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Abstract

Proteins are the cornerstones of cell function, being key players in all processes that

take place within cells. Knowing which proteins interact, is valuable not only for

achieving a deeper understanding of proteins themselves, but also for understanding

the inner workings of living organisms, such as, ourselves. Knowledge of Protein

Protein Interactions (PPIs), contributes to ’basic research’ development and applied

science as well, since PPIs can also be linked to therapeutic targets and drug design.

In this study, the aim was to create and evaluate a Machine Learning algorithm

for PPI prediction in Homo sapiens, solely based on the domains of protein pairs.

Our Machine Learning approach aims to classify query protein pairs as ’interacting’

or ’non-interacting’ according to their domain composition. For the training of our

ML model, a positive dataset was created by extracting PPI information from the

STRING database and domain information from Pfam. A negative dataset was

created through random sampling and combining of proteins of the positive set.

The final, complete dataset was used to train an SVM, as well as a Random Forest

classifier. Both models appeared to yield very good prediction accuracy, as well as

specificity and recall. The promising results of this method highlight the importance

of protein domains in PPI prediction, showcasing domains as key players in protein-

protein interactions.
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Introduction

2.1 Proteins and Protein domains

Proteins are complex macromolecules composed of simple building block compounds,

the amino acids. Through the various combinations that can occur between the

twenty different amino acids, a vast amount of various proteins can be produced.

Regarding their structure, according to Anfinsen’s thermodynamic hypothesis [1],

all proteins can fold independently with their fold being predetermined solely by

their amino acid sequence.

At their final folded state, proteins can have one or more functional regions,

known as domains. The term domain was first used back in the 1960s to describe

the spatially distinct structural units found in the structures of lysozyme [2] and

ribonuclease [3]. The distinctive characteristic of protein domains, is that they can

fold and function independently [4]. Due to that they are described as ‘distinct

functional and/or structural units’ in proteins. The majority of proteins (especially

in eukaryotes), are estimated to have multiple domains on their sequence [5].

Even though domain function is not directly linked to protein function (in cases

of multi-domain proteins interdomain interactions and cooperative effects must be

considered as well), a rough estimate of function can be deduced for a protein, simply

by the knowledge of its domains. The contribution of protein domains in protein
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function, is also interesting when studying disease states. Domain information can

also aid in the characterization of newly sequenced disease genes.

Figure 2.1: The NCF-4 protein and its domains. The amino acid sequence, structure,

as well as the structure of the individual domains of the NCF-4 protein, is depicted.

The sequence is highlighted with the corresponding color of the protein domains it

codes. NCF-4 is a component of the NADPH oxidase. Its three domains depicted

are a PX domain, in blue, which is responsible for the protein’s association with the

membrane, and an SH3 domain, in pink, and PB1 domain, in turquoise, which are

likely to mediate the proteins PPIs.

Domains can occur in different combinations and as mentioned above, play a

role in protein function. Certain domains can exist in multiple copies in the same

polypeptide chain. Another aspect, where protein domains contribute greatly, is

protein-protein interactions (PPIs) [6]. Their intrinsic role in protein-protein inter-

actions makes domains important features for predicting PPIs.
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2.2 Protein-Protein Interactions (PPIs)

The biological roles of proteins are also defined by the interactions they participate

in [7]. Inside the cell various processes take place which are essential for its proper

function. These processes are coordinated through a variety of proteins. To carry out

these processes, the proteins interact. Protein interactions are not only responsible

for processes in the cell level, but all the way up to the organism level. From cell

signaling to metabolism and immune response, PPIs play a key role [8]. Due to that,

the study of PPIs is very important in the field of systems biology [9]. In the field of

medicine, PPIs are also important since they can be correlated with disease states.

Disease states can occur through disruptions in PPI patterns. The comparison

of protein interaction patterns between healthy states and disease states can help

indicate drug targets (e.g. targeting an inappropriate interaction) and subsequently

promote the discovery of new drugs.

Protein interactions can be divided into two separate categories, direct PPIs

(physical interactions) and indirect PPIs (non-physical), also termed as protein-

protein associations [10]. Indirect protein interactions describe the functional asso-

ciations between proteins. In this case, the proteins do not physically interact, but

they are functionally associated and can thus be found in the same PPI network.

2.3 Identifying PPIs

For the identification of protein-protein interactions a variety of methods exist, both

experimental and computational. However, many difficulties exist as well, partic-

ularly due to the temporal and spatial heterogeneity of PPIs. Certain PPIs are
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transient. Others, require chemical modifications (such as phosphorylation) to one

or both interacting partners, in order to occur. Additionally, even if two proteins

are able to interact physicochemically, they may need to surpass certain spatial

restrictions for the interaction to actually take place. For example, two proteins

that have the ability to interact must either be in the same location or have the

ability to be transported to the location of their interacting partner. Due to all

of these requirements and unique characteristics of protein-protein interactions, all

PPI identification methods have a certain degree of uncertainty [10].

2.3.1 Experimental methods for identifying PPIs

When it comes to experimental methods for PPI discovery, two main categories exist:

1) Methods resulting in small scale data and 2) High throughput technologies.

The methods resulting in small scale data are mainly biophysical and/or bio-

chemical. These methods were the only means available for PPI identification be-

fore the discovery of high-throughput technologies. Co-Immunoprecipitation is the

prime example of these methodologies, as it is still considered the ’golden standard’

biochemical technique for identifying small scale protein-protein interaction data,

due to its high specificity and ease of use. Small scale methods, in general, target

the discovery of the interacting partners of a certain protein of interest and, as their

name suggests, are not scalable. Other examples include Affinity Chromatography,

Affinity Blotting and Cross-linking [11].

Large scale identification of PPIs through high-throughput technologies started

in the 1990s. To this day, the most popular method for the discovery of large-scale
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PPI data is the Yeast two-hybrid method (Y2H), first described in 1989 [12]. Y2H

is an in vivo method [13] which detects binary (direct) interactions through the

activation of reporter gene expression (the interaction occurring between a ‘bait’ fu-

sion and a ‘prey’ fusion re-constitutes a functional transcription factor). The Yeast

two-hybrid system, like other high throughput technologies, has the advantage of

simultaneously screening many proteins against thousands of potential interacting

partners. However, due to the nature of the method, cooperative interactions be-

tween more than two proteins are not detectable [14]. A disadvantage of Y2H is its

high false positive rate, which can sometimes lead to the need of further verification

of identified interactions by other methods [15].

Other high-throughput screening methods include Mass Spectrometry (MS)[16].

In MS, data are obtained from proteins with high sensitivity and then screened

against sequence databases for identification. MS can identify individual proteins,

as well as characterize complete biological assemblies [17].

Mass Spectrometry is usually coupled to Tandem Affinity Purification (TAP)

[18]-[19] a method which allows the co-purification of proteins binding a certain

tagged protein, expressed at their natural level and under native conditions. The

coupled method is called TAP/MS [20]. Both TAP and MS are used in vitro. The

TAP/MS method was used in a high-throughput manner for the first time in 2002

by Gavin et.al, for the identification of PPIs in yeast[21]. The ability to identify

interacting proteins at their native state is one of the advantages of the method over

Y2H. The TAP/MS method is the most widely used variation of Affinity Purification

(AP) followed by Mass Spectrometry. Essentially, in all AP/MS methods, proteins

binding a certain tagged protein are co-purified and subsequently identified by MS.
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In TAP, compared to other AP methods, there are two consecutive purification steps,

reducing non-specific binding. Unlike the Y2H method, an AP-MS experiment, such

as TAP/MS, identifies whole protein complexes rather than pairwise interactions.

Due to the nature of the approach, transient interactions are represented less in

TAP/MS compared to Y2H. The TAP/MS method can also lead to the identification

of non-physical interactions. This can happen because it is not always necessary for

two proteins to have a physical relationship between them, in order to be co-purified

[22].

2.3.2 Computational methods for identifying PPIs

Even though high-throughput methods revolutionized PPI discovery, the identifi-

cation of an entire protein interactome cannot be achieved through experimental

methods only [10]. Computational methods play an important complementary role

and hold some advantages over experimental methods as well. Experimental meth-

ods can become labor intensive, expensive and time consuming, whereas computa-

tional methods provide a quick, simple, cost-effective and at the same time reliable

resource for PPI identification.

To date, a variety of computational methods have been developed for the identi-

fication of PPIs, achieving quite high accuracy. The classification of these methods

in different categories is not very straightforward. However, three main categories

often described in literature are: 1) Sequence & Genome based methods, 2) Struc-

ture based methods and 3) Co-expression based methods. Other existing approaches

include function based methods and methods based on network topology, as well as

6



methods based on the Integration of multiple features.

Function based methods rely on the assumption that proteins which interact will

also share similar function. One approach to quantify the functional similarity of

proteins is through their annotation of Gene Ontology (GO) [23] terms. An example

of such a method is one proposed in 2016 by Zhang et al. [24].

Network topology based methods rely on existing PPI networks to predict new

potential interactions. In these methods, the network topology features of the pro-

teins in the network, are used for prediction. For example, in 2001 Wojcik et al.

[25] developed a technique which uses existing PPI interaction maps of reference

organisms, combined with domain information, to predict PPI maps in other or-

ganisms (this approach isn’t solely based on network topology). On another note,

in general, most of network based approaches rely on the hypothesis that the more

common interacting partners two proteins share in a network, the more likely they

are to interact. However, a recent paper [26], supports that this hypothesis, as well

as it works in social networks, in PPI networks fails fundamentally, as it does not

support the basic principles governing PPIs. It proposes instead, a network-based

prediction method where proteins are predicted to interact if they are similar to the

other’s interacting partners. Network based prediction methods, as effective as they

may be, have one major disadvantage. They cannot be used for proteins without

known interaction links.

Finally, in the Integration of multiple features approach, different kinds of fea-

tures (features of sequence, genome, structure, expression etc.) can be combined

and used to ’feed’ a machine learning algorithm. Approaches developed by Ben-Hur

et al. [27] (combination of sequence, GO annotation, network properties, homology)
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and Espadaler et al. [28] (combination of sequence and structure) integrate a variety

of features to achieve prediction. The advantage of this method is that it has the

ability to combine the strengths of the different features used, and achieve better

accuracy, better coverage, and ultimately better prediction scores. The integration

of multiple features is a very popular approach in PPI prediction databases (such as

STRING, for example, [29]), as well as PPI prediction algorithms (such as PrePPI

[30]).

Sequence and Genome based approaches

Sequence & Genome based methods exploit different kinds of sequence information

in order to predict PPIs. The main benefit of these approaches, is that the only

thing required for their application, is the genome sequence of the query proteins,

and genome sequences are widely available. Some of the most prevalent of these

approaches are described in the corresponding following sections.

Sequence features

The ’lowest-level’ approach for PPI prediction based on sequence, is through the

use of simple sequence features. Sequence features can either be short subsequences

(e.g. k-mers of varying length) or sequence features of greater length and complexity,

such as motifs and domains. Specifically, k-mers, are subsequences of neighboring

residues of the protein sequence, of a fixed length k. In their 2005 paper, Ben-Hur

et al. [27] studied a variety of kernels to see if their application would be effective

in the scope of PPI prediction. One such kernel, was the spectrum kernel originally

applied by Leslie et al. [31] for protein classification. This method used k-mers of

length 3, in a discriminative approach (using both positive and negative examples

8



when training the classifier) and its capabilities also appeared to be promising in

PPI prediction. Another approach using k-mers of length 3 (3-grams) was also de-

veloped by Martin et al. [32]. A method combining information from 3-grams, as

well as 2-grams was also developed by Ding et al. [33]. In 2001, Bock and Gough

[34] used an approach to predict PPIs, solely based on the primary structure and

physicochemical properties of proteins (charge, hydrophobicity, surface tension etc).

They trained an SVM algorithm using these features, based on a positive dataset,

and their approach yielded promising results. Another approach, applied by Shen

et al., explored the electrostatic and hydrophobic nature of PPIs and used features

of the amino acids in the sequence of the query proteins, relying on the assumption

that PPIs may be reflected by the dipoles and side chain volumes of the constituent

amino acids. Neighboring amino acids where grouped in triads, similarly to k-mers,

but including the amino acid feature information as well, and used for prediction

[35]. Guo et al. followed a more global approach, utilizing the periodicity of the

physicochemical properties of the amino acids along the sequence, to achieve predic-

tion (Auto Covariance) [36]. Inspired by these approaches, more recently You et al.

[37] also developed a PPI prediction method using SVM, where protein sequences

are represented as feature vectors, allowing for the inclusion of residue interaction

data, between both continuous and discontinuous regions along the sequence. An-

other recent paper utilizing physicochemical data for PPI prediction is the work of

Li et al. where the physicochemical proteins of domains are used, to train an SVM

model [38]. On another instance, a method developed by Pitre et al. called PIPE

(Protein Interaction Prediction Engine) [39], was based on fragments of short sub-

sequences of 20 amino acids. In this method, if the query proteins match existing
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fragment pairs from known PPIs with a frequency above a certain threshold, then

they are predicted to be interacting. Plenty of other similar approaches capturing

sequence features exist as well [40].

Sequence feature approaches based on motifs and domains also achieve very high

prediction scores. In an approach back in 2001, Sprinzak and Margalit [41], used

sequence signatures to predict PPIs. Protein signatures were assigned by InterPro

[42], InterPro assigns signatures based on regular expressions, profiles, fingerprints

and Hidden Markov Models. What they observed, was that indeed pairs of signa-

tures derived from interacting protein pairs could be ’learned’ and then used in PPI

prediction. This approach, unlike discriminative approaches, was based on learning

only from a positive dataset. The following year, Deng et al. [43] used an approach

based on protein domains. In their approach, they inferred domain-domain interac-

tions (DDIs) from known PPI pairs using a Maximum Likelihood Estimation (MLE)

method in combination with the ’Association Method’, and then used the DDI in-

formation to predict PPIs in a retrospective manner. The Association Method,

relies on the assumption that two proteins interact when blocks of sequence such as

motifs, or domains, exist, one in each protein of the pair, and have an association

value greater than a certain threshold. According to this method, these ’blocks of

sequence’ can lead to the distinction between interacting and non-interacting protein

pairs. An issue with this method is that it assumes independence, in this instance,

between the DDIs. In 2003, Gomez et al. [44] developed an attraction–repulsion

model for PPI prediction, based on the attractive and repulsive forces developed

between motif-sized or domain features of interacting protein pairs, using a discrim-

inative approach. The results of their study showed that protein domains provide
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more information for prediction than the 4-tuples they also used, highlighting the

importance of domains in PPI prediction. That same year, Ng et al. [45] used an

integrative approach to detect DDIs and see if that DDI information is useful and

effective in PPI prediction. The results of his study, also highlighted the important

role domains play in PPIs, and thus, PPI prediction. Such results sparked interest

in the study of domains in PPI prediction. For instance, in 2006 Jothi et al. studied

the co-evolution of interacting domains [46], and concluding that interacting do-

mains co-evolve, developed a method to predict DDIs based on this result, which

could also be used to predict the key domain pairs mediating a protein interaction.

Also, Han et al. [47] developed a probabilistic prediction framework which achieves

PPI prediction based on domain combination information. They also implemented

their methodology creating a prediction service system called PreSPI [48]. Another

method developed, based on the use of domain-domain interactions for PPI pre-

diction, is DomainGA [6]. What makes this method stand out is that unlike most

similar methods, this method uses a probabilistic approach (Genetic Algorithms)

instead of a deterministic one (like SVM, ANN etc.). In more recent years, DDIs

are still a subject of scientific interest. For example, in 2010 González et al. [49]

developed a method using interaction domain profiles of interacting protein domains

with known structures with an aim to predict DDIs. Also, a method by Memǐsević

et al. in 2013 [5], argued that DDIs are more consistent than PPIs and proposed

a method to merge domain data from multiple databases, as well as extract DDIs

from PPIs, all in aiding DDI discovery. Concerning PPI prediction methods in more

recent years, the ever increasing amount of experimentally determined PPI infor-

mation, as well as advances in technology and mathematics are exploited to achieve
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better prediction accuracy and scores. In 2011, Chaterjee et al. [50] used an SVM

based prediction approach exploiting domain information, which unlike most past

methods, considers all possible domain combinations and deals with both single and

multi-domain proteins. Recently, focus has also shifted towards the study of in-

terspecies (instead of intraspecies) PPIs [51] and their prediction through sequence

based computational approaches, combined with Machine Learning.

Interlogs

Another sequence based approach relies on the conservation of PPIs among species

and targets PPI prediction through interlogs (or interologs). A study by Haiyuan

Yu and his team in 2004 [52] showed the validity of PPI conservation across species,

which as a result, supports the effectiveness of interlog based prediction. Interlogs,

were first described in 2000 as orthologous pairs of interacting proteins [53]. Inter-

log based prediction identifies interacting protein pairs based on homology. If a pair

of proteins are found to interact in an organism, the homologs of the interacting

proteins in another organism are predicted to be interacting as well. Geisler-Lee

[54] used interlogs to find PPIs in A. thaliana back in 2007. More recently, Sahu

et al. used interlogs to predict interactions between A.thaliana and a pathogen.

Since interlog based prediction uses conserved PPIs and transient PPIs tend to be

less conserved across species, this method might not be very effective for the iden-

tification of transient interactions. Web services and databases based on interlogs

exist as well. Examples include Interactome 3D, a web service which builds tertiary

structure models of protein complexes using interlog information as well [55]. Other

examples are The BIPS-BIANA Interolog Prediction Server [56], as well as the 3D

interlogs database [57], both providing interlog based PPI prediction.
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Sequence co-evolution

A method based on genome sequence information, is the sequence co-evolution

method. Sequence co-evolution in the case of interacting proteins can be explained

due to the similar evolutionary pressure that these proteins undergo. At the same

time, the orthologs of proteins which co-evolve, tend to interact as well [53]. All

this, can be reflected through similarity in phylogenetic trees and on the basis of

the co-evolution of interacting proteins and orthologs, a method has been developed

called the ’mirror tree’ method [58]. These mirror trees allow for the computation

of distance matrices for proteins presumed to be interacting, and through these dis-

tance matrices a correlation coefficient is calculated. If the correlation coefficient is

above a certain threshold, these proteins are believed to be interacting, otherwise

they are termed as non-interacting. The mirror tree method has undergone various

improvements. One such improvement proposed by Sato et al. [59] targeted the

high number of false positives which are in part due to a certain ’background simi-

larity’ between the trees. According to their study, the creation and subtraction of

a ”background tree” and then the re-computation of distances can lower the false

positive rate significantly.

Phylogenetic profiles

Another method which identifies phylogenetically related proteins as potentially in-

teracting, is the phylogenetic profile method [60]. This method bloomed as more and

more genomes were completely sequenced. It is based on the hypothesis that non-

homologous proteins which are functionally linked (and thus potentially interacting)

co-evolve. Based on this hypothesis, the co-presence and co-absence of orthologous
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proteins in different genomes can be used for the creation of the phylogenetic profiles

of these proteins [61]. The profiles are essentially binary vectors where the presence

of a gene in a genome is marked with 1 and its absence with 0. Proteins with similar

profiles are predicted to be potentially interacting. The prediction performance of

the phylogenetic profile method relies heavily on the reference genomes used [62],

as well as the E-value similarity cutoff used for the detection of the orthologous

proteins [63]. It will be interesting to see the impact of the new complete sequence

of the human genome [64] on results yielded through this method. The phylogenetic

profile method is conceptually similar to the phylogenetic tree method, albeit some-

what simpler in its application. A combination of the two has also been explored

where both trees and profiles are used as features for machine learning [65]. An im-

provement of the prediction efficacy of this method has been achieved through the

SVD-Phy algorithm [66] also used by the STRING database [29] in one of its pre-

diction channels. Due to the nature of the method, it is better suited for identifying

functionally related proteins, rather than proteins which interact physically.

Gene fusion

Another method relying on genomic inference of PPIs is the Gene fusion or Rosetta

stone method [67]. A gene fusion event occurs when two functionally related genes

in one organism, fuse into a single gene in another organism. This event is hy-

pothesized to occur due to evolutionary pressure applied to genes coding interacting

proteins, so that they be transcribed as one. The resulting transcript is called the

Rosetta stone protein. Pairs of proteins which have Rosetta stone homologs in other

organisms are predicted to interact. The Rosetta stone method is believed to be

mainly associated with the identification of physically interacting proteins, instead
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of functionally related ones [68]. The fusion into a single transcript seems to lead to

the optimization of the assembly of protein complexes [69]. A disadvantage of this

method is its somewhat limited application, since gene fusion events do not occur

that often. Gene fusion events, like phylogenetic profiles, are also used in one of

STRING’s prediction channels.

Gene neighborhood

Finally, another example of a sequence/genome PPI prediction method is the Gene

Neighborhood (or Gene Cluster, or Gene order) method [70], [71], [72]. This method

relies on the assumption that since genes tend to rearrange, transfer and shuffle

throughout evolution, the conserved arrangement of genes in close proximity to one

another in a genome must be a result of a certain type of evolutionary pressure

[73]. More specifically, it is assumed that genes which stay in close proximity to one

another throughout evolution code proteins which may physically, or functionally,

interact [74]. This ”neighborhood” arrangement supports the claim more strongly

when it is observed across a variety of genomes [61]. Essentially, this method iden-

tifies genes which keep an intergenic distance of a certain (Threshold) number of

nucleotides and form a cluster. When there is a co-occurence of homologous gene

clusters in other genomes as well, it is predicted that the reference proteins interact.

This comparative genomics approach is what differentiates this method from the

operon method, [75] which explores the intergenic distances of genes within a single

genome [76].
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Structure based PPI prediction

Structure based methodologies are also available for PPI prediction, however these

methods are mainly targeted towards the identification of how proteins interact,

instead of which proteins interact. A study by Zhang et al. [77] has shown that PPI

prediction methods which use 3D structural data for the prediction inference can

achieve better results (accuracy and coverage) than methods which aren’t based on

structural data. However, an obvious drawback is that not all proteins have known

structures. The main idea behind structure based methods, involves structural sim-

ilarity. Essentially, it is hypothesized that if two proteins are found to interact, then

two other proteins with structures similar to the interacting pair may interact as

well. The majority of structure based methods rely on docking to gain information

about the possible interaction between query proteins. Docking is a method where

two protein structures are ’docked’ [78] and their binding orientation for the forma-

tion of a complex is predicted [79]. A very popular docking algorithm is ZDock [80].

Docking techniques have their limitations as well, and to combat those, refinement

algorithms have been developed. These algorithms can refine the resulting dock-

ing structures based on flexibility, scoring and even biological information. One of

the most commonly used refinement algorithms is FireDock [81]. Blind docking is

a computationally expensive method, so for its application in proteomics, template

based docking is preferable. Template-based docking relies on experimentally solved

protein complex structures to predict the structural assemblies of query proteins [82].

Docking methods in general, provide structural insights of the interaction, such as

which residues, even which atoms, of the protein surfaces interact. Certain residues

in particular, can also be identified as ’hot spots’ due to their key contribution in
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the interaction [83]. These residues are of great interest for drug design [84],[85].

For the prediction of PPIs docking methods are taken one step further. One

approach targeting PPI prediction is based on the interpretation of the resulting

docking scores. The idea is, that resulting docking scores of interacting proteins will

generally be more favorable compared to non-interacting ones [86]. The distribu-

tion of docking scores can thus be used to distinguish PPIs from non-interactions.

MEGADOCK’s [87] prediction capabilities are based on this approach. Another

approach is based on the identification of structural similarity between the query

proteins and known interacting complexes [88]. The similarity can be identified in

a variety of ways (threading, sequence alignment, structural alignment). PRISM is

an algorithm which [89] follows this approach, and the first method using protein-

protein interface templates [90] for its similarity search. PRISM uses a database

with the interface regions of known interacting protein complexes derived from the

PDB [91]. It scans the query proteins against this database and checks for similarity

of the surface shapes of the proteins with the known docking interfaces of its library.

Afterwards, it also refines the resulting putative complex for a more accurate pre-

diction. Another more recent and very well known algorithm utilizing this approach

is PrePPI [30], however PrePPI uses homology modelling to model the structures

of the known proteins. It must also be noted that PrePPI combines other sources

of information to achieve its prediction as well (functional, evolutionary, expression

information), with structural information being the prominent source. A method

using a threading approach (modelling protein structures based on fold similarity

with known complexes) for the similarity search between query sequences and known

protein structures is Coev2Net [92] and another similar but more recent method is
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InterPred [93]. Finally, the revolutionary AlphaFold2 (AF2) method [94] has also

been used in a Fold and Dock approach (where the proteins are folded and docked

simultaneously) yielding improved prediction results in prediction of protein-protein

interactions [95], mainly due to the unprecedented capabilities of AF2 in structure

prediction.

Co-expression based methods

Co-expression based methods use expression data from high-throughput microarray

and RNA-seq assays, to identify proteins likely to interact. Expression data can be

filtered with clustering algorithms where genes with similar expression profiles are

grouped together, or fed to Machine Learning algorithms as features for training.

The idea behind this approach is that proteins coded by genes with similar expression

profiles are likely to interact. Expression data is available in the GEO Database of

NCBI [96], among other sources. In 2001, a study on bacteriophage T7 by Grigoriev

et al. [97] concluded that proteins coded by co-expressed genes tend to interact

with each other more frequently than with other random proteins. A similar study

of the same year, this time in yeast, showed similar results with proteins belonging

to the same complex tending to be co-expressed [98]. These studies suggested that

co-expression data could prove to be a useful source for the prediction of PPIs. The

following year, another study in yeast by Jansen et al. [99] also cocluded that similar

profiles of expression across different conditions and time points indicated possible

functional association between proteins, or their physical interaction. Similar results

were also shown in a study on four different species (human, mouse, yeast and

E.coli) carried out in 2005 by Bhardwaj et al. [100]. Other related studies looked

for conserved co-expression across different genomes [101] or for gene expression in
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similar subcellular locations [102]. Due to the nature of the approach, one should

keep in mind that high-throughput data are known to be quite noisy. A study by

Soong et al. took this under consideration and used [103] Principal Component

Analysis (PCA), as well as Independent Component Analysis (ICA), to filter the

data before using it for prediction. A general consensus is that the gene co-expression

method works best as a supplementary method for PPI prediction. STRING, uses

gene co-expression data in one of its prediction channels as well.

2.4 Machine Learning

The majority of computational approaches described above, use Machine Learning

methods to exploit the data drawn from their varying sources and use it to achieve

prediction. Machine Learning is a form of Artificial Intelligence (AI) where instead

of being explicitly programmed, a system can learn from the data that the user

provides.

There are 3 main types of Machine Learning, depending on how the system learns

from the provided data, and achieves prediction.

• Supervised learning: The data is labeled, meaning that there is a predeter-

mined understanding of how it should be classified.

• Unsupervised learning: The data are not labeled, so the system tries to

find patterns in the data based on which it will add labels.

• Reinforcement learning: Instead of being trained, the system learns pro-

gressively through trial and error.

Besides the three main categories of Machine Learning, a complex subset of it is
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Deep Learning. Deep Learning, relies on a multitude of layers of Artificial Neural

Networks, structured algorithms mimicking the actual neural networks of the human

brain. This powerful approach learns in an iterative manner, until a certain stopping

point is reached, and is best suited for unstructured data.

Supervised learning can be further divided into two other categories.

• Regression: The algorithm aims to predict a continuous-valued output.

• Classification: The algorithm aims to map the data into classes. Classifica-

tion can be either binary (e.g. 0 or 1) or multi-class.

Another thing to note, is that Machine Learning algorithms can be used alone, or

in an ensemble. Ensemble Learning is a Machine Learning technique where multiple

models are combined to achieve better predictive performance. Examples of the

most popular Ensemble Learning approaches include Bagging (e.g. Random Forest

is based on this approach), Boosting and Stacking.

For PPI prediction, the most commonly used Machine Learning algorithms are

the supervised learning methods of Support Vector Machines (SVM) [104] and Ran-

dom forest (RF)[105]. Besides these popular choices, other Machine Learning meth-

ods have also been explored for PPI prediction. Deep Learning has been applied

recently for sequence based PPI prediction [106], as well as Deep Neural Networks

(DNNs) [107], and Gradient Boosting [108], [109].
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Outline of the thesis

The aim of this thesis is to create and evaluate a Machine Learning algorithm for

PPI prediction in Homo sapiens, solely based on the domains of protein pairs.

The first step of this study involves the collection of all high confidence interac-

tions between human proteins from the STRING database. This set of interacting

proteins will then be used as a positive dataset.

The second step involves identifying the pHMM domain motifs in this dataset of

proteins, through the Pfam database. As a result, domains will be mapped to each

interacting protein pair of the set. These domains will represent the features of the

data, the variables used for prediction.

With the positive dataset complete and its features mapped, the third step in-

volves the creation of the negative dataset. The Negative dataset will be created

through random sampling combinations from the positive set. Combining the posi-

tive and negative datasets, will lead to the Complete dataset. This dataset will then

be used as input for Machine Learning.

The final step, involves evaluating two different Machine Learning models, widely

used in PPI prediction, SVM and Random Forest. The end goal is to see whether

domains will prove to be sufficient features to predict PPIs in a Machine Learning

framework and also identify the best performing model for PPI prediction.
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Figure 3.1: The prediction problem. The aim of this thesis is to see whether domains

mapped on the sequences of query proteins are sufficient, as features, to successfully

predict interaction, after training an ML model on Positive and Negative examples.
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Materials and Methods

4.1 The STRING database

STRING is a database which contains both known and predicted Protein - Protein

Interactions. The interactions included in STRING can be both physical interac-

tions or functional associations. These interactions either derive from computational

interaction prediction methods, knowledge transfer between organisms, text-mining,

or other databases of interaction experiments and annotated complexes/pathways.

All PPI data included in STRING, are also supported by 7 different prediction chan-

nels. The first three (neighborhood, fusion, co-occurrence) rely on genomic context,

the next two (co-expression, experiments) rely on experimental results and the final

two (knowledge, text-mining) rely on prior knowledge regarding PPIs. STRING also

scores all of its interactions, and the scoring is based on the evidence from its differ-

ent channels. STRING scores each evidence channel separately, and also calculates

a total score from all evidence channels combined, corrected for the probability of

randomly observing an interaction. This score varies from 0 to 1 (even though all

scores are multiplied by 100 to become integers) and corresponds to the confidence

and ”meaningfulness” of the interaction [29].
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4.2 The Pfam database

Pfam is a database which classifies proteins into families [110]. The Pfam database

mainly consists of Pfam-A, and each Pfam family is often referred to as a Pfam-A

entry. Pfam-B also exists as a part of Pfam, but unlike Pfam-A which is manually

curated, Pfam-B is an automatically generated supplement to Pfam.

Each Pfam family consists of a curated seed alignment containing a small set of rep-

resentative sequences of the family, and an automatically generated full alignment,

which contains all detectable protein sequences belonging to the family.

Figure 4.1: The Pfam Workflow

Profile Hidden Markov Models (or pHMMs) are built from the seed alignment.

HMMs are probabilistic models introduced in computational biology back in the

’80s [111],[112] and used as profile models (pHMMs) in the ’90s [113]. In Pfam,

the pHMMs turn the multiple sequence alignments into position specific scoring
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systems. They are also visualized through HMM logos [114]. Pfam can be used to

search for pHMMs in query sequences.

Figure 4.2: Example of an HMM logo. The sequence of NCF-4, schematic represen-

tation of its domain composition and HMM logo of its SH3 domain are depicted.

All Pfam entries (generally) have no overlaps, which means that a sequence

should not correspond to more than one family. However, families which are evolu-

tionarily related can be grouped further into clans. Clans are collections of Pfam en-

tries which are related either by similarity in sequence, structure or pHMMs. Pfams

classification can be extended to a total of six categories: (i) Family (ii) Domain

(iii) Repeat (iv) Motif (v) Coiled-coil (vi) Disordered

Thus, through Pfam, one can determine which domains are present in a protein

sequence.

4.2.1 PfamScan

PfamScan [115] is a Pfam software, which scans FASTA sequences against a library

of pHMMs with an end goal of identifying motifs which exist in the sequence. It is

available through a web interface, but can also be downloaded locally.
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By default, the current version of PfamScan searches against the Pfam-A library

through HMMER3, however there is an option to also search against Pfam-B, or

to search against Pfam-B only. Another thing to note, is that due to Pfam’s no

overlap rule, if there are overlapping hits within clan member families, PfamScan

will only show the most significant (with lowest E-value) match when identifying

a motif. There is an option however, to see all overlapping hits. Regarding the

search, options for a sequence and domain threshold are available, however Pfam’s

family-specific curated threshold, known as the Gathering Threshold is suggested as

the best option, instead of a single E-value threshold for all pHMMs which can lead

to lower sensitivity and false positive matches [110].

4.3 Machine Learning Methodologies

As previously described, Machine Learning is a form of AI where a system can learn

through user provided data, instead of being explicitly programmed. The Machine

Learning approach can be summarized into the following steps:

1. Preparation of the data

2. Selection of a fitting ML algorithm

3. Training & Testing

4. Evaluating the model

5. Tuning & Re-evaluating

Regarding Machine Learning caveats, a common issue is overfitting. Overfitting

occurs when a model fits perfectly to its training data, and due to that can’t give

accurate results when used against unseen data. Factors which give away overfitting

in models are high variance against low error rates. To properly assess the accuracy

of the trained model, unseen data must be used.
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Preparation of the data

Regarding the first step, the preparation of the data, while creating the dataset a

very important thing to acknowledge is the features of the data. Features in Machine

Learning are the variables on which the algorithm will base its prediction. Besides

the features, there is also the target, which is the variable one is trying to predict.

A machine learning model learns how certain features of the data correspond to

certain targets (also known as labels). This way, when a target is unknown, the

trained algorithm can use the features of the data to predict the unknown target.

Figure 4.3: Features & Target - The ML scheme

Selection of a fitting ML algorithm

In this thesis, two Machine Learning algorithms were chosen and evaluated re-

garding how well they could achieve prediction of PPIs, Support Vector Machines

(SVM) and Random Forest (RF).

Training & Testing

After preparing the data and selecting a fitting algorithm, the data must be di-

vided into a Training set and a Test set. The Training set will be used to train the

algorithm and the Test set to evaluate the performance of the algorithm. Perfor-
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mance evaluation will be performed on the Test set by predicting a target based on

the features of the data, and checking if the predicted target is the correct one.

By rule of thumb, the most common split of data is 80% Training set and 20% Test

set. This kind of split is necessary to evaluate the performance of the model on

unseen data.

Figure 4.4: Splitting the data: Training & Test sets

For splitting data into a Training set and a Test set, one of the most popular

choices is ”train test split” by Scikit-learn [116]. By default, ”train test split” , from

the ’.model selection’ library will split arrays or matrices into train and test sub-

sets, shuffling the data before the split (parameter ”shuffle” is applied by default).

Another parameter of ”train test split” is the ”stratify” parameter, which if toggled

to ”y” (True) makes a split so that the proportion of values in the Train and Test

sets, are the same to the proportion of values in the provided array/matrix. En-

abling the ”stratify” parameter guarantees that the produced Train and Test sets

are representative.

Evaluating the model

A metric which can initially assess the efficiency of the model is Scikit-learn’s
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”.score” function, which calculates the accuracy of the model based on the Train &

Test sets. This metric alone however, isn’t sufficient for the complete evaluation of

the model. The model may perform well on this Train & Test scenario, but still be

overfitting. The best method to test this, is through K-Fold Cross Validation (K-

Fold CV). K-Fold CV is a resampling method which splits input data in a K number

of non-overlapping subsets (also known as folds) where K-1 sets will be used for

training and the remaining (1) set will be used for testing [117]. This action will

repeat in an iterative manner until all of the folds have been tested on. Finally, a

mean Score (S) and a mean Error (E) will be calculated. This method gives

a more robust evaluation of the performance of the algorithm since it is evaluated

against many different subset datasets.

Figure 4.5: K-Fold Cross Validation

One of the simplest ways to perform K-fold CV is through Scikit-learn’s ”cross val score”

function of the ’.model selection’ library. This function will split the data into a cer-

tain number of folds (as defined by its ”cv” parameter) and then calculate a mean

Accuracy and mean Standard Deviation output for the model.
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Tuning & Re-evaluating

After evaluating the model, the final step is tuning it, so it can achieve its best

performance. Hyper-parameter tuning, is the process of tuning various hyperparam-

eters of the model to their optimal values. Hyperparameters are parameters which

arent directly ’learnt’ but are manually set for the learning process. These hyper-

parameters are directly linked to the type of algorithm used, for example when it

comes to SVM, the most frequently tuned hyperparameters are kernel gamma and

C and when using Random Forest the most frequently tuned hyperparameter is

the number of estimators.

Figure 4.6: Nested CV

The most convenient way to tune the hyperparameters of a model and at the

same time evaluate its performance, is through Nested Cross Validation (Nested

CV). Nested CV ”nests” hyperparameter tuning into Cross Validation. To do that,

it uses an inner and an outer loop. The inner loop tunes the hyperparameters of the
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model and then the outer loop evaluates it, based on its optimal hyperparameters.

For example, in Figure 4.6 we have a Nested CV scheme where we want to tune

hyperparameter C of an SVM model to either value 1 or 2. The way Nested CV

works, the K-1 number of training subsets of one ’layer’ of the outer loop, will go

into the inner loop and be split into K’-1 training sets (K’ is the fold of the inner loop

CV, it can be more, or less or the same as the outer loop, in this example K’=4) and

1 evaluation set, for C=1 and then again, for C=2. Afterwards, K-fold evaluation

will take place (for K=4 folds in this instance) and the optimal value of C will be

chosen. Back to the outer loop, this value will be used for the training and testing of

this fold (in this example, in 5-fold CV). That way, the Test data used for evaluating

the model on the outer loop, remain completely unseen as they are not used at all

for the tuning of the models hyperparameters. As previously mentioned, it is very

important for the test data to be unbiased and unaffected from the hyperparameter

tuning. More specifically, it has been shown that the performance of the model can

be overestimated due to overfitting if ’plain’ cross validation is used for estimating

the performance of the model and tuning its hyperparameters at the same time

[118].

Scikit-learn offers two different functions for Hyperparameter tuning, ’.Grid-

SearchCV’ and ’.RandomizedSearchCV’, both included in its ’.model selection’ li-

brary. Their difference is that ’.GridSearchCV’ performs an exhaustive search of the

optimal hyperparameters, whereas ’.RandomizedSearchCV’ performs a randomized

search, trying out a fixed number of combinations selected through ’n iter’. As is

logical, the run-time of ’.RandomizedSearchCV’ is drastically lower. These functions

can be incorporated in a CV outer loop for Nested Cross Validation.
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4.3.1 Methods for a Negative dataset

As previously described a positive and a negative dataset are needed for training

and assessing the performance of the classifier. These datasets must also be equal in

size to maintain balance in training on positive and negative examples. Having good

quality positive and negative datasets is intrinsic to the overall quality of prediction.

For positive datasets, meaning datasets containing PPIs, a variety of sources

exist. Many databases contain PPI information, with STRING, described above,

being the most widely used database for PPI data [76]. STRING, due to its anno-

tation scores, can be used to retrieve high confidence interaction data, suitable for

a positive set.

For negative datasets, meaning, datasets of protein pairs not known to interact,

it is important to note that creating such sets of high quality, is not an easy task

and should be done with care. The reason is, that it’s difficult to retrieve large scale

data of reliable non-interactions. Due to that, more than one approaches exist for

creating negative datasets and some of the most prevalent ones are described below:

• Exploiting subcellular localization

One way to create negative datasets, is to rely on the logical assumption that

proteins which have different localization patterns are unlikely to interact.

This approach has been widely used and even incorporated into an online tool

[119]. However, it has also been shown that this method can lead to biased

estimates of prediction accuracy [120].

• The Negatome database

The Negatome database is a database of proteins and protein domains which
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are unlikely to engage in physical interactions. Negatome gathers non-interactions

through manual curation of literature, text mining and analysis of 3D struc-

tures of protein complexes [121]. Negatome is less biased towards functionally

dissimilar proteins than negative data derived from different cellular locations.

However, two drawbacks of Negatome are its scale and its bias towards well-

studied cases.

• Employing random datasets

Another option for the creation of a negative dataset is picking random pairs

of proteins whose interaction is not reported to exist. Such random pairs are

expected to be contaminated with very few positive interactions, however it

has been reported that if a specific biological context is considered the amount

of positive interactions rises considerably [122]. To create these random pairs,

proteins can be sampled from the positive dataset and then filtered to exclude

interacting pairs which may have been accidentally produced. Following that,

either simple random subset sampling or balanced random subset sampling

can be performed, to keep as many interactions as are included in the positive

set. The type of sampling chosen and its effect on prediction have been ex-

tensively discussed in two Bionformatics papers published a year apart, with

one correcting the other [123], [124]. Essentially, random sampling requires

that each protein appearing in the positive dataset appears at least once in

the negative dataset as well. Balanced sampling on the other hand, requires

that the number of times a protein appears in the negative set is equal to the

number of times it appears in the positive set. This requirement inherently

produces biased datasets, however it also blocks representational bias-driven
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learning which may occur due to the existence of ”hub” proteins in the positive

set. As discussed in Park and Marcotte’s paper [124], both representational

bias-driven learning and protein sequence features contribute in the effective

prediction of PPIs, meaning that there is no need to avoid simple random

sampling. The paper also clarifies that for Training, the better suited dataset

is the one best training the algorithm, regardless of its bias, but for Cross-

Validation unbiased datasets are required so that predictive performance is

safely calculated. Using balanced sampling for Cross-Validation can lead to

significant underestimates of performance [124].

Other approaches for creating negative datasets exist as well, for example in

a 2012 paper Trabuco et al. extracted negative PPI datasets through 2H

experiments [122]. The important thing is to get as reliable a set of negative

PPIs as possible.

4.3.2 Support Vector Machines

Support Vector Machines, or SVM for short, is a supervised Machine Learning

algorithm first described in the early ’90s [104]. It is very well suited for binary

classification problems and is based on the idea of a hyperplane which can best

divide data into two separate classes. In essence, SVM looks at the extremes’ of the

data and draws a decision boundary, the optimal hyperplane. The furthest the data

points are from this hyperplane (the greater the margin), the more certain is their

correct classification. In order for SVM to predict the correct classification of the

data, it must first be trained based on certain features of the data.
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Figure 4.7: SVM: Figure from Cortes and Vapnik, 1995, [104]. In this figure, the

points marked with squares are the Support Vectors, the ”extreme” points of the

dataset which define the margin of largest seperation (optimal margin).

In a linear SVM, a hyperplane can be drawn and the data separated in a manner

similar to that shown in Figure 3.2. If a fitting hyperplane however, cannot be

found on the linear space, i.e. if the data cannot be separated by the draw of a line

on a 2D space, then the data is projected to higher dimensions. To help simplify

the necessary mathematical calculations, kernel functions are used to transform

the data. Some of the most popular kernel functions are the Polynomial kernel,

the radial basis kernel (RBF) and the Sigmoid kernel. RBF is considered as the

most popular kernel since it is a general purpose one, however the best kernel is the

one which will best transform the data, in regards to the necessary calculations for

finding the optimal hyperplane.

When the kernel is not linear, hyperparameter gamma must also be taken

under consideration. Gamma defines ’how far the influence of a single training
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example reaches’ [116]. Low values of gamma correspond to a far reach and high

values of gamma to a close reach. This basically means that when the value of

gamma is high, the points of the dataset which are close to the decision boundary

will carry the most weight when deciding when to draw the optimal hyperplane, and

when gamma is low the far points will play that role.

Margin is also an important parameter of SVM in regards to the classification of

the data. SVM can use a hard margin and a soft margin. Hard margin SVM allows

no misclassifications, whereas a soft margin is more lenient. In a linear SVM the

ideal hard margin can be applied, however in non linear cases that is not feasible.

In some instances of linear SVM, a hard margin can also lead to overfitting, so a

soft margin may be preferable. Soft margin SVM is controlled by hyperparameter

C, the higher the value of C, the greater the penalty for misclassifications and the

stricter the placement of the hyperplane, and vice versa.

The kernel used, as well as the preferred value of C, are parameters which may

be tuned to allow for a more accurate model.

SVM is generally best applied to smaller datasets with minimal noise, instead

of larger ones. One of its advantages is its effectiveness in multidimensional spaces,

however that effectiveness is limited, when the features of the data outweigh the

number of samples used for training. SVM has also been shown to be resistant to

label contamination [120].
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4.3.3 Random Forest

Random Forest (RF) is an Ensemble learning methodology based on Decision Tree

Classifiers. It was first described in 2001 in the corresponding paper of Breiman et

al. [105]. Decision trees from which an RF is comprised consist of a Root node (the

node where the initial split occurs) which is then connected through edges (braches)

with other decision nodes. Each node is tasked to perform the best possible split of

the data, until a final Decision is reached. The nodes of final result are called Leaf

nodes (splitting these nodes further would not improve the tree). To decide the best

split, the most frequently used criteria available are Entropy and Gini Impurity.

Figure 4.8: Training Classifiers. The data can be used to train either, A: A single

Decision Tree, or B: A Random Forest of Decision Trees. In figure B, S corresponds

to a Data Subset and F corresponds to a Feature Subset.

Decision trees on their own, are weak learners and yield low prediction accuracy.

This is why a method called Bagging is employed to create an ensemble classifier
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which does not have this drawback, the Random Forest. To create these classifiers,

two types of Bagging are employed, plain Bagging (also known as Bootstrap aggre-

gating) and Feature Bagging. In both cases, random subsets based on resampling

are created. In plain Bagging these subsets refer to the data and with Feature Bag-

ging to the features of the data. These subsets of data and features are then used to

train the individual Decision Trees of the RF. Feature Bagging is very important,

since it is responsible for the uniqueness of the individual trees. The prediction

result is then calculated. RF is well suited for both classification and regression

problems. For classification, the final decision is reached through the calculation of

majority voting and for regression, through averaging. An advantage of Random

Forest is its advanced accuracy, since it is an ensemble learning methodology and a

disadvantage is its relatively ”black box” approach. Random Forest has been used

in PPI prediction methodologies, yielding very good results [125].

4.3.4 The PyCaret library

Other than the SVM and RF algorithms, the PyCaret library was also used in this

thesis for PPI prediction. PyCaret, unlike SVM and RF, isn’t an ML algorithm, it

is instead a low-code machine learning library in Python [126]. It is open source

and is essentially a ’python wrapper’ around several machine learning libraries and

frameworks. The advantage of PyCaret is that it has an automated workflow and

with it, you can train and evaluate a model with very few lines of code.
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4.3.5 Evaluation Metrics

To evaluate an ML model, a variety of metrics can be calculated. The majority

of these metrics are calculated based on a Confusion Matrix. A Confusion Matrix

depicts the:

• True Positive (TP) values: Predicted as positive and actually positive.

• False Negative (FN) values: Predicted as negative but actually positive.

• False Positive (FP) values: Predicted as positive but actually negative.

• True Negative (TN) values: Predicted as negative and actually negative.

Predicted 
Positive

Predicted 
Negative

Actual 
Positive TP FN

Actual 
Negative FP TN

Figure 4.9: The Confusion Matrix

Through the Confusion Matrix, the values which can be calculated are:

• Accuracy: TP+TN
TP+FP+TN+FN

It shows how close the algorithms predictions are, to true values.

• Sensitivity (or Recall): TP
TP+FN

It is a quantitative metric. It shows the fraction of correctly predicted positive

values out of the total amount of positive values.

• Specificity: TN
TN+FP

It shows the fraction of correctly predicted negative values out of the total

amount of negative values.
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• Precision: TP
TP+FP

It is a qualitative metric. It shows the proportion of positive values that were

identified correctly.

• F1-score: 2* Precision∗Sensitivity
Precision+Sensitivity

It is the harmonic mean of Precision and Sensitivity.
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Results

5.1 PPI data acquisition from STRING

The first part of this study involved the collection of all available high confidence

Protein-Protein interactions of Homo sapiens from the STRING database. The level

of confidence of the interactions is based on their score in STRING, and STRING

has four different ’scoring thresholds’, which correspond to four different confidence

levels. Confidence levels, regard how likely STRING judges a certain interaction

to be true. The highest possible score is 1000. Thus, according to the STRING

database, the available confidence scores of PPIs are:

1. Score 150: Low confidence

2. Score 400: Medium confidence

3. Score 700: High confidence

4. Score 900: Highest confidence

As previously mentioned, PPIs can either be physical interactions or functional

associations between proteins. In STRING, the basic interaction unit is ’func-

tional association’ [127] which does not require physical interaction between pro-

teins. In STRING’s ’Download’ section, one can download either a ’Full’ Homo

sapiens dataset, or a ’Physical links’ one. Initially, both of these datasets were

downloaded and explored in regards to their suitability as a Positive PPI Dataset

in a Machine Learning framework.
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Figure 5.1: STRING PPIs. Filtering 1: Experimental data with a Score (experi-

mental) greater than 700. Filtering 2: Removal of mirror duplicate entries.

The data described in Figure 4.1 were retrieved through STRING’s ’Download’

section, specifying the organism of choice (Homo sapiens : 9606). In the case of the

Full dataset, the ’links.full’ file was downloaded, and for the Physical links dataset,

the ’physical.links’ file was downloaded. Then, two filtering steps were performed.

First, awk was used to only keep the interactions with an experimental score greater

than 700 (Filtering 1), which corresponds to interactions of high confidence. Then,

mirror duplicate entries, where the same PPI is described with the same score but

reverse direction, were filtered out using python (Filtering 2).

In both datasets, the data drop after Filtering 1 was major, (especially in the

case of the ’Physical interactions’ dataset). Due to this observation, and because

Filtering 2 has the exact same effect on both datasets, the data drop was explored

a little further in regards to the ’Scoring thresholds’, for both cases. Since the

scoring threshold was more or less arbitrarily chosen, based on the confidence level

it corresponds to, it was important to see if choosing a slightly different threshold

would yield more data.
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Figure 5.2: Studying the Scoring threshold. The resulting amount of Interaction

data (y axis) was plotted against the choice of Scoring threshold (x axis).

As seen in Fugure 4.2, the reduction in dataset size follows a similar trend in both

the ’Full’ and ’Physical links’ datasets. Data size drops dramatically until Scoring

threshold 300. After Scoring Threshold 400 the drop is slight. This means that the

majority of interactions available in STRING are of medium confidence, or less. Due

to that, the chosen threshold of 700, corresponding to high confidence, was deemed

to be the best fit. Choosing a lower threshold would not yield a substantially greater

amount of PPIs unless the confidence level was below medium, and PPIs of such

confidence are not suitable as a Positive dataset.

To conclude, after filtering, the remaining number of interactions in the ’Physical

links’ dataset was too small to be used in a Machine Learning Framework. Because

of that, the Full dataset was used instead. The Full dataset contains 29.148, unique,

high confidence PPIs, corresponding to 6.489 unique proteins. As mentioned above,

even though these interactions derive, only, from high confidence, experimental data,

it is not specified whether these PPIs are physical interactions or functional associ-

ations.
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5.2 Identifying Pfam motifs

After retrieving the PPI dataset through STRING, the next step, was to identify

the domains of the 6.489 unique proteins, involved in the 29.148 unique PPIs. To

do that, Pfam database’s, PfamScan was used.

Figure 5.3: PfamScan Workflow

To use PfamScan, the fasta sequences of the query proteins had to be retrieved

first. These sequences were downloaded from the UniProt database and, in total,

fasta sequences for 6.372 out of the 6.489 proteins were retrieved successfully.

Then, PfamScan was ran and the proteins searched against the Pfam-A library,

with the default option of Pfam’s Gathering Threshold (GA) used as cutoff. This

means, that as the sequences are scanned against the library, a pHMM will be

successfully mapped if a score above its family-specific GA threshold is achieved.

It is important to note that PfamScan identifies a variety of different motifs on

the sequence, such as repeats, domains etc. However, in this study we are only

interested in the identified motifs which correspond to domains. For this reason,

another filtering step is performed, so as to only keep proteins with at least one

domain motif mapped on their sequence.
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Figure 5.4: PPIs with mapped domains

Finally, a total of 3.690 proteins with domain information available were kept,

corresponding to 9.908 PPIs. This dataset was described by a total of 1.858 different

domain motifs. Data regarding all other types of pHMMs mapped on these proteins

were not kept. These interactions with their accompanying domain information

comprise the Positive PPI dataset which will be then used for prediction. The 1.858

domains correspond to the features of the data, which the algorithm will use to

learn.

5.2.1 Filtering overview

So far, to create the Positive Interaction dataset we described above, after the first

filtering step which was performed whilst downloading the data, 3 subsequent fil-

tering steps have also been performed. Each individual step led to a reduction in

data size, as we started with a set of 11.759.454 PPIs which occur in Homo sapiens

and after filtering, retrieved a total of 9.908 interactions which comprise the Positive

Interaction dataset. These filtering steps as well as their effect on the reduction of

the number of the proteins involved in the interactions are clearly depicted in the

Reverse Pyramids presented below.
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Figure 5.5: Data filtering overview

5.3 Labeling of the Data

In this thesis, ML is used to predict PPIs. In the case of PPIs, what one aims to

predict is the occurrence, or not, of an interaction. In case an interaction occurs, the

target label ’1’ can be assigned to the protein pair, and in case interaction doesn’t

occur, target label ’0’ can be assigned instead. This kind of labelled data can be used

to train an algorithm in a supervised manner, so as to predict whether two proteins

are interacting or not. As previously described, to train the algorithm both positive

and negative interactions are needed, i.e. a Positive dataset (interacting proteins)

and a Negative dataset (non-interacting proteins), both equal in size. These two

datasets will then be combined and used for prediction.
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5.3.1 The Positive & Negative datasets

The Positive Dataset used in this thesis was created through the use of STRING

and Pfam, as described in the previous sections. The Positive dataset consists of a

total of 9.908 Interactions.

To create the Negative dataset, random sampling and combining of proteins from

the Positive dataset was performed. The end goal was to create a dataset of negative

interactions, equal in size to the positive dataset, to achieve balance in prediction.

Figure 5.6: Creating the Negative Dataset. A subset of as many interactions, as

the ones included in the positive set, are kept. The subset sampling methodology is

random and not balanced towards hub proteins.

As seen in Figure 4.6, to create this dataset random combinations of proteins

from the Positive dataset are generated and then filtered against the entire STRING

database to ensure that the produced pairs aren’t interacting proteins. The created

Negative dataset, also has domains mapped to the sequence of its proteins, since all
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proteins derive from the Positive Dataset protein pool. For the same reason, the

domain feature space stays the same and no new features enter the final dataset.

Due to that, the ML algorithm is better trained to distinguish domain (feature)

combinations which lead to interactions from those which lead to non-interactions.

5.3.2 Exploratory analysis of Domains and Interactions

After completing the Positive and Negative datasets, an exploratory analysis was

performed to obtain insights into the domain composition of the corresponding pro-

tein pairs, included in these sets.

PPIs were transformed to domain count combinations, e.g. Protein A (1 domain

detected) interacting with Protein B (2 domains detected) is transformed to a [1,2]

domain count combination. These domain count combinations were then calculated

for both the Positive and Negative Datasets, to identify which is the most common

one observed. The mean number of domains per protein was also calculated, (based

on the Positive dataset since it is a superset of the Negative), and was found to be

equal to 1,6 domains/protein.
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Figure 5.7: Exploratory analysis of domain-count combinations of PPIs in the pos-

itive and negative datasets.

As seen in Figure 4.7, the most frequent domain-count combination observed in

both cases was [1,1], even though, for the Negative dataset combination [1,2] was

only slightly less frequent. This means that the majority of interacting protein pairs,

have a single domain pairing ([1,1]) possibly mediating their interaction. Similarly, in

the case of non-interactions, single domain ’incompatibility for interaction’ was the

one most frequently observed. Closely followed, however, by the [1,2] combination.

Taking this analysis one step further, for the Negative dataset to be separable

from the Positive dataset, the single domain combinations of the Positive Dataset,

should not be included in the Negative dataset. Indeed, after checking the inter-

section of the single domain combinations between these two sets, less than 2% of

single domain combinations were found to be common between them. Also, none of

the most common single domain combinations of the Positive dataset were detected

in the Negative dataset, and vice versa.
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5.3.3 The Complete Dataset

Using the information of both the Positive and Negative datasets, the complete

dataset is created. The Complete dataset comprises a matrix of 19.816 interactions,

in the rows, half of which are positive, and half of which are negative. Each column

corresponds to one domain out of the 1.758 total. For each domain (column) and

interaction (row), ’0’ corresponds to the absence of the domain from the protein

pair, ’1’ corresponds to the existence of the domain in only one of the two proteins

of the pair and finally, ’2’ indicates that both proteins of the pair carry the domain.

The first column of the matrix, denoted as ’Interaction’ specifies the class of the

interaction (target), as either positive (1) or negative (0).

Figure 5.8: The Complete dataset as it will be used to train an ML algorithm. The

columns correspond to the target column (Column ’Interaction’) and the feature

columns (remaining 1.858 columns), 1.859 columns in total. The rows correspond

to the total positive and negative interactions (9.908+9.908), 19.816 rows in total.
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5.4 Applying Machine Learning

Now that the Complete dataset is created, the next step is to select a fitting Machine

Learning algorithm. PPI prediction is a supervised classification problem. The aim

is to classify protein pairs to target ’1’ when they are interacting and target ’0’ when

they are not interacting. As also seen in literature, Support Vector Machines is one

of the most popular choices for this type of problem. Another popular choice is

Random Forest.

5.4.1 SVM

To run SVM, the first step was to split the data into a Training set and a Test set.

To do so, Scikit-learn’s ’train test split ’ was used. The data was split into an 80%

Training set and a 20% Test set (Listing A.1).

Then, SVM was ran using Scikit-learn’s SVC. The model was fit using Scikit-

learn’s ’.fit ’ and the score of the model was calculated through Scikit-learn’s ’.score’

(Listing A.2). The score corresponds to the accuracy of the model. The parameters

chosen on this first run of SVM were a Radial Basis kernel ’rbf’, since it is the most

popular choice, a default hyperparameter gamma and a C hyperparameter equal to

1 (corresponding to strict penalties for misclassifications). These parameters can be

and were, later on, adjusted through tuning. The resulting score of this run was

0.81, corresponding to Accuracy of 81%.

Additionally, 5-fold Cross Validation (CV) was performed to further validate the

resulting accuracy. To perform the CV, Scikit-learn’s ’cross val score’ was used.
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The ”cv” parameter was set to ”5” and because ”5” is an integer, Scikit-learn

automatically used its ”KFold” function to split the data into the determined 5

folds (Listing A.3). The 5-fold CV results yielded a Mean Accuracy score of

75% and a Standard Deviation (SD) of 0.03.

Evaluating the features

The evaluation of the model showed that it has good accuracy, which essentially

shows that domain features, in general, have good predictive power when used for

PPI prediction. However, to solidify that conclusion it is important to check that

the feature composition doesn’t somehow overfit the model in a way that is not

detected through k-fold CV. With that in mind, random datasets were created to

test whether the model’s features had predictive value as the results showed, or if

the resulting accuracy was erroneous. Three random datasets were created with the

same size as the original dataset and:

• df1: A random number and distribution of 0,1,2 feature values

• df2: Random distribution only, of the same number of 0,1,2 feature values

• df3: The original dataset’s feature values with shuffled (Interaction) labels
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Figure 5.9: Comparison of Prediction Accuracy

After applying SVM on each of the df1,2,3 datasets and evaluating the results

through Scikit-learn’s ”.score” and K-fold CV (as was applied on the Original df),

it was clear that these random datasets led to data classification based on chance

(50% Accuracy). This validates the results even further, as it shows that indeed,

the feature composition of the Original dataset is directly linked to its prediction

accuracy.

5.4.2 Tuning the model

The model was then tuned to maximize its performance. For the model’s Hyper

parameter tuning, Scikit-learn’s ’.GridSearchCV’ was used in an inner loop and

Nested CV was performed. The inner loop was set to 4-fold CV and the outer loop

to 5-fold CV. The outer loop, will evaluate the performance of the tuned model.

The hyperparameters selected for tuning were kernel, gamma and C (in the case of

a linear kernel the gamma parameter does not apply, so it was excluded in the linear

kernel tuning process). The different hyperparameter values tested were:
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• C: (i) 0.1 (ii) 10 (iii) 100

• kernel: (i) linear (ii) polynomial (iii) rbf (iv) sigmoid

• gamma: (i) 1 (ii) 0.1 (iii) 0.001 (iv) auto

The parameters yielding the best results were ’C’: 10, ’gamma’: 1 and ’ker-

nel’: ’rbf’ with a resulting Accuracy of 76,6%. The Nested CV results showed

that after tuning, the mean score using nested cross-validation was 0.765 ± 0.028,

which translates to an Accuracy of 76.5% and a Standard Deviation of 0.028,

slightly better than before the tuning process.

5.4.3 Random Forest

Besides SVM, another very popular algorithm used for PPI prediction is Random

Forest (RF). In this instance, the Train and Test data that had been split, were used

to fit a Random Forest Classifier. An initial number of 40 estimators was chosen

(Listing A.4). The run (through Scikit-learn’s ’.score’) resulted in 84% Accuracy,

a little better than the 81% Accuracy of SVM.

Similarly, 5-fold Cross Validation (CV) was also performed for the accuracy’s

further validation. Again, Scikit-learn’s ’cross val score’ was used (Listing A.5).

CV, gave a resulting Mean Accuracy of 76% and a Standard Deviation (SD)

of 0.02, only slightly better than SVM.

Tuning the Random Forest Classifier

The most important parameter to tune in an RF Classifier is the number of Decision

Trees it is comprised of (i.e. ’n estimators’). With that in mind, Nested CV was

performed (5-fold outer loop, 4-fold inner loop) and Scikit-learn’s ’.GridSearchCV’
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was used in the inner loop, to evaluate the following ’n estimators’: (i) 40 (ii) 160

(iii) 400 (iv) 800 (v) 1,600. The number of estimators yielding the best results was

800, as it yielded Accuracy of 76%. Overall, Nested cross-validation resulted in

an Accuracy of 76.3% and a Standard Deviation (SD) of 0.024.

5.5 Pycaret

Based on the previous results, we saw that the SVM and Random Forest method-

ologies showed similar performance scores. With that in mind, the Pycaret library

was also used to check the fit of the Complete Dataset data against a variety of ML

algorithms and identify the one with the best accuracy. The overall concept was to

find the best fitting model for the PPI dataset.

To run Pycaret, the Complete dataset was loaded and the variables specified

as categorical (we are employing binary classification). Then, Pycaret compared a

variety of ML models, such as Random Forest, Logistic Regression etc to find the

best fit for the dataset. After the comparison ended, the Random Forest Classifier

was found to be the best fitting one, which is the one of the two we also employed

independently.

Pycaret evaluates all models based on a variety of metrics, such as Accuracy,

Precision, Recall, AUC, F1 etc. For the Random Forest model, which was found to

be the best choice, the resulting Accuracy was 79%, Precision was 81% and

Recall was 84%.
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5.6 The Clans Dataset

As previously mentioned, our features, the protein domains, can also be grouped

into clans. Domains grouped into clans are evolutionarily related. For example, the

Pleckstrin homology domains PH and PH 19 belong to the same Clan (CL0266),

but PfamScan identifies them seperately. When it comes to ML, this also means

that they are treated as separate features of the dataset, even though they are,

technically, variations of the same domain.

To tackle this issue, the Complete dataset was reformatted to contain clans as

features, instead of domains. In the cases where domains were not assigned to

corresponding clans, the domains remained as features.

Figure 5.10: The Clans Dataset. In this dataset the columns correspond to the

target column (Column ”Interaction”) and the feature columns (clans or domains).

The rows correspond to the positive and negative interactions.
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5.6.1 Machine Learning on the Clans Dataset

To begin with, the data was split into an 80% Training set and a 20% Test set using

Scikit-learn’s ’train test split ’.

Then, SVM was ran using Scikit-learn’s ’SVC’ and the score of the model was

calculated through Scikit-learn’s ’.score’. The hyperparameters chosen were a Radial

Basis kernel (’rbf’), gamma=1 and C=10. The resulting score of this run was 0.81,

corresponding to Accuracy of 81% the same as in the non-clans dataset. However,

the run time was much faster.

Furthermore, 5-fold Cross Validation (CV) was performed using Scikit-learn’s

’cross val score’. The ’cv’ parameter was set to ’5’, so the ’KFold’ function to create

the 5 folds. The CV results yielded 75% Accuracy and a Standard Deviation

(SD) of 0.02.

5.7 Metrics

Besides the Accuracy metric, provided by the ’.score’ function of Scikit-learn, a

variety of other metrics were also calculated for both the SVM and RF models.

First, the confusion matrix of each model was calculated. Then, through each

corresponding confusion matrix, the following metrics were obtained for each model:

(i) Accuracy (ii) Sensitivity (or Recall) (iii) Specificity (iv) Precision (v) F1-score.

The resulting metrics for the SVM model were: 84% Accuracy, 77% Recall,

91% Specificity, 91% Precision and an F1-score of 83%.

The resulting metrics for the RF model were: 84% Accuracy, 80% Recall,

87% Specificity, 87% Precision and an F1-score of 83%.

57



Discussion

Knowing which proteins interact is valuable not only for achieving a deeper under-

standing of proteins and their function, but also for gaining insights into the complex

protein-protein interaction networks regulating key processes within organisms. Due

to their role in these processes, PPIs have also been linked to therapeutic targets

and drug design. Thus, their study can contribute to the development of ’basic

research’, and applied science as well.

The aim of this thesis was to create and evaluate a Machine Learning algorithm

for PPI prediction in Homo sapiens, solely based on the domains of protein pairs.

This approach is sequence based and relies on sequence features, the pHMM motifs

which correspond to protein domains. Out of the various computational methods

available for PPI prediction, sequence based methods are the most widely applicable

since sequence information is the most easily and readily available.

In this era of high computational power and far and wide advancements in

Machine Learning methodologies, recently proposed sequence-based computational

methods for PPI prediction strive to exploit as much information as possible, to

achieve the best prediction accuracy [106], [107], [108], [109]. However, despite

the promising results, the more convoluted the way a method achieves prediction,

the more difficult it is to understand which of the features -like sequence, over-

all structure, physicochemical properties- play the key role behind the interaction.

Domain-based PPI prediction is an interesting approach not only as a contrast to
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the ‘complicated’ methods which are presently popular, but also because domains

are distinct structural and functional units in proteins which are directly linked to

their function. Identifying interacting proteins based on their domain composition,

instead of more ‘general’ properties such as amino acid frequency, points the cause

of interaction directly to the proteins’ domains.

There is, however, a limiting level of complexity in our method. To map domains

to proteins, corresponding information must be available on the Pfam database.

Many sequence-based methods use simple sequence features such as k-mers [32], [33]

or physicochemical properties of amino acids [35], [36], because for the identification

of such features, the sequence itself suffices (thus avoiding this problem). As stated

above however, domains are important elements of proteins and thus have unique

value. This is why they are included in many methods for PPI prediction [43],[45],

[46], [47]. A paper by Gomez et al. published in 2003 [44] also highlights the

importance of domains for predicting PPIs. In their study, they used a combination

method for PPI prediction based on 4-tuples and pHMMs of protein domains. What

they eventually observed, was that the learner they created did not perform better

than a learner based on domain pHMMs only. This also begs the question whether

simple sequence features (such as 4-tuples) which contribute good prediction values,

are in domain regions of proteins. It must also be stated, however, that domains in

comparison to physicochemical properties can be more ’organism specific’, whereas

the former are much more universal.

In our approach, Machine Learning was used due to its ease of use and applica-

tion, as well as the overall good results ML methods yield in terms of PPI prediction

[27], [37], [125]. The ML algorithm created, was fit and evaluated on two different
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ML models, SVM and Random Forest. Both methods have been widely used in

sequence based PPI prediction, based on simple sequence features [34], [128] as well

as domain features [50], [125], yielding very good results.

Our results show that both the SVM and RF models achieve good prediction

accuracy and fit the data well. This showcases the predictive value of protein do-

mains in PPI prediction. Our SVM model reaches up to 84% accuracy (76,5% after

Nested CV), 77% sensitivity and 91% specificity, results comparable (and in terms of

sensitivity better) to the Chatterjee et al. approach [50], which is also domain based

and uses an SVM learner. It should also be noted that our SVM learner achieves

its best performance with an rbf kernel and not a linear one, which shows that our

data is not linearly separable. The RF model, similarly reaches 84% accuracy (76%

after Nested CV), 80% sensitivity and 87% specificity, achieving comparable results

and a much better specificity than the method of Chen et al. [125], which also

uses a Random Forest framework and is very comparable in terms of methodology.

Overall, our RF model seems to perform slightly better, probably due to its ensem-

ble learning quality and the apparent lack of linear separability in our data (RF

tackles non-linearly separable data quite well). We should also note that due to the

nature of the method, our matrix was quite sparse, and this is an issue we did not

attempt to fine tune. Perhaps some fine-tuning on that aspect, or the selection of

a more fitting ML method which we did not test, will lead to even more promising

results. Another thing to note, is that our approach does not take into account

co-expression or co-localization of proteins. Two proteins may be able to interact

-domain wise- but never be co-expressed or co-localized. Our method should predict

them as interacting, regardless.
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To conclude, what we observed is that domains seem to play a major (if not the

most prominent) role in PPIs. Even when used alone for PPI prediction, they can

lead to very good prediction accuracy. In future work, it would be interesting to see

if combining structural information of domains would serve to increase the accuracy

of our method. It is not necessary that all domains in proteins participate in the

mediation of PPIs. Perhaps the addition of ’extra weight’ to domain combinations

with known -interacting- structures, would increase the accuracy of the method.

Moreover, another interesting thing to note is that the prediction of a positive PPI

outcome doesn’t necessarily mean that a physical PPI occurs. It is also possible

that this prediction for interaction is due to a functional association between the

query proteins. As previously mentioned, the function of proteins is directly linked

(when it is not entirely depended on) to the function of their constituting domains.

The positive dataset we used to train our model wasn’t entirely based on physical

interactions, but on functional associations as well. It is possible then, that some

domain combinations which indicate interaction do not do so because they are phys-

ically mediating it, but because their function is what ‘links’ the proteins together.

On that note, it would be interesting to see if incorporating GO terms regarding

protein function in the training set would increase the methods’ sensitivity. Finally,

it would also be interesting to see if this method can be transferred to other species,

especially closely related ones, which are likely to have similar domain compositions

in their proteins.
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Appendix

This Appendix only includes Code Listings. Scripts are not included.

A.1 Code Listings

Listing A.1: Splitting into Train & Test sets

from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

x=df . drop ( [ ” I n t e r a c t i o n ” ] , a x i s=”columns” )

y=df . I n t e r a c t i o n

x t ra in , x t e s t , y t ra in , y t e s t = t r a i n t e s t s p l i t (x , y ,

t e s t s i z e = 0 . 2 , s h u f f l e=True , s t r a t i f y=y )

Listing A.2: Running SVM

from s k l e a rn . svm import SVC

model = SVC( ke rne l=’ rb f ’ , C=1.0)

model . f i t ( x t ra in , y t r a i n )

model . s c o r e ( x t e s t , y t e s t )
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Listing A.3: CV for SVM (5-fold)

from s k l e a rn . m o d e l s e l e c t i o n import c r o s s v a l s c o r e

s c o r e s=c r o s s v a l s c o r e ( model , x , y , cv=5)

print ( ”%0.2 f accuracy with a standard dev i a t i on o f %0.2 f ” %

( s c o r e s . mean ( ) , s c o r e s . s td ( ) ) )

Listing A.4: Running RF

from s k l e a rn . ensemble import RandomForestClass i f i e r

r f = RandomForestClass i f i e r ( n e s t imato r s =40)

r f . f i t ( x t ra in , y t r a i n )

r f . s c o r e ( x t e s t , y t e s t )

Listing A.5: CV for RF (5-fold)

from s k l e a rn . m o d e l s e l e c t i o n import c r o s s v a l s c o r e

s c o r e s=c r o s s v a l s c o r e ( r f , x , y , cv=5)

print ( ”%0.2 f accuracy with a standard dev i a t i on o f %0.2 f ” %

( s c o r e s . mean ( ) , s c o r e s . s td ( ) ) )

Listing A.6: Calculating the Confusion Matrix

from s k l e a rn . met r i c s import con fus i on mat r ix

y pred=r f . p r e d i c t ( x t e s t )

cm = con fus i on mat r ix ( y t e s t , y pred )
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