p) :== 0{pt = pc}

denotes the boundary of the condensed phase region. We will refer to the open set
A = Ai(p) = Int{p; = p.} = {pt = pc} \ By as the strictly condensed region at time t¢.
Finally, when need arises to simplify the notation we will write F; := {p; < p.} for the
open fluid phase region at time t.
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As we have seen, for each solution p of problem (3.27), p; is C% in {p; < p.}. On
the other hand it is obviously constantly equal to p. in the strictly condensed region
A = Int{p: = p.}, and so the only possible non differentiability points of p; are points
in the boundary B, of the condensed phase. For points at the boundary B;(p) along
some classical solution p of problem (3.27) we consider the following time-dependent
gradients along this solution.

Definition 3.2.2 Let p be a classical solution of problem (3.27) Let f : T¢ — R be
any function. The upper j-th partial derivative of f at u € By(p) from the fluid phase
{pt < pc} is the upper limit

fluthej) = fu)
- :

gj;tf(u) = limsup
h—0
uthe; €{pt<pc}

Likewise, the lower j-th partial derivative of f atu € By(p) from the fluid phase {p; < pc}
is the lower limit

flu+ he;) = f(w)

Q})tf(u) = lim inf W

h—0
uthe; E{pt<pc}
If .

050 f (u) = 0], f (w),
we say denote their common value by 8]% f(u) and say that the j-th partial derivative
8;;tf(u) of [ at u € By(p) from the fluid phase exists.

We say that f is differentiable at time t from the fluid phase at the point u € By if
there exists w € R? such that
[f(uth) — f(u) = (w,h)|
17l

lim = 0. (3.28)
h—0
ut+h€{pt<pc}

If f is differentiable at time t from the fluid phase at u € B; then there exists a unique
vector w € R? satisfying (3.28), denoted by V] f(u).

If f is differentiable at time ¢ from the fluid phase at u € B; then the j-th partial
derivative at time ¢ from the fluid phase exists at u and

O f(w) = (VIf(u)yes), j=1,....d.

Also if f is differentiable at u € By then it is also differentiable at time ¢ from the fluid
phase at u € By with V] f(u) = Vf(u). Note, that since we assume ®(p;) to be C2 we
have that

Vi®(p)(u) = VO(pi)(u) =0

at each point u € By, since each such point u € By is a point of a maximum of ®(p;).

Lemma 3.2.1 If the solution p of problem (3.27) is differentiable from the fluid phase
at the point u € By at time t we have that

Ve (o) () = . (pe) Vi pi(u).
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Proof Indeed, for u € By, we set

Di®(pe)(u) == ®(py(u+h)) — e — ©' (pc) (V] pe(u), h),

and we have that

[Dr®(pe)(u)] < [@(pe(u+h)) = pe = - (pe) (pe(u+h) = pe)l
+H D (pe)llpe(w+ h) = pe — (V] pe(u), h)|.
Let € > 0. By the definition of the gradient from the fluid phase the second term is of

order o(h) as h — 0 from inside the fluid phase {p; < p.}, and therefore there exists
61 > 0 such that

lpe(u+ h) — pe — (Vi pe(u), b)) < £
2]l T 21+ 2 (pe))

|hll < 61, u+he{p <p} =

For the first term we note that by the differentiability of ® from the left at p., given any
€ > 0 there exists there exists d2 > 0 such that

€
0< pe—r<d = |<I>(r)—<pc—<1>’_(pc)(r—pc)|<§.

Also by the differentiability of p; at time ¢ from the fluid phase at the point u € B; there
exists d3 > 0 such that

Rl <65 uthe{pe <p} = |peuth)=pl <1+ |Vipw)])lIR].

Consequently, if we choose dy > 0 small enough so that 6y < & AdsA[2(1+ V1 pe (w)]]) 1]
then for all h € —u + {p; < p.} with ||h]| < dp we have that

[Dn®(pr) (w))

<e€
17l

and the proof is complete.

Lemma 3.2.2 Let p: Ry x T? — [0, p.] be a solution to problem (3.27) with respect
to some lower-semicontinuous initial profile pg, and let w € By, t > 0. Then p; is
differentiable at u iff it is differentiable from the fluid phase at u at time t with

Vi pi(u) = 0.

Proof One implication is obvious. For the converse we note that if u + h € {p; = p.}
then

pC_pt(u+h) :0
Al
and therefore h h
qup Lo oluth) o pempluth)
Il <8 Al I <8 1Al
uthe{pt<pc}

which tends to zero as § — 0 since p; is differentiable from the fluid phase at v at time
t with V] py(u) = 0. This proves that p, is differentiable at u € B, with Vp,(u) = 0. O
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Proposition 3.2.2 Suppose that & € C",fc satisfies ® (p.) > 0 and let p : R, T —
[0, pe] be a solution to problem (3.27) with respect to some lower-semicontinuous initial
profile po. Then p; € CY(T?) for all t > 0.

Proof Let u € B;. We will prove first that p; is differentiable from the fluid phase at u
at time ¢. Since @ is differentiable from the left at p. with ®_(p.) > 0 it follows that its
inverse R := ®~ 1 is differentiable from the left at ¢. := ®(p.) with

RL (L)OC) = ﬁpc)a

since the inverse function theorem holds for one-sided derivatives. So if we set ¢ : = ®(p;)
for all t > 0, then by the chain rule for differentiating from the fluid phase we have for
all u € B; that

Vip(u) = VIR(9) (u) = L () Véu(u) =0,

which according to the previous lemma shows that p; is differentiable at u. Furthermore
since we assume ® to be C! from the left on (0, p] it is easy to see that p, is C1. O

Having seen some basic properties of solutions of problem (3.27), we apply next the
classical results in quasi-linear uniformly parabolic equations by LadyZenskaya et al in
[26]. In divergence form these are equations of the form

Ap(t,u) = dive A(t, u, py(u), Vi (u)), (3.29)
where A = (A',..., A%) Ry x T¢ x R x RY — R% is a C? vector valued function
(0,4+00) x TY x R x R? 3 (t,u,r,v) = A(t,u,r,v) € R,
such that it satisfies linear growth condition of the form
|A(t,u,r,v)| < A+ Br+ C|v|

for some constants A, B,C' > 0 and such that it satisfies the uniform parabolicity
condition, that is there exists constants ca > ¢; > 0 such that for all (¢t,u,r,v) €
Ry x T? x R x R4,

d
ale? <7 0y, At u,m )68 < e, VEeRY {0},
i,j=1

According to the chain rule,

d
divy [A(t, u, pr(u), Vpr(u)] = Z[&MAZ'] (t,u, pe(u), Vi (u))
d
+ Z Oy A (t,u, pe(u), Vi (1) pe (u)

d
+ Z avj -Al (ta u, pt (u)’ th (u))aijpt(u)

ij=1
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and so the problem (3.29) can be written in the general form as

d
Orp(t,u) Z ag; (t,u, pr(w), Vi (u)0i5pe(u) — alt, u, pe(u), Vo (u)),

where
a;;(t,u,m,v) == 3vin(t,u, rov), 4,5=1,...,d

and
a(t,u,r,v) = —div, A(t, u, m,v) — (0pA(t, u, r,v), v).

In particular, we are interested in time-independent and space-homogeneous quasi-linear
equations in which case the vector-valued function A is a function only of the variables
(r,v) € R x RY, that is A(t,u,r,v) = A(r,v), in which case the problem (3.29) becomes

ap(t,u) = diveA(p(u), Vpi(u))

d
Y 0o, A (pi(w), Vou(w) 9y pe(w) + (0, Alpe(w), Vpu(w)), Vor(u)

4,5=1

In the uniformly parabolic case the according to the basic theory of classical solutions
(see for instance [26, 30, 23]) we have the following result.

Proposition 3.2.3 Let p € C(R?). The uniformly problem (3.29) with a C*, k > 0,
vector field A admits a unique classical solution p € C(Ry x R?). Furthermore the
solution p is C* in (0,00) x R? and a strong comparison principle holds:

Given two classical solutions py, py € C([0,T] x RY), T > 0, of the same equation of
the the form (8.29), if p1(0,-) < p2(0,-) on RY then either p; = py in [0,T] x RY, or
p1 < po everywhere in (0,T) x R?.

In our particular case of equations of the form O;p = Ax®(p) this result obviously
carries over to the torus T¢ in place of R, since functions on the torus can be considered
as periodic functions on Euclidean space and due to the particular form of the equation,
translations of solutions are also solutions, which implies that a solution starting from a
periodic initial condition remains periodic at all times.

We will first make sure that in the case of continuous sub-critical initial data the initial
value problem (3.27) with non-uniformly parabolic non-linearity ® € C5°, p. € (0, o]
admits classical solutions. This is done by using the sub-criticality of the initial data,
the comparison principle and the following lemma to avoid the degeneracy of ® at p..
The idea of the argument is already present on [30] but it is not described there how to
make arbitrarily smooth changes to ® as in the following lemma.

Lemma 3.2.3 Let ® : (0,b] — (0,00), b € (0,00), be a strictly positive C* function,
k € N. There exists then large enough M = M (k) > 0 such that the function

(I)(p), 0<p<b

Baesle) = {T%(p b, pzb

154



where lev}kq) s the Taylor-type polynomial

k

. M d(m) (p .
ToFe(r) = =] 1)!rk+1 +Y° 7m!( Jpm o(b),

m=1
is a strictly positive C* extension ® : (0,00) —» (0,00) of ®.

Proof The lemma follows by induction on k. For k = 1 it is obvious that for each M > 0
the function ® M1 is a Cl-extension of ®. Furthermore, since ®(b) > 0 it is obvious that
if ®'(b) > 0 then the function <T>M,1 is strictly positive for all M > 0, and in particular
for p > b we can choose the linear extension T0b;1<I> of @. On the other hand, we can
always choose M > ®'(b)?/®(b) and then the discriminant of TP ® becomes negative,
which since T2'®(0) = ®(b) > 0 implies that
inf TV ®(r) > 0.

Consequently, we can can choose large enough M > 0 so that the function ® M1 is the
required strictly positive C* extension of ®.

We suppose next that the claim holds for ¥ € IN and we prove that it is also true for
kE+ 1. Since ® is Ck+1, (fiM’kJ’,] is a C**t1 extension of ®. Since ® is also C*, by the
inductive hypothesis there exists My, > 0 such that

k
0o := ITIlZlgLTNIk®(r)—gg{(k+1)!r —I—mz::l e —|—<I)(b)} > 0.

We can then bound T' f)f“@ from below by

M o (I)(Hl)i(b) — My PRt 40,

b;k+1 >
O v LA ey

Setting ¢y := ®F+D (b) — My, it suffices to find M > 0 such that

M o Ck k41
fp >0 for allr > 0. 3.30
(k+2)!r +(k+1)!7“ + 6 or all r (3.30)
But this inequality can be rewritten as
Oo(k +2)!
MT+C]¢(I{5+2)>—W, r >0,

from where it becomes obvious that there exists M large enough such that (3.30) holds..

Proposition 3.2.4 Let ® € C,,, p. € (0,00] and let py : T — [0, p.) be a continuous
initial profile. There exists then a unique classical solution p € C(Ry x T?) of the initial
value problem (3.1). Furthermore, p is C> on (0,00) x T and if the initial profile is
of class C?%? for some 0 € (0,1], then p € C*+92+9 (R, x T?). Moreover,
< < Pe, 3.31
max py(u) < max po(u) < p (3.31)
for allt > 0. Finally, if po is not constant, then for all t > 0 we have that

i > mi > 0. 3.32
in py(u) > min, po(u) (3.32)
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Proof Since pg is continuous and takes values in the interval [0, p.) it follows by the
compactness of T? that there exists € > 0 such that max,cpa po(u) < p. —e. Then,
since ®'(0) A ®'(p. —€) > 0, for any fixed k£ > 1 there exists by lemma 3.2.3 a strictly
positive C* extension ¥ : R — R of ®'[jg ,._.] of the form

T (@) (=p),  p<O
U(p) = 2'(p), 0<p<b
T (@) (p—b), p>b

for some M > 0. Then obviously lim|,|_, ¥(p) = +00 and therefore ¢ := inf ,cr ¥(p) >
0. We set B := max,¢o,p,—] ¥(p), we choose a smooth function x : Ry — [0, B + 1]
such that x(y) = y for 0 < y < B and x(y) = B+ 1 for y > B + 1 and consider
the function ¥ := y o W : R — (0,00). Then its anti-derivative §(p)~: fop\fl(r)dr,
p € R, is a C*! extension of the restriction @] .. satisfying ¢ < ®'(p) < B + 1
for all p € R. The claim then follows by applying the results on uniformly parabolic
quasilinear equations obtained in [26] (see also section 3.1.1 in [30] for a review of these
results) to the initial value problem 9;p = Ax,®(p) with initial condition p(0,-) = po, for
each k > 1. Finally the strict inequalities in the left hand sides of (3.31) and (3.32) are
justified by the strong comparison principle for uniformly parabolic quasilinear equations
as stated in section 3.1.1, p. 31 of [30]. O
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3.3 Application of the Relative Entropy Method

Let {)Y € PM%} be an initial entropy local equilibrium of profile py and let u :=

SN € PM%, t € I, denote the evolution of the initial distribution p{’ under the
dlﬁublvely rebcaled transition semigroup of the ZRP. Before proceeding the proof we
introduce some notation that will be used in throughout the proof and give a simple
bound on the entropy production 8,5H(;L{V|l/g(.)). For each a € (0,p.) and € > 0 we

denote by 1/)?’ ** the Radon-Nikodym derivative of Z//J)\j ) with respect to v/, that is we

set
N

wN;a — dypt(')
L auN

Since the measures involved are product measures we can easily obtain an explicit ex-

. N;
pression for ¢, . We have

. % Z(®(a))® N))m=
a ((z/N) (2(a))®(pi(x/N))
) = H —LE = () = H
AL M Z@ (N
Setting
2(8) Z(2(B))
@ = Z =
a(ﬁ) (b(a) and a(ﬁ) Z(@(a )7
we can write 1= as
D, z/N))"=
o = 11 Dalp(z/N))™ :exp{ > [ log @u(pu(x/N) —logZa(pt(x/N))]}.
. Za(pt(z/N)) ’
zeTg, zeT§,
Next we set fN = f* the Radon-Nikodym derivative of u¥ with respect to the
reference measure v2:
duly

ftN = dl/jv .
Then N N

dpy”  _ fi

dvgley W

for every a € (0, p.) and so if we denote by Hy (t) the relative entropy of u¥ with respect
to vV () that is

Hy(t) := H(u |v) (),
then we have that

b
vy

As we know the density f/ is a solution of the Kolmogorov equation 9, f = N2L% fN,

Hy(t) = log 1 de,() /ft log ft “dvl (3.33)

and as such it is a pointwise C! in time function. Since the function ¢}V is also obviously
C' in time and does not vanish, the integrand in the right hand side of (3.33) is C! in
time and therefore we can pass the differentiation inside the integral to get the following
upper bound on the entropy production:
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Lemma 3.3.1 Let a € (0,p.) be fized. For everyt > 0 we have

N
atHN(t) = /N2 tNLN IOg ft d N at'l/;\; tNdl/éV
P {
1 .
</ VLA =0 Y,
t

where L% denotes the adjoint of the generator Ly in L?(vY).
ProofProof Since f} is the solution of the Kolmogorov forward equation
of) = N’ Ly f

f is sufficiently smooth we can pass the differentiation inside the integral in the equation
(3.33) expressing the entropy to get

OHn(t) = /at(ft logit duflvz/atftNlog I dvl¥ +/fN8tlog I dvl¥
¢

/N2 L f )1og£t v +/¢tNat ft )dz/
/N2(L7VftN)log ft dl/ +/wtlvatft N Nat¢ivdyév

N
/N2 (L M) log ft vl +/E)tftNd a;;fv NN
t

Now, the term [ 9;fNdv) vanishes since 0;fN = N2L3 fV and v} is an invariant

distribution and therefore

b N
O H(t /N2 Ly log “t- 1 T dyl — “f; NayN
o Uy
which proves the equality stated in the lemma.
Next, by the elementary inequality
a(logh—loga) <b—a, a,b>0
which remains valid even with b = 0 under the convention log 0 = —o0, it follows that

hLylogh < Lyh

for any non-negative function h : M4, — [0, 00). Using this inequality, we get

N
/ftNLNlogj;t—Nduév = /%th LNlogft dvy /ML 1 “dvl
t
1 N — LNwt N
Ly X dy dp
/ (o) v
Combining this inequality with the already proved equality the lemma is proved. O
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Denoting by

1

H(t) :=limsup — Hn(t), t€ Ry, (3.34)
N—o0 N

the limiting entropy density, the main step in the application of the relative entropy

method is to use this upper bound on 9; Hy(t) to get an inequality of the form

H(t) < H(0) —|—/0 H(s)B(s)ds (3.35)

for a non-negative function 8. Since H(0) = 0 by assumption, this implies by Gronwall’s
inequality that H(t) = 0 for all t € R4 as required. Of course in order for Gronwall’s

inequality to be applicable, the function s — H(s)3(s) must belong at least in L{ (R4).

Lemma 3.3.2 Let p : Ry x T? — [0,p.) be a continuous function such that the

function in (8.2a) is in L2 (Ry). If a sequence of initial distributions {ud’} has rela-

tive entropy of order o(N?) with respect to l/l])\é(‘), then the upper entropy H belongs in
L} (R ), where

H(t) := sup ﬁH(uiVIVZ(.))y teRy.
Proof According to proposition 2.6.2, the relative entropy inequality shows that the
sequence {u) € PM%} satisfies the O(N%)-entropy assumption. Using the relative
entropy inequality once again we prove that H € L120C(]R+). Indeed, given T' > 0 we pick
e > 0 such that p. — ¢ is an upper bound of the set p([0,7] x T%) and fix a € (p. — ¢, pe).-
By the relative entropy inequality and proposition A.1.9.1 of [25], according to which

the function ¢ — H(uN |Y) is non-increasing,

1 Ny, N 1 dvy \7
< (14 = + = .
Hy(t) (1 7)7{(#0 lv.') 5 log/( Vg(.)> dv, (3.36)

for all ¢ > 0 and all v > 0. By similar computations in the previous step,

AN (2 a
log/(dii(») s wez']r:d {ﬂog Z(¢Z(€‘I>((a/)])\]))) +Aa<ﬂog 4>(pi(x/)N)))}'

So if for each t > 0 we set

_ 1 logafy
B(a)
O (me)

v(t)

o 5log

where m; := min,cpa p:(u), then y(t) log % < ilog ‘pc) for all (t,x) € Ry x T4,

D(a
and by (3.36) for all t € [0, T

L
v(t)

Since the function in (3.2a) is in LZ

Z(®(pe—¢)) | 1
)C’(a) + log 72((1)(@) + m

(R.;), the right hand side above is in L2([0,7]). O

Hw < (1+ log Z (v/¢p.®(a) ).
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The bound of lemma 3.3.1 on the entropy production can be estimated using the
explicit formula of 1¥. A simple computation of the action of the adjoint of the generator
Ly on 9 shows that

Ly _ > [<I>(p<t,y/N))

N (ol o/N)) 1g(n(@))p(e - ).

z,yeTY,

This is well defined since p, is strictly positive for all ¢ > 0 even if the initial profile takes
the value zero not identically. On the other hand, the sum

®(p(t,y/N))
w,y%:r;lv [W - 1} @(p(x/N))p(z —y)

obviously vanishes and therefore we can write that

N2LN¢Y _ o 3 [w

R = F (o) 1 [s(n(@) = @(p(t. ) ]p( ). (337)

z,yGT‘Ii\,

Proposition 3.3.1 (Taylor’s Theorem) Let f : RY — R be a C**9 function for some
keN,0<6<1. Then for all z,h € R* we have that

Ri(w,h) = fla+h)— Y %aaf(x)ha

lo| <k
1
1
- k;/ Z —[0% f(z + sh) — 8% f(x + h)]h*(1 — s)* 'ds
0 o=k (6%
1
+ ) —[0° (@ + h) = 9* f(2)]h®
|| =k
Furthermore .
D
sup [Ry(e, )| < 2va 2L
zeR4 k!
where || D¥ f|lg := max,q |, |0 fllo and || - ||¢ is the 6-Holder semi-norm. In particular

sup |Ry(z,h)| < O(|R**?) < o(|n[*).
z€R?

Since ®(p;) is C?*Y for some 6 > 0 we have by this Taylor expansion that

2(p(L)) ~2(p(D)) = VIRI(5)y— ) + 5rg BB (o) — )
Hiu(y )

where H? is the Hessian form and the remainder R, satisfies

sup Ry, )| < VD@ (po) oo 1.
ue
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Since ®(p;) is smooth and since the elementary step distribution p has mean zero,
we have by the second order Taylor expansion for stated above that

> [2(n(L) ~2(n())|plr—2) = SEAs@E(E) + R()

yeTd,

for all x € T4, where the remainder R; satisfies | R;|loo < CN*(”Q)HDQ[(I)(;)MHG for
some constant C' > 0 depending only on p € PZ¢ and the dimension d:

R(3)| < ;W|Rt<§,ij””>yp<y—x>
< VAP @(ploxars O Nyl ply — )
yeZa
= CN~CH|D%[@(py)]|,-
Therefore
N[y B . g(n(=) 3
— = NMEZT?V 20 0/N)) = #(oulo/ M) | | g U —w)
B x g(n(x))
Ax[P(py)]\
- xe%( B0 ) () 9n(@)) — #(pu(e/N))]

b 30 RN [ a)) - (plt, /)],

very, (ot /)
and for the remainder

B N2R,(z/N)
0= 3 F0 ) l9(n(@)) = @(p(t.2/N)|

we have that

N
Irn ()] < er tx/N ’ (ol 2/N)
< N2||g||oo +<1> pc - Z e/

ETd
D=[d(
< C-(lglloe + ®(pe — E))Nmow.

P (my)

Therefore we can write (3.37) as

* N xT
W =5 oy, (S5 00 - 0]t
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where for the remainder term ry () we have

2
rn(t)] < CNd—"W

(3.38)
with C := C(||gllo + P(pe — €))-

Furthermore, using the fact that p is a solution of 9;p = A, P(p) and the equality
R(p) = €219 0 < o < ¢, we get that

Z(p)
Al N
o = O(log ) =0, Y [n(x)log @ (pr(z/N)) —log Za(pr(z/N))]
t zeTY,
A ] x L, x x
= ¥ 2 () [0 - ()]

d
zeTg,

and therefore by the calculations made so far, by lemma 3.3.1 and the one block estimate
we have the following upper bound for the entropy.

Lemma 3.3.3 For all t > 0 we have

T

Hy(t) < Hy (0 / / Z )N)M(nﬁ(x),ps(x/N))dug ds + oo(N9),

where M : Ry x Ry — R is the function given by the formula

M(X, p) = ®(\) = ®(p) = 2" (p)(A = p)
and the term oy(N?) satisfies
1
lim sup lim sup —Og(Nd) 0.
t—o0  Novoo N4

Proof By lemma 3.3.1 and the calculations performed so far we have that
t
Ay < HvO+ [ rn(ois
/ / Z () {9n(@) = @(ps (/)

o/ (ps(%)) [1(@) = po(50)| s, (3.39)

By the bound (3.38) on the remainder and the L (R} )-integrability of the function
defined in (3.2b) it follows that fg Jrn(s)dulds = o(N?) for each t > 0. So we deal
next with the last term in the right hand side of inequality (3.39). This term is equal to

/Ot / Zd Aflfii’;s”(;){g(n(x)) — B(pa (/) il ds
//Z AE D) (o () (@) = po(55)]dul ds

z€TY,
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Since Az‘;I)[‘(i()p)} € L%(0,T;C(T%)), T > 0, by (3.2b) we can apply the one block estimate

with respect to functions in L'(0,T; C(T)) to write the first term as

/O/Z Azq)[((l)p(f)s”(;){@(ne(x))—‘I)(Ps(x/N))}duévds—i—oe(Nd).

On the other hand a simple change of variables shows that we can write the second term

as t As[®(ps)] 2\ o, x
/0 /x;:% W(ﬁ)@ (ps () 1" (@) = ps (5 ] duN ds + o(N?),
and the proof is complete. 0

In this way, the macroscopic Taylor expansion of ®(p;) around the point % and the
one block estimate give a microscopic Taylor expansion of ®(nf(z)) around the point

pil/N).
To simplify the notation, we set Gy : T¢ x Ry — R, t > 0, the function defined by

it ) = 22 a1 0, ), (3.40)

Then we can rewrite the bound of the last lemma as

/ [ 3 Gl @) dudis + o,

zeTY,

where we have also taken into account the fact the Hx(0) = o(N?) by assumption. By
the relative entropy inequality we get that

1 1 z n’(z
/ Z G ) N < —HN(S)—l——log/estIET‘vaS(N’] ( ))dl/i,v(_)
Vs Vs °

weT

for any positive measurable function (0,00) 3 s+ 7, € (0,00) and each s > 0. Dividing
by N¢ and taking lim sup first as N — oo and then as £ — oo we get that

1 t
H(t) < lljgrljllop’ysNd/HN(s)ds

'Ys - d G %
+ lim sup lim sup Nd/ log/ emg, Go(% dl/ L()dss

f—oo0 N-—oo Vs

Then if the function v can be chosen so that 3 :=1/y € L2 _(R4), we can use lemma
3.3.2 to pass the limsup as N — oo inside the time integral of s — Hy(s)3(s)/N? to
get Gronwall’s inequality (3.35) but with the term

hmsuphmsup / —log/ 7 Eoemg, Ge(F o' @) g N (1S (3.41)

l—o00 N—oo

added to its right hand side.
So the rest of the proof is devoted to proving that the function 3 =1/y € L (R4)
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can be chosen so that for each time ¢ > 0 the term in (3.41) is non-positive. We begin
by noting that the function G : Ry x T? x Ry — R defined in (3.40) satisfies the
inequality

sup,era |Ge(u, \)| < C-Cy- (14 A) forall ¢, A >0 (3.42)
where
C={®(p.—c)+ max 10 (r)}V2|gle <-+oo,
r€[0,pc—¢]
and
Ax®(pt)
C, = H ‘ , 3.43
t (I)(pt) 0o ( )

For each K > 1 we denote by v : (0,00) — (0, 00) the function v/ := - log rIERt
Since the function in (3.2b) is in L (R ), the function 8% := 1/4X belongs in L (R ).
Using inequality (3.42) and the L2 (R )-integrability of 3% it is straightforward to check

that the family {h]}{[ }v,pen of the functions

1 K =
h%’z(t) = RN log/e% 2perg, Grlzm (:c))dyg(_), t>0
t

is dominated by an L% (R )-function for each K > 1. Indeed, on one hand we have by
Jensen’s inequality that for all £, > 0 and all N € N, ¢ € Z that

C’ C
N4 z ~ E N
h‘K (t) Z Nd /Gt 7T] Pt(') 2 / 1 + 77 det(,)

z€TY, z€TY,

= —C-C,— - Ct/ > n( y=—C-Ci— ¢ Ct/ > pi(z/N)

ZEETd ZEETd
> _C'Ct(l +pc _5)7

which shows that h%’l is bounded below by an L2 (R )-function uniformly over all
N,?¢ € N. On the other hand, for all N € N, ¢ € Z, we have that

IN

1 K x
h%ve(t) /e'yt Zﬁe']rd C-Ce(1+n%( ))det()

1 Ko, :
= C-Ci+ g 1og/e” GO Daemg 1D g N
’Yt N

= C-Cy+ ZAM(:)( log%)

— &
xETd Pe

As we have seen, the logarithmic moment generating function A, (,/ny has proper do-

main Dy 2 (—00,bp,(z/N)) Where b, := log &~ 35y forall p € (0, pc), and so since

pt(x/N) 7 TPt

p(t,u) < p. — e for all (t,u) € Ry x T? we have that

(=00,bp,—c) € Da Y(t,z) € Ry x T.

Pt ()7
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Therefore, for any K > 1 we have that A, (;/n) (% log ﬁ) < +oo for all (¢,2) € TY

and in particular,

1 Pe _ o Z(®(pu(w/N))e* 8 w5 )
e (£ 8 5005) = 8 et

log Z(®(p. — 5)1*%306%) = Ag < 400

IN

for all (t,z) € [0,T] x T9. Tt follows that
hit(t) < C- Cy+ A B

forallt € [0,T], N € N, ¢ € Z, and so {h%’z} is also bounded above by an L% -function
uniformly over all N,/ € N. This permits to pass the superior limits as N — oo and
then ¢ — oo inside the time integral in (3.41) for each K > 1. Consequently, in order to
complete the proof it suffices to show that we can choose K > 1 so that for each ¢t > 0,

lizri)sup lilffn sup % log / e’ytK Leer, Gt(%’nl(x))dyﬁf(,) <0. (3.44)
o0 — 00

This inequality follows from the estimate of the following lemma, which is a gener-
alization of lemma 6.1.8 in [25] to the case of finite critical density p. < +oo. It is a
consequence of Cramer’s theorem for the occupation variables n(x), z € Z?, under the
grand canonical ensemble v7° € PM¢< , p € [0, p.], and the Laplace-Varadhan principle.

Lemma 3.3.4 Let p : T — (0,p. —€), € € (0,p.), be a continuous profile and let
G :T? xRy — R be a continuous function such that

sup |G(u, A)| < Co+ CiA  forall N € Ry
ueTd

for some constants Coy > 0 and C € [0, % log ﬁ). Then
limsuplimsupilog/ezﬁwfv G(%,ne(x))dij </ sup{G(u A) _ Ly (/\)}du.
t>00  Nooo N PO = fra x>0 ’ 2" p(w)

Proof For fixed ¢ € Z., the mean n‘(0) is a function of the random vector (n(z)|z € Af).
So the random variables n(x)* and n(y)* are independent whenever |z — Ylpe =20+ 1.
We will take advantage of this fact to decompose the expectation with respect to the
product measure 1/;\(’,) to a product of simpler terms. We will first take the limit as
N — 0. So we fix ¢ € Z, and use Euclidean division to write each N € N uniquely as

N=qni20+1)+rne,  rne€{0,1,...,20}

Furthermore, we set Ny := N —ry ¢ = qn¢(2¢ + 1) the largest integer less or equal to N
that is divided by (2¢ + 1) and we first decompose the sum in the exponential as

> 6(Gat) = X o(Gae) ¥ o(fae)
a:GT;{,Z

zGT?\, IG’]I‘?\, \']I“Ii\,l
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Since C < log (b( 2y we can choose p > 1 close enough to 1 so that pC; < log @(p —

Then by the Cauchy—Schwartz inequality we have that

1 e Gl ' (@)
J(N,‘g) = W]Og/e ”ET?\I no d]/é\(f)
1 2’Zz a4 G(i,ne(m))
< gyatoe [ T g,
2> crd \1d G(%,ng(z)) N
+72Nd log/e NN, vl y.

We will show first that the second summand in the right hand side is non-positive in the

limit as N — oco. Indeed, we have that

Z G(%,né(x)) < Z [Co + Cin' ()]

z€T{\TY, z€T{\TY,
= (N*=NHCo+Cr Y n@)—C1 Y Y n+2)
z€TY, acE']I‘d[ zENY
< (V-NHG+G Y ),

d
xG’]I‘N\’]I‘N[ o0

where obviously

N — N} =O(N") and $T% \ T, o = N — (N, — 20)4 = O(N*1).

Therefore
1 2%, cpd \pd G(E 0 (2))
Jo(N,8) = Wlog/e STN\Tx, N dvé\(/,)
N — Nd 1
< NaCo+ oy > Ay (2Ch)
€T{\TE, o
N¢ — N4 N¢ — (N, —2¢
< LCy+ (Ne )’ 10gZ(<I>(pC—E)201)7

Nd 2Nd
where log Z(®(p. — €)2C1) < +o0 since Cy < j log 2. It follows that

lim sup Jo(N,¢) <0

N —o0

For the first term

/3221”%2 G(%’"é(x))dygv(,)

1
Jl(N,g) = W log

we decompose the sum in the exponential as

ZG( ) > > G (w 775(1”+(2€+1)y)),

z€TY, zeAd yeEN*
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where we have set EN! .= {y € T 2+ (20 + 1)y € ’]I‘jlve}. Then by the generalized
Holder inequality and the independence of the random variables {n‘(z + (2¢ + 1)y)|y €
EN-1 we have that

dyz+(20+D)y ¢
2D CEEETRE @M DY) N Gt
)

E
J1(N,0) < log H (/ very dl/p(_

xeAd
2(2041)* G(HEHDY 7 (a4(20+41)y))

]. N, ¢ N
2m+mw§yﬁﬁm” Wty

_ 1 2(2041)4G(ZECLDY 18 (41 (901 1)y))
- (2€+1deZ Z 1og/ Jdp()

xEAd yEEN £

1 2(20+1)2G (2 ' (2)) 7, N
- e 3 1og/e< G @) g N
zeTY,

1 2(20+1)G(& 0 (z N
- ST 3 1og/< 1'G @) gyN

z€TH\TY,

Now, since the profile p is continuous, the sequence Vé\é ) is a local equilibrium of
profile p, that is for each macroscopic point u € T¢ we have that T[N u] I/p() — fo ()
weakly in PM? | and therefore on one hand the first term in the upper bound for J; (N, £)

given above converges as N — oo to

1 d £
1 2(204+1)*G(u,n (O))d 00 oy
2020 + 1)d /Td Og/e V()

On the other hand, as we will show the limsup of the second term as N — oo is

non-positive. Indeed,

. 1 2(2¢+1)°G N (x
Jia(N,0) = T Z log/ e G @) gy

TH\TE,
1
< Z log/ 2£+1 (CO+Cln (I))dy
— dnNd
2(20 + 1)4N ey,
1 Z 1 / (2¢41)%C1n* (:c)d +C Nd_lei
= — og v, ———%
200+ DN, o, Nd
1 - N¢

T 2020+ 1)iNd > Y Ao +an N

z€T{N\TY, y:ly—z|<¢
d d
)N - N

1
< (Cot 5108 2(e2 @pe — €)) ) 7

which obviously tends to zero since log Z(e2“1®(p. — €)) is finite by our assumption on

the constant Cj.
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It follows by the proof so far that

1 z nt(x
imoup 7log | et O,

1 d ‘
P 1 2(2¢+1)G(wn"(0)) 11,0 . 3.45
< 2@y /Td og/e Vp(u) U ( )

We will first calculate the limit as £ — oo of the integrand for each fixed v € T¢ in this
last term and then we will show that we can exchange the limit with integral. Accord-
ing to the Laplace-Varadhan theorem, if we could show that 2G(u,-) is exponentially
uniformly integrable with respect to the sequence {T]Z(O)*I/;?u)}eez+, i.e. that

. ) 1 2041)%2G (u,n* (0 oo
A}gnngrgomlog/e( Fraat ))H{G(umé(o))zM}d’/p(u) =700

it would follow by the Laplace-Varadhan theorem that for each fixed u € T¢,
. 1 2026412 C(w,n  (0)) 7. 00 _ N

For all M > 0 we obviously have that

(264126 (u0" (0) 2(244+1)4(Co+C11*(0)) Licy+cin

LiGum)zary <€ £(0)>M}

and therefore setting Cys 1= MC;FO and ¢, := 2¢ 4+ 1 by our assumption on the function
G and Holder’s inequality we have that for all p > 1,

022G (u,n*(0 0o 204 (Co+C11* (0 00
/6 +2G (u,n"( ))H{G(u,ﬂé(o))ZM}de(u) < /e (Co+Cin( ))H{HZ(O)ZCM}de(u)
< B2y (' (0) > Cur) v %

1

: (/ ewcml(o)d”ﬁm)p’

where ¢ is the conjugate exponent of p. But we obviously have that

log/eé(32p01n@(0)dyp0(0u) — Z log/€2pC17l(y)dV;X(>u) — (2€+ 1)dAp(u)(2p01)7

ly|<e

and by the assumption on the constant C; we can choose p close enough to 1 so that

2pC1 < log ﬁ in which case A,(,)(2pC1) < +oo0. It follows that

: 1 20+1)42G (u,n* (0
limsup 7y log/e( RO O G e )2 ay )

1 1., 1 [ 4
<2C) + ];Ap(u)(Qpcl) + 61151801.}1) RS log v,y (n°(0) > Cr),

where the first two terms in the sum in the right hand side are finite, and so in order to
prove the required exponential uniform integrability it suffices to show that

lim lim sup

oo 4 > —
i timsup g 1og v (0 (0) 2 Car) = —co.
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But this is seen easily since on one hand we have that Cj; — oo as M — oo and on
the other hand by the large deviations principle for the family {n(x)},cze we have that

: 1 0o l
h?lsogp W log vt (" (0) = Cu) < =

since the function A, is increasing on [p(u), 00) and tends to co as A — ooc.

. * M — 400 .
)\énC’fM Ap(u) ()\) — o0,

It remains to show that we can exchange the limit with the integral. So we denote
by he : T4 — R the function given by

1
log/62(2€+1)dG(“”72(0))du;fu)7

ho(u) = @11

which as we have shown converges pointwise to the function sup,~o{2G(-, A) = A,y (M)}
By our assumption on the function G we have on one hand that

1

he(u) < i) log / £2204+1)[Co+C1n*(0)] vt
= 2Cy+ ﬁ log/ew1 Diyi<e "(y)d,/;?u)
Y=
< 2Cy +log Z(®(pe — 5)6201) < +o00,

while on the other hand we have by Jensen’s inequality that

ho(u) > / 2G (u,n(0))dvy%,, > —2C — 2Cy / 1°(0)dv?,) = —2Co — 2C1p(u)

> —200 —201 '(pc—E).

Consequently we have a bound for the sequence {h;} uniform over ¢ € Z, and u € T¢
and an application of the bounded convergence theorem, completes the proof. O

We recall that the function G : [0,7] x T? x Ry — R defined in (3.40) satisfies
the bound (3.42). Therefore if we choose K > 2 then the function v~ G, satisfies the
assumptions of lemma 3.3.3 for each fixed t > 0, and so for each K > 2 the term in
(3.44) is bounded above by

1
K I €
/T sup {3 G, ) = S5,y () e

d A>0

To complete the application of the relative entropy method it remains to show that, by
enlarging K > 2 if necessary, this last term is non-positive for all ¢ > 0.
We note that this would follow if we had a bound of the form

|M (X, p)
K(e) = sup ———~— <+oo. (3.46)
p€(0,p.—¢] A;()‘)
A>0
Indeed, since for (A, p) € R+ x(0, p. —¢] we have that A% (\) = 0iff A = piff M (), p) =0,
we would then have that

[M(A, p)| < K(£)AL(N),
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for all (A, p) € Ry x (0, p. — €], and so we would have that

K(e) Dc

K K K * _ %
n Ge(u, A) <9 C M, pe(w))| < 7 Cel (€)M, () (A) = 75 log (. E)Aptw)(/\)

for all (u,\) € T x Ry. Then by choosing K > 2 large enough so that in addition

II(((E) log @(picfa) < %, it would follow that the right hand side in the inequality of the

above corollary is non-positive, as required. The bound (3.46) is proved in the following
lemma which is a generalization of lemma 6.1.10 in [25].

Lemma 3.3.5 For every e > 0,

‘1 [M (A, p)|
p T < oo
(Ap)€(0,00)x (0,pe—e]  N5(A)

Proof We first choose § € (0,5). We decompose the set (0,00) x (0,p. — €] in two
disjoint subsets (A « p and A > p) and prove the claim on each. We start with the
region A « p:

& ={(\p) €Ry x (0,p. — €] |0 <A< p. — e+ 6},

where we recall that if p. = +o00, p. — € is to be interpreted as 1/e. By the Taylor
expansion of ® around the point p € (0, p.), we have M (A, p) = fp/\ " (r)(A — r)dr for
all A, p € (0, pc). So since {A|(A, p) € & for some p € (0, p. — €]} C (0, pc),

A
M p)| < (A= p)* forall (A p) € &

where A1 1= supy<, <, o145 |®"(r)| < +00. For the denominator we note that the rate
functional A% is C' on (0,00) and C? on (0, p.) with

d P(AApe)

d2

A0 N = oy

A€ (0, pe)-

Since A} and its derivative vanish at p, by the Taylor expansion of A} around p € (0, p.)
we have that A%(A) = fp’\ (A3)"(r)(A = 7r)dr for all A € (0, p.) and therefore

* Bl

(A —p)?* for all (X, p) € &,

where By := info<r<p,—e+6(A})"(r) > 0. Combining these estimates, we get the required
bound on the region &;.
We turn now to the set

82:{()\,p)€(0,oo)><(O,pc—a]’/\>pc—€—|—6}.

Note that for all (A, p) € & we have that A > p + 0. Recalling that ® is Lipschitz with
Lipschitz constant < ||¢’||ec, We get an upper bound for the numerator

IM(X, p)| <2[|¢'[|locX  for all (), p) € .
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Since A7 is convex as the supremum of linear functions we also have
AJ(A) > Ag+ By - (A —p.—e+6) forall (A p) € &,
where Ay = inf ¢ (0,p.—c] Ay (pe — € +06) > 0 and By = inf ,c (0,5, <) (A}) (pe — € +6) > 0.

The last two displays together imply the required bound on the region £. This com-
pletes the proof of the lemma and the application of the relative entropy method. O
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Chapter 4

A Macroscopic Continuity
Equation for the
Symmetric Zero Range Process

In this section we mainly concentrate in the case of the symmetric nearest neighbor ZRPs
with bounded jump rates and we will prove that the laws of the triples (7V, W o¥)
of the empirical density, the empirical current and the empirical jump rate respectively
are concentrated on paths (7, W, o) satisfying the continuity equation

oy = —diviV = Ao

in the sense of distributions where for (almost) all ¢ > 0 m; is finite non-negative measure,
W4 is a vector-valued measure absolutely continuous with respect to Lebesgue measure
and o, € H'(T9). More precisely we prove the following

Proposition 4.0.2 Suppose the local jump rate g is bounded and let ul) € IPgIM‘fV be a
sequence of initial distributions associated to the macroscopic profile pg € M. Set

Q = D(0,T; M4 (T%)) x L3 (0,7; C* (T4 RY)*) x Lis (0,73 M(T?))

and consider the image RM € PQ of the law of the diffusively rescaled ZRP starting from
ud’ wia the triple (7N, W o). Then the sequence {R“éV Inven C PQ is sequentially
relatively compact in the weak topology of PQ). Furthermore, any limit point R of the
sequence {R“(IJV} is concentrated on trajectories (w, W, o) such that:

(a) m € C(R4;My) and mo = po.

(b) or < mya, ||lo¢]|pee(ray < pe a.s. for all0 <t <T.

(c) Wy € M(T%RY) and Wy < mepa for a.s. all t >0, and

(d) The continuity equation

oy = —diviV, = Ao (4.1)

holds in the sense of distributions.
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The fact that W; € M(T% R?) and W; < mra for a.s. all t > 0 follows from the
following regularity result which is worth stating in its own right.

Proposition 4.0.3 Let {ul’ € IPl]va} be a sequence of initial distributions satisfying
the O(N®)-entropy assumption. The third marginal Q9 of RMY on LR (0, T M) is
concentrated on paths o such that there exist L*((0,T) x T?) functions denoted by d;0,
j=1,...,d, satisfying

T T
/ 0;H(z)o(t, z)dxdt = —/ H(z)0;0(t, z)dxdt
o Jra 0

']I‘d
and

T IVeta)|?
/0 /Td o(t2) dxdt < +o00. (4.2)

)

In particular Q{c|o; € H(T%) a.s. ¥t € [0,T]} = 1.

This regularity result is an adaptation of the results in section 5.7 of [25].

4.1 The Law of Large Numbers

This section contains the proof of the relative compactness of the distribution of the
empirical density. The arguments rely on the analysis of the martingales associated to
the speeded up ZR process (ni\]]\p) through the martingale problem and appropriately
chosen functions on Ry x M%,. The description of these martingales is contained in
chapter A.2 in the appendix for Markov jump processes. We recall here that given any
polish space M the space of all cadlag (i.e. right continuous and with left hand limits)
paths is denoted by D(R; M). The set D(IR.; M) when equipped with the Skorohod
metric becomes a polish space. Loosely speaking the Skorohod metric metrizes a kind of
uniform convergence, but with the difference that it allows for time reparametrizations
that converge to the identity to account of the possible jump discontinuities of the paths.
We review the basic facts on the Skorohod space in section A.1 in the appendix, mostly
without proofs. A detailed exposition of the Skorohod topology as well of criteria for
relative compactness of sets of laws on Skorohod spaces is contained in sections 3.5 to
3.10 of [14]. A more concise treatment of this subject, which contains almost all the
results on the Skorohod topology than we will use is contained in section 4.1 of [25]. Let
N = idpw, M4) QY — D(Ry, M%), N € N, be the sequence of the natural cadlag
symmetric ZR processes on the discrete toruses Tﬁl\,, with common local rate function
g : Zy — Ry and symmetric elementary transition probability p € PZ¢, defined on
the probability kernel QY = (D(IR+»M(11\/)»BD(R+,M§V)» (IP%))WEIM‘}V)' In this way, for
fixed N € N the ZR process n" = {n]¥};>0 consists of the natural evaluation maps
771{\[ : D(R+7MdN) — M?\ﬁ

(M) =n, n=m)e=0 € DRy, M%),

and given any initial distribution p € PIM¢4, the distribution of the process 7"V starting
from p is

Ph = [ PRdutm) € PD@R: M)
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Recalling that n(z) : IM‘}V — Z4 denotes the natural projection at the site x € ’IF‘}V,
given by
n(@) () = nes 0= ()sers, € MY
we set nl¥ (z) = n(z) onl for all x € T, N € N.
In the hydrodynamic description of the ZR process we are interested in the empirical
distribution of the ZR process induced by the empirical embeddings =V : M4, —

M*(T?) given by
1
N _ N
zeT,

N

To be more precise, since the empirical embeddings 7' are continuous and injective they

induce a continuous injective map
7N D(Ry, M%) — D(R4, M%)
between the respective Skorohod spaces. In its turn, 7%V induces a map
N . d d
7, :PD(R4,My) — PD(R4, M%)

between the respective spaces of distributions, and using this map we can consider
the distribution P4, := [P¥du(ny) € PD(R4, M%) of nV starting from any initial
distribution 4~ € PM$ embedded in D(R, M%) as the distribution

— N N P
Py =L = [ PRdun) = [ 7Y PRdutm) € PO M),

The distribution IPG(,N is the empirical distribution of the ZR process 7" starting from
pY € PMY%. In this way, given any sequence {u" € PM% }yen we can regard the
sequence
N
Py €PD(R,, M%), NEeN,

as living in a single space, namely in PD(R, M‘i) by working with the sequence
P4 = #VPE € PD(Ry, M%), NeN.
We notice next that the empirical distribution IF”X,N € PD(Ry, M‘i) of nN starting
from pV is in fact the distribution of the empirical process
™ (D(Ry, ME), Py ) — D(Ry, M*(T)).
It is preferable to consider the empirical process as a Markov family, namely as
T (DR, MY) APY }pems,) — D(Ry, M (TY).

Of course, the empirical process as defined above is in fact a Markov family on the
subspace 7V (M%) and not on the full state space ./\/lff_ since any path of the empirical
process must obviously start from some measure in 7V (M%) and remain in 7V (M%)
for all times ¢ > 0. Nevertheless it obviously has cadlag paths, it satisfies

PR{ay =n)} =PR{n) =no} =1, VYn €M%, NeN
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and inherits the Markov property from nV for all N € N, that is
— N
P{r) =al|FN} =P {7}, =7)}, P¥ as.

for all t > s > 0 and all n,n9 € M4, where (FN

N)s>0 is the natural filtration of 7.

Indeed, if (FN )s>0 is the natural filtration then by the Markov property of n™ we have
that N
PR {n =nlFY} =Py {n,=n}, PY as.

But the empirical embedding 7% is injective and so we have that (FN)s>0 = (Fs)s>0

and {n) = n} = {7 = )} for all n € M4 and all ¢ > 0, which gives the Markov
property of the empirical process 7.
Let now pigp € M (T?) be an initial profile and fix {V € PM% }nen be a sequence

associated to the profile pg, i.e. such that
{1, = (G podima)| > £} =0

for all G € C(T?) and all ¢ > 0. For the rest of this section, for each N € N we set
PN € PD(R4, M%) to be the distribution of n”V speeded up by N? and starting from
u™N, that is

N
PN = [(N2)es0] P . NE€N, (4.3)

where of course n™¥ = idD(R%M?V) = (n¥)i>0 is the original ZR process, and we set

N
QN =7 PN = [(n)2)iz0] Py € PD(Ry, M%), NeN. (4.4)

Our main goal in this section is to find conditions on the local rate function g and the
initial sequence { ,uN € lPJM?iV} ~NeN which ensure the relative compactness of the sequence
{@"V}nen € PD(Ry, M%). The arguments rely on the analysis of the martingales
associated to the ZRP via the results of section A.2.

Proposition 4.1.1 Let (n™¥,Py) be a ZR process with generator LY. Then for any ini-
tial distribution pN € PoM4, (u¥ € P1M if the jump rate function of n™ is bounded)
and any G € BC]%{+ (T?), the real process

t
AYC = (G, Ny — (Go, ) — / (8s + N2 LN)(Gy, 7Y (N )ds, t >0,
0
defined on the filtered probability space (D(R+,M‘Ii\,)7(ffv)t20,PN) is a martingale,

where (FYN) is the minimal right continuous filtration to which n~ is adapted and PN
is the distribution of n™¥ starting from u" speeded up by N2.

Proof By the previous proposition we know that for any function F € B; C'ﬂl;L+ (M%) the
real process

t
N
M = Ft(ntN)—Fo(néV)—/ (8s + N*LN)F,(nY)ds, t>0,
0
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is a (F}, PV)- martingale, where of course in the above formula the generator LY of nv
is multiplied by N? since we are working with speeded up process by a factor N2. Now,
for any function G' € B(R x T?) we define the function Fg = (G, 7V) : Ry xM% — R
by the formula

Fa(t,) = (Fa)i() = (Goa™) = / G, (4.5)

Td

and since 7)Y =7V on¥ : D(R4+, M%) — M we obviously have that

Fa(t,n)) = (G, 7)) onl = (G, 7).

Therefore we have that M7 -F6 = AN-G for all G € B(R; x T9) and thus the claim
follows if we show that

GeBCk (T') = Fge BiCq, (MY). (4.6)
So let G € BC]%{+ (T9). Then for all (¢,1) € Ry x M% we have that

|Gl v
Foltn)l < [ 1Gildmy) < KB,

and therefore Fig € B1CR, (]M?\,) Hence it remains to prove that

. (F — (F .
E%%}L(C’)t:@(ﬂ;)t in B (M%)

for all t > 0. Since G € BCh (T?) we have that C=4=t — §,G, uniformly in T¢

N

and therefore since 7" is a (random) finite measure we have that

F — (F . /Gn— G
Fedeon = el _ yy (Gen =Gt o) (9,6,,7%) = (Fac),

O(Fo)e = 1}%?8 h h10 h

pointwise in M4 for all t > 0, i.e. 9Fg = Fsg. Therefore, for all n € M%, t > 0, we
have that

F — (F, F — (F,
( G)t+hh (Fo)t _(Fa)| = ’( G)t+hh (Fa)  (Foe),
- ’< h - >
1 || Gipn — Gy
< W # - ath u| ' |
and therefore
F, — (F, F — (F, — ho: (F,
H( G)t+hh (Fa) — O(Fe): — sup (Fa)e+n(n) h( c)i(n) at G)t(n)‘
ul neM, ~(1+nl)
1||G -G
< Nd % — 0:Gy Uit 0,

which proves that F' € BlCIlpur (M¢%,). Therefore (4.6) holds and the proof is complete.(]
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Remark: Note that by proposition A.2.1 and the remark following it, we have that
when M = T? then
2,0 d 1 d
C2O(Ry x TY) C BCh, (T7),

where C2%(R, x T?) denotes the space of all continuous functions G : Ry x T¢ — R
with compact support that are C? with respect to time pointwise in T¢. Thus the real
process AN of proposition 4.1.1 is a (F, IP’X,N )-martingale for all G € C*°(R; x M)
and all pV € PoM4% (4 € P1M$ if the local rate function of the ZRP is bounded).

AN,G

The quadratic variation of the martingale is given in the following

Proposition 4.1.2 Let N = (n,Pn) be a ZR process with parameters (p,g) and LY
denote the generator of n™¥. Then for any initial distribution p € P4M4, (uVN € P3M4,
if the jump rate function of n is bounded) and any G € C*°(Ry x M) the Pk -

AN,G

martingale associated to (n,Py) by proposition 4.1.1 is square integrable and its

quadratic variation is given by
t
ey, = N [ {1060 )0) - 26w VLG w) 0:) s
0

s X [0(3) - () st

z,yeTY,

Proof Indeed, as we have seen for any G € C2%(R, x T9) the function Fg = (G, 7™) :
Ry x M4 — R defined in (4.5) is in BC]%{+ (M%) and since AN'¢ = M7 F6 we have

AN,G

by proposition A.2.3 that is a square integrable P} -martingale with quadratic

variation
t
(Y€)= N* [ {LUG ) ) = 26 7 LG w)(0e) s
0
where the term N2 appears of course due to the fact that for a scaled up Markov jump

process the generator and the jump rate function of the scaled process are multiplied by
the scale parameter. But then since for all n € M4, and all z € {n # 0} we have that

it follows by proposition A.2.4 that

¢eM$,

(ANG), = N / S [(Gor 7Y — (G m )] A (1) (15, )l

N > (Ga ey — 7)) 2g(ns(2))pa (y — 2)ds
x,yGT?\,

v [ 2 [0 (8) e (@) st s o

m,yeT?\,
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Furthermore, for any function G' € C(T9) we have that

M@ m) = Y (Gompewss — 1) )g(n(@))pn(2)
m,zETd
- T [ o)t
m,zG’]I“}V

and using the fact that p is symmetric we can write the action of the generator on the

function (G, 7) as

NG ) = ﬁ > [6(5) —o(F)Jst)en ()
+ o zj ) - 6(F) sty (2
- r}w >, [60F) +e(G5) ~26(F)Jatoenenta)

In particular, in the case that p is the elementary step distribution we have that

PG = S B [(5) +6(552) - 26 otteonte

J=lzeTg

So, since as we have seen 0Fg; = Fjy, the martingale AN>G can be written in more

detail as
t
AYC = (Gum) — (Gond) — [ (0Gums
0
T oNd- 2/ > AYGG ( ) (s () (2)ds,
a:zE’]I‘d

where for any function G : T¢ — R we denote by Ai’,VG : T4 — R the discrete
Laplacian associated to the elementary step distribution p € PZ? defined by

ANG(u) = N>} [G(u—k%)—kG(u—N)—ZG( )] (z), weT

ze'l'y

Therefore if we denote by

the empirical jump rate and by o = 07]7\2 , s > 0, the associated empirical process we

can write the martingale AN as

1
ANC =Gy, 7Y — (Go, 7)) — [<6SGS,7T£V)+§<A5Gs,a;\7>]d5. (4.7)

S~
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We will see next that at least for C% functions we can replace, modulo some terms
that will be shown to converge to zero, the discrete Laplacian AI])V by its continuous
analogue Ay, defined by

d
Ay = E 002
X = 1] 1]
i,j=1
where

Y= (0ij)i<ij<ds Oij i= Z 22;p(2)
z€ZY

is the covariance matrix of the elementary distribution p. In the case that p € PZ< is

the nearest neighbor step distribution then

d

715 = 3 e ens €3} plen) + p(—en)] = g

k=1

and so in this case Ay, = LA where A = Z] 1 g]
the dimension disappear from the coefficient of the Laplacian sometimes the nearest

is the Laplacian. In order to make

neighbor distribution is renormalized to have a total probability of d, or 2d. Of course
this amounts to rescaling the generator of the process by the same factor.

Proposition 4.1.3 Let G € C3(Ry x T?) and let AN'C be the martingale associated by
proposition 4.1.1 to the ZRP of parameters (p,g) on the discrete torus ’IF‘}V. Then there
exists a constant C = C(G,p,g) > 0 such that

t t
<Gt,7rgv>—<Go,w§’>—/o (.G, 7)) + 3 (AsC, 0N )ds — 47| < N§+1/<1,7Tév>ds,

for all t >0, where (7} )10 is the empirical ZRP and ¥ is the covariance matriz of p.

Proof Denoting by BV:¢ = (BtN’G)tZO the process defined by
t
1
B i= (Gurl) ~ (Go,n) — [ (0G4 5 (BsGuot) s, (08)
0

we have to prove that

ds<Nd+1/ |ns|ds.

By Taylor’s theorem, for all G € C3(R; x T?) we have that

|IBNC — ANC| = ’/ (AsG, — AN G, ol

Go(e+h) — Gu(x) = (VGy(a), h) + %HQGS(J;)(h) + RS (. h) (4.9)

for all 2, h € RY, where H2G is the (spatial) Hessian form of G at time s and

RY(z,h) Z / aMmGs(x + th)hyhy by, dt
k,l,m=1
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is the remainder in integral form. Since G is C* with compact support we have that

HDBGHu = sup sup H(?,?lmGSHU < 40
seR4 k,l,m=1,....d

and therefore .
3
a(T % ’<IIDG||u
‘Rs (Na N) = 6N3 kl;:lzkzlzm

for all N € N, 2,z € T%. Therefore since H>G4(z)(Ah) = A2H2G4(z)(h) for all
z,h € R* and all A € R it follows that for all z € T¢ and all z € ’Jl’ﬁl\,, N € N, we have

z z z z
Gy (x + N) + Gy (x — N) —2Gs(x) = Gq (3: + N) — Gg(x) + G(x - N) — Gs(x)
1, . z
= G (@)() + R (o, ).
where we have set Rs(z,h) := RS (z,h) + RS (x,—h) for all x,h € R?. Therefore,

ANG () = 3 HG,(x)(x)p(z) + N> 3 R, (m %)p(z)

zeT‘fV zE']I‘?V

d
= Z Z B%Gs(x)zisz(z)—FNZ Z Rs<x,%)p(z)

z€T¢, 4,5=1 z€T%,

d
= > 05Gi(x) > zizp(z) + N> Rs<x,%)p(2)

ij=1 2€TY, 2T,

= AsG()+ N2 YD R(n ()

d
2€T%

since for all N large enough we have that ZzeT;iv 2i2jp(2) = D cpa 2%ip(2) = 045. But
obviously

d
5 z [2xell
(e )| < 120 5"
,],R=

and therefore it follows that

N 2 5 z ||D3GHuR3
ANG,(2) - AxGy(a) < N* Y ‘Rs (:z: N)‘p(z) <
zeT%,
Therefore for all 2 € T we have that
N N ||D3GHuR3 ||D3GHU||9/||uR3 N
|<Ap GS—AEGS,US >|§W ;r:d g(ns(x)) SWQ,WS >
TeL N

Therefore for all N € N and all ¢ > 0 we have that

ID*Glullg' IR [«
IBNC — ANC| < (1, 7Vds
! K 6Nd+1 0
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which proves the claim with constant C' = %||D3G||u||g’||uR3. O

We prove next that under suitable assumptions on the sequence {u" € IPIM;{,} of
initial distributions the sequence of the empirical distributions Q~ € PD(R,, Mi) of
the speeded up by N? ZRP defined in (4.4) is relatively compact in PD(Ry, M%). We
will assume that the sequence {uy} of initial distributions is associated to some macro-
scopic profile pg € M, (T?). Furthermore in order for the martingale A™M¢ associated
to the ZRP to be square integrable we will assume that p) € PyM4, (u) € P1IM%
if g is bounded) and finally we will assume that {ul’} yen satisfies the O(N?)-entropy
assumption. Recall that according to proposition 2.6.4 our assumptions do not exclude
sequences of initial distributions that have a condensate at some macroscopic point
u € T

We turn now to the proof of the relative compactness of the sequence @V, N € N,
of the empirical distributions of the ZRP starting from pV and speeded up by N2.

Proposition 4.1.4 Let {u}’ € PM%} be a sequence of distributions associated to a
macroscopic profile g € M, (T?). We suppose that either the jump rate g of the ZRP
is bounded and pl) € P1M% or either the jump rate is g is Lipschitz, u) € P4M% and
1
K, :=limsup — H(ud |vY) < 400 4.10

s 5 H G ) (410)
for some p. € (0,p.). Then the sequence QN € PD(R4, My (T?)), N € N, of the
empirical distributions of the ZRP starting from plY and speeded up by N2, defined in
(4.4) is relatively compact in the weak topology of the space of probability measures over
the Skorohod space D(Ry, M (T%)), and any limit point Q of the sequence {Q™} is
concentrated on trajectories m € D(Ry; M (T%)) such that my = po-

Proof As we know by the description of the relatively compact subsets of PD(R+, Mi)
in order to prove that {QV} is relatively compact it suffices to prove that for some
countable subset {G|k € N} C C(T?) such that G; = 1, the sequence

Fe,..QY ¢ PD(R,,R), NeN
is relatively compact for all & € N, where for all G € C(T%) we set Fg := (G,-) :
M4 — R and

Fg: D[R4, M%) — DRy, R)
is the mapping induced on the Skorohod spaces by F. In particular it suffices to prove
that the sequence {Fg.QN} is relatively compact for all G € C>°(T4).

So let G € C°°(T?). In order to prove the relative compactness of {F.QN }nen it
suffices to prove that: (a) for all t € Ry

li Fe.QN{f e DR, R >Al =0
Jm sup Q" {f € DR+, R) ||| > A}

and (b) the condition of Aldous, i.e. that for all €,7 > 0 we have

;im limsup sup FG*QN{f € D(R+,R) ‘ |fT(f) - f[T(f)+g]/\T| > 5} =0
70 Notoo rexT (FR)

0<s
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where TT(FR) is the set of all stopping times 7 : D(R4,R) — [0,7] with respect to
the continuation F& = (.F?J;R)tzo of the natural filtration (F;"®);>0 in D(R4, R).

(a) Let t € R4. Of course we can assume that |G|, # 0 or else we have nothing to
prove, and for all N € N and all A > 0 we have that

Fe.QV{f € DR, R)||f| > A}

QN {r € D(Ry, ML) | (G, m)| > A}
QY {m e DRy, M) | (mi,1) > A/||G|}
PN{ne DRy, MK)||n:| > N*A/||G]l}
PN{ne DRy, MY)||no| > NA/[|Gllu}
pN{n € Mg | [nl > NA/||Gl.}

= NN, 1) > A/||Glu}

1 IA

Therefore since p¥ € P1M%, and {V} is associated to g € M, (T9), (a) follows by
lemma 3.1.2.
(b) We prove now the Aldous condition. So let &, T > 0 be fixed. As we know, given
any continuous function F : M — N between polish spaces the induced mapping
F:DRy,M) — DRy, N) is (FM, FN)-measurable for all t > 0, where (FX) is the
(right) continuation of the natural filtration (F;~ )0 in D(Ry, X), X = M, N, which
shows that

T(FoFi={roF|reT"(FV)} cT"(FY),
and we obviously have that

F(x)'r(ﬁ‘(m)) = F(xToF'(m)) Vae D(]R-HM)a TE ‘ET(‘F'N)

_ d
In our particular case we have that 7 (F®) o Fg C QT(]-'ﬁ/[*) and if for each stopping
time 7 € TV(FR) we set 7 := 7 0 Fgg then (G, i) ((G,x)) = (G, irg(r)) and so

FG*QN{f € D(Ry,R) ‘ |frip) = Firvoint| > 5}

= Q"{r e DRy, M)

(G Tram) = (G Tirmyain)] > €}

for all § > 0 and all 7 € TT(FR). Tt follows that for all § > 0 we have

S;lp " FG*QN{|fT - f[‘r+9]/\T| > 5} < sSup ) QN{|<G, Tr — 7T[T+9]AT>| > 5}7
T(F M
TC eg(é ) Tezzi]; +)
where of course in the inequality above, f and m are the canonical cadlag process f
and 7 on the Skorohod spaces D(Ry,R) and D(Ry, M%) respectively. With similar
reasoning we get that

sup QN{|<G,7TT — 7T[.,.+9]/\T>| > 5} < sup PN{|<G, 7T,,I_V — 7T[]7Y+0]AT>’ > E}
T MY T, d

TEXTT (FH) TeT(FUN)
0<6 0<6

for all § > 0, where here of course 7V = (7}¥);>¢ is the empirical process.
Let now AME be the martingale associated by proposition 4.1.1 to the ZRP. By
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proposition 4.1.3 it follows that there exists a constant C = C(G, p, g) > 0 such that

1/t c [t
(G.rl) = Gy = 5 [ (85Gayr = (47 - 4¥0) < LS [ pmalau,

2
for all 0 < s < t. It follows that

t t
(G — =Ny| < |ANC — ANG] 4 %/ (AxC, U;N>|dr+c/ (=N 1)dr.
But we obviously have that
[(AsG, ™) < [AsGllu(l,0™) < [AsGllullg[lu{1,7™)

and therefore, taking into account the conservation of the total number of particles by
the dynamics of the ZRP, we can write that

(G —al)| <[4 = AV + Cr- (¢ = s)(mg 1)

S

PN-as. for some constant C; > 0, namely C; = C + 3[|AG||u¢'||u- It follows that

N,G ,
‘<G’7T[]X+9]AT - )| < ’A[T+0]AT — AYC| + Cré(my’ 1)

for all 7 € TL(FM¥) and all 0 < 0 < §, and therefore

N,G , €
sup PY{|(Gomflgur =) >} < sup PY{|ANS) - ANC| > 2]
TET TEX
0<4 0<d
+ uN{C’15<7T(J)V,1> > %}

for all § > 0. So since the term p™N {C16(m{',1) > £/2} converges to 0 as § — 0 uniformly
over N by (3.10), in order to prove Aldous’s criterion it remains to prove that

lim limsup  sup PN{|AfXﬁ]AT — A]TV’G| > 5} =0,
070 Novtoo | cor oty
0<é

and by the Chebyshev-Markov inequality it suffices to prove that

lim limsup  sup E-" (A[IXf;MT - AiV’G)2 =0. (4.11)
070 Notoo _cor ot
0<s

To prove (4.11) in the case that g is Lipschitz we use Doob’s optional stopping theorem,
proposition 4.1.2 and the conservation of the total number of particles to get that

N 2 N
Enro = Ef (Af\T]fO]AT_AiV’G) =E (<AN’G>[T+9]/\T_<AN7G>T)

e [T [o(5) - ()] st o

a:,zG’]I‘dN

VGl N g /“”M

N2 |2*ns (2)p(2)ds

z,zG’]I“Ii\]

210 1 [T+0]AT
VGV @) gy (7 15 1
VG219V (p)f .~ VG|21d'|.V (p)o

ISGIRY IV gy _ ISCIRIIVG [

IN
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It follows that

N (AN, 2 _ IVGIENlg 1.V (p)d
sup EH* (Agfe]/\T - AJTV’G) < N (7N Dyap™
rexT(FVIN)

9<6

and therefore in order to prove (4.11) it suffices to prove that [(7V,1)du™ < O(N?),
i.e. that

1
llivmsup Na /<7TN, Ddp? < +oc. (4.12)
—+o00

Here the assumption that {u’V} is associated to an initial macroscopic profile does not
suffice to give (4.12), but (4.12) can be derived by the entropy assumption (4.10). By
the relative entropy inequality we have that

1 d;_N
/<7TN,1>d,uN < W{log/eaN "Dy, +H(/LN|UP*)}

for all # > 0 and all N € N. But

d
zeT§,

and therefore ) )
[ a0 < 58,0+ gz}

for all # > 0 and all N € N. It follows that

limsup/(wN, Dap < Ap.(6) + K
N—+oc0 0

for all & > 0. But p. < p. and thus 1/;* has exponential moments, and therefore by

choosing 0. € Dy, \ {0} in the inequality above we get that

limsup/<7rN, Ddp® < +o0 (4.13)
N—+oco
This proves (4.12) and completes the proof of the relative compactness of {Q™V}.

It remains to prove that any limit point @ of the sequence {Qn} is concentrated
on trajectories 7 € D(Ry, M, (T%)) such that m9 = pg. So let @ be a limit point
of {Qn}. As we know, the evaluation mapping e; : D(Ry; M,y (T%)) — M, (T?)
given by e;(m) = m; is continuous at each 7 € D(R;; M, (T%)) that is continuous at
t. In particular the evaluation ey : D(Ry; M, (T9)) — M (T?) is continuous and
therefore for all G € C(T?) the composite mapping Ig o e : D(Ry; M4 (T9)) — R,
where I : M4 (T?) — R is the mapping I (7) = (G, 7), is continuous. Therefore, for
all G € C(T) and all € > 0 we have by the portmanteau theorem that

Q{I(G.m0) — (Gupa)] > <} < lmin QV{|(Gmo) — (G.po)] > )
= liminf p™ {[(G, 7)) — (G, po)| > e} =0,
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since the sequence {u"N} is associated to the macroscopic profile ug € M, (T?). Since
this holds for all G € C(T?) and all £ > 0 it follows that

Q{I(G, o) — (G, po)| = 0} =1

for all G € C(T?), and then if we choose a countable dense subset D C C(T?) in the
uniform norm it follows that

Qfmo = o) =Q< ) (G, 70) — (G )] =0}) =

GeD

as required and the proof is complete. O
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4.2 The Empirical Current Process

In this section we define the empirical current process W and show that pair (7V, W)
where as always 7% is the empirical density, satisfy the continuity equation

O + divivhN =0

at the microscopic level. We begin the considerations for a general step distribution
p € P.Z% but in the end we mainly focus on the case that p is the n.n. elementary
step distribution p = Z?Zl (6_¢; + d¢;) where here we renormalize the nearest neighbor
distribution to have a total probability equal to 2d.

4.2.1 The Empirical Current
Definition 4.2.1 The current along the bond (z,y) € T% x T4 for the ZRP in the
discrete torus T is the function W,{Vy : M% — R given by
Wiy = LY(n,n™") — L¥(n,7"*) = g(n:)p(y — ) — g(ny)p(x — y)
= [9(n2) = g(ny)lp(y — =)
for all n € M4,.

We want to obtain an expression of the action LY (G, 7™V)(n) of the generator on the
function (G, 7) involving the currents. For this we could use the already established
formula for LY (G, 7V) of the previous section. We do it however by calculating this
action of the generator in a different way, to give one more example of calculations on
the action of the generator. By the definition of the function (G, ") : M%, — R and
the linearity of LY we have that

LN (G, V) Nd Y @ () (). (4.14)

zeTY,

But n(x) € B; (M%) for all 2 € T% and therefore LY can act on n(z) to give

L)) = >0 > ¥V —m)gny)p(z) + > 5" = na)g(n)p(2)

yy#T 2T z€TY

= > T —n)gy)pr —y)+ D 0P = n.)g(ne)p(z)
yyFT z€TY

= > T = na)g(ne—)p(2) + > (05" = n2)g(na)p(2)
z#0 27#0

= > lg0ne-2) — g(na)lp(2)
z#0

Therefore since we assume p € PZ? to be symmetric we have that

L) = 33 [onte —2) —gn@)]p() + 3 3 lo(nta +2)) — 9(n(@)]p(2)
270 270
= 1Y [olnte +2) + g — ) 20 (@) ]p(2)
z€T%,
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In particular if p is the nearest neighbor elementary step distribution we have that
d
LNn(z) = [g(n(z + ;) + g(n(z — €;)) — 29(n(z))]p(e;)
j=1

The currents satisfy the identity

= [9(n@+2)) —g(n(z —2)

for all z, 2 € T4 and therefore we can write that

~—
[
N —
Q
—
=
—
8
~
~—
=
~
N
~—

l
Z€TdN
It follows by (4.14) that
1 T
N N N N
<G577T >: W Z GS(N) Z [Wx 2,T Wzm+z]
a:e’]I“]i\, zET?\]

. . . . d .
By using the formula of integration by parts on the discrete torus T¢:

Y lg(a+2) —g@)f(@) == > g@)f(@) - flz-2),

zeTY, zeTY

we get that

SCR R S i X e BN Co) M

z,2€T%
Therefore the martingale AN'C can be rewritten as
t
AéV’G = (G, ) = (Go, ") —/ (0,G, 7N Vds (4.15)
0
a: + z N
T 2Nd- 2/ Zq:r )‘G (NHW””*Z( s)ds.
T,2€

In what follows we focus on the case where the p is the n.n. distribution renormalized
so that p(Z?) = 2d and define the empirical current WY : M%, — M(T% R?) as the
random vector measure given by

Nd 1 Z [Z xz+eJ' } z =—$ Z VNg(n(x))(SLN, (4.16)

wETd j=1 a:e’]I‘?lv

where

<l
2
Mg_

n(x + e;) —g(())] e,
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is the discrete gradient of the function g(n(x)) The empirical current is an R%valued
measure and acts on vector valued functions F : T — IR? by the formula

()W,

Proposition 4.2.1 Let G € C3(R, x T%) and let ANC be the martingale associated by
proposition 4.1.1 to the ZRP of parameters (p,g) on the discrete torus Tﬁi\,. Then there
exists a constant C = C(G, g,d) > 0 such that

C t

for all t >0, where (¥ )10 is the empirical ZRP and (W} );>o its empirical current.

(F,WNY = /F dwh =

rETd Jj=1

t
<Gt,in>—<Go,wéV>—/ [(0.G ) + (VG W) ds — ANC
0

Proof According to the computations performed above, in the case that p is the n.n.
step distribution the martingale Aiv ‘Y can be written as

AYE = (Gurl) — (Com) — [ (OGN @1)
0
s [ 8 [ () ()W (s
J=lzeT¢,

For any G € C3(Ry x T9), by the Taylor’s expansion in (4.9) and the bound on the
remainder there, for all N € N and all j =1,...,d we have that

6(5F2)-6(5) = 506 (F) +awe(7) B (5 %)

with the RS term satisfying

L ﬁ)’<%_

sup sup sup ‘RG(N N e

o d 5—
520 zeT¢ J=1,...

Using this Taylor expansion and the empirical current we can write the second inte-
gral term N2LN (G, 7V)(n,) in the expression of AVC as

NGV 0) = s O Z[ () - 6 (5) W, ()

zeT¢ j=1

d
<VG WN> + W Za;jG ( )WzészreJ (775)

zeTq j=1

Nd 5 2 ZR (% )W, (). (4.18)

zeT¢ j=1

Furthermore, we obviously have the inequality

d
3> W2, 0] < 191> S (il 17e,ml) < 24l il

J=1zeT¢, J=12eT4,
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and therefore the third term in the sum in the right hand side of (4.18), which we set
RY | is bounded above by

|R£V| = Nd— 22 Z ‘R(x eJ) xz+e](778)

J=lzeTg

1 |D°Gllu,co
= Nd—2| GJV‘L Z Z ‘ fI?IJFeJ

J=lzeTg

g/l |
T GNdHL ns|-

Likewise, by an integration by parts, the middle term in (4.18) which we set HY is

n =gy 3 [n() () Jaco

ans therefore since G is in C3(R.y x T¢) we have that

’H§v| — 2Nd Zd 231 ( ) 82 Gs(m;]ej)’g(ns(x))
zeTg J
ID°G| 9 11 D°G]
S Tond ;r:djzl‘ ‘g - QNd+1 (L m").

According to these calculations, up to some terms bounded absolutely by % fot <7T£v ,Ns)ds,
we can write the martingale AN'G as the process

t
VNG Gy Ny — <G0,7rgv>_/ [(0:Gay ™) + (VGa, WNY]ds, 0.
0

Indeed, according to our estimates on the remainder terms RY-¢ and HM¢ we have
that

S

C
VN = AT = INPLY(Ga m ) (00) = (VG W] < |RYC| + [HYC) < (1),
where C' = C(G, g, d) is the constant C = 2||¢/|| | D*G||u,c and the proof is complete.0]

By this estimate it is obvious that

lim PV{ sup VNG — ANC| > §}=0 (4.19)
N—oo 0<t<T
for all §,7 > 0. Indeed, by the conservation of the number of particles we have that
fo 7N, 1)ds = t(z}’,1) PN-a.s. and therefore

PN{ sup_ VNG — ANC > 6) < PN (] >7}N*°°
0<t<

since p'V is associated to an integrable initial profile py € L™1(T?). Furthermore, by

AN,G

using the quadratic variation of the martingale and Doob’s inequality it is shown

that the martingale AN:C is itself asymptotically negligible.
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Proposition 4.2.2 For any function G € C}(Ry x T?) the martingale

t
ANC = (G wl) — (Gl / (0 + N2LY) (G ™) (N )ds, 1> 0,
0

given in proposition (4.1.1) is asymptotically negligible, that is

lim PN{ sup ’ANG| > 5}
N—o0 0<t<T

for all 6, T >0

Proof By the Doob-Chebyshev inequality ([27], theorem I1.1.7)

PN{ sup \ANG|>5} 62IEN|ANG|

0<t<T

for each § > 0. But if (A™:C) denotes the quadratic variation of the martingale A™-¢
then the process {(A;")2 — (A)"%)}1>0 is a mean zero martingale and therefore

EV|A7 P = EN(A79).

Since G € CL(Ry x T?) we have that C(G) := sup(, ,yer, xe [VGs(u)||% < 400 and
therefore for N large enough by the formula of the quadratic variation (AN:¢) given in
proposition 4.1.2; the mean value theorem and the conservation of particles,

Ar9 = e 2/ Z ) Gs(%)]zg(ns(x))p(x,y)ds
< 49 / : ZT & — o2 (ma(2))plz. )
< YOl B e
= C(C})'B{;W/OTu,wﬂds
PYws CON L VET

= ~Nd <1,7T(J)V>.

It follows that

PN{ sup ‘ANG

0<t<T

where {uY € PM4%} is the family of initial distributions of the ZRP, and by (4.13)
taking the limit in the inequality above, proves the claim. O

Using the asymptotic negligibility of the martingale AN-“ and (4.19) it easily follows

that
t
Jim PN{ sup <Gt,7rtN>f<G0,7réV>f/ [(0,G, 7N) + (VG WNY]ds 25}
N—o0 0<t<T 0
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for all G € C3(Ry x T9) and § > 0. In particular if G has compact support n (0,7)
G € C3((0,T) x T?) then

T
lim pN{’/ [(0:Gs, 7Y + (VGs, WN)] ds
0

N—o0

>9 } =0 (4.20)
Likewise, if BM'¢ denotes the process defined in (4.8), by proposition 4.1.3 we get that

lim PN{ sup |BNY — ANC| > 5} =0 (4.21)

N—o0 0<t<T

for all 6,7 > 0 and by the asymptotic negligibility of the martingale AN:¢ we get that

>0) =0

for all G € C2(Ry x T%) and 6 > 0, where here we do not have the coefficient § in front
of the Laplacian because we are working with n.n. step distribution of total probability

lim PN{ sup

N—o0 0<t<T

(Gt,w,gN)—(Go,wéV)—/ [(0,Gs, ) + (AGs, o)) ds
0

equal to 2d. We can interpret these limits as saying that at the microscopic level the
triple (v, o, W) satisfies the continuity equation

ol = A = —diviW}  as N — oo. (4.22)

where of course here the Laplacian and the divergence are spatial operators.

N and

Next we would like to prove the that the laws of the empirical jump rate o
the empirical current W are relatively compact in order to obtain the analogue of the
continuity equation (4.22) at the macroscopic level. Since o and W do not describe
conserved quantities, the proof of the Aldous compactness criterion on the Skorohod
space regarding the oscillations is too hard to obtain. For this reason we will consider
the processes oV and W as taking values in spaces with weaker topologies that on
one hand allow to obtain the relative compactness of their laws but that are strong
enough to yield on the other hand that the limit points of their laws are concentrated on
trajectories (m,0, W) that satisfy the continuity equation. The appropriate spaces will
be L*°-spaces of Banach space-valued curves.

4.2.2 Weak L*-spaces of Banach-Valued Curves

In this subsection we review some the basic facts on L°°-spaces of vector-valued curves
that will be used in defining the state spaces of the empirical current processes

W) =WN, neD0,T;M%), s>0

and the empirical jump rate process

ol (n) =0y, neDOT;Mf), s> 0.

S

We begin with some preliminaries. We denote by M% := M(T%; R?) the Banach space
of all Borel R%valued measures on the torus T% equipped with the total variation norm
|l lrv : M4 — R defined by

lpllrv = sup D [p(A)l, (4.23)

191



where Pra denotes the set of all finite measurable partitions of T¢ and | - |» denotes the
Euclidean norm on R? and we denote by C¢ := C(T% R?) the space of all continuous
vector valued functions on T¢ equipped with the uniform norm

1Gls = [|IGL]|,, GeC” (4.24)

The Riesz representation theorem (theorem 7.2 in [16] for instance) is easily extended
for R¥-valued functions.

Proposition 4.2.3 The function I : M(T% R?) — C(T%RY)* defined by

(W) :/G-dw :zd:/c;idwi,

where G = (G e;) and W' = (W, e;), is a linear surjective isometry, where M(T%;R?)
is equipped with the total variation norm defined in (4.23) and C(T%; R?) is equipped
with the uniform norm defined in (4.24).

Proof The map I is obviously linear. It is also injective since if I(W) = I(V) for some
W,V € M? then for any h € C(T%) and any i = 1,...,d we have that

/dei =I(W)(h-e;) =I(V)(h-e;) = /hdvi,

which implies that W* = V? since measures are characterized by their action on contin-
uous functions. Furthermore, it also surjective. Indeed, let T € (C9)*. Then for each
i=1,...,d the functional 7% : C(T¢) — R defined by

T'(h) = T(h - e;)

is a bounded linear functional with ||T;|| < ||T|| and by the scalar version of the Riesz
representation theorem there exists W* € M(T?) such that

T'(h) = / hdW®  for all h € C(T?).

But then W := Y0, Wi . ¢; € M(T? R?) and for each G € C% we have that
d . . d . . d .
/G W=D "GAW' = THG) =) T(G'e;) = T(G).
i=1 i=1 i=1

It remains to show that the map I is an isometry, i.e. that

W) == sup [I(W)(G)| = [[W|lv.
1Glloo<1

We prove first the inequality ||[I(W)|| < ||W||rv. For this we show that for any bounded
measurable function F': T¢ — R? it holds that

‘ / F-dw‘ < F el W iy (4.25)
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Indeed, let us consider first the case that of a simple function ¢ : T — R?. Then
¢ = 221:1 a1 4, for some ay € R¢ and some pairwise disjoint measurable sets Ay C T,
k=1,...,m and

Jem

;(ak,W(Ak»I < I; lakla - [W(AR)l2 < 1g}€%xm|ak|2; (W (A2

18]l >~ W (AR)l2 < 6llocl W v

k=1

Now, any real-valued bounded measurable function can be approximated uniformly by
simple functions, so given any bounded measurable function F : T¢ — R? we can
apply this separately to each coordinate to find a sequence ¢™ of simple functions such
that ||¢™ — F||.c — 0. Then since convergence theorems for integrals hold for each
coordinate, taking the limit as » — oo in the inequality

[ eaw| < 1 Wl
we obtain (4.25). So for any G € C? with |G|« < 1 we have that
[ G aw| <Gl Wley < Wy

which proves the required inequality.
We prove finally the converse inequality. By the definition of the total variation,
given W € M9 and £ > 0 there exists a partition IT = {Ay, ..., A,,} of T¢ such that

Ui 13
W7y < kZ—O W (Ag)|2 + 3

Then if F : T¢ — R? is the simple function given by
F= ngn(W(Ak)) -1a,
k=1

where for any w € R¢ we set

2 ifw#0
sgn(w) := { 1wz . 7
0 ifw=0

we have that

Jra-

But by approximating then separately each coordinate of F' by continuous functions,

Z<Sgn(W(Ak)),W(Ak)>‘ =N WAz = Wy — %
k=1 k=1

either by using Lusin’s theorem (e.g. [16], theorem 7.10) or lemma A.3.2 in the appendix
of the thesis, we can find G € C¢ such that |G| <1 and

‘/(FG)~dW‘<§
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which shows that
W lry < ‘/G-W‘ +e <|[I(W)| +e.

Since € > 0 was arbitrary this proves the required inequality and completes the proof.[]

The Riesz representation theorem allows us to consider the w*-topology on M9 via
the duality M? = (C?)*. The w*-topology is characterized by the requirement that a
net {/tq}aea € M? converges to some p € M? in the w*-topology if

/ (F dpa) ﬁi/ (f, du)
Td

for all f € C?%. The usefulness of the w*-topology of M? comes from Alaoglou’s theorem
according to which norm bounded subsets of M¢? are relatively compact in the w*-
topology of M?. Furthermore, (M? w*) is completely regular as topological vector
space and since O is separable (M? w*) is also submetrizable according to proposition
A4.1.

Since the space M? := M(T%; R?) of R%-valued measures is a Banach space it makes
sense to consider various L™ spaces of curves in M?. We begin by the strong notion of
considering L>°(0,T; M) as a Banach space. Namely let X = (X, || - ||x) be a Banach
space. We denote by L£([0,T]; X) the set of all strongly measurable curves in X. Of
course if X is separable, strong and usual measurability coincide. Then we can define
for each p > 1 the function || - ||, : £(0,T; X) — [0, 00] by the formula

[Wllp:x = ||HW||X||LP([O,T])

where for each curve W € L(0,T; X) we denote by |W|x € L([0,7]) the function
given by t — ||W¢||x. Then as usual we define the L? space LP(0,T; X) as the set of a.s.
equality equivalence classes of functions W € £([0,T]; X) such that ||W|x € LP([0,T]).

Lemma 4.2.1 If X is a separable normed space, then L*(0,T; X) is separable.

Proof Let f € L'(0,T;X), ¢ > 0. Fix a dense countable subset D C X of X and
let A denote the collection of all finite unions of open intervals with rational endpoints.
The collection A is obviously countable and so the set D C L*(0,7; X) consisting of all
functions of the form

qu]]‘Aj7 quD, AjE.A,TLEN

j=1
is obviously countable. We will show that it iss also dense in X. Indeed, since f €
L'(0,T;X) there exists a simple function ¢ = >}, a,1lg, € L'(0,T;X) such that
|6 = fllzro,rx) < €/2. We set M := maxi<p<m ||zk||x. By proposition 1.20 in [16],
for each k = 1,...,m there exists Ay € A such that m(ExAAL) < ¢/4mM and since D
is dense in X, for each k = 1,...,m there exists g € D such that |qx — zr||x < /4T
Then ¢ := >}" , qxla, € D and

13
1Y — fllzro,rix) < 1Y —dllororx) + 3
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But

Zxk]lAk -

k=1

N

+
L'(0,T;X)

v —éllerorx) < Hilf - Zfﬂklka
=1

L1(0,T:X)

m T T
< S ([ o anlxta @it [ llsia,en i)
w1 \Jo 0
< Ei/TﬂA +M§:m(EkAAk) <Z
= qr i), M 2’
k=1 k=1
and so we have found an element of D e-close to f € L'(0,T; X). O

Proposition 4.2.4 Let X be any Banach space and let T > 0. There is an isometric
injection

i: L0, T; X*) — LY(0,T; X)*
and the space iL>=(0,T; X*) < L*(0,T; X)* is a closed subspace of L*(0,T; X)*.

Proof Let (-,-) : X x X* denote the pairing (z,z*) — z*(z) and let W € L*°(I; X*).
Then W; € X* for all t € I and therefore we can define a function iV : L*(I; X) — R
by

T
z’WG:/ (G, Wy)dt.
0

The function " is well defined since by the strong measurability of G and W we have

that the function (G, W) : I — R given by
<G7 W>t = <Gt7 Wf>

is measurable, and it is real-valued since

T T
VG| < / (G Wildt < / 1Gillx Wil -t < [W]|oosx-
0 0

G”l;X < oQ.

In particular the functional " € L'(I; X)* is bounded with operator norm

1] = sup VG| < Wlooix-
HGHLI(I;X)Zl

Consequently, the operator T : L>([0,T]; X*) — L([0,T]; X)* defined by
L=(0,T); X*) > W — TV € L*([0,T]; X)*

is a bounded linear operator with operator norm ||i|| < 1.
We prove next that T is a (not necessarily surjective) isometry. For this it suffices of
course to prove the converse inequality, i.e. that for all W € L°(I; X*) we have

W oo, x- < 17l

Since L*°(I; X*) C L'(I; X*) by Lebesgue’s differentiation theorem for the Bochner
integral there exists a measurable set E C I of full measure m(E) = m([) such that

1 t+e
W, = lim —/ Wds
e—02¢ J,_.
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for all ¢ € E. Furthermore we note that for any z € X with ||z||x =1, all ¢t € E and all
e > 0 we have that the function G§, € L'(I; X) defined by the formula

1

€ — 1
Gt,a:(s) m([ N [t — e, L+ E]) IN[t—e,t+e] (S).’I,‘

satisfies ||G§’z||L1([O,T];X) = 1 since

T
1
IG5l = [ 163 xds = [ s
T mT A=t te]) Jinpcrse
— Jlelx = 1.
It follows that
= s WG zsp s s VG
1G22 (1) =1 t€E 2] x=1€(0tA(T—t)

Now, for fixed (¢t,z) € E x {|| - ||l x = 1} we have for all € > 0 that

t+e
:‘<x,2i€ - Wsds>

since % fttj; Wsds — Wy strongly in X*, and thus also in the w*-topology of X*.
Therefore, for all (t,x) € E x {|| - ||x = 1} we have that

e—0

W e 1 i
|Z Gt,a:| = 275 ('/L'7 W8>ds — |<-T7 Wt>|7
t

—€

sup  [i"VGE | = (@, W)
0<e<tA(T—t)

and therefore

i > sup sup |(z, We)| = Sup [|[Willx+ > [[Wloosx-,
te

teE ||z||x=1
where the last inequality follows due to the fact that because m(E) = m(I) we have that

W oo;x+ = inf{C > Olm{t el:||Wllx-> C’} = 0} < fug||WtHX*~
€

It remains to show that iL°>°(I; X*) < L*(I; X)* is a closed subspace of L(I; X)*.
But this follows easily from the completeness of L>(I; X*). Indeed, let {V™}yen C
iL>(I; X*) such that VN — V € LY(I; X)*. Since {VVN} C iL>(I; X*), for each
N € N there exists Wy € L™ (I; X*) such that i~ = V¥ and since {Vy} converges
in the operator norm | - || of L!(I; X)* it is || - ||-Cauchy. But then since i is an isometry
it follows that {Wix} is also || - ||co;x*-Cauchy. Indeed, given € > 0 there exists Ny € N
such that |[VY — VM| < ¢ for all N, M > Ny and then

W = Watlloox- = [[{ 70 = VN - VM| < e

for all NyM > Ny. Therefore {Wy} is || - ||x=-Cauchy and by the completeness of
L*°(I; X*) it follows that there exists W € L>°(I; X*) such that [|[Wy — W|oo;x+ — 0.
But then by the continuity of the linear injection ¢ we have that

V= lim Vy = lim i"¥ :i( lim WN) — W

N—o0 N—o0 N—o0
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which shows that V € iL>°(I; X*) < L'(I; X)* as required and completes the proof. [J

We will refer to the linear isometric injection of proposition 4.2.4 as the natural
injection of L°°(I; X*) in L'(I; X)*. By identifying L°°(I; X*) with its closed im-
age iL>°(I; X*) in L'(I; X)* through the natural injection, we can consider the space
L (I; X*) equipped with the restriction of the w*-topology of L!(I; X)*. However since
unless X is reflexive (in which case the natural injection of L°°(I; X*) in L*(I; X)* is
an isometry) the w*-closure of L>°(I; X*) need not coincide with its norm closure, we
can not use Alaoglou’s theorem for the restriction of the w*-topology on L>(I; X*).

We give next an exact description of the space L (I; X)* following [10]. Let £ (I; X*)
denote the space of all w*-measurable functions W : I — X* for which there exists
w € L>(I) such that

IWillx- <w(t) as-Vtel.

Consider in £3%(I; X*) the relation « given by W « V iff for all F' € X we have that
(W, F) ={(Vi, F) as-Vtel.

We denote by L2 (I; X*) the quotient space and the equivalence class of W € L% (I; X*)
by [W]. The relation « is obviously a linear equivalence relation and the quotient space
L. (I; X*) becomes a vector space with the induced operations. Then, if for each [W]
we define the set Apy of [W]-admissible functions as

Ay = {w € £L2°(I) |3V € [W] such that |Vi[|x+ <w(t) as-Vtel}
the function || - [[ze, : L3 (I; X*) — R defined by

W oo = i f oo
W]z = inf ]z

(W]
is a norm that makes L3 (I; X*) a Banach space. Obviously L*°(I; X*) is isometrically
embedded in LS (I; X*) and
Proposition 4.2.5 The linear operator T : L (I; X*) — LY(I; X)* given by

T(W))(F) = / (W, )t

is an isometric isomorphism and for each [W] € L3 (I; X*) there exists We [W] such

that the function I 3 t — ||Wy||x~, which we denote by |W || x~ is measurable and belongs

in L>=(I), and -
IW]llzes, = [[1Wlx-

Les (D)

Proof For the proof which is based on Radon-Nikodym type theorems for Banach space-
valued measures we refer to Theorems 1.5.4 and 1.5.5 in [10]. O

We note that in the case that X is separable the equivalence relation « in £3% (I; X*)
is exactly the relation of almost sure equality. By Alaoglou’s theorem we have the
following
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Proposition 4.2.6 Let X be a normed space. Any norm bounded subset of B C
L2 (I; X*) is relatively compact with respect to the w*-topology of LS (I; X*).

Applying proposition A.4.1 to the separable space L' (0, T; X) we have the following.

Proposition 4.2.7 Suppose that X is a separable normed space. Then there exists an
auziliary metric d : L% (I; X*) x L% (I; X*) — Ry such that the restriction d|pxp of d
on any norm bounded subset B C L>°(I; X*) metrizes the restriction of the w*-topology
of L.(I; X*) =2 LY(I; X)* on B.

These results apply to the space L>(I; M%) of vector measure-valued curves, where
M is the Banach space of all finite vector-valued measures. By the Riesz representation
theorem we have that (C9)* = M¢? and according to proposition 4.2.5 we have an
isomorphism T : L. (I; M?) —s LY(I;C?%)* given by

T
T(W))(G) = / [ G,

and we can consider the w*-topology on L. (I; M%) according to which a net {[W?]},c4 C
L. (I; M9) converges to [W] € LS (I; M?) iff

T T
lim / / GdWidt = / / G dW,dt, ¥ G e LNI;C?).
acA 0 Td 0 Td

Now, if W& : M% — M¢ denotes the empirical current function defined in (4.16),
we have for all n € M that

1
”WN”TV = W Z VNg(n(x))é%
z€TY, vV
d
1 2d - ||g’
< N1 Z Z!g(n(x+ej))—9(n(w))| S# Z n(z)
zeTq, j=1 z€TY,

= 2d-|g'llN(1, 7).

It is easy to see that the subspace Qy of the Skorohod space D(0,T; M%) consisting of
curves 7 : [0,T] — M$; satisfying (1,7)) = (1,7} is a closed, and thus Borel, subset
of the Skorohod space D(0,T; M%).

Proposition 4.2.8 The set

Qn = {7’] S D(]R,_A'_,M?lv)) Z Ut(.f) = Z "70(33)7 Vie IR+}
q;e’]I“]iv wET‘}V

is a closed subset of the Skorohod space.

Proof Indeed, since M% has the discrete topology, the function my; : M4 — Z
given by

mya(n) = Y n(x)

zeTY,
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is continuous. Then by corollary A.1.1 the induced function my; : D(R4; M%) —
D(R.; 7. ) is continuous and since the subset C(R;Zy) C D(IR4;Z) consists exactly
of the constant functions, the set

QO =1y (C(R13Z4))

is closed as the inverse image of a closed set by a continuous map. O

Therefore since the law PV of the (diffusively rescaled) ZRP on the discrete torus
T4, is concentrated on ), we can consider the empirical current process as a random
variable

W (Q,PN|g) — L (0, T; M%)

since for any n € Q and any t € [0,T] we have |[W/| < 2dN||¢|l.(1, 7)), and thus
WX llrv.eo < 2dN g u{1, mpg) < +o00

for all n € Q. Although this definition makes sense, due to the factor N present in the
last inequality one cannot obtain the tightness of the corresponding laws. To circumvent
this difficulty we follow a standard strategy: We consider the current as taking values
in a larger space with a weaker topology, prove the required relative compactness there,
and then prove regularity results for the limiting objects that allow to conclude in the
end that they are indeed vector valued measures. This is the object of the next section
where we study the Kantorovich-Rubinstein measures.

4.2.3 Kantorovich-Rubinstein Vector Measures

We consider next for M = R? or T¢ the subspace
ME(M) ={W e MYM)|W(T?) =0}

of all Borel currents on M with zero total current. In the case M = R? we impose on
elements of M¢(M) the additional requirement that they must have finite first moment.
We note that by definition the empirical current function W% : M¢, — M%(T¢9) given

by
d

W,?V = VNN =NZ(T%0N —oMej = ——
j=1

takes in fact values in the subspace MZ(T?) < M?(T?). We consider the subspace
MZ(M) equipped with the Kantorovich-Rubinstein norm defined by

Wlkn = sup /G AW (4.26)
IGllLip<1

where the supremum is taken over all G' € Lip(M;R?) with Lipschitz norm < 1. As is
well known, the Lipschitz norm || - ||Lip : Lip(T% R¢) — R defined by

|G(z) — G(y)|
G||Lip :=sup ——————
|| HL P w;ég dM(CU, y)
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defines a seminorm on Lip(T%; R?) with ||G||Lip = 0 iff G = ¢, for some constant ¢ € R,
and therefore it induces a norm || - ||Lip, on the quotient space

Lipy(T% RY) := MP(T5RY /0, 50 (G € Lip(T% R?) | G(0) = 0}.

Also, since W is of zero total current the action of W on a function G' € Lip(T¢;R%)

through its integration depends only on the class of G modulo constants, that is if
G = H +c¢, c € R? then

/G~dW: (H+c)-dW= | H-dW+c-W(TY= [ H-dW
Td Td Td Td

and so we can rewrite the K R-norm as

IWlkr:= sup /G~dW= sup /G-dW
”G”Lipgl HGHLipogl
G(0)=0
Note that the Kantorovich-Rubinstein norm on Mg(M) is exactly the norm that makes
the injection
ME(M) 5 W < iy := (-, W) € Lipy(M;R%)*

defined by the pairing (-,-) : Lipg(T% R?) x Mg — R given by
(G W) = / G- dw

an isometry. However the injection i : Mg < Lipy(T% R?)* thus defined does not
have closed range in Lipy(T%; R%)* since M is not complete. Even worse, we have the
isomorphism MZ(M)* = Lip,(M;R?) and therefore by Goldstine’s theorem, ([7], lemma
3.4) according to which every Banach space X is w*-dense in its double dual X**, it
follows that the w*-closure of M@(M) in Lipy(T%; R%)* = MZ(M)** is the whole space
Lipy (T4 R?)*.

Proposition 4.2.9 The space M{&(M) is Lipschitz isomorphic to the product space

where M3 (M) is the space of all Borel charges on M = R or T? with zero total charge
equipped with the Kantorovich-Rubinstein norm

lir = sw [ gau pe s,
f€Lipy(M;R)
11l ipg (a;m) <1

Proof Of course on the product space M}(M)? we can consider any of the p-product
norms, 1 < p < oo. Here we consider the oo-product norm. We will show that the
function 7" : M(M) — MG(M)? given by the formula

T(W) = ((W,e;)i_, = (TV(W))_, = (W)L,

200



is a bi-Lispchitz isomorphism.
For each j = 1,...,d and any f € Lipy(M;R) the function F; := f - e; belongs in
Lip,(M; R?) with I 5l Lipy (v584) = | flLip, (ar;r) and

/Fj~dW:/de7.

IT9 (W) |kn=  sup /dej < s /F-dW — W k.
f€Lipy (M;R) FeLipy(M;RY)

1 lLipg (arsmy <1 1Pl ipg armay <1

Therefore we have that

On the other hand, since for all F' € Lipy(M;R?) and all j = 1,...,d we have that
[F7 |Lip (v5m) < I1F|[Lipy(a1;R4), we have that

d d

Wllkr = sup > /Fdej <> sup /Fdej
FeLipo(M;RY) =1 j=1 FELipy(M;R?)
1N Lipg (arsmay <1 1F N Lipg arma) <1
d d

IN

sup /dej =3 Wk
iZ1 fELipg(M;R)

=1
1 flLipg (a5m) <1

Therefore it follows that
max [W|gr < |Wllkr <d max [[W|kr
j=1,....d j=1,....d
and the proof is complete. O

Proposition 4.2.10 For all W € MZ&(T?) the supremum
Wlkn=  sup /G W (4.27)
”G”Lipomrd;n&d)g
s attained.

Proof Let W € MZ(T9) and let {Gy} C Lipy(T% R?) be a maximizing sequence for
the supremum (4.27), i.e. supyen |G l|Lip, (Te;mey) < 1 and

k—o0

Since we are dealing with functions modulo constants we can assume that Gy (0) = 0
for all k € N. Then for all x € T we have that {G)(z)}xen C [~1,1] and since the
family {Gg}ren is uniformly Lipschitz, it is equicontinuous and therefore by the Arzela-
Ascoli theorem there exists a subsequence {G,,, } of {G} and G € C(T%; R?) such that
Gpn, — G uniformly as n — oco. Furthermore since {Gj} is uniformly 1-Lipschitz and
Gp, — G uniformly it follows that G is 1-Lipschitz. Therefore,

Wlkr = /G AW
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and the supremum is attained at G = limy_,c G, . O

In what follows we will consider the torus T% as the quotient space R [za =T In
this way the torus inherits a natural group structure as a quotient of Abelian groups
with respect to which it is a smooth Lie manifold. The universal covering p : R4 — T¢
of the torus is given in this interpretation of the torus by

pla) =z + Z°

and it is obviously a homomorphism of groups. The torus can be then equipped with
the quotient group norm

|z|pa := min |Z|s
Tex+74

and the corresponding metric

dpa(z,y) := |z — y|pa

coincides with the metric resulting from the Riemannian structure of the torus with
diameter % It is obvious that the universal covering is a local isometry since whenever
z € [-1,1)4 C R? we obviously have that

p(@)|Ta = JQoin 2|2 = [Z]2.

Proposition 4.2.11 Let p: R? — T9 = R /za be the universal covering of the torus,
p(z) = x + Z%. Then the induced linear function p : Lipy(T%; R?) — Lipy(R%; RY) via
the formula

p([F]) = [Fop]

is an isometric injection.

Proof We consider first the mapping p : Lip(T%; R?) — Lip(R%;R?) given by p(F) =
F o p. The covering p is 1-Lipschitz, that is

dra(p(a),p(y)) < |z —y|

for all x,y € R? and therefore p is well defined, i.e. p(F) is Lipschitz whenever F is
Lipschitz. Furthermore, whenever F,G € Lip(T¢;R?) are such that F — G = c € R, we
obviously have that p(F') — p(G) = ¢ € R and therefore p induces the well defined map
P : Lipy (T4 R%) — Lipy(R%; R?) on the respective quotient spaces modulo constants.

We will prove next that p is an isometric injection. First, p is obviously injective,
and for all F € Lipy(T%; R?) and all z,y € R? we have that

. F - F F _F
IP(F)|lLipy(resrey = sup |Fop(@) °p(y)l < sup |F o p() op(y)|
z,yeR? |z — y| 2 yERY dra (p(a:),p(y))
z#Y xty

= |[FllLip, (T4;R4)

thus p is a contraction.
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It remains to show the converse inequality. The universal covering p : R? — T% is a
local isometry, since whenever z,y € R? are such that |z —y| < % (here we consider the
circle S as having circumference length = 1) then dra(p(z), p(y)) = |z — y|. Therefore

[P(F) (z) — p(F) (y)] [P(F) (z) — p(F)(y)|

Hﬁ(F)”Li R4;RE) = sup > sup
Pl : z,yeR? |z =y x,y€[0,2)? lz -yl
27y 0<|z—y|<%

S, |F (p(@) = F(p(y))| _ sup [F@) ~F@)
x,y€[0,2)? dra (p(x)vp(y)) z,ycT? dra(z,y)
0<|z—y|<3 z#y

= ||F||Lip0(Td;]Rd)v

as required, which completes the proof. (|

The range Lip,(T%RY) = p(Lipg (T4 RY)) of p is exactly the space of all Z-
periodic Lipschitz functions F € Lipy(R%;R%), a closed subspace of Lip,(R%;R?).
Therefore if we consider p as taking values in EBO(Td;le) then it is invertible. We
will show that the inverse p ' : Lipy(T%; RY) — Lipy(T% R?) is induced by the Borel
injection i : T¢ = [0,1)¢ — RY. For this it suffices to check that the induced operator

7 : Lipg(T% R?Y) —» Lipy(T% RY) (4.28)

via i(F) = F oi is well defined, i.e. that whenever F € Lipy(R%; R%) is Z%-periodic then
Foi:T? — RYis Lipschitz, for then we would have that

p(i(F))=Fopoi=F

for all F € Lipy(T%;RY) since p o i = idp« and

i(p(F))=Foiop=F

for all F' € EEO(Td; R?) since ﬂgo(’]l’d; R?) consists exactly of the Z?-periodic Lipschitz
functions of Lipy(R?; R%). Now, the operator i in (4.28) is indeed well defined since if
F € Lipy(T% RY) then F is Z%periodic and therefore F = F oiop. So we can write
F = p(F oi) = p(i(F)) and since p preserves the norms (even if we allow the domain
and target spaces to be the spaces B(Td?Rd)/R and B(Rd;Rd)/R and the Lipschitz norms

to take the value +00) we have that

+00 > || F'[|Lip, (resr4) = IPEF)|ILip, (resre) = 1(F) ||Lip, (R4

and therefore 7(F) is Lipschitz whenever F : R¢ — R is Lipschitz and Z9%-periodic as
required.
Furthermore, by the representation of the dual of subspaces we have that

: R T * ~ Li 4 RA)*
Lipy(T% R)* & Lipy (T RY)* & WPy

and therefore when considering functions F' € Lipo(’]I‘d;]Rd) as Z%periodic functions
in Lipy(R%RY) we can act on them by equivalence classes of linear functionals in
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Lipo(R% R%)*, with two such functionals being equivalent iff their difference vanishes
on all Z%periodic functions.
Furthermore, since p is an isometric injection, by the Hahn-Banach theorem its dual

P": Lipg(RG RY)* — Lipy(T% RY)*

is a surjective contraction. Of course on the domain Mg(R?) < Lipy(R% R%)* the
operator p* restricts to the push forward operator p, : Mg(RY) — Mg(T?) and thus
the push forward p, is a surjective contraction with respect to Kantorovich-Rubinstein
norms. Since p* is an extension of p,, we write p* = p..

A space that will be especially useful in the considerations regarding the continuity
equation is the Banach space C1(T% R?) equipped with the uniform C'-norm | - ||t
given by

IGllcr = Gl + IDGllse = [|Gllso + [[IDGlprllo, G € CHTERY).

Here, taking advantage of the interpretation of functions G € C'(T%; R?) as Z?-periodic
functions on Euclidean space, for z € T? we set

DG(z) = D(Gop)(Z) for any ¥ € R? such that p(Z) = =

where p is the universal covering of the torus and for any matrix A = (a;;) € R4 we
denote by |A|p, its Frobenius norm,

|Alp = tr(AT A)% = ( Z laij] )

7,7=1

Of course since G € C(T% R?) the function R? 3 ¥ + |D(G o p)(%)|r, is continuous
and periodic and thus bounded. So the norm || - ||c: is well defined. We note also that
the Frobenius norm on R?*¢ is induced by the Euclidean inner product (-, ) on R¥*4
given by

(A, B)p = tr(ATB) = Z aijbi;
1,7=1

for all A, B € R*?. Furthermore, by the Cauchy-Schwartz inequality, for any A € R%*?,
x € RY,

< i (iafj) (ix;‘?) = [ARJe (429)

=1 j=1 j=1

|Az[ = Z

i=1

E :aua:]

j=1

The following lemma is an adaptation of a similar lemma for real valued functions in
compact subsets of R¢ found in [6].

Lemma 4.2.2 There exists a family {Sc}eso of linear operators
Se: C(T%RY) — C> (T4 RY)

and constants C = C(p,d),C. = C-(p,d) > 0, € > 0, such that S.F == °F uniformly
for all F € C(T% R?) and
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(a) |1SeF||Lip < Ce||Fllu, for all F € C(T%RY) and all € > 0,

() |ScFllLip < || F|lLip for all F € Lip(T4RY) and all € > 0,

(¢) |SeF — F|lu < eC||F||Lip, for all F € Lip(T%RY) and all € > 0.
(d) |ScFllct < ||F|lcr for all F € CYH(T% R?) and all € > 0.

Proof We define a smooth approximation (p:).c(0,1) € C*(T) of the identity via
convolution through the usual molifiers. Let p : R — [0, 1] be a radially symmetric
C* function such that p(0) = 0, suppp € D(0,3) and [, p = 1. For all € € (0,1) we
define p. : R? — R by the formula

1 T
pe(x) = ;dp(g)-
Then suppp. € D(0, §), for all € € (0,1). We define gg : C(R%RY) — 0*(R%RY) by
S.F =Fxp.,

that is S F' is given by the formula

S.F(z) = /}Rd F(z —y)pe(y)dy = /D(O’;) F(z —y)pe(y)dy = / F(y)pe(r — y)dy.

D(I’%)

Of course by standard results in convolutions S. takes values in the space of smooth
functions. Indeed, for all z € R¢ and h > 0 we have that

F*ps(m+h6}al')—F*ps(df) = /}Rd F(x+hej_z)_F(x_y)pe(y)dy
_ /RdF(mpE(Hhej_z)_ps(x_y)dy
= [ ottt )iy,

for some compact ball K, such that D(z,5) U D(x + hej, §) € K, for all h € (0,1).
Now,

pe(x + he; — y) —pe(r—y) = The; (Tepe)(—=Yy) — (Tepe)(—Y)
and since 7,p. € C2(R?) we have that

The; TePe — TaPe h—0 .
————————— — 0Tape = T20jp. uniformly.

h
It follows that the limit
. Fxp.(x+he;))— F*p(x
0, v p)(e) = Jimg TLATERNZEEPAD 00, (-y)ay
—0 h K,

= / F(y)0jp(x — y)dy
D(,3)
exists for all z € R?. In the same way one proves by induction that the partial derivative

PEp )= [ Ty
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exists for all € R? and all multi-indices a € Z‘L and thus §EF is C*.

Next, it is easy to see that gg maps Z%periodic functions to Z%-periodic functions.
Indeed, if F € C(T% R?) is Z9-periodic and k € Z<, then by the definition of S.F €
C> (T4 RY) we have that for all z € RY,

SF@rk)= [ Fatk=ppy= [ Py = 5.Fa)

and thus S.F is Z%periodic. Therefore the restriction
S. := S:|o(raray : C(T4RY) — C°(T%RY)

gives a well defined function.
We check next that S.F — F uniformly. So let F' € C(T% R%). For all z € T?,
€ > 0, we have that

SF@) - Fla) = [ (o)~ F@)p-()dy
= [ (raF@ - F@)piy
and therefore
IS8 = Fllu < [ eyt = Flluplu)ds

Let f. : R — R denote the function f.(y) = ||7—cyF — F|lu. Obviously the family
{fe}ee(0,1) is uniformly bounded by 2| F||,. Furthermore, f. — 0 pointwise. Indeed,
for fixed y € R?\ {0}, we have that

fely)= sup |F(x —ey) — F(z)|.
xG[—%,%]d
But since F is continuous, it is uniformly continuous on, say [—1,1]¢, and therefore for
each v > 0 there exists J, > 0 such that

r,z€[-1L,1]% |z-12]<8, = |F(2)-F(z)|<n.

So if we choose ¢,,, > 0 such that e,, < d,/||y[/, then for all z € [-1,1)¢ and all
0 < € < €4,y we have that |F(z —ey) — F(x)| <, and so for all € € (0,¢,,,) we have
that fo(y) <~. Since v > 0 was arbitrary, lim._,¢ f:(y) = 0, as required.
It is easy to see that in the case that in addition F' € Lip(T% RY), one has the
estimate
ey F(@) = F(a)] < el Flluiplyl

for all z € R?. Therefore, ||7_cy F — F|ly < &||F||Liply| for all y € R?, and

I5.F =l < el Pl [ slotw)d.
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which proves that the operators Se, e > 0, satisfy (c) with constant C'= [, |-[p > 0.
(b) Let F € Lip(T% RY). Then for all z,y € R% and all € € (0,1) we have that

S.F(y)— S.F(x)| = ] [ (Fw=2) - F@ - 2)petens

< / F(y — 2) — F(z — 2)|pe(2)dz < | Fllly — 2,

which implies that |S:F||rip < ||F||Lip for all € € (0,1), as required.
(a) Let F € C(T%R%). Then for all z,y € R? and all € € (0,1) we have that

S.F(y) - S.F(z) = / F(2)(pely — 2) — el — 2))dz.

Now, by proposition 4.2.11 we have that

HSEFHLip(']I‘d;]Rd) = sup SEF(y) - SEF(LL')

w,ye[fl,l]d |I—y|
le—y|<3

)

and for all z,y € [—1,1]? we have that

SF) - S.F@) < |l [ 192y — 2) — pel — 2)|dz
D(z,5)UD(y,5)
13 g
< el 1Fllulz = yimme ( D (2,5 ) UD (. 5)
1
< Dpdupmsmoymne (D(1-110% 3) ) 1Pl
< 3dHPeHLip(Rd;Rd)||F||u|33 -y,

which proves that (a) holds with constant C. := 3%/ p. || ipmame) > 0.
(d). Let F € C1(T%4R%). Then of course ||ScF|l, < ||F|l. for all ¢ > 0 and since
F € CY(T% R?) we have that D(S.F) = S.DF for all € € (0,1), and therefore

1SeFllor = 19 Fllu + 1D(Se F)lw = 1S Fllu + |Se(DF)lu < [Fllu + [DFl[u = [|F[|cr

for all F € CY(T% R%) and all € € (0, 1), as required. O

Let /\//YS(M ) denote the completion of Mg(M) with respect to the Kantorovich-
Rubinstein norm or equivalently the norm-closure of MJ(M) in Lip,(M;R%)*. Ele-
ments of M\g(’lfd) can be characterized by the following continuity property. Recall by
functional analysis that for any Banach space X we have (X* w*)* = X < X**. In our
case, due to the isomorphism Lip,(T¢; R%) = M\S(Td)* we have that

MG(T?) = (MG(T*)" w*)” € Lipy(T RY)*
Proposition 4.2.12 Let W € Lip,(T% R%)*. Then W € //\/\lg(’]I‘d) iff for all sequences
{F }nen C Lip(T%R?) the following implication holds:

1E, —cllu — 0, c€R?  sup ||Fulip < +o0 == lim (W, F,) =0. (4.30)
neN

n—oo
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Proof We have to prove that W satisfies (4.30). So let {F,} € C°°(T%R%) be such
that lim, e || F, — ¢|ly = 0 for some ¢ € R? and C := sup,,cy || FnllLip < +o0. By
definition, for each e > 0 there exists W*¢ such that [|[W — W¢|| i, (pa;re)- < €. Then
for all n € N, € > 0, we have that

[(Tw, Fo)| < (W=, En)| + [(W = W=, F)| < [(WF, Fy)| + Ce.
But since W¢ € MZ(T4), we have that

lim (W*, F,) = (W¢,¢) =0,

n—oo

and therefore
lim sup (W, F,,)| < Ce,

n—oo
which since € > 0 was arbitrary proves that (W, F,,) — 0.
We prove now the converse. Let S. : C(T%RY) — C*(T% R?), e € (0,1), be the
family of operators of lemma 4.2.12. We set W€ := W o S, for all € € (0,1). Then by
property (a) of the operators S. we have that for all F' € C(T% R%)

<W87F> = <VV7 SEF> < ||W|‘Lip0(Td;Rd)*||S€FHLip < CSHW”LipO(Td;IRd)*

Flly-

Therefore, for all € € (0,1), W, defines a bounded linear function on C(T% R%) and
can thus be identified with a measure in M(T%; R¢) which we continue to denote by
We, with [[W,||rv < Ce||W||Lip(re;rey~- Furthermore, since by definition the constants
¢ € R? are invariant by the action of approximation operators S, i.e. S.c = ¢ for all
ceRY ¢ € (0,1), we have that

(We,e) = (W,e) =0

for all ¢ € RY and thus W, € M&(T?). Furthermore, by property (b) of the operators
S it easily follows that [Wellxr < [[W/lLip,(re;maey+ for all e € (0,1), since for all
F € Lip(T% R%) we have that

<W5,F> = <VV> SEF> < ||W||Lip0(Td;Rd)*

SeF||Lip < [[WLipy(T4;R4)-

F”Lip'

Now, by definition, for each & € (0,1) there exists F. € Lip(T% R%) with ||F.||Lip < 1
such that

||W5 — W”Lip(Td;]Rd)* S <W€ — VV, F5> +e= <W SEFE — F€> + €. (431)

But by properties (b) and (c¢) of the operators S. we have that

e—0

sup ||SeF: — Felluip <2 and ||[ScFe — Felly < Ce||Fe||Lip < Ce = 0,
e€(0,1)

which, since W is assumed to satisfy implication (4.30), proves according to (4.31) that
[We = WllLip(ra;ray- — 0 and thus W € Mg (T) as required. O

According to the following proposition, every W & /\//Yg(’lfd), is determined uniquely
by its action on C'-functions.
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Corollary 4.2.1 The linear operator T : M\g(’l‘d) — (CHTHRY), | - [ler)* defined
through restriction by Ty = W|Cl(Td;]Rd) is injective contraction.

Proof We suppose that W|{ci(pa,gey = 0 and we will prove that (W, F) = 0 for all
F € Lip(T4R%). So let F € Lip(T% R?). We consider then the sequence {F, :=
S1 F}pen € (T4 RY) given by lemma 4.2.2. Then by lemma 4.2.2 (b) the sequence
{Fn'n — F} C Lip(T%; RY) satisfies

sup || Fy, — Fllip < 2/ FllLip
nelN

and by the same lemma F;,, — F — 0 uniformly as n — co. Therefore, by implication
(4.30), we have that
lim (W, F,, — F) = 0.

n—0o0

Since by assumption (W, F,,) = 0 for all n € N this proves that (W, F) = 0 as required.
We prove next that T' is indeed a contraction. But this easy, since for all (F,W) €
CHT% R?) x Lipy(T? R?)* we have that

(F W) < [|FlLipyrema Wik r < [Flle Wik r

and therefore

[Twllen = sup  (F,W) <[[Wlkr
”FHCI(Td;]Rd)Sl
for all W € Lip,(T% R?). So T is a bounded operator of norm ||T|| < 1. O

Proposition 4.2.13 Let L € C* (T R%)*. The following are equivalent:
(a) L is of the form L = Ty for some W € M(T*?)
(b) For every sequence {Fy,}nen € C®(T% RY) the following implication holds:

|E, — ¢l — 0, c€R?  sup ||DF,|lu < +oo = lim (L,F,) =0. (4.32)
nelN

n— oo
(c) For every c € R? and all ¢,C > 0 there exists § > 0 such that
FeC®THRY, |F—dlu<6, |IDF|l.<C = |(L,F)|<e.

Proof First, since for any function F' € C1(T9% R?) we have that ||F||rip < ||DF|l4, it
is obvious by proposition 4.2.12 that (a) implies (b).

(b)=(c) We suppose that L satisfies (b) not (c) to derive a contradiction. Indeed, if L
does not satisfy (c), then there exists ¢ € R? and e,C > 0 such that for all § > 0 there
exists Fs € C(T¢; R?) such that

IF5 — cllu < 6, |DFs]lu < C and (L, F5)| > e.

Then if for all n € N we pick G,, := F1 we have that

HGTL - C”u ni)f’ Oa sup HDGn”u < C and |<L,Gn>‘ > g,
neN
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comes to contradiction with implication (4.32) since L is assumed to satisfy (b).

(c)==(b) Let {F,}nexn € C*(T%;R?) be a sequence such that ||F, — ¢/, — 0 for
some constant ¢ € R? and such that C := sup,,cy || DFy |, < co. We have to prove that
(L,F,) — 0 as n — c0. So let € > 0. Since L satisfies (c), there exists § > 0 such that

F e C®(T%RY), |F—cllu<d, |[DF|l.<C = [L,F)|<e.
But then if we choose ng € IN such that ||F,, — ¢||, < 0 for all n > ng, we then have that
n>ny = [L,F,)|<e,

which proves that L satisfies (b).

(b)A(c)==(a) Let L € C*(T%;R%)* be a distribution satisfying (b) and (c). We will
prove that there exists W € M\g(’]I‘d) such that L = Ty. We show first that L can be
extended to a linear operator L on the domain Lip(T%; R?). Indeed, let F' € Lip(T%; R%)
and let {F, == S1F},en € C®(T% R?) be the sequence given by lemma 4.2.2. Then
F,—F—0 uni%lormly and

Lip(r,y = sup [EnllLip < [[FlLip < 400
We claim that the sequence {(L, F,,)} is Cauchy. Indeed, since L satisfies (c), given
€ > 0, there exists § > 0 such that
G e C*(T4RY), |Gllu <9, |DGllu < 2Lipgp,y, = [L,G)] <e.
But now, since F,, — F uniformly there exists ng € IN such that
n,m>mg = ||[Fy — Fpll, <90

Therefore, since | D(F,, — F)llu < [[Fnlluip + [[FnllLip < 2Lipgp,; for all n,m € N, we
have that
(L, Fn) = (L, Fin)| = (L, Fr = Fin)| < ¢

for all n,m > ng, which proves that {(L, F,,)} is Cauchy. Therefore we can define an
operator L on Lip(T%;R?%) by defining

(L,F) = lim (L, S, F)

n—oo

for all F € Lip(T% R%). Of course it remains to be proved that L extends L.

First, it is easy to see that the definition of L does not depend on the particular
choice of the sequence approximating sequence {F,} C C>(T%;R?), among those that
satisfy

£ = Fllu — 0 and  Lipgp 3 := sup [|FylLip < oo. (4.33)
neN

Indeed, let {F,} C C®(T%R?) another sequence such that |[F, — F|l, — 0 and
Lip{ﬁn} < 00. Then {F, — F,,} C C®(T%RY), ||F, — Fu|l« — 0 and

sup IFy = Fulluip < Lipgp,y + Lip ., < +00,
ne
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which since L satisfies (b) implies that

lim (L, F, — F,) =0,

n—oo

and so the definition of L does not depend on the approximating sequence {F,}.
In turn, this implies that the formula
(L,F) = lim (L, F,), F €Lip(T%RY),

n—oo
where the limit is taken along any sequence {F}, },en € C®(T%; R?) satisfying (4.33),
defines an extension of L € C1(T%R%)* on Lip(T% R?). Indeed, if F € C>(T%R%)
then the constant sequence defined by F,, = F for all n € N satisfies (4.33) and therefore

(L,F) = lim (L, F,) = (L, F).
n—oo

Therefore L|coo(papay = L| oo (Ta;ray and so, since C>°(T%; R?) is dense in C* (T R?)
in the C'-uniform norm, if we show that the functional E|Cl(’]rd;]Rd) :CHT%RY) — R
is bounded with respect to the C!-uniform norm of C'(T% RY) it will follow that
Llci(raray = Llci(rara) as required. But indeed, since L € C'(T%R%)*, for all
F € CY(T% R?) we have that

(L,F) = lim (L,S1F) < |L|[limsup [|S1 Fllor < || L|[||Fllcx
n—00 " n—o00 n

and therefore L is bounded, as required.

Then it is immediate to check that the extension L is linear. Indeed, if we continue
to denote F, := S1F, n € N, for all F' € C(T% RY), then for all F,G € Lip,(T%; R%)
and all a,b € R we have that

(L,aF +bG) = lim (L, (aF + bG),,) = lim (L,aF, + bG,) = a(L, F) + b{L,G).
n—oo

n—00

Furthermore, it is easy to see that any distribution L € C*(T%;R9)* satisfying one of
the equivalent conditions (b) and (c) vanishes on all constant functions ¢ € R®. Indeed,
let ¢ € R®. Since L satisfies, say (c), for all € > 0 there exists § > 0 such that

F e C®(T4RY), |F—cllu <6, |Fllp <1 = [L,F)|<e¢

and in particular |(L,c)| < e which since € > 0 was arbitrary proves that (L,c) = 0.
Consequently, the linear function L : Lip(T%; RY) — R passes to a well defined bounded
linear function W := /ga : Lipy(T%R?) — R. Let us check that W is indeed
bounded. First, for all F € C'(T% RY) we have that

(W, F) = (L, F = F(0)) <[[L[[[|FF = F(0)[lor < 2([LI[[[Fl|Lip-

Let now F € Lipy(T% R?) and let {F},} := {S1 F} C C>(T% R?) be the approximating
sequence given by lemma 4.2.2. Then in particular sup,, || Fy||Lip < ||F|lLip and so

(W, Fy) = (L, Fr, — Fu(0)) < | LI[[|[Fr — Fa(0)[ler < 2|[L[[[| FallLip < 2 LI FlLip
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for all n € N. Taking the limit as n — oo it follows that (W, F') < 2||L||||F||rip, which
since F € Lipy(T% R?) was arbitrary, proves that W is indeed bounded, with norm
Wl = W llipycramer- < 2IL] )

Let us prove next that the extended operator W = L satisfies implication (4.30) for all
sequences {F,,} C Lip(T%;R%). So let {F,,} C Lip(T% RY) be such that || F, —c|l, — 0
for some ¢ € R? and CF := sup,,cy || FullLip < o0. By the definition of L for each n € N
there exists e, > 0 such that

(L F) — (LS, F)] < (4.34)

and of course we can assume that the sequence (¢, ),en has been chosen so that €, | 0 as
n — oo. Then, since the {F,} C Lip(T% R%), by properties (b) and (c) of the operators
Se, € € (0,1), of lemma 4.2.2 we have that || D(Se, Fi)llu < |Se, Frlluip < | EnllLip < Cr
for all n € N and

n—oo

||SenFn - FnHu S CEnHFn”Lip S CCFEn — O,

and therefore since {S;, F,,} C C*°(T% R%) and L satisfies the continuity property (b)
of this proposition we get that

lim (L, 5. F,) =0,

n—oo

which in turn implies by (4.34) that lim,, . (L, F},) = 0, as required.

So far we have proved that given a distribution L € C*(T¢; R%)* satisfying one of the
equivalent conditions (b) and (c) there exists unique W = Wy, € Lip,(T%; R¢)* such that
Tw = W|ci(Te,;re) = L. In addition, we have also shown that this W € Lip,(T% R?)
satisfies implication (A.1) for all F € Lip(T¢%; R%), which according to proposition 4.2.12
proves that W € MZ(T?), and the proof is complete. O

According to this proposition, if we denote by /\//\lg ot (T?) the vector subspace of
CHT%RY)* consisting of all L € C'(T? R?)* satisfying implication (4.32), then the
extension operator ~: M ,,(T¢) — MZ(T?) given by

L := the unique W € M\g(’lfd) such that W1 (pa,pey = L

= pw-limLoS,
e—0
is well defined.

Corollary 4.2.2 The extension operator ~ : M\g o (T — M\S(Td) is a bi-Lipschitz
linear isomorphism.

Proposition 4.2.14 Let V : L'(T%) — Lipy(T% R%)* be defined by
(Vo,F)y = —/ o(x)divF(x)dz.
Td
Then V is a bounded linear operator and VL*(T4) < M2(T%).
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Proof Obviously for all o € L*(T?) and all F € Lip,(T% R?) we have that
(Vo, F) < ||divF|[pee(rayllollzrray < 2l|ollr(ray |1 F|Lip, (Tesma)S

and therefore V is well defined and bounded with || V]| < 2.
We prove now that VL*(T9) C MZ(T?). First we note that if o € C°°(T?) then for
all F' € Lipy(T% R?) we can perform integration by parts to get

(Vo,F) = —/a(x)divF(x)dm = o Vo(z) - F(z)dz,

and therefore
Vo =Vodn,, € MJ(T?) < Lip,(T%R%)*.

Let now o € LY(T?). Since C*(T?) is dense in L*(T9) there exists a sequence
{on} C C(T?) such that [|o — op|lp1(pey — 0 as n — oo, and therefore since V is
bounded with ||V]|| < 2, we have that

Vo = VoullLipyrara)- < 2||0 — onllpierey — 0,
which, since VO (T%) C MZ(T9), proves that o € MZ(T?). O
Proposition 4.2.15 The gradient operator
v LHT?) < M(T) 2 C(T4)* — ME(T?) < CH(T%RY)*
is w* -continuous.

Proof Indeed, let {04}aca C L' (T?) be a net such w*-lim, 0, = o0 € L}(T?), i.e. such

that
/ foa z/ fo, ¥V feo(Td.
Td Td

Then, since divF € C(T4) for all F € C'(T%;R%), we have that
(Vou, F) = —/JadivF — f/adivF = (Vo, F)

for all F € C*(T%;R?), and therefore Vo, — Vo in the w*-topology of /\//Yg(’]l‘d) when
considered as a subspace of C1(T%; R%)*. O

4.2.4 The State Space of the Empirical Current Process

As we have already seen in the end of section 4.2.2, the (diffusively rescaled) empirical
current process can be regarded as the process

W Qny — L2(0,T; M?)

given by the formula
W (n,t) =W,

e’
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where Qy is the closed subset

Qn == {n € D(Ry x M)|(L, 7)) = (1, 7)), vt >0} (4.35)

TUM 7o

and
||WHTV,oo S 2dN<1,7T71]\[[)>.

As we have seen the extra factor N above poses difficulties in the proof of the relative
compactness of the law WN PN € PL (0, T; M9).

However, as we have noted the empirical current function W : IM?V — M takes
in fact values in the space MZ(T?) of vector-valued measures with zero total mea-
sure, where MZ(T9) is considered equipped with the Kantorovich-Rubinstein norm.
By an integration by parts and the Cauchy Schwartz inequality we see that for any
G € Lipy(T%R?),

[orar = G235 [0(5) -0 (55 ot

J=1lzeT¢
1 T Tr—e;
< N J ‘
= g(n(x))\/g‘G(N> G( N )2
IET‘}Z\,
< ||g/||u\/QHGHMP(Td;Rd)(l,7TN>.
Therefore
W¥ler= s [ awy < Vil ). (4.36)
GeLipy (THRY)
IGlLip<1

Then, if Q is the Borel subset of D(IR; M%) defined in (4.35) we have that
|‘W1;VHL°°(O,T;M8) < \/ﬁ||g’||u<1,7r7%>
for all n € Q. Consequently we can regard the empirical current process as the mapping
(v, Pa) 25 1220, T; ME) < L22.(0, T; Lipg (T% RY)*) = L1(0, T; Lipy (T RY)) .
In the same way, in the case that the jump rate g is bounded we get the estimate
W Nl 0 7inag) < Vgl (4.37)

and so in this case the empirical current process takes values in the ball of radius v/d||g||,
in L (0, T; Lipy (T%; R%)x). Of course in order for this to be meaningful we also have
to ensure that it is a Borel random variable with respect to the Borel o-algebra of the
Skorohod space and the Borel o-algebra of the w*-topology of L% (I; Lip, (T4, IRd)*) SO
that the laws WV PN are well-defined. This follows by the next proposition

Proposition 4.2.16 The empirical current mapping
Wy : Qn — L0, T; Lipy (T4 R%))*

is continuous with respect to the Skorohod topology on Qn and the w*-topology on
LY(0,T; Lipy (T4 R%))* and thus Borel measurable with respect to the corresponding o-
algebras
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Proof We have to prove that for every F' € L' (0, T’; Lipy(T%; R%)) the function (F, W) 7 :
D(0,T; M%) — R given by

T
(F, W™ 0,71(n) :/0 (Fy, Wi)dt

is continuous. So let F € L'(0,T; Lipy(T¢;R)). By definition F is strongly measurable
and the function ¢ — || F||Lip, is in L>°(0,T). Let {n*}ren C D(0,T; M%) be a sequence
of cadlag paths such that n* — n € D(0,T; ]M‘]i\,) in the Skorohod topology and we will
prove that limg_,ec (F, W) o 7(n*) = (F,W™)or(n). First, as we have seen in the
proof of proposition 4.2.8 the function my 1 : Qny — C(0,T;Z4) given by

mya()(t) = Y m()

d
zeTg,

is continuous and therefore my 1(n*) — mxy,1(n) uniformly on [0,7] as k — oo. Con-
sequently there exists ky € N such that

k>ky = Z nF(x) = Z no(x), VYtel0,T)].
zeTd zeTY

Next, since the function W : M4 — MZ(T?) < Lipy(T¢; R?)* is obviously continu-
ous the induced function

W : D0, T; M%) — D(0,T; M3(T?))

on the Skorohod spaces is continuous. Therefore Wév — WN in the Skorohod topology
and consequently W, » — WA,i in MZ3(T?) for all Contlnulty points of ¢ € [0,T] of 7.
But 1 has at most countable dlscontlnmty points and so

||Wn;& i Wg”KR — 0

for almost all ¢ € [0, T]. Consequently, since F; € Lip,(T%; R?) for all ¢ € [0, 7], we have
that
(Ft,Wg> — (F, W), as-Vte[0,T]

Furthermore, for all k > ko by the bound (4.36),
[(EL WDl < 1 Feleip, IWE ek < Vg llu{L, )| Feluip,
Vallg'llu{L, w0 | F ip, € L'(0,T)

and so by the dominated convergence theorem it follows that

1Mo

T T
lim (F, W) (n*) = lim [ (5, W)dt = / (Fy, WNydt = (F, W) 0 1y(n)
k—o0 k—oo Jo e 0
as required for the w*-continuity of the empirical current process. O

Due to the fact that Cl(LipO(Td;Rd)*7w*)Mg = Lipo(M;R?)*, the injection

L3%.(0, T3 M§(M)) — L. (0,T; Lipo(M; R)*)
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does not have w*-closed range and that is why we consider the empirical current as taking
values on the whole space L(0,T; Lip,(M; IRd))*, since any limiting argument with re-
spect to the w*-topology would anyway take us out of the smaller space LS (0, T /T/l\g(M))

This definition of the empirical current process will allows us to prove the relative
compactness of the law {W*N pN }nvew of the empirical current. However, since the space
Lipy(T%; R?) is not separable, the space L% (0, T; Lipy(T%; R?)*) is not sub-metrizable
and the Prokhorov-Le Cam theorem (A.4.1 in the appendix) will give us only a con-
vergent sub-net of the sequence {WN PN}, In order to get a convergent sub-sequence
we will also prove the relative compactness of the empirical current in a slightly weaker
topology, in the space L (0, T; C1(T%; R%)*).

It is easy to see with the same reasoning that the empirical current also gives rise to
a well defined map

W (Qn, PY) — L0, T; CHT4RY*) = L0, T; CH (T4 RY))*. (4.38)
Let us recall the mean value theorem for vector valued functions.

Lemma 4.2.3 Let G € C'(R%;R?). Then

1
6 - Gla) = ([ DO(1 = 0+ t)at) (v —a)
for all x,y € R and in particular

|G(y) = G(x)l2 < sup [DG(2)|rly — xlo.

z€[zy]

Proof Let z,y € R% and let G7, j = 1,...,d denote the coordinate functions of G. For
each j =1,...,d we define the function g, : [0,1] — R by the formula

95(t) = GI (1~ D)z + ty).
Then by the fundamental theorem of calculus we have

Gj(y)—Gj(w)=gj(1)—gj(0)=/o g}(t)dt=/0 (VG (1 = t)a + ty),y — x)dt

and since for any p € R¢

it follows that
Gly) — G(z) = /0 DG((1—t)z +ty)(y — x)dt = (/o DG((1—t)z + ty)dt) (y — ).

Furthermore, since G is C!, the function R¢ 3 z — DG(z) € R%*? is continuous and
therefore by the compactness of the segment [z, y] we have that

sup |DG(2)|g < +00
z€[z,y]
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and therefore

1
/ DG((1—t)z +ty)dt| < sup |[DG(z)|p < 4o0.
0 Fr  z€[z]

Consequently, since by (4.29) the Frobenius norm bounded the ¢s-operator norm we
have that
|G(y) — G(2)|]2 < sup [DG(2)|m|z —yl2

2€[z,y]

and the proof is complete. O

Corollary 4.2.3 Let G € CYT%R%) and let p : R? — T denote the universal
covering of the torus. Then for all z,y € T% = R /zd,

G(y) = G(@)]2 < |[ID(G 0 p)lr]| o gy da () < +ov.

Proof Recall the considerations on the torus before proposition 4.2.11 and let p : R —»
T, p(z) = T + Z%, denote the universal covering of the torus. Since p is smooth, the
function G o p belongs in C'(R?; R?) and since p is local isometry, given z,y € T¢ we
can choose 7,y € RY such that p(7) = z, p(y) = y and

1T —yla = min |7 — zlp = dya(z,y).
zEY+7Z2

Then by applying the mean value theorem to the function G o p we have

G(y) = G(x)]2 =G op(y) = Gop(@)l2 < [[ID(G 0 p)lee| o gy | T — T2 = d(@, y)pa
as required. O
Returning to the definition of the empirical current process, by an integration by

parts, the Cauchy-Schwartz inequality and the mean value theorem we have for any
G € CHT% RY) that ,

[orar = G235 [0(5) -0 () ot

J=1zeT¢,
1 T Tr—e;
R — =) - J ‘
= Nd1 > g("(x))\/g‘G(N> G( N )2
IET‘}Z\,
< g1V DG o Pl gy (17
< Vd||g' |l (1, 7)) IGl o1 (ra;a)
and therefore
W1 (ragay < Vallg' (L, 7). (4.39)

Finally it is obvious by proposition 4.2.16 that the empirical current process also as
considered in (4.38) is continuous with respect to the Skorohod and w*-topologies and
thus Borel measurable.
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4.3 The Continuity Equation on the Torus

In this section we consider the continuity equation
Oppt + div,W =0 in [0,T] x T¢

on the torus in the sense of distributions. Here p = (ut)o<i<r € L% (0,T; M) is
a curve of finite non-negative measures describing the density and W = (ut)o<t<r 18
either an element of the space L>(0,T;Lipy(T% R%)*) or of LL.(0,T;C* (T4 R%)*)
describing the density flux. As we will see even with these more general interpretation
of the current the continuity equation makes sense and by an adaptation of lemma 8.1.2
in [2] its solutions p : Ry — M (T?) are weakly-continuous in time.

Lemma 4.3.1 Let X,Y be normed spaces. Then
(X x1 V)" 2 X* xo0 Y™

Proof Let 1 < p < ¢ < oo be conjugate exponents and let £ € (X xP Y)* be a linear
functional. Then the functionals £x : X — R and £y : Y — R defined by

(x(z) = (z,0),  Lty(y) =£0,y)

are obviously linear. They are also bounded with ||[€x || V ||¢y || < ||£]] since for all z € X
we have that

[€x ()] = [€(x, 0) < [[£[[[|(, 0)p = [I€][ll]|x

and likewise we see that ¢y € Y™ with ||[fy| < ||¢]|. Note that we can also express {x

and ly as {z = loiyz, Z = X,Y, where iz : Z — X X, Y are the natural injections
defined by ix(z) = (x,0) and iy (y) = (y,0).
Now, the function T': (X x, Y)* — X* x, Y* defined by

T(t) = (Loix,loiy)

is obviously a linear bijection. We will show that it is an isometry. We recall that by
duality in 2 := (R?,| - |,) we have that

ax + by
sup = ||(a, )4

(;v,y)E]Rd\{O} (@, 9l
Therefore, since for all (x,y) € X x, Y # {0} we have that

Uoy) _ Lxl@) + () _ lexllall + ey
I (N [l Ty DI,

we see that

= sy L@ el £ e ]

wazo [@De = @wzo [l TyDI,

= [|lexI llex D, = el

or in a more explicit notation

10l (x5, vy < T x5, v+
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On the other hand we obviously have that

1

1T elxe ey = [ex 16D, = (1l + 165 1) < 2% 1€l ey
which together with the previous inequality gives
lllcex, vy < ITExe v+ < 201,y (4.40)
In particular, with the obvious modifications in the case (p,q) = (1, 00) this proves that

1Tl x*x v = [[€ll(x x,v)

and completes the proof. O

Definition 4.3.1 We say that a density-current curve
(1, W) € L (I; My (T%)) x L35 (I; Lipy (T4 RY)*)
satisfies the continuity equation
Oppy + divivy = 0, (4.41)

in I° x T4 iff for all smooth Z9-periodic test functions G € C°°(I° x RY) of compact
support in 1° we have that

T —_—~
/ ( 0:Grdjiy + (VGy, Wt>)dt =0 (4.42)
0 R4

for any representative

(7, W) € L= (I; My (RY)) x L35 (I; Lipy (R4, R?)*)
of (u, W), i.e. for any such pair (f, W) for which p.(p, W) := (ps«t, p*W) = (u, W).

In this case we write (VG;, W;) instead of fM VG; - dW; to emphasize that W; €
Lip(T% R%)* is not necessarily a measure. A few remarks are in order. First, the re-
quirement in (4.41) is not empty due to the surjectivity of the maps p, : L= (I; M, (R%))
— L®([; My (T%)) and p. : L (I; Lipy (R4, RY)*) — L (I; Lipy (T4, R¥)*). Sec-
ondly, in order for (4.41) to make sense we have to make sure that for each Z?-periodic
function G € C*°(I° x R?) of compact support in I° the curve I > t + V,G; belongs
in L'(I; Lipy (R4 RY)). But this is obvious since due to the fact that G is Z?-periodic
in space and of compact support in I° we have that

IVaGillLip,resma) < ID3Glu < sup ID2G || < +o0.
€

To prove the weak continuity of the solutions y : Ry — M, (T4) of the continuity
equation we need a description of the dual ofC2(M), M = R? or T¢, which is defined
as the closure of C2(M) in C?(M) with respect to the usual C2-uniform norm || - || c2
defined by

1fllcz = 1l + IV fll + 1D*fllu  f € C*H(M).
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Here we consider the space R**? of d x d-matrices equipped with the Frobenius norm
| - [[Fe- Since the Frobenius norm is Euclidean, by considering R?*¢ equipped with the
Frobenius norm we have by the Riesz representation theorem for vector-space valued
measures that Co(M; R*Y) = M(M;RI*4),

To describe the linear functionals on C2(M) we consider first the natural injection

i: CE(M) — X := Co(M) x1 Co(M;R?) x; Co(M;R¥*9)

defined by the formula i(f) = (f, V.f, D?>f). This is an isometric injection with closed
range and by the Hahn-Banach theorem the dual mapping i* : X* — CZ(M)* is a
surjection with ||¢*|| = ||¢]| = 1. Tt follows that the quotient mapping

7:* . X*/keri* —>C§(M)*

is an isometry. Of course by the Riesz representation theorem and lemma 4.3.1 we have

that X* := M x M% x M%*? and since ker(i*) = R(i)* = iC2(M)~+ we get an isometry
d dxd *

*

Consequently, any linear function ¢ € CZ(M)* can be represented in the form

0f) = Tpway (f) = / fdu+ / Vf-dW / (D2, dQ),

for some (u, W, Q) € M x M? x M4 and two such triples (u, W, Q) and (v, V, R) in
M x M4 x M¥* give rise to the same functional ¢ € C3(M)* iff (u—v, W —-V,Q—R) €
iC3(M).

Lemma 4.3.2 Let M = T? or R? and consider Co(M)* = M as a subspace of C2(M)*
through the submetric injection i* : Co(M)* — C2(M)* where i : C3(M) — Co(M)
is the inclusion injection. Let {{in}nen be a sequence in Co(M) such that

lten — Lllczarys — 0

for some € € C3(M)*. If {u,} € M is TV -norm bounded, and in addition tight in the
case M =R?, then £ € M.

Proof Since p, — £ in CZ(M)*, for any f € C3(M) we have that

ln (f) = (O < Mlpn — Ll ez (an)-

as n — co. Now, £ is of the form ¢ = T}, v, p) for some (v,V,R) € M xoo M? x M*d
and therefore by the limit above we have that

fllez — 0

n}i_)ngo/fdun:/fdu—l—/(Vf,dV>+/<D2f,dR>Fr, YV feCi(M). (4.43)

On the other hand, {u,} € Co(T?%)* = M is norm bounded and tight and therefore it
is relatively compact in the weak topology of M. So there exists a subsequence {ug, }
of {u,} and pr € M such that

lim [ fdug, = /fdu, YV fe BO(M).
n— o0
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Then for all f € C3(T?%) we have that

/fdu+/Vf-dV+/<D2f,dR)Fr:nli_{r;o/fdukn :/fdu

and therefore by (4.43) we have that

lim [ fdu, = / fdu, Y f€Ca(M). (4.44)

n—oo

We shall show now that p, — p weakly. Since {u,} is supposed to be bounded,
it is contained in some metrizable for the weak topology subspace Ba((0, M) C M,
M > 0, and therefore it suffices to prove that any subsequence of {u,} has a further
subsequence which converges weakly to p. So let {ug, } be a subsequence of {p,}. Since
{un} is weakly relatively compact there exists a further subsequence {jiy,, } such that
P, — Mo weakly for some pig € M. But then by (4.44) we have that

[ g =t [ i, = [ ran. v s e cin,
which shows that p = pg and completes the proof. 0

Proposition 4.3.1 Let (u, W) € L>(I; M4 (T%)) x L3 (I; Lipy (T4 R%)*) be a density-
current curve satisfying the continuity equation. Then there exists a weakly continuous
curve [t in the class of p in L™ (I;M+(Td)), and for this continuous representative we
have that

t
thﬂt - Gsdﬂs = / < arGrdﬂr + <VGT, Wr>>d’]",
Td s Td

Td
]fg?" all G € C=(I x Td) and all 0 < s <t <T, in the sense that for any representative
W € L. (I; Lipg(R%, RY)*) of W it holds that

P ~ t — P
Gdpiy — Gsdjiy = / < 0,Grdji, + (VG,, W,.>)dr, (4.45)

R4 R4 s Rd
where (fi,)ter := (ixfit)icr and i : T < R? is the Borel injection.
Proof We fix an arbitrary Z?-periodic function ¢ € C*°(R¢%) and let ¢, : (0,7) — R
denote the function defined a.s. by

pelt) = [ Coid

where of course i : T 2 [0,1)? < R? is the Borel injection. Then due to our assumption
that 4 € L (I; M (T?)) we have that ¢ € L>(I) since

e < Clluree(T) < NIClullellosiry < oo,

for almost all ¢t € I.
Let now G € C°(I° x RY) be any function of the form G(t,z) = f(t)((z) for some
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function f € C°(I°) and some Z-periodic function ¢ € C>°(IRY). Then since the pair
(u, W) € L®(1°; M, (T9)) x L. (I; Lipy(T%; R?)) satisfies the continuity equation, we
have by (4.42) that

T T
/0 F (e (t)dt = /0 0

for any (11, W) € L (1% M1 (R%)) x Ly (I; Lipy (R R%)) such that p. (i, W) = (u, W).
Therefore, since the equality above holds for all f € C2°(I°) we see that the measurable
function ¥¢ : I — R defined a.s. by

T o~
Gt = [ 5(0/9¢, Wi
0

M

be(t) = (V¢ Wr)

is the weak derivative of the function ¢¢. But since W e L (I; Lipy(R% RY)*) the
function . is in L°°(I) since for almost all ¢t € T we have that

()] < IV i IWell k& < IV Lipg W [looskc r < 00

Therefore ¢¢ € Whee([°) with distributional derivative 1¢. Consequently, the equiva-
lence class ¢ contains a Lipschitz representative ¢ with Lipschitz constant

1@clLip < lWhclloe (1) < NIV ClILipy W lloo: k&

Let now Z be a countable subset of C°(T?) that is dense in C2(T?) in the usual
C?-norm || - ||¢2 given by

I¢liez = NIl + 1Y€l + D¢l

for ¢ € C2(T%). Then obviously Z is also dense in C(T%) with the uniform norm || - ||,
and we set

Iz == () {teI|pc(t) = pc(t)}.

eZ

Then Iz is of full Lebesgue measure in I. We denote by i : Iz — M the restriction
of p € L®(I; M4 (T%)) on Iz. Then since M (T¢) < C(T¢)* and C(T?)* is naturally
injected in C2(T%)* through restriction of domains, that is through the mapping

C(TY* 3 €+ l|cz(pay € C*(TH*,

we can regard ji as a function ji : Iz — C?(T%)*. As such the function /i is Lipschitz,
with Lipschitz constant < |[|W||co;xr. Indeed, for all s,¢ € Iz and all ¢ € Z we have
that

() — fis (O]

|6¢(t) = dc(s)] < llcllLiplt = s| < W loos i RV Lip, £ — 5]
W lloo;x rIICII 2 [t = s,

IN

which since Z is dense in C?(T?) in the C?-norm || - ||¢= shows that

||/:’/t - ﬂs”CQ(’]I‘d)* = sup M

S el < W leesrerlt =l
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Therefore fi : Iz — C?(T%)* has a Lipschitz extension i : I — C?(T%)* with the
same Lipschitz constant |[W ok 5.
Now, since u belongs in L>(I; M, (T%)) by hypothesis, we can assume that Iz has
been chosen so that
ey = me(T) < flpllooirv < +oo

for all t € Iz. Therefore, since {j}ter. is in addition tight since {p}ier, € Mo (T9)
it follows by lemma 4.3.2 that the Lipschitz extension ji : I — C?(T%)* takes values in
M (T9) and is weakly continuous.

We prove finally (4.45). So let G € C°°(I x R%) be a Z%periodic function, let
0<s<t<T andlet W be any curve in LS. (I; Lipg (R4 R?)*) such that pW =W.
Let f. € C2°((s,t);[0,1]), € > 0, be such that f. —» 1, ) pointwise in I and such that

lim /1 FLR(r)dr = h(s) = h(t), ¥ h e C((0,T]). (4.46)

e—0

Then since the pair (u, W) satisfies the continuity equation we have for all € > 0 that

o = [ ([ oG + 11016, o) )i

/OT ( /R [FUNGr+ (10, Gl + ¢ fE(T)VIG“WT>) i

/OT fi(r) /]Rd G, dfi, + /OT fs(r)</Rd 0,Grdfi, + <VxGr,Wr)>dr.

Now, since the function G' € C=(I x RY) is Z-periodic, the function G:IxT? —R
given I x T% > (r,z) — G(r,i(z)) is C*. In particular the curve I > r — G, € C(T%)
is continuous with respect to the uniform norm in C(T%) and therefore due to the weak

continuity of f, the function
IBrH/Grdﬁ:/érd/jr

is continuous. Therefore taking the limit € — 0 and using (4.46) in the first term of the
sum above and the bounded convergence theorem in the second term, we get that

t —_—
Gdfi, 7/ G.dpi, = / < 0,Gdji, + (VIGT,WT>)dr
R4 R4 s R4
for the arbitrary representative W of W in L (I; Lipg (R4 R4)*), as required. O
All the considerations in this section also remain valid if we consider the empirical

current as taking values in the space L' (0, T; C*(T%; R9))* and there is no need to repeat
the arguments.

223



4.4 Relative Compactness of the Empirical Current

In this section we prove the relative compactness of the empirical current and the empir-
ical jump-rate processes and prove that the limit points of their laws are concentrated on
solutions of the continuity equation. In particular, with any additional work it will fol-
low by the general considerations of section 4.2.3 that the law of the empirical current is
supported by trajectories W : [0,T] — /\//Tg(’lfd) of Kantorovich-Rubinstein measures.

4.4.1 The Empirical Current

According to the results in appendix A.4 on completely regular Hausdorff topological
spaces and in particular the Prokhorov-Le Cam theorem A.4.1, in order to prove the
relative compactness of the sequence

WNPN e PLY. (I; Lipy (T4 RY)*), N €N,

it suffices to check that it consists of Radon measures and that is uniformly tight. It
is easy to see that the sequence {W2N PN} ycn consists of Radon measures. Indeed, all
Borel probability measures on a polish space are Radon and so since PV € PQy and
Qy is a polish space with the restriction of the Skorohod metric the measures PN are
Radon. But from proposition 4.2.16 the empirical current function

W Qn — L2(0, T; Lipy (T4 RY)*)

is a continuous function with respect to the restriction of the Skorohod topology on €1y
and w* topology on L2 (0, T Lip(T9; R%)*) and so according to proposition A.4.3 the
laws WN PN are Radon on the Borel o-algebra of the w*-topology, i.e.

WNPN € Pr(L.(0,T; Lipg (T4 RY)*), w*).
Proposition 4.4.1 The sequence
QN :=WNPYN ¢ PLX.(0,T; Lipy (T4 RY)*), NN,

of the distributions of the empirical current process is relatively compact in the weak
topology of PLSS. (0, T; Lipy (T R)*) that is induced by the w*-topology.

Proof Since by the Banach-Alaoglou theorem norm bounded subsets of a dual space
X* are relatively compact in the w*-topology, it suffices to prove that

li NI Bre (0.7.Li gy (0, A)°Y = 0.
Jim sup QY {Byrz ity (waimey) (0:4)7 =0

But for each N € N, we have by the bound (4.36) that
QN{BLZ?* (O,T;Lipo(']I‘d;]Rd)*)(OaA)C} = PN{HWN”Lf* (0,T;Lipo (T4;R%)*) > A}
PY{Vd|g'lu(1,73") > A}

_ Mgv{<1,ww>>M},

IN
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where £ is the initial distribution of the law PY of the diffusively rescaled ZRP. There-
fore the required limit follows from (3.10). O

We set now
DL.(0,T; My x Lipg) := D(0,T; My (T%) x LE(0, T; Lipy (T4 R%)*)
and consider the empirical density-current pair process
(7N, Wy (Qn, PY) — DLX(0,7T)

and the rest of this section is devoted to proving that any limit point R of the distribu-
tions
RN .= («N, W), PN ¢ PDLE. (0, T M, Lipg)
of the sequence of the empirical density-current processes is concentrated on solutions of
the continuity equation. We recall (4.20) according to which for all G € C3((0,T) x T%)
and all § > 0 we have that
> 5} 0.

7 DL.(0,T; M x Lip) — D(I; M (T9)),

T
lim IPN{’/ [(0:Ga, 7)) + (VGs, W) ds
0

N —oo

If we denote by

W : DL (0,T; My x Lipg) — L% (I; Lipy (T4 R%)*)

the natural projections then the above limit can be rewritten as

N—o00

lim RN{‘ /OT [(0,Gy, ) + (VGt,Wt>]dt‘ > 5} = 0.

We claim that for all G € C°(I° x T?) the function f¢ : DL (0, T; M x Lipg) —
R given by

T
fG(ﬂ', W) = / [(&Gt,m} + <VGt, Wt>] dt
0
is continuous. Indeed, we write f&(m, W) = f2%(x) + f2¢(W) where
T T
() = / (4G, ;) dt, fEEw) = / (VoGy, W,)dt. (4.47)
0 0

We begin first with the function ftl’G. We note that for any function G € C1([0,T] x
T) the induced function I (-, )(G, )¢y : Ry x M4 (T%) — R defined by

Lo(t, 1) = (G ) = (G ) = /

thlLL
Td

satisfies properties (A.1) and (A.2) of proposition A.1.6. Indeed, any compact subset K
of M (T?) is contained in some compact subset of the form

ME = {i € My (Th)|(1, ) < L}
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for some L = L(K) € Ry and therefore

sup [I(t+h,p) = Ig(t,p)| < sup |la(t+ h,p) = Ia(t, p)|

HEK ;LEMﬁ
< L sup |G(t—|—h,x)—G(t,:c)|h—_>(>)O
zeTe

which proves condition (A.1). For the second condition we consider the space M, (T%)
equipped with the Dudley metric dp defined via the norm in (1.55). Of course we can
do this since as we have seen this norm metrizes the weak topology on M (T%) and
by proposition A.1.2 the Skorohod topology on D(0,T; M) depends only the topology
of M and not on the particular metric defining the topology. Then, for any ¢ € [0,T],
p,v € M4 (T9) we have that

(e~ Ta)| = | [ Gudn =) < [Gulmwo(u.) < [Gulcrdolpon)

where we recall that || - || gz is the bounded-Lipschitz norm defined in 1.56 and || - ||c1
is the uniform C'-norm on C(T4) given by ||G||c1 := ||G]|u + [|[VG/||w. Consequently, if
we set

C%(G) == sup [|Gtllcn
0<t<T
then we have that

sup |Ia(t,p) — Ia(t,v)| < CF(G)dp(u,v)
0<t<T

dp (p,v)—0
(1)

0,

which proves the second condition (A.2).
Consequently, the induced function

D(O»Tﬂ\/l—s-) 3 (Wt)te]R+ — (/thﬂ't> € D(O,T§ R)
tE]R+
is continuous. In our case, since G € C3((0,T) x T?) we have that 9,G € C2((0,T) x T¢)
and so the function

DO, T; My) 3 (7y)ier, *5 (/&det) € D(0,T;R)

teR 4

is continuous. Furthermore, by proposition A.1.7 the function

t
D(0,T,R) > (z¢)ter, Hy (/ xsds> € C(0,T;R)
0 teR4

is continuous, and so finally since the evaluation mappings e; : C(0,T;R) — R, defined
by ei(z) = x(t) for all z € C(0,T;R) and all ¢t € R, are continuous we see that f," is
continuous since ftl’G =e;0lolya.

We prove next the continuity of f2“. We note that given any function G € C}((0,T)x
T4 RY) the formula I > ¢+ Gy € Cl(Td;]Rd)/R < Lipy(T?; R?) defines an element G of
LY(0,T; Lipy (T%; R%)) with

T T

Gl L1 (0,7;Lipy (T4 R4)) Z/O |G tllLip, (TR dE S/o | D2Gtll o (ra;maxaydt < +oo.
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In particular for any G' € C2((0,T) x T?) the function (V,G) : [0,T] — Lipy(T% R%)
given by
t VoG € O T5RY 1 < Lipy (T4 RY)

defines an element V,G of L(0, T; Lipy(T% R?)), and then f>¢ = (V,G, “)[0,7], Where
of course here (-,-)jo7) denotes the duality on the product L'(0,T;Lipy(T%R%)) x
L2 (0, T; Lipy (T%; R4)*). But by the definition of the w*-topology a net {W},e4 C
L. (0, T; Lipy (T4 R?)*) converges to W € L (0, T; Lipy (T4, R%)*) iff

lim (G, W) 0. 11 = (G, W)o,1)

acA
for all G € L(0, T; Lipy(T%; R%)) and so in particular given G € C*((0,T) x T¢), for
any converging net {W%},c 4 with limit W we have that

W) = (V,G, W 0,0 — (VoG Wo ) = 2w

which proves the continuity of >, and thus also of f&.

Now, since f¢ is continuous the set {|f| > §} is open and so by the portmanteau
theorem it follows that for any limit point R of the sequence {RY} along a subnet
(RY)qea of RN we have that

R{|f€| > &} R{‘ /OT [(8,Gy, mi) + (VGy, Wt>]dt’ > 5}

IA

T
llﬂleglf Ra{‘ / [<ath,7Tt> + <VGt, Wt>]dt’ > (5} =0
@ 0

for all § > 0 and all G € C3((0,T) x T?). Since this holds for all § > 0 it follows that
T
R{ / [<ath,7Tt> + <VGt, Wt>]dt = 0} = 1, VGe Cg((O,T) X Td)
0

Therefore if we can find a countable family G C C2((0,T x T?) such that

N =0 =N{r=0 (4.48)

GeC3((0,T)xT4) Geg

it will follow that

R< N {/OT [(0,Gy i) + (VGy, W) ] dt = 0}) =1,

GeC3((0,T)xT4)

i.e. that R is concentrated on solutions of the continuity equation. To this end, let G C
C((0,T)xT?) be a countable set of smooth functions dense in C2((0, T')x T¢) (and thus
also in C3((0,T) x T%)) with respect to the usual C2-uniform norm of C?((0,T) x T4),
given by

1Glloz (o) = 1G] + IVGllu + DGl

where differentiation is with respect both to the time and space variables, the uni-
form norms in the right hand side are taken in the spaces C((0,T) x T%), C((0,T) x
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T4 R and C((0,T) x T4 REFD*EH)) " respectively, and RE@TD*(@+1) g consid-
ered equipped with the Frobenius norm. Note that if we show that for any sequence
{G*¥} C C((0,T) x T?) such that G¥ — G € C%((0,T) x T?) with respect to the
C?-uniform norm we have that ka — f¢ pointwise in DL (0,T; My x Lip) then
we will have that (4.48) holds. Indeed, if this is true, and (m, W) € Ugeg{f¢ = 0}
then given any G € C%((0,7) x T?) there exists a sequence {G*¥} in G such that
IG — Gk‘lcg((O’T)X’]I‘d) — 0 and thus
FE (W) = lim f¢ (m,W) =0,
k— o0

which shows that (4.48) holds.

So let {G*}ren € C2°((0,T) x T?) be a sequence such that |G* =G| c2((0, 1) xTe) —
0. Of course it suffices to prove that the sequences {fl’Gk} and {fZ’Gk(W)} converge
pointwise on the spaces D(0,T; M (T9)) and L (0, T; Lipy (T%; R%)*) to the functions
fYE and f29, respectively, where for any G € C?((0,T x T?) the functions f1.¢, f2¢
are defined as in (4.47). For the sequence {fLGk} we begin by noting that if G €
C%((0,T) x T?) and OG € C1((0,T) x T?) is the function given by (t,z) — 0;G(t,x) we
have that for all t € I,

10:Gf — 0:Gtllceray < 10G* — G c(0,1)x ) < IIG* = Gllc2(o,m)xTay — 0

and therefore, given m € D(0,T; M (T¢)), for all t € I we have that

lim 8,5 de’ﬂ't = at Gd’f(’t .
Td

k—o0 Td

For a given function G € C((0,T) x T%) now, the function (G, m) given by t — [, Gidm
is in L>°(0,T), since D(I; M, (T%)) C L>=(0,T; M (T%)) and

(Gym)e = /thﬂt <IGlleerayme(T?) < |Glloroxray 1Tl Lo (0,701, (1)

for all t € I. In our case, since G¥ — G in the C%-uniform norm, there exists a constant
C > 0 such that

sup ||8GkHCc((0,T)><Td) < sup HGkHCS((O,T)de) < C < +o0,
keN keEN
and therefore for the sequence {(0G* ,7)} C D(0,T;R) C L>(0,T) we have that
[ oGtdn, < Clrlimoran.aa <+

for all t € I. Therefore since {(0G*,7)} is uniformly bounded and converges pointwise
to (0G, ) we have by the bounded convergence theorem that

T T
lim [ (0G*, 7).dt = / (0G, )t (4.49)
0

k—o0 Jo

which proves that f1:¢° —s f1.6 pointwise on D(0, T M (T9)).
Next, for the second term f2¢ of the function ¢, as we have already noted, for any
G € C2((0,T) x T?) the function (V,G) : I — Lipy(T%; R?) given by

ts VuGy € O THRY o < Lip, (T4 RY)
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defines an element of L' (0, T; Lipo(T%; R?)) and for these such elements that are defined
by the C?-converging sequence {G*} C C>°((0,T) x T¢) we have that

IV.G" — VaGllLio1iLipy(T¢RY)) = /I IV (GF — Gi)llLip,(Ta;re)dt
< /IHDi(Gf = Gi)|lorarexaydt
k—oo

< TG = Gllezqoryxrey — 0

Therefore, for any W € L2 (0, T; Lipy(T%; R%)*) = L1(0,T;Lipy(T% R%))* we have
that

T T
/<szf,Wt>dt:W(szk) gy W(va):/ (VoG Wy)dt.  (4.50)
0 0

which proves that the sequence of functions { fQ’Gk}kelN, converges pointwise to f>¢
in L2 (0, T; Lipy (T4 R%)*). So {f¢"} converges pointwise to f¢ on DL (0, T; M. x
Lipy) whenever G — G in the C2-uniform norm, as required for the proof of (4.48).

We note that exactly the same result can proved if in considers the empirical cur-
rent process as taking values in the space L% (0,7; C(T4;RY)*). Furthermore, in this
case due to the separability of C1(T¢;R?), according to lemma 4.2.1 proposition A.4.1
the space L% (0,T; C(T?; R%)*) is submetrizable and thus by the Prokhorov-Le Cam
theorem, in this case the sequence {WXN PN} C PL, (0, T; C1 (T4 R%)*) is in addition
sequentially relatively compact.

4.4.2 The Empirical Jump Rate

We continue to denote by PV the sequence of distributions of the ZRPs starting from
a sequence of initial measures p’¥ associated to a macroscopic profile g € M, (T?),
speeded up by N2. As a shorthand we will occasionally write I := [0,T], I° := (0, 7).
Also for simplicity in this section we will assume that jump rate function g is bounded.
As we have seen (with the convention that p(Z?) = 2d) we have that

N —o0

t
lim IPN{‘<Gt,7riV> — (G, ) —/ (05Gs, ™) + (AGs, 0N )ds
0

} =0 (4.51)
for all G € C3(I x T?) and all t € R,. We consider the space
DL.(I; M (T%) := D(I; M4 (T%)) x L (I; M(T?))
and set
RN .= (7N o), PN € PDL. (I; M (TY)). (4.52)

Of course if we denote by idp e (1,01, (1r4)) = (7, 0) the natural projections then (4.51)
can be rewritten as

t
lim RN’g{‘<Gt,7rt> — (Go, o) 7/ (0sGs,7s) + (AGg, 05)ds
0

N—o0

} =0 (4.53)
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We denote the marginals of RN'9 on PD(I; M4 (T%)) and PLS (I; M4 (T9)) by PV
and Q™9 respectively. Since for the function oV : M4 — M, (T%) we have that

1
o™ Iy = o™ (T9) = Na > g(n(@) < gl
zeTd

we also have that the process o : D(I; M%) — L% (I; M4 (T9)) takes values in the
norm-bounded ball Byoc (. aq(1ay)(0, [|g]lw), that is

{Q"}nen S PBrex (1pmer)) (0, ll9ll)-
Lemma 4.4.1 The subset
Ly (I; M4 (T%) := {v € L®(I; M(T?)) |ve € My (TY) asVtel}
is a w*-closed subset of L% (I; M(T?)).

Proof Let C (T?) denote the set of all non-negative continuous functions on the torus.
Then as we know

M (T = {v € M(T) | (f,v) 20 ¥ f € C4(T }.
We claim that

L35 (1 My (T7)) & {u € L®(I; M(T?) | / (frove)dt = 0 Vf € LMI; c+<ird)>}-
I

Indeed, one inclusion us obvious, so let v belonging in the set in the right hand side
and we will prove that it belongs in L3 (I; M (T9)). Let f € C;(T?). Then by the
Lebesgue differentiation theorem we have that for almost all ¢ € I,

t+e
0 < Tim - / (f.va)ds = (),

e—=02¢ J;_.

and since C(T?) is separable it follows that v € LS (I; M, (T%)). Let now {v*}aea C
LS. (I; M4 (T%)) be a net such that

v — v € L (I; M(T?))

in the w*-topology and we have to show that v, € M, (T?) for almost all t € I. Since
{v*}aea C LS (I; My (TY)), for all f € LY(I;C,(T?)) we have that

/ ftht: hm/ ftdl/fé 20
1JTd €A J1 JTd

which according to equality (*) proves the claim. g

Lemma 4.4.2 Let F be a closed subset of the polish space X. Then PF is a closed
subspace of PX.
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Proof Let {u,} C PF be a sequence converging to p € PX weakly. Then
suppp € K-lim inf supppy,,
n—oo

that is for all x € suppu there exists a sequence z,, € supppy, n € N such that z, — =z,
and since {y,} € PF we have that {z,} C F. Since F' is closed it follows that « € F,
which since x € suppp was arbitrary shows that suppu C F', and so p € IPF. O

Proposition 4.4.2 The sequence {R™9} yen € PDL (I; M (T49)) is relatively com-
pact, i.e. there exists R € PDLX. (I; M4 (T%)) and a subsequence {R*~-9} of {RN:9}
such that R*N-9 — R9 weakly.

Proof We already know that the sequence {P™} of the first marginals of {R™9} is
relatively compact and so we only have to prove that the sequence {Q"9} of the second
marginals is relatively compact. Since the sequence {Q™+9} is supported by the compact
metrizable ball Bre ;. am(Te)) With respect to the w*-topology of L. (I; M(TY)) we
have by the Banach Alaoglou theorem that there exists Q9 € PL (I; M(T?)) and a
subsequence {Q*~-9} of {Q™9} such that Q*~9 — Q9 weakly. But since {Q™9} yen C
PL(I; M (T?)) and L (I; M (T%)) is a w*-closed subset of L% (I; M(T?)) it
follows by lemmas 4.4.1 and 4.4.2 that Q9 € PL (I; M, (T9)) as required. O

Definition 4.4.1 We say that a density-diffusion rate pair
(m,0) € Ly (I; My (T4) x L= (M (T9)
satisfies the heat equation
oy = Ao, (4.54)

in I° x T? iff for all smooth Z?periodic test functions G € C>=(I° x R?) of compact
support in I° we have that

T
/ ( 0,Gud + Athd%'f) dt =0 (4.55)
0 Rd Rd

for any representative

(7,5) € L™ (I; M4 (R?))*

of (m,0), i.e. for any such pair (7,0) for which p,(7,7) := (p«7, p.0) = (7, 0).

We consider the gradient operator V : M (R?) — Lipy(R%; R?)* defined by

VA(E) = (F.VH) = - [ divFan
Rd
for all (u, F) € My (R?) x Lipy(R%; R?). Let us check that this operator is well defined.
First, we check that given u € M (R?) the functional Vy is bounded. So let F €
Lipy(R%; R?). Then
d d
AV F || poeray < 305 Fjll e may < D IFi ipgesmy < 2 F llipg (mesma)

Jj=1 Jj=1
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and so for each € M (R%), Vu is bounded with

IVillLipyrasmey < 2[lpllry

We consider also the gradient operator V : M (T9) — Lip,(T% R%)* defined by

V= p(Vi)

where i € M(IR?) is any measure such that p,/i = p. Obviously, this definition does not
depend on the choice of fi, since if i, 1 € M(IR?) are two measures such that p.ji = p.fi

then
/Gdﬁ: /Gdﬁ

for all bounded Z<-periodic functions, and therefore for all F' € Lipy(T%; R?) we have
that

(Fop(VR) = (Fop,Vii) == | div(Fop)dii=— | div(F o p)dji = (F,p. (V).

In particular the action of the gradient operator on measures on the torus can be given
by
(F,Vp) = (Fop,V(i.p) = */ div(F o p)di.p
Rd

for all (u, F) € M4 (T4) x Lipy(T4; R?), where i : T¢ — R? is the Borel injection.

Note that by definition the gradient operator commutes with the push forward op-
erators p, : M(R?) — M(T?) and p, : Lipy(R% RY)* — Lipy(T% R%)* induced by
the universal covering p : R — T of the torus, i.e. that

V(p«p) = p«(Vi) (4.56)

for all u € M(RRY).
We will also consider the discrete gradient operators

VN M (M) — MI(M) < Lipy(M;R%)*, N €N,
where M = R? or T¢, given by
d
N, _ —re Ry
v M_NZI(M TWJ*/J) €j.
=

Then, if for all F € Lipy(M;R%) we denote by

divV F(z) = de: (F7 (= + %) - Fi())

j=1

the discrete divergence of F', we have that

VNu(F) = — / divY Fdp.
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We note also that the discrete divergences define a family of bounded linear operators
div" : Lipy(M;R%) — C(M), N € N, with uniformly bounded operator norm by 2,
that is

sup ||divY Flly < 2| Fl|pip,amey,  VF € Lipg(M;RY).

NeN
Also we note that since the covering map p : R — T is homomorphism, for all
Lipy(T%; R?) we have that

ISR

I
—

divN(Fop) = N

(F/ote ) - P )

G

= N (Fj<p(a:)—|—p(N)> —Fj(p(x))) = [divY F] o p.

ISR

Il
_

J

It is obvious that the discrete gradient operators are w*-continuous in the sense that
p=w" lim pp, = VVu=w" lim V.
k— o0 k—o0

Proposition 4.4.3 (a) The operators VY : L%, (I; M (T%)) — L (I; Lipy(T%; R%)*),
N € N, induced by the discrete gradient operators is w*-continuous, i.e. whenever

T T
| e = i [ (g, vre o) (457)
0 a=Jo
it follows that
T T
/ (Fy, VN pg)dt = lim (Fy, VNuydt, ¥ F e LYI;Lipy(T%R?))
0 a—cJo

(b) The restriction of the gradient operators on L (I; M 4c(T%)) converges pointwise
to the gradient operator with respect to the w*-topology of LSS (I; Lipy(T%; R4)*).

(¢) The gradient operator V : L% (I; M4 a4c(T9)) — L% (I; Lipy (T4 RY)*) is (B, Ba)-
measurable, where by B and Ba we denote the Borel and Baire o-algebras induced by the
w*-topology on the domain and the target space, respectively.

Proof (a) Let F € L(I;Lipg(T%RY)). Then for almost all t € I we have that
(F,, VN ) = (divV Fy, 1), Obviously the curve I 3 t — divVF, € C(T%) belongs
in L'(I;C(T%)) since

T T
/(; ||leNFt||udt < 2/0 HFtHLipo(Td;Rd)d’r < +00.

Therefore, given a net (u®) C L (I; My (T?)) satisfying (4.57), we have that

T T T
/ (Fy, VN p)dt = / (AivV Fy, pe)dt = lim [ (divV Fy, p$)dt
0 0 a—r00 0
T N
= ah~>ngo 0 <Ft7 \Y% .uta>dt
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for all F € L'(I;Lipy(T% R%)) as required.

(b) Let € L (I; M4 _40(T?)). We have to prove that V¥ — Vi as N — oo in the
w*-topology of L. (I; Lipy(T%; R%)*). So let F € L'(I;Lipy(T% R?)) be arbitrary and
we have to prove that

lim (F,VNu); = (F,Vu);. (4.58)

N—oo
We have that .
(B, VN = / / divY Fydp,dt.
0

Let t € I. Since F; € Lipy(T% R%), we have that div™ F, — divF}; pointwise almost
surely with respect to Lebesgue measure in T?. Since p; < mya it follows by the
bounded convergence theorem that

lim | div¥ Fdu, = / divE,dp; =: h(t)

N—oc0

for all t € I. But since (u, F) € L (I; My 4c(T9)) x L'(I; Lipy (T R?)) we have that

sup /diVNFtdﬂt < 2|[FellLip, (rasmeay | 4l ooz
NeN

for all € I. Therefore the sequence {h"V'} of functions defined by A" (t) = (div?Y Fy, u) for
t € I, is dominated by the function h € L'(I) given by h(t) = 2| pllocirv | Ft||Lip, (T4;R4)
and so since Y — h pointwise, it follows by the dominated convergence theorem that
(4.58) holds. (c) is a consequence of (b). O

Proposition 4.4.4 A density-diffusion rate pair (v, 0) € DL (I; M4 (T?) x M (T?))
satisfies the diffusion equation iff the pair (w,Vo) € DL (I; M4 (T?) x Lipg (T R)*)
satisfies the continuity equation.

Proof Let i : T4 2 [0,1)4 — R? denote the Borel injection. We assume first that the
pair (,0) satisfies the diffusion equation. Then

T T T
/ / 0,Gdydt = — / / AL Gd5dt = / (V.G VG, )dt (4.59)
0 0 0

for all G € C*>((0,T) x R?) that are Z?-periodic and of bounded support in time,
and all (7,5) € DL(0,T; M4 (R%) x My (R%)) such that p.(7,5) = (7,0). Let now
(7, W) € DL (0,T; My (R%) x Lipy(R% R?)) be such that p. (7, W) = (r, Vo). If we
show that

T T
/ (Vo G, TW)dt = / (V.G V&) dt (4.60)
0 0

for all Zperiodic and of bounded support in time functions G € C*((0,T) x R%), it
will follow that the pair (7, Vo) satisfies the continuity equation

Oy = —div(Vo)
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on (0,7) x T in the sense of distributions. But (4.60) indeed holds, since by (4.56) it
follows that for all t € I,

P*Wt = Vo, = V(p.oi) = p«(Var),

which obviously implies (4.60).
Suppose conversely that the pair (7, Vo) satisfies the continuity equation. Then

T T
/ / 0,Gd,dt = / (V.G W,)dt (4.61)
0 0

for all G € C*°((0,T) x R?) that are Z?-periodic and of bounded support in time, and all
(% W) € DL(I; M4 (R%) x Lipy(R%R%)*) such that p, (7, W) = (m, Vo). Let now & €
L2 (I; M(RY)) be such that p,& = o. Then the functional W := V& € Lip,(T%; R%)*
satisfies p,W = p, (V&) = V(p.5) = Vo and therefore by (4.61) we have that

T T T
/ / 0,GydFodt = / (V.G V&) dt = — / (ALG,5,)dt
0 0 0

for all Z?-periodic and of bounded support in time functions G' € C*((0,T) x R%), and
thus the pair (7, o) satisfies the diffusion equation, as required. O

Corollary 4.4.1 Let (w,0) € L™ (I;M+(Td))2 be a density-diffusion rate pair satisfy-
ing the diffusion equation. Then there exists a weakly continuous representative T in the
class of m in L™= (I; M (T%)) modulo a.s. equality, and for this continuous representative
we have that

t
Gidmy — Gydns = / ( 0,G d7n, + <AIGT,UT>)dr7
T4 T4 s T4

for all G € C®(I x T) and all 0 < s <t < T, in the sense that for any representative
G € L (I; My (RY)) of o it holds that

t
/ G, oidm, — / G, oidng = / (/ (0,G,) oidm, + <AmGT,&T>>dT, (4.62)
Rd Rd s Rd

for all Z%-periodic in space functions G € C(I x ]Rd) and all 0 < s <t < T, where
i:T% < R? is the Borel injection.

Proof By the previous proposition the density-current pair (7, —Vo) satisfies the con-
tinuity equation and so by proposition 4.3.1 there exists a continuous representative
7 € C(I; M (T%) in the class of m and for this continuous representative we have that
for any W € L% (I; Lipg(R%, R%)*) such that p,W = —Vo it holds that

t o~
Gy oidmy — Gsoidng = / (/ (0,G,) oidm, + (VG,, WT>) dr,
s R

R4 R

for all Z?%periodic in space functions G € C>(I x IRd) and all 0 < s <t <T. But as we
have seen in the proof of the previous proposition whenever & € L>(I; M(IR)) is such
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that p.o = o then we have p,Vo = Vo and therefore

t
Gy oidmy — Gsoidns = / (/ (0-G,) oidm, — (VG,, Vap))dr
R R4 s R4
t
= / (/ (0,Gy) oidm, + (AzGr,CNTT))dT
s R4
for all Z?-periodic in space functions G € C>(I x ]Rd) and all0 < s <t <T. O

Proposition 4.4.5 Let RY be any limit point of the sequence { RN} yen. Then the sec-
ond marginal Q9 of RY is concentrated on paths (04)o<i<r € L°°(I; M4 (T?)) consisting
of measures absolutely continuous with respect to the Lebesgue measure with density uni-
formly bounded by ||g||u, i-e.

dmy

Qg{aeL (1, Mo (T%) | 00 < moga,

‘ g

<lgllus asVte z} _

dm']I‘d [, (Td)

and RY is concentrated on pairs (m,0) € DL (I; M4 (T?) x L*°(TY)) satisfying the
weak diffusion equation, i.e. it holds that

Rg{(ﬂ,a) € DL (I; M (T?) x L>=(T%)) ‘ o = Ayo on I° x qrd} =1.

Proof Let G € C(T?). For all N € N we have that

(G <z 3 [6(5) o) < e 5 ()]

IGT zGT

Now, since G is continuous we have that
. 1 T
Jm ¥ lo(5)| = [ e@la
and so given € > 0 there exists Ng = Ny(G,¢) € N such that
N>N, — -5 > ’G(ﬁ)k/ G|+ ——
= N& e [ZAN/T— ||9||u
zeTg,
It follows that
Q{0 € (1Mo (T9) | esssup (G0 < Jal [ 16]+<]
0<t< d
for all N > Ny. We claim now that the function

G
*(LM(TY) € 0 = (00)osisr = (G, 0)l| L1y = esssup [(G,04)| € Ry,
0<t<T
is lower semicontinuous. We consider first the operator I : L>(I; M (T%)) — L*°(I)
given by
La(p)(t) = (G, )
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and we will show that I is w*-continuous. Indeed, if {®}aea € L=(I; M4 (T?)) is a
net converging to u € L>(I; M, (T?)) in the w*-topology, i.e.

T T
1im/ /Ftdufdt :/ /Ftdutdt, V F e LYI;0(T?)),
@ Jo 0

then for all f € L1(I) we have that

T T T
i [ 01 wa = i [ [ roc@an@a = [ [ 1o6@du@ae

Il
~
~—~

~
=
Q
—
=
~—
=

-
S~—"

IS
\’PF

0

since whenever G € C(T?) and f € L'(I) the function given by F(t,z) = f(t)G(x) for
(t,x) € IxT%is in L'(I; C(T?)). Therefore the function I is w*-continuous. It follows
then that the function h® is lower semicontinuous as it is the composition of the w*-
continuous function /¢ and the w*-lower semicontinuous function ||-|| e 1y : L>(I) — R,
Le. hg = |Lgllre=()-

By the lower semicontinuity of hg now, it follows that the set

B = {a € L (I Mo (1) | esssup|(G,)] < gl [ 1G] +e}
’I[‘d

0<t<T

is closed for all G € C(T?), ¢ > 0. Therefore, by the portmanteau theorem it follows
that
Q7(Eg) > limsup Q™ (Eg) = 1

N—oc0

for all G € C(T?), e > 0. Now, obviously the set

Bo = () 58 = {o e L2t (@) | esswpl(G.onl <ol [ 161}
T

nEN 0<t<T

is of full Q9-measure, i.e. Q9(Eg) = 1, for all G € C(T4?).
Let now D C C(T9) be a countable subset dense in C(T?). We claim that

(| Ec= ()] Ea

GeD GeC(T?)

In order to prove this it suffices to show that

sup (||<G,o—>||Loom—|g||u / |G|):sup (<G,a>||w>—gu / G|)
GeC(T9) Tl GeD Td

Q9-as. for all o0 € L>®(I; M (T?)). Let ¢; € C(T?) denote the constant function
¢p = 1. Then QY(E.) = 1 and we will show that the equality above holds for all
o € E.,. Indeed, let ¢ > 0 and o € E,,. Since D is dense in C(T?) for each G € C(T%)
there exists G¢ € D such that |G — G*||l, < &/(||g|l. + 1). Then obviously

I
G-G|l < ———
[ e-c TR
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and since o € E., we have that |[(o, 1)|[ 1) < ||g][. and therefore

esssup(|G — G%|,0¢) < €.
0<t<T

It follows that for all G € C(T%) we have that
G o) ety — gl / Gl < 2+ (G5 o)l — Il / led
Td Td

22+ sup (14G,0)lco ~ sl [ 161)
GeD Td

Taking the supremum over all G € C(T?) and then letting ¢ tend to zero yields the

IN

required equality.
It follows that the set

E = ﬂEG

GeC(T)

= {12t MG emn < gl [ 161 ¥ 6 e carh)

Td

is of full Q9-measure (where we always work inside E., ).
For each G € D, 0 € E let Ig,, C I be a set of full measure satisfying

sup (|<G, ol =gl | G|) <0,
telg. » Td

Then the set I, := (\gcp Ig,o is of full measure in I and

sup - sup (1Godl = ol [ 161) <0 (4.69

GeC(T) tel,

for all o € L>®(I; M (T%)). Indeed, let t € I, and let G € C(T%). Then for all G € D
we have that (G, 0¢)| < ||g|lu Jpa |G]. Therefore, if given € > 0 we choose G° € D such
that |G — G%|lu < €/(]lg|lu + 1) then we have that

(G, o0)] — gl / 1G] < 25 + 1(G=,00)] — llgl / 67 < 2,
Td Td

which since € > 0 was arbitrary, proves (4.63).
Since for measures 1 € M, (T%) it holds that

5 € M of(TY), <C¢ = |eml=c [ |6l veeom)
’]I‘d

dp
med

Loo(Td)

the first claim is proven.
For the second claim, we consider for each G € C?(I° x T%) the function f¢ :
DL, — R given by

T
fG(WaU) = / (O1Ge,mt) + (A Gy, 01)dt.
0
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In the previous section we have shown that the function f& : D(I; M, (T?)) given by

T
f8(x) = / (OG, mi)dt

is continuous and so if we show that the function f$' : L (I; M, (T?)) given by

T
&) = /0 (ALGy,00)dt

is continuous it will follow that f& is continuous. So we prove the continuity of f2¢.
We note that given any function G € C2(I° x T?) the formula

I>t— AG, € C(TY

defines an element A, G of L(I; C(T%)) with
182G L1 (r.o(ray) = /1 18:Gillceraydt < T|[AxGllc2(roxTa)y < +00,

and then f2¢ = (A,G, )1, where (-, -)7 is the duality on L' (I; C(T%))x L (I; M (T%)).
By the definition of the w*-topology on L2 (I; M (T9)) a net {79} ,c4 converges to
o € L% (I; M4 (T%)) iff

lim (G, 79 = (G,0);, VG e LY(I;C(T?)

acA
and so in particular given G € C%(I° x T¢), for any converging net {m9*},c.4 with limit
o we have that

f2E (9 = (ALG, 19 — (V,G,0); = f2%(0)

which proves the continuity of f>¢, and thus also of f&.

Now, since f¢ is continuous the set {|f¢| > §} is open and so by the portmanteau
theorem it follows that for any limit point R of the sequence { RV'9} along a subsequence
(RF~-9) yen of {RN+9} we have that

RI{|fC > 6} = Rg{’/OT [<8th,7rt>+<AmGt,at>]dt’>5}

IN

N —oc0

T
lim inf RkN’g{‘ / [<6th,7Tt> + <AmGt70t>]dt‘ > 5} =0
0
for all § > 0 and all G € C3(I° x T%). Since this holds for all § > 0 it follows that
T
R‘q{ / |:<8th,7'(',5> + <Ath,O't>]dt = O} = 1, VG e Cg(lo X Td)
0

Therefore if we can find a countable family G C C2(I° x T¢) such that

N {f=0=N{r=0 (4.64)

GeC3(IoxT?) aeg
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it will follow that

R< N {/OT [(@Gt,m}—i—(AmGt,at)]dt:0}> =1,

GeC3(IoxT)

i.e. that RY is concentrated on solutions of the diffusion equation. To this end, let
G C C(I° x T?) be a countable set of smooth functions dense in C?(1° x T?) (and
thus also in C3(I° x T%)) with respect to the usual C2-uniform norm of C?(I° x T%),
given by

IGlloz 1o xmay == |Gllu + [IVGllu + [ID*Gllu
where differentiation is with respect both to the time and space variables, the uniform
norms in the right hand side are taken in the spaces C(I° x T%), C(I° x T¢;R9*+1) and
C(I° x T4 REHD> (D) respectively, and R(@HD*E@+1) s considered equipped with
the Frobenius norm. Note that if we show that for any sequence {G*¥} C C2°(I° x T¢)
such that G¥ — G € C?(I° x T?) with respect to the C?-uniform norm we have that
F¢" — f9 pointwise in DL (I, T?) then we will have that (4.64) holds. Indeed, if
this is true, and (7, 0) € Ugeg{f© = 0} then given any G € C2(1° x T?) there exists a
sequence {G*} in G such that |G — G¥||c2 (o xray — 0 and thus

J¢(m0) = lim % (r,0) =0,

which shows that (4.64) holds.

So let {G*}renw € O(I° x T?) be a sequence such that ||GF — Gllo2(roxTay — 0.
The pointwise convergence of {flck} to f& on the space D(I; M (T%)) has been proved
in the previous section and so we have to prove that { fzck} converges pointwise on
L>®(I; My (T%)) to the function f§. As we have already noted, for any G' € C?(I° x T%)
the function A,G : I — CO(T?) given by t ++ A,G; € C(T?) defines an element of

LY(I; C(T%)) and for these such elements that are defined by the C2-converging sequence
{GF} C C*(I° x T?) we have that

18464 = A, Gllromny = [ 184G - Golude
< [IDHGE = Gullemumonsit
< T-G* = Gllozgexus =5 0
Therefore, for any o € L (I; M4 (T4)) = LY(I; O(T%))* we have that
e (0) = (AG* o) 25 (A,G,0) 1 = f§(0). (4.65)
which proves that the sequence of functions { f27Gk}k€1N, converges pointwise to f>¢ in
L2 (I; M (T?)). Therefore { f&"} converges pointwise to f¢ on DL (I, T%) whenever

G). — G in the C%-uniform norm, as required for the proof of (4.64).

Combining this proposition with corollary 4.4.1 we can rephrase this result as follows.
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Proposition 4.4.6 Let {n" = (idpm, ) PN)}nen be the sequence of nearest neigh-
bor ZR processes with bounded jump rate g on the discrete toruses ’]I“]i\, starting from a
sequence {ulY € P1M%} of initial distributions associated to the macroscopic profile
po € Mo (T?). Then the sequence of distributions of the diffusively scaled empirical
density-diffusion rate pair processes associated to {n™ }nen given by

RN = (wﬁw,o—ﬁm)@o} PN € PDL (I; Mo (T?) x M (T4)

*

is relatively compact and any limit point RY9 of the sequence is concentrated on pairs
(m,0) € DL (I; M (T?) x M (T%)) such that:

(a) (m,0) € CLE(I; My (T4 x L>®(T%)), where L>°(T?) < LY (T?) < M (T%).
(b) the density-diffusion rate pair (w, o) satisfies the weak diffusion equation with initial

condition g € My (T?), i.e. (7,0) satisfies

Oy, = A
{”” “7 i I x T

To = Ho
in the sense of distributions.

In the next proposition we regard M\O(Td) as a subspace of C1(T4; R%)*.

Proposition 4.4.7 Let {RN9} yen € PDL (I; M1 (T9)?) denote the sequence of the
diffusively rescaled distributions of the empirical density-diffusion rate pair process

(7™, ™) : D(I;Mg) — DLy (I; My (T?) x M (T))

and let {RNY} denote the sequence of the diffusively rescaled distributions of the empirical
density-current pair process

(=N, W) . D(I; M%) — DL (I; M (T?) x M3(T)).
We denote by
RI C POLY. (I; M (T4) x L®(T?)), R CPCLE(I; M (T?) x CH(T% RY)*)
the sets of subsequential limits of the sequences {R™N9} and {RN}, respectively. Then
[id x V].RY =R

where V @ LS (I; My (T4)) — LS (I; CH(T% R)*) is the operator induced by the
gradient operator V : M (T?%) — CYH(T% R4)* and id = idc(ram, (Tay) 18 the identity
function. In particular R C POL. (I; M, (T9) x M\g(ﬂfd)).

Proof By definition we have that WY = V¥ for all N € N. We consider first a
limit point RY of {RN9} and we will prove that the distribution [id x V], R9 is a limit
point of the sequence { RV }. There exists a subsequence of { R™9} which we continue to
denote by {RY:9} such that RY'9 — RY in the weak topology of probability measures.
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As we have seen the gradient operator V : M, (T9) — C*(T% R%)* is w*-continuous.
Likewise the induced operator

Vi Lis (I; My (T) — L3 (1; 61 (T4 RY))

is w*-continuous. Indeed, let {piq}aca € L% (I; M (T?)) be a net converging in the
w*-topology to p € LS (I; M4 (T4)) and let G € L' (I; C1(T%;R%)). Then the function
divG obviously belongs in L'(I;C(T?)) and therefore since w*-lim, u® = u we have
that

T T
(G, Via) = —/ (divGy, puydt — —/ (divGy, p)ydt = (G, V).
0 0

It follows that
lim (id x V). RN9 = (id x V). R?

N —oc0

We claim that the corresponding subsequence {R™} converges to (id x V),RY, and for
this it suffices to prove that any subsequence {RV*} of { R} has a further subsequence
that converges weakly to (id x V), RY. For this we consider the sequence of probability
Imeasures

RN .= (#N, WV Vo), PN € P(M; x My x M)

where

M, := D(I; M (T?)), My = Mz := L% (I; CY(T% RY)*).

Then denoting by ¢ : My x My x M3 — X; the natural projections we have that
(z',22),RN = RN and (2',2°).R"N = (id x V), R™9.

The correspondmg subsequence {RN’ﬂ} is obviously relatively compact and therefore
there exists R € P(M; x My x Ms) and a further subsequence { RVem } converging to R.
Then
RNem = (2, 2%), RNom — (21, 2%),R=: R
and
(id x V), RNkmo9 = (21, 2%), RNem — (21, 2°), R = (id x V), RY.

We claim that (22, 2%),R € P(My x Ms) is the identity plan, i.e. that it is concentrated
in the diagonal of My x Mj, which since

(z!',2%). R = [(2%,2°).R] o [(z',2%).R]

will prove the claim.
So let G € LY(I; CY(T%;R%)). Then, for all € > 0 we have that

R{|(G.a*) — (G,2%);| > ¢} < 1iminff§N’“m{| G,2%) — (G, 2%) | > e}
= lminf PVem {(G, WNem) ) — (G, Vo™Vsm) (| > e}

m—r o0

= liminf PVen {|(divG — divVem @, oNem ) | > e}

m—r o0

< lim PV {]JdivG — divn Gl e > gi}

m—oo [
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Therefore we see that if we prove that
T
Ge L'I;CHT%RY) = lim |divG; — divN Gy|ludt =0,  (4.66)
0

N-oo
where we regard C?(T%;R?) as a subspace of (C(T% R?), | - ||c1), it will follow that
R{|(G, 2% — (G, 2% >} =0
for all G € LY(I; C?(T%;R%)) and all £ > 0, which will then imply that
R{(G,2?) = (G,z%)} =1

for all G € LY(I;C?*(T4RY)). But LY(I;C%(T%R%)) is dense in L'(I;CY(T%RY))
and therefore by choosing a countable subset D C L!(I; C?(T% R?)) that is dense in
LY (I; CY(T% RY)), this will in turn imply that

1 :ﬁz( N {(G.2* = (G,x3>}> = R{z? = 2"},

GeD

which proves that (22, x3)*§ is concentrated in the diagonal of Ms x M3, as required.
Finally, (4.66) follows easily by the bounded convergence theorem, since as we know
whenever G € C?(T%RY) then ||divG — divV G|, — 0, and therefore for all G €
LY(C?(T% R%) the bounded function AN (t) := ||divGy — divV Gyllu, 0 < t < T, with
supyen AV ]lu < 2||Gl o1 (1a;ra), converges pointwise to zero. O
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4.5 Regularity Results for the Limiting Empirical
Diffusion Rate and Current

4.5.1 An Energy Estimate

In this section we adapt to the case at hand the regularity estimates of section 5.7 in [25]
to conclude that in fact the trajectories of the empirical current consist of vector measures
absolutely continuous with respect to the Lebesgue measure. We fix T' > 0, set I := [0, T
and recall that we have denoted by QY9 and Q7 the laws of the empirical diffusion-
rate process (01" )o<i<7 and the empirical current process (W}¥)o<i<r, starting from a
sequence {1 } yen of initial distributions satisfying the O(N?)-entropy assumption, on
the spaces LS (I; M4 (T9)) and LS (I; ME(T?)) respectively. In section 4.4 we have

shown that the sequences
{QY}ven CPLE (I; M4 (TY)
and
{Q}nven © PLE (I MG(T) < P(LY(L; CHTERY) ", w'),
are relatively compact. Furthermore, as we have shown in section 4.4, denoting by Q9
and Q the set of all subsequential limits of the sequences {Q™'9} and {Q™V} respectively,
we have that
Q9 C PL(I; L°(T%) and Q C PL (I; M4(T?)).

Our main goal in this section is to prove regularity results for the trajectories on which
elements of @9 and Q are concentrated. Namely, we aim to prove that

Q7 C PLy (I; HY(TY), (4.67)
where as usual H'(T9) = W12(T?) denotes the Hilbert-Sobolev space of functions
possessing first order weak derivatives. Then since as we have shown, we have

Q=VQI,

is will follow by (4.67) that

Q C PLY. (I; MG(T?)), (4.68)

i.e. that all elements of Q are concentrated on trajectories whose points are in fact
vector-valued measures, and not just elements of the Kantorovich-Rubinstein comple-
tion M\g(’lfd) in the Lipschitz norm of Mg&(T4?).

Our first regularity result is based on the following lemma which is in essence con-
tained in lemma in [25]. Before stating this lemma let us fix j = 1,...,d and define for
each N € N, € > 0 and each function H € C(T?) the function VN (e, H) = VN:i(e, H) :
M% — R by the formula

VN (e, 1) 1oy m(2 )9(’7(@) —g(n(z + [Nele;))

Nd N [Ne]
zeTY,
[Ne]
2 z\2 1
— Ezqr:d H(ﬁ) W kz:og(n(a: + k‘ej)).
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Then for each H € C*(I x T?) and t € I we set
V¥ (e, H)(n) = V(e Ho)(m), 1€ D(Ry, My),
for the induced process V¥ (g, H) : I x D(I; M%) — R.

Lemma 4.5.1 Let {H'}™, C C1(I x T%), m € N, be a finite sequence of functions and
let {ud) € P1M%} ven be a sequence of initial distributions satisfying the O(N®)-entropy
assumption for some finite constant Cy > 0. Then for all e > 0 we have that

N —oo 1<i<m

T
limsupIE“‘I)v{ max / VtN(E,H)dt} < Cy.
0
Proof The proof follows that of lemma 5.7.3 in [25]. O

Corollary 4.5.1 Let {H'}™, C CY(I x T¢), m € N, be a finite sequence of functions
and let Q9 € Q9 CPL (I; L*°(T9)). Then

w*

/{1211%’;1 /OT | [0 (@) = HZ(ar)Q]ot(x)d:cdt}ng(g) <Oy,

Proof We begin by noting that for each H € C(T%) and ¢ > 0 by a simple summation
by parts we can write VV (g, H) as

VN(EaH) = Nd 1 Z ) H(}[J]\\;dq)g(n(m))
zeTY,
[Ne]
W 2 1) o)
- T < )= s 1 () oo
[Ne]

_ <[NNS]{H_T_WNE]G"H}_W25]ZTﬁe]H2’UN>.

Therefore if for each H € C(T?) we denote by v¥(H) € C(T4) the function

N 2 2
N — _ _ 2
o) = (= 7_xa, H]| e kzo Tk H

then we can write V¥ (e, H) = (vN(H), o), and

g

T T
p,N N — N () g N,g
[E#o {1r§nia§}1(n/0 Vi (E,H)dt} /{12?571/0 /Td v (H{)dmy dt}dQ (o).
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We claim next that

H-7_.H 2 (¢
oN(H) s — e 7/ H( — te;)2dt =: v.(H)
€ e Jo
uniformly as N — co. The fact that
N H—-7 . H
M < . H] g D el
[Ne] [ T-Rle; €

uniformly as N — oo is obvious and so we have to prove that

[Nel

1 9 1 /¢ 9
W;Tﬁ%%H —>g/0 H(—t€]> dt

uniformly as N — oo. For each u € T? we have

[Ne] [Ne]
1 ) N k21
[Ve] kZ:OT*%%H(“) ~ Ve kZ:O H(“ - Nef) N
[Ne]

N kN2

[Ne] 9
= [NNE]kZ_O/[ )H(u—[NNt]ej) dt

k+1
N

So for all uw € T¢ we have that

[Ne] €
1 1
AN(H)(u) = e > T_%EjH(u)Q—g | H(u — te;)*dt
k=0

[Ve]

(4.69)

)

N1\ [f VY]
+([Ng] *E>/O H(u=5re) d
[Ne] o [Nt N2
+= / H(u—es) dt
and therefore
2[[H|lw [* [Nt]
Y| < 2 (- ) - e+l (5
[Ne] 5 ([Ne]+1
A I (=)
Consequently, in order to prove that ||[AY(H)|l, — 0 as required it suffices to show
that . Nt
sup / H(u — uej) — H(u —tej)|dt =8,
ueTd Jo N
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But this limit is also obvious since every function H € C(T?) is a uniformly continuous
function. To summarize, we have proved that for all H € C(T?) and all € > 0,

lim o) (H) —ve(H)|, =0. (4.70)

N—oo u

Furthermore, for all H € C(T%) and all large enough N we have that

4
[ (E) | V ([0 (H) lu < Il + 20 H[G < 400, (4.71)

Next, for each function H € C(I x T?) we denote by v (H) € C(I x T?) the function
given by
vl (H)(t,u) = o (H)e(w) = ol (Hy)(w),  (tu) € I x T7

€

With this notation, it follows by (4.70) and (4.71) that for all functions H € C(I x T%),
lim (oY (H); —ve(H)||, =0, Vtel,
N—o0 w
and

4
Stg){llva(H)tHu Vol (H)ellu} < I leqera) + 2 HIIE 1 xepa) < +00,
and therefore for all H € C(I x T¢) we have by the bounded convergence theorem that
T
N—oo
[0 (H) — v (H)|| 2 (150(T9)) :/ [N (H)¢ — v (H)yludt —370.  (4.72)
0

Recall that for each function F € L'(I;C(T?)) we denote by (F,-); the functional
(F, ") : L2 (I; M(T?)) — R given by

T
(F,m)r = /0 (Fy, mp)dt, 7€ L (I; M(T?)).

Let now Q9 € Q9({u{'}) and consider a subsequence of {Q"9} yen, which we continue
to denote by {Q"9}, converging weakly to Q9. Then, using the elementary inequality

max a; — max b; < max (a; — b;)
1<i<m 1<i<m 1<i<m

which holds for all finite sequences {a;},, {b;}/~, of real numbers, we write

max (ve(H'),0)rdQ™9 (o) < max (v (H"),0)1dQ™9(0)

1<i<m 1<i<m

+ max <UE(Hi) — 'UéV(Hi), 0’>[dQN’g(O').

1<i<m
The function
H’i
o @g@s( ), o)

is continuous in the w*-topology of L (I; M(T9)) as a maximum of a finite number of
continuous functionals and therefore since Q™V'9 converges weakly to Q9 we have that

lim max (v.(H"),0)1dQ™N9(0) = | max (v.(H"),0);dQ% (o)

N—ooo | 1<i<m 1<i<m

247



and on the other hand, by lemma 4.5.1 we have that

limsup [ max (v (H?),0);dQ™ (o) < Co.
N—o00 1<i<m

It follows that

max (v.(H"),0)1dQ%(c) < Co + N@ max (v.(H') —oN(H"),0)1dQN9 (o).

1<i<m o | 1<i<m

We prove next that

- i _ o N(ppi N,g _
Jim | [ s (o) = X (1,001 (o) =0, (4.73)
in order to conclude that
max (ve(H"Y), o) 1dQ%(0) < Cp. (4.74)

So we proceed with the proof of (4.73). The quantity that we want to prove that tends
to zero is bounded above by

/ max ‘(vs(Hi) —oN(HY), U>1|dQN’g(o) (4.75)

1<i<m

and for all i = 1,...,m we have that for QV9-a.s. all ¢ € LS (I; M(T9)),

ooy = 0¥ (H) )| < [ onH) = o ()t
0

A

T
< gl / o (E), — o (), it

It follows that the quantity in (4.75) is bounded above by

T
gl max / oo () — v (H)y | udt
ulgzgm 0 e e u

which obviously tends to zero as N — oo by (4.72).

We study next the behavior of the quantity in the left hand side of (4.74) as e — 0
for functions H € C1(I x T?). We note first that for each function H € C*(T¢) we have
by the differentiability of H and Lebesgue’s differentiation theorem that

ve(H) =8 0,H — 2H? =: v(H),

pointwise in T¢, since the set (0, ) shrinks well to zero. Consequently, using the notation
v(H)(u) = v(H)(t,u) = v(H;)(u) for functions H € C*(I x T¢), we have that

UE(H)t — ’U(H)t

pointwise in T for all ¢ € I, for all H € C'(I x T%). Furthermore, for H € C*(I x T%)
we have for fixed ¢ € I that

sup [|ve (H)ellu < |[Hefluip + 2|l He |
e>
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and therefore by the bounded convergence theorem we have that

lim UE(H)tdO't = / U(H)tht
Td

e—0 TTd

for all t € I. Continuing we have for Q9-a.s. all ¢ € L% (I; M(T?)) that

/ ’Ua(H)tdO't
Td

sup sup
e>00<t<T

< lgllusup sup |v-(H)elu
>0 0<t<T

IN

sup {||HillLip + 2| H: |2} < +oo,
0<t<T

since H € C'(I x T9), and therefore by the bounded convergence theorem again, we

have that
lim / / ve(H)dopdt = / / H)dodt
e—0 Td Td

for all H € C*(I x T?). Finally, for Q9%-a.s. all 0 € L (I; M(T%)) we have that

w*

sup

T
max / / ve (H datdt‘ < ||gHu max sup/ lve (H)¢||udt < +o0
e>0 Td <ism

1<i<m

and so applying the bounded convergence theorem one last time we get that

max (v(H"),o);dQ% (o) = lim max (ve(H?),0);dQ?(c) < Co,

1<i<m e—=0 1<i<m
which completes the proof. O
Corollary 4.5.2 If {u) € P1M%} is a sequence of initial distributions satisfying the

O(N%)-entropy assumption for some constant Co > 0, then for all Q9 € QI({ud'}) we
have that

/{HGCl(led)/ Ta [0;Hi(x) — Hi(x) ]Gt(x)dmdt}ng(U) < Co.

Proof Let {H;}iex € C*(I x T?) be a sequence dense in C1(I x T9) in the usual C*
uniform norm || - [|¢1. Then for all ¢ € L% (I; L°(T?)) we obviously have that

HEC’l(IXTd) Td

= lim max / /T ) [0,H} (x) — H{(z)*] oy (2)dzdt.

m—o01<i<m [

So the claim follows by the monotone convergence theorem and the previous corollary.[]

Proposition 4.5.1 Let {ul’ € IPl]MﬁiV} be a sequence of initial distributions satisfying
the O(N%)-entropy assumption for some constant Co > 0 and let Q9 € QI({ud'}).
Then Q9 is concentrated on paths o € LS (I; L°(T4)) with the property that there exist
L%(I x T%) functions denoted by d;o, j =1,...,d, such that

T T
/ 0;Hy(x)o(t, x)dxdt = —/ Hy(x)0;0(t, x)dxdt (4.76)
0 Td 0 Td
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and

T 2
/ / Vot 2)lz gat < 400, (4.77)
o Jre o(tz)

Proof Fix j = 1,...,d. By corollary 4.5.2 for Q9-a.s. all paths o € L°(I; L°(T%)) we
have that

Boi= s /O ! ( /T [0y H () —2H(t,x)2}o(t,x)dx>dt < too. (4.78)

HeC1(IxTd

Fix such a path o € L*(I; L>°(T%)) and consider on C*(I x T%) the inner product (-, ),
defined by

(H,G)y = /0 - H(t,z)G(t,x)o(t, z)dzdt,

and denote by L2 the Hilbert space resulting from the completion of C1(I x T%) with
respect to the inner product (-, -),.
Let now £ = ¢; : C*(I x T?) — R denote the linear function given by the formula

T
((H) :/ 0;H (t,z)o(t, z)dxdt.
o Jrd
It follows from estimate (4.78) that

al(H) — 2a°|[H|}3» < B,

for all @ € R and all H € C'(I x T%). The maximum over all a € R of the quantity in
the left hand side of the inequality above is achieved at a = ¢(H)/||2H||%,, and therefore

WH?  (HP ) UH)?
sIH(Z, ~ 4lHE, 16| H[L

157 < B,

for all H € C*(I x T9). Tt follows that

[6(H)| < 2v/2Bs||H] L2

for all H € C*(I x T9) and thus ¢ can be extended to a bounded linear function
¢: L2 — R with norm [|¢|| < 2v/2B,.

By the Riesz representation theorem now, there exists an L2 function, which we
denote by 0;(logo), such that

T
U(H)=—(H,0;(log0o))s = / H(t,z)0;(log o) (t, z)o(t, z)dxdt (4.79)
o Jme
for all H € C*(I x T%). Of course, since 9;(logo) € L2 we have that

T
1|0 (log O’)”%g :/0 /Td [0;(log U)(t,z)]Zg(t7SE)d1‘dt < +o0. (4.80)

Therefore, since as we now from proposition 4.4.5 for Q9%-a.s. all o € L2 (I; L>°(T%))
we have that

lioelzecrol iy < ol
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the function 0j0 := o - 0;(log o) satisfies

T
[ 0= [ [ [0oso)en] otapdsd < oo togo); <+
IxTd 0 Td

and thus is in L2(I x T?), and by (4.79) 9,0 satisfies property (4.76) and is thus the
required L?weak derivative of o. Finally, by the identity 9; = o - 9;(log o) we have that

Veo(t,z)l3

o(t,x) = U(tv$)|V(logg)(t,x)|%

and therefore (4.77) follows from (4.80). O

Proposition 4.5.2 Let {ul’ € P1M%} be a sequence of initial distributions satisfying
the O(N®)-entropy assumption for some constant Co > 0 and let Q9 € Q9({ul’}). Then
QI is concentrated on paths o € LS. (I; HY(T9)), i.e.

QY (olor € HY(T?)) a.s. for allt € [0,T]) = 1. (4.81)

Proof By the previous proposition we know that Q9 is concentrated on paths o €
LS. (I; L= (T4)) such that there exist functions 0;0 € L2(IxT?), j = 1,...,d, satisfying
(4.76) for all H € C*(I x T%). We fix such a path o € L2 (I; L>°(T%)) and we will show
that o, € HY(T) for almost all ¢ € [0,7T]. For each t € [0,7] and € > 0 we consider
a sequence of smooth functions {ft{VE}NE]N defined on [0, 7] such that ft]\/; < Tp—gtte
for all N € N and ftNE — L(4—c,t4) pointwise as N — oo. Then for all functions
H € CY(I x T%) we have by (4.76) that

[ [ ot = [ [ gt s

Then taking the limit as N — oo in both sides of the inequality above, we get that

t+e t+e
/ / 0;Hs(x)o(s, x)dxds = —/ Hy(x)0j0(s, x)dxds.
t—e JTd t—e JT4
Then taking the limit as ¢ — 0 in both sides of the equality above, it follows by Lebesgue’s
differentiation theorem that for each H € C'(I x T9),

0;Hy(x)o(t,x)dr = — H(x)00(t, x)dx (4.82)
T T
for all t € Ey, for some measurable set Fy C I of full measure m(Ey) = T. Taking
then a sequence {H'};en € CH(I x T?) dense in C1(I x T¢) in the C'-uniform norm
|| - |1, we have that the set E := ();c Egi is of full measure m(E) = T, and for each
t € E we have that (4.82) holds for all H € C*(I x T¢). In particular, since C*(T?) can
be considered as a subspace of C1(I x T9) it follows that

9;H(z)o(t,x)dx = — | H(x)djo(t,x)dx, ¥ (t,H)€ E x CY(T?).
Td Td
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Consequently, o; is weakly differentiable for almost all ¢ € I, with weak j-th partial
derivative 9j0;. Finally, since ;0 € L?(I x T?) we have that

T
/0 10500112yt = 100112y < +00,

and therefore [|0;0¢||12(pa)y < +o00 for almost all ¢ € I. Consequently, o € H'(T?) for
almost all ¢ € I, as required. O

Of course, by the discussion in the beginning of this section we get that (4.68) holds.

4.5.2 An Upper Bound On the Limiting Empirical Jump Rate

In this section we continue restricting our attention to the case that the jump rate g is
bounded, and we will investigate the relation between the limiting laws of the families of
the distributions of the processes {0V} yen, {UN’Z}(N,Z)E]Nz and {O'Nl’q)}(N,g)E]NL These
are defined in (3.3), (3.6) and (3.4) respectively.

Lemma 4.5.2 Let {x,} be a sequence in a metric space X and let Lim{z,} denote the
set of all subsequential limit points of {x,}. Then

oo

Lim{z,} = ﬂ {znln > m},

m=1

and in particular Lim{z,} is a closed set.

Proposition 4.5.3 We suppose that g is a bounded jump rate function and that the
sequence {ulY € P1M%} of initial distributions is associated to a macroscopic profile
po € My (T9). We set

QY = [() ] PV € PL¥(1: M. (T)

QN = [(07") o, ). PN € PL®(I; M (T?))
for all N € N. We also set Q* denote the set of all subsequential limits of {QN} in
PL.(I; M (T?)) and for each £ € N we denote by Q> the set of subsequential limit
points of the sequence {QN*} yen in PL®(I; M4 (T9)). Then if Q> denotes the set

of limit points along subsequences of all sequences {Q*}ien such that Q¢ € Q¢
for all ¢ € N, we have Q% = Q>

Proof We note first that

sup  sup [op ey < lgllu < +o00,
(N,£)eENXN neM4,

which shows that the family {Q¥ ,1&}( N,)eNxN is contained in the compact subspace
PBre, (1,0, (1)) (0, [[g]lu)- In particular

0 # Q> CPBres (10, (1)) (0, l9llu),
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and therefore any sequence {Q°*},en such that Q>* € Q> for all £ € N is contained
in the compact subspace P B (1,01, (14 (0, ||g]lw) and therefore has a convergent sub-
sequence. In particular,

0 # Q> CPBr (1.0, (1)) (0, l|gllu)-
We prove next that Q°° = Q°>°, To this aim we consider the measures
QN = [0, 0 )izo] PV € PLE (I My (T%) x M(T),
Then denoting by z% : L% (I; M (T%)) x L% (I; M4 (T4)) — L% (I; M (T%)),
i = 1,2, the natural projections, we have that
xl@N,E _ QN and xQQN’E — QN,K

and the family {@N’e}(N,g)eNX]N is relatively compact.

We prove first that 9 C Q>>®. So let Q € Q> and let {Q*"} yen be a subse-
quence of {Q™} yen converging to Q. Then, for each £ € N, the sequence {Q*¥*} yen is
relatively compact and as such it has a subsequential limit point Q°°¢, along some subse-

~k e N Nkl . . . 1 .2 .
quence {Q "~ }nen of {Q"N*} yen. Then since the projections ', z* are continuous

we obviously have that

~ L~k 4 L . ~k 4 b . k
G ) g () - 0 -

N—o0

and k 14 k 4 k 4

1' mb — 1' 2~ m&, — 2( 1' A mb, ) — * ~OO,Z

pm @ = lim z Qs =a Jim @) =50
for all £ € N.

We claim that
. ~oo, b [ . i R
Zligolo Q = (Zd7 Zd)*Q, id = ZdLZo* (I;M 4 (Td))- (483)

Obviously this implies that
Q! = 22Q™" — 22((id,id).Q] = Q

and proves the inclusion Q> C Q°>°. Since the sequence {Q>*},c is obviously
relatively compact in order to prove (4.83) it suffices to prove that any subsequential
limit point of {@‘X”e} is equal to (id,id).Q. So let {@m’"‘}geN be a subsequence of
{Q>"} converging weakly to some probability measure Q°*> € IP (L2 (I; M4 (T4))?).
Since xl@‘x”e = @ for all £ € N in order to prove that @OO’OO = (id, id),Q it suffices to
prove that Q> is consentrated on the diagonal of L% (I3 M (T%)) x L% (I; M4 (T4)).
But this is true indeed. By the portmanteau theorem and proposition 3.1.3 we have for
all f € LY(I;C(T%)) and all € > 0 that

Qe {{fals = (£ > e} < lminf QO {|(f.e)s — (f.a%)i] > €]

< lirninflirninfCNQIC”“’;’é 7ne{|<f,$1>l —{f, 392>I| > 5}

l—o00 N—oo

E n E n k ng,
lim lim P T"’NZ{|<f70' mN g N ne>[| >€}

l— 00 N—o0

< Tm Tm PN N _ _Nmnyg
<l PR eT = ol > )
< lim lim PN{\<f,oN—UN’Z>1|>£}:O.

l—00 N—o00
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Since € > 0 is arbitrary it follows that
QO {|(f.ah)r = (fia)il > e} =0, Ve L(C(T),

which since L' (I; C(T%)) is separable implies that

(et = =@==( ) - et =0} ) <o

fELY(I;C(T4))

and therefore éoo"x’ is concentrated on the diagonal and (4.83) holds.

We prove next the inclusion 9% C Q. So let Q°°>° € Q°*°. There exists then
a subsequence {Q>"},en of {Q>*} converging to Q>+°, and for each ¢ € N there
exists a subsequence {Qk‘fv’”@}Ne]N of {@QN™} converging to Q™. We consider the
transport plans @kfv*”f € H(Qkf\f,ngv’”f), (N,f) € N. The family of these transport
plans is relatively compact and therefore for each £ € IN we can choose a convergent

~Kkt , | ~
subsequence {Q "~ m} of {Qkfv’”"} and set

_ Y
Qoo,ng -— lim kag]’ne'
N—o0

Then obviously
2 Aoo,n ; 2 Sk e . ki o e oo,m.
Q™M = lim z;Q ™~ = lim Q ™~ = Q™"
N—o0 N—o0
and the sequence {@”’”f }een is relatively compact and therefore has a convergent sub-
sequence {Q°™¢ }yen converging to some Q°> € IP[L (I; M+(Td))2} with
:L‘f@"o"’o = lim xf@‘”’"?‘é = lim Q%" = Q.
{— 00 {— 00
Therefore, in order to prove that QQ°°°° € Q> it suffices to prove that
21Q® € 9™ (4.84)

and that Q> is concentrated on the diagonal of L. (I; M+(’]I‘d))2.
We prove first that 21Q°%° € Q. Of course since z. is continuous we have that

k'

k't ;
= lim Q "N € Q%
N —o0

k2
1 Aoo,n; . 17 mie i
2, Q7" = lim z,Q ™~

for all ¢ € N. Likewise, since z! is continuous and Q° ™ converges to Q> we have

that

21Q%® = lim z! Q™" € Q. (4.85)
£— 00
But by lemma 4.5.2 the set
Q> =Lim{Q"} = () {QVIN = m}
m=1
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is closed and therefore (4.84) follows from (4.85).
We prove finally that Q> is concentrated on the diagonal. So let f € L'(I;C(T%))
and € > 0 be arbitrary. Then by the portmanteau theorem we have that

Qe = (2%l > ) < lminf Qe {[(f2")r —{f.2%)1] > )

~kiei ST
< liminfliminf Q ™¥ Z{|<]"17I1>I —(f,2*)1] > €}
{—o00 N—oo
iéi kiéi 1'@1_ My
T T (1T s s e W
£—00 N—00
< Tim Tim PY{|(f,oN — o) > e}

{—o00 N—00

< Tm T PN N _ _N¢ —0.
< i J PRI o7 — o > e =0

Since f € LY(I;C(T%)) and £ > 0 were arbitrary this proves that Q> {z! = 22} =1, i.c.

that Q°*° is concentrated in the diagonal and completes the proof. O

Following these arguments and the version of the One-Block estimate proved in sec-
tion 3.1 with respect to functions in L!(0,T; C(T%)) one can also prove the following

Proposition 4.5.4 We suppose that g is a bounded jump rate function and that the
sequence {ud’ € IPllMﬁlv} of initial distributions is associated to a macroscopic profile
po € Mo (T9). We set

QY = [(0) ) PN € PL™(I; M (T)

QNET = [(o0?), ], PN € PL®(I; M (T?))

for all N € N. We also set Q® denote the set of all subsequential limits of {Q™} in
PL. (I; M (T%)) and for each £ € N we denote by Q>4® the set of subsequential limit
points of the sequence {QN4®} yen in PL®(I; M4 (TY)). Then if Q% denotes the
set of limit points along subsequences of all sequences {Q°“®}en such that Q4 ¢
Q4% for all £ € N, we have Q®° = Q%

It follows that
QY (0| lotlloo < e aus. forall t € [0,T]) =1

and with this the proof of proposition 4.0.2 is complete.
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4.6 A Conjecture

In the general case, in order to describe the condensation phenomenon of ZRPs in the
hydrodynamic limit, the solutions of the non-linear diffusion equation should be allowed
to be measure-valued.

Let us for the moment concentrate on the case of the Evans model for 0 < b < 2. In this
case the mean jump rate ® : R, — R, is C', and an appropriate interpretation of
the non-linear heat equation 0,y = A®(u) that allows measure-valued solutions p can
be given via the theory of Wasserstein gradient flows, at least in dimension d = 1. In
the one-dimensional case, a promising way to model the non-linear diffusion equation
so that it allows measure-valued solutions, is as the gradient flow with respect to the
L2-Wasserstein metric of the functional Hg : M (T) — (—00, +00] defined by

Hp(y) = / E(u)dmya + E'(c0)u*(T), (4.86)

where p = pu*my + p® is the Radon-Nikodym decomposition of p with respect to the

Lebesgue measure on the torus T, E : [0,00) — R is the convex internal energy given

by

= #(r)
oy

E(p) = —2(p) — p/ dr
and

E
E'(00) := lim —(t>
t—+oo

We consider the one-dimensional case, since in the condensing case we have

lim ®(p) = p. < 00, (4.87)

p—00
which implies that for d > 2 the Mac-Cann conditions

1

p0'(p) = (1= 2)e(p) 20, p=0

fail to hold, and thus the functional Hg fails to be A-displacement convex, at least for
A > 0. However, in dimension d = 1 it follows by the characterizations of displacement
convexity of functionals on the Wasserstein space of probability measures given by Villani
([32], theorem 17.15 and remarks 17.18 and 17.20) that the functional H is displacement
convex. So by the work of Shin-ichi Ohta ([22], theorem 5.11) on Gradient flows on
Wasserstein spaces over compact Alexandrov spaces, it induces a well defined gradient
flow:

Given any initial distribution pg there exists a gradient curve ¢t — pu; of Hp starting
from pg, and given two gradient curves (u¢), (1) starting from pg, v respectively we
have

Wa(pe, ve) < Wa(po, vo)-

Even in the case d = 1, the condition

lim p# (E'(oo) - =

p—+00

256



which forces the gradient curves to be absolutely continuous with respect to Lebesgue
measure, fails to hold. In fact in dimension d = 1,

E oo
In the article [17] Fornaro, Lisini, Savare and Toscani in 2010 study the gradient flow
of the functional Hg defined in (4.86) in the case of the real line, under the assumption

(4.87), in the presence of a C? driving potential such that

inf V() >0 and liminf Vi) o,
S

|z]|— 00 ‘SL‘|2 -

There, they study the problem
Orp — div(VP(u) + V') =0 (4.88)

as the gradient flow of the energy functional

E() = He () + /R V(@)du(z). (4.89)

Definition 4.6.1 Let M , (M), M = R or T denote the set of all finite measures of fi-
nite quadratic moment whose absolutely continuous part has a continuous representative
p € C(M;[0, p.]) such that

p({p<pe}) =0, LM\{p<p})=0 and u* = pda.

In the article [17], p. = +oc. There they define J : M, (T?) — R, by

2
pdz + [[V'|2dpt if p=p+pt e My, ®(p) € W

loc

V@) |
J | 4y

J(p) = 400 otherwise

J(p) =

and prove the following characterization of the gradient flow of the functional £ as a
solution of problem (4.88) in the sense of distributions:

Proposition 4.6.1 A curve p € C([0,00); My , (R)) is a gradient flow of the func-
tional £ defined in (4.89) if

(a) pr=pi+pf € My, (R) asVt>0,

T
(b) / J(u)dt < +00 VT >0,
0

and
(c) Op — div(Ve(p) + V') =0

holds in the sense of distributions, i.e. for all G € C°((0,00) x R)
/ / [atG - (8;,;G)V’] dpgdt + / / (02,G)®(py)dxdt = 0.
o Jr o Jr
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We believe that this result can be extended to the case of the one-dimensional torus
T, without the presence of the potential V', i.e. when V = 0. Then, this result together
with the validity of the continuity equation and the regularity estimate (4.2) would imply
that in order to close the equation and complete the proof of the hydrodynamic limit it
suffices to prove that

(a) iy € My, (T%) as. for all t € [0,7] and (b) o = (u). (4.90)

Indeed, then by(4.90) and the regularity estimate (4.2) property (b) of Savare’s result
follows and by (4.90b) and the validity of the continuity equation the property (c) of
Savare’s result, i.e. that 9, = A®(u*c) in the sense of distributions, follows. Note also
that (in dimension 1) if one has (4.90b), then by Morrey’s inequality and the regularity
estimate (4.2) it follows that p = pu®° is continuous, and thus in order to prove (4.90a)
one needs to show that suppu’ C {u% = p.}. By the uniqueness of solutions we would
then get that the gradient flow of the functional Hg is the hydrodynamic limit of the
ZRP. We conjecture that this is true.

If the above program succeeds, further adaptations of the results in [17], allowing
for instance p. to be finite while ® is still assumed C!, would give the hydrodynamic
limit of Evans’ ZRP for values b € (2,3]. Furthermore, allowing the function ® to be
non-differentiable at p, < 400 would give the hydrodynamic limit for all values of b > 0.
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Appendix A

Appendix

A.1 The Skorohod Space

Let I := Ry or [0,T] for some T > 0 and let (M, d) be a polish space. Apathz : I — M
is called cadlag if it right continuous and has left hand limits. Any such path can have at
most countable jump discontinuities. We denote by D(I; M) the set of all cadlag paths
x: 1 — M. We let A(I) denote the set of all strictly increasing (and thus continuous)
functions A : I — I and set Ay (I) the set of all Lipschitz functions A € A([I) satisfying
Alt) = Als)
t—s ‘

log < 4o00.

() := esssup |log X' (t)| = sup
t>0 s#t
Since |Inz| =Inx VIn(1/z), z > 0, by definition any function A € Ar(I) is bi-Lipschitz
and
7(A) =v(A7).

Note also that for any Ay, Ao € Ay (1),

Y(A1 o A2) < v(A1) +v(A2).

Since the set Ap(I) is a group with respect to the composition operation, the above
relations show that «y is a group norm on A (7). Convergence in y-norm implies uniform
converge in compact subsets of the real line, i.e.

lim y(A,) =0 = lim sup |A,(¢)—¢/ =0 forallT>0.

n—oo n—00 )<t T

In the case that I := [0,T] we define the Skorohod metric dg on D(0,T; M) by the

formula

d = inf ), sup d
s(x,y) maX{AeAfho,T]ﬂ( ),0;1% (xt,yx(t))}

In the case that I = R4 the convergence in the space D(IRy; M) is loosely speaking the
convergence in the Skorohod metric for compact subsets of R ;. One metric character-
izing this topology is defined (see [14], section 3.5) as follows. For z,y € D(R4; M),
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A€ AL (R4), T > 0, one sets

plx,y, \,T) := igg d(z(t AT),y(At) AT)),

where d := d A 1 and defines the metric dg by

ds(x,y) = inf max A), e *plx,y, A s)ds ¢.
s(@y)= _f | {v( ) /0 p(x,y, A, 5) }
Proposition A.1.1 Let {zp}tnen € D(R4; M) and x € D(R4; M). The following are
equivalent.

(a) ds(zpn,x) — 0 as n — oo.

(b) There exists {\,} € AL (R+) such that

lim y(A,) =0 and lim sup d(z,(t),z((A(t)))) =0 for all T > 0.

n—00 n—=00 <t T
For each T > 0 there exists {\, }nen (possibly depending on T > 0) such that

lim sup [\, (t)—t[=0 and lim sup d(zn(t),z((M(1)))) =0.

n—oo 0<t<T n—oo 0<t<T

Proof See proposition 3.5.3 in [14]. O

As noted in [14] the right hand side conditions in (b) in the proposition above can
be replaced by
lim sup d(z,(An(t)),z(t)) = 0.

n—oo 0<t<T
Note that since the uniform limit of continuous functions is again a continuous function
this implies that the subset C(R; M) is a closed subspace of D(R.; M) in the Skorohod
topology.

Proposition A.1.2 Let (M,d) be a metric space. The topology defined on D(R4; M)
by the Skorohod metric ds depends only on the topology of M and not on the particular
choice of the metric d defining the topology of M .

Proof This is a particular case of theorem 1.3 in [24]. O

Proposition A.1.3 If M is separable then D(R; M) is separable. If (M, d) is complete
then (D(R+;M),ds) 18 complete.

Proof See proposition 3.5.6 in [14]. O

This proposition allows one to describe the compact subsets of D(IR4; M) via the
general result on complete metric spaces according to which the compact subsets are
exactly the complete and totally bounded subsets. However this result is to general
to be useful. The main tool for a useful compactness criterion is a modified modulus
of continuity which allows for the generalization of the Arzela-Ascoli theorem on the
Skorohod space D(R; M), which in turns permits to specialize Prokhorov’s theorem
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on the space PD(R4; M). Recall that given a path x : Ry — M the usual modulus
of continuity of z on A C R is defined by

we(A) = sup d(wr,zs).
s,teEA

Definition A.1.1 Let I1(5,T), §,T > 0, denote the set of all partitions
A={0=ty <ty <---<tp}, neN,
such that
t, >T and min |tl — ti—l‘ > 0.
1<i<n
For each partition A € II(d,T) we set

w;A) = 11;1%)(" Wy [ti,1, ti)

and define the modified modulus of continuity w’, : (0,00)?> — Ry of a pathx : [ — M
by the formula
'(6,T) := inf (A)
w, (6,T) ncf ) W
Given z € D(R4+; M), the function w!, is obviously increasing with respec to the
variables 6, T and for a path x : Ry — M we have

x € D(Ry; M) iff  limwl,(6,T) =0 forall T > 0.

6—0

Furthermore, w!, is right continuous with respect to the vriable ¢ and the function
D(R4; M) 3z wh(6,T4) := liﬁ)lw;(é,T +¢)
£

is upper-semicontinuous for each 6,7 > 0. By the upper-semicontinuity of this function
and the equality

1
/ o / -
w (6, T) = nhm wh, (6, (T n) +)
which holds for all §,7 > 0, the Borel measurability of the function

DRy; M) 3 x— wl(56,T)

follows for each fixed §,T > 0. Using the modified modulus of continuity the Arzela-
Ascoli theorem is generalized on D(IR; M) as follows.

Proposition A.1.4 If M is complete, then a set K C D(IRy; M) is relatively compact
iff for each T > 0,

(a) The set K([0,T]) :={x¢|lz € K, t € [0,T]} is relatively compact in M, and
(b)lims_,o Sup,cx w,(6,T) = 0.

Proof See theorem 3.6.3 in [14] and the remark following it. O

Through this characterization of the relatively compact subsets of D(R; M) Prokhorov’s
theorem takes the following form on D(IR4; M).
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Theorem A.1.1 If M is polish then a set K CPD(Ry; M) is relatively compact iff:
(a) For each t € Ry and each € > 0 there exists a relatively compact subset I'y . C M
such that

sup P{z € D(R4; M|z, ¢ T, .} <e.
PeK

(b) For each e, T >0,

lim sup P{z € D(R4; M)|w,(5,T) > e} =0.
0—0 pek

Proof See theorem 3.7.2 in [14]. O

In the case that the set K above is the image of a sequence, K = {P"}yen, then
the conditions (a) and (b) above can be replaced by the conditions:
(a’) For each ¢t € R4 and each € > 0 there exists a relatively compact subset I'y . C M
such that
limsup PV {z € D(Ry; M)|z; ¢ Ty} <e,

N—oc0

and (b’) for each e, T > 0,

lim limsup PY {z € D(R; M)|w,(6,T) > e} = 0.
=0 Nooo
Of course the hardest of the two conditions to check is condition (b) which relies

on the behavior of the paths on intervals [0,7] C R4 and just at a fixed time point
as condition (a). However, in [1] Aldous gave a very useful criterion that ensures the
validity of the requirement (b’) for the tightness of the laws {Py} € PD(R4+; M). In
essence, the validity of Aldous’ criterion to be stated below, ensures that one can make
a good choice of partitions in the involved in the modified modulus of continuity w’.

Theorem A.1.2 Let (F});>o denote the minimal right-continuous filtration containing
the natural filtration (i.e. the one generated by the coordinate projections D(R4; M) >
X = x € M, t € Ry) of DRy; M) and let TT = TL(F,) denote the set of all
(Fi)-stopping times bounded by T > 0. If for all e,T > 0 the sequence {Pn}nen C
PD(R; M) satisfies

lim lim sup sup PN{J: € DRy; M) ’d(mT, T(r4o)AT) > 5} =0,

=0 Nooo re7T
0<46

then the condition (b) of theorem A.1.1 is satisfied.

Proof See proposition 4.1.6 in [25] for a proof. O

We will apply theorems A.1.1 and A.1.2 in the case that M = M, = M (T%) is
the metric space of all non-negative finite Borel measures on the torus equipped with
the metric § defined in 1.53 and for the sequence of the laws of the empirical density
process of the ZRP. The next result reduces the problem of establishing the relative
compactness of the laws of a sequence of M -valued processes to the case of real valued

processes, by projecting M -valued processes to real-valued ones via functions of the
form Ig(u) = (G, pu) :== [ Gdp, where G € C(T?).
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Proposition A.1.5 Let {Gy}ren be a dense subset of C(T?) with Gy = 1. Then a se-
quence {Pn}nen € PD(R4; M) is relatively compact iff for each k € N the sequence
{IG,+Pn}nen is relatively compact, where I, . : PD(Ry; My) — PD(Ry;R) de-
notes the push-forward of measures induced by the function

DRy; M) 3 (/deut) € D(R4;R).

>0

Proof See proposition 4.1.7 in [25] for a proof. O

We close this section by reviewing ways of producing continuous mappings between
Skorohod spaces that will be useful in the main text.

Lemma A.1.1 Let z : [0,T] — M be a cadlag path in a metric space M. Then the
image ([0, T]) of = is relatively compact in M.

Proof Let {yn}nen C z([0,T]) be any sequence. Then y, = x(t,) for some sequence
{tn}nen C [0,T]. Since [0,T] is compact there exists then a subsequence {tj, }nen of
{tn} converging to some point ¢ € [0,7]. If t € [0,7] is a continuity point of x then
Yk, = (tr,) — x(t) and {y,} has a converging subsequence. On other hand if ¢ is
discontinuity point of 2 then either there exists a further subsequence {t,,, } of {t,}
that converges to ¢ from the right or either there exists a further subsequence {t,,, }
of {tg, } that converges to t from the left. In the first case, by the right continuity of =
we have that yx,, ~— x(t) while in the second case by the existence of left hand limits
we have that yr,, ~— 2(t—). In either case there is again a convergent subsequence of
{yn}, we shows that any subsequence of x(]0,T]) has a converging subsequence and thus
x([0,T]) is relatively compact. O

Proposition A.1.6 Let M, N be metric spaces and let G : Ry x M — N be continuous
function that is continuous in time uniformly over compact subsets of space, i.e. for each
t €10,7] and any compact K C M

lim sup d(Gyin(z), Gi(z)) =0 (A1)
h—0 reK

and uniformly continuous in space uniformly over compact subsets of time, i.e.

lim  sup d(G¢(x), G =0 A2
g sup (Gi(2), Ge(y)) (A.2)

for each T > 0. Then the induced function G : D(0,T; M) — D(0,T;N) on the
Skorohod spaces given by
G(z)(t) = G(t,x(t))

s continuous.

Proof Let {x,}nen € D(0,T; M), 2 € D(0,T; M) such that dg(z,,x) — 0. We have
to show that dg(G(z,),G(x)) — 0. Since ds(z,,z) — 0 there exists A € AL ([0,7])
such that y(A,) — 0 and

lim sup d(z,(t),z(Ma(t))) = 0. (A.3)

n—oo 0<t<T
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We will show that for this sequence {A,} we have

lim sup d(G(z,)(t),G(z)(A(t))) =0,

n—oo 0<t<T
which proves that G(z,) — G(z) in the Skorohod topology of D(0,T;N). By ht
previous lemma there exists a compact set K C M such that z([0,7]) C K. Then for
each 0 <t < T we have that

d(G(zn) (1), G@)(Mn(1)) < d[G(tza(t)), Gt 2(An(1)))]
+d[G(t, 2(An (1)), GO (E), (A (1))]
< sup d[G(sza()), G (5,2 (®)]
Jrjél}p{d[G(t,x),G()\n(t),x)}

and therefore

swp_d(Glea)(®),G@)(Mn®)) < sup_d[G(sza(®), G5, 200m(1))]
0<t<T 0<s,t<T

+ sup sup d[G(t,z), G(A(t),x)]. (A.4)
0<t<T zeK

Let now € > 0. By (A.1) for each t € [0, 7] there exists §; > 0 such that

|h| <& = supd(G(t+h,z),G(tz)) <
zeK

(A.5)

=1 m

Let dp > 0 be the Lebesgue number of the open cover {(t — dy,t 4 6;)}icjo,r) of the
compact set [0,T] and choose n; € N such that
do
n>n; = sup |[M\(t)—t] < —.
0<t<T 2

Then for each ¢ € [0, 7] the set Ay := {t} U{\,(¢t)|n > n1} has diameter less than §y and
since g is the Lebesgue number of the cover {(t — ds,t 4 6;) }+c[o,7) there exists for each
t €[0,7] an s; € [0,T] such that A; C (s; — 0s,, St + Js,). Then obviously |s; — t| < ds,
and |[A,(t) — s¢| < 05, for all n > ny, and therefore by (A.5) we have that

sup d[G(t,x), G(A(t), )] < sup d[G(t, x), G(s¢, )] + sup d[G(s, ), G(An(t), x)] <
reK rEK reK

N ™

for all n > n;. Since this holds for all ¢ € [0,7] we have shown that

n>ny = sup supd[G(t,z),G(M(t),z)] <
0<t<T zcK

)

N ™

which deals with the second term in the right hand side of (A.4). Next, by assumption
(A.2) on G we can pick § > 0 such that

x,y € M, dlz,y) < = sup d[G(s,az),G(s,y)] <
0<s<T

(A.6)

N ™
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and by (A.3) there exists no € N such that

n>ny = sup dza(t),z(A(t))] <0 (A.7)
0<t<T

Then by (A.7) and (A.6) it follows that for all n > na,

sup d[G(s, xn(t)) , G(s, x()\n(t)))] <

0<s,t<T

)

| ™

which deals with first summand in the right hand side of (A.4) and so for all n > n; Vng
we have that

sup d[@(mn)(t),é(x)()\n(t))} <&,

0<t<T

which completes the proof. O

Corollary A.1.1 Let f : M — N be a continuous function between metric spaces.
Then the induced function f: D(Ry; M) — D(Ry; N) given by

s continuous.

Proposition A.1.7 The function I : D(Ry;R) — C(R4;R) € D(R4+;R) given by
the formula

I(2)(t) = /O 2(s)ds

18 continuous.
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A.2 Martingales of Markov Jump Processes

Given any countable discrete pointed Polish space (M, o, |-|) and any measurable function
F:R; x M — R we will denote by F} the function F(¢,-): M — R, t > 0. If F is
differentiable with respect to the time variable we denote by 0F : Ry x M — R its
partial derivative with respect to time,

8F(t, Z‘) = 8tF(t7SC) = 8tFt(x) = (aF)t(CE),

and for any measurable space M we denote by B,Cr, (M) the space of all measurable
functions F' : R4 x M — R such that

F(t
wp P2

— = = ||F, < ,
(t,2)ER1 x M (1 + |w‘|T\)sgnr || ” +00o

and by BTC’]%{+ (M) the space of all functions F' € B,C(M) for which the curve Ry >
t~ Fy € B.(M) is C* in B,(M), that is for which

Fiin — F, — ho Fy

OF € B,Cg_ (M),  lim .

h10

=0.

u,r

Of course ByCr, (M) = BC(Ry x M) obviously B,.(M) C B,C (M) for all » € R
in the sense that if  : Ry x M — M is the projection on the space coordinate then
B,.C(M)ox:={F(z)|F € B.C(M)} C BTC’]%{+(M).

The following proposition gives a sufficient condition for functions F' € B,.Cr, (M),
such that OF € B,Cg, (M) exists, to belong in BTC’IlPL+ (M).

Proposition A.2.1 Let F € B,Cr, (M) such that OF € B,Cr (M) exists. If OF is
Holder continuous with respect to time in B, (M) with exponent a € (0, 1], that is if
||atFt - asEs”u,r

sup < 400, A8
s,teRy:t#s ‘t - S|a ( )

then F € B,Cy  (M).
Proof Indeed, then there exists a constant C' > 0 such that
|0, Fy(x) — 8 Fs(x)| < C(1+ || I"lysemr |t — |

for all t,s € R, x € M, and therefore

t+h _ t+h
S D A
hiy (L] |Irl)senr h Ji l+a

Fyin — F, — hOF,
AL+ - [Ty

It follows that

C
<~ pe My
14+a

H Ft+h - Ft - h@tFt
h

u,r

as required. O
Obviously if F' € B,Cr, (M) is pointwise C? with respect to the time variable with

9?F € B,Cg, (M) then by the mean value theorem we get that (A.8) holds with a = 1.
This gives a stronger but more simple sufficient condition instead of (A.8).
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Proposition A.2.2 Let (X, P) be a Markov jump process on the pointed polish state
space (M, o,|-|) with partially bounded Lipschitz continuous jump rate function X, tran-
sition probability p, such that for all states x € M the set of all states y € M accessible
from x according to p are contained in the |x|-spheres of the metric |- |, i.e. such that

My ={yeM|Im>0:p"(x,y) >0} C{| | =z} (A.9)

forallz € M. Let L : B,_1(M) — B.(M), r > 1, be the generator of (X, P) in B,.(M)
with respect to uniform convergence on bounded subsets and let u € P,.M be any initial
measure. Then, for all F € Br,lC]%{+ (M) the real process

t
Mﬁﬂ:mmaf%awf/@ﬁmﬁx&Matzm
0

defined on the filtered probability space (D(Ry, M), (F¢)i>0, P*) is a mean-zero martin-
gale, where (Fy) is the minimal right continuous filtration to which X is adapted and the
PH s the distribution of (X, P) starting from p. Furthermore, if in addition the jump
rate function X\ is bounded then M*-¥ is a martingale for all F € BTCIIF{+(M).

Proof Let F € Br_lC]%{+ (M). We note first that M;"" € L'(P*) for all t > 0. Indeed,
by hypothesis (A.9) we have that

Pl |"(@) = / ly|"dpe(y) = /N 1ol dpa(a) = lal

x

for all » > 0 and therefore by proposition 1.1.4 the semigroup P; : B.(M) — B,.(M),
t > 0 is defined, and since | X;| = x P*-a.s. for all x € M according to (A.9), it satisfies

Py |"(z) =E*| X" = ||, reM,t>0, (A.10)

for all » > 0 and X3 P* = uP, € P.M for all ¢ > 0. Therefore, given r > 1, since
P,.M CP,_ 1M, we have that

BFXD] < IFlaB (1 ) = [Pl [0 fo ) duP(a)
< [Pl [+ al D < oo

and the term Fy(X;) — Fy(Xo) is P*-integrable. For the other term we have first of all
that OF € B,_1Cr, (M) and therefore for all ¢ > 0 we have by Tonelli’s theorem that
EM

t t
/ast(Xs)ds < ||3F|\r_1IE”/ (14| X" Hds
0 0

t
— 0Pl [ B+ X s
0
t
= f0Flms [ [ fal P (w)as
0
t
= 0Pl [ @RI duas
0

IN

jorl—1t(1+ [ el tduto) ) <+,
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since p € P.M C P,_1M. Finally, for the term fot LF,(X)ds, t > 0, we note as in
the proof of proposition 1.1.6 it follows that L : B,_1(M) — B,(M) is a bounded
operator with ||L|| < 4|)\'| where | X[ is the Lipschitz constant of the jump rate function
A. Therefore for all 0 < s < ¢ we have that

IN

LE@] £ ANNIEL- o+ ) < 4 (s 17
<s<t

u,H)(l T lal")

IN

ANF 2 (1 + [2]7)

and so by Tonelli’s theorem we have that

t
E* / LF,(X,)ds
0

< 4|)\’|||F|,,1t(1+/|x|"du(:c)> < 400,

which proves that M;“* e L*(P) for all t > 0.
To prove now that (M;"");>¢ is a (F, P#)-martingale it remains to show that

E4(MOF | F) = MXF, Plas, V0<s<t<4oo,

or equivalently that
t
EX (Fy(X,)|F.) — Fu(X.) = ]EH(/ (B + L) Fu(X)du ‘ ]—"5> (A.11)

Pt-as. forall0 < s <t Solet 0 <s <t Since (X,PH) is a Markov process with
Markov semigroup P; : B.(M) — B,(M) the term in left hand side in (A.11) is equal
to

]EN(Ft(XtNXs) - FS(XS) = Ptstt(Xs) — F5<Xs) = (Ptstt — Fs)(XS) (A12)
P#t-a.s.. On the other hand, as we have seen, the function
IR+ X D(IR,J,_,M) = (t,OJ) — (8t + L)Ft (Xt(UJ)>

is in L' (P* @ 1jo,11(s)ds) and therefore by the conditional Fubini theorem the term in
the right hand side in (A.11) is equal to

/t E* ((0u + L) Fu(Xu)|Fs)du = /t Py_s[(0u + L)F,| (Xs)du. (A.13)
Therefore if we show the pointwise Leibniz formula
O (P, Fy) = LP,F; + P (0:F}), t>0, (A.14)
and the pointwise formula
LPF, =P, LF;,, t>0, (A.15)

on M it will follow that

t—s t—s t—s
Pt—sFt — Eg = / 3u(PuFu+g)du = / LPuFu_,_gdu =+ / Pu(ﬁuFu_H)du
0 0 0

t t t
/PU,SLFudu—i—/ Pu,s(auFu)dUZ/ Pu_s[(0u + L)F,]du,
S S S
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which according to (A.12) and (A.13) when applied at the point X, gives us (A.11),
that is

B (F(X)|F) — Fu(Xs) = (P_Fy — Fu)(X,) = / Pu_[(00 + L)F,] (X)du
= /t E* ((Ou + L) Fu(Xy)|Fs ) du.

So it remains to prove (A.14) and (A.15). We prove first (A.14). So let ¢ > 0 and
h > 0. Then
1 1
h h
Now, since (P;) satisfies (A.10) for all » € R and F; € B,_1(M) we have that P,F; €
B,_1C(M) and since L : B,_1(M) — B,.(M) is contained in the generator of (P;) in
B,.(M) with respect to uniform convergence on bounded subsets, we have that

(PevnFisn = PiF) = 3 (PonFy = PiFy) + Poon (5 (Fuon = 1))

S| =

1
lim — (Pyyp Fy — P, F;) = LP.F,
hlil(} h( t+hl't t t) ti't
uniformly on bounded subsets of M. Therefore in order to prove (A.14) it suffices to
prove that

. 1
E%Ptﬁ-h(ﬁ(Fi-‘rh _Ft)) = Pt(atFt). (A16)

Now, since F' € B,_1Cg, (M) we have that

Fon — F
lim — 1

Il n = 8tFt mn Brfl(M)

and therefore in order to prove (A.16) it suffices to prove that for any family of functions
{Gr}r>0 C B,_1(M) we have that

lim Gy~ Gollur1 =0 = PraG M8 PGy pointwise in M. (A.17)

As we will see, in fact the convergence in the right hand side of (A.17) is uniform on
bounded subsets of M.

In order to prove implication (A.17) we note first that P;f 1o f uniformly on
bounded subsets of M for all f € B,_1(M). Indeed, since L : B,_1(M) — B,(M) is
the generator of (P;) with respect to uniform convergence on bounded subsets, for all
f € By_1(M), given R > 0, there exists 61 = 0y g > 0 such that
1
;(P [ — (@)

0<t<éd = sup
|z|<R

< sup |Lf(@)|+1.
|z|<R

But then for all 0 < ¢ < §; we have that

sup |P;f(x) — f(z)| =t sup
je|<R le|<R

LRS- D)

St( sup Lf(m)|—|—1) ﬂ(),
lz|<R
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as claimed .
But, given any family of functions {G},}1>0 C B,—1(M) by the triangle inequality

|PepnGn — PGo| < [Pryn(Gr — Go)| + [(Pitn — Pr)Gol, (A.18)
and by the previous paragraph
%?Olpt+hG0 = l}gr(} Py, (P.Go) = P,Gy
uniformly on bounded subsets of M. Therefore the second term in the right hand side
of (A.18) converges to 0 uniformly on bounded subsets of M as h | 0, and so in order
to prove implication (A.17) it remains to prove that P,+,(G — Go) converges to 0

uniformly on bounded subsets of M as h | 0. But, indeed, since Gy, — Gy in B,_1(M)
and therefore given £ > 0 there exists hg > 0 such that

0<h<hy = |Gh(z)—Golx)|<e(l+|z]""), Voe M,

and thus for all 0 < h < hg and all x € M we have that

[164) = GowlaPw <& [+l P W)

< e(l+|z|™ 1)

’Pt+h(Gh - GO)(m)‘

IN

Therefore for all 0 < h < hg we have that | Py (Gr — Go)|lu,r—1 < € which proves that
Piin(Grp — Go) — 0 as h | 0 in B,_1(M), and in particular uniformly in bounded
subsets of M. This proves (A.17) and consequently (A.16) and (A.14).

It remains thus to prove (A.15). On one hand, since P,F; € B,_1(M) and L :
B,_1(M) — B,.(M) is contained in the generator of (P;) with respect to uniform
convergence on bounded subsets of M we have that for all t > 0,

Pty — P Fy Py — Ft)

t . (A.19)

LPtFt:hm :hmPt(
h10 h10
uniformly on bounded subsets of M.
On the other hand, since F; € B,._1(M), we have that
. PpFy— Fy
lim ———

= LF
h10 h t

uniformly on bounded subsets of M. We define F: R+ x M — R to be the function
given by

Then "
t <
Bt < o

and therefore the function eHE(-) belongs in B,_o(M) for all ¢ > 0, that is ﬁt €
e 1B, _o(M). But as we know, e 'l B,_»(M) is contained in the domain of the generator
L:Dy. CB.(M)— B.(M) of (P;) in B,(M), and therefore we have that

I - (1 4+ 2] 1) < 267101 4 Jafr=2)ent=2),

P,F, — F,
o Lhte = Fr

=LF, inB.(M
Il ¢ in B.(M)
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for all t > 0. As we have seen, if {Gp}r>0 C B.(M) then

lim||Gh — Gollur =0 = lim|PG), - PG
i (|G, — Gollu, i || G — PiGol

u,rZO

for all ¢ > 0, and therefore

lim Pt

P,F, — F,
hl0

- >BLE in B,(M).

for all t > 0. But then by hypothesis (A.9) we have on one hand that

e e e
h t(gj) t( h) (1 |)Th| t( h)> 1 ‘xl t( h) - h t(z)

and therefore

Phﬁt*ﬁt e*|'| Pth *Ft €7|.| Pth *Ft
P\ —— | =P, = P,
t< h ) t(1+-| h L+ h

and on the other hand, by hypothesis (A.9) again, we have that

LF,(z) = Z (ﬁt(y) - E(z))/\(x)p(x,y) = ﬁLFt(x)

yeEM,

for all x € M, t > 0, and thus PtLﬁt = LHPtLF,g for all t > 0. It follows that

1+
=l P F —F =l
lim—p (M"Y - ¢ prR
hi0 14| h 1+

in B,(M), which proves that

Py F, — F;
hmH(’ltt>:BLE
h10 h
uniformly on bounded subsets of M. This together with (A.19) proves (A.15) and

completes the proof in the case of unbounded jump rate function A\. The case of bounded
jump rate function A follows similarly. O

Proposition A.2.3 Let (X, P) be a Markov jump process on the pointed polish state
space (M, o0,|-|) with partially bounded Lipschitz continuous jump rate function A and
transition probability p such that (A.9) holds for allz € M andlet p € Po, M, r > 1, (u €
Py._1M if X is bounded), be any initial measure. Then, for all F € Br,lC]ll)L+ (M) the
Promartingale MY = MXF of proposition A.2.2 is square integrable and its quadratic
variation (M) is given by

<MF%:i/w@ufxxg—zﬂ@&ﬂmuxg}@, t>0, (A.20)
0

where L : By_1(M) — B,(M) is the generator of (X,P) in B,.(M) with respect to
uniform convergence on bounded subsets.
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Proof We prove first that the P*-martingale M¥ is square integrable, and of course for
this it suffices to prove that the term F;(X;) and the integral term fg(@s + L)Fs(Xs)ds
are square integrable for all ¢ > 0. For the term F}(X;) we have that

EFF2(Xy)

IN

12, / (4] 2duP, < 2 B2, / (4] [72)duP,

IA

2F oy [ P2 < o
since yu € Py, M C Py, oM, and therefore Fy(X;) € L?(P*).

For the integral term we note first that since F is assumed to belong in Br,lC]}Lr (M)
we have that OF € B,_1Cg, (M) and therefore

t 2 t t
E“(/ 85F5(Xs)ds> < IE“/ (ast(Xs)fds§2||aF||$,11E“/ (1+|X,>2)ds
0 0 0

t
200F|2_, / / (14 X 2)dsdP"

t
200F12, [ [+ X aprds
0

2|0F|2_, / (4] Pr2)du < +oo.

IN

Finally, for the term fot LF,(Xs)ds, t > 0, since L : B,_1(M) — B,(M) is a bounded
operator with | L|| < 4|X| we have that |LF||, , < 4|N|||Fs|lu,r—1 which implies that

[LE(2)* < 32N PIIF5 o (1 + Ja)*

w,r—1

for all z € M, s >0 and F' € B,_1Cg, (M) and therefore

2

t t t
E“(/ LFS(XS)ds) < E“/ LFS(XS)2ds§32|)\’\2||FH3_11E“/ (1+|X,*)ds
0 0 0

IA

32t V2| F12_, / (1+ |2 dpu(z) < +oo.

This proves the square integrability of the martingale M.

Let (Vif);>0 denote the real process in the right hand side of (A.20). Obviously
since € Py, M it is easy to see that the process V¥ is integrable and to prove that
the quadratic variation of M¥ is V¥ it suffices to prove that the real process NI :=
(MF)?2 — VF is a martingale, i.e. that

EX[(M])? — (ME)?|F] =EBF[VF = V]| 7] (A.21)
for all 0 < s < t. Now since M ¥ is a square integrable martingale we have that

B (M) — (ME)?|F) = B[(M] — MP)?| 7]
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for all 0 < s < t. For simplicity in the notation we set L := 8 + L the sum of the
generator L of X and the time derivative operator 0 and for all 0 < s < ¢t we have that

E[(MF)? — (MP)?|F] = ]E”{Ff(Xt) — F2(X,) + (/t fFu(Xu)du>2
—2Ft(Xt)/St EFu(Xu)du’}'S}
2r (B Fx) - ) - [ TRz

Now since M¥ is a martingale the second term in the sum above is equal to
—2F(X)E* (M — MF|F,) =0,

and therefore

E[(M])? = (MI)?|Fs] = IE”{FE(Xt) — F2(X,) + (/t EFT(Xu)dU)ZIFS}
—21E“{Ft(Xt)/t LF,(X,)dr Fs} (A.22)
for all 0 < s < t. We compute next the term
Yot = E”{Ft(Xt) /t LF,(X,)du F} (A.23)

For this term we note first that

IN

/: EX|Fy (X)) LF,(X,)|dP"du C/:/(H X" (A + | Xu|")dP*du

= o [asin [a e e e
< C/:/(H|x|r)(1+|x|r—1)dupu(x)du

< 20 /:(1 122D duPy (2)du

< 2C(t—s)/(1+|x|2r_1)du(x) < 400

for some constant C' > 0 and therefore by the conditional Fubini theorem we have that

Yei = E“{Ft(Xt)/:fFr(Xr)dr‘}'s}—/t]E“{Ft(Xt)fFu(Xuﬂfs}du

S

= / tIE”{Ft(Xt)ZFu(Xu)|]-"u|]-"s}du: / tIE“{EFH(XM)IE“[Ft(Xt)U-“u]|]-"s}du

S

- ]E“{ /: IE"{Ft(Xt)]-'U}EFU(Xu)du‘]-"S} (A.24)

7}

Again since M is a martingale we have that

EX[Fy(Xy)|Fu] = Fu(Xu) + IE”{ / t LF,(X,)dv
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and therefore continuing from (A.24) we have that
t ~
Yo, = Eu{/ Fu(Xu)LFu(Xu)du‘]-'s}

+]E“{ /: ]E“{ /ut EFU(XU)dv|]-"u}ZFu(Xu)du‘]-"s}.

We keep the first term in the above sum and estimate the second term which we denote
by Zs,: by using the conditional Fubini theorem:

Zyy: = Eu{/:Eu{AtEFv(XU)du|fu}ZFu(Xu)du ]-‘S}
- ]E“{/:IE)“{EFU(XU)/utZFv(Xy)dvp-'u}du ]—'S}

- ]E”{]E”{/sthu(Xu)/utsz(Xv)dvdup—'u} ]—'S}
- ]E“{/: /ut ZFu(Xu)ZFv(XU)dvdu’ﬁ}.

But by symmetry, for any bounded function h : [s,¢] x [s,t] — R of the form h(u,y) =
g(u)g(v) for some function g € B(][s,t]) we have that

/: /utg(u)g(v)dvdu _ ;(/Q(U)duf

and therefore

It follows that

Y, = IE“{ /St Fu(Xu)EFu(Xu)du‘}"s} n ;E“{ (/t EFu(Xu)du)Z‘}"s}

and therefore by (A.22) we have that
t_ 2
E-[(M)? — (MP)*|F] = E”{Ff(Xt) — F2(X,) + (/ LFT(Xu)du) ‘fs} —2Y,,
= EM{FA(X) - FX(X,)|F}
t
—2E“{/ Fu(Xu)LFu(Xu)du‘J-"s} (A.25)

We show next that if F' € B,_;Cgr, (M) then F? e By, _2Cr, (M) with OF? = 2F - OF.
Indeed,

F2,, — F? — 2hF,0F,

‘Ft2+h - FtFt'i‘h + FtFt+h - th — QthﬁFt

h(1+]-[Pr2) h(1+]-[772)
Foin(Fepn — Fy) — hELO Fy “|F Fion — Fy — ho Fy
- h(1+]-[772) (AP
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and for the second term in this sum we have that

F Ft+h — Ft — hatFt HFH (Ft+h - Ft - hatFt)(]' + | ) |T71)
(] Pr?) - e h(1+]-[*—2)
(Fiyn — Fy — hOi )
< 2U|F||y.r—
= A T
Fy ., — F, — hO,F;
< 9 Py | - L)
u,r—1

while for the first term we have that

Foin(Fiyn — Fy) — hFL0, F, < (Fipn — Fy)? LolF| Fiih — Fy — hO F;
h(L+|-[>=2) T A+ [Pr2) vt h wr—1
and ) )
F: — F))? F: — F F, — F
(Fisn t) < opp|| Lerr = Fi < opp||| Frn =Lt
h(L+]-[272) h(L+]-|"1) h wr—1

But since F' € B,._1Cgrp, (M) we have that %(th — F;) — O0,F; in B,_1(M) and in
particular the || -||,,—1-norm of +(Fy4s — Fy) is bounded above by some constant C' > 0
uniformly for all z € M and h > 0, and therefore

H F2,, — F? — 2hF,0F,
h

Fion — Fy — hodFy
h

h—

+
3

< 202 R +4] Flup—

l

u,2r—2 u,r—1

which proves that F? € By, _oCgr, (M) with 9F? = 2F - 9F .
Therefore, since 1 € Py, M, it follows by proposition A.2.2 that the process M&X,
G = F?, is an integrable martingale and so for all 0 < s < t we have that

t~

B {F2(X) - PG| =B [ D))l 7 )
and so it follows by (A.25) that

Er[(MF)? — (MF)?|F,] = ]E”{ /t L(F2)(X,) — 2Fu(Xu)ZFu(Xu)du‘]-"s}

S

which proves (A.21) as required to complete the proof since we obviously have that
L(F?)—2F,LF, = 0,F+ L(F?)—2F,8,F, —2F,LF, = L(F?)—2F,LF,,. O

The following simple Leibniz-type formula for the generator of a Markov jump process
(X, P) allows to express the quadratic variation of the martingale M¥ = M™X in an
equivalent useful form.

Proposition A.2.4 Let X be a Markov jump process in M with partially bounded jump
rate function X and skeleton chain p such that p| - |*" < |-|?>", r > 0, and let L be the
generator of X. Then

L(f*)(z) = 2f(2)Lf(2) + Y [f(y) = F@)*Ma)p(z,y)

yeEM

for all f € B.(M).
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Proof Indeed, for any z,y € M and f € B, (M) we have that

L(f*)(z) = Mx) Y [f(®)* — f@)lp(e.y)

yeM

= A2) Y [(Fy) — £@) + 2 (@) (F(y) — [ (2))]p(z,y)
yeM

= A2) Y [f(y) — F(@)]"plx,y) +2f(2)Lf(x) O
yeM

According to this proposition the quadratic variation given in proposition A.2.3 for
the martingale M = MTX can be written equivalently as

<MF>t = /0 Z [Fs(y) — FS(XS)P)\(XS)p(XS,y)dS.

yeM

Proposition A.2.5 Let M = (M;)i>0 C L2(P) be a right continuous (F;)¢>o-martingale
with quadratic variation (M). Then for any bounded (F;)¢>o-stopping times o < 7 < T,
T>0,

E[M? — MJ|F,] = E[(M; — My)*|F,] = E[(M), — (M), |F,]

and so in particular
E(Mz - M3> =E(M: - M0)2 = E(<M>T - <M>cr)

Proof Since M is a right continuous martingale and o, 7 are bounded stopping times
Doob’s optimal stopping theorem ([27], theorem 11.3.2) applies and so E(M,|F,) = M,.
Consequently
E[(M, — M,)*|F,] = E(MZ|F,) - 2ME(M,|F,)+ M2
= E(MEU:J) - Mg = E(MTQ - Mg|]:s)7
which proves the first claimed equality.
For the other inequality, since (M) is the quadratic variation of M, the process

Ny := M2 — (M), t > 0 is also a right continuous (F;)-martingale and so by Doob’s
optimal stopping theorem again we have that IE(N, — N,|F,) = 0 which implies that

]E(Mz - Mg|}—a) = E(<M>T - <M>a|‘/—:<7)

as required. 0
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A.3 Relative Entropy and Entropy Production

A.3.1 Relative Entropy Functionals

Definition A.3.1 Let yu € PM. The relative entropy function with respect to u is the
functional H(:|p) : PM — [0, 00] given by

flog fdu, — v<p, f=9%,
H(v|p) = {f an
“+00, v & .

We note first that the function g : Ry — R given by g(z) = xlogx is strictly
convex in R4 and thus by Jensen’s inequality, we have for f = g—: that

0=1-0=/fdu-1og/fdu=g(/fdu> S/g(f)du=H(u|V),

for all u,v € PM, with equality iff the r.v. (f, ) is a.s. constant, say f = ¢ p-0.8.. But
since f = j—; and pu,v are probability measures, then we necessarily have that

c= du= | ldv=1
/fu / ;

and thus H(u|v) = 0 iff g—Z =1, that is iff p =v.

Therefore H : PM x PM — [0, 00] takes real positive values and H (u|v) = 0 iff
o = v. Nevertheless, neither H, nor its symmetrization HS (u,v) := 3[H (v|p) + H(u|v)]
defines a metric in PM. Now obviously for any u,v € PM with v < p we have that

H(v|p) = /Z—:log Z—:du = /log j—:du.
and if h: Ry — Ry is the strictly convex continuous function
h(t) =tlogt —t+1,
where h(0) = 1, then for all p,v € PM such that v < p we have that
H(v|p) = /g(%)du = /h(%)du,
which shows that (v|u) > 0 with equality iff v = p.
Also, by the strict convexity of h, it follows that the relative entropy with respect to

w is strictly linearly convex, i.e. for all vy, € PM and all a,b > 0 such that a +b =1
it holds that

H(avy +buglu) = /h <ad,u + bdﬂ) du

duy dvy .
@/h (du> it b/h (du) dp = aH (1 |) + bH (v,

with strict inequality whenever v; # v, and a > 0.

IN

Another useful property of relative entropy is the following formula for changing the
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reference measure p. In particular, let V : M — (—o00, 00] be a Borel functional with
sup-polynomial growth of order p > 0, i.e. such that [V (z)| < C(1 + dP(x,xy)) for all
x € M for some constant C' > 0, and such that dfi := e~V du is a probability measure.
Then,

H7) = Hle) + [V,

for all v € P, M. Indeed, we obviously have that v <« 1 iff v <« p and in this case the
required equality is trivially satisfied as co = oo, while if v < u, then

dv  dvdp v dv
—— = ———= =€ -,
dp  dpdp du

and thus
dv dv dv dv dv
Hwlp) = [h(-=]di= [ — [V+log—]|e"dp= [ — [V +log—]d
1) / <du) : /du [ Jrogdu]e a /du [ Jrogdu] s
= /Vdu—l—H(u\,u).
Particularly useful is the following variational characterization of the relative entropy.

Proposition A.3.1 For all p,v € PM we have that

H(v|p) = sup ){/fdu—log/efdu}. (A.26)

feBC(M

This characterization of relative entropy will follow from the more general variational
characterization the generalized relative h-entropy functionals, one of which is relative
entropy itself with h(t) = tlogt —t + 1 for t > 0 and h(t) = oo for ¢ < 0.

Definition A.3.2 Let h : R — [0, 00] be a lower semicontinuous convex functional
with non-trivial domain Dy, D [0,¢), € > 0. The functional H = Hp, : PM x PM —
[0, 0] given by the formula

th(g—Z)du, ifv < u,
00, otherwise.

Hvln) = {

is called the relative h-entropy functional.

Obviously, as in the case of relative entropy, due to the convexity of h we have by
Jensen’s inequality that

o< ) < [5(5) -

for all v <« p. Therefore H(v|p) > h(1) for all p,v € PM with equality iff v = p.
Furthermore H;, is obviously linearly convex.

Note that since v is a positive measure we have that 2—; > 0 whenever v < p and
thus the valued of h in (—00,0) do not play a part in the definition of Hp. In what
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follows for any function h : R Ry —> [0,00] we will denote by h : R — [0, 00] the
function given by the formula

Ft) = {h(t), t>0

o0, t<0’

and of course for any convex function h : R or Ry — [0, 00] we have that H; = H;.
The variational characterization of the generalized relative h-entropy functionals requires
the notion of the right semi-Legendre transform.

Definition A.3.3 Let h : R — [0, 00] be a function. The right semi-Legendre trans-
form bt of h is the function h™ : R — [—h(0), 00| given by the formula

ht(s) = sup{ts — h(t)}

We note first that indeed h* > —h(0), since for all s € R we have that

ht(s) = ig}g{st —h(t)} > s-0—h(0) = —h(0).

Furthermore, h is always lower semicontinuous as a supremum of affine functionals and
obviously

nt = h*,

where h* is the Legendre transform of hin R, that is

h*(s) = fél]Rp{ts — h(t)}.

Now, h is lower semicontinuous whenever h is, and thus if A is lower semicontinuous then
by the duality f** = f for lower semicontinuous convex functions f we have that

hT* = h.

According to the variational characterization of relative h-entropy functionals to be
proved, for any lower semicontinuous and convex function h :— [0, co] with non-trivial
proper domain Dj, C [0, 00) such that Dj+ = R we have that

Ha(wlp) = sup { [rar— | h+<f>du}. (A.27)

feEBC(M)

The variational characterization (A.26) of relative entropy follows from the varia-
tional (A.27) of generalized entropy functionals. Indeed, relative entropy is given as
we have seen by the function h : R — [0,+00) defined by h(t) = tlogt —t+1 in
Dy, = [0,00) and the function

Ry 2t gy(t) == st — h(t) = (s + 1)t —tlogt — 1
has obviously a global maximum at ¢ = e¢®, and so

ht(s)=s-e°—h(e’) =se® —e’loge® +e° —1=¢°—1.
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Therefore for any bounded and continuous function f : M — R we have that

/fdz/f/h*(f)du:/fduf/efdqul.

Consequently, since h(t) = tlogt — t + 1 satisfies condition D+ = IR, if the variational
characterization of generalized functionals had been proved we would have that

dv — ht d
L { o= [y

_ +
s { (e [0+ i

sup  sup {c+/fdz/ec/efdu+l}. (A.28)

fEBC(M) ceR

H(v|p)

But by elementary calculus we see that the mapping
c'—>c+/fdu—ec/efdu+1

has global maximum [ fdv —log [ e/dyu at the point ¢ = —log [ e/ du, which according
to (A.28) proves the variational characterization of relative entropy.

An obvious and useful consequence of the variational characterization (A.26) is the
lower semicontinuity of the relative entropy H(-|u) as a supremum of affine functionals
with respect to the weak topology in PM.

Another useful application of the variational characterization of relative entropy is
that it allows us to estimate integrals with respect to v through integrals with respect
to the reference measure u ant the relative entropy H(v|u). Indeed, by the variational
characterization the so called entropy inequality

1
< i — af
/fdy_égga{log/e d/.L—|—H(V|/,L)}

follows easily for all f € B(M). For indicator functions f = 14, A € By the entropy
inequality takes a simpler form.

Proposition A.3.2 Let A € By be a Borel subset of M. Then for all v, € PM we
have that

v(A) < log(1+:tay)

log 2+H(11/\#) 1(A) >0,
Jim SH),  p(4) =0

Proof For any a > 0, we have that e*'4 = %1 4 4+ 1 4c and thus fe“]lAdu =1+ (e*—
1)u(A). So by the entropy inequality we have for all a > 0 that

V(A) < log [L+ (¢~ Dp(A)] + ~ H(vlu).

Taking the limit as a — +o0 if (A) = 0 and choosing a > 0 so that (e —1)u(A) =1 if
w(A) # 0 we get the required inequality. O
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For the proof now of the variational characterization of generalized entropy func-
tionals we need some formula for the right semi-Legendre transform. Such a formula
is given in the following lemma. We recall first that any lower semicontinuous function
h:R — (—00, 0] is continuous in DY, one-sidedly continuous in each endpoint of Dy,
that is contained in Dy, divergent to +oo in each endpoint of D) not contained in Dy,.
Furthermore, the one-sided derivatives h’_ and h/_ of h exist in Dy, are left and right
continuous respectively, and for all 7, 5, € Dy such that r < s < t satisfy

ha(r) < hl(s) < hly(s) <RL(1),

and if a,b € [—00, o0] is the left and right endpoint of Dy, respectively, then b/, (a) (h’_(b)
resp.) is defined in [—o00, 00) ((—00, 00] resp.) if a € Dy, (b € Dy, resp.).

In our case now, in the right semi-Legendre transform, we are essentially working
with the functional h for which E|(_oo70) = +o0 and since the values of h in (—o00,0) do

not play a role in the definition of Hj, we restrict our attention to functions h such that
h = h and set

a:=inf Dy, =0, b :=sup Dy, € (0, 0]

A.29
a':=infysq B (t) € [—00,00), b = sup,, h_(t) € (—o0,+0]. ( )

Of course, by the one-sided continuity of A’ and A/, we have that whenever some of the
endpoints a, b belongs in Dy, then o’ = !, (a) = A/, (0) and V' := h’_(b).

Lemma A.3.1 Let h : R — [0,00] be a lower semi-continuous function with non-
trivial proper domain Dy, C [0,00), let a,b,a’,b’ be the numbers given in (A.29), and
let (W)~ : (d/,b)) —> [0,00] be the generalized inverse of the right continuous and
increasing function h!, : (0,b) — (a’,b"), given by the formula

(W,)"Y(s) :== inf {t € (0,b)|s < W (£)}.

Then (b))~ (a',0") := {(h) "1 (t)]t € (a/,V')} C Dy = (0,b) and the right semi-Legendre
transform h™ of h os given by the formula

—h(O), if s < a'.
s-(W)71(s) — h((K,)"1(s)), ifa <s<V
h*(s) = N (Ck ) o (A.30)
bs — h(b), if v/ <s,be Dy,
li ts —h(t if b/ <s,b= .
i (s 0), 0 <o

Furthermore, in the case that i/ < 400 and b = 400 we have that h*(s) = +oo for all
s > b while for s =1 both cases, h™(b') < 400 and h*(b') = 00, are possible.

Proof First we note that if a’ = —oco then the first branch of (A.30) does not exist. So
suppose that @’ > —oo and let s < a’. Then

s <a' =inf b/ (t) = inf M7
t>0 t>0 t

and thus ts — h(t) < —h(0) for all ¢ > 0, which gives us that

ht(s) = sup{ts — h(t)} < —h(0).
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But as we have seen we always have ht > —h(0) and so h*(s) = —h(0) which proves
the formula in the first branch of (A.30).
Suppose on the other hand that o' < +oo and let s > 0. Then necessarily either
b € Dy, or either b = +00. Indeed, if ¥’ < +o00 and b ¢ Dy, then
h(t) = h(s)

sup —— 2 < b < 400,
0<s<t<b t—s

and thus
h(t) — h(s) < b'(t — s) (A.31)

for all 0 < s <t < b. But as we have already noted, since h is lower semicontinuous and
b ¢ Dy, we have that limyy, h(t) = 400 and so by taking the limit in (A.31) as ¢ 1 b for
some s € (0,b) we get that
_ % o < T / o _ ’ o
~+o0 %ILIII) (R(t) = h(s)) < %grll)b (t—s)=b'(b—1s)

and thus b’ = +oo.

So, in the case that b’ < s < 400, either b € Dy, or either b = +oo. If b € Dy, then
h_(b) =¥ < s < +oo and thus

h(b) — h(t)

sup ———> =1 <5< o0.
0<t<b -t
Therefore for all s > b we have that h(b) — h(t) < s(b—t) for all 0 < t < b, which shows
that
st — h(t) < sb—h(b), Y0<t<b,

and thus

ht(s) = igg{st —h(t)} = tilg) {st = h(t)} <s-b—h(b).

On the other hand we obviously have that sb — h(b) < h™(s), which proves the formula
in the third branch of (A.30).
Suppose now that b’ < s < +o0o0 and b = +o0o. Then
h(t) —h
sap PO ZRO) o

0<r<t<oco t—r

and therefore
r<t = sr—h(r)<st—h(t),

i.e. for all s > b’ the function t — st — h(t) is increasing and so

h*(s) = sup{st — h(t)} = lim (st — h(t)),

>0 t—o0

which proves the formula in the fourth branch of (A.30).
It remains to check the case a’ < s < V/. First, we note that if some s;, € R is a
supporting point of h at to € Dy, then h(t) > sy, (t — to) + h(to) for all ¢ € R and thus

ht(sy,) = igg{t 85y — h(t)} < to - s, — h(to) < hT (s4)- (A.32)
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Indeed, let s € (a/,0"). By the definition of a’, b’ there exist 6, m € Dj = (0,b) such that
a <K (0)<s<h_(m)<V. (A.33)

We will show that s is a supporting point of h at some t, € [#,m] C (0,b). Indeed, let
ts := (R )(s) = inf{t € Dy|s < B (t)}. (A.34)

By the definition of m in (A.33) we have that m € E, := {t € Dj|s < h!_(t)}. Therefore
the set E is non-empty and since b/, is increasing we have that E; is an interval with
right endpoint +o0o and left endpoint the number ¢5 € [0,b). But by (A.33) 6 ¢ E, and
therefore t, € [#,m] C Dj. Also, by the right continuity of A/, we have that

Bl (ts) = %ﬁn R (t) > s (A.35)

i.e. that t, € F,. Now, according to(A.35)on order for s to be a supporting point of h
at ts it remains to prove that h’ (t5) < s. But this is indeed true, since for all ¢ < t5 we
have that h’_(t) < b/, (t) < s and thus by the left continuity of h’_ we get that

h_(ts) = lim h_(t) < s.

Now since s € (a/, V') is a supporting point of h at t, := (k/,)~!(s) it follows by (A.32)
that for all s € (a/,b):

B (s) = s+ to — h(ts) = s ()7 (s) — (W) X(5)),

as required for the second branch of (A.30).
We prove now the last claim of the lemma. So suppose that b’ < +oo, b = +00 and
let s > b’. We note that

. h(t) / /
1 < h.(t)=1".
T S

Indeed, we obviously have that b := sup;~q k" (t) = sup;>q b/, (t) and by the convexity
of h in (0,b) = (0, 00) the function

h(t) — h(1)

1,00) 3t

is increasing and bounded above by ', and therefore there exists the limit

lim@ = lim M <.
ttoo L t1+oo t—1

So, since § := $(s — b') > 0, there exists M > 0 such that
t>M = h(t)<Vt+dt
and then for all ¢ > M we have that

st—h(t)>(s—bV —0)t= %(s—b’) 1% 4 oo,
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as required.

Finally to show that in the case that ¥’ < +o0o and b = +oo we can either have
Rt (1) < +00 or h* (V') = +0o we consider the convex functions h; : R — (—00, o0]
given by the formulas

on their common proper domain Dy, = D, = (0,00). Then for these two functions we
have that

b, :=suph;’ (t) =0, i=1,2,
t>0

while as we can easily check hi (0) = +oc and h3 (0) = 0. O

For the proof of the variational characterization of generalized relative h-entropy func-
tionals we will need the following lemma, which essentially generalizes Lusin’s theorem
so that the approximation of a given measurable and bounded function f by bounded
and continuous functions can be achieved by the same approximating sequence in any
finite number of L! spaces of regular measures.

Lemma A.3.2 For any f € B(M) and any p,v € PM there exists a sequence {fn} C
BC(M) such that

fn s f in LY(p) and in L'(v),
Ifn e f w—0p. and v-—o.p., (A.36)
infxer(x)—F%angsupxer(:c)—%, VneN.

Proof Obviously, since any f € B(M) can be approximated uniformly by simple func-
tions it suffices to consider the case in which f is the indicator function 1 g of some Borel
set E C M. Solet E C M be a Borel set and let € > 0. We want to find g € BC(M)
such that

/|g—]1E|du\//|g—]1E\dV<£.

Since u, v are finite Borel measures in polish space, they are regular and thus there exist
compact sets K,,, K, C E open sets A,,, A, 2 E such that

K, CECA, pA,\K,) <e, p=pr.
But then, if we set K := K, UK,, A:= A, NA,, the set Kis compact, is open and
P(A\K) < p(A,\ K) < p(A4,\ K,) <&, p=p,v.

By choosing then a continuous function g € BC(M) such that 1 < g < 1 4 we obviously
have that |g — 1g| < 14\ x and therefore

/|9_1E|dP§P(A\K)<5a p =i,

as required. This proves that for any f € B(M) there exists {g,} € BC(M) such that
gn — f in L'(u) in L'(v). By passing if necessary to a subsequence {g,} which we
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continue to denote by {g,} we can assume in addition that {g,} converges pointwise to
f p-0.6. and v-0.5.. But then if we define

fo = (= inf f(z)+ %) V gn A (sup f(z) - %)L vn €N,

we obviously have that f, — f pointwise u-0.8. and v-0.5., and since ||fnlle < || £l
for all n € N it follows by the bounded convergence theorem that f,, — f in L'(x) and
in L'(v), and therefore {f,,} satisfies (A.36). O

Proposition A.3.3 Let h : R — [0,00] be a lower semicontinuous functional with
non-trivial proper domain Dy, C [0,00). Then

Ml = s { i | h*(f)du} —H ). (A.37)

Furthermore, Dp+ = R iff bV = +00 or b € Dy, and in this case for all p,v € PM we
have that

H(vlw) = sup { [ | h*(f)du} — 1Y (). (A.38)

fEBC(M)
In any case (A.38) holds for all u,v € PM such that v < p.
Finally, if Dy+ ; R then b :=sup D), = o0,

h(t h(t
b :=suph’ (t) =supDy+ = lim h{t) = sup hit) < 400, (A.39)
t<b tt+oo T t>0

and if the reference measure p € PM has support suppu = M, then for allv € PM we
have that

B V) = M) + Vg (M) = sup { i | h*(f)du} . (A.40)

feBC(

where v = Vg, + Vs|,, 8 the Radon-Nykodim decomposition of v with respect to p with
absolutely continuous part vg.|,, < p and singular part vy, L p.

Proof We prove first that (A.37). We note first that by the definition of A" we have
that ts < h(t) + h™(s) for any ¢ > 0, s € R, and therefore if y,v € P and v < p, then
for any f € B(M) we have that

dv dv
f- o = h (Cm) + (),

which shows that

[ v = [0 (1 < #a o1,

for all f € B(M). So by taking the supremum over all f € B(M) it follows that

Wil (vlp) < Hy (o)) = sup { [rar— | h*(f)du} < Hu(wlu)

feB(M)
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for all p,v € PM, and therefore in order to prove (A.37) it remains to show that
Ha(vIn) < H (vlp).

First, if v & p, there exists a Borel set E C M such that v(E) > 0 and u(F) = 0,
and by considering the sequence f,, = nlg, n € N we have that for all n € N,

Ha(vlp) 2 / fndv — / h*(fa)dp = nv(E) — h*(0) "= +oo,

and thus the required inequality holds as oo = oo in this case.
We note next that for any constant ¢ € R we have Hp1. = ¢ + Hp, and since

(h+e)t(s) = igg{ts —h(t) —c} = —c+ht(s)

for all s € R it follows that

! ! 1 12
hte = C+ Hp, hte = C+ Hy.

Therefore in order to prove the variational characterization we can, modulo some con-
stant ¢ € R, assume in addition that

—ht(0) = inf h(t) = 0. (A.41)

Then since 0 € BC(M) by the additional assumption that A (0) = 0 it follows that for
all v, u € PM we have that

My (vlp) = H (v]) > / Odv — / B+ (0)dp = 0. (A.42)

Let now v < p and suppose that

dv

7% ¢ Dh} =p {Z: > b} > 0. (A.43)

()

and thus Hy,(v|u) = 4+o00. Therefore in order to prove the claim in the case that v, u €
PM satisfy (A.43) we must show that H}, (v|u) = +oo. Let {fn}F_; € B(M) be the
sequence given by fr = N]l{%>b}, N € N. According to our convention that h™(0) = 0
modulo some constant ¢ € R we have that

,u{:vEM

Then obviously

W) = B (N Ty (4.44)

for all N € N. Then by the definition of Hj}, and (A.44) we have that
/ + dv +
Hy(vlp) = fndv— [ KT (fn)dp = fN@*h (fn)| dp
/ {dVN _ h+(N)] du
{250y Ldp
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So in order to prove the claim it suffices to show that given (A.43), which of course can
hold only if b < 400, we have that

an ::/ {dVN ht (N )] du 29 oo (A.45)
(20} Ldp

For the proof of (A.45) we separate cases on whether b’ < 400 or ¥/ = +o0.

b < +oo: Then by the lower semicontinuity of h we have that b € Dj,. Consequently
for all N € N such that N > b we have by lemma A.3.1 that h*(N) = bN — h(b) and
therefore for all N > o’ we have that

an = / {(dy - b) N+ h(b)} dp.
2 py L\dp

Now since ,u{g > b} > 0 there exists 9 > 0 such that u{ d” >b+¢ep} > 0, and thus

an > / [(d” - b) N+ h(b)} dp > 20N + h(b) 25 400,
Y >bteg} dp

b’ = oo: In this case, by lemma A.3.1 we have that
hH(N) = N - (W )7H(N) = h((h}) M)

and so in this case, since h is non-negative and since (h/,)~!(a’,t’) C (0,b) according to
A.3.1, we have that

dv /I \— 7 \—1
ay > e sbrent Kdu (h',) (N)) N +h((h) (N))} du
> goN +h((h) ' (N)) > egN — +o0.

Another case in which the relative h-entropy Hp(v|u) is infinite obviously occurs
when

dv dv
(a) p{du—()}>0 and 0 ¢ Dy, or (b) M{(Jl,u_b}>0 and b ¢ Dy,

and as we will show in this case we have that H} (v|u) = +o00. Indeed, if (a) holds

we consider the sequence {fn}%¥_; € B(M) given by f := fN]l{%ZO}, for which

m
h*(fn) = b (=N)1{$ = 0}, and then
/ + dv +
Hy(vlp) = fN— —h*(fn) N—=—hT(N)| du
{d" =0y L du
- —h*(—N)u{— 0} (A.46)
But since 0 ¢ Dy, by the lower semicontinuity of h we have that a’ = —oo and therfore

by lemma A.3.1 we have that

W (=N) = =N (h}) 7 (=N) = h((h}) " (=N)).
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Therefore, continuing from (A.46) and taking in account that (h/,)~!(—N) > 0 since by
lemma A.3.1 we have that (h/,)~!(a’,b') C (0,b), we get that

Do N ()T (N + ()T (M) 2 A(() 7 ().

p{gr =0}

and so in order to prove the claim in the case that (a) holds it suffices to prove that
(k)" (s) — 0 as s | @’ = —o0, since due to the fact that 0 ¢ D, we have by the lower
semicontinuity of h that lim; o h(t) = a’ = —oco. So let € > 0. Then A/, (¢) > —oo and
for all s < A/ () we have that € € {t € Dy|s < b/ (t)}, and thus for all s < A/ (¢) we
obviously have that

0 < (h)"'(s) =inf{t € Dp|s <K, (t)} <e.

We consider next the case that (b) holds. Similarly to (a) we consider the sequence
{fN}nexn C B(M) given by the formula fy = Nlae_py. In this case, AT (fy) =
I
h+(N)]].{;liu:b} and

vV

v = [ [ - nt e - /{ - V)

dp
— BN G =)
= [ 04 )N + A )] (G =)
> R )G = B

But (h/.)"(s) T bas s T b = +oo. Indeed, let € > 0. Then A/, (b — &) < 400 and for all
s > h!, (b —¢) we have that b — e ¢ {t € Dy|s < A/, (t)} and therefore

b> (b)) (s)>b—e,

which proves that limgtyoo (R ) "' (s) = b. Here, again by the lower semicontinuity of h
and the fact that b ¢ Dj, we have that limy h(t) = +o0o. This proves the claim in the
case that (b) holds.

So it remains to show inequality M} (v|u) < Hp(v|p) in the case that v < p

dv | —

,u{dl/:O}zO or 0 €Dy and ,u{dl/:b}z() or beD,  (A.48)
du du

Due to (A.47), the function f: M — [a/,¥'] C [—o00, +00] given by

a, in {g—z =0}
f=qn.(%), i {§eDp}, (A.49)
b, in {g—; =b}
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is well defined on M p-a.s.. In the set {Z—Z € Dy}, f is a supporting point of h at Z—Z and
therefore h* (f) = f - g—/’: - (g—;) and takes u-o.0. real values. So by (A.48) the only
case in which f may not take a.s. real values is when

(a) 0€Dy and @' =—-00 or (b) beD, and V' =+oc0  (A.50)

Consequently, if (A.50) does not hold, then p{|f| < oo} =1, and the composition h* o f
is well defined and given by the formula

ht(a), in {g—Z:O}
hWo(f)=qF % -n(4), i {#eDp}.
h* ('), in {g =0b}

But if it does not hold that 0 € D), and o/ = —oc0, then either 0 ¢ Dj, in which case the
first branch of (A.49) corresponds to a set of p-measure 0 by (A.48), or either o’ € R, in
which case by the formula for right semi-Legendre transform of lemma A.3.1 we obviously
have that in the set {g—; = 0},

dv dv
hH(f) =hT(d) = —h(0) = f-0—h(0) = f-— — h(=—).
(1) = (@) = =h(0) = £ -0~ h(0) = - 5 ~ ()
Similarly, if it does not hold that b € Dy, and b = +o00, then either b ¢ Dj, in which
case the third branch of (A.49) corresponds to a set of y-measure 0 by (A.48), or either
b € R, in which case by the formula for right semi-Legendre transform we have that in
the set {ZTUL = b},
dv dv
ht =ht)=bb-hb)=f - — —h(—).
(F) =1 (v 0) =715~ (5)
Therefore if (A.50) does not hold then in any case we have by (A.47) and (A.48) that
f,hT(f) take real values, the composition h*(f) = ht o f is well defined and we have
that

h+(f):f3:—h<zll:> ,  [—a.s., (A.51)
and therefore
Hawlp) = [ 1 (j:) du= | [f E h+<f)} . (A.52)

So, if f is bounded, as is for instance the case when —co < a’ < b’ < 400, then

Hp(v|p) < Hjp(v]w).

In the case that f is not necessarily bounded and (A.50) does not hold it suffices to
approximate f by an appropriate sequence {fn}%_; C B(M) such that

/ [fNjZ - h*(fm} a2 [ [f - h*(f)] dyi = Hi(vlu).
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So we set

fN = f]l{|f|§N}a N € N.

Then according to our convention that 2% (0) = 0 we have that

WT(fn) =BT ()L s<ny
and since (A.50) does not hold we have by (A.51) that

dv dv dv
Wt du = — —h* dp = h d
/ {fN dup (fN)} a /{f|<N} {fd/i (f)} 8 /{f|<N} (d,u) "

But p{|f] < +oo} =1 since (A.50) does not hold and thus since h > 0 we have by the
monotone convergence theorem that

dv

dv
lim — —h* }d = { — —ht ]d = Hp(v|p),
Jim [ o |5 e =il
as required.

So it remains to investigate what happens when (A.50) holds. We consider first the

case that both (A.50) and (A.50). We define then the sequence {fn}nen C B(
the formula

M) by
My (%) it {0<%<w)
fv= (2, it {y<q<b-gx)-

(o)

N/

it {b—x <3 <b}
and then for all N € N we have that

" (G — W (%) +h (%) 0< @ <w
In- 7_h+(fN) h(4%), F<Ep- &
N ub h (b— h(b—+ b 1M<d”<b
(bt (b—5) +hb-5), b-y <G <
By the formula above it follows that the sequence {gn} := {fn - 5% — hT(fn)}F—1
converges uniformly to h( %% ) in {

€ Dp,}. Indeed, we note first that { gn } is eventually

) in any Subset of { € Dy} of the form {d € [ag, bo]}, where
b). Also smce —a' =V =40 it follows that

349 € (0,b/2) such that

But then for all € N such that

identically equal to h(
[ao, bo] € (O,

Wy lio,60) <0 < Ry lp—s0,8)- (A.53)

< & we have that b/, (4) < 0, and so since obviously

1 dv 1
< (2=
N ~\duy N

it follows that

1 dv 1 1 1
h(5) Inl{aecry = (du_N) {%S%}h;(ﬁ)"'h(ﬁ)
1,1 1
< () +HR(5)- (A.54)



But lim_, th! (t) = 0. Indeed, since h is convex, it is Lipschitz continuous, and thus
absolutely continuous, in any mterval of the form [g,b —¢], 0 < ¢ < b/2. So, for all

0 < & < &y we have that h(dy) = h(e) + féo h!_(t)dt and thus
do
hn}) ! (t)ds = h(dy) — h(0) € (—00,0).
E—r

But h is negative in the set (0, o] and therefore the family of functions {1, 5,1 }o<c<s,
is a family of negative functions decreasing to 1o s,k as € | 0, and by the monotone
convergence theorem it follows that

do
/Oh'o h(69) — h(0) € (—00,0).

But then, if it were not true that lim o thy(t) = 0, since h/_ is negative in (0, do] there
exists € > 0 such that for all § > 0 there exists t5 € (0,6) such that tsh/, (t5) < —e,
and so there exists a sequence {t,}52, C (0,do] such that to = &y, 0 < ¢, < $t,_1 and
tph!, (t,) < —¢ for all n € N, which leads to a contradiction since then

50 o0
—0 < / ., ( dt</ Zh/ ne1) L, e 1) (t)dt
0

= —€;tn_l(tn1—tn)=—€;< tn_1><_€nz_:12__

So we indeed have that lim o th!, () = 0 and so by (A.54) we have that for all N > %,

1 1
gNlfav <1y —h(— = sup (gN(;v)—h — )
H lai=~d (N) u x: OSZ—Z(m)ﬁ% (N)
< Ly (i) "), (A.55)
- N TN
Similarly, for the right endpoint b, for all N € N we have that
o< (& _pp L ‘ <1
~ \dp {p—F<dz<ey — N

and therefore for all N > (%, in which case h/_ (b — %) > 0, we have in the set {b— % <
0
4¢ < b} that

1

h(b— N) gn < Nh;(b— N) +h(b— N)

and thus
1 1 1

H9N|{b—}v§d;§b} - h<b_ N) | Nhgr(b - N) (A.56)

But as before, we also have here that
. 1, 1,
iy b= ) =0



Indeed, first it is obvious that to prove that limit in (A.56) we can equivalently prove
that limy, (b — t)h/, (t) = 0. The calculation of this limit is similar to the one for the left
endpoint of Dj,. In particular, as before it follows by the monotone convergence theorem
that

b b—e
/ Rl (t)dt = lim Rl (t)dt = h(b) — h(b— dp) € (0, 00).
b—do €40 Jp—s0

So, if it is not true that this limit exists and is equal to 0, then since & > 0 in [b — do, b),
it follows that there exists a sequence {t,}52, C [b — dp,b) such that
1
to = b — do, (b—tn) < 5(b —tp_1), (b—tn)h! (t,)>¢e, VneN.

But this leads to a contradiction, since obviously for all n € N we have that (b —¢,) <
%(b— n1) iff b—t, <t, —tn_1, and thus

b
+OO > / h/ dt > / n—l)]]'[tnfl,tn)(t)dt
b*(;o b 6() n=1

—tn-1
> 62 e *z—:ZIeroo
Therefore lim, (b — t)h/, (t) = 0 and so by (A.56) it follows that

= sup
u  {b—g <3 <b}

1 1

By (A.55) and (A.57) we easily get the uniform convergence g, — h in the set
{0< g—; < b}. Indeed, let € > 0. Since h is continuous in [0,b] we can assume that the
number dy > 0 in (A.53) has been chosen so that

s,t€(0,8) = |h(t) —h(s)| < g (A.58)
and
s,;te(b—00,b) = |h(t) — h(s)| < % (A.59)
Next, by (A.55) and (A.57) there exists Ny € N, ¢ > %, such that
1 €
N Z No - HgN|{gZ§1{,} - h(ﬁ) Hu < 5 (A60)
and
1 €
But then for all N > Ny we have that
dv
=h|— , A.62
Il - (du) (b= ] (462




while for all x € {0 < g—z < +} we have by (A.58) and (A.60) that

) (50 <o =2 ()] e (57) -1 (o) <

and it similarly follows by (A.59) and (A.61) that

dv
\W"‘(w)’“

in the set {b — % < g—z < b}. Consequently, by the two inequalities above and (A.62) it

follows that
—h d—y <e€
gn dp

for all N > Ny which proves the uniform convergence gy — h in {0 < %}

sup
{0< g2 <b}

But now, since {gy} converges uniformly to h on the set {0 < % < b}, which set by
hypothesis supports the measure p, it follows that

[owau= | [fN : j—: - h*(fN)} du— [ n (j:) dyi = Ha(v]p),

which proves the required inequality in this case.

We investigate finally the case in which (A.50) is satisfied but (A.50) is not, since the
other case that’s left, i.e. the one in which (A.50) is satisfied but not (A.50) is proved
similarly.

So let’s suppose (A.50) holds and that (A.50) doesn’t. We define then the sequence
of functions {fx} by the formula

= R (), o<g<b-x
N .
(b= %), {b-% <2<}

By the proof in the case that (A.47) and (A.48) are satisfied but (A.50) is not, we know
that fy takes p-a.s. finite values and the composition

h+<fN):{h’+<ii>'f§Z—h(dZ% 0=gisb-g)
(b= )pb—5) —h(b—%),  {b-F < g <t}
is well defined. So,
- dv
gN = fN@_h+(fN)
- o<g <o
(= —b+ ) b= %) +h(b- %), -y <& <b}

and since (A.50) holds it follows by (A.61) that {gn} converges uniformly to h(%) in
the set {0 < g—; < b} as N — oo, and therefore

- d -
clim [ TG = = ),
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Now, if a’ # —oo, then the fN’s are bounded and the above limit proves the claim
in this case. Suppose, on the other hand that ' = —co. Since h > 0 and ¥’ = +oo it
follows that h(b) > 0. By the continuity of h in b we choose first § > 0 such that

b—d<t<b = |h(b)7h(t)|<@.

2
Next, given € > 0 we choose N, € N, N, > % such that
~ dv h(b)
H(gNE N h(dﬂ)) ‘{og%gb} u 2
and
~ 1
[ Gtz ptatod) — A (A.63)
In the set {0 < Z—Z < b-— Nis} we obviously have that gy, = h(g—:) > (0 while if
6,6 = 0] C [§-,b— 5], for all z € {b — 5 < 9% < b} we have that
v () = h(b)+ (@)~ ()~ ho) + (% ()
€ € d//L dl_t
YR RIUN

2 2

and therefore gy is non-negative in the set {0 < g—; < b}.

So, if we set fn := J?Ng]l{fN ~_n} € B(M) for all N € N we have by our additional
assumption AT (0) = 0 that

Wt (fn) = h*(st)l{fN5>—N}
and therefore
o, dv L [ dv 7 s
gN = fN@ —hT(fn) = (fNEdM —h (fN;)) Lz sony = 9817, oy 20

for all N € N. Now since (A.50a) does not hold, in the case ¢’ = —oo that we are
investigating, we have by (A.48) that necessarily u{g—z = 0} = 0 and thus u{ng >
—oo} = 1. Therefore {gy} is pointwise increasing to gy. p-a.s. and therefore by the
monotone convergence theorem we have that

li d gn.dpu.
N_I)I}rloo gn /~L—>/9NE 17

Therefore there exists N, € N such that

/gN;d/J > (/?JNECZN—E) :

But then for the function f := fx: € B(M) we have by (A.63) that
dv n 1
P =MD du= [ gnidp = (Ha(vln) = 2617 (2 ),
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which since € > 0 was arbitrary proves the variational characterization Hj, = H), of the
generalized relative entropy functionals for bounded functions.

We prove next that in the case that D+ = R, equality (A.38) holds, i.e. that we
can restrict the supremum in (A.37) on bounded and continuous functions f € BC(M).
First, by the formula of the right semi-Legendre transform

R, ifbe Dy, b <o
Dp+ = § (—o0, V], if b= +o00,b < +00, limpyoo(th’ — h(t)) < 400
(—o0,b'), otherwise

and it is obvious that Dy+ = R iff ¥’ = +00 or b € Dj,. To prove the claim it suffices to
prove that given distributions u,v € PM, a function f € B(M) and £ > 0 there exists
f € BC(M) such that

/fdu— /hﬂf)du > /fdy— /h+(f)du—5. (A.64)

So let pu,v € PM and f € B(M) and let {f,} be a sequence satisfying (A.36) of the
double Lusin lemma. Then by the definition of {f,} we have that

/ fodv — / fdv

i [ de— [ (P (A.65)

and so if we show that

then by choosing f = fn, for some ng large enough, (A.64) is satisfied. But indeed,
h™ is continuous as a convex function with proper domain Dy+ = R, and so obviously
ht(fn) — hY(f) pointwise p-a.s. But h™ is bounded on compact intervals as a con-
tinuous functions and so since |f,(z)| < || f|lu for all n € N and all € M we have
that
[P (fa)ll < sup  [AF(E)] < 400
=l St Nl

for all n € N. Therefore (A.65) follows by the bounded convergence theorem. This
proves (A.38) in the case that Dy+ = 4o0.

We prove next that for measures v, u € PM such that v < p, (A.38) continues to
hold even when Dj,+ # IR. We note first that since (—o0,b’) C D+, for all f € B(M)
the function A*(f) is bounded below and so the integral [ h™(f)dp is defined for all
f € B(M) and

W) LN = / B (f)dp = +oo.

Consequently, functions f € B(M) such that h*(f) ¢ L'(u) do not contribute in the
definition of H), and H}, since they give [ fdv — [h*(f)du = —oo and obviously for
functions f € B(M) such that h*(f) € L'(u) we have that

i{f SV} = p{f € Do} = ph*(f) < 400} = 1. (A.66)
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We separate cases on whether Dy, + = (—o0, V'] or (—o0, V'), b’ < +00.
Dj+ = (—o00,]: Since b’ € Dy+ we have that b’ < 400 and h* (b') < 400, and by (A.66)
we have that

| flle < fF <V, p—op.

Let {fn,} € BC(M) be a sequence satisfying (A.36) of the double Lusin lemma for the
function f and the measures u,v € PM. We set ]?n := fn N[ fll Lo (u)- By the definition
of the L>-norm we have that pu{|f| > || f|lz~w} = 0 and since v < p it follows that
V{11 = flL=gn} = 0, and thus

£y = inf {C > 0] v{|f] = C} =0} < || fll1=(p0)- (A.67)

Then,
=l < ful@) < W fllpeeqy <V

for all x € M. Also, by the definition of {f,} we have that f,, — f v-a.s. and therefore
fa NMfllLewy — FASfllLewy =, v-o.B..

It follows by the bounded convergence theorem that

But by (A.67) we have that

[t n Sy < [ Fadv < [ g

for all n € N from where it follows that

lim /ﬁldu:/fdu.
n——+4oo

On the other hand,h™ is continuous and bounded on [—| f||.,?'] and therefore since
fn — f p-as. and

sup [|WF(f)llw € sup [BF(E)] < +o0

neN =l lu<t<py
it follows by the bounded convergence theorem that [ B (fo)dp — [ hr(f)dp.
D+ = (—00,V) # R: By (A.66) we have that —||f]l, < f < ¥ p-0.3.. Since b/ ¢ Dj+
we have that limyy AT (¢) = +o00. Therefore since h is convex there exists dy > 0 such
that AT positive and increasing in [0/ —Jg, b"). So we set fs := fA(H —§) for all § € (0, d).
Since v < p we obviously have that || f||ze () < [|f]|zeo(n) < b and therefore f5 1 f in

L>(v) and in L*°(u) as § | 0. In particular [ fsdv — [ fdv as § | 0. Furthermore, for
all § € (0,0¢) we have that

/Hmmmf wm@+/ h (f5)dp
{f<b/=d0} {b/—8o<f<b'}

since obviously f = fs5 in the set {f < b — o} for all 6 € (0,0p). But in the set
[b' — 89, b") the function h™ is positive and increasing and so since { fs}o<s<s, increases
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to f p-a.s. as & decreases to 0, it follows that in the set {' — dp < f < b'}, the sequence
{h"(f5)}o<s<s, is increasing to h*(f) p-a.s. as § decreases to 0. So by the monotone
convergence theorem we have that

tiw [0t (g = [ B () + lim W (f)di
310 {f<b/'—60} 3O b —so<f<b'}

/ W (Pt [ W (f)dp
{f<b' =60} {b'—o<f<b'}
= / h*(f)dp.

Therefore, given € > 0 there exists ¢ > 0 such that

/fadV—/h+(fa)duZ /fdu—/h+(f)du—€

Byt he double Lusin lemma now, there exists a sequence { f,}52; C BC(M) such that

N fsllu < fn < sup fs(z) <b -4
zeM

and such that f, — fs in L'(u) and L'(v) and p-a.s. and v-a.s.. Thus, since h'
is continuous and bounded in [—||f5||u,d — ] it follows by the bounded convergence
theorem that

ngrgoo{ [ tutv [ h*(fn)du} — [ gsav [0 Gyan

Consequently, given ¢ > 0 we can find a continuous function f € BC (M) such that

[ v [0 o= [ rav= [0t (au-e,

which completes the proof of (A.38) in the case that v < p.

We suppose finally that Dj,+ # R. Then obviously b = +o00 and (A.39) holds. Let
w € PM be such that suppyu = M. It remains to prove that for all v € PM (A.40) is
satisfied. Here we consider separate cases in whether Dp+ = (—00, '] or (—o0,b’).
Dp+ = (—o00,V']: As we have seen, function f € BC(M) such that f ¢ L'(u) do not
contribute to the supremum in the definition of H} and so according to (A.66) we can
restrict the supremum in (A.40) to functions f € BC(M) such that f <V < +oo p
o.8.. But for any f € BC(M) such that f < b < 400 p a.s. we have by the continuity
of f that f < b everywhere on suppy = M and therefore we can write that

" _ _ +
Hi, (v]p) _feBC?]\l};, fgb/{/fdv /h (f)d/i}.

Therefore, if v = v, + v is the Radon-Nikodym decomposition of v with respect to
with v, < @ and v4 L pu then

H (v = dVge dvs — [ hT(f)d }
r(v|p) feBC?% ffb/{/f +/f / (f)dp

sup { [ favac— [ h*(f)du} N
feBC(M), f<b feBC(M), f<v
= HjVac|p) + b'vs(M).

,\
INx
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But as we have seen, equality (A.38) holds for measures v,v € M™ (M) such that v < u
and therefore H} (Vac|pt) = Hn(Vac|pt). It follows that

My (v|p) < Hn(Vaclp) + b'vs (M) = Hy, (v]p), (A.68)

which prove one of the inequalities of (A.40), with (%) being the only inequality that
appears.

Let now My C M be a Borel set such that vs(M \ M) = 0 and p(M,) = 0. For all
f € BC(M) such that f < b in M we consider the function

F=V1, + flye = (0 = )L, + f € B(M).
Then obviously f = f p-a.s. and consequently also f = fz/ac—a.s., and therefore
/ fdv — / W (f)dp / fdvae + / fdvs — / K (f)dp
= /fduac—/h"’(f)d,u—i—b'us(M).

So, if given € > 0 we pick f. € BC(M) so that f. < b and

Hvaclit) = Hivacli) < [ fedvae = [ 100+ 5
then

[ v [t Edn = [ v~ [0 (gpdu+ v

> Hp(Vaclp) + V(M) — g

Therefore if we prove that there exists a sequence {f, }nen € BC (M) such that

/fndu—/h+(fn)du—>/ﬁdu—/iﬁ(ﬁ)du, (A.69)

then by choosing ny € N large enough so that

/fnodV*/hﬂfno)dHZ/ﬁdu—/h*(fg)du—%

we get that
Hy (v|p) = /fnod” - /h+(fno)du > Hn(Vaclp) + V'vs (M) — e = 1, (v|u) —e,

which since € > 0 was arbitrary proves and the other inequality of (A.40). To complete
the proof of (A.40) in the case that Dj+ = (—o0,b'] C R it remains to prove that there
exists a sequence {fn,}nexn € BC(M) such that (A.69) holds. By the double Lusin
lemma for 1j, there exists a sequence {gn }nen € BC(M) such that g, — Ly, p-a.s.
and v-a.s. and sequences {K, }nen and {A,}nen of compact and open subset of M,

respectively, such that K,, C M, C A,, 1k, < g, <14, and

/|gn - ]lMs

dv < p(An \ Kn) Vv(A, \ Kp) <

S|

dMV/|gn — 1y,
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for every n € N. We define the sequence {f,} C BC(M) by the formula

fn = (b, - fs)gn + fe

for all n € N. Then obviously f, — f. p-a.s. and v-a.s. as n — +oo and

—Nfellw < f- < fu <V

Therefore by the bounded convergence theorem we have that f fndv — f fedv, and
since

sup |27 (fo)llu < sup  [RF()] < +o0

neN = fellu<t<d’

we have by the bounded convergence theorem again that

[ — [ (.

This proves (A.69) and completes the proof of (A.40) in the case Dj+ = (—o0,b'].

Dp+ = (—00,b') # R: Firstly, in this case also the supremum in the definition of #}
does not change of it is restricted to functions f € BC(M) such that h™(f) € L (u).
But since in this case b’ ¢ Dj+, we have that f < b’ p-a.s. for every f € BC(M) such
that AT (f) € L'(u). So inequality (A.68) is also true in this case. So let £ > 0. We
want to find f. € BC(M) such that

[t = [0 (£ = 1y ) — . (A.70)

We write again v = v, + v, for the Radon-Nikodym decomposition of v with respect to
w and pick initially f € BC(M) such that

3

/fdvac—/h+(f)du > Hi(Vacl) = 7.

In particular h*(f) € L'(n) and therefore f < ¥’ p-a.s.. Since h*(b') = +o00 and h*

is convex, h™ is increasing in some interval (b’ — &y, b’), o > 0. Since f < b’ p-a.s. the
1

So [ fadVae — [ fdva. and if ng is such that 7%0 < o then the sequence {h*(f)}n>n,

is also increasing and therefore [ At (f,)dp — [ h*(f)dp by the monotone convergence

sequence f,, := fA(Y ——=) € BC(M), n € N, increases p-a.s., and therefore also vg.-a.s..

theorem. So there exists n; > ng such that

/fndVac - /h+(fn)d,u > Hin(Vaclp) — %

for all n > ny. We pick next a Borel subset My C M such that vs(M \ M) = 0 and for
every n € IN we set

F o= (b’ . %)]lMS + fulnge = (b’ - % - fn) Las, + f € B(M).
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Then obviously f, < fn <V - % and since vs L p we have that ﬁl = fn pa.s. for all
n € N and therefore for all n > n; we have that

/ frdv — / ht(fn)d / Fadvae + / frdvs — / B (fo)dp

[ dudvac— [0 G+ (1 = o),

1 €
> HpVae|p) + (b' - ﬁ)IJS(MS) -3
By choosing next ng > ny such that vs(My)/na < /6 we have that
~ ~ €
[ e = [0 R = Ao vacli) + 0 (01) - 5,

But since

1
_Hf”u < fnz < fnz < V- —
n2

and b’ — i € Dj+ we have moved away from the point & AT and exactly as in the case

where b € Dj+ we can approximate f,, x and v-a.s. and in L'(v) and L' () by some
continuous function f. € BC(M) such that

~ ~ €
[t [0tz [ Fudo— [0 uin -5,
So f. is the required function in(A.70), which completes the proof. O

The full solution of the variational problem

vV — + 12
er%I?M){/fd /h (f)du}7 € PM

is given by the relative h-entropy functional Hy, : PM x PM — [0, +0o0] given by the
formula

dv ac : h(t ¢
Hy(v|p) = /h( dum>d 1w+ [t%lféo i)} Vg|u(suppp) + 00 - vs(suppu©), (A.71)

where of course v = v,|, + V4|, is the Radon-Nikodym decomposition of v with respect
to p with v4), < p and vy, L p and we make the usual convention 0 - (+00) = 0 of

integration theory.

Proposition A.3.4 Let h: R — [0,00] be a lower semicontinuous and convex func-
tional with non-trivial proper domain Dy, C [0,00). Then

Hy(v|p) = er%pM>{/fdy/h+(f)d“}

where Hy, is the relative h-entropy functional defined in (A.71).
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Proof It is easy to see that

h(t) {+oo, if D+ = IR,
sup —= =
t>0 t

b :=sup D+, if Dy #R

and therefore by the previous proposition it follows that if suppp = M then the functional
Hy(-|u) : PM — [0, 00| satisfies

Hyp(v|p) = /h(diéﬁ“‘)dw { lim h(t)} Veju(M)

for all v € IPM, where of course v = v, + V|, is the Radon-Nikodym decomposition
of v with respect to p.

So it remains to prove that if ¥’ < +o00, suppp # M and v £ p with v(suppp®) > 0,
then

Wi = sw | [ gav= [ = v

feBC(M)

Since v is a finite Borel measure in a metric space and v, := v(suppu®) > 0 there exists
a closed set F' C suppu® such that v(F) > v, /2 > 0. But then the sets F' and suppu are
closed and disjoint subsets of the metric space M and therefore for every N € IN there
exists a continuous function fy : M — [0, N] such that f|supp, =0 and f|p = N. So,
by making again the additional assumption h*(0) = 0, we have that for every N € N

i) = [ gvdv = [0 (r)du= [ fodv, = No.(F).
But vs(F) > 0 and therefore by taking the limit as NV 1 oo it follows that H}/ (v|u) = co.0

Proposition A.3.5 (Pinsker’s Inequality) For every pu,v € PM the relative entropy
H:PPM — [0,400] satisfies the inequality

[V — ullzy < 2H(v|p),
where || - ||Tv is the total variation norm ||v — ul|lryv = |v — p|(M).

Proof The mapping
L'p) 3 f > fdp € Moy (M)

is an isometric embedding for all u € M (M), and therefore if v < p we have that

dv
v = pllrv = H(dl) dp :/
H TV

For the function h(t) = tlogt —t 4+ 1 we have that h(1) = 0, h/(t) = logt and h”(t) = 1.
Therefore by the integral representation of the remainder in the first order Taylor’s

¢ — S 1 — S
h(t):/l (ts)ds(tl)Q/o ﬁd&

dv
— — 1| dp.
dp ‘M

theorem for h,
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1/

Therefore by setting f := ¥ we have by the Cauchy-Schwartz inequality that

lv—lidy = (/f—1|du) o[ [1r =110 9uas) |
- 4(/01/,/1+1_518f—1|¢<1—s><1+<f—1>s>duds>
< 4/0 |f—1( 1_de8//1—s Y1+ (f — 1)s)dpds
— 4 [ / (1= s)ds = 2H(v|p),
and the inequality is proved. 0

Another useful property of relative entropy is the following super-additivity property
with respect to the marginal distributions in product spaces.

Proposition A.3.6 Let M := My x My be the Cartesian product of the polish spaces
M;, i =1,2, let uy; € PM;, i = 1,2 and let ©* : M — M; be the natural projections.
Then for every v € PM we have that

H(v|m @ p2) > H(miv|m) + H(xlv|ps),
with equality in the case that v is also a product measure.

Proof Set p := p1 ® po. If H(v|pw) = +oo we have nothing to prove, so we suppose
that H(v|p) < 400, in which case in particular we have that v < p. Then, necessarily
V1 < p, since if pi(A;) = 0 for some measurable set A; C My, then p(A; x My) =0
and therefore v (A1) = v(A; x My) = 0. Similarly we get that v < ps. Furthermore,
as we will show, if {v, }rens, is the disintegration of v with respect to its first marginal
vy, i.e. if {v, }oenr, is the unique vq-a.s. defined family of measures satisfying

/ F(a,y)dv(z, y) = / fa,y)dva(y)din(x), ¥ feBOM), (AT2)
M1><M2
then

vi{e € My |ve(As) =0} =1, ¥ Ay €N, (A.73)

where N, is the set of all Borel sets of zero po-measure. Indeed, if some Borel set
As C My we have that po(As) = 0, then v5(Ag) = 0 since vo < g, and therefore

= VQ(AQ) = /VI(AQ)dyl(ﬁ),

which proves (A.73). Since M, is a polish space it is logical to expect that we can pass
the ”for every” in (A.73) inside the measure v; as an intersection, in order to get

V1< (] {zeMi|va(As) 20}) =1,

AseN,,
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As we shall see next, this is indeed

which implies that v, < ps vi-a.s. for all x € M
e X
11

true, at last for z € M, such that 24 (z) # 0. We define a function g : M — R by

the formula
e N XOEL
gla,y) =4 ax@ G
0, g(x) =0.
for every (x,y) € M. Then obviously gd”1 = g'u]l{dul 20} and for every f € B(M) we
dpy
have that
J[ f@vs@ it = [[ 1@ G @diin @)
dl/1
d d
- [[t@nf (ooo)(dm< ) )dpa )i (2)
dv
/fa:y (oOo)(dl( ))dﬂ(m,y)
G (@) dv(z.).

/fxy Ooo)

Consequently, by the uniqueness of {v, }, whenever (A.72) holds, it follows that v;-almost

=g(

for every x € M, for which %( ) # 0, we have that
dv, = g(z, - )dps.

By the definition of g and the above equality it follows that
dl(x ) = dvy r dvy
du Y dpy > dus
) e M.
Therefore, by the definition of relative entropy and the above expression of the Radon-

p-almost for every (

Nikodym derivative s‘—“ we have that
dvy
log —dy— log d—( x)dv(z,y) + logd (y)dv(z,y)

/logj— )dvi (z // dVT y)dvz(y)dv (z)

() + / H(vgla2)don (2)

H(v|p)

> H(vilp) + H(velp2)
where the last inequality follows from the linear convexity of H
H </ Vpdyy () ,u2> < /H(V$|M2)d1/1(a:)7

for all {v;}teenr, € PMs, vy € PMy, ps € PMs. The case of equality is easily verified

O
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A.3.2 Entropy Production and the Dirichlet Form

In this section we review some basic results on entropy production and the Dirichlet
form in the context of Markov jump processes, as found in [25]

Proposition A.3.7 Let (P,)i>0 be a Markov semigroup on the Polish space M admit-
ting an invariant measure m € PM. Then for any initial distribution p € PM the
relative entropy of the push forward uP;, t > 0, with respect to the invariant measure
does not increase in time, i.e.

H(puP|m) < H(p|m), Vit>0. (A.74)

Consequently, if H(p|m) < oo then pP, < w for allt > 0.
If in addition M is countable and (Py)¢>o is irreducible then the equality

H(uPulw) = H(pim) < +o0
holds for somet >0 iff u = .

Proof If H(u|m) = oo there is nothing to prove, so we assume that H(u|r) < 400 and
fix t > 0. Then p < 7 and for any bounded function f € B(M) we have that

/ fduP, / FdPFdp(x / / y)dP?F (y)dm (z)

dp
[ @ rwyinls @ Py, (A.75)
Since 7 is (P;)-invariant the distribution 7o := 7[0 ® P;] € P(M x M), t > 0, has left
and right marginals equal to m and by the disintegration theorem we can write

/ Fdro. = / f(a,y)dQY(x)dn(y), ¥ f € B(M x M),

for a unique m-a.s. defined Markov kernel Q; € L(m;IPM). Obviously, the Markov
operator induced by Q; on L?(r), i.e. the operator Q; : L?(7) — L?(r) given by

Qul () = / fAQY, yeM

is the adjoint P;* of the induced Markov operator P; : L?(7) — L?(7), since

Qe = [ 1WQisw)n) = [ [ a1 )i @yin(y)
[ s@swareant - / 9(@)Pof (2)dn(y) = (P, )

Now, according to (A.75) and the definition of Q) = P;* we have that

/ fdupPy = / (@?;)(y)f(y)dﬂ(y)
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for all f € B(M), which implies that uP; is absolutely continuous with respect = with
Radon-Nikodym derivative given by

S =P (A.76)

Since the function h : Ry — R given by h(u) = ulogu is convex we have by Jensen’s
inequality that

(i) = faom) = [ Jore = ()

and so we have that

H(uPy|r) = /h(PjZ’Z)dw < /P; [h(;i/;ﬂdw: /h(f{i)det’*. (A.77)

But for all f € B(M) we have that

/ fdnP; = / P fdr = / fPldr = / fdn

and therefore 7P} = m, which by (A.77) gives the required inequality H(uP|m) <
H(ulm).

We suppose next that M is countable and (P;) is irreducible and investigate the case
of equality. Obviously (A.74) holds as a finite equality for ¢ > 0 iff

h(P:?;) =Py {h(j’;{)], T — a.s..

But since h is strictly convex, this holds iff

d

°E — const., (P;)Y-a.s., m-a.s. Vy.

dm
But if (P;) is irreducible this implies that x4 = 7. Indeed, given z,y € {u € M|r(u) > 0}
we have that there exist constants c;, ¢, € R such that
dp

dp 2 *
s (Pj)*-a.s. and I = v (Py)Y-a.s.. (A.78)

Since Py is the adjoint of P, in L?(r) for all x,y € M we have that,

”T(y)Pt*(y,m) = <I]-{y}a Pt*]-{x}>7r = <Pt]]-{y}, ]]-{x}>7r = ”T(x)Pt(xa y)

and since (P;) is irreducible we have that Pi(z,x) A Pi(z,y) > 0 for all £ > 0 and all
x,y,z € M. So if we choose z € M such that 7(z) we have that P} (z,z) A Pf(y,z) >0
and therefore by (A.78) we get

9t )

Cdp, o dp
o L) == Pl

Cz_dﬂ _dﬂ'y

Therefore Z—“ is 7m-a.s. constant, and then necessarily de — m-a.s., which gives y = 7 as
i dm

required, and completes the proof. O
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In what follows we restrict our attention to Markov jump processes on a countable
state space M. So let (P;);>o be the Markov semigroup on M corresponding to the
Markov jump process defined by a transition kernel P : M — PPM be and a jump rate
function A : M — Ry bounded on each communication class of the kernel p. In this
way, if {M;}7,, m € NU {co}, is the partition of M into the communication classes of
p, then \ satisfies

Ai = sup Mz) < 400, Vi=1,...,m.
xeM;

The generator L : L(M) — L(M) of (P;), given by

Lf(z) = Y [f(y) = f@)]A(x)p(z,y)

yeM

defines bounded linear operators L; : B(M;) — B(M;) for all i = 1,...,m with norms
| Li]| < 2\, since for all f € B(M;), z € M; we have that

Lif(@)] < > £ ) = F@) A @)p(z,y) < 27 Flus

yeM,;

and obviously for all f € B(M) we have that
Lf = Li(fla)la.
i=1

Furthermore, if 7 is an invariant measure then dm; := 1,dm is an invariant measure for
alli =1,...,m and the operators L; induce bounded operators L; : L?(m;) — L?(m;).
In this context by saying the adjoint of L in L?(7) we mean the operator L* : L(M) —»
L(M) given by

m
L f =Y Li(fla) 1,

i=1
for all functions f : M — R. As we saw in (A.76), given a Markov semigroup (F;)
the time evolution f; := det, t > 0, of the density f := g—ﬁ of u with respect to a
(P;)-invariant measure 7, is given by f; = P/ f, t > 0, where P;" is the adjoint operator
of the Markov operator P, : L?(r) — L?(w). Therefore, if we recall that since 7 is
(P;)-invariant the adjoint L* of L is the generator of the adjoint semigroup (P;"):>0, we

see that (fi)¢>0 is a solution of the initial value problem

d
fo=2
atf t = L*ft
This observation allows us to deduce a simple estimate on the time derivative of the
entropy.

Proposition A.3.8 Let (P;)i>0 be the Markov jump semigroup corresponding to some
skeleton kernel p: M — IPM and some jump rate function A : M — IR bounded on
the communication classes My, i =1,...,m, m € NU{oo}, of (P). Let \: M — R
the function given by \ = > Nilas, and suppose that (P;) possesses an invariant
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measure © € PM such that X\ € L*(n). Then for every distribution y € PM such that
A€ LY (p) and H(p|m) V Hy(p|m) < +oo, where Hx (u|m) is the weighted entropy

~du du
b = — log —
Hs (ulm) /)\d7T og dﬂdﬂ'

we have that

t+s

t+s
H(pPrys|m) — H(uPy|m) = / <fr,Llogfr>ﬂdrszt (V frs L\ fr) ndr

where f; 1= dgf‘, t >0, is the density of uP, with respect to w. Moreover, for allt > 0
we have that

Fo L) s Z [\/ft —VFe(@) ] * L, y)(a). (A.79)

z,yeM

Proof By the definition of the relative entropy and the remark prior to the statement
of the proposition we have that

H(puPrys|m) — H(uPy|7w) = // Os[frlog f|drdm = // (1+1og f.)L* f.drdr

Let as before M = | |\ | M;, m € NU{co}, be the decomposition of M in communication
classes. For all y € M, we have that

EHG < S ) - LI @) < + Y @)
xeM zeM:x#y
< Nfr(@) +2Aw) D fr(@)pt (g,
reM

where p* is the adjoint of p in L?(r) and so

L) < Zx(m )+ Loy () 3 oo ) i (9)
=1 zeM;
= /_\( Zfr y,x
xeM

Therefore for all s > 0 we have that
|L*f7“| < j‘fr + Ap* fr

Note that since M; are the communication classes of (P;) we have that P¥(M;) = 1, (x)
forall s >0, 2 € M and i =1,...,m. So since A € L' () we have that

/Xf,dﬂ /Z)\ P (M;)dp(x)

I
—
>~
ISH

=
20
I
=
>l
S
oW
:U
R
&‘
7;
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Therefore the non-negative function \f, is in L'(7) and likewise

/ W hdr = S a0 S A@ptma)ry) = 3 S H@A @, y)r(@)

yeM rzeM yeEM zeM

= > M@ fr(a)w(@) Y pla,y) < Y A@) fr(@)m(x)

xeM yeM xeM

/S\frdﬂ':/j\du<+oo

for all s > 0. This proves that |L*f,.| is in L!(nx)-integrable function with

/|L*fr\d7r < 2/;\du.

Therefore, by Tonelli’s theorem we have that

t+s t+s _ _
// |L* frldrdr < / 2//\d,ud7“ = ZS/Adu < 400
t t

which allows us to apply Fubini’s theorem to obtain

t+s t+s
/ / L* fodrdr = / / L* fdrdr = 0
t t

since L* f. € L' (), L* is the adjoint of the generator L and 7 is an invariant distribution.
We have proved thus so far that

IA

t+s
H(uPrss|m) — H(uPylr) = / /t (L* f,) log f,drdr. (A.80)
But

(L f)log fr(y) = logfr(y) Y L*(y,2)fr()

xeM
= > L*(y,x)fe(x)log fr(y) — Ay) fr(y) log fr(y)
zeM,z#y
= Ayp"fr(y)log f(y) — My) f+(v) log fr(y) (A.81)

Now, if we denote by R the function E(u) =h(u) —u+1=ulogu—u+1,u >0, then
we have that

Mh(fo) = Mh(fo) = Mo + A
Since by our assumptions A € L () N LY (7) and

1 (- _
- /)\dﬂ' < /)\h(fo)dﬂ = H;5(ulm) < +oo,
we have that Mu(fo) = A(fo) — Afo + A € L (7) and therefore

Hy(plm) = /Xﬁ(fo)dﬂ < +o0.
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We shall show that the weighted entropy Hy (1P |w) does not increase with respect to
time r > 0. Indeed, since h is convex and non-negative, if we set dm; := 1,7, dm, we have
by Jensen’s inequality and the monotone convergence theorem if necessary that

Hawrln) = [N < [Ap i /Min[ﬁ(fo)}dW
Z\/P* (fo)]dm: = i / (fo)dr: P

i [ foddm = [ Ntfo)dm = Hs ).

Ms HMS

=1

Therefore for all » > 0 we have that

0< [ hfy)dr = Fa(uPylm) < Pzl < oc
which since for all 7 > 0 we have Ah(f,.) = 5\71(]‘}) +Afr — Aand A\f, — X € L(7), gives
us that Ah(f,) € L'(r) for all » > 0. This proves that the second term in the right hand

side of (A.81) is in L!(r) with

IV Ly < Ha () + / Ad(je+ ).

Consequently, by Tonelli’s theorem we have that

/ /t " A log £ drdr /t o / INB(,)|drdr

S|:H/\(/L|7T) +/5\d(u+7r)} < +o0. (A.82)

IA

For the other term we note that by the inequality
w < e’ +ulogu—u, Vu>0,veR,
we have that
A- (P fr) -log fr < My + Ap™ fr) log(p™ fr) — Ap™ fr-
Now, obviously Af, — Ap* f, is in L!(7) and
1 *
—00 < — /)xdﬂ' < /)\(p*fr)log(p*fr)dw < /p* [h(f)]Ndm = /)\h(fr)dﬂ' < 400,

where equality (%) follows from the fact that 7 is (P;)-invariant iff the measure dmy :=
Adr is invariant for the skeleton kernel p. Therefore the function A\p* f;- log f;- is bounded
above by some L!(7)-function and consequently its positive part is in L (), with

/(Ap*fr log f,) "dr < //Alh(fr)Idﬂ < Hx(ulw) + /Xd(u +m) < 400
for all » > 0. Therefore the positive part of

[t,t+s] x M 3 (r,y) = Ay)p* f(y) log fr(y)
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is in L' (1,445 (r)dr ® m). Together with (A.81) and the fact that the function

[t,t + ] x M 3 (r,y) = Ay)fr(y) log fr(y)
is in L' (L 444 (r)dr @ w) by (A.82), this allows us to apply Fubini’s theorem and inter-
change the order of integration in (A.80) in order to obtain that

t+s t+s
H(uPyal) — H(uPy|m) = / (L* fr log f)ndr = / (f, Llog f,)ndr,
t t

as required, where the last equality holds due to the fact that L* is the adjoint of L in
L?(). To complete the proof of the first claim of this proposition it remains to prove
that for all » > 0 we have that

fr-Llog fr <23/ fr - L\/fr,

and indeed, by the elementary inequality
allogh —loga] < 2/a[Vb—a], Va,b>0,

we have that

fr(@)Llog fr(x) = fo(x) Y [log fr(y) —log fr(z)]A(z)p(w, y)
yeM
< 2 V fr(x) Z[V fr(y) Y fr(w)])\(x)p(x,y)
yeM

= 2/fr (@) LV Fr(@).
It remains to prove that (A.79). Since L* is the adjoint of L in L?(7) we have that
2<ﬁaL fr>7r = <\/f777L f7'>7r+<\/JTT’L*\/JTT>ﬂ'
= 3 V@ VAW - V@] Ly

St
+ 3 Vi V@) = VEW)| L (v, 2)7()
- ZM VE@ VW) - VE@)] L y)r(@)
iyZeM VIEW) V@) = V)] Le,y)r@)
= - Y [VE@ - VRG] b,
as required. o -

In what follows we restrict for simplicity we restrict attention to Markov jump pro-
cess with uniformly bounded jump rates. Then the generator L of any Markov jump
semigroup Py : M — PM, t € R, defines a bounded operator L : L?(w) — L?(x) for
any invariant measure m € PM of (P;), the Dirichlet form of L is a bounded operator
and the estimate proved for the entropy production can be rephrased in terms of the
Dirichlet form.
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Definition A.3.4 Let (P;);cr, be a Markov jump transition semigroup with bounded
jump rate function A : M — R, on the countable state space M with generator L and
let 7 € PM be an invariant measure of (P;). Then the Dirichlet form associated to L is
the operator D : L?(7) — R given by the formula

D(f) =, Lz =— Y fl@
reM

Of course the Dirichlet form ® is well defined since the generator L is assumed a
bounded operator, and thus

DU < Il 2 1L 2 < IL] / Pdr < +oo.

Proposition A.3.9 The Dirichlet form ® : L?>(r) — R associated to the generator
L : L*(n) — L*(7) is positive and given by the formula
1 2
=5 D W~ f@)] n(x)L(z,y) > 0. (A.83)

z,yeM

Proof Let f € L?(w). Then since 7(z)L(z,y) = m(y)L*(y, x) for all z,y € M we have
that

2<vaf> = <f7Lf>LZ(7r +<L f7f>L2 (m)
= Y f@[f) — f(@)] Lz, y)n(x)

x,yeM

Il

|
=
—~

&
S—

|
=

NS
=

()

3
—~
S—
h
—~

&
s
o

as required. O

In terms of the Dirichlet form the upper bounded on the entropy production of
proposition A.3.8 states that for every initial distribution y € PM of finite relative
entropy with respect to the invariant measure m we have that

t+h
H(uPn|m) — H(pPilm) < —2 / O(v/f2)ds, (A.84)

where f, := dZP

the Dirichlet form.

. The following proposition describes some basic properties of

Proposition A.3.10 The Dirichlet form ® : L?(w) — Ry is linearly convex function
and satisfies the following properties:

(a) D(f) =0 iff f is constant on the positively recurrent communication classes of M.
(b) For any 1-Lipschitz function F': R — R we have that

D(Fof)<D(f)
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Proof To prove that ® is convex let {f;}52; C L?(7) and let (p;)ien be any probability
measure on N. By Jensen’s inequality, for each z € RN we have that

[e3¢] 2 [e3¢]
(ZPJ%) <D pi7
j=1 j=1

and therefore

[e'e] %) o 2
g(Epifi) - ZM[‘_lpjfj(x)—lejfj(y)} m(z)L(z,y)
_ [ Py [fj(m)—fj(y)]] (@) L(z,y)
z,yeM *-j=1
< 3 STpilfi@) — £iw)) n(z) Lz, y)
z,yeM j=1

= ij”D(fj).

(a) We suppose first that f is constant on the positively recurrent classes of L, taking
the value ¢, on the communication class C, of z € {m # 0}. Then by the explicit formula
(A.83) of the Dirichlet form we have that

o) = 3 XY U - i@ r@)y)
z:7(2)#0 y: L(z,y)#0

= % Z Z [cs — cz]zw(x)L(x,y) =0.
wim () #

0y:L(z,y)#0

Conversely suppose that D(f) = 0, let C C M be a positively recurrent class and let
2 € C. Then w(z) > 0 and L(z,y) > 0 for all y € C and it is obvious by the explicit
formula (A.83) of the Dirichlet form that f|c = f(z) is constant on C. Finally (b) also
follows obviously by the explicit formula (A.83) of the Dirichlet form. O

In the case that the invariant measure m € IPM is reversible, i.e. when it satisfies
the detailed balance equations, there exists a variational formula for the Dirichlet form
D(f) of non-negative functions f € L?(x).

Proposition A.3.11 For every positive function f € L?(x),

o) =sup (— (5 Lh) ) ) = —inf > 20 i),

where the supremum is taken over all bounded positive functions bounded below by a
strictly positive constant.

Proof We prove first that the supremum in the right hand side is bounded above
by the Dirichlet form ©(f). So let h : M — R4 be a bounded function such that
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inf,ep h(x) > ¢ for some constant ¢ > 0. We consider the function ¢ := %]l{f>0} > 0.
Then since the invariant measure 7 is assumed reversible, the transition probabilities P,
t > 0, of the generator L are self-adjoint in L?(m) and therefore

2
<f Pth>L2(ﬂ.) = < > :<17Pt(f'¢))>L2
= %(<£ (fw >L2(7r +<Pf ’fw>L2(7r )
- . Z PO )t >+§ S L @f@@n)
M xeM
-5 Z ()P ()
1 y
+5 “,ZGM ) TV @r@)(@)
1 ¥(z) x x,y)m(x
> ZM o )+ w(y))ﬂ )W) Pyl y)m ().
But for all @ > 0 we have that a + % > 2 and therefore
_<%7Pth>L2(ﬂ.) <- Z f(x)f(y)Pt(xvy)ﬂ-(I) :_<faptf>L2(7r)

By adding || f[|z2(x) = (f—hz, h)12(x) to both sides of this inequality and dividing by ¢ > 0
we get

2 h—Ph f—Pf
<f7 n Y2y < (f, ; Y 2 ()
Since we assume the jump rate to be bounded W converges uniformly to Lh and

L ”;_f converges to Lf in L?(m) and therefore by taking the limit as t — 0 in the
inequality above we get that
f2
< '’ Lh>L2 (m) < - <f7 Lf>L2(7T) = @(f)

Since h was arbitrary this proves the required inequality.

For the converse inequality we note that in the case that f is admissible in the
supremum, i.e. when it is bounded and bounded below by a positive constant, we can
take h = f and therefore

f? f?
@(f) = _<f7Lf>L2(7r) = _<7’Lf>l,2(7r) < Slfllp ( - <W’Lh>L2(7r))

For the case of general non-negative f € L?(7) we approximate f by a sequence of
admissible functions. So let f € Lf_ (m). We set f, := % + f An for all n € N. Then,
using again the reversibility of 7, we can write

~(L - ! () 2 (y) z) )Lz, y)r(x
(5 L)y = MEM(M )+ S @) L yr(e)
2 T 2
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Let I}, : M x M — R, n € N, denote the function

fy)?  flx)?

Fule,y) = ( ) () = ful@).
We note that F),(z,z) = 0 and

Fu(z,y) — [f(y) — f(2)]" = F(z,y)

for all z,y € M. Then if we consider the functions LF;, given by

= v Lz 1) — fw?  f@)? P
_ygmm W) L(z.y) y;(fn(y) F ) Un) = Ja(@) L(20)

it follows by Fatou’s lemma that LF < liminf, .., LF,. Then we can write

f2
~(F L) oy = S LR

161\/[

and by the explicit formula (A.83) for the Dirichlet form and Fatou’s lemma again,

D(f) = —ZLF <11m1nffZLF )7 ()
reM nree reM
. f? f?
= hnnl}loréf(—<ﬁ,Lfn>L2(ﬂ)) S:g§<_<f7n?Lfn>L2(ﬂ.)>
f2
< - *th 2 ’
= 51}1Lp< ( h >L (Tr))
as required. O

It often convenient to consider the functional D : L} ;(7) — R defined on the
space

L}rvl(ﬂ') = {f € Ll(w)‘f >0, /fdw = 1}

of all L'-densities with respect to 7 by the formula

It is a simple consequence of the proposition just proved that the functional D is convex
and lower semi-continuous.

314



A.4 Prokhorov’s Theorem in Completely Regular
Submetrizable Hausdorff Topological Spaces

In this chapter we present the extension of the basic results (e.g. the portmanteau and
Prokhorov theorems) on the weak topology of probability measures on polish spaces to
probability measures in completely regular and submetrizable spaces. As it turns out
Prokhorov’s theorem is still valid in this more general case: uniform tightness implies
relative compactness. If in addition the space submetrizable it also implies sequen-
tial relative compactness. The results of topological measure theory of this section are
taken from [29] and [9]. All topological spaces considered in this section will always be
Hausdorff topological spaces. Recall that a topological space M is completely regular
if for every closed subset F' C M and every x € M there exists a continuous function
f:M —[0,1] such that
flF,=0 and f(z)=1.

Definition A.4.1 A topological space (M, ) is called submetrizable if there exists a
continuous (in the product topology) metric d : M x M — R.

It is easy to see that if M is submetrizable then any 7-continuous metric d metrizes the
restriction of the topology 7 on every compact subspace K of M. Indeed, let (4 )aec4 be
a net in K d-converging to some x € K. Then d(z,,2) — 0 and since K is 7-compact,
there exists a subnet (za,)s of (Za)aca T-converging to some y € K. But then by the
continuity of d we have that d(za,,y) — 0, which implies that # = y and therefore
(24) T-converges to z as claimed.

A particular category of completely regular spaces on which we will apply the Prokho-
rov-Le Cam theorem is the category of the duals of Banach spaces equipped with the
w*-topology. This is possible since every Hausdorfl (77 in fact) topological group is a
completely regular topological space ([21], section II1.21, theorem 5). In addition the
w*-topology on X* for separable Banach spaces X is also submetrizable:

Proposition A.4.1 Suppose that X is separable Banach space and let ¢ : Ry — [0, 1]

be the function ¥ (z) = 1+ Then the function w: X* x X* — R given by

where {x} C X is dense sequence in X is a translation invariant metric.

Furthermore, the topology induced on X* by the metric w is weaker that the w*-
topology and metrizes the restriction of the w*-topology on norm bounded subsets of X*.
In particular X* is submetrizable.

Proof It is obvious that w is a metric and that if 7 — X* in the weak topology of
X*, then z}; — 2* in the metric w and the topology of the metric w is weaker than the
w*-topology.

So we have to prove that w metrizes the w*-topology on norm-bounded subsets of
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X*. So let B C X* be a a norm bounded subset and let {z%},ea C B, 2* € X* such
that w(z}, x*) — 0. We will prove that given z € X we have that

(x,x)) — (x,2").
Since B is bounded there exists C' < +oo such that
[2* [ x+ V sup [|lzg ]| x- < C.
a€A

Let now € > 0. We choose ky € N such that ||z — z,||x < 5%, and then

* * * * €
(2, 2%) = (zky, 27)| VSHBK!E,M = (@, 23)| < Cllz — ol x < 3
ac

Next, since w(xk, x*) — 0 we can choose ag € N such that
* * €
’(xko’xa> - <$k0,$ >’ S g (A85)

for all a > ag, and then, for all a > ay we have that

’<$7$2> - <l‘,$*> < |<.23 - xko)xz;” + |<$k0,1‘:; - l‘*)>’ + ‘<xko - x),x*>|

< SLEL.5_.,
-3 3 3 7
which shows that (z,z%) — (z,2*) as required and completes the proof. O

We will use the following terminology.

Definition A.4.2 Let p be a Borel probability measure on a topological space M.
(a) A set A € By is a called p-regular if

n(A) = Jnf, u(U)

and p is called regular if every Borel set is py-regular. More generally, given any subfamily
F C By we say that p is regular in F if every set F' is u-regular.
(b) A set A € By is called p-Radon if

n(A) = sup p(K),
KeA

where the supremum is taken over all compact subsets of A, and pu is called Radon if
every Borel set is u-Radon.

(¢) The probability measure p is called weakly Radon if it is regular and all open subsets
of M are u-Radon.

(d) The topological space M is called (weakly) Radon if all Borel probability measures
on M are (weakly) Radon.

Obviously any Radon measure is regular. Furthermore, as usual a Borel probability
measure u on the topological space M is called tight if

p(M) = EE%M(K)

We will denote by PrM and P, M the spaces of all of all Radon and tight probability
measures, respectively. Obviously, PrM C P, M
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Proposition A.4.2 Let M be a topological space. Then PyM = IP g M iff every compact
subspace of M is a Radon space.

Proof We suppose first that every compact subspace of M is Radon and prove that
P,M CPrM. Solet p € P.M, B € By be any Borel subset of M and let ¢ € (0,1).
Then since p is tight, there exists a compact subset K of M such u(M \ K) < §. By
assumption, the subspace K is a Radon space, and therefore the probability measure
) = ﬁ,u( N K) € PK is Radon. Therefore there exists a compact subset F' of

K N B such that Gg([KNBJ\ F) < 3ncry and for which

p(B\F) < p([KNBJ\ F) + p(M\ K) <e.

It is easy to see that any compact subset of the space K is compact subset of M, which
since (B \ F) < € and € > 0 was arbitrary, proves that u is Radon.

Conversely, suppose that P, M = PrM, let K C M be compact and let p € PK.
The measure fi(-) := p(K N-) € PM is obviously tight and therefore by assumption it is
Radon. Let now B € By and € > 0. Since p is Radon, there exists a compact subset of
M such that F C B C K and p(B\ F) < e. Then F is also compact in K, and therefore
A(B\ F) = u(B\F) <e. O

Corollary A.4.1 For any submetrizable space (M, T) it holds that Py M =P rM.

Proof Indeed, since M is submetrizable there exists a continuous metric d on M, which
as we have seen metrizes the restriction of 7 on every compact subset K C M. Conse-
quently, every compact subspace of M is metrizable, thus polish and thus Radon. g

It will be also useful to note that continuous images of Radon measures are Radon
measures.

Proposition A.4.3 Let f : M — N be a continuous function between topological
spaces and let p € PrM be a Radon measure. Then the push-forward measure fop € PY
ts Radon.

Proof Indeed, let B € B(Y) be a Borel subset of Y. Then f~!(B) is a Borel subset of
X and therefore, given € > 0, there exists a compact subset K C f~1(B) C X such that

(T B\ K) <.

Then f(K) C f(f_l(B)) C B and since f is continuous the set f(K) is compact in YV
and

Fer(B\ F(K)) = p(fHBN\ f(K))) = w(fHB)\ fTHAK))) <p(fTHB)\K) <e,
which since B € B(Y) and ¢ > 0 were arbitrary proves that f.u € PY is Radon. O

Proposition A.4.4 Let M be a completely reqular topological space and let p,v € PM
be weakly Radon measures, such that

/fdu = /fdu, Y f € BO(M). (A.86)
Then p=v.
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Proof Since p,v are Borel measures, it suffices to prove that p(A) = v(A) for every
open set A. But since u,r are weakly Radon, for every open A C M we have that
p(A) = supgeq 1(K), and likewise for v, which shows that in order to prove that u = v
it suffices to prove that u(K) = v(K) for compact subset K of M.

So let K C M be compact. Since M is completely regular, for every z € M \ K
there exists a function f, : M — [0,1] such that f,(z) =1 and f|x = 0. We denote
by F(M) the set of all finite subsets of M, define an upwards directed set A given by

A:={ae F(M)lanK =0}
with order the set inclusion, and define the non-decreasing net (f,)aca C C(M;]0,1]) C

BC(M) by

Jo = max f;.
TEQ

Obviously fo|xk = 0 for every @ € A and f,(z) = 1 for all z € a. Consequently,
fa - 1 — 1 pointwise, since given 2 € M \ K, for every a > {x} € A we have that

1> fa(x) > fa:(x) =1

and for every x € K we have that f,(x) = 0 for all @ € A. Furthermore, this net is
obviously increasing. In other words 1, < f, <1—1g foralla € Aand 1, — 1—1g
pointwise, and

/fadp <p(M\ K) (A.87)

for p = p,v and all a € A.
On the other hand, given £ > 0, for each © € M \ K we have that f,(z) =1>1—¢
and therefore

M\KC |J {fa>1-¢}

e M\ K

Then, for any compact set F' C M\ K, the family U, := ({fz > 1 —¢})zemn k is an open
covering of F, and so there exist n = n(F,U.) € N and x1,...,2, € M \ K such that

FC O{fwk >1—c¢}.

k=1

Then, for p = p, v, we have that for all & > o, := {z1,...,z,} € A that
p(F) < p( Lnj{ka >1 —6}) <p({fa>1-¢}) < i/fadp-
k=1
Therefore, since € > 0 is arbitrary, for fixed F' € M \ K we have that
p(F) <liminf [ f.dp

a—00

and sinceM \ K is open and p, v are weakly Radon taking the supremum over all F' €
M\ K, we get that

p(M\ K) < lirginf/fadp.
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Together with (A.87) this proves that

p(M\ K) Z/fadp, for p = p, v,

which by assumption (A.86) implies that u(M \ K) = v(M \ K), and thus u(K) = v(K)
as required. O

Lemma A.4.1 Let (M, ) be a completely regular topological space and let f € B(M)
be a bounded function. Then f is lower semicontinuous iff
f= sup h. (A.88)
heBC(M), h<f
Proof We note first that we can make that additional assumption that f > 0. Indeed,
if m:=inf,cp f(x) and the claim holds for non-negative functions, that
f=m+(f—-m)=m-+ sup h= sup h.
heBC(M), h<f—m heBC (M), h<f
So in the rest of the proof we assume in addition that f > 0.
Obviously, we only have to prove that
f< sup h
heBC(M), h<f
So in order to prove the claim it suffices to prove that for arbitrary all z € M we have
that

flz) < sup  h(x).
heBC(M):h<f

Since we assume f to be > 0 we obviously have that
sup h >0,
heBC(M), h<f
and therefore if f(x) = 0 we have nothing to prove. So we fix € M such that f(z) > 0

and let € > 0 € (0, f(x)/2) be arbitrary. Since f is lower semicontinuous, there exists
an open neighborhood V,, of x such that

f(Va) € (f(z) — &, 400),

and since M is completely regular, there exists a continuous function h, : M —
[0, f(z) — €] such that h.(x) = f(z) — e and hg|lye = 0. Then, h, € BC(M) and
0<h, < [ f(x) —¢e]ly, < f, where the last inequality follows from the choice of the
neighborhood V. But then

fl@)=ce+h(x) <e+ sup h(z).
REBC(M):h<f

So letting € tend to zero we get that

f@)< s h(x)
heBC(M):h<f

and since xinf_l(O,oo) was arbitrary, this proves the claim. The converse is obvious
and does not require the complete regularity of M. O
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Definition A.4.3 A Borel probability measure p in a topological space (M, 7) is called
T-smooth if for any upwards directed family {U, }aec4 of open sets we have that

u( U Ua) = sup 1(Us).

acA acA

It is easy to see that any weakly Radon measure on a topological space (M, 1) is
7-smooth. Indeed, let {Uy}aca C 7 be an upwards directed family of open sets. We
obviously have that

u( U Ua) > sup p(Ua)-

acA acA

For the converse inequality, let € > 0 be arbitrary. Then U, is open and since y

acA
is weakly Radon there exists a compact set K C J, 4 Uq such that

u((aLeJAUa)\K> <e
and therefore
u( U Ua) Sp(( U Ua)ﬂK> te=pu(K)+e.
acA acA

Now, the family {U,} covers the compact set K, and therefore there exists ay,...,a, €
A such that K C |J;_, Ua,. But since {U,} is upwards directed, there exist oy € A
such that (J,_; Ua, C Us,, which shows that

u( U Ua) = pu(K) +e < p(Uay) + € < sup p(Ua) + ¢,
acA acA
and proves the claim.
Lemma A.4.2 Let (M, 1) be a topological space and let p € PM be a T-smooth measure.

Then, if f 1= sup, ¢, u, where U is any upwards directed uniformly bounded family U of
lower semicontinuous functions u : M — R, we have that

/fdp = sup/udu.
ueUd

Proof We note first that we can assume in addition that 0 < f(z) < 1 for all x € M.
Indeed, suppose this is true and let

b:= inf f(x) < su r) =: B.
nf f(2) < sup f(z)

Then for any b’ < b, we have f — b’ > 0 and the function f := Bff,b_;l satisfies
0< f(z)<1l, VzeM

and f = supgy; @ where U = {B“f/bjrlw € U}. Then,

/fduzb'—|—(B—b’+1)/fdu=b—|—(B—b'—|—1)sup/ad/,L=sup/udu.

aeUu ueU
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So in what follows we assume that f(M) C (0,1) and let € > 0 be arbitrary. We
have to prove that

fdpu <e+ sup/udu.
ueU

For each n € N we have

R R A R e
124 1 1= k
T _“{f>}:n+n;”{f>n}

We fix n > 2/e. Since f = sup, ¢y u, we have that {f > £} =], ,,{u > £} for each

ucl

k=1,...,n—1. But since each v € U is lower semicontinuous, for each k =1,...,n—1
the set U¥ := {u > £} is open, and the family U* := {U}},cy is an upwards directed
family of open sets for each fixed Kk = 1,...,n — 1. Therefore since p is 7-smooth we
have that

k k

u{f> f} = sup,u{u> f}

n ueU n

forallk=1,...,n—1, and so for each k = 1,...,n — 1 we can choose u € U such that

o= 5o s> 5} 5

Then, since U is upwards directed, there exists ug € U such that ug > u1 V... Vu,_1,
and

n—1 n—1
€ k e n—1e 1 k
< 4= 2l 4z =
/fd,u - 2+nzﬂ{f>n}72+ n 2+HZM{UI€>”}
k=1 k=1
1= 1= k+1
< e+ — u{uo>f}:€+72ku{7<u0<7}
n n
k=1 k=1
< 6+/uodu§€+sup/udu.
ueU

Proposition A.4.5 (The portmanteau theorem) Let (M,7) be a completely regular
topological space, let (po)aca be a net in PM, and let p € PM be a T-smooth mea-
sure. Then the following are equivalent:

(a) o — p € PM weakly.

b) For every closed set F C M, limsup,, po(F) < p(F).

c) For every open set U C M, liminf, po(U) > p(U).

d) For every p-continuous set A C M, i.e. for every Borel set A C M such that
w(0A) =0, it holds that

(
(
(

lim 10 (A) = p(A).

(b") For every bounded upper semicontinuous function f: M — [—00,00),

limsup/fduag/fd,u.
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(¢') For every bounded lower semicontinuous function f: M — (—o0, 0],

liminf/fd,uaz/fdu.
(d’) For evert bounded pi-a.s. continuous function, lim, [ fdu, = [ fdpu.

Proof We note first that since a Borel set A C X is closed, open and p-continuous iff
1 4 is lower semicontinuous, upper semicontinuous and p-a.s. continuous respectively, it
follows that (x’) implies (z), for = b, ¢,d. Furthermore, (b) is obviously equivalent
to (c), and (b’) is equivalent to (c¢’). Finally it is obvious that (d’) implies (a), and
therefore it suffices to prove that (a)=(c,’), (b)A(c)=(d), and that (d)=-(d’).

(a) = () Let f: X — (—00,00] lower semicontinuous and bounded. By lemmas
A.4.1 and A.4.2 we have that

/fdu—sup{/hdu‘heBO(M), hgf}.

which as we can easily see implies that liminf, [ fdu, > [ fdpu.
() A (¢) = (d) We note first that a Borel set A C X is an p-continuous set iff u(A°) =

w(A) = p(A). Soif A is an p-continuous set, by (b) and (¢) we have that
w(A%) < liminf p,(A%) < liminf p,(A4)

< limsup pn(4) < limsup pn(4) < p(A),

which according to the initial remark proves (d).

(d) = (d') Let f : X — R be a bounded, p-a.s. continuous function and let € > 0. Let
My € By be a full measure set, (My) = 1, of continuity points of f and let a,b € R such
that a < f(z) < b for all x € M. For each r € (a,b), we set F,. := {x € X| f(x) =r}.
The family {F}},c(q,p) is a partition of M, and thus for every finite subset I of (a,b) we

have that
Sur)=p(UFR) <1

rel rel
Consequently >, ., ) #(Fr) < 1 < +o0, and thus the set of all r € (a,b) for which
w(F,) > 0, is at most countable. There exists the a partitiona =ag < a3 <---<a, =b
of the interval (a,b), such that a; —a;—1 <e,i=1,...,nand pu(F,,) =0,9=0,...,n.
Foreachi=1,...,n, weset B; := f~! ([ai,l, ai)) and define the simple functions

¢:Zai—1]1E,” wzzaiﬂ]gi.
=1 i=1

Obviously, ¢ < f < ¢ and p — ¢ < e. Also, for all i = 1,...,n we have that IF; C
Fo, | UF,, U(M\ M), and thus the E;’s are p-continuous sets. By (d) it follows that

lim [ ¢du, = [ ¢dp lim [du, = [1pdu. Consequently,
/fd,u—e < /d)du Sliminf/fdun Slimsup/fdun
< /wdun < /fdwr&

and since € > 0 was arbitrary, the claim follows. (Il
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Corollary A.4.2 Let M be a completely regular topological space and let (to)aeca <
P M be a uniformly tight net converging to some p € PM. Then p € Py M is tight.

Proof Indeed, let £ > 0. Since (fiq)ac.a is uniformly tight, there exists a compact set
K C M such that

sup po(M\ K) < e.
acA

But then since K is closed, we have by the portmanteau theorem that

p(M\ K) < liminf po (M \ K) < sup po(M\ K) <e,
o acA
and thus p is tight. O

Theorem A.4.1 (Prokhorov-Le Cam) Let M be a completely regular topological space.
Then any uniformly tight family I C PrM of probability measures is relatively compact
in PrM in the weak topology. If M is in addition submetrizable then any uniformly tight
family IC C Py M is also sequentially relatively compact in P M in the weak topology.

Proof For the proof of the first assertion see [11], chapter 3 theorem 59, while for the
second assertion we refer to [8] and [28]. O

In the case that M is completely regular and submetrizable we do not need to assume
the family K to consist of Radon measures due to corollary A.4.1.
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