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Grosskinsky for the interesting discussions that we ’ve had.

This is also a good place to thank the professors that influenced my progress in

mathematics. So I would like to thank Apostolos Giannopoulos and Eirini Deliyanni for

teaching me mathematics and Polychronis Strantzalos for teaching me to “read behind

the lines”. I would also like to thank my MSc advisor Souzana Papadopoulou for her

support and faith at a critical stage of my “career”.

I would also like to thank Eliza for her understanding... Finally, I would like to thank

my family. My mother Roula and my sister Konstanti for their support and their faith

in me which kept me going on, and especially my father Nikiforos who has been (and will

always be) the brightest light in my life, without whom I would probably have nothing

to do with science.

3



Frequently Used Notation

1. N = {1, 2, . . . }.

2. Z+ = {0} ∪N.

3. R+ = [0,+∞).

4. Rd is the d-dimensional Euclidean space and

〈x, y〉 :=

d∑
i=1

xiyi, x, y ∈ Rd

the Euclidean inner product.

5. Zd is the d-dimensional integer lattice.

6. Td := R
d

/Zd ∼= [0, 1)d is the d-dimensional torus.

7. ]E = the cardinal of the set E.

8. Given any sets E ⊆ M we denote by 1E : M −→ {0, 1} the indicator function of E

given by

1E(x) =

{
1 if x ∈ E
0 if x ∈M \ E.

9. For any function f : X −→ (−∞,∞] we denote by Df its proper domain:

Df = {x ∈ X|f(x) < +∞}.

10. For any polish space M :

PM denotes the space of all Borel probability measures on M .

mM denotes the space of all measurable functions on M .

B(M) denotes the space of all bounded Borel measurable functions on M .

BC(M) denotes the space of all bounded continuous functions on M .

D(R+,M) denotes the Skorohod space of all right continuous paths x : R+ −→M

with left-hand limits.

11. Given any probability measure µ ∈ PM and a measurable function f : M −→ N we

denote by f∗µ := µ ◦ f−1 ∈ PN the push forward of µ through f or in other words the

law of the random variable f under µ.

12. For any a, b ≥ 0 we denote by Ca,b(R+ × Td) the space of all functions f : R+ ×
Td −→ R that are Ca is time and Cb in space. Of course here when we say that a
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function is Ca in a variable means that f is [a] times continuously differentiable in that

variable, where [a] is the integer part of a, with its derivatives of maximal order being

Holder continuous of exponent a− [a].
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Introduction-Overview

In this thesis we examine physical systems exhibiting phase transition via the emergence

of condensation by using interacting particle models. The macroscopic description of

the system is obtained by the interacting particles model in the hydrodynamic limit.

Our study is centered around condensing Zero Range Processes, which are probably the

simplest interacting particle models exhibiting condensation. In the hydrodynamic limit

the evolution of condensing Zero Range Processes is expected to approach a saturated

non-linear diffusion. The main results of the thesis are the proof of the hydrodynamic

limit of condensing Zero Range Processes when starting from a sub-critical profile, in

which case it is proved that no condensation will occur, and the validity of Fick’s law at

the macroscopic level as a limit of the microscopic conservation laws.

The main aim of the theory of hydrodynamic limits of stochastic interacting particle

systems is to describe the macroscopic evolution of the thermodynamic characteristics

(e.g. density, pressure, temperature, etc.) of the system in appropriate space and time

scales, as solutions of a partial differential equation (PDE), the so called hydrodynamic

equation. One way this is made precise is via the principle of conservation of local

equilibrium: First, the equilibrium states of the system are characterized by the thermo-

dynamic characteristics ~ρ = (ρ1, · · · , ρm) ∈ Rm, m ∈ N, so that for each thermodynamic

characteristic ~ρ ∈ Rm we have a global equilibrium ν~ρ corresponding to ~ρ. A local equi-

librium state of profile ~ρ is a state that near each macroscopic point u it is close to

the global equilibrium state ν~ρ that corresponds to the value ~ρ(u). According to the

principle of local equilibrium one expects, and thus aims to prove, that starting from a

local equilibrium of profile ~ρ0, at the appropriate space and time scales, at each later

time t > 0 the system remains in local equilibrium of profile ~ρt, where ~ρt(u) = ~ρ(t, u)

is the solution of a system of evolutionary partial differential equations (PDEs), the so

called hydrodynamic equation, with initial condition ~ρ(0, ·) = ~ρ0.

In this thesis we are interested in the hydrodynamic behavior of condensing Zero

Range Processes (ZRPs). ZRPs are interacting particle systems such that each particle

X jumps at an exponential rate g(k) that depends only on the number k of particles

that occupy the same site as particle X through some function g : Z+ −→ R+, which is

called the local jump rate. Particles that jump change position according to a translation

invariant transition probability p(x, y) = p(y − x). After their introduction by Spitzer

in 1970, ZRPs have attracted a lot of attention, one reason being that for particular

choices of local jump rate functions g they exhibit phase transition phenomena.
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Since we are interested in the hydrodynamic limit of ZRPs we consider ZRPs whose

particles evolve in the finite lattice TdN := {0, . . . , N−1}d. Then the ZRP with jump rate

g : Z+ −→ R+ and elementary step distribution p ∈ PZd is the Markov jump process

on the state space

Md
N := Z

T
d
N

+

of configurations of particles on TdN with generator LN : D(LN ) ⊆ B(Md
N ) −→ B(Md

N )

given by

LNf(η) =
∑

x,y∈TdN

{
f(ηx,y)− f(η)}g(ηx)pN (y − x),

where

ηx,yz =


ηz, if z /∈ {x, y}
ηx − 1, if z = x

ηy + 1, if z = y

,

if ηx 6= 0 and, say, ηx,y = η otherwise, and pN (z) = p(z +NZd) for all z ∈ TdN .

For particular decreasing local jump rate functions g there exists a critical value

ρc = ρc(g) < +∞ of the density such that there exist equilibrium states characterized by

the density ρ iff ρ ≤ ρc. In particular the translation invariant equilibrium distributions

of the ZRP are the product measures ν̄Nϕ ≡ ν̄Nϕ,g with common marginal ν̄1
ϕ ∈ PZ+ given

by

ν̄1
ϕ{k} =

1

Z(ϕ)

ϕk

g!(k)
, k ∈ Z+

for all ϕ ≥ 0 such that the series Z(ϕ) =
∑∞
k=0

ϕk

g!(k) converges. It is known that the

mean density

R(ϕ) =

∫
η(0)dν̄Nϕ

of the occupation variable under ν̄1
ϕ is smooth strictly increasing function of ϕ and so

by reparametrizing the equilibrium distributions by its inverse Φ := R−1 we obtain the

grand canonical ensemble

νNρ = ν̄NΦ(ρ), for ρ ≥ 0 such that Z(Φ(ρ)) < +∞.

We will refer to ZRPs for which the radius of convergence ϕc of the partition function

Z is infinite as non-condensing. ZRPs such that

ϕc < +∞ and ρc := sup
ϕ<ϕc

R(ϕ) = +∞

will be called weakly condensing, while ZRPs for which ρc < +∞ will be called strictly

condensing. The lack of equilibrium states corresponding to densities ρ > ρc constitutes

a main problem in the description of the hydrodynamic behavior of strictly condensing

ZRPs, since the formulation via the notion of local equilibrium faces difficulty in ob-

serving densities higher than the critical density. Furthermore, even weakly condensing

ZRPs exhibit pathological behavior.
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So far two main methods have been developed for proving hydrodynamic limits of

interacting particle systems. The Entropy method developed by Guo, Papanikolaou and

Varadhan in [20] and the Relative Entropy method developed by H.T. Yau in [33]. Both

methods have been applied to prove the hydrodynamic limit of ZRPs. The Entropy

method has been applied to non-condensing ZRPs with super-linear jump rate function

g(k) ≥ a0k for some a0 > 0, while the Relative Entropy method has been applied to

weakly condensing ZRPs which satisfy limϕ→ϕc Z(ϕ) = +∞, when started from initial

distributions with sufficiently regular bounded profile. An exposition of the proofs is

contained in chapters 5 and 6 of [25] respectively.

In this thesis (chapter 3) we extend the Relative Entropy method to all mean zero

asymmetric condensing ZRPs with bounded jump rates, by interpreting the boundedness

assumption on the initial profile as boundedness away from the critical density. This was

achieved by extending the One-Block estimate, a main tool in all known approaches to

the hydrodynamic limit of ZRPs, to condensing ZRPs. This extension of the One-Block

estimate is made possible by the result in the equivalence of Ensembles contained in

section 1.4, which has been originally proved in [19]. The hydrodynamic equation is the

non-linear diffusion equation

∂tρ = ∆xΦ(ρ), (1)

where Φ : R+ −→ R+ is extended to be constantly equal to ϕc = Φ(ρc) densities ρ ≥ ρc.
This result has been accepted for publication in the Journal of Statistical Physics.

We expect that in order to describe the condensation phenomenon, the solutions of

the hydrodynamic equation should be allowed to be measure-valued. The simple consid-

erations in section 3.2 also point to this. This poses a major difficulty at the macroscopic

level since one has to make sense of the equation (1) for degenerate (eventually constant)

non-linear functions Φ and for measure-valued solutions µ : R+ −→M+(Td). One such

promising interpretation of this equation is as a gradient flow in the space of finite mea-

sures with fixed total mass equipped with L2-Wasserstein metric. Due to the relevance of

the continuity equation in the definition of gradient flows in Wasserstein spaces of proba-

bility measures, we proved that a sub-sequential hydrodynamic limit of condensing ZRPs

can be given via the continuity equation

∂tπ = divxW

where π is a finite non-negative measure and W is a vector valued measure. One advan-

tage of the continuity equation is that it easily allows the consideration of measure-valued

solutions.

Our approach on the deriving the continuity equation at the macroscopic level starts

by following the Entropy method of Guo-Papanikolaou-Varadhan in considering the mar-

tingales associated to the ZRPs on the discrete toruses TdN by the martingale problem to

prove the relative compactness of the laws of the image of the ZRPs under the empirical

density

πN :=
1

Nd

∑
x∈TdN

η(x)δ x
N
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as N →∞. In the equation above defining the empirical density we have associated to

each microscopic point x ∈ TdN the macroscopic point x
N ∈ T

d. In these considerations

we focus on the case of the nearest neighbor elementary step distribution. The real

valued process

AN,Gt := 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

(∂s +N2LN )〈Gs, πN 〉(ηNs )ds (2)

defined on the filtered space
(
D(R+,M

d
N ), (FNt )t≥0,P

µN0
)

is a martingale, where Pµ
N
0

is the diffusively rescaled law of the ZRP, µN0 is a sequence of initial distributions which

is allowed to have a condensate at some macroscopic point u ∈ Td, i.e.

possibly lim inf
N→∞

1

Nd

∫
η([Nu])dµN0 > 0 for some u ∈ Td,

and (FNt ) is the minimal right continuous filtration to which the ZRP is adapted. By

Doob’s inequality the martingale AN,Gt is asymptotically negligible:

lim
N→∞

{
sup

0≤t≤T
|AN,Gt | ≥ δ

}
= 0, ∀ δ > 0.

Computing LN 〈G, πN 〉, a discrete integration by parts gives

LN 〈G, πN 〉 =
1

Nd

d∑
j=1

∑
x∈TdN

[
G
(x+ ej

N

)
−G

( x
N

)][
g
(
η(x)

)
− g
(
η(x+ ej)

)]
.

One more integration by parts gives

LN 〈G, πN 〉 =
1

Nd

d∑
j=1

∑
x∈TdN

[
G
(x+ ej

N

)
+G

(x− ej
N

)
− 2G

( x
N

)]
g
(
η(x)

)
=

1

Nd+2

∑
x∈TdN

∆NG
( x
N

)
g
(
η(x)

)
,

where

∆NG
( x
N

)
= N2

d∑
j=1

[
G
(x+ ej

N

)
+G

(x− ej
N

)
− 2G

( x
N

)]
is the discrete Laplacian of G. By using a Taylor expansion of G around x

N one gets for

G ∈ C3(R+ ×Td) together with the asymptotic negligibility of the martingale AGt one

gets that

lim
N→∞

Pµ
N
0

{
sup

0≤t≤T

∣∣∣∣ ∫ t

0

[
〈∂sGs, πNs 〉+ 〈∆Gs, σNs 〉

]
ds

∣∣∣∣ ≥ δ} = 0. (3)

for all G ∈ C3
c ([0, T ]×Td), where

σNη =
1

Nd

∑
x∈TdN

g(ηx)δ x
N

(4)
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is the empirical jump rate and σNs = σNηs . Equality (3) together with the Aldous criterion

for relative compactness of laws on the Skorohod space yields the relative compactness

of the laws of the ZRPs on the discrete toruses TdN .

Next the application of the Entropy method proceeds by using estimates on the

evolution of the entropy of the time marginals µNt of the law of the ZRPs with respect

to an invariant state to replace the integral term∫ t

0

〈∆Gs, σNs 〉ds

by a function of the empirical measure in order to close the equation. This is the context

of the replacement lemma in sections 5.1 to 5.5 in [25]. As described in [25] section 5.3

the Replacement Lemma breaks up in the proof of the One-Block and the Two-Block

estimates. Although we have extended the One-Block estimate to condensing ZRPs

the, we haven’t managed to extend the Two-Block estimate because the cut-off of large

densities in equation (5.1) of section 5.5 in [25] is not possible if the invariant distributions

do not have full exponential moments, as in the case of condensing ZRPs. Furthermore

due to the possible existence of a condensate in the initial distributions even in the case

of a constant jump rate function the coupling techniques for attractive processes cannot

be applied.

For the reasons above, we turn our attention to the two important, although non-

conserved, quantities present in the microscopic level: the empirical jump rate σN and

the empirical current

WN =
1

Nd−1

∑
x∈TdN

d∑
j=1

{g(η(x))− g(η(x+ ej))}ejδ xN =: − 1

Nd−1

∑
x∈TdN

∇Ng(η(x))δ x
N

and try to prove their relative compactness in the hydrodynamic limit in order to obtain

the continuity equation. Taylor expansion of G together with the asymptotic negligibility

of the martingale AN,Gt imply that also

lim
N→∞

Pµ
N
0

{
sup

0≤t≤T

∣∣∣∣ ∫ t

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds

∣∣∣∣ ≥ δ} = 0 (5)

for all G ∈ C3
c ([0, T ] ×Td). Once the required relative compactness of (the law of the

images of the ZRPs through) the empirical current has been obtained, the limit above

will lead to the continuity equation at the macroscopic level.

Due to the non-conserved character of the empirical jump rate and the empirical

current, the Skorohod topology seems to be two strong to allow for the required relative

compactness. For this reason we consider the empirical jump rate process. For this

reason we consider these processes as random variables taking values in appropriate L∞

spaces of Banach-valued functions equipped with their w∗-topology. For the empirical

diffusion rate process σN we choose the state space

L∞w∗(0, T ;M(Td)) ∼= L1(0, T ;C(Td))∗,

for T > 0, and for the empirical current process WN we choose the space

L∞w∗(0, T ;C1(Td;Rd)∗) ∼= L1(0, T ;C1(Td;Rd))∗,
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both equipped with their w∗-topologies. The results on Lp-spaces of Banach-valued

functions that we require are contained in [10]. However in this way the limiting current

that we get is at each time an element of the dual space C1(Td;Rd)∗ and further

regularity estimates are required to prove that it is a measure. These regularity estimates

are contained in section 4.5 and are in fact an adaptation of the estimates in section 5.7

of [25] to the case at hand. In this way we obtain the continuity equation

∂tπ = −divxW = ∆σ (6)

as a sub-sequential hydrodynamic limit, which in addition expresses the macroscopic

empirical current as the gradient of the macroscopic empirical jump rate.

We close this introduction with an overview of the material contained in this thesis.

Chapter 1 contains the definition of ZRPs and preliminary material. In section 1.1 we

define ZRPs and in section 1.2 we describe their equilibrium distributions. In section 1.3

we study some topological spaces that will be useful throughout the thesis. In particular

subsection 1.3.2 contains a generalization of the results of section 2.1 of [25] in the weak

convergence of probability measures on the space of configurations ZZ
d

+ over the infi-

nite lattice to the weak convergence with respect to functions with bounded polynomial

growth. In section 1.4 we present the proof on the equivalence of ensembles given origi-

nally in [19] and in section 1.5 we describe some simple well-known examples of ZRPs.

Finally in section 1.6 we extend the static large deviations principle for the empirical

embeddings under the equilibrium distributions ν∞ρ , ρ ∈ (0, ρc). This result generalizes

a well-known result for non-condensing ZRPs, proved in p. 74 of [25], to condensing

ZRPs. In contrast to the non-condensing case the large deviations functional takes fi-

nite values in measures that are not absolutely continuous with respect to the Lebesgue

measure. This is one of the facts that leads to expect that measure-valued solutions to

the hydrodynamic equation are required to describe the condensation phenomenon.

In chapter 2 we present various ways of formalizing the notion of local equilibrium

and define hydrodynamic limits via the principle of local equilibrium. All these notions

are well-known and contained in [25].

Chapter 3 contains our first main result, the proof of the hydrodynamic limit of con-

densing ZRPs with sub-critical initial profiles. In section 3.1 we generalize the One-Block

estimate, in section 3.2 we see how one can easily apply the classic results in quasilinear

linear parabolic equations obtained in [26] to eventually constant non-linearities in the

case that the initial condition is sub-critical and finally in section 3.3 we apply the rela-

tive entropy method to prove the hydrodynamic limit.

Finally, in chapter 4 we present our results in the continuity equation. In section

4.1 we review the results on the relative compactness of the laws of the empirical den-

sity of the ZRP following section 5.1 in [25]. In section 4.2 following standard argu-

ments of the Entropy method we prove the limits (3) and (5) showing that the equation

∂tπ
N = −divWN = ∆σN holds at the microscopic level. Then we proceed on describing

the appropriate choice of state spaces for the empirical current and the empirical jump-

rate processes that will allow us to prove relative compactness results to conclude that

the continuity equation (6) remains valid at the macroscopic limit. Then in section 4.3

we give the definition of the continuity equation in the appropriate context that corre-

sponds to the choice of the state spaces of the empirical current and jump rate processes
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and in section 4.4 we prove the relative compactness of the laws of the ZRP under the

triples (πN ,WN , σN ) as well as that all limit points are concentrated in triples satisfying

the continuity equation (6). Next in section 4.5 we prove regularity results for the limits

curves W and σ that allow us to conclude that the limiting empirical currents Wt are

in fact vector measures and that the empirical jump rates σt are in the Hilbert-Sobolev

space H1(Td), and we finish this chapter in section 4.6 with a conjecture on what we

believe the hydrodynamic equation should be when one starts from an initial profile that

has a fully formed condensate at one site.

We close this introduction with a small overview of the Appendix. In chapter A.1

we review mostly without proofs some basic facts on Skorohod spaces that will be used

extensively in chapter 4. In A.2 we review the martingales associated to Markov pro-

cesses via the martingale problem in the context of Markov jump processes. These

martingales e.g. (2) play an essential role in the Entropy method and are used to obtain

estimates that yield the relative compactness of the empirical density and on exhibiting

the validity of the continuity equation at the microscopic. In section A.3 we review the

definition of relative entropy and some of its basic properties. Among others we prove

give generalize the variational characterization of relative entropy to the case of general

convex functionals h in place of the usual function x 7→ x log x, without assuming that

h has superlinear growth. More general results have been proved for instance in [5], but

the proof here uses elementary arguments and is based on a detailed description of the

Legendre transform of real valued convex functions. These results are then used in the

generalization of the static Large Deviations principle for the empirical embeddings of

the ZRP to the condensing case given in section 1.6. Finally in A.4 we review classic

results of topological measure theory that loosely speaking generalize the classic theory

of probability measures on polish spaces to the class of Radon measures on completely

regular topological spaces. These results are used in the relative compactness arguments

for the empirical current and the empirical jump rate.
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Chapter 1

Zero Range Processes

1.1 Basic Definitions

Zero range process (ZRPs) on a countable space M are a class of interacting particle

systems (IPSs) for which the rate that a particle leaves a site x ∈ M depends only on

the number k of particles sharing the same site x through some appropriate function

g : Z+ −→ R+, called the local jump rate function, and after a particle leaves a site

it chooses a destination according to a transition probability p. In this way, particles

interact only with particles sharing the same site, whence comes the terminology ZRP.

In particular we will consider ZRPs in which the particles live in the discrete toruses

TdN := {0, 1, . . . , N − 1}d ∼=
(
Z

NZ

)d
, N ∈ N,

jump with rate function g : Z+ −→ R+ and move according to a translation invariant

transition probability p(x, y) ≡ p(y−x), x, y ∈ Zd, p ∈ PZd, (i.e. we identify probability

distributions p ∈ PZd with transition probabilities p : Zd −→ PZd,) through the natural

projections [·]N : Zd −→ TdN ,

[z]N = z +NZd = {w ∈ Zd|w − z ∈ NZd},

i.e. their steps are governed by the translation invariant probability pN := [·]N∗ ◦p given

for all x, y ∈ TdN by the formula

pN (x, y) = pN (y − x) = p(y − x+NZd) =
∑
z∈Zd

p(y − x+Nz). (1.1)

We shall further assume that the support of the distribution p ≡ p(0, ·) ∈ PZd spans Zd

over Z, so that the transition probability pN : TdN −→ PTdN is irreducible, i.e. for any

x, y ∈ TdN there exist m ∈ N and x0, x1, . . . , xm ∈ TdN such that x0 = x, xm = y and

m∏
i=1

pN (xk − xk−1) > 0,

for all N ∈ N, and that p has finite range, i.e. for some constant A > 0 we have p(y) = 0

for all y ∈ Zd such that |y| ≥ A.

13



Of course in such a ZRP the state space, i.e. the space of all possible configurations

of particles is the space

Md
N := (Z+)T

d
N ,

i.e. the space of all functions η : TdN −→ Z+ so that given a configuration η ∈Md
N and

x ∈ TdN , ηx is the number of particles at site x in the configuration η. We will denote

by η(x) : Md
N −→ Z+, x ∈ TdN the natural projections

η(x)(η) = ηx.

Of course the product topology on Md
N is the discrete topology and Md

N is a Polish

space. Also, we will denote by | · |1 : ZT
d
N −→ Z+ the L1-norm

|η|1 =
∑
x∈TdN

|ηx|.

Of course for η ∈Md
N ⊆ ZT

d
N ,

|η|1 =
∑
x∈TdN

ηx

is the total number of particles in the configuration η.

In what follows given a configuration η ∈ Md
N and x ∈ TdN such that ηx 6= 0 we

denote by ηx,y the configuration obtained by moving a particle from x to y ∈ TdN . Of

course if x = y then ηx,y = η and by convention if ηx = 0 we define ηx,y = η. We note

that the transition η 7→ ηx,y preserves the total number of particles, i.e. |η|1 = |ηx,y|1
for all η ∈Md

N and all x, y ∈ TdN . We will describe the ZRP as a Markov jump process

on the countable space Md
N , so we will recall the basic definitions.

Definition 1.1.1 Let M be a countable measurable space with {x} measurable for all

x ∈ M . For any measurable strictly positive bounded function λ : M −→ (0,+∞) and

any Markov kernel p : M −→ PM such that

p(x,M \ {x}) = 1 ∀ x ∈M (1.2)

there exists a unique Markov kernel P : M −→ PD(R+,M) such that the canonical

process X = idD(R+,M) is a Markov family on the state space M such that for all x ∈M ,

with respect to P x the following hold:

(a) The sequence {τn}n∈Z+ of stopping times defined inductively by

τ0 ≡ 0, τn := inf
{
t > τn−1

∣∣Xt 6= Xτn−1

}
, n ∈ N (1.3)

is strictly increasing to +∞, that is almost surely

τn < τn+1 < +∞ ∀ n ∈ Z+, and lim
n↑+∞

τn = +∞,

(b) The skeleton chain (ξn)n≥0 := (Xτn)n≥0 is a discrete time Markov family with

transition probability p : M −→ PM starting from x.

14



(c) The sequence τ ′n := τn+1−τn, n ∈ Z+, is independent and exponentially distributed

with parameters λ(ξn), n ∈ Z+, that is[
(τ ′n)n≥0]∗P

x
(
·
∣∣(ξn)n≥0

)
=
⊗
n≥0

expλ(ξn), ξ0 = x,

where for all λ > 0 we set

expλ := λe−λt1[0,+∞)(t)dt

the exponential distribution of parameter λ.

This Markov process ({Xt}t≥0, (P
x)x∈M ) is called the Markov jump process with strictly

positive bounded jump rate λ : M −→ (0,+∞) and transition probability p : M −→ PM ,

and its distribution P = X∗ ◦ P : M −→ PD(R+,M) is uniquely determined by the

pair (p, λ).

By (c) it obviously follows that with respect to P x the stopping time τ1 is ex-

ponentially distributed with parameter λ(x) = 1/Exτ1 > 0 for all x ∈ M , that is

τ1∗P
x = expλ(x). One can easily extend the above definition for jump rate functions

λ : M −→ R+ that are allowed to take the value 0 in the case that the pair (p, λ) in

place of (1.2) satisfies

(a) p
(
x, {λ 6= 0} \ {x}

)
= 1 ∀ x ∈ {λ 6= 0}, (b) px = δx ∀ x ∈ {λ = 0} (1.4)

Indeed, intuitively, jump rate λ(x) = 0 at a site x ∈ M means that a particle leaves

the site x at rate 0, that is it never leaves x, and by (1.4) it follows that a particle

moving according to p starting from x ∈ {λ 6= 0} will always stay in {λ 6= 0}. Therefore

px{λ 6= 0} = 1 for all x ∈ {λ 6= 0} and thus the transition probability p : M −→ PM

can be restricted to a transition probability pλ := p|{λ 6=0} : {λ 6= 0} −→ P{λ 6= 0}.
So it makes sense to give the following definition, where for any continuous function

f : M −→ N between polish spaces we denote by f̄ : D(R+,M) −→ D(R+, N) the

continuous mapping induced on the Skorohod spaces associated to the polish spaces

M,N by the formula

f̄(γ)(t) = f
(
γ(t)

)
, γ ∈ D(R+,M).

Definition 1.1.2 Let λ : M −→ R+ be a measurable non-negative bounded function

and let p : M −→ PM be a Markov kernel such that (1.4) holds. The Markov kernel

P : M −→ PD(R+,M) given by

P x =

{
īλ∗P

x
λ if λ(x) 6= 0

δ(xt=x)t∈R+
if λ(x) = 0

,

where Pλ : {λ 6= 0} −→ PD(R+, {λ 6= 0}) is the Markov jump process on {λ 6= 0} with

transition probability pλ and strictly positive jump rate function λ|{λ6=0} and

iλ := i{λ6=0} : {λ 6= 0} ↪→M

is the natural inclusion, is called the Markov jump process with non-negative bounded

jump rate λ and transition probability p.
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Of course with respect to Markov jump process P : M −→ PD(R+,M) with non-

negative bounded jump rate λ and transition probability p the canonical process X on

D(R+,M) satisfies properties (a), (b) and (c) of definition 1.1.1 with respect to P x for

all x ∈ {λ 6= 0}, while for x ∈ {λ = 0} we have that with respect to P x,

(a′) The sequence of stopping times {τn}n∈Z+
defined in (1.3) is almost surely τ0 ≡ 0,

τn ≡ +∞, n ∈ N.

(b′) The skeleton chain defined inductively by

ξn :=

{
Xτn if τn < +∞
ξn−1 if τn = +∞

(1.5)

is almost surely constant at x.

As we shall see next in the generator of Markov jump process with non-negative

bounded jump rate λ : M −→ R+ is the bounded operator L : B(M) −→ B(M) given

by

Lf(x) =
∑
y∈M

(
f(y)− f(x)

)
λ(x)p(x, y).

Definition 1.1.3 Let St : X −→ X, t ≥ 0, be a contraction semigroup on the Banach

space X. The function L : DL ⊆ X −→ X defined on the set

DL :=

{
f ∈ X

∣∣∣ the limit lim
t↓0

(St − I)f

t
exists in X

}
by the formula

Lf = lim
t↓0

(St − I)f

t

is called the generator of the contraction semigroup S = (St)t≥0.

Obviously DL is a linear subspace of X and L : DL −→ X is a (not necessarily

bounded) densely defined and closed linear operator. Now, to any Markov family

(X,P ) =
(
X = idD(R+,M), {P x ∈ PD(R+,M)}x∈M

)
is associated the Markov semigroup Pt : M −→ PM , t ≥ 0, given by

Pt(x, y) := P x{Xt = y}.

As a Markov semigroup, (Pt) induces a contraction semigroup Pt : B(M) −→ B(M),

t ≥ 0, on the Banach space B(M) and the generator L of this contraction semigroup is

called the generator of (X,P ) in B(M).

Proposition 1.1.1 Let (X,P ) be a Markov jump process on the state space M with

bounded non-negative jump rate λ : M −→ R+ and transition probability p : M −→ PM .

Then the generator of (X,P ) is the bounded linear operator L : DL = B(M) −→ B(M)

given by

Lf(x) =
∑
y∈M

(
f(y)− f(x)

)
λ(x)p(x, y). (1.6)
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Proof We set λ̄ := supx∈M λ(x) the least upper bound of the jump rates suppose that

λ̄ > 0, since otherwise we have nothing to prove. We note first that L is indeed bounded

since if for any f ∈ B(M) we have that

|Lf(x)| ≤ 2‖f‖u
∑
y∈M

λ(x)p(x, y) ≤ 2λ̄‖f‖u.

Therefore ‖Lf‖u ≤ 2λ̄‖f‖u for all B(M) and thus L is bounded with ‖L‖ ≤ 2λ̄.

So, as a bounded operator, L induces the contraction semigroup Pt := etL, t ≥ 0,

on B(M) and obviously the generator of (Pt)t≥0 is L. Therefore it suffices to show that

(Pt)t≥0 coincides with Markov semigroup of (X,P ), i.e. that

Ptf(x) = Exf(Xt)

for all x ∈ M , t ≥ 0 and f ∈ B(M). To do this we describe the Markov jump process

(X,P ) in an alternative way. We define the transition probability p̄ : M −→ PM by

p̄(x, y) =
(

1− λ(x)

λ̄

)
δx(y) +

λ(x)

λ̄
p(x, y). (1.7)

and let P̄ : M −→ P
(
MZ+ × D(R+,Z+)

)
such that with respect to P̄ x the natural

projections

ξ = (ξn)n≥0 : MZ+ ×D(R+,Z+) −→MZ+ ,

N = (Nt)t≥0 : MZ+ ×D(R+,Z+) −→ D(R+,Z+)

are independent processes, ξ is a discrete time Markov chain with transition probability

p̄ starting from x and N is a Poisson process of parameter λ̄ > 0 (starting from 0), for

all x ∈M . Then with respect to P̄ the process

Y : MZ+ ×D(R+,Z+) −→ D(R+,M)

defined by Yt := ξNt , t ≥ 0, is a Markov jump process of parameters (p, λ), that is

Y ◦ P̄ = X ◦ P.

Note that by the definition of p̄ we have that L = λ̄(p̄ − I) where p̄ − I is the discrete

generator of the chain ξ and therefore if we denote by Ēx the expectation with respect

to P̄ x we have that

Exf(Xt) = Ēxf(Yt) =

∞∑
n=0

Ēx
(
f(ξn)1{Nt=n}

)
=

∞∑
n=0

Ēxf(ξn) · P̄ x{Nt = n}

= e−λ̄t
∞∑
n=0

p̄nf(x)
(λ̄t)n

n!
= e−λ̄t

∞∑
n=0

1

n!
(λ̄tp̄)nf(x)

= = e−λ̄teλ̄tp̄f(x) = etLf(x) = Ptf(x)

for all x ∈M , t ≥ 0 and f ∈ B(M) and completes the proof. �
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According to the formula (1.6) the generator L of a Markov jump process with

bounded jump rate λ and transition probability p on the state space M is given in

matrix form by(
L(x, y)

)
x,y∈M :=

(
L1{y}(x)

)
x,y∈M =

(
λ(x)p(x, y)− λ(x)δx(y)

)
x,y∈M

=
(
λ̄p̄(x, y)− λ̄δx(y)

)
x,y∈M .

In matrix form the statement that the generator of (X,P ) is the bounded operator

L : B(M) −→ B(M) given in (1.6) can be written as

sup
x∈M

∣∣∣∣Pt(x, y)− δxy − tL(x, y)

t

∣∣∣∣ t↓0−→ 0 (1.8)

or in other words

Pt(x, y) = δxy + tL(x, y) + o(t), uniformly over x ∈M.

We note that for each x ∈M the number λ(x) = −L(x, x) is the rate at which particles

leave the site x since

P x{Xt 6= x}
t

=
1− P x{Xt = x}

t
= −Pt(x, x)− 1

t
−→ −L(x, x)

and that for x, y ∈M , x 6= y, the number λ(x)p(x, y) = L(x, y) is the rate at which the

transition x 7→ y is made, since

P x{Xt = y}
t

=
Pt(x, y)− δxy

t
−→ L(x, y).

Obviously any generator L of some Markov jump process with bounded jump rate λ and

transition probability p satisfies the properties

(a) L(x, y) ≥ 0 ∀x 6= y, (b) L(x, x) ≤ 0 ∀ x ∈M, and (c) L1M = 0 (1.9)

and the function λ(x) = −L(x, x) is bounded. Furthermore, since we have required that

with respect to p points x ∈ M of zero jump rate λ(x) = 0 do not communicate with

points of strictly positive jump rate we have by the matrix formula of L that

λ(x) 6= 0, λ(y) = 0 =⇒ L(x, y) = 0 (1.10)

for all x, y ∈M . As we shall see next, any M ×M matrix satisfying these properties is

the matrix of the bounded generator of some Markov jump process with bounded rates.

Proposition 1.1.2 Let L =
(
L(x, y)

)
x,y∈M ∈ R

M×M be an M ×M matrix satisfying

(1.9) and (1.10). Then L defines a bounded operator L : B(M) −→ B(M) by the formula

Lf(x) =
∑
y∈M

L(x, y)f(y), x ∈M

iff the function λ(x) = −L(x, x), x ∈M , is bounded, and in this case L is the generator

of a unique (up to distribution) Markov jump process with non-negative bounded jump

rates, namely the Markov jump process with non-negative bounded jump rate function λ

and transition probability p : M −→ PM given by

p(x, y) =
L(x, y)

λ(x)
1{λ6=0}(x)1M\{x}(y) + δx(y)1{λ=0}(x) (1.11)
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Proof Indeed, if L defines a bounded operator on B(M) then we have that

|L(x, x)| = |L1{x}(x)| ≤ ‖L1{x}‖u ≤ ‖L‖ · ‖1{x}‖u = ‖L‖

and on the other hand if the function λ is bounded then for all f ∈ B(M) we have that

Lf(x) =
∑

y∈M :y 6=x

f(y)L(x, y) + f(x)L(x, x)
(b)
=

∑
y∈M :y 6=x

(
f(y)− f(x)

)
L(x, y)

and therefore

|Lf(x)| ≤ 2‖f‖u
∑
y:y 6=x

L(x, y)
(c)
= 2λ̄‖f‖u

where again λ̄ :=
∑
x∈M λ(x).

We prove now the second claim. First we note that uniqueness is obvious since

in general a contraction semigroup is uniquely determined by its generator. For the

existence we note that the function p defined in (1.11) is indeed a transition probability

by property (1.9c) of L that obviously satisfies (1.4b) and p(x,M \ {x}) = 1 for all

x ∈ {λ 6= 0}. Now, due to assumption (1.10) we have that (1.4a) is also satisfied and

therefore the requirement (1.4) in the definition of Markov jump process of non-negative

bounded jump rates is satisfied. Therefore there exists a Markov jump process (X,P )

with non-negative bounded jump rate function λ and transition probability p and it

remains to show that the generator of (X,P ) is L. So, let L̃ : B(M) −→ B(M) be the

generator of (X,P ). Then by the matrix formula of L̃ we have that

L̃(x, y) = λ(x)p(x, y)− λ(x)δxy

= L(x, y)1{λ6=0}(x)1M\{x}(y) + λ(x)δxy1{λ=0} − λ(x)δxy

= L(x, y)1{λ6=0}(x)1M\{x}(y)− λ(x)δxy

and for y = x it follows that L̃(x, x) = −λ(x) = L(x, x) while for y 6= x we have that

L̃(x, y) = L(x, y)1{λ 6=0}(x) = L(x, y)

since if λ(x) = 0 then L(x, y) = 0 for all y ∈M , and the proof is complete. �

Remark: The hypothesis in proposition 1.1.2 that the matrix L satisfies (1.10) is needed

only to ensure that the kernel p defined in (1.11) satisfies (1.4a) and not just

p(x, x) = 0 ∀ x ∈ {λ 6= 0} (1.12)

since in the definition of Markov jump processes with non-negative jump rates we have

assumed that points of zero jump rate cannot be reached by points of positive jump rate.

However assumption (1.10) is not necessary in the definition of Markov jump processes

with non-negative bounded jump rates and was made since it simplifies the presenta-

tion and is satisfied by the ZR process. In this more general definition of Markov jump

processes with non-negative bounded jump rates assumption (1.4a) is replaced by as-

sumption (1.12), Markov jump processes can reach points in {λ = 0} from points in

{λ 6= 0} and from then on they remain constant, and proposition 1.1.2 holds without

the need of assumption (1.10).
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Definition 1.1.4 Let M be a countable measurable space with {x} measurable for all

x ∈ M . A matrix
(
L(x, y)

)
x,y∈M ∈ R

M×M such that (1.9) holds and such that the

function λ : M −→ R+ given by λ(x) = −L(x, x) is bounded will be called a bounded

Markov jump process generating matrix on M .

According to proposition 1.1.2 and the subsequent remark, given any countable state

space M , there is a bijective correspondence between the set (of distributions) of Markov

jump processes with non-negative bounded jump rates on M and the set of bounded

Markov jump process generating matrices on M . In other words, in order to define a

Markov jump process with non-negative bounded jump rates one needs only specify ad-

missible transition rates for a Markov jump process with bounded jump rates i.e. numbers

L(x, y) ≥ 0, x, y ∈M , y 6= x, such that the function λ : M −→ R+ given by

λ(x) :=
∑
y:y 6=x

L(x, y) =: −L(x, x)

is bounded. Of course then this is the Markov jump process with jump rate function λ

and transition probability p given by (1.11) and its generator is the bounded operator

L : B(M) −→ B(M) induced by L.

Moreover when M is equipped with an unbounded discrete metric d : M×M −→ R+

and a distinguished point o ∈ M , a bounded Markov jump process generating matrix

L =
(
L(x, y)

)
x,y∈M such that transition probability p associated to L by (1.11) satisfies

p| · |r(x) ≡
∫
M

|y|rdpx(y) ≤ |x|r, ∀ x ∈M (1.13)

for some r ≥ 0 induces bounded operators in the larger space Br(M) ≡ Bo,r(M,d) of all

functions f : M −→ R such that there exists C ≥ 0 such that |f(x)| ≤ C
(
1 + d(o, x)r

)
equipped with the norm

‖f‖u,r := ‖f‖o,u,r := sup
x∈M

|f(x)|
1 + |x|r

,

where for simplicity in notation we set |x| := d(o, x), |xy| := d(x, y), x, y ∈ M . Note

that the space Br(M) as a set does not depend on the base point o ∈M while the norm

‖ · ‖u,r does. It is easy to see that the spaces Br(M) are Banach spaces and by (1.13) L

induces a bounded linear operator L = Lr : Br(M) −→ Br(M), since for all x ∈ M we

have that

|Lf(x)|
1 + |x|r

≤ λ̄
∑
y∈M

|f(y)− f(x)|
1 + |x|r

p(x, y) ≤ λ̄‖f‖u,r
∑
y∈M

(
1 + |y|r

1 + |x|r
+ 1

)
p(x, y)

= λ̄‖f‖u,r
(

1 +
1

1 + |x|r
(

1 +
∑
y∈M
|y|rdp(x, y)

))
≤ 2λ̄‖f‖u,r

and so ‖Lf‖u,2 ≤ 2λ̄‖f‖u,2. As we shall see, when (1.13) is satisfied for some r ≥ 0, the

Markov semigroup (Pt)t≥0 of the Markov jump process defined by the generating matrix

L induces a contraction semigroup Pt : Br(M) −→ Br(M) in the larger space Br(M)

and the generator of (Pt)t≥0 in Br(M) is the bounded operator L : Br(M) −→ Br(M).
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We note first that inequality (1.13) for some r ≥ 0 characterizes the transition prob-

abilities p : M −→ PM that induce either linear contractions p : Br(M) −→ Br(M) or

linear contractions p : PrM −→ PrM with respect to the norm

‖µ‖TV,r :=

∫
(1 + |x|r)d|µ|

on Mr(M).

Proposition 1.1.3 Let p : M −→ PM be a transition probability in the polish space M .

Then the following are equivalent.

(a) p satisfies (1.13) for r ≥ 0.

(b) p induces a linear contraction p : Br(M) −→ Br(M).

(c) p induces a linear contraction p : PrM −→ PrM .

Proof(a)=⇒(b): Let f ∈ Br(M). Then

|pf(x)| =
∫
|f(y)|dpx(y) ≤ ‖f‖u,r

∫
(1 + |y|r)dpx(y) ≤ ‖f‖u,r(1 + |x|r)

for all x ∈M . Therefore pf ∈ Br(M) with ‖pf‖u,r ≤ ‖f‖u,r and so p is a contraction.

(b)=⇒(c) Let µ ∈ PrM . By (b) for any f ∈ Br(M) we have that pf ∈ Br(M) and so

we can define an operator p : PrM −→ PM by∫
fd(µp) :=

∫
pfdµ, ∀ f ∈ Br(M).

Then we obviously have that∫
|y|rd(µp)(y) =

∫
p| · |r(x)dµ(x) ≤

∫
|x|rdµ(x)

and therefore µp ∈ PrM and p : PrM −→ PrM is a contraction.

(c)=⇒(a) Since p : PrM −→ PrM is a contraction for all x ∈M we have that

p| · |r(x) =

∫
|y|rd(δxp)(y) ≤ |x|r

for all x ∈M as required. �

Proposition 1.1.4 Let (X,P ) be a Markov jump process with bounded jump rate func-

tion λ : M −→ R+ and transition probability p satisfying (1.13) for r ≥ 0. Then the

semigroup of (X,P ) induces a contraction semigroup Pt : Br(M) −→ Br(M) and the

generator of (X,P ) in Br(M) i.e. the generator of (Pt)t≥0 in Br(M) is the bounded

operator L : Br(M) −→ Br(M) given by (1.6).

Proof We note first that the transition probability p̄ : M −→ PM defined by (1.7)

satisfies (1.13). Indeed, for all x ∈M we have that

p̄| · |r(x) =

∫
|y|rdp̄x =

(
1− λ(x)

λ̄

)
|x|r +

λ(x)

λ̄

∫
|y|rpx(y) ≤ |x|r

for all x ∈M .
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We show next that E|Xt|r = Pt| · |r ∈ Br(M). We describe again (X,P ) as a the

Markov jump process (Y, P̄ ) where P̄ : M −→ P
(
MZ+ ×D(R+,Z+)

)
is a kernel such

that with respect to P̄ x the natural projections

ξ = (ξn)n≥0 : MZ+ ×D(R+,Z+) −→MZ+ ,

N = (Nt)t≥0 : MZ+ ×D(R+,Z+) −→ D(R+,Z+)

are independent processes, ξ is a discrete time markov chain with transition probability

p̄ starting from x and N is a Poisson process of parameter λ̄ > 0 (starting from 0), for

all x ∈M . Then obviously p̄k| · |r ≤ p̄k−1p̄| · |r ≤ p̄k−1| · |r ≤ · · · ≤ | · |r and therefore

E|Xt|r = Ē|Yt|r =

∞∑
k=0

Ē
(
|ξk|r1{k}(Nt)

)
=

∞∑
k=0

P̄ (Nt = k)Ē|ξk|r

= e−λ̄t
∞∑
k=0

(λ̄t)k

k!
p̄k| · |r ≤ | · |r.

So for all f ∈ Br(M) all x ∈M we have that

|Ptf(x)| ≤ Ēx|f(Yt)| ≤ ‖f‖u,rĒx(1 + |Yt|r) ≤ ‖f‖u,r(1 + |x|r)

and thus ‖Ptf‖u,r ≤ ‖f‖u,r for all f ∈ Br(M). Therefore Pt is a contraction and (Pt)t≥0

is a contraction semigroup in the Banach space Br(M).

We show finally that the generator of (Pt) is L : Br(M) −→ Br(M). Since L is a

bounded operator it induces the semigroup (Qt)t≥0 := (etL)t≥0 on Br(M) and we have

to prove that (Qt)t≥0 = (Pt)t≥0. But as we have seen L = λ̄(p̄− I) and therefore for all

f ∈ Br(M) and x ∈M we have that

Ptf(x) =

∞∑
k=0

Ēxf(ξk)P (Nt = k) = e−λ̄t
∞∑
k=0

(λ̄t)k

k!
p̄kf(x) = etLf(x) = Qtf(x). �

Finally it is useful to remark that if a kernel satisfies (1.13) for some r > 0 then it

also satisfies (1.13) for all orders less than r.

Proposition 1.1.5 Let p : M −→ PM be a transition kernel satisfying (1.13) for some

r > 0. Then p satisfies (1.13) for all 0 ≤ q < r.

Proof Indeed, as we know for probability spaces (Ω,F , P ) the function and measurable

functions f ∈ (Ω,F , P ) the function

[0,+∞) 3 r 7→ ‖f‖Lr(P )

is an increasing function of r and therefore if p satisfies (1.13) then for all 0 ≤ q ≤ r and

all x ∈M we have that

p| · |q(x) =

(∫
|y|qdpx(y)

) q
q

≤
(∫

|y|rdpx(y)

) q
r

=
(
p| · |r(x)

) q
r ≤

(
|x|r
) q
r = |x|q,

that is (1.13) holds for all 0 ≤ q ≤ r as required. �
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We turn now to the definition of the Zero Range process.

Definition 1.1.5 Any function g : Z+ −→ R+ such that

g(0) = 0, g(k) > 0, ∀k ∈ N, (1.14)

‖g′‖u := sup
k∈Z+

|g(k + 1)− g(k)| < +∞ (1.15)

will be called a local jump rate function.

Let now g : Z+ −→ R+ be a local jump rate function and p : Zd −→ PZd be a

translation invariant and irreducible transition probability. As we have already stated,

we would like to define the Zero Range processes on the lattice TdN , N ∈ N, with

local jump rate function g and elementary step distribution p as a Markov jump process

on the state space Md
N of all possible configurations of particles on the discrete torus

TdN in a way that it models a system of particles evolving according to the following

stochastic dynamics: Given an initial configuration of particles η0 ∈ Md
N at time zero,

an exponential alarm clock with parameter g(η0,x) starts at each site x ∈ TdN . At the

first time τ1 that an alarm clock rings at a non-empty site x, i.e. with η0,x 6= 0, a particle

leaves the site x at which the clock rang and moves instantly to the site y ∈ TdN with

probability pN (x, y) = p(y − x + NZd), and thus the new configuration η1 := ηx,y0 is

created with probability pN (x, y). Then the parameters of the clocks are updated to the

new values g(η1,x), x ∈ TN , and the process goes on to yield a path

R+ ∈ t 7→ ηNt :=

∞∑
k=0

ηk1[τk−1,τk)(t)

in the space of configurations Md
N . Of course due to the memory loss property of the

exponential distribution one can assume if he likes that clocks are reset during the pa-

rameter update process. Note that in the stochastic dynamics described above preserve

the total number of particles |η0| of the initial configuration.

According to the stochastic dynamics described above, the rate at which the transi-

tion η 7→ ηx,y, x, y ∈ TdN , y 6= x, is made is LN (η, ηx,y) = g(ηx)p(x, y) and a transition

η 7→ ζ cannot be made of ζ is not of the form ζ = ηx,y for some x, y ∈ TdN . Therefore

we would like to define the Zero Range process as a Markov jump process

(ηN ,PN ) :=
(
ηN := idD(R+,Md

N ), {P
η0

N ∈ PD(R+,M
d
N )}η0∈Md

N

)
by specifying the transition rates

LN (η, ζ) =

{
g(ηx)pN (y), ζ = ηx,x+y, ηx 6= 0, y 6= 0

0, else
, η 6= ζ. (1.16)

Then the jump rate function λ : Md
N −→ R+ of (ηN ,PN ) would be given by

λN (η) := −LN (η, η) := −
∑
ζ:ζ 6=η

L(η, ζ) = pN (TdN \ {0})
∑
x∈TdN

g(ηx). (1.17)
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Note that since the support of p spans Zd we have that pN (TN \ {0}) > 0 for N ≥ 2

and therefore λN (η) = 0 iff η = 0 ∈Md
N is the configuration with no particles. Since p

is assumed to have finite range ≤ A for N > A we have that

pN (TdN \ {0}) = p(Zd \NZd) = p([−A,A]d \NZd) = p([−A,A]d) = 1

and since we are interested in large values of N we will omit the term pN (TdN \ {0}) in

the formula for LN (η, η), η ∈ Md
N . The transition probability pN : Md

N −→ PMd
N of

(ηN ,PN ) would then be given by pN (0, ·) = δ0 and

pN (η, ζ) =

{
L(η,ηx,y)
λN (η) if ζ = ηx,y, x ∈ TdN , ηx 6= 0, y 6= x

0 otherwise
. (1.18)

for all η 6= 0.

However this does not fit exactly to the definition of Markov jump process with

bounded jump rates since λN is not bounded, unless the local jump rate function g is

bounded. Of course when g is bounded we have that

λ̄N := sup
η∈Md

N

λN (η) ≤ Nd‖g‖u < +∞.

Nevertheless we can still define a Markov process with jump rate function λN and

transition kernel pN if we note that λN is bounded on the communication classes of

the transition probability pN . Indeed, since the dynamics of the ZRP preserve the total

number of particles we can easily see that the communication classes of the generator

LN , or equivalently of the transition probability pN , are the hyperplanes

Md
N,K :=

{
η ∈Md

N

∣∣ |η|1 = K
}
, K ∈ Z+

consisting of configurations with a fixed number of particles and so λN is bounded on

each hyperplane Md
N,K , since by assumption (1.15) we have that g(k) ≤ ‖g′‖uk for all

k ∈ Z+ and therefore

sup
η∈Md

N,K

λN (η) = sup
η∈Md

N,K

∑
x∈TdN

g(ηx) ≤ sup
η∈Md

N,K

‖g′‖u|η|1 = ‖g′‖uK

for all N ∈ N, K ∈ Z+. In this way LN defines bounded generating matrices(
LN,K(η, ζ)

)
η,ζ∈Md

N,K

:=
(
LN (η, ζ)

)
η,ζ∈Md

N,K

∈ RM
d
N,K×M

d
N,K

and therefore for allK ≥ 1 we can define a Markov jump process (ηN,K ,PN,K) separately

on each communication class Md
N,K of pN , with bounded positive jump rate λN,K :=

λN |Md
N,K

: Md
N,K −→ (0,∞) and transition kernel pN,K : pN |Md

N,K
: Md

N,K −→ PMd
N,K ,

where PN,K : Md
N,K −→ PD(R+,M

d
N,K) and ηN,K is the canonical cadlag process, and

consider the process PN : Md
N −→ PD(R+,M

d
N ) defined by

P
η
N =

{
δ(ηt≡0)t≥0

, if η = 0

īK∗P
η
N,K if η ∈MN,K , K ≥ 1.

Then the process PN defined this way is obviously a cadlag feller process and we consider

it as a Markov jump process with unbounded rates, according to the following more

general definition.
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Definition 1.1.6 (a) Let λ : M −→ R+ be a measurable non-negative bounded func-

tion and let p : M −→ PM be a Markov kernel such that (1.4) holds and λ is bounded

on the communication classes {Mj}j∈N of p. The Markov kernel P : M −→ PD(R+,M)

given by

P x = īj∗P
x
j if x ∈Mj , j ∈ N,

where Pj : Mj −→ PD(R+,Mj) is the Markov jump process on Mj with transition

probability pj : Mj −→ PMj and strictly positive bounded jump rate function λj :=

λ|Mj and ij : Mj ↪→ M is the natural inclusion, is called the Markov jump process with

partially bounded non-negative jump rate λ and transition probability p.

(b) A matrix
(
L(x, y)

)
x,y∈M ∈ R

M×M such that (1.9) holds and such that the function

λ : M −→ R+ given by λ(x) = −L(x, x) is bounded on the communication classes of L

will be called a partially bounded Markov jump process generating matrix on M .

Obviously, to any partially bounded Markov jump process generating matrix L on M

corresponds a unique Markov jump process (X,P ) with partially bounded non-negative

jump rate λ : M −→ R+ and transition probability p : M −→ PM given by (1.11). Of

course the uniqueness of (X,P ) follows from the fact that (X,P ) is uniquely determined

on each of the communication classes Mj by proposition 1.1.2. We can give now the

following definition for Zero Range Processes.

Definition 1.1.7 Let g : Z+ −→ R+ be a local rate function and p : Zd −→ PZd be a

translation invariant and irreducible transition probability. The Markov jump process on

the state space Md
N defined by the partially bounded Markov jump process generating

matrix LN onMd
N given by the transition rates (1.16) is called the zero range process with

elementary step distribution p and jump rate function g, or simply zero range process

with parameters (p, g).

Of course then the ZR process (X,P ) is the Markov jump process on Md
N with

partially bounded jump rate function λN : Md
N −→ R+ given by (1.17) and transition

probability pN : Md
N −→ PMd

N given by (1.18). However, in this case, unless λN is

bounded, the generator of (X,P ) in B(Md
N ) is not a bounded operator. In particular in

general we have that DL 6= B(Md
N ). However note that for each K ∈ Z+ the formula of

the generator LN defines bounded generators LN : B(Md
N,K) −→ B(Md

N,K).

In order to have as large as possible domain for the generator LN of (X,P ) we consider

the generator in the spaces Br(M
d
N ), r ∈ R. For this we note that the communication

classes of (X,P ) coincide with the spheres of the | · | ≡ | · |1 norm on Md
N , and therefore

for each r ∈ R we have that

pN (1 + | · ||r|1 )sgnr(η) =
∑
ζ∈Md

N

(1 + |ζ||r|1 )sgnrpN (η, ζ)

=
∑

ζ∈Md
N,|η|1

(1 + |ζ||r|1 )sgnrpN (η, ζ) = (1 + |η||r|1 )sgnr.

So (X,P ) induces a transition semigroup on the Banach space Br(M
d
N ) and we can

speak about the generator LNr : DLNr
−→ Br(M

d
N ) of (X,P ) in Br(M

d
N ) for all r ∈ R.
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Proposition 1.1.6 Let (X,P ) be the ZR process with elementary step distribution p and

jump rate function g on Md
N . Then for all r ∈ R the operator LN ≡ LNr in Br(M

d
N )

given by the formula

LNf(η) =
∑

x,y∈TdN

[
f(ηx,y)− f(η)

]
g(ηx)pN (x, y) (1.19)

defines a bounded operator LN : Br−1(Md
N ) −→ Br(M

d
N ) with ‖LN‖ ≤ 4‖g′‖u and the

generator LNr of (X,P ) in Br(M
d
N ) is given in its domain DLNr

⊆ Br(Md
N ) by (1.19) and

e−|·|Br−2(Md
N ) ⊆ DLNr

for all r ∈ R. Furthermore, the generator of (X,P ) in Br(M
d
N )

with respect to the topology of uniform convergence on bounded subsets contains the

operator LN : Br−1(Md
N ) −→ Br(M

d
N ), that is

(Pt − I)f

t

t↓0−→ LNf

uniformly on bounded subsets of Md
N for all f ∈ Br−1(Md

N ).

Proof Let r ∈ R. We show first that LN defines a bounded operator from Br−1(Md
N )

to Br(M
d
N ). So let f ∈ Br−1(Md

N ). Then, we have that

|LNf(η)| ≤
∑

x,y∈TdN

∣∣f(ηx,x+y)− f(η)
∣∣g(ηx)pN (y)

≤ 2‖f‖u,r−1

∑
x,y∈TdN

(1 + |η||r−1|)sgn(r−1)g(ηx)pN (y)

≤ 2‖f‖u,r−1‖g′‖u(1 + |η||r−1|)sgn(r−1)|η|.

But if r ≥ 1 then we have that

(1 + |η||r−1|)sgn(r−1)|η| = (1 + |η|r−1)|η| ≤ 2(1 + |η|r) = 2(1 + |η||r|1 )sgnr

since supK∈Z+

K+Kr

1+Kr ≤ 2. On the other hand, if 0 ≤ r < 1 then

(1 + |η||r−1|)sgn(r−1)|η| = |η|
1 + |η|1−r

≤ 1 + |η|r = (1 + |η||r|1 )sgnr

since supK∈Z+

K
1+Kr+K1−r+K ≤ 1 while if r < 0 then

(1 + |η||r−1|)sgn(r−1)|η| = |η|
1 + |η|1−r

≤ 2
1

1 + |η|−r
= 2(1 + |η||r|1 )sgnr.

It follows that

|LNf(η)| ≤ 4‖f‖u,r−1‖g′‖u(1 + |η||r|1 )sgnr

for all η ∈ Md
N and therefore LNf ∈ Br(M

d
N ) and formula (1.19) defines a bounded

operator LN : Br−1(Md
N ) −→ Br(M

d
N ) with ‖LNr ‖ ≤ 4‖g′‖u.

We prove next that e−|·|1Br−2(Md
N ) ⊆ DLNr

by showing that given f ∈ e−|·|1Br−2(Md
N )

we have that

lim
t↓0

∥∥∥∥ (Pt − I)f

t
− LNf

∥∥∥∥
u,r

= 0.
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Indeed, if f ∈ e−|·|1Br−2(Md
N ) then e|·|1f ∈ Br−2(Md

N ) and therefore there exists a

constant C ≥ 0 such that

|f(η)| ≤ C(1 + |η||r−2|)sgn(r−2)e−|η|

for all η ∈Md
N , and so it follows that for all η ∈Md

N we have∣∣∣∣ (Pt − I)f(η)− tLNf(η)

t

∣∣∣∣ =

∣∣∣∣
∑
x,y∈TdN

[f(ηx,y)− f(η)](Pt(η, η
x,y)− tLN (η, ηx,y))

t

∣∣∣∣
≤

∑
ηx 6=0, y 6=x

∣∣f(ηx,y)− f(η)
∣∣∣∣∣∣Pt(η, ηx,y)− tLN (η, ηx,y)

t

∣∣∣∣
≤ 2C‖f‖u,r−1(1 + |η||r−2|)sgn(r−2)e−|η| ×

×
∑

x,y∈TdN :ηx 6=0, y 6=x

∣∣∣∣Pt(η, ηx,y)− tLN (η, ηx,y)

t

∣∣∣∣.
But on each communication class Md

N,K we have that Pt ≡ etL
N

and therefore if we set

Qt := 1
t (Pt − tL

N ), then for all η ∈Md
N , for all x, y ∈ TdN such that ηx 6= 0, x 6= y,

∣∣Qt(η, ηx,y)
∣∣ =

∣∣∣∣Pt(η, ηx,y)− tLN (η, ηx,y)

t

∣∣∣∣ =
1

t

∣∣∣∣ ∞∑
k=2

tk

k!
(LN )k(η, ηx,y)

∣∣∣∣
≤ 1

t

∞∑
k=2

tk

k!

∑
ζ1,...,ζk−1∈Md

N,|η|

k∏
i=1

∣∣LN (ζi−1, ζi)
∣∣

=
1

t

∞∑
k=2

tk

k!

∑
ζ1,...,ζk−1∈Md

N,|η|

k∏
i=1,

ζi−1=ζi

λN (ζi−1)

k∏
i=1,

ζi−1 6=ζi

LN (ζi−1, ζi)

=
1

t

∞∑
k=2

tk

k!

∑
ζ1,...,ζk−1∈Md

N,|η|

k∏
i=1

λN (ζi−1)

k∏
i=1,

ζi−1 6=ζi

pN (ζi−1, ζi)

≤ 1

t

∞∑
k=2

(t‖g′‖u|η|)k

k!

∑
ζ1,...,ζk−1∈Md

N,|η|

k∏
i=1,

ζi−1 6=ζi

pN (ζi−1, ζi)

=
1

t

∞∑
k=2

(t‖g′‖u|η|)k

k!
pkN (η, ηx,y)

where of course in the above formulas ζ0 = η and ζk = ηx,y. So we have that∑
x,y∈TdN ,
ηx 6=0, y 6=x

∣∣Qt(η, ηx,y)
∣∣ ≤ ∑

x,y∈TdN ,
ηx 6=0, y 6=x

1

t

∞∑
k=2

(t‖g′‖u|η|)k

k!
pkN (η, ηx,y)

≤ 1

t

∞∑
k=2

(t‖g′‖u|η|)k

k!
≤ ‖g′‖u|η|

∞∑
k=1

(t‖g′‖u|η|)k

k!

= ‖g′‖u|η|(et‖g
′‖u|η| − 1)

for all η ∈Md
N .
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It follows that for all η ∈Md
N we have the inequality∣∣∣∣ (Pt − I)f(η)− tLNf(η)

t

∣∣∣∣ ≤ 4C‖f‖u,r−1‖g′‖u(1 + |η||r−1|)sgn(r−1)e−|η|(et‖g
′‖u|η| − 1).

But then for all t < 1
‖g′‖u we have that −|η| < t‖g′‖u|η| and therefore∣∣∣∣ (Pt − I)f(η)− tLNf(η)

t

∣∣∣∣ ≤ 4C‖f‖u,r−1‖g′‖u(1 + |η||r−1|)sgn(r−1)(1− e−t‖g
′‖u|η|)

≤ 4tC‖f‖u,r−1‖g′‖2u(1 + |η||r−1|)sgn(r−1)|η|
≤ 8tC‖f‖u,r−1‖g′‖2u(1 + |η||r|)sgnr

for all η ∈Md
N and all 0 < t < 1

‖g′‖u . Therefore, for all t < 1
‖g′‖u we have that∥∥∥∥ (Pt − I)f

t
− LNf

∥∥∥∥
u,r

≤ 8tC‖f‖u,r−1‖g′‖2u
t↓0−→ 0,

which proves that e−|·|Br−2(Md
N ) ⊆ DLNr

.

We prove next that the generator of (X,P ) in Br(M
d
N ) with respect to uniform

convergence on bounded subsets contains the operator LN : Br−1(Md
N ) −→ Br(M

d
N ).

Indeed, let f ∈ Br(Md
N ) such that LNf ∈ Br(Md

N ). Then by the previous estimates we

have that∣∣∣∣ (Pt − I)f(η)− tLNf(η)

t

∣∣∣∣ ≤ 4C‖f‖u,r‖g′‖u(1 + |η||r|)sgnr(et‖g
′‖u|η| − 1)

and therefore if A ⊆Md
N is bounded, that is if A ⊆ {| · |1 ≤ K} for some K ∈ Z+, then

sup
η∈A

∣∣∣∣ (Pt − I)f(η)− tLNf(η)

t

∣∣∣∣ ≤ 4C‖f‖u,r‖g′‖u(1 +K |r|)(etK‖g
′‖u − 1)

t↓0−→ 0,

as required. Furthermore this implies that the generator LNr of (X,P ) in Br(M
d
N ) is

given on its domain DLNr
by formula (1.19) since convergence in the ‖ ·‖u,r-norm implies

uniform convergence on bounded subsets. �

By general Markov theory we have that for each K ∈ N there exists a unique extremal

invariant distribution νdN,K for LN , νdN,KL
N = 0, supported by Md

N,K . Of equal interest

is the monoparametric family of translation invariant equilibrium distributions defined

on the whole space Md
∞ := ZZ

d

+ which we discuss in the next section.
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1.2 The extremal translation invariant

equilibrium distributions

We set τx : Md
N −→Md

N , x ∈ TdN , the translation operator given by (τxη)y = ηx+y and

recall that a probability measure µ ∈ PMd
N is called translation invariant if τx∗µ = µ for

all x ∈ TdN . Obviously any product measure with equal factors some common measure

α ∈ PZ+ is translation invariant, since if, say ν = α⊗T
d
N ∈ PMd

N and x ∈ TdN , then

τx∗ν(η) = ν(τxη) =
∏
y∈TdN

α
(
(τxη)y) =

∏
y∈TdN

α(ηx+y) =
∏
y∈TdN

α(ηy) = ν(η).

We want to check whether there exists a product equilibrium distribution ν ∈ P1M
d
N

for the ZRP. Since the elementary transition probability is translation invariant we expect

the marginals αx := η(x)∗ν ∈ P1Z+, x ∈ TdN , to be all equal to some distribution

α ∈ P1Z+, and of course then ν is translation invariant. So suppose that ν ∈ PMd
N

a translation invariant product equilibrium distribution for the ZRP with parameters

(p, g), of the form ν = α⊗T
d
N for some α ∈ P1Z+. Then νLN = 0 and so for any k ∈ Z+,∫

LN
[
1{k}

(
η(x)

)]
dν =

∫
1{η(x)=k}dνL

N = 0, (1.20)

and for all η ∈Md
N ,

LN
[
1{k}

(
η(x)

)]
(η) =

∑
y,z∈TdN

[
1{η(x)=k}(η

y,y+z)− 1{η(x)=k}(η)
]
g(ηy)pN (z)

=
∑
z∈TdN

[
1{η(x)=k}(η

x,x+z)− 1{η(x)=k}(η)
]
g(ηx)pN (z)

+
∑
y 6=x

[1{η(x)=k}(η
y,x)− 1{η(x)=k}(η)

]
g(ηy)pN (x− y)

=
∑
z∈TdN

[
1{η(x)=k+1}(η)− 1{η(x)=k}(η)

]
g(ηx)pN (z)

+
∑
y 6=x

[1{η(x)=k−1}(η)− 1{η(x)=k}(η)
]
g(ηy)pN (x− y)

=
(
1{η(x)=k+1} − 1{η(x)=k}

)
(η) · g(ηx)

+
(
1{η(x)=k−1} − 1{η(x)=k}

)
(η)
∑
y 6=x

g(ηy)pN (x− y).(1.21)

Since ν is a translation invariant product measure, the r.v. η(x), x ∈ TdN , are iden-

tically distributed with common marginal α = η(0)∗ν = η(x)∗ν ∈ P1Z+. Since we

assume ν ∈ P1M
d
N and g(k) ≤ ‖g′‖uk by assumption (1.15), we have that g

(
η(x)

)
≤

‖g′‖uη(x) ∈ L1(ν) for all x ∈ TdN . So the quantities
∫
g(ηx)dν(η) are non-negative real

numbers independent of x ∈ TdN , say∫
g
(
η(x)

)
dν =

∫
gdα =: ϕ ∈ R+, ∀ x ∈ TdN .

In addition, due to assumption (1.14) we can only have φ = 0 when α = δ0 ∈ PZ+, in

which case ν = δ0 ∈ PMd
N is the Dirac distribution concentrated on the configuration 0
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with no particles, the unique absorbing point of the ZRP. In this case ν is the trivial

invariant Dirac distribution concentrated on the unique absorbing point of the ZRP, so

let us assume that ϕ > 0. Then, integrating both sides of equality (1.21) with respect to ν

and taking into account (1.20) and that the random variables η(x), x ∈ TdN , are i.i.d.

we get that

0 =

∫ (
1{η(x)=k+1} − 1{η(x)=k}

)
· g
(
η(x)

)
dν

+
∑
y 6=x

∫ (
1{η(x)=k−1} − 1{η(x)=k}

)
g
(
η(y)

)
dν · pN (x− y)

= g(k + 1)ν{η(x) = k + 1} − g(k)ν{η(x) = k}

+
∑
y 6=x

(
ν{η(x) = k − 1} − ν{η(x) = k}

) ∫
g
(
η(y)

)
dν · pN (x− y)

= g(k + 1)α(k + 1)− g(k)α(k) + ϕ ·
(
α(k − 1)− α(k)

)
.

Therefore we get that if ν = α⊗T
d
N is to be an invariant distribution then it must satisfy

g(k + 1)α(k + 1)− g(k)α(k) = ϕα(k)− ϕα(k − 1) (1.22)

for all k ∈ Z+ where of course α(−1) = 0. For k = 0, the above equation becomes

g(1)α(1) = ϕα(0) and therefore

α(1) = α(0)
ϕ

g(1)
.

Then for k = 2 equation (1.22) becomes g(2)α(2)−g(1)α(1) = ϕα(1)−ϕα(0), and since

g(1)α(1) = ϕα(0) this implies that

α(2) = α(1)
ϕ

g(2)
= α(0)

ϕ2

g(1)g(2)
.

So it follows easily by induction that if ν = α⊗T
d
N is to be an invariant distribution then

it must satisfy

α(k) = α(0)
ϕk

g!(k)
, ∀ k ∈ N, (1.23)

where for any function g : Z+ −→ R+ satisfying (1.14) we denote by g! : Z+ −→ R+

the function given by

g!(k) =

k∏
i=1

g(i)

where of course the empty product is equal to 1. Finally, if a distribution α ∈ P1Z+\{δ0}
is to satisfy (1.23) for all k ≥ 1 we must necessarily have that α(0) > 0, and since α is

assumed a probability measure, by (1.23) we must necessarily have that

1 = α(0) +

∞∑
k=1

α(k) = α(0)

(
1 +

∞∑
k=1

ϕk

g!(k)

)
= a(0)

∞∑
k=0

ϕk

g!(k)
.
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In particular we have that the series
∑∞
k=0 ϕ

k/g!(k) must be convergent and that if an

equilibrium distribution ν is to be of the form ν = α⊗T
d
N for some α ∈ P1Z+, then the

power series

Z(ϕ) ≡ Zg(ϕ) :=

∞∑
k=0

ϕk

g!(k)
(1.24)

must be finite at ϕ :=
∫
gdα and the one site marginal α must be given by the formula

α(k) =
1

Z(ϕ)

ϕk

g!(k)
, k ∈ Z+. (1.25)

Definition 1.2.1 The function Z ≡ Zg : R+ −→ [1,∞] defined by the power series in

(1.24) is called the normalizing partition function associated to g : Z+ −→ R+. We will

denote by DZ = {ϕ ∈ R+|Z(ϕ) < +∞} the proper domain of the partition function Z.

According to the above, in order to have a chance of finding invariant distributions

for the ZRP of the form ν = α⊗T
d
N , α ∈ P1Z+, the function g must be such that the

partition function Zg has non-trivial domain of convergence. By the root test, the radius

of convergence ϕc ≡ ϕg ≡ ϕ(g) := supDZg of Zg is

ϕc =
1

lim sup
k→+∞

k

√
1

g!(k)

= lim inf
k→+∞

k
√
g!(k), (1.26)

and so along our basic assumptions (1.14) and (1.15) for g, we will also assume in what

follows that the function g is such that

lim inf
k→+∞

k
√
g!(k) > 0. (1.27)

Of course whenever g is bounded from below by some positive number ε > 0, as is the

case when g is increasing, condition (1.27) is satisfied since then g!(k) ≥ εk and therefore

φg ≥ ε > 0. Another condition that guarantees that the normalizing partition function

Zg has non-trivial domain of convergence is the existence of constants c, p > 0 such that

γ := lim inf
k→+∞

ckkpg!(k) > 0.

Indeed, then, if 0 < ε < γ there exists k0 ∈ N such that ckkpg!(k) ≥ ε for all k ≥ k0 and

so

ϕg = lim inf
k→+∞

k
√
g!(k) ≥ 1

c
lim inf
k→+∞

k

√
ε

kp
=

1

c
> 0.

An example of a function g not satisfying assumption (1.27) is given by g(k) = 1
k , k ≥ 1,

g(0) = 0, since then g!(k) = 1
k! and we can easily from the ratio test for sequences that

lim
k→+∞

ckkp

k!
= 0.

Since mainly we will consider functions g : Z+ −→ R+ satisfying the basic assump-

tions (1.14), (1.15) and (1.27), we will use the following terminology.
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Definition 1.2.2 A function g : Z+ −→ R+ is called a local rate function if it satisfies

assumptions (1.14), (1.15) and (1.27).

So, according to the discussion above, the partition function Z has non-trivial domain

of convergence DZ ⊆ [0, ϕc], ϕc = ϕg > 0, whenever g is a local rate function. Of course

by our convention g!(0) = 1 we have that

Z(0) =
1

g!(0)
= 1 < Z(ϕ)

for all ϕ ∈ DoZ = (0, ϕc), and since Z is given by a power series it is analytic, and thus

C∞, on [0, ϕc), with all of it’s derivatives strictly positive, since for all m ∈ Z+ we have

that
dm

dϕm
Z(ϕ) =

∞∑
k=m

k!

(k −m)!

ϕk−m

g!(k)
> 0,

for all ϕ ∈ (0, ϕc). In particular the partition function Z is strictly increasing and

strictly convex on [0, ϕc). Recall that a convex function Z : R −→ (−∞,∞] is lower

semicontinuous iff it is one-sidedly continuous at each endpoint of it’s proper domain DZ
contained in DZ and diverging to +∞ at each endpoint of DZ not belonging to DZ , and

let us collect the basic properties of normalizing partitions functions in the following.

Proposition 1.2.1 Let g : Z+ −→ R+ be a local rate function and let ϕc > 0 be the

radius of convergence of the partition function Zg : R+ −→ [1,∞] defined by g. Then

[0, ϕc) ⊆ DZ ⊆ [0, ϕc], (1.28)

the partition function Zg : R+ −→ [1,+∞] is a lower semicontinuous, strictly increasing

and strictly convex function, C∞ on [0, ϕc) with all of it’s derivatives strictly positive.

Proof Only the lower semi-continuity of Z remains to be proved. This follows from

Abel’s theorem on power series. Indeed, Z is increasing and so the limit limϕ↑ϕc Z(ϕ)

exists in [1,∞], and since the coefficients 1
g!(k) of the power series defining Zg are positive

and ϕc > 0, the converse of Abel’s theorem also holds, that is

Z(ϕc) < +∞ ⇐⇒ lim
ϕ↑ϕc

Z(ϕ) < +∞,

and in this case

Z(ϕc) = lim
ϕ↑ϕc

Z(ϕ).

But because Z is convex, with proper domain DZ satisfying (1.28), and left continuous

at zero, this proves the lower semi-continuity of Z. �

Furthermore, note that if we allow increasing limits to take the value +∞, then we

have that

Z(ϕc) = lim
ϕ↑ϕc

Z(ϕ)

regardless of whether ϕc ∈ DZ or not. Note, also, that even when ϕc ∈ DZ the partition

function may not be differentiable from the right at ϕc, i.e. we may well have Z ′(ϕc) =

+∞. In fact, Abel’s theorem applies to the behavior of the derivatives of Z at the critical

point φc.
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Proposition 1.2.2 Let g : Z+ −→ R+ be a local rate function and let ϕc > 0 be the

radius of convergence of the partition function Zg : R+ −→ [1,∞] defined by g. Then,

for any m ∈ Z+ we have that

Z
(m)
− (ϕc) := sup

0<ϕ<ϕc

Z(m)(ϕ) = lim
ϕ↑ϕc

Z(m)(ϕ) =

∞∑
k=m

k!

(k −m)!

ϕk−mc

g!(k)
,

where the above limits are limits in [0,∞], i.e. they are allowed to take the value +∞.

Proof The proof follows from Abel’s theorem as in the case m = 0 in the previous

proposition and we will not repeat it. �

Next, we give a name to the one site marginal α ∈ PZ+ of our candidate for a

product translation invariant equilibrium distribution of the ZRP.

Definition 1.2.3 Let g : Z+ −→ R+ be a local rate function and let Z be the partition

function associated to g. For any ϕ ∈ DZ , the distribution ν̄1
ϕ ≡ ν̄1

ϕ,g ∈ PZ+ defined by

ν̄1
ϕ{k} =

1

Z(ϕ)

ϕk

g!(k)
, k ∈ Z+ (1.29)

will be called the one-site zero range (ZR) distribution with rate g and parameter ϕ.

A product distribution ν̄Nϕ,g ∈ PMd
N with common marginal ν̄1

ϕ ∈ PZ+, ϕ ∈ DZg ,

will be called a ZR distribution on the discrete torus TdN with rate g and parameter ϕ.

In the physics literature, the parameter ϕ is known as the fugacity. Of course,

according to the above definition the ZR distribution on the discrete torus TdN with

local rate function g and parameter ϕ is given by the formula

ν̄ϕ,g(η) =
∏
x∈TdN

ν̄1
ϕ(ηx) =

1

Z(ϕ)Nd
∏
x∈TdN

ϕηx

g!(ηx)
=

1

Z(ϕ)Nd
ϕ|η|1

g!(η)
,

for all η ∈Md
N , where of course we have set g!(η) :=

∏
x∈TdN

g!(ηx).

Our first task is to prove that the translation invariant measures ν̄ϕ,γ , ϕ ∈ DZg that

we have defined are indeed equilibrium distributions for the ZRP.

Proposition 1.2.3 Let Zg : R+ −→ [1,+∞] be the partition function associated to

some local rate function g : Z+ −→ R+. Then, for every ϕ ∈ DZg , the ZR distribution

ν̄Nϕ ∈ PMd
N on the discrete torus TdN is an equilibrium distribution for the ZRP with

parameters (p, g).

Proof Of course if ϕ = 0 we have nothing to prove, so we assume that ϕ ∈ (0, ϕc) and

we will prove that ν̄Nϕ L
N = 0, i.e. that

ν̄Nϕ (η)λN (η) =
∑

x,y∈TdN , y 6=x

ν̄Nϕ (ηx,y)LN (ηx,y, η),

for all η ∈Md
N .

33



Obviously, by the formula of ν̄Nϕ , for all η ∈ Md
N , x ∈ spt(η) := {x ∈ TdN |ηx > 0}

and y ∈ TdN \ {x}, we have that

ν̄Nϕ (ηx,y)

ν̄Nϕ (η)
=

g!(η)

g!(ηx,y)
=

g(ηx)

g(ηy + 1)
(1.30)

and therefore it suffices to prove that

λN (η) =
∑

x,y∈TdN

g(ηx)

g(ηy + 1)
LN (ηx,y, η)

for all η ∈Md
N . But

LN (ηx,y, η) = LN
(
ηx,y, (ηx,y)y,x

)
= g(ηy + 1)pN (x− y) (1.31)

for all η ∈Md
N , x ∈ spt(η), y ∈ TdN \ {x}, and therefore we have∑
x,y∈TdN

g(ηx)

g(ηy + 1)
LN (ηx,y, η) =

∑
x,y∈TdN

g(ηx)pN (x− y) = λN (η),

for all η ∈Md
N , as required. �

So indeed there exists a monoparametric family of translation invariant product

equilibrium distributions for the ZRP, the family {ν̄Nϕ,g}ϕ∈DZg of the ZR-distributions

on the discrete torus. Of course by the discussion that led us to the formula of the

distributions ν̄1
ϕ ∈ PZ+, this family is the unique, up to reparametrization, family

of translation invariant product equilibrium distributions of the ZRP with parameters

(p, g). Furthermore, the adjoint process of the ZRP with respect to any of the measures

ν̄Nϕ,g, ϕ ∈ DZg is easily described.

Proposition 1.2.4 Let p ∈ PZd be an elementary step distribution and g : Z+ −→ R+

be a local rate function. The adjoint process, with respect to any of the measures ν̄Nϕ,g,

ϕ ∈ DZ , of a ZRP with parameters (p, g) is a ZRP with parameters (p̌, g), where p̌ ∈ PZd
is the reflection of p ∈ PZd with respect to the origin, i.e. p̌(z) = p(−z) for all z ∈ Zd.

Consequently, if the elementary probability distribution p is symmetric with respect

to the origin then the ZRP with parameters (p, g) is self-adjoint with respect to any of

the measures ν̄Nϕ,g, ϕ ∈ DZg .

Proof Let ϕ ∈ DZg be fixed. We have to prove that if LN , ĽN are the generators of

ZRPs on TdN with parameters (p, g) and (p̌, g), respectively, then

ν̄Nϕ (η)ĽN (η, ζ) = ν̄Nϕ (ζ)LN (ζ, η), ∀ η, ζ ∈Md
N .

But this is obvious, since we have only to consider the case where ζ = ηx,y for some

η ∈Md
N , x ∈ spt(η), y ∈ TdN \ {x}, and by (1.30) and (1.31) we have that

ν̄Nϕ (η)ĽN (η, ηx,y) = ν̄Nϕ (η)g(ηx)p̌N (y − x) = ν̄ϕ(η)g(ηx)pN (x− y)

= ν̄ϕ(ηx,y)g(ηy + 1)pN (x− y) = ν̄ϕ(ηx,y)LN (ηx,y, η). �
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As defined, the distributions ν̄Nϕ,g, ϕ ∈ DZg are not parametrized by the density of

particles, since if

R(ϕ) :=

∫
η(x)dν̄Nϕ =

∫
kdν̄1

ϕ(k), ϕ ∈ DZ ,

the mean number of particles with respect to ν̄ϕ at site x ∈ TdN , we have that

R(ϕ) =
1

Z(ϕ)

∞∑
k=0

k
ϕk

g!(k)
=
ϕZ ′(ϕ)

Z(ϕ)
, ∀ 0 ≤ ϕ < ϕc, (1.32)

and therefore R(ϕ) = ϕ iff Z(ϕ) = Z ′(ϕ). But Z(0) = 1 and so Z = Z ′ iff Z = exp, and

therefore the distributions ν̄ϕ,g are parametrized by the density of particles iff g = idZ+

in which of course ν̄Nϕ is a Poisson distribution. Note that by equation (1.32) we have

that ∫
kdνϕ(k) ≡ R(ϕ) =

ϕZ ′(ϕ)

Z(ϕ)
< +∞,

for all ϕ ∈ [0, ϕc), and therefore νϕ,g has first order moments for all ϕ ∈ [0, ϕc). On the

other hand, if ϕc = ϕc(g) ∈ DZg , in which case the distribution ν̄1
ϕc,g is defined for the

critical value ϕc, it is not necessary that

barν1
ϕc has finite first moment. In fact, in this case we have by Abel’s theorem on power

series that R(ϕc) < +∞ iff Z ′(ϕc) < +∞, in which case R(ϕc) = ϕcZ
′(ϕc)/Z(ϕc).

Indeed, if Z(ϕc) < +∞ then R(ϕc) < +∞ iff Z(ϕc)R(ϕc) < +∞ and

Z(ϕ)R(ϕ) =

∞∑
k=0

k
ϕk

g!(k)

converges for all ϕ ∈ [0, ϕc). Therefore, since the coefficients k
g!(k) in the above power

series are non-negative and [0, ϕc) 3 ϕ 7→ R(ϕ)Z(ϕ) = ϕZ ′(ϕ) is increasing, we have by

Abel’s theorem that

R(ϕc)Z(ϕc) ≡
∞∑
k=0

k
ϕkc
g!(k)

< +∞ ⇐⇒ lim
ϕ↑ϕc

R(ϕ)Z(ϕ) < +∞,

in which case of course R(ϕc)Z(ϕc) = limϕ↑ϕc R(ϕ)Z(ϕ). Furthermore, since by the

lower semi-continuity of Z we have that limϕ↑ϕc Z(ϕ) = Z(ϕc), if we allow limits to take

the value +∞, whenever Z(ϕc) < +∞ we have that

R(ϕc) = lim
ϕ↑ϕc

R(ϕ) =

∫
kdαϕc,g(k) =

ϕcZ
′(ϕc)

Z(ϕc)
∈ [0,+∞]. (1.33)

The following proposition allows us to reparametrize the family {ν̄1
ϕ}ϕ∈DZ so as to

obtained a family that is parametrized by the density of particles

Proposition 1.2.5 The density of particles R : [0, ϕc) −→ R+ defined in (1.32) is a

smooth and strictly increasing function of the fugacity ϕ.
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Proof Obviously R(0) = 0 and R is smooth in [0, ϕc) with first derivative

R′(ϕ) = −Z
′(ϕ)

Z(ϕ)2

∞∑
k=0

k

g!(k)
ϕk +

1

Z(ϕ)

∞∑
k=0

k2

g!(k)
ϕk−1.

Therefore R′(ϕ) > 0 iff

Z(ϕ)

∞∑
k=0

k2

g!(k)
ϕk−1 > Z ′(ϕ)

∞∑
k=0

k

g!(k)
ϕk.

Multiplying the above inequality by ϕ ∈ (0, ϕc) it follows that R′(ϕ) > 0 for ϕ ∈ (0, ϕc)

iff ( ∞∑
k=0

ϕk

g!(k)

)( ∞∑
k=0

k2 φk

g!(k)

)
>

( ∞∑
k=0

k
ϕk

g!(k)

)2

.

Furthermore, by multiplying by 1
Z(ϕ)2 the above inequality becomes(∫

idZ+dν̄
1
ϕ

)2

<

(∫
id2
Z+
dν̄1
ϕ

)(∫
1dν̄1

ϕ

)
,

which is exactly the Cauchy-Schwartz inequality for the functions idZ+
, 1 in L2(ν̄1

ϕ), and

holds as a strict inequality since ν̄1
ϕ ∈ P1Z+ and id2

Z+
and 1 are not ν̄1

ϕ-almost surely

collinear. �

Now, since the density of particles R : [0, ϕc) −→ [0,∞) is strictly increasing, it is

injective with image the subinterval [0, ρc) of R+, where

ρc := lim
ϕ↑ϕc

R(ϕ) = sup
0≤ϕ<ϕc

R(ϕ)

and it’s inverse Φ := R−1 : [0, ρc) −→ [0, φc) is well defined. So if we define the family

{ν1
ρ}0≤ρ<ρc ⊆ P1Z+ by

ν1
ρ := ν̄1

Φ(ρ), (1.34)

where {ν̄1
ϕ}0≤φ<ϕc is the family of ZR distributions with local rate function g given in

(1.29), then ∫
kdνρ(k) =

∫
kdν̄1

Φ(ρ)(k) = R
(
Φ(ρ)

)
= ρ,

i.e. the family {νρ,g}0≤ρ<ρc ⊆ P1Z+ is parametrized by the density of particles. We

will refer to a distribution νρ = ν̄1
Φ(ρ), 0 ≤ ρ < ρc, as a (normalized) one-site ZR

distribution with density ρ. Likewise we will refer to a distribution νNρ ∈ PMd
N of the

form νρ :=
∏
x∈TdN

αρ as a normalized g-ZR distribution with density ρ.

It is worth to remark that by the definition of Φ = R−1 we have that Φ(ρ) is the

mean local rate with respect to αρ, that is∫
gdνρ =

1

Z
(
Φ(ρ)

) ∞∑
k=1

g(k)
Φ(ρ)k

g!(k)
= Φ(ρ). (1.35)
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Of course if ρc = +∞ then there exists a normalized one-site ZR distribution with

density ρ for all non-negative numbers ρ ∈ R+. On the other hand, if ρc < +∞ then

for all ρ > ρc there does not exist a one-site ZR distribution with density ρ. However as

we will see, if ρc := limϕ↑ϕc R(ϕ) < +∞, then ϕc ∈ DZg and therefore by (1.33) there

exists a normalized one-site ZR distribution with density equal to the critical density ρc,

namely the one-site ZR distribution νρc := ν̄1
ϕc with fugacity ϕc.

Proposition 1.2.6 Let {ν̄1
ϕ,g}0≤ϕ<ϕc ⊆ P1Z+ be the family of one-site ZR distributions

associated to the local rate function g : Z+ −→ R+ and let R : [0, ϕc) −→ R+ be the

density of particles defined in (1.32). If

ρc := lim
ϕ↑ϕc

R(ϕ) < +∞, (1.36)

then ϕc ∈ DZg , Z is differentiable at φc from the left and

ρc = R(ϕc) =
ϕcZ

′(ϕc)

Z(ϕc)
=

∫
kdν̄1

ϕc,g(k). (1.37)

Proof As we have already seen, whenever ϕc ∈ DZ we have that R(ϕc) < +∞ iff

Z ′−(ϕc) < +∞ and (1.37) holds. So we have to prove the implication

ρc < +∞ =⇒ ϕc ∈ DZ . (1.38)

First we show that if ρc < +∞ then ϕc < +∞. Let’s suppose to derive a contradiction

that ϕc = +∞. By (1.32) we obviously have that

R(ϕ) = ϕ ·
(

logZ(ϕ)
)′
, ∀ 0 ≤ ϕ < ϕc

and therefore since ρc < +∞, there exists M ∈ N such that(
logZ(ϕ)

)′ ≤ M

ϕ
, ∀ ϕ ∈ (0, ϕc). (1.39)

So, for each ϕ ≥ 1 we have that

logZ(ϕ)− logZ(1) =

∫ ϕ

1

(
logZ(ψ)

)′
dψ ≤M

∫ ϕ

1

dψ

ψ
= M logϕ,

or equivalently that

Z(ϕ) ≤ Z(1)ϕM , ∀ϕ ≥ 1.

But then,

R(ϕ) =
ϕZ ′(ϕ)

Z(ϕ)
≥ 1

Z(1)

Z ′(ϕ)

ϕM−1
≥ 1

Z(1)

M + 1

g!(M + 1)
ϕ
ϕ→+∞−→ +∞,

which contradicts the fact that ρc < +∞. Therefore if ρc < +∞ then we necessarily

have that ϕc < +∞. But for any 0 < ε < ϕc we have by (1.39) that

logZ(ϕ)− logZ(ε) =

∫ ϕ

ε

(
logZ(ψ)

)′
dψ ≤M log φ−M log ε,
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for all ϕ ∈ (ε, ϕc), or equivalently

Z(ϕ) ≤ Z(ε)
(ϕ
ε

)M
, ∀ ϕ ∈ (ε, ϕc),

and therefore by the lower semicontinuity of Z we have that

Z(ϕc) = lim
ϕ↑ϕc

Z(ϕ) ≤ Z(ε)
ϕMc
εM

< +∞,

that is ϕc ∈ DZ as required. �

As we have seen so far, the normalized ZR distributions αρ, 0 ≤ ρ < ρc, as well as

the ZR distribution ν1
ρc corresponding to the critical density ρc whenever defined, have

always finite first order moments. According to the next proposition the normalized

ZR distributions have finite moments of any order for all densities ρ < ρc, while at the

critical density ρ = ρc we do not necessarily have finite moments of all orders.

Proposition 1.2.7 Let {ν1
ρ}0≤ρ<ρc be the family of normalized one-site ZR distributions

associated to some local rate function g : Z+ −→ R+ with partition function Z : R+ −→
[1,∞]. Then, for all ρ ∈ [0, ρc) the one-site ZR distribution αρ has finite exponential

moments. Furthermore, if ρc < +∞, in which case ν1
ρc is defined, and

nc := sup
{
m ∈ Z+

∣∣Z(m)(ϕc) < +∞
}
,

where Z(m)(ϕc) := sup0≤ϕ<ϕc Z
(m)(ϕ), then ν1

ρc has finite moments of order nc, and

infinite moments of order ≥ nc + 1.

Proof Let ρ < ρc. Then Φ(ρ) < ϕc and so there exists θ > 0 such that eθΦ(ρ) < ϕc.

But then, the Laplace transform Mν1
ρ

of ν1
ρ evaluated at θ is

Mαρ(θ) =

∫
eθkdαρ(k) =

1

Z
(
Φ(ρ)

) ∞∑
k=0

(
Φ(ρ)eθ

)k
g!(k)

=
Z
(
Φ(ρ)eθ

)
Z
(
Φ(ρ)

) < +∞,

and therefore ν1
ρ has finite exponential moments.

We consider now the case of ν1
ρc = ν̄1

ϕc ∈ P1Z+, when it is defined. Note that

∞∑
k=0

km
ϕkc
g!(k)

= Z(ϕc)

∫
kmdν̄1

ϕc(k) (1.40)

for all m ∈ N. On the other hand, since Z is C∞ on [0, ϕc) we have that

∞∑
k=0

(k +m)!

k!

ϕk

g!(k +m)
=

∞∑
k=m

k!

(k −m)!

ϕk−m

g!(k)
= Z(m)(ϕ) < +∞. (1.41)

Also, for every k,m ∈ N, k ≥ m, we have that

km =
k!

(k −m)!
+ qm−1(k), (1.42)

38



where qm−1(k) :=
∑m−1
i=0 ai,m−1k

i is a polynomial of order m− 1. For each m ∈ Z+

now, we consider the function gm : Z+ −→ R+ given by the formula

gm(k) =

{
g!(m+1)
(m+1)! , k = 1

k g(m+k)
m+k , k ≥ 2

.

Then obviously g0 ≡ g and

gm!(k) =
g!(m+ 1)

(m+ 1)!
· 2g(m+ 2)

m+ 2
· . . . · k g(m+ k)

m+ k
= k!

g!(m+ k)

(m+ k)!

for all m, k ∈ Z+. Furthermore since limk→+∞
(

k
m+k

)1/k
= 1 for all m ∈ Z+ we have

that the functions gm, m ∈ Z+, have all the same critical fugacity ϕgm = ϕc := ϕ(g). In

particular, gm is a local rate function for all m ∈ Z+ and by (1.41) we have that

Zgm(ϕ) =

∞∑
k=0

ϕk

gm!(k)
=

∞∑
k=0

(k +m)!

k!

ϕk

g!(k +m)
= Z(m)(ϕ).

Now we can easily see that the set

A := {m ∈ N|Z(m)(ϕc) < +∞} (1.43)

is some subsegment {1, 2, . . . , nc} of N. Indeed, since ρc < +∞ we have that 1 ∈ A and,

as we will show, if Z(m)(ϕc) = +∞ for some m ∈ N then Z(m+1)(ϕc) = +∞. Indeed,

suppose that Zgm(ϕc) = Z(m)(ϕc) = +∞. Then by propositions (1.2.5) and (1.2.6) we

have that the function Rm : [0, ϕc) −→ R+ given by

Rm(ϕ) =
ϕZ(m+1)(ϕ)

Z(m)(ϕ)

is increasing to +∞ as ϕ ↑ ϕc, and therefore since limϕ↑ϕc Z
(m)(ϕ) = +∞ and ϕc < +∞

we must necessarily have that limϕ↑ϕc Z
(m+1)(ϕ) = +∞.

We will prove now that ν1
ρc has finite nc-th moment. Of course as we have seen ν1

ρc

has finite first order moments. So it suffices to prove that if ν1
ρc has finite m-th moments

for some m ≤ nc − 1, then it also has (m+ 1)-th moments. But by (1.40) and (1.42) we

have that

Z(ϕc)

∫
km+1dν1

ρc(k) =

m−1∑
k=0

km+1 ϕkc
g!(k)

+

∞∑
k=m+1

km+1 ϕkc
g!(k)

=

m−1∑
k=0

km+1 ϕkc
g!(k)

+

∞∑
k=m+1

k!

(k −m− 1)!

ϕkc
g!(k)

+

∞∑
k=m+1

qm(k)
ϕkc
g!(k)

=

m∑
k=0

km+1 ϕkc
g!(k)

+ ϕm+1
c Z(m+1)(ϕc) +

∞∑
k=m+1

qm(k)
ϕkc
g!(k)

,
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which is finite since the first term in the last sum is obviously a finite number, the second

term is finite since m+ 1 ≤ nc and the set A in (1.43) is a segment, and the third term

is finite since qm has polynomial growth of order m and by the inductive hypotheses

ν1
ρc ∈ PmZ+. This equation proves also that ν1

ρc does not have finite n-th moments. �

This proposition does not tell us what happens for moments of order p ∈ (nc, nc+1).

Also, note that by the above proof for all ρ ∈ [0, ρc) the moment generating function

Mν1
ρ

of ν1
ρ , given by

Mν1
ρ
(θ) =

Z
(
eθΦ(ρ)

)
Z
(
Φ(ρ)

) ,

has proper domain DMν1
ρ

such that (−∞, bρ) ⊆ DMν1
ρ
⊆ (−∞, bρ], where

bρ := log φc − log Φ(ρ) > 0.

In particular when ϕc = +∞ then ν1
ρ has full exponential moments for all ρ ≥ 0, that

is Mν1
ρ
(θ) =

∫
eθkdν1

ρ(k) < +∞ for all θ ∈ R, ρ ≥ 0. On the other hand, for the critical

density ρ = ρc we have that bρc = 0 and ν1
ρc does not have exponential moments. Next

we will see some basic properties of the family the normalized one-site ZR distributions.

Proposition 1.2.8 The family {ν1
ρ}ρ∈Ic ⊆ P1Z+, Ic := [0, ρc] ∩ R, of normalized

one-site ZR distributions defined through any local rate function g : Z+ −→ R+ is 1-

Wasserstein continuous (that is with respect to functions h : Z+ −→ R of linear growth,

h(z) ≤ C(1 + |z|)).

Proof Since Z+ is countable, the family {ν1
ρ}ρ∈Ic ⊆ P1Z+ is weakly continuous iff the

function

Ic 3 ρ
fk7→ ν1

ρ(k)

is continuous for all k ∈ Z+. But fk is given by the formula

fk(ρ) =
1

Z
(
Φ(ρ)

) Φ(ρ)k

g!(k)
,

which is obviously continuous in [0, ρc). Furthermore, if ρc, in which case ϕc ∈ DZ and

in particular ϕc < +∞, since Z is continuous on [0, ϕc] it suffices to prove that

lim
ρ↑ρc

Φ(ρ) = ϕc.

But this is obvious. The limit exists since Φ is strictly increasing, and if for some ε > 0

we had that sup0≤ρ≤ρc Φ(ρ) ≤ ϕc − ε then we would have that

ϕc − ε ≥ Φ
(
R(ϕc −

ε

2
)
)

= ϕc −
ε

2
,

which is absurd. This proves that {ν1
ρ}ρ∈Ic is weakly continuous and since the density

function Ic 3 ρ 7→
∫
kdν1

ρ(k) = ρ is obviously continuous the family {ν1
ρ}ρ∈Ic is 1-

Wasserstein continuous. �
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Proposition 1.2.9 The family {ν1
ρ}ρ∈Ic ⊆ P1Z+, Ic := [0, ρc] ∩R, of normalized one-

site ZR distributions defined through any local rate function g : Z+ −→ R+ is increasing.

Proof We have to prove that for any bounded and increasing function f : Z+ −→ R we

have that

ρ1 ≤ ρ2 =⇒
∫
fdν1

ρ1
≤
∫
fdν1

ρ2
. (1.44)

Since any bounded increasing function f : Z+ −→ R can be written as uniformly

bounded pointwise limit f = limm→+∞ fm of the increasing functions fm := f ∧ f(m),

m ∈ Z+, it suffices to prove (1.44) for increasing functions f ∈ B(Z+) that are in

addition eventually constant. That is, it suffices to prove the claim for functions f of

the form

f ≡
m∑
i=1

xi−11{ni−1,ni−1+1,...,ni−1} + xm1Z+\{0,...,nm−1}

for some m ∈ N and some increasing sequences {ni}mi=0 ⊆ Z+, n0 = 0, and {xi}mi=0 ⊆ R.

Then if we set x−1 := 0, we have that

f =

m∑
i=0

(xi − xi−1)1Z+\{0,...,ni−1},

and therefore it is obvious that it suffices to prove (1.44) for functions f ∈ B(Z+) of

the form f = 1Z+\{0,...,m−1}, m ∈ Z+, where of course {0, . . . ,−1} = ∅. In other words,

since Φ := R−1 is strictly increasing, it suffices to prove that for each m ∈ Z+, the

function Fm : (0, ϕc) −→ R+ given by the formula

Fm(ϕ) = ν̄1
φ

(
{m,m+ 1, . . . }

)
=

1

Z(φ)

∞∑
k=m

ϕk

g!(k)

is increasing. Obviously

Fm(ϕ) = Fm+1(ϕ) +
1

Z(ϕ)

ϕm

g!(m)

for all m ∈ Z+, ϕ ∈ (0, ϕc) and therefore

F ′m+1(ϕ) = F ′m(ϕ) +
Z ′(ϕ)

Z(ϕ)2

ϕm

g!(m)
− 1

Z(ϕ)

mϕm−1

g!(m)

= F ′m(ϕ) +
1

Z(ϕ)

ϕm−1

g!(m)

(
R(ϕ)−m

)
.

for allm ∈ Z+, ϕ ∈ (0, ϕc). In particular, for fixed ϕ ∈ (0, ϕc) the sequence {F ′m(ϕ)}m∈Z+

is increasing on the set {0, 1, . . . , R(ϕ) + 1} and decreasing on the set {R(ϕ) + 1, . . . }.
Therefore, for all ϕ ∈ (0, ϕc) and all m ∈ Z+ we have that

F ′m(ϕ) ≥ min

{
F ′0(ϕ), lim

m→+∞
F ′m(ϕ)

}
= min

{
0, lim
m→+∞

F ′m(ϕ)

}
(1.45)
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But the derivative of Fm is

F ′m(ϕ) = −Z
′(ϕ)

Z(ϕ)2

∞∑
k=m

ϕk

g!(k)
+

1

Z(ϕ)

∞∑
k=m

k
ϕk−1

g!(k)

and since the series
∑∞
k=0

ϕk

g!(k) and
∑∞
k=0 k

ϕk−1

g!(k) converge we obviously have that

lim
m→+∞

F ′m(ϕ) = 0

for each fixed ϕ ∈ (0, ϕc). Together with (1.45) this proves that F ′m(ϕ) ≥ 0 for all

m ∈ Z+, ϕ ∈ (0, ϕc) as required. �

By the coupling characterization of the partial order of probability measures it follows

that for all ρ1, ρ2 ∈ Ic such that ρ1 ≤ ρ2 there exists a monotone plan πρ1,ρ2 ∈ Π(ν1
ρ1
, ν1
ρ2

),

that is a probability measure πρ1,ρ2
∈ P1(Z+×Z+) with first and second marginals the

measures ν1
ρ1

and ν1
ρ2

respectively such that

πρ1,ρ2

{
(k,m) ∈ Z+ × Z+

∣∣∣ k ≤ m} = 1.

Here, given two Borel probability measures µ, ν ∈ PX in a polish space X the set Π(µ, ν)

denotes the set of all measures in P(X ×X) with first and second marginals equal to µ

and ν respectively. For the following proposition we recall that the 1-Wasserstein metric

on the set of Borel probability measures on a Polish space (X, d) is given by

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
d(x, y)dπ(x, y).

The infimum is always attained, and any minimizer is called an optimal plan. For more

a detailed description of the Wasserstein metrics the reader is referred to [31], chapter

7.

Proposition 1.2.10 Let {ν1
ρ}ρ∈Ic be the family of normalized one-site ZR distribution

associated to the local rate function g. Any monotone plan πρ1,ρ2
∈ Π(ν1

ρ1
, ν1
ρ2

), ρ1 ≤ ρ2,

is optimal and

W1(ν1
ρ1
, ν1
ρ2

) = |ρ1 − ρ2| (1.46)

for all ρ1, ρ2 ∈ Ic. Furthermore, for any Lipschitz function f : Z+ −→ R+ with Lipschitz

constant Lf , the function F : Ic −→ R+ given by the formula

F (ρ) =

∫
fdν1

ρ =
1

Z
(
Φ(ρ)

) ∞∑
k=0

f(k)
Φ(ρ)k

g!(k)

is Lipschitz with Lipschitz constant ≤ Lf .

Proof Let ρ1, ρ2 ∈ Ic be such that ρ1 ≤ ρ2 and let πρ1,ρ2
∈ Π(ν1

ρ1
, ν1
ρ2

) be a monotone

plan from ν1
ρ1

to ν1
ρ2

. Then,

W1(ν1
ρ1
, ν1
ρ2

) ≤
∫
|k −m|dπρ1,ρ2

(k,m) =

∫
(m− k)dπρ1,ρ2

(k,m)

=

∫
mdν1

ρ2
(m)−

∫
kν1
ρ1

(k) = ρ2 − ρ1,
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and therefore

W1(ν1
ρ1
, ν1
ρ2

) ≤ |ρ1 − ρ2|

for all ρ1, ρ2 ∈ Ic. On the other hand, the barycentric projection b : P1R −→ R given

by b(µ) =
∫
R
xdµ(x) is a contraction with respect to the 1-Wasserstein distance and so

if we denote by i : Z+ ↪→ R the natural embedding, then

|ρ1 − ρ2| = |b(i∗ν1
ρ1

)− b(i∗ν1
ρ2

)| ≤W1(i∗ν
1
ρ1
, i∗ν

1
ρ2

)

for all ρ1, ρ2 ∈ Ic. But if i × i : Z+ × Z+ −→ R × R is the product of the injection i

with itself and π0 ∈ Π(ν1
ρ1
, ν1
ρ2

) is an optimal plan then

(i× i)∗π0 ∈ Π(i∗ν
1
ρ1
, i∗ν

1
ρ2

)

is a transport plan from i∗ν
1
ρ1

to i∗ν
1
ρ2

and therefore

W1(i∗ν
1
ρ1
, i∗ν

1
ρ2

) ≤
∫
|x− y|d(i× i)∗π0(x, y) =

∫
|k −m|dπ0(k,m) = W1(ν1

ρ1
, ν1
ρ2

).

This proves (1.46) and that πρ1,ρ2 is optimal.

We prove now the second claim. Let Lf be the Lipschitz constant of f . Then, for all

ρ1, ρ2 ∈ Ic, ρ1 ≤ ρ2, if πρ1,ρ2
∈ Π(ν1

ρ1
, ν1
ρ2

) is a monotone plan, we have that

|F (ρ1)− F (ρ2)| =

∣∣∣∣∫ (f(k)− f(m)
)
dπρ1,ρ2

(k,m)

∣∣∣∣
≤ Lf

∫
|k −m|dπρ1,ρ2(k,m) = Lf (ρ2 − ρ1),

and therefore F is Lipschitz with constant ≤ Lf . �

The above properties of the one-site ZR distributions extend easily to the ZR distri-

butions on the discrete toruses TdN , N ∈ N.

Proposition 1.2.11 The family {νρ}ρ∈Ic ⊆ P1M
d
N of normalized ZR distributions on

the discrete torus TdN is increasing. Any monotone plan νρ1,ρ2
∈ Π(νρ1

, νρ2
) is optimal,

and

W1(νρ1
, νρ2

) = Nd|ρ1 − ρ2|.

Furthermore, for any Lipschitz function f : Md
N −→ R with Lipschitz constant Lf the

function F : Ic −→ R given by

F (ρ) =

∫
f(η)dνρ(η)

is Lipschitz with constant NdLf .

Proof The fact that {νρ}ρ∈Ic is increasing follows from the fact that the family of its

common marginal {ν1
ρ} is increasing. Indeed, let ρ1, ρ2 ∈ Ic be such that ρ1 ≤ ρ2 and

let πρ1,ρ2
∈ Π(ν1

ρ1
, ν1
ρ2

) be a monotone plan from ν1
ρ1

to ν1
ρ2

. But then the measure

νρ1,ρ2 :=
∏
x∈TdN

πρ1,ρ2 ∈ P1(Z+ × Z+)T
d
N ∼= P1(Md

N ×Md
N ). (1.47)
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is a transport plan from νρ1
to νρ2

through the identification

(Z+ × Z+)T
d
N 3

(
ηx, ζx

)
x∈TdN

7→
(
(ηx)x∈TdN , (ζx)x∈TdN ) ∈Md

N ×Md
N , (1.48)

and it is monotone, since

νρ1,ρ2

{
(η, ζ) ∈Md

N ×Md
N

∣∣∣ η ≤ ζ} = νρ1,ρ2

( ⋂
x∈TdN

{(η, ζ)|ηx ≤ ζx}
)

=
∏
x∈TdN

νρ1,ρ2
{(η, ζ) | ηx ≤ ζx}

=
∏
x∈TdN

πρ1,ρ2
{(k,m) ∈ Z2

+|k ≤ m} = 1.

Furthermore, since the measure πρ1,ρ2
∈ Π(ν1

ρ1
, ν1
ρ2

) is optimal, as we know the prod-

uct measure νρ1,ρ2
defined in (1.47) through the identification in (1.48) is an optimal

transport plan from νρ1 to νρ2 , that is

W1(νρ1
, νρ2

) =

∫
|η − ζ|1dνρ1,ρ2

(η, ζ) =
∑
x∈TdN

∫
|η(x)− ζ(x)|dνρ1,ρ2

=
∑
x∈TdN

∫
|k −m|dπρ1,ρ2

(k,m) = NdW 1(ν1
ρ1
, ν1
ρ2

).

This proves the first claim. Next, if f : Md
N −→ R is Lipschitz with Lipschitz constant

Lf , that is

|f(η)− f(ζ)| ≤ Lf |η − ζ|1
for all η, ζ ∈Md

N , then for any ρ1, ρ2 ∈ Ic, ρ1 ≤ ρ2, we have that

|F (ρ1)− F (ρ2)| ≤
∫
|f(η)− f(ζ)|dνρ1,ρ2

(η, ζ) ≤ LfW1(νρ1,ρ2
) ≤ NdLf |ρ1 − ρ2|.

This proves that F is Lipschitz with constant ≤ NdLf and completes the proof. �

As we have seen, when ρ∗ < ρc, the distribution ν1
ρ∗ = η(x)∗ν

N
ρ∗ has finite exponential

moments. We will see next the form that Cramer’s theorem takes for the i.i.d. sequence

{η(x)}x∈Zd of ν1
ρ-distributed r.v., ρ∗ < ρc.

Proposition 1.2.12 Let νρ∗ ∈ PMd
∞ be the ZR-range distribution on the full lattice

with density ρ∗ < ρc. Then the i.i.d. sequence {η(x)}x∈Zd satisfies the large deviations

principle with rate function

Iρ∗(ρ) := Λ∗ν1
ρ∗

(ρ) =

{
ρ log Φ(ρ∧ρc)

Φ(ρ∗)
− log Z(Φ(ρ∧ρc))

Z(Φ(ρ∗))
, ρ ≥ 0

+∞, ρ < 0
.

Proof The logarithmic moment generating function Λν1
ρ∗

: R −→ (−∞,∞] is given by

Λν1
ρ∗

(θ) = logMν1
ρ∗

(θ) = log
Z
(
Φ(ρ∗)e

θ
)

Z
(
Φ(ρ∗)

) .
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By Cramer’s theorem on R the i.i.d. sequence of νρ∗ -r.v. {η(x)}x∈Zd satisfies the large

deviation principle with rate function Iρ∗ the Legendre transform

Iρ∗(ρ) := Λ∗ν1
ρ∗

(ρ) = sup
θ∈R
{θρ− Λν1

ρ∗
(θ)}

of the logarithmic moment generating function of ν1
ρ∗ . Obviously the logarithmic m.g.f.

Λν1
ρ∗

has proper domain DΛν1
ρ∗

such that (−∞, bρ∗) ⊆ DΛν1
ρ∗
⊆ (−∞, bρ∗ ], where

bρ∗ := log φc − log Φ(ρ∗) = log
Φ(ρc)

Φ(ρ∗)
,

and its derivative in (−∞, bρ∗) is given by

Λ′ν1
ρ∗

(θ) =
eθΦ(ρ∗)Z

′(eθΦ(ρ∗)
)

Z
(
eθΦ(ρ∗)

) = R
(
eθΦ(ρ∗)

)
.

Obviously Λ′ν1
ρ∗

(−∞) := limθ↓−∞ Λ′ν1
ρ∗

(θ) = 0 and Λ′ν1
ρ∗

(bρ∗) := limθ↑bρ∗ Λ′ν1
ρ∗

(θ) = ρc,

and as we know the Legendre transform Λ∗ν1
ρ∗

is given on the interval

(0, ρc) =
(
Λ′ν1

ρ∗
(−∞),Λ′ν1

ρ∗
(bρ∗)

)
⊆ DΛ∗

ν1
ρ∗
,

by the formula

Λ∗ν1
ρ∗

(ρ) = ρ(Λ′ν1
ρ∗

)−1(ρ)− Λν1
ρ∗

(
(Λ′ν1

ρ∗
)−1(ρ)

)
Now since Φ = R−1 it is obvious that (Λ′ν1

ρ∗
)−1 : (0, ρc) −→ R is given by the formula

(Λ′ν1
ρ∗

)−1(ρ) = log
Φ(ρ)

Φ(ρ∗)

and therefore

Λ∗ν1
ρ∗

(ρ) = ρ log
Φ(ρ)

Φ(ρ∗)
− log

Z
(
Φ(ρ)

)
Z
(
Φ(ρ∗)

) , ∀ ρ ∈ (0, ρc).

On the other hand, whenever ρc < +∞ we have that Z(ϕc) < +∞ and thus

Λν1
ρ∗

(bρ∗) = log
Z
(
Φ(ρ∗)e

bρ∗
)

Z
(
Φ(ρ∗)

) = log
Z
(
Φ(ρc)

)
Z
(
Φ(ρ∗)

) < +∞.

So bρ∗ ∈ DΛν1
ρ∗

and therefore Λ∗ν1
ρ∗

is given on [ρc,+∞) by the formula

Λ∗ν1
ρ∗

(ρ) = bρ∗ · ρ− Λν1
ρ∗

(bρ∗) = ρ log
Φ(ρc)

Φ(ρ∗)
− log

Z
(
Φ(ρc)

)
Z
(
Φ(ρ∗)

) .
Since Λ∗ν1

ρ∗
(0) = − log ν1

ρ∗(0) and Λ∗ν1
ρ∗

(ρ) = +∞ for all ρ < 0, the claim is proved. �

Finally, we note that the knowledge that the normalized ZR distributions on the

discrete toruses are invariant distributions for the ZRP allows us to obtain a formula for

the extremal invariant distributions νdN,K ∈ PMd
N concentrated on the communication
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classes Md
N,K consisting of configurations with a fixed number of particles K ∈ Z+. In-

deed, let {νNρ }ρ∈Ic be the family of ZR distributions on the discrete torus TdN associated

to the local rate function g. For any ρ ∈ Ic, the distribution

νNρ
∣∣Md

N,K := νNρ
(
·
∣∣{| · |1 = K}

)
=
1{K}(| · |1)

νρ{| · | = K}
dνρ

is an invariant distribution of the ZRP, since if |η|1 6= K then

(νNρ
∣∣Md

N,K)LN (η) =
∑

ζ∈Md
N,|η|1

νNρ
∣∣Md

N,K(ζ)LN (ζ, η) = 0

since νNρ
∣∣Md

N,K is concentrated by definition on configurations with K particles, while

if |η|1 = K, then

(νNρ
∣∣Md

N,K)LN (η) =
∑

ζ∈Md
N,K

νNρ
∣∣Md

N,K(ζ)LN (ζ, η)

=
1

νNρ {|η|1 = K}
∑

ζ∈Md
N,K

νNρ (ζ)LN (ζ, η)

=
1

νNρ {|η|1 = K}
∑
ζ∈Md

N

νNρ (ζ)LN (ζ, η) = 0.

So by the uniqueness of the extremal invariant distributions νdN,K we have that for any

ρ ∈ Ic,
νdN,K(·) = νNρ

(
·
∣∣{| · |1 = K}

)
.

Therefore for each η ∈Md
N,K we have that

νdN,K(η) =
νρ(η)∑

η∈Md
N,K

νρ(η)
=

1
g!(η)∑

η∈Md
N,K

1
g!(η)

.

The family {νN,K ∈ PMd
N,K} is called the canonical ensemble.
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1.3 Useful Topological Spaces

In the study of the hydrodynamic behavior of ZRPs we need to consider limits of dis-

tributions on the configuration spaces Md
N as the inverse particle’s distance N tends to

infinity. We do so by embedding the configuration spaces Md
N in the space Md

∞ := ZZ
d

+

of configurations over the full lattice, via the periodic embeddings

Md
N 3 η = (ηx)x∈TdN

eN7→ eN (η) = (η[z]N )z∈Zd ∈Md
∞

induced by the the quotient mappings [·]N : Zd −→ TdN . We will always suppress eN
from the notation identifying eN (Md

N ) with Md
N .

To study the evolution of the particles density under the dynamics of the ZRPs we

will also consider the empirical embeddings of configurations in the space M+(Td) of

positive measures on the macroscopic torus. These are defined by

πNη :=
1

Nd

∑
x∈TdN

ηxδ xN ∈M+(Td), η ∈Md
N .

In this section we will describe the basic properties of the product topology on Md
∞, the

Wasserstein topologies on the spaces PpM
d
∞, p ≥ 0, of probability measures with finite

p-th moments on Md
∞ and the weak topology on M+(Td)

Before proceeding with the description of these topologies we describe some relevant

identifications that will be used throughout without being mentioned. For each N ∈ N
we set

ZN :=

{
−
[
N

2

]
,−
[
N

2

]
+ 1, . . . ,

[
N − 1

2

]}
.

Obviously ]ZN = N and the restriction of the quotient mapping [·]N : Zd −→ TdN given

by [z]N = z + NZd on the set ZdN is a bijection. It’s inverse jN : TdN −→ ZdN ⊆ Zd
defines an injection of the discrete torus TdN in the full lattice Td∞ := Zd. We will

consider the discrete toruses TdN embedded in the full lattice through the injections jN ,

N ∈ N. Through these embeddings, as N → +∞ the discrete toruses TdN converge as

normed groups to the full lattice Td∞ := Zd in the pointed Hausdorff convergence, since

if we denote by | · |N : TN −→ R+,

|x|N := min{x,N − x},

the translation invariant norm of the group TN and by | · |N,∞ : TdN −→ R+ the induced

`∞-norm on TdN ,

|x|N,∞ = max
i=1,...,d

|xi|N

we have that for all N,R ∈ Z+ such that N ≥ 4R,

jN
(
BN,∞(0, R)

)
= B∞(0, R)

where BN,∞(0, R) is the ball of center 0 and radius R in TdN with respect to | · |N,∞, and

the ball B∞(0, R) ⊆ Zd is with respect to the usual `∞ metric, |x|∞ := maxi=1,...,d |xi|.
Through the identifications TdN

∼= ZdN described above we can identify the space Md
N

with the space Z
Z
d
N

+ and then the natural projections pN : Md
∞ −→ Z

Z
d
N

+ can be viewed

as pN : Md
∞ −→Md

N and obviously pN ◦ eN = idMd
N

.
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1.3.1 The Space Md
∞ := ZZ

d

+

We will denote the | · |∞-ball of radius ` in Zd by Λd` :=
{
z ∈ Zd

∣∣|z| ≤ `} ∼= Td(2`+1).

Proposition 1.3.1 The space of configurations Md
∞ on the full lattice Zd is a polish

when equipped with the product topology. A polish metric inducing the product topology

of Md
∞ is d : Md

∞ ×Md
∞ −→ [0, 1] given by

d(η, ζ) =
∑
x∈Zd

1

h(|x|∞)

|ηx − ζx|
1 + |ηx − ζx|

where h : Z+ −→ R+ is the mapping given by

h(`) = 2`+1](Λd` \ Λd`−1),

with the convention that Λd−1 = ∅.

Proof It is obvious by the definition of d that

d(η, ζ) =

∞∑
`=0

1

h(`)

∑
x∈Λd`\Λ

d
`−1

|ηx − ζx|
1 + |ηx − ζx|

≤
∞∑
`=0

1

2`+1
= 1.

Is is also obvious that d is symmetric and that d(η, ζ) = 0 iff η = ζ. As usual with

metrics of the form of d the triangle inequality follows by the fact that the function

t 7→ t
1+t , t ≥ 0 is increasing and the elementary inequality s+t

1+s+t ≤
t

1+t + s
1+s .

Next we verify that d metrized the product topology T of Md
∞. By definition the

product topology is weakest topology on Md
∞ with respect to which the natural projec-

tions η(x) : M∞ −→ Z+, x ∈ Zd, given by η(x)(η) = ηx are continuous. We will show

first that the natural projections η(x) are d-continuous. So let {ηN}∞N=1 ⊆ Md
∞ be a

sequence of configurations d-converging to η ∈ Md
∞. Given x ∈ Zd there exists then

Nx ∈ N such that

N ≥ Nx =⇒ d(ηN , η) <
1

2h(|x|)
.

Then for every N ≥ Nx we have that

1

h(|x|)
|ηN (x)− η(x)|

1 + |ηN (x)− η(x)|
< d(ηN , η) <

1

2h(|x|)
.

Consequently |ηN (x) − η(x)| < 1 which since configurations η ∈ Md
∞ take only integer

values implies that ηN (x) ≡ η(x) for all N ≥ Nx. Since x ∈ Zd was arbitrary this proves

that the product topology T is contained in the topology Td induced by the metric d.

For the converse inclusion, suppose that {ηj}j∈J ⊆Md
∞ is a net converging in product

topology to η ∈Md
∞ and let ε > 0. There exists `ε ∈ N such that

∑∞
`=`ε+1

1
2`+1 < ε and

since ηj −→ η in the product topology there exists j0 ∈ J such that

x ∈ Λd`ε , j ≥ j0 ηj(x) ≡ η(x).

But then for all j ≥ j0 we have that

d(ηj , η) =
∑

`=`ε+1

1

h(`)

∑
x∈Λd`\Λ

d
`−1

|ηj(x)− η(x)|
1 + |ηj(x)− η(x)|

≤
∞∑

`=`ε+1

1

2`+1
< ε.
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which proves that d(ηj , η) −→ 0 and so d metrizes the product topology on Md
∞.

We prove next that Md
∞ is a complete and separable metric space when equipped

with the metric d. For the separability, a countable dense subset of Md
∞ is the set

A :=
⋃
`∈Z+

A`, where A` :=
{
η ∈Md

∞
∣∣η|Zd\Λd` ≡ 0

}
.

Indeed, each A` ∼= Z
Λd`
+ is countable as a finite product of countable spaces and so A is

countable as a countable union of countable sets. Is also easy to check that A is dense

in Md
∞. Indeed, given η ∈ Md

∞ and ε > 0 we pick `ε ∈ N such that
∑∞
`=`ε+1

1
2`+1 < ε

and define ζ ∈Md
∞ by ζ = η1Λd`ε

. Then ζ|Λd`ε ≡ η|Λd`ε and so

d(η, ζ) =
∑

`=`ε+1

1

h(`)

∑
x∈Λd`\Λ

d
`−1

|η(x)− ζ(x)|
1 + |η(x)− ζ(x)|

≤
∞∑

`=`ε+1

1

2`+1
< ε

which proves that A is dense in M∞.

We prove finally that d is a complete metric. So let {ηN} ⊆ Md
∞ be d-Cauchy

sequence. Then for each x ∈ Zd there exists Nx ∈ N such that d(ηN , ηM ) < 1
2h(|x|) for

all N,M ≥ Nx. Since configurations are integer valued this implies that

N,M ≥ Nx =⇒ ηN (x) = ηM (x).

Defining the configuration η ∈ Md
∞ by ηx = ηNxx it is easy to see that d(ηN , η) −→ 0

as N → ∞. Indeed, given ε > 0 we choose `ε ∈ N such that
∑∞
`=`ε+1

1
2`+1 < ε and set

N0 = maxx∈Λd`ε
Nx < +∞. Then obviously ηN |Λd`ε ≡ η|Λd`ε for all N ≥ N0 and therefore

d(ηN , η) < ε which since ε > 0 was arbitrary proves that d is a complete metric. �

Proposition 1.3.2 Let eN : Md
N −→ Md

∞ denote the periodic embeddings eN (η)(x) =

η(x + NZd) and let pN : Md
∞ −→ Md

N be the natural projections, N ∈ N. Then the

functions IN := eN ◦ pN : Md
∞ −→ Md

∞, N ∈ N, converge uniformly on Md
∞ to the

identity function idMd
∞

: Md
∞ −→Md

∞.

Proof Let ε > 0 and choose `0 ∈ Z+ such that
∑∞
`=`0+1

1
2`+1 < ε. Recalling the

identification TdN
∼= ZdN ⊆ Zd we have that IN (η)|TdN ≡ η|TdN for all N ∈ N and all

η ∈Md
∞ and so for all N ≥ (2`0 + 1) we have that

d
(
IN (η), η

)
≤

∞∑
`=`0+1

1

h(`)

∑
x∈Λd`\Λ

d
`−1

|IN (η)(x)− η(x)|
1 + |IN (η)(x)− η(x)|

≤
∞∑
`0+1

1

2`+1
< ε,

for all η ∈Md
∞ which proves the the uniform convergence IN −→ idMd

∞
. �

Obviously the space Md
∞ is not compact since Z+ is not. However the compact

subsets of Md
∞ can be easily characterized. This characterization can be stated in a nice

form by considering the natural pointwise partial order:

η ≤ ζ ⇐⇒ η(x) ≤ ζ(x) for all x ∈ Zd.

This partial order gives rise to the corresponding integrals

[η, ζ] :=
{
ξ ∈M∞

∣∣η ≤ ξ ≤ ζ}.
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Definition 1.3.1 A set B ⊆Md
∞ is called ≤-bounded if B ⊆ [0, ζ] for some ζ ∈Md

∞.

Proposition 1.3.3 A set K ⊆Md
∞ is compact iff it is closed and ≤-bounded.

Proof We assume first that K is compact. Then K is closed as a compact subset of a

Hausdorff space. Furthermore the functions η(x) : M∞ −→ Z+, x ∈ Zd, are continuous

in the product topology and so by the compactness of K we have that

ζx := sup
η∈K

ηx = max
η∈K

ηx < +∞

and for the configuration ζ ∈M∞ defined above we obviously have that K ⊆ [0, ζ]. This

proves that K is ≤-bounded and completes the proof of this implication.

We suppose for the converse that K is closed and that there exists ζ ∈ Md
∞ such

that K ⊆ [0, ζ]. By Tychonov’s theorem the product space

[0, ζ] =
∏
x∈Zd
{0, 1, . . . , ζx}

is compact. Now, the product topology of [0, ζ] coincides with the topology it inherits

as a subspace of Md
∞ and therefore K is relatively compact. Since it is also closed by

assumption, it is compact. �

We conclude this discussion on the topology of Md
∞ with two more propositions to

further illuminate its structure.

Proposition 1.3.4 The space Md
∞ contains no relatively compact neighborhoods.

Proof The family N (η) = {V (η, `)|` ∈ Z+} where

V (η, `) :=
{
ζ ∈Md

∞
∣∣ζ|Λd` ≡ ηΛd`

}
is a basis of neighborhoods around η ∈Md

∞ and no such neighborhood can be relatively

compact. Indeed, given any such neighborhood V (η, `), the sequence of configurations

ζm := η1Λd`
+ m1{(`+1)e1} is contained in V (η, `) and ζm((` + 1)e1) = m −→ ∞ as

m→∞ so that ζm can not have a convergent subsequence. �

Proposition 1.3.5 The spaceMd
∞ is totally disconnected, i.e. the only continuous curves

γ : [0, 1] −→Md
∞ are the constant ones.

Proof Let γ : [0, 1] −→Md
∞ be a continuous curve. In order to prove that γ is constant

it suffices to show that for each ` ≥ 1 we have

γ(t)|Λd` ≡ γ(0)|Λd` (1.49)

for all t ∈ [0, 1]. So let ` ∈ Z+ be fixed. For each t ∈ [0, 1] the set V (γ(t), `) is

an open neighborhood of γ(t) and so by the continuity of γ the family {Vt}t∈[0,1] where

Vt := γ−1(V (γ(t), `)) is an open cover of the compact set [0, 1]. So by choosing a partition

∆ = {0 = s0 < s1 < · · · < sm = 1} of [0, 1] with mesh |∆| := max1≤j≤m(sj − sj−1) less
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than the Lebesgue number of the covering {Vt}t∈[0,1] we have that there exist t1, . . . , tm ∈
[0, 1] such that [sj−1, sj ] ⊆ Vtj for all j = 1, . . . ,m. But then we obviously have that

γ([sj−1, sj ]) ⊆ V (γ(t), `) for all j = 1, . . . ,m

which proves (1.49). By the definition of the neighborhoods V (η, `) this implies that γ

is constant on any of the intervals [sj−1, sj ] and thus it is constant. �

1.3.2 The Spaces PpM
d
∞, p ≥ 0

In this subsection we study topological spaces resulting from equipping the set PMd
∞

of all Borel probability measures on Md
∞ with the topology of weak convergence with

respect to the duality with bounded and continuous functions and more generally with

respect to the duality with continuous functions of p-th polynomial growth.

Given any topology on PMd
∞ we can consider limits of sequences {µN} of distributions

such that µN ∈ PMd
N , N ∈ N by using the periodic embeddings eN : Md

N ↪→ Md
∞ to

induce embeddings

PMd
N 3 µN 7→ eN∗µN ∈ PMd

∞,

via the push forward of measures. Here the measure eN∗µN is given by

eN∗µN (A) = µN{η ∈Md
N | η̃ ∈ A}

for each Borel subset A ⊆Md
∞. In other words, the measure eN∗µN ∈ PMd

∞ is character-

ized by the requirement that its projection on PMd
N equals µN through the identification

ZdN
∼= TdN , i.e. the requirement that for any ζ ∈Md

N we have

eN∗µN

{
η ∈Md

∞

∣∣∣ ηx = ζ[x]N , ∀ x ∈ Z
d
N

}
= µN{ζ},

and the requirement that the measure eN∗µN is periodic with period NZd,

eN∗µN

{
η ∈Md

∞

∣∣∣x− y ∈ NZd =⇒ ηx = ηy

}
= 1.

We will always omit the embeddings eN∗ from the notation by identifying measures

µN ∈ PMd
N with measures eN∗µ

N ∈ PMd
∞. So whenever we write the measures µN ∈

PMd
N converge as N →∞ to the measure µ ∈ PMd

∞ we will always mean the measures

eN∗µ
N in place of µN .

We begin with some initial considerations on the weak topology and then we will

proceed with a unified treatment of the weak topologies of all orders. As the space Md
∞

is polish, by the general theory of weak convergence of probability measures we know that

the weak topology on PMd
∞ is metrizable and that for any sequence {µN}N∈N ⊆ PMd

∞,

lim
N→∞

µN = µ in PMd
∞ ⇐⇒ lim

N→∞

∫
fdµN =

∫
fdµ ∀ f ∈ BC(Md

∞).

As we shall see, a basic property of this topology is that in order to characterize the

weak convergence of probability measures in PMd
∞ the subspace of all cylinder functions

f : Md
∞ (i.e. functions depending only on a finite number of coordinates) suffices in place

of the whole space BC(Md
∞). For any subset J ⊆ Zd we will denote by pJ : Md

∞ −→ ZJ+
the natural projection on J .
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Definition 1.3.2 A function f : Md
∞ −→ R is called a cylinder function if it is of the

form f = f̃ ◦ pJ for some finite set J ⊆ Zd and some function f̃ : ZJ+ −→ R. The set

of all (bounded) cylinder functions on Md
∞ will be denoted by Cyl(Md

∞) (BCyl(M
d
∞)

respectively).

We note that since for any finite set J ⊆ Zd the space ZJ+ has the discrete topology

and the natural projections are continuous by the definition of the topology of Md
∞ any

cylinder function is continuous, Cyl(Md
∞) ⊆ C(M∞). In fact any cylinder function is

uniformly continuous. Indeed, note that for any ` ∈ Z+,

d(η, ζ) <
1

2h(`)
=⇒ η|Λd` ≡ ζ|Λd` .

Consequently if f = f̃ ◦ p`0 for some function f̃ : Z
Λd`+0

+ −→ R, then choosing δ < 1
2h(`0)

we have for all η, ζ ∈Md
∞ that

|f(η)− f(ζ)| = |f̃(η|Λd`0 )− f̃(ζ|Λd`0 )| = 0,

which proves the uniform continuity of f .

To explain the need of the following proposition ?? in approximating continuous

functions by cylinders functions we describe an example of a continuous function on

Md
∞ that is not uniformly continuous, and thus can not be approximated uniformly by

continuous functions. In dimension d = 1 let A` denote the set of all configurations that

have exactly ` particles at each site x ∈ Λ` and set A∞ :=
⋃∞
`=0A`. We will show that

the function f := 1A∞ : Md
∞ −→ {0, 1} is not continuous but not uniformly continuous.

For the continuity of f let first η ∈ A∞. Then η ∈ A` for some ` ∈ Z+ and then

η|Λ` ≡ `. But for every sequence ηn −→ η we can choose n` ∈ N such that ηn ≡ η ≡ `

on Λ` and so ηn ∈ A` ⊆ A∞ which shows that f(ηn) −→ f(η). Let on the other hand

η /∈ A∞ and let {ηn}n∈N be a sequence converging to η. We choose `0 ≥ η(0) and since

ηn −→ η we can choose n0 ∈ N such that ηn|Λ`0 ≡ η. Then for any n ≥ n0 we have

that ηn /∈ A∞ since ηn /∈
⋃`0
`=0 due to the fact that ηn|Λ`0 ≡ η|Λ`0 and ηn /∈

⋃∞
`0+1 since

η(0) ≤ `0. This proves the continuity of f . To prove that it is not uniformly continuous

it suffices to show that for every δ > 0 there exist η, ζ ∈Md
∞ such that d(η, ζ) < δ and

f(η) = 1 6= 0 = f(ζ). For this, given δ > 0 one chooses ` ∈ Z+ such that 1
2h(`) < δ and

η := `1Λ` , ζ = η + 1`.

We proceed now with a unified study of the weak topologies of the spaces PpM
d
∞

consisting of measures with p-th moments. The most interesting cases for us will be

the cases p = 0 that corresponds to the weak topology and p = 1 that is related to

convergence of density, the conserved quantity. Of course since the metric d of Md
∞ is

bounded it can not be used to define the moments and the p-Wasserstein topologies on

the spaces PpM
d
∞. Due to this, for every p ≥ 0 we set

PpM
d
∞ :=

{
µ ∈ PMd

∞

∣∣∣ ∫ η(x)pdµ < +∞ for all x ∈ Zd
}
,

Bp(M∞) :=
⋂

µ∈PpMd
∞

L1(µ)
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and

BpC(Md
∞) := Bp(M

d
∞) ∩ C(Md

∞),

where as usual the calligraphic L denotes that we do not identify a.s. equal functions.

Proposition 1.3.6 For every p ≥ 0,

Bp(M
d
∞) =

{
f ∈ mMd

∞

∣∣∣∃ ` ∈ Z+, A,B ≥ 0 such that |f | ≤ A+B
∑
x∈Λd`

η(x)p
}
.

Proof It is immediate by the definitions that the set in the right hand of the equality

above is contained in Bp(M
d
∞). For the converse inclusion we must prove that if a

measurable function f : Md
∞ −→ R does not belong in the set in the right hand side then

it does not belong in Bp(M
d
∞), i.e. that there exists µ ∈ PpM∞ such that f /∈ L1(µ).

Indeed, since f does not belong in the right hand side, for each ` ∈ Z+ there exists

η` ∈Md
∞ such that

|f(η`)| > 2`
(

1 +
∑
x∈Λd`

η`(x)p
)
.

But then if we consider the probability measure

µ :=
1

c

∞∑
`=0

1

2`
∑

Λd`
ηp` (x)

δη` ∈ PMd
∞,

where c > 0 is the appropriate renormalizing constant, it is easy to check that µ ∈ PpM∞
and f /∈ L1(µ). �

It is obvious by the definition that P0M
d
∞ = PMd

∞ and according to this last propo-

sition it is obvious that B0C(Md
∞) = BC(Md

∞). Consequently the w0-topology on PMd
∞

is exactly the topology of weak convergence of probability measures.

Definition 1.3.3 Let p ≥ 0. The p-th order Wasserstein topology wp on PpM
d
∞ is the

weak topology defined by the family of linear functionals BpC(Md
∞) i.e. the weakest

topology with respect to which all the functions

PpM
d
∞ 3 µ 7→

∫
fdµ ∈ R, f ∈ BpC(Md

∞)

are continuous.

It is obvious that PqM∞ ⊆ PpM∞ and Bp(M∞) ⊆ Bq(M
d
∞) whenever p ≤ q and

therefore the restriction of the wq topology is stronger than the restriction of the wp
topology on PqM

d
∞. We will show next that the sub-space

Cyldp := Bp(M∞) ∩ Cyl(Md
∞) ≤ Bp(Md

∞)

of all cylinder functions of p-th polynomial growth suffices for the description of the wp
topology on PpM

d
∞. It is easy to see that with the notation

Bp(Z
J
+) :=

{
f ∈ mMd

∞

∣∣∣∃ A,B ≥ 0 such that |f | ≤ A+B
∑
x∈J

η(x)p
}
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the cylinder functions of p-th polynomial growth are obviously

Cyldp =
{

Ψ ∈ mMd
∞
∣∣Ψ = Ψ̃ ◦ pJ for some Ψ̃ ∈ Bp(ZJ+), J ⊆ Zd finite

}
.

Definition 1.3.4 A sequence {fn} ⊆ Bp(Md
∞) converges Bp-pointwise to f ∈ Bp(Md

∞)

if fn converges pointwise to f and it is uniformly Bp-bounded i.e. there exist constants

` ∈ Z+ and A,B ≥ 0 such that

sup
n∈N
|fn| ≤ A+B

∑
|x|≤`

η(x)p.

The Bp-closure of a set F ⊆ Bp(Md
∞) is the set

Bp-cl(F ) :=
{
f ∈ Bp(Md

∞) | ∃ {fn} ⊆ F such that fn −→ f Bp-pointwise
}
.

Proposition 1.3.7 For every p ≥ 0,

BpC(Md
∞) ⊆ Bp-cl(Cyldp).

If in addition the function f ∈ BpC(Md
∞) is uniformly continuous then there exists a

sequence {hn}∞n=1 ⊆ Cyldp such that hn ≥ f and hn − f ∈ B(Md
∞) for all n ∈ N and

hn −→ f uniformly (and thus also Bp-pointwise).

Proof We prove first that BpC(Md
∞) is contained in the Bp-pointwise closure of Cyldp.

So let f ∈ BpC(Md
∞) and we will exhibit a sequence {f`}`∈N ⊆ Cyldp converging Bp-

pointwise to f as `→∞. By proposition 1.3.2 we know that if

e` : Z
Λd`
+ ↪→Md

∞ and p` : Md
∞ −→ Z

Λd`
+

denote the periodical embeddings e`(η)(x) = η(x+(2`+1)Zd) and the natural projections

respectively then the functions I` : e` ◦ p` : Md
∞ −→Md

∞, ` ∈ Z+ converge uniformly to

idMd
∞

. But then the functions f` := f ◦ I` = (f ◦ e`) ◦ p`, ` ∈ Z+, are cylinder functions

and converge pointwise to f . So to complete the proof of the claimed inclusion it suffices

to show that f` ∈ Bp(M
d
∞) for all ` ∈ Z+ and that the sequence {f`} is uniformly

Bp-bounded. Since f ∈ Bp(Md
∞) there exist `0 ∈ Z+ and A,B ≥ 0 such that

|f | ≤ A+B
∑
x∈Λd`0

η(x)p

and then for every ` ≥ `0 we have that

|f`| = |f ◦ I`| ≤ A+B
∑
x∈Λd`0

(
η(x) ◦ I`)p = A+B

∑
x∈Λd`0

η(x)p.

Consequently we can exhibit {f`+`0}`∈Z+ ⊆ Cyldp as the required Bp-pointwise converg-

ing to f sequence. Anyway, for ` < `0 we always have that

|f`| ≤ A+B

(
2
(
`0 + (2`+ 1)

)
+ 1
)d

(2`+ 1)d

∑
x∈Λd`0

η(x)p ≤ A+B(2`0 + 3)d
∑
x∈Λd`0

η(x)p.
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We suppose next that f is uniformly continuous and we will show how to obtain from

the sequence {f`} a sequence that satisfies the required properties. First it is obvious

that {f`} satisfies f` − f ∈ B(Md
∞) and ‖f` − f‖u −→ 0. Indeed, since f is uniformly

continuous given ε > 0 there exists δε > 0 such that

d(η, ζ) < δε =⇒ |f(η)− f(ζ)| < ε

and since e` ◦ p` converges uniformly to idMd
∞

there exists `ε ∈ N such that

` ≥ `ε =⇒ sup
η∈Md

∞

d
(
η, e` ◦ p`(η)

)
< δε

and then obviously for all ` ≥ `ε we have that

‖f` − f‖u = sup
η∈Md

∞

∣∣f(e` ◦ p`(η)
)
− f(η)

∣∣ < ε,

which shows that f` − f ∈ B(M∞) and ‖f` − f‖u −→ 0.

Finally, using once again the uniform continuity of f there exists for each ` ∈ N a

number δ` > 0 such that

d(η, ζ) < δ` =⇒ |f(η)− f(ζ)| < 1

`
. (1.50)

For each ` ∈ N we choose m` ∈ N such that
∑∞
k=m`+1

1
2k+1 < δ` and define the sequence

h` = fm` + 1
` , ` ∈ Z+, ` ∈ N. Obviously the sequence {h`} thus defined converges

uniformly to f and we will show that h` ≥ f . Indeed, since em` ◦ pm`(η)|Λdm` ≡ η|Λdm`
for ` ∈ Z+ and all η ∈Md

∞ we have that

d
(
em` ◦ pm`(η), η

)
≤

∞∑
k=m`+1

1

2k+1
< δ`

for all (`, η) ∈ Z+ × ZZ
d

and therefore by (1.50) we obtain∣∣f(em` ◦ pm`(η)
)
− f(η)

∣∣ < 1

`
for all ` ∈ Z+.

Consequently

h` = f ◦ em` ◦ pm` +
1

`
≥ f,

which completes the proof. �

Proposition 1.3.8 For any f ∈ BpC(Md
∞) the exists a sequence {h`}`∈Z+

⊆ Cyldp such

that h` ≥ f for all ` ∈ Z+ and h` −→ f Bp-pointwise.

Proof Since f ∈ Bp(Md
∞) there exists `0 ∈ Z+ and A,B ≥ 0 such that

|f | ≤ A+B
∑

x∈Λd`0+1

η(x)p.

Then the function

f̄ :=
f

1 +
∑
x∈Λd`0+1

η(x)p
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is obviously in B(Md
∞) with ‖f̄‖u ≤ A∨B. Then by standard results in Moreau-Yosida

approximations (see for instance display 5.1.4 in p.107 in [2]) the sequence {f̄`} defined

by

f̄`(η) = sup
ζ∈Md

∞

{f̄(ζ)− `d(η, ζ)}

defines a sequence of bounded Lipschitz functions such that f̄` ≥ f̄ for all ` ∈ N and

f̄` ↓ f̄ B0-pointwise as `→∞ with

−‖f̄‖u ≤ f̄ ≤ f̄` ≤ ‖f̄‖u.

In particular each f̄` is uniformly continuous and therefore by applying the previous

proposition there exists for each ` ∈ N a sequence {f̄k,`}k∈N ⊆ Bcyl(M
d
∞) such that

f̄k,` ≥ f` for all k, ` ∈ N and limk→∞ ‖f̄k,` − f̄`‖u = 0. So for each ` ∈ N we can choose

k` ∈ N such that ‖f̄k`,` − f̄`‖u < 1
` . We set h̄` := f̄k`,` and then obviously {h̄`} ⊆ Cyld0,

h̄` ≥ f̄ for all ` ∈ N and {h̄`} is uniformly bounded by

‖h̄`‖u = ‖(f̄k`,` − f̄`) + f̄`‖u <
1

`
+ ‖f̄`‖u ≤ 1 + ‖f̄‖u.

Furthermore h̄` −→ f̄ pointwise. Indeed, let η ∈ Md
∞, ε > 0. We choose `1 ∈ N such

that 1
`1
< ε

2 and since f̄` −→ f̄ pointwise there exists `2 ≥ N such that |f̄`(η)− f̄(η)| < ε
2

for all ` ≥ `2. But then for all ` ≥ `1 ∨ `2,

|h̄`(η)− f̄(η)| ≤ ‖f̄` − f̄`‖u + |f̄`(η)− f̄(η)| < 1

`
+
ε

2
< ε,

which proves that f̄` −→ f̄ pointwise in Md
∞.

Then if we set

h` =

(
1 +

∑
x∈Λd`0

η(x)p
)
h̄` ≥

(
1 +

∑
x∈Λd`0

η(x)p
)
f̄ = f

we obviously have that h` −→ f pointwise and {h`} is uniformly Bp-bounded with

sup
`∈N
|h`| ≤ (1 +A ∨B)

(
1 +

∑
x∈Λd`0

η(x)p
)
,

which completes the proof. �

Along the lines in the beginning section 5.1 in [2] one has the following

Lemma 1.3.1 Let (M,d) be a metric space and let Ξ0 ⊆ BpC(M) be such that∫
fdµ = sup

{∫
hdµ

∣∣∣h ∈ Ξ0, h ≤ f
}

(1.51)

= inf

{∫
hdµ

∣∣∣h ∈ Ξ0, h ≥ f
}

(1.52)

for all f ∈ BpC(M), µ ∈ PpM . Then the weak topologies induced on PpM by the

families Ξ0 and BpC(M) coincide.
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Proof Obviously, since Ξ0 ⊆ BpC(Md
∞), the topology induced on PpM by Ξ0 is weaker

than the wp topology on PpM . For the converse, suppose that
∫
hdµi −→

∫
X
hdµ for

all h ∈ Ξ0 and all nets {µi}i in PpM and let f ∈ BpC(Md
∞). Then on one hand,

sup
i∈I

inf
j≥i

∫
fdµi ≥ sup

h∈Ξ0, h≤f
sup
i∈I

inf
j≥i

∫
hdµi = sup

h∈Ξ0, h≤f

∫
hdµ =

∫
fdµ,

while on the other hand

inf
i∈I

sup
j≥i

∫
fdµi ≤ inf

h∈Ξ0, h≥f
inf
i∈I

sup
j≥i

∫
hdµi = inf

h∈Ξ0, h≥f

∫
hdµ =

∫
fdµ.

Consequently

lim sup
i

∫
fdµi ≤

∫
fdµ ≤ lim inf

i

∫
fdµi,

which shows that limi

∫
fdµi =

∫
fdµ. �

It is now easy to show that the cylinder functions are sufficient for the description of

the wp-topologies on PpM
d
∞.

Proposition 1.3.9 For all p ≥ 0 the families PpM
d
∞ and Cyldp define the same weak

topology on PpM
d
∞.

Proof According to the previous lemma and since Cyldp = −Cyldp it suffices to show that∫
fdµ = inf

{∫
Ψdµ

∣∣∣Ψ ∈ Cyldp, Ψ ≥ f
}

for all f ∈ BpC(Md
∞) and all µ ∈ PpMd

∞. So let f ∈ BpC(Md
∞), µ ∈ PpMd

∞ be given.

By the previous proposition there exists a sequence {Ψk}k∈N such that

Ψk ↓ f Bp-pointwise

and therefore since µ ∈ PpMd
∞ we have by the dominated convergence theorem that∫

fdµ = lim
k→∞

∫
Ψkdµ ≥ inf

{∫
Ψdµ

∣∣∣Ψ ∈ Cyldp, Ψ ≥ f
}
.

The converse inequality is obvious and therefore the proof is complete. �

For each ` ∈ Z+ the space Z
Λd`
+ is finite dimensional and so by standard results for

the Wasserstein metrics ([31], chapter 7) for each p > 0 the wp-topology on the space

Pp(Z
Λd`
+ , which is the weak topology defined by the family Bp(M

d
∞) = BpC(Md

∞) is

polish, with a complete and separable metric being the Wasserstein metric

W`,p(µ, ν) := inf
π∈Π(µ,ν)

(∫
|η − ζ|p`,pdπ(η, ζ)

) 1
p

∧ 1,

where Π(µ, ν) denotes the set of all transport plans from µ to ν and | · |p is the metric

on Z
Λd`
+ given by

|η|`,p =

( ∑
x∈Λd`

η(x)p
) 1
p

.
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For the case p = 0 the weak topology on PZ
Λd`
+ can be metrized ([31], chapter 7 again)

by the metric

W`,0(µ, ν) := inf
π∈Π(µ,ν)

(∫
|η − ζ|`,1 ∧ 1dπ(η, ζ)

)
.

Since cylinder functions are sufficient for the description of the wp topologies we

immediately have the following corollary.

Corollary 1.3.1 Let p ≥ 0. A net {µi}i∈I in PpM
d
∞ converges to µ ∈ PpMd

∞ iff

p`∗µi −→ p`∗µ ∈ Pp(Z
Λd`
+ )

in the wp topology of Pp(Z
Λd`
+ ).

Corollary 1.3.2 Let µ ∈ PpMd
∞, p ≥ 0, and let {µi}i∈I ⊆ PpMd

∞ be a net. Then

µi −→ µ with respect the wp topology on PpM
d
∞ iff µi −→ µ weakly and

lim
i

∫
Md
∞

η(x)pdµi =

∫
Md
∞

η(x)pdµ, ∀ x ∈ Zd.

Corollary 1.3.3 The wp topology on PpM
d
∞, p ≥ 0 has a countable base and in partic-

ular sequences are sufficient for the description of the wp topology.

Proof By standard results on the weak topology of measures (see e.g. section 5.1 in [2]

again) there exists a countable family Ξ of bounded Lipschitz functions on Md
∞ that de-

fines the weak topology. But then by the previous corollary it follows that the countable

family Ξ ∪ {η(x)|x ∈ Zd} defines the wp topology and the claim is proved. �

As we will see next, the space PpM
d
∞, p > 0, is a polish space. The case p = 0 is

immediate since the weak topology of probability measures on a polish space is always

polish by standard results in the weak topology on probability measures. The same is

also true for the Wasserstein weak topologies but here we do not exactly consider the

Wasserstein topology corresponding to the metric d of M∞ and this is the reason for the

following proposition.

Proposition 1.3.10 The space (PpM
d
∞, wp), p > 0, is a polish space. A complete and

separable metric defining the topology wp is the metric Wp : PpM
d
∞ × PpMd

∞ −→ R+

given by

Wp(µ, ν) =

∞∑
`=0

1

2`+1

W`,p(p`∗µ, p`∗ν)

1 +W`,p(p`∗µ, p`∗ν)

where p` : Md
∞ −→ Z

Λd`
+ , ` ∈ Z+, denotes the natural projection.

Proof By standard arguments for metrics of this type that we have already described

in proposition 1.3.1 it follows that Wp is indeed a metric. Furthermore convergence

Wp(µ
N , µ) −→ 0 is equivalent to requiring that W`,p(p`∗µ

N , p`∗µ) −→ 0 for all ` ∈ Z+

and so according to corollary 1.3.1 this metric metrizes the wp topology. So we have to
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prove that the wp topology is separable and the metric Wp complete.

We prove first that the metric Wp is complete. So let {µN} ⊆ PpMd
∞ be a Wp-Cauchy

sequence. For notational simplicity we set µ` := p`∗µ for each ` ∈ Z+, µ ∈ PMd
∞ and we

will show that the sequence {µN` }N∈N is a W`,p-Cauchy sequence for each ` ∈ Z+. Given

ε > 0 we can choose N`,ε ∈ N such that Wp(µ
N , µK) < 1

2`+1
ε

1+ε for all N,K ≥ N`,ε and

then
W`,p(µ

N`, µK` )

1 +W`,p(µN`, µK` )
≤ 2`+1Wp(µ

N , µK) <
ε

1 + ε

for all N,K ≥ N`,ε. But then since the function R+ 3 t 7→ t
1+t is strictly increasing

we have that W`,p(µ
N
` , µ

K
` ) < ε for all N,K ≥ N`,ε which shows that the sequence

{µN` }N∈N is a Cauchy sequence for each ` ∈ Z+.

Now, since {µN` }N∈N is a Cauchy sequence there exists for each ` ∈ Z+ a measure

µ` ∈ Pp(Z
Λd`
+ ) such that µN` −→ µ` in the wp topology of Pp(Z

Λd`
+ ). We will show that

the sequence {µ`}`∈Z+
is a projective sequence of probability measures i.e. that

p`+1
` µ`+1 = µ` for all ` ∈ Z+,

where p`+1
` : Z

Λd`+1

+ −→ Z
Λd`
+ denotes the natural projection. Indeed, since p` = p`+1

` ◦
p`+1, for each ` ∈ Z+ we have that p`+1

`∗ µN`+1 = µN` for all ` ∈ Z+, and for any f ∈

Bp(Z
Λd`
+ ) we have that f ◦ p`+1

` ∈ Bp(Z
Λd`+1

+ ). Therefore since µN` −→ µ` for all ` ∈ Z+

in the wp topology we for any f ∈ Bp(ZΛd

+ ) that∫
fdp`+1

`∗ µ`+1 =

∫
f ◦ p`+1

` dµ`+1 = lim
N→∞

∫
f ◦ p`+1

` dµN`+1 = lim
N→∞

∫
fdµN`

=

∫
fdµ`,

and since this is true for all f ∈ B(Z
Λd`
+ ) proves that the sequence {µ`}∞`=1 is projective.

Now since {µ`}`∈N, by Kolmogorov’s extension theorem (see e.g. [11] p.68, § 51)

there exists µ ∈ PMd
∞ such that p`∗µ = µ` ∈ PpMd

∞ for all ` ∈ Z+. Then obviously

µ ∈ PpMd
∞ and since by construction we have that

piN`∗ = µN` −→ µ` = p`∗µ

in the wp topology it follows by corollary 1.3.1 that µN −→ µ in the wp topology of

PpM
d
∞ which proves the completeness of Wp.

Likewise the separability of the wp topology on PpM
d
∞ follows by the separability of

the spaces Pp(Z
Λd`
+ ), ` ∈ Z+. Indeed, let D` ⊆ Pp(Z

Λd`
+ ) be the a countable dense subset

of Pp(Z
Λd`
+ ). Recalling that e` : Z

Λd`
+ −→M∞ denotes the periodic embedding we set

D :=
⋃
`∈Z+

e`∗(D`)

and we will show that D, which is obviously countable, is dense in PpM
d
∞. So let

µ ∈ PpMd
∞ and let V be a neighborhood of µ. Since for any f ∈ BpC(Md

∞) the
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sequence {f`} := {f ◦ e` ◦ p`} converges Bp-pointwise to f we have by the dominated

convergence theorem that∫
fd(e` ◦ p`)∗µ =

∫
f`dµ

`→∞−→
∫
fdµ

for all f ∈ BpC(Md
∞) and therefore (e` ◦ p`)∗µ −→ µ as ` → ∞ in the wp-topology.

Consequently for large enough `0 ∈ Z+ we have that (e`0 ◦p`0)∗µ ∈ V . But on the other

hand, since

f ∈ BpC(Md
∞) =⇒ f ◦ e` ∈ BpC(Z

Λd`
+ )

it follows that for each fixed ` ∈ Z+ the function

e`∗ : P(Z
Λd`
+ ) −→ PpM

d
∞

is continuous. But then by the continuity of e`0∗ and since D`0 is dense in Pp(Z
Λd`0
+ ) we

can choose µ0 ∈ D`0 close enough to p`0∗µ so that e`0∗µ0 ∈ V . �

Definition 1.3.5 A set K ⊆ PMd
∞ is said to have uniformly integrable p-th moments,

p > 0, if

lim
R→∞

sup
µ∈K

∫
{
∑
|x|≤` η(x)p≥R}

∑
|x|≤`

η(x)pdµ = 0.

It is easy to see that a sequence {µN} ⊆ PpMd
∞ converges in the wp topology iff it

converges weakly and it has uniformly integrable p-th moments and that a set K ⊆
PpM

d
∞ is relatively compact iff it is tight and has uniformly integrable p-th moments.

1.3.3 The Space M+(T
d)

We denote by M+(Td) the space of finite positive Borel measures on the torus Td

equipped with the topology of weak convergence of measures, according to which a

sequence {µN} ⊆ M+(Td) converges to µ ∈M+(Td) iff∫
fdµN −→

∫
fdµN

for all f ∈ C(Td). By the Riesz representation theorem (theorem 7.2 in [16]) the dual

of the space (C(Td), ‖ · ‖u) where ‖ · ‖u is the uniform norm ‖f‖u := supu∈Td |f(u)| is

exactly the space M(Td) of all finite Borel charges equipped with the total variation

norm ‖µ‖ = µ+(Td) + µ−(Td) where µ = µ+ − µ− denotes the Hahn decomposition

of µ. By definition the w∗-topology of M(Td) ∼= C(Td)∗ is the weakest topology on

M(Td) that makes all the linear functionals `f :M(Td) −→ R, f ∈ C(Td), defined by

`f (µ) =

∫
fdµ

continuous. It is obvious that the cone M+(Td) is a w∗-closed subset of M(Td) and

therefore the topology of weak convergence of non-negative measures on M+(Td) is

exactly the restriction of the w∗-topology of M(Td) ∼= C(Td)∗ in M+(Td). As is
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known (see for instance theorem 3.25 in [7] and the remark following it) the w∗-topology

on the dual of a Banach space X is never metrizable on the whole space X∗. It is

metrizable on norm-bounded subsets of X∗ iff X is separable. Nevertheless the weak

topology on the coneM+(Td) is metrizable. We will describe in this section two useful

metrics inducing the topology of M+(Td).

Since Td is compact the space C(Td) is separable and so there exists a sequence

{fk}∞k=1 ⊆ C(Td) with f1 ≡ 1 that is dense in C(Td). Using this sequence we define a

metric δ in M+(Td) by the formula

δ(µ, ν) =

∞∑
k=1

1

2k
· |〈µ− ν, fk〉|

1 + |〈µ− ν, fk〉|
(1.53)

Proposition 1.3.11 The function δ : M+(Td) ×M+(Td) −→ [0, 1] defined in (1.53)

is a complete and separable metric on M+(Td) that metrizes the weak topology.

Proof The proof that δ is a metric is standard. We prove next that δ metrizes the weak

topology of M+(Td). On one hand, if µN −→ µ weakly, then 〈µN , fk〉 −→ 〈fk, µ〉 for

all k ∈ N. So, given ε > 0, if we choose k0 ∈ N such that
∑∞
k=k0+1

1
2k

< ε/2, we can

then choose N0 ∈ N such that

N ≥ N0 =⇒ max
k=1,...,k0

∣∣〈µN − µ, fk〉∣∣ < ε/2,

and then we obviously have that δ(µN , µ) < ε for all N ≥ N0. Therefore weak conver-

gence implies convergence in the δ metric.

On the other hand, if δ(µN , µ) −→ 0 then µN −→ µ weakly. Indeed, if δ(µN , µ) −→ 0,

then limN→∞〈µN − µ, fk〉 = 0 for all k ∈ N. In particular, since f1 ≡ 1 we have that

µN (Td) −→ µ(Td). Therefore, given ε > 0 and f ∈ C(Td) we can choose k0 ∈ N such

that ‖f − fk0
‖u < ε/2[1 + 2µ(Td)], and then choose N0 ∈ N such that

N ≥ N0 =⇒ |〈µN − µ, fk0
〉| ∨ |µN (Td)− µ(Td)| < 1 ∧ (ε/2).

But then for all N ≥ N0 we have that

∣∣〈µN − µ, f〉∣∣ ≤ ∣∣〈µN − µ, fk0
〉
∣∣+ 〈|µN − µ|, |f − fk0

|〉 ≤ ε

2
+
ε

2

|µN − µ|(Td)
1 + 2µ(Td)

≤ ε

2
+
ε

2

µN (Td) + µ(Td)

1 + 2µ(Td)
≤ ε

2
+
ε

2

1 + µ(Td) + µ(Td)

1 + 2µ(Td)
= ε,

which since ε > 0 and f ∈ C(Td) were arbitrary proves the weak convergence µN −→ µ.

Next, M+(Td) is separable. A dense subset is the set{ n∑
i=1

aiδxi

∣∣∣n ∈ N, ai ∈ Q+, xi ∈ D
}

consisting of all linear combinations of Dirac masses at points x ∈ D, where D ⊆ Td is

a countable dense subset of Td, with positive rational coefficients.

We prove next that the metric δ is complete. So let {µN} be a δ-Cauchy sequence.
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Then for all k ∈ N the real sequence {〈µN , fk〉}N∈N is Cauchy in R, and therefore for

all k ∈ N there exists the limit limN→∞〈µN , fk〉 =: Ik ∈ R. We define next a function

I : {fk|k ∈ N} −→ R by I(fk) = Ik. Since f1 ≡ 1, we have that I1 = limN→∞ µN (Td)

and in particular 0 ≤ µN (Td) ≤ C for all N ∈ N for some constant C ≥ 0. Therefore

for all N,m, k ∈ N we have that∣∣〈µN , fk〉 − 〈µN , fm〉∣∣ ≤ C‖fk − fm‖u
and so ∣∣I(fk)− I(fm)

∣∣ = lim
N→∞

∣∣〈µN , fk〉 − 〈µN , fm〉∣∣ ≤ C‖fk − fm‖u
for all m, k ∈ N. Therefore the function I : {fk|k ∈ N} −→ R is Lipschitz and as such

has a Lipschitz extension Ī : C(Td) −→ R. We note next that Ī is linear. Indeed, let

a, b ∈ R and f, g ∈ C(Td). Since {fk}k∈N is dense in C(Td) there exists a subsequence

{hk} of {fk} such that ‖hk − af − bg‖u −→ 0 and since the sequence {µN (Td)} is

bounded above by C ≥ 0, we have that

sup
N∈N

∣∣〈µN , af + bg〉 − 〈µN , hk〉
∣∣ ≤ C‖hk − af − bg‖u,

that is 〈µN , hk〉 −→ 〈µN , af + bg〉 uniformly over N ∈ N. Therefore we can exchange

the order of limits and write

Ī(af + bg) = lim
k→∞

lim
N→∞

〈µN , hk〉 = lim
N→∞

lim
k→∞

〈µN , hk〉.

Also there exist subsequences {f̄k}k∈N and {ḡk}k∈N such that f̄k −→ f and ḡk −→ g in

C(Td) and then

‖hk − af̄k − bḡk‖u ≤ ‖hk − af − bg‖u + ‖af + bg − af̄k − bḡk‖u
k→∞−→ 0.

It follows that

〈µN , hk〉 = a〈µN , f̄k〉+ b〈µN , ḡk〉+ 〈µN , hk − af̄k − bḡk〉

and therefore

lim
N→∞

lim
k→∞

〈µN , hk〉 = a lim
N→∞

lim
k→∞

〈µN , f̄k〉+ b lim
N→∞

lim
k→∞

〈µN , ḡk〉.

Then since the convergences 〈µN , f̄k〉 −→ 〈µN , f〉 and 〈µN , ḡk〉 −→ 〈µN , g〉 as k → ∞
are uniform over N we can exchange the order of limits once more to obtain that

Ī(af + bg) = a lim
k→∞

I(f̄k) + b lim
k→∞

I(ḡk) = aĪ(f) + bI(g).

Now, since Ī : C(Td) −→ R is a bounded linear functional on C(Td), there exists by

Riesz’s theorem µ ∈ M+(Td) such that Ī ≡ 〈µ, ·〉, and since by the definition of I we

have that

lim
N→∞

〈µN , fk〉 = I(fk) = 〈µ, fk〉

for all k ∈ N and {fk} is dense in C(Td) it follows that µN −→ µ weakly as required.�

The weakly compact subsets of M+(Td) are easily described.
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Proposition 1.3.12 A subset K ⊆M+(Td) is relatively compact iff

sup
µ∈K

µ(Td) < +∞. (1.54)

Proof Indeed, the function M+(Td) 3 µ 7→ µ(Td) =
∫

1dµ is weakly continuous by

definition and therefore if K is compact, its supremum over K is finite. On the other

hand, suppose that (1.54) is satisfied. Then since K consists of non-negative measures,

sup
µ∈K
‖µ‖TV = sup

µ∈K
µ(Td) < +∞.

Thus K is norm bounded in C(Td)∗ and therefore by Alaoglou’s theorem according to

which norm bounded subsets of a dual Banach space X∗ are always w∗-relatively com-

pact, we have that clw∗(B) ⊆ clw∗(M+(Td)) is compact. But M+(Td) is w∗-closed,

and therefore given any sequence {µn} in B we can extract a subsequence that converges

to some µ ∈M+(Td). This proves the relative compactness of B inM+(Td) and com-

pletes the proof. �

Another useful metric onM+(Td) is given by the restriction of Dudley’s norm ‖ · ‖D
which is defined on the whole space M(Td) of finite charges on Td by

‖µ‖D := sup

{∫
fdµ

∣∣∣ f ∈ Lip(Td), ‖f‖BL ≤ 1

}
, (1.55)

where ‖ · ‖BL : Lip(Td) −→ R+ is the bounded-Lipschitz norm on Lip(Td) given by

‖f‖BL = ‖f‖u + ‖f‖Lip. (1.56)

Examples:

1. For all x ∈ Td we have that ‖δx‖D = 1.

Proof Since the constant function c1 ≡ 1 has ‖c1‖BL = 1 we obviously have that

‖δx‖D ≥ 〈c1, δx〉 = 1.

On the other hand, for all f ∈ Lip(Td) such that ‖f‖BL ≤ 1 we have that

〈f, δx〉 = f(x) = f(x)− f(0) + f(0) ≤ ‖f‖Lip|x|Td + ‖f‖u ≤ ‖f‖BL ≤ 1

and therefore

‖δx‖D = sup
‖f‖BL≤1

〈f, δx〉 = 1.

2. For all x, y ∈ Td we have that

2

3
|x− y|Td ≤ ‖δx − δy‖D ≤ |x− y|Td .

Proof On one hand, for all f ∈ Lip(Td) with ‖f‖BL ≤ 1 we have that

〈f, δx − δy〉 = f(x)− f(y) ≤ ‖f‖Lip|x− y|Td ≤ |x− y|Td ,

63



which proves the right hand inequality. On the other hand, the function fx : Td −→ [0, 1]

defined by fx(u) = −(2/3)|x− u|Td satisfies ‖fx‖BL ≤ 1 and

‖δx − δy‖D ≥ 〈fx, δx − δy〉 =
2

3
|x− y|Td .

As we know, the restriction of Dudley’s norm on PTd metrizes the weak convergence

on PTd.

Proposition 1.3.13 The metric dD :M+(Td)×M+(Td) −→ R on M+(Td) defined

by

dD(µ, ν) := ‖µ− ν‖D

is a metric on M+(Td) that metrizes the weak convergence of measures.

Proof We prove first that if dKR(µN , µ) −→ 0 then µN −→ µ weakly. Indeed, for any

φ ∈ C(Td) with Lip(φ) ≤ 1 we have that∣∣∣∣ ∫ φd(µN − µ)

∣∣∣∣ =

∫
φd(µN − µ) ∨

∫
(−φ)d(µN − µ) ≤ dKR(µN , µ) −→ 0

and therefore if for any non-constant Lipschitz function φ : Td −→ R we set φ̄ :=

Lip(φ)−1φ we have that∫
φdµN = Lip(φ)

∫
φ̄dµN −→ Lip(φ)

∫
φ̄dµ =

∫
φdµ

for all Lipschitz functions φ : Td −→ R. As is well known ([2], chapter 5) this implies

the weak convergence µN −→ µ.

We suppose next that µN −→ µ weakly and we will prove that dD(µN , µ) −→ 0.

Since µN −→ µ weakly we have that µN (Td) −→ µ(Td). Since dKR is induced by a

norm we have that

dD(µN , µ) = dD(δ0 + µN , δ0 + µ)

and so we can make the additional assumption that µ(Td)∧µN (Td) > 0 for all N ∈ N.

So we can set µ̄ := µ(Td)−1µ and µ̄N := µN (Td)−1µN . Then µ̄N , N ∈ N, and µ̄ are

probability measures and for all f ∈ C(Td) we have that∫
fdµ̄N =

1

µN (Td)

∫
fdµN −→ 1

µ(Td)

∫
fdµ =

∫
fdµ̄

and therefore µ̄N −→ µ̄ weakly. Since as we know the dD metric metrizes the weak

convergence of measures on PTd, it follows that

lim
N→∞

dKR(µ̄N , µ̄) = 0.

Therefore

‖µN − µ‖D = ‖µN (Td)µ̄N − µ(Td)µ̄‖D
≤ ‖µN (Td)µ̄N − µN (Td)µ̄‖D + ‖µN (Td)µ̄− µ(Td)µ̄‖D
= µN (Td)dD(µ̄N , µ̄) + |µN (Td)− µ(Td)|‖µ̄‖D

N→∞−→ 0,
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as required. �

Sometimes it is useful to understand measures in M+(Td) as equivalence classes of

measures on Rd. More generally, we denote by M(Rd;Rk) the set of all Rk-valued

measures with finite total variation and define an equivalence relation v onM(Rd;Rk)

by

µ v ν ⇐⇒
∫
fdµ =

∫
fdν ∀ f ∈ C̃(Rd)

where by C̃(Rd) we denote all the continuous Zd-periodic functions onRd, i.e. f ∈ C̃(Rd)

iff f(x) = f(y) whenever x− y ∈ Zd. We denote the equivalence classes of v by [µ]. If

we denote by p : Rd −→ Td ∼= [0, 1)d the usual covering map defined by p(x) = x− [x],

where [x] = ([x1], . . . , [xd]) denotes the integer part of x = (x1, . . . , xd) ∈ Rd, it is easy

to see that µ v ν iff p∗µ = p∗ν ∈ M(Td;Rk). Indeed, suppose that µ v ν. Then for

any function f ∈ C(Td) we have that the function f ◦ p is in C̃(Rd) and therefore∫
fdp∗µ =

∫
f ◦ pdµ =

∫
f ◦ pdν =

∫
fdp∗ν,

which shows that p∗µ = p∗ν. On the other hand, if f ∈ C̃(Rd) then obviously f ≡ f ◦i◦p
where i : Td ≡ [0, 1)d ↪→ Rd is the inclusion and so if p∗µ = p∗ν then∫

fdµ =

∫
(f ◦ i)dp∗µ =

∫
(f ◦ i)dp∗ν =

∫
fdν

which shows that µ v ν.

It follows that the push forward p∗ : M(Rd;Rk) −→ M(Td;Rk) induces a well

defined bijection

p̃∗ : M(Rd;Rk)/v −→M(Td;Rk)

on the quotient space by p̃∗([µ]) = p∗µ. Finally, by the definition of the equivalence re-

lation v it is obvious that equivalence classes [µ] ∈ M(Rd;Rk)/v can be used to integrate

periodic functions f ∈ C̃(Rd) by the formula∫
fd[µ] =

∫
fdµ =

∫
(f ◦ i)dp̃∗[µ] =

∫
(f ◦ i)dp∗µ,

where of course µ is any representative of the equivalence class [µ]. For simplicity we

state the next proposition for the case of non-negative valued measures.

Proposition 1.3.14 The mapping p∗ :M+(Rd) −→M+(Td) induced by the covering

map p : Rd −→ Td induces a homeomorphism p̃∗ : M+(Rd)/v −→M+(Td) between the

v-quotient of the weak topology of M+(Rd) and the weak topology of M+(Td).

Proof Let π : M+(Rd) −→ M+(Rd)/v be the quotient mapping. Since p∗µ = p∗ν

whenever µ v ν and p∗ is continuous it follows by the universal property of quotient

mappings that p̃∗ : M+(Rd)/v −→ M+(Td) is a continuous mapping. Furthermore p̃∗
is obviously bijective, with inverse the function

p̃∗
−1(µ) = [i∗µ], µ ∈M+(Td).
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Now as we know, a set A ⊆ M+(Rd)/v is open in the quotient topology iff π−1(A) is open

in the weak topology of M+(Rd). It follows that a sequence {[µn]}n∈N ⊆ M+(Rd)/v
converges to some [µ] ∈ M+(Rd)/v iff there exist νn ∈ [µn] for all n ∈ N and ν ∈ [µ]

such that νn −→ ν in the weak topology of M+(Rd). In particular whenever {µn} ⊆
M+(Td) converges to µ ∈ M+(Td) we have that i∗µn −→ i∗µ which shows that p̃∗

−1

is continuous and thus p̃∗ is a homeomorphism as claimed. �

Corollary 1.3.4 Let {µn}n∈N ∪ {µ} ⊆ M+(Rd). The following are equivalent:

(a) p∗µn −→ p∗µ as n→∞ in the weak topology of M+(Td).

(b) For all u ∈ C∞(Td) ≤ C∞(Rd) it holds that

lim
n→∞

∫
udµn =

∫
udµ.

(c) There exist νn v µn for all n ∈ N and ν v µ such that limn→∞ νn = ν in M+(Rd).
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1.4 Equivalence of Ensembles

The main result of this section, theorem 1.4.1 on the equivalence of ensembles is taken

from the article [19]. More refined results have been proved in [3, 4]. First, the definition

ZR distributions on the discrete toruses TdN , N ∈ N, extends obviously to the full lattice

Zd.

Definition 1.4.1 Let g : Z+ −→ R+ be a local rate function and let Ic be the interval

of the admissible densities for the one-site ZR distributions {ν1
ρ}, ρ ∈ Ic, associated to

the local rate function g. For each ρ ∈ Ic the distribution νρ ≡ νρ,g ∈ P1M
d
∞ given by

ν∞ρ :=
∏
z∈Zd

ν1
ρ,g

is called a (normalized) ZR distribution on the full lattice Zd with rate g and density ρ.

Of course ν∞ρ is the unique distribution on Md
∞ that makes the natural projections

η(z) : Md
∞ −→ Z+, z ∈ Zd,

i.i.d. random variables with common distribution the one-site ZR distribution ν1
ρ . Also,

through the identification TdN
∼= ZdN , we have ηN∗ ν

∞
ρ = νNρ , N ∈ N.

Definition 1.4.2 The family of ZR distributions {ν∞ρ }ρ∈Ic associated to some local rate

function g is known as the grand canonical ensemble of the ZRP with rate function g.

Definition 1.4.3 The family {νdN,K}(N,K)∈N×Z+
of the extremal invariant distributions

of the ZRP with local rate function g which are concentrated on the communication

classes Md
N,K , given by

νdN,K =
1

Z(Nd,K)

∑
η∈Md

N,K

1

g!(η)
δη, Z(Nd,K) =

∑
η∈Md

N,K

1

g!(η)

is called the canonical ensemble of the ZRP.

As we have seen the grand canonical ensemble is translation invariant. The same is

also true for the canonical ensemble.

Proposition 1.4.1 Let {νN,K ∈ PMd
N}(N,K)∈N×Z+

be the canonical ensemble of the

ZRP with local rate function g. Then the distributions νN,K , (N,K) ∈ N × Z+ are

translation invariant, that is for all (N,K) ∈ N× Z+ we have that

τx∗νN,K = νN,K , ∀ x ∈ TdN .

Proof Obviously for each (N,K) ∈ N× Z+ and each η ∈MN , x ∈ TdN , we have that

|τxη|1 =
∑
y∈TdN

τxη(y) =
∑
y∈TdN

η(x+ y) = |η|1,
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and so τx(Md
N,K) = Md

N,K for all (N,K) ∈ Z+, x ∈ TdN . So, for each η /∈ Md
N,K we

have that

νN,K(η) = 0 = νN,K(τ−xη) = τx∗νN,K(η).

On the other hand, for all η ∈Md
N,K and all x ∈ TdN we have that

g!(τxη) =
∏
y∈TdN

g!(τxηy) =
∏
y∈TdN

g!(ηx+y) =
∏
x∈TdN

g!(ηx) = g!(η)

and therefore

τx∗νN,K(η) = νN,K(τ−xη) =
1

Z(Nd,K)

1

g!(τ−xη)
=

1

Z(Nd,K)

1

g!(η)
= νN,K(η). �

In what follows we will always consider the spaces of configurations Md
N on the dis-

crete toruses, and the respective spaces of probability measures PMd
N embedded in the

space of configurations Md
∞ on the full lattice and in the respective space of probability

measures PMd
∞ via the periodic embeddings considered in the previous section. Fur-

thermore, we let πL : Md
N −→ Md

L, N ≥ L, denote the natural projections and set

νLN,K := πL∗ νN,K .

Theorem 1.4.1 (Equivalence of Ensembles) Let {νN,K}K∈Z+
and {νNρ }ρ∈[0,ρc]∩R+

be

the canonical and grand canonical ensemble of the ZRP. Then for fixed L ∈ N, for all

ρ ≥ 0 it holds that

lim
N→+∞

H(νLN,[ρNd]|ν
L
ρ∧ρc) = 0.

In particular by Pinsker’s inequality (proposition A.3.5) ‖νLN,[ρNd]− ν
L
ρ∧ρc‖TV −→ 0 and

consequently νLN,[ρNd] −→ νLρ∧ρc weakly as N →∞.

Proof Let η` : Md
∞ −→Md

` , ` ∈ N, be the natural projections. Of course it suffices to

prove that for each ` ∈ N

lim
N→+∞

η`∗νN,[ρNd] = ν`ρ (1.57)

weakly in PMd
` . So we let ` ∈ N and set ν`N,K := η`∗νN,K for all (N,K) ∈ N× Z+. By

Pinsker’s inequality, for any measurable space M , the total variation norm on PM is

bounded by twice the relative entropy,

‖ν − µ‖2TV ≤ 2H(ν|µ), ∀ µ, ν ∈ PM,

and therefore since convergence in total variation is stronger that weak convergence, it

is obvious that it suffices to prove that

lim
N→+∞

H(ν`N,[ρNd]|ν
`
ρ∧ρc) = 0.

Since by the definition of νNρ , ρ ∈ Ic, we have that

νNρ (η) =
1

Z(Φ(ρ))Nd
Φ(ρ)|η|1

g!(η)
> 0,
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for all η ∈ Md
N , it follows that νN,K is absolutely continuous with respect to νNρ with

density

fN,K(η) :=
dνN,K
dνNρ

(η) =
νN,K(η)

νNρ (η)
1Md

N,K
(η) =

Z
(
Φ(ρ)

)Nd
Z(Nd,K)Φ(ρ)K

1Md
N,K

(η).

Furthermore, for all N ∈ N, K ∈ Z+, we obviously have

νNρ (Md
N,K) =

1

Z
(
Φ(ρ)

)Nd ∑
η∈Md

N,K

Φ(ρ)|η|1

g!(η)
=
Z(Nd,K)Φ(ρ)K

Z
(
Φ(ρ)

)Nd (1.58)

and so

fN,ρ(η) =
1

νNρ (Md
N,[ρNd]

)
1Md

N,[ρNd]

(η).

Therefore the relative entropy of νN,K with respect to νNρ , ρ ∈ Ic, is given by

H
(
νN,K

∣∣νNρ ) =

∫
log fN,KdνN,K =

1

Z(Nd,K)

∑
η∈Md

N,K

log fN,K(η)
1

g!(η)

= − log νNρ (Md
N,K). (1.59)

By the super-additivity of the relative entropy, proposition A.3.6 in the appendix,

H
(
νN,K

∣∣νNρ ) ≥ ∑
x∈TdN

H
(
η(x)∗νN,K

∣∣ν1
ρ

)
.

Since νN,K is translation invariant, in particular it has equidistributed marginals, that

is η(x)∗νN,K = η(0)∗νN,K for all x ∈ TdN , and therefore it follows that

H
(
η(0)∗νN,K

∣∣ν1
ρ

)
≤ 1

Nd
H(νN,K |ν1

ρ) = − 1

Nd
log νNρ (Md

N,K).

We prove next that more generally, for any N ∈ N, Λ ⊆ TdN ⊆ Zd and ρ ∈ Ic we

have

H
(
νΛ
N,K

∣∣ νΛ
ρ

)
≤ − 1[

Nd

]Λ

] log νρ(M
d
N,K), (1.60)

where for all (N,K) ∈ N× Z+, ρ ∈ Ic, and Λ ⊆ TdN we have set

νΛ
N,K :=

(
η
T
d
N

Λ

)
∗νN,K , νΛ

ρ :=
⊗
x∈Λ

ν1
ρ ,

and we denoted by

ηFΛ : ZF+ −→ ZΛ
+

the natural projection for each Λ ⊆ F ⊆ Zd. To this end, we prove that the quantities

H
(
νΛ
N,K

∣∣ νΛ
ρ

)
, Λ ⊆ TdN ,

depend on the subset Λ only through its cardinality ]Λ, i.e. that

Λ, F ⊆ Zd, ]Λ = ]F =⇒ H
(
νΛ
N,K

∣∣ νΛ
ρ

)
= H

(
νFN,K

∣∣ νFρ ) (1.61)
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Indeed, suppose that Λ, F ⊆ TdN are such that ]Λ = ]F . There exists then a bijection

σ : Λ −→ F which in turn induces the mapping σ ≡ σ∗ : ZF+ −→ ZΛ
+ on the respective

spaces of configurations given by

(ση)x = ησ(x), ∀ x ∈ Λ.

In its turn the transformation σ = σ∗ induces the mapping σ∗ : PZF+ −→ PZΛ
+ through

the push forward of measures on the spaces of distributions. Obviously for each ρ ∈ Ic
and each η ∈ ZΛ

+ we have that

σ∗ν
F
ρ (η) = νFρ (σ−1η) =

∏
y∈F

ν1
ρ(ηs−1(y)) =

∏
x∈Λ

ν1
ρ(ηx) = νΛ

ρ (η). (1.62)

We will prove that

σ∗ν
F
N,K = νΛ

N,K , (1.63)

for then it will follow that H
(
νΛ
N,K

∣∣ νΛ
ρ

)
= H

(
νFN,K

∣∣ νFρ ) as claimed, proving (1.61).

We prove now equality (1.63). By definition, for all N ∈ N, Λ ⊆ TdN and η ∈ ZΛ
+ we

have that

νΛ
N,K(η) = νN,K

{
ζ ∈Md

N

∣∣ ζ|Λ = η
}
.

Obviously, if |η|1 := |η|Λ,1 :=
∑
x∈Λ ηx > K we have that νΛ

N,K(η) = 0, while on the

other hand for any ζ ∈Md
N such that ζ|Λ = η we have that

g!(ζ) =
∏
x∈TdN

g!(ζx) =
∏
x∈Λ

g!(ηx)
∏

x∈TdN\Λ

g!(ζx) = g!(η)g!(ζ|TdN\Λ),

and so if 0 ≤ |η|Λ,1 ≤ K we have that

νΛ
N,K(η) =

1

Z(N,K)

1

g!(η)

∑
ζ∈Z

Td
N
\Λ

+ : |ζ|1=K−|η|Λ,1

1

g!(ζ)
.

Therefore, if we set

Z(Λ,K) =
∑

η∈ZΛ
+:|η|1=K

1

g!(η)
,

for every subset Λ ⊆ TdN ⊆ Zd and any K ∈ Z+, then we can write that

νΛ
N,K =

1

Z(Nd,K)

∑
η∈ZΛ

+:|η|Λ,1≤K

Z̄(TdN \ Λ,K − |η|Λ,1)

g!(η)
δη.

Note that the quantity Z(Λ,K) = Z(]Λ,K) depends only the cardinality ]Λ of Λ and

according to this notation we have that Z(Nd,K) = Z(TdN ,K) for all (N,K) ∈ N×Z+.

So since for all η ∈ ZF+ we have that

|ση|Λ,1 =
∑
x∈Λ

ησ(x) =
∑
y∈F

ηy = |η|F,1
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and similarly

g!(ση) =
∏
x∈Λ

g!(ησ(x)) =
∏
y∈F

g!(ηy) = g!(η),

it follows that indeed σ∗ν
F
N,K(η) = 0 = νΛ

N,K(η) if η ∈ ZΛ
+, |η|1 > K and

σ∗ν
F
N,K(η) = νFN,K(σ−1η) =

1

Z(Nd,K)

Z(Nd − ]F,K − |σ−1η|F,1)

g!(σ−1η)

=
1

Z(Nd,K)

Z(Nd − ]Λ,K − |η|Λ,1)

g!(η)
= νΛ

N,K(η),

for all η ∈ ZΛ
+ such that |η|1 ≤ K, which proves (1.63).

Now indeed (1.61) follows easily by equalities (1.62) and (1.63), since

dνΛ
N,K

dνΛ
ρ

(η) =
dσ∗ν

F
N,K

dσ∗νFρ
(η) =

νFN,K(σ−1η)

νFρ (σ−1η)
=
dνFN,K
dνFρ

(σ−1η)

for all η ∈ ZΛ
+ and therefore since σ∗ : ZF+ −→ ZΛ

+ is a bijection we have that

H
(
νΛ
N,K

∣∣ νΛ
ρ

)
=

∑
η∈ZΛ

+

νΛ
N,K(η) log

dνΛ
N,K

dνΛ
ρ

(η) =
∑
η∈ZΛ

+

νFN,K(σ−1η) log
dνFN,K
dνFρ

(σ−1η)

=
∑
η∈ZF+

νFN,K(η) log
dνΛ
N,K

dνFρ
(η) = H

(
νFN,K

∣∣ νFρ ).
Now, by the implication (1.61) just proved and the super-additivity of the relative

entropy it easily follows that (1.60) holds. Indeed, given any subset Λ ⊆ TdN , there exist

[Nd/]Λ] ∈ N in number disjoint subsets Λi ⊆ TdN , i = 1, . . . , [Nd/]Λ] such that ]Λi = ]Λ

for all i = 1, . . . , [Nd/]Λ]. Then if we set

Λυ := TdN \
[Nd/]Λ]⋃
i=1

Λi,

the discrete torus TdN is the disjoint union of the sets Λi, i = 1, . . . , [Nd/]Λ] and Λυ and

so by the super-additivity the relative entropy

H(νN,K |νNρ ) ≥
[Nd/]Λ]∑
i=1

H(νΛi
N,K |ν

Λi
ρ ) +H(νΛυ

N,K |ν
Λυ
ρ ) ≥

[Nd/]Λ]∑
i=1

H(νΛi
N,K |ν

Λi
ρ )

=
[Nd

]Λ

]
H(νΛ

N,K |νΛ
ρ ),

for all (N,K) ∈ N× Z+ and all ρ ∈ Ic. Therefore, by (1.59) it follows that

H(νΛ
N,K |νΛ

ρ ) ≤ 1

[Nd/]Λ]
H(νN,K |νNρ ) = − 1

[Nd/]Λ]
log νNρ (Md

N,K),

which proves (1.60) as required. In particular it follows that for all ρ ≥ 0 and all N ∈ N,

we have that

H(ν`N,[ρNd]|ν
`
ρ∧ρc) ≤ −

1

[Nd/`d]
log νNρ∧ρc(M

d
N,[ρNd]), (1.64)
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where as in the beginning of the proof we use the notation ν`N,K := ν
T
d
`

N,K .

Now, by (1.64) it is obvious that to complete the proof it suffices to prove that

lim inf
N→+∞

1

Nd
log νNρ∧ρc(M

d
N,[ρNd]) ≥ 0, (1.65)

for then we have that

lim sup
N→+∞

H(ν`N,[ρNd]|ν
`
ρ∧ρc) = `d · lim sup

N→+∞

1

Nd

[Nd

`d

]
H(ν`N,[ρNd]|ν

`
ρ∧ρc)

≤ `d · lim sup
N→+∞

(
− 1

Nd
log νNρ∧ρc(M

d
N,[ρNd])

)
= −`d · lim inf

N→+∞

1

Nd
log νNρ∧ρc(M

d
N,[ρNd]) ≤ 0,

as required. In the rest of the proof we separate cases on whether the density ρ ≥ 0 is

below, equal to, or above the critical density ρc.

Case 1: Subcritical density ρ < ρc. Since ρ < ρc, the distribution ν1
ρ has finite moments

of all orders, and it particular it has finite variance σ2
ρ > 0. So by the local central limit

theorem in the lattice case we have that

lim
N→+∞

sup
x∈Z+

∣∣∣∣∣σρN d
2 νρ {| · |N,1 = x} − 1√

2π
e
− (x−ρNd)2

2σ2
ρN

d

∣∣∣∣∣ = 0

and therefore

lim
N→+∞

N
d
2

∣∣∣∣∣νNρ (Md
N,[ρNd]

)
− 1

σρ
√

2πNd
e
− ([ρNd]−ρNd)2

2σ2
ρN

d

∣∣∣∣∣ = 0. (1.66)

Now, obviously ([ρNd]− ρNd)2/2σ2
ρN

d −→ 0 as N → +∞, and so there exists N1 ∈ N
such that exp

[
− ([ρNd]−ρNd)2/2σ2

ρN
d
]
> 3

4 for all N ≥ N1, and by (1.66) there exists

N2 ∈ N such that

N ≥ N2 =⇒ N
d
2

∣∣∣∣∣νNρ (Md
N,[ρNd]

)
− 1

σρ
√

2πNd
e
− ([ρNd]−ρNd)2

2σ2
ρN

d

∣∣∣∣∣ < 1

4σρ
√

2π
.

But then for all N ≥ N0 := N1 ∨N2 we have that

νNρ
(
Md
N,[ρNd]

)
>

1

σρ
√

2πNd

(
e
− ([ρNd]−ρNd)2

2σ2
ρN

d − 1

4

)
>

1

2σρ
√

2πNd
(1.67)

and therefore

lim inf
N→+∞

1

Nd
log νNρ

(
Md
N,[ρNd]

)
≥ lim inf
N→+∞

1

Nd
log

1

2σρ
√

2πNd
= 0,

which proves (1.65) and completes the proof for the case of subcritical densities ρ < ρc.

Case 2: Critical density ρ = ρc. In this case ν1
ρc does not have exponential moments.

If σ2
ρ := V(ν1

ρ) < +∞ then the previous estimate by the local central limit theorem
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remains in force. Nonetheless, even when the variance σ2
ρ of ν1

ρc is infinite, by the more

general local limit theorem for stable limits we get a bound of the form

νNρ
(
Md
N,[ρNd]

)
>

c

Nd

for some constant c > 0 and all N large enough, completing the critical case.

Case 3: Supercritical density ρ > ρc. In this case, for all ρ > ρc we have that

νNρc
(
Md
N,[ρNd]

)
≥ νNρc

{
|η|N−1,1 = [ρc(N − 1)d],

∑
|x|∞=N

η(x) = [ρNd]− [ρc(N − 1)d]

}
= νN−1

ρc

(
Md
N,[ρc(N−1)d]

)
(ν1
ρc)
∗Nd−(N−1)d

(
[ρNd]− [ρc(N − 1)d]

)
,

where (ν1
ρc)
∗N is the N -fold convolution product of ν1

ρc . Therefore, for all N ∈ N we

have that

lim inf
N→+∞

1

Nd
log νNρc

(
Md
N,[ρNd]

)
≥ lim inf

N→+∞

1

Nd
log νN−1

ρc

(
Md
N,[ρc(N−1)d]

)
+ lim inf
N→+∞

1

Nd
log(ν1

ρc)
∗Nd?

(
[ρNd]− [ρc(N − 1)d]

)
,

where we have set Nd
? := Nd − (N − 1)d for all N ∈ N. Now the first term is obviously

equal to zero by the critical case and so it suffices to prove that

lim inf
N→+∞

1

Nd
log(ν1

ρc)
∗Nd?

(
[ρNd]− [ρc(N − 1)d]

)
≥ 0 (1.68)

We will prove (1.68) first for dimension d = 1. Of course, if d = 1 then N1
? = 1 for all

N ∈ N and so (1.68) becomes

lim inf
N→+∞

1

N
log ν1

ρc

(
[ρN ]− [ρc(N − 1)]

)
≥ 0.

Since the critical one-site ZR distribution ν1
ρc does not have exponentials moments, with

proper domain DMν1
ρc

= (−∞, 0] for its moment generating function, it has heavy right

tails. Since ν1
ρc is supported on the lattice Z+, by a basic characterization of heavy

tailed distributions on lattices this is equivalent to requiring its density with respect to

the counting measure on Z+ to be heavy tailed, i.e. that

lim sup
N→+∞

eθNν1
ρc(N), ∀ θ > 0,

and in its turn this is equivalent to

lim
N→+∞

1

N
log ν1

ρc(N) = 0.

In the particular case of the ZR distribution this can be seen directly since as we recall

by (1.26) the critical fugacity ϕc is ϕc = lim infk→+∞
k
√
g!(k) > 0 and

1

N
log ν1

ρc(N) =
1

N
log

1

Z(ϕc)
+

1

N
log

ϕNc
g!(N)

= logϕc −
1

N
log g!(N)
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Therefore the limit

lim
N→+∞

1

N
log g!(N) = lim

N→+∞
log N

√
g!(N) = logϕc > 0

exists and

lim
N→+∞

1

N
log ν1

ρc(N) = logϕc − lim
N→+∞

log N
√
g!(N) = 0.

Moreover, as we will show for any bounded sequence {kN}N∈N ⊆ Z+ of integers, say

supN∈N kN ≤M ∈ Z+, and any r > 0 we have that

lim
N→+∞

1

N
log ν1

ρc([rN ] + kN ) = 0. (1.69)

Indeed, in this case we have that

1

N
log ν1

ρc([rN ] + kN ) =
1

N
log

1

Z(ϕc)
+

1

N
log

ϕ
[rN ]+kN
c

g!([rN ] + kN )

=
1

N
log

1

Z(ϕc)
+

[rN ] + kN
N

logϕc − log N
√
g!([rN ] + kN )

and therefore, since g has a bounded discrete derivative g′(k) := g(k+1)−g(k), k ∈ Z+,

as a local rate function by (1.15), if ϕc ≥ 1 we have that

lim
N↑∞

1

N
log ν1

ρc([rN ] + kN ) = logϕrc − lim
N→+∞

log
(

[rN]
√
g!([rN ] + kN )

) [rN]
N

= logϕrc

[
1− lim

N↑∞
log N

√
g([rN ] + 1) · . . . · g([rN ] + kN )

]

≥ logϕrc

1− lim
N↑∞

log N

√√√√‖g′‖kN∞ kN∏
i=1

([rN ] + i)


= logϕrc

1− lim
N↑∞

log N

√√√√kN∏
i=1

([rN ] + i)

 = 0,

which implies that limN↑∞
1
N log ν1

ρc([rN ] + kN ) = 0 as required. Furthermore, as we

shall see, by a simple rescaling we can always assume that ϕc ≥ 1 which will complete

the proof of (1.69). Indeed, for any local rate function g : Z+ −→ R+ and any λ > 0

the function λg is a local rate function with critical fugacity

ϕλg = lim inf
k→+∞

k
√

(λg)!(k) = lim inf
k→+∞

k

√
λkg!(k) = λϕg

and obviously their partition functions are related by Zλg(·) = Zg(·/λ) and therefore if

we choose λ = 1
ϕg

then ν1
ρc = ν̄1

ϕg,g = ν̄1
ϕλg,λg

can be considered as a ZR distribution

corresponding to the critical fugacity ϕλg = 1. In turn this proves (1.68) for the case of

dimension d = 1, since for any ρ > ρc we have that

[ρN ]− [ρc(N − 1)] = [(ρ− ρc)N ] + kN , ∀ N ∈ N,
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for some bounded sequence {kN}N∈N ⊆ Z+.

We prove next that (1.68) for general d ≥ 1. Note that loosely speaking Nd
? is of

order Nd−1 for large N ∈ N while whenever b > a > 0 the term bNd − a(N − 1)d is of

order Nd. For all N, d ∈ N and ρ > 0 we set

AdN,ρ :=

{
(k1, . . . , kNd? ) ∈ ZN

d
?

+

∣∣∣ Nd?∑
i=1

ki = [ρNd]− [ρc(N − 1)d]

}
and then

(ν1
ρc)
∗Nd?

(
[ρNd]− [ρc(N − 1)d]

)
=

∑
(k1,...,kNd?

)∈AdN,ρ

ν1
ρc(k1) · . . . · ν1

ρc(kNd? ).

For fixed ρ > ρc we set

mN,d :=

[
[ρNd]− [ρc(N − 1)d]

Nd
?

]
for all N, d ∈ N. Then [ρNd] − [ρc(N − 1)d] = mN,dN

d
? + υN,d for some remain 0 ≤

υN,d < Nd
? for all N ∈ N and

(ν1
ρc)
∗Nd?

(
[ρNd]− [ρc(N − 1)d]

)
≥ ν1

ρc(mN,d)
Nd?−1ν1

ρc(mN,d + υN,d)

for all N ∈ N. Therefore

1

Nd
log(αρc)

∗Nd?
(
[ρNd]−[ρc(N−1)d]

)
≥ Nd

? − 1

Nd
log ν1

ρc(mN,d)+
1

Nd
log ν1

ρc(mN,d+υN,d).

It is easy to see that

sup
N∈N

∣∣[(ρ− ρc)N ]−mN,d

∣∣ < +∞

and so since
Nd?−1
Nd

behaves like 1
N as N → +∞, i.e. N

Nd?−1
Nd

−→ 1 as N → +∞, we have

by (1.69) that

lim inf
N→+∞

Nd
? − 1

Nd
log ν1

ρc(mN,d) = lim inf
N→+∞

1

N
ν1
ρc([(ρ− ρc)N ] + kN ) = 0

with kN := mN,d − [(ρ− ρc)N ], N ∈ N. It follows that

lim inf
N→+∞

1

Nd
log(αρc)

∗Nd?
(
[ρNd]− [ρc(N − 1)d]

)
≥ lim inf
N→+∞

1

Nd
log ν1

ρc(mN,d + υN,d)

and therefore it suffices to prove that

lim inf
N→+∞

1

Nd
log ν1

ρc(mN,d + υN,d) ≥ 0.

But this follows by the following obvious generalization of (1.69): For any d ∈ N, r > 0

and any sequence {kN}N∈N ⊆ Z such that for some M ∈ N,

−M ≤ kN ≤M +Nd−1, ∀ N ∈ N
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we have that

lim
N→+∞

1

Nd
log ν1

ρc([rN ] + kN ) = 0.

This completes the proof of the supercritical case, and the proof is complete. �

The equivalence of ensembles gives us some useful limits. For instance, the equiva-

lence of ensembles is equivalent to the existence for all Λ ⊆ Zd, ρ ≥ 0 and η ∈ ZΛ
+, of

the limit

Z(TdN \ Λ, [ρNd]− |η|1)

Z(Nd, [ρNd])g!(η)
= νΛ

N,[ρNd](η)
N→+∞−→ νΛ

ρ∧ρc(η) =
Φ(ρ ∧ ρc)|η|1

Z
(
Φ(ρ ∧ ρc)

)]Λ
g!(η)

.

Obviously this is equivalent to the existence for all `, k ∈ Z+ and all ρ ≥ 0 of the limit

lim
N→+∞

Z(Nd − `, [ρNd]− k)

Z(Nd, [ρNd])
=

Φ(ρ ∧ ρc)k

Z
(
Φ(ρ ∧ ρc)

)` . (1.70)

Proposition 1.4.2 Let {Z(Nd,K)}(N,K)∈N×Z+
be the partition function of the canon-

ical ensemble of the ZR process on the discrete toruses TdN , N ∈ N. Then

lim
N→+∞

1

Nd
logZ(Nd, [ρNd]) = logZ

(
Φ(ρ ∧ ρc)

)
− ρ log Φ(ρ ∧ ρc)

for all ρ ≥ 0.

Proof By (1.58) we have that

1

Nd
logZ(Nd, [ρNd]) =

1

Nd
log νNρ∧ρc(M

d
N,[ρNd])

+ logZ
(
Φ(ρ ∧ ρc)

)
− [ρNd]

Nd
log Φ(ρ ∧ ρc)

and the proof follows since in the course of the proof of the equivalence of ensembles we

have proved the limit

lim
N→+∞

1

Nd
log νNρ∧ρc(M

d
N,[ρNd]) = 0. �

In appendix 1, corollary 1.7 in [25] a different version of the equivalence of ensembles

is proved under the additional assumption that Z(ϕc) = +∞: For each ρ0 < +∞, for

all cylinder functions (i.e. functions that depend on a finite number of coordinates) with

finite second moment with respect to the measures ν∞ρ , ρ ∈ [0, ρ0], it holds that∫
fdνN,K −→

∫
fdν∞ρ as N,K →∞ and K/Nd → ρ

uniformly over all ρ ∈ [0, ρ0], where ν∞ρ := (ν1
ρ)⊗Z

d ∈ PMd
∞ := PZZ

d

+ . An elegant ex-

tension of this result has been recently given in [18], where it is shown that for subcritical

densities ρ ≤ ρc theorem 1.4.1 can be applied to yield weak convergence in duality with
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respect to functions f ∈ Lp(ν∞ρ ) for all p > 1. Of course this cannot be true for ρ > ρc
if ρc < +∞ since even for the linear cylinder function η(0)∫

η(0)dνN,K −→ ρ > ρc as N,K →∞ and K/Nd → ρ.

In other words, at the thermodynamic limit we have a mean total loss of mass equal to

ρ− ρc at each site. As it has been proved, in many cases the excess mass of all the sites

is concentrated on a single random site. We refer to [19, 3, 4] for a detailed description

of this phase separation in the context of the Evans model. Evans’ model was defined

in [15]. Some particular cases of the Evans model are described briefly in the end of the

next section.

If the local jump rate g is bounded, then the equivalence of ensembles yields that

lim
N,K→∞
K/Nd→∞

∫
g(η(0))dνN,K =

∫
g(η(0))dν∞ρ∧ρc = Φ(ρ ∧ ρc),

for all ρ ≥ 0. As noted in [19], this shows that for bounded local jump rate functions g

the mean jump rate function Φ should be extended on all of R+ by

Φ(ρ) ≡ Φ(ρ ∧ ρc), for all ρ ≥ 0. (1.71)

It turns out that this choice of Φ is the right one in order to extend the one-block

estimate to ZRPs with finite critical density. We will always consider Φ to be extended

in this way for densities ρ ≥ ρc.
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1.5 Simple Examples of Zero Range Processes

In this section we study some simple examples of ZR processes.

System of i.i.d. Continuous Time Random Walks

The simplest Zero Range Process on Md
N,K is the particle system comprised of K par-

ticles executing i.i.d. continuous time random walks in TdN with mean 1 exponential

jump times according the modulo N projection Zd −→ TdN of an elementary step dis-

tribution p ∈ PZd. It’s simplicity stems from the independence of the random walks

describing the motion of the particles since due to the independence there is no inter-

action between the particles. It corresponds to the ZR process with local rate function

g = idZ+ : Z+ −→ Z+ and elementary step distribution p. In this case, of course

Z ≡ Zg = exp, ϕc = +∞, and thus also ρc = +∞.

More generally, any local rate function g : Z+ −→ R+ having superlinear growth,

i.e. any local rate function g for which there exists a0 > 0 such that g(k) ≥ a0k gives

rise to a grand canonical partition function Z with critical fugacity ϕc = +∞ since in

this case we have that

Z(ϕ) =

∞∑
k=0

ϕk

g!(k)
≤
∞∑
k=0

ϕk

ak0k!
= e

ϕ
a0 < +∞

for all ϕ ≥ 0.

Returning to the case g = idZ+
we obviously have that R(ϕ) = ϕ, and so for all

ϕ ≥ 0 the one site ZR distribution ν̄1
g,ϕ ∈ PZ+ is parametrized by the density of the

particles. In particular the one site ZR distribution ν1
g,ρ ∈ PZ+, ρ ≥ 0, is the Poisson

distribution with parameter ρ,

ν1
g,ρ = e−ρ

∞∑
k=0

ρk

k!
δk.

The ZR range distributions on the torus TdN is the Poisson product distribution on the

torus, that is

νNρ =
⊗
x∈TdN

ν1
ρ = e−ρN

d ∑
η∈Md

N

ρ|η|1

η!
δη ∈ PMd

N ,

where

η! :=
∏
x∈TdN

ηx! =
∏
x∈TdN

g!(ηx) = g!(η).

This describes the grand canonical ensemble of the system of i.i.d. random walks.

The canonical ensemble is given in this case by

νdN,K(η) =
1/η!∑

η∈Md
N,K

1/η!
1Md

N,K
(η) = N−Kd

K!

η!
1Md

N,K
(η),

since the canonical partition function Z : (2Z
d \{∅})×Z+ −→ R+ is given by the formula

Z(Λ,K) =
∑

η∈ZΛ
+:|η|1=K

1

η!
=

1

K!

∑
η∈ZΛ

+:|η|1=K

K!

η!
=

(]Λ)K

K!
.
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In this case, by (1.70) the equivalence of ensembles amounts to the existence of the limit

lim
N→+∞

Z(Nd − `, [ρNd]− k)

Z(Nd, [ρNd])
= lim
N→+∞

[ρNd]!(Nd − `)[ρNd]−k

([ρNd]− k)!Nd[ρNd]
= e−`ρρk

for all `, k ∈ Z+ and ρ ≥ 0, which in this case can also be easily checked directly.

Systems of Queues

If g = 1N then a ZRP on TdN with parameters (p, g) models a system of N queues with

exponential service times in which whenever a customer is served in his queue he goes

to another queue according to the transition probability pN ∈ PTdN , where of course pN
is the modulo N projection of the elementary step distribution p ∈ PZd given in (1.1).

In this case we obviously have that g!(k) = 1 for all k ∈ Z+ and therefore the grand

canonical partition function is given by

Z(ϕ) =

∞∑
k=0

ϕk =
1

1− ϕ
.

In this case we obviously have that ϕc = 1 with Z(ϕc) = +∞ and thus ρc = +∞ by

proposition 1.2.6. The density function R : [0, 1) −→ R+ is given by

R(ϕ) =
ϕZ ′(ϕ)

Z(ϕ)
=

ϕ

1− ϕ

and the fugacity function Φ := R−1 : R+ −→ [0, 1) is given by

Φ(ρ) =
ρ

ρ+ 1
.

Therefore in this case the one-site ZR distribution is defined for all ρ ≥ 0 by the formula

ν1
ρ =

1

ρ+ 1

∞∑
k=0

( ρ

ρ+ 1

)k
δk,

a geometric distribution with success probability 1
ρ+1 . The ZR distributions on the

toruses TdN are given by

νNρ =
1

(ρ+ 1)Nd
∑
η∈Md

N

( ρ

ρ+ 1

)|η|1
δη,

for all N ∈ N. This describes the grand canonical ensemble.

Since g! ≡ 1 we have that g!(η) = 1 for η ∈Md
N and therefore the canonical ensemble

{νdN,K}N,K∈N×Z+
consists of uniform distributions and the canonical partition function

Z : (2Z
d \ {∅})× Z+ −→ R+ is given by

Z(Λ,K) =

(
]Λ +K − 1

K

)
.
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In this case by (1.70) the equivalence of ensembles amounts to the existence of the limit

lim
N→+∞

(
Nd − `+ [ρNd]− k − 1

[ρNd]− k

)
(
Nd + [ρNd]− 1

[ρNd]

) =
1

(ρ+ 1)`

( ρ

ρ+ 1

)k

for all `, k ∈ Z+ and all ρ ≥ 0, which again can easily be checked directly.

ZR Processes with Finite Critical Density

In this subsection we will describe a monoparametric family ηNβ = {ηNβ,t}t≥0, β ∈ R,

of ZR processes on the discrete torus TdN for which the critical density ρc is finite for

appropriate values of the parameter β.

To begin with, we define for each β ∈ R the local rate function gβ : Z+ −→ R+ by

the formula

gβ(k) =

{
k if k = 0, 1,(
k
k−1

)β
if k ≥ 2.

Then for all β ∈ R and k ≥ 1 we have that

gβ !(k) = gβ(1) · · · · · gβ(k) = 1 · 2β ·
(3

2

)β
· · · · ·

( k

k − 1

)β
= kβ .

Therefore the partition function Zβ := Zgβ is given by the formula

Zβ(ϕ) =

∞∑
k=0

ϕk

gβ !(k)
= 1 +

∞∑
k=1

ϕk

kβ

and obviously the critical fugacity ϕβ := ϕc(β) := ϕgβ = 1 for all β ∈ R. Note that

for β = 0, gβ = 1N is the local rate function studied in the previous example. As we

know from proposition 1.2.6 the critical density ρβ := ρc(β) := supϕ<1Rβ(ϕ), where

Rβ : [0, 1) −→ R+ is the density function associated to gβ , is < +∞ iff ϕc = 1 ∈ DZ′β
and obviously

Z ′β(ϕ) =

∞∑
k=1

ϕk−1

kβ−1
=

1

ϕ

∞∑
k=1

ϕk

kβ−1
=

1

ϕ

(
Zβ−1(ϕ)− 1

)
.

Therefore 1 ∈ DZ′β iff 1 ∈ DZβ−1
and since the series

∑∞
k=1

1
kβ

diverges for β ≤ 1 and

converges for β > 1 we get by Abel’s theorem on power series that ρβ < +∞ iff β−1 > 1,

that is

ρβ < +∞ ⇐⇒ β > 2.

The density function Rβ : [0, 1) −→ R+ is given by

Rβ(ϕ) =
ϕZ ′β(ϕ)

Zβ(ϕ)
=
Zβ−1(ϕ)− 1

Zβ(ϕ)
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and the critical density is given as a function of the parameter β > 2 by the formula

ρc(β) = ρβ =
Zβ−1(1)− 1

Zβ(1)
=
ζ(β − 1)

ζ(β) + 1
, β > 2, (1.72)

where ζ(β) :=
∑∞
k=1

1
kβ

, β > 1, is the zeta function.

Proposition 1.5.1 The critical density function ρc : (2,+∞) −→ R+ defined in (1.72)

is strictly decreasing and

lim
β↓2

ρc(β) = +∞, lim
β↑+∞

ρc(β) =
1

2
.

Proof By standard theorems for interchanging the order of differentiation and integra-

tion we get that the derivative of the zeta function is given in (1,+∞) by the formula

ζ ′(s) =

( ∞∑
k=1

1

ks

)′
(∗)
=

∞∑
k=1

( 1

ks

)′
= −

∞∑
k=1

log k

ks
< 0. (1.73)

Indeed, let ε > 0 and set h : N× (1 + ε,∞) :−→ R+ the function given by h(k, s) = 1
ks .

Then ∣∣∣∣ ddsh(k, s)

∣∣∣∣ =
log k

ks
≤ log k

k1+ε
, ∀ s ≥ 1 + ε, k ∈ N

and a sufficient condition for the validity of the interchange of differentiation and inte-

gration in equality (∗) is the integrability of k 7→ log k
k1+ε with respect to counting measure

i.e. that
∞∑
k=1

log k

k1+ε
< +∞.

But this is easily seen, since

∞∑
k=1

log k

k1+ε
=

∞∑
k=1

2

εk1+ ε
2

log k
ε
2

k
ε
2
≤
∞∑
k=1

2

εk1+ ε
2

=
2

ε
ζ
(

1 +
ε

2

)
< +∞.

This proves (1.73) for all s > 1 + ε and since ε > 0 was arbitrary it follows that (1.73)

holds for all s > 1.

It follows that ρc is differentiable in (2,+∞) with

ρ′c(β) =
ζ ′(β − 1)

(
ζ(β) + 1

)
− ζ(β − 1)ζ ′(β)(

ζ(β) + 1
)2

and therefore ρ′c < 0 on (2,+∞) iff

ζ ′(β − 1)ζ(β)− ζ(β − 1)ζ ′(β) < −ζ ′(β − 1)

for all β > 2. Since −ζ ′ < 0 in (1,+∞) it suffices to prove that

ζ ′(β − 1)ζ(β) ≤ ζ(β − 1)ζ ′(β),

or equivalently that

ζ ′(β − 1)

ζ(β − 1)
≤ ζ ′(β)

ζ(β)
(1.74)

for all β > 2.
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But inequality (1.74) will follow if the function

(1,∞) 3 s 7→ ζ ′(s)

ζ(s)

is increasing, or equivalently if ζ is log-convex. But this is easily seen to be true since

for all s, t > 1 and p ∈ (0, 1) we have that

ζ
(
ps+ (1− p)t

)
=

∞∑
k=1

1

kpsk(1−p)t

and therefore by applying Holder’s inequality with conjugate exponents q := 1
p , q∗ = 1

1−p
we get that

ζ
(
ps+ (1− p)t

)
≤
( ∞∑
k=1

1

ks

)p( ∞∑
k=1

1

kt

)1−p

= ζ(s)pζ(t)1−p

for all s, t > 1 and p ∈ (0, 1), which proves the logarithmic convexity of ζ. Finally the

required limits are obvious since lims↓1 ζ(s) = +∞ and lims↑+∞ ζ(s) = 1. �

Another example with finite critical density, the Evans Model In [15] Evans

introduces ZRPs with local jump rate function

gb(k) = 1{k≥1}

(
1 +

b

k

)
, b ≥ 0. (1.75)

It is well known ([19]) that ϕc = 1 for all b ≥ 0, ϕc /∈ DZ iff b ∈ [0, 1] and that for b > 2,

the first moment of the grand canonical distribution ν1
ϕc is finite, thus leading to a finite

critical density ρc < ∞. A precursor of the Evans model was already studied in [13].

We refer to [15, 19] for a detailed description of the Evans model.

82



1.6 Large Deviations of the Empirical Embeddings

Let g : Z+ −→ R+ be a local rate function and let {νNρ }ρ∈Ic ⊆ PMd
N be the family of the

ZR distributions associated to the rate function g, where Ic := [0, ρc]∩R+ is the interval

of admissible densities. As usual, for each N ∈ N we denote by πN : Md
N −→M+(Td)

the empirical embeddings

πN (η) =
1

Nd

∑
x∈TdN

ηxδ xN ,

whereM+(Td) is the set of finite non-negative Borel measures on the torus Td. We fix

ρ∗ ∈ (0, ρc) and set

µN := πN∗ ν
N
ρ∗ ∈ PM

+(Td) (1.76)

for all N ∈ N.

Definition 1.6.1 Let X be a polish space and let {an}n∈N ⊆ (0,+∞) be a sequence

such that an −→ 0. A sequence {µn} ⊆ PX satisfies the large deviations principle

(LDP for short) with speed {an} if there exists a lower semi-continuous convex functional

I : X −→ R+ with compact sub-levels, called the rate functional of the LDP such that

lim sup
n→+∞

an logµn(F ) ≤ − inf
x∈F

I(x)

for any closed F ⊆ X
lim inf
n→+∞

an logµn(U) ≥ − inf
x∈U

I(x)

for any open U ⊆ X.

A standard reference on the theory of large deviations is [12]. Our goal in this section

is to obtain the large deviations principle for the sequence of measures {µN}N∈N with

speed 1
Nd

.

Proposition 1.6.1 The sequence {µN} is exponentially tight, that is for all c < +∞
there exists a precompact set Kc ⊆M+(Td) such that

lim sup
N→+∞

1

Nd
logµN

(
M+(Td) \Kc

)
≤ −c. (1.77)

Proof As we know, a set K ⊆M+(Td) is precompact iff

sup
µ∈K
〈µ, 1〉 < +∞.

By proposition 1.2.12 we know that the family {η(x)}x∈Zd satisfies the LDP on the

probability space (Md
∞, νρ∗) and in particular the sequence

qN :=

[
1

Nd

∑
x∈TdN

η(x)

]
∗
νρ∗ , N ∈ N
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is exponentially tight. Therefore, given c < +∞ there exists Ac > 0 such that

lim sup
N→+∞

1

Nd
log νNρ∗

{
1

Nd

∑
x∈TdN

η(x) > Ac

}
≤ −c. (1.78)

By the characterization of the precompact sets of M+(Td) the set

Kc :=
{
µ ∈M+(Td)

∣∣ 〈µ, 1〉 ≤ Ac}
is precompact in M+(Td) and

µN
{
M+(Td) \Kc

}
= νNρ∗

{
πN /∈ Kc} = νNρ∗

{
〈πN , 1〉 > Ac

}
= νNρ∗

{
1

Nd

∑
x∈TdN

η(x) > Ac

}
.

Therefore (1.77) follows from (1.78). �

We prove next the large deviations upper bound. We recall first the following general

upper bound. Let X be a topological vector space with topological dual X ∗. We will

denote by 〈f, x〉 = f(x), (f, x) ∈ X ∗ × X the duality between X and X ∗. Then for any

sequence {aN} of positive numbers such that aN −→ 0 any sequence of distributions

{µN}∞N=1 ⊆ PX satisfies the weak large deviations upper bound with speeds aN and

rate function I : X −→ [0,+∞] given by

I(x) = sup
f∈X∗

{
〈f, x〉 − Λ̄(f)

}
where Λ̄ : X ∗ −→ [−∞,+∞] is given by

Λ̄(f) := lim sup
N→+∞

aNΛµN (f/aN )

and ΛµN : X −→ (−∞,∞] is the logarithmic m.g.f. of µN given by

ΛµN (f) = log

∫
e〈f,x〉dµN (x).

Proposition 1.6.2 The sequence {µN} ⊆ PM+(Td) given in (1.76) satisfies the large

deviations upper bound with speeds aN = 1
Nd

and rate function Iρ∗ :M+(Td) −→ [0,∞]

given by

Iρ∗(π) = sup
f∈C(Td)

{∫
Td

f(u)dπ(u)−
∫
Td

Λν1
ρ∗

(
f(u)

)}
, (1.79)

where Λν1
ρ∗

is the logarithmic m.g.f. of the one site ZR distribution with density ρ∗ < ρc.

Proof The spaceM(Td) of all finite signed measures is a topological vector space when

equipped with the weak topology with topological dual the space of continuous functions

on Td, i.e. M(Td)∗ = C(Td) and in this case Λ̄ : C(Td) −→ [−∞,+∞] is given by the

formula

Λ̄(f) = lim sup
N→+∞

1

Nd
ΛµN (Ndf).
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Therefore sinceM+(Td) is a closed subset ofM(Td) we have by the exponential tight-

ness of {µN} and the general weak large deviations upper bound that {µN} satisfies the

large deviations upper bound with rate function

Iρ∗(π) = sup
f∈C(Td)

{∫
Td

f(u)dπ(u)− Λ̄(f)

}
.

But for all N ∈ N we have that

ΛµN (Ndf) = log

∫
eN

d〈f,π〉dµN (π) = log

∫
eN

d〈f,πN 〉dνNρ∗

= log

∫
e
∑
x∈Td

N
η(x)f( xN )

dνNρ∗ = log

∫ ∏
x∈TdN

eη(x)f( xN )dνNρ∗

=
∑
x∈TdN

log

∫
ekf(x/N)dν1

ρ∗(k) =
∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
and so we obviously have that

1

Nd
ΛµN (Ndf) =

1

Nd

∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
=

∫
Td

∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
1

[ xN ,
x+1̄
N )

(u)du

for all f ∈ C(Td), where 1̄ := (1, . . . , 1) ∈ Rd. As we know from proposition 1.2.12, the

logarithmic m.g.f. Λν1
ρ∗

is given by the formula

Λν1
ρ∗

(θ) = logZ
(
eθΦ(ρ∗)

)
− logZ

(
Φ(ρ∗)

)
and has proper domain DΛν1

ρ∗
such that

(−∞, b∗) ⊆ DΛν1
ρ∗
⊆ (−∞, b∗],

where b∗ = logϕc − log Φ(ρ∗). In what follows we separate three cases on whether

b∗ = +∞ or b∗ < +∞ and b∗ ∈ DΛν1
ρ∗

or b∗ < +∞ and b∗ /∈ DΛν1
ρ∗

and we will show

that for all f ∈ C(Td),

lim
N→+∞

1

Nd

∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
=

∫
Td

Λν1
ρ∗

(
f(u)

)
du. (1.80)

b∗ = +∞: Let f ∈ C(Td). In this case Λν1
ρ∗

is a smooth function on R and by the

continuity of f we have that∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
1

[ xN ,
x+1̄
N )

N→+∞−→ Λν1
ρ∗

(f) (1.81)

pointwise on Td. Since Td is compact, f is bounded, and so

sup
N∈N

∣∣∣∣ ∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
1

[ xN ,
x+1̄
N )

∣∣∣∣ ≤ sup
−‖f‖u≤θ≤‖f‖u

Λν1
ρ∗

(θ) < +∞.
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Therefore (1.80) follows from the bounded convergence theorem.

b∗ < +∞, b∗ ∈ DΛν1
ρ∗

: Let f ∈ C(Td) and suppose that f(u) > b∗ for some u ∈ Td.
Then since f is continuous there exists an open neighborhood Vu of u such that f(υ) > b∗
for all υ ∈ Vu and since Λν1

ρ∗
is bounded from below by − logZ

(
Φ(ρ∗)

)
and Λν1

ρ∗
≡ +∞

on (b∗,∞) we have that∫
Td

Λν1
ρ∗

(
f(u)

)
du ≥ − logZ

(
Φ(ρ∗)

)
mTd(Td \ Vu) +

∫
Vu

Λν1
ρ∗

(f)dmTd = +∞.

On the other hand, there exists N0 ∈ N such that for all N ≥ N0 there exists yN ∈ TdN
such that yN/N ∈ Vu and therefore for all N ≥ N0 we have that

1

Nd

∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
=

1

Nd
Λν1

ρ∗

(
f
(yN
N

))
+

1

Nd

∑
x∈TdN\{yN}

Λν1
ρ∗

(
f
( x
N

))
= +∞.

Therefore (1.80) holds in the case that f(u) > b∗ for some u ∈ Td. We consider next the

case where f(u) ≤ b∗ for all u ∈ Td. In this case by the continuity of Λν1
ρ∗

on (−∞, b∗]
and the continuity of f we have again that (1.81) holds pointwise on Td and

sup
N∈N

∣∣∣∣ ∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
1

[ xN ,
x+1̄
N )

∣∣∣∣ ≤ sup
−‖f‖u≤θ≤b∗

Λν1
ρ∗

(θ) < +∞,

and therefore (1.80) holds by the bounded convergence theorem.

b∗ < +∞, b∗ /∈ DΛν1
ρ∗

: As in the previous case, if f(u) > b∗ for some u ∈ Td we have

that

lim
N→+∞

1

Nd

∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
= +∞ =

∫
Td

Λν1
ρ∗

(
f(u)

)
du.

In particular we have that

Iρ∗(π) = sup
f∈C(Td), f≤b∗

{∫
Td

f(u)dπ(u)− Λ̄(f)

}
.

So let f ∈ C(Td) such that f(u) ≤ b∗ for all u ∈ Td. We set

ψN :=
∑
x∈TdN

Λν1
ρ∗

(
f
( x
N

))
1

[ xN ,
x+1̄
N )

and by the continuity of Λρ∗ : (−∞, b∗] −→
(
−∞,+∞

]
and the continuity of f we have

that ψN −→ Λν1
ρ∗

(f) pointwise on Td. Therefore by Fatou’s lemma we have that∫
Λν1

ρ∗

(
f(u)

)
du ≤ lim inf

N→+∞

∫
Td

ψN (u)du ≤ Λ̄(f)

and so we have that

Iρ∗(π) ≤ sup
f∈C(Td), f≤b∗

{∫
Td

f(u)dπ(u)−
∫

Λν1
ρ∗

(
f(u)

)
du

}
.

It remains to prove the converse inequality. First we note that for all f ∈ C(Td) such

that f(u) < b∗ for all u ∈ Td we have by the compactness of Td that supu∈Td f(u) < b∗
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and thus in this case Λ̄(f) =
∫

Λν1
ρ∗

(f)dmTd by the bounded convergence theorem.

Therefore for all ε > 0 we have that the supremum

Iερ∗(π) := sup
f∈C(Td), f≤b∗−ε

{∫
Td

f(u)dπ(u)−
∫

Λν1
ρ∗

(
f(u)

)
du

}
= sup

f∈C(Td), f≤b∗−ε

{∫
Td

f(u)dπ(u)− Λ̄(f)

}
≤ Iρ∗(π)

and so it suffices to prove that

lim
ε↓0

Iερ∗(π) = sup
f∈C(Td), f≤b∗

{∫
Td

f(u)dπ(u)−
∫

Λν1
ρ∗

(
f(u)

)
du

}
.

Indeed, the limit limε↓0 I
ε
ρ∗(π) exists since Iερ∗(π) is increasing as ε decreases to 0 and

obviously limε↓0 I
ε
ρ∗(π) ≤ Iρ∗(π). On the other hand, given δ > 0 let f ∈ C(Td) such

that f(u) ≤ b∗ for all u ∈ Td and such that∫
Td

f(u)dπ(u)−
∫

Λν1
ρ∗

(
f(u)

)
du

≥ sup
f∈C(Td), f≤b∗

{∫
Td

f(u)dπ(u)−
∫
Td

Λν1
ρ∗

(
f(u)

)
du

}
− δ.

Then

Iερ∗(π) ≥
∫
Td

[f ∧ (b∗ − ε)](u)dπ(u)−
∫
Td

Λν1
ρ∗

(
[f ∧ (b∗ − ε)](u)

)
du

and obviously

lim
ε↓0

∫
Td

[f ∧ (b∗ − ε)](u)dπ(u) =

∫
Td

f(u)dπ(u)

by the bounded convergence theorem. Next, since Λν1
ρ∗

is increasing the family

{Λν1
ρ∗

(
[f ∧ (b∗ − ε)]

)
}ε>0

is increasing as ε ↓ 0 and thus since Λν1
ρ∗

is bounded below we have by the monotone

convergence theorem that

lim
ε↓0

∫
Λν1

ρ∗

(
[f ∧ (b∗ − ε)](u)

)
du =

∫
Td

Λν1
ρ∗

(
f(u)

)
du.

Therefore we have that

lim
ε↓0

Iερ∗(π) ≥
∫
Td

f(u)dπ(u)−
∫

Λν1
ρ∗

(
f(u)

)
du

≥ sup
f∈C(Td), f≤b∗

{∫
Td

f(u)dπ(u)−
∫
Td

Λν1
ρ∗

(
f(u)

)
du

}
− δ,

which since δ > 0 was arbitrary proves the claim. �

We prove next a large deviations lower bound.
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Proposition 1.6.3 Let {νNρ∗,g}N∈N be the family of ZR distributions with density ρ∗ > 0

where g is a local rate function g : Z+ −→ R+ such that the lim inf defining the critical

fugacity ϕc ∈ (0,+∞] exists as a limit, i.e. such that

0 < ϕc := lim inf
k→+∞

k
√
g!(k) = lim

k→+∞
k
√
g!(k).

Then the sequence {µN} ⊆ PM+(Td) given in (1.76) satisfies the large deviations lower

bound with speeds aN = 1
Nd

and rate function Iρ∗ :M+(Td) −→ [0,∞] given by

Iρ∗(π) =

∫
Td

Λ∗ν1
ρ∗

( πac
dmTd

(u)
)
du+ πs(T

d) log
ϕc

Φ(ρ∗)
,

where Λ∗ν1
ρ∗

is the Fenchel-Legendre transform of the logarithmic m.g.f. of ν1
ρ∗ , ρ∗ < ρc

and π = πac + πs, πac � mTd , πs ⊥ mTd is the Radon-Nikodym decomposition of π

with respect to mTd .

Proof To prove the LDP lower bound it suffices to prove that for any π ∈M+(Td) we

have that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −Iρ∗(π), ∀ Uπ ∈ U(π), (1.82)

where U(π) is the set of all open neighborhoods of π ∈ M+(Td) with respect to the

weak topology. We consider first the case of absolutely continuous measures with respect

to Lebesgue measure on the torus, that is we will prove (1.82) first for measures π ∈
M+

ac(T
d) := {π ∈ M+(Td) |π � mTd}. By a slight abuse of notation we will continue

to denote by π the density of π with respect to the Lebesgue measure mTd on the torus.

We will show first that we can make the additional assumption that the density π ∈
L1(Td) is strictly positive. Indeed, suppose that we have proved (1.82) for all measures

π = πdmTd ∈ M+
ac(T

d) with strictly positive density. Then given any π = πdmTd ∈
M+(Td) and an open neighborhood Uπ of π we define the family {πε}ε>0 ⊆ M+

ac(T
d)

given by πε := [π ∨ ε]dmTd . Then given G ∈ C(Td) for all ε ∈ (0, 1) we have that

|G · (π ∨ ε)| ≤ ‖G‖u(π ∨ ε) ≤ ‖G‖u(π + 1) ∈ L1(Td)

and G · (π ∨ ε) −→ G · π as ε→ 0. Therefore∫
Gdπε =

∫
G[π ∨ ε]dmTd −→

∫
GπdmTd =

∫
Gdπ

by the dominated convergence theorem which gives as that πε −→ π in the weak topology

of M+(Td). Then since Uπ is open in the weak topology there exists ε0 ∈ (0, 1) such

that πε ∈ Uπ for all ε < ε0 and therefore Uπ ∈ U(πε) for all ε < ε0 and so by (1.82) we

get that for all ε ∈ (0, ε0),

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −I(πε) (1.83)

But Λ∗ν1
ρ∗

is decreasing in [0, ρ∗] and so the family {Λ∗ν1
ρ∗

(π ∨ ε)}ε∈(0,ε0∧ρ∗) is increasing

as ε > 0 is decreasing to 0. Since Λ∗ν1
ρ∗
≥ 0 everywhere this gives us by the monotone

convergence theorem that

I(πε) =

∫
Λ∗ν1

ρ∗
(π ∨ ε)dmTd −→

∫
Λ∗ν1

ρ∗
(π)dmTd = I(π)

88



and therefore taking the limit as ε ↓ 0 in (1.83) we get that π ∈M+
ac(T

d) satisfies (1.82)

as required.

So in what follows we consider measures π ∈M+
ac(T

d) with strictly positive density.

We set π̄ := π∧ρc and consider the measures νNπ̄(·) ∈ PM
d
N with slowly varying parameter

associated to the profile π̄ : Td −→ R+, i.e.

νNπ̄(·) :=
⊗
x∈TdN

ν1
π̄( x
N

)
.

Then for all N ∈ N, η ∈Md
N we have that

dνNρ∗
dνNπ̄(·)

(η) =
∏
x∈TdN

Z
(
Φ(π̄x/N )

)
Φ(ρ∗)

ηx

Z
(
Φ(ρ∗)

)
Φ
(
π̄x/N

)ηx .
Therefore we have that

µN (Uπ) =

∫
{πN∈Uπ}

dνNρ∗ =

∫
{πN∈Uπ}

dνNρ∗
dνNπ̄(·)

dνNπ̄(·)

= Z
(
Φ(ρ∗)

)−Nd ∏
x∈TdN

Z
(
Φ(π̄x/N )

) ∫
{πN∈Uπ}

∏
x∈TdN

[
Φ(ρ∗)

Φ(π̄x/N )

]η(x)

dνNπ̄(·)

and so

1

Nd
logµN (Uπ) = − logZ

(
Φ(ρ∗)

)
+

1

Nd

∑
x∈TdN

logZ
(
Φ(π̄x/N )

)
+

1

Nd
log

∫
{πN∈Uπ}

e
−

∑
x∈Td

N
η(x) log

Φ(π̄x/N )

Φ(ρ∗) dνNπ̄(·)

= − logZ
(
Φ(ρ∗)

)
+

∫ ∑
x∈TdN

logZ
(
Φ(π̄x/N )

)
1

[ xN ,
x+1̄
N )

dmTd

+
1

Nd
log

∫
{πN∈Uπ}

e−N
d
∫

log
Φ(π̄)
Φ(ρ∗)

dπNdνNπ̄(·).

We make now the additional assumption that the density π is continuous. Then

lim
N→+∞

∑
x∈TdN

logZ
(
Φ(π̄x/N )

)
1

[ xN ,
x+1̄
N )

= logZ
(
Φ(π̄)

)
and therefore by Fatou’s lemma we get that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ − logZ

(
Φ(ρ∗)

)
+

∫
Td

logZ
(
Φ(π ∧ ρc)

)
dmTd

lim inf
N→+∞

1

Nd
log

∫
{πN∈Uπ}

e−N
d
∫

log
Φ(π̄)
Φ(ρ∗)

dπNdνNπ̄(·).

Furthermore, the function log Φ(π̄)
Φ(ρ∗)

is continuous and therefore for any ε > 0 the set

Aε :=

{
µ ∈M+(Td)

∣∣∣ ∣∣∣∣ ∫ log
Φ(π̄)

Φ(ρ∗)
d(µ− π)

∣∣∣∣ < ε

}
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is open in M+(Td) and∫
{πN∈Uπ}

e−N
d
∫

log
Φ(π̄)
Φ(ρ∗)

dπNdνNπ̄(·) ≥
∫
{πN∈Uπ∩Aε}

e−N
d
∫

log
Φ(π̄)
Φ(ρ∗)

dπNdνNπ̄(·)

≥ e−N
dεe−N

d
∫

log
Φ(π̄)
Φ(ρ∗)

dπ

∫
{πN∈Uπ∩Aε}

dνNπ̄(·).

It follows that

lim inf
N→+∞

1

Nd
log

∫
{πN∈Uπ}

e−N
d
∫

log
Φ(π̄)
Φ(ρ∗)

dπNdνNπ̄(·)

≥ −ε−
∫

log
Φ(π ∧ ρc)

Φ(ρ∗)
dπ + lim inf

N→+∞

1

Nd
log

∫
{πN∈Uπ∩Aε}

dνNπ̄(·).

and therefore if we show that

lim inf
N→+∞

1

Nd
log

∫
{πN∈Uπ∩Aε}

dνNπ̄(·) ≥ 0 (1.84)

for any ε > 0, then we get that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ − logZ

(
Φ(ρ∗)

)
+

∫
Td

logZ
(
Φ(π ∧ ρc)

)
dmTd

−
∫

log
Φ(π ∧ ρc)

Φ(ρ∗)
dπ − ε

= −
∫ [

π log
Φ(π ∧ ρc)

Φ(ρ∗)
− log

Z
(
Φ(π ∧ ρc)

)
Z
(
Φ(ρ∗)

) ]
dmTd − ε

= −
∫
Td

Λ∗ν1
ρ∗

(
π(u)

)
du− ε = −Iρ∗(π)− ε,

which since ε > 0 is arbitrary, proves the claim.

Now, we set ν̄Nρ := νρ∧ρc for all ρ ≥ 0. Since the profile π : Td −→ R+ is continuous,

the sequence {νNπ̄(·)}N∈N = {ν̄Nπ(·)}N∈N of the measures with slowly varying parameter

with respect to the profile π ∈ C(Td) and the family {ν̄Nρ }ρ≥0 is associated to the profile

π, that is

lim
N→+∞

νπ̄(·)

{∣∣∣∣ ∫ fdπN −
∫
fπdmTd

∣∣∣∣ ≥ ε} = 0

for all f ∈ C(Td) and all ε > 0. On the other hand, since Uπ is an open neighborhood

of π ∈ M+(Td) there exists continuous functions f1, . . . , fk ∈ C(Td) and ε0 > 0 such

that
k⋂
i=1

{
µ ∈M+(Td)

∣∣∣ ∣∣∣∣ ∫ fid(µ− π)

∣∣∣∣ < ε

}
⊆ Uπ

for all ε ∈ (0, ε0). But then with fk+1 := log Φ(π∧ρc)
Φ(ρ∗)

we have that

Uπ ∩Aε ⊇
k+1⋂
i=1

{
µ ∈M+(Td)

∣∣∣ ∣∣∣∣ ∫ fid(µ− π)

∣∣∣∣ < ε

}
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for all ε ∈ (0, ε0), and therefore∫
{πN∈Uπ∩Aε}

dνNπ̄(·) ≥ νNπ̄(·)

( k+1⋂
i=1

{∣∣∣∣ ∫ fid(πN − π)

∣∣∣∣ < ε

})

≥ 1−
k+1∑
i=1

νπ̄(·)

{∣∣∣∣ ∫ fidπ
N −

∫
fiπdmTd

∣∣∣∣ ≥ ε}.
Therefore we have that

lim inf
N→+∞

∫
{πN∈Uπ∩Aε}

dνNπ̄(·) ≥ 1

which gives us (1.84), as required.

We will show now that we can remove our additional assumption that the density

π is continuous. We do this in two steps. First we extend the lower bound to all

measures π ∈ M+
ac(T

d) with bounded density with respect to the Lebesgue measure

and then we remove the assumption of boundedness. For the first step we claim that

it suffices to prove that for each bounded function π ∈ B(Td) there exists a sequence

{πm}m∈N ⊆ C(Td) such that πmdmTd −→ πdmTd in the weak topology of M+(Td)

and

lim
m→+∞

Iρ∗(πmdmTd) = Iρ∗(π) (1.85)

Indeed, then given a measure π ∈ M+
ac(T

d) with bounded density dπ = πdmTd there

exists a sequence {πm}m∈N ⊆ C(Td) such that πmdmTd −→ π in the weak topology

of M+(Td) and satisfying (1.85). Then, given an open neighborhood Uπ ⊆ M+(Td)

of π there exists m0 such that πmdmTd ∈ Uπ for all m ≥ m0. Then Uπ is an open

neighborhood of πmdmTd for each m ≥ m0 and by the lower LDP bound for measures

with continuous densities it follows that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −Iρ∗(πmdmTd)

for all m ≥ m0, and by taking the limit as m→ +∞ it follows by (1.85) that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −Iρ∗(π)

as required. But indeed, by Lusin’s theorem, for each bounded function π ∈ B(Td) there

exists a sequence {πm}m∈N ⊆ C(Td) such that πm −→ π mTd -a.s and supm∈N ‖πm‖u ≤
‖π‖u. Then, for every function G ∈ C(Td) we have that∣∣∣∣ ∫ GπmdmTd −

∫
GπdmTd

∣∣∣∣ ≤ ‖G‖u ∫ |πm − π|dmTd m→+∞−→ 0

by the bounded convergence theorem which implies that πmdmTd −→ πdmTd weakly

in M+(Td) and since Λν1
ρ∗

is continuous and supm∈N ‖πm‖u ≤ ‖π‖u < +∞ we get by

the bounded convergence theorem again that

Iρ∗(πmdmTd) =

∫
Td

Λ∗ν1
ρ∗

(
πm(u)

)
du −→

∫
Td

Λ∗ν1
ρ∗

(
π(u)

)
du = Iρ∗(πdmTd),
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that is (1.85) as required.

We remove finally the assumption of boundedness. Obviously, in order to do this it

suffices to prove that for any measure π = πdmTd ∈M+
ac(T

d) there exists a sequence of

bounded functions {πM}M∈N ⊆ B(Td) such that πMdmTd −→ π in the weak topology

of M+(Td) and I(πMdmTd) −→ I(π). Given π = πdmTd ∈ M+
ac(T

d) such a sequence

is given by πM := π ∧M , M ∈ N. Indeed, thus defined, {πM}M∈N is increasing and for

any G ∈ C(Td) we have by the monotone convergence theorem that∫
GπMdmTd = −‖G‖u

∫
πMdmTd +

∫
(G+ ‖G‖u)πMdmTd

M→+∞−→ −‖G‖u
∫
πdmTd +

∫
(G+ ‖G‖u)πdmTd =

∫
Td

Gdπ,

and so πMdmTd converges weakly to π ∈ M+(Td). On the other hand, as we know

Λ∗ν1
ρ∗

is non negative and increasing on the interval [ρ∗,∞), which implies that the

sequence {Λ∗ν1
ρ∗

(πM )}M∈N is increasing for large M and non-negative and therefore by

the monotone convergence theorem again we get that

Iρ∗(πMdmTd) =

∫
Λ∗ν1

ρ∗
(πM )dmTd −→

∫
Λ∗ν1

ρ∗
(π)dmTd = I(π),

as required and the proof is complete.

We prove next the lower bound for measures π ∈M+ \M+
ac(T

d). We consider first a

measure of the form π = rδx + ρdmTd , x ∈ Td, a > 0, for some strictly positive density

ρ ∈ C(Td) and a neighborhood Uπ of π in M+(Td). We have that

µN (Uπ) ≥
∫
{πN∈Uπ}

1{η([Nx])=[rNd]}dν
N
ρ∗

But by considering M+(Td) as a subset of the topological vector space M(Td) of all

finite Borel measures on the torus, there exist a neighborhood Uρ ⊆ M(Td) of the

absolutely continuous measure ρdmTd ∈ M(Td) and a neighborhood U0 of the zero

measure such that

Uπ ⊇ (Uρ + U0 + rδx) ∩M+(Td).

On the set {η([Nx]) = [rNd]} we have that

πN =
[rNd]

Nd
δ [Nx]

N
+

1

Nd

∑
y∈TdN , y 6=[Nx]

η(y)δ y
N

=:
[rNd]

Nd
δ [Nx]

N
+ π̃N .

Now obviously [rNd]
Nd

δ [Nx]
N
−→ rδx weakly and therefore there exists N0 ∈ N such that

N ≥ N0 =⇒ [rNd]

Nd
δ [Nx]

N
− rδx ∈ U0.

Then for all N ≥ N0 we have that

{η([Nx]) = [rNd]} ∩ {πN ∈ Uπ} ⊇ {η([Nx]) = [rNd]} ∩ {π̃N ∈ Uρ}
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since if N ≥ N0 and η belongs in the set in the right hand side we have that

πN =
[rNd]

Nd
δ [Nx]

N
+ π̃N ∈ (rδx + U0 + Uρ) ∩M+(Td) ⊆ Uπ

and therefore for all N ≥ N0 we have by the independence of 1{[rNd]}
(
η([Nx])

)
and π̃N

that

1

Nd
logµN (Uπ) ≥ 1

Nd
log

∫
1{η([Nx])=[rNd]}1{π̃N∈Uρ}dν

N
ρ∗

=
1

Nd
log

∫
1{η([Nx])=[rNd]}dν

N
ρ∗ +

1

Nd
log

∫
{π̃N∈Uρ}

dνNρ(·)

=
1

Nd
log ν1

ρ∗([rN
d]) +

1

Nd
log

∫
{π̃N∈Uρ}

dνNρ∗ .

By the definition of the one-site ZR distributions we have that

1

Nd
log ν1

ρ∗([rN
d]) =

1

Nd
log

1

Z
(
Φ(ρ∗)

) +
[rNd]

Nd
log Φ(ρ∗)−

1

Nd
log g!([rNd])

and therefore if we assume that the lim inf defining the critical fugacity exists as a limit,

i.e. that

0 < ϕc := lim inf
k→+∞

k
√
g!(k) = lim

k→+∞
k
√
g!(k)

it follows that

lim
N→+∞

1

Nd
log ν1

ρ∗([rN
d]) = r log Φ(ρ∗)− lim

N→+∞

[rNd]

Nd
log [rNd]

√
g!([rNd])

= r log
Φ(ρ∗)

ϕc
.

On the other hand it is easy to see that the sequence µ̃N := π̃N∗ ν
N
ρ∗ satisfies the same large

deviations lower bound as the sequence µN := πN∗ ν
N
ρ∗ , at least for absolutely continuous

measures, i.e. for any measure ρdmTd ∈ M+
ac(T

d) and any neighborhood Uρ of ρdmTd

we have that

lim inf
N→+∞

1

Nd
log µ̃N (Uρ) ≥ −Iρ∗(ρ) = −

∫
Λ∗ρ∗(ρ)dmTd . (1.86)

Therefore we get by what we have proved for absolutely continuous measures that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −

[
r log

ϕc
Φ(ρ∗)

+

∫
Td

Λ∗ρ∗(ρ(u))du

]
= −Iρ∗(π).

Since we want to add any finite number of Dirac masses we need a slightly more

general version of (1.86) which we prove now: Let A = {x1, . . . , xm} ⊆ Td, m ∈ N, be

any finite set of points. For each N ∈ N we set AN := {[Nx1], . . . , [Nxm]} ⊆ TdN and

we define the empirical embeddings

π̃N :=
1

Nd

∑
y∈TdN\AN

η(y)δ y
N

: Md
N −→M+(Td), N ∈ N.

93



Then the sequence µ̃N := π̃N∗ ν
N
ρ∗ satisfies (1.86) for any absolutely continuous measure

ρdmTd and any neighborhood Uρ ⊆ M+(Td) of ρdmTd . As in the proof of the same

lower bound for {µN} it suffices to consider the case where the density ρ is strictly

positive and continuous. Then, making again the change of measure

dνNρ∗ =
dνNρ∗
dν̄Nρ(·)

dν̄Nρ(·),

where ν̄Nρ := νNρ∧ρc for all ρ ≥ 0, we get that

lim inf
N→+∞

1

Nd
log µ̃N (Uρ) ≥ − logZ

(
Φ(ρ∗)

)
+

∫
Td

logZ
(
Φ(ρ ∧ ρc)

)
dmTd

lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ}

e−N
d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dπNdν̄Nρ(·).

Then if we set

qN := πN − π̃N =
1

Nd

m∑
i=1

η([Nxi])δ [Nxi]

N

for each N ∈ N, the random variables π̃N and qN are independent and therefore

lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ}

e−N
d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dπNdν̄Nρ(·)

≥ lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ}

e−N
d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dπ̃Ndν̄Nρ(·) (1.87)

+ lim inf
N→+∞

1

Nd
log

∫
e−N

d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dqNdν̄Nρ(·).

For the first term we consider for each ε > 0 the open neighborhood

Uε :=

{
µ ∈M+(Td)

∣∣∣ ∣∣∣∣ ∫ log
Φ(ρ ∧ ρc)

Φ(ρ∗)
d(µ− ρ)

∣∣∣∣ < ε

}
and obviously

lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ}

e−N
d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dπ̃Ndν̄Nρ(·)

≥ −ε−
∫
ρ log

Φ(ρ ∧ ρc)
Φ(ρ∗)

dmTd + lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ∩Uε}

dν̄Nρ(·)

for all ε > 0. Since Uρ ∩ Uε is open in the weak topology of M+(Td) there exist ε0 > 0

and functions f1, . . . , fk, fk+1 ∈ C(Td), k ∈ N, with fk+1 = log Φ(ρ∧ρc)
Φ(ρ∗)

such that

Uρ ∩Aε ⊇
k+1⋂
i=1

{
µ ∈M+(Td)

∣∣∣ ∣∣∣∣ ∫ fid(µ− ρ)

∣∣∣∣ < ε

}
for all 0 < ε < ε0. But then, for all ε ∈ (0, ε0) we have that∫

{π̃N∈Uρ∩Uε}
dν̄Nρ(·) ≥ 1−

k+1∑
i=1

ν̄Nρ(·)

{∣∣∣∣ ∫ fidπ̃
N −

∫
fiρdmTd

∣∣∣∣ ≥ ε}
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and so it suffices to prove that

lim
N→+∞

ν̄Nρ(·)

{∣∣∣∣ ∫ fdπ̃N −
∫
fρdmTd

∣∣∣∣ ≥ ε} = 0

for all f ∈ C(Td) and all ε > 0. But this indeed holds, since for all ε > 0 we have that

ν̄Nρ(·)

{∣∣∣∣ ∫ fdπ̃N −
∫
fρdmTd

∣∣∣∣ ≥ ε} ≤ ν̄Nρ(·)

{∣∣∣∣ ∫ fdqN
∣∣∣∣ ≥ ε

2

}
+ν̄Nρ(·)

{∣∣∣∣ ∫ fdπN −
∫
fρdmTd

∣∣∣∣ ≥ ε

2

}
,

and the second term in the right hand side of the inequality above converges to zero

since the family {ν̄Nρ(·)} is associated to the profile ρ ∈ C(Td), while for the first term

we note that for all ε > 0 we have that

ν̄Nρ(·)

{∣∣∣∣ ∫ fdqN
∣∣∣∣ ≥ ε} ≤ 1

ε

∫ ∣∣∣∣ ∫ fdqN
∣∣∣∣dν̄Nρ(·) ≤ ‖f‖uεNd

m∑
i=1

∫
η([Nxi])dν̄

N
ρ(·)

=
‖f‖u
εNd

m∑
i=1

(ρc ∧ ρ)
( [Nxi]

N

)
N→+∞−→ 0. (1.88)

This proves that

lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ∩Uε}

dν̄Nρ(·) ≥ 0

for all ε > 0 and therefore the first term in the right hand side of (1.87) satisfies

lim inf
N→+∞

1

Nd
log

∫
{π̃N∈Uρ}

e−N
d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dπ̃Ndν̄Nρ(·) ≥ −
∫
ρ log

Φ(ρ ∧ ρc)
Φ(ρ∗)

dmTd .

It follows by (1.87) that

lim inf
N→+∞

1

Nd
log µ̃N (Uρ) ≥ −Iρ∗(ρ) + lim inf

N→+∞

1

Nd
log

∫
e−N

d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dqNdν̄Nρ(·)

and so to prove (1.86) as required, it suffices to show that

lim inf
N→+∞

1

Nd
log

∫
e−N

d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dqNdν̄Nρ(·) ≥ 0.

But this is indeed true since by Jensen’s inequality we have that

1

Nd
log

∫
e−N

d
∫

log
Φ(ρ∧ρc)
Φ(ρ∗)

dqNdν̄Nρ(·) ≥ −
∫∫

log
Φ(ρ ∧ ρc)

Φ(ρ∗)
dqNdν̄Nρ(·)

for allN ∈ N and the term in the right hand side converges to 0 by (1.88) since log Φ(ρ∧ρc)
Φ(ρ∗)

is a continuous function. This proves (1.86) for any finite number of Dirac masses.

By using this more general form of (1.86) and the same estimates as in the case of

one Dirac mass one can easily prove the lower bound when π = ρdmTd + πs ∈M+(Td)

is the sum of an absolutely continuous measure πac = ρdmTd and a finite sum of Dirac

masses πs =
∑k
i=1 riδxi , xi ∈ Td, in which case we have that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −

[( k∑
i=1

ri

)
log

ϕc
Φ(ρ∗)

+

∫
Td

Λ∗ρ∗(ρ(u))du

]
= −Iρ∗(π).
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For the general case let π = ρdmTd + πs be the Radon-Nikodym decomposition of

an arbitrary measure π ∈M+(Td). Since the set{ k∑
i=1

riδxi ,
∣∣∣ ri ≥ 0, xi ∈ Td, k ∈ N

}
is dense in the weak topology ofM+(Td) there exists a sequence {πs,n}n∈N of the form

πs,n =
∑kn
i=1 ri,nδxi,n for all n ∈ N such that πs,n −→ πs as n→ +∞. Now, obviously

πn := ρdmTd + πs,n −→ ρdmTd + πs

weakly, and so given a neighborhood Uπ of π there exists n0 such that πn ∈ Uπ for all

n ≥ n0. Therefore, by the LDP lower bound (1.82) for measures π ∈ M+(Td) with

singular part equal to a finite sum of Dirac masses we get that for any neighborhood Uπ
of π there exists n0 ∈ N such that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ −Iρ∗(πn)

for all n ≥ n0. But πs,n(Td) −→ πs(T
d) by the weak convergence πs,n −→ πs and

therefore

lim
n→+∞

I(πn) = lim
n→+∞

[
πs,n(Td) log

ϕc
Φ(ρ∗)

+

∫
Td

Λ∗ρ∗(ρ(u))du

]
= I(π).

It follows that

lim inf
N→+∞

1

Nd
logµN (Uπ) ≥ − lim

n→+∞
Iρ∗(πn) = −Iρ∗(π)

as required, which completes the proof of the large deviations lower bound. �

As we will see next, the rate functions in the upper and lower LDP bounds proved in

fact coincide and therefore the above large deviations bounds give us the full large devi-

ations principle for the empirical embeddings. This is seen by the variational character-

ization of the generalized entropy functionals, according to which, given any lower semi-

continuous convex function h : R −→ [0,+∞], the h-entropy Hh :M+(Td) −→ [0,+∞]

defined by

Hh(π) := Hh(π|mTd) :=

∫
h

(
dπac
dmTd

)
dmTd +

[
lim
t↑+∞

h(t)

t

]
πs(T

d),

where π = πac + πs is the Radon-Nikodym decomposition of π with respect to the

Lebesgue measure on the torus Td, provides the solution of the variational problem

Hh(π) = sup
f∈C(Td)

{∫
fdπ −

∫
h⊕(f)dµ

}
for all π ∈M+(Td), where h⊕ : R −→ (−∞,+∞] is the right semi-Legendre transform

of h given by

h⊕(s) = sup
t≥0

{
st− h(t)

}
.
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Note that since π is a non-negative measure only the values of h on [0,+∞) are relevant

for the definition of Hh and therefore if h̃ is given by h̃ = +∞ on (−∞, 0) and h̃ = h

on [0,+∞) then Hh̃ = Hh and h⊕ = h̃∗, where h̃∗ is the Legendre-Fenchel transform of

the lower semicontinuous convex functional h̃ : R −→ [0,+∞].

Proposition 1.6.4 Let {νNρ∗,g}N∈N be the family of ZR distributions of density ρ∗ < ρc,

where g is a local rate function g : Z+ −→ R+ such that the lim inf defining the critical

fugacity ϕc ∈ (0,+∞] exists as a limit, i.e. such that

0 < ϕc := lim inf
k→+∞

k
√
g!(k) = lim

k→+∞
k
√
g!(k),

and let Λρ∗ be the logarithmic m.g.f. of the one site ZR distribution with density ρ∗.

Then the sequence {µN} ⊆ PM+(Td) of the empirical embeddings of νNρ∗ given by (1.76)

satisfies the large deviations principle with speeds 1
Nd

and rate function HΛ∗ρ∗
, given by

HΛ∗ρ∗
(π) =

∫
Td

Λ∗ρ∗(πac(u))du+

[
lim
ρ↑+∞

Λ∗ρ∗(ρ)

ρ

]
πs(T

d),

where π = πacdmTd + πs, πs ⊥ mTd is the Radon-Nikodym decomposition of π with

respect to mTd .

Proof By the formula of Λ∗ρ∗ we know that Λ̃∗ρ∗ = Λ∗ρ∗ and so

Λ∗⊕ρ∗ = Λ̃∗ρ∗
∗

= Λ∗∗ρ∗ = Λρ∗ .

Therefore, by the variational characterization of the generalized entropy functionals it

follows that

HΛ∗ρ∗
(π) = sup

f∈C(Td)

{∫
fdν −

∫
Λρ∗(f)dmTd

}
,

and thus HΛ∗ρ∗
coincides with the rate function given in the LDP upper bound for {µN}.

It remains to prove that HΛ∗ρ∗
coincides also with the LDP lower bound, and for this it

suffices to prove that

lim
ρ↑+∞

Λ∗ρ∗(ρ)

ρ
= log

ϕc
Φ(ρ∗)

. (1.89)

By the variational characterization of the h-relative entropy functionals we know that

for any lower semicontinuous and convex function h : R −→ [0,+∞] we have

lim
t→+∞

h(t)

t
=

{
+∞, Dh⊕ = R,

supt∈Dh h
′
−(t), Dh⊕ 6= R

.

In our case h = Λ∗ρ∗ and therefore Dh⊕ = DΛρ∗
. But as we know

(−∞, b∗) ⊆ DΛρ∗
⊆ (−∞, b∗]

where b∗ := log ϕc
Φ(ρ∗)

and therefore Dh⊕ = DΛρ∗
= R iff ϕc = +∞, and in this case we

trivially have that

lim
ρ↑+∞

Λ∗ρ∗(ρ)

ρ
= +∞ = log

ϕc
Φ(ρ∗)

.
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On the other hand, Dh⊕ = DΛρ∗
6= R iff ϕc < +∞ and since in any case we have that

(0,∞) ⊆ DΛρ∗
, we have in this case that

lim
ρ↑+∞

Λ∗ρ∗(ρ)

ρ
= lim
ρ↑+∞

(Λ∗ρ∗)
′
−(ρ).

Now, we know that if ρc = +∞ then

Λ∗ρ∗(ρ) = ρ
Φ(ρ)

Φ(ρ∗)
− log

Z
(
Φ(ρ)

)
Z
(
Φ(ρ∗)

)
for all ρ ≥ 0, and therefore we have in this case that

(Λ∗ρ∗)
′(ρ) = log

Φ(ρ)

Φ(ρ∗)
+ ρ

Φ′(ρ)

Φ(ρ)
−
Z ′
(
Φ(ρ)

)
Φ′(ρ)

Z
(
Φ(ρ)

)
= log

Φ(ρ)

Φ(ρ∗)
+ ρ

Φ′(ρ)

Φ(ρ)
−R

(
Φ(ρ)

)Φ′(ρ)

Φ(ρ)

= log
Φ(ρ)

Φ(ρ∗)

ρ→+∞−→ log
ϕc

Φ(ρ)
.

Finally, if ρc < +∞, then as we know for all ρ ≥ ρ∗ we have that

Λ∗ρ∗(ρ) = ρ log
ϕc

Φ(ρ∗)
− log

Z(ϕc)

Z
(
Φ(ρ∗)

) .
and therefore in this case we have that (Λ∗ρ∗)

′(ρ) ≡ log ϕc
Φ(ρ∗)

for all ρ ≥ ρc. This proves

that in any case (1.89) holds and so the rate functions for the upper and lower LDP

bounds coincide and the required large deviation principle is proved. �
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Chapter 2

Formulations of the Notion of

Local Equilibrium and

Hydrodynamic Limits

The notion of local equilibrium is central in describing the hydrodynamic limit of in-

teracting particle systems. Loosely speaking a local equilibrium is a state that locally,

i.e. near each macroscopic point, looks like a an equilibrium state. In this section we

describe various ways to formulate the notion of local equilibrium.

2.1 Strong Local equilibrium

Recall that we denote by {νρ∧ρc}ρ∈R+
the family of the product and translation invariant

equilibrium distributions of the ZRP on the discrete torusTdN . Its marginal distributions

are given by

η(x)∗νρ)(k) =
1

Z(Φ(ρ))

ϕk

g!(k)
, x ∈ TdN .

Furthermore, given ρ ∈ [0, ρc] ∩R+ we denote by ν∞ρ ∈ PMd
∞ the corresponding distri-

bution on the space of configurations supported by the infinite lattice Zd.

Definition 2.1.1 A sequence {µN ∈ PMd
N} is called a strong local equilibrium of profile

ρ : Td −→ R+ if

τ[Nu]∗µN −→ ν∞ρ(u)

in the weak topology of PMd
N for all continuity points u ∈ Td of the function ρ.

A particular example of a strong local equilibrium is given by the so-called families

of slowly varying profile with respect to a function ρ : Td −→ R+.

Definition 2.1.2 Let ρ : Td −→ R+ be a function. The family {νNρ(·)}N∈N given by

νNρ(·) :=
∏
x∈TdN

ν1
ρ( xN ) ∈ PM

d
M
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is called the {family of distributions with slowly varying parameter of profile} ρ.

Proposition 2.1.1 Given any function ρ : Td −→ R+, the family {νNρ(·)} of distribu-

tions with slowly varying parameter of profile ρ is a strong local equilibrium.

Proof Let u ∈ Td be a continuity point of ρ. Since νNρ(·) is a product distribution it

suffices to check that for each z ∈ Zd,

η(z +NZd)∗
(
τ[Nu]∗ν

N
ρ(·)
)

= ν1

ρ(
z+[Nu]+NZd

N )

N→∞−→ ν1
ρ(u) ∈ PZ+.

But this is obvious since z+[Nu]+NZd

N −→ u as N → ∞ and the family ν1ρ ∧ ρcρ∈R+
is

continuous with respect to the parameter ρ. �

Once we have a notion of local equilibrium we can speak of the conservation of local

equilibrium and define the notion of a hydrodynamic limit. We do so in the context of

ZRPs.

Definition 2.1.3 Let {ηN} denote the family of ZRPs on the discrete toruses with jump

rate g : Z+ −→ R+ and elementary transition probability p ∈ PZd and let {QNt }t∈R+

denote the transition probability of ηN . We say that a strong local equilibrium {µN}
of profile ρ0 : Td −→ R+ is conserved by the evolution of the ZRP in the time scale

{θN}N∈N if there exists a measurable function ρ : R+ ×Td −→ R+, called the hydro-

dynamic limit, such that for each t ∈ R+ the sequence {QtθN∗}N∈N is a strong local

equilibrium of profile ρt.

Usually we ask of the function ρ : R+ ×Td −→ R+ to be the solution of an evolu-

tionary Cauchy problem with initial condition ρ0. The equation satisfied by ρ is then

called the hydrodynamic equation of the ZRP. It is easy to see that if ρt : Td −→ R+ is

continuous for each fixed t > 0 then the hydrodynamic limit is unique. Indeed, let {µN}
be an initial strong local equilibrium and let ρ, ρ̄ : R+ × Td −→ R+ be two hydrody-

namic limits in the same timescale {θN}N∈N of the ZRP starting from {µN}. Then we

have that

ν∞ρ(u) = lim
N→∞

τ[Nu]∗Q
N
tθN∗µN = ν∞ρ̄(u)

for each (t, u) ∈ (0,∞) ×Td which since the family ν∞ρ is parametrized by the density

implies that

ρt(u) =

∫
η(0)dνρ(u) =

∫
η(0)dνρ̄(u) = ρ̄(u).

2.2 Weak Local Equilibrium

Usually one works with weaker notions of local equilibrium in order to describe the

hydrodynamic behavior of interacting particle systems. One way this is done is by

replacing the convergence τ[Nu]∗µN −→ νρ(u) for each continuity point of the profile

ρ : Td −→ R+ by the convergence of the spatial mean

µ̄N :=

∫
Td

τ[Nu]∗µNdu =
1

Nd

∑
x∈TdN

τx∗µN ∈ PMd
N
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to the spatial mean

ν̄∞ρ(·) :=

∫
Td

ν∞ρ(u)du ∈ PM
d
∞.

It is easy to see that at least for a.s. continuous profiles such a notion of local equilib-

rium is weaker than the strong local equilibrium. We will refer to this motion of local

equilibrium by saying that {µN} is a itlocal equilibrium of profile ρ is spatial mean.

Proposition 2.2.1 Let {µN} be a strong local equilibrium with respect to an a.s. con-

tinuous profile ρ : Td −→ R+. Then with the notation above µ̄N −→ ν̄ρ(·).

Proof Since weak convergence in PMd
∞ is determined by the duality with respect to

bounded cylindrical functions it suffices to show that∫
Ψdµ̄N −→

∫
Ψdν̄ρ(·)

for all bounded cylindrical functions Ψ : Md
∞ −→ R. So let Ψ ∈ Bcyl(M

d
∞). Since ρ is

a.s. continuous and {µN} is a strong local equilibrium we have that

hN (u) :=

∫
Ψdτ[Nu]∗µN −→

∫
Ψdνρ(·)

for almost all u ∈ Td. But {hN} is obviously uniformly bounded by ‖Ψ‖∞ and so the

bounded convergence theorem yields∫
Ψdµ̄N =

∫
hN (u)du −→

∫
Td

∫
Ψdνρ(u)du =

∫
Ψdν̄ρ(·)

as required. �

For any cylinder function Ψ : Md
∞ −→ R we will denote by Ψ̃ : R+ −→ R the

function defined by

Ψ̃(ρ) =

∫
Ψdνρ∧ρc .

Since the family {νρ∧ρc}ρ∈R+
is weakly continuous the function Ψ̃ is continuous for any

cylinder function Ψ, and obviously if Ψ is bounded then so is Ψ̃ with ‖Ψ̃‖∞ ≤ ‖Ψ‖∞.

Of course with this notation we have that∫
Ψdν̄ρ(·) =

∫
Td

Ψ̃(ρ(u))du.

Furthermore, given any cylinder function Ψ : Md
∞ −→ R and any z ∈ Zd we define its

translation τzΨ by z via the formula

τzΨ(η) = Ψ(τzη).

In this way we have that ∫
Ψdµ̄N =

∫ ( 1

Nd

∑
x∈TdN

τxΨ
)
dµN
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where as usual we identify TdN with the subset ZdN := {−[N2 ], · · · , [N2 ]−1}d. In this way

the requirement of the weak convergence of the spatial means {µ̄N} to the spatial mean

ν̄ρ(·) can equivalently rephrased by requiring the stochastic means with respect to {µN}
of the spatial means

Ψ̄N :=
1

Nd

∑
x∈TdN

τxΨ

to converge to the spatial mean
∫
Td

Ψ̃(ρ(u))du for all cylinder functions Ψ : Md
∞ −→ R,

i.e. by requiring that

lim
N→∞

EµN Ψ̄N =

∫
Ψ̃(ρ(u))du (2.1)

for all cylinder functions Ψ : Md
∞ −→ R. In the definition of weak local equilibrium,

instead of the convergence in (2.1) one imposes the stronger requirement that the spatial

mean Ψ̄N converges in probability with respect to the sequence {µN} to the constant∫
Ψ̃(ρ(u))du for all cylinder functions Ψ : Md

∞ −→ R.

Definition 2.2.1 Let ρ : Td −→ R+ be a measurable profile. A sequence {µN ∈
PMd

N}N∈N is called a weak local equilibrium of profile ρ if

lim
N→∞

µN

{∣∣∣Ψ̄N −
∫
Td

Ψ̃(ρ(u))du
∣∣∣ > δ

}
= 0

for all Ψ ∈ Bcyl(M
d
∞) and all δ > 0.

Proposition 2.2.2 If {µN} is a weak local equilibrium of profile ρ : Td −→ R+ then it

is also a local equilibrium of profile ρ in the spatial mean, i.e. µ̄N −→ ν̄∞ρ().

Proof Let Ψ ∈ Bcyl(M
d
∞) and let δ > 0. We set θ :=

∫ d
T

Ψ̃(ρ(u))du. Since {µN} is weak

local equilibrium there exists N0 ∈ N such that

N ≥ N0 =⇒ µN{|Ψ̄N − θ| > δ/2} ≤ δ

2(‖Ψ‖∞ + θ + 1)
.

Then for each N ≥ N0 we have that∣∣∣ ∫ Ψ̄NdµN − θ
∣∣∣ ≤ ∫

|Ψ̄N − θ|dµN ≤
∫
{|Ψ̄N−θ|>δ/2}

|Ψ̄N − θ|dµN +
δ

2

≤ (‖Ψ‖∞ + θ)µN{|Ψ̄N − θ| > δ/2}+
δ

2
< δ,

as required, since we obviously have that ‖Ψ̄N‖∞ ≤ ‖Ψ‖∞ for all N ∈ N. �

Following [25] we prove next that the notion of weak local equilibrium is indeed

weaker than the notion of strong local equilibrium, at least for almost surely continuous

profiles.

Proposition 2.2.3 Let {µN} be a strong local equilibrium with respect to an a.s. con-

tinuous profile ρ : Td −→ R+. Then {µN} is a weak local equilibrium of profile ρ.
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Proof Let Ψ ∈ Bcyl(M
d
∞) be a cylinder function. By Chebyshev’s inequality it suffices

to prove that

lim
N→∞

∫ ∣∣∣Ψ̄N −
∫
Td

Ψ̃(ρ(u))du
∣∣∣dµN = 0.

A generally useful remark is that for each ` ∈ Z+ the global spatial mean

1

Nd

∑
x∈TdN

τxΨ̄N,`

of the local spatial mean Ψ̄` of Ψ is equal to the global spatial mean. Indeed, by changing

the order of summation,

1

Nd

∑
x∈TdN

τxΨ̄N,` =
1

Nd

∑
x∈TdN

1

(2`+ 1)d

∑
y∈x+Λd`

τyΨ

=
1

Nd

∑
y∈TdN

1

(2`+ 1)d

∑
x∈y+Λd`

τyΨ = Ψ̄N . (2.2)

Consequently, in order to prove that the sequence {µN} is a weal local equilibrium it

suffices to show that

lim inf
`→∞

lim
N→∞

∫ ∣∣∣∣ 1

Nd

∑
x∈TdN

τxΨ̄` −
∫
Td

Ψ̃(ρ(u))du

∣∣∣∣dµN = 0.

Furthermore, since Ψ̃ is continuous due to the weak continuity of the family {νρ∧ρc}ρ∈R+

and since ρ is an a.s. continuous function we have that

lim
N→∞

∑
x∈TdN

1[ xN ,
x
N )(u)Ψ

(
ρ
( x
N

))
= Ψ̃

(
ρ(u)

)
for a.s. all u ∈ Td, and so by the bounded convergence theorem

1

Nd

∑
x∈TdN

Ψ
(
ρ
( x
N

))
=

∫ ∑
x∈TdN

1[ xN ,
x
N )(u)Ψ

(
ρ
( x
N

)) N→∞−→
∫
Td

Ψ̃
(
ρ(u)

)
du.

So in order to prove the claim it suffices to show that

lim inf
`→∞

lim
N→∞

1

Nd

∑
x∈TdN

∫ ∣∣τxΨ̄` − Ψ̃
(
ρ(
x

N
)
)∣∣dµN = 0. (2.3)

Next, denoting for each N ∈ N and ` ∈ Z+ by hN,` : Td −→ R+ the function defined

by

hN,`(u) =
∑
x∈TdN

∫ ∣∣τxΨ̄` − Ψ̃
(
ρ(
x

N
)
)∣∣dµN · 1[ xN ,

x+1
N )(u)

=

∫ ∣∣Ψ̄` − Ψ̃
(
ρ(

[Nu]

N
)
)∣∣dτ[Nu]∗µN
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the limit in (2.3) can be rewritten as

lim inf
`→∞

lim
N→∞

∫
Td

hN,`(u)du.

But since {µN} is a strong local equilibrium, for every continuity point u ∈ Td of ρ we

have that

lim
N→∞

hN,`(u) =

∫ ∣∣Ψ̄` − Ψ̃
(
ρ(u)

)∣∣dν∞ρ(u)

and therefore since the family {hN,`}N,` is uniformly bounded by 2‖Ψ‖∞, by the bounded

convergence theorem we can pass the limit as N →∞ inside the integral to obtain that

in order to complete the proof it suffices to show that

lim inf
`→∞

∫
Td

∫ ∣∣Ψ̄` − Ψ̃
(
ρ(u)

)∣∣dν∞ρ(u)du = 0. (2.4)

By the bounded convergence theorem again, it follows that in order to prove (2.4) it

suffices to show that for all u ∈ Td,

lim inf
`→∞

∫ ∣∣∣∣ 1

(2`+ 1)d

∑
|y|≤`

τyΨ− Ψ̃
(
ρ(u)

)∣∣∣∣dν∞ρ(u) = 0. (2.5)

As we will see next this follows by the law of large numbers. Of course since ν∞ρ(u)

is translation invariant, the functions {τyΨ}y∈Zd are equidistributed under ν∞ρ(u) with

common mean value

Eν∞
ρ(u)

(
τxΨ

)
= Eν∞

ρ(u)
Ψ = Ψ̃

(
ρ(u)

)
,

and so if Ψ was a function of one coordinate, i.e. if it was of the form Ψ(η) = ψ(η(z0))

for some z0 ∈ Zd the limit above would be exactly the law of the large numbers. In

general, as a cylinder function, Ψ will depend on a finite number of coordinates and so

for y1, y2 ∈ Zd that are a sufficiently large distance apart the functions τy1
Ψ and τy2

Ψ

will be independent. It is well known that one can use this fact to apply the law of large

numbers in this more general case, as follows. Since Ψ is a cylinder function, there exists

`0 ∈ Z+ such that Ψ is of the form Ψ = ψ ◦ π`0 , where for each ` ∈ Z+ we denote by

π` : Zd −→ Z
Λd`
+
∼= Td2`+1 the natural projection. Then whenever |x − y| > 2`0 + 1 the

functions τxΨ and τyΨ are independent. For each ` ∈ Z+ we set `? := 2` + 1 and with

this notation in order to complete the proof it suffices to show that for all u ∈ Td,

lim
k→∞

1(
`0 + k(2`0 + 1)

)d
?

∑
|y|≤`0+k(2`0+1)

τyΨ = Ψ̃
(
ρ(u)

)
in L1(ν∞ρ(u)).

Note that (
`0 + k(2`0 + 1)

)d
?

= (`0)d?k
d
? (2.6)

and so the ball Λd`0+k(2`0+1) is the union of (2k + 1)d balls of radius `0. So if we set

Lky := {z ∈ Λd`0+k(2`0+1)|z − y ∈ (2`0 + 1)Zd}
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for each y ∈ Λd`0 , then ]Lky = kd? for each y ∈ Λd`0 and

Λd`0+k(2`0+1) =
∐
y∈Λd`0

Lky .

So the sum of all the τyΨ’s over all y ∈ Λd`0+k(2`0+1) can be written as∑
|y|≤`0+k(2`0+1)

τyΨ =
∑
|y|≤`0

∑
z∈Lky

τzΨ.

By definition Lky has (2k+ 1)d elements and the family {τzΨ}z∈Lky is obviously i.i.d. and

therefore by the L2-weak law of large numbers and (2.6) we get

1

(`0 + k(2`0 + 1))d?

∑
|y|≤`0+k(2`0+1)

τyΨ =
1

(`0)d?

∑
|y|≤`0

1

kd?

∑
z∈Lky

τzΨ

which converges in L2(νρ(u)) as k →∞ to

1

(`0)d?

∑
|y|≤`0

Ψ̃
(
ρ(u)

)
= Ψ̃

(
ρ(u)

)
.

This proves (2.5) as required and completes the proof. �

In the literature the notion of weak local equilibrium is usually defined is a seemingly

stronger (but in fact equivalent) form. To state it in a more compact way will use the

following notation. For any bounded cylinder function ψ : Md
∞ −→ R we denote by πN,Ψ

the random measure πN,Ψ : Md
N −→M+(Td) given by πN,Ψ = 1

Nd

∑
x∈TdN

τxΨδ x
N

. The

following equivalent characterization of weak local equilibrium holds.

Proposition 2.2.4 Let ρ : Td −→ R+ be a measurable function. A sequence µN ∈
PMd

N , N ∈ N is weak local equilibrium of profile ρ iff for all bounded cylinder functions

Ψ : Md
∞ −→ R and all G ∈ C(Td) it holds that

lim
N→∞

µN
{∣∣∣∣ ∫ G(u)dπN,Ψ(u)−

∫
Td

G(u)Ψ̃
(
ρ(u)

)
du

∣∣∣∣ > δ

}
= 0, ∀ δ > 0.

Proof The one implication is obvious, the condition of this proposition of the constant

function G ≡ 1 is exactly the condition in the definition of weak local equilibrium. For

the other implication let G ∈ C(Td), Ψ ∈ Bcyl(M
d
∞) and δ > 0. Of course, if G is

identically equal to zero we have nothing to show and so we assume that ‖G‖∞ > 0.

Note that

〈G, πN,Ψ〉 :=

∫
G(u)dπN,Ψ(u) =

∫
Td

G
( [Nu]

N

)
τ[Nu]Ψdu

for any G ∈ C(Td) and any Ψ ∈ Bcyl(M
d
∞) and therefore by adding and subtracting the

function u 7→ G(u)τ[Nu]Ψ inside the integrand we get∣∣〈G, πN,Ψ〉 − 〈G, Ψ̃(ρ)dmTd〉
∣∣ =

∣∣∣∣ ∫
Td

[
G
( [Nu]

N

)
τ[Nu]Ψ−G(u)Ψ̃

(
ρ(u)

)]
du

∣∣∣∣
≤ ‖Ψ‖∞

∫
Td

∣∣∣G( [Nu]

N

)
−G(u)

∣∣∣du
+‖G‖∞

∣∣∣∣Ψ̄N −
∫
Td

Ψ̃
(
ρ(u)

)
du

∣∣∣∣.
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By the continuity of G and the bounded convergence theorem we have that

lim
N→∞

∫
Td

∣∣∣G( [Nu]

N

)
−G(u)

∣∣∣du = 0.

Furthermore, this term is deterministic, i.e. independent of η ∈ Md
∞, and therefore for

large enough N ∈ N we have that

µN
{∣∣〈G, πN,Ψ〉 − 〈G, Ψ̃(ρ)dmTd〉

∣∣ > δ
}
≤ µN

{∣∣∣∣Ψ̄N −
∫
Td

Ψ̃
(
ρ(u)

)
du

∣∣∣∣ > δ

2‖G‖∞

}
which tends to zero as N →∞ since {µN} is a weak local equilibrium. �

It is useful to know to what extent the profile of a weak local equilibrium is unique.

Proposition 2.2.5 Let ρ1, ρ2 ∈ L1
+(Td) be profiles and let µN ∈ PMd

N , N ∈ N. If the

sequence {µN} is both a weak local equilibrium of profile ρ1 and of profile ρ2, then

ρ1 ∧ ρc = ρ2 ∧ ρc a.s. in Td.

Proof Let G ∈ C(Td) and for each K ∈ N set ΨK := η(0) ∧K. Since {µN} is a weak

local equilibrium of profile ρi, i = 1, 2, for each δ > 0 there exists Nδ = Nδ(G) ∈ N such

that

N ≥ Nδ =⇒ µN

{∣∣〈G, πN,ΨK 〉 − 〈G, Ψ̃K(ρi)dmTd〉
∣∣ > δ

2

}
<

1

4
,

for i = 1, 2. Then,

µNm

{∣∣〈G, Ψ̃K(ρ1)dmTd〉 − 〈G, Ψ̃K(ρ2)dmTd〉
∣∣ > δ

}
≤
∑
i=1,2

µNm

{∣∣〈G, πN,ΨK 〉 − 〈G, Ψ̃K(ρi)dmTd〉
∣∣ > δ

2

}
<

1

2
.

Since the event {|〈G, Ψ̃K(ρ1)dmTd〉 − 〈G, Ψ̃K(ρ2)dmTd〉
∣∣ > δ} is deterministic, this

implies that |〈G, Ψ̃K(ρ1)dmTd〉 − 〈G, Ψ̃K(ρ2)dmTd〉| ≤ δ and since δ > 0 was arbitrary

we have in fact that

〈G, Ψ̃K(ρ1)dmTd〉 = 〈G, Ψ̃K(ρ2)dmTd〉.

Since G ∈ C(Td) was also arbitrary this holds for all G ∈ C(Td), which implies that

Ψ̃K(ρ1) = Ψ̃K(ρ2) a.s. in Td

for all K ∈ N. So the set

E :=

∞⋂
K=1

{
Ψ̃K(ρ1) = Ψ̃K(ρ2)

}
is of full measure in Td, i.e. m(E) = 1, and

Ψ̃K

(
ρ1(u)

)
= Ψ̃K

(
ρ2(u)

)
for all u ∈ E, K ∈ N. (2.7)

But for each ρ ∈ [0,∞) the monotone convergence theorem that

lim
K→∞

Ψ̃K(ρ) = lim
K→∞

∫
η(0) ∧Kdν1

ρ∧ρc =

∫
η(0)dν1

ρ∧ρc = ρ ∧ ρc,

and so taking the limit as K → ∞ in (2.7) yields that ρ1(u) ∧ ρc = ρ2(u) ∧ ρc for all

u ∈ E, which completes the proof since E is of full measure in Td. �
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2.3 Local Equilibrium in the Entropy Sense

Definition 2.3.1 Let ρ : Td −→ R be a measurable function. A sequence µN ∈ PMd
N

is an entropy local equilibrium of profile ρ if

lim
N→∞

1

Nd
H(µN |νNρ(·)) = 0.

According to the proof of corollary 1.3 in [25] the notion of entropy local equilibrium

is stronger than the notion of weak local equilibrium.

Proposition 2.3.1 Let µN ∈ PMd
N be a sequence of probability measures. If {µN} is a

local equilibrium with respect to a continuous profile ρ : Td −→ R+ in the entropy sense

then it is also a weak local equilibrium of profile ρ.

Proof Let H ∈ C(Td). By Chebyshev’s inequality it suffices to prove that

lim
N→∞

∫ ∣∣∣∣ 1

Nd

∑
x∈TdN

H
( x
N

)
τxΨ−

∫
H(u)Ψ̃

(
ρ(u)

)
du

∣∣∣∣dµN = 0 (2.8)

for all Ψ ∈ Cylb(M
d
∞). Since ρ is assumed continuous, we have that

lim
N→∞

1

Nd

∑
x∈TdN

H
( x
N

)
Ψ̃
(
ρ
( x
N

))
=

∫
Td

H(u)Ψ̃
(
ρ(u)

)
du

and therefore in order to prove (2.8) it suffices to prove that

lim sup
N→∞

∫ ∣∣∣∣ 1

Nd

∑
x∈TdN

H
( x
N

)[
τxΨ− Ψ̃

(
ρ
( x
N

))]∣∣∣∣dµN = 0 (2.9)

for all Ψ ∈ Cylb(M
d
∞). We recall that for each Ψ ∈ Cylb(M

d
∞) and each ` ∈ Z+ we

denote by Ψ̄` the local spatial mean of Ψ of radius `. Then obviously for each x ∈ TdN
we have that (τxΨ)

`
= τx(Ψ̄`). It is easy to see by a summation by parts that for all

` ∈ Z+ we have

lim sup
N→∞

∫ ∣∣∣ 1

Nd

∑
x∈TdN

H
( x
N

)[
τxΨ− τxΨ`

]∣∣∣dµN = 0

and therefore in order to show the claim it suffices to prove that

lim sup
`→∞

lim sup
N→∞

∫
1

Nd

∑
x∈TdN

∣∣∣τxΨ` − Ψ̃
(
ρ
( x
N

))∣∣∣dµN = 0. (2.10)

and Ψ ∈ Cylb(M
d
∞). By the relative entropy inequality, for every γ > 0 the integral in

(2.8) is bounded above by

1

γNd
H(µN |νNρ(·)) +

1

γNd
log

∫
e
γ
∑
x∈Td

N
|τxΨ`−Ψ̃(ρ(x/N))|

dνNρ(·).
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The first term tends to zero as N →∞ since {µN} is a local equilibrium in the entropy

sense. So we have to show that for each γ > 0, the second term in the sum above which

we will denote by Jγ(N, `), vanishes as N →∞ and then `→∞.

For simplicity we assume in what follows that `Ψ = 0, i.e. that Ψ(η) = Ψ(η(0))

for some bounded function Ψ : Z+ −→ R. Then Ψ` is a function of the random

vector
(
η(x)

)
x∈Λd`

and so the random variables τxΨ` and τyΨ` are independent whenever

|x − y| ≥ 2` + 1. We will take advantage of this fact to decompose the expectation in

the term Jγ(N, `) to simpler terms. We assume without loss of generality that 2` + 1

divides N and set

G(u, λ) ≡:=
∣∣λ− Ψ̃

(
ρ(u)

)∣∣, (u, λ) ∈ Td ×R+.

Then the sum in the exponential can be written as∑
x∈TdN

G
( x
N
, τxΨ`

)
=
∑
x∈Λd`

∑
y∈EN,`x

G
(x+ (2`+ 1)y

N
, τx+(2`+1)yΨ`

)
where we have set EN,`x := {y ∈ TdN : x + (2` + 1)y ∈ TdN}. Then by the generalized

Holder inequality and the independence for each fixed x ∈ TdN of the random variables

τx+(2`+1)yΨ`, y ∈ EN,`x , we have that

Jγ(N, `) =
1

γNd
log

∫ ∏
x∈Λd`

e
γ
∑
y∈EN,`x

G(
x+(2`+1)y

N ,τx+(2`+1)yΨ`)
dνNρ(·)

≤ 1

γNd
log

∏
x∈Λd`

(∫
e
γ(2`+1)d

∑
y∈EN,`x

G(
x+(2`+1)y

N ,τx+(2`+1)yΨ`)
dνNρ(·)

) 1

(2`+1)d

=
1

γ(2`+ 1)dNd

∑
x∈Λd`

log

∫
e
γ(2`+1)d

∑
y∈EN,`x

G(
x+(2`+1)y

N ,τx+(2`+1)yΨ`)
dνNρ(·)

=
1

γ(2`+ 1)dNd

∑
x∈Λd`

∑
y∈EN,`x

log

∫
eγ(2`+1)dG(

x+(2`+1)y
N ,τx+(2`+1)yΨ`)dνNρ(·)

=
1

γ(2`+ 1)dNd

∑
x∈TdN

log

∫
eγ(2`+1)d|τxΨ`−Ψ̃(ρ(x/N))|dνNρ(·)

=
1

γ(2`+ 1)dNd

∑
x∈TdN

log

∫
eγ(2`+1)d|Ψ`−Ψ̃(ρ(x/N))|dτxν

N
ρ(·)

=
1

γ(2`+ 1)d

∫
Td

log

∫
eγ(2`+1)d|Ψ`−Ψ̃(ρ([Nu]/N))|dτ[Nu]ν

N
ρ(·)du.

Now, since the profile ρ is continuous, the sequence νNρ(·) is a local equilibrium of

profile ρ, that is for each macroscopic point u ∈ Td we have that τ[Nu]ν
N
ρ(·) −→ ν∞ρ(u)

weakly in PMd
∞, and therefore the upper bound for Jγ(N, `) given above converges as

N →∞ to
1

γ(2`+ 1)d

∫
Td

log

∫
eγ(2`+1)d|Ψ`−Ψ̃(ρ(u))|dν∞ρ(u)du.

Now, since Ψ is bounded, by the elementary inequality ex ≤ 1 + x+ 1
2x

2e|x| we get

eγ`
d
?|Ψ

`−Ψ̃(ρ(u))| ≤ 1 + γ`d?|Ψ` − Ψ̃(ρ(u))|+ 2γ2`2d? ‖Ψ‖2∞e2γ`d?‖Ψ‖∞ ,
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where as usual we have set `? = 2`+1. Then by the elementary inequality log(1+x) ≤ x
we get

log

∫
eγ`

d
?|Ψ

`−Ψ̃(ρ(u))|dν∞ρ(u) ≤ γ`
d
?

∫
|Ψ` − Ψ̃(ρ(u))|dν∞ρ(u) + 2γ2`2d? ‖Ψ‖2∞e2γ`d?‖Ψ‖∞ .

It follows that for all γ > 0 and all ` ∈ Z+,

lim sup
N→∞

Jγ(N, `) ≤
∫
Td

∫
|Ψ` − Ψ̃(ρ(u))|dν∞ρ(u)du+ 2γ`d?‖Ψ‖2∞e2γ`d?‖Ψ‖∞ .

Applying this for each ` ∈ Z+ with γ = θ(2`+ 1)−d, for arbitrary θ > 0, we get that

lim sup
N→∞

Jγ(N, `) ≤
∫
Td

∫
|Ψ` − Ψ̃(ρ(u))|dν∞ρ(u)du+ 2θ‖Ψ‖2∞e2θ‖Ψ‖∞ .

Then by the law of the large numbers and the bounded convergence theorem it follows

that

lim sup
`→∞

lim sup
N→∞

Jγ(N, `) ≤ 2θ‖Ψ‖2∞e2θ‖Ψ‖∞ ,

which since θ can be taken arbitrarily close to 0, proves that

lim
`→∞

lim sup
N→∞

Jγ(N, `) = 0

as required and completes the proof. �

2.4 Weak Local Equilibrium of First Order

The notions of strong and weak local equilibrium can be also considered by using the

wp topologies in the spaces PpM
d
∞ and the space of cylinder functions of polynomial

growth considered in subsection 1.3.2 respectively. We do so in this chapter in the case

p = 1 which is the most interesting due to its connection with the conserved quantity,

the density.

In all of this section {νNρ }ρ∈R+
≡ {νNρ∧ρc}ρ∈R+

will be the grand canonical ensemble

of a ZRP on the discrete torusTdN , N ∈ N. Is we have already seen, the family {νNρ }ρ∈R+

is weakly continuous and since it is parametrized by the density,∫
η(x)dνρ∧ρcdν

N
ρ = ρ ∧ ρc

for all ρ ∈ R+. Consequently the family {νNρ }ρ∈R+
is always w1-continuous.

Definition 2.4.1 Let ρ : Td −→ R+ be any function. A sequence {µN ∈ P1M
d
N} is

called a w1-strong local equilibrium if

τ[Nu]µ
N −→N→∞

ν
∞

ρ(u)∧ρc

in the w1 topology of P1M
d
∞ for every continuity point u ∈ Td of ρ.

In complete analogy to proposition 2.1.1 we have the following
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Proposition 2.4.1 Given any function ρ : Td −→ R+, the family {νNρ(·)} of distribu-

tions with slowly varying parameter of profile ρ is a w1-strong local equilibrium.

Definition 2.4.2 Let ρ : Td −→ R+ measurable. A sequence {µN ∈ P1M
d
N} is a state

of w1-local equilibrium of profile ρ in spatial mean if

1

Nd

∑
x∈TdN

τx∗µ
N =

∫
Td

τ[Nu]µ
Ndu −→

∫
Td

ν∞ρ(u)du

in the w1 topology of P1M
d
∞.

We note that for any integrable profile ρ ∈ L1(Td) we have for each x ∈ Zd that〈
η(x),

∫
Td

ν∞ρ(u)du
〉

=

∫
Eν∞

ρ(u)
(η(x))du =

∫
Td

ρ(u) ∧ ρcdu < +∞

and thus

ν̄ρ(·) :=

∫
Td

ν∞ρ(u)du ∈ P1M
d
∞.

As in the case of bounded cylinder functions given any cylinder function Ψ ∈ Cyld1
we will denote by

Ψ̃(ρ) :=

∫
Ψdν∞ρ∧ρc

the expected value of Ψ over ν∞ρ∧ρc , ρ ∈ R+. Since Ψ is in Cyld1 there exist `0 ∈ Z+ and

a constant C ≥ 0 such that |Ψ| ≤ C
(
1 +

∑
|x|≤`0 η(x)

)
and therefore

|Ψ̃| ≤
∫
|Ψ|dν∞ρ ≤ C + C

∑
|x|≤`0

∫
η(x)dν∞ρ = C + C(2`0 + 1)dρ ∧ ρc. (2.11)

So Ψ̃ ∈ B1C(R+) if ρc = +∞ and Ψ̃ ∈ BC(R+) if ρc < +∞.

Proposition 2.4.2 Let ρ : Td −→ R+ be an a.s. continuous and integrable profile. If

{µN} is a w1-strong local equilibrium of profile ρ and satisfies in addition the uniform

integrability condition

lim
M→∞

lim
N→∞

1

Nd

∑
x∈TdN :EµN [η(x)]>M

∫
η(x)dµN = 0, (2.12)

then {µN} is w1-local equilibrium of profile ρ in spatial mean.

Proof By proposition 2.2.1 we know that

µ̄N :=
1

Nd

∑
x∈TdN

τx∗µ
N −→ νρ(·)

in the weak topology. Taking into account that the measures µ̄N and ν̄ρ(·) both have

equidistributed one-site marginals in order to prove that the convergence above holds in

the w1 topology it suffices to show that

lim
N→∞

∫
η(0)dµ̄N =

∫
η(0)dν̄ρ(·) ≡

∫
Td

ρ(u) ∧ ρcdu.
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Considering the function hN : Td −→ R+ given by

hN (u) :=

∫
η([Nu])dµN

we have ∫
η(0)dµ̄N =

∫
Td

hN (u)du

and by the assumption that {µN} is a w1-strong local equilibrium and the profile ρ a.s.

continuous the function hN converges a.s. to∫
η(0)dν∞ρ(u) = ρ(u) ∧ ρc.

Furthermore, since

{hN > M} =
⋃

x∈TdN :EµN [η(x)]>M

[ x
N
,
x+ 1

N

)
we also have that∫

{hN>M}
hN (u)dµN =

1

Nd

∑
x∈TdN :EµN [η(x)]>M

∫
η(x)dµN

and so the uniform integrability condition (2.12) is exactly the uniform integrability

of the sequence {hN}N∈N. Consequently the claim follows by the Vitalli convergence

theorem. �

It is worth noting that in the case that {µN} is the sequence of distributions with

slowly varying parameter of some profile ρ then the uniform integrability condition (2.12)

reduces to the uniform integrability in L1(Td) of the sequence {ρ([N ·]/N)}N∈N is auto-

matically satisfied whenever the {µN} is the sequence {νNρ(·)} of distributions with slowly

varying parameter of some a.s. continuous and bounded profile.

Definition 2.4.3 Let ρ : Td −→ R+ be measurable. A sequence {µN ∈ P)pMd
N} is a

w1-weak local equilibrium of profile ρ if for any Ψ ∈ Cyld1 and any δ > 0 we have that

lim
N→∞

µN
{∣∣∣∣ 1

Nd

∑
x∈TdN

τxΨ−
∫
Td

Ψ̃
(
ρ(u)

)
du

∣∣∣∣ > δ

}
= 0.

As in the case of weak local equilibrium, the notion of w1-weak local equilibrium can

be stated in the following seemingly stronger way.

Proposition 2.4.3 A sequence {µN} is a w1-weak local equilibrium of measurable profile

ρ iff for any G ∈ C(Td), Ψ ∈ Cyld1 and δ > 0,

lim
N→∞

{∣∣∣∣ 1

Nd

∑
x∈TdN

G
( x
N

)
τxΨ−

∫
Td

G(u)Ψ̃
(
ρ(u)

)
du

∣∣∣∣} = 0.
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Proof The idea is similar to the one in the proof of proposition 2.2.4 and we omit the

details. �

Proposition 2.4.4 Let ρ : Td −→ R+ be an a.s. continuous profile such that the se-

quence {hN} := {ρ( [N ·]
N ) ∧ ρc}N∈N is uniformly integrable in L1(Td). If a sequence

{µN} is w1-strong local equilibrium of profile ρ0 and satisfies the uniform integrability

condition (2.12) then {µN} is also a w1-weak local equilibrium of profile ρ.

Proof Setting Ψ
N

:= 1
Nd

∑
x∈TdN

τxΨ, by Chebyshev’s inequality it suffices to prove

that

lim
N→∞

∫ ∣∣∣ΨN −
∫
Td

Ψ̃
(
ρ(u)

)
du
∣∣∣ = 0

for all Ψ ∈ Cyld1. So let Ψ ∈ Cyld1 be given. Since ρ is assumed a.s. continuous and

uniformly integrable by Vitalli’s convergence theorem we have that hN −→ ρ ∧ ρc in

L1(Td). By (2.11) there exists a constant C = C(Ψ) ≥ 0 such that

|Ψ̃| ≤ C(1 + ρ ∧ ρc)

and so if we set hNΨ := Ψ̃
(
ρ([Nu]/N)

)
, u ∈ Td, N ∈ N, then hNΨ is dominated by

C(1 +hN ) which is uniformly integrable. So {hNΨ}N∈N is uniformly integrable and since

obviously hNΨ −→ oΨ(ρ) we have by that hNΨ −→ Ψ̃(ρ) in L1(Td). In particular

1

Nd

∑
x∈TdN

Ψ̃
(
ρ
( x
N

))
=

∫
Td

hNΨ (u)du

N→∞∫
Td

Ψ̃(ρ),

and as in proposition 2.2.3, by (2.2) to complete the proof it suffices to prove that

lim inf
`→∞

lim
N→∞

1

Nd

∑
x∈TdN

∫ ∣∣∣τΨ` − Ψ̃
(
ρ
( x
N

))∣∣∣dµN = 0,

where Ψ` := 1
(2`+1)d

∑
|y|≤` τyΨ.

For this we consider the function hN,` : Td −→ R+ given by

gN,`(u) =
∑
x∈TdN

∫ ∣∣∣τΨ` − Ψ̃
(
ρ
( x
N

))∣∣∣dµN · 1[ xN ,
x+1
N )(u).

Since {µN} is a w1-strong local equilibrium, Ψ` ∈ Cyld1 and hNΨ −→ Ψ̃(ρ) a.s. we have

that

gN,`(u) =

∫ ∣∣∣Ψ` − Ψ̃
(
ρ
( [Nu]

N

))∣∣∣dτ[Nu]∗µ
N −→

∫ ∣∣Ψ` − Ψ̃
(
ρ(u)

)∣∣dν∞ρ(u)

for almost all u ∈ Td. So if we show that {gN,`}N∈N is uniformly integrable for each

fixed ` ∈ Z+ we will obtain that the above convergence is in L1(Td), and in particular

that∫
Td

gN,` =
1

Nd

∑
x∈TdN

∫ ∣∣τxΨ` − Ψ̃
(
ρ(u)

)∣∣dµN N→∞−→
∫
Td

∫ ∣∣Ψ` − Ψ̃
(
ρ(u)

)∣∣dν∞ρ(u)du.
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But

lim inf
`→∞

∫
Td

∫ ∣∣Ψ` − Ψ̃
(
ρ(u)

)∣∣dν∞ρ(u)du

by the law of large numbers, the fact that the function u 7→
∫ ∣∣Ψ` − Ψ̃

(
ρ(u)

)∣∣dν∞ρ(u) is

dominated by the function 2Ψ̃(ρ) ∈ L1(Td) and the dominated convergence theorem.

So in order to complete the proof it remains to show that {gN,`}N∈N is uniformly

integrable. As we will see this follows by the uniform integrability condition (2.12).

First, gN,` is bounded above by∫
|Ψ`|dτ[Nu]∗µ

N + Ψ̃
(
ρ
( [Nu]

N

))
,

the second function in the right hand side is uniformly integrable and the first function

in the right hand side is bounded above by

|Ψ`| ≤ 1

(2`+ 1)d

∑
|y|≤`

τy|Ψ| ≤
C

(2`+ 1)d

∑
|y|≤`

(
1 +

∑
|x|≤`0

η(x+ y)

)

≤ C`

(
1 +

1

(2m` + 1)d

∑
|z|≤m`

η(z)

)

for some constants C` = C`(Ψ) and m` = m`(Ψ) depending on ` ∈ Z+ and Ψ. Conse-

quently, in order to complete the proof it suffices to show that the sequence {fN,`}N∈N
defined by

fN,`(u) =
1

(2m` + 1)d

∑
|y|≤m`

∫
η([Nu] + y)dµN

is uniformly integrable for each fixed ` ∈ Z+.

For simplicity in the notation and since ` is fixed we will write fN = fN,` and m = m`

in the proof of the uniform integrability of {fN,`}N∈N. We also set

SN (M) :=

{
x ∈ TdN

∣∣∣ 1

(2m+ 1)d

∑
|y|≤m

∫
η(x+ y)dµN > M

}

and

EN (M) :=

{
x ∈ TdN

∣∣∣∃ y ∈ Λdm such that

∫
η(x+ y)dµN > M

}
.

Then obviously SN (M) ⊆ EN (M) and∫
{fN>M}

fN (u)du =
1

Nd

∑
x∈SN (M)

1

(2m+ 1)d

∑
|y|≤m

∫
η(x+ y)dµN

≤ 1

Nd

∑
x∈EN (M)

1

(2m+ 1)d

∑
|y|≤m

∫
η(x+ y)dµN .

Then if we set

IN,x(M) :=

{
|z| ≤ m

∣∣∣ ∫ η(x+ z)dµN > M

}

113



we have for every |y| ≤ m that∑
x∈EN (M)

∫
η(x+ y)dµN ≤

∑
x∈TdN

∑
z∈IN,x(M)

∫
η(x+ y)dµN

and if |y| ≤ m is such that
∫
η(x+ y)dµN ≤M , then∑

z∈IN,x(M)

∫
η(x+ y)dµN ≤M · ]IN,x(M) ≤

∑
z∈IN,x(M)

∫
η(x+ z)dµN ,

while if |y| ≤ m is such that
∫
η(x+ y)dµN > M then∑

z∈IN,x(M)

∫
η(x+ y)dµN ≤ (2m+ 1)d

∑
z∈IN,x(M)

∫
η(x+ z)dµN . (2.13)

In any case (2.13) holds for all |y| ≤ `. Now, given ε > 0, using the uniform integrability

condition (2.12) we choose M > 0 and N0 ∈ N such that

N ≥ N0 =⇒ 1

Nd

∑
x∈TdN :

∫
η(x)dµN>M

∫
η(x)dµN <

ε

(2m+ 1)2d

and then∫
Td

fN1{fN>M} ≤ 1

Nd(2m+ 1)d

∑
|y|≤m

∑
x∈EN (M)

∫
η(x+ y)dµN

≤ 1

Nd(2m+ 1)d

∑
|y|≤m

∑
x∈TdN

∑
z∈IN,x(M)

∫
η(x+ y)dµN

≤ 1

Nd

∑
|y|≤m

∑
x∈TdN

∑
z∈IN,x(M)

∫
η(x+ z)dµN

=
(2m+ 1)d

Nd

∑
x∈TdN

∑
z∈IN,x(M)

∫
η(x+ z)dµN

=
(2m+ 1)d

Nd

∑
|z|≤m

∑
x∈TdN :

∫
η(x+y)dµN>m

∫
η(x+ y)dµN

=
(2m+ 1)d

Nd

∑
|z|≤m

∑
x∈TdN :

∫
η(x)dµN>m

∫
η(x)dµN

=
(2m+ 1)2d

Nd

∑
x∈TdN :

∫
η(x)dµN>m

∫
η(x)dµN < ε,

which proves the uniform integrability of {fN,`}N∈N and completes the proof. �

Corollary 2.4.1 Let ρ : Td −→ R+ be an a.s. continuous profile such that the se-

quence {ρ([N ·]/N) ∧ ρc}N∈N is uniformly integrable in L1(Td). Then the sequence of

distributions with slowly varying parameter of profile ρ is a w1-weak local equilibrium.
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2.5 Association to a Profile

In the case that ρc = +∞ the association to a profile is the variant of the notion of weak

local equilibrium that results from the notion of weak local equilibrium by replacing the

arbitrary bounded cylinder function Ψ : Md
∞ −→ R in its definition by only one cylinder

function, the unbounded cylinder function η(0) : Md
∞ −→ R. Of course since the family

{ν∞ρ }ρ∈R+ is parametrized by the density we have that η̃(0)(ρ) = ρ for all ρ ∈ R+. So

the precise definition is as follows.

Definition 2.5.1 Let {µN ∈ P1M
d
N}N∈N be a sequence of distributions. We say that

the sequence {µN}N∈N is associated to the macroscopic profile ρ ∈ L1(Td) if

lim
N→∞

µN
{
|〈G, πN 〉 − 〈G, ρdmTd〉| > ε

}
= 0 (2.14)

for all G ∈ C(Td) and all ε > 0.

In condition (2.14) above the dependence on the grand canonical ensemble {ν∞ρ }ρ∈R+

disappears. In this sense one can then interpret condition (2.14) as saying that the

empirical distributions πN := 1
Nd

∑
x∈TdN

δ x
N

converge in probability to the measure

ρdmTd . Adopting this viewpoint one can then adapt the definition above for any measure

µ ∈M+(Td) even in the cases that ρc < +∞, as follows

Definition 2.5.2 Let {µN ∈ P1M
d
N}N∈N be a sequence of distributions. We say that

the sequence {µN}N∈N is associated to the macroscopic profile µ ∈M+(Td) if

lim
N→∞

µN
{
|〈G, πN 〉 − 〈G,µ〉| > ε

}
= 0 (2.15)

for all G ∈ C(Td) and all ε > 0.

Definition 2.5.3 We say that the sequence {µN ∈ P1M
d
N}N∈N is associated to the

macroscopic profile µ ∈M+(Td) in the Kantorovich-Rubinstein sense if

lim
N→∞

W1(πN∗ µ
N , δµ) = 0

where W1 denotes the Wasserstein metric on P1M+(Td) induced Dudley’s metric dD
on M+(Td).

Proposition 2.5.1 If {µN} is associated to the macroscopic profile µ ∈M+(Td) in the

Kantorovich-Rubinstein sense then it is associated to the profile µ.

Proof Since the only transport plan between a probability measure and a Dirac mass

is the product measure, we have that

W 1(πN∗ µ
N , δµ) =

∫
‖πN − µ‖D dµN

and therefore by Chebyshev’s inequality we have that

µN{‖πN − µ‖D > ε} ≤ 1

ε

∫
‖πN − µ‖D dµN =

1

ε
W 1(πN∗ µ

N , δµ) −→ 0
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for all ε > 0. Then, for all G ∈ Lip(Td) we have that

|〈G, πN 〉 − 〈G,µ〉| ≤ ‖G‖BL‖πN − µ‖D

and therefore we have that

µN
{
|〈G, πN 〉 − 〈G,µ〉| > ε

}
≤ µN

{
‖πN − µ‖D > ε/(‖G‖BL + 1)

}
−→ 0

for all G ∈ Lip(Td) and all ε > 0.

Let now G ∈ C(Td). For each k ∈ N we pick Gk ∈ Lip(Td) so that ‖G−Gk‖u < 1
k .

Then

µN
{
|〈G, πN − µ〉| > ε

}
≤ µN

{
|〈G−Gk, πN − µ〉| > ε/2

}
+ µN

{
|〈Gk, πN − µ〉| > ε/2

}
for all k,N ∈ N and all ε > 0 and therefore

lim sup
N→∞

µN
{
|〈G, πN − µ〉| > ε

}
≤ lim sup

N→∞
µN
{
|〈G−Gk, πN − µ〉| > ε/2

}
for all k ∈ N and all ε > 0.

It remains to prove that whenever {Gk} ⊆ C(Td) is such that limk→∞ ‖Gk‖u = 0,

then

lim
k→∞

lim sup
N→∞

µN
{
|〈Gk, πN − µ〉| > ε

}
= 0 (2.16)

for all ε > 0. So let γ > 0 be arbitrary. First, since {Gk} converges uniformly to zero

there exists a constant C1 > 0 such that ‖Gk‖u ≤ C1 for all k ∈ N and since 1 ∈ Lip(Td)

there exists N1 ∈ N such that

N ≥ N1 =⇒ µN
{
|〈1, πN − µ〉| > ε/2C1

}
< γ.

We set AN := {|〈1, πN − µ〉| ≤ ε/2C1} for all N ≥ N1. Then,

µN
{
|〈Gk, πN − µ〉| > ε

}
≤ µN

{
|〈Gk, πN 〉| >

ε

2

}
+ µN

{
|〈Gk, µ〉| >

ε

2

}
for all k ∈ N, N ≥ N1, and if we pick k1 ∈ N such that ‖Gk‖u < ε/2µ(Td) for all k ∈ k1

then we have for all k ≥ k1, N ≥ N1 that

µN
{
|〈Gk, πN − µ〉| > ε

}
≤ µN

{
|〈Gk, πN 〉| >

ε

2

}
≤ µN

(
AN ∩

{
|〈Gk, πN 〉| >

ε

2

})
+ µN (AcN )

≤ µN
(
AN ∩

{
πN (Td) >

ε

2‖Gk‖u

})
+ γ.

Now, since

sup
N≥N1

sup
η∈AN

πNη (Td) ≤ µ(Td) +
ε

2C1
< +∞,

if we choose k2 ≥ k1 such that

k ≥ k2 =⇒ ε

2‖Gk‖u
> µ(Td) +

ε

2C1
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then we have that

µN
{
|〈Gk, πN − µ〉| > ε

}
≤ γ, ∀ N ≥ N1, ∀ k ≥ k2.

Therefore

k ≥ k2 =⇒ lim sup
N→∞

µN
{
|〈Gk, πN − µ〉| > ε

}
≤ γ,

which since γ > 0 was arbitrary proves (2.16) and completes the proof. �

Examples

1. Let {νNρ }ρ≥0 ≡ {νNρ∧ρc}ρ≥0 be the sequence of normalized invariant distribution of a

ZRP with critical density ρc < +∞. For each ρ ≥ 0 and each u ∈ Td we consider the

configuration ηNρ,u ∈Md
N given by

ηNρ,u = [ρNd]1{[Nu]}.

Then for all ρ ≥ 0, u ∈ Td the sequence {µNρ,u}N∈N defined by

µNρ,u := δηNρ,u ∈ PM
d
N

is associated in the Kantorovich-Rubinstein sense to the macroscopic profile

µρ,u := ρδu ∈M+(Td),

since we have that

W1(πN∗ µ
N
ρ,u, δµρ,u) =

∫
‖πNη − µρ,u‖DdµNρ,u(η) = ‖πNηNρ,u − µρ,u‖D

=
∥∥∥ [ρNd]

Nd
δ [Nu]

N
− ρδu

∥∥∥
D

N→∞−→ 0.

2. Let ρ0 : Td −→ R+ be a bounded and a.s. continuous function. Then the sequence of

{νNρ0(·) ∈ PM
d
N}N∈N of product measures with regularly varying parameter associated

to the profile ρ0 is associated to the macroscopic profile µ := ρ0 ∧ ρcdmTd .

Proof. This is immediate from corollary 2.4.1. Indeed, the sequence {ρ0([N ·]/N)}N∈N
is uniformly bounded and thus uniformly integrable and since the uniform integrability

condition (2.12) reduces in the case of the sequence {νNρ0(·)} to the uniform integrability

of {ρ0([N ·]/N)}N∈N the conditions of corollary 2.4.1 are satisfied. So {νNρ0(·)}N∈N is w1-

weak local equilibrium and applying this to the cylinder function η(0) the claim follows.

3. Let ρ0 ∈ L1
+(Td; [0, ρc]) be an integrable profile and let u ∈ Td be a macroscopic

point of continuity of ρ0. Then the sequence {νNρ0(·),ρ,u}N∈N defined by

νNρ0(·),ρ,u = δ[ρNd]⊗
⊗

x∈TdN\{[Nu]}

νρ0( xN ) =: δ[ρNd]⊗µ
N,u
ρ0(·),ρ ∈ P(Z+×Z

T
d
N\{[Nu]}

+ ) ∼= PMd
N ,
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i.e. νNρ0(·),ρ,u is the probability measure given by

νNρ0(·),ρ,u(η) = δ[ρNd](η[Nu])
∏

x 6=[Nu]

νρ0( xN )(ηx),

is associated to the macroscopic profile

µ := ρ0dmTd + ρδu ∈M+(Td).

Proof. For every function G ∈ C(Td), ε > 0, we have that

νNρ0(·),ρ,u
{∣∣〈G, πN − µ〉∣∣ > ε} ≤ νNρ0(·),ρ,u

{∣∣∣G( [Nu]

N

)η([Nu])

Nd
− ρG(u)

∣∣∣ > ε

2

}
+ νNρ0(·),ρ,u

{∣∣∣ ∑
x6=[Nu]

G
( x
N

)η(x)

Nd
−
∫
Td

Gρ0

∣∣∣ > ε

2

}
≤ 2

ε

∣∣∣G( [Nu]

N

) [ρNd]

Nd
− ρG(u)

∣∣∣
+ νNρ0(·),ρ,u

{∣∣∣ ∑
x6=[Nu]

G
( x
N

)η(x)

Nd
−
∫
Td

Gρ0

∣∣∣ > ε

2

}
Now the first term obviously converges to zero. For the second term, since the event

under consideration does not depend on the number of particles at the site [Nu], we

have that it is equal to

νNρ0(·)

{∣∣∣ ∑
x6=[Nu]

G
( x
N

)η(x)

Nd
−
∫
Td

Gρ0

∣∣∣ > ε

2

}
which is bounded above by

νNρ0(·)

{∣∣∣ ∑
x∈TdN

G
( x
N

)η(x)

Nd
−
∫
Td

Gρ0

∣∣∣ > ε

4

}
+ νNρ0(·)

{∣∣∣G( [Nu]

N

)η([Nu])

Nd

∣∣∣ > ε

4

}
.

Now, the first term in the sum above converges to zero as N → ∞ by the previous

example while by Chebyshev’s inequality the second term is bounded above by

4

εNd

∣∣∣G( [Nu]

N

)∣∣∣ ∫ η([Nu])dνNρ0(·) =
4

εNd

∣∣∣G( [Nu]

N

)∣∣∣ρ0

( [Nu]

N

)
,

which tends to zero since u ∈ Td is a continuity point of ρ0 and G ∈ C(Td).
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2.6 The O(Nd)-Entropy assumption

In practice the initial local equilibrium from which we start the ZRP is required to have

entropy of order O(Nd) with respect to the equilibrium distributions {νρ∗}N∈N for some

ρ∗ ∈ (0, ρc).

Definition 2.6.1 A sequence {µN0 ∈ PMd
N} satisfies the O(Nd)-entropy assumption

C(ρ∗) := lim sup
N→∞

1

Nd
H(µN0 |νNρ∗) < +∞ for some ρ∗ ∈ (0, ρc). (2.17)

Of course if {µN0 } satisfies the O(Nd)-entropy assumption for ρ∗ ∈ (0, ρc) then

sup
N∈N

1

Nd
H(µN0 |νρ∗) < +∞.

Indeed, since the O(Nd)-entropy assumption is satisfied there exists N0 ∈ N such that

N ≥ N0 =⇒ 1

Nd
H(µN0 |νNρ∗) ≤ C(ρ∗) + 1

and then obviously

sup
N∈N

1

Nd
H(µN0 |νNρ∗) ≤ [C(ρ∗) + 1] ∨ max

N=1,...,N0−1

1

Nd
H(µN0 |νNρ∗) < +∞.

By an application of the relative entropy inequality it easy to see that if the relative

entropy assumption is satisfied for some ρ∗ ∈ (0, ρc) then it is satisfied for all ρ ∈ (0, ρc).

Proposition 2.6.1 If the sequence {µN0 ∈ PMd
N} satisfies (2.17) for some ρ∗ ∈ (0, ρc)

then (2.17) is satisfied for all ρ ∈ (0, ρ∗).

Proof Indeed, for all ρ∗, ρ ∈ (0, ρc) and all θ > 0 we have by the entropy inequality that

H(µN |νNρ ) =

∫
log

dµN

dνNρ
dµN = H(µN |νNρ∗) +

∫
log

dνNρ∗
dνNρ

dµN

≤ H(µN |νNρ∗) +
1

θ

{
log

∫ (dνNρ∗
dνNρ

)θ
dνNρ∗ +H(µN |νNρ∗)

}
=

θ + 1

θ
H(µN |νNρ∗) +

1

θ
log

∫ (dνNρ∗
dνNρ

)θ
dνNρ∗

and therefore if (2.17) holds for ρ∗ and we set K∗ := supN∈N
1
Nd
H(µN |νNρ∗) < +∞ then

sup
N∈N

1

Nd
H(µN |νNρ ) ≤ θ + 1

θ
K∗ +

1

θ
sup
N∈N

log

(∫ (dνNρ∗
dνNρ

)θ
dνNρ∗

) 1

Nd

.

So in order to prove that (2.17) holds for ρ it suffices to prove that

sup
N∈N

log

(∫ (dνNρ∗
dνNρ

)θ
dνNρ∗

) 1

Nd

< +∞
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for some appropriately chosen constant θ > 0. But for all η ∈Md
N , N ∈ N we have that

dνNρ∗
dνNρ

(η) =

(
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)

)Nd(
Φ(ρ∗)

Φ(ρ)

)|η|
and therefore(∫ (dνNρ∗

dνNρ

)θ
dνNρ∗

) 1

Nd

=

(
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)

)θ(∫ (
Φ(ρ∗)

Φ(ρ)

)θ|η|
dνNρ∗(η)

) 1

Nd

=

(
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)

)θ ∫ (
Φ(ρ∗)

Φ(ρ)

)θk
dν1
ρ∗(k)

=

(
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)

)θ ∫
ekθ log

Φ(ρ∗)
Φ(ρ) dν1

ρ∗(k)

It follows that

1

θ
sup
N∈N

log

(∫ (dνNρ∗
dνNρ

)θ
dνNρ∗

) 1

Nd

= log
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)
+

1

θ
Λρ∗

(
θ log

Φ(ρ∗)

Φ(ρ)

)
where Λρ∗ is logarithmic m.g.f. of the one site ZR distribution ν1

ρ∗ . Now obviously the

first term on the sum in the right hand side of the equality above is finite for all values

of ρ ∈ Ic while the second term is finite iff

θ log
Φ(ρ∗)

Φ(ρ)
∈ DΛρ∗ , (2.18)

and as we know

DΛρ∗
=

{
(−∞, bρ∗) if Z(ϕc) = +∞
(−∞, bρ∗ ] if Z(ϕc) < +∞

, bρ∗ := log
ϕc

Φ(ρ∗)
.

Obviously bρ∗ > 0 since we assume ρ∗ < ρc. So, since Φ is increasing, if ρ ∈ [ρ∗, ρc] ∩R
we have that log[Φ(ρ∗)/Φ(ρ)] ≤ 0 and so in this case we have that (2.18) holds for all

θ > 0, while on the other hand if ρ ∈ (0, ρ∗) we have that log[Φ(ρ∗)/Φ(ρ)] > 0 and in

order for (2.18) to hold it suffices to choose

0 < θ <
log ϕc

Φ(ρ∗)

log Φ(ρ∗)
Φ(ρ)

.

Note that according to what we have proved, we have for all ρ∗, ρ ∈ (0, ρc) that

Kρ ≤ log
Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)
+ inf

θ

{
θ + 1

θ
Kρ∗ +

1

θ
Λρ∗

(
θ log

Φ(ρ∗)

Φ(ρ)

)}
= Kρ∗ + log

Z ◦ Φ(ρ)

Z ◦ Φ(ρ∗)
+ inf

θ

{
1

θ

[
Kρ∗ + Λρ∗

(
θ log

Φ(ρ∗)

Φ(ρ)

)]}
where the infimum is taken over all θ > 0 satisfying (2.18). �

By similar computations one can show that any local equilibrium of continuous profile

ρ0T
d −→ [0, ρc) in the entropy sense satisfies the O(Nd)-entropy assumption.
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Proposition 2.6.2 Let ρ0 : Td −→ [0, ρc) be a continuous profile. Any sequence

{µN0 }N∈N of initial distributions that is a local equilibrium in the entropy sense of profile

ρ0 satisfies the O(Nd)-entropy assumption.

Proof For convenience we pick a ∈ (ρc − ε, ρc) where ρc − ε is an upper bound on the

initial profile ρ0. Then by the relative entropy inequality we have that

H(µN0 |νNa ) =

∫
log

dµN0
dνNa

dµN0 = H(µN0 |νNρ0(·)) +

∫
log

dνNρ0(·)

dνNa
dµN0

≤
(

1 +
1

γ

)
H(µN0 |νNρ0(·)) +

1

γ
log

∫ (dνNρ0(·)

dνNa

)γ
dνNρ0(·) (2.19)

for every γ > 0 and the first term (1 + 1
γ )H(µN0 |νNρ0(·)) in the right hand side of the

inequality above is of order o(Nd) by assumption. For the second term, we compute

first the Radon-Nikodym derivative
dνNρ0(·)
νNa

. For all η ∈Md
N ,

dνNρ0(·)

νNa
(η) =

∏
x∈TdN

Z(Φ(a))Φ(ρ0(x/N))ηx

Z(Φ(ρ0(x/N)))Φ(a)ηx
=
∏
x∈TdN

Φa(ρ0(x/N))ηx

Za(ρ0(x/N))

and thus since νNρ0(·) is a product measure we have that∫ (dνNρ0(·)

dνNa

)γ
dνNρ0(·) =

∏
x∈TdN

∫
Φa(ρ0(x/N))γηx

Za(ρ0(x/N))γ
dν1
ρ0(x/N)(ηx)

=
∏
x∈TdN

1

Za(ρ0(x/N))γ

∫
elog γkΦa(ρ0(x/N))dν1

ρ0(x/N)(k).

Therefore

1

Nd
log

∫ (dνNρ0(·)

dνNa

)γ
dνNρ0(·) =

γ

Nd

∑
x∈TdN

log
1

Za(ρ0(x/N))

+
1

Nd

∑
x∈TdN

Λρ0(x/N)

(
γ log Φa(ρ0(x/N))

)
where for each ρ ∈ [0, ρc), Λρ : R −→ (−∞,+∞] is the logarithmic moment generating

function of ν1
ρ ∈ PZ+:

Λρ(r) := log

∫
erkdν1

ρ(k) = log
Z(erΦ(ρ))

Z(Φ(ρ))
. (2.20)

We recall that for each ρ ∈ (0, ρc) the logarithmic moment generating function Λρ has

proper domain DΛρ that satisfies (−∞, bρ) ⊆ DΛρ ⊆ (−∞, bρ] with

bρ := log
ϕc

Φ(ρ)
∈ (0,∞).

Now, since we have assumed that a ∈ (ρc − ε, ρc) and supu∈Td ρ0(u) < ρc − ε and Φ is

increasing, we have that Φa(ρ0(x/N)) = Φ(ρ0(x/N))
Φ(a) ≤ 1 for all x ∈ TdN . Consequently,
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we have that γ log Φa(ρ0(x/N)) ∈ (−∞, 0] ⊆ DΛρ0(x/N)
for all γ > 0. So for any fixed

γ > 0, since the finite real valued functions

Td 3 u 7→ Z
(
Φ
(
ρ0(u)

))
, Td 3 u 7→ Λρ0(u)

(
γ log Φa

(
ρ0(u)

))
are continuous, taking lim sup as N →∞ we get

lim sup
N→∞

1

Nd
H(µN0 |νNa ) ≤

∫
Td

log
1

Za(ρ0(u))
du+

1

γ

∫
Td

Λρ0(u)

(
γ log Φa(ρ0(u))

)
du <∞

as required. �

As the following examples show the sequences of product measures with slowly vary-

ing parameter associated to a profile satisfy the O(Nd)-entropy assumption.

Proposition 2.6.3 Let {νNρ0(·)}N∈N be the sequence of product measures with slowly

varying parameter associated to some bounded and a.s. continuous profile ρ0 ∈ B(Td).

Then

lim
N→+∞

1

Nd
H(νNρ0(·)|ν

N
ρ∗) = HΛρ∗

(ρ0 ∧ ρc|mTd) < +∞ (2.21)

for all ρ∗ ∈ (0, ρc) and so the sequence {νNρ0(·)} satisfies the O(Nd)-entropy assumption.

Proof Since the measures are product, by proposition A.3.6 we have for all N ∈ N that

H(νNρ0(·)|ν
N
ρ∗) =

∑
x∈TdN

H(νρ0(x/N)∧ρc |νρ∗).

Now for all ρ ∈ [0, ρc] ∩R we obviously have that

H(νρ|νρ∗) =

∫
log

νρ(k)

νρ∗(k)
dνρ(k) =

∫
log

Z(Φρ∗)Φ
k
ρ

Z(Φρ)Φkρ∗
dνρ(k)

= log
Z(Φρ∗)

Z(Φρ)
+ ρ log

Φρ
Φρ∗

= Λ∗νρ∗ (ρ)

and therefore

1

Nd
H(νNρ0(·)|ν

N
ρ∗) =

1

Nd

∑
x∈TdN

Λ∗ρ∗

(
ρ0

( x
N

)
∧ ρc

)
=

∫
Td

Λ∗ρ∗
(
ρ0

(
[Nu]/N

)
∧ ρc

)
du.

As we know by proposition 1.2.12 the function Λ∗νρ∗ is always finite and smooth on all

of R+, and therefore since we assume the profile ρ0 to be bounded and almost surely

continuous, the required limit in (2.21) follows by the bounded convergence theorem.�

According to he following proposition the O(Nd)-entropy assumption is satisfied even

by initial distributions that can have a condensate at some macroscopic point u ∈ Td.
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Proposition 2.6.4 Let {νNx,ρ,ρ0(·)}N∈N be the sequence of product measures with slowly

varying parameter associated to some bounded and a.s. continuous profile ρ0 ∈ B(Td)

and a Dirac mass ρ at x ∈ Td, i.e.

νNρ0,x,ρ = δ[ρNd] ⊗
⊗

y∈TdN\{[Nx]}

νρ0( yN ) =: δ[ρNd] ⊗ νN,xρ0,ρ ∈ P(Z+ × Z
T
d
N\{[Nx]}

+ ) ∼= PMd
N ,

and let µ0 denote the measure

µ0 = ρδx + (ρ0 ∧ ρc)dmTd .

Then

lim
N→+∞

1

Nd
H(νNρ0,x,ρ|ν

N
ρ∗) = HΛρ∗ (µ0|mTd) (2.22)

for all ρ∗ ∈ (0, ρc). In particular, whenever φc < +∞ we have that HΛρ∗
(µ0|mTd) < +∞

and therefore the sequence {νNρ0,x,ρ} has entropy of order O(Nd).

Proof For all N ∈ N we have that

H(νNρ0,x,ρ|ν
N
ρ∗) = H(δ[ρNd]|νρ∗) +H(νN,xρ0,ρ|ν

T
d
N\{[Nx]}

ρ∗ ). (2.23)

Now with the usual convention 0 log 0 = 0 in the definition of relative entropy we obvi-

ously have for any K ∈ Z+ that

H(δK |νρ∗) =

∫
δK(k)

νρ∗(k)
log

δK(k)

νρ∗(k)
dνρ∗(k) = − log νρ∗(K)

= − log

(
1

Z
(
Φ(ρ∗)

) Φ(ρ∗)
K

g!(K)

)
= logZ

(
Φ(ρ∗)

)
+ log

g!(K)

Φ(ρ∗)K

= logZ
(
Φ(ρ∗)

)
+K log

K
√
g!(K)

Φ(ρ∗)
.

for all ρ ∈ [0, ρc] ∩R and therefore

1

Nd
H(δ[ρNd]|νρ∗) =

1

Nd
logZ

(
Φ(ρ∗)

)
+

[ρNd]

Nd
log

[ρNd]
√
g!([ρNd])

Φ(ρ∗)

N→∞−→ ρ log
φc

Φ(ρ∗)
. (2.24)

Furthermore, we obviously have that

H(νN,xρ0,ρ|ν
T
d
N\{[Nx]}

ρ∗ ) = H(νNρ0(·)|ν
N
ρ∗)−H(νρ0([Nx]/N)|νρ∗)

= H(νNρ0(·)|ν
N
ρ∗)− Λ∗νρ∗

(
ρ0

( [Nx]

N

)
∧ ρc

)
.

Since the profile ρ0 : Td −→ R+ is assumed bounded and Λ∗νρ∗ is continuous and finite

on R+ we obviously have that

lim
N→∞

1

Nd
Λ∗νρ∗

(
ρ0

( [Nx]

N

)
∧ ρc

)
= 0
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and therefore by (2.24), (2.23) and the previous proposition it follows that

lim
N→+∞

1

Nd
H(νNρ0,x,ρ|ν

N
ρ∗) =

∫
Td

Λ∗νρ∗

(
ρ0(u) ∧ ρc

)
du+ ρ log

φc
Φ(ρ∗)

= HΛνρ∗
(µ0|mTd),

and obviously HΛνρ∗
(µ0|mTd) < +∞ whenever φc < +∞. �

We close this section with another interesting example of distributions that satisfy

the O(Nd)-entropy assumption. For simplicity we consider the 1-dimensional case d = 1

and the subsequence of the squares of the scaling parameter N .

Proposition 2.6.5 For each N we set

AN := {kN |k = 0, . . . , N − 1} ⊆ TN2 .

Let ρ : T −→ R(DZ) ⊆ [0, ρc] be a continuous profile and consider the distributions

νN2 :=

( ⊗
x∈AN

δ[aN ]

)
⊗
( ⊗
x∈TN2\AN

ν1
ρ(x/N2)

)
∈ PMN2 , N ∈ N.

Then for any ρ∗ ∈ (0, ρc),

lim
N→∞

1

N2
H(νN2 |νN

2

ρ∗ ) = HΛ∗ρ∗
(ρ|mTd) + a log

ϕc
Φ(ρ∗)

and in particular νN2 ∈ PMN2 satisfies the O(Nd)-entropy assumption if ϕc < +∞.

Proof Since the measures are product measures,

1

N2
H(νN2 |νN

2

ρ∗ ) =
1

N2

∑
x∈AN

H(δ[aN ]|ν1
ρ∗) +

1

N2

∑
x∈TN2\AN

H(ν1
ρ(x/N2)|ν

1
ρ∗)

=
1

N
H(δ[aN ]|ν1

ρ∗) +
1

N2

∑
x∈TN2\AN

H(ν1
ρ(x/N2)|ν

1
ρ∗)

From the previous example we have for the first term that

lim
N→∞

1

N
H(δ[aN ]|ν1

ρ∗) = a log
ϕc

Φ(ρ∗)
.

For the second term, as in the previous example we write

1

N2

∑
x∈TN2\AN

H(ν1
ρ(x/N2)|ν

1
ρ∗) =

1

N2

∑
x∈TN2

H(ν1
ρ(x/N2)|ν

1
ρ∗)−

1

N2

∑
x∈AN

H(ν1
ρ(x/N2)|ν

1
ρ∗).

As we have also seen in the previous examples, the first term in the right hand side

above converges to ∫
T

Λ∗ρ∗
(
ρ(u)

)
du

as N →∞ while for the second term we have

1

N2

∑
x∈AN

H(ν1
ρ(x/N2)|ν

1
ρ∗) =

1

N2

N−1∑
k=0

Λρ∗

(
ρ
( k
N

))
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which converges to 0 as N →∞ since

lim
N→∞

1

N

N−1∑
k=0

Λρ∗

(
ρ
( k
N

))
=

∫
T

Λ∗ρ∗
(
ρ(u)

)
du.

This completes the proof. �

The term a log ϕc
Φ(ρ∗)

implies that the entropy density “sees” the mass a of the singular

part of the measures νN2 , N ∈ N. On the other hand the measures νN2 are associated

to the absolutely continuous profile µ := (ρ+ a)dmTd . Indeed, let

p : MN2 −→ ZAN+ , q : MN2 −→ Z
TN2\AN
+

denote the natural projections. Then, given δ > 0, G ∈ C(Td) and c ∈ R,{
η ∈MN2

∣∣∣ ∣∣∣∣ 1

N2

∑
x∈AN

G
( x
N

)
η(x)− c

∣∣∣∣ > δ

}
= p−1

{
ζ ∈ ZAN+

∣∣∣ ∣∣∣∣ 1

N2

∑
x∈AN

G
( x

N2

)
ζ(x)− c

∣∣∣∣ > δ

}
and likewise{

η ∈MN2

∣∣∣ ∣∣∣∣ 1

N2

∑
x∈AN

G
( x
N

)
η(x)− c

∣∣∣∣ > δ

}
= q−1

{
ξ ∈ ZTN2\AN

+

∣∣∣ ∣∣∣∣ 1

N2

∑
x/∈AN

G
( x

N2

)
ξ(x)− c

∣∣∣∣ > δ

}
.

Therefore we can write

νN2

{∣∣〈G, πN2

− µ〉
∣∣ > δ

}
≤ νN2

{∣∣∣∣ 1

N2

∑
x∈AN

G
( x

N2

)
η(x)− a

∫
T

G(u)du

∣∣∣∣ > δ

2

}
+νN2

{∣∣∣∣ 1

N2

∑
x/∈AN

G
( x

N2

)
η(x)−

∫
T

G(u)ρ(u)du

∣∣∣∣ > δ

2

}

= δ⊗AN[aN ]

{∣∣∣∣ 1

N2

∑
x∈AN

G
( x

N2

)
ζ(x)− a

∫
T

G(u)du

∣∣∣∣ > δ

2

}
+q∗νN2

{∣∣∣∣ ∑
x/∈AN

G
( x

N2

)ξ(x)

N2
−
∫
T

G(u)ρ(u)du

∣∣∣∣ > δ

2

}
.

By Chebyshev’s inequality the first term is bounded above by

2

δ

∣∣∣∣ 1

N2

∑
x∈AN

G
( x

N2

)
[aN ]− a

∫
T

G(u)du

∣∣∣∣ =
2

δ

∣∣∣∣ 1

N

N−1∑
k=0

G
( k
N

) [aN ]

N
− a

∫
T

G(u)du

∣∣∣∣
which obviously converges to zero as N → ∞. Since the event in the second term does

not depend on the coordinates in AN , we can write the second term as

νN
2

ρ(·)

{∣∣∣∣ ∑
x/∈AN

G
( x

N2

)η(x)

N2
−
∫
T

G(u)ρ(u)du

∣∣∣∣ > δ

2

}
,
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which is bounded above by

νN
2

ρ(·)

{∣∣∣∣ ∑
x∈TN2

G
( x

N2

)η(x)

N2
−
∫
T

G(u)ρ(u)du

∣∣∣∣ > δ

4

}
+ νN

2

ρ(·)

{∣∣∣∣ ∑
x∈AN

G
( x

N2

)η(x)

N2

∣∣∣∣ > δ

4

}
.

Now the first term above obviously tends to zero since {νNρ(·)} is a w1-weak local equi-

librium and thus associated to the measures ρdmTd , while the second term is bounded

above according to Chebyshev’s inequality by

4

δN2

∑
x∈AN

∣∣∣G( x

N2

)∣∣∣ ∫ η(x)dνN
2

ρ(·) =
4

δN2

N−1∑
k=0

∣∣∣G( k
N

)∣∣∣ρ( k
N

)
which converges to zero 1

N

∑N−1
k=0

∣∣G( kN )∣∣ρ( kN ) −→ ∫
Td
Gρ < +∞ as N → ∞ due to

the fact that G and ρ are continuous functions.

These considerations show that this family of initial distributions is in some sense

pathological since it is perceived different by the entropy and different by the notion of

association to a profile.
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Chapter 3

The Relative Entropy Method

In this chapter we apply the Relative Entropy method of H.T. Yau to prove the hydrody-

namic behavior of condensing ZRPs starting from a weak local equilibrium of sub-critical

profile.

Theorem 3.0.1 (Hydrodynamic Limit) Suppose that the local jump rate function g of

the ZRP is bounded and let Φ be the mean jump rate function associated to g. Then any

initial entropy local equilibrium µN0 ∈ PMd
N , N ∈ N, of profile ρ0 ∈ C2+θ

(
Td; (0, ρc)

)
for some θ > 0 is conserved in the diffusive timescale along the unique solution ρ :

R+ ×Td −→ (0, ρc) of the initial value problem{
∂tρ = ∆ΣΦ(ρ) in (0,∞)×Td

ρ(0, ·) = ρ0.
(3.1)

In other words, if H(µN0 |νNρ0(·)) = o(Nd) then H(µNt |νNρt(·)) = o(Nd) for all t > 0,

where µNt := µN0 StN2 , ρt(·) ≡ ρ(t, ·), and in particular

lim
N→∞

µN

{∣∣∣ 1

Nd

∑
x∈TdN

τxΨ−
∫
Td

Ψ̃(ρ(u))du
∣∣∣ > δ

}
= 0

for all Ψ ∈ Bcyl(M
d
∞), all G ∈ C(Td) and all t, ε > 0.

Remark 3.0.1 As will be seen in the proof, one can assume the initial profile ρ0 to be

only of class C(Td; [0, ρc)), provided that the unique classical solution ρ of the hydro-

dynamic equation (3.1) with initial condition ρ(0, ·) = ρ0 is such that the functions

(a) t 7→ log Φ
(
mt

)
and (b) t 7→ ‖∆ΣΦ(ρt)‖∞ + ‖D2[Φ(ρt)]‖θ

Φ(mt)
(3.2)

belong in L2
loc(R+), where mt := minu∈Td ρt(u), ‖D2f‖θ := max|α|=2 |∂αf |θ, θ ∈ (0, 1],

and |f |θ is the θ-Hölder semi-norm of the function f . By the properties of the solutions of

the hydrodynamic equation (3.1) given in proposition 3.2.4 of the next section, the func-

tions in (3.2) belong in L∞loc(R+) whenever the initial profile is of class C2+θ(Td; (0, ρc)).
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3.1 The One Block Estimate

For each configuration η ∈Md
N we denote by η` the spatial mean of η over microscopic

boxes of radius ` given by

η`(x) =
1

(2`+ 1)d

∑
y∈x+Λd`

η(y) =
1

(2`+ 1)d

∑
y∈TdN :|y−x|≤`

η(y)

and obviously η`(x) = τx[η`(0)]. Our goal in this section is to investigate conditions

on the jump rate g : Z+ −→ R+ of a nearest neighbor ZRP and its sequence of initial

distributions {µN0 ∈ PMd
N} that allows the replacement in probability and in duality

with respect to functions in L1(0, T ;C(Td)) of the empirical jump rate process

σNt :=
1

Nd

∑
x∈TdN

g
(
ηt(x)

)
, t ∈ I := [0, T ] (3.3)

by the process

σN,`,Φt :=
1

Nd

∑
x∈TdN

Φ
(
η`t (x)

)
δ x
N
, t ∈ I, (3.4)

over large microscopic boxes, i.e. as `→∞, in the sense that

lim
`→∞

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈fs, σNs − σN,`,Φs 〉ds
∣∣∣∣ > ε

}
= 0 (3.5)

for all f ∈ L1(I;C(Td)) and all ε > 0, where here, and in all of this section, PN ∈
PD(I;Md

N ) denotes the diffusively rescaled distribution of the nearest neighbor ZRP

with jump rate g, starting from µN0 ∈ PMd
N and the mean jump rate function Φ will

be always considered extended according to (1.71), as suggested by the equivalence of

ensembles.

Definition 3.1.1 Let g be a local jump rate function and let C ⊆ L1(I;C(Td)). We

say that g satisfies the time dependent one block estimate in C with respect to a sequence

of initial distributions {µN0 } if the limit (3.5) holds for all f ∈ C and all ε > 0.

The main result proved in this section is the validity of the One-Block estimate for

all bounded local jump rate functions g with respect to any sequence {µN0 } of initial

distributions satisfying the O(Nd)-entropy assumption:

lim sup
N→∞

H(µN0 |νNa ) =: C(a) < +∞,

for some, and thus for all, a ∈ (0, ρc).

Proposition 3.1.1 Let g be a bounded local jump rate function. Then the One-Block

estimate in L1(0, T ;C(Td)) is satisfied for any sequence {µN0 ∈ P1M
d
N}N∈N of initial

distributions with finite first order moments that satisfies the O(Nd)-entropy assumption.
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The proof of this result is the content of this section. The One-Block estimate

had been proved so far only for non-strictly condensing ZRPs, i.e. ZRPs satisfying the

assumption

lim
ϕ↑ϕc

Z(ϕ) = +∞.

Here we manage to remove this assumption by using the results on the equivalence of

ensembles proved originally in [19] and reviewed here in section 1.4.

We begin by proving that in the case of bounded local jump rates g the time depen-

dent one block estimate in L1(I;C(Td)) is equivalent to the time dependent one block

estimate in any subset C ⊆ L1(I;C(Td)) that is dense in L1(I;C(Td)).

Proposition 3.1.2 Let g be a bounded local jump rate function, let {µN0 } be a sequence

of initial distributions and let C be dense in L1(I;C(Td)). If g satisfies the time de-

pendent one block estimate in C with respect to {µN0 }, then g also satisfies the time

dependent one block estimate in L1(I;C(Td)) with respect to {µN0 }.

Proof Indeed, let f ∈ L1(I;C(Td)) and ε > 0. Since C is dense in L1(I;C(Td)) there

exists h ∈ C such that

‖f − h‖L1(I;C(Td)) =

∫ T

0

‖ft − ht‖udt <
ε

2(‖g‖u + φc)
.

Then since ‖σN‖TV ≤ ‖g‖u and ‖σN,`,Φ‖TV ≤ φc we have that∣∣∣∣ ∫ T

0

〈fs, σNs − σN,`,Φs 〉ds
∣∣∣∣ < ∣∣∣∣ ∫ T

0

〈hs, σNs − σN,`,Φs 〉ds
∣∣∣∣+

ε

2

and therefore

PN
{∣∣∣∣ ∫ T

0

〈fs, σNs − σN,`,Φs 〉ds
∣∣∣∣ > ε

}
≤ PN

{∣∣∣∣ ∫ T

0

〈hs, σNs − σN,`,Φs 〉ds
∣∣∣∣ > ε

2

}
.

Since g satisfies the time dependent one block estimate in C and h ∈ C it follows by this

inequality that

lim
`→∞

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈fs, σNs − σN,`,Φs 〉ds
∣∣∣∣ > ε

}
= 0.

Since f ∈ L1(I;C(Td)) and ε > 0 were arbitrary this proves that g satisfies the time

dependent one block estimate in L1(I;C(Td)).

3.1.1 Replacement by Spatial Averages

We prove in this section that we can replace the empirical diffusion-rate process σN by

its `-spatial mean process

σN,`t :=
1

Nd

∑
x∈TdN

(g ◦ ηt)`(x)δ x
N

(3.6)
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where for each η ∈Md
N we denote by (g◦η)` the `-spatial mean of the function g◦η ∈ RT

d
N

+

given by

(g ◦ η)`(x) =
1

(2`+ 1)d

∑
y∈x+Λd`

g(ηy),

in the sense that

lim
`→∞

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈ft, σNt − σ
N,`
t 〉dt

∣∣∣∣ > ε

}
= 0 (3.7)

for all f ∈ L1(I;C(Td)) and all ε > 0.

For all f ∈ C(Td) we have that

〈f, σN − σN,`〉 =
1

Nd

∑
x∈TdN

f
( x
N

)(
g
(
η(x)

)
− 1

(2`+ 1)d

∑
y∈x+Λd`

g
(
η(y)

))

=
1

Nd

∑
x∈TdN

(
f
( x
N

)
− 1

(2`+ 1)d

∑
y∈x+Λd`

f
( y
N

))
g
(
η(x)

)
=

1

Nd

∑
x∈TdN

1

(2`+ 1)d

∑
y∈x+Λd`

[
f
( x
N

)
− f

( y
N

)]
g
(
η(x)

)
and therefore if the jump rate g is Lipschitz then for all f ∈ L1(I;C(Td)) and measurable

subsets E ⊆ I we have that∣∣∣∣ ∫
E

〈ft, σNt − σ
N,`
t 〉dt

∣∣∣∣ ≤ ‖g′‖u
(2N`+N)d

∑
x∈TdN
y∈x+Λd`

∫
E

∣∣∣ft( x
N

)
− ft

( y
N

)∣∣∣ηt(x)dt. (3.8)

Lemma 3.1.1 For all f ∈ L1(I;C(Td)) and all ε > 0 there exists a measurable and

a.s. strictly positive function δ̄ = δ̄(ε, f) ∈ L∞+ (I) such that implication

x, y ∈ Td, |x− y| < δ̄t =⇒ |ft(x)− ft(y)| < ε (3.9)

holds for all t ∈ I.

Proof We consider the function δ = δ(ε) : C(Td) −→ [0, 1] given by δf := supAf where

Af :=
{
δ ∈ [0, 1]

∣∣x, y ∈ TdN , |x− y| < δ =⇒ |f(x)− f(y)| < ε
}

for all f ∈ C(Td). We note that Af is obviously an interval with [0, δf ) ⊆ At ⊆ [0, δf ].

In fact Af = [0, δf ], since if x, y ∈ TdN are such that |x−y| < δf , there exists δ0 > 0 such

that |x − y| < δ0 < δf and then δ0 ∈ Af and therefore |f(x) − f(y)| < ε, which proves

that δf ∈ Af . Furthermore, every f ∈ C(Td) is uniformly continuous which shows that

δf > 0 for all f ∈ C(Td) and since δf ∈ Af we have that

x, y ∈ Td, |x− y| < δf =⇒ |f(x)− f(y)| < ε

for all f ∈ C(Td).
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Let now f ∈ L1(I;C(Td)). We consider a measurable representative of f which

we continue to denote by f : I −→ C(Td) and we define the function δ̄ ≡ δ̄(ε, f) by

δ̄ = δ ◦ f . By the previous paragraph it is obvious that the function δ̄ satisfies the

required properties and it remains to prove that it is measurable.

Since f is strongly measurable, for the measurability of δ̄ : I −→ [0, 1] it suffices to

prove that the function δ : C(Td) −→ [0, 1] is lower semicontinuous with respect to the

uniform norm on C(Td). So let {fn} ⊆ C(Td) be a sequence such that ‖fn− f‖u −→ 0

for some f ∈ C(Td) and set

δ := lim inf
n→∞

δfn .

Let θ ∈ (1,∞) be arbitrary and let δ > θδ. There exists then a subsequence of {fkn} such

that θδfkn < δ for all n ∈ N and therefore for each n ∈ N we can choose xn, yn ∈ TdN
such that

|xn − yn| <
δ

θ
and |fkn(xn)− fkn(yn)| ≥ ε.

Then since Td is compact there exists x, y ∈ Td and subsequences {xmn} and {ymn}
such that xmn −→ x and ymn −→ y as n → ∞ and since fn −→ f uniformly it

follows that limn→∞ fkmn (xmn) = f(x) and limn→∞ fkmn (ymn) = f(y). Then for those

x, y ∈ Td we have that

|x− y| ≤ δ

θ
< δ and |f(x)− f(y)| ≥ ε,

which proves that δ > δf . Since δ > θδ was arbitrary, this proves that δf ≤ θδ, and

letting θ ∈ (1,∞) tend to 1 it finally follows that

δf ≤ δ = lim inf
n→∞

fn.

Thus the lower semicontinuity of δ is proved and the proof is complete. �

Lemma 3.1.2 Let {µN0 ∈ PMd
N} be a sequence of initial distributions associated to a

macroscopic profile µ0 ∈M+(Td). Then

lim
A→+∞

lim sup
N↑∞

µN0
{
〈πN , 1〉 > A

}
= 0. (3.10)

If in addition the distributions µN0 have finite first order moments, i.e. µN0 ∈ P1M
d
N for

all N ∈ N, then

lim
A→+∞

sup
N∈N

µN0
{
〈πN , 1〉 > A

}
= 0. (3.11)

Proof Since {µN} is associated to µ0 we have that

lim
N↑+∞

µN
{
|〈πN , 1〉 − µ0(Td)| > δ} = 0

for all δ > 0. In particular, given ε > 0, there exists N0 ∈ N such that

N ≥ N0 =⇒ µN
{
|〈πN , 1〉 − µ0(Td)| > 1} ≤ ε.
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Then for all N ≥ N0 and all A > µ0(Td) + 1 we have that

µN0
{
〈πN , 1〉 > A

}
≤ µN0

{
〈πN , 1〉 > µ0(Td) + 1

}
≤ µN0

{
|〈πN , 1〉 − µ0(Td)| > 1} ≤ ε,

which proves the (3.10). Next, if in addition the measures µN0 have finite first order

moments, then for all N = 1, . . . , N0 − 1 and all A > 0 we have that

µN0
{
〈πN , 1〉 > A

}
≤ 1

A

∫
〈πN , 1〉dµN0 =

1

ANd

∫
|η|dµN0 (η)

A↑∞−→ 0.

Therefore for all N = 1, . . . , N0−1 there exists AN > 0 such that µN0
{
〈πN , 1〉 > AN

}
≤ ε

and if we set A0 := A1 ∨ . . . ∨AN0−1 ∨ (µ0(Td) + 1) we obviously have that

A > A0 =⇒ sup
N∈N

µN0
{
〈πN , 1〉 > A

}
≤ ε

which proves (3.11) and completes the proof. �

Using these lemmas and (3.8) we can prove the following.

Proposition 3.1.3 Let g be a Lipschitz jump rate and let {µN0 ∈ PMd
N} be a sequence

of initial distributions associated to some macroscopic profile µ0 ∈ M+(Td). Then for

all f ∈ L1(I;C(Td)) and all ε > 0 it holds that

lim
`→∞

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈ft, σNt − σ
N,`
t 〉dt

∣∣∣∣ > ε

}
= 0.

Proof Indeed, let f ∈ L1(I;C(Td)) and ε > 0 be arbitrary. Since ‖f‖u ∈ L1(I), for

each ` ∈ N there exists δ` > 0 such that

E ∈ BI , m(E) < δ` =⇒
∫
E

‖ft‖udt <
1

4‖g′‖u(2`+ 1)d
.

We consider also the function δ̄` = δ̄
(

1
2T‖g′‖u(2`+1)d

, f
)

given by the previous lemma.

Since the set

{δ̄` = 0} =
⋂
k∈N

{δ̄` <
1

k
}

is a null set it follows that for all ` ∈ N there exists k` ∈ N such that m{δ̄` < 1
k`
} < δ`.

Then, by (3.8) we have for all N, ` ∈ N that∣∣∣∣ ∫
{δ̄`< 1

k`
}
〈ft, πN,gt − πN,`,gt 〉dt

∣∣∣∣ ≤ 2‖g′‖u
(2N`+N)d

∑
x∈TdN
y∈x+Λd`

∫
{δ̄`< 1

k`
}
‖ft‖uηt(x)dt

=
2‖g′‖u
Nd

∫
{δ̄`< 1

k`
}
‖ft‖u|ηt|dt

Pn−a.s.
= 2‖g′‖〈πN0 , 1〉

∫
{δ̄`< 1

k`
}
‖ft‖udt

≤ 1

2
(2`+ 1)−d〈πN , 1〉.
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On the other hand, for each ` ∈ N there exists N` ∈ N such that

N ≥ N` =⇒ `

N
<

1

k`
.

Then, for all ` ∈ N and all N ≥ N` we have that∣∣∣ft( x
N

)
− ft

( y
N

)∣∣∣ < 1

2T‖g′‖u(2`+ 1)d

for all t ∈ {δ̄` ≥ 1
k`
} and all x, y ∈ TdN such that |x− y| ≤ `, and therefore( ∑
y∈x+Λd`

∣∣∣ft( x
N

)
− ft

( y
N

)∣∣∣)1{δ̄`≥ 1
k`
} <

1

2T‖g′‖u
.

It follows that for all ` ∈ N and all N ≥ N` we have∣∣∣∣ ∫
{δ̄`≥ 1

k`
}
〈ft, σNt − σ

N,`
t 〉dt

∣∣∣∣ ≤ 1

2T (2N`+N)d

∫
{δ̄`≥ 1

k`
}

∑
x∈TdN

ηt(x)dt

PN−a.s.
=

1

2T
(2`+ 1)−d〈πN0 , 1〉

∫
{δ̄`≥ 1

k`
}
dt

≤ 1

2
(2`+ 1)−d〈πN0 , 1〉.

Therefore, for all ` ∈ N and all N ≥ N` we have that∣∣∣∣ ∫ T

0

〈ft, πN,gt − πN,`,gt 〉dt
∣∣∣∣ ≤ (2`+ 1)−d〈πN0 , 1〉, PN -a.s..

It follows that for all ` ∈ N and all N ≥ N` we have that

PN
{∣∣∣∣ ∫ T

0

〈ft, σNt − σ
N,`
t 〉dt

∣∣∣∣ > ε

}
≤ PN

{
〈πN0 , 1〉 > ε(2`+ 1)d

}
= µN0

{
〈πN , 1〉 > ε(2`+ 1)d

}
and

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈ft, σNt − σ
N,`
t 〉dt

∣∣∣∣ > ε

}
≤ lim sup

n→∞
µN0
{
〈πN , 1〉 > ε(2`+ 1)d

}
But as we have seen, since {µN0 ∈ P1M

d
N} is associated to macroscopic profile µ0 ∈

M+(Td) we have that

lim
`→∞

lim sup
N→∞

µN0
{
〈πN , 1〉 > ε(2`+ 1)d

}
= 0,

and the proof is complete. �
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3.1.2 Entropy Production and The Dirichlet Form

The following estimates play a central role in the proof of the One-Block estimate.

Proposition 3.1.4 Let g be a local rate function and let {µN0 ∈ P1M
d
N} be a sequence

of initial distributions satisfying the entropy assumption for some ρ∗ ∈ (0, ρc) and some

constant Cρ∗ ≥ 0. Let (SNt )t∈R+ denote the transition semigroup of the diffusively

rescaled nearest neighbor ZR process with local rate function g on the discrete torus TdN .

We set µNt := µN0 S
N
t for all t ∈ R+. Then µNt � νNρ∗ for all t ∈ R+ and if we denote

by fNt ≡ f
N,ρ∗
t the density of µNt with respect to νNρ∗ we have for all t ∈ R+ that

H
(

1

t

∫ t

0

fNs ds
∣∣∣νNρ∗) ≤ Cρ∗Nd, DN

(
1

t

∫ t

0

fNs ds

)
≤ Cρ∗

2t
Nd−2,

where DN := DN (
√
·) : L1

+,1 −→ R+ and DN is the Dirichlet form of the ZRP on TdN .

Proof We prove first that µNt � νNρ∗ for all t ≥ 0. Since the sequence {µN0 } of the initial

distributions satisfies the entropy assumption we have that

H(µN0 |νNρ∗) ≤ Cρ∗N
d <∞

which by proposition A.3.7 implies that µNt � νNρ∗ for all t ≥ 0 with density given by

fNt :=
dµNt
dνNρ∗

= SNt
dµN0
dνρ∗

since SNt is self-adjoint in L2(νNρ∗) due to the fact that the n.n. ZRP is symmetric. Since

by the same proposition the microscopic entropy H(µNt |νNρ∗) is a non-increasing function

of time we have that

H(µNt |νNρ∗) ≤ H(µN0 |νNρ∗) ≤ Cρ∗N
d

and therefore by the linear convexity of the relative entropy we have that

H
(

1

t

∫ t

0

fNs ds
∣∣∣νNρ∗) = H

(
1

t

∫ t

0

µNs ds
∣∣∣νNρ∗) ≤ 1

t

∫ t

0

H(µNs |νNρ∗)ds ≤ Cρ∗N
d.

Furthermore, by (A.84) we have that

2N2

∫ t

0

DN (fs)ds ≤ H(µNt |νNρ∗) + 2N2

∫ t

0

DN (fs)ds ≤ H(µN0 |νNρ∗) ≤ Cρ∗N
d

and therefore by the convexity of the functional DN we have that

DN

(
1

t

∫ t

0

fNs ds

)
≤ 1

t

∫ t

0

DN (fNs )ds ≤ Cρ∗
2t

Nd−2. �

3.1.3 Reduction to a Static Problem

In this section we will see how by using the estimates of the previous subsection one can

reduce the time dependent problem of whether a Lipschitz local jump rate g satisfies

the time dependent one block estimate to a static one, i.e. one that does not depend on
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time.

We begin by noting that by proposition 3.1.3 in order to prove that a Lipschitz local

jump rate function g satisfies the time dependent one block estimate in C(I × Td) ⊆
L1(I;C(Td)), I := [0, T ], T > 0, it suffices to prove that

lim
`→∞

lim sup
N→∞

PN
{∣∣∣∣ ∫ T

0

〈ht, πN,`,gt − πN,`,Φt 〉dt
∣∣∣∣ > ε

}
= 0

for all h ∈ C(I ×Td) and all ε > 0. For each ` ∈ N we consider the cylinder function

V ` : Md
N −→ R+ given by

V ` =
∣∣(g ◦ η)`(0)− Φ

(
η`(0)

)∣∣ =

∣∣∣∣ 1

(2`+ 1)d

∑
y∈Λd`

g
(
η(y)

)
− Φ

(
η`(0)

)∣∣∣∣
and as usual we write V `t (η) = V `(ηt) for all η ∈ D(R+;Md

N ).

Let f ∈ C(I ×Td). Then∣∣∣∣ ∫ T

0

〈ht, πN,`,gt − πN,`,Φt 〉dt
∣∣∣∣ ≤ ‖f‖C(I×Td)

∫ T

0

‖πN,`,gt − πN,`,Φt ‖TV dt.

We denote by mN := 1
Nd

∑
x∈TdN

δ x
N

the normalized counting measure on TdN and set

L1(TdN ) := L1(mN ). Then the measures σN,` and πN,`,Φ are absolutely continuous with

respect to mN and

‖σN,` − πN,`,Φ‖TV =
∥∥∥dσN,`
dmN

− dπN,`,Φ

dmN

∥∥∥
L1(TdN )

=
1

Nd

∑
x∈TdN

τxV
`.

Therefore ∣∣∣∣ ∫ T

0

〈ht, πN,`,gt − πN,`,Φt 〉dt
∣∣∣∣ ≤ ‖h‖C(I×Td)

∫ T

0

1

Nd

∑
x∈TdN

τxV
`
t dt.

Consequently, for all h ∈ C(I ×Td) and all ε > 0 we have that

PN
{∣∣∣∣ ∫ T

0

〈ht, πN,`,gt − πN,`,Φt 〉dt
∣∣∣∣ > ε

}
≤ PN

{∫ T

0

1

Nd

∑
x∈TdN

τxV
`
t dt >

ε

‖h‖u

}

≤ ‖h‖u
ε

∫∫ T

0

1

Nd

∑
x∈TdN

τxV
`
t dtdP

N

=
‖h‖u
ε

∫ T

0

∫
1

Nd

∑
x∈TdN

τxV
`
t dP

Ndt

=
‖h‖u
ε

∫ T

0

∫
1

Nd

∑
x∈TdN

τxV
`dµNt dt,

and therefore in order to prove that the local jump rate g satisfies the time-dependent

one block estimate it suffices to prove that

lim
`→∞

lim sup
N→∞

∫ T

0

∫
1

Nd

∑
x∈TdN

τxV
`dµNt dt ≤ 0. (3.12)
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Now, the limit above can be easily reduced to a static one by considering the time

average

µ̄NT :=
1

T

∫ T

0

µNt dt

of {µNt }t∈I . Since µNt � νNρ∗ for all t ∈ R+, the time average µ̄NT is obviously absolutely

continuous with respect to νNρ∗ with density

f̄NT :=
µ̄NT
dνNρ∗

=
1

T

∫
fNt dt,

and so in this notation the double integral in (3.12) can be written as∫ T

0

∫
1

Nd

∑
x∈TdN

τxV
`dµNt dt =

∫
T

Nd

∑
x∈TdN

τxV
`dµ̄NT =

∫
T

Nd

∑
x∈TdN

(τxV
`)f̄NT dν

N
ρ∗ ,

and therefore in order to prove (3.12) it suffices to prove that

lim
`→∞

lim sup
N→∞

∫
1

Nd

∑
x∈TdN

(τxV
`)f̄NT dν

N
ρ∗ ≤ 0. (3.13)

By the estimates of proposition 3.1.4 for the time averaged density f̄NT we know that

there exists a constant C0 > 0, say C0 := Cρ∗ ∨
Cρ∗
2T , such that

H(f̄NT |νNρ∗) ≤ C0N
d and DN (f̄NT ) ≤ C0N

d−2,

where for each positive density f ∈ L1
+,1(νNρ∗) ⊆ PM

d
N we abbreviate by

HN (f) ≡ HN,ρ∗(f) := H(f |νNρ∗) ≡ H(fdνNρ∗ |ν
N
ρ∗)

its relative entropy with respect to νNρ∗ . Therefore in order to prove (3.13) it suffices to

prove that for all finite constants C0 > 0 we have that

lim
`→∞

lim sup
N→∞

sup
HN (f)≤C0N

d

DN (f)≤C0N
d−2

∫
1

Nd

∑
x∈TdN

(τxV
`)fdνNρ∗ ≤ 0, (3.14)

where the supremum is taken among densities f ∈ L1
+,1(νNρ∗).

Definition 3.1.2 Let g be a local jump rate function. We say that g satisfies the static

one block estimate if the limit (3.14) holds for some ρ∗ ∈ (0, ρc) and all positive constants

C0 > 0.

In this terminology we can state the results proves in this section as follows.

Proposition 3.1.5 Let g be a Lipschitz local jump rate function. If g satisfies the static

one block estimate then it satisfies the time dependent one block estimate in C(I ×Td)
with respect to any sequence of initial distributions {µN0 } that satisfies the O(Nd)-entropy

assumption.
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3.1.4 Proof of the Static One Block Estimate

In this section we prove the static one block estimate.

Cutting off large densities

We begin with a technical lemma that allows us to cut off large densities in the integral

appearing in the defining limit of the static one block estimate.

Lemma 3.1.3 For all finite constants C0 > 0 and all ρ∗ ∈ (0, ρc) there exists a finite

constant C1 = C1(C0, ρ∗) > 0 such that

sup
N∈N

sup
HN (f)≤C0Nd

∫
1

Nd

∑
x∈TdN

η(x)fdνNρ∗ ≤ C1 <∞.

Proof By the entropy inequality we have that for all f ∈ L1
+,1(νNρ∗) and all ρ > 0,∫

〈πN , 1〉fdνNρ∗ ≤ 1

ρNd

{
log

∫
e
ρ
∑
x∈Td

N
η(x)

dνNρ∗ +HN (f)

}
=

1

γNd
log

∫ ∏
x∈TdN

eρη(x)dνNρ∗ +
HN (f)

ρNd

≤ 1

ρ
log

∫
eρη(0)dνρ∗ +

C0

ρ
=

Λρ∗(ρ) + C0

ρ
,

where Λρ∗ = Λνρ∗ is the logarithmic m.g.f. of νρ∗ ∈ PZ+. But since ρ∗ < ρc, as we

know νρ∗ has exponential moments with [0, log φc
Φ(ρ∗)

) ⊆ DΛρ∗
and therefore we can take

as C1 = C1(C0, ρ∗) the constant

C1 := inf
ρ>0

Λνρ∗ (ρ) + C0

ρ
= inf
ρ∈DΛρ∗

Λρ∗(ρ) + C0

ρ
< +∞.

Corollary 3.1.1 Let g be a local rate function. If for some ρ∗ ∈ (0, ρc) and all finite

constants a,C0 > 0 we have

lim sup
`→∞

lim sup
N→∞

sup
DN (f)≤C0Nd−2

∫
1

Nd

∑
x∈TdN

[
τxV

` − aη`(x)
]
fdνNρ∗ ≤ 0 (3.15)

then g satisfies the static one block estimate.

Proof Let C0 > 0 be a finite constant and let ρ∗ ∈ (0, ρc) such that (3.15) holds. By

the previous lemma there exists a constant C1 = C1(C0, ρ∗) > 0 such that

sup
N∈N

sup
HN (f)≤C0Nd

∫
〈πN , 1〉fdνNρ∗ ≤ C1 <∞.

Then for all a > 0 and all f ∈ L1
+,1(νNρ∗) such that HN (f) ≤ C0N

d and DN (f) ≤ C0N
d−2

we have that∫
1

Nd

∑
x∈TdN

(τxV
`)fdνNρ∗ = a

∫
〈πN , 1〉fdνNρ∗ +

∫
1

Nd

∑
x∈TdN

[
τxV

` − aη`(x)
]
fdνNρ∗

≤ aC1 + sup
DN (f)≤C0Nd−2

∫
1

Nd

∑
x∈TdN

[
τxV

` − aη`(x)
]
fdνNρ∗
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for all N, ` ∈ N. Therefore

lim sup
`→∞

lim sup
N→∞

sup
HN (f)≤C0N

d

DN (f)≤C0N
d−2

∫
1

Nd

∑
x∈TdN

(τxV
`)fdνNρ∗ ≤ aC1,

which since a > 0 is arbitrary proves that g satisfies the static one block estimate. �

These results allows us to restrict the integral in the static one block estimate to

configurations with mean spatial density bounded by some finite constant. Indeed, since

g is assumed bounded, it has in particular sub-linear growth rate, i.e.

lim sup
k→∞

g(k)

k
= 0.

Therefore, for each a > 0 there exists a constant C2(a) ≥ 0 such that

g(k) ≤ C2(a) + ak

for all k ∈ Z+. Consequently for all b > 0,

Φ(ρ) =

∫
g(k)dνρ(k) ≤ C2(a) + a · (ρ ∧ ρc)

for all ρ ≥ 0, and therefore for all a > 0 V ` is bounded above by

V ` ≤ 1

(2`+ 1)d

∑
y∈Λd`

g
(
η(y)

)
+ Φ

(
η`(0)

)
≤ 2C2

(a
4

)
+
a

2
η`(0).

It follows that the function

V ` − aη`(0) ≤ 2C2

(a
4

)
− a

2
η`(0)

is negative on configurations η ∈Md
N satisfying

η`0 > C3(a) :=
4

a
C2

(a
4

)
,

and therefore we can bound the function V ` − aη`(0) above by

V ` − aη`(0) ≤
[
V ` − aη`(0)

]
1{η`(0)≤C3(a)} ≤ V `1{η`(0)≤C3(a)}.

Therefore for each a > 0, we can bound the integral in (3.15) above by∫
1

Nd

∑
x∈TdN

[
τxV

` − aη`(x)
]
fdνNρ∗ ≤

∫
1

Nd

∑
x∈TdN

τxV
`1{η`(x)≤C3(a)}fdν

N
ρ∗ .

It follows that if

lim
`→∞

lim sup
N→∞

sup
DN (f)≤C0Nd−2

∫
1

Nd

∑
x∈TdN

τxV
`1{η`(x)≤C3}fdν

N
ρ∗ ≤ 0, (3.16)

for some ρ∗ ∈ (0, ρc) and all finite constants C0, C3 > 0 then (3.15) holds for all a > 0

and thus the static one block estimate is satisfied. In other words we have proved

Proposition 3.1.6 Let g be a local jump rate function with sublinear growth rate. If

(3.16) holds for some ρ∗ ∈ (0, ρc) and all finite constants C0, C3 > 0 then g satisfies the

static one block estimate.
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Reduction to microscopic cubes

Notice that by definition the cylinder function V `1{η`(0)≤C3} is a function of the natural

projection

p` : Md
∞ := ZZ

d

+ −→ Z
Λd`
+ =: Md

(2`+1), ` ∈ Z+.

This step of the proof consists in taking advantage of this fact to project the density f

over a configuration space that does not depend on the scale parameter N .

In the rest of the proof we fix an arbitrary ρ∗ ∈ (0, ρc) and prove that (3.16) holds.

Since the measure νNρ∗ is translation invariant we can write the integral in (3.16) as∫
1

Nd

∑
x∈TdN

τxV
`1{η`(x)≤C3}fdν

N
ρ∗ =

∫
V `1{η`(0)≤C3}f̄dν

N
ρ∗ , (3.17)

where here f̄ ≡ f̄N denotes the average of all translations of f ,

f̄ :=
1

Nd

∑
x∈TdN

τxf.

For each density f ∈ L1
+,1(νNρ∗) we denote by f |` the quotient conditional expectation

with respect to the probability measure νNρ∗ of f given the projection p`, that is the

π`∗ν
N
ρ∗ -a.s. uniquely defined function h : Md

(2`+1)d −→ R with the property that

h ◦ p` = EνNρ∗ (f |p`),

where here EνNρ∗ denotes the expectation with respect to νNρ∗ . Then since V `1{η`(0)≤C3} is

a function of p`, and thus σ(p`)-measurable, by the definition of conditional expectation

we can replace f̄ by f̄ |`(p`) in the right hand side of (3.17) and write∫
V `1{η`(0)≤C3}f̄dν

N
ρ∗ =

∫
V `1{η`(0)≤C3}f̄ |`(p

`)dνNρ∗ =

∫
V `1{η`(0)≤C3}f̄ |`dp

`
∗ν
N
ρ∗ ,

where of course in the right hand side, with a slight abuse of notation V `1{η`(0)≤C3} is

identified with its restriction on Md
(2`+1)d . Obviously the measure

p`∗ν
N
ρ∗ = ν

Λd`
ρ∗ = ν(2`+1)

ρ∗ ∈ PMd
(2`+1)

does not depend on the scaling parameter N . In what follows we set `? := 2`+ 1 for all

` ∈ Z+ and we write ν`?ρ∗ for p`∗ν
N
ρ∗ . In this notation, for all constants C0, C3 > 0 we can

rewrite inequality (3.16) as

lim
`→∞

lim sup
N→∞

sup
DN (f)≤C0Nd−2

∫
V `1{η`(0)≤C3}f̄ |`dν

`?
ρ∗ ≤ 0. (3.18)

Consequently, in order to prove that g satisfies the static one block estimate it suffices

to show that (3.18) holds for all constants C0, C3 > 0.

Before proceeding further it will be good to have an explicit expression for f |` for

each f ∈ L1
+,1(νNρ∗). Such an explicit expression is given by the following lemma.
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Lemma 3.1.4 We let {(Ωi,Fi, Pi)}i∈I be a family of probability spaces and set

(ΩJ ,FJ , P J) :=
⊗
i∈J

(Ωi,Fi, Pi)

for all J ⊆ I. For notational simplicity we set (Ω,F , P ) := (ΩI ,FI , P I) and for each

J ⊆ I we denote by πJ : Ω −→ ΩJ the natural projection. Then for each random variable

X ∈ L1(Ω,F , P ) and all J ⊆ I we have that

E(X|πJ) = XJ ◦ πJ

where XJ : ΩJ −→ R is the function defined by XJ(ωJ) =
∫
X(ωJ , θ)dPI\J(θ).

Proof Let π−1
J : ΩJ −→ PΩ denote the disintegration of P with respect to πJ∗P = PJ .

Since P is a product measure, π−1
J is given by the formula

π−1
J,ωJ

= δωJ × PI\J ∈ PΩ, ωJ ∈ ΩJ ,

and let δX : Ω −→ PR denote the kernel given by δX(ω) = δX(ω). We claim that the

Markovian kernel δX ◦ π−1
J : ΩJ −→ PR is the quotient conditional distribution of X

given πJ , i.e. that for all functions F ∈ B(ΩJ ×R) we have that∫
Fd(πJ , X)∗P =

∫∫
F (ωJ , a)d[δX ◦ π−1

J ]ωJ (a)dPJ(ωJ).

Indeed, the term in the right hand side in equality above is equal to∫∫
F
(
ωJ , X(ω)

)
dπ−1

J,ωJ
(ω)dPJ(ωJ) =

∫∫
F
(
ωJ , X(ωJ , ωI\J)

)
dPI\J(ωI\J)dPJ(ωJ)

=

∫
F
(
πJ(ω), X(ω)

)
dP (ω)

=

∫
Fd(πJ , X)∗P,

as required. It follows that the quotient conditional expectation Ẽ(X|πJ) of X given πJ
is given by the formula

Ẽ(X|πJ)(ωJ) = [δX ◦ π−1
J ](idR)(ωJ) =

∫
idRd[δX ◦ π−1

J ]ωJ

=

∫∫
idRdδX(ω)dπ

−1
J,ωJ

(ω) =

∫
X(ωJ , ωI\J)dPI\J(ωI\J),

which proves the claim. �

According to this lemma, the quotient conditional expectation f |` ∈ L1
+,1(ν`?ρ∗) of a

density f ∈ L1
+,1(νNρ∗) is given by the formula

f |`(ξ) =

∫
f(ξ, ζ)dν

T
d
N\Λ

d
`

ρ∗ (ζ).

Furthermore, since in this particular case we have that ν`?ρ∗(ξ) > 0 for all ξ ∈ Md
`?

, we

can rewrite the formula of f |` as

f |`(ξ) =
1

ν`?ρ∗(ξ)

∫
1{ξ}(p

`)fdνNρ∗ . (3.19)
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Indeed, for all ξ ∈Md
`?

we have that∫
1{ξ}(p

`)fdνNρ∗ =

∫∫
1{ξ}

(
p`(ζ1, ζ2)

)
f(ζ1, ζ2)dν`?ρ∗(ζ1)dν

T
d
N\Λ

d
`

ρ∗ (ζ2)

= ν`?ρ∗(ξ)

∫
f(ξ, ζ2)dν

T
d
N\Λ

d
`

ρ∗ (ζ2) = ν`?ρ∗(ξ)f |`(ξ),

and (3.19) is proved.

Estimates on the Dirichlet form of f̄ |`

The third step of the proof consists in obtaining information regarding the density f̄ |`
from the estimate DN (f) ≤ C0N

d−2 on the Dirichlet form of f . To this end, for each

pair of sites x, y ∈ TdN we denote by Lx,y the part of the generator corresponding to

jumps across the bond {x, y}, that is

Lx,yf(η) := {f(ηx,y)− f(η)}g(ηx)p(y − x) + {f(ηy,x)− f(η)}g(ηy)p(x− y).

We denote furthermore by Dx,y
N the part of the (normalized) Dirichlet form DN corre-

sponding to jumps over the bond {x, y}, that is for all f ∈ L1
+,1(νNρ∗) we define:

Dx,y
N (f) := −〈Lx,y

√
f,
√
f〉L2(νNρ∗ ) =

∫ {√
f(ηx,y)−

√
f(η)

}2
g(ηx)ps(y − x)dνNρ∗(η),

where ps(z) := p(z)+p(−z)
2 is the symmetrization of the elementary step distribution p. To

verify this explicit formula for the piece of the Dirichlet form let L∗x,y denote the adjoint

of Lx,y in L2(νNρ∗). Then, since Lx,y(η, ζ)νNρ∗(η) = L∗x,y(ζ, η)νNρ∗(ζ) for all η, ζ ∈Md
N we

have for all functions f ∈ L2(νNρ∗) that

2〈f, Lx,yf〉L2(νNρ∗ ) = 〈f, Lx,yf〉L2(νNρ∗ ) + 〈L∗x,yf, f〉L2(νNρ∗ )

=
∑

η,ζ∈Md
N

f(η)[f(ζ)− f(η)]Lx,y(η, ζ)νNρ∗(η)

+
∑

η,ζ∈Md
N

f(ζ)[f(η)− f(ζ)]Lx,y(ζ, η)νNρ∗(ζ)

= −
∑

η,ζ∈Md
N

[f(ζ)− f(η)]
2
νNρ∗(η)Lx,y(η, ζ)

= −
∑
η∈Md

N

[f(ηx,y)− f(η)]
2
νNρ∗(η)Lx,y(η, ηx,y)

−
∑
η∈Md

N

[f(ηy,x)− f(η)]
2
νNρ∗(η)Lx,y(η, ηy,x).

But by the change of variables ζ := ηy,x the second term in the sum above becomes∑
η∈Md

N

[f(ηy,x)− f(η)]
2
νNρ∗(η)Lx,y(η, ηy,x) =

∑
ζ∈Md

N

[f(ζ)− f(ζx,y)]
2
νNρ∗(ζ

x,y)Lx,y(ζx,y, ζ)

=
∑
ζ∈Md

N

[f(ζ)− f(ζx,y)]
2
νNρ∗(ζ)L∗x,y(ζ, ζx,y).
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So denoting by Lsx,y :=
Lx,y+L∗x,y

2 the symmetrization of Lx,y we have that

Dx,y
N (f) = −〈

√
f, Lx,y

√
f〉L2(νNρ∗ ) =

∑
η∈Md

N

{√
f(ηx,y)−

√
f(η)

}2
νNρ∗(η)Lsx,y(η, ηx,y).

But L∗x,y(η, ηx,y) = g(ηx)p(x− y) and so Lsx,y(η, ηx,y) = g(ηx)ps(y−x) which proves the

claimed formula for the Dirichlet form.

We denote next by BN the set of all admissible non-oriented bonds in TdN , i.e.

BN :=
{
{x, y} ⊆ TdN

∣∣ ps(y − x) > 0
}
.

With this notation we have that

L =
∑

{x,y}∈BN

Lx,y and DN =
∑

{x,y}∈BN

Dx,y
N .

Note that the Dirichlet form is translation invariant, i.e.

DN (τzf) = DN (f)

for all z ∈ TdN and all f ∈ L1
+,1(νNρ∗). Indeed, it is easy to see that τz(η

x,y) = (τzη)x−z,y−z

and therefore since νNρ∗ is translation invariant and the Dirichlet form is given by a sum

over all bonds we have that

DN (τzf) =
∑

{x,y}∈BN

Dx,y
N (τzf)

=
∑

{x,y}∈BN

ps(y − x)
∑
η∈Md

N

g(ηx)
[√

τzf(ηx,y)−
√
τzf(η)

]2
νNρ∗(η)

=
∑

{x,y}∈BN

ps(y − x)
∑
η∈Md

N

g(ηx−z)
[√

f(ηx−z,y−z)−
√
f(η)

]2
νNρ∗(η)

=
∑

{x,y}∈BN

ps(y − x)
∑
η∈Md

N

g(ηx)
[√

f(ηx,y)−
√
f(η)

]2
νNρ∗(η) = DN (f).

It follows by the convexity of the Dirichlet form that for every density f ∈ L1
+,1(νNρ∗),

DN (f̄) = DN

(
1

Nd

∑
x∈TdN

τxf

)
≤ 1

Nd

∑
x∈TdN

DN (τxf) = DN (f).

Taking advantage again of the convexity of the Dirichlet form and the translation

invariance of f̄ , we prove next a bound of order N−2 for the Dirichlet form restricted to

bonds in Λd` of f̄ |`. Since the Dirichlet form is convex and since conditional expectation

is an average, we have that

Dx,y
`?

(f̄ |`) = Dx,y
N (f̄ |` ◦ p`) ≤ Dx,y

N (f̄)

for all bonds {x, y} ∈ B`? , where we identify Λd` with Td`? . By this inequality it follows

that

D`?(f̄ |`) ≤
∑

{x,y}∈B`?

Dx,y
N (f̄).
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On the other hand, by the translation invariance of f̄ , ps, and νNρ∗ , we have for all z ∈ TdN
that

Dx+z,y+z
N (f̄) =

∑
η∈Md

N

[√
f̄(ηx+z,y+z)−

√
f̄(η)

]2

g(ηx+z)p
s(x+ z, y + z)νNρ∗(η)

=
∑
η∈Md

N

[√
τz f̄(ηx+z,y+z)−

√
τz f̄(η)

]2

g
(
(τzη)x

)
ps(y − x)νNρ∗(τzη)

=
∑
η∈Md

N

[√
f̄
(
(τzη)x,y

)
−
√
f̄(τzη)

]2

g
(
(τzη)x

)
ps(y − x)νNρ∗(τzη)

=
∑
η∈Md

N

[√
f̄(ηx,y)−

√
f̄(η)

]2

g(ηx)ps(y − x)νNρ∗(η) = Dx,y
N (f̄).

Therefore,

DN (f̄) =
∑

{x,y}∈BN

Dx,y
N (f̄) =

∑
x∈TdN

∑
z:ps(z)>0

Dx,x+z
N (f̄) = Nd

∑
ps(z)>0

D0,z
N (f̄)

and thus

D`(f̄ |`) ≤
∑

ps(z)>0

∑
x∈Λd`∩(Λd`−z)

Dx,x+z
N (f̄) ≤ (2`+ 1)d

∑
ps(z)>0

D0,z
N (f̄)

= (2`+ 1)dN−dDN (f̄).

Consequently, for every density f ∈ L1
+,1(νNρ∗) with Dirichlet form bounded by C0N

d−2

we have that

D`(f̄ |`) ≤ C0(2`+ 1)dN−2 = C4(C0, `)N
−2. (3.20)

It follows that

sup
DN (f)≤C0Nd−2

∫
V `1{η`(0)≤C3}f̄ |`dν

`?
ρ∗ ≤ sup

D`(f̄ |`)≤C4(C0,`)N−2

∫
V `1{η`(0)≤C3}f̄ |`dν

`?
ρ∗ ,

and therefore in order to prove (3.18), and thus the one block estimate, it suffices to

prove that

lim
`→∞

lim sup
N→∞

sup
D`(f)≤C4(C0,`)N−2

∫
V `1{η`(0)≤C3}fdν

`?
ρ∗ ≤ 0, (3.21)

where here the supremum is taken among all densities f ∈ L1
+,1(ν`?ρ∗).

The Limit as N →∞

The next step consists in examining the behavior of the supremum in (3.21) as N →∞.

Relying on the relative compactness provided by the indicator function 1{η`(0)≤C1} and

on the lower semicontinuity of the Dirichlet form we can bound the lim sup as N → ∞
of this last supremum by the supremum over all densities f ∈ L1

+,1(ν`?ρ∗) with vanishing
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Dirichlet form D`(f) = 0.

From the presence of the indicator function and since V ` is positive, we can restrict

last supremum to densities f ∈ L1
+,1(ν`?ρ∗) supported by the set {ξ ∈ Md

`?
|ξ`(0) ≤ C3}.

Now, the set {ξ ∈ Md
`?
|ξ`(0) ≤ C3} is a compact subset of Md

`?
and thus the set of

all densities supported by this set is also compact in the weak topology of probability

measures. Therefore, for each fixed N ∈ N there exists a density fN ∈ L1
+,1(ν`?ρ∗) with

D`(fN ) ≤ C4(C0, `)N
−2, supported by the set {ξ ∈ Md

`?
|ξ`(0) ≤ C3} that reaches the

supremum:∫
V `1{ξ`(0)≤C3}f

Ndν`?ρ∗ = sup
D`(f)≤C4(C0,`)N−2

∫
V `1{ξ`(0)≤C3}fdν

`?
ρ∗ .

We can choose next a subsequence {fkN } of {fN} such that

lim
N→∞

∫
V `1{ξ`(0)≤C3}f

kNdν`?ρ∗ = lim sup
N→∞

∫
V `1{ξ`(0)≤C3}f

Ndν`?ρ∗ .

Since all densities fN are supported by the set {ξ ∈Md
`?
|ξ`(0) ≤ C3}, the sequence {fkN }

is relatively compact and so we can choose a further subsequence {fmkN } converging

weakly to some density f∞ ∈ L1
+,1(ν`?ρ∗) supported by the set {ξ ∈Md

`?
|ξ`(0) ≤ C3}. By

the lower semicontinuity of the Dirichlet form it follows that

D`(f∞) ≤ lim inf
N→∞

D`(fmkN ) ≤ lim inf
N→∞

C4(C0, `)N
−2 = 0

and since the function V `1{ξ`(0)≤C3} : Md
`?
−→ R+ is continuous it follows by the weak

convergence fmkN −→ f∞ that

lim
N→∞

∫
V `1{ξ`(0)≤C3}f

mkN dν`?ρ∗ =

∫
V `1{ξ`(0)≤C3}f

∞dν`?ρ∗ .

Consequently,

lim sup
N→∞

sup
D`(f)≤C4(C0,`)N−2

∫
V `1{ξ`(0)≤C3}fdν

`?
ρ∗ =

∫
V `1{ξ`(0)≤C3}f

∞dν`?ρ∗ ,

and therefore in order to prove (3.21), and thus also the one block estimate, it suffices

to prove that

lim
`→∞

sup
D`(f)=0

∫
V `1{ξ`(0)≤C3}fdν

`?
ρ∗ = 0. (3.22)

Decomposition along hyperplanes with a fixed number of particles

By proposition A.3.10 it is obvious that any probability density f ∈ L1
+,1(ν`?ρ∗) with

Dirichlet form D`(f) = 0 is constant on each hyperplane with a fixed number of particles.

It is convenient therefore to decompose each density f along these hyperplanes with

particles density bounded above by C3. To this end, for each density f ∈ L1
+,1(ν`?ρ∗) with

Dirichlet form D`(f) = 0 we denote by CK(f) the constant value of f on the hyperplane

consisting of configurations with K particles.
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Recall that we denote by {νN,K}(N,K)∈N×Z+
the canonical ensemble of the ZRP

given by

νN,K = νNρ∗

(
·
∣∣∣∣ ∑
x∈TdN

η(x) = K

)
=

1

Z(Nd,K)

∑
η∈Md

N

1

g!(η)
δη

for all ρ∗ ∈ (0, ρc). Then obviously for all ρ∗ ∈ (0, ρc) we have that

νNρ∗ =

∞∑
K=0

νNρ∗

(
η
∣∣∣ ∑
x∈TdN

η(x) = K

)
· νN,K . (3.23)

Identifying Λd` with Td`? , where as always `? := 2`+1 we consider the distribution ν`?,K .

Then, with this notation we can write∫
V `1{ξ`(0)≤C3}fdν

`?
ρ∗ =

∞∑
K=0

ν`?ρ∗

( ∑
x∈Λd`

ξ(x) = K

)∫
V `1{ξ`(0)≤C3}fdν`?,K

=

(2`+1)dC3∑
K=0

CK(f)ν`?ρ∗

( ∑
x∈Λd`

ξ(x) = K

)∫
V `dν`?,K

=:

(2`+1)dC3∑
K=0

C̄K(f)

∫
V `dν`?,K .

Now obviously we have that

∞∑
K=0

C̄K(f) =

∞∑
K=0

∫
f1{

∑
x∈Λd

`
ξ(x)=K}dν

`?
ρ∗ =

∫
fdν`?ρ∗ = 1

and therefore by applying the bounded convergence theorem on the probability mea-

sure {Ck(f)}K∈Z+
and the sequence of functions b` : Z+ −→ R+ given by b`(K) =

1{0,...,(2`+1)dC3}(K)
∫
V `dν`?,K it follows that in order to complete the proof of the one

block estimate it suffices to show

lim sup
`→∞

sup
K≤(2`+1)dC3

∫
V `(ξ)dν`?,K(ξ) = 0. (3.24)

An application of the Equivalence of Ensembles

The final step in the proof of the one block estimate consists in applying the equivalence

of ensembles to prove (3.24). Since the measure ν`?,K is concentrated on configurations

with K particles, the integral appearing in (3.24) is equal to∫
V `dν`?,K =

∫ ∣∣∣∣ 1

(2`+ 1)d

∑
|x|≤`

g
(
ξ(x)

)
− Φ

(
ξ`(0)

)∣∣∣∣dν`?,K
=

∫ ∣∣∣∣ 1

]Λd`

∑
|x|≤`

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K .
We fix now a positive integer k that shall increase to infinity after ` and decompose the set

Λd` in cubes of side-length 2k+1 as follows: We consider the set A := [(2k+1)Zd]∩Λd`−k
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and enumerate its elements, A = {x1, . . . , xq}, so that |xi| ≤ |xj | whenever i ≤ j. For

1 ≤ i ≤ q let Bi := xi + Λdk. Then by construction we have that Bi ∩ Bj = ∅ for i 6= j

and
⋃q
i=1Bi ⊆ Λd` . Then if we set B0 := Λd` \

⋃q
i=1Bi we have that ]B0 ≤ Cdk`

d−1

for some universal constant depending only on the dimension d. Indeed, by definition

q = [ 2`+1
2k+1 ]d, and

]B0 = (2`+ 1)d − q(2k + 1)d ≤ (2`+ 1)d − 2d(`− k)d

= (2`)d
[(

1 +
1

2`

)d
−
(

1− k

`

)d]
= (2`)d

2k + 1

2`

d−1∑
m=0

(
1 +

1

2`

)d−m−1(
1− k

`

)m
≤ (2`)d−1(2k + 1)

d−1∑
m=0

(
1 +

1

2

)d−m−1

≤ `d−1(2k + 1)3d−1d ≤ (3dd)k`d−1,

where in the calculations above using the fact that k tends to infinity after ` we assume

that 1 ≤ k ≤ `. Consequently, inequality ]B0 ≤ Cdk`d−1 holds with constant Cd := 3dd.

Through the decomposition Λd` =
⋃q
i=0Bi we can write∫

V `dν`?,K =

∫ ∣∣∣∣ 1

]Λd`

q∑
i=0

∑
x∈Bi

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K
=

∫ ∣∣∣∣ 1

]Λd`

q∑
i=0

∑
x∈Bi

[
g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)]∣∣∣∣dν`?,K
≤

q∑
i=0

1

]Λd`

∫ ∣∣∣∣ ∑
x∈Bi

[
g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)]∣∣∣∣dν`?,K
=

q∑
i=0

1

]Λd`

∫ ∣∣∣∣ ∑
x∈Bi

g
(
ξ(x)

)
− (]Bi)Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K
=

q∑
i=0

]Bi
]Λd`

∫ ∣∣∣∣ 1

]Bi

∑
x∈Bi

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K .
Assuming the local jump rate g to be bounded, since ]B0 ≤ Cdk`

d−1 we can bound

above the term in the last sum corresponding to i = 0 by

Cdk`
d−1(

2`+ 1)d
(‖g‖u + Φ(C1 ∧ ρc)

)
=: C

k`d−1

(2`+ 1)d
.

Therefore the integral
∫
V `dν`?,K can be bounded above by∫

V `dν`?,K ≤
]Λdk
]Λd`

q∑
i=0

∫ ∣∣∣∣ 1

]Λdk

∑
x∈Bi

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K + C
k`d−1

(2`+ 1)d
.

Since the distribution of the random vector
(
(ξ(x))x∈Bi , ν

d
`?,K

)
does not depend on i

and since

q =
[ 2`+ 1

2k + 1

]d
≤ (2`+ 1)d

(2k + 1)d

it follows that∫
V `dν`?,K ≤

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K + C
k`d−1

(2`+ 1)d
.
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Therefore, since

lim sup
`→∞

sup
K≤(2`+1)dC3

C
k`d−1

(2`+ 1)d
= 0,

in order to prove (3.24) and complete the proof of the one block estimate with respect

to continuous functions in the case that the local jump rate g is bounded, it suffices to

prove that

lim
k→∞

lim
m→∞

sup
`≥m

K≤(2`+1)dC3

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K = 0.

For notational simplicity we denote the supremum above by

S(m, k) := sup
`≥m

K≤(2`+1)dC3

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

( K

(2`+ 1)d

)∣∣∣∣dν`?,K = 0.

For each fixed (m, k) ∈ N × N we can pick a sequence {(`m,kn ,Km,k
n )}n∈N such that

`m,kn ≥ m and Km,k
n ≤ (2`m,kn + 1)dC3 for all n ∈ N that achieves the supremum, i.e.

such that

S(m, k) = lim
n→∞

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

( Km,k
n

(2`m,kn + 1)d

)∣∣∣∣dν(`m,kn )?,K
m,k
n

.

Since the sequence {ρm,kn }n∈N defined by

ρm,kn :=
Km,k
n

(2`m,kn + 1)d
, n ∈ N,

is contained in the compact interval [0, C3], for each fixed (m, k) ∈ N×N we can pick a

sequence {nj}j∈N ≡ {nm,kj } such that ρm,knj converges to some ρm,k ∈ [0, C3] as j →∞.

Then since g is assumed bounded it follows by the equivalence of ensembles that

S(m, k) =

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

(
ρm,k

)∣∣∣∣dνk?ρm,k .
Furthermore, for each fixed k ∈ N, the sequence {ρm,k}m∈N is also contained in [0, C3]

and thus we can choose a sequence {mj}j∈N = {m(k)
j } such that ρmj ,k converges to

some ρk ∈ [0, C3], and therefore by the weak continuity of the grand canonical ensemble,

lim
m→∞

S(m, k) =

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

(
ρk
)∣∣∣∣dνk?ρk .

Consequently, in order to complete the proof of the one block estimate it suffices to prove

that

lim
k→∞

∫ ∣∣∣∣ 1

(2k + 1)d

∑
|x|≤k

g
(
ξ(x)

)
− Φ

(
ρk
)∣∣∣∣dν∞ρk = 0, (3.25)

where since {ρk}k∈N ⊆ [0, C3], Φ(·) = Φ(· ∧ ρc) and ν· = ν·∧ρc , we can assume of course

that {ρk} converges to some ρ ∈ [0, ρc] as k → ∞. Now, to prove (3.25) it suffices
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to show that the law of large numbers holds in L1(ν∞ρ ) uniformly over all parameters

ρ ∈ [0, ρc], i.e. that

lim
N→∞

sup
ρ∈[0,ρc]

∫ ∣∣∣∣ 1

Nd

∑
x∈TdN

g
(
η(x)

)
− Φ

(
ρ
)∣∣∣∣dν∞ρ = 0. (3.26)

But since the random variables g
(
η(x)

)
, x ∈ Zd, are uniformly bounded by ‖g‖u and

i.i.d. with respect to ν∞ρ for all ρ ∈ [0, ρc], this holds by the following simple uniform

L2-weak law of large numbers, and thus the static one block-estimate for bounded local

jump rate functions g is proved.

Lemma 3.1.5 Let (Ω,F) be an arbitrary probability space and let {Xi}i∈N be a sequence

of random variables on (Ω,F) uniformly bounded by some constant M ≥ 0. Let also

P ⊆ P(Ω,F) be any family of probability measures such that the Xi’s are independent

and identically distributed with respect to any P ∈ P and denote by µP := EPX1 the

common mean of the Xi’s with respect to P ∈ P. Then

lim
n→∞

sup
P∈P

EP

∣∣∣∣ 1n
n∑
i=0

Xi − µP
∣∣∣∣2 = 0.

Proof Indeed, since the Xi’s are are uniformly bounded by M , for each P ∈ P we have

that |µP | ≤M and thus

VP (X1) = EP |X1 − µP |2 ≤ 2EP (X2
1 + µ2

P ) ≤ 4M2.

Therefore, for each P ∈ P we have that

EP

∣∣∣∣ 1n
n∑
i=0

Xi − µP
∣∣∣∣2 = VP

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

VP (Xi) =
1

n
VP (X1) ≤ 4M2

n

which shows that

sup
P∈P

EP

∣∣∣∣ 1n
n∑
i=0

Xi − µP
∣∣∣∣2 ≤ 4M2

n

n→∞−→ 0,

as required. �
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3.2 A Degenerate Non-Linear Diffusion

In this section, using the sub-criticality of the initial profile we apply the classic results

in uniformly parabolic equations (e.g. [26]) to degenerate non-linear parabolic equations

of the form ∂tρ = ∆ΣΦ(ρ) with increasing non-linearities Φ that may be finally constant,

where

∆Σ :=

d∑
i,j=1

σij∂
2
ij

and Σ ∈ Rd×d is a symmetric positive definite matrix. To be more precise, for each

ρc ∈ [0,∞), k ≥ 2, we denote by Ckρc the set of all functions Φ : R+ −→ R+ such that

(a) Φ(0) = 0,

(b) Φ is Ck on the interval [0, ρc),

(c) Φ is C1 from the left on the interval (0, ρc],

(d) Φ′(ρ) > 0 for all 0 ≤ ρ < ρc, and

(e) Φ(ρ) = Φ(ρ ∧ ρc) for all ρ ≥ 0.

We begin by considering first the notion of classical solutions.

Definition 3.2.1 Let ρ0 : Td −→ R+ be a measurable function. We say that a mea-

surable function ρ : R+ ×Td −→ R+ is a classical solution of the initial value problem{
∂tρ = ∆ΣΦ(ρ),

ρ(0, ·) = ρ0,
(3.27)

if

(a) the set {ρt > ρc} is open for all t ≥ 0,

(b) ρ is C1 in time for each fixed u ∈ Td,

(c) Φ(ρt) ∈ C2(Td) for all t ∈ R+, and

(d) ρ satisfies (3.27).

Since the function Φ(ρt) is C2, and Φ is continuous on [0, ρc] and Ck for k ≥ 2 on

[0, ρc), it follows that ρt ∧ ρc is continuous on Td and C2 on the set {ρt < ρc}. Note

that since ρt ∧ ρc is continuous, the fluid phase set {ρt < ρc} = {ρt ∧ ρc < ρc} is open

for each time t ≥ 0.

Proposition 3.2.1 Let ρ be a solution of the Cauchy problem (3.27) starting from any

measurable profile ρ0 : Td −→ R+ and let u ∈ Td. If there exists t ∈ R+ such that

ρt(u) > ρc then the function t 7→ ρu(t) := ρ(t, u) is constant.
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Proof Indeed, let t ∈ R+ such that ρt(u) > ρc. Since the set {ρt > ρc} is assumed open

and ρ is continuous in time there exists ε > 0 such that ρs(u) > ρc for all s ∈ (t−ε, t+ε).
Then, given s ∈ (t − ε, t + ε), since {ρs > ρc} is open there exists δs,u > 0 such that

D(u, δs,u) ⊆ {ρs > ρc}. But then Φ(ρs)|D(u,δs,u) ≡ ρc and therefore ∆ΣΦ(ρs)(u) = 0 for

all s ∈ (t−ε, t+ε). So since ρ solves (3.27) we have that ∂sρ(u) = 0 for all s ∈ (t−ε, t+ε)
and so ρu is constant in (t− ε, t+ ε).

Then the number

s+(t, u) := sup{s ≥ t|ρs(u) = ρt(u)}

is obviously s+(t, u) ≥ t + ε and it is easy to see that in fact s+(t, u) = +∞. Indeed,

suppose to derive a contradiction that s+ := s+(t, u) < +∞. Then since ρu is continuous

in time we have that ρs+(u) = ρt(u), and so repeating the argument applied initially to

the pair (t, u) for the pair (s+, u), we get that there exists ε′ > 0 such that ρs(u) = ρs+(u)

for all s ∈ (s+ − ε′, s+ + ε′) which contradicts the definition of s+. Similarly one sees

that

s+(t, u) := inf{s ∈ [0, t]|ρs(u) = ρt(0)} = 0. �

According to this proposition, in the case of initial conditions ρ0 : Td −→ R+ taking

supercritical values, i.e. such that {ρ0 > ρc} 6= ∅, the problem (3.27) can be considered

as the initial and boundary value problem
∂tρ = ∆ΣΦ(ρ) in (0,∞)× {ρ0 ≤ ρc},
ρ(0, ·) = ρ0 in {ρ0 ≤ ρc},
ρ ≡ ρc in R+ × ∂{ρ0 > ρc}

where in this problem we allow as solutions only functions ρ : Td −→ [0, ρc] that take

values in the interval [0, ρc] and ∂ denotes the topological boundary operator.

So at a first stage we consider the problem (3.27) only for lower semi-continuous initial

conditions ρ0 satisfying ρ0 ≤ ρc. The following is obvious from proposition (3.2.1).

Corollary 3.2.1 Let ρ : Td −→ R+ be a solution of problem (3.27) starting from some

measurable profile ρ0 : Td −→ R+ such that ρ0 ≤ ρc. Then ρ ≤ ρc in R+ ×Td.

Given any solution ρ : R+ ×Td −→ R+ of problem (3.27) starting from some lower

semi-continuous initial profile ρ0 : Td −→ [0, ρc], the set {ρ = ρc} ⊆ R+ × Td is the

degenerate region, which we interpret as the region of space containing the condensed

phase and {ρt = ρc} ⊆ Td is the degenerate region at time t. Of course

{ρ = ρc} =
⋃
t∈R+

{t} × {ρt = ρc}.

We denote by

Bt ≡ Bt(ρ) := ∂{ρt = ρc}

denotes the boundary of the condensed phase region. We will refer to the open set

At := At(ρ) = Int{ρt = ρc} = {ρt = ρc} \ Bt as the strictly condensed region at time t.

Finally, when need arises to simplify the notation we will write Ft := {ρt < ρc} for the

open fluid phase region at time t.
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As we have seen, for each solution ρ of problem (3.27), ρt is C2 in {ρt < ρc}. On

the other hand it is obviously constantly equal to ρc in the strictly condensed region

At = Int{ρt = ρc}, and so the only possible non differentiability points of ρt are points

in the boundary Bt of the condensed phase. For points at the boundary Bt(ρ) along

some classical solution ρ of problem (3.27) we consider the following time-dependent

gradients along this solution.

Definition 3.2.2 Let ρ be a classical solution of problem (3.27) Let f : Td −→ R be

any function. The upper j-th partial derivative of f at u ∈ Bt(ρ) from the fluid phase

{ρt < ρc} is the upper limit

∂
↑
j;tf(u) := lim sup

h→0
u+hej∈{ρt<ρc}

f(u+ hej)− f(u)

h
.

Likewise, the lower j-th partial derivative of f at u ∈ Bt(ρ) from the fluid phase {ρt < ρc}
is the lower limit

∂↑j;tf(u) := lim inf
h→0

u+hej∈{ρt<ρc}

f(u+ hej)− f(u)

h
.

If

∂
↑
j;tf(u) = ∂↑j;tf(u),

we say denote their common value by ∂↑j;tf(u) and say that the j-th partial derivative

∂↑j;tf(u) of f at u ∈ Bt(ρ) from the fluid phase exists.

We say that f is differentiable at time t from the fluid phase at the point u ∈ Bt if

there exists w ∈ Rd such that

lim
h→0

u+h∈{ρt<ρc}

|f(u+ h)− f(u)− 〈w, h〉|
‖h‖

= 0. (3.28)

If f is differentiable at time t from the fluid phase at u ∈ Bt then there exists a unique

vector w ∈ Rd satisfying (3.28), denoted by ∇↑t f(u).

If f is differentiable at time t from the fluid phase at u ∈ Bt then the j-th partial

derivative at time t from the fluid phase exists at u and

∂↑j;tf(u) = 〈∇↑t f(u), ej〉, j = 1, . . . , d.

Also if f is differentiable at u ∈ Bt then it is also differentiable at time t from the fluid

phase at u ∈ Bt with ∇↑t f(u) = ∇f(u). Note, that since we assume Φ(ρt) to be C2 we

have that

∇↑tΦ(ρt)(u) = ∇Φ(ρt)(u) = 0

at each point u ∈ Bt, since each such point u ∈ Bt is a point of a maximum of Φ(ρt).

Lemma 3.2.1 If the solution ρ of problem (3.27) is differentiable from the fluid phase

at the point u ∈ Bt at time t we have that

∇↑tΦ(ρt)(u) = Φ′−(ρc)∇↑t ρt(u).
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Proof Indeed, for u ∈ Bt, we set

DhΦ(ρt)(u) := Φ(ρt(u+ h))− ϕc − Φ′−(ρc)〈∇↑t ρt(u), h〉,

and we have that

|DhΦ(ρt)(u)| ≤ |Φ(ρt(u+ h))− ϕc − Φ′−(ρc)(ρt(u+ h)− ρc)|
+|Φ′−(ρc)||ρt(u+ h)− ρc − 〈∇↑t ρt(u), h〉|.

Let ε > 0. By the definition of the gradient from the fluid phase the second term is of

order o(h) as h → 0 from inside the fluid phase {ρt < ρc}, and therefore there exists

δ1 > 0 such that

‖h‖ < δ1, u+ h ∈ {ρt < ρc} =⇒ |ρt(u+ h)− ρc − 〈∇↑t ρt(u), h〉|
‖h‖

≤ ε

2(1 + Φ′−(ρc))
.

For the first term we note that by the differentiability of Φ from the left at ρc, given any

ε > 0 there exists there exists δ2 > 0 such that

0 < ρc − r < δ2 =⇒ |Φ(r)− ϕc − Φ′−(ρc)(r − ρc)| <
ε

2
.

Also by the differentiability of ρt at time t from the fluid phase at the point u ∈ Bt there

exists δ3 > 0 such that

‖h‖ < δ3, u+ h ∈ {ρt < ρc} =⇒ |ρt(u+ h)− ρc| ≤ (1 + ‖∇↑t ρt(u)‖)‖h‖.

Consequently, if we choose δ0 > 0 small enough so that δ0 < δ1∧δ3∧[δ2(1+‖∇↑t ρt(u)‖)−1]

then for all h ∈ −u+ {ρt < ρc} with ‖h‖ < δ0 we have that

|DhΦ(ρt)(u)|
‖h‖

< ε

and the proof is complete.

Lemma 3.2.2 Let ρ : R+ ×Td −→ [0, ρc] be a solution to problem (3.27) with respect

to some lower-semicontinuous initial profile ρ0, and let u ∈ Bt, t ≥ 0. Then ρt is

differentiable at u iff it is differentiable from the fluid phase at u at time t with

∇↑t ρt(u) = 0.

Proof One implication is obvious. For the converse we note that if u + h ∈ {ρt = ρc}
then

ρc − ρt(u+ h)

‖h‖
= 0

and therefore

sup
‖h‖<δ

ρc − ρt(u+ h)

‖h‖
= sup

‖h‖<δ
u+h∈{ρt<ρc}

ρc − ρt(u+ h)

‖h‖

which tends to zero as δ → 0 since ρt is differentiable from the fluid phase at u at time

t with ∇↑t ρt(u) = 0. This proves that ρt is differentiable at u ∈ Bt with ∇ρt(u) = 0. �
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Proposition 3.2.2 Suppose that Φ ∈ Ckρc satisfies Φ′−(ρc) > 0 and let ρ : R+T
d −→

[0, ρc] be a solution to problem (3.27) with respect to some lower-semicontinuous initial

profile ρ0. Then ρt ∈ C1(Td) for all t > 0.

Proof Let u ∈ Bt. We will prove first that ρt is differentiable from the fluid phase at u

at time t. Since Φ is differentiable from the left at ρc with Φ′−(ρc) > 0 it follows that its

inverse R := Φ−1 is differentiable from the left at ϕc := Φ(ρc) with

R′−(ϕc) =
1

Φ′−(ρc)
,

since the inverse function theorem holds for one-sided derivatives. So if we set φt := Φ(ρt)

for all t ≥ 0, then by the chain rule for differentiating from the fluid phase we have for

all u ∈ Bt that

∇↑t ρt(u) = ∇↑tR(φt)(u) = R′−(ϕc)∇φt(u) = 0,

which according to the previous lemma shows that ρt is differentiable at u. Furthermore

since we assume Φ to be C1 from the left on (0, ρc] it is easy to see that ρt is C1. �

Having seen some basic properties of solutions of problem (3.27), we apply next the

classical results in quasi-linear uniformly parabolic equations by Ladyz̆enskaya et al in

[26]. In divergence form these are equations of the form

∂tρ(t, u) = divuA(t, u, ρt(u),∇ρt(u)), (3.29)

where A = (A1, . . . ,Ad) : R+ ×Td ×R×Rd −→ Rd is a C2 vector valued function

(0,+∞)×Td ×R×Rd 3 (t, u, r, v) 7→ A(t, u, r, v) ∈ Rd,

such that it satisfies linear growth condition of the form

|A(t, u, r, v)| ≤ A+Br + C|v|

for some constants A,B,C ≥ 0 and such that it satisfies the uniform parabolicity

condition, that is there exists constants c2 > c1 > 0 such that for all (t, u, r, v) ∈
R+ ×Td ×R×Rd,

c1|ξ|2 ≤
d∑

i,j=1

∂vjAi(t, u, r, v)ξiξj ≤ c2|ξ|2, ∀ ξ ∈ Rd \ {0}.

According to the chain rule,

divu[A(t, u, ρt(u),∇ρt(u))] =

d∑
i=1

[∂uiAi](t, u, ρt(u),∇ρt(u))

+

d∑
i=1

∂rAi(t, u, ρt(u),∇ρt(u))∂iρt(u)

+

d∑
i,j=1

∂vjAi(t, u, ρt(u),∇ρt(u))∂ijρt(u)
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and so the problem (3.29) can be written in the general form as

∂tρ(t, u) =

d∑
i,j=1

aij
(
t, u, ρt(u),∇ρt(u)

)
∂ijρt(u)− a

(
t, u, ρt(u),∇ρt(u)

)
,

where

aij(t, u, r, v) := ∂vjAi(t, u, r, v), i, j = 1, . . . , d

and

a(t, u, r, v) := −divuA(t, u, r, v)− 〈∂rA(t, u, r, v), v〉.

In particular, we are interested in time-independent and space-homogeneous quasi-linear

equations in which case the vector-valued function A is a function only of the variables

(r, v) ∈ R×Rd, that is A(t, u, r, v) ≡ A(r, v), in which case the problem (3.29) becomes

∂tρ(t, u) = divuA
(
ρt(u),∇ρt(u)

)
=

d∑
i,j=1

∂vjAi(ρt(u),∇ρt(u))∂ijρt(u) + 〈∂rA(ρt(u),∇ρt(u)),∇ρt(u)〉

In the uniformly parabolic case the according to the basic theory of classical solutions

(see for instance [26, 30, 23]) we have the following result.

Proposition 3.2.3 Let ρ ∈ C(Rd). The uniformly problem (3.29) with a Ck, k ≥ 0,

vector field A admits a unique classical solution ρ ∈ C(R+ × Rd). Furthermore the

solution ρ is Ck in (0,∞)×Rd and a strong comparison principle holds:

Given two classical solutions ρ1, ρ2 ∈ C([0, T ]×Rd), T > 0, of the same equation of

the the form (3.29), if ρ1(0, ·) ≤ ρ2(0, ·) on Rd then either ρ1 ≡ ρ2 in [0, T ] × Rd, or

ρ1 < ρ2 everywhere in (0, T )×Rd.

In our particular case of equations of the form ∂tρ = ∆ΣΦ(ρ) this result obviously

carries over to the torus Td in place of Rd, since functions on the torus can be considered

as periodic functions on Euclidean space and due to the particular form of the equation,

translations of solutions are also solutions, which implies that a solution starting from a

periodic initial condition remains periodic at all times.

We will first make sure that in the case of continuous sub-critical initial data the initial

value problem (3.27) with non-uniformly parabolic non-linearity Φ ∈ C∞ρc , ρc ∈ (0,∞]

admits classical solutions. This is done by using the sub-criticality of the initial data,

the comparison principle and the following lemma to avoid the degeneracy of Φ at ρc.

The idea of the argument is already present on [30] but it is not described there how to

make arbitrarily smooth changes to Φ as in the following lemma.

Lemma 3.2.3 Let Φ : (0, b] −→ (0,∞), b ∈ (0,∞), be a strictly positive Ck function,

k ∈ N. There exists then large enough M ≡M(k) ≥ 0 such that the function

Φ̃M,k(ρ) =

{
Φ(ρ), 0 < ρ ≤ b
T b;kM Φ(ρ− b), ρ ≥ b

,
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where T b;kM Φ is the Taylor-type polynomial

T b;kM Φ(r) =
M

(k + 1)!
rk+1 +

k∑
m=1

Φ(m)(b)

m!
rm + Φ(b),

is a strictly positive Ck extension Φ̃ : (0,∞) −→ (0,∞) of Φ.

Proof The lemma follows by induction on k. For k = 1 it is obvious that for each M ≥ 0

the function Φ̃M,1 is a C1-extension of Φ. Furthermore, since Φ(b) > 0 it is obvious that

if Φ′(b) ≥ 0 then the function Φ̃M,1 is strictly positive for all M ≥ 0, and in particular

for ρ > b we can choose the linear extension T b;10 Φ of Φ. On the other hand, we can

always choose M > 1
2Φ′(b)2/Φ(b) and then the discriminant of T b;1M Φ becomes negative,

which since T b;1M Φ(0) = Φ(b) > 0 implies that

inf
r∈R

T b;1M Φ(r) > 0.

Consequently, we can can choose large enough M > 0 so that the function Φ̃M,1 is the

required strictly positive C1 extension of Φ.

We suppose next that the claim holds for k ∈ N and we prove that it is also true for

k + 1. Since Φ is Ck+1, Φ̃M,k+1 is a Ck+1 extension of Φ. Since Φ is also Ck, by the

inductive hypothesis there exists Mk ≥ 0 such that

θ0 := min
r≥0

T b,kMk
Φ(r) = min

r≥0

{ Mk

(k + 1)!
rk+1 +

k∑
m=1

Φ(m)(b)

m!
rm + Φ(b)

}
> 0.

We can then bound T b;k+1
M Φ from below by

T b;k+1
M Φ(r) ≥ M

(k + 2)!
rk+2 +

Φ(k+1)(b)−Mk

(k + 1)!
rk+1 + θ0.

Setting ck := Φ(k+1)(b)−Mk, it suffices to find M > 0 such that

M

(k + 2)!
rk+2 +

ck
(k + 1)!

rk+1 + θ0 > 0 for all r > 0. (3.30)

But this inequality can be rewritten as

Mr + ck(k + 2) > −θ0(k + 2)!

rk+1
, r > 0,

from where it becomes obvious that there exists M large enough such that (3.30) holds.�

Proposition 3.2.4 Let Φ ∈ Cρc , ρc ∈ (0,∞] and let ρ0 : Td −→ [0, ρc) be a continuous

initial profile. There exists then a unique classical solution ρ ∈ C(R+×Td) of the initial

value problem (3.1). Furthermore, ρ is C∞ on (0,∞) × Td and if the initial profile is

of class C2+θ for some θ ∈ (0, 1], then ρ ∈ C1+θ,2+θ(R+ ×Td). Moreover,

max
u∈Td

ρt(u) < max
u∈Td

ρ0(u) < ρc, (3.31)

for all t > 0. Finally, if ρ0 is not constant, then for all t > 0 we have that

min
u∈Td

ρt(u) > min
u∈Td

ρ0(u) ≥ 0. (3.32)
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Proof Since ρ0 is continuous and takes values in the interval [0, ρc) it follows by the

compactness of Td that there exists ε > 0 such that maxu∈Td ρ0(u) < ρc − ε. Then,

since Φ′(0) ∧ Φ′(ρc − ε) > 0, for any fixed k ≥ 1 there exists by lemma 3.2.3 a strictly

positive Ck extension Ψ : R −→ R of Φ′|[0,ρc−ε] of the form

Ψ(ρ) =


T 0;k
M (Φ′)(−ρ), ρ ≤ 0

Φ′(ρ), 0 ≤ ρ ≤ b
T b;kM (Φ′)(ρ− b), ρ ≥ b

for some M > 0. Then obviously lim|ρ|→∞Ψ(ρ) = +∞ and therefore c := infρ∈RΨ(ρ) >

0. We set B := maxρ∈[0,ρc−ε] Ψ(ρ), we choose a smooth function χ : R+ −→ [0, B + 1]

such that χ(y) = y for 0 ≤ y ≤ B and χ(y) = B + 1 for y ≥ B + 1 and consider

the function Ψ̃ := χ ◦ Ψ : R −→ (0,∞). Then its anti-derivative Φ̃(ρ) =
∫ ρ

0
Ψ̃(r)dr,

ρ ∈ R, is a Ck+1 extension of the restriction Φ|[0,ρc−ε] satisfying c ≤ Φ̃′(ρ) ≤ B + 1

for all ρ ∈ R. The claim then follows by applying the results on uniformly parabolic

quasilinear equations obtained in [26] (see also section 3.1.1 in [30] for a review of these

results) to the initial value problem ∂tρ = ∆ΣΦ̃(ρ) with initial condition ρ(0, ·) ≡ ρ0, for

each k ≥ 1. Finally the strict inequalities in the left hand sides of (3.31) and (3.32) are

justified by the strong comparison principle for uniformly parabolic quasilinear equations

as stated in section 3.1.1, p. 31 of [30]. �
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3.3 Application of the Relative Entropy Method

Let {µN0 ∈ PMd
N} be an initial entropy local equilibrium of profile ρ0 and let µNt :=

µN0 S
N
tN2 ∈ PMd

N , t ∈ I, denote the evolution of the initial distribution µN0 under the

diffusively rescaled transition semigroup of the ZRP. Before proceeding the proof we

introduce some notation that will be used in throughout the proof and give a simple

bound on the entropy production ∂tH(µNt |νNρt(·)). For each a ∈ (0, ρc) and ε > 0 we

denote by ψN ;a
t the Radon-Nikodym derivative of νNρt(·) with respect to νNa , that is we

set

ψN ;a
t :=

dνNρt(·)

dνNa
.

Since the measures involved are product measures we can easily obtain an explicit ex-

pression for ψN ;a
t . We have

ψN ;a
t (η) =

∏
x∈TdN

dν1
ρt(x/N)

dν1
a

(ηx) =
∏
x∈TdN

Z(Φ(a))Φ(ρt(x/N))ηx

Z(Φ(ρt(x/N)))Φ(a)ηx
.

Setting

Φa(β) :=
Φ(β)

Φ(a)
and Za(β) :=

Z(Φ(β))

Z(Φ(a))
,

we can write ψN,ε;at as

ψNt =
∏
x∈TdN

Φa(ρt(x/N))ηx

Za(ρt(x/N))
= exp

{ ∑
x∈TdN

[
ηx log Φa

(
ρt(x/N)

)
− logZa

(
ρt(x/N)

)]}
.

Next we set fNt ≡ fN ;a
t the Radon-Nikodym derivative of µNt with respect to the

reference measure νNa :

fNt :=
dµNt
dνNa

.

Then
dµNt
dνNρt(·)

=
fNt
ψNt

for every a ∈ (0, ρc) and so if we denote by HN (t) the relative entropy of µNt with respect

to νNρt(·), that is

HN (t) := H(µNt |νNρt(·)),

then we have that

HN (t) =

∫
fNt
ψNt

log
fNt
ψNt

dνNρt(·) =

∫
fNt log

fNt
ψNt

dνNa . (3.33)

As we know the density fNt is a solution of the Kolmogorov equation ∂tf
N
t = N2L∗Nf

N
t ,

and as such it is a pointwise C1 in time function. Since the function ψNt is also obviously

C1 in time and does not vanish, the integrand in the right hand side of (3.33) is C1 in

time and therefore we can pass the differentiation inside the integral to get the following

upper bound on the entropy production:
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Lemma 3.3.1 Let a ∈ (0, ρc) be fixed. For every t ≥ 0 we have

∂tHN (t) =

∫
N2fNt LN log

fNt
ψNt

dνNa −
∫
∂tψ

N
t

ψNt
fNt dν

N
a

≤
∫

1

ψNt

{
N2L∗Nψ

N
t − ∂tψNt

}
dµNt ,

where L∗N denotes the adjoint of the generator LN in L2(νNa ).

ProofProof Since fNt is the solution of the Kolmogorov forward equation

∂tf
N
t = N2L∗Nf

N
t

fNt is sufficiently smooth we can pass the differentiation inside the integral in the equation

(3.33) expressing the entropy to get

∂tHN (t) =

∫
∂t

(
fNt log

fNt
ψNt

)
dνNa =

∫
∂tf

N
t log

fNt
ψNt

dνNa +

∫
fNt ∂t log

fNt
ψNt

dνNa

=

∫
N2(L∗Nf

N
t ) log

fNt
ψNt

dνNa +

∫
ψNt ∂t

( fNt
ψNt

)
dνNa

=

∫
N2(L∗Nf

N
t ) log

fNt
ψNt

dνNa +

∫
ψNt ∂tf

N
t − fNt ∂tψNt
ψNt

dνNa

=

∫
N2(L∗Nf

N
t ) log

fNt
ψNt

dνNa +

∫
∂tf

N
t dν

N
a −

∫
∂tψ

N

ψNt
fNt dν

N
a .

Now, the term
∫
∂tf

N
t dν

N
a vanishes since ∂tf

N
t = N2L∗Nf

N
t and νNa is an invariant

distribution and therefore

∂tHN (t) =

∫
N2fNt LN log

fNt
ψNt

dνNa −
∫
∂tψ

N
t

ψNt
fNt dν

N
a

which proves the equality stated in the lemma.

Next, by the elementary inequality

a(log b− log a) ≤ b− a, a, b > 0

which remains valid even with b = 0 under the convention log 0 = −∞, it follows that

hLN log h ≤ LNh

for any non-negative function h : Md
N −→ [0,∞). Using this inequality, we get∫

fNt LN log
fNt
ψNt

dνNa =

∫
ψNt

fNt
ψNt

LN log
fNt
ψNt

dνNa ≤
∫
ψNt LN

fNt
ψNt

dνNa

=

∫
(L∗Nψ

N
t )

fNt
ψNt

dνNa =

∫
L∗Nψ

N
t

ψNt
dµNt .

Combining this inequality with the already proved equality the lemma is proved. �
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Denoting by

H(t) := lim sup
N→∞

1

Nd
HN (t), t ∈ R+, (3.34)

the limiting entropy density, the main step in the application of the relative entropy

method is to use this upper bound on ∂tHN (t) to get an inequality of the form

H(t) ≤ H(0) +

∫ t

0

H(s)β(s)ds (3.35)

for a non-negative function β. Since H(0) = 0 by assumption, this implies by Gronwall’s

inequality that H(t) = 0 for all t ∈ R+ as required. Of course in order for Gronwall’s

inequality to be applicable, the function s 7→ H(s)β(s) must belong at least in L1
loc(R+).

Lemma 3.3.2 Let ρ : R+ × Td −→ [0, ρc) be a continuous function such that the

function in (3.2a) is in L2
loc(R+). If a sequence of initial distributions {µN0 } has rela-

tive entropy of order o(Nd) with respect to νNρ0(·), then the upper entropy H belongs in

L2
loc(R+), where

H(t) := sup
N∈N

1

Nd
H(µNt |νNρt(·)), t ∈ R+.

Proof According to proposition 2.6.2, the relative entropy inequality shows that the

sequence {µN0 ∈ PMd
N} satisfies the O(Nd)-entropy assumption. Using the relative

entropy inequality once again we prove that H ∈ L2
loc(R+). Indeed, given T > 0 we pick

ε > 0 such that ρc−ε is an upper bound of the set ρ([0, T ]×Td) and fix a ∈ (ρc−ε, ρc).
By the relative entropy inequality and proposition A.1.9.1 of [25], according to which

the function t 7→ H(µNt |νNa ) is non-increasing,

HN (t) ≤
(

1 +
1

γ

)
H(µN0 |νNa ) +

1

γ
log

∫ ( dνNa
dνNρt(·)

)γ
dνNa (3.36)

for all t ≥ 0 and all γ > 0. By similar computations in the previous step,

log

∫ ( dνNa
dνNρt(·)

)γ
dνNa =

∑
x∈TdN

{
γ log

Z
(
Φ(ρt(x/N)

)
)

Z(Φ(a))
+ Λa

(
γ log

Φ(a)

Φ(ρt(x/N))

)}
.

So if for each t > 0 we set

γ(t) :=
1

2

log ϕc
Φ(a)

log Φ(a)
Φ(mt)

,

where mt := minu∈Td ρt(u), then γ(t) log Φ(a)
Φ(ρt(x/N)) ≤

1
2 log ϕc

Φ(a) for all (t, x) ∈ R+×TdN ,

and by (3.36) for all t ∈ [0, T ]

H(t) ≤
(

1 +
1

γ(t)

)
C(a) + log

Z(Φ(ρc − ε))
Z(Φ(a))

+
1

γ(t)
logZ

(√
ϕcΦ(a)

)
.

Since the function in (3.2a) is in L2
loc(R+), the right hand side above is in L2([0, T ]). �
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The bound of lemma 3.3.1 on the entropy production can be estimated using the

explicit formula of ψNt . A simple computation of the action of the adjoint of the generator

LN on ψNt shows that

L∗Nψ
N
t

ψNt
=

∑
x,y∈TdN

[Φ
(
ρ(t, y/N)

)
Φ
(
ρ(t, x/N)

) − 1
]
g
(
η(x)

)
p(x− y).

This is well defined since ρt is strictly positive for all t > 0 even if the initial profile takes

the value zero not identically. On the other hand, the sum

∑
x,y∈TdN

[Φ
(
ρ(t, y/N)

)
Φ
(
ρ(t, x/N)

) − 1
]
Φ
(
ρ(x/N)

)
p(x− y)

obviously vanishes and therefore we can write that

N2LNψ
N
t

ψNt
= N2

∑
x,y∈TdN

[Φ
(
ρ(t, y/N)

)
Φ
(
ρ(t, x/N)

) − 1
][
g
(
η(x)

)
− Φ

(
ρ(t,

x

N
)
)]
p(x− y). (3.37)

Proposition 3.3.1 (Taylor’s Theorem) Let f : Rd −→ R be a Ck+θ function for some

k ∈ N, 0 < θ ≤ 1. Then for all x, h ∈ Rd we have that

Rk(x, h) := f(x+ h)−
∑
|α|≤k

1

α!
∂αf(x)hα

= k

∫ 1

0

∑
|α|=k

1

α!
[∂αf(x+ sh)− ∂αf(x+ h)]hα(1− s)k−1ds

+
∑
|α|=k

1

α!
[∂αf(x+ h)− ∂αf(x)]hα.

Furthermore

sup
x∈Rd

|Rk(x, h)| ≤ 2
√
d
‖Dkf‖θ
k!

‖h‖k+θ,

where ‖Dkf‖θ := max|α|=k ‖∂αf‖θ and ‖ · ‖θ is the θ-Holder semi-norm. In particular

sup
x∈Rd

|Rk(x, h)| ≤ O(|h|k+θ) ≤ o(|h|k).

Since Φ(ρt) is C2+θ for some θ > 0 we have by this Taylor expansion that

Φ
(
ρt
( y
N

))
− Φ

(
ρt
( x
N

))
=

1

N
〈∇[Φ(ρt)]

( x
N

)
, y − x〉+

1

2N2
H2[Φ(ρt)]

( x
N

)
(y − x)

+Rt
( x
N
,
y − x
N

)
,

where H2 is the Hessian form and the remainder Rt satisfies

sup
u∈Td

|Rt(u, h)| ≤
√
d‖D2[Φ(ρt)]‖C0,θ‖h‖2+θ.
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Since Φ(ρt) is smooth and since the elementary step distribution p has mean zero,

we have by the second order Taylor expansion for stated above that∑
y∈TdN

[
Φ
(
ρt
( y
N

))
− Φ

(
ρt
( x
N

))]
p(y − x) =

1

N2
∆Σ[Φ(ρt)]

( x
N

)
+Rt

( x
N

)
for all x ∈ TdN , where the remainder Rt satisfies ‖Rt‖∞ ≤ CN−(2+θ)

∥∥D2[Φ(ρt)]
∥∥
θ

for

some constant C > 0 depending only on p ∈ PZd and the dimension d:∣∣R̄t( x
N

)∣∣ ≤
∑
y∈TdN

∣∣Rt( x
N
,
y − x
N

)
∣∣p(y − x)

≤
√
d‖D2[Φ(ρt)]‖θ

1

N2+θ

∑
y∈Zd

‖y − x‖2+θp(y − x)

=: CN−(2+θ)
∥∥D2[Φ(ρt)]

∥∥
θ
.

Therefore

N2[LN ]∗ψNt
ψNt

= N2
∑

x,y∈TdN

[
Φ
(
ρt(y/N)

)
− Φ

(
ρt(x/N)

)][ g
(
η(x)

)
Φ
(
ρ(t, x/N)

) − 1
]
p(x− y)

=
∑
x∈TdN

[
∆Σ[Φ(ρt)]

( x
N

)
+N2R̄t

( x
N

)][ g
(
η(x)

)
Φ
(
ρ(t, x/N)

) − 1
]

=
∑
x∈TdN

(∆Σ[Φ(ρt)]

Φ(ρt)

)( x
N

)[
g(η(x))− Φ(ρt(x/N))

]
+
∑
x∈TdN

N2R̄t(x/N)

Φ
(
ρ(t, x/N)

)[g(η(x)
)
− Φ

(
ρ(t, x/N)

)]
,

and for the remainder

rN (t) :=
∑
x∈TdN

N2R̄t(x/N)

Φ
(
ρ(t, x/N)

)[g(η(x)
)
− Φ

(
ρ(t, x/N)

)]
we have that

|rN (t)| ≤
∑
x∈TdN

∣∣∣∣ N2R̄t(x/N)

Φ
(
ρ(t, x/N)

) ∣∣∣∣∣∣∣g(η(x)
)
− Φ

(
ρ(t, x/N)

)∣∣∣
≤ N2 ‖g‖∞ + Φ(ρc − ε)

Φ(mt)

∑
x∈TdN

∣∣R̄t(x/N)
∣∣

≤ C ·
(
‖g‖∞ + Φ(ρc − ε)

)
Nd−θ

∥∥D2[Φ(ρt)]
∥∥
θ

Φ(mt)
.

Therefore we can write (3.37) as

N2L
∗
Nψ

N
t

ψNt
=
∑

x∈TdN

(∆Σ[Φ(ρt)]

Φ(ρt)

)( x
N

)[
g(η(x))− Φ(ρt(x/N))

]
+ rN (t)
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where for the remainder term rN (t) we have

|rN (t)| ≤ C̄Nd−θ

∥∥D2[Φ(ρt)]
∥∥
θ

Φ(mt)
, (3.38)

with C̄ := C(‖g‖∞ + Φ(ρc − ε)).
Furthermore, using the fact that ρ is a solution of ∂tρ = ∆xΦ(ρ) and the equality

R(ϕ) = ϕZ′(ϕ)
Z(ϕ) , 0 ≤ ϕ ≤ ϕc, we get that

∂tψ
N
t

ψNt
= ∂t(logψNt ) = ∂t

∑
x∈TdN

[
η(x) log Φa

(
ρt(x/N)

)
− logZa

(
ρt(x/N)

)]
=

∑
x∈TdN

∆Σ[Φ(ρt)]

Φ(ρt)

( x
N

)
Φ′
(
ρt
( x
N

))[
η(x)− ρt

( x
N

)]
and therefore by the calculations made so far, by lemma 3.3.1 and the one block estimate

we have the following upper bound for the entropy.

Lemma 3.3.3 For all t > 0 we have

HN (t) ≤ HN (0) +

∫ t

0

∫ ∑
x∈TdN

(∆[Φ(ρs)]

Φ(ρs)

)( x
N

)
M
(
η`s(x), ρs(x/N)

)
dµNs ds+ o`(N

d),

where M : R+ ×R+ −→ R is the function given by the formula

M(λ, ρ) = Φ(λ)− Φ(ρ)− Φ′(ρ)(λ− ρ)

and the term o`(N
d) satisfies

lim sup
`→∞

lim sup
N→∞

1

Nd
o`(N

d) = 0.

Proof By lemma 3.3.1 and the calculations performed so far we have that

HN (t) ≤ HN (0) +

∫ t

0

rN (s)ds

+

∫ t

0

∫ ∑
x∈TdN

∆[Φ(ρs)]

Φ(ρs)

( x
N

){
g(η(x))− Φ(ρs(x/N))

−Φ′
(
ρs
( x
N

))[
η(x)− ρs

( x
N

)]}
dµNs ds. (3.39)

By the bound (3.38) on the remainder and the L2
loc(R+)-integrability of the function

defined in (3.2b) it follows that
∫ t

0

∫
rN (s)dµNs ds = o(Nd) for each t > 0. So we deal

next with the last term in the right hand side of inequality (3.39). This term is equal to∫ t

0

∫ ∑
x∈TdN

∆Σ[Φ(ρs)]

Φ(ρs)

( x
N

){
g(η(x))− Φ(ρs(x/N))

}
dµNs ds

−
∫ t

0

∫ ∑
x∈TdN

∆Σ[Φ(ρs)]

Φ(ρs)

( x
N

)
Φ′
(
ρs
( x
N

))[
η(x)− ρs

( x
N

)]
dµNs ds
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Since ∆Σ[Φ(ρ)]
Φ(ρ) ∈ L2(0, T ;C(Td)), T > 0, by (3.2b) we can apply the one block estimate

with respect to functions in L1(0, T ;C(Td)) to write the first term as∫ t

0

∫ ∑
x∈TdN

∆Σ[Φ(ρs)]

Φ(ρs)

( x
N

){
Φ(η`(x))− Φ(ρs(x/N))

}
dµNs ds+ o`(N

d).

On the other hand a simple change of variables shows that we can write the second term

as ∫ t

0

∫ ∑
x∈TdN

∆Σ[Φ(ρs)]

Φ(ρs)

( x
N

)
Φ′
(
ρs
( x
N

))[
η`(x)− ρs

( x
N

)]
dµNs ds+ o(Nd),

and the proof is complete. �

In this way, the macroscopic Taylor expansion of Φ(ρt) around the point x
N and the

one block estimate give a microscopic Taylor expansion of Φ(η`t (x)) around the point

ρt(x/N).

To simplify the notation, we set Gt : Td ×R+ −→ R, t ≥ 0, the function defined by

Gt(u, λ) =
∆Σ[Φ(ρt)]

Φ(ρt)
(u)M

(
λ, ρt(u)

)
. (3.40)

Then we can rewrite the bound of the last lemma as

HN (t) ≤
∫ t

0

∫ ∑
x∈TdN

Gs

( x
N
, η`(x)

)
dµNs ds+ o`(N

d),

where we have also taken into account the fact the HN (0) = o(Nd) by assumption. By

the relative entropy inequality we get that∫ ∑
x∈TdN

Gs

( x
N
, η`(x)

)
dµNs ≤ 1

γs
HN (s) +

1

γs
log

∫
e
γs

∑
x∈Td

N
Gs(

x
N ,η

`(x))
dνNρs(·)

for any positive measurable function (0,∞) 3 s 7→ γs ∈ (0,∞) and each s > 0. Dividing

by Nd and taking lim sup first as N →∞ and then as `→∞ we get that

H(t) ≤ lim sup
N→∞

1

γsNd

∫ t

0

HN (s)ds

+ lim sup
`→∞

lim sup
N→∞

1

γsNd

∫ t

0

log

∫
e
γs

∑
x∈Td

N
Gs(

x
N ,η

`(x))
dνNρs(·)ds,

Then if the function γ can be chosen so that β := 1/γ ∈ L2
loc(R+), we can use lemma

3.3.2 to pass the lim sup as N → ∞ inside the time integral of s 7→ HN (s)β(s)/Nd to

get Gronwall’s inequality (3.35) but with the term

lim sup
`→∞

lim sup
N→∞

1

Nd

∫ t

0

1

γs
log

∫
e
γs

∑
x∈Td

N
Gs(

x
N ,η

`(x))
dνNρs(·)ds (3.41)

added to its right hand side.

So the rest of the proof is devoted to proving that the function β ≡ 1/γ ∈ L2
loc(R+)

163



can be chosen so that for each time t > 0 the term in (3.41) is non-positive. We begin

by noting that the function G : R+ × Td × R+ −→ R defined in (3.40) satisfies the

inequality

supu∈Td |Gt(u, λ)| ≤ C · Ct · (1 + λ) for all t, λ > 0 (3.42)

where

C =
{

Φ(ρc − ε) + max
r∈[0,ρc−ε]

rΦ′(r)
}
∨ 2‖g′‖∞ < +∞,

and

Ct :=
∥∥∥∆ΣΦ(ρt)

Φ(ρt)

∥∥∥
∞
. (3.43)

For eachK > 1 we denote by γK : (0,∞) −→ (0,∞) the function γKt := 1
KCCt

log ϕc
Φ(ρc−ε) .

Since the function in (3.2b) is in L2
loc(R+), the function βK := 1/γK belongs in L2

loc(R+).

Using inequality (3.42) and the L2
loc(R+)-integrability of βK it is straightforward to check

that the family {hN,`K }(N,`)∈N of the functions

hN,`K (t) =
1

γKt N
d

log

∫
e
γKt

∑
x∈Td

N
Gt(

x
N ,η

`(x))
dνNρt(·), t ≥ 0

is dominated by an L2
loc(R+)-function for each K > 1. Indeed, on one hand we have by

Jensen’s inequality that for all t, γ ≥ 0 and all N ∈ N, ` ∈ Z+ that

hN,`K (t) ≥ 1

Nd

∑
x∈TdN

∫
Gt(

x

N
, η`(x))νNρt(·) ≥ −

C · Ct
Nd

∑
x∈TdN

∫ (
1 + η`(x)

)
dνNρt(·)

= −C · Ct −
C · Ct
Nd

∫ ∑
x∈TdN

η(x)dνNρt(·) = −C · Ct −
C · Ct
Nd

∫ ∑
x∈TdN

ρt(x/N)

≥ −C · Ct(1 + ρc − ε),

which shows that hN,`K is bounded below by an L2
loc(R+)-function uniformly over all

N, ` ∈ N. On the other hand, for all N ∈ N, ` ∈ Z+ we have that

hN,`K (t) ≤ 1

γKt N
d

log

∫
e
γKt

∑
x∈Td

N
C·Ct(1+η`(x))

dνNρt(·)

= C · Ct +
1

γKt N
d

log

∫
e
γKt C·Ct

∑
x∈Td

N
η(x)

dνNρt(·)

= C · Ct +
βKt
Nd

∑
x∈TdN

Λρt( xN )

( 1

K
log

ϕc
Φ(ρc − ε)

)
.

As we have seen, the logarithmic moment generating function Λρt(x/N) has proper do-

main DΛρt(x/N)
⊇ (−∞, bρt(x/N)) where bρ := log ϕc

Φ(ρ) for all ρ ∈ (0, ρc), and so since

ρ(t, u) ≤ ρc − ε for all (t, u) ∈ R+ ×Td we have that

(−∞, bρc−ε) ⊆ DΛρt( xN )
, ∀(t, x) ∈ R+ ×TdN .
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Therefore, for any K > 1 we have that Λρt(x/N)(
1
K log ϕc

Φ(ρc−ε) ) < +∞ for all (t, x) ∈ TdN
and in particular,

Λρt(x/N)

( 1

K
log

ϕc
Φ(ρc − ε)

)
= log

Z
(
Φ(ρt(x/N))e

1
K log ϕc

Φ(ρc−ε)
)

Z(Φ(ρt(x/N)))

≤ logZ(Φ(ρc − ε)1− 1
K ϕ

1
K
c ) =: AK < +∞

for all (t, x) ∈ [0, T ]×Td. It follows that

hN,`K (t) ≤ C · Ct +AKβ
K
t

for all t ∈ [0, T ], N ∈ N, ` ∈ Z+, and so {hN,`K } is also bounded above by an L2
loc-function

uniformly over all N, ` ∈ N. This permits to pass the superior limits as N → ∞ and

then `→∞ inside the time integral in (3.41) for each K > 1. Consequently, in order to

complete the proof it suffices to show that we can choose K > 1 so that for each t > 0,

lim sup
`→∞

lim sup
N→∞

1

Nd
log

∫
e
γKt

∑
x∈Td

N
Gt(

x
N ,η

`(x))
dνNρt(·) ≤ 0. (3.44)

This inequality follows from the estimate of the following lemma, which is a gener-

alization of lemma 6.1.8 in [25] to the case of finite critical density ρc < +∞. It is a

consequence of Cramer’s theorem for the occupation variables η(x), x ∈ Zd, under the

grand canonical ensemble ν∞ρ ∈ PMd
∞, ρ ∈ [0, ρc], and the Laplace-Varadhan principle.

Lemma 3.3.4 Let ρ : Td −→ (0, ρc − ε), ε ∈ (0, ρc), be a continuous profile and let

G : Td ×R+ −→ R be a continuous function such that

sup
u∈Td

|G(u, λ)| ≤ C0 + C1λ for all λ ∈ R+

for some constants C0 ≥ 0 and C1 ∈ [0, 1
2 log ϕc

Φ(ρc−ε) ). Then

lim sup
`→∞

lim sup
N→∞

1

Nd
log

∫
e
∑
x∈Td

N
G( xN ,η

`(x))
dνNρ(·) ≤

∫
Td

sup
λ≥0

{
G(u, λ)− 1

2
Λ∗ρ(u)(λ)

}
du.

Proof For fixed ` ∈ Z+, the mean η`(0) is a function of the random vector
(
η(x)|x ∈ Λd`

)
.

So the random variables η(x)` and η(y)` are independent whenever |x− y|TdN ≥ 2`+ 1.

We will take advantage of this fact to decompose the expectation with respect to the

product measure νNρ(·) to a product of simpler terms. We will first take the limit as

N →∞. So we fix ` ∈ Z+ and use Euclidean division to write each N ∈ N uniquely as

N = qN,`(2`+ 1) + rN,`, rN,` ∈ {0, 1, . . . , 2`}.

Furthermore, we set N` := N − rN,` = qN,`(2`+ 1) the largest integer less or equal to N

that is divided by (2`+ 1) and we first decompose the sum in the exponential as∑
x∈TdN

G
( x
N
, η`(x)

)
=

∑
x∈TdN`

G
( x
N
, η`(x)

)
+

∑
x∈TdN\TdN`

G
( x
N
, η`(x)

)
.
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Since C1 < log ϕc
Φ(ρc−ε) we can choose p > 1 close enough to 1 so that pC1 < log ϕc

Φ(ρc−ε) .

Then by the Cauchy-Schwartz inequality we have that

J(N, `) :=
1

Nd
log

∫
e
∑
x∈Td

N
G( xN ,η

`(x))
dνNρ(·)

≤ 1

2Nd
log

∫
e

2′
∑
x∈Td

N`

G( xN ,η
`(x))

dνNρ(·)

+
1

2Nd
log

∫
e

2
∑
x∈Td

N
\Td
N`

G( xN ,η
`(x))

dνNρ(·).

We will show first that the second summand in the right hand side is non-positive in the

limit as N →∞. Indeed, we have that∑
x∈TdN\TdN`

G
( x
N
, η`(x)

)
≤

∑
x∈TdN\TdN`

[C0 + C1η
`(x)]

= (Nd −Nd
` )C0 + C1

∑
x∈TdN

η(x)− C1

∑
x∈TdN`

∑
z∈Λd`

η(x+ z)

≤ (Nd −Nd
` )C0 + C1

∑
x∈TdN\TdN`−2`

η(x),

where obviously

Nd −Nd
` = O(Nd−1) and ]TdN \TdN`−2` = Nd − (N` − 2`)d = O(Nd−1).

Therefore

J2(N, `) :=
1

2Nd
log

∫
e

2
∑
x∈Td

N
\Td
N`

G( xN ,η
`(x))

dνNρ(·)

≤ Nd −Nd
`

Nd
C0 +

1

2Nd

∑
x∈TdN\TdN`−2`

Λρ(x/N)(2C1)

≤ Nd −Nd
`

Nd
C0 +

Nd − (N` − 2`)d

2Nd
logZ

(
Φ(ρc − ε)2C1

)
,

where logZ
(
Φ(ρc − ε)2C1

)
< +∞ since C1 <

1
2 log ϕc

Φ(ρc−ε) . It follows that

lim sup
N→∞

J2(N, `) ≤ 0.

For the first term

J1(N, `) :=
1

2Nd
log

∫
e

2
∑
x∈Td

N`

G( xN ,η
`(x))

dνNρ(·)

we decompose the sum in the exponential as∑
x∈TdN`

G
( x
N
, η`(x)

)
=
∑
x∈Λd`

∑
y∈EN,`x

G
(x+ (2`+ 1)y

N
, η`
(
x+ (2`+ 1)y

))
,
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where we have set EN,`x := {y ∈ TdN : x + (2` + 1)y ∈ TdN`}. Then by the generalized

Holder inequality and the independence of the random variables {η`(x+ (2`+ 1)y)|y ∈
EN,`x }, we have that

J1(N, `) ≤ 1

2Nd
log

∏
x∈Λd`

(∫
e

∑
y∈EN,`x

2(2`+1)dG(
x+(2`+1)y

N ,η`(x+(2`+1)y))

dνNρ(·)

) 1

(2`+1)d

=
1

2(2`+ 1)dNd

∑
x∈Λd`

log

∫
e

∑
y∈EN,`x

2(2`+1)dG(
x+(2`+1)y

N ,η`(x+(2`+1)y))

dνNρ(·)

=
1

2(2`+ 1)dNd

∑
x∈Λd`

∑
y∈EN,`x

log

∫
e2(2`+1)dG(

x+(2`+1)y
N ,η`(x+(2`+1)y))dνNρ(·)

=
1

2(2`+ 1)dNd

∑
x∈TdN

log

∫
e2(2`+1)dG( xN ,η

`(x))dνNρ(·)

− 1

2(2`+ 1)dNd

∑
x∈TdN\TdN`

log

∫
e2(2`+1)dG( xN ,η

`(x))dνNρ(·)

Now, since the profile ρ is continuous, the sequence νNρ(·) is a local equilibrium of

profile ρ, that is for each macroscopic point u ∈ Td we have that τ[Nu]ν
N
ρ(·) −→ ν∞ρt(u)

weakly in PMd
∞, and therefore on one hand the first term in the upper bound for J1(N, `)

given above converges as N →∞ to

1

2(2`+ 1)d

∫
Td

log

∫
e2(2`+1)dG(u,η`(0))dν∞ρ(u)du.

On the other hand, as we will show the lim sup of the second term as N → ∞ is

non-positive. Indeed,

J12(N, `) :=
1

2(2`+ 1)dNd

∑
x∈TdN\TdN`

log

∫
e2(2`+1)dG( xN ,η

`(x))dνNρ(·)

≤ 1

2(2`+ 1)dNd

∑
x∈TdN\TdN`

log

∫
e2(2`+1)d(C0+C1η

`(x))dνNρ(·)

=
1

2(2`+ 1)dNd

∑
x∈TdN\TdN`

log

∫
e2(2`+1)dC1η

`(x)dνNρ(·) + C0
Nd −Nd

`

Nd

=
1

2(2`+ 1)dNd

∑
x∈TdN\TdN`

∑
y:|y−x|≤`

Λρ( yN )(2C1) + C0
Nd −Nd

`

Nd

≤
(
C0 +

1

2
logZ(e2C1Φ(ρc − ε))

)Nd −Nd
`

Nd
,

which obviously tends to zero since logZ(e2C1Φ(ρc − ε)) is finite by our assumption on

the constant C1.
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It follows by the proof so far that

lim sup
N→∞

1

Nd
log

∫
e
∑
x∈Td

N
G( xN ,η

`(x))
dνNρ(·)

≤ 1

2(2`+ 1)d

∫
Td

log

∫
e2(2`+1)dG(u,η`(0))dν∞ρ(u)du. (3.45)

We will first calculate the limit as `→∞ of the integrand for each fixed u ∈ Td in this

last term and then we will show that we can exchange the limit with integral. Accord-

ing to the Laplace-Varadhan theorem, if we could show that 2G(u, ·) is exponentially

uniformly integrable with respect to the sequence {η`(0)∗ν
∞
ρ(u)}`∈Z+ , i.e. that

lim
M→∞

lim
`→∞

1

(2`+ 1)d
log

∫
e(2`+1)d2G(u,η`(0))1{G(u,η`(0))≥M}dν

∞
ρ(u) = −∞,

it would follow by the Laplace-Varadhan theorem that for each fixed u ∈ Td,

lim
`→∞

1

(2`+ 1)d
log

∫
e2(2`+1)dG(u,η`(0))dν∞ρ(u) = sup

λ≥0

{
2G(u, λ)− Λ∗ρ(u)(λ)

}
.

For all M > 0 we obviously have that

e(2`+1)d2G(u,η`(0))1{G(u,η`(0))≥M} ≤ e2(2`+1)d(C0+C1η
`(0))1{C0+C1η`(0)≥M}

and therefore setting CM := M−C0

C1
and `? := 2`+ 1 by our assumption on the function

G and Holder’s inequality we have that for all p > 1,∫
e`
d
?2G(u,η`(0))1{G(u,η`(0))≥M}dν

∞
ρ(u) ≤

∫
e2`d?(C0+C1η

`(0))1{η`(0)≥CM}dν
∞
ρ(u)

≤ e`
d
?2C0ν∞ρ(u)(η

`(0) ≥ CM )
1
q ×

×
(∫

e`
d
?2pC1η

`(0)dν∞ρ(u)

) 1
p

,

where q is the conjugate exponent of p. But we obviously have that

log

∫
e`
d
?2pC1η

`(0)dν∞ρ(u) =
∑
|y|≤`

log

∫
e2pC1η(y)dν∞ρ(u) = (2`+ 1)dΛρ(u)(2pC1),

and by the assumption on the constant C1 we can choose p close enough to 1 so that

2pC1 < log ϕc
Φ(ρc−ε) in which case Λρ(u)(2pC1) < +∞. It follows that

lim sup
`→∞

1

(2`+ 1)d
log

∫
e(2`+1)d2G(u,η`(0))1{G(u,η`(0))≥M}dν

∞
ρ(u)

≤ 2C0 +
1

p
Λρ(u)(2pC1) +

1

q
lim sup
`→∞

1

(2`+ 1)d
log ν∞ρ(u)(η

`(0) ≥ CM ),

where the first two terms in the sum in the right hand side are finite, and so in order to

prove the required exponential uniform integrability it suffices to show that

lim
M→∞

lim sup
`→∞

1

(2`+ 1)d
log ν∞ρ(u)(η

`(0) ≥ CM ) = −∞.
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But this is seen easily since on one hand we have that CM −→ ∞ as M → ∞ and on

the other hand by the large deviations principle for the family {η(x)}x∈Zd we have that

lim sup
`→∞

1

(2`+ 1)d
log ν∞ρ(u)(η

`(0) ≥ CM ) ≤ − inf
λ≥CM

Λ∗ρ(u)(λ)
M→+∞−→ −∞,

since the function Λρ(u) is increasing on [ρ(u),∞) and tends to ∞ as λ→∞.

It remains to show that we can exchange the limit with the integral. So we denote

by h` : Td −→ R the function given by

h`(u) =
1

(2`+ 1)d
log

∫
e2(2`+1)dG(u,η`(0))dν∞ρ(u),

which as we have shown converges pointwise to the function supλ≥0{2G(·, λ)−Λρ(·)(λ)}.
By our assumption on the function G we have on one hand that

h`(u) ≤ 1

(2`+ 1)d
log

∫
e2(2`+1)d[C0+C1η

`(0)]dν∞ρ(u)

= 2C0 +
1

(2`+ 1)d
log

∫
e2C1

∑
|y|≤` η(y)dν∞ρ(u)

= 2C0 +
1

(2`+ 1)d

∑
|y|≤`

log

∫
e2C1η(y)dν∞ρ(u) = 2C0 + Λρ(u)(2C1)

≤ 2C0 + logZ
(
Φ(ρc − ε)e2C1

)
< +∞,

while on the other hand we have by Jensen’s inequality that

h`(u) ≥
∫

2G(u, η`(0))dν∞ρ(u) ≥ −2C0 − 2C1

∫
η`(0)dν∞ρ(u) = −2C0 − 2C1ρ(u)

≥ −2C0 − 2C1 · (ρc − ε).

Consequently we have a bound for the sequence {h`} uniform over ` ∈ Z+ and u ∈ Td
and an application of the bounded convergence theorem, completes the proof. �

We recall that the function G : [0, T ] × Td × R+ −→ R defined in (3.40) satisfies

the bound (3.42). Therefore if we choose K > 2 then the function γKt Gt satisfies the

assumptions of lemma 3.3.3 for each fixed t > 0, and so for each K > 2 the term in

(3.44) is bounded above by∫
Td

sup
λ>0

{
γKt Gt(u, λ)− 1

2
Λ∗ρt(u)(λ)

}
du.

To complete the application of the relative entropy method it remains to show that, by

enlarging K > 2 if necessary, this last term is non-positive for all t > 0.

We note that this would follow if we had a bound of the form

K(ε) := sup
ρ∈(0,ρc−ε]

λ≥0

|M(λ, ρ)|
Λ∗ρ(λ)

< +∞. (3.46)

Indeed, since for (λ, ρ) ∈ R+×(0, ρc−ε] we have that Λ∗ρ(λ) = 0 iff λ = ρ iff M(λ, ρ) = 0,

we would then have that

|M(λ, ρ)| ≤ K(ε)Λ∗ρ(λ),
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for all (λ, ρ) ∈ R+ × (0, ρc − ε], and so we would have that

γKt Gt(u, λ) ≤ γKt Ct|M(λ, ρt(u))| ≤ γKt CtK(ε)Λ∗ρt(u)(λ) =
K(ε)

KC
log

ϕc
Φ(ρc − ε)

Λ∗ρt(u)(λ)

for all (u, λ) ∈ Td × R+. Then by choosing K > 2 large enough so that in addition
K(ε)
KC log ϕc

Φ(ρc−ε) <
1
2 , it would follow that the right hand side in the inequality of the

above corollary is non-positive, as required. The bound (3.46) is proved in the following

lemma which is a generalization of lemma 6.1.10 in [25].

Lemma 3.3.5 For every ε > 0,

sup
(λ,ρ)∈(0,∞)×(0,ρc−ε]

|M(λ, ρ)|
Λ∗ρ(λ)

< +∞.

Proof We first choose δ ∈ (0, ε2 ). We decompose the set (0,∞) × (0, ρc − ε] in two

disjoint subsets (λ v ρ and λ � ρ) and prove the claim on each. We start with the

region λ v ρ:

E1 :=
{

(λ, ρ) ∈ R+ × (0, ρc − ε]
∣∣ 0 < λ ≤ ρc − ε+ δ

}
,

where we recall that if ρc = +∞, ρc − ε is to be interpreted as 1/ε. By the Taylor

expansion of Φ around the point ρ ∈ (0, ρc), we have M(λ, ρ) =
∫ λ
ρ

Φ′′(r)(λ − r)dr for

all λ, ρ ∈ (0, ρc). So since {λ|(λ, ρ) ∈ E1 for some ρ ∈ (0, ρc − ε]} ⊆ (0, ρc),

|M(λ, ρ)| ≤ A1

2
(λ− ρ)2 for all (λ, ρ) ∈ E1

where A1 := sup0≤r≤ρc−ε+δ |Φ
′′(r)| < +∞. For the denominator we note that the rate

functional Λ∗ρ is C1 on (0,∞) and C2 on (0, ρc) with

d

dλ
Λ∗ρ(λ) = log

Φ(λ ∧ ρc)
Φ(ρ)

, λ > 0,
d2

dλ2
Λ∗ρ(λ) =

Φ′(λ)

Φ(λ)
, λ ∈ (0, ρc).

Since Λ∗ρ and its derivative vanish at ρ, by the Taylor expansion of Λ∗ρ around ρ ∈ (0, ρc)

we have that Λ∗ρ(λ) =
∫ λ
ρ

(Λ∗ρ)
′′(r)(λ− r)dr for all λ ∈ (0, ρc) and therefore

Λ∗ρ(λ) ≥ B1

2
(λ− ρ)2 for all (λ, ρ) ∈ E1,

where B1 := inf0<r≤ρc−ε+δ(Λ
∗
ρ)
′′(r) > 0. Combining these estimates, we get the required

bound on the region E1.

We turn now to the set

E2 =
{

(λ, ρ) ∈ (0,∞)× (0, ρc − ε]
∣∣λ > ρc − ε+ δ

}
.

Note that for all (λ, ρ) ∈ E2 we have that λ > ρ+ δ. Recalling that Φ is Lipschitz with

Lipschitz constant ≤ ‖g′‖∞, we get an upper bound for the numerator

|M(λ, ρ)| ≤ 2‖g′‖∞λ for all (λ, ρ) ∈ E2.
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Since Λ∗ρ is convex as the supremum of linear functions we also have

Λ∗ρ(λ) ≥ A2 +B2 · (λ− ρc − ε+ δ) for all (λ, ρ) ∈ E2,

where A2 = infρ∈(0,ρc−ε] Λ∗ρ(ρc − ε+ δ) > 0 and B2 = infρ∈(0,ρc−ε](Λ
∗
ρ)
′(ρc − ε+ δ) > 0.

The last two displays together imply the required bound on the region E2. This com-

pletes the proof of the lemma and the application of the relative entropy method. �
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Chapter 4

A Macroscopic Continuity

Equation for the

Symmetric Zero Range Process

In this section we mainly concentrate in the case of the symmetric nearest neighbor ZRPs

with bounded jump rates and we will prove that the laws of the triples (πN ,WN , σN )

of the empirical density, the empirical current and the empirical jump rate respectively

are concentrated on paths (π,W, σ) satisfying the continuity equation

∂tπ = −divW = ∆σ

in the sense of distributions where for (almost) all t ≥ 0 πt is finite non-negative measure,

Wt is a vector-valued measure absolutely continuous with respect to Lebesgue measure

and σt ∈ H1(Td). More precisely we prove the following

Proposition 4.0.2 Suppose the local jump rate g is bounded and let µN0 ∈ P3M
d
N be a

sequence of initial distributions associated to the macroscopic profile µ0 ∈M+. Set

Ω := D(0, T ;M+(Td))× L∞w∗(0, T ;C1(Td;Rd)∗)× L∞w∗(0, T ;M(Td))

and consider the image Rµ
N
0 ∈ PΩ of the law of the diffusively rescaled ZRP starting from

µN0 via the triple (πN ,WN , σN ). Then the sequence {RµN0 }N∈N ⊆ PΩ is sequentially

relatively compact in the weak topology of PΩ. Furthermore, any limit point R∞ of the

sequence {RµN0 } is concentrated on trajectories (π,W, σ) such that:

(a) π ∈ C(R+;M+) and π0 = µ0.

(b) σt � mTd , ‖σt‖L∞(Td) ≤ ϕc a.s. for all 0 ≤ t ≤ T .

(c) Wt ∈M(Td;Rd) and Wt � mTd for a.s. all t ≥ 0, and

(d) The continuity equation

∂tπ = −divWt = ∆xσ (4.1)

holds in the sense of distributions.
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The fact that Wt ∈ M(Td;Rd) and Wt � mTd for a.s. all t ≥ 0 follows from the

following regularity result which is worth stating in its own right.

Proposition 4.0.3 Let {µN0 ∈ P1M
d
N} be a sequence of initial distributions satisfying

the O(Nd)-entropy assumption. The third marginal Qg of Rµ
N
0 on L∞w∗(0, T ;M+) is

concentrated on paths σ such that there exist L2((0, T )×Td) functions denoted by ∂jσ,

j = 1, . . . , d, satisfying∫ T

0

∫
Td

∂jHt(x)σ(t, x)dxdt = −
∫ T

0

∫
Td

Ht(x)∂jσ(t, x)dxdt

and ∫ T

0

∫
Td

‖∇σ(t, x)‖2

σ(t, x)
dxdt < +∞. (4.2)

In particular Qg
{
σ
∣∣σt ∈ H1(Td) a.s. ∀ t ∈ [0, T ]

}
= 1.

This regularity result is an adaptation of the results in section 5.7 of [25].

4.1 The Law of Large Numbers

This section contains the proof of the relative compactness of the distribution of the

empirical density. The arguments rely on the analysis of the martingales associated to

the speeded up ZR process (ηNtN2) through the martingale problem and appropriately

chosen functions on R+ ×Md
N . The description of these martingales is contained in

chapter A.2 in the appendix for Markov jump processes. We recall here that given any

polish space M the space of all cadlag (i.e. right continuous and with left hand limits)

paths is denoted by D(R+;M). The set D(R+;M) when equipped with the Skorohod

metric becomes a polish space. Loosely speaking the Skorohod metric metrizes a kind of

uniform convergence, but with the difference that it allows for time reparametrizations

that converge to the identity to account of the possible jump discontinuities of the paths.

We review the basic facts on the Skorohod space in section A.1 in the appendix, mostly

without proofs. A detailed exposition of the Skorohod topology as well of criteria for

relative compactness of sets of laws on Skorohod spaces is contained in sections 3.5 to

3.10 of [14]. A more concise treatment of this subject, which contains almost all the

results on the Skorohod topology than we will use is contained in section 4.1 of [25]. Let

ηN := idD(R+,Md
N ) : ΩN −→ D(R+,M

d
N ), N ∈ N, be the sequence of the natural cadlag

symmetric ZR processes on the discrete toruses TdN , with common local rate function

g : Z+ −→ R+ and symmetric elementary transition probability p ∈ PZd, defined on

the probability kernel ΩN =
(
D(R+,M

d
N ),BD(R+,Md

N ), (P
η0

N )η0∈Md
N

)
. In this way, for

fixed N ∈ N the ZR process ηN = {ηNt }t≥0 consists of the natural evaluation maps

ηNt : D(R+,M
d
N ) −→Md

N ,

ηNt (η) = ηt, η = (ηt)t≥0 ∈ D(R+,M
d
N ),

and given any initial distribution µ ∈ PMd
N the distribution of the process ηN starting

from µ is

P
µ
N :=

∫
P
η0

N dµ(η0) ∈ PD(R+,M
d
N ).
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Recalling that η(x) : Md
N −→ Z+ denotes the natural projection at the site x ∈ TdN ,

given by

η(x)(η) = ηx, η = (ηx)x∈TdN ∈M
d
N

we set ηNt (x) = η(x) ◦ ηNt for all x ∈ TdN , N ∈ N.

In the hydrodynamic description of the ZR process we are interested in the empirical

distribution of the ZR process induced by the empirical embeddings πN : Md
N −→

M+(Td) given by

πNη =
1

Nd

∑
x∈TdN

ηNx δ xN .

To be more precise, since the empirical embeddings πN are continuous and injective they

induce a continuous injective map

π̄N : D(R+,M
d
N ) −→ D(R+,Md

+)

between the respective Skorohod spaces. In its turn, π̄N induces a map

π̄N∗ : PD(R+,M
d
N ) −→ PD(R+,Md

+)

between the respective spaces of distributions, and using this map we can consider

the distribution PµN :=
∫
P
η0

N dµ(η0) ∈ PD(R+,M
d
N ) of ηN starting from any initial

distribution µN ∈ PMd
N embedded in D(R+,Md

+) as the distribution

P̄
µN

N := π̄N∗ P
µN

N = π̄N∗

∫
P
η0

N dµ(η0) =

∫
π̄N∗ P

η0

N dµ(η0) ∈ PD(R+,Md
+).

The distribution P̄µ
N

N is the empirical distribution of the ZR process ηN starting from

µN ∈ PMd
N . In this way, given any sequence {µN ∈ PMd

N}N∈N we can regard the

sequence

P
µN

N ∈ PD(R+,M
d
N ), N ∈ N,

as living in a single space, namely in PD(R+,Md
+) by working with the sequence

P̄
µN

N := π̄N∗ P
µN

N ∈ PD(R+,Md
+), N ∈ N.

We notice next that the empirical distribution P̄µ
N

N ∈ PD(R+,Md
+) of ηN starting

from µN is in fact the distribution of the empirical process

π̄N : (D(R+,M
d
N ),Pµ

N

N ) −→ D(R+,M+(Td)).

It is preferable to consider the empirical process as a Markov family, namely as

π̄N : (D(R+,M
d
N ), {Pη0

N }η0∈Md
N

) −→ D(R+,M+(Td)).

Of course, the empirical process as defined above is in fact a Markov family on the

subspace πN (Md
N ) and not on the full state space Md

+ since any path of the empirical

process must obviously start from some measure in πN (Md
N ) and remain in πN (Md

N )

for all times t > 0. Nevertheless it obviously has cadlag paths, it satisfies

P
η0

N {π̄
N
0 = πNη0

} = Pη0

N {η
N
0 = η0} = 1, ∀η0 ∈Md

N , N ∈ N
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and inherits the Markov property from ηN for all N ∈ N, that is

Pη0{π̄Nt = πNη |F̄Ns } = P
ηNs
N {π̄

N
t−s = πNη }, P

η0

N a.s.

for all t ≥ s ≥ 0 and all η, η0 ∈ Md
N , where (F̄Ns )s≥0 is the natural filtration of π̄N .

Indeed, if (FNs )s≥0 is the natural filtration then by the Markov property of ηN we have

that

P
η0

N {η
N
t = η|FNs } = P

ηNs
N {η

N
t−s = η}, P

η0

N a.s..

But the empirical embedding πN is injective and so we have that (F̄Ns )s≥0 = (Fs)s≥0

and {ηNt = η} = {π̄Nt = πNη } for all η ∈ Md
N and all t ≥ 0, which gives the Markov

property of the empirical process π̄N .

Let now µ0 ∈M+(Td) be an initial profile and fix {µN ∈ PMd
N}N∈N be a sequence

associated to the profile µ0, i.e. such that

µN
{∣∣〈G, πN 〉 − 〈G, ρ0dmTd〉

∣∣ > ε
}

= 0

for all G ∈ C(Td) and all ε > 0. For the rest of this section, for each N ∈ N we set

PN ∈ PD(R+,M
d
N ) to be the distribution of ηN speeded up by N2 and starting from

µN , that is

PN :=
[
(ηNtN2)t≥0

]
∗P

µN

N , N ∈ N, (4.3)

where of course ηN = idD(R+,Md
N ) = (ηNt )t≥0 is the original ZR process, and we set

QN := π̄N∗ P
N =

[
(πNtN2)t≥0

]
∗P

µN

N ∈ PD(R+,Md
+), N ∈ N. (4.4)

Our main goal in this section is to find conditions on the local rate function g and the

initial sequence {µN ∈ PMd
N}N∈N which ensure the relative compactness of the sequence

{QN}N∈N ⊆ PD(R+,Md
+). The arguments rely on the analysis of the martingales

associated to the ZRP via the results of section A.2.

Proposition 4.1.1 Let (ηN ,PN ) be a ZR process with generator LN . Then for any ini-

tial distribution µN ∈ P2M
d
N (µN ∈ P1M

d
N if the jump rate function of ηN is bounded)

and any G ∈ BC1
R+

(Td), the real process

AN,Gt := 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

(∂s +N2LN )〈Gs, πN 〉(ηNs )ds, t ≥ 0,

defined on the filtered probability space
(
D(R+,M

d
N ), (FNt )t≥0, P

N
)

is a martingale,

where (FNt ) is the minimal right continuous filtration to which ηN is adapted and PN

is the distribution of ηN starting from µN speeded up by N2.

Proof By the previous proposition we know that for any function F ∈ B1C
1
R+

(Md
N ) the

real process

MηN ,F
t := Ft(η

N
t )− F0(ηN0 )−

∫ t

0

(∂s +N2LN )Fs(η
N
s )ds, t ≥ 0,
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is a (FNt , PN )- martingale, where of course in the above formula the generator LN of ηN

is multiplied by N2 since we are working with speeded up process by a factor N2. Now,

for any function G ∈ B(R+×Td) we define the function FG ≡ 〈G, πN 〉 : R+×Md
N −→ R

by the formula

FG(t, ·) = (FG)t(·) = 〈Gt, πN 〉 =

∫
Td

Gtdπ
N , (4.5)

and since πNt = πN ◦ ηNt : D(R+,M
d
N ) −→Md

+ we obviously have that

FG(t, ηNt ) = 〈Gt, πN 〉 ◦ ηNt = 〈Gt, πNt 〉.

Therefore we have that MηN ,FG = AN,G for all G ∈ B(R+ × Td) and thus the claim

follows if we show that

G ∈ BC1
R+

(Td) =⇒ FG ∈ B1C
1
R+

(Md
N ). (4.6)

So let G ∈ BC1
R+

(Td). Then for all (t, η) ∈ R+ ×Md
N we have that

|FG(t, η)| ≤
∫
|Gt|dπNη ≤

‖G‖B(R+×Td)

Nd
|η|

and therefore FG ∈ B1CR+
(Md

N ). Hence it remains to prove that

lim
h↓0

(FG)t+h − (FG)t
h

= ∂t(FG)t in B1(Md
N )

for all t ≥ 0. Since G ∈ BC1
R+

(Td) we have that Gt+h−Gt
h −→ ∂tGt uniformly in Td

and therefore since πN is a (random) finite measure we have that

∂t(FG)t = lim
h↓0

(FG)t+h − (FG)t
h

= lim
h↓0

〈Gt+h −Gt
h

, πN
〉

= 〈∂tGt, πN 〉 = (F∂G)t

pointwise in Md
N for all t ≥ 0, i.e. ∂FG = F∂G. Therefore, for all η ∈ Md

N , t ≥ 0, we

have that ∣∣∣∣ (FG)t+h − (FG)t
h

− ∂t(FG)t

∣∣∣∣ =

∣∣∣∣ (FG)t+h − (FG)t
h

− (F∂G)t

∣∣∣∣
=

∣∣∣∣〈Gt+h −Gt − h∂tGth
, πN

〉∣∣∣∣
≤ 1

Nd

∥∥∥∥Gt+h −Gth
− ∂tGt

∥∥∥∥
u

| · |

and therefore∥∥∥∥ (FG)t+h − (FG)t
h

− ∂t(FG)t

∥∥∥∥
u,1

= sup
η∈Md

N

∣∣∣∣ (FG)t+h(η)− (FG)t(η)− h∂t(FG)t(η)

h · (1 + |η|)

∣∣∣∣
≤ 1

Nd

∥∥∥∥Gt+h −Gth
− ∂tGt

∥∥∥∥
u

h↓0−→ 0,

which proves that F ∈ B1C
1
R+

(Md
N ). Therefore (4.6) holds and the proof is complete.�
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Remark: Note that by proposition A.2.1 and the remark following it, we have that

when M = Td then

C2,0
c (R+ ×Td) ⊆ BC1

R+
(Td),

where C2,0
c (R+ ×Td) denotes the space of all continuous functions G : R+ ×Td −→ R

with compact support that are C2 with respect to time pointwise in Td. Thus the real

process AG,N of proposition 4.1.1 is a (FNt ,P
µN

N )-martingale for all G ∈ C2,0(R+ ×M)

and all µN ∈ P2M
d
N (µN ∈ P1M

d
N if the local rate function of the ZRP is bounded).

The quadratic variation of the martingale AN,G is given in the following

Proposition 4.1.2 Let ηN = (η,PN ) be a ZR process with parameters (p, g) and LN

denote the generator of ηN . Then for any initial distribution µN ∈ P4M
d
N (µN ∈ P3M

d
N

if the jump rate function of ηN is bounded) and any G ∈ C2,0
c (R+ × M) the PµN -

martingale AN,G associated to (η,PN ) by proposition 4.1.1 is square integrable and its

quadratic variation is given by

〈AN,G〉t = N2

∫ t

0

{
L(〈Gs, πN 〉2)(ηs)− 2〈Gs, πNs 〉L〈Gs, πN 〉(ηs)

}
ds

=
1

N2d−2

∫ t

0

∑
x,y∈TdN

[
Gs

( y
N

)
−Gs

( x
N

)]2
g
(
ηs(x)

)
pN (x, y)ds.

Proof Indeed, as we have seen for any G ∈ C2,0
c (R+×Td) the function FG = 〈G, πN 〉 :

R+ ×Md
N −→ R defined in (4.5) is in BC1

R+
(Md

N ) and since AN,G = MηN ,FG we have

by proposition A.2.3 that AN,G is a square integrable PµN -martingale with quadratic

variation

〈AN,G〉t = N2

∫ t

0

{
L(〈Gs, πN 〉2)(ηs)− 2〈Gs, πNs 〉L〈Gs, πN 〉(ηs)

}
ds

where the term N2 appears of course due to the fact that for a scaled up Markov jump

process the generator and the jump rate function of the scaled process are multiplied by

the scale parameter. But then since for all η ∈Md
N and all x ∈ {η 6= 0} we have that

πNηx,y − πNη =
1

Nd
(δ y

N
− δ x

N
)

it follows by proposition A.2.4 that

〈AN,G〉t = N2

∫ t

0

∑
ζ∈Md

N

[
〈Gs, πNζ 〉 − 〈Gs, πNηs〉

]2
λN (ηs)pN (ηs, ζ)ds

= N2

∫ t

0

∑
x,y∈TdN

〈Gs, πNηx,ys − π
N
ηs〉

2g
(
ηs(x)

)
pN (y − x)ds

=
1

N2d−2

∫ t

0

∑
x,y∈TdN

[
Gs

( y
N

)
−Gs

( x
N

)]2
g
(
ηs(x)

)
pN (y − x)ds. �
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Furthermore, for any function G ∈ C(Td) we have that

LN 〈G, πN 〉(η) =
∑

x,z∈TdN

〈G, πNηx,x+z − πNη 〉g
(
η(x)

)
pN (z)

=
1

Nd

∑
x,z∈TdN

[
G
(x+ z

N

)
−G

( x
N

)]
g
(
η(x)

)
pN (z),

and using the fact that p is symmetric we can write the action of the generator on the

function 〈G, πN 〉 as

LN 〈G, πN 〉(η) =
1

2Nd

∑
x,z∈TdN

[
G
(x+ z

N

)
−G

( x
N

)]
g
(
η(x)

)
pN (z)

+
1

2Nd

∑
x,z∈TdN

[
G
(x+ z

N

)
−G

( x
N

)]
g
(
η(x)

)
pN (−z)

=
1

2Nd

∑
x,z∈TdN

[
G
(x+ z

N

)
+G

(x− z
N

)
− 2G

( x
N

)]
g
(
η(x)

)
pN (z).

In particular, in the case that p is the elementary step distribution we have that

LN 〈G, πN 〉(η) =
1

Nd

d∑
j=1

∑
x∈TdN

[
G
(x+ ej

N

)
+G

(x− ej
N

)
− 2G

( x
N

)]
g
(
η(x)

)
pN (ej)

So, since as we have seen ∂FG = F∂G, the martingale AN,G can be written in more

detail as

AN,Gt = 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

〈∂sGs, πNs 〉ds

− 1

2Nd−2

∫ t

0

∑
x,z∈TdN

∆N
p GsGs

( x
N

)
g
(
ηs(x)

)
pN (z)ds,

where for any function G : Td −→ R we denote by ∆N
p G : Td −→ R the discrete

Laplacian associated to the elementary step distribution p ∈ PZd defined by

∆N
p G(u) := N2

∑
z∈TdN

[
G
(
u+

z

N

)
+G

(
u− z

N

)
− 2G(u)

]
p(z), u ∈ Td.

Therefore if we denote by

σN :=
1

Nd

∑
x∈TdN

g
(
η(x)

)
δ x
N

the empirical jump rate and by σNs := σNηs , s ≥ 0, the associated empirical process we

can write the martingale AN,G as

AN,Gt = 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

[
〈∂sGs, πNs 〉+

1

2
〈∆N

p Gs, σ
N
s 〉
]
ds. (4.7)
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We will see next that at least for C3 functions we can replace, modulo some terms

that will be shown to converge to zero, the discrete Laplacian ∆N
p by its continuous

analogue ∆Σ defined by

∆Σ =

d∑
i,j=1

σij∂
2
ij ,

where

Σ := (σij)1≤i,j≤d, σij :=
∑
z∈Zd

zizjp(z),

is the covariance matrix of the elementary distribution p. In the case that p ∈ PZd is

the nearest neighbor step distribution then

σij =

d∑
k=1

〈ek, ei〉〈ek, ej〉[p(ek) + p(−ek)] =
1

d
δij ,

and so in this case ∆Σ = 1
d∆ where ∆ =

∑d
j=1 ∂

2
jj is the Laplacian. In order to make

the dimension disappear from the coefficient of the Laplacian sometimes the nearest

neighbor distribution is renormalized to have a total probability of d, or 2d. Of course

this amounts to rescaling the generator of the process by the same factor.

Proposition 4.1.3 Let G ∈ C3
c (R+×Td) and let AN,G be the martingale associated by

proposition 4.1.1 to the ZRP of parameters (p, g) on the discrete torus TdN . Then there

exists a constant C = C(G, p, g) ≥ 0 such that∣∣∣∣〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

〈∂sGs, πNs 〉+
1

2
〈∆ΣGs, σ

N
s 〉ds−A

N,G
t

∣∣∣∣ ≤ C

Nd+1

∫ t

0

〈1, πNs 〉ds,

for all t ≥ 0, where (πNt )t≥0 is the empirical ZRP and Σ is the covariance matrix of p.

Proof Denoting by BN,G = (BN,Gt )t≥0 the process defined by

BN,Gt := 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

(
〈∂sGs, πNs 〉+

1

2
〈∆ΣGs, σ

N
s 〉
)
ds, (4.8)

we have to prove that

|BN,Gt −AN,Gt | = 1

2

∣∣∣∣ ∫ t

0

〈∆ΣGs −∆N
p Gs, σ

N
s 〉
∣∣∣∣ds ≤ C

Nd+1

∫ t

0

|ηs|ds.

By Taylor’s theorem, for all G ∈ C3
c (R+ ×Td) we have that

Gs(x+ h)−Gs(x) = 〈∇Gs(x), h〉+
1

2
H2Gs(x)(h) +RGs (x, h) (4.9)

for all x, h ∈ Rd, where H2Gs is the (spatial) Hessian form of G at time s and

RGs (x, h) =

d∑
k,l,m=1

∫ 1

0

(1− t)2

2
∂3
k`mGs(x+ th)hkhlhmdt
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is the remainder in integral form. Since G is C3 with compact support we have that

‖D3G‖u := sup
s∈R+

sup
k,l,m=1,...,d

‖∂3
klmGs‖u < +∞

and therefore ∣∣∣RGs ( xN ,
z

N

)∣∣∣ ≤ ‖D3G‖u
6N3

d∑
k,l,m=1

zkzlzm

for all N ∈ N, x, z ∈ TdN . Therefore since H2Gs(x)(λh) = λ2H2Gs(x)(h) for all

x, h ∈ Rd and all λ ∈ R it follows that for all x ∈ Td and all z ∈ TdN , N ∈ N, we have

Gs

(
x+

z

N

)
+Gs

(
x− z

N

)
− 2Gs(x) = Gs

(
x+

z

N

)
−Gs(x) +G

(
x− z

N

)
−Gs(x)

=
1

N2
H2Gs(x)(z) + R̄s

(
x,

z

N

)
,

where we have set R̄s(x, h) := RGs (x, h) +RGs (x,−h) for all x, h ∈ Rd. Therefore,

∆N
p Gs(x) =

∑
z∈TdN

H2Gs(x)(z)p(z) +N2
∑
z∈TdN

R̄s

(
x,

z

N

)
p(z)

=
∑
z∈TdN

d∑
i,j=1

∂2
ijGs(x)zizjp(z) +N2

∑
z∈TdN

R̄s

(
x,

z

N

)
p(z)

=

d∑
i,j=1

∂2
ijGs(x)

∑
z∈TdN

zizjp(z) +N2
∑
z∈TdN

R̄s

(
x,

z

N

)
p(z)

= ∆ΣGs(x) +N2
∑
z∈TdN

R̄s

(
x,

z

N

)
p(z).

since for all N large enough we have that
∑
z∈TdN

zizjp(z) =
∑
z∈Zd zizjp(z) = σij . But

obviously ∣∣∣R̄s(x, z
N

)∣∣∣ ≤ ‖D3G‖u
3N3

d∑
i,j,k=1

zizjzk

and therefore it follows that

|∆N
p Gs(x)−∆ΣGs(x)| ≤ N2

∑
z∈TdN

∣∣∣R̄s(x, z
N

)∣∣∣p(z) ≤ ‖D3G‖uR3

3N
.

Therefore for all x ∈ Td we have that∣∣〈∆N
p Gs −∆ΣGs, σ

N
s 〉
∣∣ ≤ ‖D3G‖uR3

3Nd+1

∑
x∈TdN

g
(
ηs(x)

)
≤ ‖D

3G‖u‖g′‖uR3

3Nd+1
〈1, πNs 〉

Therefore for all N ∈ N and all t ≥ 0 we have that

|BN,Gt −AN,Gt | ≤ ‖D
3G‖u‖g′‖uR3

6Nd+1

∫ t

0

〈1, πN 〉ds
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which proves the claim with constant C = 1
6‖D

3G‖u‖g′‖uR3. �

We prove next that under suitable assumptions on the sequence {µN ∈ PMd
N} of

initial distributions the sequence of the empirical distributions QN ∈ PD(R+,Md
+) of

the speeded up by N2 ZRP defined in (4.4) is relatively compact in PD(R+,Md
+). We

will assume that the sequence {µN} of initial distributions is associated to some macro-

scopic profile µ0 ∈ M+(Td). Furthermore in order for the martingale AN,G associated

to the ZRP to be square integrable we will assume that µN0 ∈ P4M
d
N (µN0 ∈ P1M

d
N

if g is bounded) and finally we will assume that {µN0 }N∈N satisfies the O(Nd)-entropy

assumption. Recall that according to proposition 2.6.4 our assumptions do not exclude

sequences of initial distributions that have a condensate at some macroscopic point

u ∈ Td.

We turn now to the proof of the relative compactness of the sequence QN , N ∈ N,

of the empirical distributions of the ZRP starting from µN and speeded up by N2.

Proposition 4.1.4 Let {µN0 ∈ PMd
N} be a sequence of distributions associated to a

macroscopic profile µ0 ∈ M+(Td). We suppose that either the jump rate g of the ZRP

is bounded and µN0 ∈ P1M
d
N or either the jump rate is g is Lipschitz, µN0 ∈ P4M

d
N and

K∗ := lim sup
N↑+∞

1

Nd
H(µN0 |νNρ∗) < +∞ (4.10)

for some ρ∗ ∈ (0, ρc). Then the sequence QN ∈ PD(R+,M+(Td)), N ∈ N, of the

empirical distributions of the ZRP starting from µN0 and speeded up by N2, defined in

(4.4) is relatively compact in the weak topology of the space of probability measures over

the Skorohod space D(R+,M+(Td)), and any limit point Q of the sequence {QN} is

concentrated on trajectories π ∈ D(R+;M+(Td)) such that π0 = µ0.

Proof As we know by the description of the relatively compact subsets of PD(R+,Md
+)

in order to prove that {QN} is relatively compact it suffices to prove that for some

countable subset {Gk|k ∈ N} ⊆ C(Td) such that G1 ≡ 1, the sequence

F̄Gk∗Q
N ∈ PD(R+,R), N ∈ N

is relatively compact for all k ∈ N, where for all G ∈ C(Td) we set FG := 〈G, ·〉 :

Md
+ −→ R and

F̄G : D(R+,Md
+) −→ D(R+,R)

is the mapping induced on the Skorohod spaces by FG. In particular it suffices to prove

that the sequence {F̄G∗QN} is relatively compact for all G ∈ C∞(Td).

So let G ∈ C∞(Td). In order to prove the relative compactness of {F̄G∗QN}N∈N it

suffices to prove that: (a) for all t ∈ R+

lim
A↑+∞

sup
N∈N

F̄G∗Q
N
{
f ∈ D(R+,R)

∣∣ |ft| > A
}

= 0

and (b) the condition of Aldous, i.e. that for all ε, T > 0 we have

lim
δ→0

lim sup
N→+∞

sup
τ∈TT (FR+ )

θ≤δ

F̄G∗Q
N
{
f ∈ D(R+,R)

∣∣∣ ∣∣fτ(f) − f[τ(f)+θ]∧T
∣∣ > ε

}
= 0
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where TT (FR+ ) is the set of all stopping times τ : D(R+,R) −→ [0, T ] with respect to

the continuation FR = (F0,R
t+ )t≥0 of the natural filtration (F0,R

t )t≥0 in D(R+,R).

(a) Let t ∈ R+. Of course we can assume that ‖G‖u 6= 0 or else we have nothing to

prove, and for all N ∈ N and all A > 0 we have that

F̄G∗Q
N
{
f ∈ D(R+,R)

∣∣ |ft| > A
}

= QN
{
π ∈ D(R+,Md

+)
∣∣ |〈G, πt〉| > A

}
≤ QN

{
π ∈ D(R+,Md

+)
∣∣ 〈πt, 1〉 > A/‖G‖u

}
= PN

{
η ∈ D(R+,M

d
N )
∣∣ |ηt| > NdA/‖G‖u

}
= PN

{
η ∈ D(R+,M

d
N )
∣∣ |η0| > NdA/‖G‖u

}
= µN

{
η ∈Md

N

∣∣ |η| > NdA/‖G‖u
}

= µN
{
〈πN , 1〉 > A/‖G‖u

}
.

Therefore since µN ∈ P1M
d
N and {µN} is associated to µ0 ∈ M+(Td), (a) follows by

lemma 3.1.2.

(b) We prove now the Aldous condition. So let ε, T > 0 be fixed. As we know, given

any continuous function F : M −→ N between polish spaces the induced mapping

F̄ : D(R+,M) −→ D(R+, N) is (FMt ,FNt )-measurable for all t ≥ 0, where (FX) is the

(right) continuation of the natural filtration (F0,X
t )t≥0 in D(R+, X), X = M,N , which

shows that

TT (FN ) ◦ F̄ :=
{
τ ◦ F̄

∣∣ τ ∈ TT (FN )
}
⊆ TT (FM ),

and we obviously have that

F̄ (x)τ(F̄ (x)) = F
(
xτ◦F̄ (x)

)
∀ x ∈ D(R+,M), τ ∈ TT (FN ).

In our particular case we have that TT (FR) ◦ F̄G ⊆ TT (FM
d
+

+ ) and if for each stopping

time τ ∈ TT (FR) we set τG := τ ◦ F̄G then 〈G,µ〉τ(〈G,π〉) = 〈G,µτG(π)〉 and so

F̄G∗Q
N
{
f ∈ D(R+,R)

∣∣∣ ∣∣fτ(f) − f[τ(f)+θ]∧T
∣∣ > ε

}
= QN

{
π ∈ D(R+,Md

+)
∣∣∣ ∣∣〈G, πτG(π)〉 − 〈G, π[τG(π)+θ]∧T 〉

∣∣ > ε
}

for all θ > 0 and all τ ∈ TT (FR). It follows that for all δ > 0 we have

sup
τ∈TT (FR)

θ≤δ

F̄G∗Q
N
{∣∣fτ − f[τ+θ]∧T

∣∣ > ε
}
≤ sup

τ∈TT (FM
d
+ )

θ≤δ

QN
{∣∣〈G, πτ − π[τ+θ]∧T 〉

∣∣ > ε
}
,

where of course in the inequality above, f and π are the canonical cadlag process f

and π on the Skorohod spaces D(R+,R) and D(R+,Md
+) respectively. With similar

reasoning we get that

sup

τ∈TT (FM
d
+ )

θ≤δ

QN
{∣∣〈G, πτ − π[τ+θ]∧T 〉

∣∣ > ε
}
≤ sup
τ∈TT (FM

d
N )

θ≤δ

PN
{∣∣〈G, πNτ − πN[τ+θ]∧T 〉

∣∣ > ε
}

for all δ > 0, where here of course πN = (πNt )t≥0 is the empirical process.

Let now AN,G be the martingale associated by proposition 4.1.1 to the ZRP. By
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proposition 4.1.3 it follows that there exists a constant C = C(G, p, g) ≥ 0 such that∣∣∣∣〈G, πNt 〉 − 〈G, πNs 〉 − 1

2

∫ t

s

〈∆ΣG, σ
N
r 〉dr − (AN,Gt −AN,Gs )

∣∣∣∣ ≤ C

Nd+1

∫ t

s

|ηu|du,

for all 0 ≤ s ≤ t. It follows that

|〈G, πNt − πNs 〉
∣∣ ≤ ∣∣AN,Gt −AN,Gs

∣∣+
1

2

∫ t

s

∣∣〈∆ΣG, σ
N
r 〉
∣∣dr + C

∫ t

s

〈πNr , 1〉dr.

But we obviously have that∣∣〈∆ΣG, σ
N 〉
∣∣ ≤ ‖∆ΣG‖u〈1, σN 〉 ≤ ‖∆ΣG‖u‖g′‖u〈1, πN 〉

and therefore, taking into account the conservation of the total number of particles by

the dynamics of the ZRP, we can write that

|〈G, πNt − πNs 〉
∣∣ ≤ ∣∣AN,Gt −AN,Gs

∣∣+ C1 · (t− s)〈πN0 , 1〉

PN -a.s. for some constant C1 ≥ 0, namely C1 = C + 1
2‖∆G‖u‖g

′‖u. It follows that∣∣〈G, πN[τ+θ]∧T − π
N
τ 〉
∣∣ ≤ ∣∣AN,G[τ+θ]∧T −A

N,G
τ

∣∣+ C1δ〈πN0 , 1〉

for all τ ∈ TT (FMd
N ) and all 0 < θ ≤ δ, and therefore

sup
τ∈TT
θ≤δ

PN
{∣∣〈G, πN[τ+θ]∧T − π

N
τ 〉
∣∣ > ε

}
≤ sup

τ∈TT
θ≤δ

PN
{∣∣AN,G[τ+θ]∧T −A

N,G
τ

∣∣ > ε

2

}
+ µN

{
C1δ〈πN0 , 1〉 >

ε

2

}
for all δ > 0. So since the term µN{C1δ〈πN0 , 1〉 > ε/2} converges to 0 as δ → 0 uniformly

over N by (3.10), in order to prove Aldous’s criterion it remains to prove that

lim
δ→0

lim sup
N→+∞

sup
τ∈TT (FM

d
N )

θ≤δ

PN
{∣∣AN,G[τ+θ]∧T −A

N,G
τ

∣∣ > ε
}

= 0,

and by the Chebyshev-Markov inequality it suffices to prove that

lim
δ→0

lim sup
N→+∞

sup
τ∈TT (FM

d
N )

θ≤δ

Eµ
N (
AN,G[τ+θ]∧T −A

N,G
τ

)2
= 0. (4.11)

To prove (4.11) in the case that g is Lipschitz we use Doob’s optional stopping theorem,

proposition 4.1.2 and the conservation of the total number of particles to get that

EN,τ,θ := Eµ
N (
AN,G[τ+θ]∧T −A

N,G
τ

)2
= Eµ

N (
〈AN,G〉[τ+θ]∧T − 〈AN,G〉τ

)
=

1

N2d−2
Eµ

N

∫ [τ+θ]∧T

τ

∑
x,z∈TdN

[
G
(x+ z

N

)
−G

( x
N

)]2
g
(
ηs(x)

)
pN (z)ds

=
‖∇G‖2u‖g′‖u

N2d
Eµ

N

∫ [τ+θ]∧T

τ

∑
x,z∈TdN

|z|2ηs(x)p(z)ds

=
‖∇G‖2u‖g′‖uV(p)

Nd
Eµ

N

∫ [τ+θ]∧T

τ

〈πNs , 1〉ds

≤ ‖∇G‖2u‖g′‖uV(p)θ

Nd
Eµ

N

〈πN0 , 1〉 =
‖∇G‖2u‖g′‖uV(p)θ

Nd

∫
〈πN , 1〉dµN .
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It follows that

sup
τ∈TT (FM

d
N )

θ≤δ

Eµ
N (
AN,G[τ+θ]∧T −A

N,G
τ

)2 ≤ ‖∇G‖2u‖g′‖uV(p)δ

Nd

∫
〈πN , 1〉dµN

and therefore in order to prove (4.11) it suffices to prove that
∫
〈πN , 1〉dµN ≤ O(Nd),

i.e. that

lim sup
N→+∞

1

Nd

∫
〈πN , 1〉dµN < +∞. (4.12)

Here the assumption that {µN} is associated to an initial macroscopic profile does not

suffice to give (4.12), but (4.12) can be derived by the entropy assumption (4.10). By

the relative entropy inequality we have that∫
〈πN , 1〉dµN ≤ 1

θNd

{
log

∫
eθN

d〈πN ,1〉dνρ∗ +H(µN |νρ∗)
}

for all θ > 0 and all N ∈ N. But∫
eθN

d〈πN ,1〉dνρ∗ =

∫ ∏
x∈TdN

eθη(x)dνρ∗ = Mν1
ρ∗

(θ)N
d

and therefore ∫
〈πN , 1〉dµN ≤ 1

θ

{
Λρ∗(θ) +

1

Nd
H(µN |νρ∗)

}
for all θ > 0 and all N ∈ N. It follows that

lim sup
N→+∞

∫
〈πN , 1〉dµN ≤ Λρ∗(θ) +K∗

θ

for all θ > 0. But ρ∗ < ρc and thus ν1
ρ∗ has exponential moments, and therefore by

choosing θ∗ ∈ DΛρ∗
\ {0} in the inequality above we get that

lim sup
N→+∞

∫
〈πN , 1〉dµN < +∞ (4.13)

This proves (4.12) and completes the proof of the relative compactness of {QN}.
It remains to prove that any limit point Q of the sequence {QN} is concentrated

on trajectories π ∈ D(R+,M+(Td)) such that π0 = µ0. So let Q be a limit point

of {QN}. As we know, the evaluation mapping et : D(R+;M+(Td)) −→ M+(Td)

given by et(π) = πt is continuous at each π ∈ D(R+;M+(Td)) that is continuous at

t. In particular the evaluation e0 : D(R+;M+(Td)) −→ M+(Td) is continuous and

therefore for all G ∈ C(Td) the composite mapping IG ◦ e0 : D(R+;M+(Td)) −→ R,

where IG :M+(Td) −→ R is the mapping IG(π) = 〈G, π〉, is continuous. Therefore, for

all G ∈ C(Td) and all ε > 0 we have by the portmanteau theorem that

Q
{
|〈G, π0〉 − 〈G,µ0〉| > ε

}
≤ lim inf

N→∞
QN
{
|〈G, π0〉 − 〈G,µ0〉| > ε

}
= lim inf

N→∞
µN
{
|〈G, πN 〉 − 〈G,µ0〉| > ε

}
= 0,
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since the sequence {µN} is associated to the macroscopic profile µ0 ∈ M+(Td). Since

this holds for all G ∈ C(Td) and all ε > 0 it follows that

Q
{
|〈G, π0〉 − 〈G,µ0〉| = 0

}
= 1

for all G ∈ C(Td), and then if we choose a countable dense subset D ⊆ C(Td) in the

uniform norm it follows that

Q{π0 = µ0} = Q

( ⋂
G∈D
{|〈G, π0〉 − 〈G,µ0〉| = 0}

)
= 1,

as required and the proof is complete. �
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4.2 The Empirical Current Process

In this section we define the empirical current process WN and show that pair (πN ,WN )

where as always πN is the empirical density, satisfy the continuity equation

∂tπ
N + divWN = 0

at the microscopic level. We begin the considerations for a general step distribution

p ∈ P∞Zd but in the end we mainly focus on the case that p is the n.n. elementary

step distribution p =
∑d
j=1(δ−ej + δej ) where here we renormalize the nearest neighbor

distribution to have a total probability equal to 2d.

4.2.1 The Empirical Current

Definition 4.2.1 The current along the bond (x, y) ∈ TdN × TdN for the ZRP in the

discrete torus TdN is the function WN
x,y : Md

N −→ R given by

WN
x,y(η) = LN (η, ηx,y)− LN (η, ηy,x) = g(ηx)p(y − x)− g(ηy)p(x− y)

= [ g(ηx)− g(ηy)]p(y − x)

for all η ∈Md
N .

We want to obtain an expression of the action LN 〈G, πN 〉(η) of the generator on the

function 〈G, πN 〉 involving the currents. For this we could use the already established

formula for LN 〈G, πN 〉 of the previous section. We do it however by calculating this

action of the generator in a different way, to give one more example of calculations on

the action of the generator. By the definition of the function 〈G, πN 〉 : Md
N −→ R and

the linearity of LN we have that

LN 〈Gs, πN 〉 =
1

Nd

∑
x∈TdN

Gs

( x
N

)
LNη(x). (4.14)

But η(x) ∈ B1(Md
N ) for all x ∈ TdN and therefore LN can act on η(x) to give

LNη(x)(η) =
∑
y:y 6=x

∑
z∈TdN

(ηy,y+z
x − ηx)g(ηy)p(z) +

∑
z∈TdN

(ηx,x+z
x − ηx)g(ηx)p(z)

=
∑
y:y 6=x

(ηy,xx − ηx)g(ηy)p(x− y) +
∑
z∈TdN

(ηx,x+z
x − ηx)g(ηx)p(z)

=
∑
z 6=0

(ηx−z,xx − ηx)g(ηx−z)p(z) +
∑
z 6=0

(ηx,x+z
x − ηx)g(ηx)p(z)

=
∑
z 6=0

[g(ηx−z)− g(ηx)]p(z)

Therefore since we assume p ∈ PZd to be symmetric we have that

LNη(x) =
1

2

∑
z 6=0

[
g
(
η(x− z)

)
− g
(
η(x)

)]
p(z) +

1

2

∑
z 6=0

[
g
(
η(x+ z)

)
− g
(
η(x)

)]
p(z)

=
1

2

∑
z∈TdN

[
g
(
η(x+ z)

)
+ g
(
η(x− z)

)
− 2g

(
η(x)

)]
p(z)
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In particular if p is the nearest neighbor elementary step distribution we have that

LNη(x) =

d∑
j=1

[
g
(
η(x+ ej)

)
+ g
(
η(x− ej)

)
− 2g

(
η(x)

)]
p(ej)

The currents satisfy the identity

WN
x−z,x −WN

x,x+z = [ g(ηx−z)− g(ηx)]p(z)− [ g(ηx)− g(ηx+z)]p(z)

=
[
g
(
η(x+ z)

)
− g
(
η(x− z)

)
− 2g

(
η(x)

)]
p(z)

for all x, z ∈ TdN and therefore we can write that

LNη(x) =
1

2

∑
z∈TdN

[WN
x−z,x −WN

x,x+z].

It follows by (4.14) that

LN 〈Gs, πN 〉 =
1

2Nd

∑
x∈TdN

Gs

( x
N

) ∑
z∈TdN

[WN
x−z,x −WN

x,x+z].

By using the formula of integration by parts on the discrete torus TdN :∑
x∈TdN

[g(x+ z)− g(x)]f(x) = −
∑
x∈TdN

g(x)[f(x)− f(x− z)],

we get that

LN 〈Gs, πN 〉 =
1

2Nd

∑
x,z∈TdN

[
Gs

(x+ z

N

)
−Gs

( x
N

)]
WN
x,x+z.

Therefore the martingale AN,G can be rewritten as

AN,Gt = 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

〈∂sGs, πNs 〉ds (4.15)

− 1

2Nd−2

∫ t

0

∑
x,z∈TdN

[
Gs

(x+ z

N

)
−Gs

( x
N

)]
WN
x,x+z(ηs)ds.

In what follows we focus on the case where the p is the n.n. distribution renormalized

so that p(Zd) = 2d and define the empirical current WN : Md
N −→ M(Td;Rd) as the

random vector measure given by

WN =
1

Nd−1

∑
x∈TdN

[ d∑
j=1

WN
x,x+ej · ej

]
δ x
N

= − 1

Nd

∑
x∈TdN

∇Ng
(
η(x)

)
δ x
N
, (4.16)

where

∇Ng
(
η(x)

)
= N

d∑
j=1

[
g
(
η(x+ ej)

)
− g
(
η(x)

)]
· ej ,
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is the discrete gradient of the function g
(
η(x)

)
. The empirical current is an Rd-valued

measure and acts on vector valued functions F : Td −→ Rd by the formula

〈F,WN 〉 :=

∫
F · dWN =

1

Nd−1

∑
x∈TdN

d∑
j=1

F j
( x
N

)
WN
x,x+ej .

Proposition 4.2.1 Let G ∈ C3
c (R+×Td) and let AN,G be the martingale associated by

proposition 4.1.1 to the ZRP of parameters (p, g) on the discrete torus TdN . Then there

exists a constant C = C(G, g, d) ≥ 0 such that∣∣∣∣〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds−AN,Gt

∣∣∣∣ ≤ C

N

∫ t

0

〈πNs , 1〉ds

for all t ≥ 0, where (πNt )t≥0 is the empirical ZRP and (WN
t )t≥0 its empirical current.

Proof According to the computations performed above, in the case that p is the n.n.

step distribution the martingale AN,Gt can be written as

AN,Gt = 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

〈∂sGs, πNs 〉ds (4.17)

− 1

Nd−2

∫ t

0

d∑
j=1

∑
x∈TdN

[
Gs

(x+ ej
N

)
−Gs

( x
N

)]
WN
x,x+ej (ηs)ds.

For any G ∈ C3
c (R+ × Td), by the Taylor’s expansion in (4.9) and the bound on the

remainder there, for all N ∈ N and all j = 1, . . . , d we have that

Gs

(x+ ej
N

)
−Gs

( x
N

)
=

1

N
∂jGs

( x
N

)
+

1

2N2
∂2
jjGs

( x
N

)
+RGs

( x
N
,
ej
N

)
,

with the RGs term satisfying

sup
s≥0

sup
x∈TdN

sup
j=1,...,d

∣∣∣RGs ( xN ,
ej
N

)∣∣∣ ≤ ‖D3G‖u,∞
6N3

.

Using this Taylor expansion and the empirical current we can write the second inte-

gral term N2LN 〈Gs, πN 〉(ηs) in the expression of AN,G as

N2LN 〈Gs, πN 〉(ηs) =
1

Nd−2

∑
x∈TdN

d∑
j=1

[
Gs

(x+ ej
N

)
−Gs

( x
N

)]
WN
x,x+ej (ηs)

= 〈∇G,WN
s 〉+

1

2Nd

∑
x∈TdN

d∑
j=1

∂2
jjGs

( x
N

)
WN
x,x+ej (ηs)

+
1

Nd−2

∑
x∈TdN

d∑
j=1

Rs

( x
N
,
ej
N

)
WN
x,x+ej (ηs). (4.18)

Furthermore, we obviously have the inequality

d∑
j=1

∑
x∈TdN

∣∣∣WN
x,x+ej (η)

∣∣∣ ≤ ‖g′‖u d∑
j=1

∑
z∈TdN

(
|η|+ |τejη|

)
≤ 2d‖g′‖u|η|1
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and therefore the third term in the sum in the right hand side of (4.18), which we set

RNs , is bounded above by

|RNs | ≤
1

Nd−2

d∑
j=1

∑
x∈TdN

∣∣∣Rs( x
N
,
ej
N

)
WN
x,x+ej (ηs)

∣∣∣
≤ 1

Nd−2

‖D3G‖u,∞
6N3

d∑
j=1

∑
x∈TdN

∣∣∣WN
x,x+ej (ηs)

∣∣∣ ≤ 2d
‖g′‖u‖D3G‖u,∞

6Nd+1
|ηs|.

Likewise, by an integration by parts, the middle term in (4.18) which we set HN
s is

HN
s =

1

2Nd

d∑
j=1

∑
x∈TdN

[
∂2
jjGs

( x
N

)
− ∂2

jjGs

(x− ej
N

)]
g
(
ηs(x)

)
ans therefore since G is in C3

c (R+ ×Td) we have that

∣∣HN
s

∣∣ ≤ 1

2Nd

∑
x∈TdN

d∑
j=1

∣∣∣∣∂2
jjGs

( x
N

)
− ∂2

jjGs

(x− ej
N

)∣∣∣∣g(ηs(x)
)

≤ ‖D3G‖
2Nd

∑
x∈TdN

d∑
j=1

∣∣∣ej
N

∣∣∣g(ηs(x)
)
≤ d‖g

′‖u‖D3G‖
2Nd+1

〈1, πNs 〉.

According to these calculations, up to some terms bounded absolutely by C
N

∫ t
0
〈πNs , ηs〉ds,

we can write the martingale AN,G as the process

V N,Gt := 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds, t ≥ 0.

Indeed, according to our estimates on the remainder terms RN,Gs and HN,G
s we have

that

|V N,Gt −AN,Gt | =
∣∣N2LN 〈Gs, πN 〉(ηs)− 〈∇Gs,WN

s 〉
∣∣ ≤ |RN,Gs |+ |HN,G

s | ≤ C

N
〈πNs , 1〉,

where C = C(G, g, d) is the constant C = d
2‖g
′‖u‖D3G‖u,∞ and the proof is complete.�

By this estimate it is obvious that

lim
N→∞

PN
{

sup
0≤t≤T

|V N,Gt −AN,Gt | ≥ δ
}

= 0 (4.19)

for all δ, T > 0. Indeed, by the conservation of the number of particles we have that∫ t
0
〈πNs , 1〉ds = t〈πN0 , 1〉 PN -a.s. and therefore

PN
{

sup
0≤t≤T

|V N,Gt −AN,Gt | ≥ δ
}
≤ PN

{
〈πN0 , 1〉 ≥

Nδ

CT

} N→∞−→ 0

since µN is associated to an integrable initial profile ρ0 ∈ L+,1(Td). Furthermore, by

using the quadratic variation of the martingale AN,G and Doob’s inequality it is shown

that the martingale AN,G is itself asymptotically negligible.
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Proposition 4.2.2 For any function G ∈ C1
c (R+ ×Td) the martingale

AN,Gt := 〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

(∂s +N2LN )〈Gs, πN 〉(ηNs )ds, t ≥ 0,

given in proposition (4.1.1) is asymptotically negligible, that is

lim
N→∞

PN
{

sup
0≤t≤T

∣∣AN,Gt | ≥ δ
}

= 0

for all δ, T > 0

Proof By the Doob-Chebyshev inequality ([27], theorem II.1.7)

PN
{

sup
0≤t≤T

∣∣AN,Gt | ≥ δ
}
≤ 1

δ2
EN |AN,GT |2

for each δ > 0. But if 〈AN,G〉 denotes the quadratic variation of the martingale AN,G

then the process {(AN,Gt )2 − 〈AN,Gt 〉}t≥0 is a mean zero martingale and therefore

EN |AN,GT |2 = EN 〈AN,GT 〉.

Since G ∈ C1
c (R+ ×Td) we have that C(G) := sup(s,u)∈R+×Td ‖∇Gs(u)‖2u < +∞ and

therefore for N large enough by the formula of the quadratic variation 〈AN,G〉 given in

proposition 4.1.2, the mean value theorem and the conservation of particles,

〈AN,GT 〉 =
1

N2d−2

∫ T

0

∑
x,y∈TdN

[
Gs

( y
N

)
−Gs

( x
N

)]2
g
(
ηs(x)

)
p(x, y)ds

≤ C(G)

N2d

∫ T

0

∑
x,y∈TdN

|x− y|2g
(
ηs(x)

)
p(x, y)

≤ C(G)‖g′‖u
N2d

∫ T

0

∑
x,z∈TdN

|z|2p(z)ηs(x)

=
C(G)‖g′‖uV(p)

Nd

∫ T

0

〈1, πNs 〉ds

PN−a.s.
=

C(G)‖g′‖uV(p)T

Nd
〈1, πN0 〉.

It follows that

PN
{

sup
0≤t≤T

∣∣AN,Gt | ≥ δ
}
≤ C(G)‖g′‖uV(p)T

δ2Nd

∫
〈1, πN 〉dµN0 ,

where {µN0 ∈ PMd
N} is the family of initial distributions of the ZRP, and by (4.13)

taking the limit in the inequality above, proves the claim. �

Using the asymptotic negligibility of the martingale AN,G and (4.19) it easily follows

that

lim
N→∞

PN
{

sup
0≤t≤T

∣∣∣∣〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds

∣∣∣∣ ≥ δ} = 0
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for all G ∈ C3
c (R+ × Td) and δ > 0. In particular if G has compact support n (0, T )

G ∈ C3
c ((0, T )×Td) then

lim
N→∞

PN
{∣∣∣∣ ∫ T

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds

∣∣∣∣ ≥ δ} = 0 (4.20)

Likewise, if BN,G denotes the process defined in (4.8), by proposition 4.1.3 we get that

lim
N→∞

PN
{

sup
0≤t≤T

|BN,Gt −AN,Gt | ≥ δ
}

= 0 (4.21)

for all δ, T > 0 and by the asymptotic negligibility of the martingale AN,G we get that

lim
N→∞

PN
{

sup
0≤t≤T

∣∣∣∣〈Gt, πNt 〉 − 〈G0, π
N
0 〉 −

∫ t

0

[
〈∂sGs, πNs 〉+ 〈∆Gs, σNs 〉

]
ds

∣∣∣∣ ≥ δ} = 0

for all G ∈ C3
c (R+×Td) and δ > 0, where here we do not have the coefficient 1

2 in front

of the Laplacian because we are working with n.n. step distribution of total probability

equal to 2d. We can interpret these limits as saying that at the microscopic level the

triple (πN , σN ,WN ) satisfies the continuity equation

∂tπ
N
t = ∆σN = −divWN

t as N →∞. (4.22)

where of course here the Laplacian and the divergence are spatial operators.

Next we would like to prove the that the laws of the empirical jump rate σN and

the empirical current WN are relatively compact in order to obtain the analogue of the

continuity equation (4.22) at the macroscopic level. Since σN and WN do not describe

conserved quantities, the proof of the Aldous compactness criterion on the Skorohod

space regarding the oscillations is too hard to obtain. For this reason we will consider

the processes σN and WN as taking values in spaces with weaker topologies that on

one hand allow to obtain the relative compactness of their laws but that are strong

enough to yield on the other hand that the limit points of their laws are concentrated on

trajectories (π, σ,W ) that satisfy the continuity equation. The appropriate spaces will

be L∞-spaces of Banach space-valued curves.

4.2.2 Weak L∞-spaces of Banach-Valued Curves

In this subsection we review some the basic facts on L∞-spaces of vector-valued curves

that will be used in defining the state spaces of the empirical current processes

WN
s (η) = WN

ηs , η ∈ D(0, T ;Md
N ), s ≥ 0

and the empirical jump rate process

σNs (η) = σNηs , η ∈ D(0, T ;Md
N ), s ≥ 0.

We begin with some preliminaries. We denote by Md :=M(Td;Rd) the Banach space

of all Borel Rd-valued measures on the torus Td equipped with the total variation norm

‖ · ‖TV :Md −→ R+ defined by

‖µ‖TV = sup
Π∈P

Td

∑
A∈Π

|µ(A)|2, (4.23)
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where PTd denotes the set of all finite measurable partitions of Td and | · |2 denotes the

Euclidean norm on Rd and we denote by Cd := C(Td;Rd) the space of all continuous

vector valued functions on Td equipped with the uniform norm

‖G‖∞ :=
∥∥|G|2∥∥∞, G ∈ Cd. (4.24)

The Riesz representation theorem (theorem 7.2 in [16] for instance) is easily extended

for Rd-valued functions.

Proposition 4.2.3 The function I :M(Td;Rd) −→ C(Td;Rd)∗ defined by

I(W ) =

∫
G · dW :=

d∑
i=1

∫
GidW i,

where Gi ≡ 〈G, ei〉 and W i ≡ 〈W, ei〉, is a linear surjective isometry, where M(Td;Rd)

is equipped with the total variation norm defined in (4.23) and C(Td;Rd) is equipped

with the uniform norm defined in (4.24).

Proof The map I is obviously linear. It is also injective since if I(W ) = I(V ) for some

W,V ∈Md then for any h ∈ C(Td) and any i = 1, . . . , d we have that∫
hdW i = I(W )(h · ei) = I(V )(h · ei) =

∫
hdV i,

which implies that W i = V i since measures are characterized by their action on contin-

uous functions. Furthermore, it also surjective. Indeed, let T ∈ (Cd)∗. Then for each

i = 1, . . . , d the functional T i : C(Td) −→ R defined by

T i(h) = T (h · ei)

is a bounded linear functional with ‖Ti‖ ≤ ‖T‖ and by the scalar version of the Riesz

representation theorem there exists W i ∈M(Td) such that

T i(h) =

∫
hdW i for all h ∈ C(Td).

But then W :=
∑d
i=1W

i · ei ∈M(Td;Rd) and for each G ∈ Cd we have that∫
G ·W =

d∑
i=1

GidW i =

d∑
i=1

T i(Gi) =

d∑
i=1

T (Giei) = T (G).

It remains to show that the map I is an isometry, i.e. that

‖I(W )‖ := sup
‖G‖∞≤1

|I(W )(G)| = ‖W‖TV .

We prove first the inequality ‖I(W )‖ ≤ ‖W‖TV . For this we show that for any bounded

measurable function F : Td −→ Rd it holds that∣∣∣∣ ∫ F · dW
∣∣∣∣ ≤ ‖F‖∞‖W‖TV . (4.25)
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Indeed, let us consider first the case that of a simple function φ : Td −→ Rd. Then

φ =
∑m
k=1 ak1Ak for some ak ∈ Rd and some pairwise disjoint measurable sets Ak ⊆ Td,

k = 1, . . . ,m and∣∣∣∣ ∫ φdW

∣∣∣∣ =

∣∣∣∣ m∑
k=1

〈ak,W (Ak)〉| ≤
n∑
k=1

|ak|2 · |W (Ak)|2 ≤ max
1≤k≤m

|ak|2
m∑
k=1

|W (Ak)|2

= ‖φ‖∞
m∑
k=1

|W (Ak)|2 ≤ ‖φ‖∞‖W‖TV .

Now, any real-valued bounded measurable function can be approximated uniformly by

simple functions, so given any bounded measurable function F : Td −→ Rd we can

apply this separately to each coordinate to find a sequence φn of simple functions such

that ‖φn − F‖∞ −→ 0. Then since convergence theorems for integrals hold for each

coordinate, taking the limit as n→∞ in the inequality∣∣∣∣ ∫ φn · dW
∣∣∣∣ ≤ ‖φn‖∞‖W‖TV

we obtain (4.25). So for any G ∈ Cd with ‖G‖∞ ≤ 1 we have that∣∣∣∣ ∫ G · dW
∣∣∣∣ ≤ ‖G‖∞‖W‖TV ≤ ‖W‖TV

which proves the required inequality.

We prove finally the converse inequality. By the definition of the total variation,

given W ∈Md and ε > 0 there exists a partition Π = {A1, . . . , Am} of Td such that

‖W‖TV ≤
m∑
k=0

|W (Ak)|2 +
ε

2
.

Then if F : Td −→ Rd is the simple function given by

F =

m∑
k=1

sgn
(
W (Ak)

)
· 1Ak

where for any w ∈ Rd we set

sgn(w) :=

{
w
|w|2 if w 6= 0

0 if w = 0

we have that∣∣∣∣ ∫ F · dW
∣∣∣∣ =

∣∣∣∣ m∑
k=1

〈sgn
(
W (Ak)

)
,W (Ak)〉

∣∣∣∣ =

m∑
k=1

|W (Ak)|2 ≥ ‖W‖TV −
ε

2
.

But by approximating then separately each coordinate of F by continuous functions,

either by using Lusin’s theorem (e.g. [16], theorem 7.10) or lemma A.3.2 in the appendix

of the thesis, we can find G ∈ Cd such that ‖G‖∞ ≤ 1 and∣∣∣∣ ∫ (F −G) · dW
∣∣∣∣ < ε

2
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which shows that

‖W‖TV ≤
∣∣∣∣ ∫ G ·W

∣∣∣∣+ ε ≤ ‖I(W )‖+ ε.

Since ε > 0 was arbitrary this proves the required inequality and completes the proof.�

The Riesz representation theorem allows us to consider the w∗-topology on Md via

the duality Md ∼= (Cd)∗. The w∗-topology is characterized by the requirement that a

net {µa}a∈A ⊆Md converges to some µ ∈Md in the w∗-topology if∫
Td

〈f, dµa〉
a∈A−→

∫
Td

〈f, dµ〉

for all f ∈ Cd. The usefulness of the w∗-topology ofMd comes from Alaoglou’s theorem

according to which norm bounded subsets of Md are relatively compact in the w∗-

topology of Md. Furthermore, (Md, w∗) is completely regular as topological vector

space and since Cd is separable (Md, w∗) is also submetrizable according to proposition

A.4.1.

Since the spaceMd :=M(Td;Rd) of Rd-valued measures is a Banach space it makes

sense to consider various L∞ spaces of curves in Md. We begin by the strong notion of

considering L∞(0, T ;M) as a Banach space. Namely let X = (X, ‖ · ‖X) be a Banach

space. We denote by L([0, T ];X) the set of all strongly measurable curves in X. Of

course if X is separable, strong and usual measurability coincide. Then we can define

for each p ≥ 1 the function ‖ · ‖p : L(0, T ;X) −→ [0,∞] by the formula

‖W‖p;X =
∥∥‖W‖X∥∥Lp([0,T ])

where for each curve W ∈ L(0, T ;X) we denote by ‖W‖X ∈ L+([0, T ]) the function

given by t 7→ ‖Wt‖X . Then as usual we define the Lp space Lp(0, T ;X) as the set of a.s.

equality equivalence classes of functions W ∈ L([0, T ];X) such that ‖W‖X ∈ Lp([0, T ]).

Lemma 4.2.1 If X is a separable normed space, then L1(0, T ;X) is separable.

Proof Let f ∈ L1(0, T ;X), ε > 0. Fix a dense countable subset D ⊆ X of X and

let A denote the collection of all finite unions of open intervals with rational endpoints.

The collection A is obviously countable and so the set D ⊆ L1(0, T ;X) consisting of all

functions of the form

n∑
j=1

qj1Aj , qj ∈ D, Aj ∈ A, n ∈ N

is obviously countable. We will show that it iss also dense in X. Indeed, since f ∈
L1(0, T ;X) there exists a simple function φ =

∑m
k=1 xk1Ek ∈ L1(0, T ;X) such that

‖φ − f‖L1(0,T ;X) < ε/2. We set M := max1≤k≤m ‖xk‖X . By proposition 1.20 in [16],

for each k = 1, . . . ,m there exists Ak ∈ A such that m(Ek4Ak) < ε/4mM and since D

is dense in X, for each k = 1, . . . ,m there exists qk ∈ D such that ‖qk − xk‖X < ε/4T .

Then ψ :=
∑m
k=1 qk1Ak ∈ D and

‖ψ − f‖L1(0,T ;X) ≤ ‖ψ − φ‖L1(0,T ;X) +
ε

2
.
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But

‖ψ − φ‖L1(0,T ;X) ≤
∥∥∥∥ψ − m∑

k=1

xk1Ak

∥∥∥∥
L1(0,T ;X)

+

∥∥∥∥ m∑
k=1

xk1Ak − φ
∥∥∥∥
L1(0,T ;X)

≤
m∑
k=1

(∫ T

0

‖qk − xk‖X1Ak(x)dx+

∫ T

0

‖xk‖X1Ak4Ek(x)dx

)

≤ ε

4T

m∑
k=1

∫ T

0

1Ak +M

m∑
k=1

m(Ek4Ak) <
ε

2
,

and so we have found an element of D ε-close to f ∈ L1(0, T ;X). �

Proposition 4.2.4 Let X be any Banach space and let T > 0. There is an isometric

injection

i : L∞(0, T ;X∗) ↪→ L1(0, T ;X)∗

and the space iL∞(0, T ;X∗) ≤ L1(0, T ;X)∗ is a closed subspace of L1(0, T ;X)∗.

Proof Let 〈·, ·〉 : X ×X∗ denote the pairing (x, x∗) 7→ x∗(x) and let W ∈ L∞(I;X∗).

Then Wt ∈ X∗ for all t ∈ I and therefore we can define a function iW : L1(I;X) −→ R

by

iWG =

∫ T

0

〈Gt,Wt〉dt.

The function iW is well defined since by the strong measurability of G and W we have

that the function 〈G,W 〉 : I −→ R given by

〈G,W 〉t = 〈Gt,Wt〉

is measurable, and it is real-valued since

|iWG| ≤
∫ T

0

|〈Gt,Wt〉|dt ≤
∫ T

0

‖Gt‖X‖Wt‖X∗dt ≤ ‖W‖∞;X∗‖G‖1;X <∞.

In particular the functional iW ∈ L1(I;X)∗ is bounded with operator norm

‖iW ‖ := sup
‖G‖L1(I;X)=1

|iWG| ≤ ‖W‖∞;X∗ .

Consequently, the operator T : L∞([0, T ];X∗) −→ L1([0, T ];X)∗ defined by

L∞([0, T ];X∗) 3W 7→ TW ∈ L1([0, T ];X)∗

is a bounded linear operator with operator norm ‖i‖ ≤ 1.

We prove next that T is a (not necessarily surjective) isometry. For this it suffices of

course to prove the converse inequality, i.e. that for all W ∈ L∞(I;X∗) we have

‖W‖∞,X∗ ≤ ‖iW ‖.

Since L∞(I;X∗) ⊆ L1(I;X∗) by Lebesgue’s differentiation theorem for the Bochner

integral there exists a measurable set E ⊆ I of full measure m(E) = m(I) such that

Wt = lim
ε→0

1

2ε

∫ t+ε

t−ε
Wsds
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for all t ∈ E. Furthermore we note that for any x ∈ X with ‖x‖X = 1, all t ∈ E and all

ε > 0 we have that the function Gεt,x ∈ L1(I;X) defined by the formula

Gεt,x(s) =
1

m(I ∩ [t− ε, t+ ε])
1I∩[t−ε,t+ε](s)x

satisfies ‖Gεt,x‖L1([0,T ];X) = 1 since

‖Gεx‖L1([0,T ];X) =

∫ T

0

‖Gεx(s)‖Xds =
1

m(I ∩ [t− ε, t+ ε])

∫
I∩[t−ε,t+ε]

‖x‖Xds

= ‖x‖X = 1.

It follows that

‖iW ‖ = sup
‖G‖L1(I;X)=1

|iWG| ≥ sup
t∈E

sup
‖x‖X=1

sup
ε∈(0,t∧(T−t))

|iWGεt,x|.

Now, for fixed (t, x) ∈ E × {‖ · ‖X = 1} we have for all ε > 0 that

|iWGεt,x| =
∣∣∣∣ 1

2ε

∫ t+ε

t−ε
〈x,Ws〉ds

∣∣∣∣ =
∣∣∣〈x, 1

2ε

∫ t+ε

t−ε
Wsds

〉∣∣∣ ε→0−→ |〈x,Wt〉|,

since 1
2ε

∫ t+ε
t−ε Wsds −→ Wt strongly in X∗, and thus also in the w∗-topology of X∗.

Therefore, for all (t, x) ∈ E × {‖ · ‖X = 1} we have that

sup
0<ε<t∧(T−t)

|iWGεt,x| ≥ |〈x,Wt〉|

and therefore

‖iW ‖ ≥ sup
t∈E

sup
‖x‖X=1

|〈x,Wt〉| = sup
t∈E
‖Wt‖X∗ ≥ ‖W‖∞;X∗ ,

where the last inequality follows due to the fact that because m(E) = m(I) we have that

‖W‖∞;X∗ = inf
{
C ≥ 0

∣∣m{t ∈ I : ‖Wt‖X∗ ≥ C
}

= 0
}
≤ sup

t∈E
‖Wt‖X∗ .

It remains to show that iL∞(I;X∗) ≤ L1(I;X)∗ is a closed subspace of L1(I;X)∗.

But this follows easily from the completeness of L∞(I;X∗). Indeed, let {V N}N∈N ⊆
iL∞(I;X∗) such that V N −→ V ∈ L1(I;X)∗. Since {V N} ⊆ iL∞(I;X∗), for each

N ∈ N there exists WN ∈ L∞(I;X∗) such that iWN = V N , and since {VN} converges

in the operator norm ‖ · ‖ of L1(I;X)∗ it is ‖ · ‖-Cauchy. But then since i is an isometry

it follows that {WN} is also ‖ · ‖∞;X∗ -Cauchy. Indeed, given ε > 0 there exists N0 ∈ N
such that ‖V N − VM‖ < ε for all N,M ≥ N0 and then

‖WN −WM‖∞;X∗ = ‖i(WN−WM )‖ = ‖V N − VM‖ < ε

for all N,M ≥ N0. Therefore {WN} is ‖ · ‖X∗ -Cauchy and by the completeness of

L∞(I;X∗) it follows that there exists W ∈ L∞(I;X∗) such that ‖WN −W‖∞;X∗ −→ 0.

But then by the continuity of the linear injection i we have that

V = lim
N→∞

VN = lim
N→∞

iWN = i
(

lim
N→∞

WN

)
= iW ,
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which shows that V ∈ iL∞(I;X∗) ≤ L1(I;X)∗ as required and completes the proof. �

We will refer to the linear isometric injection of proposition 4.2.4 as the natural

injection of L∞(I;X∗) in L1(I;X)∗. By identifying L∞(I;X∗) with its closed im-

age iL∞(I;X∗) in L1(I;X)∗ through the natural injection, we can consider the space

L∞(I;X∗) equipped with the restriction of the w∗-topology of L1(I;X)∗. However since

unless X is reflexive (in which case the natural injection of L∞(I;X∗) in L1(I;X)∗ is

an isometry) the w∗-closure of L∞(I;X∗) need not coincide with its norm closure, we

can not use Alaoglou’s theorem for the restriction of the w∗-topology on L∞(I;X∗).

We give next an exact description of the space L1(I;X)∗ following [10]. Let L∞w∗(I;X∗)

denote the space of all w∗-measurable functions W : I −→ X∗ for which there exists

w ∈ L∞(I) such that

‖Wt‖X∗ ≤ w(t) a.s.-∀ t ∈ I.

Consider in L∞w∗(I;X∗) the relation v given by W v V iff for all F ∈ X we have that

〈Wt, F 〉 = 〈Vt, F 〉 a.s.-∀ t ∈ I.

We denote by L∞w∗(I;X∗) the quotient space and the equivalence class ofW ∈ L∞w∗(I;X∗)

by [W ]. The relation v is obviously a linear equivalence relation and the quotient space

L∞w∗(I;X∗) becomes a vector space with the induced operations. Then, if for each [W ]

we define the set A[W ] of [W ]-admissible functions as

A[W ] =
{
w ∈ L∞(I)

∣∣∃ V ∈ [W ] such that ‖Vt‖X∗ ≤ w(t) a.s.-∀ t ∈ I
}

the function ‖ · ‖L∞
w∗

: L∞w∗(I;X∗) −→ R+ defined by

‖[W ]‖L∞
w∗

= inf
w∈A[W ]

‖w‖L∞(I)

is a norm that makes L∞w∗(I;X∗) a Banach space. Obviously L∞(I;X∗) is isometrically

embedded in L∞w∗(I;X∗) and

Proposition 4.2.5 The linear operator T : L∞w∗(I;X∗) −→ L1(I;X)∗ given by

T ([W ])(F ) =

∫
I

〈Wt, Ft〉dt

is an isometric isomorphism and for each [W ] ∈ L∞w∗(I;X∗) there exists W̃ ∈ [W ] such

that the function I 3 t 7→ ‖W̃t‖X∗ , which we denote by ‖W̃‖X∗ is measurable and belongs

in L∞(I), and

‖[W ]‖L∞
w∗

=
∥∥‖W̃‖X∗∥∥L∞(I)

.

Proof For the proof which is based on Radon-Nikodym type theorems for Banach space-

valued measures we refer to Theorems 1.5.4 and 1.5.5 in [10]. �

We note that in the case that X is separable the equivalence relation v in L∞w∗(I;X∗)

is exactly the relation of almost sure equality. By Alaoglou’s theorem we have the

following

197



Proposition 4.2.6 Let X be a normed space. Any norm bounded subset of B ⊆
L∞w∗(I;X∗) is relatively compact with respect to the w∗-topology of L∞w∗(I;X∗).

Applying proposition A.4.1 to the separable space L1(0, T ;X) we have the following.

Proposition 4.2.7 Suppose that X is a separable normed space. Then there exists an

auxiliary metric d : L∞w∗(I;X∗)×L∞w∗(I;X∗) −→ R+ such that the restriction d|B×B of d

on any norm bounded subset B ⊆ L∞(I;X∗) metrizes the restriction of the w∗-topology

of L∞w∗(I;X∗) ∼= L1(I;X)∗ on B.

These results apply to the space L∞(I;Md) of vector measure-valued curves, where

Md is the Banach space of all finite vector-valued measures. By the Riesz representation

theorem we have that (Cd)∗ = Md and according to proposition 4.2.5 we have an

isomorphism T : L∞w∗(I;Md) −→ L1(I;Cd)∗ given by

T ([W ])(G) =

∫ T

0

∫
Td

Gt · dWtdt,

and we can consider the w∗-topology on L∞w∗(I;Md) according to which a net {[W a]}a∈A ⊆
L∞w∗(I;Md) converges to [W ] ∈ L∞w∗(I;Md) iff

lim
a∈A

∫ T

0

∫
Td

GtdW
a
t dt =

∫ T

0

∫
Td

GtdWtdt, ∀ G ∈ L1(I;Cd).

Now, if WN : Md
N −→Md denotes the empirical current function defined in (4.16),

we have for all η ∈Md
N that

‖WN‖TV =
1

Nd

∥∥∥∥ ∑
x∈TdN

∇Ng
(
η(x)

)
δ x
N

∥∥∥∥
TV

≤ 1

Nd−1

∑
x∈TdN

d∑
j=1

∣∣g(η(x+ ej)
)
− g
(
η(x)

)∣∣ ≤ 2d · ‖g′‖
Nd−1

∑
x∈TdN

η(x)

= 2d · ‖g′‖uN〈1, πN 〉.

It is easy to see that the subspace ΩN of the Skorohod space D(0, T ;Md
N ) consisting of

curves η : [0, T ] −→Md
N satisfying 〈1, πNηt〉 = 〈1, πNη0

〉 is a closed, and thus Borel, subset

of the Skorohod space D(0, T ;Md
N ).

Proposition 4.2.8 The set

ΩN :=
{
η ∈ D(R+;Md

N )
∣∣∣ ∑
x∈TdN

ηt(x) =
∑
x∈TdN

η0(x), ∀ t ∈ R+

}
is a closed subset of the Skorohod space.

Proof Indeed, since Md
N has the discrete topology, the function mN,1 : Md

N −→ Z+

given by

mN,1(η) =
∑
x∈TdN

η(x)
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is continuous. Then by corollary A.1.1 the induced function m̄N,1 : D(R+;Md
N ) −→

D(R+;Z+) is continuous and since the subset C(R+;Z+) ⊆ D(R+;Z+) consists exactly

of the constant functions, the set

ΩN = m̄−1
N,1

(
C(R+;Z+)

)
is closed as the inverse image of a closed set by a continuous map. �

Therefore since the law PN of the (diffusively rescaled) ZRP on the discrete torus

TdN is concentrated on Ω, we can consider the empirical current process as a random

variable

WN : (Ω, PN |Ω) −→ L∞w∗(0, T ;Md)

since for any η ∈ Ω and any t ∈ [0, T ] we have ‖WN
t ‖ ≤ 2dN‖g′‖u〈1, πNη0

〉, and thus

‖WN (η)‖TV,∞ ≤ 2dN‖g′‖u〈1, πNη0
〉 < +∞

for all η ∈ Ω. Although this definition makes sense, due to the factor N present in the

last inequality one cannot obtain the tightness of the corresponding laws. To circumvent

this difficulty we follow a standard strategy: We consider the current as taking values

in a larger space with a weaker topology, prove the required relative compactness there,

and then prove regularity results for the limiting objects that allow to conclude in the

end that they are indeed vector valued measures. This is the object of the next section

where we study the Kantorovich-Rubinstein measures.

4.2.3 Kantorovich-Rubinstein Vector Measures

We consider next for M = Rd or Td the subspace

Md
0(M) =

{
W ∈Md(M)

∣∣W (Td) = 0
}

of all Borel currents on M with zero total current. In the case M = Rd we impose on

elements ofMd
0(M) the additional requirement that they must have finite first moment.

We note that by definition the empirical current function WN : Md
N −→Md(Td) given

by

WN
η = −∇NσN = N

d∑
j=1

(τ ej
N
σN − σN )ej =

1

Nd−1

d∑
x∈TdN

~WN
x δ xN

takes in fact values in the subspace Md
0(Td) ≤ Md(Td). We consider the subspace

Md
0(M) equipped with the Kantorovich-Rubinstein norm defined by

‖W‖KR := sup
‖G‖Lip≤1

∫
G · dW (4.26)

where the supremum is taken over all G ∈ Lip(M ;Rd) with Lipschitz norm ≤ 1. As is

well known, the Lipschitz norm ‖ · ‖Lip : Lip(Td;Rd) −→ R+ defined by

‖G‖Lip := sup
x6=y

|G(x)−G(y)|
dM (x, y)
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defines a seminorm on Lip(Td;Rd) with ‖G‖Lip = 0 iff G ≡ c, for some constant c ∈ Rd,
and therefore it induces a norm ‖ · ‖Lip0

on the quotient space

Lip0(Td;Rd) := Lip(Td;Rd)/Rd
iso
=
{
G ∈ Lip(Td;Rd)

∣∣G(0) = 0
}
.

Also, since W is of zero total current the action of W on a function G ∈ Lip(Td;Rd)

through its integration depends only on the class of G modulo constants, that is if

G ≡ H + c, c ∈ Rd then∫
Td

G · dW =

∫
Td

(H + c) · dW =

∫
Td

H · dW + c ·W (Td) =

∫
Td

H · dW

and so we can rewrite the KR-norm as

‖W‖KR := sup
‖G‖Lip≤1
G(0)=0

∫
G · dW = sup

‖G‖Lip0≤1

∫
G · dW.

Note that the Kantorovich-Rubinstein norm onMd
0(M) is exactly the norm that makes

the injection

Md
0(M) 3W ↪→ iW := 〈·,W 〉 ∈ Lip0(M ;Rd)∗

defined by the pairing 〈·, ·〉 : Lip0(Td;Rd)×Md
0 −→ R given by

〈G,W 〉 =

∫
G · dW

an isometry. However the injection i : Md
0 ↪→ Lip0(Td;Rd)∗ thus defined does not

have closed range in Lip0(Td;Rd)∗ since Md
0 is not complete. Even worse, we have the

isomorphismMd
0(M)∗ = Lip0(M ;Rd) and therefore by Goldstine’s theorem, ([7], lemma

3.4) according to which every Banach space X is w∗-dense in its double dual X∗∗, it

follows that the w∗-closure ofMd
0(M) in Lip0(Td;Rd)∗ =Md

0(M)∗∗ is the whole space

Lip0(Td;Rd)∗.

Proposition 4.2.9 The space Md
0(M) is Lipschitz isomorphic to the product space

M1
0(M)d :=

d∏
j=1

M1
0(M),

where M1
0(M) is the space of all Borel charges on M = Rd or Td with zero total charge

equipped with the Kantorovich-Rubinstein norm

‖µ‖KR = sup
f∈Lip0(M ;R)
‖f‖Lip0(M;R)≤1

∫
fdµ, µ ∈M1

0(M).

Proof Of course on the product space M1
0(M)d we can consider any of the p-product

norms, 1 ≤ p ≤ ∞. Here we consider the ∞-product norm. We will show that the

function T :Md
0(M) −→M1

0(M)d given by the formula

T (W ) =
(
〈W, ej〉

)d
j=1

=:
(
T j(W )

)d
j=1

=: (W j)dj=1
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is a bi-Lispchitz isomorphism.

For each j = 1, . . . , d and any f ∈ Lip0(M ;R) the function Fj := f · ej belongs in

Lip0(M ;Rd) with ‖Fj‖Lip0(M ;Rd) = ‖f‖Lip0(M ;R) and∫
Fj · dW =

∫
fdW j .

Therefore we have that

‖T j(W )‖KR = sup
f∈Lip0(M ;R)
‖f‖Lip0(M;R)≤1

∫
fdW j ≤ sup

F∈Lip0(M ;Rd)
‖F‖

Lip0(M;Rd)
≤1

∫
F · dW = ‖W‖KR.

On the other hand, since for all F ∈ Lip0(M ;Rd) and all j = 1, . . . , d we have that

‖F j‖Lip0(M ;R) ≤ ‖F‖Lip0(M ;Rd), we have that

‖W‖KR = sup
F∈Lip0(M ;Rd)
‖F‖

Lip0(M;Rd)
≤1

d∑
j=1

∫
F jdW j ≤

d∑
j=1

sup
F∈Lip0(M ;Rd)
‖F‖

Lip0(M;Rd)
≤1

∫
F jdW j

≤
d∑
j=1

sup
f∈Lip0(M ;R)
‖f‖Lip0(M;R)≤1

∫
fdW j =

d∑
j=1

‖W j‖KR.

Therefore it follows that

max
j=1,...,d

‖W j‖KR ≤ ‖W‖KR ≤ d max
j=1,...,d

‖W j‖KR

and the proof is complete. �

Proposition 4.2.10 For all W ∈Md
0(Td) the supremum

‖W‖KR = sup
‖G‖

Lip0(Td;Rd)
≤1

∫
G · dW (4.27)

is attained.

Proof Let W ∈ Md
0(Td) and let {Gk} ⊆ Lip0(Td;Rd) be a maximizing sequence for

the supremum (4.27), i.e. supk∈N ‖Gk‖Lip0(Td;Rd) ≤ 1 and

lim
k→∞

∫
Gk · dW = ‖W‖KR.

Since we are dealing with functions modulo constants we can assume that Gk(0) = 0

for all k ∈ N. Then for all x ∈ Td we have that {Gk(x)}k∈N ⊆ [−1, 1] and since the

family {Gk}k∈N is uniformly Lipschitz, it is equicontinuous and therefore by the Arzela-

Ascoli theorem there exists a subsequence {Gnk} of {Gk} and G ∈ C(Td;Rd) such that

Gnk −→ G uniformly as n → ∞. Furthermore since {Gk} is uniformly 1-Lipschitz and

Gnk −→ G uniformly it follows that G is 1-Lipschitz. Therefore,

‖W‖KR =

∫
G · dW
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and the supremum is attained at G = limk→∞Gnk . �

In what follows we will consider the torus Td as the quotient space R
d

/Zd ∼= Td. In

this way the torus inherits a natural group structure as a quotient of Abelian groups

with respect to which it is a smooth Lie manifold. The universal covering p : Rd −→ Td

of the torus is given in this interpretation of the torus by

p(x) = x+ Zd

and it is obviously a homomorphism of groups. The torus can be then equipped with

the quotient group norm

|x|Td := min
x̃∈x+Zd

|x̃|2

and the corresponding metric

dTd(x, y) := |x− y|Td

coincides with the metric resulting from the Riemannian structure of the torus with

diameter 1
2 . It is obvious that the universal covering is a local isometry since whenever

x̃ ∈ [− 1
2 ,

1
2 )d ⊆ Rd we obviously have that

|p(x̃)|Td = min
z∈x̃+Zd

|z|2 = |x̃|2.

Proposition 4.2.11 Let p : Rd −→ Td ∼= R
d

/Zd be the universal covering of the torus,

p(x) = x+ Zd. Then the induced linear function p̃ : Lip0(Td;Rd) −→ Lip0(Rd;Rd) via

the formula

p̃([F ]) = [F ◦ p]

is an isometric injection.

Proof We consider first the mapping p̄ : Lip(Td;Rd) −→ Lip(Rd;Rd) given by p̄(F ) =

F ◦ p. The covering p is 1-Lipschitz, that is

dTd
(
p(x), p(y)

)
≤ |x− y|

for all x, y ∈ Rd and therefore p̄ is well defined, i.e. p̄(F ) is Lipschitz whenever F is

Lipschitz. Furthermore, whenever F,G ∈ Lip(Td;Rd) are such that F −G ≡ c ∈ R, we

obviously have that p̄(F )− p̄(G) ≡ c ∈ R and therefore p̄ induces the well defined map

p̃ : Lip0(Td;Rd) −→ Lip0(Rd;Rd) on the respective quotient spaces modulo constants.

We will prove next that p̃ is an isometric injection. First, p̃ is obviously injective,

and for all F ∈ Lip0(Td;Rd) and all x, y ∈ Rd we have that

‖p̃(F )‖Lip0(Rd;Rd) = sup
x,y∈Rd
x 6=y

|F ◦ p(x)− F ◦ p(y)|
|x− y|

≤ sup
x,y∈Rd
x 6=y

|F ◦ p(x)− F ◦ p(y)|
dTd

(
p(x), p(y)

)
= ‖F‖Lip0(Td;Rd)

thus p̃ is a contraction.
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It remains to show the converse inequality. The universal covering p : Rd −→ Td is a

local isometry, since whenever x, y ∈ Rd are such that |x− y| ≤ 1
2 (here we consider the

circle S1 as having circumference length = 1) then dTd
(
p(x), p(y)

)
= |x− y|. Therefore

‖p̃(F )‖Lip0(Rd;Rd) = sup
x,y∈Rd
x6=y

|p̃(F )(x)− p̃(F )(y)|
|x− y|

≥ sup
x,y∈[0,2)d

0<|x−y|≤ 1
2

|p̃(F )(x)− p̃(F )(y)|
|x− y|

= sup
x,y∈[0,2)d

0<|x−y|≤ 1
2

|F
(
p(x)

)
− F

(
p(y)

)
|

dTd
(
p(x), p(y)

) = sup
x,y∈Td
x 6=y

|F (x)− F (y)|
dTd(x, y)

= ‖F‖Lip0(Td;Rd),

as required, which completes the proof. �

The range L̃ip0(Td;Rd) := p̃
(
Lip0(Td;Rd)

)
of p̃ is exactly the space of all Zd-

periodic Lipschitz functions F ∈ Lip0(Rd;Rd), a closed subspace of Lip0(Rd;Rd).

Therefore if we consider p̃ as taking values in L̃ip0(Td;Rd) then it is invertible. We

will show that the inverse p̃−1 : L̃ip0(Td;Rd) −→ Lip0(Td;Rd) is induced by the Borel

injection i : Td ∼= [0, 1)d ↪→ Rd. For this it suffices to check that the induced operator

ĩ : L̃ip0(Td;Rd) −→ Lip0(Td;Rd) (4.28)

via ĩ(F ) = F ◦ i is well defined, i.e. that whenever F ∈ Lip0(Rd;Rd) is Zd-periodic then

F ◦ i : Td −→ Rd is Lipschitz, for then we would have that

p̃(̃i(F )) = F ◦ p ◦ i = F

for all F ∈ Lip0(Td;Rd) since p ◦ i = idTd and

ĩ(p̃(F )) = F ◦ i ◦ p = F

for all F ∈ L̃ip0(Td;Rd) since L̃ip0(Td;Rd) consists exactly of the Zd-periodic Lipschitz

functions of Lip0(Rd;Rd). Now, the operator ĩ in (4.28) is indeed well defined since if

F ∈ L̃ip0(Td;Rd) then F is Zd-periodic and therefore F = F ◦ i ◦ p. So we can write

F = p̃(F ◦ i) = p̃(̃i(F )) and since p̃ preserves the norms (even if we allow the domain

and target spaces to be the spaces B(Td;Rd)/R and B(Rd;Rd)/R and the Lipschitz norms

to take the value +∞) we have that

+∞ > ‖F‖Lip0(Rd;Rd) = ‖p̃(̃i(F ))‖Lip0(Rd;Rd) = ‖̃i(F )‖Lip0(Td;Rd)

and therefore ĩ(F ) is Lipschitz whenever F : Rd −→ Rd is Lipschitz and Zd-periodic as

required.

Furthermore, by the representation of the dual of subspaces we have that

Lip0(Td;Rd)∗ ∼= L̃ip0(Td;Rd)∗ ∼= Lip0(Rd;Rd)∗/
L̃ip0(Td;Rd)⊥

and therefore when considering functions F ∈ Lip0(Td;Rd) as Zd-periodic functions

in Lip0(Rd;Rd) we can act on them by equivalence classes of linear functionals in

203



Lip0(Rd;Rd)∗, with two such functionals being equivalent iff their difference vanishes

on all Zd-periodic functions.

Furthermore, since p̃ is an isometric injection, by the Hahn-Banach theorem its dual

p̃ ∗ : Lip0(Rd;Rd)∗ −→ Lip0(Td;Rd)∗

is a surjective contraction. Of course on the domain Md
0(Rd) ≤ Lip0(Rd;Rd)∗ the

operator p̃ ∗ restricts to the push forward operator p∗ :Md
0(Rd) −→Md

0(Td) and thus

the push forward p∗ is a surjective contraction with respect to Kantorovich-Rubinstein

norms. Since p̃∗ is an extension of p∗, we write p̃∗ = p∗.

A space that will be especially useful in the considerations regarding the continuity

equation is the Banach space C1(Td;Rd) equipped with the uniform C1-norm ‖ · ‖C1

given by

‖G‖C1 = ‖G‖∞ + ‖DG‖∞ := ‖G‖∞ +
∥∥|DG|Fr‖∞, G ∈ C1(Td;Rd).

Here, taking advantage of the interpretation of functions G ∈ C1(Td;Rd) as Zd-periodic

functions on Euclidean space, for x ∈ Td we set

DG(x) = D(G ◦ p)(x̃) for any x̃ ∈ Rd such that p(x̃) = x

where p is the universal covering of the torus and for any matrix A = (aij) ∈ Rd×d we

denote by |A|Fr its Frobenius norm,

|A|Fr := tr(ATA)
1
2 =

( d∑
i,j=1

|aij |2
) 1

2

.

Of course since G ∈ C1(Td;Rd) the function Rd 3 x̃ 7→ |D(G ◦ p)(x̃)|Fr is continuous

and periodic and thus bounded. So the norm ‖ · ‖C1 is well defined. We note also that

the Frobenius norm on Rd×d is induced by the Euclidean inner product 〈·, ·〉F on Rd×d

given by

〈A,B〉F = tr(ATB) =

d∑
i,j=1

aijbij

for all A,B ∈ Rd×d. Furthermore, by the Cauchy-Schwartz inequality, for any A ∈ Rd×d,
x ∈ Rd,

|Ax|22 =

d∑
i=1

∣∣∣∣ d∑
j=1

aijxj

∣∣∣∣2 ≤ d∑
i=1

( d∑
j=1

a2
ij

)( d∑
j=1

x2
j

)
= |A|2Fr|x|22. (4.29)

The following lemma is an adaptation of a similar lemma for real valued functions in

compact subsets of Rd found in [6].

Lemma 4.2.2 There exists a family {Sε}ε>0 of linear operators

Sε : C(Td;Rd) −→ C∞(Td;Rd)

and constants C = C(ρ, d), Cε = Cε(ρ, d) ≥ 0, ε > 0, such that SεF
ε→0−→ F uniformly

for all F ∈ C(Td;Rd) and
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(a) ‖SεF‖Lip ≤ Cε‖F‖u, for all F ∈ C(Td;Rd) and all ε > 0,

(b) ‖SεF‖Lip ≤ ‖F‖Lip for all F ∈ Lip(Td;Rd) and all ε > 0,

(c) ‖SεF − F‖u ≤ εC‖F‖Lip, for all F ∈ Lip(Td;Rd) and all ε > 0.

(d) ‖SεF‖C1 ≤ ‖F‖C1 for all F ∈ C1(Td;Rd) and all ε > 0.

Proof We define a smooth approximation (ρε)ε∈(0,1) ⊆ C∞(Td) of the identity via

convolution through the usual molifiers. Let ρ : Rd −→ [0, 1] be a radially symmetric

C∞ function such that ρ(0) = 0, suppρ ⊆ D(0, 1
2 ) and

∫
Rd
ρ = 1. For all ε ∈ (0, 1) we

define ρε : Rd −→ R+ by the formula

ρε(x) =
1

εd
ρ
(x
ε

)
.

Then suppρε ⊆ D(0, ε2 ), for all ε ∈ (0, 1). We define S̃ε : C(Rd;Rd) −→ C∞(Rd;Rd) by

S̃εF = F ∗ ρε,

that is SεF is given by the formula

SεF (x) =

∫
Rd

F (x− y)ρε(y)dy =

∫
D(0, ε2 )

F (x− y)ρε(y)dy =

∫
D(x, ε2 )

F (y)ρε(x− y)dy.

Of course by standard results in convolutions S̃ε takes values in the space of smooth

functions. Indeed, for all x ∈ Rd and h > 0 we have that

F ∗ ρε(x+ hej)− F ∗ ρε(x)

h
=

∫
Rd

F (x+ hej − y)− F (x− y)

h
ρε(y)dy

=

∫
Rd

F (y)
ρε(x+ hej − y)− ρε(x− y)

h
dy

=

∫
Kx

F (y)
ρε(x+ hej − y)− ρε(x− y)

h
dy,

for some compact ball Kx such that D(x, ε2 ) ∪ D(x + hej ,
ε
2 ) ⊆ Kx for all h ∈ (0, 1).

Now,

ρε(x+ hej − y)− ρε(x− y) = τhej (τxρε)(−y)− (τxρε)(−y)

and since τxρε ∈ C2
c (Rd) we have that

τhejτxρε − τxρε
h

h→0−→ ∂jτxρε = τx∂jρε uniformly.

It follows that the limit

∂j(F ∗ ρε)(x) = lim
h→0

F ∗ ρε(x+ hej)− F ∗ ρε(x)

h
=

∫
Kx

F (y)τx∂jρε(−y)dy

=

∫
D(x, ε2 )

F (y)∂jρε(x− y)dy

exists for all x ∈ Rd. In the same way one proves by induction that the partial derivative

∂a(F ∗ ρε)(x) =

∫
D(x, ε2 )

F (y)∂aρε(x− y)dy
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exists for all x ∈ Rd and all multi-indices a ∈ Zd+, and thus S̃εF is C∞.

Next, it is easy to see that S̃ε maps Zd-periodic functions to Zd-periodic functions.

Indeed, if F ∈ C(Td;Rd) is Zd-periodic and k ∈ Zd, then by the definition of SεF ∈
C∞(Td;Rd) we have that for all x ∈ Rd,

SεF (x+ k) =

∫
Rd

F (x+ k − y)ρε(y)dy =

∫
Rd

F (x− y)ρε(y)dy = SεF (x),

and thus SεF is Zd-periodic. Therefore the restriction

Sε := S̃ε|C(Td;Rd) : C(Td;Rd) −→ C∞(Td;Rd)

gives a well defined function.

We check next that SεF −→ F uniformly. So let F ∈ C(Td;Rd). For all x ∈ Td,
ε > 0, we have that

SεF (x)− F (x) =

∫ (
F (x− y)− F (x)

)
ρε(y)dy

=

∫ (
τ−εyF (x)− F (x)

)
ρ(y)dy

and therefore

‖SεF − F‖u ≤
∫
‖τ−εyF − F‖uρ(y)dy.

Let fε : Rd −→ R+ denote the function fε(y) = ‖τ−εyF − F‖u. Obviously the family

{fε}ε∈(0,1) is uniformly bounded by 2‖F‖u. Furthermore, fε −→ 0 pointwise. Indeed,

for fixed y ∈ Rd \ {0}, we have that

fε(y) = sup
x∈[− 1

2 ,
1
2 ]d
|F (x− εy)− F (x)|.

But since F is continuous, it is uniformly continuous on, say [−1, 1]d, and therefore for

each γ > 0 there exists δγ > 0 such that

x, z ∈ [−1, 1]d, |z − x| < δγ =⇒ |F (z)− F (x)| < γ.

So if we choose εγ,y > 0 such that εγ,y < δγ/‖y‖, then for all x ∈ [− 1
2 ,

1
2 )d and all

0 < ε < εγ,y we have that |F (x − εy) − F (x)| < γ, and so for all ε ∈ (0, εγ,y) we have

that fε(y) < γ. Since γ > 0 was arbitrary, limε→0 fε(y) = 0, as required.

It is easy to see that in the case that in addition F ∈ Lip(Td;Rd), one has the

estimate

|τ−εyF (x)− F (x)| ≤ ε‖F‖Lip|y|

for all x ∈ Rd. Therefore, ‖τ−εyF − F‖u ≤ ε‖F‖Lip|y| for all y ∈ Rd, and

‖SεF − F‖u ≤ ε‖F‖Lip

∫
Rd

|y|ρ(y)dy,
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which proves that the operators Sε, ε > 0, satisfy (c) with constant C =
∫
Rd
|·|ρ ≥ 0.

(b) Let F ∈ Lip(Td;Rd). Then for all x, y ∈ Rd and all ε ∈ (0, 1) we have that

|SεF (y)− SεF (x)| =

∣∣∣∣ ∫ (F (y − z)− F (x− z)
)
ρε(z)dz

∣∣∣∣
≤

∫
|F (y − z)− F (x− z)|ρε(z)dz ≤ ‖F‖Lip|y − x|,

which implies that ‖SεF‖Lip ≤ ‖F‖Lip for all ε ∈ (0, 1), as required.

(a) Let F ∈ C(Td;Rd). Then for all x, y ∈ Rd and all ε ∈ (0, 1) we have that

SεF (y)− SεF (x) =

∫
F (z)

(
ρε(y − z)− ρε(x− z)

)
dz.

Now, by proposition 4.2.11 we have that

‖SεF‖Lip(Td;Rd) = sup
x,y∈[−1,1]d

|x−y|≤ 1
2

SεF (y)− SεF (x)

|x− y|
,

and for all x, y ∈ [−1, 1]d we have that

SεF (y)− SεF (x) ≤ ‖F‖u
∫
D(x, ε2 )∪D(y, ε2 )

|ρε(y − z)− ρε(x− z)|dz

≤ ‖ρε‖Lip(Rd;Rd)‖F‖u|x− y|mRd
(
D
(
x,
ε

2

)
∪D

(
y,
ε

2

))
≤ ‖ρε‖Lip(Rd;Rd)mRd

(
D
(

[−1, 1]d,
1

2

))
‖F‖u|x− y|

≤ 3d‖ρε‖Lip(Rd;Rd)‖F‖u|x− y|,

which proves that (a) holds with constant Cε := 3d‖ρε‖Lip(Rd;Rd) ≥ 0.

(d). Let F ∈ C1(Td;Rd). Then of course ‖SεF‖u ≤ ‖F‖u for all ε > 0 and since

F ∈ C1(Td;Rd) we have that D(SεF ) = SεDF for all ε ∈ (0, 1), and therefore

‖SεF‖C1 = ‖SεF‖u + ‖D(SεF )‖u = ‖SεF‖u + ‖Sε(DF )‖u ≤ ‖F‖u + ‖DF‖u = ‖F‖C1

for all F ∈ C1(Td;Rd) and all ε ∈ (0, 1), as required. �

Let M̂d
0(M) denote the completion of Md

0(M) with respect to the Kantorovich-

Rubinstein norm or equivalently the norm-closure of Md
0(M) in Lip0(M ;Rd)∗. Ele-

ments of M̂d
0(Td) can be characterized by the following continuity property. Recall by

functional analysis that for any Banach space X we have (X∗, w∗)∗ = X ≤ X∗∗. In our

case, due to the isomorphism Lip0(Td;Rd) = M̂d
0(Td)∗ we have that

M̂d
0(Td) =

(
M̂d

0(Td)∗, w∗
)∗ ⊆ Lip0(Td;Rd)∗

Proposition 4.2.12 Let W ∈ Lip0(Td;Rd)∗. Then W ∈ M̂d
0(Td) iff for all sequences

{Fn}n∈N ⊆ Lip(Td;Rd) the following implication holds:

‖Fn − c‖u −→ 0, c ∈ Rd, sup
n∈N
‖Fn‖Lip < +∞ =⇒ lim

n→∞
〈W,Fn〉 = 0. (4.30)

207



Proof We have to prove that W satisfies (4.30). So let {Fn} ⊆ C∞(Td;Rd) be such

that limn→∞ ‖Fn − c‖u = 0 for some c ∈ Rd and C := supn∈N ‖Fn‖Lip < +∞. By

definition, for each ε > 0 there exists W ε such that ‖W −W ε‖Lip0(Td;Rd)∗ < ε. Then

for all n ∈ N, ε > 0, we have that

|〈TW , Fn〉| ≤ |〈W ε, Fn〉|+ |〈W −W ε, Fn〉| ≤ |〈W ε, Fn〉|+ Cε.

But since W ε ∈Md
0(Td), we have that

lim
n→∞

〈W ε, Fn〉 = 〈W ε, c〉 = 0,

and therefore

lim sup
n→∞

|〈W,Fn〉| ≤ Cε,

which since ε > 0 was arbitrary proves that 〈W,Fn〉 −→ 0.

We prove now the converse. Let Sε : C(Td;Rd) −→ C∞(Td;Rd), ε ∈ (0, 1), be the

family of operators of lemma 4.2.12. We set W ε := W ◦ Sε for all ε ∈ (0, 1). Then by

property (a) of the operators Sε we have that for all F ∈ C(Td;Rd)

〈W ε, F 〉 = 〈W,SεF 〉 ≤ ‖W‖Lip0(Td;Rd)∗‖SεF‖Lip ≤ Cε‖W‖Lip0(Td;Rd)∗‖F‖u.

Therefore, for all ε ∈ (0, 1), Wε defines a bounded linear function on C(Td;Rd) and

can thus be identified with a measure in M(Td;Rd) which we continue to denote by

Wε, with ‖Wε‖TV ≤ Cε‖W‖Lip(Td;Rd)∗ . Furthermore, since by definition the constants

c ∈ Rd are invariant by the action of approximation operators Sε, i.e. Sεc = c for all

c ∈ Rd, ε ∈ (0, 1), we have that

〈Wε, c〉 = 〈W, c〉 = 0

for all c ∈ Rd and thus Wε ∈ Md
0(Td). Furthermore, by property (b) of the operators

Sε it easily follows that ‖Wε‖KR ≤ ‖W‖Lip0(Td;Rd)∗ for all ε ∈ (0, 1), since for all

F ∈ Lip(Td;Rd) we have that

〈Wε, F 〉 = 〈W,SεF 〉 ≤ ‖W‖Lip0(Td;Rd)∗‖SεF‖Lip ≤ ‖W‖Lip0(Td;Rd)∗‖F‖Lip.

Now, by definition, for each ε ∈ (0, 1) there exists Fε ∈ Lip(Td;Rd) with ‖Fε‖Lip ≤ 1

such that

‖Wε −W‖Lip(Td;Rd)∗ ≤ 〈Wε −W,Fε〉+ ε = 〈W,SεFε − Fε〉+ ε. (4.31)

But by properties (b) and (c) of the operators Sε we have that

sup
ε∈(0,1)

‖SεFε − Fε‖Lip ≤ 2 and ‖SεFε − Fε‖u ≤ Cε‖Fε‖Lip ≤ Cε
ε→0−→ 0,

which, since W is assumed to satisfy implication (4.30), proves according to (4.31) that

‖Wε −W‖Lip(Td;Rd)∗ −→ 0 and thus W ∈ M̂d
0(Td) as required. �

According to the following proposition, every W ∈ M̂d
0(Td), is determined uniquely

by its action on C1-functions.
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Corollary 4.2.1 The linear operator T : M̂d
0(Td) −→

(
C1(Td;Rd), ‖ · ‖C1)∗ defined

through restriction by TW := W |C1(Td;Rd) is injective contraction.

Proof We suppose that W |C1(Td;Rd) ≡ 0 and we will prove that 〈W,F 〉 = 0 for all

F ∈ Lip(Td;Rd). So let F ∈ Lip(Td;Rd). We consider then the sequence {Fn :=

S 1
n
F}n∈N ⊆ C∞(Td;Rd) given by lemma 4.2.2. Then by lemma 4.2.2 (b) the sequence

{Fn − F} ⊆ Lip(Td;Rd) satisfies

sup
n∈N
‖Fn − F‖Lip ≤ 2‖F‖Lip

and by the same lemma Fn − F −→ 0 uniformly as n → ∞. Therefore, by implication

(4.30), we have that

lim
n→∞

〈W,Fn − F 〉 = 0.

Since by assumption 〈W,Fn〉 = 0 for all n ∈ N this proves that 〈W,F 〉 = 0 as required.

We prove next that T is indeed a contraction. But this easy, since for all (F,W ) ∈
C1(Td;Rd)× Lip0(Td;Rd)∗ we have that

〈F,W 〉 ≤ ‖F‖Lip0(Td;Rd)‖W‖KR ≤ ‖F‖C1‖W‖KR

and therefore

‖TW ‖∗C1 := sup
‖F‖

C1(Td;Rd)
≤1

〈F,W 〉 ≤ ‖W‖KR

for all W ∈ Lip0(Td;Rd). So T is a bounded operator of norm ‖T‖ ≤ 1. �

Proposition 4.2.13 Let L ∈ C1(Td;Rd)∗. The following are equivalent:

(a) L is of the form L = TW for some W ∈ M̂d
0(Td)

(b) For every sequence {Fn}n∈N ⊆ C∞(Td;Rd) the following implication holds:

‖Fn − c‖u −→ 0, c ∈ Rd, sup
n∈N
‖DFn‖u < +∞ =⇒ lim

n→∞
〈L,Fn〉 = 0. (4.32)

(c) For every c ∈ Rd and all ε, C > 0 there exists δ > 0 such that

F ∈ C∞(Td;Rd), ‖F − c‖u < δ, ‖DF‖u ≤ C =⇒ |〈L,F 〉| < ε.

Proof First, since for any function F ∈ C1(Td;Rd) we have that ‖F‖Lip ≤ ‖DF‖u, it

is obvious by proposition 4.2.12 that (a) implies (b).

(b)=⇒(c) We suppose that L satisfies (b) not (c) to derive a contradiction. Indeed, if L

does not satisfy (c), then there exists c ∈ Rd and ε, C > 0 such that for all δ > 0 there

exists Fδ ∈ C∞(Td;Rd) such that

‖Fδ − c‖u < δ, ‖DFδ‖u ≤ C and |〈L,Fδ〉| ≥ ε.

Then if for all n ∈ N we pick Gn := F 1
n

we have that

‖Gn − c‖u
n→∞−→ 0, sup

n∈N
‖DGn‖u ≤ C and |〈L,Gn〉| ≥ ε,
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comes to contradiction with implication (4.32) since L is assumed to satisfy (b).

(c)=⇒(b) Let {Fn}n∈N ⊆ C∞(Td;Rd) be a sequence such that ‖Fn − c‖u −→ 0 for

some constant c ∈ Rd and such that C := supn∈N ‖DFn‖u <∞. We have to prove that

〈L,Fn〉 −→ 0 as n→∞. So let ε > 0. Since L satisfies (c), there exists δ > 0 such that

F ∈ C∞(Td;Rd), ‖F − c‖u < δ, ‖DF‖u ≤ C =⇒ |〈L,F 〉| < ε.

But then if we choose n0 ∈ N such that ‖Fn− c‖u < δ for all n ≥ n0, we then have that

n ≥ n0 =⇒ |〈L,Fn〉| < ε,

which proves that L satisfies (b).

(b)∧(c)=⇒(a) Let L ∈ C1(Td;Rd)∗ be a distribution satisfying (b) and (c). We will

prove that there exists W ∈ M̂d
0(Td) such that L = TW . We show first that L can be

extended to a linear operator L̄ on the domain Lip(Td;Rd). Indeed, let F ∈ Lip(Td;Rd)

and let {Fn := S 1
n
F}n∈N ⊆ C∞(Td;Rd) be the sequence given by lemma 4.2.2. Then

Fn − F −→ 0 uniformly and

Lip{Fn} := sup
n∈N
‖Fn‖Lip ≤ ‖F‖Lip < +∞.

We claim that the sequence {〈L,Fn〉} is Cauchy. Indeed, since L satisfies (c), given

ε > 0, there exists δ > 0 such that

G ∈ C∞(Td;Rd), ‖G‖u < δ, ‖DG‖u ≤ 2Lip{Fn} =⇒ |〈L,G〉| < ε.

But now, since Fn −→ F uniformly there exists n0 ∈ N such that

n,m ≥ m0 =⇒ ‖Fn − Fm‖u < δ.

Therefore, since ‖D(Fn − Fm)‖u ≤ ‖Fn‖Lip + ‖Fm‖Lip ≤ 2Lip{Fn} for all n,m ∈ N, we

have that

|〈L,Fn〉 − 〈L,Fm〉| = |〈L,Fn − Fm〉| < ε

for all n,m ≥ n0, which proves that {〈L,Fn〉} is Cauchy. Therefore we can define an

operator L̄ on Lip(Td;Rd) by defining

〈L̄, F 〉 = lim
n→∞

〈L, S 1
n
F 〉

for all F ∈ Lip(Td;Rd). Of course it remains to be proved that L̄ extends L.

First, it is easy to see that the definition of L̄ does not depend on the particular

choice of the sequence approximating sequence {Fn} ⊆ C∞(Td;Rd), among those that

satisfy

‖Fn − F‖u −→ 0 and Lip{Fn} := sup
n∈N
‖Fn‖Lip <∞. (4.33)

Indeed, let {F̃n} ⊆ C∞(Td;Rd) another sequence such that ‖F̃n − F‖u −→ 0 and

Lip{F̃n} <∞. Then {Fn − F̃n} ⊆ C∞(Td;Rd), ‖Fn − F̃n‖u −→ 0 and

sup
n∈N
‖Fn − F̃n‖Lip ≤ Lip{Fn} + Lip{F̃n} < +∞,
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which since L satisfies (b) implies that

lim
n→∞

〈L,Fn − F̃n〉 = 0,

and so the definition of L̄ does not depend on the approximating sequence {Fn}.
In turn, this implies that the formula

〈L̄, F 〉 = lim
n→∞

〈L,Fn〉, F ∈ Lip(Td;Rd),

where the limit is taken along any sequence {Fn}n∈N ⊆ C∞(Td;Rd) satisfying (4.33),

defines an extension of L ∈ C1(Td;Rd)∗ on Lip(Td;Rd). Indeed, if F ∈ C∞(Td;Rd)

then the constant sequence defined by Fn = F for all n ∈ N satisfies (4.33) and therefore

〈L̄, F 〉 = lim
n→∞

〈L,Fn〉 = 〈L,F 〉.

Therefore L̄|C∞(Td;Rd) ≡ L|C∞(Td;Rd) and so, since C∞(Td;Rd) is dense in C1(Td;Rd)

in the C1-uniform norm, if we show that the functional L̄|C1(Td;Rd) : C1(Td;Rd) −→ R

is bounded with respect to the C1-uniform norm of C1(Td;Rd) it will follow that

L̄|C1(Td;Rd) ≡ L|C1(Td;Rd) as required. But indeed, since L ∈ C1(Td;Rd)∗, for all

F ∈ C1(Td;Rd) we have that

〈L̄, F 〉 = lim
n→∞

〈L, S 1
n
F 〉 ≤ ‖L‖ lim sup

n→∞
‖S 1

n
F‖C1 ≤ ‖L‖‖F‖C1

and therefore L̄ is bounded, as required.

Then it is immediate to check that the extension L̄ is linear. Indeed, if we continue

to denote Fn := S 1
n
F , n ∈ N, for all F ∈ C(Td;Rd), then for all F,G ∈ Lip0(Td;Rd)

and all a, b ∈ R we have that

〈L̄, aF + bG〉 = lim
n→∞

〈L̄, (aF + bG)n〉 = lim
n→∞

〈L̄, aFn + bGn〉 = a〈L̄, F 〉+ b〈L̄, G〉.

Furthermore, it is easy to see that any distribution L ∈ C1(Td;Rd)∗ satisfying one of

the equivalent conditions (b) and (c) vanishes on all constant functions c ∈ Rd. Indeed,

let c ∈ Rd. Since L satisfies, say (c), for all ε > 0 there exists δ > 0 such that

F ∈ C∞(Td;Rd), ‖F − c‖u < δ, ‖F‖Lip ≤ 1 =⇒ |〈L,F 〉| < ε

and in particular |〈L, c〉| < ε which since ε > 0 was arbitrary proves that 〈L, c〉 = 0.

Consequently, the linear function L̄ : Lip(Td;Rd) −→ R passes to a well defined bounded

linear function W := L̄/Rd : Lip0(Td;Rd) −→ R. Let us check that W is indeed

bounded. First, for all F ∈ C1(Td;Rd) we have that

〈W,F 〉 = 〈L,F − F (0)〉 ≤ ‖L‖‖F − F (0)‖C1 ≤ 2‖L‖‖F‖Lip.

Let now F ∈ Lip0(Td;Rd) and let {Fn} := {S 1
n
F} ⊆ C∞(Td;Rd) be the approximating

sequence given by lemma 4.2.2. Then in particular supn ‖Fn‖Lip ≤ ‖F‖Lip and so

〈W,Fn〉 = 〈L,Fn − Fn(0)〉 ≤ ‖L‖‖Fn − Fn(0)‖C1 ≤ 2‖L‖‖Fn‖Lip ≤ 2‖L‖‖F‖Lip
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for all n ∈ N. Taking the limit as n → ∞ it follows that 〈W,F 〉 ≤ 2‖L‖‖F‖Lip, which

since F ∈ Lip0(Td;Rd) was arbitrary, proves that W is indeed bounded, with norm

‖W‖KR = ‖W‖Lip0(Td;Rd)∗ ≤ 2‖L‖.
Let us prove next that the extended operator W = L̄ satisfies implication (4.30) for all

sequences {Fn} ⊆ Lip(Td;Rd). So let {Fn} ⊆ Lip(Td;Rd) be such that ‖Fn−c‖u −→ 0

for some c ∈ Rd and CF := supn∈N ‖Fn‖Lip <∞. By the definition of L̄ for each n ∈ N
there exists εn > 0 such that

|〈L̄, Fn〉 − 〈L, SεnFn〉| <
1

n
, (4.34)

and of course we can assume that the sequence (εn)n∈N has been chosen so that εn ↓ 0 as

n→∞. Then, since the {Fn} ⊆ Lip(Td;Rd), by properties (b) and (c) of the operators

Sε, ε ∈ (0, 1), of lemma 4.2.2 we have that ‖D(SεnFn)‖u ≤ ‖SεnFn‖Lip ≤ ‖Fn‖Lip ≤ CF
for all n ∈ N and

‖SεnFn − Fn‖u ≤ Cεn‖Fn‖Lip ≤ CCF εn
n→∞−→ 0,

and therefore since {SεnFn} ⊆ C∞(Td;Rd) and L satisfies the continuity property (b)

of this proposition we get that

lim
n→∞

〈L, SεnFn〉 = 0,

which in turn implies by (4.34) that limn→∞〈L̄, Fn〉 = 0, as required.

So far we have proved that given a distribution L ∈ C1(Td;Rd)∗ satisfying one of the

equivalent conditions (b) and (c) there exists unique W = WL ∈ Lip0(Td;Rd)∗ such that

TW := W |C1(Td;Rd) = L. In addition, we have also shown that this W ∈ Lip0(Td;Rd)

satisfies implication (A.1) for all F ∈ Lip(Td;Rd), which according to proposition 4.2.12

proves that W ∈ M̂d
0(Td), and the proof is complete. �

According to this proposition, if we denote by M̂d
0,C1(Td) the vector subspace of

C1(Td;Rd)∗ consisting of all L ∈ C1(Td;Rd)∗ satisfying implication (4.32), then the

extension operator ¯ : M̂d
0,C1(Td) −→ M̂d

0(Td) given by

L̄ := the unique W ∈ M̂d
0(Td) such that W |C1(Td;Rd) = L

= pw- lim
ε→0

L ◦ Sε

is well defined.

Corollary 4.2.2 The extension operator ¯ : M̂d
0,C1(Td) −→ M̂d

0(Td) is a bi-Lipschitz

linear isomorphism.

Proposition 4.2.14 Let ∇ : L1(Td) −→ Lip0(Td;Rd)∗ be defined by

〈∇σ, F 〉 = −
∫
Td

σ(x)divF (x)dx.

Then ∇ is a bounded linear operator and ∇L1(Td) ≤ M̂d
0(Td).
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Proof Obviously for all σ ∈ L1(Td) and all F ∈ Lip0(Td;Rd) we have that

〈∇σ, F 〉 ≤ ‖divF‖L∞(Td)‖σ‖L1(Td) ≤ 2‖σ‖L1(Td)‖F‖Lip0(Td;Rd),

and therefore ∇ is well defined and bounded with ‖∇‖ ≤ 2.

We prove now that ∇L1(Td) ⊆ M̂d
0(Td). First we note that if σ ∈ C∞(Td) then for

all F ∈ Lip0(Td;Rd) we can perform integration by parts to get

〈∇σ, F 〉 = −
∫
σ(x)divF (x)dx =

∫
Td

∇σ(x) · F (x)dx,

and therefore

∇σ = ∇σ dm
Td
∈Md

0(Td) ≤ Lip0(Td;Rd)∗.

Let now σ ∈ L1(Td). Since C∞(Td) is dense in L1(Td) there exists a sequence

{σn} ⊆ C∞(Td) such that ‖σ − σn‖L1(Td) −→ 0 as n → ∞, and therefore since ∇ is

bounded with ‖∇‖ ≤ 2, we have that

‖∇σ −∇σn‖Lip0(Td;Rd)∗ ≤ 2‖σ − σn‖L1(Td) −→ 0,

which, since∇C∞(Td) ⊆Md
0(Td), proves that σ ∈ M̂d

0(Td). �

Proposition 4.2.15 The gradient operator

∇ : L1(Td) ≤M(Td) ∼= C(Td)∗ −→ M̂d
0(Td) ≤ C1(Td;Rd)∗

is w∗-continuous.

Proof Indeed, let {σα}α∈A ⊆ L1(Td) be a net such w∗-lima σα = σ ∈ L1(Td), i.e. such

that ∫
Td

fσα =

∫
Td

fσ, ∀ f ∈ C(Td).

Then, since divF ∈ C(Td) for all F ∈ C1(Td;Rd), we have that

〈∇σa, F 〉 = −
∫
σαdivF −→ −

∫
σdivF = 〈∇σ, F 〉

for all F ∈ C1(Td;Rd), and therefore ∇σα −→ ∇σ in the w∗-topology of M̂d
0(Td) when

considered as a subspace of C1(Td;Rd)∗. �

4.2.4 The State Space of the Empirical Current Process

As we have already seen in the end of section 4.2.2, the (diffusively rescaled) empirical

current process can be regarded as the process

WN : ΩN −→ L∞w∗(0, T ;Md)

given by the formula

WN (η, t) = WN
ηt ,
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where ΩN is the closed subset

ΩN :=
{
η ∈ D(R+ ×Md

N )
∣∣〈1, πNηt〉 = 〈1, πNη0

〉, ∀ t ≥ 0
}

(4.35)

and

‖W‖TV,∞ ≤ 2dN〈1, πNη0
〉.

As we have seen the extra factor N above poses difficulties in the proof of the relative

compactness of the law WN
∗ P

N ∈ PL∞w∗(0, T ;Md).

However, as we have noted the empirical current function WN : Md
N −→Md takes

in fact values in the space Md
0(Td) of vector-valued measures with zero total mea-

sure, where Md
0(Td) is considered equipped with the Kantorovich-Rubinstein norm.

By an integration by parts and the Cauchy Schwartz inequality we see that for any

G ∈ Lip0(Td;Rd),∫
G · dWN =

1

Nd−1

d∑
j=1

∑
x∈TdN

[
Gj
( x
N

)
−Gj

(x− ej
N

)]
g
(
η(x)

)
≤ 1

Nd−1

∑
x∈TdN

g
(
η(x)

)√
d
∣∣∣G( x

N

)
−G

(x− ej
N

)∣∣∣
2

≤ ‖g′‖u
√
d
∥∥G∥∥

Lip(Td;Rd)
〈1, πN 〉.

Therefore

‖WN‖KR = sup
G∈Lip0(Td;Rd)
‖G‖Lip≤1

∫
G · dWN

η ≤
√
d‖g′‖u〈1, πNη 〉. (4.36)

Then, if ΩN is the Borel subset of D(R+;Md
N ) defined in (4.35) we have that

‖WN
η ‖L∞(0,T ;Md

0) ≤
√
d‖g′‖u〈1, πNη0

〉

for all η ∈ ΩN . Consequently we can regard the empirical current process as the mapping

(ΩN , PN )
WN

−→ L∞(0, T ;Md
0) ≤ L∞w∗(0, T ; Lip0(Td;Rd)∗) ∼= L1(0, T ; Lip0(Td;Rd))∗.

In the same way, in the case that the jump rate g is bounded we get the estimate

‖WN
η ‖L∞(0,T ;Md

0) ≤
√
d‖g‖u (4.37)

and so in this case the empirical current process takes values in the ball of radius
√
d‖g‖u

in L∞w∗(0, T ; Lip0(Td;Rd)∗). Of course in order for this to be meaningful we also have

to ensure that it is a Borel random variable with respect to the Borel σ-algebra of the

Skorohod space and the Borel σ-algebra of the w∗-topology of L∞w∗
(
I; Lip0(Td;Rd)∗

)
so

that the laws WN
∗ P

N are well-defined. This follows by the next proposition

Proposition 4.2.16 The empirical current mapping

WN : ΩN −→ L1(0, T ; Lip0(Td;Rd))∗

is continuous with respect to the Skorohod topology on ΩN and the w∗-topology on

L1(0, T ; Lip0(Td;Rd))∗ and thus Borel measurable with respect to the corresponding σ-

algebras
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Proof We have to prove that for every F ∈ L1(0, T ; Lip0(Td;Rd)) the function 〈F,WN 〉[0,T ] :

D(0, T ;Md
N ) −→ R given by

〈F,WN 〉[0,T ](η) =

∫ T

0

〈Ft,WN
ηt 〉dt

is continuous. So let F ∈ L1(0, T ; Lip0(Td;Rd)). By definition F is strongly measurable

and the function t 7→ ‖Ft‖Lip0
is in L∞(0, T ). Let {ηk}k∈N ⊆ D(0, T ;Md

N ) be a sequence

of cadlag paths such that ηk −→ η ∈ D(0, T ;Md
N ) in the Skorohod topology and we will

prove that limk→∞〈F,WN 〉[0,T ](η
k) = 〈F,WN 〉[0,T ](η). First, as we have seen in the

proof of proposition 4.2.8 the function mN,1 : ΩN −→ C(0, T ;Z+) given by

mN,1(η)(t) =
∑
x∈TdN

ηt(x)

is continuous and therefore mN,1(ηk) −→ mN,1(η) uniformly on [0, T ] as k → ∞. Con-

sequently there exists k0 ∈ N such that

k ≥ k0 =⇒
∑
x∈TdN

ηkt (x) =
∑
x∈TdN

η0(x), ∀ t ∈ [0, T ].

Next, since the function WN : Md
N −→Md

0(Td) ≤ Lip0(Td;Rd)∗ is obviously continu-

ous the induced function

W̄N : D(0, T ;Md
N ) −→ D

(
0, T ;Md

0(Td)
)

on the Skorohod spaces is continuous. Therefore WN
ηk −→WN

η in the Skorohod topology

and consequently Wηkt
−→ WN

ηkt
in Md

0(Td) for all continuity points of t ∈ [0, T ] of η.

But η has at most countable discontinuity points and so

‖Wηkt
−→WN

ηkt
‖KR −→ 0

for almost all t ∈ [0, T ]. Consequently, since Ft ∈ Lip0(Td;Rd) for all t ∈ [0, T ], we have

that

〈Ft,WN
ηkt
〉 −→ 〈Ft,WN

ηt 〉, a.s.-∀ t ∈ [0, T ].

Furthermore, for all k ≥ k0 by the bound (4.36),

|〈Ft,WN
ηkt
〉| ≤ ‖Ft‖Lip0

‖WN
ηkt
‖KR ≤

√
d‖g′‖u〈1, πNηkt 〉‖Ft‖Lip0

=
√
d‖g′‖u〈1, πNη0

〉‖Ft‖Lip0
∈ L1(0, T )

and so by the dominated convergence theorem it follows that

lim
k→∞

〈F,WN 〉[0,T ](η
k) = lim

k→∞

∫ T

0

〈Ft,WN
ηkt
〉dt =

∫ T

0

〈Ft,WN
ηt 〉dt = 〈F,WN 〉[0,T ](η)

as required for the w∗-continuity of the empirical current process. �

Due to the fact that cl(Lip0(Td;Rd)∗,w∗)Md
0 = Lip0(M ;Rd)∗, the injection

L∞w∗(0, T ;M̂d
0(M)) ↪→ L∞w∗

(
0, T ; Lip0(M ;Rd)∗

)
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does not have w∗-closed range and that is why we consider the empirical current as taking

values on the whole space L1(0, T ; Lip0(M ;Rd)
)∗

, since any limiting argument with re-

spect to the w∗-topology would anyway take us out of the smaller space L∞w∗(0, T ;M̂d
0(M)).

This definition of the empirical current process will allows us to prove the relative

compactness of the law {WN
∗ P

N}N∈N of the empirical current. However, since the space

Lip0(Td;Rd) is not separable, the space L∞w∗(0, T ; Lip0(Td;Rd)∗) is not sub-metrizable

and the Prokhorov-Le Cam theorem (A.4.1 in the appendix) will give us only a con-

vergent sub-net of the sequence {WN
∗ P

N}. In order to get a convergent sub-sequence

we will also prove the relative compactness of the empirical current in a slightly weaker

topology, in the space L∞w∗(0, T ;C1(Td;Rd)∗).

It is easy to see with the same reasoning that the empirical current also gives rise to

a well defined map

WN : (ΩN , P
N ) −→ L∞w∗(0, T ;C1(Td;Rd)∗) ∼= L1(0, T ;C1(Td;Rd))∗. (4.38)

Let us recall the mean value theorem for vector valued functions.

Lemma 4.2.3 Let G ∈ C1(Rd;Rd). Then

G(y)−G(x) =

(∫ 1

0

DG((1− t)x+ ty))dt

)
(y − x)

for all x, y ∈ Rd and in particular

|G(y)−G(x)|2 ≤ sup
z∈[x,y]

|DG(z)|Fr|y − x|2.

Proof Let x, y ∈ Rd and let Gj , j = 1, . . . , d denote the coordinate functions of G. For

each j = 1, . . . , d we define the function gj : [0, 1] −→ R by the formula

gj(t) = Gj((1− t)x+ ty).

Then by the fundamental theorem of calculus we have

Gj(y)−Gj(x) = gj(1)− gj(0) =

∫ 1

0

g′j(t)dt =

∫ t

0

〈∇Gj((1− t)x+ ty), y − x〉dt

and since for any p ∈ Rd

DG(p)(y − x) =
d∑
j=1

〈∇Gj(p), y − x〉 · ej

it follows that

G(y)−G(x) =

∫ 1

0

DG
(
(1− t)x+ ty

)
(y − x)dt =

(∫ 1

0

DG
(
(1− t)x+ ty

)
dt

)
(y − x).

Furthermore, since G is C1, the function Rd 3 z 7→ DG(z) ∈ Rd×d is continuous and

therefore by the compactness of the segment [x, y] we have that

sup
z∈[x,y]

|DG(z)|Fr < +∞
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and therefore ∣∣∣∣ ∫ 1

0

DG
(
(1− t)x+ ty

)
dt

∣∣∣∣
Fr

≤ sup
z∈[x,y]

|DG(z)|Fr < +∞.

Consequently, since by (4.29) the Frobenius norm bounded the `2-operator norm we

have that

|G(y)−G(x)|2 ≤ sup
z∈[x,y]

|DG(z)|Fr|x− y|2

and the proof is complete. �

Corollary 4.2.3 Let G ∈ C1(Td;Rd) and let p : Rd −→ Td denote the universal

covering of the torus. Then for all x, y ∈ Td ∼= R
d

/Zd ,

|G(y)−G(x)|2 ≤
∥∥|D(G ◦ p)|Fr

∥∥
C(Rd)

dTd(x, y) < +∞.

Proof Recall the considerations on the torus before proposition 4.2.11 and let p : Rd −→
Td, p(x̃) = x̃ + Zd, denote the universal covering of the torus. Since p is smooth, the

function G ◦ p belongs in C1(Rd;Rd) and since p is local isometry, given x, y ∈ Td we

can choose x̃, ỹ ∈ Rd such that p(x̃) = x, p(ỹ) = y and

|x̃− ỹ|2 = min
z∈ỹ+Zd

|x̃− z|2 = dTd(x, y).

Then by applying the mean value theorem to the function G ◦ p we have

|G(y)−G(x)|2 = |G ◦ p(ỹ)−G ◦ p(x̃)|2 ≤
∥∥|D(G ◦ p)|Fr

∥∥
C(Rd)

|x̃− ỹ|2 = d(x, y)Td

as required. �

Returning to the definition of the empirical current process, by an integration by

parts, the Cauchy-Schwartz inequality and the mean value theorem we have for any

G ∈ C1(Td;Rd) that ,∫
G · dWN =

1

Nd−1

d∑
j=1

∑
x∈TdN

[
Gj
( x
N

)
−Gj

(x− ej
N

)]
g
(
η(x)

)
≤ 1

Nd−1

∑
x∈TdN

g
(
η(x)

)√
d
∣∣∣G( x

N

)
−G

(x− ej
N

)∣∣∣
2

≤ ‖g′‖u
√
d
∥∥|D(G ◦ p)|Fr

∥∥
C(Rd)

〈1, πN 〉

≤
√
d‖g′‖u〈1, πN 〉‖G‖C1(Td;Rd)

and therefore

‖WN‖C1(Td;Rd)∗ ≤
√
d‖g′‖u〈1, πN 〉. (4.39)

Finally it is obvious by proposition 4.2.16 that the empirical current process also as

considered in (4.38) is continuous with respect to the Skorohod and w∗-topologies and

thus Borel measurable.
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4.3 The Continuity Equation on the Torus

In this section we consider the continuity equation

∂tµ+ divxW = 0 in [0, T ]×Td

on the torus in the sense of distributions. Here µ = (µt)0<t<T ⊆ L∞w∗(0, T ;M+) is

a curve of finite non-negative measures describing the density and W = (µt)0<t<T is

either an element of the space L∞(0, T ; Lip0(Td;Rd)∗) or of L1
w∗(0, T ;C1(Td;Rd)∗)

describing the density flux. As we will see even with these more general interpretation

of the current the continuity equation makes sense and by an adaptation of lemma 8.1.2

in [2] its solutions µ : R+ −→M+(Td) are weakly-continuous in time.

Lemma 4.3.1 Let X,Y be normed spaces. Then

(X ×1 Y )∗
iso
= X∗ ×∞ Y ∗.

Proof Let 1 ≤ p ≤ q ≤ ∞ be conjugate exponents and let ` ∈ (X ×p Y )∗ be a linear

functional. Then the functionals `X : X −→ R and `Y : Y −→ R defined by

`X(x) = `(x, 0), `Y (y) = `(0, y)

are obviously linear. They are also bounded with ‖`X‖ ∨ ‖`Y ‖ ≤ ‖`‖ since for all x ∈ X
we have that

|`X(x)| = |`(x, 0)| ≤ ‖`‖‖(x, 0)‖p = ‖`‖‖x‖X
and likewise we see that `Y ∈ Y ∗ with ‖`Y ‖ ≤ ‖`‖. Note that we can also express `X
and `Y as `Z = ` ◦ iZ , Z = X,Y , where iZ : Z ↪→ X ×p Y are the natural injections

defined by iX(x) = (x, 0) and iY (y) = (y, 0).

Now, the function T : (X ×p Y )∗ −→ X∗ ×q Y ∗ defined by

T (`) = (` ◦ iX , ` ◦ iY )

is obviously a linear bijection. We will show that it is an isometry. We recall that by

duality in `2p := (R2, | · |p) we have that

sup
(x,y)∈Rd\{0}

ax+ by

‖(x, y)‖p
= ‖(a, b)‖q.

Therefore, since for all (x, y) ∈ X ×p Y 6= {0} we have that

`(x, y)

‖(x, y)‖p
=
`X(x) + `Y (y)∥∥(‖x‖, ‖y‖)

∥∥
p

≤ ‖`X‖‖x‖+ ‖`Y ‖‖y‖∥∥(‖x‖, ‖y‖)
∥∥
p

we see that

‖`‖ = sup
(x,y)6=0

`(x, y)

‖(x, y)‖p
≤ sup

(x,y)6=0

‖`X‖‖x‖+ ‖`Y ‖‖y‖∥∥(‖x‖, ‖y‖)
∥∥
p

=
∥∥(‖`X‖, ‖`Y ‖)

∥∥
q

= ‖T`‖,

or in a more explicit notation

‖`‖(X×pY )∗ ≤ ‖T`‖X∗×qY ∗ .
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On the other hand we obviously have that

‖T`‖X∗×qY ∗ =
∥∥(‖`X‖, ‖`Y ‖)

∥∥
q

=
(
‖`X‖q + ‖`Y ‖q

) 1
q ≤ 2

1
q ‖`‖(X×pY )∗

which together with the previous inequality gives

‖`‖(X×pY )∗ ≤ ‖T`‖X∗×qY ∗ ≤ 2
1
q ‖`‖(X×pY )∗ . (4.40)

In particular, with the obvious modifications in the case (p, q) = (1,∞) this proves that

‖T`‖X∗×∞Y ∗ = ‖`‖(X×1Y )∗

and completes the proof. �

Definition 4.3.1 We say that a density-current curve

(µ,W ) ∈ L∞
(
I;M+(Td)

)
× L∞w∗

(
I; Lip0(Td;Rd)∗

)
satisfies the continuity equation

∂tµt + divWt = 0, (4.41)

in Io × Td iff for all smooth Zd-periodic test functions G ∈ C∞(Io × Rd) of compact

support in Io we have that∫ T

0

(∫
Rd

∂tGtdµ̃t + 〈∇Gt, W̃t〉
)
dt = 0 (4.42)

for any representative

(µ̃, W̃ ) ∈ L∞
(
I;M+(Rd)

)
× L∞w∗(I; Lip0(Rd,Rd)∗

)
of (µ,W ), i.e. for any such pair (µ̃, W̃ ) for which p∗(µ,W ) := (p∗µ̃, p∗W̃ ) = (µ,W ).

In this case we write 〈∇Gt,Wt〉 instead of
∫
M
∇Gt · dWt to emphasize that Wt ∈

Lip0(Td;Rd)∗ is not necessarily a measure. A few remarks are in order. First, the re-

quirement in (4.41) is not empty due to the surjectivity of the maps p∗ : L∞(I;M+(Rd))

−→ L∞(I;M+(Td)) and p∗ : L∞w∗(I; Lip0(Rd,Rd)∗) −→ L∞w∗(I; Lip0(Td,Rd)∗). Sec-

ondly, in order for (4.41) to make sense we have to make sure that for each Zd-periodic

function G ∈ C∞(Io ×Rd) of compact support in Io the curve I 3 t 7→ ∇xGt belongs

in L1(I; Lip0(Rd;Rd)). But this is obvious since due to the fact that G is Zd-periodic

in space and of compact support in Io we have that

‖∇xGt‖Lip0(Rd;Rd) ≤ ‖D2
xGt‖u ≤ sup

t∈I
‖D2

xGt‖u < +∞.

To prove the weak continuity of the solutions µ : R+ −→M+(Td) of the continuity

equation we need a description of the dual ofC2
0 (M), M = Rd or Td, which is defined

as the closure of C2
c (M) in C2(M) with respect to the usual C2-uniform norm ‖ · ‖C2

defined by

‖f‖C2 = ‖f‖u + ‖∇f‖u + ‖D2f‖u, f ∈ C2(M).
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Here we consider the space Rd×d of d × d-matrices equipped with the Frobenius norm

‖ · ‖Fr. Since the Frobenius norm is Euclidean, by considering Rd×d equipped with the

Frobenius norm we have by the Riesz representation theorem for vector-space valued

measures that C0(M ;Rd×d) ∼=M(M ;Rd×d).

To describe the linear functionals on C2
0 (M) we consider first the natural injection

i : C2
0 (M) −→ X := C0(M)×1 C0(M ;Rd)×1 C0(M ;Rd×d)

defined by the formula i(f) = (f,∇f,D2f). This is an isometric injection with closed

range and by the Hahn-Banach theorem the dual mapping i∗ : X∗ −→ C2
0 (M)∗ is a

surjection with ‖i∗‖ = ‖i‖ = 1. It follows that the quotient mapping

ĩ∗ : X
∗
/ker i∗ −→ C2

0 (M)∗

is an isometry. Of course by the Riesz representation theorem and lemma 4.3.1 we have

that X∗ :=M×Md×Md×d and since ker(i∗) = R(i)⊥ = iC2
0 (M)⊥ we get an isometry

T : M×M
d×Md×d

/iC2
0 (M)⊥ −→ C2

0 (M)∗.

Consequently, any linear function ` ∈ C2
0 (M)∗ can be represented in the form

`(f) = T[µ,W,Q](f) =

∫
fdµ+

∫
∇f · dW +

∫
〈D2f, dQ〉Fr

for some (µ,W,Q) ∈ M×Md ×Md×d, and two such triples (µ,W,Q) and (ν, V,R) in

M×Md×Md×d give rise to the same functional ` ∈ C2
0 (M)∗ iff (µ−ν,W −V,Q−R) ∈

iC2
0 (M).

Lemma 4.3.2 Let M = Td or Rd and consider C0(M)∗ =M as a subspace of C2
0 (M)∗

through the submetric injection i∗ : C0(M)∗ −→ C2
0 (M)∗ where i : C2

0 (M) −→ C0(M)

is the inclusion injection. Let {µn}n∈N be a sequence in C0(M) such that

‖µn − `‖C2
0 (M)∗ −→ 0

for some ` ∈ C2
0 (M)∗. If {µn} ⊆ M is TV -norm bounded, and in addition tight in the

case M = Rd, then ` ∈M.

Proof Since µn −→ ` in C2
0 (M)∗, for any f ∈ C2

0 (M) we have that

|µn(f)− `(f)| ≤ ‖µn − `‖C2
0 (M)∗‖f‖C2 −→ 0

as n → ∞. Now, ` is of the form ` = T(ν,V,R) for some (ν, V,R) ∈ M×∞Md ×Md×d

and therefore by the limit above we have that

lim
n→∞

∫
fdµn =

∫
fdν +

∫
〈∇f, dV 〉+

∫
〈D2f, dR〉Fr, ∀ f ∈ C2

0 (M). (4.43)

On the other hand, {µn} ⊆ C0(Td)∗ ≡ M is norm bounded and tight and therefore it

is relatively compact in the weak topology of M. So there exists a subsequence {µkn}
of {µn} and µ ∈M such that

lim
n→∞

∫
fdµkn =

∫
fdµ, ∀ f ∈ BC(M).
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Then for all f ∈ C2
0 (Td) we have that∫

fdν +

∫
∇f · dV +

∫
〈D2f, dR〉Fr = lim

n→∞

∫
fdµkn =

∫
fdµ

and therefore by (4.43) we have that

lim
n→∞

∫
fdµn =

∫
fdµ, ∀ f ∈ C2

0 (M). (4.44)

We shall show now that µn −→ µ weakly. Since {µn} is supposed to be bounded,

it is contained in some metrizable for the weak topology subspace BM(0,M) ⊆ M,

M > 0, and therefore it suffices to prove that any subsequence of {µn} has a further

subsequence which converges weakly to µ. So let {µkn} be a subsequence of {µn}. Since

{µn} is weakly relatively compact there exists a further subsequence {µmkn } such that

µmkn −→ µ0 weakly for some µ0 ∈M. But then by (4.44) we have that∫
fdµ0 = lim

n→∞

∫
fdµmkn =

∫
fdµ, ∀ f ∈ C2

0 (M),

which shows that µ = µ0 and completes the proof. �

Proposition 4.3.1 Let (µ,W ) ∈ L∞
(
I;M+(Td)

)
×L∞w∗

(
I; Lip0(Td;Rd)∗

)
be a density-

current curve satisfying the continuity equation. Then there exists a weakly continuous

curve µ̄ in the class of µ in L∞
(
I;M+(Td)

)
, and for this continuous representative we

have that ∫
Td

Gtdµ̄t −
∫
Td

Gsdµ̄s =

∫ t

s

(∫
Td

∂rGrdµ̄r + 〈∇Gr,Wr〉
)
dr,

for all G ∈ C∞(I ×Td) and all 0 ≤ s ≤ t ≤ T , in the sense that for any representative

W̃ ∈ L∞w∗(I; Lip0(Rd,Rd)∗
)

of W it holds that∫
Rd

Gtd˜̄µt − ∫
Rd

Gsd˜̄µs =

∫ t

s

(∫
Rd

∂rGrd˜̄µr + 〈∇Gr, W̃r〉
)
dr, (4.45)

where (˜̄µt)t∈I := (i∗µ̄t)t∈I and i : Td ↪→ Rd is the Borel injection.

Proof We fix an arbitrary Zd-periodic function ζ ∈ C∞(Rd) and let ϕζ : (0, T ) −→ R

denote the function defined a.s. by

ϕζ(t) =

∫
Rd

ζ ◦ idµt,

where of course i : Td ∼= [0, 1)d ↪→ Rd is the Borel injection. Then due to our assumption

that µ ∈ L∞
(
I;M+(Td)

)
we have that ϕζ ∈ L∞(I) since

|ϕζ(t)| ≤ ‖ζ‖uµt(Td) ≤ ‖ζ‖u‖µ‖∞;TV < +∞,

for almost all t ∈ I.

Let now G ∈ C∞c (Io ×Rd) be any function of the form G(t, x) = f(t)ζ(x) for some
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function f ∈ C∞c (Io) and some Zd-periodic function ζ ∈ C∞c (Rd). Then since the pair

(µ,W ) ∈ L∞(Io;M+(Td))× L∞w∗(I; Lip0(Td;Rd)) satisfies the continuity equation, we

have by (4.42) that∫ T

0

f ′(t)ϕζ(t)dt =

∫ T

0

f ′(t)

∫
M

ζdµ̃tdt = −
∫ T

0

f(t)〈∇ζ, W̃t〉dt

for any (µ̃, W̃ ) ∈ L∞(Io;M+(Rd))×L∞w∗(I; Lip0(Rd;Rd)) such that p∗(µ̃, W̃ ) = (µ,W ).

Therefore, since the equality above holds for all f ∈ C∞c (Io) we see that the measurable

function ψζ : I −→ R defined a.s. by

ψζ(t) = 〈∇ζ, W̃t〉

is the weak derivative of the function ϕζ . But since W̃ ∈ L∞w∗(I; Lip0(Rd;Rd)∗) the

function ψζ is in L∞(I) since for almost all t ∈ T we have that

|ψζ(t)| ≤ ‖∇ζ‖Lip0
‖W̃t‖KR ≤ ‖∇ζ‖Lip0

‖W̃‖∞;KR < +∞.

Therefore ϕζ ∈ W 1,∞(Io) with distributional derivative ψζ . Consequently, the equiva-

lence class φζ contains a Lipschitz representative ϕ̄ζ with Lipschitz constant

‖ϕ̄ζ‖Lip ≤ ‖ψζ‖L∞(I) ≤ ‖∇ζ‖Lip0
‖W̃‖∞;KR.

Let now Z be a countable subset of C̃∞(Td) that is dense in C̃2(Td) in the usual

C2-norm ‖ · ‖C2 given by

‖ζ‖C2 = ‖ζ‖u + ‖∇ζ‖u + ‖D2ζ‖u

for ζ ∈ C̃2(Td). Then obviously Z is also dense in C̃(Td) with the uniform norm ‖ · ‖u
and we set

IZ :=
⋂
ζ∈Z

{
t ∈ I

∣∣ϕζ(t) = ϕ̄ζ(t)
}
.

Then IZ is of full Lebesgue measure in I. We denote by µ̂ : IZ −→M+ the restriction

of µ ∈ L∞(I;M+(Td)) on IZ . Then since M+(Td) ≤ C(Td)∗ and C(Td)∗ is naturally

injected in C2(Td)∗ through restriction of domains, that is through the mapping

C(Td)∗ 3 ` 7→ `|C2(Td) ∈ C2(Td)∗,

we can regard µ̂ as a function µ̂ : IZ −→ C2(Td)∗. As such the function µ̂ is Lipschitz,

with Lipschitz constant ≤ ‖W̃‖∞;KR. Indeed, for all s, t ∈ IZ and all ζ ∈ Z we have

that

|µ̂t(ζ)− µ̂s(ζ)| = |φ̄ζ(t)− φ̄ζ(s)| ≤ ‖ϕ̂ζ‖Lip|t− s| ≤ ‖W̃‖∞;KR‖∇ζ‖Lip0
|t− s|

≤ ‖W̃‖∞;KR‖ζ‖C2 |t− s|,

which since Z is dense in C2(Td) in the C2-norm ‖ · ‖C2 shows that

‖µ̂t − µ̂s‖C2(Td)∗ = sup
ζ∈Z

|µ̂t(ζ)− µ̂s(ζ)|
‖ζ‖C2

≤ ‖W̃‖∞;KR|t− s|.
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Therefore µ̂ : IZ −→ C2(Td)∗ has a Lipschitz extension µ̄ : I −→ C2(Td)∗ with the

same Lipschitz constant ‖W̃‖∞;KR.

Now, since µ belongs in L∞(I;M+(Td)) by hypothesis, we can assume that IZ has

been chosen so that

‖µt‖TV = µt(T
d) ≤ ‖µ‖∞;TV < +∞

for all t ∈ IZ . Therefore, since {µt}t∈IZ is in addition tight since {µt}t∈IZ ⊆ M+(Td)

it follows by lemma 4.3.2 that the Lipschitz extension µ̄ : I −→ C2(Td)∗ takes values in

M+(Td) and is weakly continuous.

We prove finally (4.45). So let G ∈ C∞(I × Rd) be a Zd-periodic function, let

0 ≤ s < t ≤ T and let W̃ be any curve in L∞w∗(I; Lip0(Rd;Rd)∗) such that p∗W̃ = W .

Let fε ∈ C∞c
(
(s, t); [0, 1]

)
, ε > 0, be such that fε −→ 1(s,t) pointwise in I and such that

lim
ε→0

∫
I

f ′ε(r)h(r)dr = h(s)− h(t), ∀ h ∈ C([0, T ]). (4.46)

Then since the pair (µ,W ) satisfies the continuity equation we have for all ε > 0 that

0 =

∫ T

0

(∫
Rd

∂r[fε(r)Gr]d˜̄µr + 〈∇x[fε(r)Gr], W̃r〉
)
dr

=

∫ T

0

(∫
Rd

[f ′ε(r)Gr + fε(r)∂rGr]d˜̄µr + 〈fε(r)∇xGr, W̃r〉
)
dr

=

∫ T

0

f ′ε(r)

∫
Rd

Grd˜̄µr +

∫ T

0

fε(r)

(∫
Rd

∂rGrd˜̄µr + 〈∇xGr, W̃r〉
)
dr.

Now, since the function G ∈ C∞(I ×Rd) is Zd-periodic, the function G̃ : I ×Td −→ R

given I ×Td 3 (r, x) 7→ G
(
r, i(x)

)
is C∞. In particular the curve I 3 r 7→ G̃r ∈ C(Td)

is continuous with respect to the uniform norm in C(Td) and therefore due to the weak

continuity of µ̄, the function

I 3 r 7→
∫
Grd˜̄µ =

∫
G̃rdµ̄r

is continuous. Therefore taking the limit ε→ 0 and using (4.46) in the first term of the

sum above and the bounded convergence theorem in the second term, we get that∫
Rd

Gtd˜̄µt − ∫
Rd

Gsd˜̄µs =

∫ t

s

(∫
Rd

∂rGrd˜̄µr + 〈∇xGr, W̃r〉
)
dr

for the arbitrary representative W̃ of W in L∞w∗(I; Lip0(Rd;Rd)∗), as required. �

All the considerations in this section also remain valid if we consider the empirical

current as taking values in the space L1(0, T ;C1(Td;Rd))∗ and there is no need to repeat

the arguments.
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4.4 Relative Compactness of the Empirical Current

In this section we prove the relative compactness of the empirical current and the empir-

ical jump-rate processes and prove that the limit points of their laws are concentrated on

solutions of the continuity equation. In particular, with any additional work it will fol-

low by the general considerations of section 4.2.3 that the law of the empirical current is

supported by trajectories W : [0, T ] −→ M̂d
0(Td) of Kantorovich-Rubinstein measures.

4.4.1 The Empirical Current

According to the results in appendix A.4 on completely regular Hausdorff topological

spaces and in particular the Prokhorov-Le Cam theorem A.4.1, in order to prove the

relative compactness of the sequence

WN
∗ P

N ∈ PL∞w∗
(
I; Lip0(Td;Rd)∗

)
, N ∈ N,

it suffices to check that it consists of Radon measures and that is uniformly tight. It

is easy to see that the sequence {WN
∗ P

N}N∈N consists of Radon measures. Indeed, all

Borel probability measures on a polish space are Radon and so since PN ∈ PΩN and

ΩN is a polish space with the restriction of the Skorohod metric the measures PN are

Radon. But from proposition 4.2.16 the empirical current function

WN : ΩN −→ L∞w∗(0, T ; Lip0(Td;Rd)∗)

is a continuous function with respect to the restriction of the Skorohod topology on ΩN
and w∗ topology on L∞w∗(0, T ; Lip0(Td;Rd)∗) and so according to proposition A.4.3 the

laws WN
∗ P

N are Radon on the Borel σ-algebra of the w∗-topology, i.e.

WN
∗ P

N ∈ PR
(
L∞w∗(0, T ; Lip0(Td;Rd)∗), w∗

)
.

Proposition 4.4.1 The sequence

QN := WN
∗ P

N ∈ PL∞w∗(0, T ; Lip0(Td;Rd)∗), N ∈ N,

of the distributions of the empirical current process is relatively compact in the weak

topology of PL∞w∗(0, T ; Lip0(Td;Rd)∗) that is induced by the w∗-topology.

Proof Since by the Banach-Alaoglou theorem norm bounded subsets of a dual space

X∗ are relatively compact in the w∗-topology, it suffices to prove that

lim
A↑∞

sup
N∈N

QN
{
BL∞

w∗ (0,T ;Lip0(Td;Rd)∗)(0, A)c
}

= 0.

But for each N ∈ N, we have by the bound (4.36) that

QN
{
BL∞

w∗ (0,T ;Lip0(Td;Rd)∗)(0, A)c
}

= PN
{
‖WN‖L∞

w∗ (0,T ;Lip0(Td;Rd)∗) > A
}

≤ PN
{√

d‖g′‖u〈1, πN0 〉 > A
}

= µN0

{
〈1, πN 〉 > A√

d‖g′‖u

}
,
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where µN0 is the initial distribution of the law PN of the diffusively rescaled ZRP. There-

fore the required limit follows from (3.10). �

We set now

DL∞w∗(0, T ;M+ × Lip∗0) := D(0, T ;M+(Td))× L∞w∗(0, T ; Lip0(Td;Rd)∗)

and consider the empirical density-current pair process

(πN ,WN ) : (ΩN , P
N ) −→ DL∞w∗(0, T )

and the rest of this section is devoted to proving that any limit point R of the distribu-

tions

RN := (πN ,WN )∗P
N ∈ PDL∞w∗(0, TM+,Lip∗0)

of the sequence of the empirical density-current processes is concentrated on solutions of

the continuity equation. We recall (4.20) according to which for all G ∈ C3
c ((0, T )×Td)

and all δ > 0 we have that

lim
N→∞

PN
{∣∣∣∣ ∫ T

0

[
〈∂sGs, πNs 〉+ 〈∇Gs,WN

s 〉
]
ds

∣∣∣∣ > δ

}
= 0.

If we denote by

π : DL∞w∗(0, T ;M+ × Lip∗0) −→ D(I;M+(Td)),

W : DL∞w∗(0, T ;M+ × Lip∗0) −→ L∞w∗(I; Lip0(Td;Rd)∗)

the natural projections then the above limit can be rewritten as

lim
N→∞

RN
{∣∣∣∣ ∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt

∣∣∣∣ > δ

}
= 0.

We claim that for all G ∈ C∞c (Io×Td) the function fG : DL∞w∗(0, T ;M+×Lip∗0) −→
R given by

fG(π,W ) =

∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt

is continuous. Indeed, we write fG(π,W ) = f1,G(π) + f2,G(W ) where

f1,G(π) =

∫ T

0

〈∂tGt, πt〉dt, f2,G(W ) =

∫ T

0

〈∇xGt,Wt〉dt. (4.47)

We begin first with the function f1,G
t . We note that for any function G ∈ C1([0, T ]×

Td) the induced function IG(·, ·)〈G, ·〉(·) : R+ ×M+(Td) −→ R defined by

IG(t, µ) ≡ 〈G, π〉t = 〈Gt, µ〉 =

∫
Td

Gtdµ

satisfies properties (A.1) and (A.2) of proposition A.1.6. Indeed, any compact subset K
of M+(Td) is contained in some compact subset of the form

ML
+ := {µ ∈M+(Td)|〈1, µ〉 ≤ L}
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for some L = L(K) ∈ R+ and therefore

sup
µ∈K

∣∣IG(t+ h, µ)− IG(t, µ)
∣∣ ≤ sup

µ∈ML
+

∣∣IG(t+ h, µ)− IG(t, µ)
∣∣

≤ L sup
x∈Td

∣∣G(t+ h, x)−G(t, x)
∣∣ h→0−→ 0

which proves condition (A.1). For the second condition we consider the space M+(Td)

equipped with the Dudley metric dD defined via the norm in (1.55). Of course we can

do this since as we have seen this norm metrizes the weak topology on M+(Td) and

by proposition A.1.2 the Skorohod topology on D(0, T ;M) depends only the topology

of M and not on the particular metric defining the topology. Then, for any t ∈ [0, T ],

µ, ν ∈M+(Td) we have that∣∣IG(t, µ)− IG(t, ν)
∣∣ =

∣∣∣∣ ∫
Td

Gtd(µ− ν)

∣∣∣∣ ≤ ‖Gt‖BLdD(µ, ν) ≤ ‖Gt‖C1dD(µ, ν),

where we recall that ‖ · ‖BL is the bounded-Lipschitz norm defined in 1.56 and ‖ · ‖C1

is the uniform C1-norm on C1(Td) given by ‖G‖C1 := ‖G‖u + ‖∇G‖u. Consequently, if

we set

C1
T (G) := sup

0≤t≤T
‖Gt‖C1

then we have that

sup
0≤t≤T

∣∣IG(t, µ)− IG(t, ν)
∣∣ ≤ C1

T (G)dD(µ, ν)
dD(µ,ν)→0−→ 0,

which proves the second condition (A.2).

Consequently, the induced function

D(0, T ;M+) 3 (πt)t∈R+
7→
(∫

Gtdπt

)
t∈R+

∈ D(0, T ;R)

is continuous. In our case, since G ∈ C3
c ((0, T )×Td) we have that ∂tG ∈ C2

c ((0, T )×Td)
and so the function

D(0, T ;M+) 3 (πt)t∈R+

I∂G7→
(∫

∂tGdπt

)
t∈R+

∈ D(0, T ;R)

is continuous. Furthermore, by proposition A.1.7 the function

D(0, T,R) 3 (xt)t∈R+

I7→
(∫ t

0

xsds

)
t∈R+

∈ C(0, T ;R)

is continuous, and so finally since the evaluation mappings et : C(0, T ;R) −→ R, defined

by et(x) = x(t) for all x ∈ C(0, T ;R) and all t ∈ R+ are continuous we see that f1,G
t is

continuous since f1,G
t = et ◦ I ◦ I∂G.

We prove next the continuity of f2,G. We note that given any functionG ∈ C1
c ((0, T )×

Td;Rd) the formula I 3 t 7→ Gt ∈ C1(Td;Rd)/R ≤ Lip0(Td;Rd) defines an element G of

L1(0, T ; Lip0(Td;Rd)) with

‖G‖L1(0,T ;Lip0(Td;Rd)) =

∫ T

0

‖Gt‖Lip0(Td;Rd)dt ≤
∫ T

0

‖DxGt‖C(Td;Rd×d)dt < +∞.
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In particular for any G ∈ C2
c ((0, T )×Td) the function (∇xG) : [0, T ] −→ Lip0(Td;Rd)

given by

t 7→ ∇xGt ∈ C1(Td;Rd)/R ≤ Lip0(Td;Rd)

defines an element ∇xG of L1(0, T ; Lip0(Td;Rd)), and then f2,G ≡ 〈∇xG, ·〉[0,T ], where

of course here 〈·, ·〉[0,T ] denotes the duality on the product L1(0, T ; Lip0(Td;Rd)) ×
L∞w∗(0, T ; Lip0(Td;Rd)∗). But by the definition of the w∗-topology a net {Wα}α∈A ⊆
L∞w∗(0, T ; Lip0(Td;Rd)∗) converges to W ∈ L∞w∗(0, T ; Lip0(Td;Rd)∗) iff

lim
α∈A
〈G,Wα〉[0,T ] = 〈G,W 〉[0,T ]

for all G ∈ L1(0, T ; Lip0(Td;Rd)) and so in particular given G ∈ C∞((0, T ) ×Td), for

any converging net {Wα}α∈A with limit W we have that

f2,G(Wα) = 〈∇xG,Wα〉[0,T ] −→ 〈∇xG,W 〉[0,T ] = f2,G(W )

which proves the continuity of f2,G, and thus also of fG.

Now, since fG is continuous the set {|fG| > δ} is open and so by the portmanteau

theorem it follows that for any limit point R of the sequence {RN} along a subnet

(Rα)α∈A of RN we have that

R
{
|fG| > δ

}
= R

{∣∣∣∣ ∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt

∣∣∣∣ > δ

}
≤ lim inf

α∈A
Rα
{∣∣∣∣ ∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt

∣∣∣∣ > δ

}
= 0

for all δ > 0 and all G ∈ C3
c ((0, T )×Td). Since this holds for all δ > 0 it follows that

R

{∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt = 0

}
= 1, ∀ G ∈ C3

c ((0, T )×Td).

Therefore if we can find a countable family G ⊆ C3
c ((0, T ×Td) such that⋂

G∈C3
c ((0,T )×Td)

{
fG = 0

}
=
⋂
G∈G

{
fG = 0

}
(4.48)

it will follow that

R

( ⋂
G∈C3

c ((0,T )×Td)

{∫ T

0

[
〈∂tGt, πt〉+ 〈∇Gt,Wt〉

]
dt = 0

})
= 1,

i.e. that R is concentrated on solutions of the continuity equation. To this end, let G ⊆
C∞c ((0, T )×Td) be a countable set of smooth functions dense in C2

c ((0, T )×Td) (and thus

also in C3
c ((0, T )×Td)) with respect to the usual C2-uniform norm of C2

c ((0, T )×Td),
given by

‖G‖C2
c ((0,T )×Td) := ‖G‖u + ‖∇G‖u + ‖D2G‖u

where differentiation is with respect both to the time and space variables, the uni-

form norms in the right hand side are taken in the spaces C((0, T ) × Td), C((0, T ) ×
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Td;Rd+1) and C((0, T ) × Td;R(d+1)×(d+1)), respectively, and R(d+1)×(d+1) is consid-

ered equipped with the Frobenius norm. Note that if we show that for any sequence

{Gk} ⊆ C∞c ((0, T ) × Td) such that Gk −→ G ∈ C2
c ((0, T ) × Td) with respect to the

C2-uniform norm we have that fG
k −→ fG pointwise in DL∞w∗(0, T ;M+ × Lip∗0) then

we will have that (4.48) holds. Indeed, if this is true, and (π,W ) ∈
⋃
G∈G{fG = 0}

then given any G ∈ C2
c ((0, T ) × Td) there exists a sequence {Gk} in G such that

‖G−Gk‖C2
c ((0,T )×Td) −→ 0 and thus

fG(π,W ) = lim
k→∞

fG
k

(π,W ) = 0,

which shows that (4.48) holds.

So let {Gk}k∈N ⊆ C∞c ((0, T )×Td) be a sequence such that ‖Gk−G‖C2
c ((0,T )×Td) −→

0. Of course it suffices to prove that the sequences {f1,Gk} and {f2,Gk(W )} converge

pointwise on the spaces D(0, T ;M+(Td)) and L∞w∗(0, T ; Lip0(Td;Rd)∗) to the functions

f1,G and f2,G, respectively, where for any G ∈ C2
c ((0, T ×Td) the functions f1,G, f2,G

are defined as in (4.47). For the sequence {f1,Gk} we begin by noting that if G ∈
C2
c ((0, T )×Td) and ∂G ∈ C1((0, T )×Td) is the function given by (t, x) 7→ ∂tG(t, x) we

have that for all t ∈ I,

‖∂tGkt − ∂tGt‖C(Td) ≤ ‖∂Gk − ∂G‖C((0,T )×Td) ≤ ‖Gk −G‖C2
c ((0,T )×Td) −→ 0

and therefore, given π ∈ D(0, T ;M+(Td)), for all t ∈ I we have that

lim
k→∞

∫
Td

∂tG
kdπt =

∫
Td

∂tGdπt.

For a given function G ∈ C((0, T )×Td) now, the function 〈G, π〉 given by t 7→
∫
Td
Gtdπt

is in L∞(0, T ), since D(I;M+(Td)) ⊆ L∞(0, T ;M+(Td)) and

〈G, π〉t =

∫
Gtdπt ≤ ‖Gt‖C(Td)πt(T

d) ≤ ‖G‖C(Io×Td)‖π‖L∞(0,T ;M+(Td))

for all t ∈ I. In our case, since Gk −→ G in the C2-uniform norm, there exists a constant

C ≥ 0 such that

sup
k∈N
‖∂Gk‖Cc((0,T )×Td) ≤ sup

k∈N
‖Gk‖C2

c ((0,T )×Td) ≤ C < +∞,

and therefore for the sequence {〈∂Gk, π〉} ⊆ D(0, T ;R) ⊆ L∞(0, T ) we have that∫
∂Gkt dπt ≤ C‖π‖L∞(0,T ;M+(Td)) < +∞

for all t ∈ I. Therefore since {〈∂Gk, π〉} is uniformly bounded and converges pointwise

to 〈∂G, π〉 we have by the bounded convergence theorem that

lim
k→∞

∫ T

0

〈∂Gk, π〉tdt =

∫ T

0

〈∂G, π〉tdt, (4.49)

which proves that f1,Gk −→ f1,G pointwise on D(0, T ;M+(Td)).

Next, for the second term f2,G of the function fG, as we have already noted, for any

G ∈ C2
c ((0, T )×Td) the function (∇xG) : I −→ Lip0(Td;Rd) given by

t 7→ ∇xGt ∈ C1(Td;Rd)/R ≤ Lip0(Td;Rd)
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defines an element of L1(0, T ; Lip0(Td;Rd)) and for these such elements that are defined

by the C2-converging sequence {Gk} ⊆ C∞c ((0, T )×Td) we have that

‖∇xGk −∇xG‖L1(0,T ;Lip0(Td;Rd)) =

∫
I

‖∇x(Gkt −Gt)‖Lip0(Td;Rd)dt

≤
∫
I

‖D2
x(Gkt −Gt)‖C(Td;Rd×d)dt

≤ T · ‖Gk −G‖C2
c ((0,T )×Td)

k→∞−→ 0

Therefore, for any W ∈ L∞w∗(0, T ; Lip0(Td;Rd)∗) ∼= L1(0, T ; Lip0(Td;Rd))∗ we have

that ∫ T

0

〈∇xGkt ,Wt〉dt = W (∇xGk)
k→∞−→ W (∇xG) =

∫ T

0

〈∇xGt,Wt〉dt. (4.50)

which proves that the sequence of functions {f2,Gk}k∈N, converges pointwise to f2,G

in L∞w∗(0, T ; Lip0(Td;Rd)∗). So {fGk} converges pointwise to fG on DL∞w∗(0, T ;M+ ×
Lip∗0) whenever Gk −→ G in the C2-uniform norm, as required for the proof of (4.48).

We note that exactly the same result can proved if in considers the empirical cur-

rent process as taking values in the space L∞w∗(0, T ;C1(Td;Rd)∗). Furthermore, in this

case due to the separability of C1(Td;Rd), according to lemma 4.2.1 proposition A.4.1

the space L∞w∗(0, T ;C1(Td;Rd)∗) is submetrizable and thus by the Prokhorov-Le Cam

theorem, in this case the sequence {WN
∗ P

N} ⊆ PL∞w∗(0, T ;C1(Td;Rd)∗) is in addition

sequentially relatively compact.

4.4.2 The Empirical Jump Rate

We continue to denote by PN the sequence of distributions of the ZRPs starting from

a sequence of initial measures µN associated to a macroscopic profile µ0 ∈ M+(Td),

speeded up by N2. As a shorthand we will occasionally write I := [0, T ], Io := (0, T ).

Also for simplicity in this section we will assume that jump rate function g is bounded.

As we have seen (with the convention that p(Zd) = 2d) we have that

lim
N→∞

PN
{∣∣∣∣〈Gt, πNt 〉 − 〈G0, π

N
0 〉 −

∫ t

0

〈∂sGs, πNs 〉+ 〈∆Gs, σNs 〉ds
∣∣∣∣} = 0 (4.51)

for all G ∈ C3(I ×Td) and all t ∈ R+. We consider the space

DL∞w∗(I;M+(Td)) := D
(
I;M+(Td)

)
× L∞w∗

(
I;M(Td)

)
and set

RN,g := (πN , σN )∗P
N ∈ PDL∞w∗(I;M+(Td)). (4.52)

Of course if we denote by idDL∞
w∗ (I;M+(Td)) = (π, σ) the natural projections then (4.51)

can be rewritten as

lim
N→∞

RN,g
{∣∣∣∣〈Gt, πt〉 − 〈G0, π0〉 −

∫ t

0

〈∂sGs, πs〉+ 〈∆Gs, σs〉ds
∣∣∣∣} = 0 (4.53)
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We denote the marginals of RN,g on PD
(
I;M+(Td)

)
and PL∞w∗(I;M+(Td)

)
by PN

and QN,g respectively. Since for the function σN : Md
N −→M+(Td) we have that

‖σN‖TV = σN (Td) =
1

Nd

∑
x∈Td

g
(
η(x)

)
≤ ‖g‖u

we also have that the process σN : D(I;Md
N ) −→ L∞w∗(I;M+(Td)) takes values in the

norm-bounded ball BL∞
w∗ (I;M(Td))(0, ‖g‖u), that is

{QN,g}N∈N ⊆ PBL∞
w∗ (I;M(Td))(0, ‖g‖u).

Lemma 4.4.1 The subset

L∞w∗(I;M+(Td)) :=
{
ν ∈ L∞(I;M(Td))

∣∣ νt ∈M+(Td) a.s.-∀ t ∈ I
}

is a w∗-closed subset of L∞w∗(I;M(Td)).

Proof Let C+(Td) denote the set of all non-negative continuous functions on the torus.

Then as we know

M+(Td) =
{
ν ∈M(Td) | 〈f, ν〉 ≥ 0 ∀ f ∈ C+(Td)

}
.

We claim that

L∞w∗(I;M+(Td))
(∗)
=

{
ν ∈ L∞(I;M(Td))

∣∣∣ ∫
I

〈ft, νt〉dt ≥ 0 ∀f ∈ L1(I;C+(Td))

}
.

Indeed, one inclusion us obvious, so let ν belonging in the set in the right hand side

and we will prove that it belongs in L∞w∗(I;M+(Td)). Let f ∈ C+(Td). Then by the

Lebesgue differentiation theorem we have that for almost all t ∈ I,

0 ≤ lim
ε→0

1

2ε

∫ t+ε

t−ε
〈f, νs〉ds = 〈f, νt〉,

and since C(Td) is separable it follows that ν ∈ L∞w∗(I;M+(Td)). Let now {να}α∈A ⊆
L∞w∗(I;M+(Td)) be a net such that

να −→ ν ∈ L∞w∗(I;M(Td))

in the w∗-topology and we have to show that νt ∈ M+(Td) for almost all t ∈ I. Since

{να}α∈A ⊆ L∞w∗(I;M+(Td)), for all f ∈ L1(I;C+(Td)) we have that∫
I

∫
Td

ftdνt = lim
α∈A

∫
I

∫
Td

ftdν
α
t ≥ 0

which according to equality (∗) proves the claim. �

Lemma 4.4.2 Let F be a closed subset of the polish space X. Then PF is a closed

subspace of PX.
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Proof Let {µn} ⊆ PF be a sequence converging to µ ∈ PX weakly. Then

suppµ ⊆ K- lim inf
n→∞

suppµn,

that is for all x ∈ suppµ there exists a sequence xn ∈ suppµn, n ∈ N such that xn −→ x,

and since {µn} ⊆ PF we have that {xn} ⊆ F . Since F is closed it follows that x ∈ F ,

which since x ∈ suppµ was arbitrary shows that suppµ ⊆ F , and so µ ∈ PF . �

Proposition 4.4.2 The sequence {RN,g}N∈N ⊆ PDL∞w∗(I;M+(Td)) is relatively com-

pact, i.e. there exists Rg ∈ PDL∞w∗(I;M+(Td)) and a subsequence {RkN ,g} of {RN,g}
such that RkN ,g −→ Rg weakly.

Proof We already know that the sequence {PN} of the first marginals of {RN,g} is

relatively compact and so we only have to prove that the sequence {QN,g} of the second

marginals is relatively compact. Since the sequence {QN,g} is supported by the compact

metrizable ball BL∞
w∗ (I;M(Td)) with respect to the w∗-topology of L∞w∗(I;M(Td)) we

have by the Banach Alaoglou theorem that there exists Qg ∈ PL∞w∗(I;M(Td)) and a

subsequence {QkN ,g} of {QN,g} such that QkN ,g −→ Qg weakly. But since {QN,g}N∈N ⊆
PL∞w∗(I;M+(Td)) and L∞w∗(I;M+(Td)) is a w∗-closed subset of L∞w∗(I;M(Td)) it

follows by lemmas 4.4.1 and 4.4.2 that Qg ∈ PL∞w∗(I;M+(Td)) as required. �

Definition 4.4.1 We say that a density-diffusion rate pair

(π, σ) ∈ L∞w∗
(
I;M+(Td)

)
× L∞

(
M+(Td)

)
satisfies the heat equation

∂tπt = ∆xσ, (4.54)

in Io × Td iff for all smooth Zd-periodic test functions G ∈ C∞(Io × Rd) of compact

support in Io we have that∫ T

0

(∫
Rd

∂tGtdπ̃t +

∫
Rd

∆xGtdπ̃
g
t

)
dt = 0 (4.55)

for any representative

(π̃, σ̃) ∈ L∞
(
I;M+(Rd)

)2
of (π, σ), i.e. for any such pair (π̃, σ̃) for which p∗(π̃, σ̃) := (p∗π̃, p∗σ̃) = (π, σ).

We consider the gradient operator ∇ :M+(Rd) −→ Lip0(Rd;Rd)∗ defined by

∇µ(F ) = 〈F,∇µ〉 = −
∫
Rd

divFdµ,

for all (µ, F ) ∈M+(Rd)×Lip0(Rd;Rd). Let us check that this operator is well defined.

First, we check that given µ ∈ M+(Rd) the functional ∇µ is bounded. So let F ∈
Lip0(Rd;Rd). Then

‖divF‖L∞(Rd) ≤
d∑
j=1

‖∂jFj‖L∞(Rd) ≤
d∑
j=1

‖Fj‖Lip0(Rd;R) ≤ 2‖F‖Lip0(Rd;Rd)
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and so for each µ ∈M+(Rd), ∇µ is bounded with

‖∇µ‖Lip0(Rd;Rd)∗ ≤ 2‖µ‖TV .

We consider also the gradient operator ∇ :M+(Td) −→ Lip0(Td;Rd)∗ defined by

∇µ = p∗(∇µ̃)

where µ̃ ∈M(Rd) is any measure such that p∗µ̃ = µ. Obviously, this definition does not

depend on the choice of µ̃, since if µ̃, ˜̃µ ∈M(Rd) are two measures such that p∗µ̃ = p∗˜̃µ
then ∫

Gdµ̃ =

∫
Gd˜̃µ

for all bounded Zd-periodic functions, and therefore for all F ∈ Lip0(Td;Rd) we have

that

〈F, p∗(∇µ̃)〉 = 〈F ◦ p,∇µ̃〉 = −
∫
Rd

div(F ◦ p)dµ̃ = −
∫
Rd

div(F ◦ p)d˜̃µ = 〈F, p∗(∇˜̃µ)〉.

In particular the action of the gradient operator on measures on the torus can be given

by

〈F,∇µ〉 = 〈F ◦ p,∇(i∗µ)〉 = −
∫
Rd

div(F ◦ p)di∗µ

for all (µ, F ) ∈M+(Td)× Lip0(Td;Rd), where i : Td ↪→ Rd is the Borel injection.

Note that by definition the gradient operator commutes with the push forward op-

erators p∗ : M(Rd) −→ M(Td) and p∗ : Lip0(Rd;Rd)∗ −→ Lip0(Td;Rd)∗ induced by

the universal covering p : Rd −→ Td of the torus, i.e. that

∇(p∗µ) = p∗(∇µ) (4.56)

for all µ ∈M(Rd).

We will also consider the discrete gradient operators

∇N :M+(M) −→Md
0(M) ≤ Lip0(M ;Rd)∗, N ∈ N,

where M = Rd or Td, given by

∇Nµ = N

d∑
j=1

(
µ− τ ej

N ∗
µ
)
· ej .

Then, if for all F ∈ Lip0(M ;Rd) we denote by

divNF (x) := N

d∑
j=1

(
F j
(
x+

ej
N

)
− F j(x)

)
the discrete divergence of F , we have that

∇Nµ(F ) = −
∫

divNFdµ.
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We note also that the discrete divergences define a family of bounded linear operators

divN : Lip0(M ;Rd) −→ C(M), N ∈ N, with uniformly bounded operator norm by 2,

that is

sup
N∈N

‖divNF‖u ≤ 2‖F‖Lip0(M ;Rd), ∀F ∈ Lip0(M ;Rd).

Also we note that since the covering map p : Rd −→ Td is homomorphism, for all

Lip0(Td;Rd) we have that

divN (F ◦ p) = N

d∑
j=1

(
F j
(
p
(
x+

ej
N

))
− F j

(
p(x)

))

= N

d∑
j=1

(
F j
(
p(x) + p

(ej
N

))
− F j

(
p(x)

))
= [divNF ] ◦ p.

It is obvious that the discrete gradient operators are w∗-continuous in the sense that

µ = w∗- lim
k→∞

µk =⇒ ∇Nµ = w∗- lim
k→∞

∇Nµk.

Proposition 4.4.3 (a) The operators ∇N : L∞w∗(I;M+(Td)) −→ L∞w∗(I; Lip0(Td;Rd)∗),

N ∈ N, induced by the discrete gradient operators is w∗-continuous, i.e. whenever∫ T

0

〈ft, µt〉dt = lim
α→∞

∫ T

0

〈ft, µαt 〉dt, ∀f ∈ L1(I;C(Td)) (4.57)

it follows that∫ T

0

〈Ft,∇Nµt〉dt = lim
α→∞

∫ T

0

〈Ft,∇Nµαt 〉dt, ∀ F ∈ L1(I; Lip0(Td;Rd))

(b) The restriction of the gradient operators on L∞w∗(I;M+,ac(T
d)) converges pointwise

to the gradient operator with respect to the w∗-topology of L∞w∗(I; Lip0(Td;Rd)∗).

(c) The gradient operator ∇ : L∞w∗(I;M+,ac(T
d)) −→ L∞w∗(I; Lip0(Td;Rd)∗) is (B,Ba)-

measurable, where by B and Ba we denote the Borel and Baire σ-algebras induced by the

w∗-topology on the domain and the target space, respectively.

Proof (a) Let F ∈ L1(I; Lip0(Td;Rd)). Then for almost all t ∈ I we have that

〈Ft,∇Nµt〉 = 〈divNFt, µt〉. Obviously the curve I 3 t 7→ divNFt ∈ C(Td) belongs

in L1(I;C(Td)) since∫ T

0

‖divNFt‖udt ≤ 2

∫ T

0

‖Ft‖Lip0(Td;Rd)dr < +∞.

Therefore, given a net (µα) ⊆ L∞w∗(I;M+(Td)) satisfying (4.57), we have that∫ T

0

〈Ft,∇Nµt〉dt =

∫ T

0

〈divNFt, µt〉dt = lim
α→∞

∫ T

0

〈divNFt, µ
α
t 〉dt

= lim
α→∞

∫ T

0

〈Ft,∇Nµαt 〉dt
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for all F ∈ L1(I; Lip0(Td;Rd)) as required.

(b) Let µ ∈ L∞w∗(I;M+,ac(T
d)). We have to prove that ∇Nµ −→ ∇µ as N →∞ in the

w∗-topology of L∞w∗(I; Lip0(Td;Rd)∗). So let F ∈ L1(I; Lip0(Td;Rd)) be arbitrary and

we have to prove that

lim
N→∞

〈F,∇Nµ〉I = 〈F,∇µ〉I . (4.58)

We have that

〈F,∇Nµ〉I =

∫ T

0

∫
divNFtdµtdt.

Let t ∈ I. Since Ft ∈ Lip0(Td;Rd), we have that divNFt −→ divFt pointwise almost

surely with respect to Lebesgue measure in Td. Since µt � mTd it follows by the

bounded convergence theorem that

lim
N→∞

∫
divNFtdµt =

∫
divFtdµt =: h(t)

for all t ∈ I. But since (µ, F ) ∈ L∞w∗(I;M+,ac(T
d))× L1(I; Lip0(Td;Rd)) we have that

sup
N∈N

∫
divNFtdµt ≤ 2‖Ft‖Lip0(Td;Rd)‖µ‖∞;TV

for all t ∈ I. Therefore the sequence {hN} of functions defined by hN (t) = 〈divNFt, µ〉 for

t ∈ I, is dominated by the function h̄ ∈ L1(I) given by h̄(t) = 2‖µ‖∞;TV ‖Ft‖Lip0(Td;Rd)

and so since hN −→ h pointwise, it follows by the dominated convergence theorem that

(4.58) holds. (c) is a consequence of (b). �

Proposition 4.4.4 A density-diffusion rate pair (π, σ) ∈ DL∞w∗
(
I;M+(Td)×M+(Td)

)
satisfies the diffusion equation iff the pair (π,∇σ) ∈ DL∞w∗

(
I;M+(Td)×Lip0(Td;Rd)∗

)
satisfies the continuity equation.

Proof Let i : Td ∼= [0, 1)d −→ Rd denote the Borel injection. We assume first that the

pair (π, σ) satisfies the diffusion equation. Then∫ T

0

∫
∂tGtdπ̃tdt = −

∫ T

0

∫
∆xGdσ̃tdt =

∫ T

0

〈∇xG,∇σ̃t〉dt (4.59)

for all G ∈ C∞((0, T ) × Rd) that are Zd-periodic and of bounded support in time,

and all (π̃, σ̃) ∈ DL(0, T ;M+(Rd) ×M+(Rd)) such that p∗(π̃, σ̃) = (π, σ). Let now

(π̃, W̃ ) ∈ DL∞w∗
(
0, T ;M+(Rd)× Lip0(Rd;Rd)

)
be such that p∗(π̃, W̃ ) = (π,∇σ). If we

show that ∫ T

0

〈∇xG, W̃t〉dt =

∫ T

0

〈∇xG,∇σ̃t〉dt (4.60)

for all Zd-periodic and of bounded support in time functions G ∈ C∞((0, T ) ×Rd), it

will follow that the pair (π,∇σ) satisfies the continuity equation

∂tπ = −div(∇σ)
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on (0, T ) ×Td in the sense of distributions. But (4.60) indeed holds, since by (4.56) it

follows that for all t ∈ I,

p∗W̃t = ∇σt = ∇(p∗σ̃t) = p∗(∇σ̃t),

which obviously implies (4.60).

Suppose conversely that the pair (π,∇σ) satisfies the continuity equation. Then∫ T

0

∫
∂tGtdπ̃tdt =

∫ T

0

〈∇xG, W̃t〉dt (4.61)

for all G ∈ C∞((0, T )×Rd) that are Zd-periodic and of bounded support in time, and all

(π̃, W̃ ) ∈ DL(I;M+(Rd)× Lip0(Rd;Rd)∗) such that p∗(π̃, W̃ ) = (π,∇σ). Let now σ̃ ∈
L∞w∗(I;M(Rd)) be such that p∗σ̃ = σ. Then the functional W̃ := ∇σ̃ ∈ Lip0(Td;Rd)∗

satisfies p∗W̃ = p∗(∇σ̃) = ∇(p∗σ̃) = ∇σ and therefore by (4.61) we have that∫ T

0

∫
∂tGtdπ̃tdt =

∫ T

0

〈∇xG,∇σ̃t〉dt = −
∫ T

0

〈∆xG, σ̃t〉dt

for all Zd-periodic and of bounded support in time functions G ∈ C∞((0, T )×Rd), and

thus the pair (π, σ) satisfies the diffusion equation, as required. �

Corollary 4.4.1 Let (π, σ) ∈ L∞
(
I;M+(Td)

)2
be a density-diffusion rate pair satisfy-

ing the diffusion equation. Then there exists a weakly continuous representative π̄ in the

class of π in L∞(I;M+(Td)) modulo a.s. equality, and for this continuous representative

we have that∫
Td

Gtdπ̄t −
∫
Td

Gsdπ̄s =

∫ t

s

(∫
Td

∂rGrdπ̄r + 〈∆xGr, σr〉
)
dr,

for all G ∈ C∞(I ×Td) and all 0 ≤ s ≤ t ≤ T , in the sense that for any representative

σ̃ ∈ L∞w∗(I;M+(Rd)
)

of σ it holds that∫
Rd

Gt ◦ idπ̄t −
∫
Rd

Gs ◦ idπ̄s =

∫ t

s

(∫
Rd

(∂rGr) ◦ idπ̄r + 〈∆xGr, σ̃r〉
)
dr, (4.62)

for all Zd-periodic in space functions G ∈ C∞(I × Rd) and all 0 ≤ s ≤ t ≤ T , where

i : Td ↪→ Rd is the Borel injection.

Proof By the previous proposition the density-current pair (π,−∇σ) satisfies the con-

tinuity equation and so by proposition 4.3.1 there exists a continuous representative

π ∈ C(I;M+(Td)) in the class of π and for this continuous representative we have that

for any W̃ ∈ L∞w∗(I; Lip0(Rd,Rd)∗
)

such that p∗W̃ = −∇σ it holds that∫
Rd

Gt ◦ idπ̄t −
∫
Rd

Gs ◦ idπ̄s =

∫ t

s

(∫
Rd

(∂rGr) ◦ idπ̄r + 〈∇Gr, W̃r〉
)
dr,

for all Zd-periodic in space functions G ∈ C∞(I ×Rd) and all 0 ≤ s ≤ t ≤ T . But as we

have seen in the proof of the previous proposition whenever σ̃ ∈ L∞(I;M(Rd)) is such

235



that p∗σ̃ = σ then we have p∗∇σ̃ = ∇σ and therefore∫
Rd

Gt ◦ idπ̄t −
∫
Rd

Gs ◦ idπ̄s =

∫ t

s

(∫
Rd

(∂rGr) ◦ idπ̄r − 〈∇Gr,∇σ̃r〉
)
dr

=

∫ t

s

(∫
Rd

(∂rGr) ◦ idπ̄r + 〈∆xGr, σ̃r〉
)
dr

for all Zd-periodic in space functions G ∈ C∞(I ×Rd) and all 0 ≤ s ≤ t ≤ T . �

Proposition 4.4.5 Let Rg be any limit point of the sequence {RN,g}N∈N. Then the sec-

ond marginal Qg of Rg is concentrated on paths (σt)0≤t≤T ∈ L∞(I;M+(Td)) consisting

of measures absolutely continuous with respect to the Lebesgue measure with density uni-

formly bounded by ‖g‖u, i.e.

Qg
{
σ ∈ L∞w∗(I;M+(Td))

∣∣∣σt � mTd ,

∥∥∥∥ dπgt
dmTd

∥∥∥∥
L∞(Td)

≤ ‖g‖u, a.s.-∀ t ∈ I
}

= 1

and Rg is concentrated on pairs (π, σ) ∈ DL∞w∗(I;M+(Td) × L∞(Td)) satisfying the

weak diffusion equation, i.e. it holds that

Rg
{

(π, σ) ∈ DL∞w∗(I;M+(Td)× L∞(Td))
∣∣∣ ∂tπ = ∆xσ on Io ×Td

}
= 1.

Proof Let G ∈ C(Td). For all N ∈ N we have that

|〈G, σN 〉| ≤ 1

Nd

∑
x∈TdN

∣∣∣G( x
N

)∣∣∣g(η(x)
)
≤ ‖g‖u

Nd

∑
x∈TdN

∣∣∣G( x
N

)∣∣∣.
Now, since G is continuous we have that

lim
N→∞

1

Nd

∑
x∈TdN

∣∣∣G( x
N

)∣∣∣ =

∫
Td

|G(x)|dx

and so given ε > 0 there exists N0 = N0(G, ε) ∈ N such that

N ≥ N0 =⇒ 1

Nd

∑
x∈TdN

∣∣∣G( x
N

)∣∣∣ ≤ ∫
Td

|G|+ ε

‖g‖u

It follows that

QN,g
{
σ ∈ L∞(I;M+(Td))

∣∣∣ ess sup
0≤t≤T

|〈G, σt〉| ≤ ‖g‖u
∫
Td

|G|+ ε

}
for all N ≥ N0. We claim now that the function

L∞(I;M+(Td)) ∈ σ = (σt)0≤t≤T
hG7→ ‖〈G, σ〉‖L∞(I) = ess sup

0≤t≤T
|〈G, σt〉| ∈ R+

is lower semicontinuous. We consider first the operator IG : L∞(I;M+(Td)) −→ L∞(I)

given by

IG(µ)(t) = 〈G,µt〉
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and we will show that IG is w∗-continuous. Indeed, if {µα}α∈A ⊆ L∞(I;M+(Td)) is a

net converging to µ ∈ L∞(I;M+(Td)) in the w∗-topology, i.e.

lim
α

∫ T

0

∫
Ftdµ

α
t dt =

∫ T

0

∫
Ftdµtdt, ∀ F ∈ L1(I;C(Td)),

then for all f ∈ L1(I) we have that

lim
α

∫ T

0

f(t)IG(µα)(t)dt = lim
α

∫ T

0

∫
f(t)G(x)dµαt (x)dt =

∫ T

0

∫
f(t)G(x)dµt(x)dt

=

∫ T

0

f(t)IG(µ)(t)dt,

since whenever G ∈ C(Td) and f ∈ L1(I) the function given by F (t, x) = f(t)G(x) for

(t, x) ∈ I×Td is in L1(I;C(Td)). Therefore the function IG is w∗-continuous. It follows

then that the function hG is lower semicontinuous as it is the composition of the w∗-

continuous function IG and the w∗-lower semicontinuous function ‖·‖L∞(I) : L∞(I) −→ R,

i.e. hG = ‖IG‖L∞(I).

By the lower semicontinuity of hG now, it follows that the set

EεG :=

{
σ ∈ L∞(I;M+(Td))

∣∣∣ ess sup
0≤t≤T

|〈G, σt〉| ≤ ‖g‖u
∫
Td

|G|+ ε

}
is closed for all G ∈ C(Td), ε > 0. Therefore, by the portmanteau theorem it follows

that

Qg(EεG) ≥ lim sup
N→∞

QN,g(EεG) = 1

for all G ∈ C(Td), ε > 0. Now, obviously the set

EG :=
⋂
n∈N

E
1
n

G =

{
σ ∈ L∞(I;M+(Td))

∣∣∣ ess sup
0≤t≤T

|〈G, σt〉| ≤ ‖g‖u
∫
Td

|G|
}
,

is of full Qg-measure, i.e. Qg(EG) = 1, for all G ∈ C(Td).

Let now D ⊆ C(Td) be a countable subset dense in C(Td). We claim that⋂
G∈D

EG =
⋂

G∈C(Td)

EG.

In order to prove this it suffices to show that

sup
G∈C(Td)

(
‖〈G, σ〉‖L∞(I) − ‖g‖u

∫
Td

|G|
)

= sup
G∈D

(
‖〈G, σ〉‖L∞(I) − ‖g‖u

∫
Td

|G|
)

Qg-a.s. for all σ ∈ L∞(I;M+(Td)). Let c1 ∈ C(Td) denote the constant function

c1 ≡ 1. Then Qg(Ec1) = 1 and we will show that the equality above holds for all

σ ∈ Ec1 . Indeed, let ε > 0 and σ ∈ Ec1 . Since D is dense in C(Td) for each G ∈ C(Td)

there exists Gε ∈ D such that ‖G−Gε‖u ≤ ε/(‖g‖u + 1). Then obviously∫
Td

|G−Gε| < ε

‖g‖u + 1
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and since σ ∈ Ec1 we have that ‖〈σ, 1〉‖L∞(I) ≤ ‖g‖u and therefore

ess sup
0≤t≤T

〈|G−Gε|, σt〉 < ε.

It follows that for all G ∈ C(Td) we have that

‖〈G, σ〉‖L∞(I) − ‖g‖u
∫
Td

|G| ≤ 2ε+ ‖〈Gε, σ〉‖L∞(I) − ‖g‖u
∫
Td

|Gε|

≤ 2ε+ sup
G∈D

(
‖〈G, σ〉‖L∞(I) − ‖g‖u

∫
Td

|G|
)
.

Taking the supremum over all G ∈ C(Td) and then letting ε tend to zero yields the

required equality.

It follows that the set

E :=
⋂

G∈C(Td)

EG

=

{
σ ∈ L∞(I;M+(Td))

∣∣∣ ‖〈G, σ〉‖L∞(I) ≤ ‖g‖u
∫
Td

|G|, ∀ G ∈ C(Td)

}
is of full Qg-measure (where we always work inside Ec1).

For each G ∈ D, σ ∈ E let IG,σ ⊆ I be a set of full measure satisfying

sup
t∈IG,σ

(
|〈G, σt〉| − ‖g‖u

∫
Td

|G|
)
≤ 0.

Then the set Iσ :=
⋂
G∈D IG,σ is of full measure in I and

sup
G∈C(Td)

sup
t∈Iσ

(
|〈G, σt〉| − ‖g‖u

∫
Td

|G|
)
≤ 0 (4.63)

for all σ ∈ L∞(I;M+(Td)). Indeed, let t ∈ Iσ and let G ∈ C(Td). Then for all G ∈ D
we have that |〈G, σt〉| ≤ ‖g‖u

∫
Td
|G|. Therefore, if given ε > 0 we choose Gε ∈ D such

that ‖G−Gε‖u ≤ ε/(‖g‖u + 1) then we have that

|〈G, σt〉| − ‖g‖u
∫
Td

|G| ≤ 2ε+ |〈Gε, σt〉| − ‖g‖u
∫
Td

|Gε| ≤ 2ε,

which since ε > 0 was arbitrary, proves (4.63).

Since for measures µ ∈M+(Td) it holds that

µ ∈M+,ac(T
d),

∥∥∥∥ dµ

dmTd

∥∥∥∥
L∞(Td)

≤ C ⇐⇒ |〈G,µ〉| ≤ C
∫
Td

|G|, ∀ G ∈ C(Td)

the first claim is proven.

For the second claim, we consider for each G ∈ C2
c (Io × Td) the function fG :

DL∞w∗ −→ R given by

fG(π, σ) =

∫ T

0

〈∂tGt, πt〉+ 〈∆xGt, σt〉dt.
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In the previous section we have shown that the function fG1 : D(I;M+(Td)) given by

fG1 (π) =

∫ T

0

〈∂tGt, πt〉dt

is continuous and so if we show that the function fG2 : L∞w∗(I;M+(Td)) given by

fG2 (σ) =

∫ T

0

〈∆xGt, σt〉dt

is continuous it will follow that fG is continuous. So we prove the continuity of f2,G.

We note that given any function G ∈ C2
c (Io ×Td) the formula

I 3 t 7→ ∆xGt ∈ C(Td)

defines an element ∆xG of L1(I;C(Td)) with

‖∆xG‖L1(I;C(Td)) =

∫
I

‖∆xGt‖C(Td)dt ≤ T‖∆xG‖C2
c (Io×Td) < +∞,

and then f2,G ≡ 〈∆xG, ·〉I , where 〈·, ·〉I is the duality on L1(I;C(Td))×L∞(I;M+(Td)).

By the definition of the w∗-topology on L∞w∗(I;M+(Td)) a net {πg,α}α∈A converges to

σ ∈ L∞w∗(I;M+(Td)) iff

lim
α∈A
〈G, πg,α〉I = 〈G, σ〉I , ∀ G ∈ L1(I;C(Td))

and so in particular given G ∈ C2
c (Io×Td), for any converging net {πg,α}α∈A with limit

σ we have that

f2,G(πg,α) = 〈∆xG, π
g,α〉I −→ 〈∇xG, σ〉I = f2,G(σ)

which proves the continuity of f2,G, and thus also of fG.

Now, since fG is continuous the set {|fG| > δ} is open and so by the portmanteau

theorem it follows that for any limit point Rg of the sequence {RN,g} along a subsequence

(RkN ,g)N∈N of {RN,g} we have that

Rg
{
|fG| > δ

}
= Rg

{∣∣∣∣ ∫ T

0

[
〈∂tGt, πt〉+ 〈∆xGt, σt〉

]
dt

∣∣∣∣ > δ

}
≤ lim inf

N→∞
RkN ,g

{∣∣∣∣ ∫ T

0

[
〈∂tGt, πt〉+ 〈∆xGt, σt〉

]
dt

∣∣∣∣ > δ

}
= 0

for all δ > 0 and all G ∈ C3
c (Io ×Td). Since this holds for all δ > 0 it follows that

Rg
{∫ T

0

[
〈∂tGt, πt〉+ 〈∆xGt, σt〉

]
dt = 0

}
= 1, ∀ G ∈ C3

c (Io ×Td).

Therefore if we can find a countable family G ⊆ C3
c (Io ×Td) such that⋂

G∈C3
c (Io×Td)

{
fG = 0

}
=
⋂
G∈G

{
fG = 0

}
(4.64)
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it will follow that

R

( ⋂
G∈C3

c (Io×Td)

{∫ T

0

[
〈∂tGt, πt〉+ 〈∆xGt, σt〉

]
dt = 0

})
= 1,

i.e. that Rg is concentrated on solutions of the diffusion equation. To this end, let

G ⊆ C∞c (Io × Td) be a countable set of smooth functions dense in C2
c (Io × Td) (and

thus also in C3
c (Io ×Td)) with respect to the usual C2-uniform norm of C2

c (Io ×Td),
given by

‖G‖C2
c (Io×Td) := ‖G‖u + ‖∇G‖u + ‖D2G‖u

where differentiation is with respect both to the time and space variables, the uniform

norms in the right hand side are taken in the spaces C(Io ×Td), C(Io ×Td;Rd+1) and

C(Io × Td;R(d+1)×(d+1)), respectively, and R(d+1)×(d+1) is considered equipped with

the Frobenius norm. Note that if we show that for any sequence {Gk} ⊆ C∞c (Io ×Td)
such that Gk −→ G ∈ C2

c (Io ×Td) with respect to the C2-uniform norm we have that

fG
k −→ fG pointwise in DL∞w∗(I,T

d) then we will have that (4.64) holds. Indeed, if

this is true, and (π, σ) ∈
⋃
G∈G{fG = 0} then given any G ∈ C2

c (Io ×Td) there exists a

sequence {Gk} in G such that ‖G−Gk‖C2
c (Io×Td) −→ 0 and thus

fG(π, σ) = lim
k→∞

fG
k

(π, σ) = 0,

which shows that (4.64) holds.

So let {Gk}k∈N ⊆ C∞c (Io ×Td) be a sequence such that ‖Gk −G‖C2
c (Io×Td) −→ 0.

The pointwise convergence of {fGk1 } to fG1 on the space D(I;M+(Td)) has been proved

in the previous section and so we have to prove that {fGk2 } converges pointwise on

L∞(I;M+(Td)) to the function fG2 . As we have already noted, for any G ∈ C2
c (Io×Td)

the function ∆xG : I −→ C(Td) given by t 7→ ∆xGt ∈ C(Td) defines an element of

L1(I;C(Td)) and for these such elements that are defined by the C2-converging sequence

{Gk} ⊆ C∞c (Io ×Td) we have that

‖∆xG
k −∆xG‖L1(I;C(Td)) =

∫
I

‖∆x(Gkt −Gt)‖udt

≤
∫
I

‖D2
x(Gkt −Gt)‖C(Td;Rd×d)dt

≤ T · ‖Gk −G‖C2
c (Io×Td)

k→∞−→ 0

Therefore, for any σ ∈ L∞w∗(I;M+(Td)) ∼= L1(I;C(Td))∗ we have that

fGk2 (σ) = 〈∆xG
k, σ〉I

k→∞−→ 〈∆xG, σ〉I = fG2 (σ). (4.65)

which proves that the sequence of functions {f2,Gk}k∈N, converges pointwise to f2,G in

L∞w∗(I;M+(Td)). Therefore {fGk} converges pointwise to fG on DL∞w∗(I,T
d) whenever

Gk −→ G in the C2-uniform norm, as required for the proof of (4.64).

Combining this proposition with corollary 4.4.1 we can rephrase this result as follows.

240



Proposition 4.4.6 Let {ηN = (idD(R+,Md
N ), P

N )}N∈N be the sequence of nearest neigh-

bor ZR processes with bounded jump rate g on the discrete toruses TdN starting from a

sequence {µN0 ∈ P1M
d
N} of initial distributions associated to the macroscopic profile

µ0 ∈ M+(Td). Then the sequence of distributions of the diffusively scaled empirical

density-diffusion rate pair processes associated to {ηN}N∈N given by

RN,g :=
[
(πNtN2 , σNtN2)t≥0

]
∗
PN ∈ PDL∞w∗(I;M+(Td)×M+(Td))

is relatively compact and any limit point Rg of the sequence is concentrated on pairs

(π, σ) ∈ DL∞w∗(I;M+(Td)×M+(Td)) such that:

(a) (π, σ) ∈ CL∞w∗(I;M+(Td)× L∞(Td)), where L∞(Td) ≤ L1(Td) ≤M+(Td).

(b) the density-diffusion rate pair (π, σ) satisfies the weak diffusion equation with initial

condition µ0 ∈M+(Td), i.e. (π, σ) satisfies{
∂tπt = ∆xσ

π0 = µ0

in I ×Td

in the sense of distributions.

In the next proposition we regard M̂0(Td) as a subspace of C1(Td;Rd)∗.

Proposition 4.4.7 Let {RN,g}N∈N ⊆ PDL∞w∗(I;M+(Td)2) denote the sequence of the

diffusively rescaled distributions of the empirical density-diffusion rate pair process

(πN , σN ) : D(I;Md
N ) −→ DL∞w∗(I;M+(Td)×M+(Td))

and let {RN} denote the sequence of the diffusively rescaled distributions of the empirical

density-current pair process

(πN ,WN ) : D(I;Md
N ) −→ DL∞w∗(I;M+(Td)× M̂d

0(Td)).

We denote by

Rg ⊆ PCL∞w∗(I;M+(Td)× L∞(Td)), R ⊆ PCL∞w∗(I;M+(Td)× C1(Td;Rd)∗)

the sets of subsequential limits of the sequences {RN,g} and {RN}, respectively. Then

[id×∇]∗Rg = R

where ∇ : L∞w∗(I;M+(Td)) −→ L∞w∗(I;C1(Td;Rd)∗) is the operator induced by the

gradient operator ∇ :M+(Td) −→ C1(Td;Rd)∗ and id = idC(I;M+(Td)) is the identity

function. In particular R ⊆ PCL∞w∗(I;M+(Td)× M̂d
0(Td)).

Proof By definition we have that WN = ∇NσN for all N ∈ N. We consider first a

limit point Rg of {RN,g} and we will prove that the distribution [id ×∇]∗R
g is a limit

point of the sequence {RN}. There exists a subsequence of {RN,g} which we continue to

denote by {RN,g} such that RN,g −→ Rg in the weak topology of probability measures.
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As we have seen the gradient operator ∇ :M+(Td) −→ C1(Td;Rd)∗ is w∗-continuous.

Likewise the induced operator

∇ : L∞w∗(I;M+(Td)) −→ L∞w∗(I;C1(Td;Rd)∗)

is w∗-continuous. Indeed, let {µα}α∈A ⊆ L∞w∗(I;M+(Td)) be a net converging in the

w∗-topology to µ ∈ L∞w∗(I;M+(Td)) and let G ∈ L1(I;C1(Td;Rd)). Then the function

divG obviously belongs in L1(I;C(Td)) and therefore since w∗-limα µ
α = µ we have

that

〈G,∇µα〉I = −
∫ T

0

〈divGt, µ
α
t 〉dt −→ −

∫ T

0

〈divGt, µt〉dt = 〈G,∇µ〉I .

It follows that

lim
N→∞

(id×∇)∗R
N,g = (id×∇)∗R

g.

We claim that the corresponding subsequence {RN} converges to (id×∇)∗R
g, and for

this it suffices to prove that any subsequence {RNk} of {RN} has a further subsequence

that converges weakly to (id×∇)∗R
g. For this we consider the sequence of probability

measures

R̃N := (πN ,WN ,∇σN )∗P
N ∈ P(M1 ×M2 ×M3)

where

M1 := D(I;M+(Td)), M2 = M3 := L∞w∗(I;C1(Td;Rd)∗).

Then denoting by xi : M1 ×M2 ×M3 −→ Xi the natural projections we have that

(x1, x2)∗R̃
N = RN and (x1, x3)∗R̃

N = (id×∇)∗R
N,g.

The corresponding subsequence {R̃Nk} is obviously relatively compact and therefore

there exists R̃ ∈ P(M1×M2×M3) and a further subsequence {R̃Nkm} converging to R̃.

Then

RNkm = (x1, x2)∗R̃
Nkm −→ (x1, x2)∗R̃ =: R

and

(id×∇)∗R
Nkm ,g = (x1, x3)∗R̃

Nkm −→ (x1, x3)∗R̃ = (id×∇)∗R
g.

We claim that (x2, x3)∗R̃ ∈ P(M2×M3) is the identity plan, i.e. that it is concentrated

in the diagonal of M2 ×M3, which since

(x1, x3)∗R̃ =
[
(x2, x3)∗R̃

]
◦
[
(x1, x2)∗R̃

]
will prove the claim.

So let G ∈ L1(I;C1(Td;Rd)). Then, for all ε > 0 we have that

R̃
{
|〈G, x2〉I − 〈G, x3〉I | > ε

}
≤ lim inf

m→∞
R̃Nkm

{
|〈G, x2〉I − 〈G, x3〉I | > ε}

= lim inf
m→∞

PNkm
{
|〈G,WNkm 〉I − 〈G,∇σNkm 〉I | > ε}

= lim inf
m→∞

PNkm
{
|〈divG− divNkmG, σNkm 〉I | > ε}

≤ lim
m→∞

PNkm
{
‖divG− divNkmG‖L1(I;C1) >

ε

‖g‖u

}
.
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Therefore we see that if we prove that

G ∈ L1(I;C2(Td;Rd)) =⇒ lim
N→∞

∫ T

0

‖divGt − divNGt‖udt = 0, (4.66)

where we regard C2(Td;Rd) as a subspace of (C1(Td;Rd), ‖ · ‖C1), it will follow that

R̃
{
|〈G, x2〉I − 〈G, x3〉I | > ε

}
= 0

for all G ∈ L1(I;C2(Td;Rd)) and all ε > 0, which will then imply that

R̃
{
〈G, x2〉 = 〈G, x3〉

}
= 1

for all G ∈ L1(I;C2(Td;Rd)). But L1(I;C2(Td;Rd)) is dense in L1(I;C1(Td;Rd))

and therefore by choosing a countable subset D ⊆ L1(I;C2(Td;Rd)) that is dense in

L1(I;C1(Td;Rd)), this will in turn imply that

1 = R̃

( ⋂
G∈D

{
〈G, x2〉 = 〈G, x3〉

})
= R̃

{
x2 = x3

}
,

which proves that (x2, x3)∗R̃ is concentrated in the diagonal of M2 ×M3, as required.

Finally, (4.66) follows easily by the bounded convergence theorem, since as we know

whenever G ∈ C2(Td;Rd) then ‖divG − divNG‖u −→ 0, and therefore for all G ∈
L1(C2(Td;Rd)) the bounded function hN (t) := ‖divGt − divNGt‖u, 0 ≤ t ≤ T , with

supN∈N ‖hN‖u ≤ 2‖G‖C1(Td;Rd), converges pointwise to zero. �
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4.5 Regularity Results for the Limiting Empirical

Diffusion Rate and Current

4.5.1 An Energy Estimate

In this section we adapt to the case at hand the regularity estimates of section 5.7 in [25]

to conclude that in fact the trajectories of the empirical current consist of vector measures

absolutely continuous with respect to the Lebesgue measure. We fix T > 0, set I := [0, T ]

and recall that we have denoted by QN,g and QN the laws of the empirical diffusion-

rate process (σNt )0≤t≤T and the empirical current process (WN
t )0≤t≤T , starting from a

sequence {µN0 }N∈N of initial distributions satisfying the O(Nd)-entropy assumption, on

the spaces L∞w∗(I;M+(Td)) and L∞w∗(I;Md
0(Td)) respectively. In section 4.4 we have

shown that the sequences

{QN,g}N∈N ⊆ PL∞w∗(I;M+(Td))

and

{QN}N∈N ⊆ PL∞w∗(I;M̂d
0(Td)) ≤ P

(
L1(I;C1(Td;Rd))∗, w∗

)
,

are relatively compact. Furthermore, as we have shown in section 4.4, denoting by Qg
and Q the set of all subsequential limits of the sequences {QN,g} and {QN} respectively,

we have that

Qg ⊆ PL∞w∗(I;L∞(Td)) and Q ⊆ PL∞w∗(I;M̂d
0(Td)).

Our main goal in this section is to prove regularity results for the trajectories on which

elements of Qg and Q are concentrated. Namely, we aim to prove that

Qg ⊆ PL∞w∗(I;H1(Td)), (4.67)

where as usual H1(Td) = W 1,2(Td) denotes the Hilbert-Sobolev space of functions

possessing first order weak derivatives. Then since as we have shown, we have

Q = ∇Qg,

is will follow by (4.67) that

Q ⊆ PL∞w∗(I;Md
0(Td)), (4.68)

i.e. that all elements of Q are concentrated on trajectories whose points are in fact

vector-valued measures, and not just elements of the Kantorovich-Rubinstein comple-

tion M̂d
0(Td) in the Lipschitz norm of Md

0(Td).

Our first regularity result is based on the following lemma which is in essence con-

tained in lemma in [25]. Before stating this lemma let us fix j = 1, . . . , d and define for

each N ∈ N, ε > 0 and each function H ∈ C(Td) the function V N (ε,H) ≡ V N,j(ε,H) :

Md
N −→ R by the formula

V N (ε,H) =
1

Nd−1

∑
x∈TdN

H
( x
N

)g(η(x)
)
− g
(
η(x+ [Nε]ej)

)
[Nε]

− 2

Nd

∑
x∈TdN

H
( x
N

)2 1

[Nε]

[Nε]∑
k=0

g
(
η(x+ kej)

)
.
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Then for each H ∈ C1(I ×Td) and t ∈ I we set

V Nt (ε,H)(η) = V N (ε,Ht)(ηt), η ∈ D(R+,M
d
N ),

for the induced process V N (ε,H) : I ×D(I;Md
N ) −→ R.

Lemma 4.5.1 Let {Hi}mi=1 ⊆ C1(I×Td), m ∈ N, be a finite sequence of functions and

let {µN0 ∈ P1M
d
N}N∈N be a sequence of initial distributions satisfying the O(Nd)-entropy

assumption for some finite constant C0 > 0. Then for all ε > 0 we have that

lim sup
N→∞

Eµ
N
0

{
max

1≤i≤m

∫ T

0

V Nt (ε,H)dt

}
≤ C0.

Proof The proof follows that of lemma 5.7.3 in [25]. �

Corollary 4.5.1 Let {Hi}mi=1 ⊆ C1(I ×Td), m ∈ N, be a finite sequence of functions

and let Qg ∈ Qg ⊆ PL∞w∗(I;L∞(Td)). Then∫ {
max

1≤i≤m

∫ T

0

∫
Td

[
∂jH

i
t(x)−Hi

t(x)2
]
σt(x)dxdt

}
dQg(σ) ≤ C0.

Proof We begin by noting that for each H ∈ C(Td) and ε > 0 by a simple summation

by parts we can write V N (ε,H) as

V N (ε,H) =
1

Nd−1

∑
x∈TdN

H( xN )−H
(x−[Nε]ej

N

)
[Nε]

g
(
η(x)

)

− 2

Nd

∑
x∈TdN

1

[Nε]

[Nε]∑
k=0

H
(x− kej

N

)2

g
(
η(x)

)
=

1

Nd

∑
x∈TdN

N

[Nε]

[
H
( x
N

)
− τ− [Nε]

N ej
H
( x
N

)]
g
(
η(x)

)

− 2

Nd

∑
x∈TdN

1

[Nε]

[Nε]∑
k=0

τ− k
N ej

H
( x
N

)2

g
(
η(x)

)

=
〈 N

[Nε]

[
H − τ− [Nε]

N ej
H
]
− 2

[Nε]

[Nε]∑
k=0

τ− k
N ej

H2, σN
〉
.

Therefore if for each H ∈ C(Td) we denote by υNε (H) ∈ C(Td) the function

υNε (H) :=
N

[Nε]

[
H − τ− [Nε]

N ej
H
]
− 2

[Nε]

[Nε]∑
k=0

τ− k
N ej

H2

then we can write V N (ε,H) = 〈υNε (H), σN 〉, and

Eµ
N
0

{
max

1≤i≤m

∫ T

0

V Nt (ε,H)dt

}
=

∫ {
max

1≤i≤m

∫ T

0

∫
Td

υNε (Hi
t)dπ

g
t dt

}
dQN,g(σ).
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We claim next that

υNε (H) −→
H − τ−εejH

ε
− 2

ε

∫ ε

0

H(· − tej)2dt =: υε(H) (4.69)

uniformly as N →∞. The fact that

N

[Nε]

[
H − τ− [Nε]

N ej
H
]
−→

H − τ−εejH
ε

uniformly as N →∞ is obvious and so we have to prove that

1

[Nε]

[Nε]∑
k=0

τ− k
N ej

H2 −→ 1

ε

∫ ε

0

H(· − tej)2dt

uniformly as N →∞. For each u ∈ Td we have

1

[Nε]

[Nε]∑
k=0

τ− k
N ej

H(u)2 =
N

[Nε]

[Nε]∑
k=0

H
(
u− k

N
ej

)2 1

N

=
N

[Nε]

[Nε]∑
k=0

∫
[ kN ,

k+1
N )

H
(
u− k

N
ej

)2

dt

=
N

[Nε]

[Nε]∑
k=0

∫
[ kN ,

k+1
N )

H
(
u− [Nt]

N
ej

)2

dt

=
N

[Nε]

∫ [Nε]+1
N

0

H
(
u− [Nt]

N
ej

)2

dt.

So for all u ∈ Td we have that

∆N
ε (H)(u) :=

1

[Nε]

[Nε]∑
k=0

τ− k
N ej

H(u)2 − 1

ε

∫ ε

0

H(u− tej)2dt

=
1

ε

∫ ε

0

[
H
(
u− [Nt]

N
ej

)2

−H(u− tej)2
]
dt

+
( N

[Nε]
− 1

ε

)∫ ε

0

H
(
u− [Nt]

N
ej

)2

dt

+
[Nε]

N

∫ [Nε]+1
N

ε

H
(
u− [Nt]

N
ej

)2

dt

and therefore∣∣∆N
ε (H)(u)

∣∣ ≤ 2‖H‖u
ε

∫ ε

0

∣∣∣H(u− [Nt]

N
ej

)
−H(u− tej)

∣∣∣dt+ ε‖H‖2u
( N

[Nε]
− 1

ε

)
+

[Nε]

ε
‖H‖2u

( [Nε] + 1

N
− ε
)
.

Consequently, in order to prove that ‖∆N
ε (H)‖u −→ 0 as required it suffices to show

that

sup
u∈Td

∫ ε

0

∣∣∣H(u− [Nt]

N
ej

)
−H(u− tej)

∣∣∣dt N→∞−→ 0.
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But this limit is also obvious since every function H ∈ C(Td) is a uniformly continuous

function. To summarize, we have proved that for all H ∈ C(Td) and all ε > 0,

lim
N→∞

∥∥υNε (H)− υε(H)
∥∥
u

= 0. (4.70)

Furthermore, for all H ∈ C(Td) and all large enough N we have that

‖υε(H)‖u ∨ ‖υNε (H)‖u ≤
4

ε
‖H‖u + 2‖H‖2u < +∞. (4.71)

Next, for each function H ∈ C(I×Td) we denote by υNε (H) ∈ C(I×Td) the function

given by

υNε (H)(t, u) ≡ υNε (H)t(u) ≡ υNε (Ht)(u), (t, u) ∈ I ×Td.

With this notation, it follows by (4.70) and (4.71) that for all functions H ∈ C(I ×Td),

lim
N→∞

∥∥υNε (H)t − υε(H)t
∥∥
u

= 0, ∀ t ∈ I,

and

sup
t∈I

{
‖υε(H)t‖u ∨ ‖υNε (H)t‖u

}
≤ 4

ε
‖H‖C(I×Td) + 2‖H‖2C(I×Td) < +∞,

and therefore for all H ∈ C(I ×Td) we have by the bounded convergence theorem that

‖υNε (H)− υε(H)‖L1(I;C(Td)) =

∫ T

0

‖υNε (H)t − υε(H)t‖udt
N→∞−→ 0. (4.72)

Recall that for each function F ∈ L1(I;C(Td)) we denote by 〈F, ·〉I the functional

〈F, ·〉I : L∞w∗(I;M(Td)) −→ R given by

〈F, π〉I =

∫ T

0

〈Ft, πt〉dt, π ∈ L∞w∗(I;M(Td)).

Let now Qg ∈ Qg({µN0 }) and consider a subsequence of {QN,g}N∈N, which we continue

to denote by {QN,g}, converging weakly to Qg. Then, using the elementary inequality

max
1≤i≤m

ai − max
1≤i≤m

bi ≤ max
1≤i≤m

(ai − bi)

which holds for all finite sequences {ai}mi=1, {bi}mi=1 of real numbers, we write∫
max

1≤i≤m
〈υε(Hi), σ〉IdQN,g(σ) ≤

∫
max

1≤i≤m
〈υNε (Hi), σ〉IdQN,g(σ)

+

∫
max

1≤i≤m
〈υε(Hi)− υNε (Hi), σ〉IdQN,g(σ).

The function

σ 7→ max
1≤i≤m

〈υε(Hi), σ〉I

is continuous in the w∗-topology of L∞w∗(I;M(Td)) as a maximum of a finite number of

continuous functionals and therefore since QN,g converges weakly to Qg we have that

lim
N→∞

∫
max

1≤i≤m
〈υε(Hi), σ〉IdQN,g(σ) =

∫
max

1≤i≤m
〈υε(Hi), σ〉IdQg(σ)
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and on the other hand, by lemma 4.5.1 we have that

lim sup
N→∞

∫
max

1≤i≤m
〈υNε (Hi), σ〉IdQN,g(σ) ≤ C0.

It follows that∫
max

1≤i≤m
〈υε(Hi), σ〉IdQg(σ) ≤ C0 + lim

N→∞

∫
max

1≤i≤m
〈υε(Hi)− υNε (Hi), σ〉IdQN,g(σ).

We prove next that

lim
N→∞

∣∣∣∣ ∫ max
1≤i≤m

〈υε(Hi)− υNε (Hi), σ〉IdQN,g(σ)

∣∣∣∣ = 0, (4.73)

in order to conclude that ∫
max

1≤i≤m
〈υε(Hi), σ〉IdQg(σ) ≤ C0. (4.74)

So we proceed with the proof of (4.73). The quantity that we want to prove that tends

to zero is bounded above by∫
max

1≤i≤m

∣∣〈υε(Hi)− υNε (Hi), σ〉I
∣∣dQN,g(σ) (4.75)

and for all i = 1, . . . ,m we have that for QN,g-a.s. all σ ∈ L∞w∗(I;M(Td)),

∣∣〈υε(Hi)− υNε (Hi), σ〉I
∣∣ ≤ ∫ T

0

∣∣〈υε(Hi)t − υNε (Hi)t, σt〉
∣∣dt

≤ ‖g‖u
∫ T

0

‖υε(Hi)t − υNε (Hi)t‖udt.

It follows that the quantity in (4.75) is bounded above by

‖g‖u max
1≤i≤m

∫ T

0

‖υε(Hi)t − υNε (Hi)t‖udt

which obviously tends to zero as N →∞ by (4.72).

We study next the behavior of the quantity in the left hand side of (4.74) as ε → 0

for functions H ∈ C1(I×Td). We note first that for each function H ∈ C1(Td) we have

by the differentiability of H and Lebesgue’s differentiation theorem that

υε(H)
ε→0−→ ∂jH − 2H2 =: υ(H),

pointwise inTd, since the set (0, ε) shrinks well to zero. Consequently, using the notation

υ(H)t(u) = υ(H)(t, u) = υ(Ht)(u) for functions H ∈ C1(I ×Td), we have that

υε(H)t −→ υ(H)t

pointwise in Td for all t ∈ I, for all H ∈ C1(I ×Td). Furthermore, for H ∈ C1(I ×Td)
we have for fixed t ∈ I that

sup
ε>0
‖υε(H)t‖u ≤ ‖Ht‖Lip + 2‖Ht‖2u
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and therefore by the bounded convergence theorem we have that

lim
ε→0

∫
Td

υε(H)tdσt =

∫
Td

υ(H)tdσt

for all t ∈ I. Continuing we have for Qg-a.s. all σ ∈ L∞w∗(I;M(Td)) that

sup
ε>0

sup
0≤t≤T

∣∣∣∣ ∫
Td

υε(H)tdσt

∣∣∣∣ ≤ ‖g‖u sup
ε>0

sup
0≤t≤T

‖υε(H)t‖u

≤ sup
0≤t≤T

{
‖Ht‖Lip + 2‖Ht‖2u

}
< +∞,

since H ∈ C1(I × Td), and therefore by the bounded convergence theorem again, we

have that

lim
ε→0

∫ T

0

∫
Td

υε(H)tdσtdt =

∫ T

0

∫
Td

υ(H)tdσtdt

for all H ∈ C1(I ×Td). Finally, for Qg-a.s. all σ ∈ L∞w∗(I;M(Td)) we have that

sup
ε>0

∣∣∣∣ max
1≤i≤m

∫ T

0

∫
Td

υε(H
i)tdσtdt

∣∣∣∣ ≤ ‖g‖u max
1≤i≤m

sup
ε>0

∫ T

0

‖υε(Hi)t‖udt < +∞

and so applying the bounded convergence theorem one last time we get that∫
max

1≤i≤m
〈υ(Hi), σ〉IdQg(σ) = lim

ε→0

∫
max

1≤i≤m
〈υε(Hi), σ〉IdQg(σ) ≤ C0,

which completes the proof. �

Corollary 4.5.2 If {µN0 ∈ P1M
d
N} is a sequence of initial distributions satisfying the

O(Nd)-entropy assumption for some constant C0 > 0, then for all Qg ∈ Qg({µN0 }) we

have that∫ {
sup

H∈C1(I×Td)

∫ T

0

∫
Td

[
∂jHt(x)−Ht(x)2

]
σt(x)dxdt

}
dQg(σ) ≤ C0.

Proof Let {Hi}i∈N ⊆ C1(I ×Td) be a sequence dense in C1(I ×Td) in the usual C1

uniform norm ‖ · ‖C1 . Then for all σ ∈ L∞w∗(I;L∞(Td)) we obviously have that

sup
H∈C1(I×Td)

∫ T

0

∫
Td

[
∂jHt(x)−Ht(x)2

]
σt(x)dxdt

= lim
m→∞

max
1≤i≤m

∫ T

0

∫
Td

[
∂jH

i
t(x)−Hi

t(x)2
]
σt(x)dxdt.

So the claim follows by the monotone convergence theorem and the previous corollary.�

Proposition 4.5.1 Let {µN0 ∈ P1M
d
N} be a sequence of initial distributions satisfying

the O(Nd)-entropy assumption for some constant C0 > 0 and let Qg ∈ Qg({µN0 }).

Then Qg is concentrated on paths σ ∈ L∞w∗(I;L∞(Td)) with the property that there exist

L2(I ×Td) functions denoted by ∂jσ, j = 1, . . . , d, such that∫ T

0

∫
Td

∂jHt(x)σ(t, x)dxdt = −
∫ T

0

∫
Td

Ht(x)∂jσ(t, x)dxdt (4.76)
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and ∫ T

0

∫
Td

|∇σ(t, x)|22
σ(t, x)

dxdt < +∞. (4.77)

Proof Fix j = 1, . . . , d. By corollary 4.5.2 for Qg-a.s. all paths σ ∈ L∞(I;L∞(Td)) we

have that

Bσ := sup
H∈C1(I×Td)

∫ T

0

(∫
Td

[
∂jH(t, x)− 2H(t, x)2

]
σ(t, x)dx

)
dt < +∞. (4.78)

Fix such a path σ ∈ L∞(I;L∞(Td)) and consider on C1(I×Td) the inner product 〈·, ·〉σ
defined by

〈H,G〉σ =

∫ T

0

∫
Td

H(t, x)G(t, x)σ(t, x)dxdt,

and denote by L2
σ the Hilbert space resulting from the completion of C1(I ×Td) with

respect to the inner product 〈·, ·〉σ.

Let now ` ≡ `j : C1(I ×Td) −→ R denote the linear function given by the formula

`(H) =

∫ T

0

∫
Td

∂jH(t, x)σ(t, x)dxdt.

It follows from estimate (4.78) that

a`(H)− 2a2‖H‖2L2
σ
≤ Bσ

for all a ∈ R and all H ∈ C1(I ×Td). The maximum over all a ∈ R of the quantity in

the left hand side of the inequality above is achieved at a = `(H)/‖2H‖2L2
σ
, and therefore

`(H)2

8‖H‖2L2
σ

=
`(H)2

4‖H‖2L2
σ

− 2
`(H)2

16‖H‖4L2
σ

‖H‖2L2
σ
≤ Bσ

for all H ∈ C1(I ×Td). It follows that

|`(H)| ≤ 2
√

2Bσ‖H‖L2
σ

for all H ∈ C1(I × Td) and thus ` can be extended to a bounded linear function

` : L2
σ −→ R with norm ‖`‖ ≤ 2

√
2Bσ.

By the Riesz representation theorem now, there exists an L2
σ function, which we

denote by ∂j(log σ), such that

`(H) = −〈H, ∂j(log σ)〉σ =

∫ T

0

∫
Td

H(t, x)∂j(log σ)(t, x)σ(t, x)dxdt (4.79)

for all H ∈ C1(I ×Td). Of course, since ∂j(log σ) ∈ L2
σ we have that

‖∂j(log σ)‖2L2
σ

=

∫ T

0

∫
Td

[
∂j(log σ)(t, x)

]2
σ(t, x)dxdt < +∞. (4.80)

Therefore, since as we now from proposition 4.4.5 for Qg-a.s. all σ ∈ L∞w∗(I;L∞(Td))

we have that ∥∥‖σt‖L∞(Td)

∥∥
L∞(I)

≤ ‖g‖u,
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the function ∂jσ := σ · ∂j(log σ) satisfies∫
I×Td

(
∂jσ
)2

=

∫ T

0

∫
Td

[
∂j(log σ)(t, x)

]2
σ(t, x)2dxdt ≤ ‖g‖u‖∂j(log σ)‖2L2

σ
< +∞,

and thus is in L2(I × Td), and by (4.79) ∂jσ satisfies property (4.76) and is thus the

required L2weak derivative of σ. Finally, by the identity ∂j = σ · ∂j(log σ) we have that

|∇xσ(t, x)|22
σ(t, x)

= σ(t, x)|∇(log σ)(t, x)|22

and therefore (4.77) follows from (4.80). �

Proposition 4.5.2 Let {µN0 ∈ P1M
d
N} be a sequence of initial distributions satisfying

the O(Nd)-entropy assumption for some constant C0 > 0 and let Qg ∈ Qg({µN0 }). Then

Qg is concentrated on paths σ ∈ L∞w∗(I;H1(Td)), i.e.

Qg
(
σ|σt ∈ H1(Td)) a.s. for all t ∈ [0, T ]

)
= 1. (4.81)

Proof By the previous proposition we know that Qg is concentrated on paths σ ∈
L∞w∗(I;L∞(Td)) such that there exist functions ∂jσ ∈ L2(I×Td), j = 1, . . . , d, satisfying

(4.76) for all H ∈ C1(I×Td). We fix such a path σ ∈ L∞w∗(I;L∞(Td)) and we will show

that σt ∈ H1(Td) for almost all t ∈ [0, T ]. For each t ∈ [0, T ] and ε > 0 we consider

a sequence of smooth functions {fNt,ε}N∈N defined on [0, T ] such that fNt,ε ≤ 1[t−ε,t+ε]
for all N ∈ N and fNt,ε −→ 1(t−ε,t+ε) pointwise as N → ∞. Then for all functions

H ∈ C1(I ×Td) we have by (4.76) that∫ T

0

∫
Td

fNt,ε(s)∂jHs(x)σ(s, x)dxds = −
∫ T

0

∫
Td

fNt,ε(s)Hs(x)∂jσ(s, x)dxds.

Then taking the limit as N →∞ in both sides of the inequality above, we get that∫ t+ε

t−ε

∫
Td

∂jHs(x)σ(s, x)dxds = −
∫ t+ε

t−ε

∫
Td

Hs(x)∂jσ(s, x)dxds.

Then taking the limit as ε→ 0 in both sides of the equality above, it follows by Lebesgue’s

differentiation theorem that for each H ∈ C1(I ×Td),∫
Td

∂jHt(x)σ(t, x)dx = −
∫
Td

Ht(x)∂jσ(t, x)dx (4.82)

for all t ∈ EH , for some measurable set EH ⊆ I of full measure m(EH) = T . Taking

then a sequence {Hi}i∈N ⊆ C1(I × Td) dense in C1(I × Td) in the C1-uniform norm

‖ · ‖C1 , we have that the set E :=
⋂
i∈NEHi is of full measure m(E) = T , and for each

t ∈ E we have that (4.82) holds for all H ∈ C1(I ×Td). In particular, since C1(Td) can

be considered as a subspace of C1(I ×Td) it follows that∫
Td

∂jH(x)σ(t, x)dx = −
∫
Td

H(x)∂jσ(t, x)dx, ∀ (t,H) ∈ E × C1(Td).
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Consequently, σt is weakly differentiable for almost all t ∈ I, with weak j-th partial

derivative ∂jσt. Finally, since ∂jσ ∈ L2(I ×Td) we have that∫ T

0

‖∂jσt‖2L2(Td)dt = ‖∂jσ‖2L2(I×Td) < +∞,

and therefore ‖∂jσt‖L2(Td) < +∞ for almost all t ∈ I. Consequently, σt ∈ H1(Td) for

almost all t ∈ I, as required. �

Of course, by the discussion in the beginning of this section we get that (4.68) holds.

4.5.2 An Upper Bound On the Limiting Empirical Jump Rate

In this section we continue restricting our attention to the case that the jump rate g is

bounded, and we will investigate the relation between the limiting laws of the families of

the distributions of the processes {σN}N∈N, {σN,`}(N,`)∈N2 and {σN,`,Φ}(N,`)∈N2 . These

are defined in (3.3), (3.6) and (3.4) respectively.

Lemma 4.5.2 Let {xn} be a sequence in a metric space X and let Lim{xn} denote the

set of all subsequential limit points of {xn}. Then

Lim{xn} =

∞⋂
m=1

{xn|n ≥ m},

and in particular Lim{xn} is a closed set.

Proposition 4.5.3 We suppose that g is a bounded jump rate function and that the

sequence {µN0 ∈ P1M
d
N} of initial distributions is associated to a macroscopic profile

µ0 ∈M+(Td). We set

QN :=
[(
σNt
)
t∈I

]
∗P

N ∈ PL∞(I;M+(Td))

QN,` :=
[(
σN,`t

)
t∈I

]
∗P

N ∈ PL∞(I;M+(Td))

for all N ∈ N. We also set Q∞ denote the set of all subsequential limits of {QN} in

PL∞w∗(I;M+(Td)) and for each ` ∈ N we denote by Q∞,` the set of subsequential limit

points of the sequence {QN,`}N∈N in PL∞(I;M+(Td)). Then if Q∞,∞ denotes the set

of limit points along subsequences of all sequences {Q∞,`}`∈N such that Q∞,` ∈ Q∞,`
for all ` ∈ N, we have Q∞ = Q∞,∞

Proof We note first that

sup
(N,`)∈N×N

sup
η∈Md

N

‖σN,`η ‖TV ≤ ‖g‖u < +∞,

which shows that the family {QN,`}(N,`)∈N×N is contained in the compact subspace

PBL∞
w∗ (I;M+(Td))(0, ‖g‖u). In particular

∅ 6= Q∞,` ⊆ PBL∞
w∗ (I;M+(Td))(0, ‖g‖u),
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and therefore any sequence {Q∞,`}`∈N such that Q∞,` ∈ Q∞,` for all ` ∈ N is contained

in the compact subspace PBL∞
w∗ (I;M+(Td))(0, ‖g‖u) and therefore has a convergent sub-

sequence. In particular,

∅ 6= Q∞,∞ ⊆ PBL∞
w∗ (I;M+(Td))(0, ‖g‖u).

We prove next that Q∞ = Q∞,∞. To this aim we consider the measures

Q̃N,` :=
[
(σNt , σ

N,`
t )t≥0

]
∗P

N ∈ PL∞w∗(I;M+(Td)×M+(Td)).

Then denoting by xi : L∞w∞(I;M+(Td)) × L∞w∞(I;M+(Td)) −→ L∞w∞(I;M+(Td)),

i = 1, 2, the natural projections, we have that

x1
∗Q̃

N,` = QN and x2
∗Q̃

N,` = QN,`

and the family {Q̃N,`}(N,`)∈N×N is relatively compact.

We prove first that Q∞ ⊆ Q∞,∞. So let Q ∈ Q∞ and let {QkN }N∈N be a subse-

quence of {QN}N∈N converging to Q. Then, for each ` ∈ N, the sequence {Q̃kN ,`}N∈N is

relatively compact and as such it has a subsequential limit point Q̃∞,`, along some subse-

quence {Q̃km`N ,`}N∈N of {Q̃kN ,`}N∈N. Then since the projections x1, x2 are continuous

we obviously have that

x1
∗Q̃
∞,` = x1

∗

(
lim
N→∞

Q̃
k
m`
N
,`
)

= lim
N→∞

x1
∗

(
Q̃
k
m`
N
,`
)

= lim
N→∞

Q
k
m`
N = Q

and

lim
N→∞

Q
k
m`
N
,`

= lim
N→∞

x2
∗Q̃

k
m`
N
,`

= x2
∗

(
lim
N→∞

Q̃
k
m`
N
,`
)

= x∗2Q̃
∞,`

for all ` ∈ N.

We claim that

lim
`→∞

Q̃∞,` = (id, id)∗Q, id = idL∞
w∗ (I;M+(Td)). (4.83)

Obviously this implies that

Q∞,` = x2
∗Q̃
∞,` −→ x2

∗
[
(id, id)∗Q

]
= Q

and proves the inclusion Q∞ ⊆ Q∞,∞. Since the sequence {Q∞,`}`∈N is obviously

relatively compact in order to prove (4.83) it suffices to prove that any subsequential

limit point of {Q̃∞,`} is equal to (id, id)∗Q. So let {Q̃∞,n`}`∈N be a subsequence of

{Q̃∞,`} converging weakly to some probability measure Q̃∞,∞ ∈ P
(
L∞w∗(I;M+(Td))2

)
.

Since x1
∗Q̃
∞,` = Q for all ` ∈ N in order to prove that Q̃∞,∞ = (id, id)∗Q it suffices to

prove that Q̃∞,∞ is consentrated on the diagonal of L∞w∗(I;M+(Td))×L∞w∗(I;M+(Td)).

But this is true indeed. By the portmanteau theorem and proposition 3.1.3 we have for

all f ∈ L1(I;C(Td)) and all ε > 0 that

Q̃∞,∞
{
|〈f, x1〉I − 〈f, x2〉I | > ε

}
≤ lim inf

`→∞
Q̃∞,n`

{
|〈f, x1〉I − 〈f, x2〉I | > ε

}
≤ lim inf

`→∞
lim inf
N→∞

Q̃
k
m
n`
N
,n`{|〈f, x1〉I − 〈f, x2〉I | > ε

}
= lim

`→∞
lim
N→∞

P
k
m
n`
N

{
|〈f, σ

k
m
n`
N − σ

k
m
n`
N
,n`〉I | > ε

}
≤ lim

`→∞
lim
N→∞

PN
{
|〈f, σN − σN,n`〉I | > ε

}
≤ lim

`→∞
lim
N→∞

PN
{
|〈f, σN − σN,`〉I | > ε

}
= 0.
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Since ε > 0 is arbitrary it follows that

Q̃∞,∞
{
|〈f, x1〉I − 〈f, x2〉I | > ε

}
= 0, ∀ f ∈ L1(I;C(Td)),

which since L1(I;C(Td)) is separable implies that

Q̃∞,∞
{
x1 = x2

}
= Q̃∞,∞

( ⋂
f∈L1(I;C(Td))

{
|〈f, x1〉I − 〈f, x2〉I | = 0

})
= 0,

and therefore Q̃∞,∞ is concentrated on the diagonal and (4.83) holds.

We prove next the inclusion Q∞,∞ ⊆ Q∞. So let Q∞,∞ ∈ Q∞,∞. There exists then

a subsequence {Q∞,n`}`∈N of {Q∞,`} converging to Q∞,∞, and for each ` ∈ N there

exists a subsequence {Qk`N ,n`}N∈N of {QN,n`} converging to Q∞,n` . We consider the

transport plans Q̃k
`
N ,n` ∈ Π(Qk

`
N , Qk

`
N ,n`), (N, `) ∈ N. The family of these transport

plans is relatively compact and therefore for each ` ∈ N we can choose a convergent

subsequence {Q̃
k`
m`
N
,n`} of {Q̃k`N ,n`} and set

Q̃∞,n` := lim
N→∞

Q̃
k`
m`
N
,n`
.

Then obviously

x2
∗Q̃
∞,n` = lim

N→∞
x2
∗Q̃

k`
m`
N
,n`

= lim
N→∞

Q
k`
m`
N
,n`

= Q∞,n` ,

and the sequence {Q̃∞,n`}`∈N is relatively compact and therefore has a convergent sub-

sequence {Q̃∞,ni` }`∈N converging to some Q̃∞,∞ ∈ P
[
L∞w∗

(
I;M+(Td)

)2]
with

x2
∗Q̃
∞,∞ = lim

`→∞
x2
∗Q̃
∞,ni` = lim

`→∞
Q∞,ni` = Q∞,∞.

Therefore, in order to prove that Q∞,∞ ∈ Q∞ it suffices to prove that

x1
∗Q̃
∞,∞ ∈ Q∞ (4.84)

and that Q̃∞,∞ is concentrated on the diagonal of L∞w∗
(
I;M+(Td)

)2
.

We prove first that x1
∗Q̃
∞,∞ ∈ Q∞. Of course since x1

∗ is continuous we have that

x1
∗Q̃
∞,ni` = lim

N→∞
x1
∗Q̃

k
i`

m
i`
N

,ni`
= lim
N→∞

Q
k
i`

m
i`
N ∈ Q∞

for all ` ∈ N. Likewise, since x1
∗ is continuous and Q̃∞,ni` converges to Q̃∞,∞ we have

that

x1
∗Q̃
∞,∞ = lim

`→∞
x1
∗Q̃
∞,ni` ∈ Q∞. (4.85)

But by lemma 4.5.2 the set

Q∞ = Lim{QN} =

∞⋂
m=1

{QN |N ≥ m}
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is closed and therefore (4.84) follows from (4.85).

We prove finally that Q̃∞,∞ is concentrated on the diagonal. So let f ∈ L1(I;C(Td))

and ε > 0 be arbitrary. Then by the portmanteau theorem we have that

Q̃∞,∞
{
|〈f, x1〉I − 〈f, x2〉I | > ε

}
≤ lim inf

`→∞
Q̃∞,ni`

{
|〈f, x1〉I − 〈f, x2〉I | > ε

}
≤ lim inf

`→∞
lim inf
N→∞

Q̃
k
i`

m
i`
N

,ni`{|〈f, x1〉I − 〈f, x2〉I | > ε
}

= lim
`→∞

lim
N→∞

P
k
i`

m
i`
N

{
|〈f, σ

k
i`

m
i`
N − σ

k
i`

m
i`
N

,ni` 〉I | > ε
}

≤ lim
`→∞

lim
N→∞

PN
{
|〈f, σN − σN,n`〉I | > ε

}
≤ lim

`→∞
lim
N→∞

PN
{
|〈f, σN − σN,`〉I | > ε

}
= 0.

Since f ∈ L1(I;C(Td)) and ε > 0 were arbitrary this proves that Q̃∞{x1 = x2} = 1, i.e.

that Q̃∞,∞ is concentrated in the diagonal and completes the proof. �

Following these arguments and the version of the One-Block estimate proved in sec-

tion 3.1 with respect to functions in L1(0, T ;C(Td)) one can also prove the following

Proposition 4.5.4 We suppose that g is a bounded jump rate function and that the

sequence {µN0 ∈ P1M
d
N} of initial distributions is associated to a macroscopic profile

µ0 ∈M+(Td). We set

QN :=
[(
σNt
)
t∈I

]
∗P

N ∈ PL∞(I;M+(Td))

QN,`,Φ :=
[(
σN,`,Φt

)
t∈I

]
∗P

N ∈ PL∞(I;M+(Td))

for all N ∈ N. We also set Q∞ denote the set of all subsequential limits of {QN} in

PL∞w∗(I;M+(Td)) and for each ` ∈ N we denote by Q∞,`,Φ the set of subsequential limit

points of the sequence {QN,`,Φ}N∈N in PL∞(I;M+(Td)). Then if Q∞,∞,Φ denotes the

set of limit points along subsequences of all sequences {Q∞,`,Φ}`∈N such that Q∞,`,Φ ∈
Q∞,`,Φ for all ` ∈ N, we have Q∞ = Q∞,∞,Φ

It follows that

Qg
(
σ
∣∣ ‖σt‖∞ ≤ ϕc a.s. for all t ∈ [0, T ]

)
= 1

and with this the proof of proposition 4.0.2 is complete.
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4.6 A Conjecture

In the general case, in order to describe the condensation phenomenon of ZRPs in the

hydrodynamic limit, the solutions of the non-linear diffusion equation should be allowed

to be measure-valued.

Let us for the moment concentrate on the case of the Evans model for 0 ≤ b ≤ 2. In this

case the mean jump rate Φ : R+ −→ R+ is C1, and an appropriate interpretation of

the non-linear heat equation ∂tµ = ∆Φ(µ) that allows measure-valued solutions µ can

be given via the theory of Wasserstein gradient flows, at least in dimension d = 1. In

the one-dimensional case, a promising way to model the non-linear diffusion equation

so that it allows measure-valued solutions, is as the gradient flow with respect to the

L2-Wasserstein metric of the functional HE :M+(T) −→ (−∞,+∞] defined by

HE(µ) =

∫
E(µac)dmTd + E′(∞)µs(T), (4.86)

where µ = µacmT + µs is the Radon-Nikodym decomposition of µ with respect to the

Lebesgue measure on the torus T, E : [0,∞) −→ R is the convex internal energy given

by

E(ρ) = −Φ(ρ)− ρ
∫ +∞

ρ

Φ′(r)

r
dr

and

E′(∞) := lim
t→+∞

E(t)

t
.

We consider the one-dimensional case, since in the condensing case we have

lim
ρ→∞

Φ(ρ) = ϕc < +∞, (4.87)

which implies that for d ≥ 2 the Mac-Cann conditions

ρΦ′(ρ)−
(

1− 1

d

)
Φ(ρ) ≥ 0, ρ ≥ 0

fail to hold, and thus the functional HE fails to be λ-displacement convex, at least for

λ ≥ 0. However, in dimension d = 1 it follows by the characterizations of displacement

convexity of functionals on the Wasserstein space of probability measures given by Villani

([32], theorem 17.15 and remarks 17.18 and 17.20) that the functional HE is displacement

convex. So by the work of Shin-ichi Ohta ([22], theorem 5.11) on Gradient flows on

Wasserstein spaces over compact Alexandrov spaces, it induces a well defined gradient

flow:

Given any initial distribution µ0 there exists a gradient curve t 7→ µt of HE starting

from µ0, and given two gradient curves (µt), (νt) starting from µ0, ν0 respectively we

have

W2(µt, νt) ≤W2(µ0, ν0).

Even in the case d = 1, the condition

lim
ρ→∞

ρ
1
d

(
E′(∞)− E(ρ)

ρ

)
= +∞
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which forces the gradient curves to be absolutely continuous with respect to Lebesgue

measure, fails to hold. In fact in dimension d = 1,

ρ
1
d

(
E′(∞)− E(ρ)

ρ

)
= −E(ρ)

ρ→∞−→ ϕc < +∞.

In the article [17] Fornaro, Lisini, Savare and Toscani in 2010 study the gradient flow

of the functional HE defined in (4.86) in the case of the real line, under the assumption

(4.87), in the presence of a C2 driving potential such that

inf
x∈R

V ′′(x) > 0 and lim inf
|x|→∞

V (x)

|x|2
≥ 0.

There, they study the problem

∂tµ− div(∇Φ(µ) + V ′µ) = 0 (4.88)

as the gradient flow of the energy functional

E(µ) = HE(µ) +

∫
R

V (x)dµ(x). (4.89)

Definition 4.6.1 LetM+,ρc(M), M = R or T denote the set of all finite measures of fi-

nite quadratic moment whose absolutely continuous part has a continuous representative

ρ ∈ C(M ; [0, ρc]) such that

µ⊥({ρ < ρc}) = 0, L1
(
M \ {ρ < ρc}

)
= 0 and µac = ρdx.

In the article [17], ρc = +∞. There they define J :M+(Td) −→ R+ by

J(µ) =


∫ ∣∣∣∇(Φ(ρ))

ρ + V ′
∣∣∣2ρdx+

∫
|V ′|2dµ⊥ if µ = ρ+ µ⊥ ∈M+,ρc , Φ(ρ) ∈W 1,1

loc

J(µ) = +∞ otherwise

and prove the following characterization of the gradient flow of the functional E as a

solution of problem (4.88) in the sense of distributions:

Proposition 4.6.1 A curve µ ∈ C([0,∞);M+,ρc(R)) is a gradient flow of the func-

tional E defined in (4.89) if

(a) µt = ρt + µ⊥t ∈M+,ρc(R) a.s. ∀ t ≥ 0,

(b)

∫ T

0

J(µt)dt < +∞ ∀ T > 0,

and

(c) ∂tµ− div(∇Φ(ρ) + V ′µ) = 0

holds in the sense of distributions, i.e. for all G ∈ C∞c ((0,∞)×R)∫ ∞
0

∫
R

[
∂tG− (∂xG)V ′

]
dµtdt+

∫ ∞
0

∫
R

(∂2
xxG)Φ(ρt)dxdt = 0.
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We believe that this result can be extended to the case of the one-dimensional torus

T, without the presence of the potential V , i.e. when V ≡ 0. Then, this result together

with the validity of the continuity equation and the regularity estimate (4.2) would imply

that in order to close the equation and complete the proof of the hydrodynamic limit it

suffices to prove that

(a) µt ∈M+,ρc(T
d) a.s. for all t ∈ [0, T ] and (b) σ = Φ(µac). (4.90)

Indeed, then by(4.90) and the regularity estimate (4.2) property (b) of Savare’s result

follows and by (4.90b) and the validity of the continuity equation the property (c) of

Savare’s result, i.e. that ∂tµ = ∆Φ(µac) in the sense of distributions, follows. Note also

that (in dimension 1) if one has (4.90b), then by Morrey’s inequality and the regularity

estimate (4.2) it follows that ρ = µac is continuous, and thus in order to prove (4.90a)

one needs to show that suppµ⊥ ⊆ {µac = ρc}. By the uniqueness of solutions we would

then get that the gradient flow of the functional HE is the hydrodynamic limit of the

ZRP. We conjecture that this is true.

If the above program succeeds, further adaptations of the results in [17], allowing

for instance ρc to be finite while Φ is still assumed C1, would give the hydrodynamic

limit of Evans’ ZRP for values b ∈ (2, 3]. Furthermore, allowing the function Φ to be

non-differentiable at ρc < +∞ would give the hydrodynamic limit for all values of b ≥ 0.
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Appendix A

Appendix

A.1 The Skorohod Space

Let I := R+ or [0, T ] for some T > 0 and let (M,d) be a polish space. A path x : I −→M

is called cadlag if it right continuous and has left hand limits. Any such path can have at

most countable jump discontinuities. We denote by D(I;M) the set of all cadlag paths

x : I −→M . We let Λ(I) denote the set of all strictly increasing (and thus continuous)

functions λ : I −→ I and set ΛL(I) the set of all Lipschitz functions λ ∈ Λ(I) satisfying

γ(λ) := ess sup
t≥0

| log λ′(t)| = sup
s6=t

∣∣∣∣ log
λ(t)− λ(s)

t− s

∣∣∣∣ < +∞.

Since | lnx| = lnx ∨ ln(1/x), x > 0, by definition any function λ ∈ ΛL(I) is bi-Lipschitz

and

γ(λ) = γ(λ−1).

Note also that for any λ1, λ2 ∈ ΛL(I),

γ(λ1 ◦ λ2) ≤ γ(λ1) + γ(λ2).

Since the set ΛL(I) is a group with respect to the composition operation, the above

relations show that γ is a group norm on ΛL(I). Convergence in γ-norm implies uniform

converge in compact subsets of the real line, i.e.

lim
n→∞

γ(λn) = 0 =⇒ lim
n→∞

sup
0≤t≤T

|λn(t)− t| = 0 for all T > 0.

In the case that I := [0, T ] we define the Skorohod metric dS on D(0, T ;M) by the

formula

dS(x, y) = max
{

inf
λ∈ΛL([0,T ])

γ(λ), sup
0≤t≤T

d(xt, yλ(t))
}

In the case that I = R+ the convergence in the space D(R+;M) is loosely speaking the

convergence in the Skorohod metric for compact subsets of R+. One metric character-

izing this topology is defined (see [14], section 3.5) as follows. For x, y ∈ D(R+;M),
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λ ∈ ΛL(R+), T > 0, one sets

ρ(x, y, λ, T ) := sup
t≥0

d̄
(
x(t ∧ T ), y(λ(t) ∧ T )

)
,

where d̄ := d ∧ 1 and defines the metric dS by

dS(x, y) = inf
λ∈ΛL(R+)

max

{
γ(λ),

∫ ∞
0

e−sρ(x, y, λ, s)ds

}
.

Proposition A.1.1 Let {xn}n∈N ⊆ D(R+;M) and x ∈ D(R+;M). The following are

equivalent.

(a) dS(xn, x) −→ 0 as n→∞.

(b) There exists {λn} ⊆ ΛL(R+) such that

lim
n→∞

γ(λn) = 0 and lim
n→∞

sup
0≤t≤T

d
(
xn(t), x((λn(t)))

)
= 0 for all T > 0.

For each T > 0 there exists {λn}n∈N (possibly depending on T > 0) such that

lim
n→∞

sup
0≤t≤T

|λn(t)− t| = 0 and lim
n→∞

sup
0≤t≤T

d
(
xn(t), x((λn(t)))

)
= 0.

Proof See proposition 3.5.3 in [14]. �

As noted in [14] the right hand side conditions in (b) in the proposition above can

be replaced by

lim
n→∞

sup
0≤t≤T

d
(
xn
(
λn(t)

)
, x(t)

)
= 0.

Note that since the uniform limit of continuous functions is again a continuous function

this implies that the subset C(R+;M) is a closed subspace of D(R+;M) in the Skorohod

topology.

Proposition A.1.2 Let (M,d) be a metric space. The topology defined on D(R+;M)

by the Skorohod metric dS depends only on the topology of M and not on the particular

choice of the metric d defining the topology of M .

Proof This is a particular case of theorem 1.3 in [24]. �

Proposition A.1.3 If M is separable then D(R+;M) is separable. If (M,d) is complete

then
(
D(R+;M), ds

)
is complete.

Proof See proposition 3.5.6 in [14]. �

This proposition allows one to describe the compact subsets of D(R+;M) via the

general result on complete metric spaces according to which the compact subsets are

exactly the complete and totally bounded subsets. However this result is to general

to be useful. The main tool for a useful compactness criterion is a modified modulus

of continuity which allows for the generalization of the Arzela-Ascoli theorem on the

Skorohod space D(R+;M), which in turns permits to specialize Prokhorov’s theorem

260



on the space PD(R+;M). Recall that given a path x : R+ −→ M the usual modulus

of continuity of x on A ⊆ R+ is defined by

wx(A) := sup
s,t∈A

d(xt, xs).

Definition A.1.1 Let Π(δ, T ), δ, T > 0, denote the set of all partitions

∆ := {0 = t0 < t1 < · · · < tn}, n ∈ N,

such that

tn ≥ T and min
1≤i≤n

|ti − ti−1| > δ.

For each partition ∆ ∈ Π(δ, T ) we set

w(∆)
x := max

1≤i≤n
wx[ti−1, ti)

and define the modified modulus of continuity w′x : (0,∞)2 −→ R+ of a path x : I −→M

by the formula

w′x(δ, T ) := inf
∆∈Π(δ,T )

w(∆)
x .

Given x ∈ D(R+;M), the function w′x is obviously increasing with respec to the

variables δ, T and for a path x : R+ −→M we have

x ∈ D(R+;M) iff lim
δ→0

w′x(δ, T ) = 0 for all T > 0.

Furthermore, w′x is right continuous with respect to the vriable δ and the function

D(R+;M) 3 x 7→ w′x(δ, T+) := lim
ε↓0

w′x(δ, T + ε)

is upper-semicontinuous for each δ, T > 0. By the upper-semicontinuity of this function

and the equality

w′x(δ, T ) = lim
n→∞

w′x
(
δ, (T − 1

n
) +

)
which holds for all δ, T > 0, the Borel measurability of the function

D(R+;M) 3 x 7→ w′x(δ, T )

follows for each fixed δ, T > 0. Using the modified modulus of continuity the Arzela-

Ascoli theorem is generalized on D(R+;M) as follows.

Proposition A.1.4 If M is complete, then a set K ⊆ D(R+;M) is relatively compact

iff for each T > 0,

(a) The set K([0, T ]) := {xt|x ∈ K, t ∈ [0, T ]} is relatively compact in M , and

(b)limδ→0 supx∈K w
′
x(δ, T ) = 0.

Proof See theorem 3.6.3 in [14] and the remark following it. �

Through this characterization of the relatively compact subsets ofD(R+;M) Prokhorov’s

theorem takes the following form on D(R+;M).
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Theorem A.1.1 If M is polish then a set K ⊆ PD(R+;M) is relatively compact iff:

(a) For each t ∈ R+ and each ε > 0 there exists a relatively compact subset Γt,ε ⊆ M

such that

sup
P∈K

P
{
x ∈ D(R+;M)

∣∣xt /∈ Γt,ε
}
≤ ε.

(b) For each ε, T > 0,

lim
δ→0

sup
P∈K

P
{
x ∈ D(R+;M)

∣∣w′x(δ, T ) > ε
}

= 0.

Proof See theorem 3.7.2 in [14]. �

In the case that the set K above is the image of a sequence, K = {PN}N∈N, then

the conditions (a) and (b) above can be replaced by the conditions:

(a’) For each t ∈ R+ and each ε > 0 there exists a relatively compact subset Γt,ε ⊆ M

such that

lim sup
N→∞

PN
{
x ∈ D(R+;M)

∣∣xt /∈ Γt,ε
}
≤ ε,

and (b’) for each ε, T > 0,

lim
δ→0

lim sup
N→∞

PN
{
x ∈ D(R+;M)

∣∣w′x(δ, T ) > ε
}

= 0.

Of course the hardest of the two conditions to check is condition (b) which relies

on the behavior of the paths on intervals [0, T ] ⊆ R+ and just at a fixed time point

as condition (a). However, in [1] Aldous gave a very useful criterion that ensures the

validity of the requirement (b’) for the tightness of the laws {PN} ⊆ PD(R+;M). In

essence, the validity of Aldous’ criterion to be stated below, ensures that one can make

a good choice of partitions in the involved in the modified modulus of continuity w′.

Theorem A.1.2 Let (Ft)t≥0 denote the minimal right-continuous filtration containing

the natural filtration (i.e. the one generated by the coordinate projections D(R+;M) 3
X 7→ xt ∈ M , t ∈ R+) of D(R+;M) and let T T ≡ T T (Ft) denote the set of all

(Ft)-stopping times bounded by T > 0. If for all ε, T > 0 the sequence {PN}N∈N ⊆
PD(R+;M) satisfies

lim
δ→0

lim sup
N→∞

sup
τ∈T T
θ≤δ

PN
{
x ∈ D(R+;M)

∣∣ d(xτ , x(τ+θ)∧T ) > ε
}

= 0,

then the condition (b) of theorem A.1.1 is satisfied.

Proof See proposition 4.1.6 in [25] for a proof. �

We will apply theorems A.1.1 and A.1.2 in the case that M = M+ := M+(Td) is

the metric space of all non-negative finite Borel measures on the torus equipped with

the metric δ defined in 1.53 and for the sequence of the laws of the empirical density

process of the ZRP. The next result reduces the problem of establishing the relative

compactness of the laws of a sequence ofM+-valued processes to the case of real valued

processes, by projecting M+-valued processes to real-valued ones via functions of the

form IG(µ) = 〈G,µ〉 :=
∫
Gdµ, where G ∈ C(Td).
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Proposition A.1.5 Let {Gk}k∈N be a dense subset of C(Td) with G1 ≡ 1. Then a se-

quence {PN}N∈N ⊆ PD(R+;M+) is relatively compact iff for each k ∈ N the sequence

{IGk∗PN}N∈N is relatively compact, where IGk∗ : PD(R+;M+) −→ PD(R+;R) de-

notes the push-forward of measures induced by the function

D(R+;M+) 3 µ 7→
(∫

Gkdµt

)
t≥0

∈ D(R+;R).

Proof See proposition 4.1.7 in [25] for a proof. �

We close this section by reviewing ways of producing continuous mappings between

Skorohod spaces that will be useful in the main text.

Lemma A.1.1 Let x : [0, T ] −→ M be a cadlag path in a metric space M . Then the

image x([0, T ]) of x is relatively compact in M .

Proof Let {yn}n∈N ⊆ x([0, T ]) be any sequence. Then yn = x(tn) for some sequence

{tn}n∈N ⊆ [0, T ]. Since [0, T ] is compact there exists then a subsequence {tkn}n∈N of

{tn} converging to some point t ∈ [0, T ]. If t ∈ [0, T ] is a continuity point of x then

ykn = x(tkn) −→ x(t) and {yn} has a converging subsequence. On other hand if t is

discontinuity point of x then either there exists a further subsequence {tmkn } of {tkn}
that converges to t from the right or either there exists a further subsequence {tmkn }
of {tkn} that converges to t from the left. In the first case, by the right continuity of x

we have that ykmn −→ x(t) while in the second case by the existence of left hand limits

we have that ykmn −→ x(t−). In either case there is again a convergent subsequence of

{yn}, we shows that any subsequence of x([0, T ]) has a converging subsequence and thus

x([0, T ]) is relatively compact. �

Proposition A.1.6 Let M,N be metric spaces and let G : R+×M −→ N be continuous

function that is continuous in time uniformly over compact subsets of space, i.e. for each

t ∈ [0, T ] and any compact K ⊆M

lim
h→0

sup
x∈K

d
(
Gt+h(x), Gt(x)

)
= 0 (A.1)

and uniformly continuous in space uniformly over compact subsets of time, i.e.

lim
d(x,y)→0

sup
0≤t≤T

d
(
Gt(x), Gt(y)

)
= 0 (A.2)

for each T > 0. Then the induced function Ḡ : D(0, T ;M) −→ D(0, T ;N) on the

Skorohod spaces given by

Ḡ(x)(t) = G
(
t, x(t)

)
is continuous.

Proof Let {xn}n∈N ⊆ D(0, T ;M), x ∈ D(0, T ;M) such that dS(xn, x) −→ 0. We have

to show that dS
(
Ḡ(xn), Ḡ(x)

)
−→ 0. Since dS(xn, x) −→ 0 there exists λ ∈ ΛL([0, T ])

such that γ(λn) −→ 0 and

lim
n→∞

sup
0≤t≤T

d
(
xn(t), x

(
λn(t)

))
= 0. (A.3)
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We will show that for this sequence {λn} we have

lim
n→∞

sup
0≤t≤T

d
(
Ḡ(xn)(t), Ḡ(x)

(
λn(t)

))
= 0,

which proves that Ḡ(xn) −→ Ḡ(x) in the Skorohod topology of D(0, T ;N). By ht

previous lemma there exists a compact set K ⊆ M such that x([0, T ]) ⊆ K. Then for

each 0 ≤ t ≤ T we have that

d
(
Ḡ(xn)(t), Ḡ(x)

(
λn(t)

))
≤ d

[
G
(
t, xn(t)

)
, G
(
t, x(λn(t))

)]
+d
[
G
(
t, x(λn(t))

)
, G(λn(t), x(λn(t))

)]
≤ sup

0≤s≤T
d
[
G
(
s, xn(t)

)
, G
(
s, x(λn(t))

)]
+ sup
x∈K

d
[
G(t, x), G

(
λn(t), x

)]
and therefore

sup
0≤t≤T

d
(
Ḡ(xn)(t), Ḡ(x)

(
λn(t)

))
≤ sup

0≤s,t≤T
d
[
G
(
s, xn(t)

)
, G
(
s, x(λn(t))

)]
+ sup

0≤t≤T
sup
x∈K

d
[
G(t, x), G

(
λn(t), x

)]
. (A.4)

Let now ε > 0. By (A.1) for each t ∈ [0, T ] there exists δt > 0 such that

|h| < δt =⇒ sup
x∈K

d
(
G(t+ h, x), G(t, x)

)
<
ε

4
. (A.5)

Let δ0 > 0 be the Lebesgue number of the open cover {(t − δt, t + δt)}t∈[0,T ] of the

compact set [0, T ] and choose n1 ∈ N such that

n ≥ n1 =⇒ sup
0≤t≤T

|λn(t)− t| < δ0
2
.

Then for each t ∈ [0, T ] the set At := {t}∪{λn(t)|n ≥ n1} has diameter less than δ0 and

since δ0 is the Lebesgue number of the cover {(t− δt, t+ δt)}t∈[0,T ] there exists for each

t ∈ [0, T ] an st ∈ [0, T ] such that At ⊆ (st − δst , st + δst). Then obviously |st − t| < δst
and |λn(t)− st| < δst for all n ≥ n1, and therefore by (A.5) we have that

sup
x∈K

d
[
G(t, x), G

(
λn(t), x

)]
≤ sup
x∈K

d
[
G(t, x), G(st, x)

]
+ sup
x∈K

d
[
G(st, x), G(λn(t), x)

]
<
ε

2

for all n ≥ n1. Since this holds for all t ∈ [0, T ] we have shown that

n ≥ n1 =⇒ sup
0≤t≤T

sup
x∈K

d
[
G(t, x), G

(
λn(t), x

)]
<
ε

2
,

which deals with the second term in the right hand side of (A.4). Next, by assumption

(A.2) on G we can pick δ > 0 such that

x, y ∈M, d(x, y) < δ =⇒ sup
0≤s≤T

d
[
G(s, x), G(s, y)

]
<
ε

2
(A.6)
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and by (A.3) there exists n2 ∈ N such that

n ≥ n2 =⇒ sup
0≤t≤T

d
[
xn(t), x

(
λn(t)

)]
< δ. (A.7)

Then by (A.7) and (A.6) it follows that for all n ≥ n2,

sup
0≤s,t≤T

d
[
G
(
s, xn(t)

)
, G
(
s, x
(
λn(t)

))]
<
ε

2
,

which deals with first summand in the right hand side of (A.4) and so for all n ≥ n1∨n2

we have that

sup
0≤t≤T

d
[
Ḡ(xn)(t), Ḡ(x)

(
λn(t)

)]
< ε,

which completes the proof. �

Corollary A.1.1 Let f : M −→ N be a continuous function between metric spaces.

Then the induced function f̄ : D(R+;M) −→ D(R+;N) given by

f(x)(t) = f
(
x(t)

)
is continuous.

Proposition A.1.7 The function I : D(R+;R) −→ C(R+;R) ⊆ D(R+;R) given by

the formula

I(x)(t) =

∫ t

0

x(s)ds

is continuous.
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A.2 Martingales of Markov Jump Processes

Given any countable discrete pointed Polish space (M,o, |·|) and any measurable function

F : R+ ×M −→ R we will denote by Ft the function F (t, ·) : M −→ R, t ≥ 0. If F is

differentiable with respect to the time variable we denote by ∂F : R+ ×M −→ R its

partial derivative with respect to time,

∂F (t, x) := ∂tF (t, x) = ∂tFt(x) = (∂F )t(x),

and for any measurable space M we denote by BrCR+
(M) the space of all measurable

functions F : R+ ×M −→ R such that

sup
(t,x)∈R+×M

|F (t, x)|
(1 + |x||r|)sgnr

:= ‖F‖r < +∞,

and by BrC
1
R+

(M) the space of all functions F ∈ BrC(M) for which the curve R+ 3
t 7→ Ft ∈ Br(M) is C1 in Br(M), that is for which

∂F ∈ BrCR+(M), lim
h↓0

∥∥∥∥Ft+h − Ft − h∂tFth

∥∥∥∥
u,r

= 0.

Of course B0CR+
(M) = BC(R+ ×M) obviously Br(M) ⊆ BrC

1
R+

(M) for all r ∈ R
in the sense that if x : R+ ×M −→ M is the projection on the space coordinate then

BrC(M) ◦ x := {F (x)|F ∈ BrC(M)} ⊆ BrC1
R+

(M).

The following proposition gives a sufficient condition for functions F ∈ BrCR+
(M),

such that ∂F ∈ BrCR+
(M) exists, to belong in BrC

1
R+

(M).

Proposition A.2.1 Let F ∈ BrCR+(M) such that ∂F ∈ BrCR+(M) exists. If ∂F is

Holder continuous with respect to time in Br(M) with exponent a ∈ (0, 1], that is if

sup
s,t∈R+:t6=s

‖∂tFt − ∂sFs‖u,r
|t− s|a

< +∞, (A.8)

then F ∈ BrC1
R+

(M).

Proof Indeed, then there exists a constant C ≥ 0 such that

|∂tFt(x)− ∂sFs(x)| ≤ C(1 + |x||r|)sgnr|t− s|a

for all t, s ∈ R, x ∈M , and therefore∣∣∣∣Ft+h − Ft − h∂Fth(1 + | · ||r|)sgnr

∣∣∣∣ =

∣∣∣∣ 1h
∫ t+h

t

∂Fs − ∂Ft
(1 + | · ||r|)sgnr

ds

∣∣∣∣ ≤ C

h

∫ t+h

t

|s− t|ads =
C

1 + a
ha.

It follows that ∥∥∥∥Ft+h − Ft − h∂tFth

∥∥∥∥
u,r

≤ C

1 + a
ha

h↓0−→ 0

as required. �

Obviously if F ∈ BrCR+
(M) is pointwise C2 with respect to the time variable with

∂2F ∈ BrCR+(M) then by the mean value theorem we get that (A.8) holds with a = 1.

This gives a stronger but more simple sufficient condition instead of (A.8).
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Proposition A.2.2 Let (X,P ) be a Markov jump process on the pointed polish state

space (M,o, | · |) with partially bounded Lipschitz continuous jump rate function λ, tran-

sition probability p, such that for all states x ∈M the set of all states y ∈M accessible

from x according to p are contained in the |x|-spheres of the metric | · |, i.e. such that

Mx := {y ∈M | ∃ m ≥ 0 : pm(x, y) > 0} ⊆ {| · | = |x|}. (A.9)

for all x ∈M . Let L : Br−1(M) −→ Br(M), r ≥ 1, be the generator of (X,P ) in Br(M)

with respect to uniform convergence on bounded subsets and let µ ∈ PrM be any initial

measure. Then, for all F ∈ Br−1C
1
R+

(M) the real process

MX,F
t := Ft(Xt)− F0(X0)−

∫ t

0

(∂s + L)Fs(Xs)ds, t ≥ 0,

defined on the filtered probability space
(
D(R+,M), (Ft)t≥0, P

µ
)

is a mean-zero martin-

gale, where (Ft) is the minimal right continuous filtration to which X is adapted and the

Pµ is the distribution of (X,P ) starting from µ. Furthermore, if in addition the jump

rate function λ is bounded then MX,F is a martingale for all F ∈ BrC1
R+

(M).

Proof Let F ∈ Br−1C
1
R+

(M). We note first that MX,F
t ∈ L1(Pµ) for all t ≥ 0. Indeed,

by hypothesis (A.9) we have that

p| · |r(x) =

∫
|y|rdpx(y) =

∫
Mx

|y|rdpx(y) = |x|r

for all r ≥ 0 and therefore by proposition 1.1.4 the semigroup Pt : Br(M) −→ Br(M),

t ≥ 0 is defined, and since |Xt| = x P x-a.s. for all x ∈M according to (A.9), it satisfies

Pt| · |r(x) = Ex|Xt|r = |x|r, x ∈M, t ≥ 0, (A.10)

for all r ≥ 0 and Xt∗P
µ = µPt ∈ PrM for all t ≥ 0. Therefore, given r ≥ 1, since

PrM ⊆ Pr−1M , we have that

Eµ|Ft(Xt)| ≤ ‖F‖r−1E
µ(1 + |Xt|r−1) = ‖F‖r−1

∫
(1 + |x|r−1)dµPt(x)

≤ ‖F‖r−1

∫
(1 + |x|r−1)dµ < +∞

and the term Ft(Xt)− F0(X0) is Pµ-integrable. For the other term we have first of all

that ∂F ∈ Br−1CR+
(M) and therefore for all t ≥ 0 we have by Tonelli’s theorem that

Eµ
∣∣∣∣ ∫ t

0

∂sFs(Xs)ds

∣∣∣∣ ≤ ‖∂F‖r−1E
µ

∫ t

0

(1 + |Xs|r−1)ds

= ‖∂F‖r−1

∫ t

0

Eµ(1 + |Xs|r−1)ds

= ‖∂F‖r−1

∫ t

0

∫
(1 + |x|r−1)dµPs(x)ds

= ‖∂F‖r−1

∫ t

0

∫
(1 + Ps| · |r−1)dµds

≤ ‖∂F‖r−1t

(
1 +

∫
|x|r−1dµ(x)

)
< +∞,
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since µ ∈ PrM ⊆ Pr−1M . Finally, for the term
∫ t

0
LFs(Xs)ds, t ≥ 0, we note as in

the proof of proposition 1.1.6 it follows that L : Br−1(M) −→ Br(M) is a bounded

operator with ‖L‖ ≤ 4|λ′| where |λ′| is the Lipschitz constant of the jump rate function

λ. Therefore for all 0 ≤ s ≤ t we have that

|LFs(x)| ≤ 4|λ′|‖Fs‖u,r−1(1 + |x|r) ≤ 4|λ′|
(

sup
0≤s≤t

‖Fs‖u,r−1

)
(1 + |x|r)

≤ 4|λ′|‖F‖r−1(1 + |x|r)

and so by Tonelli’s theorem we have that

Eµ
∣∣∣∣ ∫ t

0

LFs(Xs)ds

∣∣∣∣ ≤ 4|λ′|‖F‖r−1t

(
1 +

∫
|x|rdµ(x)

)
< +∞,

which proves that MX,F
t ∈ L1(Pµ) for all t ≥ 0.

To prove now that (MX,F
t )t≥0 is a (Ft, Pµ)-martingale it remains to show that

Eµ(MX,F
t |Fs) = MX,F

s , Pµ-a.s., ∀ 0 ≤ s ≤ t < +∞,

or equivalently that

Eµ
(
Ft(Xt)|Fs

)
− Fs(Xs) = Eµ

(∫ t

s

(∂u + L)Fu(Xu)du
∣∣∣Fs) (A.11)

Pµ-a.s. for all 0 ≤ s ≤ t. So let 0 ≤ s < t. Since (X,Pµ) is a Markov process with

Markov semigroup Pt : Br(M) −→ Br(M) the term in left hand side in (A.11) is equal

to

Eµ
(
Ft(Xt)|Xs

)
− Fs(Xs) = Pt−sFt(Xs)− Fs(Xs) = (Pt−sFt − Fs)(Xs) (A.12)

Pµ-a.s.. On the other hand, as we have seen, the function

R+ ×D(R+,M) 3 (t, ω) 7→ (∂t + L)Ft
(
Xt(ω)

)
is in L1(Pµ ⊗ 1[0,T ](s)ds) and therefore by the conditional Fubini theorem the term in

the right hand side in (A.11) is equal to∫ t

s

Eµ
(
(∂u + L)Fu(Xu)|Fs

)
du =

∫ t

s

Pu−s
[
(∂u + L)Fu

]
(Xs)du. (A.13)

Therefore if we show the pointwise Leibniz formula

∂t(PtFt) = LPtFt + Pt(∂tFt), t ≥ 0, (A.14)

and the pointwise formula

LPtFt = PtLFt, t ≥ 0, (A.15)

on M it will follow that

Pt−sFt − Fs =

∫ t−s

0

∂u(PuFu+s)du =

∫ t−s

0

LPuFu+sdu+

∫ t−s

0

Pu(∂uFu+s)du

=

∫ t

s

Pu−sLFudu+

∫ t

s

Pu−s(∂uFu)du =

∫ t

s

Pu−s
[
(∂u + L)Fu

]
du,
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which according to (A.12) and (A.13) when applied at the point Xs, gives us (A.11),

that is

Eµ
(
Ft(Xt)|Fs

)
− Fs(Xs) = (Pt−sFt − Fs)(Xs) =

∫ t

s

Pu−s
[
(∂u + L)Fu

]
(Xs)du

=

∫ t

s

Eµ
(
(∂u + L)Fu(Xu)|Fs

)
du.

So it remains to prove (A.14) and (A.15). We prove first (A.14). So let t ≥ 0 and

h > 0. Then

1

h

(
Pt+hFt+h − PtFt

)
=

1

h

(
Pt+hFt − PtFt

)
+ Pt+h

( 1

h
(Ft+h − Ft)

)
Now, since (Pt) satisfies (A.10) for all r ∈ R and Ft ∈ Br−1(M) we have that PtFt ∈
Br−1C(M) and since L : Br−1(M) −→ Br(M) is contained in the generator of (Pt) in

Br(M) with respect to uniform convergence on bounded subsets, we have that

lim
h↓0

1

h

(
Pt+hFt − PtFt

)
= LPtFt

uniformly on bounded subsets of M . Therefore in order to prove (A.14) it suffices to

prove that

lim
h↓0

Pt+h

( 1

h
(Ft+h − Ft)

)
= Pt(∂tFt). (A.16)

Now, since F ∈ Br−1C
1
R+

(M) we have that

lim
h↓0

Ft+h − Ft
h

= ∂tFt in Br−1(M)

and therefore in order to prove (A.16) it suffices to prove that for any family of functions

{Gh}h≥0 ⊆ Br−1(M) we have that

lim
h↓0
‖Gh −G0‖u,r−1 = 0 =⇒ Pt+hGh

h↓0−→ PtG0 pointwise in M. (A.17)

As we will see, in fact the convergence in the right hand side of (A.17) is uniform on

bounded subsets of M .

In order to prove implication (A.17) we note first that Ptf
t↓0−→ f uniformly on

bounded subsets of M for all f ∈ Br−1(M). Indeed, since L : Br−1(M) −→ Br(M) is

the generator of (Pt) with respect to uniform convergence on bounded subsets, for all

f ∈ Br−1(M), given R > 0, there exists δ1 = δf,R > 0 such that

0 < t < δ1 =⇒ sup
|x|≤R

∣∣∣∣1t (Ptf − f)(x)

∣∣∣∣ ≤ sup
|x|≤R

|Lf(x)|+ 1.

But then for all 0 < t < δ1 we have that

sup
|x|≤R

∣∣Ptf(x)− f(x)
∣∣ = t sup

|x|≤R

∣∣∣∣1t (Ptf − f)(x)

∣∣∣∣ ≤ t( sup
|x|≤R

|Lf(x)|+ 1

)
t↓0−→ 0,
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as claimed .

But, given any family of functions {Gh}h≥0 ⊆ Br−1(M) by the triangle inequality

|Pt+hGh − PtG0| ≤ |Pt+h(Gh −G0)|+ |(Pt+h − Pt)G0|, (A.18)

and by the previous paragraph

lim
h↓0

Pt+hG0 = lim
h↓0

Ph
(
PtG0) = PtG0

uniformly on bounded subsets of M . Therefore the second term in the right hand side

of (A.18) converges to 0 uniformly on bounded subsets of M as h ↓ 0, and so in order

to prove implication (A.17) it remains to prove that Pt+h(Gh − G0) converges to 0

uniformly on bounded subsets of M as h ↓ 0. But, indeed, since Gh −→ G0 in Br−1(M)

and therefore given ε > 0 there exists h0 > 0 such that

0 < h < h0 =⇒ |Gh(x)−G0(x)| ≤ ε(1 + |x|r−1), ∀x ∈M,

and thus for all 0 < h < h0 and all x ∈M we have that∣∣Pt+h(Gh −G0)(x)
∣∣ ≤ ∫

|Gh(y)−G0(y)|dP xt+h(y) ≤ ε
∫

(1 + |y|r−1)dP xt+h(y)

≤ ε(1 + |x|r−1).

Therefore for all 0 < h < h0 we have that ‖Pt+h(Gh −G0)‖u,r−1 ≤ ε which proves that

Pt+h(Gh − G0) −→ 0 as h ↓ 0 in Br−1(M), and in particular uniformly in bounded

subsets of M . This proves (A.17) and consequently (A.16) and (A.14).

It remains thus to prove (A.15). On one hand, since PtFt ∈ Br−1(M) and L :

Br−1(M) −→ Br(M) is contained in the generator of (Pt) with respect to uniform

convergence on bounded subsets of M we have that for all t ≥ 0,

LPtFt = lim
h↓0

Pt+hFt − PtFt
t

= lim
h↓0

Pt

(
PhFt − Ft

h

)
(A.19)

uniformly on bounded subsets of M .

On the other hand, since Ft ∈ Br−1(M), we have that

lim
h↓0

PhFt − Ft
h

= LFt

uniformly on bounded subsets of M . We define F̃ : R+ ×M −→ R to be the function

given by

F̃ (t, x) =
e−|x|

1 + |x|
F (t, x).

Then

|F̃ (t, x)| ≤ e−|x|

1 + |x|
‖F‖r−1(1 + |x|r−1) ≤ 2e−|x|(1 + |x||r−2|)sgn(r−2),

and therefore the function e|·|F̃t(·) belongs in Br−2(M) for all t ≥ 0, that is F̃t ∈
e−|·|Br−2(M). But as we know, e−|·|Br−2(M) is contained in the domain of the generator

L : DLr ⊆ Br(M) −→ Br(M) of (Pt) in Br(M), and therefore we have that

lim
h↓0

PhF̃t − F̃t
h

= LF̃t in Br(M)
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for all t ≥ 0. As we have seen, if {Gh}h≥0 ⊆ Br(M) then

lim
h↓0
‖Gh −G0‖u,r = 0 =⇒ lim

h↓0
‖PtGh − PtG0‖u,r = 0

for all t ≥ 0, and therefore

lim
h↓0

Pt

(
PhF̃t − F̃t

h

)
= PtLF̃t in Br(M).

for all t ≥ 0. But then by hypothesis (A.9) we have on one hand that

PhF̃t(x) = ExF̃t(Xh) = Ex
(
e−|Xh|

1 + |Xh|
Ft(Xh)

)
=

e−|x|

1 + |x|
ExFt(Xh) =

e−|x|

1 + |x|
PhFt(x)

and therefore

Pt

(
PhF̃t − F̃t

h

)
= Pt

(
e−|·|

1 + | · |
PhFt − Ft

h

)
=

e−|·|

1 + | · |
Pt

(
PhFt − Ft

h

)
and on the other hand, by hypothesis (A.9) again, we have that

LF̃t(x) =
∑
y∈Mx

(
F̃t(y)− F̃t(x)

)
λ(x)p(x, y) =

e−|x|

1 + |x|
LFt(x)

for all x ∈M , t ≥ 0, and thus PtLF̃t = e−|·|

1+|·|PtLFt for all t ≥ 0. It follows that

lim
h↓0

e−|·|

1 + | · |
Pt

(
PhFt − Ft

h

)
=

e−|·|

1 + | · |
PtLFt

in Br(M), which proves that

lim
h↓0

Pt

(
PhFt − Ft

h

)
= PtLFt

uniformly on bounded subsets of M . This together with (A.19) proves (A.15) and

completes the proof in the case of unbounded jump rate function λ. The case of bounded

jump rate function λ follows similarly. �

Proposition A.2.3 Let (X,P ) be a Markov jump process on the pointed polish state

space (M,o, | · |) with partially bounded Lipschitz continuous jump rate function λ and

transition probability p such that (A.9) holds for all x ∈M and let µ ∈ P2rM , r ≥ 1, (µ ∈
P2r−1M if λ is bounded), be any initial measure. Then, for all F ∈ Br−1C

1
R+

(M) the

Pµ-martingale MF ≡ MX,F of proposition A.2.2 is square integrable and its quadratic

variation 〈MF 〉 is given by

〈MF 〉t =

∫ t

0

{
L(F 2

s )(Xs)− 2Fs(Xs)LFs(Xs)
}
ds, t ≥ 0, (A.20)

where L : Br−1(M) −→ Br(M) is the generator of (X,P ) in Br(M) with respect to

uniform convergence on bounded subsets.
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Proof We prove first that the Pµ-martingale MF is square integrable, and of course for

this it suffices to prove that the term Ft(Xt) and the integral term
∫ t

0
(∂s + L)Fs(Xs)ds

are square integrable for all t ≥ 0. For the term Ft(Xt) we have that

EµF 2
t (Xt) ≤ ‖Ft‖2u,r−1

∫
(1 + | · |r−1)2dµPt ≤ 2‖Ft‖2u,r−1

∫
(1 + | · |2r−2)dµPt

≤ 2‖Ft‖2u,r−1

∫
(1 + | · |2r−2)dµ < +∞

since µ ∈ P2rM ⊆ P2r−2M , and therefore Ft(Xt) ∈ L2(Pµ).

For the integral term we note first that since F is assumed to belong in Br−1C
1
R+

(M)

we have that ∂F ∈ Br−1CR+
(M) and therefore

Eµ
(∫ t

0

∂sFs(Xs)ds

)2

≤ Eµ
∫ t

0

(
∂sFs(Xs)

)2
ds ≤ 2‖∂F‖2r−1E

µ

∫ t

0

(1 + |Xs|2r−2)ds

= 2‖∂F‖2r−1

∫∫ t

0

(1 + |Xs|2r−2)dsdPµ

= 2‖∂F‖2r−1

∫ t

0

∫
(1 + |Xs|2r−2)dPµds

≤ 2t‖∂F‖2r−1

∫
(1 + | · |2r−2)dµ < +∞.

Finally, for the term
∫ t

0
LFs(Xs)ds, t ≥ 0, since L : Br−1(M) −→ Br(M) is a bounded

operator with ‖L‖ ≤ 4|λ′| we have that ‖LFs‖u,r ≤ 4|λ′|‖Fs‖u,r−1 which implies that

|LFs(x)|2 ≤ 32|λ′|2‖F‖2u,r−1(1 + |x|)2r

for all x ∈M , s ≥ 0 and F ∈ Br−1CR+
(M) and therefore

Eµ
(∫ t

0

LFs(Xs)ds

)2

≤ Eµ
∫ t

0

LFs(Xs)
2ds ≤ 32|λ′|2‖F‖2r−1E

µ

∫ t

0

(1 + |Xs|2r)ds

≤ 32t|λ′|2‖F‖2r−1

∫
(1 + |x|2r)dµ(x) < +∞.

This proves the square integrability of the martingale MF .

Let (V Ft )t≥0 denote the real process in the right hand side of (A.20). Obviously

since µ ∈ P2rM it is easy to see that the process V F is integrable and to prove that

the quadratic variation of MF is V F it suffices to prove that the real process NF :=

(MF )2 − V F is a martingale, i.e. that

Eµ
[
(MF

t )2 − (MF
s )2

∣∣Fs] = Eµ
[
V Ft − V Fs

∣∣Fs] (A.21)

for all 0 ≤ s < t. Now since MF is a square integrable martingale we have that

Eµ
[
(MF

t )2 − (MF
s )2|Fs

]
= E

[
(MF

t −MF
s )2|Fs

]
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for all 0 ≤ s < t. For simplicity in the notation we set L̃ := ∂ + L the sum of the

generator L of X and the time derivative operator ∂ and for all 0 ≤ s < t we have that

Eµ
[
(MF

t )2 − (MF
s )2|Fs

]
= Eµ

{
F 2
t (Xt)− F 2

s (Xs) +

(∫ t

s

L̃Fu(Xu)du

)2

−2Ft(Xt)

∫ t

s

L̃Fu(Xu)du
∣∣∣Fs}

−2Fs(Xs)E
µ

{
Ft(Xt)− Fs(Xs)−

∫ t

s

L̃Fu(Xu)du
∣∣∣Fs}.

Now since MF is a martingale the second term in the sum above is equal to

−2Fs(Xs)E
µ(MF

t −MF
s |Fs) = 0,

and therefore

Eµ
[
(MF

t )2 − (MF
s )2|Fs

]
= Eµ

{
F 2
t (Xt)− F 2

s (Xs) +

(∫ t

s

L̃Fr(Xu)du

)2∣∣∣Fs}
−2Eµ

{
Ft(Xt)

∫ t

s

L̃Fu(Xu)dr
∣∣∣Fs} (A.22)

for all 0 ≤ s < t. We compute next the term

Ys,t := Eµ
{
Ft(Xt)

∫ t

s

L̃Fu(Xu)du
∣∣∣Fs}. (A.23)

For this term we note first that∫ t

s

Eµ|Ft(Xt)L̃Fu(Xr)|dPµdu ≤ C

∫ t

s

∫
(1 + |Xt|r−1)(1 + |Xu|r)dPµdu

= C

∫ t

s

∫
(1 + |x|r)

∫
(1 + |y|r−1)dP xt−u(y)dµPu(x)du

≤ C

∫ t

s

∫
(1 + |x|r)(1 + |x|r−1)dµPu(x)du

≤ 2C

∫ t

s

(1 + |x|2r−1)dµPu(x)du

≤ 2C(t− s)
∫

(1 + |x|2r−1)dµ(x) < +∞

for some constant C ≥ 0 and therefore by the conditional Fubini theorem we have that

Ys,t := Eµ
{
Ft(Xt)

∫ t

s

L̃Fr(Xr)dr
∣∣∣Fs} =

∫ t

s

Eµ{Ft(Xt)L̃Fu(Xu)|Fs}du

=

∫ t

s

Eµ{Ft(Xt)L̃Fu(Xu)|Fu|Fs}du =

∫ t

s

Eµ
{
L̃Fu(Xu)Eµ[Ft(Xt)|Fu]

∣∣Fs}du
= Eµ

{∫ t

s

Eµ{Ft(Xt)|Fu}L̃Fu(Xu)du
∣∣∣Fs} (A.24)

Again since MF is a martingale we have that

Eµ[Ft(Xt)|Fu] = Fu(Xu) +Eµ
{∫ t

u

L̃Fv(Xv)dv
∣∣∣Fu}
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and therefore continuing from (A.24) we have that

Ys,t = Eµ
{∫ t

s

Fu(Xu)L̃Fu(Xu)du
∣∣∣Fs}

+Eµ

{∫ t

s

Eµ
{∫ t

u

L̃Fv(Xv)dv
∣∣Fu}L̃Fu(Xu)du

∣∣∣Fs}.
We keep the first term in the above sum and estimate the second term which we denote

by Zs,t by using the conditional Fubini theorem:

Zs,t : = Eµ
{∫ t

s

Eµ
{∫ t

u

L̃Fv(Xv)dv
∣∣Fu}L̃Fu(Xu)du

∣∣∣Fs}
= Eµ

{∫ t

s

Eµ
{
L̃Fu(Xu)

∫ t

u

L̃Fv(Xv)dv
∣∣Fu}du∣∣∣Fs}

= Eµ
{
Eµ
{∫ t

s

L̃Fu(Xu)

∫ t

u

L̃Fv(Xv)dvdu
∣∣Fu}∣∣∣Fs}

= Eµ
{∫ t

s

∫ t

u

L̃Fu(Xu)L̃Fv(Xv)dvdu
∣∣∣Fs}.

But by symmetry, for any bounded function h : [s, t]× [s, t] −→ R of the form h(u, y) =

g(u)g(v) for some function g ∈ B([s, t]) we have that∫ t

s

∫ t

u

g(u)g(v)dvdu =
1

2

(∫
g(u)du

)2

and therefore

Zs,t =
1

2
Eµ
{(∫ t

s

L̃Fu(Xu)du

)2∣∣∣Fs}.
It follows that

Ys,t = Eµ
{∫ t

s

Fu(Xu)L̃Fu(Xu)du
∣∣∣Fs}+

1

2
Eµ
{(∫ t

s

L̃Fu(Xu)du

)2∣∣∣Fs}
and therefore by (A.22) we have that

Eµ
[
(MF

t )2 − (MF
s )2|Fs

]
= Eµ

{
F 2
t (Xt)− F 2

s (Xs) +
(∫ t

s

L̃Fr(Xu)du
)2∣∣∣Fs}− 2Ys,t

= Eµ
{
F 2
t (Xt)− F 2

s (Xs)
∣∣Fs}

−2Eµ
{∫ t

s

Fu(Xu)L̃Fu(Xu)du
∣∣∣Fs} (A.25)

We show next that if F ∈ Br−1CR+
(M) then F 2 ∈ B2r−2CR+

(M) with ∂F 2 = 2F · ∂F .

Indeed,∣∣∣∣F 2
t+h − F 2

t − 2hFt∂Ft

h(1 + | · |2r−2)

∣∣∣∣ =

∣∣∣∣F 2
t+h − FtFt+h + FtFt+h − F 2

t − 2hFt∂Ft

h(1 + | · |2r−2)

∣∣∣∣
≤

∣∣∣∣Ft+h(Ft+h − Ft)− hFt∂tFt
h(1 + | · |2r−2)

∣∣∣∣+

∣∣∣∣FtFt+h − Ft − h∂tFth(1 + | · |2r−2)

∣∣∣∣
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and for the second term in this sum we have that∣∣∣∣FtFt+h − Ft − h∂tFth(1 + | · |2r−2)

∣∣∣∣ ≤ ‖F‖u,r−1

∣∣∣∣ (Ft+h − Ft − h∂tFt)(1 + | · |r−1)

h(1 + | · |2r−2)

∣∣∣∣
≤ 2‖F‖u,r−1

∣∣∣∣ (Ft+h − Ft − h∂tFt)h(1 + | · |r−1)

∣∣∣∣
≤ 2‖F‖u,r−1

∥∥∥∥ (Ft+h − Ft − h∂tFt)
h

∥∥∥∥
u,r−1

while for the first term we have that∣∣∣∣Ft+h(Ft+h − Ft)− hFt∂tFt
h(1 + | · |2r−2)

∣∣∣∣ ≤ ∣∣∣∣ (Ft+h − Ft)2

h(1 + | · |2r−2)

∣∣∣∣+2‖F‖u,r−1

∥∥∥∥Ft+h − Ft − h∂tFth

∥∥∥∥
u,r−1

and ∣∣∣∣ (Ft+h − Ft)2

h(1 + | · |2r−2)

∣∣∣∣ ≤ 2|h|
∣∣∣∣ Ft+h − Ft
h(1 + | · |r−1)

∣∣∣∣2 ≤ 2|h|
∥∥∥∥Ft+h − Fth

∥∥∥∥2

u,r−1

.

But since F ∈ Br−1CRR+(M) we have that 1
h (Ft+h − Ft) −→ ∂tFt in Br−1(M) and in

particular the ‖ · ‖u,r−1-norm of 1
h (Ft+h−Ft) is bounded above by some constant C ≥ 0

uniformly for all x ∈M and h > 0, and therefore∥∥∥∥F 2
t+h − F 2

t − 2hFt∂Ft

h

∥∥∥∥
u,2r−2

≤ 2C2|h|+4‖F‖u,r−1

∥∥∥∥Ft+h − Ft − h∂tFth

∥∥∥∥
u,r−1

h→+∞−→ 0

which proves that F 2 ∈ B2r−2CR+
(M) with ∂F 2 = 2F · ∂F .

Therefore, since µ ∈ P2rM , it follows by proposition A.2.2 that the process MG,X ,

G = F 2, is an integrable martingale and so for all 0 ≤ s < t we have that

Eµ
{
F 2
t (Xt)− F 2

s (Xs)
∣∣Fs} = Eµ

{∫ t

s

L̃(F 2
u)(Xu)du

∣∣∣Fs}
and so it follows by (A.25) that

Eµ
[
(MF

t )2 − (MF
s )2|Fs

]
= Eµ

{∫ t

s

L̃(F 2
u)(Xu)− 2Fu(Xu)L̃Fu(Xu)du

∣∣∣Fs}
which proves (A.21) as required to complete the proof since we obviously have that

L̃(F 2
u)−2FuL̃Fu = ∂uF

2
u +L(F 2

u)−2Fu∂uFu−2FuLFu = L(F 2
u)−2FuLFu. �

The following simple Leibniz-type formula for the generator of a Markov jump process

(X,P ) allows to express the quadratic variation of the martingale MF = MF,X in an

equivalent useful form.

Proposition A.2.4 Let X be a Markov jump process in M with partially bounded jump

rate function λ and skeleton chain p such that p| · |2r ≤ | · |2r, r ≥ 0, and let L be the

generator of X. Then

L(f2)(x) = 2f(x)Lf(x) +
∑
y∈M

[f(y)− f(x)]2λ(x)p(x, y)

for all f ∈ Br(M).
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Proof Indeed, for any x, y ∈M and f ∈ Br(M) we have that

L(f2)(x) = λ(x)
∑
y∈M

[f(y)2 − f(x)2]p(x, y)

= λ(x)
∑
y∈M

[(
f(y)− f(x)

)2
+ 2f(x)

(
f(y)− f(x)

)]
p(x, y)

= λ(x)
∑
y∈M

[
f(y)− f(x)

]2
p(x, y) + 2f(x)Lf(x) �

According to this proposition the quadratic variation given in proposition A.2.3 for

the martingale MF ≡MF,X can be written equivalently as

〈MF 〉t =

∫ t

0

∑
y∈M

[Fs(y)− Fs(Xs)]
2λ(Xs)p(Xs, y)ds.

Proposition A.2.5 Let M = (Mt)t≥0 ⊆ L2(P ) be a right continuous (Ft)t≥0-martingale

with quadratic variation 〈M〉. Then for any bounded (Ft)t≥0-stopping times σ ≤ τ ≤ T ,

T > 0,

E
[
M2
τ −M2

σ

∣∣Fσ] = E
[
(Mτ −Mσ)2

∣∣Fσ] = E
[
〈M〉τ − 〈M〉σ

∣∣Fσ]
and so in particular

E(M2
τ −M2

σ) = E(Mτ −Mσ)2 = E
(
〈M〉τ − 〈M〉σ

)
.

Proof Since M is a right continuous martingale and σ, τ are bounded stopping times

Doob’s optimal stopping theorem ([27], theorem II.3.2) applies and so E(Mτ |Fσ) = Mσ.

Consequently

E
[
(Mτ −Mσ)2|Fσ

]
= E(M2

τ |Fσ)− 2MσE(Mτ |Fσ) +M2
σ

= E(M2
τ |Fσ)−M2

σ = E(M2
τ −M2

σ |Fs),

which proves the first claimed equality.

For the other inequality, since 〈M〉 is the quadratic variation of M , the process

Nt := M2
t − 〈M〉t, t ≥ 0 is also a right continuous (Ft)-martingale and so by Doob’s

optimal stopping theorem again we have that E(Nτ −Nσ|Fs) = 0 which implies that

E(M2
τ −M2

σ |Fσ) = E(〈M〉τ − 〈M〉σ|Fσ)

as required. �
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A.3 Relative Entropy and Entropy Production

A.3.1 Relative Entropy Functionals

Definition A.3.1 Let µ ∈ PM . The relative entropy function with respect to µ is the

functional H(·|µ) : PM −→ [0,∞] given by

H(ν|µ) =

{∫
f log fdµ, ν � µ, f = dν

dµ ,

+∞, ν 6� µ.

We note first that the function g : R+ −→ R given by g(x) = x log x is strictly

convex in R+ and thus by Jensen’s inequality, we have for f = dν
dµ that

0 = 1 · 0 =

∫
fdµ · log

∫
fdµ = g

(∫
fdµ

)
≤
∫
g(f)dµ = H(µ|ν),

for all µ, ν ∈ PM , with equality iff the r.v. (f, µ) is a.s. constant, say f = c µ-σ.β.. But

since f = dν
dµ and µ, ν are probability measures, then we necessarily have that

c =

∫
fdµ =

∫
1dν = 1,

and thus H(µ|ν) = 0 iff dν
dµ = 1, that is iff µ = ν.

Therefore H : PM × PM −→ [0,∞] takes real positive values and H(µ|ν) = 0 iff

µ = ν. Nevertheless, neither H, nor its symmetrization HS(µ, ν) := 1
2 [H(ν|µ) +H(µ|ν)]

defines a metric in PM . Now obviously for any µ, ν ∈ PM with ν � µ we have that

H(ν|µ) =

∫
dν

dµ
log

dν

dµ
dµ =

∫
log

dν

dµ
dν.

and if h : R+ −→ R+ is the strictly convex continuous function

h(t) = t log t− t+ 1,

where h(0) = 1, then for all µ, ν ∈ PM such that ν � µ we have that

H(ν|µ) =

∫
g
(dν
dµ

)
dµ =

∫
h
(dν
dµ

)
dµ,

which shows that (ν|µ) ≥ 0 with equality iff ν = µ.

Also, by the strict convexity of h, it follows that the relative entropy with respect to

µ is strictly linearly convex, i.e. for all ν1, ν2 ∈ PM and all a, b ≥ 0 such that a+ b = 1

it holds that

H(aν1 + bν2|µ) =

∫
h

(
a
dν1

dµ
+ b

dν2

dµ

)
dµ

≤ a

∫
h

(
dν1

dµ

)
dµ+ b

∫
h

(
dν2

dµ

)
dµ = aH(ν1|µ) + bH(ν2|µ),

with strict inequality whenever ν1 6= ν2 and a > 0.

Another useful property of relative entropy is the following formula for changing the
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reference measure µ. In particular, let V : M −→ (−∞,∞] be a Borel functional with

sup-polynomial growth of order p ≥ 0, i.e. such that |V (x)| ≤ C
(
1 + dp(x, x0)

)
for all

x ∈ M for some constant C ≥ 0, and such that dµ̃ := e−V dµ is a probability measure.

Then,

H(ν|µ̃) = H(ν|µ) +

∫
V dν,

for all ν ∈ PpM . Indeed, we obviously have that ν � µ̃ iff ν � µ and in this case the

required equality is trivially satisfied as ∞ =∞, while if ν � µ, then

dν

dµ̃
=
dν

dµ

dµ

dµ̃
= eV

dν

dµ
,

and thus

H(ν|µ̃) =

∫
h

(
dν

dµ̃

)
dµ̃ =

∫
dν

dµ
·
[
V + log

dν

dµ

]
eV dµ̃ =

∫
dν

dµ
·
[
V + log

dν

dµ

]
dµ

=

∫
V dν +H(ν|µ).

Particularly useful is the following variational characterization of the relative entropy.

Proposition A.3.1 For all µ, ν ∈ PM we have that

H(ν|µ) = sup
f∈BC(M)

{∫
fdν − log

∫
efdµ

}
. (A.26)

This characterization of relative entropy will follow from the more general variational

characterization the generalized relative h-entropy functionals, one of which is relative

entropy itself with h(t) = t log t− t+ 1 for t ≥ 0 and h(t) = +∞ for t < 0.

Definition A.3.2 Let h : R −→ [0,∞] be a lower semicontinuous convex functional

with non-trivial domain Dh ⊃ [0, ε), ε > 0. The functional H ≡ Hh : PM × PM −→
[0,∞] given by the formula

H(ν|µ) =

{∫
M
h
(
dν
dµ

)
dµ, ifν � µ,

+∞, otherwise.

is called the relative h-entropy functional.

Obviously, as in the case of relative entropy, due to the convexity of h we have by

Jensen’s inequality that

0 ≤ h(1) = h

(∫
dν

dµ
dµ

)
≤
∫
h

(
dν

dµ

)
dµ = H(ν|µ)

for all ν � µ. Therefore H(ν|µ) ≥ h(1) for all µ, ν ∈ PM with equality iff ν = µ.

Furthermore Hh is obviously linearly convex.

Note that since ν is a positive measure we have that dν
dµ ≥ 0 whenever ν � µ and

thus the valued of h in (−∞, 0) do not play a part in the definition of Hh. In what
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follows for any function h : R R+ −→ [0,∞] we will denote by h̃ : R −→ [0,∞] the

function given by the formula

h̃(t) =

{
h(t), t ≥ 0

+∞, t < 0
,

and of course for any convex function h : R or R+ −→ [0,∞] we have that Hh = Hh̃.

The variational characterization of the generalized relative h-entropy functionals requires

the notion of the right semi-Legendre transform.

Definition A.3.3 Let h : R −→ [0,∞] be a function. The right semi-Legendre trans-

form h+ of h is the function h+ : R −→ [−h(0),∞] given by the formula

h+(s) = sup
t≥0
{ts− h(t)}

We note first that indeed h+ ≥ −h(0), since for all s ∈ R we have that

h+(s) ≡ sup
t≥0
{st− h(t)} ≥ s · 0− h(0) = −h(0).

Furthermore, h is always lower semicontinuous as a supremum of affine functionals and

obviously

h+ = h̃∗,

where h̃∗ is the Legendre transform of h̃ in R, that is

h̃∗(s) = sup
t∈R
{ts− h̃(t)}.

Now, h̃ is lower semicontinuous whenever h is, and thus if h is lower semicontinuous then

by the duality f∗∗ = f for lower semicontinuous convex functions f we have that

h+∗ = h̃.

According to the variational characterization of relative h-entropy functionals to be

proved, for any lower semicontinuous and convex function h :−→ [0,∞] with non-trivial

proper domain Dh ⊆ [0,∞) such that Dh+ = R we have that

Hh(ν|µ) = sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
. (A.27)

The variational characterization (A.26) of relative entropy follows from the varia-

tional (A.27) of generalized entropy functionals. Indeed, relative entropy is given as

we have seen by the function h : R −→ [0,+∞) defined by h(t) = t log t − t + 1 in

Dh = [0,∞) and the function

R+ 3 t
gs7→ gs(t) := st− h(t) = (s+ 1)t− t log t− 1

has obviously a global maximum at t = es, and so

h+(s) = s · es − h(es) = ses − es log es + es − 1 = es − 1.
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Therefore for any bounded and continuous function f : M −→ R we have that∫
fdν −

∫
h+(f)dµ =

∫
fdν −

∫
efdµ+ 1.

Consequently, since h(t) = t log t − t + 1 satisfies condition Dh+ = R, if the variational

characterization of generalized functionals had been proved we would have that

H(ν|µ) = sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
= sup

f∈BC(M)

sup
c∈R

{∫
(f + c)dν −

∫
h+(f + c)dµ

}
= sup

f∈BC(M)

sup
c∈R

{
c+

∫
fdν − ec

∫
efdµ+ 1

}
. (A.28)

But by elementary calculus we see that the mapping

c 7→ c+

∫
fdν − ec

∫
efdµ+ 1

has global maximum
∫
fdν − log

∫
efdµ at the point c = − log

∫
efdµ, which according

to (A.28) proves the variational characterization of relative entropy.

An obvious and useful consequence of the variational characterization (A.26) is the

lower semicontinuity of the relative entropy H(·|µ) as a supremum of affine functionals

with respect to the weak topology in PM .

Another useful application of the variational characterization of relative entropy is

that it allows us to estimate integrals with respect to ν through integrals with respect

to the reference measure µ ant the relative entropy H(ν|µ). Indeed, by the variational

characterization the so called entropy inequality∫
fdν ≤ inf

a>0

1

a

{
log

∫
eafdµ+H(ν|µ)

}
follows easily for all f ∈ B(M). For indicator functions f = 1A, A ∈ BM the entropy

inequality takes a simpler form.

Proposition A.3.2 Let A ∈ BM be a Borel subset of M . Then for all ν, µ ∈ PM we

have that

ν(A) ≤


log 2+H(ν|µ)

log(1+ 1
µ(A)

)
, µ(A) > 0,

lim
a↑+∞

1
aH(ν|µ), µ(A) = 0

.

Proof For any a > 0, we have that ea1A = ea1A + 1AC and thus
∫
ea1Adµ = 1 + (ea −

1)µ(A). So by the entropy inequality we have for all a > 0 that

ν(A) ≤ 1

a
log
[
1 + (ea − 1)µ(A)

]
+

1

a
H(ν|µ).

Taking the limit as a→ +∞ if µ(A) = 0 and choosing a > 0 so that (ea − 1)µ(A) = 1 if

µ(A) 6= 0 we get the required inequality. �
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For the proof now of the variational characterization of generalized entropy func-

tionals we need some formula for the right semi-Legendre transform. Such a formula

is given in the following lemma. We recall first that any lower semicontinuous function

h : R −→ (−∞,∞] is continuous in Doh, one-sidedly continuous in each endpoint of Dh
that is contained in Dh divergent to +∞ in each endpoint of Dh not contained in Dh.

Furthermore, the one-sided derivatives h′− and h′+ of h exist in Doh, are left and right

continuous respectively, and for all r, s, t ∈ Doh such that r < s < t satisfy

h+(r) ≤ h′−(s) ≤ h′+(s) ≤ h′−(t),

and if a, b ∈ [−∞,∞] is the left and right endpoint of Dh respectively, then h′+(a) (h′−(b)

resp.) is defined in [−∞,∞) ((−∞,∞] resp.) if a ∈ Dh (b ∈ Dh resp.).

In our case now, in the right semi-Legendre transform, we are essentially working

with the functional h̃ for which h̃|(−∞,0) ≡ +∞ and since the values of h in (−∞, 0) do

not play a role in the definition of Hh we restrict our attention to functions h such that

h = h̃ and set

a := inf Dh = 0, b := supDh ∈ (0,∞]

a′ := inft>a h
′
+(t) ∈ [−∞,∞), b′ := supt<b h

′
−(t) ∈ (−∞,+∞].

(A.29)

Of course, by the one-sided continuity of h′− and h′+ we have that whenever some of the

endpoints a, b belongs in Dh then a′ = h′+(a) = h′+(0) and b′ := h′−(b).

Lemma A.3.1 Let h : R −→ [0,∞] be a lower semi-continuous function with non-

trivial proper domain Dh ⊆ [0,∞), let a, b, a′, b′ be the numbers given in (A.29), and

let (h′+)−1 : (a′, b′) −→ [0,∞] be the generalized inverse of the right continuous and

increasing function h′+ : (0, b) −→ (a′, b′), given by the formula

(h′+)−1(s) := inf
{
t ∈ (0, b)

∣∣s ≤ h′+(t)
}
.

Then (h′+)−1(a′, b′) := {(h′+)−1(t)|t ∈ (a′, b′)} ⊆ Doh ≡ (0, b) and the right semi-Legendre

transform h+ of h os given by the formula

h+(s) =



−h(0), if s ≤ a′.
s · (h′+)−1(s)− h

(
(h′+)−1(s)

)
, if a′ < s < b′

bs− h(b), if b′ ≤ s, b ∈ Dh,
lim
t↑+∞

(
ts− h(t)

)
, if b′ ≤ s, b = +∞.

(A.30)

Furthermore, in the case that b′ < +∞ and b = +∞ we have that h+(s) = +∞ for all

s > b′ while for s = b′ both cases, h+(b′) < +∞ and h+(b′) = +∞, are possible.

Proof First we note that if a′ = −∞ then the first branch of (A.30) does not exist. So

suppose that a′ > −∞ and let s ≤ a′. Then

s ≤ a′ = inf
t>0

h′+(t) = inf
t>0

h(t)− h(0)

t
,

and thus ts− h(t) ≤ −h(0) for all t ≥ 0, which gives us that

h+(s) = sup
t≥0
{ts− h(t)} ≤ −h(0).
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But as we have seen we always have h+ ≥ −h(0) and so h+(s) = −h(0) which proves

the formula in the first branch of (A.30).

Suppose on the other hand that b′ < +∞ and let s ≥ 0. Then necessarily either

b ∈ Dh or either b = +∞. Indeed, if b′ < +∞ and b /∈ Dh then

sup
0<s<t<b

h(t)− h(s)

t− s
≤ b′ < +∞,

and thus

h(t)− h(s) ≤ b′(t− s) (A.31)

for all 0 < s < t < b. But as we have already noted, since h is lower semicontinuous and

b /∈ Dh we have that limt↑b h(t) = +∞ and so by taking the limit in (A.31) as t ↑ b for

some s ∈ (0, b) we get that

+∞ = lim
t→b

(
h(t)− h(s)

)
≤ lim
t→b

b′(t− s) = b′(b− s)

and thus b′ = +∞.

So, in the case that b′ ≤ s < +∞, either b ∈ Dh or either b = +∞. If b ∈ Dh then

h′−(b) = b′ ≤ s < +∞ and thus

sup
0<t<b

h(b)− h(t)

b− t
= b′ ≤ s <∞.

Therefore for all s ≥ b′ we have that h(b)−h(t) ≤ s(b− t) for all 0 < t ≤ b, which shows

that

st− h(t) ≤ sb− h(b), ∀0 < t ≤ b,

and thus

h+(s) = sup
t≥0
{st− h(t)} = sup

t∈Dh
{st− h(t)} ≤ s · b− h(b).

On the other hand we obviously have that sb− h(b) ≤ h+(s), which proves the formula

in the third branch of (A.30).

Suppose now that b′ ≤ s < +∞ and b = +∞. Then

sup
0<r<t<∞

h(t)− h(r)

t− r
≤ b′ ≤ s

and therefore

r < t =⇒ sr − h(r) ≤ st− h(t),

i.e. for all s ≥ b′ the function t 7→ st− h(t) is increasing and so

h+(s) ≡ sup
t≥0
{st− h(t)} = lim

t→∞
(st− h(t)),

which proves the formula in the fourth branch of (A.30).

It remains to check the case a′ < s < b′. First, we note that if some st0 ∈ R is a

supporting point of h at t0 ∈ Doh then h(t) ≥ st0(t− t0) + h(t0) for all t ∈ R and thus

h+(st0) = sup
t≥0
{t · st0 − h(t)} ≤ t0 · st0 − h(t0) ≤ h+(st0). (A.32)
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Indeed, let s ∈ (a′, b′). By the definition of a′, b′ there exist θ,m ∈ Doh = (0, b) such that

a′ ≤ h′+(θ) < s < h′−(m) ≤ b′. (A.33)

We will show that s is a supporting point of h at some ts ∈ [θ,m] ⊆ (0, b). Indeed, let

ts := (h′+)(s) ≡ inf{t ∈ Dh|s ≤ h′+(t)}. (A.34)

By the definition of m in (A.33) we have that m ∈ Es := {t ∈ Doh|s ≤ h′+(t)}. Therefore

the set Es is non-empty and since h′+ is increasing we have that Es is an interval with

right endpoint +∞ and left endpoint the number ts ∈ [0, b). But by (A.33) θ /∈ Es, and

therefore ts ∈ [θ,m] ⊆ Doh. Also, by the right continuity of h′+ we have that

h′+(ts) = lim
t↓ts

h′+(t) ≥ s (A.35)

i.e. that ts ∈ Es. Now, according to(A.35)on order for s to be a supporting point of h

at ts it remains to prove that h′−(ts) ≤ s. But this is indeed true, since for all t < ts we

have that h′−(t) ≤ h′+(t) < s and thus by the left continuity of h′− we get that

h′−(ts) = lim
t↑ts

h′−(t) ≤ s.

Now since s ∈ (a′, b′) is a supporting point of h at ts := (h′+)−1(s) it follows by (A.32)

that for all s ∈ (a′, b′):

h+(s) = s · ts − h(ts) = s · (h′+)−1(s)− h
(
(h′+)−1(s)

)
,

as required for the second branch of (A.30).

We prove now the last claim of the lemma. So suppose that b′ < +∞, b = +∞ and

let s > b′. We note that

lim
t↑+∞

h(t)

t
≤ sup

t≥0
h′+(t) = b′.

Indeed, we obviously have that b := supt≥0 h
′
−(t) = supt≥0 h

′
+(t) and by the convexity

of h in (0, b) = (0,∞) the function

(1,∞) 3 t 7→ h(t)− h(1)

t− 1

is increasing and bounded above by b′, and therefore there exists the limit

lim
t↑∞

h(t)

t
= lim
t↑+∞

h(t)− h(1)

t− 1
≤ b′.

So, since δ := 1
2 (s− b′) > 0, there exists M > 0 such that

t ≥M =⇒ h(t) ≤ b′t+ δt

and then for all t > M we have that

st− h(t) ≥ (s− b′ − δ)t =
t

2
(s− b′) t↑∞−→ +∞,
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as required.

Finally to show that in the case that b′ < +∞ and b = +∞ we can either have

h+(b′) < +∞ or h+(b′) = +∞ we consider the convex functions hi : R −→ (−∞,∞]

given by the formulas

h1(t) = log
1

t
and h2(t) =

1

t

on their common proper domain Dh1 = Dh2 = (0,∞). Then for these two functions we

have that

b′i := sup
t>0

hi
′
−(t) = 0, i = 1, 2,

while as we can easily check h+
1 (0) = +∞ and h+

2 (0) = 0. �

For the proof of the variational characterization of generalized relative h-entropy func-

tionals we will need the following lemma, which essentially generalizes Lusin’s theorem

so that the approximation of a given measurable and bounded function f by bounded

and continuous functions can be achieved by the same approximating sequence in any

finite number of L1 spaces of regular measures.

Lemma A.3.2 For any f ∈ B(M) and any µ, ν ∈ PM there exists a sequence {fn} ⊆
BC(M) such that

fn
n↑+∞−→ f in L1(µ) and in L1(ν),

fn
n↑+∞−→ f µ− σ.β. and ν − σ.β.,

infx∈M f(x) + 1
n ≤ fn ≤ supx∈M f(x)− 1

n , ∀ n ∈ N.
(A.36)

Proof Obviously, since any f ∈ B(M) can be approximated uniformly by simple func-

tions it suffices to consider the case in which f is the indicator function 1E of some Borel

set E ⊆ M . So let E ⊆ M be a Borel set and let ε > 0. We want to find g ∈ BC(M)

such that ∫
|g − 1E |dµ ∨

∫
|g − 1E |dν < ε.

Since µ, ν are finite Borel measures in polish space, they are regular and thus there exist

compact sets Kµ,Kν ⊆ E open sets Aµ, Aν ⊇ E such that

Kρ ⊆ E ⊆ Aρ, ρ(Aρ \Kρ) < ε, ρ = µ, ν.

But then, if we set K := Kµ ∪Kν , A := Aµ ∩Aν , the set Kis compact, is open and

ρ(A \K) ≤ ρ(Aρ \K) ≤ ρ(Aρ \Kρ) < ε, ρ = µ, ν.

By choosing then a continuous function g ∈ BC(M) such that 1K ≤ g ≤ 1A we obviously

have that |g − 1E | ≤ 1A\K and therefore∫
|g − 1E |dρ ≤ ρ(A \K) < ε, ρ = µ, ν,

as required. This proves that for any f ∈ B(M) there exists {gn} ⊆ BC(M) such that

gn −→ f in L1(µ) in L1(ν). By passing if necessary to a subsequence {gn} which we
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continue to denote by {gn} we can assume in addition that {gn} converges pointwise to

f µ-σ.β. and ν-σ.β.. But then if we define

fn := (− inf
x∈M

f(x) +
1

n
) ∨
[
gn ∧ ( sup

x∈M
f(x)− 1

n
)
]
, ∀n ∈ N,

we obviously have that fn −→ f pointwise µ-σ.β. and ν-σ.β., and since ‖fn‖u ≤ ‖f‖u
for all n ∈ N it follows by the bounded convergence theorem that fn −→ f in L1(µ) and

in L1(ν), and therefore {fn} satisfies (A.36). �

Proposition A.3.3 Let h : R −→ [0,∞] be a lower semicontinuous functional with

non-trivial proper domain Dh ⊆ [0,∞). Then

Hh(ν|µ) = sup
f∈B(M)

{∫
fdν −

∫
h+(f)dµ

}
=: H′h(ν|µ). (A.37)

Furthermore, Dh+ = R iff b′ = +∞ or b ∈ Dh, and in this case for all µ, ν ∈ PM we

have that

Hh(ν|µ) = sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
=: H′′h(ν|µ). (A.38)

In any case (A.38) holds for all µ, ν ∈ PM such that ν � µ.

Finally, if Dh+ $ R then b := supDh = +∞,

b′ := sup
t<b

h′−(t) = supDh+ = lim
t↑+∞

h(t)

t
= sup

t>0

h(t)

t
< +∞, (A.39)

and if the reference measure µ ∈ PM has support suppµ = M , then for all ν ∈ PM we

have that

Hh(ν|µ) := Hh(νac|µ|µ) + b′νs|µ(M) = sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
, (A.40)

where ν = νac|µ + νs|µ is the Radon-Nykodim decomposition of ν with respect to µ with

absolutely continuous part νac|µ � µ and singular part νs|µ ⊥ µ.

Proof We prove first that (A.37). We note first that by the definition of h+ we have

that ts ≤ h(t) + h+(s) for any t ≥ 0, s ∈ R, and therefore if µ, ν ∈ P and ν � µ, then

for any f ∈ B(M) we have that

f · dν
dµ
≤ h

(
dν

dµ

)
+ h+(f),

which shows that ∫
fdν −

∫
h+(f)dµ ≤ Hh(ν|µ),

for all f ∈ B(M). So by taking the supremum over all f ∈ B(M) it follows that

H′′h(ν|µ) ≤ H′h(ν|µ) := sup
f∈B(M)

{∫
fdν −

∫
h+(f)dµ

}
≤ Hh(ν|µ)
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for all µ, ν ∈ PM , and therefore in order to prove (A.37) it remains to show that

Hh(ν|µ) ≤ H′h(ν|µ).

First, if ν 6� µ, there exists a Borel set E ⊆ M such that ν(E) > 0 and µ(E) = 0,

and by considering the sequence fn = n1E , n ∈ N we have that for all n ∈ N,

H′h(ν|µ) ≥
∫
fndν −

∫
h∗(fn)dµ = nν(E)− h+(0)

n→+∞−→ +∞,

and thus the required inequality holds as ∞ =∞ in this case.

We note next that for any constant c ∈ R we have Hh+c = c+Hh, and since

(h+ c)+(s) = sup
t≥0
{ts− h(t)− c} = −c+ h+(s)

for all s ∈ R it follows that

H′h+c = c+H′h, H′′h+c = c+H′′h.

Therefore in order to prove the variational characterization we can, modulo some con-

stant c ∈ R, assume in addition that

−h+(0) = inf
t≥0

h(t) = 0. (A.41)

Then since 0 ∈ BC(M) by the additional assumption that h+(0) = 0 it follows that for

all ν, µ ∈ PM we have that

H′h(ν|µ) ≥ H′′h(ν|µ) ≥
∫

0dν −
∫
h+(0)dµ = 0. (A.42)

Let now ν � µ and suppose that

µ

{
x ∈M

∣∣∣∣ dνdµ (x) /∈ Dh
}

= µ

{
dν

dµ
> b

}
> 0. (A.43)

Then obviously

µ

{
h

(
dν

dµ

)
= +∞

}
> 0,

and thus Hh(ν|µ) = +∞. Therefore in order to prove the claim in the case that ν, µ ∈
PM satisfy (A.43) we must show that H′h(ν|µ) = +∞. Let {fN}∞N=1 ⊆ B(M) be the

sequence given by fN := N1{ dνdµ>b}
, N ∈ N. According to our convention that h+(0) = 0

modulo some constant c ∈ R we have that

h+(fN ) = h+(N)1{ dνdµ>b}
(A.44)

for all N ∈ N. Then by the definition of H′h and (A.44) we have that

H′h(ν|µ) ≥
∫
fNdν −

∫
h+(fN )dµ =

∫ [
fN

dν

dµ
− h+(fN )

]
dµ

=

∫
{ dνdµ>b}

[
dν

dµ
N − h+(N)

]
dµ
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So in order to prove the claim it suffices to show that given (A.43), which of course can

hold only if b < +∞, we have that

aN :=

∫
{ dνdµ>b}

[
dν

dµ
N − h+(N)

]
dµ

N→∞−→ +∞ (A.45)

For the proof of (A.45) we separate cases on whether b′ < +∞ or b′ = +∞.

b′ < +∞: Then by the lower semicontinuity of h we have that b ∈ Dh. Consequently

for all N ∈ N such that N > b′ we have by lemma A.3.1 that h+(N) = bN − h(b) and

therefore for all N > b′ we have that

aN =

∫
{ dνdµ>b}

[(
dν

dµ
− b
)
N + h(b)

]
dµ.

Now since µ{ dνdµ > b} > 0 there exists ε0 > 0 such that µ{ dνdµ ≥ b+ ε0} > 0, and thus

aN ≥
∫
{ dνdµ≥b+ε0}

[(
dν

dµ
− b
)
N + h(b)

]
dµ ≥ ε0N + h(b)

N→∞−→ +∞.

b′ =∞: In this case, by lemma A.3.1 we have that

h+(N) = N · (h′+)−1(N)− h
(
(h′+)−1(N)

)
and so in this case, since h is non-negative and since (h′+)−1(a′, b′) ⊆ (0, b) according to

A.3.1, we have that

aN ≥
∫
{ dνdµ≥b+ε0}

[(
dν

dµ
− (h′+)−1(N)

)
N + h

(
(h′+)−1(N)

)]
dµ

≥ ε0N + h
(
(h′+)−1(N)

)
≥ ε0N −→ +∞.

Another case in which the relative h-entropy Hh(ν|µ) is infinite obviously occurs

when

(a) µ

{
dν

dµ
= 0

}
> 0 and 0 /∈ Dh or (b) µ

{
dν

dµ
= b

}
> 0 and b /∈ Dh

and as we will show in this case we have that H′h(ν|µ) = +∞. Indeed, if (a) holds

we consider the sequence {fN}∞N=1 ⊆ B(M) given by f := −N1{ dνdµ=0}, for which

h+(fN ) = h+(−N)1{ dνdµ = 0}, and then

H′h(ν|µ) ≥
∫ [

fN
dν

dµ
− h+(fN )

]
dµ =

∫
{ dνdµ=0}

[
N
dν

dµ
− h+(N)

]
dµ

= −h+(−N)µ{dν
dµ

= 0} (A.46)

But since 0 /∈ Dh, by the lower semicontinuity of h we have that a′ = −∞ and therfore

by lemma A.3.1 we have that

h+(−N) = −N · (h′+)−1(−N)− h
(
(h′+)−1(−N)

)
.
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Therefore, continuing from (A.46) and taking in account that (h′+)−1(−N) > 0 since by

lemma A.3.1 we have that (h′+)−1(a′, b′) ⊆ (0, b), we get that

H′h(ν|µ)

µ{ dνdµ = 0}
≥ N · (h′+)−1(−N) + h

(
(h′+)−1(−N)

)
≥ h

(
(h′+)−1(−N)

)
,

and so in order to prove the claim in the case that (a) holds it suffices to prove that

(h′+)−1(s) −→ 0 as s ↓ a′ = −∞, since due to the fact that 0 /∈ Dh we have by the lower

semicontinuity of h that limt↓0 h(t) = a′ = −∞. So let ε > 0. Then h′+(ε) > −∞ and

for all s < h′+(ε) we have that ε ∈ {t ∈ Dh|s ≤ h′+(t)}, and thus for all s < h′+(ε) we

obviously have that

0 < (h′+)−1(s) = inf{t ∈ Dh|s ≤ h′+(t)} ≤ ε.

We consider next the case that (b) holds. Similarly to (a) we consider the sequence

{fN}N∈N ⊆ B(M) given by the formula fN = N1{ dνdµ=b}. In this case, h+(fN ) =

h+(N)1{ dνdµ=b} and

H′h(ν|µ) ≥
∫ [

fN
dν

dµ
− h+(fN )

]
dµ =

∫
{ dνdµ=b}

[
N
dν

dµ
− h+(N)

]
dµ

= [bN − h+(N)]µ{dν
dµ

= b}

=
[(
b− (h′+)−1(N)

)
N + h

(
(h′+)−1(N)

)]
µ{dν
dµ

= b}

≥ h
(
(h′+)−1(N)

)
µ{dν
dµ

= b}.

But (h′+)−1(s) ↑ b as s ↑ b′ = +∞. Indeed, let ε > 0. Then h′+(b− ε) < +∞ and for all

s > h′+(b− ε) we have that b− ε /∈ {t ∈ Dh|s ≤ h′+(t)} and therefore

b > (h′+)−1(s) > b− ε,

which proves that lims↑+∞(h′+)−1(s) = b. Here, again by the lower semicontinuity of h

and the fact that b /∈ Dh we have that limt↑b h(t) = +∞. This proves the claim in the

case that (b) holds.

So it remains to show inequality H′′h(ν|µ) ≤ Hh(ν|µ) in the case that ν � µ

µ

{
dν

dµ
/∈ Dh

}
= 0, (A.47)

µ

{
dν

dµ
= 0

}
= 0 or 0 ∈ Dh and µ

{
dν

dµ
= b

}
= 0 or b ∈ Dh (A.48)

Due to (A.47), the function f : M −→ [a′, b′] ⊆ [−∞,+∞] given by

f =


a′, in { dνdµ = 0}
h′+
(
dν
dµ

)
, in { dνdµ ∈ D

o
h}

b′, in { dνdµ = b}
, (A.49)
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is well defined on M µ-a.s.. In the set { dνdµ ∈ D
o
h}, f is a supporting point of h at dν

dµ and

therefore h+(f) = f · dνdµ − h
(
dν
dµ

)
and takes µ-σ.β. real values. So by (A.48) the only

case in which f may not take a.s. real values is when

(a) 0 ∈ Dh and a′ = −∞ or (b) b ∈ Dh and b′ = +∞ (A.50)

Consequently, if (A.50) does not hold, then µ{|f | <∞} = 1, and the composition h+ ◦f
is well defined and given by the formula

h+(f) =


h+(a′), in { dνdµ = 0}
f · dνdµ − h

(
dν
dµ

)
, in { dνdµ ∈ D

o
h}

h+(b′), in { dνdµ = b}
.

But if it does not hold that 0 ∈ Dh and a′ = −∞, then either 0 /∈ Dh in which case the

first branch of (A.49) corresponds to a set of µ-measure 0 by (A.48), or either a′ ∈ R, in

which case by the formula for right semi-Legendre transform of lemma A.3.1 we obviously

have that in the set { dνdµ = 0},

h+(f) = h+(a′) = −h(0) = f · 0− h(0) = f · dν
dµ
− h
(dν
dµ

)
.

Similarly, if it does not hold that b ∈ Dh and b′ = +∞, then either b /∈ Dh in which

case the third branch of (A.49) corresponds to a set of µ-measure 0 by (A.48), or either

b′ ∈ R, in which case by the formula for right semi-Legendre transform we have that in

the set { dνdµ = b},

h+(f) = h+(b′) = b′b− h(b) = f · dν
dµ
− h
(dν
dµ

)
.

Therefore if (A.50) does not hold then in any case we have by (A.47) and (A.48) that

f, h+(f) take real values, the composition h+(f) = h+ ◦ f is well defined and we have

that

h+(f) = f · dν
dµ
− h

(
dν

dµ

)
, µ− a.s., (A.51)

and therefore

Hh(ν|µ) =

∫
h

(
dν

dµ

)
dµ =

∫ [
f · dν

dµ
− h+(f)

]
dµ. (A.52)

So, if f is bounded, as is for instance the case when −∞ < a′ < b′ < +∞, then

Hh(ν|µ) ≤ H′h(ν|µ).

In the case that f is not necessarily bounded and (A.50) does not hold it suffices to

approximate f by an appropriate sequence {fN}∞N=1 ⊆ B(M) such that∫ [
fN

dν

dµ
− h+(fN )

]
dµ

N→+∞−→
∫ [

f · dν
dµ
− h+(f)

]
dµ = Hh(ν|µ).
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So we set

fN := f1{|f |≤N}, N ∈ N.

Then according to our convention that h+(0) = 0 we have that

h+(fN ) = h+(f)1{|f |≤N}

and since (A.50) does not hold we have by (A.51) that∫ [
fN

dν

dµ
− h+(fN )

]
dµ =

∫
{|f |≤N}

[
f
dν

dµ
− h+(f)

]
dµ =

∫
{|f |≤N}

h

(
dν

dµ

)
dµ.

But µ{|f | < +∞} = 1 since (A.50) does not hold and thus since h ≥ 0 we have by the

monotone convergence theorem that

lim
n→+∞

∫ [
f · dν

dµ
− h+(f)

]
dµ =

∫
{|f |<+∞}

[
f · dν

dµ
− h+(f)

]
dµ = Hh(ν|µ),

as required.

So it remains to investigate what happens when (A.50) holds. We consider first the

case that both (A.50) and (A.50). We define then the sequence {fN}N∈N ⊆ B(M) by

the formula

fN =


h′+
(

1
N

)
, if {0 ≤ dν

dµ ≤
1
N }

h′+
(
dν
dµ

)
, if { 1

N ≤
dν
dµ ≤ b−

1
N }

h′+
(
b− 1

N

)
, if {b− 1

N ≤
dν
dµ ≤ b}

.

and then for all N ∈ N we have that

fN ·
dν

dµ
− h+(fN ) =


(
dν
dµ −

1
N

)
h′+
(

1
N

)
+ h

(
1
N

)
, 0 ≤ dν

dµ ≤
1
N

h
(
dν
dµ

)
, 1

N ≤
dν
dµ ≤ b−

1
N(

dν
dµ − b+ 1

N

)
h′+
(
b− 1

N

)
+ h

(
b− 1

N

)
, b− 1

N ≤
dν
dµ ≤ b

.

By the formula above it follows that the sequence {gN} := {fN · dνdµ − h
+(fN )}∞N=1

converges uniformly to h( dνdµ ) in { dνdµ ∈ Dh}. Indeed, we note first that {gN} is eventually

identically equal to h( dνdµ ) in any subset of { dνdµ ∈ Dh} of the form { dνdµ ∈ [a0, b0]}, where

[a0, b0] ⊆ (0, b). Also since −a′ = b′ = +∞ it follows that

∃ δ0 ∈ (0, b/2) such that h′+|[0,δ0] < 0 < h′+|[b−δ0,b]. (A.53)

But then for all ∈ N such that 1
N ≤ δ0 we have that h′+( 1

N ) < 0, and so since obviously

− 1

N
≤
(
dν

dµ
− 1

N

) ∣∣∣
{ dνdµ≤

1
N }
≤ 0

it follows that

h
( 1

N

)
≤ gN |{ dνdµ≤ 1

N }
=

(
dν

dµ
− 1

N

) ∣∣∣
{ dνdµ≤

1
N }
h′+
( 1

N

)
+ h
( 1

N

)
≤ − 1

N
h′+
( 1

N

)
+ h
( 1

N

)
. (A.54)
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But limt→0 th
′
+(t) = 0. Indeed, since h is convex, it is Lipschitz continuous, and thus

absolutely continuous, in any interval of the form [ε, b − ε], 0 < ε < b/2. So, for all

0 < ε < δ0 we have that h(δ0) = h(ε) +
∫ δ0
ε
h′+(t)dt and thus

lim
ε→0

∫ δ0

ε

h′+(t)ds = h(δ0)− h(0) ∈ (−∞, 0).

But h is negative in the set (0, δ0] and therefore the family of functions {1(ε,δ0]h}0<ε<δ0
is a family of negative functions decreasing to 1(0,δ0]h as ε ↓ 0, and by the monotone

convergence theorem it follows that∫ δ0

0

h′+(t)dt = h(δ0)− h(0) ∈ (−∞, 0).

But then, if it were not true that limt↓0 th+(t) = 0, since h′+ is negative in (0, δ0] there

exists ε > 0 such that for all δ > 0 there exists tδ ∈ (0, δ) such that tδh
′
+(tδ) ≤ −ε,

and so there exists a sequence {tn}∞n=0 ⊆ (0, δ0] such that t0 = δ0, 0 < tn ≤ 1
2 tn−1 and

tnh
′
+(tn) ≤ −ε for all n ∈ N, which leads to a contradiction since then

−∞ <

∫ δ0

0

h′+(t)dt ≤
∫ δ0

0

∞∑
n=1

h′+(tn−1)1[tn,tn−1)(t)dt

≤ −ε
∞∑
n=1

1

tn−1
(tn−1 − tn) = −ε

∞∑
n=1

(
1− tn

tn−1

)
≤ −ε

∞∑
n=1

1

2
= −∞.

So we indeed have that limt↓0 th
′
+(t) = 0 and so by (A.54) we have that for all N ≥ 1

δ0
,∥∥∥∥gN |{ dνdµ≤ 1

N }
− h
( 1

N

)∥∥∥∥
u

= sup
x: 0≤ dνdµ (x)≤ 1

N

(
gN (x)− h

( 1

N

))
≤ − 1

N
h′+

( 1

N

)
n→∞−→ 0. (A.55)

Similarly, for the right endpoint b, for all N ∈ N we have that

0 ≤
(
dν

dµ
− b+

1

N

) ∣∣∣
{b− 1

N≤
dν
dµ≤b}

≤ 1

N

and therefore for all N ≥ 1
δ0

, in which case h′+
(
b− 1

N

)
> 0, we have in the set {b− 1

N ≤
dν
dµ ≤ b} that

h
(
b− 1

N

)
≤ gN ≤

1

N
h′+
(
b− 1

N

)
+ h
(
b− 1

N

)
and thus ∥∥∥∥gN |{b− 1

N≤
dν
dµ≤b}

− h
(
b− 1

N

)∥∥∥∥
u

≤ 1

N
h′+
(
b− 1

N

)
. (A.56)

But as before, we also have here that

lim
N→+∞

1

N
h′+
(
b− 1

N

)
= 0.
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Indeed, first it is obvious that to prove that limit in (A.56) we can equivalently prove

that limt↑b(b− t)h′+(t) = 0. The calculation of this limit is similar to the one for the left

endpoint of Dh. In particular, as before it follows by the monotone convergence theorem

that ∫ b

b−δ0
h′+(t)dt = lim

ε↓0

∫ b−ε

b−δ0
h′+(t)dt = h(b)− h(b− δ0) ∈ (0,∞).

So, if it is not true that this limit exists and is equal to 0, then since h > 0 in [b− δ0, b),
it follows that there exists a sequence {tn}∞n=0 ⊆ [b− δ0, b) such that

t0 = b− δ0, (b− tn) ≤ 1

2
(b− tn−1), (b− tn)h′+(tn) ≥ ε, ∀n ∈ N.

But this leads to a contradiction, since obviously for all n ∈ N we have that (b− tn) ≤
1
2 (b− tn−1) iff b− tn ≤ tn − tn−1, and thus

+∞ >

∫ b

b−δ0
h′+(t)dt ≥

∫ b

b−δ0

∞∑
n=1

h′+(tn−1)1[tn−1,tn)(t)dt

≥ ε

∞∑
n=1

tn − tn−1

b− tn−1
= ε

∞∑
n=1

1 = +∞.

Therefore limt↑b(b− t)h′+(t) = 0 and so by (A.56) it follows that∥∥∥∥gN |{b− 1
N≤

dν
dµ≤b}

− h
(
b− 1

N

)∥∥∥∥
u

= sup
{b− 1

N≤
dν
dµ≤b}

∣∣∣∣gN − h(b− 1

N

)∣∣∣∣ −→ 0. (A.57)

By (A.55) and (A.57) we easily get the uniform convergence gn −→ h in the set

{0 ≤ dν
dµ ≤ b}. Indeed, let ε > 0. Since h is continuous in [0, b] we can assume that the

number δ0 > 0 in (A.53) has been chosen so that

s, t ∈ (0, δ0) =⇒ |h(t)− h(s)| < ε

2
(A.58)

and

s, t ∈ (b− δ0, b) =⇒ |h(t)− h(s)| < ε

2
. (A.59)

Next, by (A.55) and (A.57) there exists N0 ∈ N, 0 ≥ 1
δ0

, such that

N ≥ N0 =⇒
∥∥∥∥gN |{ dνdµ≤ 1

N }
− h
( 1

N

)∥∥∥∥
u

<
ε

2
. (A.60)

and

N ≥ N0 =⇒
∥∥∥∥gN |{b− 1

N≤
dν
dµ≤b}

− h
(
b− 1

N

)∥∥∥∥
u

<
ε

2
(A.61)

But then for all N ≥ N0 we have that

gN |[ 1
N ,b−

1
N ] ≡ h

(
dν

dµ

) ∣∣∣
[ 1
N ,b−

1
N ]
, (A.62)
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while for all x ∈ {0 ≤ dν
dµ ≤

1
N } we have by (A.58) and (A.60) that∣∣∣∣gN (x)− h

(
dν

dµ
(x)

)∣∣∣∣ ≤ ∣∣∣∣gN (x)− h
(

1

N

)∣∣∣∣+

∣∣∣∣h( 1

N

)
− h

(
dν

dµ
(x)

)∣∣∣∣ < ε

and it similarly follows by (A.59) and (A.61) that∣∣∣∣gN − h(dνdµ
)∣∣∣∣ < ε

in the set {b− 1
N ≤

dν
dµ ≤ b}. Consequently, by the two inequalities above and (A.62) it

follows that

sup
{0≤ dνdµ≤b}

∣∣∣∣gN − h(dνdµ
)∣∣∣∣ < ε

for all N ≥ N0 which proves the uniform convergence gN −→ h in {0 ≤ dν
dν }.

But now, since {gN} converges uniformly to h on the set {0 ≤ dν
dµ ≤ b}, which set by

hypothesis supports the measure µ, it follows that∫
gNdµ =

∫ [
fN ·

dν

dµ
− h+(fN )

]
dµ −→

∫
h

(
dν

dµ

)
dµ = Hh(ν|µ),

which proves the required inequality in this case.

We investigate finally the case in which (A.50) is satisfied but (A.50) is not, since the

other case that’s left, i.e. the one in which (A.50) is satisfied but not (A.50) is proved

similarly.

So let’s suppose (A.50) holds and that (A.50) doesn’t. We define then the sequence

of functions {f̃N} by the formula

f̃N =

{
h′+
(
dν
dµ

)
, {0 ≤ dν

dµ ≤ b−
1
N }

h′+
(
b− 1

N

)
, {b− 1

N ≤
dν
dµ ≤ b}

.

By the proof in the case that (A.47) and (A.48) are satisfied but (A.50) is not, we know

that f̃N takes µ-a.s. finite values and the composition

h+(f̃N ) =

{
h′+
(
dν
dµ

)
· dνdµ − h

(
dν
dµ

)
, {0 ≤ dν

dµ ≤ b−
1
N }(

b− 1
N

)
h′+(b− 1

N )− h
(
b− 1

N

)
, {b− 1

N ≤
dν
dµ ≤ b}

is well defined. So,

g̃N := f̃N
dν

dµ
− h+(f̃N )

=

{
h
(
dν
dµ

)
, {0 ≤ dν

dµ ≤ b−
1
N }(

dν
dµ − b+ 1

N

)
h′+(b− 1

N ) + h
(
b− 1

N

)
, {b− 1

N ≤
dν
dµ ≤ b}

,

and since (A.50) holds it follows by (A.61) that {g̃N} converges uniformly to h
(
dν
dµ

)
in

the set {0 ≤ dν
dµ ≤ b} as N →∞, and therefore

lim
N→+∞

∫ [
f̃N

dν

dµ
− h+(f̃N )

]
dµ = Hh(µ|ν).
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Now, if a′ 6= −∞, then the f̃N ’s are bounded and the above limit proves the claim

in this case. Suppose, on the other hand that a′ = −∞. Since h ≥ 0 and b′ = +∞ it

follows that h(b) > 0. By the continuity of h in b we choose first δ > 0 such that

b− δ < t ≤ b =⇒ |h(b)− h(t)| < h(b)

2
.

Next, given ε > 0 we choose Nε ∈ N, Nε >
1
δ such that∥∥∥∥(g̃Nε − h(dνdµ)

) ∣∣∣
{0≤ dνdµ≤b}

∥∥∥∥
u

<
h(b)

2

and ∫
g̃Nεdµ ≥ [Hh(ν|µ)− ε] ∧ 1

ε
. (A.63)

In the set {0 ≤ dν
dµ ≤ b − 1

Nε
} we obviously have that g̃Nε = h

(
dν
dµ

)
≥ 0 while if

[δ, b− δ] ⊆ [ 1
Nε
, b− 1

Nε
], for all x ∈ {b− 1

Nε
≤ dν

dµ ≤ b} we have that

g̃Nε(x) = h(b) + g̃Nε(x)− h
(dν
dµ

(x)
)
− h(b) + h

(dν
dµ

(x)
)

> h(b)− h(b)

2
− h(b)

2
= 0,

and therefore g̃Nε is non-negative in the set {0 ≤ dν
dµ ≤ b}.

So, if we set fN := f̃Nε1{f̃Nε>−N}
∈ B(M) for all N ∈ N we have by our additional

assumption h+(0) = 0 that

h+(fN ) = h+(f̃Nε)1{f̃Nε>−N}

and therefore

gN := fN
dν

dµ
− h+(fN ) =

(
f̃Nε

dν

dµ
− h+(f̃Nε)

)
1{f̃Nε>−N}

= g̃Nε1{f̃Nε>−N}
≥ 0.

for all N ∈ N. Now since (A.50a) does not hold, in the case a′ = −∞ that we are

investigating, we have by (A.48) that necessarily µ{ dνdµ = 0} = 0 and thus µ{f̃Nε >
−∞} = 1. Therefore {gN} is pointwise increasing to g̃Nε µ-a.s. and therefore by the

monotone convergence theorem we have that

lim
N→+∞

∫
gNdµ −→

∫
g̃Nεdµ.

Therefore there exists N ′ε ∈ N such that∫
gN ′εdµ ≥

(∫
g̃Nεdµ− ε

)
.

But then for the function f := fN ′ε ∈ B(M) we have by (A.63) that∫ [
f
dν

dµ
− h+(f)

]
dµ =

∫
gN ′εdµ ≥ [Hh(ν|µ)− 2ε] ∧

(1

ε
− ε
)
,
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which since ε > 0 was arbitrary proves the variational characterization Hh ≡ H′h of the

generalized relative entropy functionals for bounded functions.

We prove next that in the case that Dh+ = R, equality (A.38) holds, i.e. that we

can restrict the supremum in (A.37) on bounded and continuous functions f ∈ BC(M).

First, by the formula of the right semi-Legendre transform

Dh+ =


R, if b ∈ Dh, b′ <∞
(−∞, b′], if b = +∞, b′ < +∞, limt↑+∞(tb′ − h(t)) < +∞
(−∞, b′), otherwise

and it is obvious that Dh+ = R iff b′ = +∞ or b ∈ Dh. To prove the claim it suffices to

prove that given distributions µ, ν ∈ PM , a function f ∈ B(M) and ε > 0 there exists

f̃ ∈ BC(M) such that∫
f̃dν −

∫
h+(f̃ )dµ ≥

∫
fdν −

∫
h+(f)dµ− ε. (A.64)

So let µ, ν ∈ PM and f ∈ B(M) and let {fn} be a sequence satisfying (A.36) of the

double Lusin lemma. Then by the definition of {fn} we have that∫
fndν −→

∫
fdν

and so if we show that

lim
n↑+∞

∫
h+(fn)dµ −→

∫
h+(f)dµ (A.65)

then by choosing f̃ = fn0
for some n0 large enough, (A.64) is satisfied. But indeed,

h+ is continuous as a convex function with proper domain Dh+ = R, and so obviously

h+(fn) −→ h+(f) pointwise µ-a.s. But h+ is bounded on compact intervals as a con-

tinuous functions and so since |fn(x)| ≤ ‖f‖u for all n ∈ N and all x ∈ M we have

that

‖h+(fn)‖u ≤ sup
−‖f‖u≤t≤‖f‖u

|h+(t)| < +∞

for all n ∈ N. Therefore (A.65) follows by the bounded convergence theorem. This

proves (A.38) in the case that Dh+ = +∞.

We prove next that for measures ν, µ ∈ PM such that ν � µ, (A.38) continues to

hold even when Dh+ 6= R. We note first that since (−∞, b′) ⊆ Dh+ , for all f ∈ B(M)

the function h+(f) is bounded below and so the integral
∫
h+(f)dµ is defined for all

f ∈ B(M) and

h+(f) /∈ L1(µ) ⇐⇒
∫
h+(f)dµ = +∞.

Consequently, functions f ∈ B(M) such that h+(f) /∈ L1(µ) do not contribute in the

definition of H′h and H′′h, since they give
∫
fdν −

∫
h+(f)dµ = −∞ and obviously for

functions f ∈ B(M) such that h+(f) ∈ L1(µ) we have that

µ{f ≤ b′} ≥ µ{f ∈ Dh+} = µ{h+(f) < +∞} = 1. (A.66)
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We separate cases on whether Dh+ = (−∞, b′] or (−∞, b′), b′ < +∞.

Dh+ = (−∞, b′]: Since b′ ∈ Dh+ we have that b′ < +∞ and h+(b′) < +∞, and by (A.66)

we have that

−‖f‖u ≤ f ≤ b′, µ− σ.β..

Let {fn} ⊆ BC(M) be a sequence satisfying (A.36) of the double Lusin lemma for the

function f and the measures µ, ν ∈ PM . We set f̃n := fn ∧ ‖f‖L∞(µ). By the definition

of the L∞-norm we have that µ{|f | ≥ ‖f‖L∞(µ)} = 0 and since ν � µ it follows that

ν{|f | ≥ ‖f‖L∞(µ)} = 0, and thus

‖f‖L∞(ν) = inf
{
C ≥ 0

∣∣ ν{|f | ≥ C} = 0
}
≤ ‖f‖L∞(µ). (A.67)

Then,

−‖f‖u ≤ f̃n(x) ≤ ‖f‖L∞(µ) ≤ b′

for all x ∈M . Also, by the definition of {fn} we have that fn −→ f ν-a.s. and therefore

fn ∧ ‖f‖L∞(ν) −→ f ∧ ‖f‖L∞(ν) = f, ν-σ.β..

It follows by the bounded convergence theorem that

lim
n→+∞

∫
fn ∧ ‖f‖L∞(ν)dν =

∫
fdν.

But by (A.67) we have that∫
fn ∧ ‖f‖L∞(ν)dν ≤

∫
f̃ndν ≤

∫
fndν

for all n ∈ N from where it follows that

lim
n→+∞

∫
f̃ndν =

∫
fdν.

On the other hand,h+ is continuous and bounded on [−‖f‖u, b′] and therefore since

f̃n −→ f µ-a.s. and

sup
n∈N
‖h+(f̃n)‖u ≤ sup

−‖f‖u≤t≤b′
|h+(t)| < +∞

it follows by the bounded convergence theorem that
∫
h+(f̃n)dµ −→

∫
h+(f)dµ.

Dh+ = (−∞, b′) 6= R: By (A.66) we have that −‖f‖u ≤ f < b′ µ-σ.β.. Since b′ /∈ Dh+

we have that limt↑b′ h
+(t) = +∞. Therefore since h is convex there exists δ0 > 0 such

that h+ positive and increasing in [b′−δ0, b′). So we set fδ := f∧(b′−δ) for all δ ∈ (0, δ0).

Since ν � µ we obviously have that ‖f‖L∞(ν) ≤ ‖f‖L∞(µ) ≤ b′ and therefore fδ ↑ f in

L∞(ν) and in L∞(µ) as δ ↓ 0. In particular
∫
fδdν −→

∫
fdν as δ ↓ 0. Furthermore, for

all δ ∈ (0, δ0) we have that∫
h+(fδ)dµ =

∫
{f<b′−δ0}

h+(f)dµ+

∫
{b′−δ0≤f<b′}

h+(fδ)dµ

since obviously f = fδ in the set {f < b′ − δ0} for all δ ∈ (0, δ0). But in the set

[b′ − δ0, b′) the function h+ is positive and increasing and so since {fδ}0<δ<δ0 increases
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to f µ-a.s. as δ decreases to 0, it follows that in the set {b′ − δ0 ≤ f < b′}, the sequence

{h+(fδ)}0<δ<δ0 is increasing to h+(f) µ-a.s. as δ decreases to 0. So by the monotone

convergence theorem we have that

lim
δ↓0

∫
h+(fδ)dµ =

∫
{f<b′−δ0}

h+(f)dµ+ lim
δ↓0

∫
{b′−δ0≤f<b′}

h+(fδ)dµ

=

∫
{f<b′−δ0}

h+(f)dµ+

∫
{b′−δ0≤f<b′}

h+(f)dµ

=

∫
h+(f)dµ.

Therefore, given ε > 0 there exists δ > 0 such that∫
fδdν −

∫
h+(fδ)dµ ≥

∫
fdµ−

∫
h+(f)dµ− ε

Byt he double Lusin lemma now, there exists a sequence {fn}∞n=1 ⊆ BC(M) such that

−‖fδ‖u ≤ fn ≤ sup
x∈M

fδ(x) ≤ b′ − δ

and such that fn −→ fδ in L1(µ) and L1(ν) and µ-a.s. and ν-a.s.. Thus, since h+

is continuous and bounded in [−‖fδ‖u, b′ − δ] it follows by the bounded convergence

theorem that

lim
n→+∞

{∫
fndν −

∫
h+(fn)dµ

}
=

∫
fδdν −

∫
h+(fδ)dµ.

Consequently, given ε > 0 we can find a continuous function f̃ ∈ BC(M) such that∫
f̃dν −

∫
h+(f̃ )dµ ≥

∫
fdν −

∫
h+(f)dµ− ε,

which completes the proof of (A.38) in the case that ν � µ.

We suppose finally that Dh+ 6= R. Then obviously b = +∞ and (A.39) holds. Let

µ ∈ PM be such that suppµ = M . It remains to prove that for all ν ∈ PM (A.40) is

satisfied. Here we consider separate cases in whether Dh+ = (−∞, b′] or (−∞, b′).
Dh+ = (−∞, b′]: As we have seen, function f ∈ BC(M) such that f /∈ L1(µ) do not

contribute to the supremum in the definition of H′′h and so according to (A.66) we can

restrict the supremum in (A.40) to functions f ∈ BC(M) such that f ≤ b′ < +∞ µ

σ.β.. But for any f ∈ BC(M) such that f ≤ b′ < +∞ µ a.s. we have by the continuity

of f that f ≤ b′ everywhere on suppµ = M and therefore we can write that

H′′h(ν|µ) = sup
f∈BC(M), f5b′

{∫
fdν −

∫
h+(f)dµ

}
.

Therefore, if ν = νac + νs is the Radon-Nikodym decomposition of ν with respect to µ

with νac � µ and νs ⊥ µ then

H′′h(ν|µ) = sup
f∈BC(M), f5b′

{∫
fdνac +

∫
fdνs −

∫
h+(f)dµ

}
(∗)
≤ sup

f∈BC(M), f5b′

{∫
fdνac −

∫
h+(f)dµ

}
+ sup
f∈BC(M), f5b′

∫
fdνs

= H′′h(νac|µ) + b′νs(M).
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But as we have seen, equality (A.38) holds for measures ν, ν ∈M+(M) such that ν � µ

and therefore H′′h(νac|µ) = Hh(νac|µ). It follows that

H′′h(ν|µ) ≤ Hh(νac|µ) + b′νs(M) = Hh(ν|µ), (A.68)

which prove one of the inequalities of (A.40), with (∗) being the only inequality that

appears.

Let now Ms ⊆ M be a Borel set such that νs(M \Ms) = 0 and µ(Ms) = 0. For all

f ∈ BC(M) such that f ≤ b′ in M we consider the function

f̃ := b′1Ms
+ f1MC

s
= (b′ − f)1Ms

+ f ∈ B(M).

Then obviously f = f̃ µ-a.s. and consequently also f = f̃ νac-a.s., and therefore∫
f̃dν −

∫
h+(f̃)dµ =

∫
fdνac +

∫
f̃dνs −

∫
h+(f)dµ

=

∫
fdνac −

∫
h+(f)dµ+ b′νs(M).

So, if given ε > 0 we pick fε ∈ BC(M) so that fε ≤ b′ and

Hh(νac|µ) = H′′h(νac|µ) ≤
∫
fεdνac −

∫
h+(fε) +

ε

2

then ∫
f̃εdν −

∫
h+(f̃ε)dµ =

∫
fεdνac −

∫
h+(fε)dµ+ b′νs(M)

≥ Hh(νac|µ) + b′νs(M)− ε

2
.

Therefore if we prove that there exists a sequence {fn}n∈N ⊆ BC(M) such that∫
fndν −

∫
h+(fn)dµ −→

∫
f̃εdν −

∫
h+(f̃ε)dµ, (A.69)

then by choosing n0 ∈ N large enough so that∫
fn0dν −

∫
h+(fn0)dµ ≥

∫
f̃εdν −

∫
h+(f̃ε)dµ−

ε

2

we get that

H′′h(ν|µ) ≥
∫
fn0

dν −
∫
h+(fn0

)dµ ≥ Hh(νac|µ) + b′νs(M)− ε = Hh(ν|µ)− ε,

which since ε > 0 was arbitrary proves and the other inequality of (A.40). To complete

the proof of (A.40) in the case that Dh+ = (−∞, b′] ⊆ R it remains to prove that there

exists a sequence {fn}n∈N ⊆ BC(M) such that (A.69) holds. By the double Lusin

lemma for 1Ms there exists a sequence {gn}n∈N ⊆ BC(M) such that gn −→ 1Ms µ-a.s.

and ν-a.s. and sequences {Kn}n∈N and {An}n∈N of compact and open subset of M ,

respectively, such that Kn ⊆Ms ⊆ An, 1Kn ≤ gn ≤ 1An and∫
|gn − 1Ms |dµ ∨

∫
|gn − 1Ms |dν ≤ µ(An \Kn) ∨ ν(An \Kn) ≤ 1

n
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for every n ∈ N. We define the sequence {fn} ⊆ BC(M) by the formula

fn := (b′ − fε)gn + fε

for all n ∈ N. Then obviously fn −→ fε µ-a.s. and ν-a.s. as n→ +∞ and

−‖fε‖u ≤ fε ≤ fn ≤ b′.

Therefore by the bounded convergence theorem we have that
∫
fndν −→

∫
fεdν, and

since

sup
n∈N
‖h+(fn)‖u ≤ sup

−‖fε‖u≤t≤b′
|h+(t)| < +∞

we have by the bounded convergence theorem again that∫
h+(fn)dµ −→

∫
h+(f)dµ.

This proves (A.69) and completes the proof of (A.40) in the case Dh+ = (−∞, b′].
Dh+ = (−∞, b′) 6= R: Firstly, in this case also the supremum in the definition of H′′h
does not change of it is restricted to functions f ∈ BC(M) such that h+(f) ∈ L1(µ).

But since in this case b′ /∈ Dh+ , we have that f < b′ µ-a.s. for every f ∈ BC(M) such

that h+(f) ∈ L1(µ). So inequality (A.68) is also true in this case. So let ε > 0. We

want to find fε ∈ BC(M) such that∫
fεdν −

∫
h+(fε)dµ ≥ Hh(ν|µ)− ε. (A.70)

We write again ν = νac + νs for the Radon-Nikodym decomposition of ν with respect to

µ and pick initially f ∈ BC(M) such that∫
fdνac −

∫
h+(f)dµ ≥ Hh(νac|µ)− ε

4
.

In particular h+(f) ∈ L1(µ) and therefore f < b′ µ-a.s.. Since h+(b′) = +∞ and h+

is convex, h+ is increasing in some interval (b′ − δ0, b′), δ0 > 0. Since f < b′ µ-a.s. the

sequence fn := f∧(b′− 1
n ) ∈ BC(M), n ∈ N, increases µ-a.s., and therefore also νac-a.s..

So
∫
fndνac −→

∫
fdνac and if n0 is such that 1

n0
< δ0 then the sequence {h+(fn)}n≥n0

is also increasing and therefore
∫
h+(fn)dµ −→

∫
h+(f)dµ by the monotone convergence

theorem. So there exists n1 ≥ n0 such that∫
fndνac −

∫
h+(fn)dµ ≥ Hh(νac|µ)− ε

3

for all n ≥ n1. We pick next a Borel subset Ms ⊆M such that νs(M \Ms) = 0 and for

every n ∈ N we set

f̃n :=
(
b′ − 1

n

)
1Ms + fn1Mc

s
=
(
b′ − 1

n
− fn

)
1Ms + fn ∈ B(M).
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Then obviously fn ≤ f̃n ≤ b′ − 1
n and since νs ⊥ µ we have that f̃n = fn µ-a.s. for all

n ∈ N and therefore for all n ≥ n1 we have that∫
f̃ndν −

∫
h+(f̃n)dµ =

∫
f̃ndνac +

∫
f̃ndνs −

∫
h+(f̃n)dµ

=

∫
fndνac −

∫
h+(fn)dµ+

(
b′ − 1

n

)
νs(Ms).

≥ Hh(νac|µ) +
(
b′ − 1

n

)
νs(Ms)−

ε

3
.

By choosing next n2 ≥ n1 such that νs(Ms)/n2 ≤ ε/6 we have that∫
f̃n2

dν −
∫
h+(f̃n2

)dµ ≥ Hh(νac|µ) + b′νs(Ms)−
ε

2
.

But since

−‖f‖u ≤ fn2
≤ f̃n2

≤ b′ − 1

n2

and b′− 1
n2
∈ Dh+ we have moved away from the point b′ h+ and exactly as in the case

where b′ ∈ Dh+ we can approximate f̃n2 µ and ν-a.s. and in L1(ν) and L1(µ) by some

continuous function fε ∈ BC(M) such that∫
fεdν −

∫
h+(fε)dµ ≥

∫
f̃n2

dν −
∫
h+(f̃n2

)dµ− ε

2
.

So fε is the required function in(A.70), which completes the proof. �

The full solution of the variational problem

sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
, ν, µ ∈ PM

is given by the relative h-entropy functional Hh : PM × PM −→ [0,+∞] given by the

formula

Hh(ν|µ) =

∫
h
(dνac|µ

dµ

)
dµ+

[
lim
t↑+∞

h(t)

t

]
νs|µ(suppµ) +∞ · νs(suppµc), (A.71)

where of course ν = νac|µ + νs|µ is the Radon-Nikodym decomposition of ν with respect

to µ with νac|µ � µ and νs|µ ⊥ µ and we make the usual convention 0 · (+∞) = 0 of

integration theory.

Proposition A.3.4 Let h : R −→ [0,∞] be a lower semicontinuous and convex func-

tional with non-trivial proper domain Dh ⊆ [0,∞). Then

Hh(ν|µ) = sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
,

where Hh is the relative h-entropy functional defined in (A.71).
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Proof It is easy to see that

sup
t>0

h(t)

t
=

{
+∞, if Dh+ = R,

b′ := supDh+ , if Dh+ 6= R

and therefore by the previous proposition it follows that if suppµ = M then the functional

Hh(·|µ) : PM −→ [0,∞] satisfies

Hh(ν|µ) =

∫
h
(dνac|µ

dµ

)
dµ+

[
lim
t↑+∞

h(t)

t

]
νs|µ(M)

for all ν ∈ PM , where of course ν = νac|µ + νs|µ is the Radon-Nikodym decomposition

of ν with respect to µ.

So it remains to prove that if b′ < +∞, suppµ 6= M and ν 6� µ with ν(suppµc) > 0,

then

H′′h(ν|µ) := sup
f∈BC(M)

{∫
fdν −

∫
h+(f)dµ

}
= +∞.

Since ν is a finite Borel measure in a metric space and νµ := ν(suppµc) > 0 there exists

a closed set F ⊆ suppµc such that ν(F ) ≥ νµ/2 > 0. But then the sets F and suppµ are

closed and disjoint subsets of the metric space M and therefore for every N ∈ N there

exists a continuous function fN : M −→ [0, N ] such that f |suppµ ≡ 0 and f |F ≡ N . So,

by making again the additional assumption h+(0) = 0, we have that for every N ∈ N

H′′h(ν|µ) ≥
∫
fNdν −

∫
h+(fN )dµ =

∫
fNdνs ≥ Nνs(F ).

But νs(F ) > 0 and therefore by taking the limit as N ↑ ∞ it follows thatH′′h(ν|µ) =∞.�

Proposition A.3.5 (Pinsker’s Inequality) For every µ, ν ∈ PM the relative entropy

H : PM −→ [0,+∞] satisfies the inequality

‖ν − µ‖2TV ≤ 2H(ν|µ),

where ‖ · ‖TV is the total variation norm ‖ν − µ‖TV = |ν − µ|(M).

Proof The mapping

L1(µ) 3 f 7→ fdµ ∈MTV (M)

is an isometric embedding for all µ ∈M+(M), and therefore if ν � µ we have that

‖ν − µ‖TV =

∥∥∥∥(dνdµ − 1

)
dµ

∥∥∥∥
TV

=

∫ ∣∣∣∣dνdµ − 1

∣∣∣∣ dµ.
For the function h(t) = t log t− t+ 1 we have that h(1) = 0, h′(t) = log t and h′′(t) = 1

t .

Therefore by the integral representation of the remainder in the first order Taylor’s

theorem for h,

h(t) =

∫ t

1

(t− s)
s

ds = (t− 1)2

∫ 1

0

1− s
1 + (t− 1)s

ds.
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Therefore by setting f := dν
dµ we have by the Cauchy-Schwartz inequality that

‖ν − µ‖2TV =

(∫
|f − 1|dµ

)2

= 4

(∫ 1

0

∫
|f − 1|(1− s)dµds

)2

= 4

(∫ 1

0

∫ √
1− s

1 + (f − 1)s
|f − 1|

√
(1− s)(1 + (f − 1)s)dµds

)2

≤ 4

∫ 1

0

∫
|f − 1|2(1− s)
1 + (f − 1)s

dµds

∫ 1

0

∫
(1− s)

(
1 + (f − 1)s

)
dµds

= 4

∫
h(f)dµ

∫ 1

0

(1− s)ds = 2H(ν|µ),

and the inequality is proved. �

Another useful property of relative entropy is the following super-additivity property

with respect to the marginal distributions in product spaces.

Proposition A.3.6 Let M := M1 ×M2 be the Cartesian product of the polish spaces

Mi, i = 1, 2, let µi ∈ PMi, i = 1, 2 and let πi : M −→ Mi be the natural projections.

Then for every ν ∈ PM we have that

H(ν|µ1 ⊗ µ2) ≥ H(π1
∗ν|µ1) +H(π2

∗ν|µ2),

with equality in the case that ν is also a product measure.

Proof Set µ := µ1 ⊗ µ2. If H(ν|µ) = +∞ we have nothing to prove, so we suppose

that H(ν|µ) < +∞, in which case in particular we have that ν � µ. Then, necessarily

ν1 � µ1, since if µ1(A1) = 0 for some measurable set A1 ⊆ M1, then µ(A1 ×M2) = 0

and therefore ν1(A1) = ν(A1 ×M2) = 0. Similarly we get that ν2 � µ2. Furthermore,

as we will show, if {νx}x∈M1
is the disintegration of ν with respect to its first marginal

ν1, i.e. if {νx}x∈M1 is the unique ν1-a.s. defined family of measures satisfying∫
M1×M2

f(x, y)dν(x, y) =

∫∫
f(x, y)dνx(y)dν1(x), ∀ f ∈ B(M), (A.72)

then

ν1{x ∈M1 | νx(A2) = 0} = 1, ∀ A2 ∈ Nµ2
, (A.73)

where Nµ2
is the set of all Borel sets of zero µ2-measure. Indeed, if some Borel set

A2 ⊆M2 we have that µ2(A2) = 0, then ν2(A2) = 0 since ν2 � µ2, and therefore

0 = ν2(A2) =

∫
νx(A2)dν1(x),

which proves (A.73). Since M2 is a polish space it is logical to expect that we can pass

the ”for every” in (A.73) inside the measure ν1 as an intersection, in order to get

ν1

( ⋂
A2∈Nµ2

{x ∈M1 | νx(A2) = 0}
)

= 1,
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which implies that νx � µ2 ν1-a.s. for all x ∈ M1. As we shall see next, this is indeed

true, at last for x ∈ M1 such that dν1

dµ1
(x) 6= 0. We define a function g : M −→ R+ by

the formula

g(x, y) =


dν
dµ (x,y)
dν1
dµ1

(x)
, dν1

dµ1
(x) 6= 0

0, dν1

dµ1
(x) = 0.

for every (x, y) ∈ M . Then obviously g dν1

dµ1
= dν

dµ1{ dν1dµ1
6=0} and for every f ∈ B(M) we

have that∫∫
f(x, y)g(x, y)dµ2(y)dν1(x) =

∫∫
f(x, y)g(x, y)

dν1

dµ1
(x)dµ2(y)dµ1(x)

=

∫∫
f(x, y)

dν

dµ
1(0,∞)

( dν1

dµ1
(x)
)
dµ2(y)dµ1(x)

=

∫
f(x, y)

dν

dµ
1(0,∞)

( dν1

dµ1
(x)
)
dµ(x, y)

=

∫
f(x, y)1(0,∞)

( dν1

dµ1
(x)
)
dν(x, y).

Consequently, by the uniqueness of {νx}, whenever (A.72) holds, it follows that ν1-almost

for every x ∈M1 for which dν1

dµ1
(x) 6= 0, we have that

dνx = g(x, ·)dµ2.

By the definition of g and the above equality it follows that

dν

dµ
(x, y) =

dν1

dµ1
(x)

dνx
dµ2

(y)

µ-almost for every (x, y) ∈M .

Therefore, by the definition of relative entropy and the above expression of the Radon-

Nikodym derivative dν
dµ we have that

H(ν|µ) =

∫
log

dν

dµ
dν =

∫
log

dν1

dµ1
(x)dν(x, y) +

∫
log

dνx
dµ2

(y)dν(x, y)

=

∫
log

dν1

dµ1
(x)dν1(x) +

∫∫
log

dνx
dµ2

(y)dνx(y)dν1(x)

= H(ν1|µ1) +

∫
H(νx|µ2)dν1(x)

≥ H(ν1|µ1) +H(ν2|µ2),

where the last inequality follows from the linear convexity of H,

H
(∫

νxdν1(x)

∣∣∣∣µ2

)
≤
∫
H(νx|µ2)dν1(x),

for all {νx}x∈M1 ⊆ PM2, ν1 ∈ PM1, µ2 ∈ PM2. The case of equality is easily verified.

�
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A.3.2 Entropy Production and the Dirichlet Form

In this section we review some basic results on entropy production and the Dirichlet

form in the context of Markov jump processes, as found in [25]

Proposition A.3.7 Let (Pt)t≥0 be a Markov semigroup on the Polish space M admit-

ting an invariant measure π ∈ PM . Then for any initial distribution µ ∈ PM the

relative entropy of the push forward µPt, t ≥ 0, with respect to the invariant measure π

does not increase in time, i.e.

H(µPt|π) ≤ H(µ|π), ∀ t ≥ 0. (A.74)

Consequently, if H(µ|π) <∞ then µPt � π for all t ≥ 0.

If in addition M is countable and (Pt)t≥0 is irreducible then the equality

H(µPt|π) = H(µ|π) < +∞

holds for some t > 0 iff µ = π.

Proof If H(µ|π) =∞ there is nothing to prove, so we assume that H(µ|π) < +∞ and

fix t ≥ 0. Then µ� π and for any bounded function f ∈ B(M) we have that∫
fdµPt =

∫∫
fdP xt dµ(x) =

∫∫
dµ

dπ
(x)f(y)dP xt (y)dπ(x)

=

∫
dµ

dπ
(x)f(y)dπ[δ ⊗ Pt](x, y). (A.75)

Since π is (Pt)-invariant the distribution π0,t := π[δ ⊗ Pt] ∈ P(M ×M), t ≥ 0, has left

and right marginals equal to π and by the disintegration theorem we can write∫
fdπ0,t =

∫
f(x, y)dQyt (x)dπ(y), ∀ f ∈ B(M ×M),

for a unique π-a.s. defined Markov kernel Qt ∈ L(π;PM). Obviously, the Markov

operator induced by Qt on L2(π), i.e. the operator Qt : L2(π) −→ L2(π) given by

Qtf(y) =

∫
fdQyt , y ∈M

is the adjoint P ∗t of the induced Markov operator Pt : L2(π) −→ L2(π), since

〈f,Qtg〉π =

∫
f(y)Qtg(y)dπ(y) =

∫∫
g(x)f(y)dQyt (x)dπ(y)

=

∫∫
g(x)f(y)dP xt (y)dπ(x) =

∫
g(x)Ptf(x)dπ(y) = 〈Ptf, g〉π.

Now, according to (A.75) and the definition of Qt = P ∗t we have that∫
fdµPt =

∫ (
Qt
dµ

dπ

)
(y)f(y)dπ(y)
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for all f ∈ B(M), which implies that µPt is absolutely continuous with respect π with

Radon-Nikodym derivative given by

d(µPt)

dπ
= P ∗t

dµ

dπ
. (A.76)

Since the function h : R+ −→ R given by h(u) = u log u is convex we have by Jensen’s

inequality that

h

(
P ∗t

dµ

dπ

)
= h

(∫
dµ

dπ
dP ∗t

)
≤
∫
h

(
dµ

dπ

)
dP ∗t = P ∗t

[
h

(
dµ

dπ

)]
and so we have that

H(µPt|π) =

∫
h

(
P ∗t

dµ

dπ

)
dπ ≤

∫
P ∗t

[
h

(
dµ

dπ

)]
dπ =

∫
h

(
dµ

dπ

)
dπP ∗t . (A.77)

But for all f ∈ B(M) we have that∫
fdπP ∗t =

∫
P ∗t fdπ =

∫
fPt1dπ =

∫
fdπ

and therefore πP ∗t = π, which by (A.77) gives the required inequality H(µPt|π) ≤
H(µ|π).

We suppose next that M is countable and (Pt) is irreducible and investigate the case

of equality. Obviously (A.74) holds as a finite equality for t > 0 iff

h

(
P ∗t

dµ

dπ

)
= P ∗t

[
h

(
dµ

dπ

)]
, π − a.s..

But since h is strictly convex, this holds iff

dµ

dπ
≡ const., (P ∗t )y-a.s., π-a.s. ∀y.

But if (Pt) is irreducible this implies that µ = π. Indeed, given x, y ∈ {u ∈M |π(u) > 0}
we have that there exist constants cx, cy ∈ R such that

dµ

dπ
≡ cx, (P ∗t )x-a.s. and

dµ

dπ
≡ cy, (P ∗t )y-a.s.. (A.78)

Since P ∗t is the adjoint of Pt in L2(π) for all x, y ∈M we have that,

π(y)P ∗t (y, x) = 〈1{y}, P ∗t 1{x}〉π = 〈Pt1{y},1{x}〉π = π(x)Pt(x, y)

and since (Pt) is irreducible we have that Pt(z, x) ∧ Pt(z, y) > 0 for all t ≥ 0 and all

x, y, z ∈M . So if we choose z ∈M such that π(z) we have that P ∗t (x, z) ∧ P ∗t (y, z) > 0

and therefore by (A.78) we get

dµ

dπ
(x) = cx =

dµ

dπ
(z) = cy =

dµ

dπ
(y).

Therefore dµ
dπ is π-a.s. constant, and then necessarily dµ

dπ = 1 π-a.s., which gives µ = π as

required, and completes the proof. �
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In what follows we restrict our attention to Markov jump processes on a countable

state space M . So let (Pt)t≥0 be the Markov semigroup on M corresponding to the

Markov jump process defined by a transition kernel P : M −→ PM be and a jump rate

function λ : M −→ R+ bounded on each communication class of the kernel p. In this

way, if {Mi}mi=1, m ∈ N ∪ {∞}, is the partition of M into the communication classes of

p, then λ satisfies

λ̄i := sup
x∈Mi

λ(x) < +∞, ∀ i = 1, . . . ,m.

The generator L : L(M) −→ L(M) of (Pt), given by

Lf(x) =
∑
y∈M

[f(y)− f(x)]λ(x)p(x, y)

defines bounded linear operators Li : B(Mi) −→ B(Mi) for all i = 1, . . . ,m with norms

‖Li‖ ≤ 2λ̄i, since for all f ∈ B(Mi), x ∈Mi we have that

|Lif(x)| ≤
∑
y∈Mi

|f(y)− f(x)|λ(x)p(x, y) ≤ 2λ̄i‖f‖u,

and obviously for all f ∈ B(M) we have that

Lf =

m∑
i=1

Li(f |Mi)1Mi .

Furthermore, if π is an invariant measure then dπi := 1Mi
dπ is an invariant measure for

all i = 1, . . . ,m and the operators Li induce bounded operators Li : L2(πi) −→ L2(πi).

In this context by saying the adjoint of L in L2(π) we mean the operator L∗ : L(M) −→
L(M) given by

L∗f =

m∑
i=1

L∗i (f |Mi
)1Mi

for all functions f : M −→ R. As we saw in (A.76), given a Markov semigroup (Pt)

the time evolution ft := dµPt
dπ , t ≥ 0, of the density f := dµ

dπ of µ with respect to a

(Pt)-invariant measure π, is given by ft = P ∗t f , t ≥ 0, where P ∗t is the adjoint operator

of the Markov operator Pt : L2(π) −→ L2(π). Therefore, if we recall that since π is

(Pt)-invariant the adjoint L∗ of L is the generator of the adjoint semigroup (P ∗t )t≥0, we

see that (ft)t≥0 is a solution of the initial value problem{
f0 = dµ

dπ

∂tft = L∗ft

This observation allows us to deduce a simple estimate on the time derivative of the

entropy.

Proposition A.3.8 Let (Pt)t≥0 be the Markov jump semigroup corresponding to some

skeleton kernel p : M −→ PM and some jump rate function λ : M −→ R+ bounded on

the communication classes Mi, i = 1, . . . ,m, m ∈ N ∪ {∞}, of (Pt). Let λ̄ : M −→ R+

the function given by λ̄ =
∑m
i=1 λ̄i1Mi

and suppose that (Pt) possesses an invariant
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measure π ∈ PM such that λ̄ ∈ L1(π). Then for every distribution µ ∈ PM such that

λ̄ ∈ L1(µ) and H(µ|π) ∨Hλ̄(µ|π) < +∞, where Hλ̄(µ|π) is the weighted entropy

Hλ̄(µ|π) :=

∫
λ̄
dµ

dπ
log

dµ

dπ
dπ

we have that

H(µPt+s|π)−H(µPt|π) =

∫ t+s

t

〈fr, L log fr〉πdr ≤ 2

∫ t+s

t

〈
√
fr, L

√
fr〉πdr,

where ft := dµPt
dπ , t ≥ 0, is the density of µPt with respect to π. Moreover, for all t ≥ 0

we have that

〈
√
ft, L

√
ft〉π = −1

2

∑
x,y∈M

[√
ft(y)−

√
ft(x)

]2
L(x, y)π(x). (A.79)

Proof By the definition of the relative entropy and the remark prior to the statement

of the proposition we have that

H(µPt+s|π)−H(µPt|π) =

∫∫ t+s

t

∂s[fr log fr]drdπ =

∫∫ t+s

t

(1 + log fr)L
∗frdrdπ

Let as before M =
⊔m
i=1Mi, m ∈ N∪{∞}, be the decomposition of M in communication

classes. For all y ∈Mi we have that

|L∗fr(y)| ≤
∑
x∈M
|fr(x)− fr(y)|L∗(y, x) ≤ λ(y)fr(y) +

∑
x∈M :x 6=y

fr(x)L∗(y, x)

≤ λ̄ifr(y) + λ(y)
∑
x∈M

fr(x)p∗(y, x)

where p∗ is the adjoint of p in L2(π) and so

|L∗fr(y)| ≤
m∑
i=1

λ̄i

(
fr(y) + 1{λ6=0}(y)

∑
x∈Mi

fr(x)p∗(y, x)

)
1Mi

(y)

= λ̄(y)fr(y) + λ(y)
∑
x∈M

fr(x)p∗(y, x).

Therefore for all s ≥ 0 we have that

|L∗fr| ≤ λ̄fr + λp∗fr

Note that since Mi are the communication classes of (Pt) we have that P xs (Mi) = 1Mi(x)

for all s > 0, x ∈M and i = 1, . . . ,m. So since λ̄ ∈ L1(µ) we have that∫
λ̄frdπ =

∫
λ̄dµPs =

∫∫
λ̄(y)dP xt (y)dµ(x) =

∫ m∑
i=1

λ̄iP
x
t (Mi)dµ(x)

=

∫ m∑
i=1

λ̄i1Mi
(x)dµ(x) =

∫
λ̄dµ < +∞.
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Therefore the non-negative function λ̄fr is in L1(π) and likewise∫
λp∗frdπ =

∑
y∈M

λ(y)
∑
x∈M

fr(x)p∗(y, x)π(y) =
∑
y∈M

∑
x∈M

fr(x)λ(x)p(x, y)π(x)

=
∑
x∈M

λ(x)fr(x)π(x)
∑
y∈M

p(x, y) ≤
∑
x∈M

λ(x)fr(x)π(x)

≤
∫
λ̄frdπ =

∫
λ̄dµ < +∞

for all s ≥ 0. This proves that |L∗fr| is in L1(π)-integrable function with∫
|L∗fr|dπ ≤ 2

∫
λ̄dµ.

Therefore, by Tonelli’s theorem we have that∫∫ t+s

t

|L∗fr|drdπ ≤
∫ t+s

t

2

∫
λ̄dµdr = 2s

∫
λ̄dµ < +∞

which allows us to apply Fubini’s theorem to obtain∫∫ t+s

t

L∗frdrdπ =

∫ t+s

t

∫
L∗frdπdr = 0

since L∗fr ∈ L1(π), L∗ is the adjoint of the generator L and π is an invariant distribution.

We have proved thus so far that

H(µPt+s|π)−H(µPt|π) =

∫∫ t+s

t

(L∗fr) log frdrdπ. (A.80)

But

(L∗fr) log fr(y) = log fr(y)
∑
x∈M

L∗(y, x)fr(x)

=
∑

x∈M,x6=y

L∗(y, x)fr(x) log fr(y)− λ(y)fr(y) log fr(y)

= λ(y)p∗fr(y) log fr(y)− λ(y)fr(y) log fr(y) (A.81)

Now, if we denote by h̃ the function h̃(u) := h(u)− u+ 1 = u log u− u+ 1, u ≥ 0, then

we have that

λ̄h̃(f0) = λ̄h(f0)− λ̄f0 + λ̄.

Since by our assumptions λ̄ ∈ L1(µ) ∩ L1(π) and

−1

e

∫
λ̄dπ ≤

∫
λ̄h(f0)dπ = Hλ̄(µ|π) < +∞,

we have that λ̄h̃(f0) = λ̄h(f0)− λ̄f0 + λ̄ ∈ L1(π) and therefore

H̃λ̄(µ|π) :=

∫
λ̄h̃(f0)dπ < +∞.
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We shall show that the weighted entropy H̃λ̄(µPr|π) does not increase with respect to

time r ≥ 0. Indeed, since h̃ is convex and non-negative, if we set dπi := 1Mi
dπ, we have

by Jensen’s inequality and the monotone convergence theorem if necessary that

H̃λ̄(µPr|π) =

∫
λ̄h̃(P ∗r f0)dπ ≤

∫
λ̄P ∗r [h̃(f0)]dπ =

m∑
i=1

λ̄i

∫
Mi

P ∗r [h̃(f0)]dπ

=

m∑
i=1

λ̄i

∫
P ∗r [h̃(f0)]dπi =

m∑
i=1

λ̄i

∫
h̃(f0)dπiP

∗
r

=

m∑
i=1

λ̄i

∫
h̃(f0)dπi =

∫
λ̄h̃(f0)dπ = Hλ̄(µ|π).

Therefore for all r ≥ 0 we have that

0 ≤
∫
λ̄h̃(fr)dπ = H̃λ̄(µPr|π) ≤ H̃λ̄(µ|π) < +∞

which since for all r ≥ 0 we have λ̄h(fr) = λ̄h̃(fr) + λ̄fr − λ̄ and λ̄fr − λ̄ ∈ L1(π), gives

us that λ̄h(fr) ∈ L1(π) for all r ≥ 0. This proves that the second term in the right hand

side of (A.81) is in L1(π) with

‖λh(fr)‖L1(π) ≤ Hλ̄(µ|π) +

∫
λ̄d(µ+ π).

Consequently, by Tonelli’s theorem we have that∫∫ t+s

t

|λfr log fr|drdπ =

∫ t+s

t

∫
|λh(fr)|dπdr

≤ s

[
Hλ̄(µ|π) +

∫
λ̄d(µ+ π)

]
< +∞. (A.82)

For the other term we note that by the inequality

uυ ≤ eυ + u log u− u, ∀ u ≥ 0, υ ∈ R,

we have that

λ · (p∗fr) · log fr ≤ λfr + λ(p∗fr) log(p∗fr)− λp∗fr.

Now, obviously λfr − λp∗fr is in L1(π) and

−∞ < −1

e

∫
λdπ ≤

∫
λ(p∗fr) log(p∗fr)dπ ≤

∫
p∗[h(fr)]λdπ

∗
=

∫
λh(fr)dπ < +∞,

where equality (∗) follows from the fact that π is (Pt)-invariant iff the measure dπλ :=

λdπ is invariant for the skeleton kernel p. Therefore the function λp∗fr log fr is bounded

above by some L1(π)-function and consequently its positive part is in L1(π), with∫ (
λp∗fr log fr

)+
dπ ≤

∫ ∫
λ|h(fr)|dπ ≤ Hλ̄(µ|π) +

∫
λ̄d(µ+ π) < +∞

for all r ≥ 0. Therefore the positive part of

[t, t+ s]×M 3 (r, y) 7→ λ(y)p∗fr(y) log fr(y)
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is in L1(1[t,t+s](r)dr ⊗ π). Together with (A.81) and the fact that the function

[t, t+ s]×M 3 (r, y) 7→ λ(y)fr(y) log fr(y)

is in L1(1[t,t+s](r)dr⊗ π) by (A.82), this allows us to apply Fubini’s theorem and inter-

change the order of integration in (A.80) in order to obtain that

H(µPt+s|π)−H(µPt|π) =

∫ t+s

t

〈L∗fr, log fr〉πdr =

∫ t+s

t

〈fr, L log fr〉πdr,

as required, where the last equality holds due to the fact that L∗ is the adjoint of L in

L2(π). To complete the proof of the first claim of this proposition it remains to prove

that for all r ≥ 0 we have that

fr · L log fr ≤ 2
√
fr · L

√
fr,

and indeed, by the elementary inequality

a[log b− log a] ≤ 2
√
a[
√
b−
√
a], ∀ a, b ≥ 0,

we have that

fr(x)L log fr(x) = fr(x)
∑
y∈M

[log fr(y)− log fr(x)]λ(x)p(x, y)

≤ 2
√
fr(x)

∑
y∈M

[
√
fr(y)−

√
fr(x)]λ(x)p(x, y)

= 2
√
fr(x) · L

√
fr(x).

It remains to prove that (A.79). Since L∗ is the adjoint of L in L2(π) we have that

2〈
√
fr, L

√
fr〉π = 〈

√
fr, L

√
fr〉π + 〈

√
fr, L

∗
√
fr〉π

=
∑
x,y∈M

√
fr(x)

[√
fr(y)−

√
fr(x)

]
L(x, y)π(x)

+
∑
x,y∈M

√
fr(y)

[√
fr(x)−

√
fr(y)

]
L∗(y, x)π(y)

=
∑
x,y∈M

√
fr(x)

[√
fr(y)−

√
fr(x)

]
L(x, y)π(x)

+
∑
x,y∈M

√
fr(y)

[√
fr(x)−

√
fr(y)

]
L(x, y)π(x)

= −
∑
x,y∈M

[√
fr(x)−

√
fr(y)

]2
L(x, y)π(x),

as required. �

In what follows we restrict for simplicity we restrict attention to Markov jump pro-

cess with uniformly bounded jump rates. Then the generator L of any Markov jump

semigroup Pt : M −→ PM , t ∈ R+, defines a bounded operator L : L2(π) −→ L2(π) for

any invariant measure π ∈ PM of (Pt), the Dirichlet form of L is a bounded operator

and the estimate proved for the entropy production can be rephrased in terms of the

Dirichlet form.
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Definition A.3.4 Let (Pt)t∈R+
be a Markov jump transition semigroup with bounded

jump rate function λ : M −→ R+ on the countable state space M with generator L and

let π ∈ PM be an invariant measure of (Pt). Then the Dirichlet form associated to L is

the operator D : L2(π) −→ R given by the formula

D(f) = −〈f, Lf〉L2(π) = −
∑
x∈M

f(x)Lf(x).

Of course the Dirichlet form D is well defined since the generator L is assumed a

bounded operator, and thus

|D(f)| ≤ ‖f‖L2(π)‖Lf‖L2(π) ≤ ‖L‖
∫
f2dπ < +∞.

Proposition A.3.9 The Dirichlet form D : L2(π) −→ R associated to the generator

L : L2(π) −→ L2(π) is positive and given by the formula

D(f) =
1

2

∑
x,y∈M

[
f(y)− f(x)

]2
π(x)L(x, y) ≥ 0. (A.83)

Proof Let f ∈ L2(π). Then since π(x)L(x, y) = π(y)L∗(y, x) for all x, y ∈ M we have

that

2〈f, Lf〉 = 〈f, Lf〉L2(π) + 〈L∗f, f〉L2(π)

=
∑
x,y∈M

f(x) [f(y)− f(x)]L(x, y)π(x)

+
∑
x,y∈M

f(y) [f(x)− f(y)]L∗(y, x)π(y)

= −
∑
x,y∈M

[f(x)− f(y)]
2
π(x)L(x, y) ≤ 0

as required. �

In terms of the Dirichlet form the upper bounded on the entropy production of

proposition A.3.8 states that for every initial distribution µ ∈ PM of finite relative

entropy with respect to the invariant measure π we have that

H(µPt+h|π)−H(µPt|π) ≤ −2

∫ t+h

t

D(
√
fs)ds, (A.84)

where fs := dµPs
dπ , s ∈ R+. The following proposition describes some basic properties of

the Dirichlet form.

Proposition A.3.10 The Dirichlet form D : L2(π) −→ R+ is linearly convex function

and satisfies the following properties:

(a) D(f) = 0 iff f is constant on the positively recurrent communication classes of M .

(b) For any 1-Lipschitz function F : R −→ R we have that

D(F ◦ f) ≤ D(f).
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Proof To prove that D is convex let {fi}∞i=1 ⊆ L2(π) and let (pi)i∈N be any probability

measure on N. By Jensen’s inequality, for each x ∈ RN we have that( ∞∑
j=1

pjxj

)2

≤
∞∑
j=1

pjx
2
j

and therefore

D

( ∞∑
i=1

pifi

)
=

∑
x,y∈M

[ ∞∑
j=1

pjfj(x)−
∞∑
j=1

pjfj(y)

]2

π(x)L(x, y)

=
∑
x,y∈M

[ ∞∑
j=1

pj
[
fj(x)− fj(y)

]]2

π(x)L(x, y)

≤
∑
x,y∈M

∞∑
j=1

pj
[
fj(x)− fj(y)

]2
π(x)L(x, y)

=

∞∑
j=1

pjD(fj).

(a) We suppose first that f is constant on the positively recurrent classes of L, taking

the value cx on the communication class Cx of x ∈ {π 6= 0}. Then by the explicit formula

(A.83) of the Dirichlet form we have that

D(f) =
1

2

∑
x:π(x)6=0

∑
y:L(x,y) 6=0

[
f(y)− f(x)

]2
π(x)L(x, y)

=
1

2

∑
x:π(x)6=0

∑
y:L(x,y) 6=0

[
cx − cx

]2
π(x)L(x, y) = 0.

Conversely suppose that D(f) = 0, let C ⊆ M be a positively recurrent class and let

x ∈ C. Then π(x) > 0 and L(x, y) > 0 for all y ∈ C and it is obvious by the explicit

formula (A.83) of the Dirichlet form that f |C ≡ f(x) is constant on C. Finally (b) also

follows obviously by the explicit formula (A.83) of the Dirichlet form. �

In the case that the invariant measure π ∈ PM is reversible, i.e. when it satisfies

the detailed balance equations, there exists a variational formula for the Dirichlet form

D(f) of non-negative functions f ∈ L2(π).

Proposition A.3.11 For every positive function f ∈ L2(π),

D(f) = sup
h

(
−
〈f2

h
, Lh

〉
L2(π)

)
= − inf

h

∑
x∈M

f2(x)

h(x)
Lh(x)π(x),

where the supremum is taken over all bounded positive functions bounded below by a

strictly positive constant.

Proof We prove first that the supremum in the right hand side is bounded above

by the Dirichlet form D(f). So let h : M −→ R+ be a bounded function such that
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infx∈M h(x) ≥ c for some constant c > 0. We consider the function ψ := h
f 1{f>0} > 0.

Then since the invariant measure π is assumed reversible, the transition probabilities Pt,

t ≥ 0, of the generator L are self-adjoint in L2(π) and therefore〈f2

h
, Pth

〉
L2(π)

= 〈 f
ψ
, Pth

〉
L2(π)

=
〈 f
ψ
, Pt(fψ)

〉
L2(π)

=
1

2

(〈 f
ψ
, Pt(fψ)

〉
L2(π)

+
〈
Pt
f

ψ
, fψ

〉
L2(π)

)
=

1

2

∑
x∈M

f(x)

ψ(x)
Pt(fψ)(x)π(x) +

1

2

∑
x∈M

Pt
f

ψ
(x)f(x)ψ(x)π(x)

=
1

2

∑
x,y∈M

f(x)

ψ(x)
f(y)ψ(y)Pt(x, y)π(x)

+
1

2

∑
x,y∈M

f(y)

ψ(y)
Pt(x, y)f(x)ψ(x)π(x)

=
1

2

∑
x,y∈M

(ψ(y)

ψ(x)
+
ψ(x)

ψ(y)

)
f(x)f(y)Pt(x, y)π(x).

But for all a > 0 we have that a+ 1
a ≥ 2 and therefore

−
〈f2

h
, Pth

〉
L2(π)

≤ −
∑
x,y∈M

f(x)f(y)Pt(x, y)π(x) = −〈f, Ptf〉L2(π)

By adding ‖f‖L2(π) = 〈 f
2

h , h〉L2(π) to both sides of this inequality and dividing by t > 0

we get

〈f
2

h
,
h− Pth

t
〉L2(π) ≤ 〈f,

f − Ptf
t

〉L2(π).

Since we assume the jump rate to be bounded Pth−h
t converges uniformly to Lh and

Ptf−f
t converges to Lf in L2(π) and therefore by taking the limit as t → 0 in the

inequality above we get that

−〈f
2

h
, Lh〉L2(π) ≤ −〈f, Lf〉L2(π) = D(f).

Since h was arbitrary this proves the required inequality.

For the converse inequality we note that in the case that f is admissible in the

supremum, i.e. when it is bounded and bounded below by a positive constant, we can

take h = f and therefore

D(f) = −〈f, Lf〉L2(π) = −
〈f2

f
, Lf

〉
L2(π)

≤ sup
h

(
−
〈f2

h
, Lh

〉
L2(π)

)
.

For the case of general non-negative f ∈ L2(π) we approximate f by a sequence of

admissible functions. So let f ∈ L2
+(π). We set fn := 1

n + f ∧ n for all n ∈ N. Then,

using again the reversibility of π, we can write

−
〈f2

fn
, Lfn

〉
L2(π)

= −1

2

∑
x,y∈M

(f2(x)

fn(x)
fn(y) +

f2(y)

fn(y)
fn(x)

)
L(x, y)π(x)

=
1

2

∑
x,y∈M

(f(y)2

fn(y)
− f(x)2

fn(x)

)(
fn(y)− fn(x)

)
π(x)L(x, y).
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Let Fn : M ×M −→ R, n ∈ N, denote the function

Fn(x, y) =
(f(y)2

fn(y)
− f(x)2

fn(x)

)(
fn(y)− fn(x)

)
.

We note that Fn(x, x) = 0 and

Fn(x, y) −→
[
f(y)− f(x)

]2
=: F (x, y)

for all x, y ∈M . Then if we consider the functions LFn given by

LFn(x) =
∑
y:y 6=x

Fn(x, y)L(x, y) =
∑
y 6=x

(f(y)2

fn(y)
− f(x)2

fn(x)

)(
fn(y)− fn(x)

)
L(x, y)

it follows by Fatou’s lemma that LF ≤ lim infn→∞ LFn. Then we can write

−
〈f2

fn
, Lfn

〉
L2(π)

=
1

2

∑
x∈M

LFn(x)π(x)

and by the explicit formula (A.83) for the Dirichlet form and Fatou’s lemma again,

D(f) =
1

2

∑
x∈M

LF (x)π(x) ≤ lim inf
n→∞

1

2

∑
x∈M

LFn(x)π(x)

= lim inf
n→∞

(
−
〈f2

fn
, Lfn

〉
L2(π)

)
≤ sup
n∈N

(
−
〈f2

fn
, Lfn

〉
L2(π)

)
≤ sup

h

(
−
〈f2

h
, Lh

〉
L2(π)

)
,

as required. �

It often convenient to consider the functional D : L1
+,1(π) −→ R+ defined on the

space

L1
+,1(π) :=

{
f ∈ L1(π)

∣∣∣ f ≥ 0,

∫
fdπ = 1

}
of all L1-densities with respect to π by the formula

D(f) = D(
√
f).

It is a simple consequence of the proposition just proved that the functional D is convex

and lower semi-continuous.
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A.4 Prokhorov’s Theorem in Completely Regular

Submetrizable Hausdorff Topological Spaces

In this chapter we present the extension of the basic results (e.g. the portmanteau and

Prokhorov theorems) on the weak topology of probability measures on polish spaces to

probability measures in completely regular and submetrizable spaces. As it turns out

Prokhorov’s theorem is still valid in this more general case: uniform tightness implies

relative compactness. If in addition the space submetrizable it also implies sequen-

tial relative compactness. The results of topological measure theory of this section are

taken from [29] and [9]. All topological spaces considered in this section will always be

Hausdorff topological spaces. Recall that a topological space M is completely regular

if for every closed subset F ⊆ M and every x ∈ M there exists a continuous function

f : M −→ [0, 1] such that

f |F ≡ 0 and f(x) = 1.

Definition A.4.1 A topological space (M, τ) is called submetrizable if there exists a

continuous (in the product topology) metric d : M ×M −→ R+.

It is easy to see that ifM is submetrizable then any τ -continuous metric dmetrizes the

restriction of the topology τ on every compact subspace K of M . Indeed, let (xα)α∈A be

a net in K d-converging to some x ∈ K. Then d(xα, x) −→ 0 and since K is τ -compact,

there exists a subnet (xαβ )β of (xα)α∈A τ -converging to some y ∈ K. But then by the

continuity of d we have that d(xαβ , y) −→ 0, which implies that x = y and therefore

(xα) τ -converges to x as claimed.

A particular category of completely regular spaces on which we will apply the Prokho-

rov-Le Cam theorem is the category of the duals of Banach spaces equipped with the

w∗-topology. This is possible since every Hausdorff (T1 in fact) topological group is a

completely regular topological space ([21], section III.21, theorem 5). In addition the

w∗-topology on X∗ for separable Banach spaces X is also submetrizable:

Proposition A.4.1 Suppose that X is separable Banach space and let ψ : R+ −→ [0, 1]

be the function ψ(x) = x
x+1 . Then the function w : X∗ ×X∗ −→ R+ given by

w(x∗, y∗) =

d∑
k=1

1

2k
ψ
(∣∣〈xk, x∗ − y∗〉∣∣),

where {xk} ⊆ X is dense sequence in X is a translation invariant metric.

Furthermore, the topology induced on X∗ by the metric w is weaker that the w∗-

topology and metrizes the restriction of the w∗-topology on norm bounded subsets of X∗.

In particular X∗ is submetrizable.

Proof It is obvious that w is a metric and that if x∗a −→ X∗ in the weak topology of

X∗, then x∗a −→ x∗ in the metric w and the topology of the metric w is weaker than the

w∗-topology.

So we have to prove that w metrizes the w∗-topology on norm-bounded subsets of
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X∗. So let B ⊆ X∗ be a a norm bounded subset and let {x∗a}a∈A ⊆ B, x∗ ∈ X∗ such

that w(x∗a, x
∗) −→ 0. We will prove that given x ∈ X we have that

〈x, x∗a〉 −→ 〈x, x∗〉.

Since B is bounded there exists C < +∞ such that

‖x∗‖X∗ ∨ sup
a∈A
‖x∗a‖X∗ ≤ C.

Let now ε > 0. We choose k0 ∈ N such that ‖x− xk0
‖X ≤ ε

3C , and then∣∣〈x, x∗〉 − 〈xk0 , x
∗〉
∣∣ ∨ sup

a∈A

∣∣〈x, x∗a〉 − 〈xk0 , x
∗
a〉
∣∣ ≤ C‖x− xk0‖X ≤

ε

3
.

Next, since w(x∗a, x
∗) −→ 0 we can choose a0 ∈ N such that∣∣〈xk0

, x∗a〉 − 〈xk0
, x∗〉

∣∣ ≤ ε

3
(A.85)

for all a ≥ a0, and then, for all a ≥ a0 we have that∣∣〈x, x∗a〉 − 〈x, x∗〉∣∣ ≤ ∣∣〈x− xk0
, x∗a〉

∣∣+
∣∣〈xk0

, x∗a − x∗)〉
∣∣+
∣∣〈xk0

− x), x∗〉
∣∣

≤ ε

3
+
ε

3
+
ε

3
= ε,

which shows that 〈x, x∗a〉 −→ 〈x, x∗〉 as required and completes the proof. �

We will use the following terminology.

Definition A.4.2 Let µ be a Borel probability measure on a topological space M .

(a) A set A ∈ BM is a called µ-regular if

µ(A) = inf
U⊇A

µ(U)

and µ is called regular if every Borel set is µ-regular. More generally, given any subfamily

F ⊆ BM we say that µ is regular in F if every set F is µ-regular.

(b) A set A ∈ BM is called µ-Radon if

µ(A) = sup
KbA

µ(K),

where the supremum is taken over all compact subsets of A, and µ is called Radon if

every Borel set is µ-Radon.

(c) The probability measure µ is called weakly Radon if it is regular and all open subsets

of M are µ-Radon.

(d) The topological space M is called (weakly) Radon if all Borel probability measures

on M are (weakly) Radon.

Obviously any Radon measure is regular. Furthermore, as usual a Borel probability

measure µ on the topological space M is called tight if

µ(M) = sup
KbM

µ(K).

We will denote by PRM and PtM the spaces of all of all Radon and tight probability

measures, respectively. Obviously, PRM ⊆ PtM
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Proposition A.4.2 Let M be a topological space. Then PtM = PRM iff every compact

subspace of M is a Radon space.

Proof We suppose first that every compact subspace of M is Radon and prove that

PtM ⊆ PRM . So let µ ∈ PtM , B ∈ BM be any Borel subset of M and let ε ∈ (0, 1).

Then since µ is tight, there exists a compact subset K of M such µ(M \K) < ε
2 . By

assumption, the subspace K is a Radon space, and therefore the probability measure

µ̄(·) := 1
µ(K)µ(· ∩ K) ∈ PK is Radon. Therefore there exists a compact subset F of

K ∩B such that µ̄([K ∩B] \ F ) < ε
2µ(K) and for which

µ(B \ F ) ≤ µ([K ∩B] \ F ) + µ(M \K) < ε.

It is easy to see that any compact subset of the space K is compact subset of M , which

since µ(B \ F ) < ε and ε > 0 was arbitrary, proves that µ is Radon.

Conversely, suppose that PtM = PRM , let K ⊆ M be compact and let µ ∈ PK.

The measure µ̄(·) := µ(K ∩ ·) ∈ PM is obviously tight and therefore by assumption it is

Radon. Let now B ∈ BK and ε > 0. Since µ is Radon, there exists a compact subset of

M such that F ⊆ B ⊆ K and µ(B \F ) < ε. Then F is also compact in K, and therefore

µ̄(B \ F ) = µ(B \ F ) < ε. �

Corollary A.4.1 For any submetrizable space (M, τ) it holds that PtM = PRM .

Proof Indeed, since M is submetrizable there exists a continuous metric d on M , which

as we have seen metrizes the restriction of τ on every compact subset K ⊆ M . Conse-

quently, every compact subspace of M is metrizable, thus polish and thus Radon. �

It will be also useful to note that continuous images of Radon measures are Radon

measures.

Proposition A.4.3 Let f : M −→ N be a continuous function between topological

spaces and let µ ∈ PRM be a Radon measure. Then the push-forward measure f∗µ ∈ PY
is Radon.

Proof Indeed, let B ∈ B(Y ) be a Borel subset of Y . Then f−1(B) is a Borel subset of

X and therefore, given ε > 0, there exists a compact subset K ⊆ f−1(B) ⊆ X such that

µ
(
f−1(B) \K) < ε.

Then f(K) ⊆ f
(
f−1(B)

)
⊆ B and since f is continuous the set f(K) is compact in Y

and

f∗µ
(
B \ f(K)

)
= µ

(
f−1(B \ f(K))

)
= µ

(
f−1(B) \ f−1(f(K))

)
≤ µ

(
f−1(B) \K) < ε,

which since B ∈ B(Y ) and ε > 0 were arbitrary proves that f∗µ ∈ PY is Radon. �

Proposition A.4.4 Let M be a completely regular topological space and let µ, ν ∈ PM
be weakly Radon measures, such that∫

fdµ =

∫
fdν, ∀ f ∈ BC(M). (A.86)

Then µ = ν.

317



Proof Since µ, ν are Borel measures, it suffices to prove that µ(A) = ν(A) for every

open set A. But since µ, ν are weakly Radon, for every open A ⊆ M we have that

µ(A) = supKbA µ(K), and likewise for ν, which shows that in order to prove that µ = ν

it suffices to prove that µ(K) = ν(K) for compact subset K of M .

So let K ⊆ M be compact. Since M is completely regular, for every x ∈ M \ K
there exists a function fx : M −→ [0, 1] such that fx(x) = 1 and f |K ≡ 0. We denote

by F (M) the set of all finite subsets of M , define an upwards directed set A given by

A :=
{
α ∈ F (M)|α ∩K = ∅

}
with order the set inclusion, and define the non-decreasing net (fα)α∈A ⊆ C(M ; [0, 1]) ⊆
BC(M) by

fα = max
x∈α

fx.

Obviously fα|K ≡ 0 for every α ∈ A and fα(x) = 1 for all x ∈ α. Consequently,

fα
α−→ 1− 1K pointwise, since given x ∈M \K, for every α ≥ {x} ∈ A we have that

1 ≥ fα(x) ≥ fx(x) = 1

and for every x ∈ K we have that fa(x) = 0 for all α ∈ A. Furthermore, this net is

obviously increasing. In other words 1α ≤ fα ≤ 1−1K for all α ∈ A and 1α −→ 1−1K
pointwise, and ∫

fαdρ ≤ ρ(M \K) (A.87)

for ρ = µ, ν and all α ∈ A.

On the other hand, given ε > 0, for each x ∈M \K we have that fx(x) = 1 > 1− ε
and therefore

M \K ⊆
⋃

x∈M\K

{fx > 1− ε}.

Then, for any compact set F ⊆M \K, the family Uε := ({fx > 1−ε})x∈M\K is an open

covering of F , and so there exist n = n(F,Uε) ∈ N and x1, . . . , xn ∈M \K such that

F ⊆
n⋃
k=1

{fxk > 1− ε}.

Then, for ρ = µ, ν, we have that for all α ≥ αε := {x1, . . . , xn} ∈ A that

ρ(F ) ≤ ρ
( n⋃
k=1

{fxk > 1− ε}
)
≤ ρ
(
{fα > 1− ε}

)
≤ 1

1− ε

∫
fαdρ.

Therefore, since ε > 0 is arbitrary, for fixed F bM \K we have that

ρ(F ) ≤ lim inf
α→∞

∫
fαdρ

and sinceM \K is open and µ, ν are weakly Radon taking the supremum over all F b
M \K, we get that

ρ(M \K) ≤ lim inf
α→∞

∫
fαdρ.
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Together with (A.87) this proves that

ρ(M \K) =

∫
fαdρ, for ρ = µ, ν,

which by assumption (A.86) implies that µ(M \K) = ν(M \K), and thus µ(K) = ν(K)

as required. �

Lemma A.4.1 Let (M, τ) be a completely regular topological space and let f ∈ B(M)

be a bounded function. Then f is lower semicontinuous iff

f = sup
h∈BC(M), h≤f

h. (A.88)

Proof We note first that we can make that additional assumption that f ≥ 0. Indeed,

if m := infx∈M f(x) and the claim holds for non-negative functions, that

f = m+ (f −m) = m+ sup
h∈BC(M), h≤f−m

h = sup
h∈BC(M), h≤f

h.

So in the rest of the proof we assume in addition that f ≥ 0.

Obviously, we only have to prove that

f ≤ sup
h∈BC(M), h≤f

h

So in order to prove the claim it suffices to prove that for arbitrary all x ∈ M we have

that

f(x) ≤ sup
h∈BC(M):h≤f

h(x).

Since we assume f to be ≥ 0 we obviously have that

sup
h∈BC(M), h≤f

h ≥ 0,

and therefore if f(x) = 0 we have nothing to prove. So we fix x ∈M such that f(x) > 0

and let ε > 0 ∈ (0, f(x)/2) be arbitrary. Since f is lower semicontinuous, there exists

an open neighborhood Vx of x such that

f(Vx) ⊆ (f(x)− ε,+∞),

and since M is completely regular, there exists a continuous function hx : M −→
[0, f(x) − ε] such that hx(x) = f(x) − ε and hx|V cx ≡ 0. Then, hx ∈ BC(M) and

0 ≤ hx ≤
[
f(x) − ε]1Vx ≤ f , where the last inequality follows from the choice of the

neighborhood Vx. But then

f(x) = ε+ hx(x) ≤ ε+ sup
h∈BC(M):h≤f

h(x).

So letting ε tend to zero we get that

f(x) ≤ sup
h∈BC(M):h≤f

h(x)

and since x inf−1(0,∞) was arbitrary, this proves the claim. The converse is obvious

and does not require the complete regularity of M . �
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Definition A.4.3 A Borel probability measure µ in a topological space (M, τ) is called

τ -smooth if for any upwards directed family {Uα}α∈A of open sets we have that

µ
( ⋃
α∈A

Uα

)
= sup
α∈A

µ(Uα).

It is easy to see that any weakly Radon measure on a topological space (M, τ) is

τ -smooth. Indeed, let {Uα}α∈A ⊆ τ be an upwards directed family of open sets. We

obviously have that

µ
( ⋃
α∈A

Uα

)
≥ sup
α∈A

µ(Uα).

For the converse inequality, let ε > 0 be arbitrary. Then
⋃
α∈A Uα is open and since µ

is weakly Radon there exists a compact set K ⊆
⋃
α∈A Uα such that

µ

(( ⋃
α∈A

Uα

)
\K

)
< ε,

and therefore

µ
( ⋃
α∈A

Uα

)
≤ µ

(( ⋃
α∈A

Uα

)⋂
K

)
+ ε = µ(K) + ε.

Now, the family {Uα} covers the compact set K, and therefore there exists α1, . . . , αn ∈
A such that K ⊆

⋃n
k=1 Uαk . But since {Uα} is upwards directed, there exist α0 ∈ A

such that
⋃n
k=1 Uαk ⊆ Uα0 , which shows that

µ
( ⋃
α∈A

Uα

)
= µ(K) + ε ≤ µ(Uα0) + ε ≤ sup

α∈A
µ(Uα) + ε,

and proves the claim.

Lemma A.4.2 Let (M, τ) be a topological space and let µ ∈ PM be a τ -smooth measure.

Then, if f := supu∈U u, where U is any upwards directed uniformly bounded family U of

lower semicontinuous functions u : M −→ R, we have that∫
fdµ = sup

u∈U

∫
udµ.

Proof We note first that we can assume in addition that 0 ≤ f(x) < 1 for all x ∈ M .

Indeed, suppose this is true and let

b := inf
x∈M

f(x) ≤ sup
x∈M

f(x) =: B.

Then for any b′ < b, we have f − b′ > 0 and the function f̄ := f−b′
B−b′+1 satisfies

0 < f̄(x) < 1, ∀ x ∈M

and f̄ = supū∈Ū ū where Ū = { u−b′
B−b′+1 |u ∈ U}. Then,∫

fdµ = b′ + (B − b′ + 1)

∫
f̄dµ = b+ (B − b′ + 1) sup

ū∈U

∫
ūdµ = sup

u∈U

∫
udµ.
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So in what follows we assume that f(M) ⊆ (0, 1) and let ε > 0 be arbitrary. We

have to prove that ∫
fdµ ≤ ε+ sup

u∈U

∫
udµ.

For each n ∈ N we have∫
fdµ ≤ 1

n
µ
{

0 < f ≤ 1

n

}
+

2

n
µ
{ 1

n
< f ≤ 2

n

}
+ · · ·+ µ

{n− 1

n
< f ≤ 1

}
=

1

n

n−1∑
k=0

µ
{
f >

k

n

}
=

1

n
+

1

n

n−1∑
k=1

µ
{
f >

k

n

}
.

We fix n > 2/ε. Since f = supu∈U u, we have that {f > k
n} =

⋃
u∈U{u >

k
n} for each

k = 1, . . . , n− 1. But since each u ∈ U is lower semicontinuous, for each k = 1, . . . , n− 1

the set Uku := {u > k
n} is open, and the family Uk := {Uku}u∈U is an upwards directed

family of open sets for each fixed k = 1, . . . , n − 1. Therefore since µ is τ -smooth we

have that

µ
{
f >

k

n

}
= sup
u∈U

µ
{
u >

k

n

}
for all k = 1, . . . , n− 1, and so for each k = 1, . . . , n− 1 we can choose uk ∈ U such that

µ
{
uk >

k

n

}
> µ

{
f >

k

n

}
− ε

2
.

Then, since U is upwards directed, there exists u0 ∈ U such that u0 ≥ u1 ∨ . . . ∨ un−1,

and ∫
fdµ ≤ ε

2
+

1

n

n−1∑
k=1

µ
{
f >

k

n

}
≤ ε

2
+
n− 1

n

ε

2
+

1

n

n−1∑
k=1

µ
{
uk >

k

n

}
≤ ε+

1

n

n−1∑
k=1

µ
{
u0 >

k

n

}
= ε+

1

n

n−1∑
k=1

kµ
{k
n
< u0 ≤

k + 1

n

}
≤ ε+

∫
u0dµ ≤ ε+ sup

u∈U

∫
udµ.

Proposition A.4.5 (The portmanteau theorem) Let (M, τ) be a completely regular

topological space, let (µα)α∈A be a net in PM , and let µ ∈ PM be a τ -smooth mea-

sure. Then the following are equivalent:

(a) µα −→ µ ∈ PM weakly.

(b) For every closed set F ⊆M , lim supα µα(F ) ≤ µ(F ).

(c) For every open set U ⊆M , lim infα µα(U) ≥ µ(U).

(d) For every µ-continuous set A ⊆ M , i.e. for every Borel set A ⊆ M such that

µ(∂A) = 0, it holds that

lim
α
µα(A) = µ(A).

(b ′) For every bounded upper semicontinuous function f : M −→ [−∞,∞),

lim sup
α

∫
fdµα ≤

∫
fdµ.
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(c ′) For every bounded lower semicontinuous function f : M −→ (−∞,∞],

lim inf
α

∫
fdµα ≥

∫
fdµ.

(d ′) For evert bounded µ-a.s. continuous function, limα

∫
fdµα =

∫
fdµ.

Proof We note first that since a Borel set A ⊆ X is closed, open and µ-continuous iff

1A is lower semicontinuous, upper semicontinuous and µ-a.s. continuous respectively, it

follows that (x ′) implies (x), for x = b, c, d. Furthermore, (b) is obviously equivalent

to (c), and (b ′) is equivalent to (c ′). Finally it is obvious that (d ′) implies (a), and

therefore it suffices to prove that (a)=⇒(c,′), (b)∧(c)=⇒(d), and that (d)=⇒(d ′).

(a) =⇒ (c′) Let f : X −→ (−∞,∞] lower semicontinuous and bounded. By lemmas

A.4.1 and A.4.2 we have that∫
fdµ = sup

{∫
hdµ

∣∣∣h ∈ BC(M), h ≤ f
}
.

which as we can easily see implies that lim infα
∫
fdµα ≥

∫
fdµ.

(b)∧ (c) =⇒ (d) We note first that a Borel set A ⊆ X is an µ-continuous set iff µ(Ao) =

µ(A) = µ(A). So if A is an µ-continuous set, by (b) and (c) we have that

µ(Ao) ≤ lim inf µn(Ao) ≤ lim inf µn(A)

≤ lim supµn(A) ≤ lim supµn(A) ≤ µ(A),

which according to the initial remark proves (d).

(d) =⇒ (d′) Let f : X −→ R be a bounded, µ-a.s. continuous function and let ε > 0. Let

M0 ∈ BM be a full measure set, µ(M0) = 1, of continuity points of f and let a, b ∈ R such

that a < f(x) < b for all x ∈ M . For each r ∈ (a, b), we set Fr := {x ∈ X | f(x) = r}.
The family {Fr}r∈(a,b) is a partition of M , and thus for every finite subset I of (a, b) we

have that ∑
r∈I

µ(Fr) = µ
( ⋃
r∈I

Fr

)
≤ 1.

Consequently
∑
r∈(a,b) µ(Fr) ≤ 1 < +∞, and thus the set of all r ∈ (a, b) for which

µ(Fr) > 0, is at most countable. There exists the a partition a = a0 < a1 < · · · < an = b

of the interval (a, b), such that ai − ai−1 < ε, i = 1, . . . , n and µ(Fai) = 0, i = 0, . . . , n.

For each i = 1, . . . , n, we set Ei := f−1
(
[ai−1, ai)

)
and define the simple functions

φ =

n∑
i=1

ai−11Ei , ψ =

n∑
i=1

ai1Ei .

Obviously, φ ≤ f ≤ ψ and ψ − φ ≤ ε. Also, for all i = 1, . . . , n we have that ∂Ei ⊆
Fai−1

∪ Fai ∪ (M \M0), and thus the Ei’s are µ-continuous sets. By (d) it follows that

lim
∫
φdµn =

∫
φdµ lim

∫
ψdµn =

∫
ψdµ. Consequently,∫

fdµ− ε ≤
∫
φdµ ≤ lim inf

n

∫
fdµn ≤ lim sup

n

∫
fdµn

≤
∫
ψdµn ≤

∫
fdµ+ ε,

and since ε > 0 was arbitrary, the claim follows. �
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Corollary A.4.2 Let M be a completely regular topological space and let (µα)α∈A ⊆
PtM be a uniformly tight net converging to some µ ∈ PM . Then µ ∈ PtM is tight.

Proof Indeed, let ε > 0. Since (µα)α∈A is uniformly tight, there exists a compact set

K ⊆M such that

sup
α∈A

µα(M \K) < ε.

But then since K is closed, we have by the portmanteau theorem that

µ(M \K) ≤ lim inf
α

µα(M \K) ≤ sup
α∈A

µα(M \K) < ε,

and thus µ is tight. �

Theorem A.4.1 (Prokhorov-Le Cam) Let M be a completely regular topological space.

Then any uniformly tight family K ⊆ PRM of probability measures is relatively compact

in PRM in the weak topology. If M is in addition submetrizable then any uniformly tight

family K ⊆ PtM is also sequentially relatively compact in PtM in the weak topology.

Proof For the proof of the first assertion see [11], chapter 3 theorem 59, while for the

second assertion we refer to [8] and [28]. �

In the case that M is completely regular and submetrizable we do not need to assume

the family K to consist of Radon measures due to corollary A.4.1.
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[13] J.-M. Drouffe, C. Godréche, and F. Camia. A simple stochastic model for the

dynamics of condensation. Journal of Physics A-Mathematical and General, 31(1),

1998.

[14] Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization and

Convergence. Jon Wiley and Sons, 1986.

[15] M.R. Evans and Tom Hanney. Nonequilibrium Statistical Mechanics of the Zero-

Range Process and Related Models. Brazilian Journal of Physics, 30(1):196–240,

2000.

[16] Gerald B. Folland. Real Analysis, Modern Techniques and Their Applications. Jon

Wiley and Sons, 1999.

[17] S. Fornaro, S. Lisini, G. Savare, and G. Toscani. Measure valued solutions of sub-

linear diffusion equations with a drift term. Discrete and Continuous Dynamical

Systems, pages 1675–1708, 2012.

[18] Stefan Grosskinsky and Paul Chleboun. Condensation in stochastic particle systems

with stationary product measures. Journal of Statistical Physics, 154:432–465, 2014.
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