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ITpoAoyog.

T tedevtaieg Sexastieg ka1 Aoyo ¢ ypnyopng e£eéne 1@v nhek povikev
VHOAOYI0TOV KATEoTI Suvarty 1 Hapatpnon Ka 1 £peuva QUOLK®MY PAVOPIEVHY
1a omoia 8gv pnopovoav va pedemboov mpv. H nodvmdokoimta otic e§omosic
NOU mEPLYPAPOUY 1] YPAPPIKA ovoTHjata ouxva mfel 1ou¢ £peovniéc otnv
anlomnoinon tov povisdov j1& mv Staypa@n Opmv OXETIKA Kp®Y 1) oty apib-
Pk emidvon pe mp xp1o1n nhekipovikav vnoroyotav. H apibunuk:n pedém
£vo¢ mpoPAnpuaroc £xe1 10 mheovekpa OT1 pnopet va npaypatonowfei navia,
axdpa Kal o8 NePUITMOLL; Omov £xe1 anodeixfel 6t 1 Ao §ev pnopet va ypagsi
pe Paon yveotec ouvapinosic kar apa sivar 1o povo spyalsio drabéoipo yra
my pedém pag peyddne kamyopiac npofAnpatmv.

Kata mv 1edevtaia Sexaetia, peyadoc apibpoc epeovniov £bei€av evbia-
PEPOV YA Pla vEQ AvAKAALYI), TI¢ £v80YEVOC EVIOMIOPEVEC TAAAVIMOELC 1|
Sraxpitong breather. H mapovoa Sratpifr) £sxiviioe 10 1997 pe xopro 616x0
VY PedeT) KAl TNY Katavonor tou veon avtod @avopsvov. Kata v Sidprera
¢ pedemc speaviotnrav vea ka £viiragepovia npofinpata. Adyo ¢ modv-
OAOKOTTAC TOU GLOTATOC, TO KOPlo nepoc¢ ¢ Sovdeldc sivar Paociopévo oe
apOpn ik pedét xar ADo£1¢ IPOEPXONEVEC AL IPOCOTOINOELLC 0 NAEKTPOVIKO
vnoloylot).

H onap&n Srakpriov breather sivar éva yevikod @aivopevo. Mmopoov va
£QPAVIOTOUY O£ OApA MOAAA QUOIKA OLOTNATA OO 08 POPlLa, POPLAKOUC
kpootaddovg, enagec Josephson, Suktia Ssopmv vpoyodvon kar adda, dmov
1 1 ypapmxromta eivar mapovoa otic addniembpdaosic. H dmapén tove oe
£va o0OT A POopPel va ENNPEAOEl APKETEC AMO TIC PUOLKEC TOV 1510 TEC OMKC
¢ nhexipovikee Hieyépoeic, tc Oeppobuovamxréc 1610mTeC, TI¢ TAAAVIOTIKEC
wokaraoctaosig, mv Sraboon evépysrac ka aAddeg. Le apKETEC HEPUITOOELC Ol
Sraxpiiol breather pnopotv va xivnfodv xar va peTa@QEpony evEpysta avajeoa
oe Sragopetikd pépn tov ovotmjpatoc. To evdiagépov pa¢ sonialeta oty
Katavonon tov 8omiov 1ov eVIOMOREvOy avt®v TaAavimosmv Kal yla 10

A0y0 avtd epeuvape apKetd H1a@opeTiKa QuOIKA HOVIEAQ 0Ta OmOid POOPOUV
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va Snpovpynfoov. Toykekpipéva pedetaps mv omapfn, mv svotdbsia, mv

gukvnoia xar v addndenibpaon toug pe addeg SieyEpoeic ota povicda avid.

H osipa pe v onoia napovoralovia ta mpofAnpata mov pelstoaps eivan
11 akodovbn: To xepdadlao 0 eivar pia yeviki £00ywyl. Lo Ke@ddao 1
yivetan o Aemtopepr)c €0aymyl] otov topéa 1mv Stakpiiov breather. Xto
1610 xepadao napovoraleta 1o fewpnpa MacKay-Aubry yia v dmapén xam
ot apibpnukéc pebobor yia v xataoxevr) Kar my pedétm ¢ evotaberac.
Tlapovaialoviar emion¢ @ooika ovomjiata ota omoia o1 Srakpitoi breather
£xouv napampnfel nepapankd. L1o kepadao 2 mapovoraleta £va andd ov-
oA 0T0 0Hoio vIapxovy Staxkpitol breather. Lto odompa avtd cvykpivoope
10 apfpnTIKG ADOTEAEOPATA € TA MPOOEYYIOTIKA IOV HPOKVITOVY 1€ TV Xp1jon
)¢ DPOOEYYIONG OTPEQOREVOD Kbpatog (rotating wave approximation). Xto
kepadlao 3 pedetape my £mibpaon nov emeepet 1) voap&n addndenibpaonc pe
Sevtepouc yeitovee. L10 ke@ddao 4 avadivovyie v evotdabeia xar v sukivnoia
10v Stakpriov breather o 0xe66v povobidotara xa 6i61aotata cvoujpata. Lto
ke@adawo 5 pedetape mv adindembpaon avapeoa oe breather xa tomoloyixa
ooltovia o ovoujpata pe aobeveic beopove vdpoyovov. X1o Kepalaio 6
pedetape mp vmapfn ka v svotabeia Srakpriev breather os cvompata pe
10xVpove deopovg vépoyovon. Lto kepadao 7 peletape my emibpaocn otny
Avon mov sm@epetr 11 voapfn atedewwv oto ovotnua. Epesovape emiong g

aAdndembpaoeic 1wv xvovpevmv Stakpitov breather pe ¢ atédeiec aviéc.

Tlpwv mpoxmprioovpe napakatm fa fsda va suvxapiomom tov emPrenovia
xafnynuy mce omapovoac epyaciac I'. II. Toipemvy yia my gokaipia mov j10v
npooe@epe va ovvepyaotovpe. Kab’ 6dn 1 Sdpkela me epyaociac 1tav vimo-
povenikoe ka1 mavia Stabéorpoc va mpoogeper ovpfoudéc Kar obnyiec omov
xperaotke. Mov mpoos@epe emiong my dvvatdmia va yveopion Stampeneic
EMOTNOVEG A0 OOV TOV KOOPO, va ovlniom pall 1o0¢ Km 08 PEPIKEC me-
PUITMOEIC VA ODVEPYAOTODIE P& avtode £6m oto mavemotipo Kpnme alda
Kar v uvatomia va £moKente apKeIone amd avtong o& adda £peuviiika

1dponarta.
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Oa 1fsda axopa va soxaplotnom tov kabnynty Serge Aubry o omoioc pag
EVENMVEDOE TO £VH1AQPEPOY Yia TNY pPedeT) tov Stakpiiov breather xa vmpfe
pra aveEaviAntn onyn DANpo@opimv yopm and 1o 8épa, navia Srabeéoipog yra
o1 o K e apKEIEC Kavoupyleg Kat evdrapepovosc 18éec. Oa nbeda ta tov
£UXAPIOTNO® Mo ¢ yia v @rdofevia mov 0V IPootPepe KATA TIC SMOKEPEIC
pov oto C.E.A. Saclay tov Iavovapio 1ovo 1998 xar tov 2000.

Oa 1)0eda emione va svxapomjown tov kabnynu) Alex. V. Zolotaryuk,
xaboc¢ xa toue I'. Kaddoaxka, I'. Kombaxn, N. Bovhyapaxn, M. EAevbepiov,
Jose Luis Marin Espanol xa apxetodg addove yia v Porfsia mov pov

OPOOEPEPAv.
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0.1 TIlepiinyny.

M ypapmxa Kopata oapampndnxav yra opotn gopa amo tov J. Scott Russell
10 1845 xan avagepovia oto aphpo “Report of the British Association for the
Advancement of Science”. O Russell mapartnpnos £€va povaxiko xopa 10 onoio
K1vo0viav Xmpi¢ §1a0mopd, Katd PNiKo¢ £vo¢ pnxon Kavadion pe vepd. Linw
ava@opd Tov ypaget 0Tt axolovbnoe 10 povaxikd kopa yia moddd pidia xatd
pnxoc tov kavaiiot énov Stadiboviav xmpic anmisieg. H pabnpanki anodsifny
¢ vnapine xopdtev avtg e poperc Statvnmbnke 1o 1895 and tovg D.J.
Korteweger xat G. de Vries. Onwn¢ anobeixfnke, n uy ypappik:n vdpoduvapiky
e&lomon mov npotewvav yra myv neptypagn mg¢ siadoong xupatov os pnxod vepa,
emb£X0vIay ADOE1C AMONOVOIEVOY KOl EVIOMOPEVOV KUPATOV )¢ 161a¢ poperg
1e avtd mov mapatpnoe o Russell. Ta povaxika avid xopata ovopaotnKav

“Yoltovia”.

To 1955 ov E. Fermi, J. R. Pastaxa S. M. Ulam peAéuoav my wooxatavonr
me evepysiag avapeoo oe 64 owpatibia ovlevypéva pe ma un ypappikin
aAdndenibpaor. aviifeta pe OT miotsvav, avakaivgav Ot EKvoviac pe £va
omnariblo Sieyeppévo apxikd, 1 evépyeta petadiboviav oe odec Ti¢ WBloKata-
OTA0EIC TOV OVOUPRATOC aAdd PETA amd KAMmOo Xpovikd S1dotnja, 10 odoTIa
SIAVEPXOVIAV OTNV ApX1Kl) Kataotaon. H apxiki xataotaon éporale svotadic

Kat 1o ovompa 8ev pnopovos va odnyndei os Beppoduvajnki) wooppomia.

H avaxadogn twv Fermi, Pasta xa Ulam yia wv oxéon avapeoa og
eviomopevee Avoeic Kt 11¢ Beppobuvakec 1810miec evde ovompatog 61-
1o0pYNOE APKETO evELAQEPOY Yia TV PEAET] T@V COATOVI®V. Amopovenéva
KOpata 6oMToviKIC pop@Iic £xovv PBpebel Bempnuikd addd xa meipapatika oe
oapa moAdd ovotpata Kar 68 61aQopEIIKONE EMOTHIOVIKODG KAadoug dnm¢ 1y
vdpoduvapmik), 1 ontikiy, 11 POk oTOIXEWWOMY ompPATSinY, N Nhekipobuvaiki),
1] PUOIKT) 0TepeaC Kataotaon Kat 1) frodoyia. IToddda coAtovika povieda £Xouv
opotabel yra v neprypagrn) acuvnfnotne cuPnEPLPopac cUOTIATOY OIOV £ival

aof 1) 11 mapovoia pn ypopmKOT)TAC.
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H Sovdeia tov Henry Poincare amotédsos éva dddo otabpd otnv avamtoly
m¢ feopilac e un ypapmkne Svvamxne. Kata v pedém tov yia
gvotdfsia tov NA1axod GVGINPATOC, AvaKAAVYs napa moAdd pabnpatnkd ep-
yadeia xar kafiEpmos My yEMUEIPIKY] KAl TOMOAOYIKI] QVTIIEIONION IOV 1)
ypapukev ovompatnv. H Sovdeid tov avantoxbnke sktevag and toug Lorenz,
Feigenbaum, Kolmogorov, Arnold, Moser, Lyapunov ka1 noAloog aihovg xa
obfjynoe otnv avaxkaiugn 1ov Xaov¢ Ka mv Snpiovpyia ¢ Bsmpiag e un
ypapukic Sovapikic

Mia oxenkd véa avaxadvyn oty dempia ¢ pn yp apmikne Suvamkig siva
1] avaxaAvyn t@v £v60yevm¢ eviomopevee tadlavimosic 11 Sraxkprimv breather.
Apxixa mapampndnkav 1o 1988 amd tovue A.J. Sievers xar S. Takeno g
EVIOMOPEVEC XOPIKA KAl MEPOBIKEC XPOVIKA TAAAVI®MOEIC 08 OLOUPATA OU-
Ceoynevov tadaviotov. To 1994 o1 R.S. MacKay xat S. Aubry anébeifav 6T
ot Sraxpitol breather vmapxoov w¢ axpifeic Adoeic oe pmia peydadn xauyopia
ovotpateY culeuypEvev i yp appirev tadaviotov. To Bsopnpa nov anédsi&av
£6ive mapadinda xar pra aplBpnuikn 1€XvIKI yia v KATAOKEU1] KAl pEAET 1oV
10AavIOoEmY ADTOY.

Meyado evbia@épov yia mepetépe nedétn Snmovpyndnke petd amo
npot avt) maparpnon. Ot Staxpitor breather anobeixfnke apipnuxa om
givar ypapmiree evotabeic Avoeic pe peyado xpovo (onc oe apketda ovoujpata
Kal pmopovv va emnpeacovv 1¢ Beppobuvvamkéc xar dddec 8ioieg. Exer
emorn ¢ Bpebetl 011 xAte and Ti¢ xatadindeg ovvbxeg pIoPovV va K1vouvie Kal
Apa Pmopovv va PETAQEPOUY EVEPYELA avajleda 08 61a@opeTiKa pEpt 1ov 1610
ovotpuato¢. Ta tedevtaia 600 Xpdvia PAAIOTA VIAPXOVY APKETEC MEIP APATIKEC
nap atmprosic mov empPePar@vouy v dapf1) TOVE 0 CVOTIATA ONWC TAEYIATA
enagov Josephson, ovleoypévav xupatodnymv ka adda. Eivar gavepd dowrov
OTlL ImOPOVY va £RPavioTovy o Kabe pn ypapmkod xar Sraxpiid ovotpua.

Exe1 amobeixfei 611 o1 Sraxpitoi breather vndapxovv oe ovoujpata culevy-
PEVOY TAdavioTov, eival eKOETIKA £VIOMOPEVOL 0TOV XOPO Kl HEPLOSIKOL 0TOV

xpovo. Eneidn) o1 tadaviotec sivan 1) yp appiikoti, K10¢ amod v KUpia ouxXvot|ta



wp, ot avadvon Fourier tov talavimosmv speavifovial Kar OAEC 01 ApIOVIKEC
nwp. [a my pedén ¢ svotdberac toug xproponowfnke 11 “fewpia Flo-
quet yia v pedérn svotdbsiac mepodikov poxiwv’. Me wmv xpron g
fewpiac avtng £xel Bpebel O 01a mEP1O0OOTEPA OVOTHPATA VIAPXOVY gvoTAbELC
breather, 1 evotabera opwce efaptata and v ovXVOT|TA KAl TIC DA AIETPOUC
100 ovotuato¢. H ypapuxkn evopabera onpaivel 611 pnopoov va Sratnpnbovv
010 obOoUIA yia peydala Xpovikda Siaotipara XKai 8ev Kataotpé@ovial Otav

Sratapacovia pe mxpec Sratapaxec.

Edv 5 ouxvomta vde breather Bpioksta péoa oty Covy tov ypapkov
POVOVIOY TOD GUOTIATOC TOTE O OUVIOVIOPOC £Xe1 0av anotéleopa v Kata-
otpo@r| tov breather xa v Sieyepon powvovimv. To amotédeopa sivar 10 1610
otav Jia amd TI¢ APIOVIKEC ¢ KUprac ouxvoutac PploKetm 0g 0uvIOVIOpo
e 10 g@vovia. [a my pedétn tov eviomopoy X no¢ avtde eaptata amd
MV OVXVOTITA XPNOJI0HOIOD]IE TV IPOCEYYION OTPEPOJIEVOD KOPATOC Kal TV
OPOOEYYION OTL 1I0VO £va¢ TAAAVIOTC £ival |1 YPARPKOC £ve Ol DIOAOLIOL
Bempovviar yp appikot. H mpooéyyion avt Ssikaodoyeitar amo 10 yeyovoc o1t ot
breather sivan exfetixd eviomonévec Adoe1c yopo amo £vav TaAavimTi) 0 OHo1l0C
Tadaviovetal pe peyalo mAATo¢ £ve Ol DOOAOUIOL TAAAVIOVOVIAL JIE JIKPO
OAATOC, 0TV ¥papiky Deploxr] 1ov dvvamxkov. Ta amotedéopata 6upEmvOLV
apreta Kadd pe ta apipnuika 600 ot appovikeg ¢ Kuplag ovxvomtac Ppi-
oxovial pokpa amd mv Covy oV govoviov. Lo mAaiola Tov 600 auimv
OPOOEYYIOEmV PHOPOUIE VA OUYKPIVOUPE TOV £vIOMONO twv breather pe tov

gviomopo nov epgavietar A0ym vmapfne atehewmv.

Ilap’ 611 o1 Braxpitol breathers vnapxovv oe modda cvotjpara, KAmoieg
and ¢ 0mec toue, ommc 1) evotdbera xa 1 evkvnoia, sEapt@vial apeca
and my yeOUEIpia 100 EKAOTOTE OVOTPATOC AAAd Kal amd T1¢ ASHTOPEPEIEC TG
1 ypapmxoniac. Axdpa, o1 EMIPemOPEvVEC OUXVOTITEC HOD PIOPEL VA £XEL
¢vac breather e€aptoviar and ¢ Aemtopgpeiec tov povichov. Ta napaderypa,
1 svotabera kar 1 svkivnoia evoc breather addaler 6tav swoayovps atédeieg

oto ovotnpa. Ta v xadvtepn Katavdnon ¢ emidpaon¢ mov PHOPoLY va



0.1 IlepiAnyn. vii

£X0UV OTIC QUOIKEG WB10TTEC TOV CUOTIATOC, PeAeTape apketd povicha pe
Sragopetikn pn ypapmxdmra kar (1)) Sragopetiky mheypanki yeopetpia.

H nep apanikn) nap atnpnon ¢ vnapfnc Staxprimv breather o ovleoynéveg
ena@ec Josephson og ysopeipia okddac addd xka 1 mbavy) vmapfn toug og
paxpopopia ta onoia 8gv pnopovv va Bempnbovv povobiaotata, pac mbnos va
pedetoovps 0x£60v povodiaotateg MASYHATIKEG YemeTpiec Ka v emibpaor)
nov £xouv ot gvotdbsia kar e Kivnukomta tovg. Ounmce Pprkape 11 yem-
petpia tov mAsypatog smnpedlel Kar ti¢ 600 aviéc Womec. Eav 600 povo-
Srdotatec advoibec ovlevktovv mapaddnda 1 ma oty AAdn 101€ 1) gvotabsia
K 1) Kivnukotte v breather adlaler. Ov amdoi breather yivoviar aotafeic
kat £vag Sundog breather (0mov oopatia tadaviovoviar pe peyalo TAATo¢ Kat
o116 60 advoibeg) yivetar evotabrc peta ano pa Staxkradmon wnov Sixalag.
Metd v Staxddabmwon o 6umdoc breather eivar Suvatov va xivnfet eve o1 amdot
breather eEagavifoviar. Axopa 1 Svvarowta vnapéne breather oe emeaveiec

1) og Aenta film pac¢ wbsl va pedemoovps ibiaotata nhéypata.

ITapopoec Hraxdradmoeic, omuc otic 0xebov povobiaotateg advoibec, ep-
gavioviar av mpooféoovpe oto mAéyna artédelec. Ly Oepilitmol] ALt Ol
amloi breather Siaxdabifoviar pe multibreathers mov £€xovv Sieyepnéva ta
onuela ota omoia Ppiokoviar ot atédeiec. Meta ¢ Sraxdabmoeic, ov amdoi
breather e£agavifovia pai pe touc¢ aotabeic multibreather xkar mapapgvoov o
evotabeic multibreather. Ot atédeieg ennpedlovy £MonNG KAt TV K1V TIKOTTAC
1ov breather mac xar onm¢ Pprkape £vac xiwvovpevoc breather Gev pmopet
va Sraoxiosr mv meploxy) otnv omoia Ppiokeia pia atédsia X@pic va XAoet
gvépyera. Le pepikéq nepurtmoetc (avaloya pe v ovxvouta tov, Iy axvua
v addd xka v atédera) poopel va amoppoenbei and wy ardera 1 va

avaxlaotel amd autnyv.

Eva addo evbragepov npofinpa onov 1 Stakpriota ka 1) pn yp apmroOnia
£X00V KUplapxo podro eival oty mepintnon dsopmv vdpoyovon. I'a v mept-
ypaei toug £xouvv mpotabei apketd pabnpatnkd povidha. Onmc Ssifape, os

&vo and avtd voapxovv Sraxpitot breather. e apketéc nepurtmosic paiota
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ot breather avtoi pnopotv va xivnfoov ka1 dpa mbavodroyitm 6T oxetilovial
e v Sadoon mpmIovimv 08 AVTOL TOV TOIOL TA GLOTPATA.

Aol o1 Srakpitol breather sivar Talavi®osic o £va pn ypappiko pecov,
ot xwovpevol breather pnopotvv va Bswpnboidv wc¢ pn ypappka xopata. Ev-
Sragépov mapovoralel o TPOmOC pe 1OV OmOio Ta |1 YPARitkd avtd Kvpata
aAdndembpodv ne Hra@opeTikod TOmMOL I YpAPjKd KOjdla OOV PIopovv va
vmapxovv oto ibo ovompua onw¢ ta cohtdovia tomov kink. Ymapxer pia
evepyoc addndenidpaon avajpeosa ota 6vo avta xvpata 6tav Ppiokovial Kovia
10 €va pe 10 addo. Kata v adinlenibpaon toug epgavifouv pia peyadn
nowkidia ano Sra@openikec ovpnepipopec. Avddoya pe v svépyseia addda Kk
TI¢ mapap£Ipoue 1o 1ovigdon 1o kink pnopei va avaxddost tov breather 11 va
TOV KATAoTpEPel S1ey£ipoviac gavdvia 1 va T0v anoppo@iost Kal va JeTaTpEpst
MV £VEPYELA TOU 08 KIVITIKI] £vEpyela. e AAdec mepumtwoel¢ 1€Aoc, poopsl
va dnmovpynbel ma déopra xataotaon avapeoa otov breather xa 1o kink pe

anotédeopa o breather va talavioveta o mKp1] andotaorn axd 10 KEVIPO 10U

kink.
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Preface.

During the last decades due to the rapid development of the electronic
computers and of computer science, it became possible to observe and inves-
tigate several physical phenomena that was not possible to explore earlier.
The complexity of the equations describing nonlinear systems often forces
the researcher to simplify the model by removing terms which are relatively
small or use numerical methods and computers. The numerical investiga-
tion of a problem has the advantage that it can be performed always even in
cases where it can be proved that the solution cannot be expressed in terms
of known functions and therefore it is the only tool we have to study a large

variety of problems.

Within the last decade, increasing number of researchers got interested
in a new discovery, viz. the intrinsic localized modes or discrete breathers.
This thesis work was initiated in 1997 with main purpose to understand and
explore this new phenomenon. The study of the subject yielded many new
interesting problems. Due to the complexity of the systems we are studying,
most of the work is based on numerical explorations and solutions obtained

through computer simulations.

The existence of discrete breathers is a generic phenomenon. They can
appear in many physical systems like molecules, molecular crystals, Joseph-
son junctions, hydrogen bonded networks and other systems where nonlin-
earity is present in the interactions. When they appear in a system they
can affect several of its physical properties such as electronic excitations,
thermodynamical properties, vibrational modes, energy transfer properties
and others. In several cases discrete breathers can be mobile and therefore
they can transfer energy between different parts of the system. Our interest
focus on understanding the properties of these localized excitations and for
that reason we investigated several physical models where they can exist.
In particular we investigate the stability, the mobility and the interactions

with other excitations in these models.



The structure of this thesis is the following. Chapter 0 is a general
introduction. Chapter 1 is an introduction to the field of intrinsic localized
modes. In this chapter we present the MacKay-Aubry existence theorem,
numerical methods for breather construction and the stability. We also
present some physical systems where discrete breathers have been observed.
In chapter 2 we introduce a simple model for discrete breather; in this model
we compare exact numerical solutions with the solutions obtained using an
approximate method ie. the rotating wave approximation (RWA). In chapter
3 we investigate the modifications due to interactions with second neighbors.
In chapter 4 we analyze the stability and the mobility of discrete breathers
in quasi-one dimensional systems as well as a two dimensional system. In
chapter 5 we investigate the interaction of breathers with topological solitons
in hydrogen-bonded networks with weak hydrogen bonds. In chapter 6 we
investigate a model with strong hydrogen bonds and we examine the stability
of the solutions obtained in this system. Finally in chapter 7 we examine
the modifications on the solution in the case when there are impurities in
the lattice. We also examine the interactions of mobile breathers with these
impurities.

Before proceeding I would like to thank my advisor George Tsironis for
the opportunity he gave me to work together. During all these years he has
always been patient with me and was always available and ready to give me
advice and instructions on how to proceed. He also gave me the opportunity
to meet scientists from all over the world, to discus with them and even to

work jointly with some of them here at University of Crete as well as visit

some of them in other institutes.

I would also like to thank professor Serge Aubry. He was the one who
initiate much of the interest in intrinsic localized modes and he has been
an endless resource of information on the subject. He was always available
for discussion and he had many new and interesting ideas. I also thank him

for his hospitality during my visit in C.E.A. Saclay in January of 1998 and
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January of 2000.

I also would like to thank professor Alex. V. Zolotaryuk, as well as
George Kalosakas, George Kopidakis, Nikos Voulgarakis, Maria Eleftheriou,
Jose Luis Marin Espanol and others for the help they offered me during my

work.
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Chapter 0

0.2 Summary.

Non-linear waves where observed by J. Scott Russell in 1845 and discussed it
in the “Report of the British Association for the Advancement of Science”.
What Russell observed was a single solitary wave which was propagating
without dispersion along a water channel. As he mention in his report the
lonely wave could travel along the channel for miles without dissipation.
The mathematical proof for the existence of such solitary waves came in
1895 by D.J. Korteweger and G. de Vries. They proposed a non-linear
wave equation for the description of wave propagation in shallow water. As
they discovered, the equation they proposed could sustain isolated localized
traveling solution, the same type like the solitary wave observed by Russell.
The lonely localized waves observed by Russell where called “Solitons”.

In 1955 E. Fermi, J. R. Pasta and S. M. Ulam in their attempt to study
the equipartition of energy between 64 particles, weakly coupled by a non-
linear interaction, they discovered that starting with one particle excited,
the energy distributed itself over the whole system modes but returned al-
most completely to the initial state. Thermodynamical equilibrium was not
reached and the excitation seamed to be stable in that sense.

The discovery of Fermi, Pasta and Ulam for the importance of localized
solution into the thermodynamical properties of a non-linear system, initiate
lot of interest in the study of solitons. Soliton type propagating waves have
been found theoretically and experimentally in a large variety of systems
in several fields of science like hydrodynamics, optics, elementary particle
physics, electromagnetism, condensed matter physics, and biology. Several
soliton models have been proposed for the explanation of strange behavior

in every system where the nonlinearity is present.

An other breakthrough in the non-linear science came with the work
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of Henry Poincare. In his attempt to investigate the stability of the solar
system, he discovered lots of mathematical as well as geometrical and topo-
logical tools for the study of non-linear systems. The work of Poincare was
continued by Lorenz, Feigenbaum, Kolmogorov, Arnold, Moser, Lyapunov
and many others and lead into the discovery of Chaos and the development

of the theory of the non-linear dynamics.

A relatively new development in the theory of non-linear dynamical sys-
tems is the discovery of discrete breathers. They were initially observed
in 1988 by A.J. Sievers and S. Takeno and they where described as spa-
tially localized and time periodic solutions in systems of weakly coupled
and non-linear oscillators. Discrete breathers where proven later (1994) by
R.S. MacKay and S. Aubry, that they are exact solutions of a large variety
of systems. Together with the existence proof the MacKay-Aubry theorem

gave a numerical technique for the construction and study of these solutions.

Since then, lot of interest has been initiated into further study. Discrete
breathers have been proven numerically to be long live and linearly stable
solutions in many systems and they can affect their thermodynamical and
other properties. It is also found that they can be mobile under certain
conditions and therefore can play the role of energy carriers. In the last two
years there are also experimental verifications for their existence in system
like Josephson junctions and coupled wave-guides. It seems therefore that
discrete breathers are present in every system as long as it is discrete and

non-linear.

It has been shown that in systems of coupled non-linear oscillators, dis-
crete breathers exist, are exponentially localized in space and periodic in
time solutions. Since the oscillators are non-linear, apart of the main fre-
quency wyp, there are in the Fourier spectrum of the oscillation all the har-
monics nwy. Since they are periodic in time, their stability can be investi-
gated using the Floquet stability analysis for periodic orbits. It has been

found that they are linearly stable is most of the cases, depending on the
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frequency and the other system parameters.The linear stability means that
once they are created they remain in the system for a long time and they

are not destroyed when they are perturbed by a small perturbation.

If the frequency of the breather lye inside the linear phonon spectrum,
then the resonance with the phonons leads to the distraction of the breather
and the excitation of small amplitude and extended phonons. Not only
the basic frequency but also its harmonics when they are in resonance with
the phonons lead to the same effect. For investigating the localization and
its relation with the frequency of the breathers we use the rotating wave
approximation and the approximation that only one oscillator is non-linear
while the others are linear. The last approximation is valid because due to
the exponential localization of the breather, only the central particles are
oscillating with large amplitude while the others are oscillating in the linear
part of the potential. The comparison of the approximate results with the
numerically obtained solutions shows that they are in good agreement when
the breather frequency harmonics are not close to the phonon band. In
terms of these two approximations, we compare the discrete breathers with
the well known linear impurity modes studied earlier and we find that the

localization in both cases are related.

Although discrete breathers exist in many systems, properties such as
the stability and the mobility depends on the geometry of the system as well
as the details of the interactions. Even the aloud breather frequencies vary,
depending on the details of the model. For example the stability and the
mobility of a breather is altered when impurities are injected into the system.
Therefore for the better understanding of the influence they can have in the
physical properties of the system it is necessary to investigate several models
with different interactions and (or) different lattice geometries.

The experimental observation of discrete breathers in Josephson Junc-
tion ladder and the possibility of the existence of discrete breathers in macro-

molecules which cannot be consider as one-dimensional, lead as to study
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quasi one-dimensional lattice geometries and how they affect the stability
and the mobility of DB. As it is found the lattice geometry affects their
stability as well as the mobility. As soon as two one dimensional chains
are linked with some inter-chain coupling the stability of the breathers is
changed. Except of the stability, the mobility properties are different. The
single breather becomes unstable and a double breather (which involves
large amplitude oscillations in both chains) becomes stable through a pitch-
fork bifurcation. After the bifurcation, the double breather it is possible
to become mobile while the single breather vanishes. The possibility of the
existence of discrete breathers in surfaces or in thin films, leads as to study

their existence and their mobility in two dimensional lattices.

Similar bifurcations, like in the quasi-one-dimensional chain, occur when
we introduce impurities into the system. In this case the single breather
bifurcates with the multibreathers which have the impurity site excited.
After each bifurcation, the single breather disappear together with one of
the multibreathers while the other one becomes the dominant solution in
the system. The impurities also modify the mobility of the breathers, since
a single mobile breather cannot pas through the impurity without loss of
energy, some times it is absorbed (depending on the energy of the breather

and its velocity as well as the impurity) while other times it is reflected.

Another interesting problem where discreteness and nonlinearity is in-
volved is the case of hydrogen bonds and several mathematical models have
been proposed for their study. We consider two of them and we show that
it they exhibit discrete breather solutions. Since in some cases they are
also mobile, they can be associated with the proton transfer in chains of

hydrogen bonds.

Discrete breathers are oscillations in a nonlinear medium, mobile breathers
therefore can be consider as nonlinear waves. We investigate how these non-
linear waves interact with an other type of nonlinear waves that they can

exist in the same systems like topological solitons ie. kinks. As we found
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there is an effective attraction when a breather and a kink are close. The
interactions of a kink with a mobile breather exhibit a large variety of differ-
ent behaviors. Depending on the energy as well as in the model parameters,
the kink acts in some cases as a wall reflecting the breather while in other
cases it absorbs the breather and radiate its energy into phonons or trans-
form it into kinetic energy. In other cases it has been observed that a bound
state between them with the breather oscillating in a small distance from

the center of the kink.
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Chapter 1

Introduction.

Intrinsic localized (ILM’s) modes or discrete breathers (DB) have been ob-
served in several systems of coupled anharmonic oscillators. They sponta-
neously appear in numerical simulations as long lifetime periodic and lo-
calized structures [1]-[28]. The system where this kind of structures were
initially introduced is a one dimensional lattice of particles, interacting with
their neighbors through an anharmonic interaction. This system is widely
known as Fermi-Pasta-Ulam (FPU) chain [7]. The system has the following
Hamiltonian:

H = Z %mzuf +C Z W(u; — uj) (1.1)

i <35>

where m; is the mass of the particle at lattice site ¢, u; is the displacement of
particle ¢ from equilibrium, W (u; — u;) is the interaction potential between
the particle at lattice site ¢ with the particle at lattice site j and C' determines
the strength of the coupling. The first summation is over all particles while
the second summation is over all the neighbors of particle at site 7. The
symbol < 7;j > denotes summation over all the neighbors of particle at site

1. The corresponding equation of motion for this system is:

miii; = —=C Y W'(u; — uy) (1.2)
<z35>

where prime means derivative with respect to u;.



2 Introduction.

Discrete breathers where also observed in lattices of anharmonic oscil-
lators, coupled through an interaction potential, such as in Klein-Gordon

lattices. The Hamiltonian and the equation of motion of such a system is

respectively:
1 .
H = Z imzu? + V(ui)+ C Z W(u; — u;) (1.3)
p <35>
m;il; = —V'(uz-) -C Z PV'(uZ- — ‘ZLJ‘), (1.4)
<1;5>

where V is the anharmonic on-site potential. Nonlinear localization is a
result of the interplay between the discreteness of the system combined with
the nonlinearity. Discrete breathers are nonlinear structures that are typi-
cally exponentially localized in space and periodic in time. Fourier analysis
shows that the presence of nonlinearity in the interaction or in the on-site
potential results in non zero contribution of all the harmonics of the basic
breather frequency.

One critical condition for the DB to exist is that the frequency of os-
cillation and its harmonics must be different from the phonon frequencies.
The dispersion relation and phonons (or normal modes) of the system can
be found if we make the small amplitude approximation on the system [106].
If the breather frequency is within the phonon band, then due to the reso-
nance with the phonons, it will radiate, and as a result it will loose energy.
Since all the harmonics have non-zero contribution, they must lie outside the
phonon spectrum, otherwise they will excite phonons making the breather
unstable.

In 1994 Serge Aubry and Robert McKay proved that discrete breathers
exist and are linearly stable in Klein-Gordon systems (1.3). They proved a
theorem which states that discrete breathers are exact solutions for a large
variety of systems of coupled oscillators [8], [11]. In addition to existence,
the theorem points to a breather construction method that enables as to find

numerically DB solutions with typical numerical accuracy (107'%) [11]-[19].
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Figure 1.1: The single breather in the double well ®* potential. The fre-
quency is wp = 1.32 and the coupling is C' = 0.131.

Prior to the breather existence theorem, the study of intrinsic localized
modes was based in approximate methods such as the rotating wave ap-
proximation. Numerical investigation was based on relaxation methods and
the spontaneous and usually accidental creation of discrete breathers in nu-
merical simulations. Breathers are known to exist in an integrable system
in the strong coupling limit which can be described with a partial differen-
tial equation known as Sine-Gordon [6]. The breathers in the continuous
Sine-Gordon equation are very fragile and they disappear under most per-
turbations of this equation. On the other hand breather solutions are proven

to be very robust in discrete models [11]-[42].
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Figure 1.2: The time evolution of the breather shown in figure (1.1).

MacKay-Aubry theorem.

1.1

The existence of discrete breathers is connected with the so called ”anti-

The concept of

[10],[57],[58].

]7

9

[

anti-integrability was initially introduced for the standard map [57],[58] and

integrable limit” or anticontinuous limit

it turns out to be a simple but powerful tool for finding infinitely many

The method that have been used mostly up

solutions in nonlinear systems.

to now, is the one that starts from an integrable limit as also is done in

theorem [86],[87]. The new

Mozer)

the famous KAM (Kolmogorov-Arnold

” limit ( which for that reason

approach consists in choosing an ”opposite

integrable limit) where the system remains non-

was initially named anti

linear and exhibits chaotic, periodic or quasi-periodic solutions which can
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be trivially analyzed. This method was first applied in systems of coupled
nonlinear maps in the limit where the coupling goes to zero. In this limit
the maps are not integrable. Later, when the same method was applied in
systems of coupled oscillators in the limit of zero coupling (C' — 0), the
term was changed to anticontinuous, since the single oscillator is integrable;
furthermore this limit is the opposite to the one of strong coupling, where
the system can be treated as a continuous medium.

In the anti-integrable limit each oscillator of equation (1.4) oscillates
independently of the others. The motion of every independent oscillator can

be described by the following Hamiltonian and the corresponding equation

of motion:
H = %miﬂ 1V (u), (1.5)
mii + V'(u) = 0, (1.6)

where V (u) is the anharmonic on-site potential. It is necessary for the poten-
tial to have at least one local minimum in order for periodic orbits to exist.
These periodic orbits around the minimum at the anticontinuous limit are
the trivial breather solutions of the system. A single oscillator is integrable
due to energy conservation. All its periodic orbits can be expressed in the
form u(t) = g(wt+ a,w), where a is an arbitrary phase and w = w([I) is the

m/w .
/ ma2dt over one

frequency which depends on the integrated action [ = f02
oscillation period.

Let us now consider the whole lattice. At the anticontinuous limit (C' =
0), each oscillator can oscillate independently of the others. For an infinite
lattice, there is an infinite group of different configurations, depending of the
number of oscillators oscillating, their frequencies and their phases. For the
proof of the theorem it is essential to consider only time reversible oscillations
ie. the initial phase of every oscillator at ¢ = 0 should be zero (i; = 0). For
the classification of the breathers we introduce the coding sequence o. For

a given breather of frequency wy, = w(/), depending on the initial phase of

each oscillator, o; is defined as:
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o 0; = 0 when oscillator ¢ is at rest.

e 0; = n when oscillator 7 is oscillating with frequency w; = nw; and

initial phase «; = 0.

e 0, = —n when oscillator ¢ is oscillating with frequency w; = nw; and

initial phase a; = 7.
We can now write the theorem from [8].

Theorem 1 Consider a dynamical system (1.4) consisting of an array of
anharmonic oscillators with a C? potential, coupled between nearest neighbors
by some arbitrary C? potential with coefficient C'. The frequency of a single
oscillator versus its action is w(I). The underlying lattice of the system can
be of any finite dimension d.

Let {u,(t,0)} be a time periodic solution with a given frequency wy which
belongs to the set of values taken by w(I) for the system of un-coupled oscil-
lators (C'=0). Such a solution is labeled by the coding sequence {o,}.

Let us assume the non-resonance conditions:

(1) For o # 0, dw(I)/dI # 0 for the corresponding determination of the
periodic oscillation.

(2) For the oscillators at rest, pwy # w(0) for all integers p

Then there exists Cy positive nonzero such that this solution has a unique

continuation {u,(t,C)} for |C| < Cj.

The proof of this theorem is given in [8] as an application of the implicit
function theorem applied in the space of time symmetric loops described
within the action angle representation. In [13] there is a proof based on
the implicit function theorem, but in the original Lagrangian coordinates
{ui(t),%;(t)}. The second proof can be easily turned into an efficient nu-
merical method for finding any of these solution. In addition, the Newton
matrix involved by the implicit function theorem can be used for studying

the linear stability of the obtained solutions.



1.2 Numerical methods. 7

1.2 Numerical methods.

The breather existence theorem provides us with a convenient numerical
method for finding exact discrete breathers [8]- [19]. Due to the finite com-
puter memory and computer time we are forced to study a finite system
with N coupled oscillators. For the numerical calculation it is convenient
to define the vector X = {t1,...,un,it1,...,un}T, whose elements are the
displacement and the velocity of every oscillator. For a given breather of
frequency (wp) we define a nonlinear map Y = T()F ), which corresponds
to the time evolution of the initial vector X (¢ = 0) over a breather period
(ty = 27 /w) according to the equation of motion of the Klein-Gordon system
(1.4),

X(t=1t)=T(X(t =0)). (1.7)

The breather solutions with period t, are the fixed points of this map
therefore X}, = T(AX-'},). To find the breather solutions is equivalent to finding
the fixed points of T. It is convenient to start from a known solution and
using the map, try to find how this solution changes when one or more
system parameters vary. The initial solution we take is the trivial breather
solution at the anticontinuous limit (C' = 0). If we can vary the coupling by
small steps 6C', the breather will change in a continuous way. For small 6C
the new breather solution will differ from the initial one by a small vector

A,
ch.gc IX:C-I-&. (1.8)

If we substitute this into equation (1.7) we have:

Xb = T(X:b) =
X+A = TX+A) =
X+A = T(X)+dT x A (1.9)

where M = 0T is the tangent map of T.
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The tangent map can be calculated by integrating the linearized equa-
tions of (1.4).
mié; = =V"(u;)e; — C Z W (u; — uj)(e; — €;), (1.10)
<35>
where we have considered ¢; to be some small perturbation around the so-
lution u;. If we define the vector £ = {e1,...,en,61,...,éx )T, and with
the use of the map T, the time evolution over a breather period of the

perturbation will be
E(t=1)=M x E(t =0). (1.11)

The above equation provides us with a method of calculating numerically
the tangent map M. The numerical integration of the linearized equations
(1.10) over a breather period, with the appropriate initial conditions, gives
one column of the tangent map. In order to find the tangent map we have
to integrate the linearized equations 2N times, using each time as an initial
condition one column of the 2N X 2N unit matrix Ion. For every column of
Ion we choose as an initial condition, the numerical integration yields the
corresponding column of M.

We can now solve equation (1.9) to find A,
(M - 1)A = —(T(X) - X). (1.12)

The above equation cannot be solved directly since due to the translational
invariance of the system, the tangent map has one eigenvalue equal to 1 and
therefore (M — 1) is not invertible. Instead of finding the inverse matrix it
is possible to find a pseudo-inverse using the singular value decomposition
method [107]. This method consist on writhing M as the product of an
column orthogonal matrix U, a diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an orthogonal matrix
V.

(M-1)=U-W.VT, (1.13)
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The matrices U and V are each orthonormal in the sense that their columns
are orthonormal. This decomposition can always be performed, even for
non-square matrices. The inverse of U and V are equal to their transposes;
W is diagonal, so its inverse is the diagonal matrix whose elements are the
reciprocals of the elements w;. One of the singular values is equal to zero;
thus instead of the reciprocal of this value we put zero. The pseudo-inverse

of the matrix is then:
(M — 1)~" = V[diag(1/w;)]U7, (1.14)

where we put for all the singular values w; = 0, zero instead of 1/w;. Each of
the singular values, corresponds to a direction in the 2X N dimensional phase
space of the system. Putting in the pseudo-inverse matrix zero is equivalent
to eliminating the modification of the initial solution in this direction.

An other efficient and sometimes more accurate method for solving equa-
tion (1.12) is to minimize the distance in the phase space, between the
initial and the final point. The distance can be expressed by the norm
IT(X) + MA — (X 4 A)||>. The tangent map can be written with four
N x N block matrices A,B,C and D as

A B
M_[2N+(C D). (1.15)

For time reversible solutions, the initial velocity of every oscillator is zero
therefore we can chose A = (5 ,0), where § is a vector with N elements. The

minimization of the norm gives
§=—(A*-A+C* . C) . (A", C*)(T(X) - X) (1.16)

where (A*,C*)is a N X 2N matrix. The matrix (A*- A 4 C*. C) is then

invertible when the continuation of the breather is possible [11]-[15],[19].
In FPU chains there is no corresponding anticontinuous limit. The nu-

merical method described here can be applied with some modifications. A

simple way is to introduce artificially an on-site potential V(u). Following
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an appropriate path in the parameter parameter space, the breather solu-
tion can be continued up to the point where the on-site potential has been

removed [8]-[15],[19].

1.3 Linear stability analysis.

Long time simulations of equation (1.2) or (1.4) show that the breather can
be sustained in the system without energy loss. An other way of examin-
ing the stability of the breather is to perform a small perturbation of the
solution and see how it evolves in time. The evolution of sufficiently small
perturbations can be described with the linearized equations (1.10). The
linear stability analysis is based on the Floquet analysis of periodic orbits
(see Appendix A).

Equation (1.11) shows that a small perturbation of the breather, will
grow or decay, depending on the eigenvalues of the tangent map M which
will be called the Floquet operator or Floquet matrix. Since the dynamical
system is Hamiltonian, the Floquet matrix is symplectic which implies that
if A is an eigenvalue of M, then A*, 1/ and 1/\* are also eigenvalues of M.
This mean that when one eigenvalue is not on the unit circle, in the complex
plane, then there exists at least one eigenvalue with modulus larger than 1
( |A] > 1) outside the unit circle. When an eigenvalue of the Floquet matrix
has modulus larger than 1, then a small perturbation will grow exponentially
in time and therefore the breather is linearly unstable.

A discrete breather is linearly stable when all the eigenvalues of the
Floquet matrix M lie on the unit circle in the complex plane. When one
or more of the eigenvalues have modulus larger than 1, then the breather is
linearly unstable and a small perturbation will grow exponentially in time,
in the direction of the corresponding eigenvector.

If we take the derivative over time of equation (1.4) we see that ¢ =

#; is a solution of equation (1.10).This solution correspond to a doubly
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Imaginary Part

O

T 0O00—]

Real Part

Figure 1.3: The eigenvalues of the Floquet matrix in the complex plane for a
breather in the double well ®* potential. In the inset we see a magnification
around 1.

degenerate eigenvalue equal to 1. For small values of coupling, the single
breather is stable. The eigenvalues of the Floquet matrix except of the
pair at 1, are grouped into two symmetric bands which are related to the
phonons of the system. The corresponding eigenvectors are extended in all
the lattice. As the coupling increases, the eigenvalues move around the unit
circle. Depending on the details of the potential, some of the eigenvalues
may escape from the phonon band and move toward 1. The corresponding

eigenvector for these eigenvalues are in most of the cases localized.

Generally there are three different types of instabilities that can occur

in the system as the coupling increases:
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e Two symmetric eigenvalues collide on the unit circle at —1 and move

on the real axes.

e Two symmetric eigenvalues collide at 1 and move on the real axes. In
this case the continuation of the breather may end. The continuation
remains possible when the corresponding eigenvector has a different

spatial symmetry than the breather.

e Two eigenvalues with different Krein signatures ( and their symmetric
pair) collide at some point of the unit circle different than +1 and get

out the unit circle.

The Krein signature for a pair of eigenvalues (A, = exp 16, ) of the Floquet

matrix can be defined as
N
k(0,) = sign (ZZ(E;/ ' 6;:111\7 - '6;:/+N))
=1
where ¢/ is the complex eigenvector associated with the eigenvalue.

1.4 Mobility of a breather.

We consider a one dimensional lattice of anharmonic oscillators coupled
with linear coupling. For this 1D system and for soft on-site potential, it
has been observed that when the coupling increases, a pair of eigenvalues of
the Floquet matrix escape from the phonon band and moves toward 1 [16].
This pair of eigenvalues collides at 1 and escapes in the real axes. Before
the collision (see inset on figure 1.3) the eigenvalues are very close to 1 but
they lie on the unit circle, therefore the breather is stable.

The pair of eigenvalues are complex conjugate and therefore their eigen-
vectors of the Floquet matrix are complex conjugate. The eigenvector cor-
responding to these two eigenvalues has real part which is localized and
antisymmetric around the center of the breather, in the position subspace

and zero contribution in the velocity subspace. The imaginary part has zero
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contribution in the position subspace while it is localized and antisymmetric
around the center of the breather, in the velocity subspace. This eigenvector
is called the pinning mode. We can see the imaginary part of the pinning
mode for a breather in the double well ®* potential for frequency w, = 1.32

and coupling C' = 0.62 in figure (1.4).

0.02
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Figure 1.4: The imaginary part of the pinning mode for a breather in the
double well ®* potential.

If we excite the static breather with the pinning mode and evolve the
system in time, we see that the breather becomes mobile. In figure (1.5) we

can see the time evolution of the mobile breather.
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Figure 1.5: The time evolution of a mobile breather in the double well ®*
potential. We plot the breather every period.

1.5 Breathers in various one dimensional models.

The breather existence theorem and the numerical method described in the
previous sections are applicable for arbitrary lattice dimension. In this sec-
tion we will consider only one dimensional systems.

The equation of motion for a one dimensional Klein-Gordon lattice of
identical oscillators, coupled with linear coupling is (we have set the mass

of each oscillator equal to unity):
t; + V’(Ui) - C(u2~+1 + U1 — 2u2') =0 (1.17)

where the on-site potential V(z) can be any nonlinear potential. The po-
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tential must have at least one equilibrium point at zy. For a single oscillator
the frequency of small oscillations around the equilibrium point is denoted
with wy and it is equal with the square root of the second derivative of the
potential at the equilibrium point (w3 = V"(x0)).

In the limit of the small amplitude oscillations, we can linearize the pre-
vious equation and find the phonons on the system. The phonon frequencies
form a band with frequencies between wy and (/w2 + 4C. The dispersion
relation is w?(q) = w¢ + 4C'sin(q/2) where —7 < ¢ < 7 is the wave vector
and w is the phonon frequency. There is a gap between 0 and wy. The non-
resonance condition of the breather frequency with the phonons, forces the

breather frequency and all the harmonics to lie outside the phonon band.
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Figure 1.6: Discrete breather in the hard & potential.

Depending on the frequency of the oscillation, the potential is classified
as soft or hard. In a soft potential, the frequency of the oscillation is always

smaller than wy and it decrease when the amplitude of oscillations increase.
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In a hard potential, the frequency of oscillations is always larger than wy
and it increases as the amplitude of oscillations increase.

For a hard potential, the breather frequency and all the harmonics, in
the anticontinuous limit, are always larger than wy. For nonzero values of

coupling C', in order to avoid resonance with the phonons, the frequency

must be larger than the highest phonon frequency (wy > (/w3 + 4C).
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Figure 1.7: Discrete breather in the soft ®* potential.

For a soft potential, the breather frequency, in the anticontinuous limit,
is smaller than wy. In order to avoid resonances with the higher harmonics,
all the harmonics must be different than wy (pwp # wo with p integer).
For nonzero coupling the breather frequency and all the harmonics must lie

outside the phonon band (pw;, < wy or pwy > y/wd + 4C with p integer).

Some of the anharmonic potential were DB can be found are:

1 1
Vi(z) = 5:62 + Zx“ (1.18)
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Va(e) = 32° - 33 (1.19)
Vale) = (1 - a?)? (1.20)
Va(z) = 1 — cos(z) (1.21)

The first is the hard ®* and contains a square and a quadratic term. The
second is the soft ®* and it has the shape of an inverted double well. These
two are symmetric around zero. The third is the soft double well ®*; it has
two equilibrium points at £1. The fourth is the Sine-Gordon potential; it is

soft and it has infinite number of equilibrium points.

1.6 Discrete Breathers in FPU chains.

Recently [35] it was proved that discrete breathers can exist in FPU chains
as exact solutions of the system. For the proof they use an alternative
definition of the anticontinuous limit. They consider a diatomic lattice of
particles, coupled with nearest neighbor anharmonic interaction W. The
anticontinuous limit considered is obtained when the mass ratio m/M goes
to zero, where m is the mass of the light particles while M is the mass of
heavy particles.

In this limit M — co the heavy particles remain fixed while the motion
of the light particles decouples. Each of the light particles can oscillate
with a frequency wy. In [35] it was proved that these periodic orbits can
be continued for finite values of the mass M. In [36] discrete breathers of
the previous model were calculated using a variation of the Newton method
described in section (1.2). In some cases, depending on the interaction W,
it is possible to continue the periodic orbit until A = m, then the breather
found corresponds to the breather in the monoatomic FPU lattice.

An alternative way for studying the FPU lattice is by adding in the
Hamiltonian of the FPU lattice (1.1) a nonlinear on-site potential multi-

plied with some parameter A (1.1) [15],[19]. Then for A = 0 we have the
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initial FPU Hamiltonian, while for A # 0 the Hamiltonian describes a Klein-
Gordon lattice. With this potential it is now easy to define an anticontinuous
limit (A = 1 and C' = 0). Then by following a valid path in the parameter
space (A and (') breathers are found in the anticontinuous limit and can be

continued with the Newton method, until A = 0.

0.8

06 -
04
0.2

ol-
02 |
04 |
-0.6 |

Displacement

_0_8 I L L L L L 1 L 1
0 5 10 15 20

08
0.6 |
0.4
0.2

ol-
02 |

T T
o

Displacement

_04 [

_06 [

_08 I n 1 n L L

0 5 10 15 20
Lattice

Figure 1.8: a) The Sievers-Takeno mode in an FPU lattice with frequency
wp = 2.3 and coupling C' = 1. b) The Page mode for the same frequency
and coupling.

In what follows we use the last method for finding discrete breathers in
FPU lattices. For simplicity we chose the parameter A = 1 — (' and the
on-site potential V to be equal with W. For the hard ®* potential and for
a monoatomic lattice (m; = 1), it is possible to continue all the periodic

orbits from the anticontinuous limit until A = 0. If in the anticontinuous
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limit there is only one particle oscillating, while the others are at rest, the
breather found is Sievers-Takeno mode [1]. When two neighboring particles
are oscillating in anti phase, the breather found is the Page mode [2]. In
figure (1.8a) we can see the Sievers-Takeno while in figure (1.8b) we can
see the Page mode for the FPU lattice. The linear stability analysis of the
Sievers-Takeno mode and the Page mode shows that the first is unstable
because a pair of eigenvalues lie outside the unit circle in the complex plan.

The Page mode is stable (figure 1.9).

Imaginary Part

Real Part

Figure 1.9: The linear stability analysis for FPU breather. Circles denote
the eigenvalues of the Floquet matrix for the Sievers-Takeno mode while
squares the eigenvalues of the Floquet matrix for the Page mode. The first
is unstable while the second is stable.The frequency and the coupling are
wp, =23 and C' = 1.
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1.7 Experimental observation of discrete breathers.

Discrete breathers can also exist in non Hamiltonian systems. In [19],
[39],[40] a model was proposed for breathers in arrays of Josephson junc-
tions. Discrete breathers were predicted theoretically for this model and
recently there were two experiments where arrays of Josephson junctions
where constructed and discrete breathers where observed in these lattices
[46]-[49].

Discrete breathers have also been observed experimentally in the vibra-
tional states in crystals of highly nonlinear materials [50]. The experiments
were performed in a quasi-one-dimensional system, the halide-bridged transi-
tion metal complex {[Pt(en),|[Pt(en),Cl3](C104)4} where (en) = ethylene-
diamine. The strong coupling between the electronic motion and the lattice
makes this material highly nonlinear. The experimental technique used to
excite highly energetic vibrational motions was Raman spectroscopy. In
the overtone resonant Raman spectra some strongly increasing anharmonic
redshifts in the fundamental peaks where observed. These redshifts are as-
sociated to the existence of localized modes (DB) in the system created as

a result of the nonlinearity.

1.7.1 Discrete breathers in Josephson arrays.

Discrete breathers have been observed experimentally in coupled Josephson
junctions [47],[48]. A Josephson junction is formed between two supercon-
ducting island separated by a thin insulating barrier. Each island is charac-
terized by a macroscopic wave function ¥ ~ e, The dynamics of a single
junction is described by the phase difference ¢ = 63 — 61 between the two su-
perconducting island of the junction. The current through a single junction

is described with the Josephson relation

i=¢+T¢+sing (1.22)
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where T represents the dumping. The response of the junction to a current
is measured by the voltage of the junction which is given by the equation
u = (Po/27)d¢p/dt. In the first experiment they consider an anisotropic lad-
der array [47] (see figure 1.10a). In the ladder there are horizontal junctions
(described with the phase differences ¢} for the upper horizontal junctions
and with ¢¥ for the lower junctions) and vertical junctions (described with
the phase differences ¢¥). The two type of junctions have different critical
current, [.; is the critical current for the horizontal junctions while /., for
the vertical and h = I.,/1., is the anisotropy parameter. The Josephson
junction ladder is biased with an external dc current / transpose to the hor-
izontal junctions. In the second experiment [48] they construct an annular
anisotropic ladder which can be consider similar with the previous, with
periodic boundaries (see figure 1.10b).

The equations that describe the system can be written in the form

$Y 4 TG 4 sing? = 4 ﬂiL(—MHvé?_l Cwety),  (1.23)
Be 4 T +singh = — L (gh — 3 + eY), (1.24)

hBr,
GI4TOl puindl = g (el —d 4 van. (129

where \/¢; = ¢i41— i, D = i1+ ¢i—1 —2¢; and [y, is a parameter which
depends on the geometry and the critical current of the vertical junctions.

The breathers that where observed in these two experiments are roto-
breathers in the sense that one or more of the vertical junctions are whirling
wile all the others are oscillating with amplitudes that decay exponentially
from the center.

For the construction of these localized states, a local current [;,.,; is
applied into one of the vertical junctions. This local current excites one or
more of the vertical junctions. The excitation remains when the local current
is removed creating the breather. The number of the vertical junctions that

are whirling can be seen in a current-voltage I — V' diagram as a decrease
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of the voltage. In this / — V' diagram one can see the discrete breathers on
the system and from the decrease of the voltage to calculate the number of
vertical junction that are excited. An other method used for the observation
of these breathers is the low temperature scanning laser microscopy. A
focused low-powered laser is used to scan the ladders surface. The laser
heats locally the sample in an area of a few micrometers creating a voltage
variation. Then the voltage variation is measured as a function of the beam
coordinate. In [48] there are several pictures showing the discrete breathers

measured using this method.

1.7.2 Discrete breathers in a low dimensional material.

Recently it was reported that discrete breathers where observed experi-
mentally in the vibrational states of a quasi-one-dimensional, highly non-
linear and discrete material, the halide-bridged transition metal complex
{[Pt(en):][Pt(en),Cl3])(C1O4)4} where (en) = ethylenediamine [50] (for sim-
plicity called PtCl). The source of the nonlinearity in this material is the
strong coupling between the lattice and the electronic motion. Therefore
Raman spectroscopy can be used for the investigation of localized modes
due to nonlinearity. The material is a homogeneous quasi-one-dimensional
crystal formed of Pt(en), units. Each unit is associated with two ClO,.
Raman Resonance has been used in the past to study the ground state as
well as the photoexcited states (see references in [50]).

The Raman spectra of this material was obtained using an Art laser
illumination at 514 nm and a single crystal of PtC'[ at 12 K. The fundamental
Raman spectra exhibits fine structure with up to six well-resolved modes.
In the overtone spectra the fine structure of the fundamental evolves to
a three peak pattern which indicates the localization of the energy into a
single PtC'ly unit. The fundamental and the overtone spectra for the pure
3501 as well as the 37Cl isotopic sample is shown in [50]. In this spectra

can be seen that the dominant peak in each overtone exhibits a strong
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anharmonic redshift. This behavior on the overtone spectra indicates that
all the vibrational energy is localized in one PtC'ly unit. The localization is
possible only if the nonlinearity is sufficiently strong, otherwise the quantum

tunneling will not allow localized bound states to exists.

1.7.3 Discrete breathers in spin wave modes in antiferromag-
nets.

Recently it was proposed that discrete breathers can appear in an easy-
axis antiferromagnetic chain [51] when the system is driven by a circularly

polarized ac cw field. The Hamiltonian of the system is
H=2J3 8,801 =D (52) (1.26)

with exchange constant ./ and anisotropy constant ) positive.

The molecular dynamics simulations have shown that localized modes
spontaneously appear on this model for driving frequencies in the gap below
the antiferromagnetic resonance for any positive value of D. These modes
are created due to modulational instabilities of the uniform spin wave mode.
The parameters used for the molecular dynamics simulations are chosen
to match those of Fel, easy-axis antiferromagnet, the (CoHs N Hy)2CuCly
quasi-one-dimensional antiferromagnet and an anisotropic one dimensional
antiferromagnet. In all cases the localized modes appear spontaneously in
the simulations.

These localized modes were observed experimentally [52] in the
(CyHsN H3),CuC'ly antiferromagnet (usually called C'(2)CuCly). For the
experiment a C'(2)C'uCly single crystal with typical dimensions 3, 3,0.5 mm?
was used. The sample was first exposed to a driving pulse with driving
frequency 1.46 GHz and for different power, for 400 ps. The absorption
spectra of the sample was measured 20 us after the driving pulse.

The absorption spectra can be seen in FIG. 2 in [52]. In this figure

is observed that for small driving power the antiferromagnetic resonance
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peak breaks into a broad band. The existence of intrinsic localized modes

is associated with this breakup of the antiferromagnetic resonance.

1.7.4 Discrete breathers in waveguide arrays.

An other system where discrete breathers have been observed is an array
of coupled waveguides [53]. The array consists of a large number of iden-
tical coupled waveguides. The system can be described with the discrete
nonlinear Scrédinger equation (DNLS)

dE,

2
E,=0 1.27
i (1.27)

+0E, + C(Fpt1 + Eno1) +7

En

where F, is the electric field in the nth waveguide, C' is the coupling con-
stant, § is the linear propagation constant and + is the nonlinear parameter
depending on physical properties of a single waveguide. In this equation the
time is replaced with the distance in the z direction.

For the observation of discrete breathers an optical parametric oscillator
(OPO) pumped by a laser was used. The light from the OPO was polarized
and reshaped before it was focused with a lens on one side of the array. At
the other side of the array the outgoing light was imaged with an infrared
camera. Half of the outgoing light was collected in a detector in order to
measure the output power.

When the input power was low the output had a linear behavior. The
light was spread into two lobes traveling away from the center of the array,
with many secondary central peaks. As the power of the incoming light was
increased, the outgoing light started to form a central intense lobe. At even
higher power, a discrete breather was formed. The images of the outgoing
light for the three cases as they were imaged with the infrared camera as
well as the power distribution as a function of the waveguide number, of the

outgoing light, can be seen in [53].
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Figure 1.10: a: The Josephson junction ladder. Josephson junctions are
marked as x. b: The Josephson junction annual ladder.
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Chapter 2

Discrete breathers as
impurity modes: a simple
model.

In the present chapter we present a simple Klein-Gordon model where dis-
crete breathers (DB) exist. The system we are studying is a one dimensional
lattice of coupled harmonic oscillators with linear coupling, where we have
inserted an extra nonlinear term in the on-site potential at the central os-
cillator. Using the standard Newton method we show that breathers exist
in this simple system. We also find using the rotating wave approximation,
an analytical expression for the solution. We then compare these simple
breathers to the expomentially localized mode of a linear system with a

mass impurity and we find that some of their properties are very similar.

In figure 2.1a we can see a lattice of coupled harmonic oscillators. At the
central site (¢ = 0) we add a nonlinear term at the on-site potential. The
nonlinear term in the on-site potential of the central oscillator is essential
in order to fulfill the necessary conditions for the existence of DB’s. In this
case the system supports breather solutions, centered at the nonlinear site,
that are exponentially localized with a frequency outside of the phonon band

and similar to a system with nonlinear potential in all sites [5]-[9].

27
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®) i=0

m m,

Figure 2.1: A lattice of coupled harmonic oscillators. a) A nonlinear term
has been added in the on-site potential (V) of the central oscillator (i = 0).
b) A mass impurity (mg) has been placed at the central site (i = 0) of the
lattice.

The Hamiltonian of the system is the one given in (1.3) and the and
the corresponding equations of motion are given in (1.17). We consider the
mass of every oscillator to be equal to unity (m; = 1), and the local potential
V(z) harmonic for every oscillator except for that site where the breather is

centered. We take three cases of different potentials:

1 1
Vi(z;) = Emf + 6@01:10? (2.1)

1 1
‘/2(.7;2') = 27'2 - 627017’? (2.2)

1 1, . 1

Va(zi) = 5722 + ‘52',05(-”? + 11’?) (2.3)
where ;¢ is the Kronecker Delta. All three potentials have an equilibrium
point at x = 0 and the frequency of small oscillations around the equi-
librium point is wg = 1. The potential V; is hard in the sense that the

frequency increases when the amplitude of the oscillation increases and the

corresponding breathers must have frequency wp higher than the phonon



2.1 Numerical Calculation of Breathers. 29

frequency (w? > w? + 4C) while V, and V; are soft potentials and the fre-
quency of oscillations decreases when the amplitude increases, thus wy < wy.
The main difference between the second and the third potential is that the
second is symmetric around the equilibrium point at zero while the third
is not. We will see the effect of the symmetry of the potential later when
we try to apply the rotating wave approximation and compare the breather
solution with the linear impurity mode.

For the calculation of the linear impurity mode we consider only the
linear part of the potential. We also set one of the masses to be different
than unity mg = 14+ dm (figure 2.1b). For the numerical calculation of the
breather in the system and the linear impurity mode we use a small system
with periodic boundary conditions.

A single site nonlinearity and the means through which it affects self-
trapping has been investigated in the context of the discrete nonlinear
Schrédinger equation [88]-[89]. In the present work we show that a single
nonlinear site is sufficient to support exponentially localized and periodic
solutions (discrete breathers) in the system. Using the standard Newton
method in section 2.1 we find numerically the exact breather solution. We
also perform the Floquet analysis in order to investigate the linear stabil-
ity. At the end of section 2.1 we compare the solution with the well known
discrete breathers in a non-linear Klein-Gordon chain. In section 2.2 we
use the rotating wave approximation to find an analytical expression for the
solution and we compare it with the exact numerical solution. In section
2.3 we compare the nonlinear impurity with the well known mass impurity

mode in a linear system.

2.1 Numerical Calculation of Breathers.

For the numerical investigation we consider breathers centered on the non-

linear site. In the anticontinuous limit C' = 0 the breather solution exists
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and is trivial to find; the particle at the nonlinear site oscillates with fre-
quency wp chosen to be different from wy. The oscillation frequency depends
on the amplitude of the oscillation. This trivial breather solution can be con-
tinued to nonzero values of C'. In order to continue the solution we increase
the coupling with small steps and we use the standard Newton method to
find the new solution [9]-[18]. Using this method we are able to continue
the breather solution for large values of C' until the frequency or one of its

harmonics enters the phonon band.

In figure 2.2 we portray the breather solution for the potentials shown in
equations (2.1)-(2.2) and for several values of the frequency and the coupling.
We observe that the solution is always exponentially localized around the
nonlinear site. For the hard potential (figure 2.2a and 2.2b) the neighboring
sites are oscillating with opposite phase while for the soft potential (figure
2.2¢-2.2f) the neighboring sites are oscillating in phase. The potential of
equation (2.2) is symmetric while the potential of equation (2.3) is not.
This affects the breather solution in the following way: in the first case the
oscillation of every particle is symmetric around zero while the second is
not. In figure 2.2e and 2.2f we plot both the maximum and the minimum

amplitude of the oscillation for the asymimetric breather.

In order to investigate the stability of the solution we use the Floquet
analysis for the system. In figure 2.3 we observe that all the eigenvalues
of the Floquet matrix of the system lie on the unit circle and therefore the
solution is linearly stable. We also performed long time simulation in the
system in order to confirm the stability of the solution. In figure 2.3a we plot
the eigenvalues of the Floquet matrix of the system for the hard potential
in the complex plane. In figure 2.3b and 2.3c¢ we see the eigenvalues of the
Floquet matrix for the case of the soft potential of equation (2.2) and (2.3)
respectively, in the complex plane. All the eigenvalues lie on the unit circle

and the breathers are linearly stable.

We have seen that one nonlinear site is sufficient for breather existence
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and the solutions are stable. That result shows that only the central site of
the breather has strong nonlinear behavior while the rest can be considered
like linear oscillators. We may think of the central site to oscillate in the non-
linear regime with frequency different from that of linear phonons, while the
neighbors to this central site are forced to oscillate with the same frequency
due to the coupling. This localized energy cannot travel in the system since
the oscillators are out of resonance. For that reason the excitation remains

exponentially localized around the central nonlinear site.

Using the same method we can find the breather solution which cor-
responds to the same value of coupling and frequency in a system with
nonlinearity in every site and we compare with the previous case. We see
in figure 2.2 with dashed line and with points, the breather solution for the
three different potentials.

As we can see in figures 2.2a and 2.2b, there are no significant differences
between these two cases for a hard potential. In these plots we can compare
the breathers for two different values of the coupling and we can see that

they are identical.

For a soft potential like V, and V5 and for small coupling the two
breathers are very close to each other (figure 2.2c and 2.2e). For larger
values of the coupling we observe in figure 2.2d and 2.2f that the breather
with single site nonlinearity remains exponentially localized while in the
fully nonlinear system more than one site have strong nonlinear behavior in
the center but they preserve the exponential behavior in the tails. When
the coupling increases the central site of the breather in the system with
nonlinearity in every site changes very little while in the case of only one
nonlinear potential its amplitude is increased (figure 2.2c and 2.2d). This
shows an important difference between the hard and soft anharmonicity.
For the soft potential not only the central site but also the neighboring sites
experience the an-harmonic part for large coupling. But the main proper-

ties of the breather remain the same viz. exponentially localized oscillation
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with frequency outside of the phonon band. When the neighboring sites are
harmonic, the central site has to oscillate with larger amplitude in order to

force the neighbors to follow it.

2.2 Rotating Wave approximation.

From the numerical solution it is clear that breathers decay exponentially in
space. Therefore it is possible to use the following ansatz as an approximate

solution [18],[23]
z; = OAOOAM(—].)i cos(wpyt) (2.4)

z; = agall cos(wyt) (2.5)

for the hard and the soft potential respectively. If we substitute into the
equation of motion (1.17) for m; = 1 we derive two equations, one for
the central site (¢ = 0) and one for the remaining lattice. For the hard
potential of equation (2.1) we obtain finally after performing the rotating

wave approximation (RWA) the following equations:

zag =wf—1-2C(a+1) (2.6)

Ca®>+(2C+1-wi)a+C=0 (2.7)

In order to derive these two equations we use the equality cos®(A) = 2 cos(A)+
1 cos(3A) and neglect the higher order terms. From equation (2.7) we see
that the frequency of the breather can be treated as a parameter. The ex-
ponential localization parameter a depends only on the coupling and the
breather frequency. Necessary condition for a solution to exist is the fre-

quency to be out of the phonon band (w? < 1 or w? > 1+ 4C). For a hard

potential the breather frequency is above the phonon band. The solution is

4C +2)w2 +4C +1

—(2C +1-wp) = Jwf = (
5C (2.8)

o =



2.3 Dynamical impurities. 33

and from equation (2.6) we have

4
ag = :l:\/g(wg— 1-2C -2Ca) (2.9)

in figure 2.4a it is shown a as a function of the frequency w? and in figure
2.4b it is shown the amplitude of the central site ag.
For the soft potential of equation (2.2) if we substitute into the equation

of motion (1.17) we have

3
Zag =1-w;—20(a—1) (2.10)
Ca’+ (wi—2C-1a+C =0 (2.11)

and the solution is

—(w =20 = 1) = Jwi = (4C + 2)0? +4C +1
a= (2.12)
2C
1 .
ag ==+ 5(1 —wi+2C-2Ca) (2.13)

We can see in figure 2.4c¢ and 2.4d the dependence of @ and ag as a function
of the frequency.

From figure 2.4 it is clear that for a symmetric potential the rotating
wave approximation gives solution close to the exact numerical solution for
large enough coupling. For a soft potential we see from the same figure that
for small frequencies, when the second harmonic of the breather frequency
approaches the phonon band, the exact numerical solution differs from the
approximate one. In this case higher harmonic corrections should be consid-
ered. For a non-symmetric potential the ansatz is not a good approximation

because the oscillations of the particles are not symmetric around zero.

2.3 Dynamical impurities.

For a system of linear coupled identical oscillators is known that when one

of the masses is replaced with a larger or a smaller one, then one of the
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eigenfrequencies of the system escapes from the phonon band, and for that
eigenstate the corresponding eigenvector is exponentially localized around
that mass [90]. A large mass impurity creates a localized mode with corre-
sponding frequency smaller than the phonon frequency while a small mass
impurity creates a mode with frequency larger than phonons. The first link
to breathers appears here, a hard potential can be related to a small mass
impurity while the soft potential can be related to a large mass impurity. In
both systems the solution is exponentially localized with frequency outside

of the phonon band.

In order to compare the two cases (mass impurities and breathers) we
use equation (1.17) with m; = 1 for breathers with one of the potentials
of equations (2.1),(2.2) and (2.3), while for the mass impurity we use only
the linear part of the potential and we set in one site the mass to be equal
to mg = 1 + dm where dm is a small quantity positive or negative. For
breathers we use the standard Newton method while for the linear impurity
we use the exact solution which can been found analytically using the Green
function and numerically diagonalizing the matrix of the system. For each
potential we first choose the coupling and the frequency, then create the
breather with the given frequency and look for the mass that corresponds to
a linear impurity mode with the same frequency. We then compare the two
solutions, the breather and the impurity mode. We mention here that the
impurity mode is a solution of the linear system, thus for the comparison,
we choose to normalize this mode so that to have the same amplitude with

the breather at the central site.

We can see in figure 2.5a and 2.5b the linear impurity mode and the
breather with the same frequency for the first potential V7, for two different
values of the coupling. As we can see they are essentially identical, there
is no difference in the limit allowed by the numerical errors. The same can
be observed in figure 2.5¢ and 2.5d for the second potential V,. In figure

2.5¢ and 2.5f we plot both the maximum and the minimum displacement of



2.3 Dynamical impurities. 35

the breather, because V3 is non symmetric, which means that the breather
oscillation will not be symmetric too. In this case we can observe that there
are some differences between the breather and the impurity mode but these
differences can be explained by the non symmetric oscillation of the breather
and the fact that the impurity mode is a solution of the linear system, ie. it
will be necessarily symmetric. We thus can see that the only case where the
breather profile is different from the impurity mode is when the potential is
not symmetric; in all the other cases they are identical.

The linear impurity mode can be found analytically using the ansatz
from equations (2.4) and (2.5) for smaller and larger mass respectively. If
we substitute in the equation of motion we derive the following equations:

for a smaller mass (—1 < dm < 0):
~*(14+dm)+1+2C(a+1)=0 (2.14)

Co’+(1+2C —w?)a+C =0 (2.15)

for a larger mass (dm > 0):
~*(14+dm)+1-2C(a—-1)=0 (2.16)

Ca*+ (W -1-2C)a+C =0 (2.17)

If we compare equation (2.7) with (2.15) and equation (2.11) with equa-
tion (2.17) we observe that they are identical. The exponential localization
parameter « in every case depends only on the frequency for a fixed value
of coupling. The specific frequency can be chosen by modifying the mass
impurity in equations (2.14) and (2.16).

From the analysis above we can conclude that breathers are dynamical
impurities in the system induced by the nonlinearity. The use of the rotating
wave approximation demonstrates that the mechanism responsible for the
exponential localization of breathers is the same with that of mass impuri-

ties. When one lattice site is initially displaced in the nonlinear regime of
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the potential, then this site plays the role of an impurity since all the others
are still oscillating in the linear regime and this impurity creates the expo-
nentially localized solution of the system. Omne of the differences between
linear and nonlinear impurities is that equations (2.6),(2.7),(2.10) and (2.11)
are approximate and are not valid when one of the higher harmonics of the
breather frequency enters in the phonon band. The breather solution exists
only when all harmonics of the frequency are outside of the phonon band
while a linear impurity mode exists for every frequency as long as an appro-
priate mass (dm) is chosen. The mass impurity mode has a fixed frequency
for a given impurity mass while the amplitude of oscillations and the total
energy can vary. A breather can have a wide range of frequencies and there
is a relation between the frequency and the total energy or the maximum
amplitude of the oscillation. The impurity mode is linear with only one
frequency while the breather is highly nonlinear and all the harmonics of
the frequency are excited.

In a system of coupled harmonic oscillators we can find breather solutions
when we add a single an-harmonic nonlinear potential term. This solution is
stable and has similar properties with the well known breathers that can be
found if we add anharmonicity in every oscillator. Using the rotating wave
approximation we can obtain an analytical expression for the breather solu-
tion. This solution is a very good approximation when the higher harmonics
of the main frequency are not close to the phonon band. If we compare our
solution with a mass impurity mode we can see that nonlinearity plays sim-
ilar role in a system as a mass impurity and the mechanism responsible for

the exponential localization of the solution is in both cases similar.
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Figure 2.2: Solid line depicts the breather in a system with only one non-
linear site while with dotted line and boxes a breather in a fully nonlinear
lattice. a) Potential Vi, ¢ = 0.051 and w, = 1.625. b) Potential V;,
C = 0.151 and w, = 1.625. ¢) Potential V,, C' = 0.051 and w, = 0.9848. d)
Potential V5, C' = 0.151 and w;, = 0.9848. e) Potential V3, C' = 0.051 and
wp = 0.9608. f) Potential V3, C' = 0.101 and w, = 0.9608. In figures e and f
the minimum displacement of both breathers ( dashed line and long dashed
line with triangles respectively) is shown additionally.
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Figure 2.3: Solid line is the unit circle, with circles denote the eigenvalues
of the Floquet matrix for the system with only one nonlinear site and with
crosses are shown the eigenvalues of the Floquet matrix of the fully nonlinear
system. a) Potential V7, C = 0.051 and wp, = 1.625. b) Potential V3,
C = 0.051 and w;, = 0.9848. c¢) Potential V3, C' = 0.051 and w, = 0.9608.
f) Potential V3, C' = 0.101 and w;, = 0.9608.
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Figure 2.4: With a continuous line we plot the RWA solution while with
points the exact numerical solution. (a) The exponential localization param-
eter a in the hard potential as a function of w?. The solid line corresponds
to coupling C=0.2 and the dashed line to C=0.5. (b) The amplitude of the
central site in the hard potential as a function of w?. (c) The exponential
localization parameter o in the soft potential as a function of w?. (d) The
amplitude of the central site in the soft potential as a function of w?.
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Figure 2.5: Solid line plots the breather in a system with only one nonlinear
site while with circles is shown the impurity mode with the same frequency.
a) Potential V4, C' = 0.051, w, = 1.625 and my = 0.4182. b) Potential
Vi, C = 0.151, wy = 1.625 and my = 0.5056. ¢) Potential V5, C' = 0.051,
wp = 0.9848 and my = 1.086. d) Potential V,, C' = 0.151, wy = 0.9848 and
mgo = 1.1422. e) Potential V5, C' = 0.051, wp = 0.9608 and mg = 1.1589.
f) Potential V5, C' = 0.101, wy = 0.9608 and my = 1.2078. In figures e and
f the minimum displacement of both breather and impurity mode ( dashed
line and boxes respectively) is additionally shown.



Chapter 3

Breather modification due to
second neighbor interactions.

In the previous two chapters we saw that discrete breathers exist in systems
of nonlinear oscillators coupled to each other via short range nearest neigh-
bor interaction. Presently we would like to investigate what happens when
we include interactions not only between nearest neighbors but with second
neighbors as well. From the Klein-Gordon Hamiltonian (1.3) we can derive
the equation of motion if we add an extra term for the second neighbor

interaction.

c Cy
H= Z—u +V( +71('uz-—u2-+1) +—( — Ujyy)? (3.1)

We consider one dimensional chain of oscillators with mass equal to unity

and harmonic interaction:
i; = =V (ui) + Cr(uigr + wicy — 2u;) + Co(uiza + wia — 2u;)  (3.2)

where (' is the nearest neighbor coupling and 5 is the coupling extending
to second neighbors.
If we linearize equation (3.2) we can calculate the dispersion relation for
the system.
2 _ 2 .24 -2
w® =wj +4C sin (5) + 4C5 sin*(q) (3.3)

41
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where w is the frequency and ¢ is the wave vector of the phonons. In figure
(3.1) we plot the dispersion relation for several values of the second neighbor

coupling C'.

25

15 F N 1 —

Figure 3.1: The dispersion relation for second neighbors interaction. With
continuous line we denote the dispersion relation with Cy = 0, while with
dotted line C's = 0.1, dashed line Cy = 0.3 and long dashed line C's = 0.5.
We take wy = 1.

3.1 Rotating Wave Approximation.

Let us consider that the on-site potential V' is harmonic for every oscillator
except the one at ¢ = 0 as in the previous chapter. We are going to consider
the same ansatz as in section (2.2). For the soft potential (2.2) we consider
the ansatz (2.5) and for the hard potential (2.1) the ansatz (2.4).

Upon substitution in equation (3.2) we derive the equations for the soft

potential:

zag =1-w—20(a—1)—2Cy(a*-1) (3.4)

Pl(Oé) = CQO(4 + Cla?’ + (wg —-1- 201 — 202)042 + 0104 + C2 =0 (35)
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Equation (3.4) can give o as a function of the frequency, the coupling
and the localization parameter. The second equation (3.5) can be solved
numerically and give the localization parameter a. In the limit C'y = 0 the
equation (3.5) takes the form [Cia* 4+ (w? — 1 —2C1)a+ Cy]a = 0 which has
three solutions. The relation between the brackets is the same as (2.11) and
the solution is given by (2.12) with the substitution C' = ;. If we plot the
polynomial on the left side of equation (3.5) as a function of a (figure 3.2)
we see that there are two solutions between —1 and 1 which can be found

numerically through the Newton-Raphson method.

Figure 3.2: The polynomial of equation (3.5) as a function of a for C; =
0.5 and w; = 0.9. Continuous line corresponds to 'y = 0.5, dashed line
corresponds to Cy = 0.

Comparing the intersection points in figure (3.2) we see that the interac-
tion between second neighbors makes the breather wider ( larger value of a).
We also see that there is a second solution for o negative which corresponds
to a solution with ¢y > 1. Since the potential (2.2) has two local maxima at

+1, this value of a and ag does not correspond to a physically acceptable
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solution.

Similarly for the hard potential if we substitute the ansatz (2.4) in equa-
tion (3.2) we get:

Zag =wf—1-2C(a+1)+2Cy(a* -1) (3.6)

Pg(a) = —C2a4 + C]a3 + (1 — {.dg + 20] + 202)0[2 + C]Q — CQ =0 (37)

In the limit C'; = 0 equation (3.7) becomes C1a? +(1—w?+2C )a+Cq)a = 0
which can be solved exactly (see equations 2.7 and 2.8). If we plot the left
side of equation (3.7) as a function of a we observe that there are real
solutions between —1 and 1 only for small values of (s, for large C5 there

are no intersection points with the a-axes (figure 3.3).
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Figure 3.3: The polynomial of equation (3.7) as a function of a for C; =
0.5 and wp = 1.8. Continuous line corresponds to Cs = 0.05, dashed line
corresponds to Cy = 0.1 and dot-dashed line corresponds to Cy = 0.
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3.2 Numerical calculations and stability.

In order to confirm the results arising from the RWA, we will find the nu-
merically exact DB using the Newton method described in section (1.2).
In figure 3.4 we see the DB calculated for the double well potential
(1.20) and in figure 3.5 the DB calculated for the soft ®* (1.19). For a
given frequency and a given value of the nearest neighbors coupling (C4),
when the second neighbor interaction increases, the DB becomes wider and
occupies more lattice sites as it can be seen in these figures were we plot
the solution for C'y = 0 and some non-zero value. This broadening of the
DB was predicted by the RWA as we saw in the previous section and more

precisely in equation (3.5) and figure 3.2.
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Figure 3.4: The DB in the double well potential for C'; = 0.231 and Cy =
0.115 (continuous line and circles) and C; = 0 (dashed line and boxes), the
frequency is wp = 1.32.

The linear stability analysis of the solution shows no significant changes
in the stability of the discrete breathers due to second neighbors interac-

tion. When the DB is linearly stable for C's = 0 in the sense that all the
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Figure 3.5: The breather in the soft ®* potential for C; = 0.131 and C =
0.032 (continuous line and circles) and Cy = 0 (dashed line and boxes), the
frequency is wy = 0.952.

eigenvalues of the Floquet matrix lie on the unit circle, then it will remain
stable also for non-zero values of C'5. There is one case were the effect of the
second neighbor interaction can be dangerous for the DB due to resonances
with phonons. For large values of the coupling Cy the dispersion relation
becomes wider as it can be seen from equation (3.3) and figure 3.3. If the
DB frequency or one of its higher harmonics is close to the phonon band,
then due to the broadening of the band there are pairs of eigenvalues collid-
ing at 1 (in the unit circle in the complex plane) as Cy increases. After the

collision, it is not possible to continue the solution for larger values of C's.

As we mentioned in the apendix A, linear stability does not mean real
stability, therefore the linearly stable DB can be destroyed through a large
perturbation. In the case of second neighbor interaction, the solution be-
comes more robust and can remain intact under the influence of much larger

perturbations compared to DB’s in systems with only nearest neighbors in-
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teraction. This means that although in both cases the DB is linearly stable,

when there is interaction between second neighbors the DB is more stable.
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Figure 3.6: The breather in the hard ®* potential for C; = 0.131 and
C'y = 0.032 (continuous line and circles) and C'; = 0 (dashed line and boxes),
the frequency is wp = 1.25.

In figure 3.6 we see the DB in the hard ®* potential (1.18). As it can be
seen from equation (3.7) and figure 3.3, when the coupling between second
neighbors increases, the width of the breather decreases. This can also be
seen in figure 3.6 where we plot the DB for C'; = 0 and for 'y = 0.032 for
the same frequency and for the same Cj. The DB found with the use of the
Newton method starting from the anticontinuous limit corresponds to the
second intersection point in figure 3.3. The first intersection point in figure
3.3 does not correspond to an existing DB. Using as an initial guess for the
Newton method the solution given from the ansatz of equation (2.4), a and
ag the values corresponding to the first intersection point, it converges to
the DB solution found from the anticontinuous limit which corresponds to

the second intersection point.
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Chapter 4

Breathers in higher
dimensional lattices.

In this chapter we are going to investigate the existence, stability and mo-
bility of discrete breathers in higher dimensional lattices. The existence
theorem is valid for lattices of any dimension [8], [11]. The energy prop-
erties of discrete breathers in a d-dimensional lattice (where d is 1,2 or 3),
were investigated in [43], [44],[45]. In these works the authors considered a
d-dimensional super-cubic lattice with N oscillators on each direction. They
found that the breather energy in a system of coupled oscillators with acous-
tic phonons and for small amplitude oscillations is proportional to the num-
ber of oscillators to a power depending on the dimension, viz. Fj ~ N1=2/4,
According to this expression, in an infinite lattice, the breather energy di-

verges at d = 3, it stays finite (nonzero) for d = 2 and it tends to zero for

d=1.

We first introduce two different quasi-one dimensional models, investi-
gate DB existence and demonstrate DB mobility under certain conditions.
Subsequently we study a two dimensional lattice of oscillators and investi-

gate the existence and the mobility of DB’s.

49
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4.1 Breathers in quasi-1D model.

The first quasi-one dimensional model we are going to study arises from a
one dimensional one if we consider interaction among second neighbors with
strength equal to the one of the nearest neighbors interaction. One way to
imagine the topology of the lattice is to think of two parallel one dimensional
lattices of oscillators where the second lattice is shifted to the left by half
lattice constant. Each oscillator is coupled with its nearest neighbors with
coupling C'; the motion of the oscillators is along the chain only ie. it is
one dimensional. In figure 4.1 we can see a schematic representation of the

lattice and the interactions.

-2 ' +2

i-1 +1

Figure 4.1: A schematic representation of the quasi-1D model.

As we can see from figure 4.1, an oscillator at lattice site 7 interacts with
the oscillators at sites 2 — 2,72 — 1, i+ 1 and 7 4+ 2. The Hamiltonian and the

equation of motion for this system are respectively:

i+2
1
H = Z —al + V() +C Z E(u,;—uj)2, (4.1)
j=i-2

JE
iy = =V'(u;) + Cluipr + wicr — 2u) + Cuips + uimy — 2u), (4.2)
where the second summation in the Hamiltonian is over nearest and second

neighbors and C' is the coupling. We consider the case of the double well
potential V = (1 — 2?)2.
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Figure 4.2: The DB for the quasi-1D lattice. C' = 0.6 and w, = 1.3.

In figure 4.2 we plot the DB calculated with the Newton method for this
system. The stability analysis shows that the single breather is stable for
small values of the coupling C' < 0.15 and for C' > 0.18. For C between
0.15 and 0.18 a pair of eigenvalues lies outside the unit circle creating an
instability. As the coupling increases from zero, a pair of eigenvalues escapes
from the phonon band and moves toward to 1. The corresponding eigen-
vector has different symmetry than the breather and when the eigenvalues
collide at 1, they escape to the real axes. As the coupling increases, the pair
of eigenvalues returns to 1 and starts moving again on the unit circle, this
time away from 1. At this point a second pair of eigenvalues escapes from
the phonon band and moves towards 1. For C' = 0.185 these two pairs collide
at some point on the unit circle. The second pair of eigenvalues coresponds
to the the pining mode for the system. After the collision, the eigenvalues
associated with the pining mode move towards 1 while the other pair moves
back to the phonon band. These collisions can be seen in figure 4.5 where

we plot the argument and the modulo of the eigenvalues as a function of C'.

Using the Newton method we are able to construct multi-breathers start-

ing from the anticontinuous limit with more than one oscillator excited. We
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Figure 4.3: a) The 71,17 multibreather. Solid line and circles corresponds
to C' = 0.13 and w, = 1.31 while dotted line and squares corresponds to
C = 0.33 and wp, = 1.31. b) The stability analysis of the ”1,1” multibreather.
Circles corresponds to C' = 0.13 and squares to C' = 0.33. The multibreather
for small coupling is unstable with a pair of eigenvalues outside the unit
circle, in the real axis.

use the notation of section 1.1 to identify the multi-breathers, with ”1,1”
we mark the multi-breather where two neighboring sites are oscillating in
phase at the anticontinuous limit (figure 4.3a) while with "1, —1” we mark
the multi-breather where two neighboring sites are oscillating in anti-phase
at the anticontinuous limit (figure 4.4a).

The ”1,1” multi-breather is unstable for small values of the coupling.
There exists a pair of eigenvalues outside the unit circle on the real axis,
around 1. As the coupling increases from zero, they move away from one,
and as it continues to increase, they start approaching. For ¢' > 0.3 this
pair of eigenvalues reaches the unit circle and the breather becomes stable
(figure 4.3b). This pair of eigenvalues is associated with the pining mode; the
difference is that there is no contribution to the velocities, the corresponding
eigenvector has non-zero elements only in the position regime and therefore
it cannot move the breather.

The second multi-breather (71, —1") is stable for small values of the
coupling (C' < 0.01). For C' = 0 there exist two pairs of eigenvalues at

one and as the coupling increases one of these two pairs moves toward the
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Figure 4.4: a) The ”1,-1” multibreather for C' = 0.101 and w, = 1.31. b)
The stability analysis of the ”1,-1” multibreather. The multibreather is
unstable with two pairs of eigenvalues outside the unit circle.

phonon band. When this pair collides with the phonon band 4 eigenvalues
escape outside the unit circle (figure 4.4b). At C' = 0.21 these eigenvalues
reenter the unit circle but another pair of eigenvalues escape from the phonon
band and collide at 1; the corresponding eigenvector has the same symmetry
like the breather and therefore the continuation of the solution becomes

impossible for C' > 0.21.

4.1.1 Ladder.

The second quasi-one dimensional model we are going to study has the shape
of a ladder. The ladder consists of two parallel sub-lattices of oscillators and
each oscillator is coupled with its nearest neighbors in the same sub-lattice
and with its neighbor on the other sub-lattice; motion takes place along the
ladder long axis only. A schematic representation of the lattice is plotted in
figure 4.6.

The Hamiltonian and the equations of motion for the ladder are:

Ho o= 5 [3id 4 362+ V(w) + V(o) + G (i — i)’

+ S (vig1 — v)? 4+ (v — uy;)z] (4.3)

t; = —Vl(ui) + C(uwis1 + wic1 — 2u;) + C(v; — uy) (4.4)
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Figure 4.5: The eigenvalues of the Floquet matrix as a function of the
coupling C'. In the first figure the argument is plotted while in the second
the modulo of the eigenvalues. There is an instability for 0.15 < €' < 0.18
due to a collision at 1 of a pair of eigenvalues. We can see in the first figure,
a pair of eigenvalues that escape from the phonon band and collide at 1 for
C = 0.15. At C' = 0.185 there is a second collision with an other pair of
eigenvalues.

v = —V’('UZ') + C(‘Ui+1 + v, — 2'?.72') + C(UZ — 'UZ') (4.5)

{u;} describes the oscillations on the first sub-lattice and {v;} describes the
oscillations on the second sub-lattice, C' is the coupling and V' = %(1 —z?)%

Breathers can be calculated in this system with the use of the Newton
method. In figure 4.7 we plot the single breather with only one site excited
at the anticontinuous limit. In figure 4.8 we plot a multi-breather with two

sites excited in phase at the anticontinuous limit. In figure 4.9 we plot the

energy of the single breather with continuous line, and that of the multi-
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Figure 4.6: A schematic representation of the ladder.

Figure 4.7: A single breather on the ladder. C' = 0.1 and w;, = 1.3.

breather with dashed line as a function of the coupling C' for w, = 1.3. For
C' < 0.25 there are two curves. At C' = 0.25 the two breathers have the
same energy due to a pitchfork bifurcation that occurs. For C' > 0.25 there

exist only the multi-breather.

For C' < 0.25 the single breather is stable while the multi-breather is
unstable. In figure 4.10 we plot the argument and the modulo of the Floquet
eigenvalues for the multi-breather as a function of the coupling. For C' < 0.25
there is a pair of eigenvalues outside the unit circle, on the real axis. As C

reaches the bifurcation value €' = 0.25, the eigenvalues enter the unit circle
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Figure 4.8: The multi-breather with 2 sites in the same unit cell excited.
C =0.1 and wy = 1.3.

and the multi-breather becomes stable. After they enter the unit circle
they start moving towards the phonon band. For large values of coupling,
another pair of eigenvalues escapes from the phonon band and moves towards
1. These eigenvalues correspond to the pining mode of the system. The
pining mode consists of two parts, one for every sub-lattice. Every part is
antisymmetric around the center of the breather. Using the pining mode we

are able to excite the multibreather and make it move in a direction parallel

to the ladder.

4.2 Breathers in two dimensions.

We now consider a two dimensional square lattice. Every lattice site is
occupied by a single oscillator. Each oscillator is coupled with its nearest
neighbors with linear coupling. A schematic representation of the lattice is
plotted in figure 4.11 The Hamiltonian and the equations of motion of the

system are:

2| Q)

1.
H =30 sty + Vi) + o ((uig = wiwn )’ + (uig = wign)’)  (4.6)
2J
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Figure 4.9: The Pitchfork bifurcation in the ladder.

g = =V (i) + Clutigrg+ tiorj = 2ui ) + Cuijpr + i1 = 2uij) (4.7)

where C' is the coupling and V is the on-site potential. The summation
in the Hamiltonian is over 7 and 7, 7 corresponds to the x-direction of the
lattice while j to the y-direction. For the on-site potential we consider the
case of the soft double well potential of equation (1.20).

In figure 4.12 we plot the single breather for the soft double well poten-
tial. For small values of the coupling the single breather is stable. As the
coupling increases, a pair of eigenvalues escape from the phonon band and
collide at 1. After the collision they escape on the real axes and the breather
becomes unstable. As the coupling increases more, these eigenvalues return
at 1 and reenter the unit circle. At this point two pairs of eigenvalues escape
from the phonon band and move towards 1; the corresponding eigenvectors
for these two pairs are the pining modes of the system. These two pining
modes are antisymmetric around the center of the breather in directions
which are rotated 45° from the main directions of the lattice (see figure
4.13).

If we excite the single breather using one of the pining mode, the breather
becomes mobile and start to move in the direction of the pining mode. In

figure 4.14 we plot the breather of figure 4.12 when we excite it with one



58 Breathers in higher dimensional lattices.

Argument

Modulo

08

06 [

0.4

Figure 4.10: The eigenvalues of the Floquet matrix as a function of the
coupling ' for the multi-breather on the ladder. In the first figure we plot
the argument while in the second we plot the modulo of the eigenvalues.
The multi-breather is unstable for C' < 0.25 and stable for larger values.

of the pining modes after ¢ = 400 time units. As we can see the breather
has been moved several lattice sites due to the excitation. If we excite the
breather using the linear combination of the two pining modes, then the
breather start to move in one of the main directions of the lattice (figure

4.15).
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Figure 4.11: A schematic representation of the two-dimensional lattice.

Displacement

Figure 4.12: The single breather in the two-dimensional lattice for the soft
double well potential. C' = 0.452 and wp = 1.3.
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Displacement

Figure 4.15: The mobile breather of figure 4.12 after t=400 time units. The
breather is excited with a linear combination of the pining modes of figure
4.13 and is moving in the y-direction.



Chapter 5

Breathers in
Hydrogen-bonded networks.

Hydrogen bonded (HB) systems, such as ice, carbohydrates, solid alcohol
and others exhibit some properties that can be explained in terms of a
highly nonlinear behavior of the system. The electrical conductivity in these
systems occurs due to proton transport in the form of topological solitons
[69]-[63]. The hydrogen bonds are of the type (...X-H..X-H..X-H...X-H...)
where X is some heavy negative ion and H is the proton. Each proton is
connected with the ions with a covalent bond (-) and a hydrogen bond (...)
(see figure 5.1). The protons in the HB can be found in equilibrium positions
separated by a potential barrier. This potential is due to the interaction of
the protons with the ions. The height of the potential barrier that separates
the two equilibria depends strongly on the distance between adjacent X ions.

If we consider that the heavy ions (X) are static, the proton motion
can be described with the classical Hamiltonian in a standard dimensionless

form:

Z[—u + C (g1 — un)* + V(up)], (5.1)

where u,, = u,(t) is the displacement of the nth proton of the chain from
its equilibrium position, C' is the strength of the nearest-neighbor oscillator

coupling and V is an on-site potential normalized by V" (0) = 1.

63
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Figure 5.1: The hydrogen-bonded network. Large circles correspond to
heavy ions (X) and small circles to protons (H). The heavy ions are consid-
ered to be static.

It has be shown that this model exhibits nonlinear waves like breathers
[8]-[16] and topological solitons (kinks) [60]-[62],[116],[117]. We are going to
study the interaction between these two different types of nonlinear waves
[21]. In this work we will be reporting results primarily for sine and double-
well nonlinear on-site potentials. In order to address the particle-like prop-
erties of discrete but relatively wide sine-Gordon breathers we use the well
known exact continuous breather solution [65]. To find the center of mass
dynamics of the breather solution we introduce the dynamical variables
Xp(t), Xp(t), representing, respectively, the position and velocity of the
breather center of mass. We use the approach of ref. [64] and work in
the continuous limit (n = z). Contrary to previous work [66]-[68], we in-
troduce only one collective coordinate, namely the position of the breather
center. Therefore, on the basis of the standing breather solution, we write

the following approximate moving breather ansatz:

up(z,t) = 4arctan[tan sin(cospy t)
x sech (sin(f—o)(m - XB)>] (5.2)

where 0 < p < 7/2, and ¢y = +/C is the dimensionless characteristic velocity.
It appears that the critical width A. for the existence of this (standing)
breather solution is A\, = ¢g.

As with the breather solution, we also introduce the kink solution with

a set of collective coordinates, respectively X (t), Xz (t). The moving kink
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ansatz is

ug(z,t) = 4arctanexp [+(z — Xg)/co] - (5.3)

Upon substitution in the continuous system Hamiltonian, summing these
solutions (v = up + ux) and elimination of all but the center of mass dy-
namical variables of the breather and kink, we obtain the averaged effective

breather-kink energy, that, for small velocities, reads
1, 1.,
E = EB -|‘ §A/[BXB -I— E]{ -I— 5]1/[[{)(]'{ -|‘ (J(R)7 (54)

with the effective interaction potential

r— R

€o

UR) = —Stanzu/ dz sech?

sin

X sechQ(wx)[l + tan? yu sech®( )] =32, (5.5)

Co Co
where R = X — Xg. In these equations the expected stationary breather

and kink energies and masses are given by

Eg = 16¢cosinp, Mp = (16/co)cosp (tanpu — ) (5.6)
E]{ = 8607 AJI{ = 8/60 . (57)

For p — 7/2 we have Mg = 2My, while in the other extreme p — 0 we
have Mg — 0.
For the kink and breather collective coordinates we calculated also the
field momentum P given by
o0 . .
P=- dz Ui, = MpXp+ Mg Xk (5.8)
-0
where the overbar denotes the time-averaged quantity over one breather
period.
These equations approximate the complicated problem of a breather in-
teracting with a sine-Gordon kink as a problem of two classical particles of
masses Mg and Mg respectively with internal energies Kg and Ky inter-

acting through the complex potential U(R), where R is the relative distance
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Figure 5.2: Kink-breather attractive potential for breather frequencies
wp=0.1, 0.2, 0.5, and 0.9. In the regime wy < wy/3 the potential has the
form of a double well.

between the particles. In figure 5.2 we plot the breather-kink interaction
potential for various breather frequencies. We observe that the potential
has a double well structure for smaller breather frequencies but switches
to a single well at higher frequencies. The double well structure signifies
that there is an equilibrium distance from the kink at which the system
of breather-kink can be at rest, or that the breather can execute bounded
oscillations around this minimum. This result, does not seem to be spe-
cific to the sine-Gordon system. For instance, for the case of a ¢* lattice
with the on-site potential V(u) = (1 — u*)%/8, a similar approach can be
used, although the analytical calculations are considerably more difficult
since the ¢*-breather is not symmetric. To find, in the continuum approxi-
mation, a small-amplitude breather solution to this model, we can also use
the multiple-scale asymptotic expansion (for details see, e.g., refs. [71]) in

the small parameter ¢ = v/1 — Q2, where  is the breather frequency. Sub-
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stituting the expansion
1 : :
up(t) = £1 + ie[Anemt +eD, ¥t 4 c.c.]+ EC,+ ... (5.9)

(where the upper (lower) sign stands for oscillations in the right (left) well
of the double-well on-site potential) into the discrete equation of motion and
equating coefficients at the same powers of the parameter ¢, one finds the

equation

55_2(An+1 - 2An + An—l) - An

3 3
T 340Cn F 5ADn - gAi =0 (5.10)

and the relations C,, = F342/4 and D, = +A2%/4. Using the solution in
the continuum limit of these equations, one can write the corresponding

(standing) breather solution:

2 )
ug(z,t) = +1+ %secb% cos(€2t)
2
‘ 22 [ 1
(A) sech 3 [1 3cos(2Qt)] ) (5.11)

where A = ¢g/e is the correlation length of oscillations and the breather
frequency Q is given by Q% = 1 — (¢o/A)%. In the continuum limit, A >> 1.
Consider now the (anti)kink motion in the ¢* model with sufficiently
small velocities and denote the (anti)kink position by X g (¢). Then for suffi-
ciently small velocities the (anti)kink solution of Eq. (5.1) in the continuum

limit can approximately be represented by
ug(z,t) = + tanh [(z — Xx)/2¢0], (5.12)

where the upper (lower) sign corresponds to the kink (anti-kink). We are
interested in the breather-(anti)kink interaction. Note that the ansatz for
this interaction cannot be assumed in the additive form because of topolog-

ical arguments. Using equations (5.11) and (5.12), the additive form should
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be modified to

- Xg

u(z,t) = sech”

2 r— X
+ {1 — (%) sechZT : B [1 _ %cos(QQt)]}

xr — X]'{
tanh ——— 5.13
X tan 2eg ( )

cos(§2t)

where the upper (lower) sign corresponds to the interaction of a breather
with a kink (anti-kink).
The total energy can be represented to lowest order in A by the same

sum of equation (5.4), but with

2 oo _
UR) = <%0> /_OO dz Sechzgsechzi
x 1 x 1

260
X (C—O tanh = R tanh —— — ~sech® —— — —) (5.14)
A A 2C0 4 2(30 2 ' '

This effective potential has the form of a single well, centered at £ = 0.
Here in the lowest orders of ¢, the breather and kink energies and masses

are given by

Ep 4c5/3N, Mp = 4c5/9N°, (5.15)

Ex = 2c/3, Mg =2/3c. (5.16)

Except for the well-known kink relation Ex = Mc?, we note a similar
breather relation with low amplitudes. Indeed, for small amplitudes the
correlation length of the SG breather A = ¢y/sinu ~ ¢o/u. Using the last
relation, one finds for both models the following equation: Eg = 3MpA2.

There is clear numerical evidence presented in figure 5.3 showing the
breather trapped in the vicinity of the kink and executing small oscillations
around the minimum of an effective potential. These minima can bee seen
in figure 5.2 in the Sine-Gordon model, but only for very small frequencies,
where the breather is unstable. Numerical evaluation of the expression of

equation (5.14) for the same parameters set as in figure 5.3 results in a single
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10 20
Lattice site

Figure 5.3: Trapping of an initially static breather in the vicinity of a ¢*
kink. Parameters are w2 = 2,w, = 1.37819 and coupling C' = 0.301.

attractive well centered around R = 0. This indicates that for the case of the
asymmetric ¢* breather additional collective coordinates are necessary for
explicit prediction of the double well feature of the kink-breather attractive
potential that is seen numerically in figure 5.3. By plotting the average over
a period, of the potential energy of the system we see that when the breather

comes close to the kink, it sees a potential barrier and it is forced to return.

The trapping of a breather in the vicinity of a kink is not the only possi-
ble breather-kink dynamical configuration. For an initially static breather-
kink system, depending on the parameter regime and additional perturba-
tions due to proximity to the discreteness regime, we may have a detrapped
situation. In figure 5.4. we present numerical simulations for the sine-
Gordon system with an initially static breather-kink configuration. When
the breather is placed close to the kink, it is repelled (figure 5.4a), while
when placed further is attracted to the kink (figure 5.4b). In the last case,

shown in the figure, we note that the breather is actually destroyed with a
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subsequent generation of linearized modes.

Let us finally consider the case of moving breathers impinging on the
kink. To generate moving breathers we use the method of ref. [16]. We
recall that the moving breather, in addition to an inertial mass also carries
internal energy Fp. This energy, in principle can be deposited in any lattice
location whenever the breather "reacts” with another species, such as for
instance a kink. This situation is seen in figure 5.5 where a kinetic breather
reacts with the kink, releasing all internal and kinetic energy to the kink
which then begins moving. In this case, breather energy is transformed into
kink kinetic energy. In figure 5.6, on the other hand, we observe a breather-
kink elastic collision, where the breather is simply reflected from the kink
with very little distortion. Finally, in figure 5.7 we observe a third kink-
breather reaction pathway though which the breather energy is released to
the vicinity of the kink with subsequent generation of linearized modes. In
this case, the breather is destroyed without passing its internal energy to
the kink in the form of kinetic energy.

From the previous analysis we observe that the breather-kink interaction
is a complex one, leading to a variety of outcomes. From the energy transfer
point of view, a breather is an efficient agent that acts as a particle with
its internal structure characterized by a given amount of internal energy. It
is also characterized by certain reactivity features that enable it to transfer
and deposit this energy in lattice regions with kinks. The kink-breather
reaction is complex, characterized by a trapping potential that depends on
the breather frequency and the breather initial momentum and possibly the
relative phase. For breathers with low frequencies we find that a length
scale is created within which a breather-kink bound state can be formed.
Moving breathers on the other hand can react with kinks transforming all
their energy into kink kinetic energy, or having an elastic collision with the
kink. Finally, complete breather annihilation is also possible with subse-

quent generation of linearized extended modes.
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Figure 5.4: (a) Breather repulsion when placed close to the center of the kink
with zero initial velocity. (wo = 1.0, w, = 0.9844, C' = 0.251). (b) Breather
absorption by the kink, while breather internal energy is transformed into
phonons. (w? = 2, w, = 1.3921, C' = 0.691).
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phonons are excited. The value of the parameters are, wy = 1, w, = 0.9844,
coupling C' = 0.649, perturbation strength / = 0.161043
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Figure 5.7: In this figure we see that the breather is absorbed by the kink,
and the internal energy of the kink is transformed into outgoing phonons.
Parameters are w? = 2, wj, = 1.3921, coupling C' = 0.691 and [ = 0.166813.
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Chapter 6

Discrete Breathers in strong
hydrogen bonds.

In this chapter we consider a diatomic chain of heavy ions coupled through
strong, unimodal hydrogen bonds, that are much stronger than other sys-
tem interactions. Each proton of the hydrogen bond experiences a single-
minimum potential resulting from its interaction with nearest-neighbor heavy
ions; this potential contains soft or hard anharmonicity. This diatomic chain
of nonlinearly coupled masses admits discrete breather solutions in the gap
of the phonon spectrum. Simple analytical arguments accompanied by ex-
plicit solutions demonstrate the existence of gap breathers with both types
of symmetry, viz. the odd-parity or even parity pattern. Depending on
the type of the anharmonicity the breather can be centered at a hydrogen-
bonded proton for a soft interaction or at a heavy ion for a hard interaction.
These analytical results are verified numerically through the use of the nu-

merically exact procedure from the anti-continuous limit.

6.1 Introduction.

The basic idea in the nonlinear model for proton dynamics in a HB chain
stems from the fact that the proton potential in each H-bond of the chain can

be constructed as the sum of two two-body ion-proton potentials, e.g., the

75
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Morse potentials [73]. If this (asymmetric) two-body potential is sufficiently
strong compared with other interactions (eg., between heavy ions or with
an external on-site coupling), the resulting potential for the HB proton has
only one minimum and the H-bond in this case is referred to as the strong
H-bond [74]. Otherwise, this potential has two degenerate minima separated
by a barrier [73],[76],[64] and long wavelength breather solutions have been
studied earlier[70]. Schematically, a chain with strong hydrogen bonding
can be represented by the diatomic sequence - -+ - X-H-X-H-X-H-X- -,
where X denotes a heavy ion and H a proton.

In general, a 1D anharmonic diatomic lattice that has a gap in its phonon
band, admits standing (anharmonic gap modes) and moving (gap solitons)
solutions which were studied using different approximate techniques [77]-
[80]. There is also a proff that discrete breathers are excact solution in
some casses [35], [36]. In particular, the diatomic chain with realistic (soft
and asymmetric) two-body nearest-neighbor potentials was studied recently
both analytically and numerically [35],[36],[81]. In all previous studies, the
method used for finding the gap breathers was unable to give more informa-
tion regarding the origin of these solutions and their stability. The main aim
of present work is to find in chains with strong hydrogen bonding exact so-
lutions for discrete gap breathers and to investigate their stability, using the
anticontinuous limit approach [15]. This numerical work is accompanied by
analytical arguments based on the similarity [22] between the mass-impurity

mode [83] and intrinsic localized modes.

6.2 The diatomic FPU model.

The system we are studying is a diatomic Fermi-Pasta-Ulam (FPU) chain.
In each unit cell there is a heavy atom (eg. oxygen with mass M = 16) and
a light atom (eg. hydrogen with mass m = 1). Each atom is considered

to interact only with its nearest neighbors with an an-harmonic potential
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W. We consider two qualitatively different potentials W, one being soft
while the other hard. The displacement of the heavy atoms is (),, while the

displacement of the light atoms is ¢,. The Hamiltonian of the system is:
1 c 2 1 .2
H=>" FM@n + 5men” + W(@n = gn) + W(gn — Qnt1) (6.1)

where the summation is over all the unit cells of the lattice. The equations

of motion are,
IV[QTL = VV,(Qn - Qn) - VV,(Qn - Qn—l) (6'2)

méy, = WI(QnH — Gn) — Wl(qn — Q) (6.3)

For the potential W we will use one of the following two functions:

1. 1
1. 1
W(z) = 5.772 + 1.7:4 (6.5)

For the numerical calculation of the breathers it is essential to introduce
in our system an anticontinuous limit. To achieve this we add an on site
nonlinear potential in every particle multiplied with some parameter 7 while
the nonlinear dispersion potential is multiplied with parameter A. The an-
ticontinuous limit is then for n = 1 and A = 0 while the original system we
want to study corresponds to n = 0 and A = 1. The continuation from the
trivial solution found in the anticontinuous limit can be through any path
in the parameter space which connects these two points. For simplicity we
choose n = 1— X\ and the on site potential be equal to potential W. The new

modified equations are
MQn = —=(1=OW'(Qn) + A(W'(gn — Q) = W'(Qn = ¢n-1))  (6.6)

mg, = _(1 - )‘)I/V,(Qn) + ’\(W/,(Qn+1 - qn) - Wﬂ(‘]n - Qn)) (6'7)
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6.3 Phonons and Dispersion relation.

Since we deal with a diatomic chain, it is well known that if we linearize
the equations of motion, we can find the phonon dispersion relations of
the system. The phonon spectrum consists of two bands, the acoustic one
corresponding to frequencies between 0 and w; as well as the optical one,
corresponding to to frequencies between w, and ws. The dispersion relation
and the characteristic frequencies can be calculated analytically [106].

A necessary condition for the breather to exist is to avoid resonances
with phonons, meaning that the DB frequency and all its harmonics must
lie outside the phonon band. The continuation of the breather from the
anticontinuous limit can be performed only if in every continuation step the
frequency fulfills the previous restriction.

To find a valid continuation path it is necessary to know, for each A, the
dispersion relation. The corresponding linearized equations of equations 6.6

and 6.7 are
A/IQn = _(1 - )‘)Qn + A(qn - 2Qn + Qn—l) (6-8)

min, = —(1 = A)gn + MQnt1 — 2¢n + Qr) (6.9)

and if we substitute @, = Aexp(ikn — iwt) and ¢, = Bexp(ikn — iwt)
where k is the wave-vector and w is the phonon frequency, we can find the

dispersion relation. The frequencies of the acoustic band as a function of A

are
M A+1)—VA
Wy = \/( +m)(A+1) (6.10)
2Mm
and for the optical band
M A+ 1)+ VA
w, = \/( A+ 1)+ (6.11)
2Mm

where A = (m — M)} (A +1)2 + 4mM A*(2 + 2 cos(k)). In figure 6.1 we show
with continuous lines the higher and the lower frequency of the acoustic and

the optical band. In order to avoid resonance with the second harmonic, the
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A

Figure 6.1: The dispersion relation for the diatomic FPU lattice with masses
M/m=16/1 as a function of A. With continuous line we plot the optical and
the acoustical band. With dashed line we plot the optical band divided
by 2, which corresponds to the breather frequencies for which the second
harmonic enters in the optical band. With dotted line we plot the optical
band divided by 3, which corresponds to the breather frequencies for which
the third harmonic enters the optical band. With dotted-dashed line we see
the optical band divided by 4, which corresponds to the breather frequencies
for which the fourth harmonic enters the optical band. Due to the specific
value of the M /m ratio, the lower dotted-dashed line collides with the upper
boundary of the acoustic band.

breather frequency must lie outside the region which is denoted with dashed
lines and corresponds to the higher and the lower frequencies of the optical
band divided by 2. Similarly for the third harmonic, the frequency must lie
outside the region denoted with dotted lines and corresponds to the higher
and the lower frequencies of the optical band divided by 3 and the doted-
dashed line the same frequencies divided by four (for the fourth harmonic).
Due to the mass ratio M/m = 16/1 the fourth harmonic resonance region

overlaps with the acoustic band creating a thin zone just above it which
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is forbidden for the frequency. For every step in the continuation path,
it is essential for the frequency to lie outside the phonon band. Thus the
frequency can lie within the gap between the optical and the acoustic band
as long as the harmonics do not resonate with the phonons, or above the

optical band.

6.4 Local anharmonicity and Rotating Wave Ap-
proximation.

One of the properties of a breather solution is that it is exponentially local-
ized thus only the central particles are oscillating with large amplitude while
the rest of the system can be consider to be harmonic. A first approximation
in order to calculate the breather is to neglect the anharmonic term from
the interaction potential except for the interaction of the central cite of the
breather with its neighbors.

For a soft interaction potential W (given in equation 6.4), the breather
will be centered in a light particle. We can consider the center of the breather
to be on cite gqy. The equations of motion for central cite, the nearest

neighbors and the lattice will be respectively
mio = —(1 = AN)W'(qo) + AW(Q1 — q0) = W(q0 — Qo)) (6.12)
MQ1=-(1-XQ1+ M(a — Q1) — W(Q1 - q)) (6.13)
mip = =(1 = A)gn + A(Qnt1 = @n) = (@0 — Qn)) (6.14)

*Mén = _(1 - )‘)Qn + ’\((qn - Qn) - (Qn - ‘Zn—l)) (6-15)

The first approximation for the breather solution can be found if we
apply the rotating wave approximation in the above equations. Since we are
interested for the breather solution in the FPU chain, we set A = 1. One
basic property of the breathers is that they are spatially localized. We thus
consider an ansatz that assumes the system is divided into two sub-lattices,

one for the heavy particles and one for the light particles. In each sub-lattice,
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we consider that the amplitude of the oscillation is decaying exponentially
from the center of the breather and the nearest neighbors in the same sub-
lattice they have opposite signs (they oscillate in anti-phase). All the above

assumptions are expressed in the following equations:

Qo = Fo cos(wt) (6.16)
Qn = (—1)”A0p|”|_1 cos(wt) for n >0, (6.17)
Qn = (—=1)"" Agp!"l cos(wt)  for n <0, (6.18)
qn = (—1)”B0p|n|_1 cos(wt) for n#0, (6.19)

(
If we substitute this ansatz in equations (6.12)-(6.15) and neglect the higher

order terms, we can derive the following algebraic equations.

(mw? — 2)Ey — 240 + ;(A0 + Fp)® =0, (6.20)
3
(Mw? —2)Ag — Eo + By + 1(Ao+ Eo)® =0, (6.21)
(mw® — 2)Bo + (1 - p)Ag = 0, (6.22)
(Mw? — 2)Agp + (p— 1) By = 0. (6.23)

In order to derive these equations we have used the approximation cos®(z) ~
%cos(m). These equations can be solved numerically with the Newton-
Raphson method and the solution for the case where M = 16, m = 1
and for several values of the frequency can be seen in figure 6.2.

The same analysis can be performed for the case of a hard potential W
(given in equation 6.5). The breather now must be centered on a heavy
particle (Qg). If we consider again that the interaction is harmonic for the
lattice except for the interaction with the central site, we derive the following

equations:

MQo = —(1= )W (Qo) + A(W'(g0 — Qo) — W'(Qo — ¢-1))  (6.24)
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Figure 6.2: The rotating wave approximation for the soft potential. We
observe the dependence of the parameters of equations (6.20)-(6.23) as a
function of frequency.

mgo = —(1 = N)go + A((Q1 — 90) — W'(q0 — Qo)) (6.25)
mg, = _(1 - ’\)Qn + ’\((Qn+1 - qn) - (Qn - Qn)) (6'26)
/V[C?n = —(1 — )\)Qn + )\((Qn - Qn) - (Qn - Qn—l)) (6'27)

As in the case of a soft potential we consider the ansatz

Qo = Eq cos(wt) (6.28)

Qn = (—1)"Agp"I=t cos(wt)  for n #£0, (6.29)
¢n = (=1)"Bop™ cos(wt)  for n >0, (6.30)
gn = (=1)"" Bop!"I=" cos(wt) for n <0, (6.31)

If we set A = 1 and substitute into equations (6.24)-(6.27) we derive the

following algebraic equations:

3
(Mw? — 2)Ey + 2By + 5(B0 — Fp)® =0, (6.32)
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Figure 6.3: The rotating wave approximation for the hard potential. The
values of Fy, Ag and By grow very fast as the frequency increase. For larger
values of the frequency, there are only complex solutions of the corresponding
equations.

(mw? —2)By — Ao+ Fo — Z(B0 — B =0, (6.33)
(Mw? —2)Ag + (p—1)By = 0, (6.34)
(mw? — 2)Bop + (1 — p)Ag = 0. (6.35)

In order to derive these equations we have used the approximation cos®(z) ~
%cos(m). These equations can be solved numerically with the Newton-
Raphson method and the solution for the case where M = 16, m = 1
and for several values of the frequency can be seen in figure 6.3.

In addition to using an approximate approach based on the RWA one
can also use the numerically exact method based on the idea of the anticon-
tinuous limit and calculate for both hard and soft anharmonicity the exact
numerical solution for the equations (6.12)-(6.15) or (6.24)-(6.27) respec-

tively. The continuation from the anticontinuous limit (A = 0) is performed

in a path ( in the A—w space) which avoids all the resonances of the breather
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frequency or the harmonics with the phonon band. For each step we increase
A by a small quantity AA and then we calculate the phonon frequencies from
equations (6.10) and (6.11). If there is a resonance we modify the breather
frequency by a small quantity in order to avoid the resonance. We then
calculate the exact numerical breather using the standard Newton method,
for these specific values of A and w. In the next step we increase A and we
proceed.

In this simple model the only existing breather is the odd parity or
Sievers-Takeno mode[1]. The even parity or Page mode [2] cannot be found
due to the fact that it involves more than one anharmonic oscillator and
thus it cannot exist in the single anharmonic oscillator model. We will find
the even parity mode and study its stability in the next section where we
will treat the original system with nonlinear interactions for every particle.

For the soft interaction potential the breather solution can be found for
every allowed frequency within the gap. The breather is always centered on a
light particle. The stability analysis shows that when the breather frequency
or one of the harmonics is just below the optical band, the breather is stable
while when one of the higher harmonics approaches the optical band from
above the breather is unstable.

For the hard interaction potential the breather solution can be found
only for frequencies close to the acoustic band and it is centered on a heavy
particle. The stability analysis shows that when one of the harmonics is
just above the optical band the breather is stable while when one of the

harmonics is just below the optical band the breather becomes unstable.

6.5 Even and Odd parity modes

Let us now use the anticontinuous limit and the Newton method to investi-
gate the existence and the stability of the Sievers-Takeno (ST) mode or odd
parity mode and the Page (P) mode or even parity mode. We will use the
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equation 6.6 and 6.7. We choose some initial condition at the anticontinuous
limit (A = 0) and with the Newton method we continue this solution until
A = 1. The continuation must be in a path (in the A —w space) which avoids
all the resonances of the frequency or the harmonics with the phonons.

For the soft interaction potential of equation (6.4) both (ST) and (P)
modes can be found. For the ST mode, the initial condition at the anti-
continuous limit is chosen so that all the particles are at rest except one of
the light particles oscillating with some frequency within the gap. For the
(P) mode the initial condition is chosen so that all the particles are at rest
except for two neighboring light particles (in the light particle sublattice)
chosen to oscillate at some frequency within the gap, with opposite phase.
The (P) mode is a multibreather with a heavy particle at rest in the center

and its nearest neighboring light particles oscillating in antiphase.

Using the Newton method both (ST) mode and (P) mode can be found
for all the valid frequencies. In figure 6.4a we can see the (ST) mode for two
different frequencies, one just below the optical band and one with second
harmonic just above the optical band. In figure 6.4b we can see the (P)

mode for the same frequencies.

If we perform the Floquet stability analysis for the (ST) mode we can see
that this mode is stable when the frequency is just below the optical band
and unstable when the harmonics aproach the optical band from above.
One pair of eigenvalues moves toward 1 on the unit circle as the frequency
decreases and for some specific value they collide at 1 and escape on the
real axes making the (ST) mode unstable. For the mass ratio M/m = 16/1
there exist a critical frequency where the breather change its stability which
is w. = 0.9627. This frequency is close to the minimum of the p(w) curve
and therefore the change in the stability can be related with the change on

the slope of this curve.

The (P) mode is unstable for all the frequencies with more than one

Floquet eigenvalues to lie outside the unit circle. In figure 6.4c we plot the
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(ST) mode Floquet eigenvalues and in figure 6.4d we plot the (P) mode

Floquet eigenvalues.

The (ST) mode and the (P) mode can be found for the hard potential
(6.5), using the Newton method and the anticontinuous limit. For this po-
tential the (ST) mode is centered in a heavy particle. The initial condition
places all particles at rest and one heavy particle oscillating with some fre-
quency within the gap. For the (P) mode the initial condition places all
particles at rest except for two neighbors in the heavy sublattice which are
oscillating at some frequency within the gap, in antiphase. In figure 6.5a
we can see the (ST) mode for two frequencies. The first frequency is just
above the acoustic band while the second frequency has its third harmonic
just below the optical band. In figure 6.5b we see the (P) mode for the same

frequencies.

The stability analysis shows that for this specific mass ratio M/m the
(ST) mode is unstable for every frequency within the gap. Due to the fact
that the mass ratio has an integer square root equal to 4, when the fre-
quency is in a thin region just above the acoustic band, the fourth harmonic
resonates with the optical band. To avoid this resonance we studied the
case where the mass ratio is of the order M/m = 2.5/1. For this case, when
the breather frequency is in the gap, all its harmonics are higher than the
optical band and therefore we avoid the resonances. The stability analysis
for this mass ratio shows that the (ST) breather is stable only when its
frequency is close to the acoustic band. For larger frequencies the breather
is unstable. The critical frequency, where the instability occurs is at 0.9492
while the upper edge of the acoustic band corresponds to frequency 0.8944
and the difference is 0.0548. For this specific mass ratio the stability analysis
shows that there exist a critical frequency within the gap at w = 1.1. For
all frequencies larger than the critical value, the (P) mode is unstable while
for all the lower frequencies the (P) mode is stable. The stability analysis
for the (ST) mode and for mass ratio M /m = 16/1 is shown in figure figure
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6.5c.

For every mass ratio we can find that the (P) mode is stable when the
frequency is just above the acoustic band or one of its harmonics is just above
the optical band and unstable when the frequency or one of its harmonics
is just below the optical band. The stability analysis for the (P) mode is
shown in figure 6.5d.
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Figure 6.4: The Sievers-Takeno and the Page mode for a soft interaction.
The mass ratio is M/m = 16/1. a) With continuous line and circles the
ST mode for frequency w = 1.4 and with dashed line and squares the ST
mode with frequency w = 0.74. b) With continuous line and circles the P
mode for frequency w = 1.4 and with dashed line and squares the P mode
mode with frequency w = 0.74. ¢) The stability analysis for the ST mode
of figure 6.4a. Circles correspond to w = 1.4 and squares to w = 0.74. d)
The stability analysis for the P mode of figure 6.4b. Circles correspond to
w = 1.4 and squares to w = 0.74. In the inset, a magnification around 1
shows the instability of the first P mode.
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Figure 6.5: The Sievers-Takeno and the Page mode for a hard interaction.
The mass ratio is M/m = 16/1. a) With continuous line and circles the
ST mode for frequency w = 0.384 and with dashed line and squares the ST
mode with frequency w = 0.451. b) With continuous line and circles the P

mode for frequency w = 0.505 and with dashed line and squares the P mode
mode with frequency w = 0.627. ¢) The stability analysis for the ST mode

of figure 6.5a. Circles correspond to w = 0.384 and squares to w = 0.451. In
the inset a magnification around 1 shows the instability of the first ST mode.

d) The stability analysis for the P mode of figure 6.5b. Circles correspond
to w = 0.505 and squares to w = 0.627.
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Chapter 7

Interaction of breathers with
mass impurities.

In the present chapter we investigate the existence and the mobility of DB’s
in one dimensional Klein-Gordon system with a mass impurity. Recently
[41],[42] they found that DB’s exist in a disorder system. It was also found
that DB’s with frequency within the phonon band can exist in a disorder sys-
tem. In this case the intra-band breathers, ie. the breathers with frequency
within the phonon band, can be delocalized. In this chapter we investigate
a simpler system with only one mass impurity.

The equations of motion for the system are
m;I; + V'(:v,;) — C(:c,;_H + 2,1 — 2.'107;) =0 (71)

where we consider that all the masses m; = 1 except one site where we put
the impurity mg = 1+ dm. dm can be positive when the impurity has mass
larger than 1, or negative when the impurity has mass between 0 and 1. For
the numerical investigation we are going to use the double well potential
form of equation (1.20).

The mass impurity in the system generates an exponentially localized
mode with frequency outside the phonon band. In the limit of small ampli-

tude oscillations the frequency and the shape of this localized mode can be
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found using the linearized equations either using the Green’s function of the
lattice [90] or using the ansatz (2.4) or (2.5) as it was described in section
2.3. The ansatz (2.4) corresponds to a small mass impurity (negative dm)

while the ansatz (2.5) corresponds to a large mass impurity (dm > 0).

7.1 Energy Bifurcation

It is known that when there is no mass impurity (dm = 0) we can lin-
earize the system and find the extended phonon solutions and the phonon
band. It is also known that when a single impurity is introduced into the
system, an exponentially localized solution appears with frequency outside
of the phonon band. In our case, due to the fact that there is an on-site
potential and because dm is positive, the impurity frequency w; is below the
phonon band. The impurity frequency depends on the impurity mass and
the coupling C'.

From the existence theorem [8] we know that the breather frequencies
(wp) and all the harmonics must be outside of the phonon band. For soft
on-site potential this means that wp must be lower than the frequency of the
phonons. Omne question that arises relates to the location of the impurity
frequency (w;). This problem was first investigated in ref.[41]-[42] for a
disordered system with a hard on-site potential.

Using numerical investigations, we have seen that single breathers and
multi-breathers exist in the system when their frequency is lower than the
impurity frequency. We also performed the Floquet analysis for stability
and found that the single breather is stable up to the point where the en-
ergy curve changes upwards (figure 7.1) and the multi breather is stable or
unstable similar to the case where there is no impurity (ref.[9]-[15]).

In order to investigate the case when the breather frequency is close
or higher than the impurity frequency, we use the Newton method and

calculate the single breather with the central site £ close to the impurity and
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frequency wjp lower than the impurity frequency w;. We also calculate the
multi-breathers with two sites excited, the central site of the single breather
k and the impurity ¢, with the same frequency wj,. We use the following
name convention for the breathers: we call ”1,0” the single breather, 71,17
the multi-breather with the two excited sites in phase and ”1,-1” the multi-
breather with the two excited sites in anti-phase.

Using the Newton method keep the value of the coupling fixed, we in-
crease the breather frequency in small steps and we examine the existence
and the stability of the three breathers. The continuation is in general pos-
sible, up to a critical frequency w. < w;. The single breather and the ”1,-1”
multi-breathers are linearly stable while the 71,17 multi-breather is unsta-
ble. Tt is useful to define the energy of the breather F; as the total energy of
the lattice. For time reversible solutions all the velocities at £ = 0 are zero
therefore the breather energy is

Ey=Y" (V(:v,;) + %(wm - :cy:)2) (7.2)

k3

When we plot the energy of the breather as a function of the frequency
we observe that the energy of the single breather and the energy of the ”1,1”
multi-breather, collide at some frequency w,. and the continuation of these
solutions is no more possible for w > w,, the ”1,-1” multi-breather can be
continued with no problem for frequencies very close to the phonon band. We
can see the energy as a function of the frequency and the energy bifurcation
in figure 7.1, while in figure 7.2 the single breather and the multi-breather
profile for wy ~ w,.

If we plot the breather profile as the frequency of the breather w; ap-
proaches the critical frequency w. we see that the single breather and the
”1,1” multi-breather collide. The ”1,-1” multi-breather can be continued
until its frequency collides with the phonon band. We plot the profile of
that multi-breather for several frequencies in figure 7.3. The bifurcation

frequency is always smaller than the impurity frequency and it depends on
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Figure 7.1: The energy as a function of the frequency of the single breather
(continuous line) the 71,17 multi-breather (dotted line) and the ”1,-1” multi-
breather (dashed line). The vertical long dashed line corresponds to the
impurity frequency. The coupling is C' = 0.231 and the mass impurity is
m; = 1.3.

the coupling, the impurity mass and the distance of the impurity from the
center of the breather. We can see in table 7.1i the dependence of w. on
distance and in table 7.1ii the dependence on the impurity mass.

Looking the Floquet eigenvalues and eigenvectors, we see that a second
pair of eigenvalues escapes from the phonon band and collides at 1, as the
breather frequency gets closer to the bifurcation. The eigenvector that cor-
responds to that frequency is exponentially localized and centered on the

impurity site.

7.2 Breather Scattering from impurity.

It has been shown that a breather can be mobile in a perfect one dimensional
lattice (ref.[16]). When there is a mass impurity on the lattice, behavior of a

mobile breather differs. Depending on the impurity and the velocity of the
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Figure 7.2: The single breather (continuous line) the ”1,1” multi-breather
(dotted line) and the ”1,-1” multi-breather (dashed line). The coupling is
C = 0.231 and the mass impurity is m; = 1.3.

breather we observe different types of behavior when the mobile breather
approaches the impurity. For the numerical investigation we excite a single
breather or a multi-breather using the pinning mode method [16]. We chose
several initial velocities and mass impurities. We performed the simulations

in a large system that at the edges includes absorbing boundaries in order

to avoid interaction with reflected phonons.

When the mass impurity is small (the difference of the impurity mass
with the other particles is of the order of 0.02 or smaller) the breather can
cross the impurity and continue to move in the same direction. The velocity
of the breather after the collision is smaller. Depending on the initial velocity

of the breather before the collision, some phonons are excited as a result of

the collision.

When the impurity mass increases the behavior of the breather after

the collision differs. The breather can be trapped at the impurity. Part of
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Distance We
2 1.226 P o 5
2 1;2; 1.2 | 1.366 | 1.337
5 1-316 1.3 | 1.326 | 1.305
5 1'321 1.4 | 1.286 | 1.268
7 1394 1.5 | 1.247 | 1.233
8 1.325

Table 7.1: i) The relation of the bifurcation frequency with the distance
of the impurity site from the center of the breather. In the first column
we see the distance in lattice sites, while in the second column we see the
bifurcation frequency as calculated numerically with accuracy 1073. The
mass is m; = 1.3 and the coupling C' = 0.231.

ii) The relation of the bifurcation frequency with the impurity mass. In
the first column we see the impurity mass, in the second column we see the
impurity frequency w; and in the third column we can see the bifurcation
frequency w.. The coupling is C' = 0.231 and the distance of the impurity
from the center of the breather is d = 4.

its energy is released in the lattice in the form of phonons (figure 7.4). In
that case there is no reflection or refraction of the breather and most of the
energy remains at the impurity site. The phonon energy after the collision
is larger for larger initial velocities of the breather.

For even larger impurities the mobile breather is no longer an exact solu-
tion of the system because its frequency is between the bifurcation frequency
and the phonon band. In this case, if we choose the breather center to be far
from the impurity, then we can find the single breather and its pinning mode
as approximate solutions of the system. In that case we see that when the
impurity mass is very large (of the order of 1.2), the breather splits in two
parts. The first part remains pinned in the impurity while the second part
is reflected (figure 7.5). In this case the system seems to try to relax in the
”1,-1” multi-breather solution, which is exact solution, with the impurity
site pinned and the other site moving. The amount of energy that remains

in the impurity site is proportional to the velocity of the breather prior the
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Figure 7.3: The ”1,-1” multi-breather. Continuous line corresponds to
breather frequency below the bifurcation w, = 1.4, dotted line corresponds to
frequency equal to the bifurcation w, = 1.32 and dashed line corresponds to
frequency larger than the bifurcation w, = 1.35. The coupling is C' = 0.231
and the mass impurity is m; = 1.3.

collision. If we increase the impurity mass even more, we can see that in all
cases the breather is reflected from the impurity and there is no energy left
in the impurity site.

Different behavior is observed when we excite the ”1,-1” multi-breather
in the system. For this multi-breather there exists a pinning mode which
does not affect the part of the multi-breather pinned on the impurity site.
Using this pinning mode, we can make mobile the first site of the multi-
breather while the part on the impurity remains static. We then see that the
excited part is moving towards the impurity. Depending on the velocity we
can observe several phenomena. When the velocity is small, we can see that
the moving part slows down as it approaches the impurity, stops relatively
far from it where there is not much overlap between the two parts (figure

7.6) and then it is reflected. When we increase the velocity we observe that



98 Interaction of breathers with mass impurities.

()

11
1.05

0.95
0.9
0.85

3000

2500

2000

time 1500
1000

500

0

0

20 10

100 90 80 70 60 50 40 30
lattice site

Figure 7.4: A mobile breather can be trapped from a mass impurity after
the collision. wy = 1.35 the coupling is C' = 0.231 and the mass impurity is
m; = 1.15.

the overlap of the two parts of the breather before the reflection becomes
larger.

When the velocity increases even further we observe a resonance and the
two parts collide into one single breather with the simultaneous emission
of phonons. Depending on the velocity, the single breather can stay in the
impurity site (figure 7.7) or jump to the neighboring sites (figure 7.8). There
have been observed many resonances of this kind separated from windows

where we can see only reflection.
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Figure 7.5: The mobile breather splits into two parts after the collision.
The first part remain pinned on the impurity site wile the other is reflected.
wp = 1.35 the coupling is C' = 0.231 and the mass impurity is m; = 1.25.
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Figure 7.6: The ”1,-1” multi-breather with one site moving towards the
other. After the collision, the mobile part of the multi-breather is reflected.
wp = 1.35 the coupling is C' = 0.231 and the mass impurity is m; = 1.25.
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Figure 7.7: The ”1,-17 multi-breather with one site moving towards the
other. After the collision, the mobile part is absorbed from the impurity
site and there are excited phonons. w, = 1.35 the coupling is C' = 0.231 and
the mass impurity is m; = 1.25.
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Figure 7.8: The ”1,-1”7 multi-breather with one site moving towards the
other. After the collision, all the energy is transfered into a single mobile
breather moving away from the impurity. wp, = 1.35 the coupling is C' =
0.231 and the mass impurity is m; = 1.25.



Chapter 8

Conclusions and discussion.

We have study the intrinsically localized excitations or discrete breathers
(DBs), in systems of coupled oscillating particles. The systems we considered
can be separated into two types, lattices of coupled non-linear oscillators
(Klein-Gordon) and lattices of particles coupled with non-linear interaction
(FPU). For the investigation we have mainly use a numerical method based
on the MacKay-Aubry existence theorem. We have also used in some cases,
analytical methods like the rotating wave approximation and the continuous
medium analytical solution for comparison with the numerical results.

The existence theorem in combination with the experimental observation
and the numerical results obtained in a large variety of systems allow as to
conclude that discrete breathers exist in every discrete and nonlinear system.
Their existence arise from the interplay of nonlinearity and the discreteness.
Their stability and the exponential localization are closely related. Typi-
cally, discrete breathers vanish when their frequency or one of its harmonics
is in resonance with the linear phonons but there are examples where they
have been found to exist in cases when the frequency is in resonance with
one or more normal modes of the system. However in this exceptional cases,
the breathers that survive are in general multibreathers. Typically the sta-
bility change from stable to unstable or vice versa when there is a change

on the slope of the a versus w curve where a is a parameter related with
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the localization and w is the frequency.

The exponential localization allow as to simplify the system and assume
that only one (or in the case of multibreathers more) particle sense the
nonlinear part of the interaction while the rest, since they are oscillating
with small amplitude, they can be considered linear. This simplification
allow as to retrieve some approximate equations that relate the localization
with the frequency. This results are in good agreement with the numerical
solutions as long as the harmonics of the breather frequency are not very

close to the phonon band.

As we have find, they exist not only in one dimensional lattices but also in
quasi one dimensional and two dimensional lattices. Their properties though
are related with the dimensions of the lattice. In quasi one dimensional
lattices they appear bifurcations between different breather solutions, similar
with the bifurcations that appear in one dimensional lattices due to the
existence of impurities. It has also been found that they can be mobile
in higher than one dimensional lattices. The details of the mobility are
depending on the geometry of the lattice. In the quasi one dimensional
lattice the pinning mode, which is related with the mobility, appear after
a pitchfork bifurcation in which the single breather vanish and the stable
solution becomes the double breather. In the two dimensional lattice, there
are two different pinning modes which are orthogonal to each other. For
coupling larger than a critical value, it has been found that using a linear
combination of the two different pinning modes, the breather can move along

the main directions of the lattice or along the diagonals.

The study of the mobility and the interactions of breathers with the
lattice (impurities) or with other excitations (kinks) leads as into the con-
clusion that mobile breathers behave like particles with internal structure.
An internal energy can be associated into them as well as an kinetic energy
and an effective mass. During the interactions with the impurities or with

the kinks, in some cases they behave like particles and they sustain all their
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energy after the interaction and in other cases they release part (or all) of
their internal energy which can be transformed into radiation or kinetic en-
ergy (when it interacts with a kink). It has been found that there exist an
effective attraction between a breather and a kink. This attraction, when
the velocity of the breather is small, leads into trapping of the breather in
the vicinity of the kink. A similar attraction is observed between a breather
and an impurity mode. It has been observed that the mobile breather can
be trapped from the impurity.

As it has been shown earlier, discrete breathers are formed spontaneously
when energy is injected into a system. This spontaneous creation has the
result that the relaxation of the energy in the system is delayed. The simul-
taneous existence however of breathers and impurities can trap the energy
and therefore prevent the achievement of thermal equilibrium.

An other possible case where the discrete breathers might be important
is in the biological macromolecules. It is known that in many biological pro-
cesses, an excitation is created in one point through an interaction with the
environment and this excitation is transfered through long macromolecules
into another point where the energy is used for chemical reactions. Discrete
breathers could be involved in this process as carriers of the energy from
one point into the other. For example I would like to mention the double
helix of the DNA. It is known that the double chain, during the process
multiplication, open into two single chains and it creates two copies of itself.
However it is not yet known how the opening of the chain begins. One pos-
sible answer to this question it could be that discrete breathers are involved
during this process. As we have seen, they can be trapped from impurities.
We have also seen that they can bee mobile in double chain systems. One
could imagine therefore that discrete breathers are traveling along the DNA
double helix and they are trapped at some point because of the existence of
an impurity at this point. The accumulation of energy at this point could

brake the intra-chain bond initiating this way the splitting process.
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Appendix A

Hill’s equation.

The equation of motion for a single particle in a potential V' (u) is
i+ V'(u) =0, (A.1)

This equation exhibits periodic orbits around the equilibrium point of the
potential. The frequency of the oscillations depends on the initial conditions
and the details of the potential. We assume that () is a periodic solution
with period wp. A question of interest is if this orbit is stable or unstable.
One way to check the stability is by adding small perturbations around the

orbit and see how they evolve in time:
u(t) — u(t) + €(t)

If we substitute this expression on equation (A.1) and remove higher order

terms we get the linearized equation of the system:
¢+ V"'(up)e=0 (A.2)

where the second derivative of the potential V" (u;) is a periodic function of

time with period equal with the period of the periodic orbit (75 = 27 /ws).
The stability of the periodic orbit u; depends on the solutions of equation

(A.2). When the solutions of this equation are bounded the periodic orbit

is linearly stable while when the solutions are unbounded and they grow in
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time exponentially fast, then the periodic orbit is unstable. Note that linear
stability is not "real” stability and one has to consider other methods like
the Liapunov stability ([110]) for more precise results, but the linearly stable
orbits persist for long time and therefore can be considered stable. An other
point is that in some cases the solution of equation (A.2) can grow as a
polynomial of ¢. Although this solution is also unbounded, we nevertheless
consider it linearly stable.

Equation (A.2) in the most general form is known as the Hill’s equation:
€+ f(t)e = Fe, (A.3)

where f(t) is a periodic function in time with period 73 and F is a constant.
If we consider the transformation ¢ — 2 then equation (A.3) is the well
known Schrodinger equation for a periodic potential. Depending on the
form of the periodic function f(¢) the Hill’s equation can be found in the
literature with different names. One of the most common is the Mathieu’s

equation or parametric oscillator, when f(¢) = cos(t) [110],[112].

A.1 Floquet theorem for Hill’s equation.

In this section we will determine some general properties of the solutions
of Hill’s equation. The analysis is based on the Floquet theory for linear
ordinary differential equations with periodic coefficients. Let z1 and z9 be
two linearly independent solutions of equation (A.3). We can choose these

two solutions to fulfill the initial conditions,

31(0) =0 9(0) = 1 (A4)
The Wronskian of the system is constant and equal to
W:Q?]'ig—ﬂfg'i]:l. (A5)

Since f(t) is periodic it can be proved through the use of the transfor-
mation z = t + T} that z1(t 4+ T3) and z2(¢ + T3) are also solutions of the
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Hill’s equation; therefore can be written as a linear combination of z;(¢) and
zo(1):
z1(t + 1p) = p1171(t) + paaza(t) (A.6)

zo(t + 1p) = pa1z1(t) + p2222(2) (A.T)

where p;; are constants. If we take the derivative of the previous equations

we have
21(t+Tp) = pra (1) + paada(1) (A.8)
To(t + 1) = p2@1(t) + paada(t) (A.9)
From the initial conditions we have,

par = z1(1y), pae = 21(73),
. A.10
H21 = wZ(Tb)v H22 = wz(Tb)- ( )

We can write equations (A.8) and (A.9) in the matrix notation as

Z(t+Ty) =M-Z(t) (A.11)

M:(Hn Hu)j f:(ml) (A.12)
H21 H22 P

Next we can use the linear transformation

where

y=P -7 (A.13)

r=P'.j (A.14)

where P is a 2x 2 constant nonsingular matrix and 7 = [y;, y»]'. Substituting

into (A.11) gives

Jt+T) =P -M-P~1. () (A.15)

We choose P so that B =P -M . P! is in one of the Jordan canonical

form. This form depends on the eigenvalues and the eigenvectors of M. The
eigenvalues of M or B are given by

M1 — A H12

i e |70 (A.16)
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which gives the equation
A —29A+1=0, (A.17)

where we have use the fact that the Wronskian of the system is constant
and equal to 1, and v = (11 + p22)/2 = (21(Ty) + @9(T3))/2. For v # £1

there are 2 distinct eigenvalues

)\1’2:’)’:t\/’)’2—1 (A18)

and B has the diagonal form

B = ( ’\01 ;)2 ) (A.19)
For v = %1 then there is only one eigenvalue A = v = +1, and B has either
the form

B - ( o 2 ) (A.20)
or the form

B - ( P ) (A.21)

If B has one of the form (A.19) or (A.20) then equation (A.15) can be

rewritten
yi(t+Ty) = My (2)
Yot + Tp) = Aaya(t)

If we multiply with exp(—6; 2(¢ + 7})) we can express the solutions in the

(A.22)

normal form
Ya(t) = exp(2t)da(?)
where ¢y »(t) are periodic functions with period 7} and 6, 5 are the charac-

teristic exponents defined from the equation Ay s exp(—6;273) = 1.

When B has the form (A.21) then equation (A.15) can be rewritten

y1(t + 1) = Ay (2)

pat+T3) = Apa(t) + 11 (1) (A.24)



A.1 Floquet theorem for Hill’s equation. 109

If we multiply with exp(—6(¢ + 13)) we can express the solutions in the

normal form
y1(t) = exp(8t)¢1(t)
Yo (1) = exp(8t)pa(t) + 11 () (A.25)

where ¢4 »(t) are periodic functions with period T} and 6 is the characteristic
exponent defined from the equation Aexp(—6073) = 1. Since the product of
the eigenvalues is equal to 1 (A; - Ay = 1), the solution of the Hill’s equation
remains bounded only when |A; 5| = 1. This means that the periodic solution
up is stable when the eigenvalues of M lie on the unit circle in the complex
plane. In the case when A = £1 and B has the form (A.21), then one of the
solutions is bounded while the other increases in time. Since the solution
increases in a polynomial rate as a function of time, we will consider in this
case the periodic solution uj to be stable.

The same analysis can be performed for the system of J coupled oscil-

lators. For a one dimensional system, the equations of motion are
t; + V’(ui) — C(UH_] + w1 — 211,7;) =0 (A.26)

These equations can exhibit periodic orbits with period 7;. To investigate
the stability, we linearize the equation around the periodic orbit {u;}. The

linearized equations of motion are:
&+ V" ui)e; — Cei41 + €1 —2¢,) =0 (A.27)
The linearized equation of motion can be written in the matrix notation:
e=P(1).-¢ (A.28)

where € = {e1,...,€5,¢é1,...,¢7}1, P(t) is a N x N matrix function (with
N = 2J), periodic with period T}.

Floquet theorem 1 The regular system &= P(t)-€ where P(t) isa N XN
matriz function, periodic with period Iy, has at least one non-trivial solution
x(t) such that

z(t+ 1) = Aa(t) (A.29)
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where A are the eigenvalues of the matriz defined from the relation
®(t+Ty)=M- P(t) (A.30)
and ®(t) is a fundamental matriz of the system.

The matrix M is called the Floquet matrix of the system while its eigen-
values A are called Floquet multipliers or characteristic numbers of the sys-

tem.

Floquet theorem 2 The constant X of Theorem (1) are independent on

the choice of ®.

Floquet theorem 3 When the matriz M of Theorem (1) has N distinct
eigenvalues, \;,i = 1,2,..., N, then (A.28) has N linearly independent nor-

mal solutions of the form
Zi(t) = pi(t) - exp(6;1) (A.31)
The characteristic exponents 6; are defined from the equation
exp(0;Ty) = A (A.32)

A periodic orbit of the nonlinear system will be linearly stable when the
solutions of the linearized equations (A.28), remains bounded.

From the previous analysis and from the Floquet theorems we see that
the solution of the linearized system remains bounded when the eigenvalues
of the Floquet matrix of the system lie on the unit circle. When the Jordan
canonical form of the Floquet matrix is not in a diagonal form, then it can
be transformed into a block diagonal form. In this case there exists at least
one solution of the system which is not bounded but grows as a function of
time in a polynomial way. We will consider this case to be linearly stable.

We will call this type of solutions of the linearized system marginal modes.
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Dynamical systems.

The time evolution of a physical system can be described as a set of ordinary

differential equations of the form:

il = fl(mla‘r?a"'a‘r]\f)a
i? = f2(‘r17m27"'7m]\7)7 (B]_)
N = fN(wl,.z*g,...,a;N),

where N is the number of degrees of freedom of the system, {z;} are the
dynamical variables describing the system and {f;} are some functions of
the dynamical variables and the time ¢. In matrix notation, equation (B.1)

can be written in the form:

7 = F(%), (B.2)

where 7 = {21,29,...,2n5} and F(F) = {f1, fo,..., fv}!. The functions
{fi} are in general nonlinear functions for real systems. The details of { f;}
depends on the system.

The system can be described at any time with a point in the N dimen-
sional phase. The time evolution of the system for a certain set of initial
conditions can be described with a trajectory in the phase space. This tra-

jectory can be found with the integration of (B.1) or (B.2).
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B.1 Fixed points and linear stability.

The time evolution of the system and the trajectory depends on the initial
condition. Since the system is nonlinear, for different initial conditions, the
trajectory can be a periodic orbit, a quasi-periodic orbit, a chaotic orbit
etc. One special case of interest is when there exists points or regions in the
phase space, where all the derivatives of (B.1) or (B.2) are zero. These points
correspond to steady states of the system and when the initial condition is
in a steady state then there is no time evolution of the system. When this
points are isolated they are called fixed points of the dynamical systems. The

steady state of the dynamical system can be found solving the equation:

fl(m17'7’.27"'7mN) =0
fo(z1,29,...,2y) = O
oz B ) (B.3)
n(z,29,...,2n) = 0
or
F(Z)=0 (B.4)

The solution of the above equation can give the steady state or the fixed
point ¥y of the system. The stability of the fixed point and the solution of
the dynamical system in the neighbor of the fixed point can be found if we
linearize equations (B.1) or (B.2) around ;. The linearized equations are

of the form

F=A.7 (B.5)

where A is a N X N matrix with elements the partial derivatives of the

functions {f;} over the dynamical variables {z;}

a1l ... Q1N
A= oo (B.6)
anNty ... GNN
Of:
= B.7
gy amj L ( )
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Equation (B.5) can be solved and the solution is of the form

&A1) = exp(A1)A0). (B.8)

The form of the solution depends on the eigenvalues and the eigenvectors
of the matrix A. The matrix is real and the eigenvalues can be real or
complex numbers. When at least one of the eigenvalues has positive real
part, the solution grows exponentially fast in the direction of the phase
space denoted by the corresponding eigenvector. In this case the fixed point
is unstable and small perturbations will lead the trajectory of the solution
away from the region around the fixed point. When all the eigenvalues of A

have real part less or equal to zero, the fixed point is stable.
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Appendix C

Programs

This appendix contains the source code of the programs used for the con-
struction of breathers. These programs can be used, with little modifica-
tions, in different models. The modifications that are necessary are related
with the on-site and the interaction potential of each model, the lattice
geometry, the boundary conditions and other model related parameters.
For the eigenvalues and the eigenvectors of the Floquet matrix we use the
subroutine from LAPACK library [108] and for the implementation of the
Newton method we use the LU decomposition and back substitution subrou-
tines from the Numerical Recipes [107]. These subroutines are not included
here. For the compilation and the execution of the program one must use
the LUDCMP and the LUBKSB subroutines from [107] and link the pro-
gram with the LAPACK library. In the case of the LUDCMP and LUBKSB
the first lines of the subroutine are slightly modified, the modifications are

shown in the following lines.
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SUBROUTINE LUBKSB(A,N,INDX,B)
INCLUDE ’parameters.f’

realx8 A(NP,NP),B(N),SUM
integer INDX(NP),I,II,J,LL,N

SUBROUTINE LUDCMP(A,N,INDX,D)
INCLUDE ’parameters.f’
PARAMETER (TINY=1.0D-20)
REAL*8 A(NP,NP),VV(NMAX)
REAL*8 D,AAMAX,SUM,DUM
INTEGER INDX(NP),I,IMAX,J,K,N

In all the programs all the necessary parameters for the matrix dimen-
sions are in a separate file called "parameters.f”. This file is included in
every subroutine in order to keep the dimensions of the matrices the same.

The file "parameters.f” has the form

file ”parameters.f’:

integer SIZE,SIZE2,MAXWORK,NMAX,NP
PARAMETER ( SIZE = 200 )
PARAMETER ( SIZE2 = 400 )

PARAMETER  ( MAXWORK = 1400 )
PARAMETER ( NMAX = 200 )
PARAMETER  ( NP = 200 )
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The first program ("newton.f”) is used to calculate a single breather or
a multibreather in an one dimensional Klein-Gordon lattice with a double
well on-site potential. The input file contains all the necessary parameters
for the program to work. In the input file there are comments explaining the
use of every parameter. Notice that the parameters start on the fourth line
of the file, the first three lines are ignored. The program "newton.f” can be
used for other potentials with the appropriate modifications in the functions
fx, fy, fx2 and fy2. Some of the input variables on this file are ignored by the
program "newton.f”. The reason for been here is for compatibility of the
input file with the input of other programs used for the mobility of breathers
as well as the kink construction and mobility.

file ”input.dat” for the newton.f program:

#

# for the breather

#

40 : number of cites

20 : center of the breather
1.25 : initial position
4.73979999999996 : period of the breather
0.631 ¢ kmax

0.01 : dk

2.0 : petrubation strength
600 : time of simulations
1755 : sampling rate

#

# for the kink

#

25 : number of cites

12 : center of the kink

0.131 : coupling
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500 : simulation time

2547 : sampling rate

#

# extra parameters

#

4 : impurity position

1.0 : impurity mass

1.351 : impurity frequency
1.370245098495 : Displacement of the impurity site

Program newton.f:

program main2

include "parameters.f"

character*80 junk

real*8 x(0:SIZE),y(0:SIZE)

real*8 xinit(0:SIZE),yinit(0:SIZE)
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE),d1t(SIZE)
real*8 bet(SIZE,SIZE),de(SIZE,SIZE)
real*8 vectors(SIZE,SIZE)

real*8 mass(SIZE)

real*8 t,dt,kapa,dk,period

real*8 kmax,dzero

real*8 imass,wi,despl

integer iposs

integer i,n,j,ncent

100 format( e25.16,i4,e25.16)
103 format( e25.16,e25.16)
102 format( i4,e25.16)

101 format ()

open (21,file=’breather.out’)
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c
¢ input data
c
open (23,file="input.dat")
read(23,1000) junk
read(23,1000) junk
read(23,1000) junk
1000 format ( a80)
read(23,*) n
read(23,*) ncent
do i=0,n+1
xinit(i)=1.0
yinit(i)=0.0
enddo
read(23,*) xinit(ncent)
read(23,*) period
read(23,*) kmax
read(23,*) dk

c read some junk lines

do i=1,14
read(23,1000) junk
enddo
read(23,*) iposs
read(23,*) imass
read(23,*) wi
read(23,*) despl
close(23)

o xinit (iposs)=despl
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if(n.gt.NMAX/2) then
write(*,*) "you must decreace the numper of oscilators or"

write(*,*) "recompile the program with greater NMAX"

c return
stop
endif
c
do i=1,n
mass(i)=1.0d0
enddo
c mass(iposs)=imass
dt=4.0d4-3
c dk=0.014d0
c kapa=dk
kapa=0.001

do while( kapa .l1t.kmax)
if( (kapa+dk).gt.kmax) then
kapa=kmax
endif
600 continue
do i=0,n+1
x(i)=xinit (i)
y(i)=yinit(i)
enddo
do i=1,n
do j=1,n
alp(i,j)=0.0
ce(i,j)=0.0
enddo

alp(i,i)=1.0
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enddo

£=0.0

do while(t.lt.period)
call rk4_s(x,y,t,dt,kapa,n,mass)
call rk4_s2(alp,ce,x,y,t,dt,kapa,n,mass)
t=t+dt

enddo

c Termination contition

sum=0.0
do i=1,n

sum=sum + dabs(xinit(i)-x(i))+dabs(yinit(i)-y(i))
enddo

write(*,*) kapa,sum

do i=1,n
alp(i,i)=alp(i,i) -1.0
enddo
call deval( alp,ce,dlt,xinit,x,yinit,y,n)
do i=1,n
xinit(i)=xinit(i)+d1t (i)
enddo
if (sum.le.1.0e-11) goto 300
sum=0.0
do i=1,n
sum=sum+dabs( d1t(i) )
enddo
if (sum.le.1.0e-14) goto 300
goto 600
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300 kapa=kapa+dk
write(*,*) (i,xinit(i),i=1,n)
enddo
c write(*,*) kapa
do i=1,n
write(21,102) i,xinit(i)
enddo
close(21)
c t=0.0
c do i=1,n
c x(i)=xinit (i)
c y(i)=0.040
c write(22,100) t,i,x(i)
c enddo
c write(22,101)

kapa=kapa-dk
write(*,*) kapa
j=0
do while(t.1t.10.669999999999940)
j=i*1
call rk4_s(x,y,t,dt,kapa,n,mass)
t=t+dt
if(j.gt.40) then
j=0
do i=1,n
write(22,100) t,i,x(i)
enddo
write(22,101)
endif

enddo
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close(22)
Cm e
c for the floquet analysis
Cm e
do i=1,n

x(i)=xinit (i)
y(i)=yinit (i)
do j=1,n
alp(i,j)=0.0
bet(i,j)=0.0
ce(i,j)=0.0
de(i,j)=0.0
enddo
alp(i,i)=1.0
de(i,i)=1.0
enddo
£=0.0
do while(t.lt.period)
call rk4_s(x,y,t,dt,kapa,n,mass)
call rk4_s2(alp,ce,x,y,t,dt,kapa,n,mass)
call rk4_s2(bet,de,x,y,t,dt,kapa,n,mass)
t=t+dt
enddo
do i=1,n
do j=1,n
alp(i+n,j)=ce(i,j)
alp(i,j+n)=bet(i,j)
alp(i+n,j+n)=de(i,j)
enddo
enddo
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call floque(alp,n,vectors)
open (23,file="eigen.out")
open (24,file="vectors.out")
open (25,file="vectors_im.out")
do i=1,2%*n
write(23,103) alp(i,1),alp(i,2)
enddo
close(23)
dzero=0.0d0
do i=1,2%n,?2
if (dabs( alp(i,2) ).1t.1.0d-9 ) then
do k=0,1
do j=1,2%n
write(24,102) j,vectors(j,i+k)
write(25,102) j,dzero
enddo
write(24,101)
write(25,101)
enddo
else
do j=1,2%n
write(24,102) j,vectors(j,i)
write(25,102) j,vectors(j,i+1)
enddo
write(24,101)
write(25,101)
endif
enddo
stop

end
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¢ This is a subroutine for solving a system of

¢ diferential equations on a latice with first

¢ neighbor aproximation
subroutine rk4_s(x,y,t,dt,kapa,n,mass)
include ’parameters.f’
real*8 x(0:SIZE),y(0:SIZE)
real*8 t,dt,kapa
integer i,n
real*8 fx,fy
real*8 mass(SIZE)
real*8 kx1(0:SIZE) ,kx2(0:SIZE) ,kx3(0:SIZE) ,kx4(0:SIZE)
real*8 ky1(0:SIZE) ,ky2(0:SIZE) ,ky3(0:SIZE) ,ky4(0:SIZE)
real*8 xtmp(0:2),ytmp(0:2)
c

¢ periodic boundary conditions

c
x(0)=x(n)
x(n+1)=x(1)
y(0)=y(n)
y(n+1)=y(1)

c

¢ For the first step of the Runke Kuta

do i=1,n
xtmp (0)=x(i-1)
xtmp(1)=x(1i)
xtmp (2)=x(i+1)
ytmp (0)=y(i-1)
ytmp(1)=y(i)
ytmp(2)=y(i+1)
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kx1(i)=dt*fx(xtmp,ytmp,t,kapa)
ky1(i)=dt*fy(xtmp,ytmp,t,kapa,mass(i))
enddo
kx1(0)=kx1(n)
kx1(n+1)=kx1(1)
ky1(0)=ky1(n)
kyl(n+1)=ky1(1)
c
¢ For the second step of the Runke Kuta
c

do i=1,n

xtmp(0)=x(i-1)+kx1(i-1)/2.0
xtmp(1)=x(i)+kx1(i)/2.0
xtmp(2)=x(i+1)+kx1(i+1)/2.0

ytmp(0)=y(i-1)+ky1(i-1)/2.0
ytmp(1)=y(i)+ky1(i)/2.0
ytmp(2)=y(i+1)+ky1(i+1)/2.0

kx2(i)=dt*fx(xtmp,ytmp,t,kapa)
ky2(i)=dt*fy(xtmp,ytmp,t,kapa,mass(i))
enddo
kx2(0)=kx2(n)
kx2(n+1)=kx2(1)
ky2(0)=ky2(n)
ky2(n+1)=ky2(1)
c
¢ For the third step of the Runke Kuta

C
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do i=1,n

xtmp (0)=x(i-1)+kx2(i-1)/2.0
xtmp (1) =x(i)+kx2(i)/2.0
xtmp(2)=x(i+1)+kx2(i+1)/2.0

ytmp(0)=y(i-1)+ky2(i-1)/2.0
ytmp(1)=y(i)+ky2(i)/2.0
ytmp(2)=y (i+1)+ky2(i+1)/2.0

kx3(i)=dt*fx(xtmp,ytmp,t,kapa)
ky3(i)=dt*fy(xtmp,ytmp,t,kapa,mass(i))

enddo

kx3(0)=kx3(n)

kx3(n+1)=kx3(1)

ky3(0)=ky3(n)

ky3(n+1)=ky3(1)
c
¢ For the fourthd step of the Runke Kuta
c

do i=1,n

xtmp (0)=x(i-1)+kx3(i-1)
xtmp (1)=x(i)+kx3(i)
xtmp (2)=x(i+1)+kx3(i+1)

ytmp (0)=y (i-1)+ky3(i-1)
ytmp(1)=y (i) +ky3(i)
ytmp(2)=y (i+1)+ky3(i+1)
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kx4 (i)=dt*fx (xtmp,ytmp,t,kapa)
ky4(i)=dt*fy(xtmp,ytmp,t,kapa,mass(i))

enddo

do i=1,n
x(1)=x(1)+( kx1(i)+2.0*kx2(i)+2.0%¥kx3(i)+kx4(i) )/6.0
y()=y(i)+( ky1(i)+2.0%ky2(i)+2.0%ky3(i)+ky4(i) )/6.0
enddo
return

end

subroutine rk4_s2(alp,ce,x,y,t,dt,kapa,n,mass)
include ’parameters.f’
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE)
real*8 x(0:SIZE),y(0:SIZE)
real*8 x0(0:SIZE),y0(0:SIZE)
real*8 t,dt,kapa

integer i,j,k,n
real*8 fx2,fy2
real*8 mass(SIZE)

real*8 kx1(0:SIZE) ,kx2(0:SIZE)
real*8 kx3(0:SIZE) ,kx4(0:SIZE)
real*8 ky1(0:SIZE),ky2(0:SIZE)
real*8 ky3(0:SIZE),ky4(0:SIZE)
real*8 xtmp(0:2),ytmp(0:2)

do k=1,n

do j=1,n

x0(j)=alp(j,k)
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y0(j)=ce(j,k)

enddo

¢ periodic boundary conditions

x0(0)=x0(n)
x0(n+1)=x0(1)
y0(0)=y0(n)
yOo(n+1)=y0(1)

¢ For the first step of the Runke Kuta

do i=1,n
xtmp (0)=x0(i-1)
xtmp (1)=x0(i)
xtmp (2)=x0(i+1)
ytmp (0)=y0(i-1)
ytmp (1)=y0(i)
ytmp(2)=y0(i+1)
kx1(i)=dt*fx2(xtmp,ytmp,t,kapa)
kyl(i)=dt*fy2(xtmp,ytmp,t,kapa,x(i),mass(i))
enddo
kx1(0)=kx1(n)
kx1(n+1)=kx1(1)
ky1(0)=ky1(n)
kyl(n+1)=ky1(1)
c
¢ For the second step of the Runke Kuta
c

do i=1,n
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xtmp(0)=x0(i-1)+kx1(i-1)/2.0
xtmp(1)=x0(i)+kx1(i)/2.0
xtmp(2)=x0(i+1)+kx1(i+1)/2.0

ytmp(0)=y0(i-1)+ky1(i-1)/2.0
ytmp(1)=y0(i)+ky1(i)/2.0
ytmp(2)=y0(i+1)+ky1(i+1)/2.0

kx2(i)=dt*fx2(xtmp,ytmp,t,kapa)

ky2(i)=dt*fy2(xtmp,ytmp,t,kapa,x(i) ,mass(i))

enddo
kx2(0)=kx2(n)
kx2(n+1)=kx2(1)
ky2(0)=ky2(n)
ky2(n+1)=ky2(1)

¢ For the third step of the Runke Kuta

Cc

do i=1,n

xtmp (0)=x0(i-1)+kx2(i-1)/2.0
xtmp(1)=x0(i)+kx2(i)/2.0
xtmp (2)=x0(i+1)+kx2(i+1)/2.0

ytmp(0)=y0(i-1)+ky2(i-1)/2.0
ytmp(1)=y0(i)+ky2(i)/2.0
ytmp(2)=y0(i+1)+ky2(i+1)/2.0

kx3(i)=dt*fx2(xtmp,ytmp,t,kapa)
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ky3(i)=dt*fy2(xtmp,ytmp,t,kapa,x(i),mass(i))

enddo

kx3(0)=kx3(n)

kx3(n+1)=kx3(1)

ky3(0)=ky3(n)

ky3(n+1)=ky3(1)
c
¢ For the fourthd step of the Runke Kuta
c

do i=1,n

xtmp(0)=x0(i-1)+kx3(i-1)
xtmp(1)=x0(i)+kx3(i)
xtmp(2)=x0(i+1)+kx3(i+1)

ytmp(0)=y0(i-1)+ky3(i-1)
ytmp(1)=y0(i)+ky3(i)
ytmp (2)=y0(i+1)+ky3(i+1)

kx4 (i)=dt*fx2(xtmp,ytmp,t,kapa)
ky4(i)=dt*fy2(xtmp,ytmp,t,kapa,x(i),mass(i))

enddo

do i=1,n
alp(i,k)=x0(i)+( kx1(i)+2.0%kx2(i)+2.0*kx3(i)+kx4(i) )/6.0
ce(i,k)=y0(i)+( ky1(i)+2.0%ky2(i)+2.0*ky3(i)+ky4(i) )/6.0
enddo

enddo
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return

end

¢ Functions for the runke couta integretion of the

c original equations

c
real*8 function fx( x,y,t,kapa)
real*8 x(0:2),y(0:2),t,kapa
fx= y(1)
return
end
real*8 function fy( x,y,t,kapa,m)
real*8 x(0:2),y(0:2),t,kapa
real*8 m
fy= - (x()*x(1)*x(1) -x(1))/m + kapa*(x(0)+x(2)-2.0*x(1) )/m
return
end
€ = oo e
c

¢ Functions for the integration of the

¢ linearized equations

real*8 function fx2( x,y,t,kapa)
real*8 x(0:2),y(0:2),t,kapa
fx2= y(1)

return

end
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real*8 function fy2( x,y,t,kapa,tmp,m)
real*8 x(0:2),y(0:2),t,kapa,tmp
real*8 m
fy2=-(3.0d0*tmp*tmp-1.0d0) *x(1) /m+kapa* (x(0)+x(2)-2.0*x(1))/m
return
end
subroutine deval( alp,ce,dlt,xinit,x,yinit,y,n)
INCLUDE ’parameters.f’
real*8 xinit(0:SIZE) ,x(0:SIZE)
real*8 yinit(0:SIZE),y(0:SIZE)
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE),d1t(SIZE),d(SIZE)
real*8 alpt(SIZE,SIZE),cet(SIZE,SIZE),sysa(SIZE,SIZE)
integer n,indx(SIZE)
do i=1,n
do j=1,n
alpt(i,j)=alp(j,i)
cet(i,j)=ce(j,1)
enddo

enddo

do i=1,n
d1t(i)=0.040
enddo
do i=1,n
do j=1,n
sysa(i, j)=0.0d0
enddo
enddo
do i=1,n

do j=1,n
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do k=1,n
sysa(i,j)=sysa(i,j)+alpt(i,k)*alp(k,j)+cet(i,k)*ce(k,])
enddo
enddo
enddo
do i=1,n
do j=1,n
dlt(i)=d1t(i)-alpt(i,j)*(x(j)-xinit(j) )
& -cet(i,j)*(y(j)-yinit(j) )
enddo
enddo
call ludcmp(sysa,n,indx,d)
call lubksb(sysa,n,indx,dlt)

return

end
Cmm = e e e e
c eigenvalues
Cmm = m e e e e

subroutine floque(a,ni,vr)

include ’parameters.f’

real*8 a(SIZE,SIZE),v1(SIZE,SIZE),vr(SIZE,SIZE)
real*8 wr(SIZE) ,wi(SIZE) ,work (MAXWORK)
character jobvl, jobvr

integer info,lda,ldvl,ldvr,lwork,ni,n

1da=SIZE
1dv1=SIZE
1dvr=SIZE
lwork=MAXWORK
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jobvl="N’
c jobvr="N’
jobvr="V’

n=2%xn1l

call dgeev( jobvl, jobvr,n,a,lda,wr,wi,vl,ldvl,vr,ldvr,
& work,lwork,info)
do i=1,2%n
a(i,1)=wr(i)
a(i,2)=wi(di)
enddo
return

end
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The second program we include here is for the calculation of discrete
breathers and multibreathers in a monoatomic as well as in a diatomic FPU
lattice with hard or soft interactions. In the input file are defined two
masses, in the case of equal masses the system becomes monoatomic while
for different masses the system becomes diatomic. The parameters gamma
and gamma 0 in the input file are for the interaction potential and for the
on-site potential we use for the anticontinuous limit. Negative parameters
indicate soft potential while positive parameters indicate hard potential.
The last two parameters are used for the breather frequency. The frequency
in every step of the Newton method is kept in a constant distance dw from
one of the lines shown in figure (6.1). Negative dw means that the breather
frequency is bellow the line while positive dw means that it is above. This
is done in order to avoid resonances with the phonons. The last parameter
indicates one of the lines in figure (6.1), 1 and 2 correspond to the lower and
the upper limit of the acoustic band respectively, 3 and 4 correspond to the
lower and the upper limit respectively of the optical band. The numbers
5 and 6 correspond to the lower and the upper limit respectively of the
optical band divided by 2, 7 and 8 correspond to the lower and the upper
limit respectively of the optical band divided by 3 and so on.
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file ”input.dat” for the fpu.f program:

#

# for the breather

#

40 : number of cites

21 : center of the breather

0.472179 : initial position

9.053999999988 : period of the breather

0.050 ¢ kmax

0.0251 : dk

1.0 : petrubation strength

500 : time of simulations

47 : sampling rate

16.0 : heavy mass (odd sites)

1.0 : light mass (even sites)

+1.0 : parameter gama for the interaction W
+1.0 : parameter gama_O for the onsite V
0.01 : dw for the breather frequency

10 : which phonon frequency to follow by dw

Program fpu.f:

program main2
c implicit none
include "parameters.f"
character*80 junk
real*8 x(0:SIZE),y(0:SIZE)
real*8 xinit(0:SIZE),yinit(0:SIZE)
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE),d1t(SIZE)
real*8 bet(SIZE,SIZE) ,de(SIZE,SIZE)
real*8 vectors(SIZE,SIZE)
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real*8 sum

c real*8 mass(SIZE) ,dm
real*8 omega(SIZE) ,m1,m2
real*8 t,dt,kapa,dk,period
real*8 kmax,dzero
real*8 lamda,dl
real*8 imass,wi,despl
real*8 wph(10) , dw,pi
integer iposs,wintex
real*8 gamma(SIZE) ,gammaO(SIZE),gl,g2
integer i,n,j,ncent

common gamma ,gamma0

100 format( e25.16,14,e25.16)
103 format( e25.16,e25.16)
102 format( i4,e25.16)

101 format ()

open (21,file=’breather.out’)
c
¢ input data
c
open (23,file="input.dat")
read(23,1000) junk
read(23,1000) junk
read(23,1000) junk
1000 format ( a80)
read(23,*) n
read(23,*) ncent
do i=0,n+1
xinit(i)=0.0d0
yinit(i)=0.0d0
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enddo

read(23,*) xinit(ncent)
read(23,*) period
read(23,*) kapa
read(23,*) dl

c read some junk lines

do i=1,3
read(23,1000) junk

enddo

read(23,*) ml

read(23,*) m2

read(23,*) gl

read(23,*) g2

read(23,*) dw

read(23,*) wintex

close(23)

do i=1,n+1

c gamma (i)=0.0d0

gamma (i)=g1
gammaO(i)=0.0d0

enddo

gamma (ncent)=gl

gammaO(ncent)=g2

gamma (ncent+1)=g1

c gammaO (ncent+1)=g2

if(n.gt.NMAX/2) then

write(*,*) "you must decreace the numper of oscilators or"
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write(*,%) "recompile the program with greater NMAX"
stop

endif

do i=1,n
omega(i)=1.0d40/m1
enddo
do i=2,n+1,2
omega(i)=1.0d40/m2
enddo
do i=1,n
write(*,*) i,omega(i),gamma(i),gamma0 (i)
enddo
dt=1.0d4-3
lamda=0.0001d0
c dw=0.02d0

do while( lamda .le. 1.0d0 )
if( (lamda+dl) .gt.1.0d0) then
dl=d41/3.0d40
write (k%) "---—ooon >  dl=",dl1
c dt=1.0d4-4
endif
do while( (lamda+dl).gt.1.0d0)
d1=41/3.0d0
write(k,*k) "e--eeee-- > dl=",d1
enddo
if(dl1.1e.0.0001) then
lamda=1.0d0
dt=1.0d-4
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endif

¢ find the phonon frequencies
¢ and fixing the breather frequency just bellow the optical band
call fwph( wph , ml,m2,lamda)
wbr=wph(wintex)+dw
period=6.2831853d0/wbr
600 continue
do i=0,n+1
x(i)=xinit (i)
y(i)=yinit (i)
enddo
do i=1,n
do j=1,n
alp(i,j)=0.0d0
ce(i,j)=0.0d0
enddo
alp(i,i)=1.0d0
enddo
£=0.040
do while(t.lt.period)
call rk4_s(x,y,t,dt,lamda,n,omega)
call rk4_s2(alp,ce,x,y,t,dt,lamda,n,omega)

t=t+dt
enddo
c
c Termination contition
c
sum=0.0d0

do i=1,n
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sum=sum + dabs(xinit(i)-x(i))+dabs(yinit(i)-y(i))
enddo
if(sum.gt.1.0d0) then

dl=d1/2.0
endif

write(*,*) wbr,lamda,sum

Cm e e e e e e e e e e e =
do i=1,n
alp(i,i)=alp(i,i) -1.0d0
enddo
call deval( alp,ce,dlt,xinit,x,yinit,y,n)
do i=1,n
xinit(i)=xinit(i)+d1lt(i)
enddo
if (sum.le.1.0e-10) goto 300
sum=0.0d0
do i=1,n
sum=sum+dabs( d1t(i) )
enddo
if (sum.le.1.0e-14) goto 300
goto 600
300 lamda=lamda+dl

write(*,*) (i,xinit(i),i=1,n)
enddo
lamda=1.0d0
write(21,*) "# BREATHER PARAMETERS "
write(21,%) "# FREQUENCY ",wbr
write(21,*) "# LAMBDA ",lamda
write(21,*) "#"

do i=1,n
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write(21,102) i,xinit(i)

enddo
close(21)
Cm===mmmm—m—m——————mm—m—m——mmmmmm—mm————————————————————
c for the floquet analysis
Cm==mmmmmem———————mmm—mmmm—m—mmmmmm—————m————————————————
do i=1,n

x(i)=xinit (i)
y(i)=yinit (i)
do j=1,n
alp(i,j)=0.0d0
bet (i, j)=0.0d0
ce(i,j)=0.0d0
de(i,j)=0.0d0
enddo
alp(i,i)=1.0d0
de(i,i)=1.0d0
enddo
t=0.040
do while(t.lt.period)
call rk4_s(x,y,t,dt,lamda,n,omega)
call rk4_s2(alp,ce,x,y,t,dt,lamda,n,omega)
call rk4_s2(bet,de,x,y,t,dt,lamda,n,omega)
t=t+dt
enddo
do i=1,n
do j=1,n
alp(i+n,j)=ce(i,j)
alp(i,j+n)=bet(i,j)
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alp(i+n,j+n)=de(i,j)
enddo
enddo
call floque(alp,n,vectors)
open (23,file="eigen.out")
open (24,file="vectors.out")
open (25,file="vectors_im.out")
do i=1,2%*n
write(23,103) alp(i,1),alp(i,2)
enddo
close(23)
dzero=0.0d0
do i=1,2%n,2
if (dabs( alp(i,2) ).1t.1.0d-9 ) then
do k=0,1
do j=1,2%n
write(24,102) j,vectors(j,i+k)
write(25,102) j,dzero
enddo
write(24,101)
write(25,101)
enddo
else
do j=1,2%n
write(24,102) j,vectors(j,i)
write(25,102) j,vectors(j,i+1)
enddo
write(24,101)
write(25,101)

endif



Programs 145

Cc

enddo
stop

end

c subroutine for the frequencies of the phonnon band

C

subroutine fwph( wph, ml,m2,1)
real*8 wph(8),m1,m2,1
real*8 deltal,delta2

deltal=(m1-m2)*(m1-m2)*(2.0%1+1.0-1)%%2
delta2=deltal+16.0*m1*m2*1*]1
wph(2)=( (m1+m2)*(2.0%1+1-1)
wph(1)=( (m1+m2)*(2.0%1+1-1)
wph(4)=( (m1+m2)*(2.0%1+1-1)
wph(3)=( (m1+m2)*(2.0%1+1-1)
do i=1,4
wph(i)=dsqrt (wph(i))

sqrt( deltal) )/(2.0%m1#%m2)
sqrt( delta2) )/(2.0%ml1#%m2)
sqrt( delta2) )/(2.0%ml1%m2)
sqrt( deltal) )/(2.0*m1*m2)

+

+

enddo

wph(5)=wph(3)/2.0d40
wph(6)=wph(4)/2.0d0
wph(7)=wph(3)/3.0d0
wph(8)=wph(4)/3.0d0
wph(9)=wph(3)/4.0d0
wph(10)=wph(4)/4.0d0

return

end
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¢ This is a subroutine for solving a system of
¢ diferential equations on a latice with first
¢ neighbor aproximation
subroutine rk4_s(x,y,t,dt,1,n,wmega)
include ’parameters.f’
real*8 x(0:SIZE),y(0:SIZE)
real*8 t,dt,1
integer i,n
real*8 fx,fy
real*8 wmega(SIZE) ,wtmp
real*8 kx1(0:SIZE) ,kx2(0:SIZE) ,kx3(0:SIZE) ,kx4(0:SIZE)
real*8 ky1(0:SIZE) ,ky2(0:SIZE) ,ky3(0:SIZE) ,ky4(0:SIZE)
real*8 xtmp(0:2),ytmp(0:2)
real*8 gamma(SIZE) ,gammaO(SIZE)

common gamma,gammal

¢ periodic boundary conditions

c
x(0)=x(n)
x(n+1)=x(1)
y(0)=y(n)
y(n+1)=y(1)

c

¢ For the first step of the Runke Kuta

do i=1,n
xtmp (0)=x(i-1)
xtmp(1)=x(i)
xtmp(2)=x(i+1)
ytmp(0)=y(i-1)
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ytmp(1)=y (i)
ytmp(2) =y (i+1)

wtmp=wmega (i)

kx1(i)=dt*fx(xtmp,ytmp,t,1)
ky1(i)=dt*fy(xtmp,ytmp,t,wtmp,1,i)
enddo
kx1(0)=kx1(n)
kx1(n+1)=kx1(1)
ky1(0)=ky1(n)
kyl(n+1)=ky1(1)
c
¢ For the second step of the Runke Kuta
c

do i=1,n

xtmp (0)=x(i-1)+kx1(i-1)/2.040
xtmp (1)=x(i)+kx1(i)/2.040
xtmp (2)=x(i+1)+kx1(i+1)/2.040

ytmp(0)=y(i-1)+ky1(i-1)/2.040
ytmp(1)=y(i)+ky1(i)/2.0d0
ytmp(2)=y (i+1)+ky1(i+1)/2.0d0

wtmp=wmega (i)
kx2(i)=dt*fx(xtmp,ytmp,t,1)

ky2(i)=dt*fy(xtmp,ytmp,t,wtmp,1,1i)
enddo
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kx2(0)=kx2(n)

kx2(n+1)=kx2(1)

ky2(0)=ky2(n)

ky2(n+1)=ky2(1)
c
¢ For the third step of the Runke Kuta
c

do i=1,n

xtmp (0)=x(i-1)+kx2(i-1)/2.040
xtmp (1)=x(i)+kx2(i)/2.0d0
xtmp (2)=x(i+1)+kx2(i+1)/2.040

ytmp(0)=y(i-1)+ky2(i-1)/2.0d0
ytmp(1)=y(i)+ky2(i)/2.0d0
ytmp(2) =y (i+1)+ky2(i+1)/2.0d0

wtmp=wmega (i)
kx3(i)=dt*fx(xtmp,ytmp,t,1)
ky3(i)=dt*fy(xtmp,ytmp,t,wtmp,1,i)

enddo

kx3(0)=kx3(n)

kx3(n+1)=kx3(1)

ky3(0)=ky3(n)

ky3(n+1)=ky3(1)
c
¢ For the fourthd step of the Runke Kuta
c

do i=1,n
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xtmp(0)=x(i-1)+kx3(i-1)
xtmp (1) =x(1i)+kx3(1)
xtmp(2)=x(i+1)+kx3(i+1)

ytmp(0)=y(i-1)+ky3(i-1)
ytmp (1) =y (i)+ky3(i)
ytmp(2)=y (i+1)+ky3(i+1)

wtmp=wmega (i)
kx4 (i)=dt*fx(xtmp,ytmp,t,1)
ky4(i)=dt*fy(xtmp,ytmp,t,wtmp,1,1i)

enddo
do i=1,n
x(i)=x(i)+( kx1(i)+2.0d0*kx2(i)+
& 2.0d0*kx3(i)+kx4(i) )/6.0d0
y(i)=y(i)+( ky1(i)+2.0d0*ky2(i)+
& 2.0d0*ky3(i)+ky4(i) )/6.0d0
enddo
return
end

subroutine rk4_s2(alp,ce,x,y,t,dt,1,n,wmega)
include ’parameters.f’
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE)

real*8 x(0:SIZE),y(0:SIZE)
real*8 x0(0:SIZE),y0(0:SIZE)
real*8 t,dt,1
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integer i,j,k,n
real*8 fx2,fy2
real*8 wmega(SIZE) ,wtmp
real*8 kx1(0:SIZE) ,kx2(0:SIZE)
real*8 kx3(0:SIZE) ,kx4(0:SIZE)
real*8 ky1(0:SIZE),ky2(0:SIZE)
real*8 ky3(0:SIZE),ky4(0:SIZE)
real*8 xtmp(0:2),ytmp(0:2)
real*8 tmp(0:2)
real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma ,gamma0
do k=1,n

do j=1,n

x0(j)=alp(j,k)

y0(j)=ce(j,k)
enddo

¢ periodic boundary conditions

x0(0)=x0(n)
x0(n+1)=x0(1)
y0(0)=y0(n)
y0(n+1)=y0(1)

¢ For the first step of the Runke Kuta

do i=1,n
xtmp (0)=x0(i-1)
xtmp (1)=x0(i)
xtmp(2)=x0(i+1)
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ytmp (0)=y0(i-1)
ytmp(1)=y0(i)
ytmp(2)=y0(i+1)

tmp(0)=x(i-1)
tmp(1)=x(i)
tmp(2)=x(i+1)

wtmp=wmega (i)

kx1(i)=dt*fx2(xtmp,ytmp,t,1)
ky1(i)=dt*fy2(xtmp,ytmp,t,tmp,wtmp,1,1i)
enddo
kx1(0)=kx1(n)
kx1(n+1)=kx1(1)
ky1(0)=ky1(n)
kyl(n+1)=ky1(1)
c
¢ For the second step of the Runke Kuta
c

do i=1,n

xtmp(0)=x0(i-1)+kx1(i-1)/2.040
xtmp (1)=x0(i)+kx1(i)/2.040
xtmp(2)=x0(i+1)+kx1(i+1)/2.040

ytmp (0)=y0(i-1)+ky1(i-1)/2.0d0
ytmp (1)=y0(i)+ky1(i)/2.0d0
ytmp(2)=y0(i+1)+ky1(i+1)/2.0d0
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tmp (0)=x(i-1)
tmp(1)=x(1)
tmp(2)=x(i+1)

wtmp=wmega (i)

kx2(i)=dt*fx2(xtmp,ytmp,t,1)
ky2(i)=dt*fy2(xtmp,ytmp,t,tmp,wtmp,1,1i)
enddo
kx2(0)=kx2(n)
kx2(n+1)=kx2(1)
ky2(0)=ky2(n)
ky2(n+1)=ky2(1)
c
¢ For the third step of the Runke Kuta
c

do i=1,n

xtmp(0)=x0(i-1)+kx2(i-1)/2.0d0
xtmp(1)=x0(i)+kx2(i)/2.040
xtmp(2)=x0(i+1)+kx2(i+1)/2.0d0

ytmp(0)=y0(i-1)+ky2(i-1)/2.0d0
ytmp(1)=y0(i)+ky2(i)/2.0d0
ytmp(2)=y0(i+1)+ky2(i+1)/2.0d0

tmp(0)=x(i-1)
tmp(1)=x(i)
tmp(2)=x(i+1)



Programs 153

wtmp=wmega (i)

kx3(i)=dt*fx2(xtmp,ytmp,t,1)
ky3(i)=dt*fy2(xtmp,ytmp,t,tmp,wtmp,1,i)

enddo

kx3(0)=kx3(n)

kx3(n+1)=kx3(1)

ky3(0)=ky3(n)

ky3(n+1)=ky3(1)
c
¢ For the fourthd step of the Runke Kuta
c

do i=1,n

xtmp (0)=x0(i-1)+kx3(i-1)
xtmp (1)=x0(i)+kx3(i)
xtmp (2)=x0(i+1)+kx3(i+1)

ytmp(0)=y0(i-1)+ky3(i-1)
ytmp (1)=y0(i)+ky3(i)
ytmp (2)=y0(i+1)+ky3(i+1)

tmp(0)=x(i-1)
tmp(1)=x(i)

tmp(2)=x(i+1)

wtmp=wmega (i)
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¢ Functions for the runke couta integretion of the

kx4 (i)=dt*fx2(xtmp,ytmp,t,1)
ky4(i)=dt*fy2(xtmp,ytmp,t,tmp,wtmp,1,1i)

enddo

do i=1,n
alp(i,k)=x0(i)+( kx1(i)+2.0d0*kx2(i)+
2.0d0*kx3(i)+kx4(i) )/6.0d0
ce(i,k)=y0(i)+( ky1(i)+2.0d0*ky2(i)+
2.0d0*ky3(i)+ky4(i) )/6.040
enddo
enddo
return

end

c original equationms

Cc

real*8 function fx( x,y,t,1)
real*8 x(0:2),y(0:2),t,1
fx= y(1)

return

end

real*8 function fy( x,y,t,w,1,i)
INCLUDE ’parameters.f’

real*8 x(0:2),y(0:2),t

real*8 1

real*8 w

real*8 potentiall,potential2
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real*8 gamma(SIZE) ,gammaO(SIZE)

common gamma ,gammal

fy= -wx(1.0d40-1)*potentiall(x(1),i )
& +1xwikpotential2( x(2) - x(1),i+1 )
& -1*wxpotential2( x(1) - x(0) ,i)

return

end

¢ onsite potential for the newton iteration

real*8 function potentiall(x,i)
INCLUDE ’parameters.f’

real*8 x

real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma ,gamma0

potentiall=x+gammaO (i)*x*x*x

return

end

¢ nonlinear interaction potential

real*8 function potential2(x,i)
INCLUDE ’parameters.f’

real*8 x

real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma ,gamma0

potential2=x+gamma (i) *x*x*x

return

end
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¢ Functions for the integration of the

¢ linearized equations

real*8 function fx2( x,y,t,1)
real*8 x(0:2),y(0:2),t,1
fx2= y(1)

return

end

real*8 function fy2( x,y,t,tmp,w,1,i)
INCLUDE ’parameters.f’
real*8 x(0:2),y(0:2),t,tmp(0:2)
real*8 1
real*8 w
real*8 ppotentiall,ppotential2
real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma ,gamma0
fy2=-w*(1.0d40-1)*ppotentiall (tmp(1),i)*x(1)
& +1xwippotential2 (tmp(2)-tmp(1) ,i+1)*(x(2)-x(1))
& -1*wxppotential2(tmp(1)-tmp(0),i)*(x(1)-x(0))
return
end
c
¢ derivative ot the onsite potential
c
real*8 function ppotentiall( x,i)
INCLUDE ’parameters.f’

real*8 x
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real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma ,gammal
ppotentiall=1.0d0+3.0d0*gamma0 (i)*x*x
return
end
c
¢ derivative ot the nonlinear interaction potential
c
real*8 function ppotential2( x,i)
INCLUDE ’parameters.f’
real*8 x
real*8 gamma(SIZE) ,gammaO(SIZE)
common gamma,gammal
ppotential2=1.0d0+3.0d0*gamma (i) *x*x
return

end

subroutine deval( alp,ce,dlt,xinit,x,yinit,y,n)
INCLUDE ’parameters.f’
real*8 xinit(0:SIZE) ,x(0:SIZE)
real*8 yinit(0:SIZE),y(0:SIZE)
real*8 alp(SIZE,SIZE),ce(SIZE,SIZE),d1t(SIZE),d
real*8 alpt(SIZE,SIZE),cet(SIZE,SIZE),sysa(SIZE,SIZE)
integer n,indx(SIZE)
do i=1,n
do j=1,n
alpt(i,j)=alp(j,i)
cet(i,j)=ce(j,1i)

enddo
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enddo

do i=1,n
d1t(i)=0.040
enddo
do i=1,n
do j=1,n
sysa(i, j)=0.0d0
enddo
enddo
do i=1,n
do j=1,n
do k=1,n
sysa(i,j)=sysa(i,j)+alpt(i,k)*alp(k,j)+cet(i,k)*ce(k,])
enddo
enddo
enddo
do i=1,n
do j=1,n
dlt(i)=d1t(i)-alpt(i,j)*(x(j)-xinit(j) )
& -cet(i,j)*(y(j)-yinit(j) )
enddo
enddo
call ludcmp(sysa,n,indx,d)
call lubksb(sysa,n,indx,dlt)

return

end
Clmm e e
c eigenvalues
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subroutine floque(a,nl,vr)

include ’parameters.f’

real*8 a(SIZE,SIZE),v1(SIZE,SIZE),vr(SIZE,SIZE)
real*8 wr(SIZE),wi(SIZE) ,work (MAXWORK)
character jobvl, jobvr

integer info,lda,ldvl,ldvr,lwork,ni,n

1da=SIZE
1dv1=SIZE
1dvr=SIZE
lwork=MAXWORK

jobvl="N’
c jobvr="N’
jobvr=’V’

n=2%n1

call dgeev( jobvl, jobvr,n,a,lda,wr,wi,vl,ldvl,vr,ldvr,
& work,lwork,info)
do i=1,2%n
a(i,1)=wr(i)
a(i,2)=wi(i)
enddo
return

end
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