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CHAPTER 1: INTRODUCTION

1.1 Active Galactic Nuclei
As the title suggests, in this project, we will work with X-ray data of Active Galactic Nuclei, thus let us
introduce some of their basic properties and a brief historical overview. Generally, AGN (Active Galactic
Nucleus) refers to the existence of energetic phenomena in central regions of galaxies which cannot be
attributed to stars.

Approximately 10% of galaxies in the near universe host active nuclei. AGN are divided in many
subclasses. The main division is between “radio loud” and “radio quiet”, which are bright and faint in
radio wavelengths, respectively. Among radio quiet AGN, originally the two largest groups were Seyfert
and quasars, with their main difference being the amount of radiation emitted by the compact central
source. On one hand, in the average Seyfert galaxy, the nuclear source emits an amount of total energy at
visible wavelengths comparable to the energy emitted by all of the stars in the galaxy. On the other hand, in
the typical quasar, the nuclear source is around 100 times or more brighter than the stars. Historically, the
appearance of quasars did not initially suggest identification with galaxies, which made their correlation
to Seyferts poor.

1.2 Seyfert galaxies
We will focus on Seyfert Galaxies, since radio loud (or “beamed”) AGN may have their emission dom-
inated by synchrotron emission from particles which move with relativistic velocities in very well col-
limated outflows that are called “jets”. Seyfert galaxies were first detected in 1908 by Edward A. Fath
and Vesto Slipher, who used the Lick Observatory and thought they were observing “spiral nebulae”. The
first to realize that there are several similar galaxies which form a distinct class was Carl Seyfert (1943).
Seyfert studied the spectra of galaxies that had high central surface brightness, i.e. stellar like cores, and
found that the optical spectra are dominated by high-excitation nuclear emission lines. Figure 1 shows the
optical spectrum of a Seyfert 1 galaxy (NGC 5548). The noticeable characteristics of the spectrum are:

• The optical/UV emission rises sharply at small wavelengths/high frequencies, this spectral compo-
nent is called the “Big Blue Bump”, contrary to what is observed in normal galaxies, where the
emission at UV wavelengths usually decreases with increasing frequency.

• The presence of very broad emission lines. It is believed that their width is due to Doppler broaden-
ing. In this case, the large width implies that the line emitting gas clouds should move with velocities
up to ∼ 8000 − 10000km/s.

We can now estimate, roughly, the mass of the nucleus in AGN. As we already mentioned, the line
emitting gas may move with high velocity. If we assume Keplerian orbits around the nucleus of mass M,
then

M = u2R/G,

where R is the distance between the gas clouds and the nucleus, while the cloud velocity, u, can be obtained
from the widths of the emission lines. The line flux is variable and correlated with the continuum variations
but with a delay of the order of ∼ 3 − 10days, thus we can estimate the distance R ≈ ct ≈ 0.004pc for
t = 5days. Therefore, the mass of the nucleus is M ∼ 1.6 · 107M⊙ for u = 4000km/s.

Seyfert galaxies are classified in many subclasses depending on the presence of emission lines of
different width in their optical spectra. The sample of galaxies we will study includes Seyferts of Type
1, 1.9 and 2. The first type refers to Seyferts galaxies which show both broad and narrow lines in their
optical spectra. On the other hand, Seyfert 2 galaxies show only narrow lines in their spectra. The last
type, Seyfert 1.9, refers to galaxies where the broad component is detected only in the Hα line and not in
the higher-order Balmer lines.
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Figure 1: The optical spectrum of the Seyfert 1 galaxy NGC 5548. The prominent broad and narrow
emission lines are labeled, as are strong absorption features of the host galaxy spectrum. The vertical scale
is expanded in the lower panel to show the weaker features. The full width at half maximum (FWHM) of
the broad components is about 5900 km s−1, and the width of the narrow components is about 400 km s−1.
(Figure taken from B.M.Peterson, An Introduction to Active Galactic Nuclei, 1997).

1.3 Unification theory
The unification theory proposes that the physical processes that operate in AGN are the same in all objects,
irrespective of their type. Those types are different because we observe them from a different angle. For
example, Seyfert 1s are radio quiet AGN we view from an angle where we can directly see the nucleus (see
Fig. 2). That is the reason we observe both broad and narrow lines from gas clouds with high velocities
that are close to the nucleus and gas clouds with lower velocities that are further away from the nucleus,
respectively. On the other hand, Seyfert 2s are observed from a viewing angle where the putative dusty
torus, surrounding the accretion disk, obscures the broad line emissions (Fig. 2).

1.4 Current paradigm
It is currently believed that AGN are powered by accretion of matter in the form of a disk (called the
“accretion disk”) to a supermassive black hole (106 − 1010M⊙) at the center of galaxies. As matter falls
into the black hole (BH) it releases gravitational energy, which eventually heats the disk. For supermassive
BHs, the luminosity that the disk emits peaks in the optical-ultraviolet waveband, and this explains the
observed Big Blue Bump.

Also, AGN are strong X-ray emitters. Figure 3 shows the plot of luminosity (v · Fv) versus frequency
for a large sample of quasars. The lines indicate the mean spectral energy distribution of AGN, when
divided in three luminosity bins. Red, black and blue lines show the mean spectrum of the low, medium
and high luminosity AGN, respectively. We can identify the Big Blue Bump around ∼ 4000−1000Å. The
lines below ∼ 60Å indicate the mean spectrum of AGN in the X-ray band. This emission cannot originate
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from the accretion disk, as the disk’s temperature cannot be high enough for it to emit X-rays. Recent
studies have found that ∼ 10% of the overall luminosity emitted by an AGN is in the X-ray area. We
currently believe that X-rays in AGN are produced by inverse Compton scattering of disk photons by hot
electrons with large energies (∼ 100 − 200 keV) located in a region which is called as “X-ray corona”.

Figure 2: The AGN structure as proposed by unification theory, figure taken from https://wwwmpa.mpa-
garching.mpg.de/HIGHLIGHT/2003/highlight0301 diagram.png.

Figure 3: Plot of luminosity (erg/s) vs frequency (or wavelength, in the x-axis) for a large sample of
AGN. Figure taken from Krawczyk C. et al (2013).
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1.5 AGN variability
In general, AGN are highly variable at all wavelengths. In fact, variability is a defining characteristic of
AGN. Figure 4 shows a plot of flux versus time of an AGN named NGC 4151 in different spectrum bands.
X-axis has a time span of around 2 months. It is clear that this AGN is highly variable at all wavelengths.
The top plot (light blue) shows the X-ray light curve. Figure 4 shows that the amplitude and time scales
are larger and shorter, respectively, in the X-ray band. The variations in the other light curves are smoother
and of lower amplitude. Since X-rays are emitted from a region which is thought to be close to the BH,
the study of X-ray emission (i.e. the X-ray energy spectrum and its variations) is important, as it can give
information about the physical processes around the BH.

Figure 4: Plot of flux vs time of NGC 4151 in different spectrum bands. Figure taken from Edelson R. et
al. (2019).

1.6 Objective of this work
The main aim of this work is to study the X-ray variability of AGN using 14 − 195 keV high quality light
curves obtained from observations with the instrument BAT on board of the X-ray satellite Swift . The
BAT has observed many AGN and has produced continuous, evenly sampled, and long light curves. This
gives us the opportunity to study the variability from time scales of a month up to 13 years. Thus analysing
the BAT light curves is ideal to study the X-ray variability. Using the BAT light curves we can compute
the power spectrum in order to investigate whether and how the power spectrum density (i.e the variability
mechanism) depends on black hole mass and/or accretion rate. In addition, the fact that the BAT detects
the AGN emission at energies higher than ∼ 15 − 20 keV , implies that the light curves show intrinsic
variations both for Type 1 and Type 2 objects, since these X-rays should not be absorbed even in most
Type 2 objects (where the gas density is very high).
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CHAPTER 2: POWER SPECTRUM ESTIMATION

2.1 The sample
Koss et al. (2022) published a catalog of active galactic nuclei as part of the second data release of the
Swift BAT AGN Spectroscopic Survey. Among the 1210 sources in the BAT 70-month survey, they have
identified all AGN, 858, and have estimated black hole masses for most of them. Our sample consists of
the 100 brightest AGN (in the 14 − 195 keV band) of the Koss et al. (2022) sample. The only exception is
Q0241+622, because it lacks an accretion rate estimate. In choosing the sources we excluded: a) ”beamed”
AGN (i.e. objects classified as ”BZQ”, ”BZG” and ”BZB”), since their emission may be dominated by
the jet emission, and b) ”dual” AGN (listed in Table 4 of Koss et al. (2022)), if the ratio of the predicted
Fobs

14−195keV of the fainter source over the total detected BAT flux was larger than 1%.
The sources in our sample are listed in the Appendix (Table 2). The source classification, redshift,

logarithm of the BH mass, and logarithm of λEdd, where λEdd = LBol/LEdd (LBol and LEdd are the bolometric
and Eddington luminosity1, respectively) are listed in columns 2, 4, 5 and 6, and are taken from Koss et
al. (2022). According to these authors, LBol is calculated from the intrinsic luminosity in the 14− 150 keV
range, using a bolometric correction factor of 8. We assume that λEdd is a measure of ṁ, i.e. of the ratio of
the accretion rate, Ṁ, over the Eddington accretion rate, ṀEdd. Koss et al. (2022) classified the unbeamed
AGN in three categories, namely: Sy1, Sy1.9 and Sy2, based on the presence of broad Hβ lines, narrow
Hβ but broad Hα, or only narrow optical lines in their optical spectra, respectively. The second column
of Table 2 lists the spectral classification of the sources. Finally, in the third column of Table 2 we list
the mean observed flux in the 14-195 keV, Fobs

14−195keV , taken from the Swift BAT, 157-Month Hard X-ray
Survey (https://swift.gsfc.nasa.gov/results/bs157mon/).

2.2 The light-curves
We retrieved the BAT light-curves for all the sources in the sample from the Swift -BAT 157 month survey
web page. We considered the monthly, Crab-weighted light-curves in the 14 − 195 keV band. Figure 5
shows the light curves of 4 sources in our sample. Cen A and NGC4151 (in the top panels) are the brightest
Sy2 and Sy1 sources in the sample, respectively, while ESO490-26 and LEDA170194 (bottom left and
right panels, respectively) are Sy1 and Sy2 AGN, with fluxes which are representative of the average/low
flux levels in the sample. The count rate of the sources plotted on the upper panels is clearly variable. On
the other hand, it is more difficult to understand if the sources plotted in the lower panels are variable as
well. This difference in the variability behaviour could be due to the fact that the sources on the bottom
panels are significantly fainter than the sources in the upper panels.

The 157 month light-curves are constructed with similar methods as those in the 105 month release
(Oh et al. 2018), with some updates in both the instrumental calibration and responses. Figure 6 shows
plots of the source count rate in the first 105 months of the Swift observations, as computed in the 105-
month survey light-curves (Oh et al. 2018) versus the count rate in the 157 month survey light curves we
use in this project, for four sources. The plots in Fig. 6 show that the 105 and 157 survey count rates are
consistent with each other (within the errors), over the common time period.

A few points in some light curves (such as some points plotted in fig. 5) are associated with large error
bars. We found that the exposure time of most of these points is less than 5 ksec (a small number when
compared to the nominal bin width of 1 month). We use the mean of the error (squared) to compute the
Poisson noise level in the power spectrum (see 2.4). We therefore decided to remove these points and to
replace them using linear interpolation between the adjacent points in the light curves, since these large

1Eddington luminosity is the maximum luminosity an object (such as a star) can achieve without breaking the balance
between the force of radiation acting outward and the gravitational force acting inward. For pure ionized hydrogen, Ledd =
4πGMmpc
σT

, where σT is the Thomson scattering cross-section for the electron, mp is the mass of a proton, c is the speed of light,
M the mass the central object and G is the gravitational constant.
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Figure 5: Plot of the monthly Crab-weighted light-curves as computed in the 157-month Swift survey for
4 sources: Cen A, NGC4151, ESO490-26 and LEDA170194.

errors can bias the mean squared error to a value that is not representative of the actual Poisson noise
variance in the light curve.

Additionally, there are a few missing points in some light curves (Swift BAT, 157-Month Hard X-ray
Survey), thus we filled them by using linear interpolation again. For each interpolated point we added a
random error, assuming Gaussian statistics with a standard deviation equal to the mean error of all points
in the light curves (excluding the ones with ∆t ≤ 5 ks). There are 39 light curves with about two missing
points and/or points with an exposure time less than 5 ks, on average.

2.3 The variable sources
We checked which sources show significant variations in the light curves using traditional χ2 statistics. To
this end, we computed the weighted mean of each light curve, and we fitted the light curves with a constant
line, equal to the mean. The count rate error in the Swift -BAT light curves is inversely proportional to
the square root of the exposure time in each bin (this is easily checked when plotting errors versus the
respective exposure time), and it does not depend on the source’s flux. In this case, the weighted rather
than the straight mean is more representative of the source’s mean flux. This process was done without
considering the interpolated points. In order to determine if a source is variable or not, we computed the
so-called χ2 for each light curve as follows,

χ2 =

N∑
i=1

(xi − x)2

σ2
i

, (1)
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Figure 6: Plot of the count rate in the first 105 months of the Swift observations as computed in the 105-
month survey light curves (Oh et al. 2018), versus the count rate in the 157-month survey light-curves that
we use in this work, for four AGN in our sample. The red solid line in each plot shows the one-to-one
relation.

where xi is the count rate, x is the mean count rate of the source, σi is the error of xi and N is the number
of observations. Under the assumption that the errors on the light curve points are Gaussian then χ2 is
a random variable which is distributed according to a χ2 distribution with N-1 degrees of freedom. If a
source is highly variable, then we expect χ2 to be much larger than the number of points in the light curve.
In fact, we can compute the probability that χ2 would have a certain value for a light curve, under the
assumption that the light curve is not variable (Pnull).

The resulting χ2 values over the degrees of freedom (dof) are listed in the 7th column in Table 2 that
was mentioned earlier. We accept that a light curve is variable if pnull is less than 0.01. Letters ”V” or ”NV”
in the 8th column in Table 2 indicate whether a source is variable or not (i.e. pnull < 0.01 or pnull ≥ 0.01,
respectively). We found that 26 sources out of the 100 in our sample are non-variable. Nineteen of the NV
sources are Sy1 and the rest are Sy2 and Sy 1.9. The mean log(MBH) and log(λEdd) are ∼ 7.8 and ∼ −1.4,
respectively, for both the V and NV group of sources. However, the ratio of the mean count rate over the
mean error (i.e. the signal-to-noise ratio of the light curve) is smaller than 3 in almost all, but two, of the
NV sources. On the contrary, the same ratio is larger than 3 in almost two thirds of the V sources. This
result indicates that the main reason we do not detect significant variations in the NV sources is because
their flux is low. Consequently, the amplitude of the variations due to the experimental noise is larger than
the amplitude of the intrinsic variations and so we cannot detect them.
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2.4 Power spectrum estimation
Power spectrum is a random function that is very useful when studying physical phenomena which are
not deterministic, but random. The emission and detection of photons from a variable astronomical object
is a random process. To study the variability of these objects, we usually measure the number of photons
detected over a fixed period of time (say ∆t). Such a record of photon numbers detected every ∆t for
a certain period of time is called the “light curve” of an astronomical object. The light curve cannot
be described by a deterministic function of time, even for a source which is constant in flux over time.
Instead, every count rate that has been measured belongs to a range of possible values and the relative
“likeness” of these values is described by a probability distribution. If we observe again the same object,
under the same conditions then, naturally, the record of the observed values would be different. This is
due to the fundamental nature of the emission and detection process. In fact, each time we perform the
experiment we will have different records. Each of these possible records is called a “realization” and the
whole collection of them is called an “ensemble” of the process.

Let us consider a random process (i.e. the variable emission from an AGN), and let us assume that
its statistical properties (such as the mean, variance, etc.) do not change over time (processes which
have this property are called stationary). We cannot use the Fourier series or integrals to represent the
variable signal, since they apply only to deterministic functions. We therefore have to consider every
realization separately. However, each realization is not, in general, periodic and not all realizations decay
to zero for time→ ±∞ (because by definition, the process is stationary). Here, Wiener’s theory of “general
harmonic analysis” can help in the representation of the process in the frequency space, by expressing
each realization as a Fourier-Stielties transform, of the form,

X(t) =
∫ +∞

−∞

eitωdZ(ω), (2)

where dZ(ω) = O(
√

dω), meaning that the order of magnitude of the increment Z(ω) over an interval
dω is infinitesimal, but much larger than dω (Priestley, 1981). The dZ(ω)s in the equation above are
complex numbers. Equation (2) defines the spectral representation X(t), if it is a stationary, random
process. Roughly speaking, dZ(ω) determines the amplitude of the sinusoids (eiωt) into which we can
decompose X(t). In engineering, if X(t) represents some physical process such as a current or voltage, the
total energy dissipated by the process in any time interval is equal to the sum of the amounts of energy
dissipated by each of the sine and cosine terms, which in fact, is proportional to the square of dZ(ω), i.e.
|dZ(ω)|2. Therefore our main interest when studying variable phenomena lies in the squared amplitudes
|dZ(ω)|2.

We can define the “density of energy per unit frequency” as follows,

q(ω) = |dZ(ω)|2/dω,

which we expect to be a reasonably well behaved function of ω, since |dZ(ω)|2 should be of the order of
dω if dZ(ω) = O(

√
dω). So far we have considered each realization of the random process separately, but

dZ(ω), and hence q(ω), will change from realization to realization. In order to construct a function which
describes the properties of the whole process, we take the average value of q(ω) over all realizations, i.e.

h(ω) = q(ω) = |dZ(ω)|2/dω,

where the overbar denotes the average taken over all realizations of the process. The function h(ω) is
called the “power spectrum density function” of the process (PSD or power-spectrum) and it plays a
fundamental role in the analysis of time variable phenomena in Astronomy. First of all, although h(ω) has
a direct physical meaning in engineering, as a power density function, in many variable phenomena h(ω)
has the important property that:

σ2 =

∫ ∞

0
h(ω)dω, (3)
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where σ2 is the variance of the process. In other words, h(ω)dω is equal to the variance that each sinusoid
of frequency ω contributes to the total variance of the process. As such, study of h(ω) as a function of
frequency ω, can reveal characteristic time scales on which the variable process may operate. In addition,
determination of h(ω) as a function of ω can help discriminate among various theoretical models for the
variability mechanism of the observed variations, which should be able to predict h(ω).

2.4.1 Estimation of power spectrum in practise

Let us assume N observations, x(ti) of a variable AGN, at times ti, i = 1, 2, ...,N, every ∆t months. In
practise it is customary to compute the so called periodogram,

IN( f j) =
2∆t
N
|

N∑
i=1

x(ti)e−i2π f jti |2 (1/month−1) (4)

and consider it as an estimator of h(ω). The data in the equation above are normalized to the weighted
mean (i.e. x(ti) = (x(ti)−x)/x, with x being the light curve weighted2 mean). The periodogram is calculated
at the following set of frequencies:

f j = j/(N∆t), j = 1, 2, ...,N/2. (5)

In the case of the Swift /BAT light-curves, N = 157 and jmax = 78. The periodogram is an unbiased
estimator of the intrinsic power spectrum and, if it is calculated only at the set of frequencies defined
above, the periodogram estimates (i.e. IN( f j)) are independent variables. However, their error is not
known, as it depends on the intrinsic h(ω) (which we wish to measure with IN(ω)).

2.5 Poisson noise error
Poisson noise, also known as photon noise, is a basic form of uncertainty associated with the measurement
of light, which is attributed to the quantized nature of light and the independence of photon detections.
When a sensor detects photons, each individual detection can be treated as an independent event that
follows a random distribution. Thus, the count rate measurement, i.e. number of photons N detected over
a time interval ∆t, is a classical Poisson process and its discrete probability function is,

Pr(N = k) =
e−λ∆t(λ∆t)k

k!
,

where λ is the expected number of photons per unit time interval, which is proportional to the incident
flux. The equation above defines a standard Poisson distribution with λ∆t being the rate parameter that
corresponds to the expected incident photon count (i.e. to the mean value of the distribution). In the case
of light curves, the term “poisson noise” refers to the variance of the Poisson process that is associated
with the photon detection process and, due to the Poisson distribution properties, the variance is equal to
the mean of the distribution, σ2

PN = λ∆t(counts2).
Based on what we discussed above, the count rate of an object we measure is equal to:

xobs(t) = xint(t) + ϵ(t), (6)

where xint(t) is the signal intrinsic to the source and ϵ(t) is a random variable representing the Poisson
noise. If ϵ(t) is an uncorrelated process (i.e. ϵ(t′) does not depend on ϵ(t), where t , t′) which does not
depend on xint(t) either (as is the case with the BAT light curves we use) then one can show that,

hx,obs(ω) = hx,int(ω) + hϵ(ω), (7)

2The weighted mean is computed as x =
∑

xi/σ
2
i∑

1/σ2
i

, where xi is the count rate and σi its error.
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where hϵ(ω) is the power spectrum of the Poisson noise process. If ϵ(t) has the properties we mentioned
above, then hϵ(ω) will have the same value at all frequencies,ω. Therefore, in order to estimate the intrinsic
PSD, hx,int(ω), we must first estimate hϵ(ω), and then subtract the constant Poisson power spectrum (or
Poisson noise level, CP), from the periodogram. It can be shown that CP can be computed as follows,

CP =
2∆t(σ2

err)

x2 , (8)

where σ2
err is the mean of the squared error of the points in the light curve, which we assume is a valid

estimator of the light curve variance due to the Poisson noise. Since the correct estimation of CP is
important for the accurate determination of the PSD, we used the periodograms of the NV sources to test
how well eq. (8) works in practice.

First, we wanted to check if the periodograms of the NV sources are flat, as expected. To test this, we
computed the logarithm of the periodogram, and we grouped them into groups of size M = 20. The result-
ing PSD estimates are approximately Gaussian distributed, with known error (e.g Papadakis & Lawrence,
1993, PL93 herefater). We discovered that a constant line provides a good fit to all the grouped logarith-
mic periodograms. Thus we confirmed that the periodograms of these sources are indeed flat, implying
the lack of intrinsic variations with amplitude larger than the Poisson noise variations of the NV sources.
In this case, the mean of the periodogram estimates should be representative of the Poisson noise level
in the light-curves. Instead of the mean periodogram, we actually computed the mean of the logarithmic
periodogram estimates as follows,

log(CP,obs) =

∑n f

j=1(log[IN( f j)] + 0.25068)

n f
, (9)

where n f = 78 (the number of frequencies where we compute the periodogram), and we adopt 0.25068
in eq. (9), following Vaughan (2005). The number log(CP,obs) should be representative of the logarithm of
the observed Poisson level in each NV source. Here, the reason for calculating log(CP,obs) instead of CP,obs

is because the error of the former is known, and is equal to
√

0.31/n f (PL93).
Figure 7 shows a plot of the logarithm of the ratio of the “measured” Poisson noise (CP,obs), over the

“expected” Poison noise (CP) versus log(CP) for the NV sources. The solid line in the same figure shows
the mean log(CP,obs/CP), which is equal to 0.026 ± 0.012. From the figure we conclude that the data are
broadly consistent with this line, and since the mean log(CP,obs/CP) is consistent with zero too (within
∼ 2.2σ), we conclude that CP, as defined by eq. (8), provides a good estimate of the Poisson noise in the
light curves.

Even though the solid line in Fig. 7 fits the data quite well, strictly speaking, the best-fit χ2 value of
58.5 for 25 dof indicates that the quality of the fit is poor (P value << 0.01). This is due to four sources,
where log(CP,obs/CP) is ∼ 2 − 3σ away from the mean. Thankfully, the disagreement between CP and
CP,obs in these sources does not indicate a systematic trend in Fig. 7; CP is less than CP,obs in two objects,
while the opposite is the case for the other two AGN. The results lead us to the conclusion that CP may
not (always) provide an accurate measurement of the Poisson noise on an individual light curve basis, but
it gives a good estimate of CP,obs, on average. Finally, since our work is based on the study of the average
PSD of many sources in various groups, we adopt CP, as defined by eq. (8), as an estimate of the Poisson
noise in the Swift /BAT light curves. We multiply CP by 100.026 = 1.06, to account for the fact that CP may
(slightly) underestimate the Poisson noise level, as indicated by the fact that the mean log(CP,obs/CP) is
equal to 0.026. None of our results are affected significantly if we do not consider this factor.
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Figure 7: Plot of log(CP,obs/CP) versus CP for the 26 NV sources in the sample. The solid line indicates
the mean log(CP,obs/CP).

2.6 Computing and fitting the ensemble PSD of AGN
Even if the periodogram is an unbiased estimator of the intrinsic PSD, its statistical properties are not ideal
for our work. The probability distribution of the periodogram estimates follows a χ2 distribution with 2
degrees of freedom (which is very different than a Gaussian), while their variance is large and unknown.
In fact, the variance does not even decrease with increasing data points. For that reason, it is customary to
smooth the periodogram using various “spectral windows”. However, smoothing in the linear space is not
a good solution to our problem in the case of power-law like intrinsic PSD. One option would be to bin
the logarithmic periodogram as suggested by PL93, but that is not efficient in our case. The periodogram
of the Swift /BAT light curves is computed at 78 frequencies. If we would follow the prescription of
binning the log periodogram into groups of size M = 20, we would end up with just four points in the
power spectrum, over a limited frequency range. Fitting them with a straight line would result in best-fit
parameters with large uncertainties (errors). To avoid this, we followed a different method to compute and
find the best fits of the power spectra of the variable sources in our sample.

As we describe in the next section, we consider variable objects in relatively small groups in the
log(LX) vs log(MBH) plane (LX will be defined in the next section). We compute the periodogram of each
one of them, we subtract the Poisson noise level and then, at each of the ten lowest frequencies (i.e. up to
f = 10/157 ≈ 0.064 month−1), we accept the mean of the periodograms of all sources in each bin,

ˆPS D(νk) ≡ I(νk) =
∑nAGN

i=1 [Ii(νk) −CP,i]
nAGN

, (10)

as an estimate of their ensemble, mean power spectrum at frequency νk, where νk = fk, k = 1, 2, . . . , 10,
and nAGN is the number of AGN in each [log(LX), log(MBH)] group. At higher frequencies, the variance of
the noise subtracted periodogram estimates increases. For that reason, we further smooth the mean PSD
using a simple top-hat spectral window, as follows.

First we compute I( f j) from eq. (10) at frequencies f j, j = 10, 11, . . . , 75 (we do not use the 3 final
frequencies in our work), and then we accept the mean of 5 successive I( f j)’s, i.e.

ˆPS D(νk) =

∑k+(k−10)∗4
i=k+(k−11)∗4 I( fi)

5
, (11)
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as an estimate of the mean power spectrum at frequencies,

νk =

∑k+(k−10)∗4
i=k+(k−11)∗4 fi

5
, (12)

where k = 11, 12, . . . , 23. This was possible, because the number of mean periodogram estimates that we
bin at high frequencies is small, meaning that the smoothing process should not affect significantly the
intrinsic PSD shape.

The number of AGN that we consider in each [log(LX), log(MBH)] group is small (see below), thus the
probability distribution of the resulting PSD estimates, ˆPS D(νk), is not Gaussian, even at high frequencies.
Therefore we cannot use traditional χ2 statistics to fit the observed power spectra. For that reason, we
assumed that the intrinsic PSD follows a power-law like shape. So we computed the logarithm of ˆPS D(ν),
and we fitted a straight line to the log[ ˆPS D(νk)] vs log(νk) data, of the following form,

log(PSD)(ν) = log(PS Damp) + PS Dslope · log(
ν

ν0
). (13)

Here PS Damp is the PSD amplitude at ν = ν0, with ν0 = 10−2(month−1). The frequency 10−2 month−1 is
close to the mean of the sampled frequencies and the error on the best-fit line amplitude is minimized when
it is defined at that frequency. Lastly, we fitted the data following the ordinary least square (OLS), [Y |X]
prescription of Isobe et al (1990). In this way, even though we do not know the error of log[ ˆPS D(νk)], we
can compute both the best-fit line parameters and their errors.
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CHAPTER 3: POWER SPECTRUM ANALYSIS RESULTS

3.1 The Aliasing Effect

Figure 8: PS Dintr/obs vs frequency.

We work with count rate samples measured at time intervals ∆t = 1month. However, light emission
from AGN is continuous so it is clear that we miss information on high frequencies, thus our ability to
estimate the high frequency end of the spectrum is negatively affected. Consider a spectral representation
of the form presented in eq. (2). If we sample a continuous process at certain time intervals, ∆t, then
this representation extends only over the frequency range (−1/2∆t, 1/2∆t). The main reason for this
statements is that when time (t) is restricted to integers multiple of ∆t, there is no distinction between the
frequency components eiωt and ei(ω±2kπ/∆t)t, where k = 1, 2, 3, .... All these components with frequencies
ω ± 2π/∆t, ω ± 4π/∆t, ... will appear to have identical frequency ω. They are said to be the “aliases” of ω
and every component outside the range (−1/2∆t, 1/2∆t) has an “alias” inside this range. In this case,

PS Dobs( f j) =
∞∑

k=0

PS Dintr( f j +
k
∆t

),where k = 0, 1, 2.... (14)

In order to determine whether aliasing may be a serious problem in our case we performed the follow-
ing experiment. We consider an intrinsic PSD of the form:

PS Dintr( f ) = (
f

0.01
)−1. (15)

This is a power-law like power spectrum which has an amplitude of 1 at f0 = 0.01(month−1). We chose
this PSD form, as it is similar to the observed PSDs of a few AGN at energies 2−10 keV (Markowitz et al,
2003). We also assume that this PSD “breaks” to a steeper slope (of -2), above a break frequency, fb =

1
Tb

,
where the break time scale, Tb, depends on the BH mass as

log(Tb) = 1.09log(MBH) − 1.7, (16)
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where Tb is in units of days and MBH is the BH mass in units of 106M⊙ (Gonzalez Martin & Vaughan,
2011). For a BH of mass 107.5 (similar to the median BH mass for the sources in our sample), Tb =

0.86days = 0.029months, and therefore fb = 34.8(month−1). Solid black line in Fig. 8 shows the intrin-
sic PSD as computed from eq. (15), while red dashed line shows the observed PSD as computed from
eq. (14), when ∆t = 1month and k = 0, 1, 2, ..., fb · ∆t, so that the maximum frequency which is aliased
back to the ( 1

157∆t ,
1

2∆t ) range is then one just below the break frequency. Figure 8 shows considering
flattening for the observed PSD at frequencies higher ∼ 10−1(month−1), in the case when we consider
aliasing.

3.2 Comparison between Type 1 and Type 2 AGN

Figure 9: Upper panel: Shows a plot of log(λEdd) versus log(MBH) for the variable sources in the sample.
Black and red circles indicate data for the Sy1 and Sy2 galaxies, respectively. The mean BH mass and
accretion rate of the Sy1 and Sy2 sources in the dashed box are the same (within errors). Lower panel:
Black and red points show the ensemble PSD of the Sy1 and Sy2 galaxies which are in the dashed box
drawn in the upper panel. Black and red dashed lines show the best-fit line to the PSDs.

Firstly, we want to investigate whether the Sy1 and Sy2 power spectra are similar, or not. The top
panel in Fig. 9 shows a plot of log(λEdd) versus log(MBH) for all the variable sources in the sample. Black
and red circles indicate the Sy1 and the Sy2 sources, respectively (hereafter, we refer as “Sy2” for both
the Sy1.9 and Sy2 sources in the sample). We observe that on average, the mass of the central BH in Sy2
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galaxies appear to be larger when compared to Sy1s, while their accretion rate appears to be smaller. The
study of the significance of these differences is outside the scope of our project. However, we have to
compare the mean PSD of Sy1 and Sy2 sources with the same BH mass and accretion rate in order to test
whether they are similar or not, because the power spectrum may depend on BH mass and/or accretion
rate.

The dashed lines in the upper panel of Fig. 9 indicate a box where the mean BH mass and accretion
rate of the Sy1 and Sy2 galaxies in that box are approximately equal. Indeed, log(MBH) = 7.61 ± 0.12
and 7.8 ± 0.10, while log(λEdd) = −1.28 ± 0.07 and −1.46 ± 0.06, for the Sy1s and Sy2s withing this box,
respectively. Errors indicate the error of the mean, therefore the difference between the Sy1 and Sy2 mean
log(MBH) and log(λEdd) is consistent with zero within ∼ 1.1σ and 2σ, respectively.

The lower panel in Fig. 9 shows the mean PSD of all the Sy1 and Sy2 AGNs within the box in the top
panel. The PSD was computed as discussed in Section (2.6). We fitted the power spectra with the model
defined by eq. (13). The dashed lines in this panel show the best-fit lines to the mean PSDs, which provide
a good description of the overall PSDs. The best fit line parameters are: log(PS Damp,Sy1) = 0.20 ± 0.21,
log(PS Damp,Sy2) = 0.28 ± 0.28, and PS Dslope,Sy1 = −0.75 ± 0.09, PS Dslope,Sy2 = −0.81 ± 0.13. Clearly,
the Sy1 and Sy2 PSDs are consistent, within the errors. This result suggests that the variability properties
of the Sy1 and Sy2 galaxies in the 14 − 195 keV band are identical. Thus, for the rest of our work, we
combine together light-curves from Sy1 and Sy2 sources in order to investigate the dependence of the
power spectrum on BH mass and/or accretion rate.

3.3 Power spectrum dependence on Black Hole mass and X-ray luminosity

Figure 10: Diagram of log(LX) vs log(MBH) for the variable sources in the sample. Dashed lines indicate
the group of AGN that were used for our analysis.

Figure 10 shows a plot of the logarithm of X-ray luminosity, log(LX), vs the logarithm of BH masses,
log(MBH), for the variable AGN in the sample. We computed the X-ray luminosity, LX, using the relation:
LX = LBol − log(8), where LBol is the Bolometric luminosity (taken from Table 9, in Koss et al. (2022)).
The dashed boxes in this figure indicate groups of AGN which have similar BH mass and LX. Mean BH
mass and LX for the AGN in each group are listed in columns 2 and 3 of Table 1.
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We computed the mean PSD of all AGN in each box as explained in section (2.6). We then fitted
the mean PSD with the linear model defined by eq. (13). In order to investigate whether aliasing may
affect the observed power-spectra, we first fitted them using the PSD estimates at frequencies lower than
10−1(month−1), and then we fitted the full spectrum. The best-fit results are listed in the last two columns
in Table 1 (values in parenthesis show the results in the case when we fit the full PSD). Figures 11-24
show a plot of the mean power-spectrum of the AGN in each group shown in Fig. 10. Black continuous
and dotted lines indicate the best-fit lines when we fit the power spectrum below 10−1(month−1) and when
we consider all frequencies, respectively.

Table 1: Letters and numbers in the first column refer to the respective group, as labeled in Fig. 10.
log(PS Damp) and PS Dslope list the best fit amplitude and slope, respectively, when we fit the model line
defined by eq. (13) to the power spectra at frequencies lower than 10−1month−1. Values in parenthesis
show the results when we fit the full PSDs. Columns log(MBH) and log(LX) list the mean BH mass and
mean X-ray luminosity of the AGN in each group, respectively.

PSD Group log(MBH) log(LX) log(PS Damp) PS Dslope

A1 6.33 ± 0.08 42.32 ± 0.11 0.05 ± 0.25 −1.17 ± 0.50
(−0.03 ± 0.37) (−0.92 ± 0.22)

B1 7.09 ± 0.13 44.10 ± 0.11 0.16 ± 0.27 −1.00 ± 0.31
(0.06 ± 0.45) (−0.69 ± 0.22)

B2 7.20 ± 0.09 43.62 ± 0.05 0.06 ± 0.18 −0.86 ± 0.26
(−0.08 ± 0.18) (−0.58 ± 0.15)

B3 7.11 ± 0.09 43.16 ± 0.04 0.27 ± 0.27 −1.03 ± 0.19
(0.26 ± 0.30) (−1.01 ± 0.14)

B4 6.96 ± 0.12 42.51 ± 0.11 0.64 ± 0.40 −1.14 ± 0.17
(0.44 ± 0.34) (−0.65 ± 0.08)

C1 7.81 ± 0.03 44.06 ± 0.06 0.48 ± 0.31 −1.17 ± 0.29
(0.51 ± 0.37) (−1.23 ± 0.22)

C2 7.66 ± 0.02 43.55 ± 0.05 0.27 ± 0.33 −1.06 ± 0.33
(0.07 ± 0.20) (−0.55 ± 0.11)

C3 7.73 ± 0.07 43.26 ± 0.03 0.40 ± 0.29 −0.99 ± 0.15
(0.23 ± 0.24) (−0.66 ± 0.10)

D1 8.13 ± 0.09 44.72 ± 0.09 0.01 ± 0.32 −1.10 ± 0.28
(−0.24 ± 0.25) (−0.48 ± 0.12)

D2 8.13 ± 0.08 44.15 ± 0.07 0.27 ± 0.27 −0.37 ± 0.30
(0.32 ± 0.28) (−0.50 ± 0.17)

D3 8.13 ± 0.02 43.62 ± 0.04 0.44 ± 0.46 −1.20 ± 0.31
(0.36 ± 0.44) (−0.94 ± 0.19)

D4 8.22 ± 0.08 43.18 ± 0.05 0.86 ± 0.57 −1.10 ± 0.21
(0.83 ± 0.72) (−1.11 ± 0.20)

E1 8.85 ± 0.09 44.13 ± 0.05 0.87 ± 0.70 −1.46 ± 0.27
(0.66 ± 0.48) (−1.00 ± 0.13)

E2 8.81 ± 0.10 43.63 ± 0.05 0.13 ± 0.15 −0.43 ± 0.23
(0.36 ± 0.37) (−1.06 ± 0.20)
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Figure 11: Mean power spectrum of the AGN in group A1. Black filled and open circles show the power
spectrum estimates at frequencies below and above 10−1(month−1). Black continuous and dashed line
shows the best-fit lines when we fit the power spectrum below 10−1(month−1) and when we consider all
frequencies, respectively.

Figure 12: Same as in Fig. 11 , but for AGN in group B1.
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Figure 13: Same as in Fig. 11 , but for AGN in group B2.

Figure 14: Same as in Fig. 11 , but for AGN in group B3.
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Figure 15: Same as in Fig. 11 , but for AGN in group B4.

Figure 16: Same as in Fig. 11 , but for AGN in group C1.
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Figure 17: Same as in Fig. 11 , but for AGN in group C2.

Figure 18: Same as in Fig. 11 , but for AGN in group C3.
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Figure 19: Same as in Fig. 11 , but for AGN in group D1.

Figure 20: Same as in Fig. 11 , but for AGN in group D2.

23



Figure 21: Same as in Fig. 11 , but for AGN in group D3.

Figure 22: Same as in Fig. 11 , but for AGN in group D4.
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Figure 23: Same as in Fig. 11 , but for AGN in group E1.

Figure 24: Same as in Fig. 11 , but for AGN in group E2.
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Figures 25 and 26 show the best-fit PS Dslope and log(PS Damp) versus the mean BH mass of AGN in
each bin, log(MBH), respectively. Filled circles show the best fit results when we fit the low-frequency PSD,
while open circles show the values when we fit the full PSD. We computed the weighted mean of PS Dslope

and log(PS Damp) in each case. The results are as follows: PS Dslope,l f = −1.00 ± 0.06, PS Dslope, f ull =

−0.74 ± 0.04, log(PS Damp,l f ) = 0.21 ± 0.07 and log(PS Damp, f ull) = 0.14 ± 0.083. Red solid/dashed
lines in Figs. 25 and 26 show the weighted mean in the case when we fit the low frequencies/full PSDs,
respectively.

The log(PS Damp) weighted means are consistent with each other, within the errors. However, this is
not the case for the best-fit PSD slopes. The weighted mean of the PSD best-fit slopes when we fit the
PSD at low frequencies only is significantly steeper than PS Dslope, f ull (at the ∼ 3.6σ level). These results
could be due to the aliasing effect (see figure 8). We therefore accept the results from the fits to the low
frequency PSDs as more representative of the intrinsic X-ray PSD of AGN.

We test whether the PSD slope and amplitude is the same in all AGN by fitting a constant line (y =
PS Dslope,l f and y = log(PS Damp,l f )) to the data plotted in Figs. 25 and 26. The best fit χ2 is 15.8/13dof
and 6.8/13dof, which implies that both the PSD slope and amplitude is the same for all AGN.

3The weighted mean was calculated using the equation we mentioned in footnote 2, while its errors where calculated as
σw = 1/

√
1∑
σ2

i
, where σi is the error of xi.
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Figure 25: PS Dslope vs log(MBH). Filled and open circles show the best-fit PS Dslope values versus the
mean BH mass in each bin, when we fit the low-frequency and the full PSD, respectively.

Figure 26: Same as in figure 25
for the best fit log(PS Damp).
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CHAPTER 4: SUMMARY AND CONCLUSIONS

4.1 Summary
The main objective of this work was to study the long term variability of AGN in hard X-rays. To this
end, we considered the 100 brightest (highest flux) AGN in the 14− 15 keV band of the Koss et al. (2022)
sample. This sample consists of AGN that have been detected by BAT on board Swift satellite. There are
858 AGN in this sample. This sample represents a census of the brightest hard X-ray selected AGN in the
sky, spanning many orders of magnitude in black hole mass (MBH = 105 − 1010M⊙), and AGN bolometric
luminosity (Lbol = 1040 − 1047ergs−1). The sub-sample we considered also spans a large range of BH
masses and bolometric luminosity (see Fig. 10). This group of objects is ideal for variability studies as
each one of them has been observed continuously by Swift BAT for 157 months, i.e. more than 13 years.

First, we used the BAT light curves in order to find out which one of the AGN is variable or not. We
fitted the light curves with a constant line, equal to the light curve weighted mean, and we found that 26
AGN are non-variable, i.e. the light curve is consistent with being constant during the BAT observations.

We calculated the power spectrum for every AGN in our sample and we subtracted the poisson noise
level from them. In order to check the validity of our poisson noise estimation prescription we compared
the predicted poisson noise level with the observed power spectra of the non-variable AGN. We found that
they are consistent with each other, which implies that the poisson noise level estimation formula should
be correct.

We grouped AGN in bins with a width of ∆log(MBH) ∼ 0.4 and ∆log(LX) ∼ 0.4. There are approx-
imately 4 to 5 sources in each bin. We computed the mean PSD of all AGN in each group as explained
in Section (2.6). The power spectra are plotted in Figs. 11-24. We fitted them with a straight line (in the
log-log space) as defined by eq. ( 13). We fitted the power spectra both at frequencies below 10−1(month−1)
and at all frequencies, because we wanted to investigate if aliasing affects the observed power spectra. We
found that the low frequency amplitude remains the same, while the slope flattens when we fit the full
power spectrum. This could be the effect of aliasing. We therefore consider the results from the fits at low
frequencies.

4.2 Main results
This work represents the most comprehensive analysis of the X-ray variability of AGN at energies above
15 keV . Our main results can be summarized as follows:

• We consider Type 1 and Type 2 AGN with the same BH mass and accretion rate. Their mean power
spectrum is almost identical. Therefore variability properties must be identical for both Type 1 and
Type 2 AGN. Photons with energies above 10 keV should not be absorbed by the obscuring taurus.
This implies that BAT data sample emission from the central source in both type of objects. The fact
that the variability properties are the same for type 1 and 2 AGN suggests that the central source in
these objects must operate in the same way. This is fully consistent with the unification theory of
AGN.

• A power-law model of the form, P( f ) ∝ f −a, fits well the PSDs of all objects. We do not detect
any periodicity, or a frequency break to a different slope over the frequency range we probe with the
BAT light curves ( 1

13years −
1

2months ).

• We found that the power spectrum has a slope of -1, same in all objects irrespective of BH mass
and/or accretion rate. This is consistent with X-ray variability studies of a few AGN on long time
scales in the 2 − 10 keV band (Markowitz et al. (2003)).

• We found that the power spectrum amplitude at f0 = 10−2(month−1) is 1.61/(month−1), irrespective
of BH mass and/or accretion rate. Assuming that the power spectrum slope is -1, this implies that
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the power spectrum amplitude in terms of f · PS D( f ) is equal to (1.6 ± 0.3) · 10−2 at all frequencies
up to the break frequency, where the power spectrum slope will steepen to -2. This value is larger
than the respective median value of 3 · 10−3 that has been measured in a few nearby AGN in the
2 − 10 keV band (Gonzalez Martin & Vaughan (2011)). Interestingly, our value is fully consistent
with the power spectrum amplitude of Cyg X-1 in the soft state in the 6 − 13 keV band (Churazov
E., Gilfanov M. & Revnivtsev M. (2001); Reig P., Papadakis I. & Kylafis N. D. (2003)).
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APPENDIX A

Table 2: AGN in the sample and their properties.

Source DR2 Typea Fobs
14−195keV

b za log(MBH)a log(λEdd)a χ2/dof c V/NVd

CenA Sy2 1346.34 0.0019 7.77 -2.72 80640.65/156 V
NGC4151 Sy1 618.88 0.0032 7.56 -1.53 25562.30/156 V
NGC2110 Sy2 328.93 0.0075 8.78 -2.46 7188.11/156 V
NGC4945 Sy2 282.11 0.0023 6.15 -1.09 2129.02/156 V
NGC4388 Sy2 278.91 0.0083 6.94 -1.17 5008.13/155 V
CircinusGalaxy Sy2 273.17 0.0015 6.23 -1.44 525.07/156 V
IC4329A Sy1 263.25 0.0160 7.65 -0.77 1371.12/156 V
NGC5506 Sy1.9 239.40 0.0060 7.24 -1.28 597.65/153 V
4C+50.55 Sy1.9 210.38 0.0154 7.97 -1.24 1405.12/156 V
MCG-5-23-16 Sy1.9 209.62 0.0084 7.65 -1.49 827.79/156 V
NGC4507 Sy2 184.54 0.0117 7.81 -1.18 993.72/156 V
NGC3783 Sy1 173.84 0.0090 7.37 -1.2 736.34/156 V
NGC7172 Sy2 160.02 0.0085 8.15 -2.25 875.63/152 V
Mrk3 Sy1.9 150.12 0.0138 8.96 -2.21 1343.69/156 V
CygnusA Sy2 145.23 0.0565 9.43 -1.74 947.41/156 V
Mrk348 Sy1.9 144.81 0.0147 6.8 -0.25 1357.28/156 V
UGC3374 Sy1 141.21 0.0202 6.61 0.15 1260.05/153 V
IRAS05078+1626 Sy1 119.80 0.0174 6.88 -0.41 994.33/151 V
1RXSJ173728.0-290759 Sy1.9 119.04 0.0218 7.84 -1.07 719.70/145 V
3C111 Sy1 118.67 0.0497 8.45 -0.94 692.25/152 V
NGC3227 Sy1 112.47 0.0033 6.77 -1.28 648.91/153 V
NGC3516 Sy1 112.42 0.0087 7.39 -1.41 1561.91/156 V
4U1344-60 Sy1.9 111.79 0.0128 9.09 -2.85 211.47/156 V
Mrk926 Sy1 110.22 0.0477 7.98 -0.54 605.22/155 V
ESO103-35 Sy1.9 106.86 0.0135 7.37 -1.01 553.05/156 V
NGC5252 Sy2 103.15 0.0230 9.0 -2.23 1352.73/155 V
3C390.3 Sy1 102.87 0.0556 8.64 -1.1 772.56/156 V
Mrk509 Sy1 100.14 0.0347 8.05 -0.96 526.51/153 V
MR2251-178 Sy1 99.53 0.0645 8.19 -0.52 370.15/153 V
NGC6300 Sy2 96.37 0.0031 6.77 -1.75 701.76/156 V
3C120 Sy1 95.38 0.0331 7.74 -0.7 697.27/155 V
ESO506-27 Sy2 90.68 0.0242 8.84 -1.94 1038.69/154 V
NGC4593 Sy1 88.30 0.0083 6.88 -1.05 233.36/153 V
NGC5548 Sy1 86.47 0.0167 7.72 -1.37 1129.77/156 V
NGC5728 Sy1.9 84.74 0.0103 8.25 -2.28 611.12/154 V
NGC1275 Sy1.9 82.64 0.0168 8.6 -2.23 649.27/156 V
3C382 Sy1 82.33 0.0579 8.01 -0.56 473.91/156 V
NGC7582 Sy2 82.28 0.0052 7.74 -1.78 523.49/155 V
NGC3081 Sy2 81.89 0.0081 7.67 -1.76 526.76/156 V
NGC3281 Sy2 81.21 0.0111 8.22 -2.04 479.64/156 V
NGC788 Sy2 77.51 0.0137 8.18 -1.84 585.38/156 V
NGC1142 Sy2 74.31 0.0287 8.96 -1.93 730.35/156 V

30



Ark120 Sy1 74.29 0.0326 8.07 -1.18 176.15/156 NV
NGC526A Sy1.9 73.91 0.0189 8.06 -1.71 699.07/156 V
NGC7469 Sy1 70.63 0.0160 6.96 -0.72 182.87/155 NV
IC5063 Sy2 67.76 0.0113 8.24 -2.22 545.68/156 V
ESO297-18 Sy2 67.37 0.0252 8.5 -1.67 219.67/156 V
NGC6814 Sy1 64.47 0.0058 7.04 -1.7 777.90/150 V
NGC1365 Sy1 63.52 0.0051 6.6 -1.49 322.18/156 V
NGC1365 Sy1 63.52 0.0051 6.6 -1.49 322.18/156 V
IRAS05589+2828 Sy1 62.28 0.0331 8.0 -1.13 836.57/147 V
Mrk1040 Sy1 62.22 0.0163 7.41 -1.18 193.46/154 NV
Mrk110 Sy1 60.95 0.0352 7.29 -0.41 214.51/156 V
MCG-6-30-15 Sy1 59.53 0.0071 6.6 -1.1 174.65/155 NV
ESO141-55 Sy1 58.77 0.0371 7.99 -1.09 174.08/156 NV
LEDA178130 Sy2 58.27 0.0352 7.88 -0.99 311.22/156 V
NGC7314 Sy1.9 57.42 0.0046 6.3 -1.42 211.06/153 V
Mrk1210 Sy1.9 57.40 0.0136 6.86 -0.79 198.27/155 NV
Mrk6 Sy1 56.70 0.0190 8.1 -1.76 586.66/156 V
LEDA138501 Sy1 55.63 0.0497 8.01 -0.86 234.89/156 V
NGC4992 Sy2 54.42 0.0252 8.59 -1.93 195.39/155 NV
LEDA168563 Sy1 54.10 0.0283 7.88 -1.18 273.67/156 V
NGC7603 Sy1 52.96 0.0287 8.59 -1.95 129.26/150 NV
NGC235A Sy1.9 52.14 0.0221 8.49 -2.06 180.41/156 NV
NGC6860 Sy1.9 51.52 0.0147 7.71 -1.65 338.31/156 V
4C+74.26 Sy1 51.18 0.1050 9.83 -2.0 183.93/156 NV
2MASSJ07594181-3843560 Sy1 51.15 0.0400 8.82 -1.89 180.72/156 NV
LEDA38038 Sy2 49.46 0.0277 8.11 -1.53 184.09/156 NV
LEDA86269 Sy2 49.38 0.0105 7.98 -2.24 484.86/152 V
NGC612 Sy2 48.97 0.0299 8.28 -1.3 322.18/156 V
ESO362-18 Sy1 48.89 0.0125 7.11 -1.22 216.20/156 V
NGC973 Sy2 48.41 0.0157 8.48 -2.58 1045.03/156 V
Fairall9 Sy1 48.39 0.0459 8.3 -1.23 172.59/156 NV
HE1143-1810 Sy1 48.28 0.0326 7.39 -0.62 215.05/156 V
MCG-1-24-12 Sy2 46.38 0.0196 7.66 -1.44 213.07/156 V
LEDA166252 Sy1 44.90 0.0249 8.79 -2.31 302.68/156 V
1RXSJ165605.6-520345 Sy1 43.23 0.0538 8.33 -1.16 177.28/156 NV
Mrk1498 Sy1 42.97 0.0558 7.19 0.02 493.22/156 V
Mrk79 Sy1 42.72 0.0221 7.61 -1.25 457.84/156 V
NGC4051 Sy1 42.49 0.0020 6.13 -1.72 169.25/156 NV
2MASXiJ1802473-145454 Sy1 42.36 0.0343 7.98 -1.28 157.24/152 NV
1RXSJ174155.3-121157 Sy1 41.54 0.0376 8.03 -1.18 168.96/154 NV
ESO548-81 Sy1 41.21 0.0144 7.96 -1.97 337.36/156 V
3C445 Sy1 39.82 0.0561 7.89 -0.6 150.83/153 NV
ESO490-26 Sy1 39.49 0.0252 7.15 -0.76 224.91/155 V
IGRJ21277+5656 Sy1 39.43 0.0149 7.15 -1.22 172.84/156 NV
ESO511-30 Sy1 39.27 0.0229 7.23 -0.88 202.05/155 V
Fairall272 Sy2 39.15 0.0222 8.11 -1.66 223.64/155 V
IC4709 Sy2 39.08 0.0169 7.81 -1.69 171.50/156 NV
NGC7213 Sy1 39.04 0.0048 7.13 -2.08 164.71/155 NV
NGC4235 Sy1 38.62 0.0079 7.28 -2.2 443.00/153 V
NGC1068 Sy1.9 37.90 0.0035 6.93 -1.56 182.20/156 NV
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PictorA Sy1 37.32 0.0350 6.77 -0.07 264.56/156 V
Mrk704 Sy1 36.84 0.0295 8.24 -1.76 169.00/151 NV
NGC3079 Sy2 36.74 0.0035 6.38 -0.95 203.91/156 V
Fairall51 Sy1 36.51 0.0139 7.11 -1.21 181.93/156 NV
NGC7319 Sy2 36.45 0.0226 8.1 -1.67 209.13/156 V
NGC1194 Sy2 36.22 0.0136 7.83 -1.49 154.44/156 NV
CTS109 Sy1 35.80 0.0300 7.84 -1.23 228.57/153 V
Z121-75 Sy1 35.66 0.0331 7.27 -0.61 177.16/152 NV
LEDA170194 Sy2 35.33 0.0363 8.35 -1.62 221.19/153 V

Notes: (a) Taken from Koss et al. (2022). (b) Taken from the Swift -BAT 157 month survey (in units of 10−12

ergs/s/cm2). (c) The χ2, and the number of degrees of freedom (dof) when we fit a constant line to the light curves.
(d) Classification of the variable (V) and non-variable (NV) sources, depending on pnull (see text for details).
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