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Abstract 
 

This work presents a cavity-enhanced scheme for the measurement of the atomic iodine 

spectrum, comprising a four-mirror bow-tie cavity, which increases the effective interaction 

pathlength of iodine atoms with light, by a factor – essentially – equal to the average number 

of intracavity photon round-trips. 

It also doubles as the first steps towards a new type of atomic parity non-conservation (PNC) 

experiment. In 1959, Zel’dovich first considered the possibility of measuring PNC in atomic 

transitions, and suggested that if a parity violating weak neutral-current interaction between the 

electron and the nucleus exists, then the interference with a parity conserving electromagnetic 

interaction between the electron and the nucleus would make the atomic system optically 

active. So, the ability to perform measurements of circular birefringence with high sensitivity 

would constitute a way to measure PNC in a low-energy, atomic physics experiment. 

The Standard Model, predicts a weak parity non-conserving transition amplitude E1PNC 

between states of the same parity in certain atomic and molecular systems. Measurement of the 

E1PNC transition amplitude is possible through the interference with the amplitude of a parity 

allowed transition. In the vicinity of a parity-allowed magnetic-dipole M1 transition, the 

interference M1-E1PNC leads to natural optical activity.  

As a PNC candidate, iodine offers a number of advantages: a high atomic number, Z, which 

enhances the PNC effect, a strong M1 transition with which the PNC amplitude can interfere, 

readily available means to create significant atomic populations, even at room temperature, a 

large number of isotopes, where combined measurements can eliminate deficiencies in our 

theoretical understanding of atomic iodine, the ability to directly compare results with the best-

to-date atomic PNC experiment, that on cesium performed by the C.E. Wieman group in the 

late 1990s, and more. The main aim of this thesis is to study the iodine magnetic-dipole, M1, 

transition 52P1/2 → 52P3/2 at 1315 nm, and to measure, for the first time, the electric quadrupole 

E2 component between the same states, which is expected to provide unambiguous information 

about a specific component of the PNC interaction, that owing to the elusive anapole moment 

of the nucleus.  The cavity enhancement outlined above is expected to allow for the study of 

very small signals, such as PNC optical rotation. 

As a further means of enhancement, we also study the effects of increased temperature for the 

production of higher atomic iodine column densities, in order to maximize the PNC signal. 
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Περίληψη 
 

Αυτή η εργασία παρουσιάζει μια ενισχυμένη εικόνα μέσω κοιλότητας για την μέτρηση του 

ατομικού φάσματος ιωδίου, περιλαμβάνει μια κοιλότητα τύπου bow-tie τεσσάρων κατόπτρων, 

η οποία αυξάνει το ενεργό μήκος αλληλεπίδρασης των ατόμων ιωδίου με το φως, κατά 

παράγοντα ίσο με τον μέσο αριθμό περασμάτων μέσα στην κοιλότητα. 

Επίσης, παρουσιάζονται τα πρώτα βήματα για πειράματα παραβίασης της συμμετρίας της 

ομοτιμίας (PNC). Το 1959, ο Zel’dovich πρώτος εξέτασε την πιθανότητα μέτρησης PNC σε 

ατομικές μεταβάσεις και προτάθηκε ότι αν υπάρχει παραβίαση την ομοτιμίας λόγω της 

ασθενούς αλληλεπίδρασης μεταξύ ηλεκτρονίου και πυρήνα, τότε η συμβολή με μια 

ηλεκτρομαγνητική αλληλεπίδραση που διατηρεί την ομοτιμία μεταξύ του ηλεκτρονίου και του 

πυρήνα, αυτό θα έχει σαν αποτέλεσμα το ατομικό σύστημα να γίνεται οπτικά ενεργό. Έτσι, η 

ικανότητα διεξαγωγής μετρήσεων κυκλικού διχρωισμού με υψηλή ευαισθησία θα αποτελούσε 

τρόπο μέτρησης του PNC σε πειράματα ατομικής φυσικής χαμηλής ενέργειας. 

Το Καθιερωμένο Πρότυπο, προβλέπει μια ασθενή μετάβαση που παραβιάζει την ομοτιμία με 

πλάτος Ε1PNC μεταξύ καταστάσεων με όμοια ομοτιμία σε συγκεκριμένα ατομικά και μοριακά 

συστήματα. Η μέτρηση του πλάτους μετάβασης Ε1PNC είναι δυνατή μέσω της συμβολής με μία 

μετάβαση η οποία δε παραβιάζει την ομοτιμία. Στην περίπτωση μια επιτρεπόμενης μαγνητο-

διπολικής μετάβασης Μ1, η συμβολή Μ1-Ε1PNC θα οδηγήσει σε φυσική οπτική ενεργότητα. 

Σαν υποψήφιο ατομικό σύστημα για PNC, το ιώδιο προσφέρει πολλά πλεονεκτήματα όπως: 

μεγάλο ατομικό αριθμό, Z, το οποίο ενισχύει το φαινόμενο PNC, ισχυρή Μ1 μετάβαση με την 

οποία η μετάβαση E1PNC μπορεί να συμβάλει, εύκολη δημιουργία ατομικών πληθυσμών ακόμη 

και σε θερμοκρασία δωματίου, μεγάλος αριθμός ισοτόπων, όπου συνδυαστικές μετρήσεις 

μπορούν να εξαλείψουν ελλείψεις στην θεωρητική κατανόηση του ατομικού ιωδίου, την 

ικανότητα να συγκρίνουμε άμεσα τα αποτελέσματα με το πιο πρόσφατο ατομικό πείραμα 

PNC, στο κέσιο όπου πραγματοποιήθηκε από την ομάδα του C.E. Wieman τα τέλη της 

δεκαετίας του 1990, και άλλα. Ο κύριος στόχος αυτής της εργασίας είναι να μελετηθεί η 

μαγνητο-διπολική μεταβαση (Μ1) του ιωδίου, 52P1/2 → 52P3/2  στα 1315 nm και να μετρηθεί, 

για πρώτη φορά, η ηλεκτρο-τετραπολική συνιστώσα Ε2 μεταξύ των ίδιων καταστάσεων, το 

οποίο αναμένεται να παρέχει πληροφορίες σχετικές με μια συγκεκριμένη συνιστώσα της PNC 

αλληλεπίδρασης, το οποίο οφείλεται στην αναπολική ροπή του πυρήνα. Η ενίσχυση μέσω 

οπτικής κοιλότητας που περιγράφεται, αναμένεται να επιτρέψει την μελέτη πολύ μικρών 

σημάτων, όπως η οπτική περιστροφή λόγω PNC. 

Ως ένα περαιτέρω μέσο ενίσχυσης, μελετάμε την επίδραση της αύξησης της θερμοκρασίας για 

την παραγωγή μεγαλύτερων ατομικών πυκνοτήτων, με στόχο την μεγιστοποίηση του σήματος 

PNC. 
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Chapter 1: Cavities 

1.1 Basics of cavities 
 An optical cavity is an arrangement of mirrors that forms a standing wave cavity resonator 

for light waves. Optical cavities are a major component of lasers, surrounding the gain medium 

and providing feedback of the laser light. They are also used in optical parametric oscillators 

and some interferometers. Light confined in the cavity reflects multiple times, producing 

standing waves for certain resonance frequencies. The standing wave patterns produced are 

called modes; longitudinal modes (of the same order) differ only in resonant frequency, but 

maintain the same spatial intensity profile, while transverse modes differ in both frequency, 

and intensity profile across the cross-section of the beam. 

 The most common types of optical cavities consist of two facing plane (flat) or spherical 

mirrors. The simplest of these is the plane-parallel or Fabry–Pérot cavity, consisting of two 

opposing flat mirrors. 

            a)   b) 

Figure 1: a) Spherical mirror cavity and b) Fabry – Pérot cavity. 

 

1.2 Cavity Resonances 
The resonance of an electromagnetic wave inside an optical cavity is no different than the 

resonance of any other system. To make the problem as familiar as possible, we consider the 

cavity shown in Figure 2. We consider incident on the cavity all the waves, from the left, inside 

the cavity, or transmitted through it to the right to be plane waves. 

 

 

 

 

Figure 2: Optical cavity. Image from Verdeyen – Laser Electronics [1] 
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Let suppose that we have a wave as it bounces back and forth between the two mirrors. 

Consider E0  to be the initial field to the right if M1. It propagates to M2  and back to M1 and 

experiences an amplitude change of Γ1·Γ2 and a phase factor 𝑒[− 𝑗 𝑘2𝑑] as it travels between the 

two mirror, and thus generates the field E1
+, which experiences the same changes as E0, and in 

turn generates E2
+, and so on. All the fields that are generated at every point along M1 to M2 

(E1
+, E2

+, and so on), must be added to the initial field Eo , which we define to have the reference 

phase of 0◦. We have assumed that the round trip phase shift (RTPS), 2θ = 2kd, is almost an 

integral multiple of 2π radians. That deficiency is labeled by φ and is related to kd by 

 2𝜃 = 2𝑘𝑑 − 𝜑 (1.1)  

where q is an integer. 

By assuming that 𝜑 = 0, we define the resonance condition as 

 
𝑘 ∙ 2𝑑 =

𝜔𝑛 ∙ 2𝑑

𝑐
=
2𝜋 ∙ 2𝑑

𝜆
= 𝑞 ∙ 2𝜋 (1.2)  

Or 

 
𝑑 =

𝑞 ∙ 𝜆

2
 (1.3)  

where 𝜆 =
𝜆0

𝑛
. This view of resonance states that there has to be an integral number of half 

wavelengths between the two mirrors, or, more generally, an integral number of wavelengths 

along the total cavity round-trip length. 

1.3 Important Quantities 
The frequency difference between successive modes of the cavity is important and is called 

Free Spectral Range (FSR). Equation (1.2) can also be interpreted in terms of frequency f as: 

 
𝑘 ⋅ 2𝑑 = 𝜔 

2𝑛𝑑

𝑐
= 2𝜋𝑓 ∙

2𝑛𝑑

𝑐
= 𝑞 ⋅ 2𝜋 ⇒ 

 

 𝑓 = 𝑞 ∙
𝑐

2𝑛𝑑
 (1.4)  

Because 𝑞 is restricted to integer values, there are only discrete frequencies which obey the 

resonance condition. The separation between those frequencies is given by  

 𝑓𝑞+1 − 𝑓𝑞 =
𝑐

2𝑛𝑑
= 𝐹𝑆𝑅 (1.5)  

There are three interrelated characteristic parameters associated with a cavity that describe the 

resonance phenomenon: Q (quality factor), F (finesse), and τp (photon lifetime). To derive an 

explicit relationship between the resonance, these quantities, and the characteristics of the 

cavity, we need an analytic description of the fields inside the cavity and their relationship to 

those exciting the cavity. After some mathematical operations we obtain a generic expression 

for the power transmission through an arbitrary cavity with reflection coefficients of the input 

and output mirrors, Rin and Rout, respectively, and 𝐴 = √𝑅𝑖𝑛𝑅𝑜𝑢𝑡(1 − cavity losses), the per 

round-trip survival factor of the cavity: 
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𝑇(𝑓) =

(1 − 𝑅𝑖𝑛)(1 − 𝑅𝑜𝑢𝑡)

(1 − 𝐴)2
1

1 + (
2𝐹
𝜋 )

2

sin2(2 𝜋 (𝑓 − 𝑓𝑞) 𝐿/𝑐)

 
(1.6)  

where 𝑓𝑞 the cavity resonant frequencies, and F the finesse defined below. 

A plot of the transmission coefficient (1.6) versus the frequency f is shown in Figure 3 for 

different reflection coefficients Rin, Rout. 

 

 

 

Figure 3: Transmission through a Fabry - Perot cavity as a function of the frequency for various reflection coefficients. 

The quality factor (Q) of the cavity is a measure of the sharpness or selectivity of the resonance. 

If f0 is the frequency of one of the peaks, then Q is given by: 

 
𝑄 =

𝑓0
𝛥𝑓1/2

=
𝜔0
𝛥𝜔1/2

=
𝜆0
𝛥𝜆1/2

 (1.7)  

where  𝛥𝑓1/2 is the full width at half of the maximum (FWHM) of the cavity resonance, in 

frequency units, given by: 

 
𝛥𝑓1/2 =

𝐹𝑆𝑅

𝜋
{
1 − 𝐴

√𝐴
} (1.8)  

Thus, 

 
𝑄 =

𝑞(𝑐 2𝑛𝑑⁄ )

𝛥𝑓1/2
=
2𝜋𝑛𝑑

𝜆0

√𝐴

1 − 𝐴
 (1.9)  

The Finesse (F), appearing in (1.6), is defined as  

 
𝐹 =

𝐹𝑆𝑅

𝐹𝑊𝐻𝑀
=
𝐹𝑆𝑅

𝛥𝑓1/2
 (1.10)  

Or, 

 
𝐹 =

𝜋√𝐴

1 − 𝐴
 (1.11)  
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1.4 Alignment and mode matching  
Proper mode matching between an input laser beam and an optical cavity means that the laser 

beam couples completely, in both shape and path, to the fundamental (longitudinal) spatial 

mode (TEM00q) of the cavity and not at all to the higher-order (off-axis) spatial modes 

(TEMlmq). In Figure 4 we see the spectrum of the cavity which supports higher-order modes. 

In this section we will show the conditions that will allow us to have only the first transverse 

mode (TEM00q). 

 

 

 

Figure 4: Transmittance of the cavity with higher-order spatial modes (TEMmnq). 

In one dimension, the normalized spatial eigenmodes are Hermite-Gaussians, the first order is 

given by: 

 
𝑈0(𝑥) = (

2

𝜋𝑥0
2)

1/4

𝑒
−(
𝑥
𝑥0
)
2

 
(1.12)  

where 𝑥0 is called the waist size. For a two spherical (radius R1 and R2) mirrored cavity of mirror 

spacing d, 

 
𝑥0
4 = (

𝜆

𝜋
)
2 𝑑(𝑅1 − 𝑑)(𝑅2 − 𝑑)(𝑅1 + 𝑅2 − 𝑑)

(𝑅1 + 𝑅2 − 2𝑑)2
 

(1.13)  

We begin with the assumption that the input beam 𝛹(𝑥) is a Gaussian and aligned, so that 

𝛹(𝑥) = 𝐴𝑈0(𝑥) and then see what happens as it is misaligned. If we translate the input beam 

by a small amount, 𝑎𝑥, 𝛹(𝑥) becomes: 

 𝛹(𝑥) = 𝐴𝑈0(𝑥 − 𝑎𝑥) 

= 𝐴(
2

𝜋𝑥0
2)

1/4

𝑒
−(
𝑥−𝑎𝑥
𝑥0

)
2

 (1.14)  

The exponential can be expanded and if  
𝑎𝑥

𝑥0
≪ 1 and equation (1.14) can be rewritten as: 

 

𝛹(𝑥) ≃ 𝐴(
2

𝜋𝑥0
2)

1
4

(1 + 2𝑎𝑥
𝑥

𝑥0
2) 𝑒

−(
𝑥
𝑥0
)
2

 
(1.15)  
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Or 

 𝛹(𝑥) ≃ 𝐴(𝑈0(𝑥) +
𝑎𝑥
𝑥0
𝑈1(𝑥) (1.16)  

Where  

𝑈1(𝑥) = (
2

𝜋𝑥0
2)

1/4
2𝑥

𝑥0
𝑒
−(
𝑥
𝑥0
)
2

 

is the second spatial mode. Thus we see that a small displacement of the input beam gives rise 

to a coupling of the first off-axis mode of the cavity. 

The last case to be treated is that in which the beam size is correctly matched, but the position 

of the waist is not. To describe what happens when the input waist is displaced a distance b 

along the cavity axis z from the cavity waist, we rewrite the two lowest-order modes as 

 

𝑉0(𝑟, 𝑧) = √
2

𝜋

1

𝑤
𝑒
(−𝑟2(

1
𝑤2
+𝑖
𝜋
𝜆𝑅
) )

 
(1.17)  

 

𝑉1(𝑟, 𝑧) = √
2

𝜋

1

𝑤
(1 − 2

𝑟2

𝑤2
) 𝑒

(−𝑟2(
1
𝑤2
−𝑖
𝜋
𝜆𝑅
) )

 
(1.18)  

Where R is the radius of curvature which given by: 

 
𝑅(𝑧) = 𝑧 (1 + (𝜋

𝑤0
2

𝜆𝑧
)

2

) (1.19)  

And w is the spots size of the eigenmodes and varies as 

 
𝑤2(𝑧) = 𝑤0

2 (1 + (
𝜆𝑧

𝜋𝑤0
2)

2

) (1.20)  

The distance z is measured from the cavity waist, at a short distance b from the waist we assume 

that: 

(
𝜆𝑏

𝜋𝑤0
2) ≪ 1 

𝑤2(𝑏) = 𝑤0
2 

Hence, the axially translated input beam at the cavity waist takes the form:  

 

𝛹(𝑟, 𝑏) = 𝐴√
2

𝜋

1

𝑤
(1 − 2

𝑟2

𝑤2
) 𝑒

(
−𝑟2

𝑤0
2 (1−𝑖

𝜆𝑏

𝜋𝑤0
2) )

 
(1.21)  

Finally, expanding the exponential, the beam in terms of eigenmodes is: 

 
𝛹(𝑟, 𝑧) = 𝐴(𝑉0 + 𝑖

𝜆𝑏

2𝜋𝑤0
2 𝑉1) 

(1.22)  
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So, we see that an axial displacement of the input waist causes a coupling to higher-order radial 

eigenmodes. The way to overcome this is to use lenses in the right positions, in order to match 

the beam waist with the cavity waist [2].  

1.5 Cavity-enhanced polarimetry 
In optics, polarized light is usually described using either the Mueller or the Jones calculus. 

We use the latter, derived by R. C. Jones in 1941. Polarized light is represented by a 2D Jones 

vector, and linear optical elements are represented by 2×2 Jones matrices. When light traverses 

an optical element the resulting polarization of the emerging light is found by taking the product 

of the Jones matrix of the optical element and the Jones vector of the incident light. Note that 

Jones calculus is only applicable to light that is already fully polarized. Light which is randomly 

polarized, partially polarized, or incoherent must be treated using the Mueller calculus. 

The Jones matrix of an optically active element (circularly birefringent optical rotator) is an 

SU(2) rotation matrix with argument 𝜃: 

 𝑅𝑐(𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) 

 

(1.23)  

Anisotropies such as imperfections of transmission optics, thermal or stress-induced 

birefringences, and stray magnetic fields can be described as linearly birefringent optical 

elements. The Jones matrix for a general linear wave retarder, which introduces a differential 

phase shift δ, is given by 

 
𝑅𝑙(𝛿) = (

𝑒𝑖𝛿/2 0
0 𝑒−𝑖𝛿/2

) 

 

(1.24)  

The cavity round-trip Jones matrices for the propagation are obtained by the ordered 

multiplication of the Jones matrices representing the optical elements. The round-trip Jones 

matrices are given by 

 𝑅 = 𝑅𝑒(𝛿) ∙ 𝑅𝑐(𝜃) 
 

(1.25)  

The eigen-polarizations of the cavity modes, along with their respective resonance frequencies, 

are determined by the anisotropies of the cavity. Using the explicit form of the transfer 

matrices, we can obtain the eigensystem as a function of the parameters (𝜃, 𝛿). 

The matrix R has two eigenvalues and two eigenvectors. The eigenvectors are generally 

complex, orthogonal vectors v± and represent the eigenpolarizations of each cavity mode. The 

eigenvalues can be written in the form 𝜆± = 𝑒
±𝑖𝜑. The phase of each eigenvalue is the round-

trip optical phase shift obtained during light propagation and therefore yields the frequency 

splitting of the eigenmodes. Expanding (1.25), we obtain 

 

𝑅 = (
𝑒
𝑖𝛿
2 cos(𝜃) − sin(𝜃)

sin(𝜃) 𝑒−
𝑖𝛿
2 cos(𝜃)

) 

 

(1.26)  

The eigenvalues and eigenvectors are: 
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𝜆± = cos(𝜃) cos (
𝛿

2
) ∓ 𝑖√1 − cos2 𝜃 cos (

𝛿

2
)
2

 

 

(1.27)  

 

𝜈± = 𝐴

(

 csc(𝜃) (cos(𝜃) sin (
𝛿

2
) ∓ √1 − cos2 𝜃 cos (

𝛿

2
)
2

)

−𝑖 )

  

 

(1.28)  

Where A is a normalization constant which is functions of θ and δ. We see that in the most 

general case the polarization eigenstates are represented by orthogonal ellipses and their 

frequency splitting is proportional to 𝛤 = cos−1(cos(𝑎) cos (
𝛿

2
))  [3] 

a) 

 

 

b) 

 

 

Figure 5: Optical activity (circular birefringence) splits the eigenmodes (blue lines) by 2𝜔𝜃 = 2𝜃𝑐/𝐿. a) We see the 

splitting without linear birefringence and b) in the presence of linear birefringence, the eigenmodes transforms into 

elliptical states. The orange line corresponds to the degenerate axial mode of an isotropic cavity. 

 

In the context of this thesis, we operate on cavities in the absence of both circular, as well as 

linear birefringence, as our goal is to study the absorption from atomic iodine vapor. Thus, our 

cavity spectrum comprises degenerate resonances for any incoming light polarization. 
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However, the treatment above encompasses our future plans for studying effects owing to 

circular birefringence inside our optical cavities, namely Faraday rotation due to applied 

magnetic fields on the atomic vapor, and, ultimately, the weak chiral optical activity due to the 

non-conservation of parity in the specific iodine transitions under study. 
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Chapter 2: Multipole Transitions 
 

2.1 Maxwell’s Equations 
The two fundamental quantities defining the electromagnetic field are the electric E(𝒓, 𝑡) and 

magnetic H(𝒓, 𝑡) fields which are functions of space and time satisfying the Maxwell’s 

equations. In the nonrelavistic form and SI units, they are given by, 

 
𝛁 × 𝐄 +

∂𝐁

∂t
= 0 (2.1) 

 
𝛁 × 𝐇 +

∂𝐃

∂t
= 𝐉  (2.2) 

 𝛁 ∙ 𝐃 = σ (2.3) 

 𝛁 ∙ 𝐁 = 0 (2.4) 

 

where J and σ are the densities of currents and free charges, respectively, while 𝑫 = 𝜀0𝜠 and 

𝑩 = 𝜇0𝑯 with 𝜀0 the electric permittivity and 𝜇0 the magnetic permeability of vacuum. The 

fields can be expressed in terms of the scalar φ(𝒓, 𝑡) and vector A(𝒓, 𝑡) potentials as 

 𝑬 = −𝜵𝜑 −
𝜕𝜜

𝜕𝑡
 , 𝑩 = 𝜵 × 𝜜 (2.5) 

If we choose 𝜑 = 0 and 𝜵 ∙ 𝐀 = 0, then the fields are given by: 

 𝑬 = −
𝝏𝜜

𝝏𝒕
 ,  𝑩 = 𝜵 × 𝜜 (2.6) 

 

which means than if we know the vector potential A(𝒓, 𝑡)we can easily obtain the fields. 

Substituting (2.6) into the equation (2.2) we obtain  

 
(𝛻2 −

1

𝑐2
𝜕2

𝜕𝑡2
)𝑨(𝒓, 𝑡) = 0 (2.7) 

where 𝑐 = (𝜇0𝜀0)
−1/2  is the speed of light in vacuum.[4] 

 

2.2 Atom Interacting with EM field   
Let us employ time-dependent perturbation theory to investigate the interaction of an atom with 

classical electromagnetic radiation. It will still be assumed that the particles involved are 

nonrelativistic. The Hamiltonian of such an atom is: 

 
H =∑[

1

2me
(𝐩𝐢̂ + e𝐀𝐢)

2 − eφi − g
e

2me
𝐁𝐢 ∙ 𝐒𝐢̂]

i

+ V  (2.8) 
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where the sum is over the electrons in the atom. In (2.8), m is the electron’s mass, 𝒑𝒊̂ its 

momentum and q its charge, while V is the atomic potential. The remaining terms in (2.8) 

express the effect of the additional external EM field, where 𝑺̂𝒊 is the spin of the electrons 

interacting with the magnetic field. As before, by choosing 𝜑 = 0 and 𝜵 ∙ 𝐀 = 0, the 

Hamiltonian can be rewritten as 

 
H = H0 + ∑[

e

me
𝐀𝐢 ∙ 𝐩̂i +

e2

2me
𝐀𝐢
𝟐 + g

e

2m
𝐁𝐢 ∙ 𝐒𝐢̂]

i

 (2.9) 

The term 𝐻0 is the Hamiltonian of the atom in the absence of the external electromagnetic field. 

Note that 𝒑̂ and A commute because 𝜵 ∙ 𝐀 = 0 and the term proportional to 𝑨𝟐 can be neglected 

as it is very small. 

Thus, the time-dependent Hamiltonian of a single electron is equal to  

 H1 =
e

me
𝐀 ∙ 𝐩̂ − g

e

2me
𝐁 ∙ 𝐒̂ = He + Hm 

(2.10) 

From the equations (2.6) and (2.7) the vector potential 𝑨(𝒓, 𝑡), the electric 𝑬(𝒓, 𝑡)and magnetic 

𝑩(𝒓, 𝑡) fields corresponding to a simple wave can be generalized as  

 𝑨 = 𝑟𝑒̂
𝐸0

√2𝑖𝜔
𝑒𝑖(𝒌∙𝒓−𝜔𝑡), 𝑬 = 𝑟𝑒̂

𝐸0

√2
𝑒𝑖(𝒌∙𝒓−𝜔𝑡), 𝑩 = −𝑟𝑏̂

𝐸0

√2𝐶
𝑒𝑖(𝒌∙𝒓−𝜔𝑡)1.  

The exponential can be expressed as a Taylor series: 

 
ei𝐤∙𝐫 =∑

(i𝐤 ∙ 𝐫)n

n!

∞

n=0

=∑
(i𝐤 ∙ 𝐫)l−1

(l − 1)!

∞

l=1

 

(2.11) 

This is the multipole expansion of the electromagnetic field, where the index  𝑙 = 𝑛 − 1 is 

defined to be the multipole order.[5] 

 

2.3 Electric Dipole Transitions 
 The most common simplification of the multipole expansion, which is also the strongest 

contribution when allowed, is the electric dipole approximation. For the electric dipole 

approximation we choose the term 𝑙 = 1 in equation (2.11) to get 𝑒𝑖𝑘∙𝑟 ≃ 1, i.e. we consider 

𝑘 ⋅ 𝑟 ≪ 1, or, equivalently, 𝑟 ≪ 𝜆, that is the wavelength of the incoming light is much greater 

than the dimensions of the atom, thus the electron perceives the incoming electric field as an 

oscillatory field with no spatial dependence Therefore, if we consider a system with initial and 

final state |𝑎〉 and |𝑏〉, respectively, described by the Hamiltonian 𝐻𝑒 we can calculate the 

electric dipole matrix element 

                                                 
1 𝒌 = 𝑛̂𝑘 , 𝑛̂ = 𝑟̂𝑒 × 𝑟𝑏̂ ,  𝑟𝑒̂ ∙ 𝑟𝑏̂ = 0 



2.4 Electric Quadrupole Transitions 

 
19 

 

𝐻𝑎𝑏
𝐸1 = ⟨𝑎|𝐻𝑒|𝑏⟩ = ⟨𝑎|

𝑒

𝑚𝑒

𝐸0

√2𝑖𝜔
𝒑 ∙ 𝒓𝒆̂|𝑏⟩ = 𝑒

𝐸0

√2𝑖𝜔
⟨𝑎|[𝐻0, 𝑟] ∙ 𝑟𝑒̂|𝑏⟩  

2

 
 = 

= 𝑒
𝐸0

√2𝑖𝜔
𝑖𝜔⟨𝑎|𝒓 ∙ 𝒓̂𝒆|𝑏⟩ ⟹ 

 
𝐻𝑎𝑏
𝐸1 =

𝐸0

√2
⟨𝑎|𝑫 ∙ 𝒓̂𝒆|𝑏⟩ (2.12) 

where  𝑫 = 𝑒 ∙ 𝒓 is the electric dipole moment and 𝑫̂ = ∑ 𝑒 ∙ 𝑟𝑖𝑖  the electric dipole operator. 

We can proceed further, with the angular part of the matrix element integral 

 

𝐻𝑎𝑏
𝐸1 ≈ ⟨𝑎|𝑫 ∙ 𝒓𝒆̂|𝑏⟩ = ∫ 𝑟

2𝑑𝑟𝑅𝑛𝑎𝑙𝑎
∗

∞

0

𝑅𝑛𝑏𝑙𝑏∫𝑑𝛺𝑌𝑙𝑎𝑚𝑎
∗ 𝒓 ∙ 𝑟𝑒̂𝑌𝑙𝑏𝑚𝑏 

(2.13) 

From the integral in (2.13) it follows that the matrix elements are nonzero if 

 ∆𝐽 = 𝐽𝑎 − 𝐽𝑏 = 0,±1; 𝐽𝑎 + 𝐽𝑏 ≥ 1, (2.14) 

 ∆𝑚 = 𝑚𝑎 −𝑚𝑏 = 0,±1 (2.15) 

To these selection rules it is necessary to add the selection rule with respect to parity. The 

components of the electric dipole moment D, change sign under inversion. Thus, electric dipole 

transitions are possible only between states of different parity (i.e. even ↔ odd).[6] 

2.4 Electric Quadrupole Transitions  
In order to calculate the electric quadrupole matrix element, we choose the 𝑙 = 2 order in 

equation (2.11). Thus, we have 𝑒𝑖𝑘∙𝑟 ≃ 1 + 𝑖𝒌 ∙ 𝒓 and the matrix element is given by 

 
𝐻𝑎𝑏
𝐸2 = ⟨𝑎|𝐻𝑒|𝑏⟩ =

𝐸0

√2
⟨𝑎|𝑫 ∙ 𝒓̂𝒆|𝑏⟩ + ⟨𝑎| +

𝑒

𝑚𝑒

𝐸0

√2𝑖𝜔
(𝑖𝒌 ∙ 𝒓)𝒓̂𝒆 ∙ 𝒑|𝑏⟩ (2.16) 

Suppose that the electric dipole transition from state |𝑎〉 to state |𝑏〉 is forbidden according to 

the selection rules in the previous section. This implies that: 

⟨𝑎|𝑫 ∙ 𝒓̂𝒆|𝑏⟩ = 0 

In this case, equation (2.16) reduces to  

𝐻𝑎𝑏
𝐸2 = ⟨𝑎|

𝑒

𝑚𝑒

𝐸0

√2𝑖𝜔
(𝑖𝒌 ∙ 𝒓)𝒓̂𝒆 ∙ 𝒑|𝑏⟩ =

𝑒

𝑚𝑒

𝐸0

√2𝜔
⟨𝑎|
𝜔

𝑐
(𝑛̂ ∙ 𝒓)(𝑟𝑒̂ ∙ 𝒑)|𝑏⟩ 

3
 
= 

 
=
𝑒

𝑚𝑒

𝐸0

√2𝑐
⟨𝑎|(𝑛̂ ∙ 𝒓)(𝑟𝑒̂ ∙ 𝒑)|𝑏⟩ (2.17) 

Using the definition of the orbital angular momentum 𝐿 = 𝒓 × 𝒑  we have 

                                                 

2 [𝐻0, 𝒓] =
ℏ

𝑖

𝒑

𝑚
 

3 𝒌 = 𝑛̂ ∙ 𝑘 = 𝑛̂
𝜔

𝑐
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 𝑟𝑏̂ ∙ 𝐿 = (𝑛̂ × 𝑟𝑒̂)(𝒓 × 𝒑) = (𝑛̂ ∙ 𝒓)(𝑟𝑒̂ ∙ 𝒑) − (𝑟𝑒̂ ∙ 𝒓)(𝑛̂ ∙ 𝒓) (2.18) 

Furthermore, if 

 𝑖𝑚𝑒
ℏ
[𝐻, (𝑟̂𝑒 ∙ 𝒓)(𝑛̂ ∙ 𝒓)] = (𝑟𝑒̂ ∙ 𝒓)(𝑛̂ ∙ 𝒑) + (𝑛̂ ∙ 𝒓)(𝑟𝑒̂ ∙ 𝒑) (2.19) 

from equations (2.18), (2.19) we have, 

(𝑛̂ ∙ 𝒓)(𝑟𝑒̂ ∙ 𝒑) =
1

2
𝑟b ∙ L +

i𝑚𝑒
2ℏ
[𝐻, (r̂e ∙ 𝐫)(n̂ ∙ 𝐫)] 

which yields 

𝐻𝑎𝑏
𝐸2 =

𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|𝑳 ∙ 𝑟𝑏̂|𝑏⟩ +

𝑖𝑒𝐸0
2ℏ𝑐

⟨𝑎|[𝐻, (𝑟̂𝑒 ∙ 𝒓)(𝑛̂ ∙ 𝒓)]|𝑏⟩ = 

 𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|𝑳 ∙ 𝑟𝑏̂|𝑏⟩ +

𝑖𝑒𝐸0𝜔

2𝑐
𝒓̂𝒆 ∙ 𝑸𝒂𝒃 ∙ 𝑛̂ (2.20) 

 

Where 

 
𝑄𝑎𝑏 = ⟨𝑎|𝒓𝒊𝒓𝒋 −

𝑟2𝛿𝑖𝑗

3
|𝑏⟩; 𝑟2 = 𝑟𝑗𝑟𝑗 (2.21) 

is the electric quadrupole operator. 

The selection rules for electric quadrupole transitions are given by the second term in equation 

(2.20) when the integral is non-zero. The general form of these selection rules is 

 ∆𝐽 = 0,±1,±2     (0 ↮ 0, 1) (2.22) 

 ∆𝑚 = 0,±1, ±2 (2.23) 

 

2.5 Magnetic Dipole Transitions  
According to equation (2.20), the first term mediates the magnetic dipole transition between 

states |𝑎〉 and |𝑏〉. However, this expression is incomplete because we neglected taking into 

account the second term of the Hamiltonian, 𝐻𝑚. Which, indicates the interaction of the 

magnetic field with the electron’s magnetic moment[7]. Taking into account again the first 

order of the exponential  𝑒𝑖𝑘∙𝑟 ≃ 1 we can know define the magnetic dipole matrix element  

 
𝐻𝑎𝑏
𝑀1 =

𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|𝑳 ∙ 𝑟𝑏̂|𝑏⟩ +  𝑔

𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|𝑟𝑏̂ ∙ 𝑆|𝑏⟩ ⟹ 

 

 
𝐻𝑎𝑏
𝑀1 =

𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|(𝑳 + g𝐒) ∙ 𝑟𝑏̂|𝑏⟩ =

𝑒𝐸0

2√2𝑚𝑒𝑐
⟨𝑎|𝐌𝐚𝐛 ∙ 𝑟𝑏̂|b⟩ (2.24) 

Where 
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  𝑴𝒂𝒃 = 𝑳 + 𝑔𝑺 (2.25) 

 

is termed the magnetic dipole operator. According to the previous analysis for the electric 

dipole transition, ⟨a|𝐌𝐚𝐛 ∙ rb̂|b⟩ is non-zero if 

 

 𝛥𝐿 = 0, (2.26) 

 𝛥𝐽 = 0,±1   (0 ↮ 0), (2.27) 

 𝛥𝑚 = 0,±1 (2.28) 

 

2.6 Higher order Transitions  
It is obvious that we can choose higher orders of the exponential and that will lead to magnetic 

quadrupole M2, magnetic octupole M3, electric octupole E3, etc. matrix elements. In the 

following table we summarize the selection rules for these radiative transitions 

 

Figure 6: Radiative Transition's selection rules (table recreated from Wikipedia) 

where 𝜋 = (−1)𝑙 is the parity of each state with angular momentum 𝑙 and the symbol ↮ is 

used to indicate a forbidden transition. In the hyperfine structure, the total angular momentum 

of the atom is 𝐹 = 𝐼 + 𝐽, where I is the nuclear spin angular momentum. Since, 𝐹 = 𝐼 + 𝐽 has 

the same mathematical form as J= 𝐿 + 𝑆 , it obeys a set of selection rules similar to the table 

above. 

The above treatment gives the basic theoretical backdrop of the main transition studied in this 

thesis, namely the 5𝑃3 2⁄ → 5𝑃1 2⁄  transition of atomic iodine, predominantly an M1 transition, 

which, however, contains weak E2 contributions, observed for the first time in this work, to 

the best of our knowledge. 

 

Allowed Transitions 

 

Electric dipole(E1) 
Magnetic 

dipole (M1) 
Electric quadrupole (E2) 

Magnetic 

quadrupole (M2) 

Electric octupole 

(E3) 

Magnetic 

octupole (M3) 

Rigorous rules 

(1) 
ΔJ = 0, ±1 

(𝐽 = 0 ↛ 0) 

ΔJ = 0,±1,±2 

(𝐽 = 0 ↛ 0,1; 
1

2
↛
1

2
) 

ΔJ = 0, ±1 ± 2, ±3 

(𝐽 = 0 ↛ 0,1,2; 
1

2
↛
1

2
,
3

2
; 1 ↛ 1) 

(2) 𝛥𝛭𝑗 = 0,±1 𝛥𝛭𝑗 = 0,±1 ± 2 𝛥𝛭𝑗 = 0,±1,±2,±3 

(3) 𝜋𝑓 = −𝜋𝑖 𝜋𝑓 = 𝜋𝑖 𝜋𝑓 = −𝜋𝑖 𝜋𝑓 = 𝜋𝑖 

LS coupling 

(4) 𝛥𝐿 = ±1 𝛥𝐿 = 0 𝛥𝐿 = 0, ±2 𝛥𝐿 = ±1 𝛥𝐿 = ±1,±3 𝛥𝐿 = 0, ±2 

(5) 

If 𝛥𝑆 = 0 

𝛥𝐿 = ±1 

(𝐿 = 0 ↛ 0) 

If 𝛥𝑆 = 0 

𝛥𝐿 = 0 
 

If 𝛥𝑆 = 0 

𝛥𝐿 = 0,±1,±2 

(𝐿 = 0 ↛ 0,1) 

If 𝛥𝑆 = 0 

𝛥𝐿 = 0,±1, ±2,±3 

(𝐿 = 0 ↛ 0,1,2; 1 ↛ 1) 

Intermediate coupling (6) 

If 𝛥𝑆 = ±1 

𝛥𝐿 = 0,±1,±2 

 

If 𝛥𝑆 = ±1 

𝛥𝐿 = 0,±1, ±2,±3 

(𝐿 = 0 ↛ 0) 

If 𝛥𝑆 = ±1 

𝛥𝐿 = 0,±1 

(𝐿 = 0 ↛ 0) 

If 𝛥𝑆 = ±1 

𝛥𝐿 = 0,±1, 
±2,±3 ± 4 

(𝐿 = 0 ↛ 0,1) 

If 𝛥𝑆 = ±1 

𝛥𝐿 = 0,±1, 
±2 

(𝐿 = 0 ↛ 0) 

https://en.wikipedia.org/wiki/Selection_rule
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Chapter 3: Absorptivity and absorption cross section 
 

3.1 Refractive index of atomic vapor 
We use a semi-classical model to describe a two-level atom, that of a single electron bound by 

a harmonic force to the nucleus, acted upon by the electric field of an incident light field.  

 

 

 

Figure 7: Semi-classical model of an atom. 

In this case, the equation of motion for the electron around the atom is given by: 

 𝑚𝑒[𝑥̈ + 𝛾𝑥̇ + 𝜔0
2𝑥] = −𝑒𝐸(𝑥, 𝑡) (3.1) 

where 𝑥 is the position of the electron along the electric field direction, 𝑚𝑒 is the mass of 

electron (assuming that the nucleus of the atom is much more massive compared to the 

electron), 𝑒 is the electron charge, 𝛾 is the damping term, 𝜔0 is the resonant frequency. In the 

case of an electric field varying in time as 𝐸𝑒𝑖𝜔𝑡, then the dipole moment of a single atom is 

 
𝑝 = −𝑒𝑥 =

𝑒2

𝑚𝑒
(𝜔0

2 − 𝜔2 − 𝑖𝜔𝛾)−1𝛦 = 𝜀0𝜒𝑒𝐸 
(3.2) 

where 𝜒𝑒 is the electric susceptibility. If there are N atoms per unit volume, then the dielectric 

constant is given by:  

 𝜀(𝜔)

𝜀0
= 1 + 4𝜋𝜒𝑒 = 1 +

4𝜋𝑁𝑓𝑒2

𝑚𝑒(𝜔0
2 −𝜔2 − 𝑖𝜔𝛾)

 (3.3) 

where f is the oscillator strength of the transition.  

The index of refraction is defined as 𝑛 =
𝑐

𝑢
= √

𝜀𝜇

𝜀0𝜇0
. Assuming that 

𝜇

𝜇0
≈ 1, combined with 

equation (3.3), the refractive index can be rewritten as 

𝑛 = √
𝜀

𝜀0
= 𝑛′ + 𝑖𝑛′′ ⟹ 
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𝑛(𝜔) = 1 −

𝜋𝛮𝑓𝑒2𝛥𝜔
𝜔0𝑚𝑒

𝛥𝜔2 +
𝛾2

4

+

𝑖𝜋𝛮𝑓𝛾𝑒2

2𝜔0𝑚𝑒

𝛥𝜔2 +
𝛾2

4

 

 

(3.4) 

Hence, 

 
𝑅𝑒(𝑛) = 𝑛′ ≈ 1 −

𝜋𝛥𝜔𝛮𝑓𝑒2/𝑚𝑒𝜔0
𝛥𝜔2 + 𝛤2

 

 

(3.5) 

 
𝐼𝑚(𝑛) = 𝑛′′ ≈

𝜋𝛮𝛤𝑓𝑒2/𝑚𝑒𝜔0
𝛥𝜔2 + 𝛤2

 

 

(3.6) 

where 𝛥𝜔 = 𝜔 −𝜔0 and 𝛤 = 𝛾/2 [8]. Plots of the imaginary and real parts of n as a function 

of frequency ω are shown in Figure 8. Note that the real part of the refractive index in the 

vicinity of the resonance frequency, rises rapidly at first, then drops below unity, and eventually 

makes its way back up toward unity. This behavior near resonance is called anomalous 

dispersion. Far from resonance the 𝑛′ increases with the increasing of frequency, which is 

called normal dispersion. The imaginary part of the refractive index, 𝑛′′, near the resonance 

increases sharply to a maximum then drops as the frequency exceeds the resonance frequency.  

 

 

Figure 8: Dispersion and Absorption of EM in a vapor 

The frequency dependence of equation (3.6) is Lorentzian. So, the dispersive and the absorptive 

parts of the lineshape function can take the form: 

 
ℒ′(𝛥𝜔) =

1

𝜋

𝛥𝜔

𝛥𝜔2 + 𝛤2
 (3.7) 

 
ℒ′′(𝛥𝜔) =

1

𝜋

𝛤2

𝛥𝜔2 + 𝛤2
 (3.8) 

Hence, equation (3.4) can be rewritten as  
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𝑛 = 𝑛′ + 𝑖𝑛′′ = 1 +

𝜋𝜇0𝑒
2

4𝑚𝑒𝜔0
𝛮𝑓ℒ(𝛥𝜔) (3.9) 

where ℒ = ℒ′ + 𝑖ℒ′′.[3] 

3.2 Refractive index including Doppler broadening   
To obtain a better agreement between experiment and theory we must include the effect of 

Doppler broadening, since, in a thermal vapor, the Doppler effect due to the thermal motion 

of the atoms, leads to the dominant spectral broadening mechanism, and can not be neglected.  

The frequency ω must be substituted by its Doppler-shifted value, 𝜔 − 𝒌 ∙ 𝝊, where k is the 

wavenumber and υ the atomic velocity. The final step is to integrate the Lorentzian broadenings 

of the individual atoms over the Gaussian distribution for the atomic velocities (Maxwell-

Boltzmann distribution), yielding the so-called Voigt profile. The Voigt profile can be 

expressed through the Faddeeva function, 𝑤(𝑧), which is a scaled complex complementary 

error function defined as: 

 𝑤(𝑧) = 𝑒−𝑧
2
𝐸𝑟𝑓𝑐(−𝑖𝑧) = 𝑤′(𝑥, 𝑦) + 𝑖𝑤′′(𝑥, 𝑦) 

 
(3.10) 

where 𝑧 = 𝑥 + 𝑖𝑦. For an atom with mass M and for a resonance frequency 𝜔0, the Doppler 

half-width at 1/e is: 

 

𝛥𝜔𝐷 = 𝜔0√
2𝑘𝐵𝑇

𝑀𝑐2
 

(3.11) 

and the absorptive and dispersive parts of the lineshape are related to the 𝑤′ and 𝑤′′, 
respectively, via: 

 

ℒ′′(𝛥𝜔) → 𝑉′′(𝛥𝜔) =
𝑤′ (

𝛥𝜔
𝛥𝜔𝐷

,
𝛤
𝛥𝜔𝐷

)

√𝜋𝛥𝜔𝐷
 (3.12) 

 

ℒ′(𝛥𝜔) → 𝑉′(𝛥𝜔) =
𝑤′′ (

𝛥𝜔
𝛥𝜔𝐷

,
𝛤
𝛥𝜔𝐷

)

√𝜋𝛥𝜔𝐷
 

(3.13) 

Hence, 

 
𝑛 = 𝑛′ + 𝑖𝑛′′ = 1 +

𝜋𝜇0𝑒
2

4𝑚𝑒𝜔0
𝛮𝑓𝑉(𝛥𝜔) (3.14) 

where 𝑉 = 𝑉′ + 𝑖𝑉′′. 

From equations (A4) and (A5), where we define the oscillator strength for a magnetic dipole 

interaction, we can rewrite equation (3.14) as: 

 
𝑛 = 1 +

𝜋𝜇0
3

𝑁

2ℏ

|𝑀1|2

(2𝐽𝑎 + 1)
𝑉(𝛥𝜔) (3.15) 

Assuming a non-zero nuclear spin, I, we must take into account the hyperfine structure. Using  
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⟨𝐹𝑎|𝑇

(𝑘)|𝐹𝑏⟩ = (−1)
𝐼+𝑘+𝐽𝑎+𝐹𝑏√(2𝐹𝑎 + 1)(2𝐹𝑏 + 1) {

𝐽𝑎 𝑘 𝐽𝑏
𝐹𝑏 𝐼 𝐹𝑎

} ⟨𝐽𝑎|𝑇
(𝑘)|𝐽𝑏⟩ 

(3.16) 

Where k is the tensor rank of the operator T, and the fact that the population of the ground state 

Fa is: 

 
𝑁(𝐹𝑎) =

2𝐹𝑎 + 1

(2𝐽𝑎 + 1)(2𝐼 + 1)
𝑁 (3.17) 

then from equation (3.14) and Appendix A, we get: 

 𝑛 = 1 + 𝑛0 ∑ 𝐶𝐹𝑎,𝐹𝑏𝑉𝐹𝑎,𝐹𝑏(𝛥𝜔)

𝐹𝑎,𝐹𝑏

 (3.18) 

where 

 
𝑛0 =

𝜋𝜇0
3

𝑁

2ℏ

|𝑀1|2

(2𝐽𝑎 + 1)
 

(3.19) 

 
𝐶𝐹𝑎,𝐹𝑏 =

(2𝐹𝑎 + 1)(2𝐹𝑏 + 1)

(2𝐼 + 1)
{
𝐽𝑎 𝑘 𝐽𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

 
(3.20) 

Where again 𝑀1 =
𝑒

2𝑚𝑒𝑐
⟨𝐽𝑎|𝑳̂ + 2𝑺̂|𝐽𝑏⟩.[

3] For the particular transition under study in atomic 

iodine, preliminary calculations yield 𝑀1 = 1.15 𝜇𝐵. 

3.3 Including the electric quadrupole interaction 
In the previous section we assumed a pure magnetic dipole interaction. However, given high 

enough angular momenta, the selection rules allow for the existence of higher order multipole 

interactions, as well, such as an electric quadrupole interaction. The quadrupole operator for 

the projection 𝑞 is: 

 𝐸2 = −
𝑞𝜔

4√3
𝑄𝑞
𝐸2 (3.21) 

where 𝑄𝑞
𝐸2  is given by equation (2.21). In order to find the refractive index, we must include 

the quadrupole interaction to the reduced matrix element  

 𝑀1

3
→

𝑒

2𝑚𝑒𝑐
⟨𝐽𝑎|𝜧𝒒 −

𝑞𝜔

4√3
𝑸𝒒
𝑬𝟐|𝐽𝑏⟩ 

(3.22) 

Then, we introduce the electric quadrupole to magnetic dipole ratio parameter, χ: 

 
χ =

𝜔

4√3

⟨𝐽𝑎|𝑸𝒒
𝑬𝟐|𝐽𝑏⟩

⟨𝐽𝑎|𝜧𝒒|𝐽𝑏⟩
 (3.23) 

Hence, the refractive index (3.18) can be rewritten as: 

 𝑛 = 1 + 𝑛0 ∑ 𝐶′𝐹𝑎,𝐹𝑏𝑉𝐹𝑎,𝐹𝑏(𝛥𝜔)

𝐹𝑎,𝐹𝑏

 (3.24) 

Where 𝑛0 is the same quantity as equation (3.19) and 
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𝐶′𝐹𝑎,𝐹𝑏 =

(2𝐹𝑎 + 1)(2𝐹𝑏 + 1)

(2𝐼 + 1)
({
𝐽𝑎 1 𝐽𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

+
3𝜒2

5
{
𝐽𝑎 2 𝐽𝑏
𝐹𝑏 𝐼 𝐹𝑎

}

2

)       4 (3.25) 

 

3.4 Beer-Lambert law and the absorption coefficient 
Absorption of light in a medium is usually defined as the fraction of the power dissipated per 

unit length of the medium. If a beam is propagating in the +𝑧 direction and the intensity at 

position z is 𝐼(𝑧), then the decrease of intensity across an incremental slice of thickness 𝑑𝑧 is 

given by: 

 𝑑𝐼 = (−𝑎)𝑑𝑧 × 𝐼(𝑧) (3.26) 

By integrating, we obtain Beer-Lambert law, 

 𝐼(𝑧) = 𝐼(0)𝑒−𝑎𝑧 (3.27) 

 

 

 

Figure 9: Beer- Lambert law. 

 

The coefficient 𝑎 is called absorption coefficient. We can generalize the wave-vector by using 

equation (3.9) as: 

 𝑘 = 𝑛
𝜔

𝑐
= (𝑛′ + 𝑖𝑛′′)

𝜔

𝑐
 (3.28) 

Substituting that in our plane solutions 

 𝐸𝑦(𝑧, 𝑡) = 𝑅𝑒{𝐴1𝑒
𝑖(𝜔𝑡−𝑘𝑧)} + 𝑅𝑒{𝐴2𝑒

𝑖(𝜔𝑡+𝑘𝑧)} (3.29) 

 
𝐸𝑦(𝑧, 𝑡) = 𝑅𝑒 {𝐴1𝑒

𝑖(𝜔𝑡−(𝑛′+𝑖𝑛′′)
𝜔
𝑐
𝑧)
} + 𝑅𝑒 {𝐴2𝑒

𝑖(𝜔𝑡+(𝑛′+𝑖𝑛′′)
𝜔
𝑐
𝑧)
} 

 

 
𝐸𝑦 = 𝑅𝑒 {𝐴1𝑒

𝑛′′
𝜔
𝑐
𝑧𝑒𝑖(𝜔𝑡−𝑛

′𝜔
𝑐
𝑧)} + 𝑅𝑒 {𝐴2𝑒

−𝑛′′
𝜔
𝑐
𝑧𝑒𝑖(𝜔𝑡+𝑛

′𝜔
𝑐
𝑧)} 

(3.30) 

 𝐸𝑦 = 𝐴1𝑒
𝑛′′
𝜔
𝑐
𝑧 cos(𝜔𝑡 − 𝑛′

𝜔

𝑐
𝑧) + 𝐴2𝑒

−𝑛′′
𝜔
𝑐
𝑧 cos(𝜔𝑡 + 𝑛′

𝜔

𝑐
𝑧) (3.31) 

The intensity is proportional to the square of the magnitude of the electric field. Taking the 

second term only, for the sake of simplicity, we can say that if the electric field is decreasing 

                                                 
4 See Appendix A for the analytic derivation.  
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by 𝑒−𝑛
′′𝜔

𝑐
𝑧
, then the intensity of the wave is decreasing proportionally to (𝑒−𝑛

′′𝜔

𝑐
𝑧)
2

=

𝑒−2𝑛
′′𝜔

𝑐
𝑧
. 

Comparing this to Beer’s law, we obtain the relationship between the absorption coefficient 𝑎 

and the imaginary part of the refractive index 𝑛′′ [9]: 

 𝑎 = 2𝑛′′
𝜔

𝑐
 (3.32) 

Hence, the transmission of light power through a vapor is governed by the Beer’ law: 

 
𝑇(𝜔) =

𝐼(𝜔)

𝐼0
= 𝑒−2𝜔𝑛

′′(𝜔)𝑙/𝑐 = 𝑒−𝑁𝜎(𝜔)𝑙 (3.33) 

where σ is the absorption cross section, l the length of the interaction area. From the previous 

discussion in section 3.2 it is obvious that the absorption cross section is given by: 

 𝜎(𝛥𝜔) = 𝜎0 ∑ 𝐶𝐹𝑎,𝐹𝑏𝑉′′𝐹𝑎,𝐹𝑏(𝛥𝜔)

𝐹𝑎,𝐹𝑏

 (3.34) 

Where 𝐶𝐹𝑎,𝐹𝑏 is given by equation (3.20) or (3.25) , 𝑉′′𝐹𝑎,𝐹𝑏  from equation (3.12) and, 𝜎0, the 

integrated absorption cross section, by [3] 

 
𝜎0 =

𝜋𝜇0𝜔0
ℏ𝑐

1

2𝐽𝑎 + 1

𝑀12

3
 

(3.35) 

   

 

  



4.1 The Faraday Effect 

 
28 

 

Chapter 4: Faraday rotation 

4.1 The Faraday Effect  
In 1845, Michael Faraday discovered the first physical phenomenon linking light and 

magnetism. When plane polarized light propagates through a length 𝑙 in certain magneto-optic 

mediums, with a magnetic field applied along the propagation direction making the medium 

optically active, its plane of polarization is rotated by an angle: 

 

𝜑 = 𝑉∫𝐵𝑑𝑙 = 𝑉𝑙𝐵

𝑙

0

 (4.1) 

where φ is the angle of rotation, V the Verdet coefficient, B the magnetic intensity, and 𝑙 the 

length of the medium. Becquerel derived a classical expression for the Verdet constant, 

 
𝑉 =

𝜔(𝑛+ − 𝑛−)

2𝑐𝐵
 (4.2) 

Thus, the angle 𝜑 is given by: 

 
𝜑 =

𝜔𝑙

2𝑐
(𝑛+ − 𝑛−) 

(4.3) 

where 𝑛+ and 𝑛− are the refractive indices for the right- and left-circularly polarized 

components of light, respectively.  

 

 

 

Figure 10: Faraday rotation through a transparent dielectric. 

The Faraday phenomenon also appears near atomic and molecular resonances in the presence 

of an external magnetic field, due to the Zeeman effect, which affects the 𝑛± refractive indices. 

We consider an atomic vapor subject to a constant magnetic field 𝐵𝑧 applied along the direction 

of propagation of the light. We assume that 𝐵𝑧 is sufficiently weak for the Zeeman splittings 

of the hyperfine levels to be small compared with the intervals between adjacent hyperfine 

levels. Application of the field 𝐵𝑧 affects the refractive index in two ways: through changes in 

the energies of the sublevels and through mixing of the states. 

4.2 Symmetric part of Faraday rotation   
Initially we consider only first order corrections to the system energy levels due to the magnetic 

field. The resonant frequency of the |𝑎⟩ → |𝑏⟩ transition becomes: 

 
𝜔𝑏𝑎 = 𝜔0(𝐹𝑏 , 𝐹𝑎) −

𝐵𝑧
ℏ
(⟨𝑏|𝜇𝑧|𝑏⟩ − ⟨𝑎|𝜇𝑧|𝑎⟩) 

(4.4) 
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Where we use |𝑎⟩ to represent the ket |𝐽𝑎𝐼𝐹𝑎𝑀𝑎⟩ and a, b labels, respectively, quantities 

referring to the ground and excited levels. The refractive index in the absence of the magnetic 

field is given by (3.24). 

Now, we must calculate the change in 𝑛𝑞, 𝑞 = ±1 for right/left circularly polarized light, which 

is given by, 

 
𝛿𝑛𝑞 =

𝑑𝑛

𝑑𝜔𝐹𝐹′
𝛿𝜔𝐹𝐹′

= −
𝜋𝜇0𝛣𝛧
2ℏ2

∑
𝑁(𝐹𝑖)

𝑔1
⟨𝐹𝑎𝑚𝑎|𝜇𝑞

(1)
−
𝑞𝜔

4√3
𝑄𝑞
(2)
|𝐹𝑏𝑚𝑏⟩

2

𝐹,𝐹′

𝑀,𝑀′

× (⟨𝐹𝑏|𝜇𝑧|𝐹𝑏⟩ − ⟨𝐹𝑎|𝜇𝑧|𝐹𝑎⟩)𝑉
∗(𝜔 − 𝜔𝑏𝑎)             

(4.5) 

Where  

 
𝑉∗(𝜔 − 𝜔𝑏𝑎) =

𝜕𝑉′(𝜔 − 𝜔𝑏𝑎)

𝜕𝜔𝑏𝑎
= −

1

𝛥𝜔𝐷

𝜕𝑉′(𝜔 − 𝜔𝑏𝑎)

𝜕(
𝜔 − 𝜔𝑏𝑎
𝛥𝜔𝐷

)
 (4.6) 

 

Performing the summations over the M states results in the expression for the symmetric part 

of the Faraday angle: 

 
𝜑𝑠 =

𝜇0𝜋𝐵𝑧
2ℏ2

𝜔𝑙

𝑐

𝑁(𝐹𝑎)𝑀1
2

2𝐹𝑎 + 1
(𝑈11 + 2𝑈12𝑥 + 𝑈22𝑥

2)𝑉∗(𝜔 − 𝜔𝑏𝑎) 
(4.7) 

Where the expression for 𝑈𝑥𝑦 is given by 

 
𝑈𝑥𝑦 = (−1)

1+𝑥
(2𝐹𝑥 + 1)(2𝐹𝑦 + 1)

[𝑥(𝑥 + 1)(2𝑦 + 1)]
1
2

{
𝑗𝑦 𝑥 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑦

} {
𝑗𝑦 𝑦 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑦

}

× [((−1)𝑗𝑦−𝐹𝑥+𝐼(2𝐹𝑦 + 1) {
𝑗𝑦 1 𝑗𝑦
𝐹𝑦 𝐼 𝐹𝑦

} {
𝑥 1 𝑦
𝐹𝑦 𝐹 𝐹𝑦

})

+ same terms with (−1)𝑥+𝑦 (
𝑗𝑦 ↔ 𝑗𝑥
𝐹𝑦 ↔ 𝐹𝑥

)] (4.8) 

And the allowed combinations of (x, y) are (1, 1), (2, 2) and (1, 2), x takes the value 1 for the 

magnetic dipole term and 2 for the electric quadrupole term. 
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Figure 11: a) Refractive index line shapes for left (σ+) and right (σ-) circularly polarized light near an atomic resonance in the case of 

Zeeman splitting and b) the symmetric part of faraday rotation line shape. 

 

4.3 Antisymmetric part of Faraday rotation   
Another effect of the magnetic field is that it mixes states of the same M but with different F 

so that a state |𝐹𝑀⟩ becomes 

 
|𝐹𝑎𝑀⟩ → |𝐹𝑎𝑀⟩ − ∑

⟨𝐹𝑘𝑀|𝜇𝑧|𝐹𝑏𝑀⟩

ℏ𝜔0(𝐹𝑏 , 𝐹𝑘)
𝐹𝑎≠𝐹𝑘

|𝐹𝑘𝑀⟩𝐵𝑧 (4.9) 

Hence, the consequent change in 𝑛𝑞 is 

 
𝛿𝑛𝑞 =

𝜇0𝜋𝐵𝑧
2ℏ

∑
𝑁(𝐹𝑎)

2𝐹𝑎 + 1 𝐹𝑎𝐹𝑏
𝑀𝑎𝑀𝑏

 

⟦( ∑
1

ℏ𝜔0(𝐹𝑏, 𝐹𝑘)
𝐹𝑘≠𝐹𝑏

(⟨𝐹𝑘𝑀𝑏|𝜇𝑧|𝐹𝑏𝑀𝑏⟩⟨𝐹𝑏𝑀𝑏|𝜇𝑞|𝐹𝑎𝑀𝑎⟩⟨𝐹𝑎𝑀𝑎|𝜇−𝑞|𝐹𝑘𝑀𝑏⟩)

+ ⟨𝐹𝑏𝑀𝑏|𝜇𝑧|𝐹𝑘𝑀𝑏⟩⟨𝐹𝑘𝑀𝑏|𝜇𝑞|𝐹𝑎𝑀𝑎⟩⟨𝐹𝑎𝑀𝑎|𝜇−𝑞|𝐹𝑏𝑀𝑏⟩) 

+( ∑
1

ℏ𝜔0(𝐹𝑎, 𝐹𝑙)
𝐹𝑙≠𝐹𝑎

(⟨𝐹𝑎𝑀𝑎|𝜇𝑧|𝐹𝑙𝑀𝑎⟩⟨𝐹𝑙𝑀𝑎|𝜇−𝑞|𝐹𝑏𝑀𝑏⟩⟨𝐹𝑏𝑀𝑏|𝜇𝑞|𝐹𝑎𝑀𝑎⟩)

+ ⟨𝐹𝑙𝑀𝑎|𝜇𝑧|𝐹𝑎𝑀𝑎⟩⟨𝐹𝑎𝑀𝑎|𝜇−𝑞|𝐹𝑏𝑀𝑏⟩⟨𝐹𝑏𝑀𝑏|𝜇𝑞|𝐹𝑙𝑀𝑎⟩) 

 +(𝜇𝑞 → 𝑄𝑞
(2)) + (𝜇−𝑞 → 𝑄−𝑞

(2)) + (𝜇±𝑞 → ∓𝑄±𝑞
(2))⟧ 𝑉′(𝜔 − 𝜔𝑏𝑎) 

(4.10) 

 

Performing the summations over the M states results in the expression for the symmetric part 

of the Faraday angle  

 
𝜑𝑎 =

𝜇0𝜋𝐵𝑧
ℏ2

𝜔𝑙

𝑐

𝑁(𝐹𝑎)𝑀1
2

2𝐹𝑎 + 1
(𝑉11 + 𝑉12𝑥 + 𝑉22𝑥

2)𝑉′(𝜔 − 𝜔𝑏𝑎) 
(4.11) 

 

Where the expression for 𝑉𝑥𝑦 is given by 
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𝑉𝑥𝑦 = (−1)

𝑥
(2𝐹𝑥 + 1)(2𝐹𝑦 + 1)

[𝑥(𝑥 + 1)(2𝑦 + 1)]
1
2

 

× {[ ∑ (−1)𝑗𝑦−𝐹𝑥+𝐼(2𝐹𝑦 + 1) {
𝑗𝑦 1 𝑗𝑦
𝐹𝑦 𝐼 𝐹𝑘

} ×
⟨𝑗𝑦|𝜇

(1)|𝑗𝑦⟩

𝜔0(𝐹𝑦, 𝐹𝑘)𝐹𝑘≠𝐹𝑦

× ({
𝑗𝑦 𝑥 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑦

} {
𝑗𝑦 𝑦 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑘

} {
𝑦 1 𝑥
𝐹𝑦 𝐹𝑥 𝐹𝑘

}

+ {
𝑗𝑦 𝑦 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑦

} {
𝑗𝑦 𝑥 𝑗𝑥
𝐹𝑥 𝐼 𝐹𝑘

} {
𝑥 1 𝑦
𝐹𝑦 𝐹𝑥 𝐹𝑘

})]

+ terms (−1)𝑥+𝑦+1 [

𝑗𝑦 ↔ 𝑗𝑥
𝐹𝑦 ↔ 𝐹𝑥
𝐹𝑘 → 𝐹𝑙

]} 
(4.12) 

And the allowed combinations of (x, y) are (1, 1), (2, 2) and (1, 2) 

 

 

 

 

 

Figure 12: a) Refractive index line shapes for left (σ+) and right (σ-) circularly polarized light in the case of mixed states 

and b) the antisymmetric part of faraday rotation line shape. 
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Chapter 5: Atomic Iodine 

5.1: Iodine (127I) 

Iodine, with 𝑍 = 53, is an atom with ground state configuration of 5𝑝5. There are 37 known 

isotopes of iodine (53I) from 108I to 144I; all undergo radioactive decay except 127I, which is 

stable. Moreover, 127I, as an odd-Z isotope, has non-zero nuclear spin, 𝐼 =
5

2
, and therefore, 

nuclear spin–dependent effects can be measured.  

The spin-orbit interaction is described by the LS-coupling, therefore, the two term symbols 

which arise are 2P3/2for the ground state, and 2P1/2 for the first excited state. Taking into account 

the hyperfine interaction we can draw the energy scheme of Figure 13. From the selection rules, 

Figure 6, we see that the electric dipole (E1) transition is forbidden. Hence, as per the selection 

rules, the lowest allowed multipole interactions are the magnetic dipole (M1) and electric 

quadrupole (E2). In Figure 13, blue lines indicate transitions that are both M1- and E2-allowed, 

while red lines indicate E2-specific ones. 

 

 

 

Figure 13: Energy level scheme for the 2P3/2 → 2P1/2 M1 (and E2) transition of atomic iodine at 1315nm. The blue arrows 

indicate the M1 (and weakly E2), and the red arrows the E2-exclusive hyperfine transitions. 

5.2: Production of high density I (2P3/2) atoms 
High iodine densities of ~1016𝑐𝑚−3 have been achieved in DC glow discharges or by using 

high-temperature ovens. Both of these methods lead to large spectral broadenings, in the first 

case pressure broadening (Lorentzian) and in the second case Doppler broadening (Gaussian). 

Desiring to keep broadening of the spectral lines to a minimum, we consider an alternative 

method for the creation of ground-state 2P3/2 iodine atoms through photodissociation of I2 

molecules with an intense 532nm laser [10]: 

 𝐼2
ℎ𝑣
→ 𝐼(2P3/2) + 𝐼(2P3/2) 

(5.1) 

We assume that the population of excited-state I2, and production of I3 trimers is negligible. 

After production, iodine atoms recombine mainly via two processes: 
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three-body recombination:  𝐼(2P3/2) + 𝐼(2P3/2) + 𝐼2

𝑘𝑟
→ 2𝐼2 

trapping to container wall:   𝐼
𝑘𝑤
→ 𝐼𝑤𝑎𝑙𝑙 

(5.2) 

 

where 𝑘𝑟 is the recombination rate, 𝑘𝑟 = 4.4 × 10
−30ml2s−1 at room temperature[11], and 𝑘𝑤 

is the rate at which atomic iodine sticks to the cell walls, which is on the order of kHz. 

The rate equation governing the production rate of atomic iodine from photodissociating I2 is 

given by: 

 𝑑[𝐼]

𝑑𝑡
= 𝜎𝛷[𝛪2] − 𝑘𝑟[𝐼]

2[𝐼2] − 𝑘𝑤[𝐼] 
(5.3) 

where [I] and [𝐼2] are the atomic and molecular iodine densities, respectively, 𝜎 = 2.4 ×

10−18cm2 is the 𝐼2 photodissociation cross section at 532 nm, 𝛷 =
1

𝛢

𝑃

ℎ𝑐/𝜆
 the green laser 

photon flux, A the cell cross sectional area and P the power of the green laser. 

The steady state solution of (5.3) is: 

 
[𝐼] =

−𝑘𝑤 +√𝑘𝑤2 + 4[𝐼2]2𝑘𝑟𝜎𝛷

2[𝐼2]𝑘𝑟
 

(5.4) 

A flux 𝛷 ≈ 1020 photons cm−2s−1, gives a steady state iodine-atom density [𝐼] ≈ 1016cm−3. 

Finally, assuming a cell with a length of 1 m and a high-finesse optical cavity with 100 passes, 

gives an upper bound for the effective I-atom vapor column density of 1020𝑐𝑚−2 [12]. 

 

5.3: Absorption and Faraday rotation Simulations  
In the case of hyperfine interaction, the energy levels of the hyperfine states are given by: 

 
𝐸𝐹 = 𝐸𝑗 +

𝐾

2
𝐴 +

3𝐾(𝐾 + 1) − 4𝐼𝐽(𝐼 + 1)(𝐽 + 1)

8𝐼𝐽(2𝐼 − 1)(2𝐽 − 1)
𝐵 

(5.5) 

 𝐾 = 𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1) (5.6) 

where 𝐸𝑗 is the energy of the fine structure level with quantum number J, A is the magnetic 

dipole hyperfine constant, and B is the electric quadrupole hyperfine constant [13]. In the case 

of iodine the hyperfine coupling constants, as determined by previous work in our lab, are: 

Hyperfine coupling constants 

Total Angular Momentum J Magnetic dipole [Hz] Electric quadrupole [Hz] 

Ground state 𝐽 = 3/2 8.3274 × 108 1.0804 × 109 
Excited state 𝐽 = 1/2 6.6695 × 109 0 

 

So, we can simulate the transmission spectrum of iodine be using equations (3.33), (3.34), 

(3.35) and (3.25). We assume a number density ~1016cm−3, room temperature, 𝑇 = 300K, 

and a cell length of 45 cm, to get a column density ~4.5 × 1017cm−2. At room temperature 

the Doppler broadening is ~150 MHz. The reduced matrix element for the magnetic-dipole 

operator is, according to preliminary calculations, 𝑀1 = ⟨𝐽𝑎|𝜇
(1)|𝐽𝑏⟩ = 1.15𝜇𝐵. Firstly, we 
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neglect the Ε2 transition (𝜒 = 0), and take the transmission and absorptivity (=

−natural logarithm of transmission ) spectra versus the frequency detuning from the 

nominal transition frequency (Figure 14). 

 

a) 

 

 

b) 

 

 

Figure 14: a) Transmission spectrum for the hyperfine magnetic dipole transitions and b) the absorptivity of the same 

transitions giving the corresponding optical depth. 

Now, assuming a non-zero electric quadrupole to magnetic dipole ratio parameter χ, we get the 

hyperfine electric quadrupole transitions, which are shown in the following spectrum  

 

 

 

Figure 15: Transmission spectrum for the hyperfine magnetic dipole and electric quadrupole transitions for 𝜒 = 0.5. The 

value of χ is chosen for clarity, and is significantly higher than the actual value. 
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Moving on to the Faraday rotation spectra, by taking into account the symmetric and 

antisymetric parts of the effect, and isolating one particular hyperfine transition (the magnetic 

dipole transition 𝐹 = 4 to 𝐹′ = 3), we can simulate our signals as follows. First, we only 

calculate the Faraday rotation spectrum versus the detuning in the absence of absorption, and 

then we include absorption, by multiplying with the transmission spectrum. The simulated 

signals are shown in Figure 16.  

a) 

 

 

b) 

 

 

Figure 16:a) Faraday rotation for the magnetic dipole transition 𝐹 = 4 to 𝐹′ = 3 versus the detuning and b) the Faraday 

multiplied with the transmission spectra for a magnetic field 𝐵 = 1𝐺. 
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Chapter 6: Experimental Apparatus and results 
 

6.1: Experimental Apparatus and Measurement Method  
For all the measurements presented in this chapter, the same experimental setup was used. The 

basics of the experimental setup are shown in Figure 17. A bowtie, four-mirror cavity with 

round-trip cavity length 𝐿 = 2.6m, 𝐹𝑆𝑅 = 115MHz and Finesse, 𝐹 ≈ 240 was used. The 

bowtie cavity consists of two concave mirrors with radius of curvature of 2m (one ATF mirror 

with specified reflectivity 𝑅 = 0.999% at 1315nm, and one Layertec output coupler with 

reflectivity 𝑅 = 0.995% ), and two plane mirrors (one ATF mirror with specified reflectivity 

𝑅 = 0.999% at 1315nm, and one Layertec coupler with reflectivity 𝑅 = 0.995%). The iodine 

cell was placed in one arm of the cavity. For the photodissociation of I2 molecules to 2×I we 

used a green laser (HPL-532nm-cw, max power 50W) which was periodically chopped at a 

frequency of 20 Hz, so that we could also take background measurements, while for the IR 

spectroscopy of the M1 (and E2) transition, an IR laser (Toptica, DL pro) at 1315nm was 

employed.  

 

 

 

 

 Figure 17: Schematic diagram of the experimental setup.  
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 Figure 18: Experimental setup.  

 

Τhe IR laser beam was frequency-locked to a cavity resonance using the Toptica DigiLock 110 

module and the Pound-Drever-Hall (PDH) technique (Figure 19). A piezoelectric transducer 

was placed on one mirror of the cavity in order to control the cavity length, and thus the 

resonant frequency of the cavity mode on which the laser was locked. By expanding or 

contracting the cavity via the piezo, while the laser remained locked to the same resonance, we 

could tune the laser frequency and scan over the iodine resonances. The laser frequency was 

measured with a wavelength meter (Bristol 671) and the reading was fed back to the piezo 

controller for further stabilization of the frequency, via a LabView PID .vi (Figure 20).  
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 Figure 19: DigiLock Module   

 

 

 

Figure 20: The PID labview program for the wavelength stabilaization. 

 

Two photodiodes were used to record the signals, one for the reflected off the cavity part of the 

green laser and another for the IR. The two signals were then used as inputs for a lock-in 

amplifier (Ametec 7230 DSP Lock-in Amplifier), the – chopped – green signal as a frequency 

reference, and the IR as the spectroscopic input signal. The recorded signals and the output of 

the lock-in amplifier were displayed on an oscilloscope (Rohde & Schwarz RTO2034) which 

permitted signal averaging. An example of the acquired signals is shown in Figure 21. 
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a) 

 

 

b

) 

 

 

 Figure 21:a) The recorded signals for different values of absorption. The green line is on resoncce while the 

orange and blue nearly of resonance.b) is the signal which is given to the lock-in as a reference in order to 

measure the amplitudes of the signals in figure a).  

 

 

Notice that while the green light is abruptly turned on and off with the chopper, the rate at 

which the IR absorption changes in response is not equally abrupt. The reason for this behavior 

is that iodine photodissociates and recombines much more slowly than this chopping-on/off 

time. From analyzing these absorption responses, we can extract information about the 

photodissociation and recombination rates of iodine. Furthermore, the curves in Figure 21a 

interestingly seem to indicate that these rates are affected by the detuning of the IR laser from 

resonance (lest not forget that, due to the cavity buildup effect, the IR field inside the cavity 

can be quite intense). We defer conversation and an analysis of these observations to future 

work. 
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6.2: Experimental results 

6.2.1: 20cm Iodine cell 

 

 

 

 

Figure 22:The 20cm iodine cell with diameter 2.54cm. The windows used were two ATF windows, AR coated at 1315nm 

with reflectivity R<0.01%. 

Our initial measurements were performed using a 20 cm long, 1 inch diameter glass cell, fitted 

with two ATF AR-coated windows (𝑅 < 0.01%). 

A 5Watt green laser was used for the photodissociation, and we recorded transmission spectra 

of the atomic iodine over all hyperfine transitions with the method described in the previous 

section. In order to find the resonant frequencies and the transition linewidths, we fitted the 

data with Lorentzian functions as shown in Figure 23. The resonance frequencies and the 

FWHM are also shown in Figure 23. Notice that the spectra were closely fitted with Lorentzian 

functions, and the fits resulted in larger than expected linewidths. These were both results of 

pressure broadening, due to the cell not being adequately hermetically sealed, and our 

measurements taking long enough times for air to increase the pressure inside the cell.   
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a) 

  

 

b) 

 

 

Figure 23:a) Transmittance of the M1 iodine transition as a function of the frequency detuning and b) corresponding 

absorbance spectrum as a function of wavelength this time, for reference, for 5Watt green power..  

Next, we made a first attempt to measure the electric-quadrupole-exclusive transitions (𝐹 =

1 → 𝐹′ = 3 and 𝐹 = 4 → 𝐹′ = 2) which are much weaker than the magnetic dipole transition, 

and we succeeded in measuring the 𝐹 = 4 to 𝐹′ = 2 transition as shown below. The absorption 

was found to be ∿ 0.5%. The weaker 𝐹 = 1 → 𝐹′ = 3 E2 transition still remained out reach 

for our experimental conditions. 
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Figure 24: The 𝐹 = 4 to 𝐹′ = 2 quadrupole transition absorbance (in absorption-lengths) as a function of the 

wavelength for 5Watts of green power. The FWHM was estimated to be 796MHz. 

 

To increase photodissociation, we substituded the 5W green laser with a 25Watt green laser 

in order to reach higher atomic iodine densities. We, again, measured IR spectra on the M1 

transition as shown in Figure 25 and Figure 26.  

 

a) 
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b) 

 

 

Figure 25:a) Transmittance of the M1 iodine transition as a function of the frequency detuning and b) corresponding 

absorbance spectrum as a function of wavelength this time, for reference, for 25Watt green power. 

 

a) 
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b) 

 

 

Figure 26: a) The 𝐹 = 4 to 𝐹′ = 2 quadrupole transition absorbance (in absorption lengths) as a function of the 

wavelength and b) the transmission as a function of the detuning for 25Watt green power. The FWHM was estimated to be 

449MHz which is smaller than the 5Watt measurement because the cell was pumped before the measurement and the 

pressure broadening was smaller. 

 

By using the 25 Watt laser we would expect to have higher absorptions compared to our 

previous attempts. From our results we do not observe significant changes in the absorption, 

but we do observe the detrimental effects of the inadequate sealing of our cell imprinted on 

the FWHM of the recorded lines. This is especially obvious in Figure 25, where the cell was 

initially pumped, and measurements were performed right-to-left: we see the FWHM, which 

should remain a constant throughout the measurements, increasing steadily due to the inflow 

of air and the increase of pressure in the cell. 

Hence, in order to improve and stabilize our experimental conditions, we constructed a new 

sealed cell with length 𝑙 = 45cm. 
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6.2.2: 45cm sealed Iodine cell  

 

 

 

 

 Figure 27: The 45cm sealed iodine cell with diameter 1.47cm. The windows which were used are two Eksma windows 

AR double coated at 1315nm with reflectivity R<0.04% and at 532nm with reflectivity R=0.02%. 
 

The new cell was a 45 cm long, 8 mm internal diameter glass cell, with two ½-inch windows 

from EKSMA, AR-coated for both 1315 nm and 532 nm, epoxied on its edges. The 

performance of this cell in terms of maintaining vacuum after being pumped was vastly 

superior to our previous cell. 

With the same experimental setup, the new sealed cell, and green laser power of 𝑃~20 W we 

measured the iodine spectrum, as we see in Figure 28. A testament to the performance of the 

new cell, the data are now fitted with Gaussian functions, since, as expected, the main 

broadening mechanism is the Doppler Effect (room temperature Doppler broadening ≈ 

150MHz, as opposed to a few MHz of Lorentzian pressure broadening due to collisions at a 

room temperature iodine pressure of ~0.2 mbar). 

a) 
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b) 

 

 

 

 Figure 28: a) Transmittance and b) Absorbance spectrum of iodine as a function of the detuning for 

20W green power (sealed cell). The FWHM were estimated to be 250-300MHz. 
 

It is clear that the FWHM of our lines is much smaller than previous measurements with the 

old cell, and the absorbance has increased as expected. Nevertheless, the FWHM is roughly 

twice the width we expected due to Doppler broadening at room temperature. This is a cavity 

effect: due to the different Finesse (and thus number of cavity round-trips) on- and off-

resonance, light is more strongly absorbed at the absorption wings than the absorption 

coefficient there would imply, due to higher number of passes through the cell. On the other 

hand, on resonance, single-pass absorption is strong, but the number of passes is lower. As a 

result, the line shapes are wider than the single-pass Doppler-broadened profiles. The detailed 

theory of this effect is currently under development.  

In the absence of pressure broadening, we now succeeded in measuring both quadrupole 

transitions, the 𝐹 = 4 → 𝐹′ = 2 and  𝐹 = 1 → 𝐹′ = 3, as we see on the outer edges of Figure 

28 and, in more detail, in Figure 29.  

a) 
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b) 

 

 

 Figure 29:a) The 𝐹 = 4 to 𝐹′ = 2 quadrupole transition absorbance (in absorption-

lengths) as a function of the detuning  and b) the 𝐹 = 1 to 𝐹′ = 3 quadrupole transition. 

With the red, dashed line, we represent the sum of the absorption with the adjacent 

magnetic dipole transition 𝐹 = 2 to 𝐹′ = 3 which appears as an offset in our data. 

 

 

The absorption of F = 4 to F′ = 2 quadrupole transition is about 2% while for the F = 1 to 

F′ = 3 is about 0.9% after subtracting the contribution due to the adjacent M1 transition. The 

ratio of the two absorptions is estimated from the experimental data to be 1.95 ± 0.2, which is 

within error from the theoretically expected ratio from the Clebsch-Gordan coefficients, 2.14. 

The electric quadrupole to magnetic dipole ratio parameter, 𝜒, was calculated from our 

measurements to be  𝜒 ≈ 0.084 ± 0.01, which is consistent with preliminary theoretical 

calculations by our collaborator V. A. Dzuba, 𝜒 = 0.081. 

 

6.2.3: Absorption Dependence on Temperature  

 

In order to optimize absorption and maximize the optical depth, we decided to heat the cell in 

order to increase the density of the molecular iodine. The dependence of the molecular iodine 

vapor pressure on temperature is shown in the Figure 31 below. As we observe, by increasing 

the cell temperature by a few degrees Celsius (up to about 60oC), we can increase the vapor 

pressure of molecular iodine and, as a result its density, tenfold. 

Heating the cell was achieved by maintaining the bulk of the cell above the desired target 

temperature, by wrapping it with heat tapes and applying current, and controlling the pressure 

by controlling the temperature of a designated cold spot on the cell, via a TEC element and a 

PID temperature controlling circuit. This way we could control the vapor-pressure-defining 

temperature of the cold-spot to within ~ 0.5 oC. 
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a) 

 

 

b) 

 

 

Figure 30: a) Iodine cell wrapped with heat tapes in order to increase the temperature. b) A TEC is placed on the iodine 

reservoir of the cell and is kept at a specific temperature level below the bulk temperature of the cell. This cold spot then 

defines the molecular iodine vapor pressure inside the cell. 

 

 

 

 

Figure 31: Molecular Iodine vapor pressure as a function of temperature.[11] 

The first measurements were of the two quadrupole transitions and their neighboring magnetic 

dipole transitions at 50 degrees Celsius. The results are shown in Figure 32 and Figure 33 

below. From our results we see that we have managed to quadruple absorption from the electric 

quadrupole transitions relative to the room temperature measurements. 
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a) 

 

 

b) 

 

 

 Figure 32:a) The 𝐹 = 3 to 𝐹′ = 2 magnetic dipole  transition’s absorbance in absorption 

lengths) as a function of detuning  and b) the 𝐹 = 4 to 𝐹′ = 2 quadrupole transition at 50 

degrees Celsius. With the red dashed line we represent the sum of the absorption with the 

adjacent magnetic dipole transition 𝐹 = 3 to 𝐹′ = 2 which appears as an offset in our data. 
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a) 

 

 

b) 

 

 

Figure 33:a) The 𝐹 = 2 to 𝐹′ = 3 magnetic dipole transition’s absorbance (in absorption lengths) as a function of detuning  

and b) the 𝐹 = 1 to 𝐹′ = 3 quadrupole transition at 50 degrees Celsius. With the red dashed line, we represent the sum of 

the absorption with the adjacent magnetic dipole transition 𝐹 = 2 to 𝐹′ = 3 which appears as an offset in our data. 

 

We then measured the transmission of the 𝐹 = 4 to 𝐹′ = 2 quadrupole transition for several 

temperatures (from lower to significantly higher than room temperature) in order to find the 

optimum temperature, before pressure broadening becomes significant, which would result in 

increased homogeneous broadening and reduction in absorption. 
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a) 

 

 

b) 

 

 

Figure 34: The absorbance of the 𝐹 = 4 to 𝐹′ = 2 quadrupole transition (in absorption lengths) as a function of the 

detuning from the J=3/2 to J’=1/2 M1nominal transition frequency for various temperatures from 10 to 50 Celsius and b) 

the integrated absorbance as a function of temperature. 

In Figure 34 we see the expected results: the increase in temperature leads to higher densities 

of atomic iodine and an increase in absorption. The integrated absorption for low temperatures 

seems to have a linear dependence on temperature, while the width of our lines does not seem 

to be significantly affected by pressure broadening. Achieving higher temperatures while 

maintaining stable experimental conditions proved to be a challenge above ~ 55 – 60 oC at this 

point and with our experimental setup as described, and work is underway to improve on our 

apparatus, in order to investigate the practical limits of photodissociation for the production of 

high atomic iodine densities (given also the fact that our current green laser has, so far, been 

underutilized, as we have only been using up to about half of its maximum power of 50W). 

However, the results so far clearly indicate that workable high densities of atomic iodine are 

achievable, and that we have not yet reached the limits of our production technique. 
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Conclusions 
We have conceived and implemented an optical cavity experimental apparatus for the 

production of atomic iodine via photodissociation at 532 nm, and the measurement of the IR 

atomic iodine spectrum at 1315 nm. We combined the atomic theory of iodine absorption with 

an optical cavity, which led to an increase of the effective interaction path length by a factor 

equal to the number of passes through the cavity. We improved the conditions of our 

experiment by constructing a well-performing vacuum-sealed cell and, by increasing the 

effective cell temperature, we achieved very high atomic iodine densities, which led to a further 

enhancement in our absorption signals. Still, our apparatus has potential for great improvement, 

and a clear path to implement these improving steps. 

With the above enhancements, we achieved optical depths greater than 10 absorption lengths, 

which correspond to column densities of about 𝜌𝑙 ≈ 1018 − 1019 cm−2. This high column 

density of atomic iodine enabled us to measure for the first time the electric quadrupole (E2) 

component of the, otherwise magnetic-dipole transition 52P1/2 → 52P3/2 at 1315 nm, and 

determine the electric quadrupole to the magnetic dipole ratio, which we found to be well 

within agreement with theoretical predictions. 

This thesis represents the first steps towards measuring parity non-conservation (PNC) effects 

in atomic iodine, which manifest as optical activity in this very atomic transition. In theoretical 

calculations performed for iodine, it has been shown that in order to have a measurable PNC 

signal, a column density of 𝜌𝑙 ≈ 1020 − 1021 cm−2 is required. We believe that achieving such 

column densities is well within the capabilities of our apparatus, thus the following 

evolutionary improvements are proposed: 

 Improving the cavity finesse, which will increase the number of cavity roundtrips and, 

therefore, the effective pathlength of the interaction. 

 Use a longer cell, which will further increase the effective pathlength. 

 Increase the power of the green laser to the currently available 50 W, so that more 

molecular iodine is photodissociated and higher atomic iodine densities are achieved. 

 Improve upon our design regarding heat application and temperature control, so as to 

allow for stable experimental conditions at higher temperatures, which will, in turn, 

lead to higher available molecular iodine densities for photodissociation.  
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Appendix A 
 

A1: Oscillator strength without hyperfine structure  
In spectroscopy, oscillator strength is a dimensionless quantity that express the probability of 

absorption or emission of the electromagnetic radiation in transitions between energy levels of 

an atom. The oscillator strength can be through of as the ration between the quantum 

mechanical transition rate and the classical absorption or emission rate of an single electron 

oscillator with the same frequency as the transition. The oscillator strength 𝑓𝑎𝑏 of a transition 

from a lower state |𝐽𝑎⟩ to an upper state |𝐽𝑏 is defined as: 

 
𝑓𝑎𝑏 =

2

3

𝑚𝑒𝜔0
ℏ𝑒2

|⟨𝑗𝑎|𝑯𝒂𝒃̂|𝐽𝑏⟩|
2
 (A1) 

Where 𝑯𝒂𝒃̂ is the interaction operator between the states |𝑎⟩  and |𝑏⟩. When the upper state 

consists of several individuals states , the f-factor is given by a summation over all upper states 

involved in the transition. If the lower level consists of several states, the f-factor is given by 

an average over all lower states involved. Hence, for an lower state with degeneracy of 𝑔1 , the 

f-factor for a transition between degenerate levels can be written as 

 

𝑓𝑎𝑏 =
2

3

𝑚𝑒𝜔0
ℏ𝑒2

1

𝑔1
∑ ∑ |⟨𝑗𝑎𝑚𝑎|𝑀1𝑞|𝐽𝑏𝑚𝑏⟩|

𝑔1,𝑔2

𝑚𝑎𝑚𝑏=1

𝑞=1

𝑞=−1

2

 (A2) 

where 𝑞 = 0,±1 is the summation over all types of polarization[14]. By using the Wigner 

Eckart theorem we can rewrite (A2) as: 

 

𝑓𝑎𝑏 =
2

3

𝑚𝑒𝜔0
ℏ𝑒2

1

𝑔1
∑ ∑ |⟨𝑗𝑎|𝑀1|𝐽𝑏⟩|

𝑔1,𝑔2

𝑚𝑎𝑚𝑏=1

𝑞=1

𝑞=−1

2

(
𝑗𝑎 1 𝑗𝑏
𝑚𝑎 𝑞 −𝑚𝑏

)
2

 (A3) 

But the summations over all 𝑚𝑎, 𝑚𝑏 and q calculated to be  

∑ (
𝑗𝑎 1 𝑗𝑏
𝑚𝑎 𝑞 −𝑚𝑏

)
2

𝑔1𝑔2

𝑚𝑎𝑚𝑏

=
1

3
 

And 

∑ ∑ (
𝑗𝑎 1 𝑗𝑏
𝑚𝑎 𝑞 −𝑚𝑏

)
2

𝑔1𝑔2

𝑚𝑎𝑚𝑏

= 1

𝑞=1

𝑞=−1

 

Hence, in the case of a magnetic dipole interaction of a laser beam with an atomic vapor and 

assuming that the transition is an isolated 𝑗𝑎 → 𝑗𝑏 line without hyperfine structure, then  

 𝑀1 = 𝑯𝒂𝒃̂ =
𝑒

2𝑚𝑒𝑐
⟨𝐽𝑎|𝑳̂ + 2𝑺̂|𝐽𝑏⟩ (A4) 

and 
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𝑓𝑎𝑏 =

2

3

𝑚𝑒𝜔0
ℏ𝑒2

|𝑀1|2

(2𝐽𝑎 + 1)
 

(A5) 

A2: Oscillator strength with hyperfine structure  
We must take into account the hyperfine structure. So, 

 

𝑓𝑎𝑏 =
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑ ∑
1

𝑔1
⟨𝐹𝑎𝑚𝑎|𝑀1𝑞|𝐹𝑏𝑚𝑏⟩

2

𝐹𝑎,𝐹𝑏
𝑚𝑎,𝑚𝑏

𝑞=1

𝑞=−1

 (A6) 

=
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑ ∑
1

𝑔1
⟨𝐹𝑎|𝑀1𝑞|𝐹𝑏⟩

2
(
𝐹𝑏 1 𝐹𝑎
−𝑚𝑏 𝑞 𝑚𝑎

)
2

𝐹𝑎,𝐹𝑏
𝑚𝑎,𝑚𝑏

𝑞=1

𝑞=−1

⇒ 

𝑓𝑎𝑏 =
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑
1

𝑔1
⟨𝐹𝑎|𝑀1𝑞|𝐹𝑏⟩

2

𝐹𝑎𝐹𝑏

 

Now, if we use equation (3.16) we get  

 
𝑓𝑎𝑏 =

2𝑚𝑒𝜔0
ℏ𝑒2

⟨𝑗𝑎|𝑀1|𝑗𝑏⟩
2

3
∑

(2𝐹𝑎 + 1)(2𝐹𝑏 + 1)

2𝐹𝑎 + 1
{
𝑗𝑎 𝑘 𝑗𝑏
𝐹𝑏 𝐼 𝐹𝑎

}

𝐹𝑎,𝐹𝑏

2

 (A7) 

And by substituting in the equation (3.14) we get the refractive index witch is given by 

equations (3.19), (3.20). 

A3: Oscillator strength with Quadrupole interaction  
To include it in the refractive index, we make the substitution 

𝑀1

3
→ ⟨𝑗𝑎|𝜇𝑞

(1)
−
𝑞𝜔

4√3
𝑄𝑞
(2)
|𝑗𝑏⟩ 

Introducing the electric quadrupole to magnetic dipole ratio parameter  

𝜒 =
𝜔

4√3

⟨𝑗𝑎|𝑄
(2)|𝑗𝑏⟩

⟨𝑗𝑎|𝜇
(1)|𝑗𝑏⟩

 

Hence,  

 

𝑓𝑎𝑏 =
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑ ∑
1

𝑔1
⟨𝐹𝑎𝑚𝑎|𝜇𝑞

(1)
−
𝑞𝜔

4√3
𝑄𝑞
(2)
|𝐹𝑏𝑚𝑏⟩

2

𝐹𝑎,𝐹𝑏
𝑚𝑎,𝑚𝑏

𝑞=1

𝑞=−1

 (A8) 

=
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑ ∑
1

𝑔1
(⟨𝐹𝑎𝑚𝑎|𝜇𝑞

(1)|𝐹𝑏𝑚𝑏⟩
2

𝐹𝑎,𝐹𝑏
𝑚𝑎,𝑚𝑏

𝑞=1

𝑞=−1

− 2⟨𝐹𝑎𝑚𝑎|𝜇𝑞
(1)|𝐹𝑏𝑚𝑏⟩ ⟨𝐹𝑎𝑚𝑎|

𝑞𝜔

4√3
𝑄𝑞
(2)|𝐹𝑏𝑚𝑏⟩ + ⟨𝐹𝑎𝑚𝑎|

𝑞𝜔

4√3
𝑄𝑞
(2)|𝐹𝑏𝑚𝑏⟩

2

)  
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=
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑ ∑
1

𝑔1
(⟨𝐹𝑎|𝜇

(1)|𝐹𝑏⟩
2
(
𝐹𝑎 1 𝐹𝑏
−𝑚𝑎 𝑞 𝑚𝑏

)
2

𝐹𝑎𝐹𝑏
𝑚𝑎,𝑚𝑏

𝑞=1

𝑞=−1

+ ⟨𝐹𝑎|
𝜔

4√3
𝑄2|𝐹𝑏⟩

2

) (
𝐹𝑎 2 𝐹𝑏
−𝑚𝑎 𝑞 𝑚𝑏

)
2

 

But for the summation over 𝑚𝑎, 𝑚𝑏 and q  we have, 

∑ ∑ (
𝐹𝑎 1 𝐹𝑏
𝑚𝑎 𝑞 −𝑚𝑏

)
2

𝑔1𝑔2

𝑚𝑎𝑚𝑏

= 1

𝑞=1

𝑞=−1

 

∑ ∑ (
𝐹𝑎 2 𝐹𝑏
𝑚𝑎 𝑞 −𝑚𝑏

)
2

𝑔1𝑔2

𝑚𝑎𝑚𝑏

=
3

5

𝑞=1

𝑞=−1

 

Hence,  

 
𝑓𝑎𝑏 =

2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑
1

𝑔1
(⟨𝐹𝑎|𝜇

(1)|𝐹𝑏⟩
2
+
3

5
⟨𝐹𝑎|

𝜔

4√3
𝑄2|𝐹𝑏⟩

2

) 

𝐹𝑎,𝐹𝑏

 

 

(A9) 

=
2

3

𝑚𝑒𝜔0
ℏ𝑒2

∑
(2𝐹𝑎 + 1)(2𝐹𝑏 + 1)

2𝐹𝑎 + 1
(⟨𝑗𝑎|𝜇

(1)|𝑗𝑏⟩
2
{
𝑗𝑎 1 𝑗𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

𝐹𝑎,𝐹𝑏

+
3

5
⟨𝑗𝑎|

𝜔

4√3
𝑄2|𝑗𝑏⟩

2

{
𝑗𝑎 2 𝑗𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

) 

 
𝑓𝑎𝑏 =

2𝑚𝑒𝜔0
ℏ𝑒2

⟨𝑗𝑎|𝜇
(1)|𝑗𝑏⟩

2

3
∑

(2𝐹𝑎 + 1)(2𝐹𝑏 + 1)

2𝐹𝑎 + 1
({
𝑗𝑎 1 𝑗𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

𝐹𝑎,𝐹𝑏

+
3

5
𝑥2 {

𝑗𝑎 2 𝑗𝑏
𝐹𝑏 𝐼 𝐹𝑎

}
2

)  

 

(A10) 

So, the refractive index can be rewritten as equation (3.24), (3.25). 
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