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Abstract
Abstract

This work presents a cavity-enhanced scheme for the measurement of the atomic iodine
spectrum, comprising a four-mirror bow-tie cavity, which increases the effective interaction
pathlength of iodine atoms with light, by a factor — essentially — equal to the average number
of intracavity photon round-trips.

It also doubles as the first steps towards a new type of atomic parity non-conservation (PNC)
experiment. In 1959, Zel’dovich first considered the possibility of measuring PNC in atomic
transitions, and suggested that if a parity violating weak neutral-current interaction between the
electron and the nucleus exists, then the interference with a parity conserving electromagnetic
interaction between the electron and the nucleus would make the atomic system optically
active. So, the ability to perform measurements of circular birefringence with high sensitivity
would constitute a way to measure PNC in a low-energy, atomic physics experiment.

The Standard Model, predicts a weak parity non-conserving transition amplitude Elpnc
between states of the same parity in certain atomic and molecular systems. Measurement of the
Elpnc transition amplitude is possible through the interference with the amplitude of a parity
allowed transition. In the vicinity of a parity-allowed magnetic-dipole M1 transition, the
interference M1-Elpnc leads to natural optical activity.

As a PNC candidate, iodine offers a number of advantages: a high atomic number, Z, which
enhances the PNC effect, a strong M1 transition with which the PNC amplitude can interfere,
readily available means to create significant atomic populations, even at room temperature, a
large number of isotopes, where combined measurements can eliminate deficiencies in our
theoretical understanding of atomic iodine, the ability to directly compare results with the best-
to-date atomic PNC experiment, that on cesium performed by the C.E. Wieman group in the
late 1990s, and more. The main aim of this thesis is to study the iodine magnetic-dipole, M1,
transition 52P1, — 52P32 at 1315 nm, and to measure, for the first time, the electric quadrupole
E2 component between the same states, which is expected to provide unambiguous information
about a specific component of the PNC interaction, that owing to the elusive anapole moment
of the nucleus. The cavity enhancement outlined above is expected to allow for the study of
very small signals, such as PNC optical rotation.

As a further means of enhancement, we also study the effects of increased temperature for the
production of higher atomic iodine column densities, in order to maximize the PNC signal.




Hepiinym
Hepidnyn

Avt M epyacio mapovctdlel o EVIGYVUEVT] EIKOVO, LEGH KOIAOTNTOG Yo TNV UETPTOT TOL
ATOLUKOV pACUATOC 10dion, TepAapPdverl po kothotnto tHnov bow-tie tecodpov Katdntpmy,
N omoio avEAVEL TO evepyd UNKOG OAANAETIOPOONG TOV OTOUMV 10610V UE TO P®G, KATA
TaPAYyovTa 160 LE TOV UECO aPOd TEPUCUATOV LEGO GTNV KOTAOTNTO.

Emiong, mapovoidloviar o mpdTa Prpota yio mepdpota mopofioonsg g CVUUETPIOG TNG
opotipiag (PNC). To 1959, o Zel’dovich npmtog e&étoce v mbavotnta pétpnong PNC oe
aTOMIKEG HeTAPAcELS Kot mpotdOnke OTL av vrapyel moapafiocn v opotipiog Adym g
ac0evovg aAAnAemiopaong petald mMAEKTPOVIOL KOl TLUPNVA, TOTE 1 GUUPBOAN HE Luo
NAEKTPOUOYVITIKN OAANAETIOpOGT TTOV dtatnpel TNV opoTipio. LETAED TOL NAEKTPOVIOL Kol TOV
Topnva, ovtd Ba £xel Gov amoTéEAEGHA TO ATOUKO GVGTNHA Vo YiveTat omttikd evepyd. Etol, 1
KavOTNTA SEEAYOYNG LETPNGEDV KUKAKOD dtypm1col e VYNAN evaisOncia Bo amotelovoe
Tpomo pétpnong tov PNC og melpdpato atopkng QUOTKNG YOUNANG EVEPYELGS.

To Kabepopuévo Ipdtumo, mpofrénet pia acbevr petdfacn mov mapafialel Tnv opotiio pe
mAdtog Elpnc HETOED KOTAOTAGE®Y e OLOLN OUOTIUIN GE GUYKEKPLUEVO OTOUIKA KOl LOPLOKEL
ovotiuarta. H pétpnon tov miarovg petdPaonc Elpne etvor duvarh péow tng cupfoing pe pia
petdfoon n omoia de mopafralel TNV OpOTIHiC. TNV TEPITTOON L0 EXLTPETOUEVNG LOYVITO-
dumoAung petafaong M1, n copfoin M1-Elpnc Oa 0dny10EL G€ QLGIKT OTTTIKY| EVEPYOTNTAL.

Zav vroyneto atopkd cvotnua yioo PNC, 10 10610 mpoc@épel moALd TAeoveKTLOTO OTMG:
peydaro atopkd apBpd, Z, 1o onoio gvioyvet to pavopevo PNC, ioyvpn M1 petdfaon pe v
omoia 1 petdPaom Elpnc pmopei vo copfairet, e0koAn dnpovpyio atopiK®V TANOVGLOVY aKOuT
kot o€ Oeppoxpacio dopatiov, peydrog aplBpds 1G0TOTMV, OTOV GLVOVOCTIKES LETPNOELS
pmopovv va eEarelyovv eddeiyelg oty BepnTikn KATOVONGN TOV ATOUIKOV 1wdiov, TNV
KOvOTNTA VO, GUYKPIVOVUE GUEGO TO OMOTEAEGUATO LLE TO MO TPOGOOTO ATOMKO TEIPOLLOL
PNC, oto xéc10 6mov mpaypoatonombnke amd v opdda tov C.E. Wieman to TéAn tng
dekaetiog Tov 1990, kot dAla. O kOplLog 6TdOYOG VTG TG epyaciag elvar vo peketnOet
poyynro-diohky petafacn (M1) tov 1wdiov, 52P12 — 52P32 ota 1315 nm kat vo petpn e,
Y TPOTN POPE, N NAEKTPO-TETPATOMKNT GuVIcTOGo E2 petald tov idiwv katactdoewy, 10
07010 AVOUEVETOL VO TAPEXEL TANPOPOPIES GYETIKEG LE U0, GVYKEKPIUEVT cuvioT®daa TG PNC
oAANAemidpaomg, To omoio oQeileTal 6TV AVOTOAKY] pomr tov muprva. H evioyvon péocw
OTTIKNG KOWAOTNTOG TTOV TEPLYPAPETAL, OVAUEVETOL VO, EMTPEYEL TNV UEAETN TOAD UKPOV
onpdtwv, 6nwg n ontikn teplotpoPr Adyw PNC.

Qc éva mepartépm PEGO EVIGYVONG, LEAETALE TNV EMiOpaoT) TNG avénong g Beprokpaciog yio
TNV TOPAYOYT LEYOADTEP®V ATOUIK®V TUKVOTHT®V, LE GTOYO TNV LEYIGTOMOINGN TOL GNLUATOG
PNC.




1.1 Basics of cavities

Chapter 1: Cavities

1.1 Basics of cavities

An optical cavity is an arrangement of mirrors that forms a standing wave cavity resonator
for light waves. Optical cavities are a major component of lasers, surrounding the gain medium
and providing feedback of the laser light. They are also used in optical parametric oscillators
and some interferometers. Light confined in the cavity reflects multiple times, producing
standing waves for certain resonance frequencies. The standing wave patterns produced are
called modes; longitudinal modes (of the same order) differ only in resonant frequency, but
maintain the same spatial intensity profile, while transverse modes differ in both frequency,
and intensity profile across the cross-section of the beam.

The most common types of optical cavities consist of two facing plane (flat) or spherical
mirrors. The simplest of these is the plane-parallel or Fabry—Pérot cavity, consisting of two
opposing flat mirrors.

a) b)

Rl=eo R2=ce

v

- » « L

Figure 1: a) Spherical mirror cavity and b) Fabry — Pérot cavity.

1.2 Cavity Resonances

The resonance of an electromagnetic wave inside an optical cavity is no different than the
resonance of any other system. To make the problem as familiar as possible, we consider the
cavity shown in Figure 2. We consider incident on the cavity all the waves, from the left, inside
the cavity, or transmitted through it to the right to be plane waves.

7 }ED E A E
/ Hﬂ 0{(“ i
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M M,
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Figure 2: Optical cavity. Image from Verdeyen — Laser Electronics [1]




1.3 Important Quantities

Let suppose that we have a wave as it bounces back and forth between the two mirrors.
Consider Eo to be the initial field to the right if My It propagates to M> and back to M and
experiences an amplitude change of I'1-T"; and a phase factor e[~/ 2@l as it travels between the
two mirror, and thus generates the field E1*, which experiences the same changes as Eo, and in
turn generates E2*, and so on. All the fields that are generated at every point along M1 to M2
(Ea*, E2*, and so on), must be added to the initial field Eo, which we define to have the reference
phase of 0°. We have assumed that the round trip phase shift (RTPS), 260 = 2kd, is almost an
integral multiple of 2z radians. That deficiency is labeled by ¢ and is related to kd by

20 = 2kd — ¢ (1.1)

where q is an integer.

By assuming that ¢ = 0, we define the resonance condition as

_wn-Zd_Zn-Zd
¢ 2

(1.2)

k-2d =q-2n

Or

_a4 (1.3)
d = 2

where 4 = %" This view of resonance states that there has to be an integral number of half

wavelengths between the two mirrors, or, more generally, an integral number of wavelengths
along the total cavity round-trip length.

1.3 Important Quantities
The frequency difference between successive modes of the cavity is important and is called
Free Spectral Range (FSR). Equation (1.2) can also be interpreted in terms of frequency f as:

2nd 2nd
k'Zd:a)TZZTTf'T:CI‘ZTTﬁ

c

=qr— (1.4)
f 2nd

Because q is restricted to integer values, there are only discrete frequencies which obey the

resonance condition. The separation between those frequencies is given by

c
far1 = fq = 5—=FSR (1.5)

There are three interrelated characteristic parameters associated with a cavity that describe the
resonance phenomenon: Q (quality factor), F (finesse), and tp (photon lifetime). To derive an
explicit relationship between the resonance, these quantities, and the characteristics of the
cavity, we need an analytic description of the fields inside the cavity and their relationship to
those exciting the cavity. After some mathematical operations we obtain a generic expression
for the power transmission through an arbitrary cavity with reflection coefficients of the input

and output mirrors, Rin and Rout, respectively, and A = \/RinRout(l — cavity losses), the per
round-trip survival factor of the cavity:

10



1.3 Important Quantities

(1 - Rin)(l - Rout) 1
—A)2 2
(1-4) 1+ (%) sin?(2m (f — fg) L/c)

where f, the cavity resonant frequencies, and F the finesse defined below.

() = (1.6)

A plot of the transmission coefficient (1.6) versus the frequency f is shown in Figure 3 for
different reflection coefficients Rin, Rout.
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Figure 3: Transmission through a Fabry - Perot cavity as a function of the frequency for various reflection coefficients.

The quality factor (Q) of the cavity is a measure of the sharpness or selectivity of the resonance.
If fo is the frequency of one of the peaks, then Q is given by:

fo _ Wo _ Ao
Af1/2 Awy A/h/z

where Af; /, is the full width at half of the maximum (FWHM) of the cavity resonance, in
frequency units, given by:

Q= (L.7)

FSR(1—-A
o 1.8
Ay =— = | (1.8)
Thus,
0= Q(C/znd) _ 2mnd VA (1.9)
Afl/z A‘O 1 - A .
The Finesse (F), appearing in (1.6), is defined as
FSR FSR
F = = (1.10)
FWHM — Afy,
Or,
P VA (1.11)

11



1.4 Alignment and mode matching

1.4 Alignment and mode matching

Proper mode matching between an input laser beam and an optical cavity means that the laser
beam couples completely, in both shape and path, to the fundamental (longitudinal) spatial
mode (TEMooq) Of the cavity and not at all to the higher-order (off-axis) spatial modes
(TEMimg). In Figure 4 we see the spectrum of the cavity which supports higher-order modes.
In this section we will show the conditions that will allow us to have only the first transverse
mode (TEMoog).

q FSR =115. MHz | y(FWHM) = 218. kHz q+1

N T Y

Figure 4: Transmittance of the cavity with higher-order spatial modes (TEMmnqg).

In one dimension, the normalized spatial eigenmodes are Hermite-Gaussians, the first order is
given by:

1/4 .2
U(x) = (%g) o) (112)

where x, is called the waist size. For a two spherical (radius R: and R,) mirrored cavity of mirror
spacing d,

T

4 (/1)2 d(Ry —d)(R, —d)(R, + R, — d) (1.13)
o~ (R, + R, — 2d)?

We begin with the assumption that the input beam ¥ (x) is a Gaussian and aligned, so that
¥(x) = AU,(x) and then see what happens as it is misaligned. If we translate the input beam
by a small amount, a,., ¥ (x) becomes:

Y(x) = AUp(x — ay)
1/4 X—ay\2
_ 2 (LZ) .5 (1.14)

The exponential can be expanded and if % <« 1 and equation (1.14) can be rewritten as:
0

W(x) = A <iz> <1 +2a, %) o (3) (1.15)
X, X

0

Bl

12



1.4 Alignment and mode matching

Or
W(x) = A(Up(x) + ? Uy (x) (1.16)
0

Where

1/4 x\2
Ul(x) — (i) Z_xe_(x_o)

2
X§

is the second spatial mode. Thus we see that a small displacement of the input beam gives rise
to a coupling of the first off-axis mode of the cavity.

The last case to be treated is that in which the beam size is correctly matched, but the position
of the waist is not. To describe what happens when the input waist is displaced a distance b
along the cavity axis z from the cavity waist, we rewrite the two lowest-order modes as

1 .
o, 2) = f1<—— ) (117)
mTw

21 2 2,1 T
Vi(r,2) = j%w(l - z%)& ) (1.18)

Where R is the radius of curvature which given by:

2\ 2
R(2) =z <1 + <n@> ) (1.19)
Az

And w is the spots size of the eigenmodes and varies as

, 2( < Az )2) (1.20)
w(z)=wi|1+ >
W

The distance z is measured from the cavity waist, at a short distance b from the waist we assume

that:
Ab
— | <1
W,

w?(b) = wé

Hence, the axially translated input beam at the cavity waist takes the form:
21 r? (—_rz(l_w_b)>
l{l(r, b) = A\/:—<1 _ 2_2> e Wg ln’wg (121)
Tw w

Finally, expanding the exponential, the beam in terms of eigenmodes is:

Ab
W(r,z) = A(Vy + i—— V1) (1.22)
21w

13



1.5 Cavity-enhanced polarimetry

So, we see that an axial displacement of the input waist causes a coupling to higher-order radial
eigenmodes. The way to overcome this is to use lenses in the right positions, in order to match
the beam waist with the cavity waist [2].

1.5 Cavity-enhanced polarimetry

In optics, polarized light is usually described using either the Mueller or the Jones calculus.
We use the latter, derived by R. C. Jones in 1941. Polarized light is represented by a 2D Jones
vector, and linear optical elements are represented by 2x2 Jones matrices. When light traverses
an optical element the resulting polarization of the emerging light is found by taking the product
of the Jones matrix of the optical element and the Jones vector of the incident light. Note that
Jones calculus is only applicable to light that is already fully polarized. Light which is randomly
polarized, partially polarized, or incoherent must be treated using the Mueller calculus.

The Jones matrix of an optically active element (circularly birefringent optical rotator) is an
SU(2) rotation matrix with argument 6:

__(cosf@ —sinf
Re(0) = (sinB cos 6 ) (1.23)

Anisotropies such as imperfections of transmission optics, thermal or stress-induced
birefringences, and stray magnetic fields can be described as linearly birefringent optical
elements. The Jones matrix for a general linear wave retarder, which introduces a differential
phase shift ¢, is given by

_ ei6/2 0
Rl(6) - ( 0 e_i5/2> (124)

The cavity round-trip Jones matrices for the propagation are obtained by the ordered
multiplication of the Jones matrices representing the optical elements. The round-trip Jones
matrices are given by

R = R,(5) - R.(0) (1.25)

The eigen-polarizations of the cavity modes, along with their respective resonance frequencies,
are determined by the anisotropies of the cavity. Using the explicit form of the transfer
matrices, we can obtain the eigensystem as a function of the parameters (6, §).

The matrix R has two eigenvalues and two eigenvectors. The eigenvectors are generally
complex, orthogonal vectors v+ and represent the eigenpolarizations of each cavity mode. The
eigenvalues can be written in the form A, = e**¥. The phase of each eigenvalue is the round-
trip optical phase shift obtained during light propagation and therefore yields the frequency
splitting of the eigenmodes. Expanding (1.25), we obtain

i5

e2 cos(f) —sin(0)

R= (1.26)

id
sin(6) e 2 cos(0)

The eigenvalues and eigenvectors are:
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1.5 Cavity-enhanced polarimetry

2

o) 0
At = cos(6) cos (E) Fi|1l-cos26cos (5) (1.27)

8\ 8\°
vt = 4| csc(@) | cos(8) sin <E) + \/1 — cos? 6 cos (§> (1.28)

—i

Where A is a normalization constant which is functions of 6 and 6. We see that in the most
general case the polarization eigenstates are represented by orthogonal ellipses and their

frequency splitting is proportional to I' = cos~*(cos(a) cos(g)) N

6=0
2w,
=
2
a) E
Frequency
620
2w,
=
2
b) g

V

Frequency

Figure 5: Optical activity (circular birefringence) splits the eigenmodes (blue lines) by 2wg = 26c/L. a) We see the
splitting without linear birefringence and b) in the presence of linear birefringence, the eigenmodes transforms into
elliptical states. The orange line corresponds to the degenerate axial mode of an isotropic cavity.

In the context of this thesis, we operate on cavities in the absence of both circular, as well as
linear birefringence, as our goal is to study the absorption from atomic iodine vapor. Thus, our
cavity spectrum comprises degenerate resonances for any incoming light polarization.
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1.5 Cavity-enhanced polarimetry

However, the treatment above encompasses our future plans for studying effects owing to
circular birefringence inside our optical cavities, namely Faraday rotation due to applied
magnetic fields on the atomic vapor, and, ultimately, the weak chiral optical activity due to the
non-conservation of parity in the specific iodine transitions under study.
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2.1 Maxwell’s Equations
Chapter 2: Multipole Transitions

2.1 Maxwell’s Equations

The two fundamental quantities defining the electromagnetic field are the electric E(r, t) and
magnetic H(r, t) fields which are functions of space and time satisfying the Maxwell’s
equations. In the nonrelavistic form and Sl units, they are given by,

OB
VXE+—=0 (2.1)

ot

oD _ (2.2)
VXH+E_]
V-D=o (2.3)
V-B=0 (2.4)

where J and o are the densities of currents and free charges, respectively, while D = &,E and
B = uoH with g, the electric permittivity and p, the magnetic permeability of vacuum. The
fields can be expressed in terms of the scalar ¢(r, t) and vector A(r, t) potentials as

E=—|7gp—g—':,B=|7><A (2.5)
If we choose ¢ = 0 and V- A = 0, then the fields are given by:

E=—3—‘:,B=V><A (2.6)

which means than if we know the vector potential A(r,t)we can easily obtain the fields.
Substituting (2.6) into the equation (2.2) we obtain

(\72 - ia—2> A(r,t) =0 (2.7)

c2 0t2

where ¢ = (uggy)~ /2 is the speed of light in vacuum.[*]

2.2 Atom Interacting with EM field

Let us employ time-dependent perturbation theory to investigate the interaction of an atom with
classical electromagnetic radiation. It will still be assumed that the particles involved are
nonrelativistic. The Hamiltonian of such an atom is:

1 e ~

_ § ~ 2 _

H = . [Zme (P, +eAj)” —ep; — & om. B; S.] +V (2.8)
1
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2.3 Electric Dipole Transitions

where the sum is over the electrons in the atom. In (2.8), m is the electron’s mass, p, its
momentum and q its charge, while V is the atomic potential. The remaining terms in (2.8)
express the effect of the additional external EM field, where S; is the spin of the electrons
interacting with the magnetic field. As before, by choosing ¢ =0 andV-A =0, the
Hamiltonian can be rewritten as

H = H, + Zl—A P+ A2+g2 B,-S, 2.9)

The term H,, is the Hamiltonian of the atom in the absence of the external electromagnetic field.
Note that p and A commute because V7 - A = 0 and the term proportional to A% can be neglected
as it is very small.

Thus, the time-dependent Hamiltonian of a single electron is equal to

e ~
Hy=—A-p— B-S=H,+H
1T e P T e, e ™ Hm (2.10)

From the equations (2.6) and (2.7) the vector potential A(r, t), the electric E(r, t)and magnetic
B(r,t) fields corresponding to a simple wave can be generalized as

— re \/_ l(kr wt) E = T \/_ l(kr wt) B =— \/;Cei(k'r_wt)l.

The exponential can be expressed as a Taylor series:

her _ 2 (ik - r)“ (ik - 1)1
e Z ; (- 1)!

This is the multipole expansion of the electromagnetic field, where the index [ =n—1is
defined to be the multipole order.[°]

A=

(2.11)

2.3 Electric Dipole Transitions

The most common simplification of the multipole expansion, which is also the strongest
contribution when allowed, is the electric dipole approximation. For the electric dipole
approximation we choose the term [ = 1 in equation (2.11) to get e’*™ ~ 1, i.e. we consider
k -r « 1, or, equivalently, r « 4, that is the wavelength of the incoming light is much greater
than the dimensions of the atom, thus the electron perceives the incoming electric field as an
oscillatory field with no spatial dependence Therefore, if we consider a system with initial and
final state |a) and |b), respectively, described by the Hamiltonian H, we can calculate the
electric dipole matrix element

~

, o7, =0

a-
Il
>
=
>
Il

[}
X
-
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2.4 Electric Quadrupole Transitions

e FE E
HE} = (alH,|b) = {(a| ——=—p - To|b) = e ——al|[Ho, 7] - F3|b) * =

Me2iw \/iia)
5o iialr - #olb) =
=e w alr-r
\/Eia) €
E1l EO ~
Hgp = ﬁ<aID-rer> (2.12)

where D = e - r is the electric dipole moment and D = ¥; e - r; the electric dipole operator.
We can proceed further, with the angular part of the matrix element integral

o)

HEL ~ (a|D - 75lb) = f r2drR, . Ry, f A0} o 7 Yy

3 (2.13)

From the integral in (2.13) it follows that the matrix elements are nonzero if
Al=]a—1h=0,1L1; Jo+]p, 21, (2.14)
Am =m, —mp =0,%1 (2.15)

To these selection rules it is necessary to add the selection rule with respect to parity. The
components of the electric dipole moment D, change sign under inversion. Thus, electric dipole
transitions are possible only between states of different parity (i.e. even < odd).[%]

2.4 Electric Quadrupole Transitions
In order to calculate the electric quadrupole matrix element, we choose the [ = 2 order in
equation (2.11). Thus, we have e?*” ~ 1 + ik - r and the matrix element is given by

Eo (aID - #,1b) + (a] + -0
_a lr a —
V2 € Me2iw

Suppose that the electric dipole transition from state |a) to state |b) is forbidden according to
the selection rules in the previous section. This implies that:

Hgp = (alH,|b) =

(ik - )7, - p|b) (2.16)

(a|D - ¥.|b) =0

In this case, equation (2.16) reduces to

HEZ = (a] =22 (k- 1)#, - plb) = ——2 (| L (2 P) (R - P)IB) 3 =

a = el ‘ e V20 G ‘
25 ia-n@E - pib (2.47)
me\/ic ¢

Using the definition of the orbital angular momentum L = r X p we have
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2.5 Magnetic Dipole Transitions

fpL=@xX7R)rxp)=@ 1) p)—(-r)(A T (2.18)

Furthermore, if

img
h

[H, (7 (@A -1)] =@ -r)(@AE-p)+ @ 1) p) (2.19)

from equations (2.18), (2.19) we have,

R R 1 im, . R
(A-r)(7%-p)= ST L +W[H' (fe-r)(A-T)]
which yields
eE ieE
Hey = S —(alL - R 1b) + 72 alH, (o ) (@ )I) =
e
ek, R ieEyw R
m(a“fﬁ;”’) t— e Qa7 (2.20)
e
Where
T25i'
Qap = (a|rirj — TJ |b);r? = UL (2.21)

is the electric quadrupole operator.

The selection rules for electric quadrupole transitions are given by the second term in equation
(2.20) when the integral is non-zero. The general form of these selection rules is

A =0,+1,+2 (0 « 0,1) (2.22)
Am = 0,+1, +2 (2.23)

2.5 Magnetic Dipole Transitions

According to equation (2.20), the first term mediates the magnetic dipole transition between
states |a) and |b). However, this expression is incomplete because we neglected taking into
account the second term of the Hamiltonian, H,,. Which, indicates the interaction of the
magnetic field with the electron’s magnetic moment[’]. Taking into account again the first
order of the exponential e*” ~ 1 we can know define the magnetic dipole matrix element

ek, R ek R
Hap = —=——/{alL-7;|b) + 95 (alfy - S|b) =

2vV2m,c vV2m,c
HM1 _¢ho (a|(L + gS) - 7 |b) _¢ho (a|Myy, - 73 |b) (2.24)
= a ' T = a "7 :
ab 2 ,—2 oC g b 2 ,—2 oC ab b

Where
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2.6 Higher order Transitions

Mg, =L+ gS (2.25)

is termed the magnetic dipole operator. According to the previous analysis for the electric
dipole transition, (a|M,y, - 1}, |b) is non-zero if

AL =0, (2.26)
A =0,£1 (0 « 0), (2.27)
Adm=0,+1 (2.28)

2.6 Higher order Transitions
It is obvious that we can choose higher orders of the exponential and that will lead to magnetic
quadrupole M2, magnetic octupole M3, electric octupole E3, etc. matrix elements. In the

following table we summarize the selection rules for these radiative transitions

. - Magnetic . Magnetic Electric octupole Magnetic
Allowed Transitions Electric dipole(E1) dipole (M1) Electric quadrupole (E2) quadrupole (M2) (E3) octupole (M3)
) (?]foof(}) —A](): Ooillliz ! =0 N 0:102J£11 ; 21 153 1»1
= Jg= 4",.24"5) Jg= 4"...5*"5'5' »1)
Rigorous rules (2) AM; =0,%1 AM; =0,t1+2 AM; = 0,%1,+2,+3
3) = - T =1, = - Ty =T,
(4) AL = +1 AL =0 AL =0,%+2 AL = +1 AL = 1,43 AL =0,%+2
LS coupling F4s =0 1f4S =0 1fAS=0 1fAS =0
(5) AL = +1 AL=0 AL =0,%+1,4+2 AL =0,41,42,43
(L=0»0) (L=0»01) (L=0+»012;1»1)
If 48 = +1 If 4S = +1 If 4S = +1 L"fLAf N jfll L"fLAf N jfll
Intermediate coupling (6) AL=0,%+1,+2 AL=0,%41,+2,43 AL =0,+1 +2_+3';4' _+2'* ’
(L=0+»0) (L=0-+0) T n
(L=0»01) (L=0»0)

Figure 6: Radiative Transition's selection rules (table recreated from Wikipedia)

where ™ = (—1)" is the parity of each state with angular momentum [ and the symbol < is
used to indicate a forbidden transition. In the hyperfine structure, the total angular momentum
of the atom is F = I + J, where | is the nuclear spin angular momentum. Since, F = I + J has
the same mathematical form as J= L + S, it obeys a set of selection rules similar to the table
above.

The above treatment gives the basic theoretical backdrop of the main transition studied in this
thesis, namely the 5P;,, — 5P/, transition of atomic iodine, predominantly an M1 transition,
which, however, contains weak E2 contributions, observed for the first time in this work, to
the best of our knowledge.
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3.1 Refractive index of atomic vapor
Chapter 3: Absorptivity and absorption cross section

3.1 Refractive index of atomic vapor
We use a semi-classical model to describe a two-level atom, that of a single electron bound by
a harmonic force to the nucleus, acted upon by the electric field of an incident light field.

Electron

Figure 7: Semi-classical model of an atom.

In this case, the equation of motion for the electron around the atom is given by:

me[¥ + yx + wix] = —eE(x,t) (3.1)

where x is the position of the electron along the electric field direction, m, is the mass of
electron (assuming that the nucleus of the atom is much more massive compared to the
electron), e is the electron charge, y is the damping term, w, is the resonant frequency. In the
case of an electric field varying in time as Ee'®t, then the dipole moment of a single atom is
eZ
p=—ex=—(wi— w?—iwy) E = gx.E
me

where y, is the electric susceptibility. If there are N atoms per unit volume, then the dielectric
constant is given by:
s(w) 4N fe? (3.3)

=1+4ny, =1+
£ xe me (0 — w? = iwy)

(3.2)

where f is the oscillator strength of the transition.

The index of refraction is defined as n = = = /% Assuming that = ~ 1, combined with
0H0

u Ho

equation (3.3), the refractive index can be rewritten as

€
n= |—=n'+in""=
€o
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3.1 Refractive index of atomic vapor

nNfe?Aw  inNfye?

2
n(w) = 1 - —2U0e - SO0 (3.4
2 V- 2,V
do*+7 Ao +7Z
Hence,
) mAwNfe?/m,w,
Re(n)=n'"~1- ol T 1"Ze (3.5)
., mNT'fe?/m,w,
Im(n) =n" = ol + FZ (3.6)

where Aw = w — wy and I' = y/2 [?]. Plots of the imaginary and real parts of n as a function
of frequency w are shown in Figure 8. Note that the real part of the refractive index in the
vicinity of the resonance frequency, rises rapidly at first, then drops below unity, and eventually
makes its way back up toward unity. This behavior near resonance is called anomalous
dispersion. Far from resonance the n’ increases with the increasing of frequency, which is
called normal dispersion. The imaginary part of the refractive index, n"’, near the resonance
increases sharply to a maximum then drops as the frequency exceeds the resonance frequency.

Figure 8: Dispersion and Absorption of EM in a vapor

The frequency dependence of equation (3.6) is Lorentzian. So, the dispersive and the absorptive
parts of the lineshape function can take the form:

, _ 1 Aw (37)
Ldw) = T Aw? + I'?
1 r2
| (38)
£(4w) T Aw? + I'?

Hence, equation (3.4) can be rewritten as
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3.2 Refractive index including Doppler broadening

mpoe” (3.9)

=n"+in" =1 NfL(A
n=n"+in +4mew0 fL(Aw)

where £ = £' +iL".[}]

3.2 Refractive index including Doppler broadening

To obtain a better agreement between experiment and theory we must include the effect of
Doppler broadening, since, in a thermal vapor, the Doppler effect due to the thermal motion
of the atoms, leads to the dominant spectral broadening mechanism, and can not be neglected.

The frequency w must be substituted by its Doppler-shifted value, w — k - v, where Kk is the
wavenumber and o the atomic velocity. The final step is to integrate the Lorentzian broadenings
of the individual atoms over the Gaussian distribution for the atomic velocities (Maxwell-
Boltzmann distribution), yielding the so-called Voigt profile. The Voigt profile can be
expressed through the Faddeeva function, w(z), which is a scaled complex complementary
error function defined as:

w(z) = e~ Erfc(—iz) = w'(x,y) + iw" (x,y) (3.10)

where z = x + iy. For an atom with mass M and for a resonance frequency w,, the Doppler
half-width at 1/e is:

2kpT (3.11)

Awp = o |97z

and the absorptive and dispersive parts of the lineshape are related to the w' and w",

respectively, via:
(Aw T
w (Aa)D'Aa)D)

L£"(Aw) » V" (dw) = N (3.12)
D
W,,(Aa) r )
A 'A
D
Hence,
2
Py o o€ (3.14)
= =1 N A
n=n+in +4mew0 fV(Aw)

where V =V’ +iV".

From equations (A4) and (A5), where we define the oscillator strength for a magnetic dipole
interaction, we can rewrite equation (3.14) as:

Tuy N |[M1|?
3 20 (2, + 1)

V(Aw) (3.15)

Assuming a non-zero nuclear spin, I, we must take into account the hyperfine structure. Using
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3.3 Including the electric quadrupole interaction

(F,|T®|F,) = (~1)+*+a+Fo [(2F, + 1)(2F, + 1){ k ]b}UalT(k)ljb) (3.16)

Ja
F, I F
Where k is the tensor rank of the operator T, and the fact that the population of the ground state
Fais:

2F, +1 N (3.17)
2, +DR2I+1)
then from equation (3.14) and Appendix A, we get:

N(Fa) =

n= 1 + nO Z CFa'FbVFa'Fb (A(,U) (318)
FaJFb
where
0T N |M1|? (3.19)
7 3 20(2J,+ 1)
c _ (2F, + 1)(2F, + 1) {]a k ]b}z (3.20)
FaF (21 + 1) Fy I Fy

Where again M1 = —— (], |L + 28]J,,).[%] For the particular transition under study in atomic
iodine, preliminary calculations yield M1 = 1.15 ug.

3.3 Including the electric quadrupole interaction

In the previous section we assumed a pure magnetic dipole interaction. However, given high
enough angular momenta, the selection rules allow for the existence of higher order multipole
interactions, as well, such as an electric quadrupole interaction. The quadrupole operator for
the projection q is:

qw

4/3 71
where Q72 is given by equation (2.21). In order to find the refractive index, we must include
the quadrupole interaction to the reduced matrix element

M1 e
20, ° _ 99 E2 ) (3.22)
3 2m,c <]a M, 4/3 Q"o
Then, we introduce the electric quadrupole to magnetic dipole ratio parameter, y:
® (Ja|Q5|J») (3.23)

SEPNEXTATTATA!

Hence, the refractive index (3.18) can be rewritten as:

n=1 + Ny Z C,FaJFbVFaJFb (A(U) (324)

Fa,Fp

Where n, is the same quantity as equation (3.19) and
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3.4 Beer-Lambert law and the absorption coefficient

,_ CEADCRAD((Jo 1 1) 3% (e 2 Jo) (3.25)
¢ FaFp ™ (21 + 1) <{Fb | Fa} * T{Fb | Fa} '

3.4 Beer-Lambert law and the absorption coefficient

Absorption of light in a medium is usually defined as the fraction of the power dissipated per
unit length of the medium. If a beam is propagating in the +z direction and the intensity at
position z is 1(z), then the decrease of intensity across an incremental slice of thickness dz is
given by:

dl = (—a)dz X I(z) (3.26)

By integrating, we obtain Beer-Lambert law,

I(z) = 1(0)e~* (3.27)
I, I
Incident light Transmitted light
® o 93 @
| * s [ ) >
L0 e
[

Figure 9: Beer- Lambert law.

The coefficient a is called absorption coefficient. We can generalize the wave-vector by using
equation (3.9) as:

w w

k=n—=(+in")= (3.28)
C c

Substituting that in our plane solutions

Ey(zt) = Re{A,e!@t=kD} 4 RelA,el(@t+ka) (3.29)
E,(z,t) = Re {Ale"(‘*’t—(n’ﬂn”)%)} + Re {Azei(wt+(n’+in”)%z)}
E, = Re {Ale""%ei(wt—"’%z)} +Re{4, o "%z ei(wt+n'%z)} (3.30)
E, = Aye™ "¢ cos(wt — ' 20+ Aye ™" cos(wt + ' 2 (3:31)

The intensity is proportional to the square of the magnitude of the electric field. Taking the
second term only, for the sake of simplicity, we can say that if the electric field is decreasing

4 See Appendix A for the analytic derivation.
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3.4 Beer-Lambert law and the absorption coefficient

1w 1w N2
by e™™ <%, then the intensity of the wave is decreasing proportionally to (e‘n ?Z) =

—2n'"%y
e c .

Comparing this to Beer’s law, we obtain the relationship between the absorption coefficient a
and the imaginary part of the refractive index n" [°]:

=€

w
a=2n"— (3.32)
c
Hence, the transmission of light power through a vapor is governed by the Beer’ law:
T(w) = I(w) — e—an”(w)l/c —No(w)l (3.33)

Iy

where o is the absorption cross section, | the length of the interaction area. From the previous
discussion in section 3.2 it is obvious that the absorption cross section is given by:

O'(A(l)) = O-O Z CFa:FbV”Faer(Aw) (334)

Fa,Fp

Where Cr_ r, is given by equation (3.20) or (3.25) , V''f_r, from equation (3.12) and, gy, the
integrated absorption cross section, by [%]

o :T[‘quO 1 M1? (3.35)
0 hc 2J,+1 3
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4.1 The Faraday Effect

Chapter 4: Faraday rotation

4.1 The Faraday Effect

In 1845, Michael Faraday discovered the first physical phenomenon linking light and
magnetism. When plane polarized light propagates through a length [ in certain magneto-optic
mediums, with a magnetic field applied along the propagation direction making the medium
optically active, its plane of polarization is rotated by an angle:

l
Q= Vf Bdl =VIB (4.1)
0

where ¢ is the angle of rotation, V the Verdet coefficient, B the magnetic intensity, and [ the
length of the medium. Becquerel derived a classical expression for the VVerdet constant,

L ) (4.2)
2cB
Thus, the angle ¢ is given by:

Q= (21)_Cl (ny —n_) (43)

where n, and n_ are the refractive indices for the right- and left-circularly polarized
components of light, respectively.

5 SE
T

Figure 10: Faraday rotation through a transparent dielectric.

The Faraday phenomenon also appears near atomic and molecular resonances in the presence
of an external magnetic field, due to the Zeeman effect, which affects the n. refractive indices.
We consider an atomic vapor subject to a constant magnetic field B, applied along the direction
of propagation of the light. We assume that B, is sufficiently weak for the Zeeman splittings
of the hyperfine levels to be small compared with the intervals between adjacent hyperfine
levels. Application of the field B, affects the refractive index in two ways: through changes in
the energies of the sublevels and through mixing of the states.

4.2 Symmetric part of Faraday rotation
Initially we consider only first order corrections to the system energy levels due to the magnetic
field. The resonant frequency of the |a) — |b) transition becomes:

B,
wna = w0 (Fy, F2) = == (bl ) — (alitzla) (44)
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4.2 Symmetric part of Faraday rotation

Where we use |a) to represent the ket |J,IF,M,)and a, b labels, respectively, quantities
referring to the ground and excited levels. The refractive index in the absence of the magnetic
field is given by (3.24).

Now, we must calculate the change in n,, g = 1 for right/left circularly polarized light, which
IS given by,

dn
an = da)FF, 60)1:'1:',
T By N(F;) 1) qw A @2) 2 45
==k ) g (el = | Fam) )
F,F'
MM’
X ((Fpluz|Fp) — (Falpz [ Fa) V™ (0 — wpg)
Where
V' (w — wpg) 1 V' (w — wpe)
VM (w — wpg) = = — — (46)
ba dwpg Awp a(“’T“;M)

Performing the summations over the M states results in the expression for the symmetric part
of the Faraday angle:

UoTtB, wl N(F,)M1? . 47
Ps = thzT 2Fa +1 (Ur1 + 2U12x + Upox®)V* (0 — wpq) (47
a
Where the expression for U,,, is given by
U = (—qyre Bt DERE + 1) {jy x jx} {jy y jx}
xy il I EJIE I E
[x(x + D(2y + D]2
. Jy 1 j(x 1 vy
x (=) B+ 2, +1 {y y}{ })
[<( ) (2h )Fyll FSWE F E
. ly <€ Jx
—1)X+y 4.8
+ same terms with (—1) (Fy o Fx)] (4.8)

And the allowed combinations of (x, y) are (1, 1), (2, 2) and (1, 2), x takes the value 1 for the
magnetic dipole term and 2 for the electric quadrupole term.
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4.3 Antisymmetric part of Faraday rotation

Figure 11: a) Refractive index line shapes for left (o+) and right (¢-) circularly polarized light near an atomic resonance in the case of
Zeeman splitting and b) the symmetric part of faraday rotation line shape.

4.3 Antisymmetric part of Faraday rotation
Another effect of the magnetic field is that it mixes states of the same M but with different F

so that a state |FM) becomes
(FeM|u,|FpM)
’ hwo(Fp, Fy)

|FaM> - |FaM> -
Fq#F,

|FiM)B, (4.9)

Hence, the consequent change in n is

Sn. = /JOT[BZ N(Fa)
17 on 2F, + 1
FaFp
MqgMyp

1
Z m((Fka|.Uz|Fbe)<Fbe|uq|FaMa)(FaMa|y_q|Fka>)

Fr#Fp

+ (Fbe|Hz|Fka>(Fka|/’Lq|FaMa)<FaMa|.“—q|Fbe)

1
+ F;am((FaMa|,uZ|FlMa>(FlMa|,u_q|Fbe>(Fbe|uq|FaMa>)
+ (FlMalﬂleaMa)<FaMa|H_q|Fbe)<Fbe|’uq|FlMa)

(o 0+ 1m0 02) (12~ 70)] V0 - o

Performing the summations over the M states results in the expression for the symmetric part
of the Faraday angle
_ HomB, wl N(F)M1?
b= 02 C T2E, + 1

(Vi1 + Vipx + szxz)Vl(w — Wpqa) (4.11)

Where the expression for V,,, is given by
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4.3 Antisymmetric part of Faraday rotation

(2F, + 1)(2F, + 1)
LG+ D2y + DI

x Z (—1)/~F*(2E, + 1) {éy ; }y} 9 {iy [V iy)
Fy#Fy y k wO(Fy'Fk)
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And the allowed combinations of (x, y) are (1, 1), (2, 2) and (1, 2)

Figure 12: a) Refractive index line shapes for left (o+) and right (¢-) circularly polarized light in the case of mixed states
and b) the antisymmetric part of faraday rotation line shape.
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5.1: lodine (1271)

Chapter 5: Atomic lodine

5.1: lodine (*?1)
lodine, with Z = 53, is an atom with ground state configuration of 5p®. There are 37 known
isotopes of iodine (s3l) from %] to #41; all undergo radioactive decay except 2’1, which is

. - 5
stable. Moreover, 271, as an odd-Z isotope, has non-zero nuclear spin, I = P and therefore,
nuclear spin—dependent effects can be measured.

The spin-orbit interaction is described by the LS-coupling, therefore, the two term symbols
which arise are Ps;for the ground state, and P, for the first excited state. Taking into account
the hyperfine interaction we can draw the energy scheme of Figure 13. From the selection rules,
Figure 6, we see that the electric dipole (E1) transition is forbidden. Hence, as per the selection
rules, the lowest allowed multipole interactions are the magnetic dipole (M1) and electric
quadrupole (E2). In Figure 13, blue lines indicate transitions that are both M1- and E2-allowed,
while red lines indicate E2-specific ones.

configuration term 127) F
5525p° Py T
s |
!
13155nm
5525p° 2P33 ------ ‘

Figure 13: Energy level scheme for the 2P32 — 2P12 M1 (and E2) transition of atomic iodine at 1315nm. The blue arrows
indicate the M1 (and weakly E2), and the red arrows the E2-exclusive hyperfine transitions.

5.2: Production of high density | (?P3/2) atoms
High iodine densities of ~10®cm ™3 have been achieved in DC glow discharges or by using
high-temperature ovens. Both of these methods lead to large spectral broadenings, in the first
case pressure broadening (Lorentzian) and in the second case Doppler broadening (Gaussian).
Desiring to keep broadening of the spectral lines to a minimum, we consider an alternative
method for the creation of ground-state Ps, iodine atoms through photodissociation of I
molecules with an intense 532nm laser [*°]:

I, S 1(2P;,5) + 1(2P55) (5.1)
We assume that the population of excited-state >, and production of I3 trimers is negligible.
After production, iodine atoms recombine mainly via two processes:
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5.3: Absorption and Faraday rotation Simulations

Ky
three-body recombination: 1(2Ps/;) + I(2Ps,) + I, = 21, (5.2)

Few
trapping to container wall: I — I,4

where k,. is the recombination rate, k, = 4.4 X 1073°ml?s~! at room temperature[*!], and k,,
is the rate at which atomic iodine sticks to the cell walls, which is on the order of kHz.

The rate equation governing the production rate of atomic iodine from photodissociating I2 is
given by:
d[]

— = 0®lL] =k [112[12] — ke [1]

where [I] and [I,] are the atomic and molecular iodine densities, respectively, o = 2.4 X

10~18cm? is the I, photodissociation cross section at 532 nm, @ = %%}a the green laser

photon flux, A the cell cross sectional area and P the power of the green laser.

(5.3)

The steady state solution of (5.3) is:

1 = —ky, + k2 + 4[I,)%k,.0® (5.4)
2[L ]k,
A flux @ ~ 102° photons cm™2s™1, gives a steady state iodine-atom density [I] ~ 101®cm™3.

Finally, assuming a cell with a length of 1 m and a high-finesse optical cavity with 100 passes,
gives an upper bound for the effective I-atom vapor column density of 102°cm=2 [*].

5.3: Absorption and Faraday rotation Simulations
In the case of hyperfine interaction, the energy levels of the hyperfine states are given by:

B K = 3K(K+1) -4 +1)(J + 1) (5.5)
Ep=bt+gd+ 8IJ(2] — 1)(2] — 1)
K=FF+1)-I10+1)—-JJ+1) (5.6)

where E; is the energy of the fine structure level with quantum number J, A is the magnetic
dipole hyperfine constant, and B is the electric quadrupole hyperfine constant [*]. In the case
of iodine the hyperfine coupling constants, as determined by previous work in our lab, are:

Hyperfine coupling constants
Total Angular Momentum J Magnetic dipole [Hz] Electric quadrupole [Hz]
Ground state J = 3/2 8.3274 x 108 1.0804 x 10°
Excited state ] = 1/2 6.6695 x 10° 0

So, we can simulate the transmission spectrum of iodine be using equations (3.33), (3.34),
(3.35) and (3.25). We assume a number density ~10'¢cm™3, room temperature, T = 300K,
and a cell length of 45 cm, to get a column density ~4.5 x 1017 cm™2. At room temperature
the Doppler broadening is ~150 MHz. The reduced matrix element for the magnetic-dipole
operator is, according to preliminary calculations, M1 = (J,|¢™®|J,) = 1.15u5. Firstly, we
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5.3: Absorption and Faraday rotation Simulations

neglect the E2 transition (y = 0), and take the transmission and absorptivity (=
— natural logarithm of transmission ) spectra versus the frequency detuning from the
nominal transition frequency (Figure 14).
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[ 2—=3
o
v
@
£ 352 (152
w
o 252 3 5 3
|_
., 4 53
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Frequency detuning [GHz]
) FoF 4 - 3
>
£
=
=
—
[*] 22 3 — 3
w
2 352 |12
23

Frequency detuning [GHz]
Figure 14: a) Transmission spectrum for the hyperfine magnetic dipole transitions and b) the absorptivity of the same
transitions giving the corresponding optical depth.

Now, assuming a non-zero electric quadrupole to magnetic dipole ratio parameter y, we get the
hyperfine electric quadrupole transitions, which are shown in the following spectrum

Transmission

Frequency detuning [GHz]
Figure 15: Transmission spectrum for the hyperfine magnetic dipole and electric quadrupole transitions for y = 0.5. The
value of y is chosen for clarity, and is significantly higher than the actual value.
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5.3: Absorption and Faraday rotation Simulations

Moving on to the Faraday rotation spectra, by taking into account the symmetric and
antisymetric parts of the effect, and isolating one particular hyperfine transition (the magnetic
dipole transition F = 4 to F' = 3), we can simulate our signals as follows. First, we only
calculate the Faraday rotation spectrum versus the detuning in the absence of absorption, and
then we include absorption, by multiplying with the transmission spectrum. The simulated
signals are shown in Figure 16.

a) —————

Faraday Rotation [mrad]

T T T T T T T T T T T T T T T

b)

Faraday x Transmission[mrad]

1 PR B " A
3 5 a i

Frequency detuning [GHz]
Figure 16:a) Faraday rotation for the magnetic dipole transition F = 4 to F' = 3 versus the detuning and b) the Faraday
multiplied with the transmission spectra for a magnetic field B = 1G.
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6.1: Experimental Apparatus and Measurement Method

Chapter 6: Experimental Apparatus and results

6.1: Experimental Apparatus and Measurement Method

For all the measurements presented in this chapter, the same experimental setup was used. The
basics of the experimental setup are shown in Figure 17. A bowtie, four-mirror cavity with
round-trip cavity length L = 2.6m, FSR = 115MHz and Finesse, F ~ 240 was used. The
bowtie cavity consists of two concave mirrors with radius of curvature of 2m (one ATF mirror
with specified reflectivity R = 0.999% at 1315nm, and one Layertec output coupler with
reflectivity R = 0.995% ), and two plane mirrors (one ATF mirror with specified reflectivity
R = 0.999% at 1315nm, and one Layertec coupler with reflectivity R = 0.995%). The iodine
cell was placed in one arm of the cavity. For the photodissociation of 1> molecules to 2x1 we
used a green laser (HPL-532nm-cw, max power 50W) which was periodically chopped at a
frequency of 20 Hz, so that we could also take background measurements, while for the IR
spectroscopy of the M1 (and E2) transition, an IR laser (Toptica, DL pro) at 1315nm was
employed.

’ O O O @ < 1315nm

Optical fiber

To lock-In Ref. Compensator
—

Reflected Green PD l Mode Maching Lenses
W B
lodine Holder
» | A\
é > I e — g f- Transmitted Green PD
' lodineCell Plezo
«
v
PBS " A w To lock-In Signal
Q E > > N i Transmitted IR PD ———>
’ v L ‘
532nm » @
-
Chopper
LN PHD PD "
v i Plane mirrors
[ |
- Spherical mirros
u
U Wavelength meter
E |

Figure 17: Schematic diagram of the experimental setup.
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6.1: Experimental Apparatus and Measurement Method

Figure 18: Experimental setup.

The IR laser beam was frequency-locked to a cavity resonance using the Toptica DigiLock 110
module and the Pound-Drever-Hall (PDH) technique (Figure 19). A piezoelectric transducer
was placed on one mirror of the cavity in order to control the cavity length, and thus the
resonant frequency of the cavity mode on which the laser was locked. By expanding or
contracting the cavity via the piezo, while the laser remained locked to the same resonance, we
could tune the laser frequency and scan over the iodine resonances. The laser frequency was
measured with a wavelength meter (Bristol 671) and the reading was fed back to the piezo
controller for further stabilization of the frequency, via a LabView PID .vi (Figure 20).
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6.1: Experimental Apparatus and Measurement Method
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Figure 20: The PID labview program for the wavelength stabilaization.

Two photodiodes were used to record the signals, one for the reflected off the cavity part of the
green laser and another for the IR. The two signals were then used as inputs for a lock-in
amplifier (Ametec 7230 DSP Lock-in Amplifier), the — chopped — green signal as a frequency
reference, and the IR as the spectroscopic input signal. The recorded signals and the output of
the lock-in amplifier were displayed on an oscilloscope (Rohde & Schwarz RT0O2034) which
permitted signal averaging. An example of the acquired signals is shown in Figure 21.
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6.1: Experimental Apparatus and Measurement Method
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Figure 21:a) The recorded signals for different values of absorption. The green line is on resoncce while the
orange and blue nearly of resonance.b) is the signal which is given to the lock-in as a reference in order to
measure the amplitudes of the signals in figure a).

Notice that while the green light is abruptly turned on and off with the chopper, the rate at
which the IR absorption changes in response is not equally abrupt. The reason for this behavior
is that iodine photodissociates and recombines much more slowly than this chopping-on/off
time. From analyzing these absorption responses, we can extract information about the
photodissociation and recombination rates of iodine. Furthermore, the curves in Figure 21a
interestingly seem to indicate that these rates are affected by the detuning of the IR laser from
resonance (lest not forget that, due to the cavity buildup effect, the IR field inside the cavity
can be quite intense). We defer conversation and an analysis of these observations to future
work.
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6.2: Experimental results

6.2: Experimental results
6.2.1: 20cm lodine cell

ek et @ Bt o Y - “
cell with diameter 2.54cm. The windows used were two ATF windows, AR coated at 1315nm
with reflectivity R<0.01%.

e
Figure 22:The 20cm iodine

Our initial measurements were performed using a 20 cm long, 1 inch diameter glass cell, fitted
with two ATF AR-coated windows (R < 0.01%).

A 5Watt green laser was used for the photodissociation, and we recorded transmission spectra
of the atomic iodine over all hyperfine transitions with the method described in the previous
section. In order to find the resonant frequencies and the transition linewidths, we fitted the
data with Lorentzian functions as shown in Figure 23. The resonance frequencies and the
FWHM are also shown in Figure 23. Notice that the spectra were closely fitted with Lorentzian
functions, and the fits resulted in larger than expected linewidths. These were both results of
pressure broadening, due to the cell not being adequately hermetically sealed, and our
measurements taking long enough times for air to increase the pressure inside the cell.
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6.2: Experimental results
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Figure 23:a) Transmittance of the M1 iodine transition as a function of the frequency detuning and b) corresponding
absorbance spectrum as a function of wavelength this time, for reference, for 5Watt green power..

Next, we made a first attempt to measure the electric-quadrupole-exclusive transitions (F =
1- F' =3andF =4 — F' = 2) which are much weaker than the magnetic dipole transition,
and we succeeded in measuring the F = 4 to F' = 2 transition as shown below. The absorption
was found to be ~ 0.5%. The weaker F = 1 — F' = 3 E2 transition still remained out reach
for our experimental conditions.
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Figure 24

:The F = 4 to F' = 2 quadrupole transition absorbance (in absorption-lengths) as a function of the
wavelength for 5Watts of green power. The FWHM was estimated to be 796MHz.

To increase photodissociation, we substituded the 5W green laser with a 25Watt green laser
in order to reach higher atomic iodine densities. We, again, measured IR spectra on the M1

transition as shown in Figure 25 and Figure 26.
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Figure 25:a) Transmittance of the M1 iodine transition as a function of the frequency detuning and b) corresponding
absorbance spectrum as a function of wavelength this time, for reference, for 25Watt green power.
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6.2: Experimental results
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Figure 26: a) The F =4 to F' = 2 quadrupole transition absorbance (in absorption lengths) as a function of the
wavelength and b) the transmission as a function of the detuning for 25Watt green power. The FWHM was estimated to be
449MHz which is smaller than the 5Watt measurement because the cell was pumped before the measurement and the
pressure broadening was smaller.

By using the 25 Watt laser we would expect to have higher absorptions compared to our
previous attempts. From our results we do not observe significant changes in the absorption,
but we do observe the detrimental effects of the inadequate sealing of our cell imprinted on
the FWHM of the recorded lines. This is especially obvious in Figure 25, where the cell was
initially pumped, and measurements were performed right-to-left: we see the FWHM, which
should remain a constant throughout the measurements, increasing steadily due to the inflow

of air and the increase of pressure in the cell.

Hence, in order to improve and stabilize our experimental conditions, we constructed a new
sealed cell with length [ = 45cm.
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6.2: Experimental results

6.2.2: 45cm sealed lodine cell

Figure 27: The 45cm sealed iodine cell with diameter 1.47cm. The windows which were used are two Eksma windows
AR double coated at 1315nm with reflectivity R<0.04% and at 532nm with reflectivity R=0.02%.

The new cell was a 45 cm long, 8 mm internal diameter glass cell, with two %2-inch windows
from EKSMA, AR-coated for both 1315 nm and 532 nm, epoxied on its edges. The
performance of this cell in terms of maintaining vacuum after being pumped was vastly
superior to our previous cell.

With the same experimental setup, the new sealed cell, and green laser power of P~20 W we
measured the iodine spectrum, as we see in Figure 28. A testament to the performance of the
new cell, the data are now fitted with Gaussian functions, since, as expected, the main
broadening mechanism is the Doppler Effect (room temperature Doppler broadening =
150MHz, as opposed to a few MHz of Lorentzian pressure broadening due to collisions at a
room temperature iodine pressure of ~0.2 mbar).
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Figure 28: a) Transmittance and b) Absorbance spectrum of iodine as a function of the detuning for
20W green power (sealed cell). The FWHM were estimated to be 250-300MHz.

It is clear that the FWHM of our lines is much smaller than previous measurements with the
old cell, and the absorbance has increased as expected. Nevertheless, the FWHM is roughly
twice the width we expected due to Doppler broadening at room temperature. This is a cavity
effect: due to the different Finesse (and thus number of cavity round-trips) on- and off-
resonance, light is more strongly absorbed at the absorption wings than the absorption
coefficient there would imply, due to higher number of passes through the cell. On the other
hand, on resonance, single-pass absorption is strong, but the number of passes is lower. As a
result, the line shapes are wider than the single-pass Doppler-broadened profiles. The detailed
theory of this effect is currently under development.

In the absence of pressure broadening, we now succeeded in measuring both quadrupole
transitions,the F =4 - F' =2 and F =1 - F' = 3, as we see on the outer edges of Figure
28 and, in more detail, in Figure 29.
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Figure 29:a) The F =4 to F’' =2 quadrupole transition absorbance (in absorption-
lengths) as a function of the detuning and b) the F = 1 to F' = 3 quadrupole transition.
With the red, dashed line, we represent the sum of the absorption with the adjacent
magnetic dipole transition F = 2 to F' = 3 which appears as an offset in our data.

The absorption of F = 4 to F' = 2 quadrupole transition is about 2% while for the F = 1 to
F' = 3 is about 0.9% after subtracting the contribution due to the adjacent M1 transition. The
ratio of the two absorptions is estimated from the experimental data to be 1.95 + 0.2, which is
within error from the theoretically expected ratio from the Clebsch-Gordan coefficients, 2.14.
The electric quadrupole to magnetic dipole ratio parameter, y, was calculated from our
measurements to be y = 0.084 + 0.01, which is consistent with preliminary theoretical
calculations by our collaborator V. A. Dzuba, y = 0.081.

6.2.3: Absorption Dependence on Temperature

In order to optimize absorption and maximize the optical depth, we decided to heat the cell in
order to increase the density of the molecular iodine. The dependence of the molecular iodine
vapor pressure on temperature is shown in the Figure 31 below. As we observe, by increasing
the cell temperature by a few degrees Celsius (up to about 60°C), we can increase the vapor
pressure of molecular iodine and, as a result its density, tenfold.

Heating the cell was achieved by maintaining the bulk of the cell above the desired target
temperature, by wrapping it with heat tapes and applying current, and controlling the pressure
by controlling the temperature of a designated cold spot on the cell, via a TEC element and a
PID temperature controlling circuit. This way we could control the vapor-pressure-defining
temperature of the cold-spot to within ~ 0.5 °C.
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b)

Figure 30: a) lodine cell wrapped with httasin order to increase the temperature. b) A TEC is placed on the iodine
reservoir of the cell and is kept at a specific temperature level below the bulk temperature of the cell. This cold spot then
defines the molecular iodine vapor pressure inside the cell.
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Figure 31: Molecular lodine vapor pressure as a function of temperature.[11]

The first measurements were of the two quadrupole transitions and their neighboring magnetic
dipole transitions at 50 degrees Celsius. The results are shown in Figure 32 and Figure 33
below. From our results we see that we have managed to quadruple absorption from the electric
quadrupole transitions relative to the room temperature measurements.
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Figure 32:a) The F = 3 to F' = 2 magnetic dipole transition’s absorbance in absorption

lengths) as a function of detuning and b) the F = 4to F' = 2 quadrupole transition at 50

degrees Celsius. With the red dashed line we represent the sum of the absorption with the

adjacent magnetic dipole transition F = 3 to F' = 2 which appears as an offset in our data.
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Figure 33:a) The F = 2to F' = 3 magnetic dipole transition’s absorbance (in absorption lengths) as a function of detuning
and b) the F = 1to F' = 3 quadrupole transition at 50 degrees Celsius. With the red dashed line, we represent the sum of
the absorption with the adjacent magnetic dipole transition F = 2 to F’ = 3 which appears as an offset in our data.

We then measured the transmission of the F = 4 to F’' = 2 quadrupole transition for several
temperatures (from lower to significantly higher than room temperature) in order to find the
optimum temperature, before pressure broadening becomes significant, which would result in
increased homogeneous broadening and reduction in absorption.
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Figure 34: The absorbance of the F = 4 to F' = 2 quadrupole transition (in absorption lengths) as a function of the
detuning from the J=3/2 to J'’=1/2 M1nominal transition frequency for various temperatures from 10 to 50 Celsius and b)
the integrated absorbance as a function of temperature.

In Figure 34 we see the expected results: the increase in temperature leads to higher densities
of atomic iodine and an increase in absorption. The integrated absorption for low temperatures
seems to have a linear dependence on temperature, while the width of our lines does not seem
to be significantly affected by pressure broadening. Achieving higher temperatures while
maintaining stable experimental conditions proved to be a challenge above ~ 55 — 60 °C at this
point and with our experimental setup as described, and work is underway to improve on our
apparatus, in order to investigate the practical limits of photodissociation for the production of
high atomic iodine densities (given also the fact that our current green laser has, so far, been
underutilized, as we have only been using up to about half of its maximum power of 50W).
However, the results so far clearly indicate that workable high densities of atomic iodine are
achievable, and that we have not yet reached the limits of our production technique.
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Conclusions

Conclusions

We have conceived and implemented an optical cavity experimental apparatus for the
production of atomic iodine via photodissociation at 532 nm, and the measurement of the IR
atomic iodine spectrum at 1315 nm. We combined the atomic theory of iodine absorption with
an optical cavity, which led to an increase of the effective interaction path length by a factor
equal to the number of passes through the cavity. We improved the conditions of our
experiment by constructing a well-performing vacuum-sealed cell and, by increasing the
effective cell temperature, we achieved very high atomic iodine densities, which led to a further
enhancement in our absorption signals. Still, our apparatus has potential for great improvement,
and a clear path to implement these improving steps.

With the above enhancements, we achieved optical depths greater than 10 absorption lengths,
which correspond to column densities of about pl ~ 1018 — 101° cm~2. This high column
density of atomic iodine enabled us to measure for the first time the electric quadrupole (E2)
component of the, otherwise magnetic-dipole transition 52P12 — 52P32 at 1315 nm, and
determine the electric quadrupole to the magnetic dipole ratio, which we found to be well
within agreement with theoretical predictions.

This thesis represents the first steps towards measuring parity non-conservation (PNC) effects
in atomic iodine, which manifest as optical activity in this very atomic transition. In theoretical
calculations performed for iodine, it has been shown that in order to have a measurable PNC
signal, a column density of pl = 102° — 102! cm™2 is required. We believe that achieving such
column densities is well within the capabilities of our apparatus, thus the following
evolutionary improvements are proposed:

e Improving the cavity finesse, which will increase the number of cavity roundtrips and,
therefore, the effective pathlength of the interaction.

e Use a longer cell, which will further increase the effective pathlength.

e Increase the power of the green laser to the currently available 50 W, so that more
molecular iodine is photodissociated and higher atomic iodine densities are achieved.

e Improve upon our design regarding heat application and temperature control, so as to
allow for stable experimental conditions at higher temperatures, which will, in turn,
lead to higher available molecular iodine densities for photodissociation.
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Al: Oscillator strength without hyperfine structure
Appendix A

A1l: Oscillator strength without hyperfine structure

In spectroscopy, oscillator strength is a dimensionless quantity that express the probability of
absorption or emission of the electromagnetic radiation in transitions between energy levels of
an atom. The oscillator strength can be through of as the ration between the quantum
mechanical transition rate and the classical absorption or emission rate of an single electron
oscillator with the same frequency as the transition. The oscillator strength f,; of a transition
from a lower state |/, ) to an upper state |/, is defined as:

2m,w
fabr = § hezo |(]a abl]b)l (Al)

Where H, is the interaction operator between the states |a) and |b). When the upper state
consists of several individuals states , the f-factor is given by a summation over all upper states
involved in the transition. If the lower level consists of several states, the f-factor is given by

an average over all lower states involved. Hence, for an lower state with degeneracy of g, , the
f-factor for a transition between degenerate levels can be written as

q=1 g1.92
2mywy 1

for =37 Z Z |(jama|M1, Imeb)I (A2)

q——1 mgmp=1

where g = 0,41 is the summation over all types of polarization[**]. By using the Wigner
Eckart theorem we can rewrite (A2) as:

q=1 91,92

w2 S o (2 )

q——1 mgmp=1

But the summations over all m,, m; and q calculated to be
9192 . . 2
z (]a 1 Jjp ) :1
mg q —My 3
mgmp
And
q=1 gi192 ] ] 2
IPHCIIEAR
mg q —My
q=—1mgmy

Hence, in the case of a magnetic dipole interaction of a laser beam with an atomic vapor and
assuming that the transition is an isolated j, — j, line without hyperfine structure, then

e ~ —~
2m,c UalL +251,) A9

—

Ml:Hab:

and
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AZ2: Oscillator strength with hyperfine structure

2mew,  |M1|? (A5)

fa =367 @+ 1)

A2: Oscillator strength with hyperfine structure
We must take into account the hyperfine structure. So,

q=1

2mywy 1 2
fav =357 Z Z g_(Fama|M1q|Fbmb) (A6)
q=—-1 Fa,Fp 1
Ma,Mp
2 o 1 2
m,w
_ 2 Me%o Z Z —(F,|M1 |Fb)2< By 1 Fa) N
3 he? g1 a —-mp q Mg
q=—1 Fa'Fb
Mma,Mp
zme(l)o 1 2
far =357 D, 5o FalML4|Fo)
1
FaFp
Now, if we use equation (3.16) we get
f — 2Tneo‘)o (ialMlljb>2 (ZFa + 1)(2Fb + 1) {ja k jb}z (A?)
ab he? 3 2F, +1 F, I F

Fq,Fp
And by substituting in the equation (3.14) we get the refractive index witch is given by
equations (3.19), (3.20).

A3: Oscillator strength with Quadrupole interaction
To include it in the refractive index, we make the substitution
®_qw L@

M1
<]a#q NERL ]>

3
Introducing the electric quadrupole to magnetic dipole ratio parameter

© {al0Q®1jn)

43 (o [ @)
Hence,
2 = 1 2
_ £MeWo n_ qw (2)
fab = 3 et Z Z Z(Fama g 4\/— Fymy, (A8)
q=—1 Fa:Fb
Ma,Mp
2 = 1 2
mew
=32 20 . 5 (el Fom)
q=—1 Faer 1
ma,mp
2
(€Y) @) )
—_ 2<Fama ,uq |Fbmb> <Fama 4\/— q Fbmb> + <Fama \/— q Fbmb> )
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AZ3: Oscillator strength with Quadrupole interaction

q=1

_Emewo l o 2( E, 1 Fb>2
"~ 3 he? Z Z gl(<Fa|'u [Fo) —mg q my

q=-1 FaFp
Mmagmp
2 2
W F, 2 F,
+He[ 50D (Cny g m)
2z 1)) \em, g m,

But for the summation over m,, m; and g we have,

q=1 9192 2

2 2 (o g —m)
mg q —my)

q=—1mgmy

q=1 9192 2

2 2 g m) =3
mg q —my) 5

q=—1mgmyp

Hence,

2m,w 1 2 3
fab = 5#20 Z a((Fa|ll(1)|Fb) +§<Fa

Fq,Fp

w

2
mQZ Fb> ) (A9)

3 he? 2F, + 1 a IR, I F

Fa,Fp
j>2{ja 2 jb}z
bl \F, I FE,

3.
+§<]a
. . \2
_ 2m,w, (/alﬂ(l)lfb> 2F, +1)(2F, + 1) <{ja 1 jb}z

ab = Tpo2 3 2F, +1 Fp I K
Fa Fp (A10)

3 (ja 2 j»)°
“.2))a b
Tgx {Fb I F}>

So, the refractive index can be rewritten as equation (3.24), (3.25).

Y
4\/§Q
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