
Computer Science Department
University of Crete

Network Address Space Randomization: A Proactive
Defense Against Hitlist Worms

Master’s Thesis

Spiros Antonatos

October 2005
Heraklion, Greece

2

Abstract

Worms are self-replicating malicious programs that represent a major

security threat for the Internet, as they can infect and damage a large number

of vulnerable hosts at timescales where human responses are unlikely to be

effective. Sophisticated worms that use precomputed hitlists of vulnerable

targets are especially hard to contain, since they are harder to detect, and

spread at rates where even automated defenses may not be able to react in

a timely fashion.

This thesis examines a new proactive defense mechanism called Network

Address Space Randomization (NASR) whose objective is to harden networks

specifically against hitlist worms. The idea behind NASR is that hitlist infor-

mation could be rendered stale if nodes are forced to frequently change their

IP addresses. NASR limits or slows down hitlist worms and forces them to

exhibit features that make them easier to contain at the perimeter. We ex-

plore the design space for NASR and present a prototype implementation as

well as preliminary experiments examining the effectiveness and limitations

of the approach.

Supervisor: Evangelos P. Markatos

ii

���������	
	 ��� �
��� �������
� �������
����

���� ��
� ����	������ �� ���� ��!����
� Hitlist

Worms

��������� �	
���

�
��	������� �������

����� �	������� �	���������

���
	������� ������

��������

�� worms ����� ����	
���
�
�������� ��

�� ��
�� ��� �������� ��

���
�

���
������
���� �� �

������� �� �

���
�� ����
����� ����� �
����

��� �
 ��������
� �
� �

�
�� �� ��������!
�� ��� �����
 ���"�� ���������#�

�� ���
 ���
 ����
 �

� � ��"��
���
����	��� ��"������� ���

������

������$ %�
 ���������� worms� ��

�� ������

�
��
�
&

�
��������

������ ����#�#� ����#� (hitlists)� ����� ��������� ����
�
 ��
���
����
��

��� ��
 ���
��$ %���
�� �����
�
 ����
�
 �� ���

���
�� ��� �
�
��
�

���
���
���� �� ���
�
 ��"�� ���� ����� ��� �������� �������� ���������

�� ��� �

�
�� �� ��������
�� �������$

'�

�� ��� �������� ����� ����� � ������ �
� Network Address Space

Randomization (NASR)� ����
�
��
���
� �������
� ��������
�

� ����

#� ��

� �� ����
��!�� �
 ���
 �#� hitlist worms$ (����
��# �
� �
�

��������� ���� ����� ��� �
���

���

�
��������� ����
�
&

�
��������

������ ����� ������� �� ����� �����
������� ��
� ���	
� �����
�� ����� ��� IP

����"������ �
��$ �
 NASR
���
����� � ��"������� �� hitlist worms �������

iii

�
���� �� �� �� ����
�� ��������������

� �
����

�� �
�
�
 ���
�
 ���

�

���� �
�� ����
�������
 �
� �����
�$ %��
�����
��� �
� ��������� �
�

NASR� ���
����
� ��

���� ��"�� �
���� ��� �

�������

� ������
��

��� �

�
�������� ��� �
��
���
����
�� �
� ��������
� ���$

������� ���	��
��	
�� ���	��	��)������
� %$ *�����
�

iv

Acknowledgments

I would like to deeply thank my supervisor, Evangelos P. Markatos, for

his great support and feedback. His simple way of thinking and broad per-

spective will be a guide to my academic route. I would also like to express my

deep gratitude to Kostas Anagnostakis, a valuable partner whose contribu-

tion was a key for writing this thesis. It is truly an unprecedented experience

to work with these people.

I would also like to deeply thank my friends and colleagues Michalis Poly-

chronakis, Dimitris Koukis and Manos Moschous as well as all the members

of the Distributed Computing Systems lab, especially Dimitris Antoniadis

and Elias Athanasopoulos. I am also very grateful to the ISPs that provided

me with useful data for this work.

v

vi

��� ������ ��	

vii

viii

An early report on this work appeared in the proceedings of the 3rd

ACM Workshop on Rapid Malcode (WORM’05), in conjunction with the

12th ACM Conference on Computer and Communications Security (CCS),

November 2005[13].

ix

x

Contents

1 Introduction 1

1.1 Thesis organization . 4

2 Background 5

2.1 Worms . 5

2.2 Hitlists . 7

2.3 Worm defenses . 9

3 Network Address Space Randomization 11

3.1 Abstract model of NASR . 11

3.2 Practical constraints . 12

3.2.1 Scope . 13

3.2.2 Static addressing . 13

3.2.3 DNS updates . 14

3.2.4 Tolerance to address changes 14

3.3 Implementation . 15

4 Measurements 19

4.1 Hitlist generation strategies 20

xi

4.1.1 Random scanning . 21

4.1.2 Passive P2P snooping 23

4.1.3 Search-engine harvesting 24

4.2 Subnet address space utilization 25

5 Impact of NASR on worm infection 29

5.1 Impact of NASR . 32

5.2 Partial deployment scenario 34

5.3 Interaction with scan-blocking 35

6 The cost of NASR 37

6.1 Address change frequency vs. application failures 39

7 Transparent NASR 43

8 Discussion 51

9 Related Work 55

10 Summary 59

xii

List of Figures

1.1 Propagation speed of different types of worm attacks 4

4.1 Decay of addresses harvested using random scanning 21

4.2 Decay of addresses harvested by monitoring peer-to-peer traf-

fic routed through a node. 22

4.3 Decay of addresses harvested by querying a popular web search

engine. 23

4.4 Number of distinct addresses harvested by monitoring Gnutella

traffic as a function of time and number of monitoring nodes. . 25

4.5 Subnet address space utilization 26

5.1 Worm spread time(time to 90% infection) vs. time between

host address changes for different hitlist generation rates . . . 30

5.2 Effect of NASR on hitlist decay 30

5.3 Effect of NASR vs. subnet usage density 31

5.4 Effect of NASR for different vulnerable host populations . . . 31

5.5 Effect of network address space randomization on worm spread

time when partially deployed 34

xiii

5.6 Maximum fraction of infected hosts vs. time between host ad-

dress changes for different hitlist rates assuming scan-blocking

mechanisms . 36

6.1 Distribution of host uptimes in 5 different networks 38

6.2 Percentage of aborted connections as a function of the hard

change limit . 38

6.3 Percentage of aborted connections as a function of the soft

change limit . 39

7.1 An example of NASR using the randomization box 45

7.2 A more advanced example of NASR using the randomization

box. Host has two public IP addresses, one (139.91.70.50) de-

voted for the SSH session to calliope and the other (139.91.70.60)

for new connections . 46

7.3 The percentage of extra IP space needed 47

7.4 The percentage of extra IP space needed relative to the load

of subnets . 48

xiv

1
Introduction

Worms are widely regarded to be a major security threat facing the Inter-

net today. Incidents such as Code Red[2, 37] and Slammer[36] have clearly

demonstrated that worms can infect tens of thousands of hosts in less than

half an hour, a timescale where human intervention is unlikely to be feasible,

causing financial damage up to 38.5 billion dollars [24].

More recent research studies have estimated that worms can infect one

million hosts in less than two seconds [49, 50, 54]. Unlike most of the currently

known worms that spread by targeting random hosts, these extremely fast

worms rely on predetermined lists of vulnerable targets, called hitlists, in

1

2 CHAPTER 1. INTRODUCTION

order to spread efficiently.

The threat of worms and the speed at which they can spread have moti-

vated research in automated worm defense mechanisms. For instance, several

recent studies have focused on detecting scanning worms [57, 27, 56, 40, 48,

55]. These techniques detect scanning activity and either block or throttle

further connection attempts. These techniques are unlikely to be effective

against hitlist worms, given that hitlist worms do not exhibit the failed-

connection feature that scan detection techniques are looking for. To im-

prove the effectiveness of worm detection, several distributed early-warning

systems have been proposed [60, 38, 61, 12]. The goal of these systems is to

aggregate and analyze information on scanning or other indications of worm

activity from different sites. The accuracy of these systems is improved as

they have a more “global” picture of suspicious activity. However, these

systems are usually slower than local detectors, as they require data collec-

tion and correlation among different sites. Thus, both reactive mechanisms

and cooperative detection techniques are unlikely to be able to react to an

extremely fast hitlist worm in a timely fashion.

Observing this gap in the worm defense space, we consider the question

of whether it is possible to develop defenses specifically against hitlist worms.

We start by looking at likely strategies for building hitlists and examine how

effective these strategies can be. We observe that hitlists tend to decay natu-

rally for various reasons, as hosts disconnect and applications are abnormally

terminated. A rapidly decaying hitlist is likely to decrease the spread rate

of a worm. It may also increase the number of unsuccessful connections it

initiates and may thus increase the exposure of the worm to scan-detection

methods.

Starting with this observation, we ask whether it is possible to inten-

3

tionally accelerate hitlist decay, and propose a specific technique for this

purpose called network address space randomization (NASR). This tech-

nique is primarily inspired by similar efforts for security at the host-level

[58, 19, 59, 18, 42, 31, 17]. It is also similar in principle to the “IP hopping”

mechanism in the APOD architecture[15], BBN’s DYNAT[33] and Sandia’s

DYNAT[35] systems, all three designed to confuse targeted attacks by dy-

namically changing network addresses. In this thesis, we examine the same

basic idea in the context of defending against hitlist worms. In its simplest

form, NASR can be implemented by adapting dynamic network address al-

location services such as DHCP[23]1 to force more frequent address changes.

This simple approach may be able to protect enabled networks against hitlist

worms, and, if deployed at a large enough scale, may be able to significantly

hamper their spread.

We must emphasize that, like most (if not all) other worm containment

proposals, NASR is only a partial solution to the worm containment problem.

Where applicable, our approach succeeds in limiting the extent or slowing

down the rate of a worm infection. However, the mechanism is specific to

IP-hitlist worms, and may be less effective against DNS hitlists (we discuss

such issues in Section 8). Furthermore, it cannot always completely squash

hitlist-based worm epidemics and it cannot be used universally. Nevertheless,

being able to slow down the fastest known propagation mechanism is likely

to be valuable, as it may allow more time for other reactive defenses to kick

in. Furthermore, note that our analysis does not invalidate the worst-case

estimates provided in previous work, nor is our goal to play down the threat

1Another known address allocation service is bootp[22], but it allocates addresses semi-

permanently, without any mechanism for renewing the allocation and is thus not usable

for our purposes.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Propagation speed of different types of worm attacks

posed by such worms. The purpose of this thesis is to help examine whether

NASR is worth considering as part of a broader worm defense portfolio.

In the rest of this thesis, we present NASR in more detail and examine

issues of applicability, effectiveness and implementation cost.

1.1 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2 we provide a back-

ground on worms and current defenses.In Chapter 3 we explore in more detail

the idea of network address space randomization, and outline a randomized

DHCP server implementation. In Chapter 4 we analyze various hitlist gener-

ation strategies and present measurements exploring the properties of a small

subset of the IP address space. In Chapter 5 we present a simulation study

analyzing the effectiveness of network address space randomization in terms

of how much it would slow down a hitlist worm and how it would expose

such a worm to scan detection. In Chapter 6 we study the damage caused

by NASR on active connections and in Chapter 7 we present a mechanism to

overcome this damage. We summarize our results and conclude in Chapter

8.

2
Background

For the purpose of placing our work in context, we first give a brief overview

of what is known about worms, with emphasis on hitlist worms. We also

present a summary of proposals for defending against worms and how they

relate to hitlist worms which are the focus of this thesis.

2.1 Worms

Computer viruses have been studied extensively over the last couple of decades.

Cohen was the first to define and describe computer viruses in their present

form. In [21], he gave a theoretical basis for the spread of computer viruses.

5

6 CHAPTER 2. BACKGROUND

The strong analogy between biological and computer viruses led Kephart et

al. [32] to investigate the propagation of computer viruses based on epidemi-

ological models. They extend the standard epidemiological model by placing

it on a directed graph and use a combination of analysis and simulation to

study its behavior. They conclude that if the rate at which defense mech-

anisms detect and remove viruses is sufficiently high relative to the rate at

which viruses spread, it is possible to prevent widespread virus propagation.

The Code Red worm [2] was analyzed extensively in [62]. The authors

conclude that even though epidemic models can be used to study the be-

havior of Internet worms, they are not accurate enough because they cannot

capture some specific properties of the environment, in which worms operate:

the effect of human countermeasures against worm spreading (i.e., patching,

filtering, disconnecting, etc.) and the slowing down of the worm infection

rate due to the impact of worm on Internet traffic and infrastructure. They

derive a new general Internet worm model called two-factor worm model,

which they then validate in simulations that match the observed Code Red

data available to them. Their analysis seems also to be independently sup-

ported by the data on Code Red propagation in [37].

A similar analysis on the SQL “Slammer” (or Sapphire) worm [5] can be

found in [6]. Sapphire, the fastest worm to day, was able to infect more than

70,000 victim computers in less than 15 minutes.

The Blaster/Welchia epidemic is an interesting example of a “vigilante”

worm (Welchia) causing more trouble than the original outbreak (Blaster).

A “vigilante” worm attempts to clean-up another worm by using the same

vulnerability. However, the very notion of “vigilante” worms is rendered

useless if worms immediately disable the vulnerability after compromising a

machine.

2.2. HITLISTS 7

The Witty worm [44] is of interest for several reasons. First, it was the

first widely propagated Internet worm to carry a destructive payload. Second,

Witty was started in an organized manner with an order of magnitude more

ground-zero hosts than any previous worm and also began to spread as early

as only one day after the vulnerability was publicized, which is an indication

that the worm authors had already prepared all the worm infrastructure,

including the ground-zero hosts and the replication mechanisms, and were

only waiting for an exploit to become available in order to launch the worm.

All these worms use (random) scanning to determine their victims, by

using a random number generator to select addresses from the entire IP ad-

dress space. Although some worms chose their next target uniformly among

all the available IP addresses, other worms seemed to prefer local addresses

over distant ones, so as to spread the worm to as many local computers as

possible. Once inside an organization, these worms make sure that they will

infect several of its computers before trying to infect any outside hosts.

2.2 Hitlists

Instead of attempting to infect random targets, a worm could first determine

a large vulnerable population before it starts spreading. The worm creator

can assemble a list of potentially vulnerable machines prior to releasing the

worm, for example, through a slow port scan. The list of known vulnerable

hosts is called a hitlist. Using hitlists, worms do not need to waste time

scanning for potential targets during the time of the attack and will not

generate as many unsuccessful connections as when scanning randomly. This

allows them to spread much faster, and it also makes them less visible to

scan-based worm detection tools. A hitlist can be either a collection of IP

addresses, a set of DNS names or a set of Distributed Hash Table identities

8 CHAPTER 2. BACKGROUND

(for infecting DHT systems irrelevantly of the network infrastructure).

Hitlist worms have not been observed in the wild, perhaps because the

co-evolution of worms and defenses has not reached that stage yet: they are

not currently necessary for a successful worm epidemic, since neither scan-

blocking nor distributed detection systems are widely deployed yet. However,

hitlists are certainly feasible today and worm creators are very likely to use

them in the future.

Hitlist worms have attracted some attention lately because they are easy

to model off-line [50, 49]. In this context, several hitlist construction methods

have been outlined: random scanning, DNS searches, web crawling, public

surveys and indexes, as well as monitoring of control messages in peer-to-peer

networks.

Random scanning can be used to compile a list of IP addresses that

respond to active probing. Since the addresses will not be (ab)used imme-

diately, the worm author can use so-called stealth, low rate, scanning tech-

niques to make the scan pass unnoticed. On the other hand, if the duration

of the low-rate scanning phase is very long, some IP addresses will eventually

expire.

Hitlists of Web servers can be assembled by sending queries to search

engines and by harvesting Web server names off the replies. Similar single-

word queries can also be sent to DNS servers in order to validate web server

names and find their IP addresses. Interestingly enough, these types of scans

can be used to easily create large lists of web servers and are very likely to

go unnoticed.

However, any form of active scanning, probing, or searching, has the po-

tential risk of being detected. This gives special appeal to passive techniques,

such as those based on peer-to-peer networks. Such networks typically ad-

2.3. WORM DEFENSES 9

vertise many of their nodes and this information can be collected by just

observing the traffic that is routed through a peer. The creation of the

hitlist does not require any active operation from the peer-to-peer node and

therefore cannot raise suspicion easily.

2.3 Worm defenses

We discuss some recent proposals for defending against worms and whether

they could be effective against hitlist worms.

Approaches such as the one by Wu et al. [57] attempt to detect worms

by monitoring unsolicited probes to unassigned IP addresses (“dark space”)

or inactive ports. Worms can be detected by observing statistical properties

of scan traffic, such as the number of source/destination addresses and the

volume of the captured traffic. By measuring the increase on the number of

source addresses seen in a unit of time, it is possible to infer the existence

of a new worm when as little as 4% of the vulnerable machines have been

infected.

An approach for isolating infected nodes inside an enterprise network

is discussed in [48, 27]. The authors show that as little as 4 probes may

be sufficient in detecting a new port-scanning worm. Weaver et al. [55]

describe a practical approximation algorithm for quickly detecting scanning

activity that can be efficiently implemented in hardware. Schechter et al. [40]

use a combination of reverse sequential hypothesis testing and credit-based

connection throttling to quickly detect and quarantine local infected hosts.

These systems are effective only against scanning worms (not topological, or

“hit-list” worms), and rely on the assumption that most scans will result in

non-connections.

Several cooperative, distributed defense systems have been proposed.

10 CHAPTER 2. BACKGROUND

DOMINO is an overlay system for cooperative intrusion detection [60]. The

system is organized in two layers, with a small core of trusted nodes and a

larger collection of nodes connected to the core. The experimental analy-

sis demonstrates that a coordinated approach has the potential of providing

early warning for large-scale attacks while reducing potential false alarms.

Zou et al. [61] describes an architecture and models for an early warning sys-

tem, where the participating nodes/routers propagate alarm reports towards

a centralized site for analysis. The question of how to respond to alerts is not

addressed, and, similar to DOMINO, the use of a centralized collection and

analysis facility is weak against worms attacking the early warning infrastruc-

ture. Fully distributed defense mechanisms, such as [38, 12] may be more

robust against infrastructure attacks, yet all distributed defense mechanisms

that we are aware of are likely to be too slow for the estimated timescales of

hitlist worms.

3
Network Address Space

Randomization

The goal of network address space randomization (NASR) is to force hosts to

change their IP addresses frequently enough so that the information gathered

in hitlists is rendered stale by the time the worm is unleashed.

3.1 Abstract model of NASR

To illustrate the basic idea more formally, consider an abstract system model,

with an address space R = {1, 2, ..., n}, a set of hosts H = {h1, ..., hm} where

11

12 CHAPTER 3. NETWORK ADDRESS SPACE RANDOMIZATION

m < n, and a function A that maps all hosts hk to addresses A(hk) = r ∈ R.

Assume that at time ta, the attacker can (instantly) generate a hitlist X ⊂ R

containing the addresses of hosts that are live and vulnerable at that time. If

the attack is started at time tx and all hosts in X are still live and vulnerable

and have the same address as at time ta, then the worm can very quickly

infect |X| hosts.

In a system implementing NASR, consider that at time tb, where ta <

tb < tx, all hosts are assigned a new address from R. Thus, at the time of

the attack tx the probability that a hitlist entry xk still corresponds to a live

host is p = m/n and thus the attacker will be able to infect (m/n)|X| hosts.

Besides reducing the number of successfully infected nodes in the hitlist, the

attack will also result in a fraction 1−m/n of all attempts failing (which may

be detectable using existing techniques). In this simple model, the density

m/n of the address space seems to be a crucial factor in determining the

effectiveness of NASR. So far we have assumed a homogeneous set of nodes,

all with the same vulnerability and probability of getting infected. If only a

subset of the host population is vulnerable to a certain type of attack, then

the effectiveness of NASR in reducing the fraction of infected hitlist nodes

and the number of failed attempts is proportionally higher, according to our

simulation results.

3.2 Practical constraints

The model we presented illustrates the basic intuition of how NASR can

affect a hitlist worm. Mapping the idea to the reality of existing networks

requires us to look into several practical issues.

3.2. PRACTICAL CONSTRAINTS 13

3.2.1 Scope

Random assignment of an address from a global IP address space pool is not

practical for several reasons: (i) it would explode the size of routing tables,

the number of routing updates and the frequency of recomputing routes,

(ii) it would result in tremendous administrative overhead for reconfiguring

mechanisms that make address-based decisions, such as those based on access

lists and (iii) it would require global coordination for being implemented.

The difficulty of implementing NASR decreases as we restrict its scope to

more local regions. Each AS could implement AS- or prefix-level NASR, but

this would still create administrative difficulties with interior routing and

access lists. It seems that a reasonable strategy would be to provide NASR

at the subnet-level, although this does not completely remove the problems

outlined above. For instance, access lists would need to be reconfigured to

operate on DNS names and DNS would need to be dynamically updated when

hosts change addresses. It is also obvious that it is pointless to implement

NASR behind NATs, as the internal addresses have no global significance.

It is sufficient to change the address of the NAT endpoint (e.g., DSL/home

router) to protect the internal hosts.

3.2.2 Static addressing

Some nodes cannot change addresses and those that can may not be able to

do so as frequently as we would want. The reason for this is that addresses

have first-class transport- and application-level semantics. For instance, DNS

server addresses are usually hardcoded in system configurations. Even for

DHCP-configured hosts, changing the address of a DNS server would require

synchronizing the lease durations so that the DNS server can change its

address at exactly the same time when all hosts refresh their DHCP leases.

14 CHAPTER 3. NETWORK ADDRESS SPACE RANDOMIZATION

While technically feasible, this seems too complex to implement and such

complexity should be avoided. Similar constraints hold for routers.

3.2.3 DNS updates

For services referenced through the DNS name, such as email, FTP and Web

servers, implementing NASR requires the DNS name to accurately reflect

the current IP address of the host. This means that the DNS time-to-live

timers need to be set low enough so that remote clients and name servers

do not cache stale data when an address is changed. The NASR mechanism

also needs to interact with the DNS server to keep the address records up

to date. It is reasonable to ask whether this could increase the load on

the DNS system, given that lower TTLs will negatively affect DNS caching

performance. Fortunately, a recent study of DNS performance suggests that

reducing the TTLs of address records to values as low as a few hundred

seconds does not significantly affect DNS cache hit rates [28].

3.2.4 Tolerance to address changes

Generally, all active TCP connections on a host that changes its address

would be killed, unless connection migration techniques such as [26, 47, 16]

are used. Such techniques are not widely deployed yet and it is unrealistic

to expect that they will be deployed in time to be usable for the purposes of

NASR. Many applications are not designed to tolerate connection failures.

For instance, NFS clients often hang when the server is lost, and do not

transparently re-resolve the NFS server address from DNS before reconnect-

ing.

Fortunately, many applications are designed to deal with occasional con-

nectivity loss by automatically reconnecting and recovering from failure, and

3.3. IMPLEMENTATION 15

more recent research prototypes even explicitly deal with such failures[29].

For such applications, we can assume that infrequent address changes can be

tolerated. Examples of these applications are many P2P clients, like Kazaa

and DirectConnect as well as Windows/SAMBA sharing (when names are

used), messengers, FTP clients, chat tools, etc. However, tolerance does

not always come for free: frequent address changes may result in churn in

DHT-based applications and would generally have the side-effect of increas-

ing stale state in other distributed applications, including P2P indexing and

Gnutella-like host caches.

There exist ways to make systems more robust to address changes. Rocks

[16] is one solution providing reliable sockets for protecting applications sen-

sitive to IP address changes. However, it must be present at both ends of

the connection, so it is not practical for connections with external third par-

ties. In a LAN environment, a solution using an “address randomization

box” may be applicable in some cases, with the client host not being oblivi-

ous to address changes and the randomization box making sure that address

changes do not affect applications. However, we must admit that the overall

approach seems to require an infrastructure overhaul that we would prefer

to avoid. We will discuss this approach in Chapter 7.

Another option, which appears more attractive, is to make the NASR

mechanism aware of the active connections on each host, so that address

changes can be timed to coincide with the host being inactive. We will

discuss one possible approach to address this problem in the next section.

3.3 Implementation

The practical constraints presented in the previous sections suggest that

NASR should be implemented very carefully. A plausible scenario would

16 CHAPTER 3. NETWORK ADDRESS SPACE RANDOMIZATION

involve NASR at the subnet level and particularly for client hosts in DHCP-

managed address pools. How such concessions affect NASR, as well as the

rate at which address changes should be made for NASR to be effective will

be explored in more detail in Chapters 5 and 8.

A basic form of NASR can be implemented by configuring the DHCP

server to expire DHCP leases at intervals suitable for effective randomization.

The DHCP server would normally allow a host to renew the lease if the host

issues a request before the lease expires. Thus, forcing addresses changes

even when a host requests to renew the lease before it expires requires some

minor modifications to the DHCP server. Fortunately, it does not require

any modifications to the protocol or the client. We have implemented an

advanced NASR-enabled DHCP server, called Wuke-DHCP, based on the

ISC open-source DHCP implementation[25]. To minimize the “collateral

damage” caused by address changes we introduce two modules in our DHCP

implementation: an activity monitoring module, and a service fingerprinting

module.

The activity monitoring module keeps track of open connections for each

host with the goal of avoiding address changes for hosts whose services could

be disrupted. In our prototype, we only consider long-lived TCP connections

(that could be, for example, FTP downloads). More complicated policies can

be implemented but are outside the scope of our proof-of-concept implemen-

tation. Wuke-DHCP communicates with a flow monitor that records all

active sessions of all hosts in the subnet. The flow monitor responds with

the number of active connections that are sensitive to address changes. The

communication between the DHCP server and the flow monitor is minimal

(the question is 4 bytes as well as the answer) and does not impose additional

overhead to the server. The flow monitor must be placed at the edge of the

3.3. IMPLEMENTATION 17

subnet served by the DHCP server and is a lightweight process that processes

packet headers of the underlying traffic.

Service fingerprinting examines traffic on the network and attempts to

identify what services are running on each host. The purpose of service fin-

gerprinting is two-fold. First, we want to supplement activity monitoring

with some context to make address change decisions by indicating whether a

connection failure is tolerable by the end-system. Second, we want to avoid

assigning an address to a host that has significant overlap in services (and

potential vulnerabilities) with hosts that recently used the same address. For

instance, randomization between hosts with different operating systems, e.g.,

between a Windows and a Linux platform appears as a reasonable strategy.

Our implementation of service fingerprinting is rudimentary: we only use

port number information obtained through passive monitoring to identify

OS and application characteristics. For instance, a TCP connection to port

80 suggests that the host is running a Web server, and port 445 is an indi-

cation that a host might be a Windows platform. In an operational setting,

more elaborate techniques would be necessary, such as the passive techniques

described in [30, 41] and active probing techniques implemented as part of

open-source tools[11, 9, 8, 7].

In our implementation, we use three timers on the DHCP server for con-

trolling host addresses. The refresh timer determines the duration of the

lease communicated to the client. The client is forced to query the server

when the timer expires. The server may or may not decide to renew the

lease using the same address. The soft-change timer is used internally by

the server to specify the interval between address changes, assuming that the

flow monitor does not report any activity for the host. A third, hard-change

timer is used to specify the maximum time that a host is allowed to keep the

18 CHAPTER 3. NETWORK ADDRESS SPACE RANDOMIZATION

same address. If this timer expires, the host is forced to change address, as

the DHCP server does not renew the lease, despite the damage that may be

caused. We explore the configuration of these timers in Section 6.

4
Measurements

To explore the design space of network address space randomization we first

need to consider some basic hitlist characteristics, such as the speed at which

a hitlist can be constructed, the rate at which addresses already change

(without any form of randomization), and how address space is allocated

and utilized. We perform measurements on the Internet to obtain a more

clear picture of these characteristics.

19

20 CHAPTER 4. MEASUREMENTS

4.1 Hitlist generation strategies

There are two key issues that need to be examined to determine how hitlist

generation strategies relate to the effectiveness of NASR. First, we need to

have a rough estimate of the speed at which an attacker can generate a hitlist.

Second, we need to determine whether these strategies produce reasonably

accurate hitlists, given that hitlists may decay naturally.

Unfortunately, we cannot accurately measure hitlist generation speeds.

The speed that can be achieved will depend heavily on the defense mecha-

nisms deployed, for which we do not have any robust operational data, as well

as the generation strategies used, which we could not exhaustively analyze

to produce a safe estimate.

We must note that although it seems reasonable to assume that IP-level

stealth scans can take days or weeks to do properly, a skilled attacker may be

able to use a botnet to speed up data collection. Systems such as DShield[1]

and DOMINO[60] should be able to detect this activity, but the exact thresh-

olds under which the attacker would have to operate to evade detection are

unclear at this point.

We must also note that application-level probing appears as a bigger

threat, as some distributed applications provide protocol functionality for

crawling that can be exploited by an attacker to rapidly build hitlists. For

example, by crawling through selected Gnutella superpeers, we were able

to collect 520,000 unique IPs within 5 minutes. Normal crawling through

regular peers was significantly slower, as we will discuss briefly in Section

4.1.2. Of course, additional probing would be needed to determine client

software and version information, assuming that the worm can only infect

specific software versions.

4.1. HITLIST GENERATION STRATEGIES 21

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
ac

tio
n

of
 n

od
es

time (days)

ICMP ping scan hitlist decay

Figure 4.1: Decay of addresses harvested using random scanning

Given the complexity and intricacies of this question, we defer the answer

to future work. For the purposes of this paper, it seems reasonable to expect

that if such discovery functionality is determined to be dangerous, it may be

disabled or at least carefully monitored. Recent experience with the Santy

worm[10], that used Google to search for victims, seems to support this as-

sumption, as Google quickly responded by blocking requests originating from

the worm.

Next, we briefly present three different hitlist generation strategies and

focus on their effectiveness in terms of natural decay rates.

4.1.1 Random scanning

We determine the effectiveness of random scanning for building hitlists. We

first generate a list of all /16 prefixes that have a valid entry with the whois

service, in order to increase scan success rates and avoid reserved address

space. We then probe random targets within those prefixes using ICMP

ECHO messages. Using this approach, we generated a hitlist of 20,000 ad-

22 CHAPTER 4. MEASUREMENTS

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Gnutella hitlist decay

Figure 4.2: Decay of addresses harvested by monitoring peer-to-peer traffic

routed through a node.

dresses. Given this hitlist, we probe each target in the hitlist once every hour

for a period of two weeks. Every probe consists of four ICMP ECHO mes-

sages spaced out over the one-hour run in order to reduce the probability of

accidentally declaring an entry stale (e.g., because of short-term congestion

or connectivity problems). Note that these measurements do not give us ex-

actly the probability of the worm successfully infecting the target host, but

only a rough estimate. Although we were tempted to perform more insightful

reconnaissance probes on the nodes in the hitlist, this would result in a much

higher cost in terms of traffic and a high risk of causing (false) alarms at

the target networks. More accurate results could be obtained using full port

scans, application-level fingerprinting and more frequent probes needed for

ipid-based detection of host changes[20, 34].

The results of the ICMP ECHO experiment are shown in Figure 4.1. We

observe that the hitlist decays rapidly during the first day and continues to

decay, albeit very slowly, over the rest of the two-week run. The number of

4.1. HITLIST GENERATION STRATEGIES 23

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Search-engine hitlist decay

Figure 4.3: Decay of addresses harvested by querying a popular web search

engine.

reachable nodes tends to vary during the time of day, apparently peaking on

business hours in the US with minor peaks that may coincide with working

hours elsewhere in the world. Overall, the decay of the hitlist slows down

over time, reaching an almost stable level of 75% of hitlist nodes reachable.

4.1.2 Passive P2P snooping

In the Gnutella P2P network, node addresses are carried in QueryHit and

Pong messages. By snooping on these messages, a Gnutella client can har-

vest thousands of addresses without performing any atypical operations. In

our experiments, a 24-hour period sufficed for gathering 200K unique IP ad-

dresses, as shown in Figure 4.4. Intensive searches and the use of other, more

popular P2P networks will probably result in a higher yield.

Most P2P nodes are short-lived, and therefore addresses harvested through

P2P networks become unavailable very quickly. Figure 4.2 shows the decay

of the hitlist as a function of elapsed time. Note that in this experiment we

24 CHAPTER 4. MEASUREMENTS

only check whether the nodes respond to ICMP ECHO probes, not whether

the Gnutella client is still up and running. Thus, it is possible that the IP

address is not used by the same host recorded in the hitlist. This may or

may not be important for the attacker, depending on how much the attack

depends on software versions and whether version information has been used

in constructing the hitlist.

4.1.3 Search-engine harvesting

Querying a popular search engine for the or similar keywords returns hun-

dreds of millions of results. Retrieving a thousand results gave 612 unique

alive hosts and 30 dead hosts. The retrieval time is equivalent to a typical

request to a search engine, in our case nearly one second. Most search engines

restrict the number of results that can be retrieved, but the attacker can use

multiple keywords either randomly generated or taken from a dictionary.

The hosts that immediately appear as dead are a result of the frequency

of the indexing by the search engine. It plays a role in the speed of harvesting

the addresses and must be considered for the decay if the addresses are not

checked.

Figure 4.3 shows the decay of the hitlist created using the search engine

results. We observe that, compared to the other address sources, the search

engine results are very stable. This was expected, since web servers have to

be online and use stable addresses. It does not mean, however, that addresses

retrieved through search engines are better suited for attackers. Depending

on the vulnerability at hand, unprotected, client PCs, such as those returned

by crawling peer-to-peer networks may be preferred.

4.2. SUBNET ADDRESS SPACE UTILIZATION 25

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 3 6 9 12 15 18 21

U
ni

qu
e

H
ar

ve
st

ed
 A

dd
re

ss
es

Time (Hours)

1 node
2 nodes
3 nodes
4 nodes

Figure 4.4: Number of distinct addresses harvested by monitoring Gnutella

traffic as a function of time and number of monitoring nodes.

4.2 Subnet address space utilization

The feasibility and effectiveness of NASR depend on the fraction of unused

addresses in NASR-enabled subnets. Performing randomization on a sparse

subnet will result in more connection failures for the hitlist worm compared to

a dense subnet. Such failures could expose the worm as they could be picked

up by scan-detection mechanisms. In a dense subnet with homogeneous

systems (e.g., running the same services) the worm is more likely to succeed

in infecting a host, even if the original host recorded in the hitlist has actually

changed its address. Finally, in the extreme (and probably rare) case of a

subnet that is always fully utilized, there will never be a free address slot to

facilitate address changes.

We attempt to get an estimate of typical subnet utilization levels. Because

26 CHAPTER 4. MEASUREMENTS

 0

 20

 40

 60

 80

 100

 0 32 64 96 128 160

P
er

ce
nt

ag
e

of
 to

ta
l s

ub
ne

ts

Hosts per subnet

FORTH
UoC

ISP prefix 1
ISP prefix 2
ISP prefix 3

Figure 4.5: Subnet address space utilization

of the high scanning activity, we cannot perform this experiment globally

without tripping a large number of alerts. We therefore opted for scanning

five /16 prefixes that belong to FORTH, the University of Crete and a large

ISP, after first obtaining permission by the administrators of the networks.

We performed hourly scans on all prefixes using ICMP ECHO messages over a

period of one month.

A summary of the results is shown in Figure 4.5. For simplicity, we

assume that all prefixes are subnetted in /24’s. We see that many subnets

were completely dark with no hosts at all (not even a router). Nearly 30% of

the subnets in two ISP prefixes were totally empty, while for the FORTH and

UoC the percentage reaches 70%. This means that swapping subnets would

likely be an effective NASR policy, but unfortunately it is not practical, as

discussed in Section 3.2.1. We also see that 95% of these subnets have less

than 50% utilization and the number of maximum live hosts observed does

4.2. SUBNET ADDRESS SPACE UTILIZATION 27

not exceed 100. If subnet utilization at the global level is similar to what we

see in our limited experiment, then NASR at the level of /24 subnets is likely

to be quite effective, as there is sufficient room to move hosts around, reducing

the effectiveness of the worm and causing it to make failed connections.

28 CHAPTER 4. MEASUREMENTS

5
Impact of NASR on worm infection

It is infeasible to run experiments on the scale of the global Internet. To

evaluate the effectiveness of our design, we simulated a small-scale (compared

to the Internet) network of 1,000,000 hosts, each of which could be a potential

target of worms.

Because of the variety of operating systems used and services provided,

we assume that a fraction of hosts v is vulnerable to the worm. For simplicity,

we ignore the details of the network topology, including the effect of end-to-

end delays and traffic generated by the worm outbreak. We simply consider

a flat topology of routers, each serving a subnet of end-hosts.

29

30 CHAPTER 5. IMPACT OF NASR ON WORM INFECTION

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 5.1: Worm spread time(time to 90% infection) vs. time between host

address changes for different hitlist generation rates

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 v

al
id

 h
itl

is
t e

nt
rie

s

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 5.2: Effect of NASR on hitlist decay

A fraction of addresses is allocated in each subnet, which affects the

probability of successful scan attempts within the subnet. This probability

is an important parameter in the case where a host in the hitlist has changed

its address, because it determines if another live host would be available

31

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30min

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

subnet util
90%
80%
30%
10%

Figure 5.3: Effect of NASR vs. subnet usage density

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

vuln. hosts
100%

80%
40%
20%

Figure 5.4: Effect of NASR for different vulnerable host populations

at the same address. A separate parameter is used for random scanning,

reflecting the fraction of the overall address space that is completely unused.

The hitlist is generated at variable times (from 1 hour up to 4 days), and

we assume that the worm starts spreading immediately after finishing with

generating the hitlist. Because the early hitlist entries are more likely to have

32 CHAPTER 5. IMPACT OF NASR ON WORM INFECTION

become stale between their discovery and the start of the attack, the worm

starts attacking the freshest addresses in the hitlist first. For simplicity,

we ignore the details of how the hitlist is distributed and encoded in the

payload of the worm: we assume that every worm instance can obtain the

next available entry at zero cost. After finishing with the hitlist, we assume

that the worm may continue trying to infect hosts using random scanning.

5.1 Impact of NASR

In the first experiment, we simulate worm outbreaks with different parame-

ters, and measure the worm spread time, expressed in terms of the time

required for the worm to infect 90% of the vulnerable hosts. We compare the

impact of network address space randomization, varying how fast the hitlist

is generated and how fast the host addresses are changed. The fraction of

vulnerable hosts is 20%, the internal scan success probability is 0.3 (based on

the subnet utilization measurements of Section 4.2) and the random scanning

success probability is 0.05 (based on the measurements presented in Section

4.1.1).

The results are shown in Figure 5.1. We observe that NASR achieves

the goal of slowing down the worm outbreak, in terms of the time to reach

90% infection, from 5 minutes when no NASR is used to between 24 and

32 minutes when hosts change their addresses very frequently. As expected,

defending against hitlists that are generated very fast requires more frequent

address changes. It appears that the mean time between address changes

needs to be 3-5 times less than the time needed to generate the hitlist for

the approach to reach around 80% of its maximum effectiveness, while more

frequent address changes give diminishing returns. Considering the observa-

tions of Section 4.1, it appears that daily address changes could significantly

5.1. IMPACT OF NASR 33

slow down a worm whose hitlist is generated by passive snooping on a P2P

network.

Note that when using NASR, the hitlist worm is not completely reduced

to a random-scanning worm: knowledge of subnets that have even one host

available already gives the worm some advantage over a purely random-

scanning worm. In this particular experiment, it would take roughly 30

minutes for the hitlist worm to infect the whole network (under NASR),

and 2 hours for a purely scanning worm. This is the result of performing

subnet-level instead of global-level NASR; global-level NASR would indeed

reduce the hitlist worm to random-scanning. We must also note that al-

though the spread times reported depend on scanning frequency, the relative

improvement when using NASR appears to be constant.

The above experiment assumed that the hitlist worm will fall back to

random scanning after exhausting the hitlist. For a pure hitlist worm, the

fraction of nodes that are successfully infected is equal to the fraction of valid

hitlist entries. The fraction of valid hitlist entries for different address change

and hitlist generation times is shown in Figure 5.2. Again we observe that

NASR is quite effective, even for short hitlist generation times.

We also simulated NASR with different fractions of vulnerable hosts,

and average subnet utilization. The impact of NASR is greater in terms

of slowing down the infection for smaller vulnerable populations. This is

expected, as in such cases the failure rate for stale entries is higher compared

to a network where every available host is vulnerable. The results for the

impact of NASR as a function of subnet utilization are similar: higher subnet

utilization results in a higher success rate when hitting stale entries. However,

NASR remains effective even for 90% subnet utilization.

34 CHAPTER 5. IMPACT OF NASR ON WORM INFECTION

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

iprand nodes
100%

80%
40%
20%

0%

Figure 5.5: Effect of network address space randomization on worm spread

time when partially deployed

5.2 Partial deployment scenario

We have so far assumed that NASR is deployed globally throughout the

network. In reality, it is more likely that only a fraction of subnets will

employ the mechanism, such as dynamic address pools. As we are not aware

of any studies estimating the fraction of DHCP pools in the Internet, we

measure the effectiveness of NASR for different values for the fraction of

NASR-enabled subnets. The results are shown in Figure 5.5. We observe

that NASR continues to be effective in slowing down the worm, even when

deployed in 20% or 40% of the network. The worm still infects the non-

NASR subnets quite rapidly, with a slowdown in the order of 50% caused

by the worm failing to infect NASR subnets. In other words, NASR has

a milder but still notable impact on non-NASR hosts. However, the worm

will have to resort to random scanning after exhausting the hitlist, and it

will take significantly more time to infect NASR compared to non-NASR

5.3. INTERACTION WITH SCAN-BLOCKING 35

subnets. This observation suggests that there is a clear incentive for network

administrators to deploy NASR, as it may provide them the critical amount

of time needed to react to a worm outbreak.

5.3 Interaction with scan-blocking

Hitlist worms are generally immune to scan-blocking mechanisms such as [55].

Even for the natural decay rates measured in Section 4.1, such worms would

still be under the detection threshold most of the time. Randomization,

however, will cause many infection attempts to fail, as hosts change addresses

and their previous addresses are either unused or used by a different host

that may or may not run the same service, and thus may or may not be

vulnerable. To determine the interaction between NASR and scan-blocking

mechanism we simulate worm outbreaks in a network where both NASR and

scan-blocking are deployed. As scan-blocking contains the outbreak, in this

experiment we measure the maximum fraction of hosts that are infected in

the presence of NASR together with scan-blocking. The results are shown

in Figure 5.6. We observe that if NASR is performed according to the rule-

of-thumb observation made previously (e.g., with address changes at a rate

that is 3-5x faster than hitlist generation), the infection can be contained to

under 15% of the vulnerable population.

36 CHAPTER 5. IMPACT OF NASR ON WORM INFECTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 n

od
es

 in
fe

ct
ed

mean time between address change (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 5.6: Maximum fraction of infected hosts vs. time between host address

changes for different hitlist rates assuming scan-blocking

mechanisms

6
The cost of NASR

We attempt to estimate the “collateral damage” caused by NASR. The dam-

age depends on how frequently the address changes occur, whether hosts

have active connections that are terminated and whether the applications

can recover from the transient connectivity problems caused by an address

change.

37

38 CHAPTER 6. THE COST OF NASR

 0

 20

 40

 60

 80

 100

 24 48 72 96 120 144 168

P
er

ce
nt

ag
e

of
 h

os
ts

Max. host uptime (hours)

FORTH
UoC

ISP prefix 1
ISP prefix 2
ISP prefix 3

Figure 6.1: Distribution of host uptimes in 5 different networks

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

.001

.01

.1

1

10

UCNET BELL WEBICS LEIP

Figure 6.2: Percentage of aborted connections as a function of the hard change

limit

6.1. ADDRESS CHANGE FREQUENCY VS. APPLICATION FAILURES39

soft limit (hours)
0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

0

0.2

0.4

0.6

0.8

1

1.2
UCNET BELL WEBICS LEIP

Figure 6.3: Percentage of aborted connections as a function of the soft change

limit

6.1 Address change frequency vs. applica-

tion failures

We first consider a scenario where host addresses are only changed when a

node is rebooted. In this case, we know that the failure rate is zero, and try to

determine what address change frequency this would permit. We measured

the maximum uptime for hosts on the three networks presented previously.

The measured distribution is shown in Figure 6.1. The liveness of the

hosts was monitored for a full week by sending ping messages every hour.

Almost 60% of the hosts inside FORTH were always up, which seems reason-

able for an environment consisting mostly of workstations. In more dynamic

environments, like the ISP and the University of Crete networks only 20-30%

of the hosts were continuously up and running, while nearly 40% of the hosts

40 CHAPTER 6. THE COST OF NASR

had a maximum uptime of 10 hours. These results lead to two observations.

First, although it may be possible to perform NASR once every 1-4 days

for hosts only when they reboot, thus not causing any disruption, a signif-

icant fraction of hosts has a longer uptime. Considering that we may want

to change addresses more aggressively, this trivial form of randomization is

unlikely to be sufficient. Second, although such dynamic environments per-

form some form of natural randomization on their address space, mostly due

to DHCP, most of the DHCP servers are configured to maintain leases for

machines connecting to the network. The usual scenario is that a DHCP

server is giving the same IP to a specific host (by caching its Ethernet ad-

dress). Typically, a lease expires in 15 days, so hosts that do not refresh the

lease before it expires (e.g., because they are not connected) would obtain

a new address. Although we do not have measurements on how often this

happens, it appears that this minor, slow form of randomization is unlikely

to be effective by itself.

Given the above, we try to estimate the aborted connections caused by

more aggressive randomization, by simulating NASR with different parame-

ters on four different traces: a one-week contiguous IP header trace collected

at Bell Labs research[3], a 5-day trace from the University of Leipzig[4], a

1-day trace from the University of Crete, and a 20-day trace from a link

serving a single Web server at FORTH-ICS. For the first experiment, we use

a refresh timer of 1 minute (the DHCP renewal period), a soft-change timer

of 2 hours (interval on which we check if we can perform randomization) and

vary the hard-change timer (interval on which randomization is enforced).

The results are shown in Figure 6.2. As expected, there is a clear down-

ward trend as the timer increases, consistent among different traces. An

observation that initially surprised us was that the means of our samples did

6.1. ADDRESS CHANGE FREQUENCY VS. APPLICATION FAILURES41

not converge towards a smooth, monotonically decreasing function, despite

hundreds of simulations for each value of the hard-timer and the initial “last-

lease” times for each host randomized. The samples we obtained indicated a

behavior that was almost deterministic. Indeed, a closer look revealed that

the address change process for the same value of the hard-change timer is

synchronized for each host across different simulations. The first synchro-

nization point is the first successful soft-change event, which depends only

on the timings of the flows in the trace and the soft-change timer, which both

remain constant across different experiments. Thus, we consider this to be

an artifact of our experiment.

We also examine how the failure rate is affected when we keep the hard-

change timer constant, at 4 hours and vary the soft-change timer. The results

are shown in Figure 6.3. We see very little change as we vary the soft-change

timer. There is a small improvement as soft-change decreases, because we

can hit a small number of additional connection-free hosts.

A closer examination of the raw data reveals that more than 90% of

the failures come from a few highly active hosts. These hosts almost always

have some active connections which will always be aborted, regardless of how

much we relax the timer. Thus, it might make sense for the DHCP server to

also make exceptions and not strictly enforce the hard-change limit for such

hosts that are highly active, assuming they represent only a small fraction

of hosts on the network. We also note that our analysis overestimates the

failure rates because we do not filter out those applications that are resilient

to aborted connections.

Overall, we observe that the failure rates are reasonable when compared

to typical connection failure measurements on network links[14] and typical

false positive rates of attack detection heuristics [51, 53, 46, 39]. However,

42 CHAPTER 6. THE COST OF NASR

as we need to perform randomization in small timescales, where the failure

rates wave between 3 and 5%, failure rates may not be acceptable. We can

avoid network failures by using transparent NASR, an approach which needs

more deployment resources than the standard NASR implementation. We

describe the transparent NASR in the following section.

7
Transparent NASR

As shown in the previous Section, the damage caused by NASR in terms of

aborted connections may not be acceptable in some cases. Terminating, for

example, a large web transfer or an SSH session would be both irritating and

frustrating. Additionally, it would potentionally increase network traffic as

users or applications may repeat the aborted transfer or try to reconnect. To

address these issues, we suggest transparent NASR, an external mechanism

for deploying NASR avoiding connection failures.

The idea behind the mechanism is the existence of an “address random-

ization box” inside the LAN environment. This box performs the random-

43

44 CHAPTER 7. TRANSPARENT NASR

ization on behalf of the end hosts, without the need of any modifications

to the DHCP behavior, as suggested in Section 3.3. “Randomization box”

controls all traffic passing by the subnet(s) it is responsible for, analogous to

the firewall concept. The address used for communication between the host

and the box remains the same. We should note that there is no need for

private addresses, as end hosts can obtain any address from the organization

they belong. The public address of the end host – that is the IP that outside

world sees – changes from time to time according to soft and hard timers,

similar to the procedure described in Section 3.3. Old connections continue

to operate over the old address, the one that host had before the change,

until they are terminated. The “randomization box” is responsible for two

things. First, to prevent new connections on the old addresses reaching the

host. Second, to perform address translation to the packets based on which

connection they belong, similar to the NAT case. Until all old connections

are terminated, a host would require multiple addresses to be allocated. The

upper limit is when all addresses of the subnet are allocated, a case in which

we revert to killing applications.

An example of how the “randomization box” works is illustrated in Figure

7.1. The box is responsible for address randomization on the 139.91.70.0/24

subnet, that is it can pick up addresses only from this subnet. Initially the

host has the IP address 139.91.70.40 and “randomization box” sets that the

public IP address of this host is 139.91.70.50. The host starts a new SSH

connection to calliope.ics.forth.gr and sends packets with its own IP address

(139.91.70.40). The box translates the source IP address based on the public

one, setting it to 139.91.70.50. Simultaneously, the box keeps state that

the connection from port 2000 to calliope.ics.forth.gr on port 22 belongs to

the host with behind-the-box IP address 139.91.70.40 and public IP address

45

`

139.91.70.40

`

calliope.ics.forth.gr

Behind-the-box address Public address
139.91.70.40 139.91.70.50

139.91.70.40 2000

calliope 22

139.91.70.50 2000

calliope 22

State

Src IP Src Port Dst IP Dst Port Public IP
139.91.70.40 2000 calliope 22 139.91.70.50

Randomization Box

Figure 7.1: An example of NASR using the randomization box

139.91.70.50. Thus, on the calliope.ics.forth.gr side we see packets coming

from 139.91.70.50. When calliope responds back to 139.91.70.50, box has to

perform address translation. Consulting his state, it sees that this connection

was initiated by host 139.91.70.40 so it rewrites the destination IP address.

We should note here that “randomization box” is different from a NAT box

instrumented to perform randomization. NAT box handles a single public

IP address and shares it to multiple hosts (one-to-many) while our approach

handles multiple IP addresses and assigns them to multiple hosts (many-to-

many).

After an interval t, the time for public address change has arrived. The

box sets the public IP address of the host to 139.91.70.60. Any connections

46 CHAPTER 7. TRANSPARENT NASR

`

139.91.70.40

`

calliope.ics.forth.gr

Behind-the-box address Public address
139.91.70.40
139.91.70.40

139.91.70.60
139.91.70.50

139.91.70.40 2000

calliope 22

139.91.70.50 2000

calliope 22

State

Src IP Src Port Dst IP Dst Port Public IP
139.91.70.40 2000 calliope 22 139.91.70.50

Randomization Box

`

www.cnn.com

139.91.70.60 3000

www.cnn.com 80

139.91.70.40 3000 www.cnn.com 80 139.91.70.60

Figure 7.2: A more advanced example of NASR using the randomization box.

Host has two public IP addresses, one (139.91.70.50) devoted for

the SSH session to calliope and the other (139.91.70.60) for new

connections

initiated by external hosts can reach the host through this new public IP

address. As it can be seen in Figure 7.2 the new connection to www.cnn.com

website has the new public IP as source. Note that in the behind-the-box

and public address mapping table host now has two entries (the top is chosen

for new connections). The only connection permitted to communicate with

the host at 139.91.70.50 address is the SSH connection from calliope. For

each incoming packet, the box checks its state to find an entry. If no entry

is found, then packet is not forwarded to the internal hosts, else the “src IP”

47

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f I
P

 a
dd

re
ss

 s
pa

ce

.001

.01

.1

1

10

UCNET BELL WEBICS UCNET(2)

Figure 7.3: The percentage of extra IP space needed

field of the state is used to forward the packet. As long as the SSH connection

lasts, the 139.91.70.50 IP will be bound to the particular host and cannot be

assigned to any other internal host. When SSH session finishes, the address

will be released. For stateless transport protocols, like UDP or ICMP, only

the latest mapping between public and behind-the-box IP address is used.

The drawback of the “randomization box” is the extra address space re-

quired for keeping alive old connections. An excessive requirement of address

space would empty the address pool, making the box abort connections. We

tried to quantify the amount of extra space needed by simulating the “ran-

domization box” on top of four traffic traces. The first two traces, UCNET

and UCNET(2), come from a local ISP and include traffic from 760 and 1675

hosts respectively. All hosts of this trace belong to a /16 subnet. The second

trace, BELL, is a one-week contiguous IP header trace collected at Bell Labs

research with 395 hosts located in a /16 subnet. Finally, the WEBICS trace

48 CHAPTER 7. TRANSPARENT NASR

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f w
as

te
d

IP
 a

dd
re

ss
 s

pa
ce

1

10

100

UCNET BELL WEBICS UCNET(2)

Figure 7.4: The percentage of extra IP space needed relative to the load of

subnets

is a 20-day trace from a link serving a single Web server at FORTH-ICS. In

this trace, we have only one host and we assume it is the only host in a /24

subnet. In our simulation, the soft timer had a constant value of 90 seconds,

while the hard timer varied from 15 minutes to 24 hours. The results of

the simulation are presented in Figure 7.3. In almost all cases, we need 1%

more address space in order to keep alive the old connections. Combining

this result with our observation from Section 4.2 that 95% of the subnets

are less than half-loaded, we can safely assume that this 1% of extra space

is not an obstacle in the operation of the “randomization box”. However,

the little extra address space needed derives from the fact that subnets are

lightly loaded. For example, the 760 hosts of the UCNET trace correspond

to the 1.15% of the /16 address space. In Figure 7.4, the relative results of

the previous simulation are shown. On average, 10% more address space for

hard timer over one hour is needed, which seems a reasonable overhead. In

49

the case of the WEBICS trace the percentage is 100% but this is expected as

we have only one host.

We must admit that although transparent NASR overcomes the prob-

lem of aborted connections, it poses deployment overhead. Despite the fact

that its configuration is simple, the setup of an extra network device always

causes administrative overhead. A possible scenario would be to incorporate

transparent NASR inside routers or switches.

50 CHAPTER 7. TRANSPARENT NASR

8
Discussion

The experiments presented in Sections 5 suggest that network address space

randomization is likely to be useful. However, these results should only be

treated as preliminary, as there are several issues that need to be examined

more closely before reaching any definite conclusions.

First, the interaction between NASR and other defense mechanisms needs

to be studied in more depth. Our simulation results show that NASR enables

scan-blocking mechanisms to contain the worm to under 15% infection. How-

ever, scan-blocking is not entirely foolproof, at least in its current form. For

example, a list of known repliers can be used to defeat the failed-connection

51

52 CHAPTER 8. DISCUSSION

test used by these mechanisms, by padding infection attempts with successful

probes to the known repliers. Whether it is possible to design better mech-

anisms for detecting and containing scanning worms is thus still an open

question. Therefore, we should also consider other possibilities, including re-

active defenses and distributed detection mechanisms. As NASR is likely to

at least slow down worms, it may provide the critical amount of time needed

for distributed detectors such as DOMINO[60] to kick in, and for reactive ap-

proaches to deploy patches[45] or short-term filters[52]. Determining whether

this is indeed a possibility requires further experimentation and analysis.

Second, we have so far focused entirely on IP-level address randomization,

as IP hitlist worms seem to have the most efficient propagation properties.

On the one hand, we have only considered IPv4 as deployed today. In an

IPv6 Internet, the address space is so much bigger that randomization could

be even more effective. On the other hand, we need to also consider worms

that use higher-level addressing schemes, such as DNS or DHT identifiers.

DNS hitlist worms will defeat NASR, assuming that hosts also update their

DNS records. This would be true for Web servers, but when the DNS name

is only a descriptor (such as a string containing the IP address), which is

typical for DHCP and broadband address pools, a DNS-based hitlist worm

would not be successful. DNS hitlist worms would also suffer the additional

lookup latency, a slightly larger payload and the added risk of being detected.

While we are not aware of any such detection mechanism in place today, it

could be deployed, for example, on DNS servers.

With some simplifications, we can see how this is true for the case of DNS.

IP-level NASR would be rendered useless if a DNS name hitlist is used, for

example, for attacking Web servers, for which the DNS name will have to be

updated under IP randomization so that www.site.com always points to the

53

correct IP. We measured the fully qualified domain name (FQDN) for several

entries from search engine results. The average length was 16 bytes. Servers

that hold web content tend to have shorter, more memorable names, so we

expect that this is a conservative estimate. We measured a 46% compression

ratio for these strings, and therefore on average each entry will take up 7.5

bytes in the hitlist. IP addresses take up 4 bytes, so storing DNS names

causes almost a doubling of the hitlist size. The DNS lookups required for

resolving the names also introduce latency. Resolving the names used in the

previous paragraph results in an average latency of 1 second. It is possible

to pipeline these requests, but massive DNS lookups may raise suspicion.

While no such detection mechanism is in place now, it could be deployed, for

example, on DNS servers.

An estimate of the time needed to resolve a hitlist of 1 million DNS names

is described as follows. We assume that a compressed list of 1M DNS names

needs 9MB of storage (average length of a DNS name and compression ratio

are described above) and that attacker has X zombies at his disposal. Each

zombie will receive 9/X MB of the compressed list and will try to translate

2M/X DNS names. If zombies are behind common DSL lines, with download

rate of 512 KBps and upload rate of 128 KBps, then each zombie needs

(9/X)/0.06 to receive the list, where 0.06 is measured rate of download rate of

a 512 KBps DSL line in Mbytes/sec. According to [43] each DNS name takes

186 msec to be translated. Assuming that each zombie performs translation

in a pipelined way with 5 stages, the total translation time is (2M/5/X)*0.186

secs. After translation is finished, the zombie must send back to the attacker

2M/X IP addresses, that is 8/X Mbytes. Measured upload rate of a 512 KBps

line was found to be 0.01 Mbytes/sec, thus the transfer needs (8/X)/0.01

secs. The whole process needs (9/X)/0.06 + (400000/X)*0.186 + (8/X)/0.01

54 CHAPTER 8. DISCUSSION

seconds. For X=1, this time is 75350 seconds, for X=100 decreases linearly

to 753 seconds, while to get a translation time under 10 secs more than ten

thousand zombies are needed. The maximum pipelining that can be achieved

is upload rate/53, where 53 is a typical size of a DNS request in bytes. With

maximum pipelining (188 for 512 KBps DSL line), the time needed for X=1

decreases from 75350 to 2928 seconds, but generating this amount of DNS

requests is extremely suspicious. For typical T1 lines, the time for one zombie

is around 74435 (assuming pipeline of depth 5), showing that the dominant

cost is the DNS requests. For T1 line with maximum pipelining (18867) and

one zombie the time is decreased from 74435 to 55,38 seconds. Thus, while

the worm is spread through the entire Internet, in practice, every infection

has to be processed by the DNS system, involving orders of magnitude less

hosts.

Third, we have not considered how worm creators would react to the

widespread deployment of NASR. One option would be for the attacker to

perform a second round of (stealthy) probing, and retain only entries that

seem to be stable over time. If NASR is partially deployed, then the worm

could infect the non-NASR part of the Internet, without being throttled by

stale entries or generating too many failed connections. Interestingly, in this

scenario all networks that employ NASR will be worm-free, unless the worm

switches to random scanning after finishing with the hitlist. Even if this

happens, NASR-enabled networks will still get infected much later than the

nodes in the hitlist.

9
Related Work

Our work on network address space randomization was inspired by similar

techniques for randomization performed at the OS level [58, 19, 59, 18, 42, 31,

17]. The general principle in randomization schemes is that attacks can be

disrupted by reducing the knowledge that the attacker has about the system.

For instance, instruction set randomization[31] changes the instruction set

opcodes used on each host, so that an attacker cannot inject compiled code

using the standard instruction set opcodes. Similarly, address obfuscation[18]

changes the locations of functions in a host’s address space so that buffer-

overflow exploits cannot predict the addresses of the functions they would

55

56 CHAPTER 9. RELATED WORK

like to utilize for hijacking control of the system. Our work at the network

level is similar, as it reduces the ability of the attacker to build accurate

hitlists of vulnerable hosts.

The use of IP address changes as a mechanism to defend against attacks

was proposed independently in [15], [33] and [35]. Although these mech-

anisms are similar to ours, there are several important differences in the

threat model as well as the way they are implemented. The main difference

is that they focus on targeted attacks, performing address changes to confuse

attackers during reconnaissance and planning. Neither project discusses or

analyzes the use of such a mechanism for defending against worm attacks.

More specifically, the BBN DYNAT system[33] was developed as part of

the DARPA Information Assurance Program exploring the area of dynamic

network defense, with the hypothesis that dynamic network reconfiguration

would inhibit an adversary’s ability to gather intelligence, and thus degrade

the ability to successfully launch an attack. BBN’s DYNAT operates by ob-

fuscating host identity information in TCP/IP headers when packets enter

public parts of the network. The obfuscation algorithm depends on a pre-

esta-blished keying parameter that varies with time. The evaluation shows

that the adversary was a) severely time limited by the dynamic nature of the

network, and b) forced into more vulnerable and detectable behavior. We

raise the same arguments for defending typical LANs against hitlist worm

attacks, the main difference being that in our case the clients are loosely

coupled to the servers and therefore pre-established keying parameters were

undesirable. In particular, the BBN approach requires a “shim” module

to be installed on the client to coordinate address changes with the (mod-

ified) server, while in our approach we consider a DHCP-based implemen-

tation that is easier to deploy as it does not require any changes to the

57

client. However, client-side modifications make it easier for DYNAT to man-

age address changes without affecting applications, unlike the DHCP-based

approach that requires additional care to minimize application disruption.

The reason behind this difference in the two designs is that DYNAT assumes

an adversary that can passively listen to client-server communication. In

contrast, our work focuses on attackers performing scans and other active

harvesting activities to build a worm hitlist.

The APOD (Applications That Participate in Their Own Defense) project

[15] set out to develop technologies that increase an application’s resilience

against attacks. One of the mechanisms they describe, called Port and Ad-

dress Hopping, is relevant to our work as it is designed to evade attacks

against a service by constantly changing its IP address and TCP port using

random numbers. The intention is both to hide the service’s real identity and

confuse the attacker during reconnaissance. Packets intercepted by attackers

will reveal random addresses and ports, which are valid only for a small pe-

riod of time, e.g., 1 minute. For an attack to be successful, the attacker must

discover the current addresses and ports and execute the attack all within

one refresh cycle. A stated additional benefit is the increased likelihood of

an attacker being detected. This mechanism too relies on synchronization of

random number generators and time synchronization between the two com-

ponents. Port hopping, as opposed to address hopping, was not an option

in our design due to the loose coupling between clients and servers. APOD

also provides hopping functionality on protocol layers above TCP, such as

distributed CORBA calls, which requires additional modification of TCP/IP

data in the IIOP protocol. This feature would be a reasonable addition to

our proposal.

Sandia’s Dynamic Network Address Translation for network protection is

58 CHAPTER 9. RELATED WORK

a similar proposal [35]. The authors discuss several types of dynamic address

translation and point out that the use of this approach is dependent on many

different factors which can influence overall effectiveness. With this in mind,

they provide a detailed decision tree which allows the designer to determine

which type of address translation is suitable for a particular environment.

10
Summary

We have explored the design and effectiveness of network address space ran-

domization (NASR), a technique that hardens IP networks against hitlist

worms. The idea behind NASR is to force network nodes to frequently change

their network address in order to increase the staleness of information con-

tained in hitlists. The approach is appealing in several ways. First, it is

effective in limiting the infection for pure hitlist worms, or slowing down

the infection for hybrid hitlist-scanning worms. Second, it forces both types

of worms to exhibit scan-like behavior that exposes them to scan detection

mechanisms, where available. Third, it is relatively easy to implement and

59

60 CHAPTER 10. SUMMARY

deploy. Unlike network-level detection mechanisms, NASR does not add any

additional packet-level processing on network elements. Unlike host-based

detection or other proactive mechanisms, it does not require any changes to

the end-points.

We have discussed various constraints that limit the applicability of the

proposed approach, such as the administrative overhead for managing ad-

dress changes, services that require static addresses (such as routers and

DNS servers) and applications that cannot tolerate address changes or suffer

performance-wise when addresses change frequently. Our experiments indi-

cate that the connection failure rates due to NASR are comparable to typical

connection failure rates on modern networks and typical false positive rates

of attack detection heuristics.

Our analysis suggests that network segments that already perform dy-

namic address allocation, such as DHCP pools for broadband connections,

laptop subnets, wireless networks, etc., are the most suitable environment for

deploying NASR without significantly impairing functionality or increasing

administrative overhead. Assuming that broadband users are less likely to be

vigilant and keep their systems secure, NASR appears promising. However,

given that most worms so far have targeted servers, and until better defenses

are available, we believe that the administrative overhead for implementing

NASR is offset by the benefits of NASR, that effectively allow administrators

to “opt-out” from hitlists.

Bibliography

[1] DShield: Distributed Intrusion Detection System. http://www.dshield.org.

[2] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting Buffer Overflow in

IIS Indexing Service DLL. http://www.cert.org/advisories/CA-2001-19.html,

July 2001.

[3] NLANR-PMA Traffic Archive: Bell Labs-I trace.

http://pma.nlanr.net/Traces/Traces/long/bell/1, 2002.

[4] NLANR-PMA Traffic Archive: Leipzig-I trace.

http://pma.nlanr.net/Traces/Traces/long/leip/1, 2002.

[5] Cert Advisory CA-2003-04: MS-SQL Server Worm.

http://www.cert.org/advisories/CA-2003-04.html, Jan. 2003.

[6] The Spread of the Sapphire/Slammer Worm.

http://www.silicondefense.com/research/worms/slammer.php, Feb. 2003.

[7] DISCO: The Passive IP Discovery Tool. http://www.altmode.com/disco/,

2004.

[8] Fingerprinting: The complete documentation.

http://www.l0t3k.org/security/docs/fingerprinting/, 2004.

61

62 BIBLIOGRAPHY

[9] Fingerprinting: The complete toolsbox. http://www.l0t3k.org/security/tools/fingerprinting/,

2004.

[10] Net Worm Uses Google to Spread. http://it.slashdot.org/it/04/12/21/2135235.shtml,

Dec. 2004.

[11] THC-Amap. http://thc.org/releases.php, 2004.

[12] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D. Keromytis, and

D. Li. A Cooperative Immunization System for an Untrusting Internet.

In Proceedings of the 11th IEEE International Conference on Networking

(ICON), pages 403–408, Sept./Oct. 2003.

[13] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. De-

fending against hitlist worms using network address space randomization. In

Proceedings of the 3rd ACM Workshop on Rapid Malcode, Nov. 2005.

[14] M. Arlitt and C. Williamson. An Analysis of TCP Reset Behaviour on the

Internet. ACM SIGCOMM Computer Communication Review, 35(1):37–44,

2005.

[15] M. Atighetchi, P. Pal, F. Webber, R. Schantz, and C. Jones. Adaptive use of

network-centric mechanisms in cyber-defense. In Proceedings of the 6th IEEE

International Symposium on Object-oriented Real-time Distributed Comput-

ing, May 2003.

[16] R. A. Baratto, S. Potter, G. Su, and J. Nieh. Mobidesk: mobile virtual desktop

computing. In Proceedings of the 10th Annual International Conference on

Mobile Computing and Networking (MOBICOM), pages 1–15. ACM Press,

2004.

[17] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi.

Randomized instruction set emulation to disrupt binary code injection at-

BIBLIOGRAPHY 63

tacks. In Proceedings of the 10th ACM Conference on Computer and Com-

munications Security, Oct. 2003.

[18] S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation: An efficient

approach to combat a broad range of memory error exploits. In In Proceedings

of the 12th USENIX Security Symposium, pages 105–120, Aug. 2003.

[19] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and

protection in a single-address-space operating system. ACM Transactions on

Computer Systems, 12(4):271–307, 1994.

[20] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang, E. de Souza e Silva,

J. Kurose, and D. Towsley. Exploiting the IPID field to infer network path

and end-system characteristics. In Proceedings of the 6th Passive and Active

Measurement Workshop (PAM 2005), Mar. 2005.

[21] F. Cohen. Computer Viruses: Theory and Practice. Computers & Security,

6:22–35, Feb. 1987.

[22] B. Croft and J. Gilmore. Bootstrap Protocol (BOOTP). RFC 951,

http://www.rfc-editor.org/, Sept. 1985.

[23] R. Droms. Dynamic Host Configuration Protocol. RFC 2131, http://www.rfc-

editor.org/, Mar. 1997.

[24] C. Fosnock. Computer worms: Past, present and future, 2005.

http://www.infosecwriters.com/text resources/pdf/Computer Worms

Past Present and Future.pdf.

[25] Internet Systems Consortium Inc. Dynamic host configuration protocol

(DHCP) reference implementation. http://www.isc.org/sw/dhcp/.

[26] J. Ioannidis and G. Q. Maguire Jr. The design and implementation of a mobile

internetworking architecture. In USENIX Winter, pages 489–502, 1993.

64 BIBLIOGRAPHY

[27] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan

Detection Using Sequential Hypothesis Testing. In Proceedings of the IEEE

Symposium on Security and Privacy, May 2004.

[28] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the

effectiveness of caching. In Proceedings of the 1st ACM SIGCOMM Internet

Measurement Workshop (IMW), Nov. 2001.

[29] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. MaziG•res, and M. F.

Kaashoek. REX: Secure, extensible remote execution. In In Proceedings of

the 2004 USENIX Technical Conference, pages 199–212, June-July 2004.

[30] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy. Transport layer iden-

tification of P2P traffic. In IMC ’04: Proceedings of the 4th ACM SIGCOMM

conference on Internet measurement, pages 121–134, New York, NY, USA,

2004. ACM Press.

[31] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection

Attacks With Instruction-Set Randomization . In Proceedings of the ACM

Computer and Communications Security Conference (CCS), pages 272–280,

Oct. 2003.

[32] J. O. Kephart. A Biologically Inspired Immune System for Computers. In

Artificial Life IV: Proceedings of the Fourth International Workshop on the

Synthesis and Simulation of Living Systems, pages 130–139. MIT Press, 1994.

[33] D. Kewley, J. Lowry, R. Fink, and M. Dean. Dynamic approaches to thwart

adversary intelligence gathering. In Proceedings of the DARPA Information

Survivability Conference and Exposition (DISCEX), 2001.

[34] T. Kohno, A. Broido, and kc Claffy. Remote physical device fingerprinting.

In IEEE Symposium on Security and Privacy, May 2005.

BIBLIOGRAPHY 65

[35] J. Michalski, C. Price, E. Stanton, E. L. Chua, K. Seah, W. Y. Heng, and

T. C. Pheng. Final Report for the Network Security Mechanisms Utilizing

Network Address Translation LDRD Project. Technical Report SAND2002-

3613, Sandia National Laboratories, November 2002.

[36] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.

Inside the slammer worm. IEEE Security & Privacy, pages 33–39, July/Aug.

2003.

[37] D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread

and victims of an Internet worm. In Proceedings of the 2nd Internet Measure-

ment Workshop (IMW), pages 273–284, Nov. 2002.

[38] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response strategies for large

scale attack mitigation. In Proceedings of the 3rd DARPA Information Sur-

vivability Conference and Exposition (DISCEX), Apr. 2003.

[39] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C. Kuo, and K. P.

Fan. Buttercup: On Network-based Detection of Polymorphic Buffer Overflow

Vulnerabilities. In Proceedings of the Network Operations and Management

Symposium (NOMS), pages 235–248, vol. 1, Apr. 2004.

[40] S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scanning

Worm Infections. In Proceedings of the 7th International Symposium on Recent

Advances in Intrusion Detection (RAID), pages 59–81, Oct. 2004.

[41] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network identifica-

tion of P2P traffic using application signatures. In WWW ’04: Proceedings of

the 13th international conference on World Wide Web, pages 512–521, New

York, NY, USA, 2004. ACM Press.

[42] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On

the effectiveness of address-space randomization. In CCS ’04: Proceedings of

66 BIBLIOGRAPHY

the 11th ACM Conference on Computer and Communications Security, pages

298–307, New York, NY, USA, 2004. ACM Press.

[43] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of DNS-based

server selection. In Proceedings of the IEEE Infocom Conference, Apr. 2001.

[44] C. Shannon and D. Moore. The spread of the witty worm, 2004.

http://www.caida.org/analysis/security/witty/.

[45] S. Sidiroglou and A. D. Keromytis. A network worm vaccine architecture.

In Proceedings of the IEEE International Workshops on Enabling Technolo-

gies: Infrastructure for Collaborative Enterprises (WETICE), Workshop on

Enterprise Security, June 2003.

[46] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm finger-

printing. In Proceedings of the 6th Symposium on Operating Systems Design

& Implementation (OSDI), Dec. 2004.

[47] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host mobility.

In MobiCom ’00: Proceedings of the 6th annual international conference on

Mobile computing and networking, pages 155–166, New York, NY, USA, 2000.

ACM Press.

[48] S. Staniford. Containment of Scanning Worms in Enterprise Networks. Jour-

nal of Computer Security, 2004.

[49] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash

worms. In Proc. ACM CCS WORM, Oct. 2004.

[50] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your

Spare Time. In Proceedings of the 11th USENIX Security Symposium, pages

149–167, Aug. 2002.

BIBLIOGRAPHY 67

[51] T. Toth and C. Krügel. Accurate buffer overflow detection via abstract pay-

load execution. In Proceedings of the 5th International Symposium on Recent

Advances in Intrusion Detection (RAID), Oct. 2002.

[52] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: vulnerability-

driven network filters for preventing known vulnerability exploits. In Proceed-

ings of ACM SIGCOMM’04, pages 193–204, 2004.

[53] K. Wang and S. J. Stolfo. Anomalous Payload-based Network Intrusion Detec-

tion. In Proceedings of the 7th International Symposium on Recent Advanced

in Intrusion Detection (RAID), pages 201–222, Sept. 2004.

[54] N. Weaver and V. Paxson. A worst-case worm. In Proc. Third Annual Work-

shop on Economics and Information Security (WEIS’04), May 2004.

[55] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning

Worms. In Proceedings of the 13th USENIX Security Symposium, pages 29–44,

Aug. 2004.

[56] M. Williamson. Throttling Viruses: Restricting Propagation to Defeat Mali-

cious Mobile Code. Technical Report HPL-2002-172, HP Laboratories Bristol,

2002.

[57] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architecture and

Algorithm for Detecting Worms with Various Scan Techniques. In Proceedings

of the Network and Distributed System Security Symposium (NDSS), pages

143–156, Feb. 2004.

[58] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent runtime randomization for

security. In A. Fantechi, editor, Proc. 22nd Symp. on Reliable Distributed

Systems –SRDS 2003, pages 260–269, Oct. 2003.

68 BIBLIOGRAPHY

[59] C. Yarvin, R. Bukowski, and T. Anderson. Anonymous RPC: Low-latency

protection in a 64-bit address space. In In Proc. USENIX Summer 1993

Technical Conference, pages 175–186, June 1993.

[60] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in the

DOMINO Overlay System. In Proceedings of the Network and Distributed

System Security Symposium (NDSS), Feb. 2004.

[61] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and Early Warning

for Internet Worms. In Proceedings of the 10th ACM International Conference

on Computer and Communications Security (CCS), pages 190–199, Oct. 2003.

[62] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation Modeling

and Analysis. In Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS), pages 138–147, Nov. 2002.

