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Abstract
School of Sciences and Technology
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Doctor of Philosophy

Exploring Field Theories via the Conformal Bootstrap

by Stefanos Robert KOUSVOS

We study conformal field theories of interest due to phenomenological as well
as purely theoretical considerations. This is done with the use of consistency condi-
tions. The program of studying (conformal) field theories with the use of self consis-
tency conditions is referred to as "the bootstrap". In the present thesis we will make
use of the numerical bootstrap as envisioned in its modern revival. That is, we will
impose crossing symmetry on certain correlators and demand unitarity/reflection
positivity, from which we will derive constraints on the parameter space. The pa-
rameter space is spanned by an in general infinite set of scaling dimensions and OPE
coefficients. These determine various observables, such as the critical exponents ob-
served at critical points. With the use of the numerical bootstrap we will provide
strong constraints on the space of allowed critical exponents for various universality
classes. The constraints in certain circumstances will be in fact so strong that they
actually compute the critical exponents. In other words, only small isolated regions
of parameter space will be found to be compatible with the imposed consistency
conditions. Some examples of theories we will consider are (hyper) cubic Sn n Z2

n,
bifundamental O(m)×O(n)/Z2 and MN Sn nO(m)n theories. We will find isolated
allowed regions in parameter space for all of these. As a side effect of our analysis
we will also work out tensor structures for various global symmetries, which can be
useful beyond the numerical bootstrap.
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Chapter 1

Introduction

The goal of this thesis will be to study conformal field theories (CFTs) relevant to
physically interesting critical phenomena and phase transitions. Critical phenom-
ena are usually discovered1 as fixed points of Renormalization Group (RG) flows
[84]. Consequently, if one assumes that the scale invariance at the fixed points is en-
hanced to conformal invariance one can study the critical phenomena by studying
their corresponding CFT. Physical observables are then related to specific quantities
in the CFT. These quantities are the scaling dimensions and the operator product ex-
pansion (OPE) coefficients. Another motivation will be a curiosity about the nature
of various debated fixed points that arise in some implementations of the RG, but
not others. Naturally one then asks if these fixed points are physical or spurious,
a question that gets complicated since each form of RG makes its own concessions.
For example, the standard d = dc − ε expansion [107] [106] around the upper critical
dimension of a system has a convenient control parameter, ε itself, but is perturba-
tive and needs resummations in order to make meaningful predictions in physically
interesting scenarios. Hence, the discrepancy between different implementations of
RG could be due to the differing concessions between implementations, and not nec-
essarily of the fixed point in question.

It is natural to try and study the above questions using a radically different ap-
proach, free of the concessions of other methods. This approach will be the modern
(numerical) conformal bootstrap [90]. The numerical bootstrap has the benefit of
being non perturbative, hence results will never depend on an expansion parameter
and its convergence properties, or lack thereof. Even compared to non-perturbative
methods, such as Monte Carlo simulations, the boostrap has its benefits. For ex-
ample, it is equally easy to run the bootstrap algorithm in any space-time dimen-
sionality, whereas Monte Carlo scales very badly. Another example, is that Monte
Carlo requires extrapolation to infinite volume whereas the boostrap doesn’t. Also,
the bootstrap takes directly into account conformal symmetry. Lastly, and probably
most importantly, the bootstrap provides rigorous results in the sense that if it ex-
cludes a point in parameter space then this point will never become allowed if we
increase our numerical precision2.

In the bootstrap approach one uses self consistency conditions in order to narrow
down the parameter space. This approach has been tremendously successful since

1At least on the theoretical side. Although, one should also mention that critical phenomena have
also been discovered using lattice techniques, see e.g. [83] and the discussion in the introduction of
[91].

2This statement is subject to an asterisk. The statement holds true assuming one includes a sufficient
amount of spins for "exchanged" operators in the operator product expansion. The success of the
bootstrap in practice is due to the fact that this number of sufficient spins is reasonable, such as e.g. 50
spins. See page 19 in [97].
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in various circumstances one can find small isolated islands in parameter space that
are consistent with the imposed conditions. Hence, if a CFT is conjectured to live
in this island, we have then by definition calculated the corresponding parameters
of this theory (with an error bar that corresponds to the size of the island). Then,
increasing the number of constraints, by e.g. using stronger numerics, one can make
the island smaller3, and hence the determination of the parameters in the theory
more precise. The first success of this methodology was the 3D critical Ising Model
[59]. This method led to the most precise determination of the critical exponents in
the 3D Ising Model to date [61]. Similarly, the critical exponents where also com-
puted with very high precision in the (3D) O(2) and O(3) critical theories [22] [21].
Interestingly, in the case of [22] it solved a discrepancy between Monte Carlo [46][45]
and experiment [69], indicating that Monte Carlo was correct4. Another virtue of the
numerical conformal bootstrap is that even before one tries to isolate a theory of in-
terest into an island, quite often the theory already lies on the edge of parameter
space creating a kink in the so called exclusion plots. These kinks are often used
as indicators for the location of theories in parameter space. Although, it should be
mentioned that theories do not need, nor do they in practice, always lie on the edge
of parameter space. It is nevertheless quite a common occurrence. For a comprehen-
sive list of references up to 2018-2019 we point the reader to [87]. For a pedagogic
introduction to the numerical bootstrap see [20].

With the exception of the O(N) family of models, the space of three dimensional
CFTs that are interesting due to critical phenomena is under-explored. Although
numerous calculations have been done in the context of the ε expansion, many ques-
tions remain unanswered. Critical points beyond the O(N) family are ubiquitous in
statistical and condensed matter physics. One class of examples is due to structural
phase transitions. In these phase transitions the order parameter can be the expec-
tation value of the displacement of some given particles on the lattice from their
high temperature equilibrium position. Hence, assuming one may create a lattice
system with a certain symmetry and make it undergo a continuous phase transition,
this would then correspond to a fixed point in e.g. a scalar field theory where the
scalar (i.e. the order parameter) has as a global symmetry the symmetry of the lat-
tice. For a review on structural phase transitions see [24] and [15], regarding the
Landau theory see [104]. A second class of examples includes models with an emer-
gent global symmetry different from the microscopic one. Two popular examples
of this phenomenon are phase transitions in stacked triangular anti-ferromagnets
and helimagnets, which at the microscopic level have an O(n) global symmetry.
In the case of stacked triangular anti-ferromagnets, an enhanced O(2) ×O(n)/Z2
symmetry arises due to the specific shape of the lattice. Whereas, in the helimag-
net example an enhanced O(2)×O(n)/Z2 symmetry arises due to the competition
between nearest neighbour and next nearest neighbour interactions. The interested
reader may find more details in E. Also, in addition to the above examples, one can
imagine fixed points that are not able to be captured by e.g. the ε expansion, or any
other technique. Nevertheless, these fixed points may be equally physically and/or
theoretically interesting.

With these issues in mind we believe it is a worthwhile task to try and broaden our
knowledge regarding the space of CFTs in three dimensions using the numerical

3We mention that there are also other ways of shrinking an island beyond using stronger numerics.
4This is important given that the experiment was performed in earth orbit.
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conformal bootstrap. Ideally we would like to be able to perform precision studies
such as the ones in [22] and [21]. In practice many complications can arise. The
most common problem is that all known multi scalar theories bootstrapped to date
have a singlet sector exclusion bound which is saturated by a kink due to an O(N)
model for some value of N. This happens because all the aforementioned theories
have a global symmetry that is a subgroup of O(N). Hence, the O(N) kink "hides"
the theory we are interested in studying. This can in some cases be circumvented if
the theory we are interested in has a kink that saturates some other sector. We will
see that this is the case in the O(m)×O(n)/Z2 multi-scalar theories. Conversely, the
cubic theory of the ε-expansion does not seem to saturate any bound. Even omitting
the above issues, subgroups of O(N) tend to have a more complicated group the-
ory structure, which in practice means that knowledge of more operators is needed
to fully determine the low lying spectrum of these theories. Take as an example
the hyper-cubic theories, which are some of the simplest deformations of an O(N)
model. For cubic theories (N = 3) if we include all low lying operators as exter-
nal operators in our algorithm we obtain 64 sum rules, this can be checked with
[42]. Whereas in [21], which is the most advanced study to date, the authors had
28 sum rules. Thus, even though one can in principle directly apply the methodol-
ogy of [22] and [21], which are the strongest results to date, the computational cost
can quickly become very large5. Recently, though, there have been advances in per-
forming higher dimensional scans in parameter space. Perhaps most notably in [92],
where the authors developed a method for systematically finding allowed points in
parameter space, a task that can become highly non-trivial in higher dimensional
scans. These advances should alleviate some of the issues mentioned above.

In the main part of this thesis we will study multi scalar CFTs with cubic and O(m)×
O(n)/Z2 global symmetry. These sections will be based on the results from [62], [63]
and [47]. Towards the end of the thesis we will discuss theories with GN o SN global
symmetry, for G arbitrary. This is based on work in progress [64]. In our study of
theories with cubic global symmetry we will not see signs of the cubic theory of the
ε expansion. Nevertheless, we will find evidence of a new CFT which we will dub
"Platonic". This name was chosen since, at least at the level of perturbative field
theory, in d = 4− ε dimensions it is the only possible three flavour multi-scalar the-
ory with the symmetry of a Platonic solid6. Of course, this name does not preclude
the possibility that the fixed point may actually be of purely non perturbative na-
ture. Interestingly, this conjectured CFT has critical exponents that agree very well
with certain experiments for critical phenomena in perovskites. We will isolate the
Platonic theory in an island using two different methods. The first method consists
of isolating it using the fact that it seems to saturate the exclusion plot in a specific
sector. Whereas the second way we isolate it, is by performing a 3D scan of param-
eter space over the scaling dimensions of three low lying operators. This second
method gives a bigger, hence less constraining, island. The upshot is that it drops
the assumption of exclusion bound saturation (i.e. we do not necessarily require the
theory to live at the kink). This paves the way towards shrinking this island using
the new state of the art technology from [92]. Another interesting observation is that
there exist more kinks if one moves to larger values of the scaling dimension of the
first defining scalar φ. We leave an investigation of these for future work. Lastly, it
is worth noting that cubic fixed points beyond those of the ε expansion have been

5Always assuming that one wishes to consider a carbon copy implementation.
6See [62].
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reported in the literature [29] but they were discarded as spurious. We de not know
what relation, if any, our conjectured theory has to those. We will discuss these fixed
points beyond the ε expansion when we study the O(m)×O(n)/Z2 theories, where
these fixed points have been the object of many debates.

Consequently, we proceed to study O(m) ×O(n)/Z2 theories for m = 2 and var-
ious values of n. These theories are interesting since they are believed to describe
phase transitions in helimagnets and frustrated antiferromagnets among other sys-
tems. They are also interesting for purely theoretical reasons. This is because people
have studied fixed points beyond the ε expansion in them extensively (for references
see the main text). These fixed points are found by first resumming the perturba-
tive beta functions (directly in 3D) and then looking for fixed points. Doing this,
from a specific order of loops and above, one finds new fixed points. These fixed
points have been reported by various authors to be spurious. Hence, our analysis of
O(m)×O(n)/Z2 is separated in to two ideological sections. In the first we compare
to the ordinary and widely accepted fixed points (large n, ε expansion) to numerical
bootstrap data. In the second we look for potential evidence of the debated fixed
points. For the large n fixed points we find excellent agreement of the numerics
with analytic predictions. With regards to the ε expansion, we find our results are in
some tension with the perturbative data. Concerning the debated fixed points found
in resummations, we find two islands that may correspond to them, assuming they
are not spurious, although this is something that cannot be conclusively confirmed
since the perturbative predictions have large deviations between themselves mak-
ing it hard to compare.

Lastly, before ending the thesis we present some results from work in porgress [64].
This work concerns theories with GN o SN global symmetry. As an example we ap-
ply these results to theories with G = O(M) and obtain some islands in parameter
space.

The thesis is organized as follows. In Chapter 2 we provide a lightning fast (ele-
mentary) introduction to CFT and the conformal bootstrap. Readers familiar with
both subjects may entirely skip it. Readers familiar with CFT but unfamiliar with
the conformal bootstrap can directly read Section 2.7. Consequently, in Chapter 3,
we set the stage for fixed points with hyper-cubic symmetry within the context of
a brief discussion. In Chapter 4 we work out all the tensor structures we will need
for cubic theories. A lot of the details in Chapter 4 will carry over to other groups
as well. Given that it is rather technical, the reader interested directly in the boot-
strap results may skip this chapter entirely. We thus proceed to Chapter 5 where we
present the results of the numerical analysis for systems with cubic symmetry. In
Chapter 6 and Chapter 7 we review the fixed points from the literature pertaining
to O(m) ×O(n)/Z2 theories and write down the relevant tensor structures. With
this in hand we present the numerical results relevant to O(m)×O(n)/Z2 theories
in Chapter 8. We also give a glimpse of results from work in progress regarding
theories with SN n GN global symmetry in Chapter 9, where G may be any group.
Lastly, we conclude with an overview of the established results and some future di-
rections we would like to pursue in Chapter 10. It should be noted that the main text
is supplemented with various appendices where several details are worked out or
discussed. Also, the thesis contains a number of details that did not appear in [62]
[63] and [47], hence may be of use to the reader interested in reproducing some of
the technical details.
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An important note is that we will be considering the spacetime dimensionality to be
equal to three throughout the thesis. Also, we will use a notation for 4-pt functions
〈O1O2O3O4〉, by which we imply that they are calculated by taking the OPE between
O1 and O2, and the OPE between O3 and O4. Hence, 〈O1(x1)O2(x2)O3(x3)O4(x4)〉
and e.g. 〈O3(x3)O2(x2)O1(x1)O4(x4)〉 are in general expressed in two different, but
equivalent, infinite sums over exchanged operators.
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Chapter 2

CFT Basics

2.1 Conformal Invariance

In the present chapter we review some basic knowledge about CFT that will be
needed later to fully understand our results. Two references the present author
found particularly useful are [89] and [94]1, our analysis will mostly follow these
references. We note that the chapter is written to accommodate readers unfamiliar
with CFT, thus those already comfortable with the subject may skip it.

Our starting point will be to define what we mean when we say "conformal trans-
formations", these are transformations that change the metric in the following way2

gµν → g′µν = c(x)gµν (2.1)

Let us now parametrize the transformations in the following infinitesimal form

xµ → x′µ = xµ + εµ(x) (2.2)

and plug this expression into

ds2 = gµνdxµdxµ → gµνd(xµ + εµ)d(xν + εν) (2.3)

for 2.1 to hold we must satisfy

gµν(
dxµ

dxρ
+

dεµ

dxρ
)(

dxν

dxσ
+

dεν

dxσ
)dxρdxσ = c(x)gρσdxρdxσ (2.4)

remembering that gµν = δµν this implies

∂ρεσ + ∂σερ = (c(x)− 1)gρσ = (c(x)− 1)δρσ (2.5)

this equation has four solutions in d > 2. Two for c(x) = 1 and two for c(x) 6= 1.
These are

1Also, I thank Andreas Stergiou for sending some of his unpublished notes.
2We will only talk about conformal transformations in flat space. Thus we choose gµν = δµν (Eu-

clidean space). Note that we will freely switch between upper and lower indices since they are equiv-
alent. Repeated indices are summed over unless stated otherwise.
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εµ = αµ = const

εµ = α[νµ]xν

εµ = αxµ

εµ = 2(ανxν)xµ − x2aµ

(2.6)

where α either represents an infinitesimal constant, vector or tensor accordingly. The
first element in 2.6 represents a translation, the second a rotation, the third a dilata-
tion and the fourth a special conformal transformation. Special conformal transfor-
mations are composed of an inversion (xµ → xµ

x2 ) followed by a translation followed
up by another inversion. This will be useful to remember later. We consider special
conformal transformations, instead of inversions which look simpler, since inver-
sions do not have an infinitesimal form.

One comment is that if we set d = 2, then defining z = x1 + ix2 and z̄ = x1 − ix2
would allow us to write ds2 = dzdz̄. In this case it is apparent that any analytic
transformation z → f (z) and z̄ → f (z̄) would be a conformal transformation. Then
the set of all conformal transformations would not be limited to those in 2.6. Instead,
we would have an infinite amount, corresponding to all the powers of z. We will not
comment further on this since 2D CFT is a massive an incredibly rich subject in and
of itself. See for example [33].

2.2 The Conformal Algebra

To write down the conformal algebra we first need the generators of the conformal
transformations in 2.6. One way to read the generators off of 2.6 is by using the
Baker-Campbell-Hausdorff formula

e−ABeA = B + [B, A] +
1
2!
[[B, A], A] + ... (2.7)

If we take e.g. A ∼ −iαµPµ where Pµ is the momentum generator, and B ∼ xν,
then on the right hand side by definition we should find x′ν.

eiaµPµ
xνe−iaµPµ

= xν + [xν,−iαµPµ] + O(a2)

= xν − iαµxνPµ + iαµPµxν + iαµxνPµ + O(a2)

= xν + iαµPµxν + O(a2)

(2.8)

thus we find that if Pµ = −i∂µ we indeed get eiaµPµ
xνe−iaµPµ

= x′ν = xν + αν. Note
that we implicitly think of the commutator as acting on a function on its right. Using
this methodology one may read off the remaining generators

Pµ = −i∂µ

Lµν = i(xµ∂ν − xν∂µ)

D = −ixµ∂µ

Kµ = −i(2xµxν∂ν − x2∂ν)

(2.9)
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Knowing all the generators we may now write down their algebra

[D, Pµ] = iPµ

[D, Kµ] = −iKµ

[Kµ, Pν] = 2i(δµνD− Lµν)

[Kρ, Lµν] = i(δρµKν − δρνKµ)

[Pρ, Lµν] = i(δρµPν − δρνPµ)

[Lµν, Lρσ] = i(δνρLµσ + δµσLνρ − δµρLνσ − δνσLµρ)

[Lµν, D] = 0

(2.10)

the last line tells us that dilatations do not change the spin, and conversely that
rotations do not change the scaling dimension3. Hence, operators may be labelled
by their spin and scaling dimension.

2.3 Conformal Transformations On Operators

The next important step is to determine how the generators act on operators. Our
main interest is going to be in so called "primary" operators. These are operators that
cannot be written as derivatives of other operators. These operators transform as
O(x)→ O′(x′) = b(x)−∆R(x) ·O(x), where we have left space-time indices implicit.
For example in the case of a spin-1 operator we would have Oµ(x) → O′µ(x′) =

Rµν(x)b(x)−∆Oν(x). The quantity ∆ is called the scaling dimension, whereas the
quantity "R(x)" depends on the spin of the field. For scalars R(x) ∼ 1 whereas for
spin-1 R(x) ∼ Rµν(x) is a rotation matrix. The factor b(x) prevents the fields from
being writable as the derivative of some other field. Note that from 2.1 conformal
transformations can be thought of (locally) as a product of rotations and dilatations,
this agrees with the above discussion.

We will derive the transformation laws of operators by defining how they trans-
form at the origin, and then translating them to a generic position x. For a more in
depth discussion on this topic see [33]. Remember that:

f (z− x) = f (z)− x · ∇ f (z) +
1
2!
(x · ∇)2 f (z) + ...

= e−ixµPµ f (z)
(2.11)

Next we assume LµνO(0) = SµνO(0), DO(0) = −i∆O(0) and KµO(0) = kµO(0)
where Sµν is some matrix that obeys the same commutation relations as Lµν. In
addition, ∆ is called the scaling dimension. We will eventually set kµ to zero, hence
we avoid naming it. We then have

LµνO(x) = e+ixµPµ LµνO(0) = e+ixµPµ Sµνe−ixµPµ e+ixµPµO(0)
= (Sµν − xµPν − xνPµ)O(x)

(2.12)

where to get the second line we have used the Baker-Campbell-Hausdorff formula
2.7. Similarly we get

3Which is the eigenvalue under D.
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Pµ = −i∂µO(x)
DO(x) = (−i∆ + xµPµ)O(x)

KµO(x) = (kµ − 2ixµ∆− 2xνSµν + 2xµxνPν − x2Pµ)O(x)

(2.13)

Thus we have the action of all generators on operators. The reason that we fixed
DO(0) = −i∆O(0) with ∆ a constant is due to the commutation relation [Lµν, D] = 0.
Consequently, the commutation relation [∆, kµ] = kµ sets kµ = 0 since ∆ is propor-
tional to the identity. Hence, we have KµO(0) = 0, this is the definition of what we
will call a conformal primary operator. From which it follows that O(0) cannot be
written as the derivative of another operator since then (assume spin 0 for simplic-
ity) KµO(0) = KµPνO′(0) = (PνKµ + 2δµν∆)O′(0) 6= 0.

An interesting observation, see [94], is that we could have derived the preceding
equations by using the transformation law

φ(x)→ φ(x′) = b(x)−∆φ(x) (2.14)

written for scalars in favor of simplicity of demonstration. Where we have b(x) =
1 + ∂µεµ with εµ defined in 2.6.

2.4 Correlation Functions

We will now show that using conformal transformations one can fix 2-pt and 3-pt
functions (for simplicity containing only scalars) up to some constants, called the
conformal data, which consist of scaling dimensions and OPE coefficients.

Firstly, from dilatations we have

〈O(λx)〉 = λ−∆〈O(x)〉 (2.15)

this implies

〈O(x)〉 = 0 (2.16)

since if it were equal to a non zero constant, this constant would change under di-
latations. Next, we consider 2-pt functions, using translations and rotations they can
be fixed to the following form

〈A(x)B(y)〉 = cAB f (|x− y|) (2.17)

where f is an arbitrary function and cAB is a constant that depends on which two
operators we are considering. Using dilatations this is further fixed to

〈A(x)B(y)〉 = cAB
1

|x− y|∆A+∆B
(2.18)

which is indeed invariant under O(λx) → O(x′) = λ−∆OO(x) and x → x′ = λx.
Consequently, the 2-pt function is further fixed to be non zero only between identical
operators i.e. cAB = cδAB. To see this we need to use special conformal transforma-
tions. We have
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Kµ〈A(x)B(y)〉 = 0 = 〈(Kµ A(x))B(y)〉+ 〈A(x)(KµB(y))〉 (2.19)

and using 2.18 and 2.13 we obtain

Kµ〈A(x)B(y)〉 ∼ cAB(∆A − ∆B) = 0 (2.20)

Finally, note that we can rescale the operators in order to absorb the factor of c. This
leads to the final expression for the 2-pt function

〈O(x)O(y)〉 = 1
|x− y|2∆ (2.21)

The last n-point function that is completely fixed by conformal symmetry is the 3-pt
function. Use of translations, rotations and dilatations fixes it to the form

〈A(x)B(y)C(z)〉 = ∑
cABC

|x− y|a|y− z|b|z− x|c (2.22)

where a, b and c are defined by the relation a + b + c = ∆A + ∆B + ∆C. The sum
should be thought of as running over all possible values of (a, b, c) and the constant
cABC will be called an OPE coefficient4. The naming of the constant will become
clear in the next section. Using special conformal transformations we can reduce
the possible combinations (a, b, c) down to a single one. This is a = ∆A + ∆B − ∆C,
b = ∆B + ∆C − ∆A and c = ∆C + ∆A − ∆B. See for example [88].

The above were written for scalar fields in favour of simplicity. Nevertheless we
note that they can also be worked out in the case of spinning fields.

2.5 The Operator Product Expansion

In this section we will motivate the notion of the operator product expansion (OPE).
Using initially the free scalar field theory, and then a generic interacting scalar field
theory, we show why one expects the product of two fields, each at a different posi-
tion, to be expressible in a sum over various operators. We will see that in the free
theory this sum is over a finite number of operators, whereas once we add interac-
tions the sum contains an infinite amount of operators. Our demonstration will be
for a Hamiltonian theory which is perturbatively accessible, nevertheless the notion
of the OPE is completely general and independent of either. For a demonstration of
the perturbative uses of the OPE see [18], for motivation of the OPE using only CFT
properties see [94]. Note that we will brush all subtle issues, such as convergence,
under the carpet, since our goal is to merely motivate the existence of the expansion.

Let us first consider the following 3-pt functions

4Under the assumption that the 2-pt function is normalized as in 2.21.
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〈φ(x)φ(0)φ2(y)〉
〈φ(x)φ(0)φ4(y)〉
〈φ(x)φ(0)φ6(y)〉

· · ·

(2.23)

these are computable by Wick contractions in the free theory. Only the first is non-
zero. Also, we know the following two point function:

〈φ(x)φ(0)〉 = 1
x2∆φ

(2.24)

We observe that the expressions for the correlators in 2.23 calculated by Wick con-
tractions, could instead be reproduced in the x → 0 limit if we had assumed

φ(x)× φ(0) ∼ 1
x2∆φ

+ φ2(0) (2.25)

The symbol ∼ implies that 2.25 holds specifically when inserted in correlators. The
first term on the RHS reproduces the two point function, whereas the second term
is needed to reproduce the first line of 2.23 in the limit x → 0. Lastly, since the
three point function 〈φφφa〉 is zero in the free theory if a > 2, the OPE coefficients
corresponding to exchanged φa operators (with a > 2) in the (φ× φ) OPE are zero.
For simplicity we have not explicitly written out the contributions of operators con-
taining derivatives. Thus, we see that for free fields the OPE truncates at a specific
operator, which of course depends on which operators we take the OPE between.

Now let us consider an interacting case, for demonstration purposes assume our
Hamiltonian is deformed with a quartic scalar term H = H0 + gφ4, where H0 is the
free part. In this case

〈φ(x)φ(0)φ2(y)〉 ∼ 〈φ(x)φ(0)φ2(y)〉 f − g
∫

ddz〈φ4(z)φ(x)φ(0)φ2(y)〉 f + O(g2)

〈φ(x)φ(0)φ4(y)〉 ∼ 〈φ(x)φ(0)φ4(y)〉 f − g
∫

ddz〈φ4(z)φ(x)φ(0)φ4(y)〉 f + O(g2)

〈φ(x)φ(0)φ6(y)〉 ∼ 〈φ(x)φ(0)φ6(y)〉 f − g
∫

ddz〈φ4(z)φ(x)φ(0)φ6(y)〉 f + O(g2)

· · ·
(2.26)

where the left hand side is evaluated in the full theory, and the terms on the right
hand side are evaluated in the free theory. The minus sign is due to the expansion
of e−

∫
ddz(H0+gφ4) around g → 0, where we have also set the usual factor β = 1 in

e−βH. From 2.26 it is now straightforward to see that the OPE of φ with itself should
now contain an infinite amount of terms, and the terms that did not appear in 2.25
should have OPE coefficients that start at O(g) or above.

For the rest of this thesis operators that appear on the left hand side of the OPE
will be called "external" operators, and operators that appear on the right hand side
of the OPE will be called "exchanged" operators.
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2.6 Conformal Blocks

The computation of four point functions is done by expressing them in an (in gen-
eral) infinite series of other functions, called conformal blocks. This can be done in
principle by taking the OPE twice in order to reduce the four point function to an (in
general) infinite sum of two point functions. Conformal blocks are convenient since
each one of them contains the contribution of a primary and all its descendents to the
four point function. Another way of computing the conformal blocks is via the con-
formal Casimir. The Casimir is an operator made up of generators, that commutes
with all generators. Hence descendents, which are expressible as a primary acted
upon by various powers of the momentum generator, all have the same eigenvalue
under the Casimir as the primary. This leads to a differential equation one can solve
to find the conformal blocks. For this approach see [35], see also [34]. In practice,
in the numerical bootstrap what is used to compute the blocks are Zamolodchikov
recursion relations5, see e.g. [60], [59] or [85] as well as the recent numerical imple-
mentation [39]. Below we provide a brief sketch of how this works.

The first tool we will need is the operator-state correspondence. This tells us that
an operator inserted at the origin acting on the vacuum, for all intents and purposes,
is equivalent to a state with the same scaling dimension and spin. We have e.g.

DO(0)|0〉 = −i∆O(0)|0〉 (2.27)

from 2.13. Thus we can make the identification O(0)|0〉 = |∆〉. The second tool we
will need is referred to as radial quantization. This is the practice of foliating our
space in slices of fixed radii. We write our metric schematically as

ds2 = dr2 + r2dθθθ2 (2.28)

in d = 2 θθθ is an angle, in higher dimensions it is a more complicated metric element
we will not need to specify. Consequently, we change coordinates τ → logr in order
to obtain

ds2 = e2τ(dτ2 + dθθθ2) (2.29)

In this choice of foliation the evolution operator is U = eiDτ. Note that since the
generator D has a factor of i in it, the exponent is real. We would like to learn
what conjugation looks like in radial quantization. This can be done by considering
the evolution of an operator in Minkowski space and then continuing to Euclidean
space6. We start with [20]

O(t) = eiHt−iPxO(0)e−iHt+iPx (2.30)

where O(t) is some Hermitian operator. Continuing t to t = −iτ we get

O(τ) = eHτ−iPxO(0)e−Hτ+iPx (2.31)

5For the original papers see [109] and [108]
6We are not going to touch on the delicate issue of the assumptions required for continuations

between the two to exist.
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hence for the equation to continue to make sense we must have O(τ)† = O(−τ).
In other words, under conjugation we have r → 1/r since τ = logr. Now remem-
ber that the generator of special conformal transformations is a composition of an
inversion a translation and another inversion. Denoting an inversion as I we have

Kµ = IPµ I = IPµ I−1 = P†
µ (2.32)

where we used that the inverse of an inversion is an inversion. Equation 2.32 is very
important since it tells us that Pµ and Kµ can be thought of as raising and lowering
operators of the scaling dimension respectively.

We are now ready to motivate the recursion relation for conformal blocks. First,
from the above, note that a field O(x) that is a descendent and a primary at the same
time is a null state

〈∆|∆〉 = 〈∆|Pµ|∆− 1〉 = (〈∆|←−Kµ)|∆− 1〉 = 0 (2.33)

where we used that Kµ gives zero when acting on a primary state, and that it is the
conjugate of Pµ. Next let us consider the four point function expanded in a complete
set of states

〈OOOO〉 = ∑̄
O

〈OO|Ō〉〈Ō|OO〉
〈Ō|Ō〉

∼ ∑̄
O′

λ2
OOŌ′g∆Ō′ ,l (2.34)

where g∆Ō′ ,l is the conformal block, which encodes information about a primary Ō′

and all its descendants. Note that in 2.34 the first sum on the right hand side runs
over all exchanged operators, whereas the second sum only over primaries (descen-
dants have been implicitly grouped with their corresponding primaries). In 2.34 we
have made use of

1 = ∑̄
O

|Ō〉〈Ō|
〈Ō|Ō〉

(2.35)

thus if 〈Ō|Ō〉 has a zero, then 2.34 has a pole. This happens whenever some Ō is
simultaneously a primary and a descendent7. Then, at some value of the scaling
dimension ∆Ō = ∆?

Ō the expression 2.35 will have a pole 1
∆Ō−∆?

Ō
due to a descendent

at some level n. Note that the norm of all descendents of the null state will have
a zero at the same position, thus the pole factors out. But this sum over a primary
and all its descendents is a conformal block, thus we conclude that the residue of
the pole will be another conformal block with spin and scaling dimension that of the
descendent that becomes null.

g∆,l = f∆,l + ∑
poles

c
∆− ∆?

g∆?+n,l? (2.36)

Where we have denoted by f∆,l a function that does not have poles in ∆, but a sin-
gularity that behaves as r∆, r is a coordinate that is not important for now given that
it will be taken to be r < 1. Also c stands for a set of coefficients which are also
computable, as is the set of ∆?s that gives us the positions of the poles. Iterating

7We have not discussed unitarity bounds, see e.g. the discussion in [20]. These bounds, which are
lower bounds on the scaling dimensions of operators ∆O > ∆min as a function of the operator’s spin,
must always be satisfied in unitary theories. The poles in 2.34 always appear for values of the scaling
dimensions at or below the unitarity bounds, hence will not cause us any problems.
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this equation numerically one computes conformal blocks to a desired accuracy. For
more details we refer the reader to [60].

2.7 The Crossing Equation and Bootstrap Constraints

We now have all the tools needed to discuss the crossing equation and its constraints.
For simplicity we will start with four identical scalars that carry no index under
global symmetry. We shall explain later how this generalizes to different fields trans-
forming in arbitrary representations of arbitrary global symmetry.

To start we write the OPE in following general form

O(x)O(0) ∼∑
O′

cO′
OOxµ1 ...xµl O′µ1µ2...µl

(2.37)

and then reorganize it as

O(x)O(y) ∼∑
O′

cO′
OOP(x− y, ∂y)O′(y) (2.38)

where the function P(x − y, ∂y) is used to schematically organize the OPE in terms
of primaries. Note that we could actually compute the explicit form of this function,
see e.g. [94], but it will not be particularly useful for our purposes. Now, we may
compute a 4-pt function by taking the OPE twice in the following way

〈O(x1)O(x2)O(x3)O(x4)〉
= ∑

O′
cO′

OOcO′
OOP(x1 − x2, ∂x2)P(x3 − x4, ∂x4)〈O′(x2)O′(x4)〉 (2.39)

which is recast as

〈O(x1)O(x2)O(x3)O(x4)〉

= ∑
O′
(cO′

OO)
2 1
|x12|2∆O |x34|2∆O

g∆O′ ,l(u, v)
(2.40)

by puling out a factor of the coordinates that has the expected transformation prop-
erties under conformal transformations and isolating the invariant part in a separate
function g∆O′ ,l(u, v) which is the conformal block. The variables u and v are confor-
mally invariant combinations of the coordinates at which the external operators are
inserted at, and are given by

u =
x2

12x2
34

x2
13x2

24
, v =

x2
14x2

23

x2
13x2

24
(2.41)

For later convenience note that we can also define another set of variables z and
z̄ via u = zz̄ and v = (1− z)(1− z̄). Notice that the above choice of taking the OPE
between two specific operators is not the only choice, we could have taken the OPE
between two other operators. More explicitly, instead of taking the OPE of the first
with the second and then the third with the fourth, and finally computing the result-
ing two point function, we could have taken the OPE of the first with the fourth and
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the second with the third. Both choices are equivalent8, hence should be equal, thus
we obtain

∑
O′
(cO′

OO)
2 1
|x14|2∆O |x23|2∆O

g∆O′ ,l(v, u)

= ∑
O′
(cO′

OO)
2 1
|x12|2∆O |x34|2∆O

g∆O′ ,l(u, v)
(2.42)

which can be re-written as

0 = ∑
O′
(cO′

OO)
2F∆O

∆O′ ,l
(2.43)

by defining the so called convolved conformal blocks

F∆O
∆O′ ,l

= u−∆O g∆O′ ,l(u, v)− v−∆O g∆O′ ,l(v, u) (2.44)

2.43 is referred to as a sum rule. As we will see later the number of sum rules that
result from a given crossing equation depends on the number of irreducible repre-
sentations of the global symmetry that appear on the right hand side of the OPE.
Any CFT must satisfy its corresponding sum rules, this provides constraints on the
CFT data. In addition to the sum rules, unitary CFTs must satisfy so called unitarity
bounds. These are

∆ >
d− 2

2
(2.45)

for spin-0 operators, and
∆ > d− 2 + l (2.46)

for spin-l operators with l > 1, where d is the dimensionality. Unitarity also implies
that the OPE coefficients should be real numbers, for a proof of this and a discussion
of unitarity bounds see [20].

We now have all the ingredients needed to demonstrate how the bootstrap algo-
rithm works. Recast 2.43 as

0 = ∑
O′ 6=1

(cO′
OO)

2F∆O
∆O′ ,l

+ F∆O
0,0 (2.47)

where we have explicitly separated the contribution of the unit operator. Assume
we can find a functional a such that:

a(F∆O
0,0 ) = 1 (2.48)

and
a(F∆O

∆O′ ,l
) > 0 (2.49)

for each ∆O′ . Then, rewriting the previous sum rule we get

∑
O′
(cO′

OO)
2a(F∆O

∆O′ ,l
) = −a(F∆O

0,0 ) = −1 (2.50)

8Under the assumption that the operators are placed at positions x1, x2, x3 and x4 chosen such that
all aforementioned OPEs converge.
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noting that squares of real numbers are positive numbers we realize that we have ar-
rived at a contradiction, since we have (positive) = (negative). Thus, the set scaling
dimensions and OPE coefficients we had plugged in to 2.43 does not correspond to
a self consistent conformal field theory, and hence is excluded from parameter space.

We note that the functional is usually parametrized as a = ∑m,n amn∂m
z ∂n

z̄ |z=z̄=1/2
with z and z̄ defined as under 2.41. Even though this is the standard choice one may
choose a functional however they like9. The simplest bootstrap algorithm now pro-
ceeds as follows

1) Require that all operators in the theory satisfy their corresponding unitarity bound.

2) Choose a specific operator and demand that its scaling dimension starts above
the the unitarity bound, ∆ > ∆unitarity + x, for some value of x > 0

3) See if you can find a functional of the form specified above. If yes, then that
choice of x does not correspond to a unitary self consistent CFT and thus you have
placed an upper bound on the scaling dimension of this operator ∆ < ∆unitarity + x.
If you cannot find a functional, raise the value of x until you can.

The above procedure, when done to find the optimal value of x, will produce what
we will call exclusion plots. These are most often plots of the maximum allowed
scaling dimension of some operator as a function of the scaling dimension of some
external operator. Note also that the above is the simplest version of the bootstrap
algorithm, one can move as many operators as they want away from the unitarity
bound.

Alternatively, one can perform an algorithm in order to maximize (or minimize) an
OPE coefficient. Take 2.47 and in addition to to the unit operator, isolate the operator
whose OPE coefficient we are interested in constraining, and call it OA

0 = ∑
O′ 6=1,OA

(cO′
OO)

2F∆O
∆O′ ,l

+ F∆O
0,0 + (cOA

OO)
2F∆O

∆OA ,lOA
(2.51)

this time we will search for a functional satisfying

a(F∆O
∆O′ ,l

) > 0 (2.52)

for all O 6= 1, OA , and

a(F∆O
∆OA ,lOA

) = 1 (2.53)

Recasting the sum rule 2.51 as follows we get an inequality

(cOA
OO)

2 = −∑
O′
(cO′

OO)
2a(F∆O

∆O′ ,l
)− a(F∆O

0,0 ) 6 −a(F∆O
0,0 ) (2.54)

in order to get the inequality we used the fact that (cO′
OO)

2a(F∆O′ ,l) is positive. Min-
imizing −a(F∆O

0,0 ) we may find an upper bound on the OPE coefficient of OA. Con-
versely if we had chosen

a(F∆O
∆OA ,lOA

) = −1 (2.55)

9See e.g. [19], where the authors sample different points rather than just z = z̄ = 1/2.
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we would get a lower bound on the OPE coefficient. These procedures for finding a
functional under certain constraints are performed by the specialized software SDPB
[97], [65]. Also, to write the sum rules that result from crossing symmetry in a form
understandable to SDPB, the present author has so far used the following software
[9] [41]. Note also that a software called Autoboot exists, which calculates the sum
rules for a given group automatically [42].

Note that SDPB solves semi-definite programming problems. This is needed since if
we move away from single correlator bootstrap examples, such as the one described
above, instead of sum rules consisting of functions we now have sum rules consist-
ing of matrices of functions. Hence, we now need a functional that when acting on
a sum rule gives positive semi-definite matrices. If we name these matrices M, they
must satisfy λτ Mλ > 0 for any λ. Where λ is a column vector consisting of real num-
bers (corresponding to the OPE coefficients). With this in mind the generalization of
the steps outlined above is straightforward to work out.
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Chapter 3

Scalar Field Theories with Cubic
Symmetry

3.1 Cubic Theories in d = 4− ε Dimensions

It will be instructive to review some basic knowledge about scalar field theories with
(hyper) cubic (CN = Z2

N o SN)1 C3 = Z2
3 o S3

2 symmetry in d = 4− ε dimensions.
Their Hamiltonian density can be written in two equivalent forms3, related by a
coupling constant redefinition:

H = g1(φ
4
1 + φ4

2 + φ4
3) + g2(φ

2
1φ2

2 + φ2
2φ2

3 + φ2
3φ2

1) (3.1)

and
H = g′1(φ

2
1 + φ2

2 + φ2
3)

2 + g′2(φ
4
1 + φ4

2 + φ4
3) (3.2)

Note that in 3.1 and 3.2 we have at most four powers of φ appearing, since any more
would be irrelevant in d < 4, in the renormalization group sense of the word. Al-
though incredibly simple, 3.1 and 3.2 tell us a lot. The first equation tells us that the
cubic theory can be viewed as a deformation of three decoupled Ising models. See
for example [57], which considered this viewpoint in conformal perturbation the-
ory [18]. The second equation equation tells us that the cubic theory can be viewed
as a deformation of the O(3) model, see for example the discussion in the "Future
directions" section of [21], where the authors use conformal perturbation theory ar-
guments to show that the scaling dimension of the lowest dimension scalar singlet
(∆S) should satisfy (roughly) ∆C3

S − ∆O(3)
S ∼ 0.0001. Note that this proximity of the

scaling dimensions in the O(3) and C3 theories is not something obvious a priori in
the traditional ε expansion, in which all theories are studied as a deformation of the
free theory. Of course, after resummations are performed, one indeed observes the
proximity of scaling dimensions between the two models. For the state of the art ε
expansion results see [1].

Let us write 3.1 in a more generic form, valid for an arbitrary amount of scalars
instead of three

H = g′1δijδklφiφjφkφl + g′2δijklφiφjφkφl (3.3)

1This is just the symmetry of N copies of the Ising model, either coupled or not.
2The symbol o implies that Z2

3 is a normal subgroup of C3 but S3 is not. In other words, an element
of Z2

3 conjugated by S3 is still an element of Z2
3. Whereas the reverse statement is not true. One may

convince themselves by explicitly checking the action of S3 and Z2
3 on φi = (φ1, φ2, φ3)

3We write only the interaction part and omit the kinetic and mass terms.
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where summation of indices is implied, and δijkl is non-zero only when all indices
are identical. From this rewriting we learn that, compared to O(N) theories, hyper-
cubic theories (CN = ZN

2 o SN) have an additional four-index invariant tensor δijkl .
This observation will be very useful in Chapter 4 where we will build 4-pt projectors
from invariant tensors of the global symmetry.

Our qualitative discussion so far makes it apparent that, in d = 4 − ε, a multi-
scalar theory with hypercubic symmetry has at least four fixed points: Gaussian
Fixed Point - Free Theory (both couplings zero), O(N) Fixed Point (g′2 = 0 in 3.2),
(N Identical) Ising Fixed Point(s) (g2 = 0 in 3.1), Hypercubic Fixed Point (both cou-
plings non-zero). This picture is indeed confirmed by a standard perturbative cal-
culation [110]. No additional fixed points are found in the standard ε expansion.
However, additional fixed points can be found if one performs resummations first,
and then looks for zeroes of the beta function4 [29]. These additional fixed points
are a controversial topic in the literature, we will return to them when we talk about
O(m)×O(n) theories in Chapter 6, where they have received significant attention.
Some recent relevant literature includes [51] [95] [79] [78] [6] [10] [96] [23] [13] [1],
for older references we point to [84] and references therein. For the Large N limit see
[2], or more recently [14]

4Usually one does the converse.
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Chapter 4

Tensor Structures in Cubic
Theories

4.1 The 〈φφφφ〉 correlator

The first step in deriving the sum rules required for the numerical investigation of
a model in the bootstrap, is to determine the tensor structures1 that appear in 4-pt
functions when decomposed onto irreducible representations. We note that recently
the procedure of deriving sum rules from a given crossing equation was automated
for a large number of groups [42]. Nevertheless, it will be instructive to determine
the tensor structures since they can provide us with intuition for several things. For
example, explicit knowledge of the tensor structures can tell us what an operator
looks like in the weak coupling limit2. Knowledge of the tensor structures can also
point out dualities between crossing equations. By this we mean that crossing equa-
tions containing operators from different symmetry groups and different represen-
tations give exactly the same (or equivalent) sum rules. This is something that needs
to be taken into account when studying theories in the numerical bootstrap in order
to know what theories we expect to appear in our plots. As an example, 4-pt func-
tions containing four φi operators or four φ̄i operators transforming in the defining
representation of O(2) or Z2 × S3 respectively, have the same sum rules. Tensor
structures of global symmetries are also useful in the analytic bootstrap where they
determine the crossing matrix, such as in [48] [47] [4] [49] [5] [31] [32]. Lastly, a lot of
our calculations will be useful for groups not currently supported in [42]. This will
be the case in Chapter 9.

The first correlator of interest will be

〈φiφjφkφl〉 (4.1)

where the four operators transform in the defining representation of the cubic group.
We will decompose this onto irreps of C3 = Z3

2 o S3. To determine the tensor struc-
ture corresponding to each representation it will suffice to know that C3 is a sub-
group of O(3). When reducing the symmetry from O(3) to C3, the traceless sym-
metric representation of O(3) decomposes into two irreducible representations of C3
which we call X and Y. For further details on the group theory of C3, in the context
of physics, see [6]. We will also work out the general case for GN o SN , where G
is any group, in Chapter 9. The OPE of two operators transforming in the vector
representation of O(3) is schematically

1For the rest of this work, unless stated otherwise, the term "tensor structure" will refer to a tensor
structure of a global symmetry.

2In most cases for us this will be the ε→ 0 limit in d = 4− ε.
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φi × φj ∼ δijS + Tij + Aij (4.2)

where δij is the Kronecker delta, and S, T, and A are respectively the Singlet, Traceless
Symmetric and Antisymmetric representations. To break the symmetry down to C3
we decompose T into X and Y (S and A are unchanged). We thus obtain

φi × φj ∼ δijS + Xij + Yij + Aij (4.3)

We can use this expression to write the four point function as

〈φiφjφkφl〉 ∼ δijδkl〈SS〉+ 〈XijXkl〉+ 〈YijYkl〉+ 〈Aij Akl〉 (4.4)

where we took the OPE between the first two and last two operators in the four point
function respectively. It is now trivial to read off the four point tensor structure of
the "S" representation: PS

ijkl ∼ δijδkl
3. Also, since the contribution from the "A" repre-

sentation is identical to that of O(3), we have PA
ijkl ∼ δikδjl − δilδjk.

All that remains is to calculate the projectors corresponding to the representations X
and Y. First we note that Xij is composed of the diagonal elements of Tij, while Yij is
composed of the remaining non diagonal elements:

Tij =

X11 Y12 Y13
Y21 X22 Y23
Y31 Y32 X33

 (4.5)

It is easy to check explicitly that under C3 the elements Y and X in 4.5 do not mix.
We also note that the grouping of elements into diagonal and non-diagonal holds for
hypercubic theories in general (i.e. not just for N = 3). Thus, keeping in mind that
the cubic group also has δijkl as an invariant tensor4 and demanding that the tensor
structures for the X and Y representations are orthogonal to each other, as well as
diagonal/non-diagonal respectively we obtain

PX
ijkl = δijkl −

1
3

δijδkl

PY
ijkl =

1
2
(δikδjl + δilδjk − 2δijkl)

(4.6)

and, indeed

PX
ijkl + PY

ijkl =
1
2
(δikδjl + δilδjk −

2
3

δijδkl) = PT
ijkl (4.7)

In conclusion, knowing that C3 is a subgroup of O(3), and that C3 has an additional
invariant tensor, δijkl , we were able to explicitly construct the 4-pt tensor structures.

3The letter "P" was chosen to hint that, when appropriately normalized, the tensor structures are
projectors. By slight abuse of terminology we will use these names interchangeably, even if the tensor
structures are not appropriately normalized.

4In other words δijklφiφjφkφk = φ4
1 + φ4

2 + φ4
3 is an invariant.
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4.2 The 〈XXXX〉 correlator

The 4-pt correlator involving four fields in the X representation can be simplified
considerably as follows5. First note that from 4.5 we have

Σi=jXij = X11 + X22 + X33 = 0 (4.8)

also, we can rewrite Xij in a more convenient form

Xij = ΣmδimδjmX̃m (4.9)

which can also be inverted to

X̃m = Σi,jδimδjmXij (4.10)

Both 4.9 and 4.10 are simply a redefinition: X11 = X̃1, X22 = X̃2 and X33 = X̃3.
But, three fields which are acted on by permutations and satisfy X̃1 + X̃2 + X̃3 = 0
furnish the defining representation of S3

6, the permutation group of three objects.
The OPE between two operators in the defining representation of SN can be found
in [50]. They obtain, as adapted to our current notation, and dropping the tildes for
convenience

Xa × Xb ∼ PabS + (Pab −
1
N
)(Xa + Xb) + S̄ab + Tab (4.11)

with Pab = δab − 1
N . Where the last two representations are anti-symmetric and

symmetric in their indices respectively. The representations have dimensions (dimS,
dimV, dimS̄, dimT) = (1, N − 1, 1

2 (N − 1)(N − 2), 1
2 N(N − 3)), thus for N = 3 the

symmetric representation drops out.

One needs to be careful when proceeding with summations including the tensor
Pab. For example, lets take the sum over the index a in 4.11, the left side is zero iden-
tically. Lets us check that the same holds true for the second term on the right hand
side

Σa(Pab −
1
N
)(Xa + Xb) = (P1bX1 + P2bX2 + P3bX3) + (P1bXb + P2bXb + P3bXb − Xb)

(4.12)
note that in 4.12 there is no implicit summation. Plugging in the definition of Pab we
have

Σa(Pab −
1
N
)(Xa + Xb) = (ΣaδabXa) + (ΣaδabXb − 2Xb) = 0 (4.13)

We now focus on the tensor structures of the 4-pt function 〈XaXbXcXd〉. These can
be found by decomposing it onto the irreducible representations that appear in 4.11
by taking the OPE between the first two and last two operators in the correlator. For
this we report the results in [50]

5Interestingly, as we will see in Chapter 9, this works for any group GN o SN with G arbitrary. This
happens since the operator X is always a singlet of G.

6Note that all the arguments of this section can be repeated verbatim for arbitrary N.
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〈XaXb〉 ∼ Pab (4.14)

〈S̄abS̄cd〉 ∼ Pa[cPd]b (4.15)

and
〈TabTcd〉 ∼ Pabcd (4.16)

having defined

Pabcd = δa 6=bδc 6=d

(
δacδbd + δadδbc −

1
N − 2

(δac + δad + δbc + δbd) +
1

(N − 1)(N − 2)

)
(4.17)

The last step is to illustrate how to go from the SN indices back to the CN = ZN
2 o SN

indices. We do this explicitly for the Xij Xkl two point function which is the simplest
case and report the results for the rest. From 4.9 we have

〈XijXkl〉 ∼ ΣaΣbδiaδjaδkbδlb〈XaXb〉 (4.18)

next we plug in 〈XaXb〉 ∼ Pab and get

〈XijXkl〉 ∼ ΣaΣbδiaδjaδkbδlb(δab −
1
N
) = δijkl −

1
N

δijδkl (4.19)

which is precisely 4.6. This methodology leads to the following set of tensor struc-
tures for a 4-pt function involving four operators in the X representation (for N = 3)
〈XijXklXmnXpq〉

PS
ijklmnpq =

(
δijkl −

1
3

δijδkl

)(
δmnpq −

1
3

δmnδpq

)
(4.20)

PS̄ijklmnpq = −δijmnδklpq +
1
3
(δijδmnδklpq + δklδmnδijmn)− (mn↔ pq) (4.21)

PX
ijklmnpq = −δijklδmnpq + δijmnδklpq + δijpqδklmn

+
1
3
(δijδklδmnpq + δmnδpqδijkl)

−1
3
(δijδmnδklpq + δklδpqδijmn)

−1
3
(δijδpqδmnkl + δklδmnδijpq)

+
1
9

δijδklδmnδpq

(4.22)

where we have used the identity7

7Note that in the N = 2 case there is a similar identity for δijklmn: δijklmn = 1
2 (δijδklmn + δklδijmn +

δmnδijkl)− 1
2 δijδklδmn.
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δijklmnpq =
1
3
(δijδklmnpq + δklδijmnpq + δmnδijklpq + δpqδijklmn)

1
6
(δijklδmnpq + δijmnδklpq + δijpqδklmn)−

1
6
(δijδmnδklpq + δklδpqδijmn)

−1
6
(δijδpqδklmn + δklδmnδijpq) +

1
6

δijδklδmnδpq

(4.23)

which holds specifically for N = 3. We stress that the above projectors 4.20 4.21 and
4.22 are written specifically for N = 3. Nevertheless, in Appendix C.2 we report
the sum rules for any value of N which originally appeared in [93] and [100] in the
context of hyper tetrahedral theories (SN × Z2).

4.3 The 〈φXφX〉 correlator

First, let us reiterate that throughout this thesis when writing a 4-pt function it will
be implied that we take the OPE between the first two and last two operators respec-
tively. Thus, 〈φiXjkφlXmn〉 and 〈φiφlXjkXmn〉 will have different decompositions in
terms of sums of conformal blocks, given that in general different irreducible repre-
sentations will appear as exchanged operators when taking the different OPEs.

For the correlator in question we need to consider the OPE φi × Xjk. Note that since
the representation of φi has dimension8 3 and that of Xjk has dimension 2, the di-
mensions of the representations appearing on the right hand side of the OPE have
to add up to 6. In addition to this, we have

〈φiφjXkl〉 = 〈φiXklφj〉 (4.24)

which in our notation is the statement that the 3-pt function can be calculated by
taking the OPE in two different but equivalent ways. This enforces that φl must
appear in the φi×Xjk OPE, since Xkl appears in the φi× φj OPE. The tensor structure
with which it appears can be found by multiplying both sides of the OPE with φl′

and taking the expectation value

〈(φi × Xjk)φl′〉 = Tjkil〈φlφl′〉 (4.25)

this fixes Tjkil = PX
jkil , where PX

jkil is defined in 4.16. Now what remains on the right
hand side of the OPE must have dimensions that add up to three. We have

φi × Xjk ∼ PX
jkilφl + ... (4.26)

where it is understood that φ schematically stands for all possible operators in that
representation along with their appropriate OPE coefficients. With this in mind we
can invert 4.26

φl ∼ PX
jkilφiXjk (4.27)

thus plugging in explicit values we get

8Not to be confused with scaling dimension.
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φ1 ∼ PX
jki1φiXjk ∼ φ1X11 ∼ φ1(X22 + X33)

φ2 ∼ ... ∼ φ2(X11 + X33)

φ3 ∼ ... ∼ φ3(X11 + X22)

(4.28)

where we have made use of 4.6 and 4.8. In 4.26 we have two possibilities: (i = j = k)
or (i 6= j and i 6= k and j = k). Lets consider the second possibility, e.g.

φ1X22 =
1
2

φ1(X22 + X33) +
1
2

φ1(X22 − X33) (4.29)

we now see that the second term is simply an element of an antisymmetric repre-
sentation A which indeed has dimension 3. The elements A ∼ ( φ1(X22 − X33) ,
φ2(X33 − X11) , φ3(X11 − X22) ) are antisymmetric under permutation of the indices.
The first term is simply an element of the defining representation as can be seen from
4.28.

Knowledge of 4.29 suffices to find the tensor structure corresponding to A, see Ap-
pendix B

PA
ijklmn = −3δijklmn + 2δilδjkmn + (δjkδilmn + δmnδijkl)− δilδjkδmn (4.30)

also, by plugging 4.26 into the four point function twice we get

PX
ijklmn = δijklmn −

1
3
(δjkδilmn + δmnδijkl) +

1
9

δilδjkδmn (4.31)

Notice that so far we have not really cared about the normalization of the tensor
structures. This is because in general a rescaling of the tensor structure with a posi-
tive number is equivalent to rescaling the OPE coefficients, which need only be real
for our bootstrap algorithm. The exception to this is 4.31, which must be normalized
as we present it in order for the OPE coefficient equality λφφX = λφXφ to hold.

4.4 The 〈φφXX〉 correlator

The last correlator we wish to consider is 〈φiφjXklXmn〉. The required OPEs are 4.11
and 4.3. These OPEs have in common the singlet representation S and the represen-
tation X as exchanged operators. The tensor structure corresponding to an exchange
of a scalar singlet is

PS
ijklmn = δij(δklmn −

1
3

δijδmn) (4.32)

whereas the one corresponding to the exchange of an operator in the X representa-
tion is

PX
ijklmn = δijklmn −

1
3
(δijδklmn + δklδijmn + δmnδijkl) +

2
9

δijδklδmn (4.33)

which can be calculated using 4.9 and 4.11. For the generic N expressions replace
1/3 in 4.32 with 1/N and 1/3 in 4.33 with 1/N as well as 2/9 with 2/N2.
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Chapter 5

Bootstrap Constraints

Having worked out all the possible tensor structures that can appear in the 4-pt
functions of interest one may work out the crossing equation sum rules. These sum
rules lead to constraints that the CFT data appearing in these equations must satisfy.

5.1 Crossing Equations

First let us consider the most arbitrary 4-pt function containing four scalars. For this
subsection we will follow the analysis in [59]. We have

Gabcd (x1, x2, x3, x4) = 〈Oa (x1)Ob (x2)Oc (x3)Od (x4)〉 (5.1)

Note that even though all the O operators are scalars, they need not be in the same
representation of the global symmetry. Thus, for the time being, the indices (a, b,
c, d) should be thought as labeling each different operator, and not specific global
symmetry indices. We will soon demonstrate the correspondence between the two
with explicit examples, which should clear any confusion.

Separating contributions according to properties under conformal symmetry, 5.1 can
be simplified as

Gabcd (x1, x2, x3, x4) =
1

x∆a+∆b
12 x∆c+∆d

34

(
x24

x14

)∆ab
(

x14

x13

)∆cd

Gabcd (u, v) (5.2)

where we have made the following definitions: ∆ab = ∆a − ∆b with ∆a the corre-

sponding scaling dimension of the operator indexed by a, also u =
x2

12x2
34

x2
13x2

24
, v =

x2
23x2

14
x2

13x2
24

are the two conformaly invariant combinations of the points (x1, x2, x3, x4), lastly
x12 = x1 − x2. Swapping the operator indexed by a with the one indexed by c we
obtain the crossing equation

v
∆b+∆c

2 Gabcd = u
∆a+∆b

2 Gcbad (5.3)

we emphasize that 5.3 is simply the statement that 5.1 can be calculated by taking
the OPEs between the operators in the 4-pt function in two different, but equivalent,
ways. Note that the OPE that results from swapping the operator indexed by a with
the one indexed by b or d either does not contain any additional information or
does not converge (see e.g. [90] and the discussion in [87]). One can now use the
conformal block decomposition
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Gabcd = ∑
O

λabOλcdOg∆ab,∆cd
∆O,l (u, v) (5.4)

to obtain

∑
O

(
λabOλcdOv

∆b+∆c
2 g∆ab,∆cd

∆O,l (u, v)− λcbOλadOv
∆a+∆b

2 g∆bc,∆ad
∆O,l (v, u)

)
= 0 (5.5)

where g is the conformal block and the sum runs over all possible operators O that
are exchanged in each respective OPE. Lastly, by λ we denote the OPE coefficients,
which in the above equations should also be multiplied implicitly by the correspond-
ing tensor structure. We will illustrate momentarily what we mean by this. The last
step will be to define what is sometimes referred to as the convolved conformal block

Fab,cd
±,∆O,l (u, v) ≡ v

∆c+∆b
2 g∆ab,∆cd

∆O,l (u, v)± u
∆c+∆b

2 g∆ab,∆cd
∆O,l (v, u) (5.6)

and with this we arrive at our desired final form

∑
O

(
λabOλcdOFab,cd

∓,∆O,l (u, v)± λcbOλadOFcb,ad
∓,∆O,l (u, v)

)
= 0 (5.7)

Explicit Example

Let us consider the case where (Oa, Ob, Oc, Od) = (φi, φj, φk, φl), i.e. we take four
identical operators in the defining representation of the cubic group. In this case

λabOR λcdOR = λφφOR λφφOR PR
ijkl (5.8)

where R denotes the irreducible representation under which the exchanged oper-
ator O transforms in (remember φi × φj ∼ ∑R λφφOROR

ij ). We have calculated the
quantities PR for four identical scalars in Section 4.1

PS
ijkl =

1
3

δijδkl

PA
ijkl = −

1
2

δikδjl − δilδjk

PX
ijkl = δijkl −

1
3

δijδkl

PY
ijkl =

1
2
(δikδjl + δilδjk − 2δijkl)

(5.9)

We may now plug 5.9 back in to 5.7, what we find is that four independent combi-
nations of tensors appear, multiplying different terms. These combinations are

T1
ijkl = δikδjl

T2
ijkl = δijkl

T3
ijkl = δijδkl + δilδjk

T4
ijkl = δijδkl − δilδjk

(5.10)

using these we recast 5.7 schematically as
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T1
ijkl F

1 + T2
ijkl F

2 + T3
ijkl F

3 + T4
ijkl F

4 = 0 (5.11)

where the F symbol stands for sums of convolved conformal blocks. Setting each
sum of convolved conformal blocks to zero independently we obtain

∑
Y+

λ2
OY

F−∆,` + ∑
A−

λ2
OA

F−∆,` = 0 ,

1
3 ∑

S+

λ2
OS

F−∆,` −
2
3 ∑

X+

λ2
OX

F−∆,` + ∑
Y+

λ2
OY

F−∆,` −∑
A−

λ2
OA

F−∆,` = 0 ,

1
3 ∑

S+

λ2
OS

F+
∆,` −

2
3 ∑

X+

λ2
OX

F+
∆,` −∑

Y+

λ2
OY

F+
∆,` + ∑

A−
λ2

OA
F+

∆,` = 0 ,

1
3 ∑

S+

λ2
OS

F−∆,` +
4
3 ∑

X+

λ2
OX

F−∆,` = 0 ,

(5.12)

where we have suppressed various indices in favor of simplicity of presentation
and moved the ± subscripts to superscripts on the functions F∆,`. These sum rules
were first studied with the numerical bootstrap in [93] and [100]. An important
comment is that since in the bootstrap algorithm we look for a functional which
is positive (semi-definite) when acting on each individual term of the sum rule1, we
may rescale the OPE coefficients by arbitrary positive numbers without affecting our
results. Also, we may freely add and subtract the lines in 5.12 without changing our
results. To see this, note that we could have alternatively derived the sum rules by
contracting 5.11 with various tensors in order to get rid of the indices. This would
produce different sum rules, which would be linear combinations of those in 5.12.

5.2 Single Correlator Constraints

The first and simplest correlator equation to probe for self consistency is composed
of four defining operators of the global symmetry φi. This is

〈φiφjφkφl〉 = 〈φkφjφiφl〉 (5.13)

where it is implicitly assumed by our notation that we take the OPE between the
first two and last two operators in each correlator. In the previous section we out-
lined explicitly how to derive the four resulting sum rules, one for each irrep in the
φ× φ OPE, from the crossing equation 5.13. To get our first non-trivial constraints
on OPE data from the crossing equation, we choose an operator in one of the irreps
and change its lower bound from the unitarity bound to a value of our choice. If for
the given value of our choice we can find a functional that is positive (semi-definite)
on each term, then our choice of lower bound is excluded. Finding the highest value
the lower bound may take, for a given ∆φ, we can make so called exclusion plots.
In other words, we assume ∆R > ∆min and try to maximize ∆min. This in turn gives
us the maximum value of ∆R. For the cubic theory, the single correlator system was
first studied in [93] and [100]. The most interesting plot is the exclusion plot in the
X sector.

What makes Fig 5.1 interesting is the observation that around roughly ∆φ ∼ 0.518

1Each term corresponds to the contribution of different exchanged primary operator.



30 Chapter 5. Bootstrap Constraints
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FIGURE 5.1: Exclusion plot for the lowest scaling dimension ex-
changed operator in the X irrep of the φ× φ OPE. In red are the dis-
allowed values for the scaling dimension ∆X (as a function of ∆φ),
whereas below the line are the allowed ones. The dimension of the
operator in the theory of three decoupled Ising models is also marked
on the plot. This figure was produced with PyCFTBoot [9] using the
parameters kmax = 36, lmax = 26, mmax = 6 and nmax = 9. Figure

reproduced from [62] and [100].

there is change of slope2. These changes of slope have been observed to be in heavy
correspondence with the positions of physically interesting CFTs in the literature.
The prototypical examples are the Ising, O(2), and O(3) CFTs which have had their
CFT data calculated to record precision following this observation. See [61], [22],
and [21] respectively. The rest of the sectors do not present us with additional infor-
mation as we will explain.

In addition to the change of slope observed above, which occurs for ∆φ close to
the unitarity bound (∆φ = 0.5), there also exist additional changes of slope in the
X sector for larger values of ∆φ. This is illustrated in Fig 5.2 for various values of
N in the hypercubic group CN = Z2

N o SN , where we remind that N = 3 specifi-
cally is the cubic case. The observed change of slope becomes more pronounced as
we increase N. This is qualitatively very similar to results that appeared in [93]. In
[93] they study the group Z2 × SN which overlaps with the hypercubic group in the
specific case of Z2 × S4 ∼ Z2

3 o S3. The changes of slope in that work appear in the
same sector as in our work (i.e. the defining representation of SN , which we remind
Xij transforms in).

Lastly, a few comments are in hand about the Y, A and S sectors. Specifically, the Y
and A sectors do not present any interesting features, see e.g. [100]. Whereas in the
case of the S sector, there are kinks, but they are saturated by the O(N) CFTs. This
happens for the following reason: the bootstrap cannot exclude the possibility that

2If this change of slope were sharper, we might also call it a "kink" as is standard in the literature.
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FIGURE 5.2: Exclusion plot for the lowest scaling dimension ex-
changed operator in the X irrep of the φ × φ OPE. The number N
denotes which hypercubic (CN = ZN

2 o SN) model we are talking
about. This figure was produced with PyCFTBoot [9] using the pa-

rameters kmax = 36, lmax = 26, mmax = 6 and nmax = 9.

∆X = ∆Y. This choice of scaling dimensions is part of a perfectly normal solution to
the crossing equation, namely the O(3) solution. One can indeed check that plug-
ging ∆X = ∆Y into 5.12 the number of independent sum rules reduces from four to
three, and they are equivalent to those in [60]. For a more general understanding
of this phenomenon see [67] and [66]. Hence, since the bootstrap cannot exclude
the enhancement of symmetry to O(N), it doesn’t. This leads to the saturation of
the singlet sector hypercubic plots by the O(N) CFTs. Hence, in the singlet sector
any theory with cubic symmetry is "hidden" underneath the bound saturated by the
O(3) theory.

5.3 φ - X System of Correlators Constraints

The focus of this and the next section will be to investigate whether or not the change
of slope, henceforth "kink" for brevity, in Fig 5.1 is due to the saturation of the bound
by some CFT. One strong hint for the existence of a CFT near the kink would be if we
can isolate it in a closed region (island) in parameter space by using additional as-
sumptions. These additional assumptions in our case will be to place lower bounds
on the dimensions of various operators above the unitarity bound. The sum rules
resulting from the crossing equations 〈φφXX〉 = 〈XφφX〉 and 〈φXφX〉 = 〈φXφX〉 can
be found in Appendix C. The sum rules from the full φ - X system as they appeared
in [62] are reported for completeness in Appendix F.

All plots in this subsection are produced using the φ - X correlator system which con-
sists of the following equations (and their resulting sum rules) 〈φiφjφkφl〉 = 〈φkφjφiφl〉,
〈φiXjkφlXmn〉 = 〈φlXjkφiXmn〉, 〈φiφjXklXmn〉 = 〈XklφiφjXmn〉 and 〈XijXklXmnXop〉 =
〈XmnXklXijXop〉. For all the plots of this subsection we use the same set of param-
eters in PyCFTBoot [9], namely kmax = 32, lmax = 26, mmax = 5 and nmax = 7. In
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addition to the above, we take the dimension of the operator in the X irrep with the
lowest scaling dimension to saturate Fig 5.1. The reasoning behind this is to inves-
tigate the properties of whatever theory may or may not saturate the bound. The
saturation of the X bound is also a handy way to exclude the O(3) model from our
parameter space.

In Fig 5.3 we assume the X operator with the second lowest scaling dimension sat-
isfies ∆X′ > 3.0 and the operator with the second lowest scaling dimension in the
same representation as φi satisfies ∆φ′ > 1.03. We observe a pronounced peak in the
space of allowed values for the first scalar singlet. This peak in Fig 5.3 is located
precisely at the position (with respect to ∆φ) of the kink in the X sector bound.
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FIGURE 5.3: Exclusion plot for the lowest scaling dimension ex-
changed operator in the S irrep. In red are the disallowed values
for the scaling dimension ∆S, whereas below the line are the allowed
ones. In this plot we impose ∆X′ > 3.0, ∆φ′ > 1.0 and that ∆X satu-
rates Fig 5.1. This figure was produced with PyCFTBoot [9] using the
parameters kmax = 32, lmax = 26, mmax = 5 and nmax = 7. Figure

reproduced from [62].

A useful comment at this point is that our assumptions can, in some sense, be mo-
tivated using the extremal functional method [37] [38] (see also [98], specifically the
discussion in Appendix A). This method gives an approximation to the spectrum of
a given CFT which can then be used as input in the numerical bootstrap. The draw-
back of the method is that it does not provide rigorous bounds, but only estimates
of solutions to a crossing equation.

It is now interesting to see what happens to Fig 5.3 if we supplement it with fur-
ther assumptions. In Fig 5.4 we assume, in addition to ∆X′ > 3.0 and ∆φ′ > 1.0, that
∆S′ > 3.0. We now obtain a peninsula of allowed parameter space located in a sea of
disallowed parameter space.

3We use primes to denote the next to leading operator, with respect to scaling dimension, in each
irrep.
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We would like to reduce the peninsula in Fig 5.4 to an isolated island of allowed
parameter space. This would then lead to determinations for the scaling dimensions
of the operators that live in this region of parameter space, which we plan to asso-
ciate with a CFT. Doing this we also effectively calculate the experimentally measur-
able critical exponents of the associated theory. The reduction of the peninsula to an
island is indeed achieved assuming ∆S′ > 3.7. In Fig 5.5 we demonstrate the result-
ing island for ∆S′ > 3.7, ∆S′ > 3.8 and ∆S′ > 3.9 respectively. If we further raise
the lower bound on ∆S′ the island abruptly disappears. This indicates that there
should be an operator close to the aforementioned values, which when excluded,
excludes the theory. This picture is corroborated by the extremal functional method,
which also indicated the existence of an operator S′ with a scaling dimension near
∆S′ ∼ 3.7− 3.9. This means that the conjectured CFT that lives in the island is stable,
in the renormalization group sense of the word. This has experimental significance,
since it indicates that an experimentalist would need to tune only one parameter to
reach the fixed point/phase transition. This parameter could e.g. be the tempera-
ture (which is proportional to the mass in field theory m2 ∼ T − TC). In Fig 5.6 we
show for ∆S′ > 3.8, how the island detaches from the peninsula. What is interest-
ing to note, is that this happens in a qualitatively very similar way as in the 3D Ising
model [59]. We will give the name "Platonic" to the CFT conjectured to live in Fig 5.5.
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FIGURE 5.4: Allowed peninsula (in green) for the lowest scaling di-
mension exchanged operator in the S irrep. In red are the disallowed
values for the scaling dimension ∆S. In this plot we impose ∆X′ > 3.0,
∆φ′ > 1.0, ∆S′ > 3.0 and that ∆X saturates Fig 5.1. This figure was pro-
duced with PyCFTBoot [9] using the parameters kmax = 32, lmax = 26,

mmax = 5 and nmax = 7. Figure reproduced from [62].

From Fig 5.5 we obtain a determination for the scaling dimensions and the corre-
sponding critical exponents in the conjectured CFT. Note that from our discussion
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FIGURE 5.5: Allowed islands (in green) for the lowest scaling dimen-
sion exchanged operator in the S irrep. In red are the disallowed val-
ues for the scaling dimension ∆S. In this plot we impose ∆X′ > 3.0,
∆φ′ > 1.0 and that ∆X saturates Fig 5.1. The islands from biggest to
smallest are obtained imposing ∆S′ > 3.7, 3.8 and 3.9 respectively.
This figure was produced with PyCFTBoot [9] using the parameters
kmax = 32, lmax = 26, mmax = 5 and nmax = 7. Figure reproduced

from [62].

in Chapter 3, that the island in Fig 5.5 is not due to the cubic theory of the ε expan-
sion. As mentioned there, the cubic theory of the ε expansion has scaling dimensions
very close to those of the O(3) model, which for example has ∆S = 1.59488(81) [21].
The operator dimensions and corresponding critical exponents we have are

∆φ = 0.518± 0.001
∆S = 1.317± 0.012

(5.14)

and

β = 0.308± 0.002
ν = 0.594± 0.004
γ = 1.167± 0.008
δ = 4.792± 0.011

(5.15)

where the error bars in the scaling dimensions correspond to the size of the is-
land, and the critical exponents are given by the relations β = ∆φ/(d − ∆S), ν =
1/(d− ∆S), γ = (d− 2∆φ)/(d− ∆S) and δ = (d− ∆φ)/∆φ (remember that d = 3
in our case). The first three critical exponents correspond to the order parameter,
the correlation length, and the susceptibility respectively4. Experimental determina-
tions for critical exponents in systems with cubic symmetry, but not of the type of

4The fourth exponent δ describes the dependence of the order parameter on the source field, see
e.g. [18]. Note that this exponent is defined directly at criticality.
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FIGURE 5.6: Allowed island and remnant of the peninsula (in green)
for the lowest scaling dimension exchanged operator in the S irrep.
In red are the disallowed values for the scaling dimension ∆S. In
this plot we impose ∆X′ > 3.0, ∆φ′ > 1.0, ∆S′ > 3.8 and that ∆X
saturates Fig 5.1. This figure was produced with PyCFTBoot [9] using
the parameters kmax = 32, lmax = 26, mmax = 5 and nmax = 7. Figure

reproduced from [62].

the ε expansion, give [74] [105]

β = 0.33± 0.02
ν = 0.63± 0.07

(5.16)

or more recently (for systems on an orthorhombic lattice) [11]

β = 0.306± 0.002
γ = 1.185± 0.013
δ = 4.857± 0.030

(5.17)

and

β = 0.312± 0.011
γ = 1.167± 0.008
δ = 4.792± 0.011

(5.18)

The papers [74] and [105] study structural phase transitions SrTiO3. The symmetry
of the material above the critical temperature is cubic. The order parameter in this
case is the expectation value of the position of some particle on the lattice. Whereas
in [11] they study LYPMO and LEPMO5 which have an orthorhombic lattice. To
make a statement about the symmetry of the field theory that describes the (LYPMO
and LEPMO) transition in the continuum limit, we would ideally like to know the

5Or more explicitly La0.47Y0.2Pb0.33MnO3 and La0.47Eu0.2Pb0.33MnO3.
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initial microscopic Hamiltonian. The interested reader may look at Appendix E for
more information on how symmetries in the continuum limit arise. With the in-
formation the present author is currently aware of, we do not know the symmetry
of the field theory describing these experiments. Nevertheless, our results match
the experimental measurements better than any other candidate field theory (Ising,
O(2), O(3)). In these experiments the phase transition is magnetic (paramagnetic
to ferromagnetic). Hence the order parameter in this case would be the expectation
value of some continuum spin field.

An important note is that in [3] it was proposed that the exponents of [74] [105]
where actually due to the Ising universality class. This was explained to happen
due to strains of the crystal which introduced a preferred direction to the system.
This effectively reduces the three component order parameter to a two or one com-
ponent order parameter depending on the sign of the applied stresses. This in turn
implies either Ising or O(2) critical exponents.

5.4 φ - S System of Correlators Constraints

Having discovered an island in parameter space in the previous section, we would
like to further probe its properties. Firstly, we would like to relax the assumption that
the first X operator saturates Fig 5.1. Furthermore, we would like to see whether the
model captured by the bootstrap is a short or long range model. This is important
to check since long range models can also appear in the bootstrap, see e.g. [8] for
a study of the long range Ising model. Lastly, the approach of this section should
make it easier to systematically improve our determinations of critical exponents in
the future, which should hopefully in turn motivate further experimental studies.

The system of crossing equations we will study is 〈φiφjφkφl〉 = 〈φkφjφiφl〉, 〈φiSφjS〉 =
〈φjSφiS〉, 〈φiφjSS〉 = 〈SφiφjS〉 and 〈SSSS〉 = 〈SSSS〉. These can be found in Appendix
D. We will also make use of the single correlator equation 〈φiφjφkφl〉 = 〈φkφjφiφl〉 for
some specific plots. For all plots in this section, except Fig 5.7, we use the PyCFTBoot
[9] parameters kmax = 36, lmax = 26, mmax = 5 and nmax = 7. Whereas, for Fig 5.7 we
use kmax = 36, lmax = 26, mmax = 6 and nmax = 9

First, we demonstrate Fig 5.7 which is produced using the single correlator sys-
tem. For this plot we make the assumptions that ∆X saturates the bound in Fig
5.1, ∆X′ > 2.8, ∆Tmn = 3, ∆T′mn

> 4.0 and ∆S′ > 3.0. Where T′mn is the operator with
the next highest scaling dimension in the representation of the stress tensor, i.e. the
second spin-2 singlet. Also, in Fig 5.8 we overlap Fig 5.7 with Fig 5.4 and Fig 5.6 of
the previous section to demonstrate their compatibility.

Next, we move to the φ - S mixed correlator system. In all the following plots: Fig
5.9, Fig 5.10, Fig 5.11 and Fig 5.12 we use the assumptions ∆X > 1.41266, ∆Tµν = 3.0,
∆T′µν

> 4.0, ∆Y′ > 3.0, ∆φ′ > 1.5 and scan over the scaling dimensions ∆φ, ∆S and ∆Y.
What we have essentially done, is trade in the assumption that we saturate Fig 5.1
with the need to perform a scan over ∆Y. In other words, we have turned a 2D scan
of parameter space (∆φ, ∆S) into a 3D one (∆φ, ∆S, ∆Y). The upshot of this approach

6This is simply the assumption ∆X > ∆XIsing , which is imposed since ∆X → ∆XIsing (from above)
only in the limit N → ∞. See Fig 2 in [100].
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FIGURE 5.7: Allowed strip (in green) for the lowest scaling dimension
exchanged operator in the S irrep. In red are the disallowed values for
the scaling dimension ∆S. In this plot we impose ∆X′ > 2.8, ∆S′ > 3.0
and that ∆X saturates Fig 5.1. We note that the allowed region trun-
cates on the left, whereas on the right there continues to be an allowed
region. Removing the assumption ∆X′ > 2.8 the plot stops truncating
on the left. In Fig 5.8 it will become apparent that the two kinks in
this plot correspond to the overlap with the peninsula in the mixed
φ-X system of the previous section. This figure was produced with
PyCFTBoot [9] using the parameters kmax = 36, lmax = 26, mmax = 6

and nmax = 9. Figure reproduced from [63].
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FIGURE 5.8: Allowed strip (in green) for the lowest scaling dimension
exchanged operator in the S irrep. In red are the disallowed values for
the scaling dimension ∆S. In this plot we impose ∆X′ > 2.8, ∆S′ > 3.0
and that ∆X saturates Fig 5.1. The assumptions for the peninsula and
the island can be found in Fig 5.4 and Fig 5.6 respectively. Figure

reproduced from [63].
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FIGURE 5.9: Projection onto the (∆S, ∆Y) plane of the isolated allowed
region in (∆φ, ∆S, ∆y) space (in green). In red are the disallowed val-
ues for the scaling dimension ∆S as a function of ∆Y. In this plot we
impose ∆X′ > 1.4126, ∆S′ > 3.0, ∆Tµν = 3.7, ∆T′µν

> 4.0 and ∆Y′ > 3.0.
We denote with crosses the positions of the 3D Ising CFT and the Pla-
tonic theory conjectured in the previous section. The decoupled Ising
model appears in our plots since three decoupled Ising models have
cubic global symmetry. To see this plug g2 = 0 in 3.1. The position of
the Platonic theory is approximate and corresponds to the island of
the previous section. This figure was produced with PyCFTBoot [9]
using the parameters kmax = 36, lmax = 26, mmax = 5 and nmax = 7.

Figure reproduced from [63].

is that the problem is now in a form that can be systematically probed with stronger
numerics in future work.

Fig 5.9 depicts the projection of the 3D scan (∆φ, ∆S, ∆Y) onto the (∆S, ∆Y) plane.
Whereas Fig 5.10 and Fig 5.11 depict cross sections of the allowed region at ∆Y =
0.98575 and ∆Y = 1.025 respectively. Lastly, we overlap the plot for fixed ∆Y = 1.07

with the island from Fig 5.5 with ∆S′ > 3.7 from the previous section.

7Which is the value the extremal functional approximately gives for the theory saturating Fig 5.1.
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FIGURE 5.10: Projection onto the (∆S, ∆φ) plane of the isolated al-
lowed region in (∆φ, ∆S, ∆y) space for ∆Y = 0.98575 (in green). In red
are the disallowed values for the scaling dimension ∆S as a function
of ∆φ. In this plot we impose ∆X′ > 1.4126, ∆S′ > 3.0, ∆Tµν = 3.7,
∆T′µν

> 4.0 and ∆Y′ > 3.0. This figure was produced with PyCFT-
Boot [9] using the parameters kmax = 36, lmax = 26, mmax = 5 and

nmax = 7. Figure reproduced from [63].
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FIGURE 5.11: Projection onto the (∆S, ∆φ) plane of the isolated al-
lowed region in (∆φ, ∆S, ∆y) space for ∆Y = 1.025 (in green). In red
are the disallowed values for the scaling dimension ∆S as a function
of ∆φ. In this plot we impose ∆X′ > 1.4126, ∆S′ > 3.0, ∆Tµν = 3.7,
∆T′µν

> 4.0 and ∆Y′ > 3.0. This figure was produced with PyCFT-
Boot [9] using the parameters kmax = 36, lmax = 26, mmax = 5 and

nmax = 7. Figure reproduced from [63].
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FIGURE 5.12: Projection onto the (∆S, ∆φ) plane of the isolated al-
lowed region in (∆φ, ∆S, ∆y) space for ∆Y = 1.0 (in green). In blue
we plot the the island with ∆S′ > 3.7 from Fig 5.5 in the previous sec-
tion. In red are the disallowed values for the scaling dimension ∆S
as a function of ∆φ. In this plot we impose ∆X′ > 1.4126, ∆S′ > 3.0,
∆Tµν = 3.7, ∆T′µν

> 4.0 and ∆Y′ > 3.0. This figure was produced with
PyCFTBoot [9] using the parameters kmax = 36, lmax = 26, mmax = 5

and nmax = 7. Figure reproduced from [63].
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Chapter 6

Scalar Field Theories with
O(m)×O(n)/Z2 global symmetry

In this chapter we will consider scalar field theories with O(m) ×O(n)/Z2 global
symmetry. We have modded out a Z2

1 since we will be interested in a field φar
where the indices a and r transform in O(m) and O(n) respectively. Thus, an action
of the Z2 due to O(m) on φar is indistinguishable from an action of the Z2 due to
O(n). Note that if we had a theory with two separate scalar fields, one transforming
in O(m) and one transforming in O(n) the situation would be different. In that case
the symmetry would indeed be O(m)×O(n). For the rest of the thesis we will forget
about this issue and refer to O(m)×O(n)/Z2 as O(m)×O(n) interchangeably.

There is plentiful motivation for studying theories with O(m) ×O(n) global sym-
metry, both purely theoretical, as well as phenomenological. The purely theoreti-
cal motivation has to do with the nature of fixed points that arise, after resumma-
tions, in beta functions. These remain a controversial topic to the present day. We
will elaborate further on this issue later on in the present chapter. The phenomeno-
logical motivation concerns physical systems undergoing phase transitions in with
O(m) ×O(n) global symmetry. This symmetry can be emergent. See for example
Appendix E where we give two explicit examples of this, one for helimagnets and
one for stacked triangular antiferromagnets. For both these examples the micro-
scopic (global) symmetry of the system is O(n). In the case of helimagnets the sym-
metry emerges due to the competition between nearest neighbour and next-nearest
neighbour interactions in one of the directions (e.g. in the "x" direction). Whereas, in
stacked triangular antiferromagnets the symmetry emerges due to the geometry of
the lattice in combination with the antiferromagnetic nature of the interaction.

In the next two sections we will briefly review the fixed points one expects to see
when using various techniques.

6.1 Fixed Points in d = 4− ε dimensions.

One can use two equivalent Hamiltonians to study O(m) ×O(n) theories in 4− ε
dimensions

H =
1
2

∂µφar∂µφar +
λ

8
(φarφar)

2 +
g

24
φarφbrφasφbs (6.1)

where summation is implicit above, and

1Which acts as φar → −φar.
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H =
1
2 ∑

a
∂µ~φa · ∂µ~φa +

u
24

(
∑

a

~φa
2
)2

+
v
24 ∑

a,b

((
~φa · ~φb

)2 − ~φa
2~φb

2
)

(6.2)

these equations are related by coupling constant redefinition. We take "a, b" to be
O(m) indices, whereas "r, s" are O(n) indices. Hence, the dot product in 6.2 refers to
a product under O(n). Equation 6.2 will be rather useful since it is directly related to
the naming convention of fixed points in O(m)×O(n) theories. When the coupling
v is positive the fixed point is called either "Chiral" or "Antichiral". Whereas, when
the coupling v is negative it is called "Sinusoidal" or "Antisinusoidal" (the names
"Collinear" and "Anti-Collinear" also appear in the literature). The names stem from
the ordering of the physical spins in the n dimensional space which the "r, s" indices
live in2. The ordering of the physical spins can be worked out in mean field the-
ory3. If v > 0, and e.g. m = 2, we find ~φ1 · ~φ2 = 0, whereas if v < 0 then ~φ1 is
collinear/anti-collinear to ~φ2. See paragraph 2.3 in [56] for further details.

Depending on the values of m and n we take, the type of fixed points we get are
in general different. If we take m fixed and vary n, we have four regimes of fixed
points:

n > n1(m) : Regime1

n1(m) > n > n2(m) : Regime2

n2(m) > n > n3(m) : Regime3

n3(m) > n : Regime4

(6.3)

where from [58] we have (for m = 2)

n1(2) = 5.96(19)
n2(2) = 1.970(3)

n3(2) = 1.462(13)
(6.4)

The fixed points in each regime are as follows:

Regime1 : Gaussian, O(mn), Chiral, Antichiral
Stable : Chiral

Regime2 : Gaussian, O(mn)
Stable : Non

Regime3 : Gaussian, O(mn), Sinusoidal, Anti− Sinusoidal
Stable: Sinusoidal

Regime4 : Gaussian, O(mn), Chiral, Sinusoidal
Stable : O(mn)

A list of references for relevant ε expansion studies is [80] [86] [54] [53] [56] [84]

2Whereas the indices a and b are emergent, in the sense that they do not appear in the original
microscopic Hamiltonian.

3I.e. we just minimize the potential in the ordered phase.
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[79] [95] [47] [58]. For a study in higher dimensions see [99]. See also [12] for the
generalization to the tri-fundamental models.

6.2 Fixed Points in the Large n limit

The Hamiltonians of the previous section can also be studied in the Large n limit.
In this case we expect the fixed points to correspond to Regime1 of the previous
section. One introduces two Hubbard-Stratonovich auxiliary fields S and Wab, where
the first is a singlet of O(m) and the second transforms in the traceless symmetric
representation, and both are singlets of O(n). Thus, 6.2 becomes

H =
1
2 ∑

a
∂µ~φa · ∂µ~φa +

1
2 ∑

a
S~φa · ~φa +

1
2 ∑

a,b
Wab~φa · ~φb −

3S2

2w
− 3

2v ∑
a,b

WabWab (6.5)

where w = u + (1 − 1/m)v. Plugging in the equations of motion for S and Wab
one recovers 6.2. In this approach one finds three non-Gaussian fixed points: chiral,
anti-chiral and O(mn). The chiral fixed point is the one that corresponds to both S
and Wab being non zero. If Wab is zero and S is not, we are at the O(mn) fixed point.
Whereas if S is zero and Wab is not we are in the anti-chiral fixed point, see [44] and
[43]. The stable fixed point is found to be the chiral one. This is in agreement with
the structure of Regime1 in the ε expansion fixed points.

A list of references for relevant Large-n expansion studies is [54] [81] [43] [44] [47].

6.3 Fixed Points in Resummations

The most common way for finding fixed points in d = 3 is to consider the the-
ory in d = 4 − ε dimensions, and then solve for the couplings as a power series
in ε at the fixed point. Critical exponents are then expressed as a power series in
ε, which may be resummed in order to obtain an approximation of the underlying
non-perturbative function that gave us this power series. Lastly, after resummations
one may plug in ε = 1 and find rather reliable4 results for the critical exponents, as-
suming the initial perturbative expansion has been carried out to high enough order.

In a series of papers it was shown that in the O(m)×O(n) models if one performs a
perturbative expansion directly in 3D, then resums the series before looking for fixed
points, starting at some loop order and above one finds new fixed points not visible
in the ordinary ε expansion [82] [25] [17]. Note that Monte Carlo [75] does seem
to see these fixed points as well. These fixed points have gathered a considerable
amount of criticism in the literature and have been argued to be spurious by various
authors. For example they have drawn criticism in [102] [103] [27] [28] [30] [26] [29].
Some of the criticisms in [29] include: a) These fixed points were found to not have
an upper critical dimension of d = 4, and they converged badly with loop order b)
The fixed points could not be found in the Functional Renormalization Group (to the
approximation order considered) c) The authors, using the same techniques, found a
new cubic fixed point they claimed is an artefact given that no new cubic fixed point
beyond the standard one had been previously reported (see e.g. their discussion be-
tween the end of page 9 and the start of page 10). The last point is rather interesting

4For some theories.
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since as we demonstrated in previous chapters there does seem to be evidence for a
cubic fixed point in 3D beyond the standard one of the ε-expansion5. Unfortunately,
experiments have not been able to shed light on these issues. For discussions about
experiments see e.g. [55] and [84]. Note that the theoretical interpretation is made
even more difficult since one may claim that something is not a continuous phase
transition but a very weakly first order transition and vice versa. Also, a fixed point
of interest may perfectly well exist but not be in the basin of attraction of the specific
RG flow. Another complication is that these new fixed points are predicted to have
spiral RG flows, see e.g. [75], thus approaching them may not be an easy task exper-
imentally. These spiral RG flows are due to the complex valued scaling dimensions6

of certain scalar singlets . We stress that the couplings that appear in the Hamilto-
nian are real at the fixed point, it should thus be experimentally accessible if one
excludes the aforementioned issues. Curiously, there is a supersymmetric model
with O(m) ×O(n) symmetry that seems to have a fixed point with real couplings
and complex stability matrix eigenvalues, see e.g. [52].

5We cannot comment on what, if any, relation these two fixed points may have.
6Which are related to the eigenvalues of the stability matrix, i.e. the derivative matrix of the φ4

coupling beta functions.
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Chapter 7

Tensor Structures in
O(m)×O(n)/Z2 Theories

The global symmetry tensor structures of 4-pt functions of scalars φar that transform
as vectors of both O(m) ("a" index) and O(n) ("r" index), are simply tensor prod-
ucts of tensor structures of O(m) with tensor structures of O(n), which are already
known. The correlator of interest will be

〈φarφbsφctφdu〉 (7.1)

Next we define the three orthogonal group projectors we will need, these are

PS
N;ijkl =

1
N

δijδkl

PT
N;ijkl =

1
2
(δikδjl + δilδjk −

2
N

δijδkl)

PA
N;ijkl =

1
2
(δikδjl − δilδjk)

(7.2)

where S, T and A refer to the singlet, traceless symmetric and antisymmetric repre-
sentation respectively, and N refers to the number of values the indices take. Then
the O(m)×O(n) projectors are defined as

PS
arbsctdu = PS

m;abcdPS
n;rstu

PW
arbsctdu = PT

m;abcdPS
n;rstu

PX
arbsctdu = PS

m;abcdPT
n;rstu

PY
arbsctdu = PT

m;abcdPT
n;rstu

PZ
arbsctdu = PA

m;abcdPA
n;rstu

PA
arbsctdu = PA

m;abcdPS
n;rstu

PB
arbsctdu = PS

m;abcdPA
n;rstu

PC
arbsctdu = PA

m;abcdPT
n;rstu

PD
arbsctdu = PT

m;abcdPA
n;rstu

(7.3)

where we have made the following definitions for the names of the O(m) ×O(n)
representations (S, W, X, Y, Z, A, B, C, D) = (SS, TS, ST, TT, AA, AS, SA, AT, TA).
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Note that the representations A and B contain the conserved vectors of O(m) and
O(n) respectively.
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Chapter 8

Bootstrap Constraints

8.1 Crossing Equations

The crossing equation

〈φarφbsφctφdu〉 = 〈φctφbsφarφdu〉 (8.1)

leads to the following sum rules [47]

∑
S+

c2
O



F−∆, `
0
0
0
0

F+
∆, `
0
0
0


+ ∑

W+

c2
O



− 2
m F−∆, `
0

F−∆, `
F−∆, `

0
− 2

m F+
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0
−F+
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F+
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+ ∑

X+

c2
O



− 2
n F−∆, `
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+ ∑

Y+

c2
O
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+ ∑
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+ ∑
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.

(8.2)
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The notation c2
O is shorthand for the OPE coefficient squared of the exchanged oper-

ators in the corresponding irrep that is being summed over. Superscripts on irreps
denote the spins that appear in each sum (even, odd). For the sum rules resulting
from the φar - S system of mixed correlators see Appendix D.

8.2 Results

In what follows we will study the behavior of O(2)×O(n) CFTs from the Large n
limit all the way down to the upper edge of Regime I of 6.3 and 6.4. Consequently,
we will study the case O(2)×O(3) that is considered phenomenologically relevant
for condensed matter systems. We will not discuss the O(2) × O(2) case in this
Chapter, but in Chapter 9 instead since it is equivalent to O(2)2 o S2 due to sym-
metry enhancement1, see [56]. CFTs with O(m)×O(n) global symmetry were first
studied in the numerical bootstrap by [76] and [77], consequently [36] appeared the
same day as [47]. In [76] and [77] the authors considered various values of m and
n in a single correlator bootstrap system. In [76] they studied the large n limit and
in [77] they conjectured that various changes of slope for m and n small where due
to the fixed points found in resummations. Whereas, the authors of [36] considered
the O(3)×O(15) case using a mixed correlator system involving the operators φar
and S, and showed that known fixed points lie on the edges of the allowed region
peninsula.

In the interest of clearness of presentation, given that we will present many plots,
we will include the assumptions and numerical parameters used to produce each
plot in its corresponding caption only.

8.2.1 Comparing With Perturbation Theory and Regime I

The starting point will be to present the single correlator plots for the W and X sec-
tors2 keeping m = 2 fixed and varying n. These can be seen in Fig 8.1 and Fig 8.2.
In these plots we compare the Large n data of [43] [44] [47] and [81] with the nu-
merical bootstrap. In both Fig 8.1 and Fig 8.2 we use circles to denote the position of
the antichiral fixed point for the corresponding values of m and n, whereas we use
squares to denote the chiral fixed point. The line between the square and the circle is
used to demonstrate that both correspond to fixed points with the same values of m
and n. It thus apparent that the exclusion plots for the W sector are saturated by the
Large n antichiral fixed points whereas the exclusion plots for the X sector are sat-
urated by the Large n chiral fixed points. Unsurprisingly, as we decrease the value
of n the agreement becomes worse. Nevertheless, it is very interesting that for n as
low as n = 10 we get excellent agreement between the position of the kinks and the
predicted fixed points. This is important since it reinforces/supports the bootstrap
intuition that CFTs are quite often the reason for the appearance of kinks/features in
bootstrap exclusion plots.

In Fig 8.3 we present the corresponding exclusion plots for the X and W sectors
specifically for m = 2 and n = 6. This case is of special interest since it is located on
the upper edge of Regime I of the ε expansion fixed points, as seen in 6.4. In this case
there exist six loop resummed results in the literature [58] that we can compare to.

1At least perturbatively.
2Remember W = TS and X = ST.
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FIGURE 8.1: Single correlator exclusion plots for the scaling dimen-
sion of the first W operator, for m = 2 and various values of n. The
circles on the plot denote the Large n predictions for the dimension
of this operator at the anti-chiral fixed point. The box, connected to
the circle by a line, represents the Large n predictions for the dimen-
sions of this operator at the chiral fixed point. It is thus clear that the
kinks are saturated by the anti-chiral fixed point. The figure was pro-
duced using the following parameters in PyCFTBoot [9]: mmax = 8,

nmax = 11, lmax = 36 and kmax = 42. Figure reproduced from [47].

Remember that the Large n fixed points should correspond to the ε expansion fixed
points in Regime I when n is took sufficiently large.

The next natural step it to attempt to find isolated self consistent regions in param-
eter space (i.e. islands) that correspond to the CFTs that saturate the kinks in Figs
8.1, 8.2 and 8.3. To do this we consider, in addition to those of 8.2, the sum rules
of Appendix D. In other words, we consider the φar - S mixed correlator system of
sum rules. In Fig 8.4 and Fig 8.5 we present the islands corresponding to chiral and
anti-chiral fixed points with m = 2 and n = 10 and n = 20 respectively. For n = 20
we observe excellent agreement with Large n predictions. For n = 10 there is a very
small deviation, which is not unexpected since 1/n = 0.1 is not very small. Interest-
ingly, in the m = 2 and n = 6 case in Fig 8.6, where we compare the chiral island3 to
the data of [58] we find that there is some tension. This is not too worrying since if
one considers the 3σ deviation of the ε expansion error bars the results do overlap.

8.2.2 O(2)×O(3)

It is useful to emphasize at this point that we name islands based on the CFTs we
expect/hope to match them to. We cannot actually prove though that the islands

3We identify the island in the X sector as the chiral island for m = 2 and n = 6 given the excellent
agreement down to n = 10 of the Large n data and the conformal bootstrap. We cannot exclude
though the possibility that for n < 10 some new, different, fixed point saturates the kink. However, we
consider this scenario unlikely.
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FIGURE 8.2: Single correlator exclusion plots for the scaling dimen-
sion of the first X operator, for m = 2 and various values of n. The
circles on the plot denote the Large n predictions for the dimension of
this operator at the anti-chiral fixed point. The box, connected to the
circle by a line, represents the Large n predictions for the dimensions
of this operator at the chiral fixed point. It is thus clear that the kinks
are saturated by the chiral fixed point. The figure was produced us-
ing the following parameters in PyCFTBoot [9]: mmax = 8, nmax = 11,

lmax = 36 and kmax = 42. Figure reproduced from [47].
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FIGURE 8.3: Single correlator exclusion plots for the scaling dimen-
sion of the first X and W operators respectively, for m = 2 and n = 6.
This case is of particular interest since it sits at the edge of Regime1
in 6.4 from the results of [58]. The figure was produced using the fol-
lowing parameters in PyCFTBoot [9]: mmax = 8, nmax = 11, lmax = 36

and kmax = 42. Figure reproduced from [47].
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FIGURE 8.4: Islands corresponding to the Chiral and Anti-Chiral
fixed points with m = 2 and n = 20 obtained using the mixed φar
- S system of correlators. These islands assume that the first X (for
the chiral island) and W (for the anti-chiral island) operators have a
scaling dimension that saturates the corresponding single correlator
plots Fig 8.2 and Fig 8.1 respectively. We also assume in both that
the first B operator has a scaling dimension of ∆B = 2.0 since it is a
conserved vector (remember B = S × A). For the second B opera-
tor in both we impose ∆B′ > 3.0. For the second defining operator
φ′ we impose ∆φ′ > ∆φ + 0.01 in both. Lastly, in the Chiral island
we impose ∆S′ > 3.0 whereas for the Anti-Chiral island we impose
∆′S > 1.5. The figure was produced using the following parameters in
PyCFTBoot [9]: mmax = 7, nmax = 9, lmax = 30 and kmax = 40. Figure

reproduced from [47].
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FIGURE 8.5: Islands corresponding to the Chiral and Anti-Chiral
fixed points with m = 2 and n = 10 obtained using the mixed φar
- S system of correlators. These islands assume that the first X (for
the chiral island) and W (for the anti-chiral island) operators have a
scaling dimension that saturates the corresponding single correlator
plots Fig 8.2 and Fig 8.1 respectively. We also assume in both that the
first B operator has a scaling dimension of ∆B = 2.0 since it is a con-
served vector (remember B = S × A). For the second B operator in
both we impose ∆B′ > 3.0. Lastly, in the Chiral fixed point we impose
∆S′ > 3.0 and ∆φ′ > ∆φ + 0.01 whereas for the Anti-Chiral fixed point
we impose ∆S′ > 1.6 and ∆φ′ > 1.6. We note that there seems to be
some minor deviation between the island and the Large n prediction
in the Chiral case, however this is not very worrying since n = 10 is
quite far from n → ∞. The figure was produced using the following
parameters in PyCFTBoot [9]: mmax = 7, nmax = 9, lmax = 30 and

kmax = 40. Figure reproduced from [47].
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FIGURE 8.6: Island corresponding to the Chiral fixed point with m =
2 and n = 6 obtained using the mixed φar - S system of correlators.
This island assumes that the first X operator has a scaling dimension
that saturates the corresponding single correlator plot Fig 8.3. We also
assume that the first B operator has a scaling dimension of ∆B = 2.0
since it is a conserved vector (remember B = S× A). For the second
B operator we impose ∆B′ > 3.0. Lastly, we impose ∆S′ > 3.0 and
∆φ′ > ∆φ + 0.01. We note that there seems to be some tension between
the island and the six loop resummed ε-expansion results of [58]. The
figure was produced using the following parameters in PyCFTBoot
[9]: mmax = 7, nmax = 9, lmax = 30 and kmax = 40. Figure reproduced

from [47].
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are necessarily due to the CFTs we named them after. Of course, in cases like the
Regime1 fixed points for n = 10 and n = 20 we are confident that the islands are due
to the CFTs we named them after. This is because in these cases we have excellent
agreement with concrete perturbative predictions. In the case of the fixed points
found in resummations, one can see e.g. in Table 8.1, that theoretical predictions
vary wildly. Thus the naming of our islands in this section should be taken with a
grain of salt.

Now we turn our attention to the O(2)×O(3) case. We emphasize once again that
these are qualitatively different from the islands/CFTs/fixed points studied in the
previous section in that they are found after resummations are performed. In other
words they cannot be calculated by setting a beta function to zero order by order in
some control parameter such as e.g. ε. See 6.3 for further details. The possibility that
changes in slope in the O(2) × O(3) exclusion bounds might correspond to these
new, controversial fixed points was originally proposed in [77]. We present the sin-
gle correlator W sector exclusion plot for m = 2 and n = 3 in Fig 8.7 and the one for
the Z sector in Fig 8.10. We see that there is a change of slope, but given that it is a bit
hard to see, we show in Fig 8.8 two fits of the points on the bound that indeed show
a well defined change of slope around roughly ∆φ = 0.54. Consequently, in Fig 8.9
and Fig 8.11 one can see the chiral and collinear islands which correspond the the
changes of slope in Fig 8.7 and Fig 8.10 respectively. Note that both seem to be RG
stable, since both continue to exist if we impose that the second scalar singlet is ir-
relevant in the RG sense of the word (∆S′ > 3). We remind the reader that the names
chiral and collinear are simply indicative of whether the coupling v in 6.2 is positive
or not at the fixed point. We once again emphasize this, since the chiral fixed point
of this section is qualitatively different from the chiral fixed point of the previous
section. We understand that calling them both chiral can be confusing, but continue
to do so to make contact with the literature. In tables 8.1 and 8.2 we give the criti-
cal exponents corresponding to the islands in Fig 8.9 and Fig 8.11 respectively, and
compare to corresponding values in the literature. We note that the error bars that
we give for the bootstrap results are non-rigorous since we assume that our theories
saturate their corresponding exclusion plots, an assumption whose error is hard to
estimate systematically. Also, note that we have not mentioned experimental results,
since experimental data seems to vary quite a lot, see e.g. the discussions and data
in [84], [56]. There could be various reasons for this, such as a spiral RG flow due to
the conjectured complex scaling dimensions4 at the fixed point, or depending on the
choice of initial parameters in the experiment it may not be in the basin of attraction
of the fixed point.

4Note that even though we are using the unitary bootstrap, it has been know to pick up non-unitary
theories in the past. See the discussion in Chapter 10.
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TABLE 8.1: O(2)×O(3) “chiral” critical exponents. Reproduced from
[47].

Method α β ν γ δ η φW
Figs. 8.7, 8.9 0.082(22) 0.344(5) 0.639(7) 1.23(3) 4.573(14) 0.077(3) 0.818(16)
MS scheme [17, 16] 0.11(15) 0.34(4) 0.63(5) 1.20(24) 4.5(2) 0.09(4) 0.76(12)
MZM scheme [82, 16] 0.35(9) 0.30(4) 0.55(3) 1.04(18) 4.5(5) 0.1(1) 0.58(6)
Monte Carlo [75] 0.44(3) 0.26(3) 0.52(1) 1.04(9) 5.0(5) 0.00(8) –
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FIGURE 8.7: Single correlator exclusion plot for the scaling dimension
of the first W operator for m = 2 and n = 3. The figure was produced
using the following parameters in PyCFTBoot [9]: mmax = 8, nmax =

11, lmax = 36 and kmax = 42. Figure reproduced from [47].
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FIGURE 8.8: Single correlator exclusion plot for the scaling dimension
of the first W operator for m = 2 and n = 3. The same as in Fig 8.7 but
with least square fits adapted to the left and right of the plot in order
to indicate that even though it is not very pronounced, there does
seems to be a well defined change of slope. The figure was produced
using the following parameters in PyCFTBoot [9]: mmax = 8, nmax =

11, lmax = 36 and kmax = 42.
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FIGURE 8.9: Island corresponding to the Chiral fixed point with m =
2 and n = 3 obtained using the mixed φar - S system of correlators.
This island assumes that the first W operator has a scaling dimension
that saturates the corresponding single correlator plot Fig 8.7. We also
assume that the first B operator has a scaling dimension of ∆B = 2.0
since it is a conserved vector (remember B = S× A). For the second
B operator we impose ∆B′ > 2.4. Lastly, we impose ∆S′ > 2.0 and
∆φ′ > 1.5. We note that we have checked that the island remains even
if we impose ∆S′ > 3.0 which corresponds to it being a stable fixed
point in the language of RG. We once again stress that this island
is unrelated to the Chiral islands of the ε expansion but they have
the same name in the literature since the coupling v in 6.2 is positive
for both types of fixed points. The figure was produced using the
following parameters in PyCFTBoot [9]: mmax = 7, nmax = 9, lmax =

30 and kmax = 40. Figure reproduced from [47].
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FIGURE 8.10: Single correlator exclusion plot for the scaling dimen-
sion of the first Z operator for m = 2 and n = 3. The figure was pro-
duced using the following parameters in PyCFTBoot [9]: mmax = 8,

nmax = 11, lmax = 36 and kmax = 42. Figure reproduced from [47].
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TABLE 8.2: O(2)×O(3) “antichiral/collinear” critical exponents. Re-
produced from [47].

Method α β ν γ δ η φZ
Figs. 8.10, 8.11 0.05(7) 0.341(19) 0.650(23) 1.27(11) 4.72(13) 0.049(23) 0.89(4)
MS scheme [17, 16] 0.11(24) 0.34(5) 0.63(8) 1.2(3) 4.52(12) 0.086(24) 0.75(16)
MZM scheme [82, 16] 0.22(12) 0.319(23) 0.59(4) 1.14(16) 4.56(4) 0.079(7) 0.74(11)

0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55
1.3

1.35

1.4

1.45

1.5

∆φ

∆S

FIGURE 8.11: Island corresponding to the Collinear fixed point with
m = 2 and n = 3 obtained using the mixed φar - S system of cor-
relators. This island assumes that the first Z operator has a scaling
dimension that saturates the corresponding single correlator plot Fig
8.10. We also assume that the first B operator has a scaling dimension
of ∆B = 2.0 since it is a conserved vector (remember B = S × A).
For the second B operator we impose ∆B′ > 2.5. Lastly, we impose
∆S′ > 3.0 and ∆φ′ > ∆φ + 0.01. The figure was produced using the fol-
lowing parameters in PyCFTBoot [9]: mmax = 7, nmax = 9, lmax = 30

and kmax = 40. Figure reproduced from [47].
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Chapter 9

Tensor structures in GN o SN
theories

9.1 The OPE decomposition

In this chapter we will study global symmetry tensor structures that appear in the-
ories with G′ = GN o SN symmetry for G arbitrary. To rephrase, this is simply
the group theory of N copies of G which can be permuted with each other. This
generalizes several previously studied cases, such as the Hypercubic theories (G′ =
ZN

2 o SN), and the MN theories (G′ = O(m)N o SN) and Tetragonal theories (G′ =
(ZM

2 o SM)N o SN) which where first bootstrapped in [101]. We note that the class
of groups G′ contains a lot of groups not included in Autoboot [42].

We start by defining a field φa
i that transforms in the defining representation of

G′ = GN o SN . The upper indices in all the subsequent discussion will label the
copy of G that φ transforms in, i.e. it is an SN index. Whereas the lower index i
is an index transforming in G. Hence, the upper indices are acted upon by SN and
the lower indices by G. Note that previous works, such as e.g. [101], have used a
one index notation, i.e. φi where i runs over M ∗ N values. The notation we will
use in this work has the advantage that all invariant tensors will be expressible in
multi-index Kronecker delta functions. However, see Appendix G for a workaround
in expressing the one index notation in terms of Kronecker deltas, the caveat is that
one has to write out explicitly the index values, e.g. δi1.

Let us start by considering the product of φa
i with itself, φa

i × φb
j . The first obser-

vation is that elements with a 6= b can never mix with elements with a = b under the
action of SN . As a concrete example consider the following objects with N = 3, take

A = (φ1
i φ2

j , φ2
i φ3

j , φ3
i φ1

j ) (9.1)

and

B = (φ1
i φ1

j , φ2
i φ2

j , φ3
i φ3

j ) (9.2)

one can easily be convinced that the elements of A and B will never mix under
permutation of the upper indices. This is a general fact, i.e. the elements with a 6= b
never mix with elements with a = b. Hence, the OPE may be split as

φa
i × φb

j =
(

φa
i × φb

j

)
a 6=b

+
(

φa
i × φb

j

)
a=b

(9.3)

The first term on the RHS multiplies fields from different copies of G, hence the
indices i and j cannot be decomposed onto irreducible representations of G. Thus
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in order to get irreducible representations of G′ we simply symmetrize and anti-
symmetrize the fields(

φa
i × φb

j

)
a 6=b

=
1
2

(
φa

i φb
j + φb

j φa
i

)
a 6=b

+
1
2

(
φa

i φb
j − φb

j φa
i

)
a 6=b

(9.4)

the representations on the right hand side of 9.4 cannot be reduced further, hence
they are irreducible. To make contact with [101] we call them Zab

ij and Bab
ij respec-

tively. Note also that they exist for any choice of group G.

We now turn our attention to the second term in 9.3, since a = b, i.e. both fields
are in the same copy of G, we can decompose the product of the two fields onto
irreducible representations of G.(

φa
i × φb

j

)
a=b

= δij

(
φa

kφb
k

)
a=b

+
(

R1
ab
ij

)
a=b

+ ... +
(

RN ab
ij

)
a=b

(9.5)

note that we have separated the contribution of the singlet under G in the first term.
The other terms correspond to the remaining irreducible representations under G,
which we named R1, R2, ... RN . We emphasize that N is equal to the number of
(non-singlet) irreducible representations that appear in the OPE of the G defining
representation with itself.

The first term in 9.5 is reducible, this is because we can subtract the trace of copies(
φa

kφb
k

)
a=b

=

(
φa

kφb
k −

δab

N
φc

kφc
k

)
a=b

+

(
δab

N
φc

kφc
k

)
a=b

(9.6)

we may name the first irrep on the right hand side of 9.6 Xab. The second term is
simply the singlet of G′ which we call S. Regarding Xab we note that this operator is
the same for all groups G′ independently of the choice of G, since it is a singlet with
respect to G. Remember also from our analysis in Section 4.2 that it is equivalent to
the defining representation of SN , hence its group theory and its tensor structures
are known. Thus if we name

(
RN ab

ij

)
a=b

as IN ab
ij . We obtain the full decomposition

of the OPE 9.3

φa
i × φb

j ∼ δabδijS + δijXab + I1
ab
ij + ... + IN ab

ij + Zab
ij + Bab

ij (9.7)

9.2 Projectors

Having fully decomposed the OPE φa
i × φb

j onto irreducible representations of G′

for a generic generic number of copies, and generic group G, we are ready to write
down the projectors corresponding to the decomposition of the four point function
〈φa

i φb
j φc

kφd
l 〉 onto each irreducible representation. We have
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PS abcd
ijkl =

1
MN

δabδcdδijδkl

PX abcd
ijkl =

1
M

δijδkl

(
δabcd − 1

N
δabδcd

)
PI1

abcd
ijkl = δabcd PR1

ijkl

...

PIN abcd
ijkl = δabcd PRN

ijkl

PZ abcd
ijkl =

1
2

((
δacδbd − δabcd

)
δikδjl +

(
δadδbc − δabcd

)
δilδjk

)
PB abcd

ijkl =
1
2

((
δacδbd − δabcd

)
δikδjl −

(
δadδbc − δabcd

)
δilδjk

)

(9.8)

one can check that the above projectors once contracted onto a pair of fields φc
k φd

l
reproduce the operators in 9.7. For example

1
2

(
φa

i φb
j − φb

j φa
i

)
a 6=b

= PB abcd
ijkl φc

kφd
l (9.9)

Also, the tensors PRN ijkl refer to the projectors in G, this should become clear from
our examples in what follows. Lastly, note that the representations (S, X, I1, ..., IN , Z, B)
have dimensions (1, N − 1, N dimR1, ..., N dimRN , M2 N(N−1)

2 , M2 N(N−1)
2 ) respec-

tively.

9.3 Examples

9.3.1 Hypercubic

The first and simplest example to look at is G = Z2. In this case we may simply drop
the indices (i, j, k, l). Also, since the product of two defining operators of Z2 only
gives rise to the singlet representation, we will not have any RN representations in
this case. The projectors in 9.8 then become

PS abcd
ijkl =

1
N

δabδcd

PX abcd
ijkl =

(
δabcd − 1

N
δabδcd

)
PZ abcd

ijkl =
1
2

((
δacδbd − δabcd

)
+
(

δadδbc − δabcd
))

PB abcd
ijkl =

1
2

((
δacδbd − δabcd

)
−
(

δadδbc − δabcd
))

(9.10)

but these are just 4.6 having renamed A to B and Y to Z. Their dimensions are
(S, X, Z, B) = (1, N− 1, N(N−1)

2 , N(N−1)
2 ) which can be found by plugging in M =

1.

9.3.2 MN

To recover the MN models bootstrapped in [101] we plug in G = O(M). In this
case we have R1 = T the traceless symmetric representation of O(M) and R2 = A
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the antisymmetric representation. Thus PR1
ijkl =

1
2 (δikδjl + δilδjk − 2

M δijδkl) and PR2
ijkl =

1
2 (δikδjl − δilδjk). The projectors then become

PS abcd
ijkl =

1
MN

δabδcdδijδkl

PX abcd
ijkl =

1
M

δijδkl

(
δabcd − 1

N
δabδcd

)
PI1

abcd
ijkl = δabcd PR1

ijkl

PI2
abcd
ijkl = δabcd PR2

ijkl

PZ abcd
ijkl =

1
2

((
δacδbd − δabcd

)
δikδjl +

(
δadδbc − δabcd

)
δilδjk

)
PB abcd

ijkl =
1
2

((
δacδbd − δabcd

)
δikδjl −

(
δadδbc − δabcd

)
δilδjk

)

(9.11)

the dimensions of the representations are (S, X, I1, I2, Z, B)
= (1, N− 1, N (M−1)(M+2)

2 , N M(M−1)
2 , M2 N(N−1)

2 , M2 N(N−1)
2 ) which agree with those

of [101]. Where I1 here corresponds to Y and I2 to A in that publication.

9.3.3 Tetragonal

For the tetragonal case we take G = ZM
2 o SM. Repeating the same exercise as the

two cases above we get

PS abcd
ijkl =

1
MN

δabδcdδijδkl

PX abcd
ijkl =

1
M

δijδkl

(
δabcd − 1

N
δabδcd

)
PI1

abcd
ijkl = δabcd (δijkl −

1
M

δijδkl)

PI2
abcd
ijkl = δabcd 1

2
(δikδjl + δilδjk − 2δijkl)

PI3
abcd
ijkl = δabcd 1

2
(δikδjl − δilδjk)

PZ abcd
ijkl =

1
2

((
δacδbd − δabcd

)
δikδjl +

(
δadδbc − δabcd

)
δilδjk

)
PB abcd

ijkl =
1
2

((
δacδbd − δabcd

)
δikδjl −

(
δadδbc − δabcd

)
δilδjk

)

(9.12)

whereas the dimensions of the representations are (S, X, I1, I2, I3, Z, B)
= (1, N − 1, N(M − 1), N M(M−1)

2 , N M(M−1)
2 , M2 N(N−1)

2 , M2 N(N−1)
2 ) plugging in

M = 2 we recover the results of [101].

9.4 Applications

9.4.1 φ - X System Islands

We will use the above results to study the mixed φa
i - Xbc system of correlators in the

case where G = O(M) [64]. The sum rules derived from the 〈XXXX〉 = 〈XXXX〉
crossing equation have already been worked out in 4.2. Also the due to the analysis
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FIGURE 9.1: Single correlator exclusion plot for the scaling dimen-
sion of the first X operator for M = 2 and N = 3. Points
above the line are disallowed. The figure was produced using
the following parameters in qboot [41]: Λ = 45, l = (0 −
50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and νmax =

20.

of Appendix B the sum rules due to the crossing equations 〈φXφX〉 = 〈φXφX〉 and
〈φφXX〉 = 〈XφφX〉 are already known and we have worked them out in Appendix
C. Hence, all that remains to write down the full φ-X system of sum rules, are the
sum rules from 〈φφφφ〉 = 〈φφφφ〉. For G = O(M) these are1

∑
S+

c2
O



0
F−∆, `

0
0

F+
∆, `
0

+ ∑
X+

c2
O



0
−F−∆, `
n F−∆, `

0
−F+

∆, `
n F+

∆, `


+ ∑

Y+

c2
O



0
0

m−2
2 F−∆, `
m F−∆, `

0
m−2

2 F+
∆, `


+ ∑

Z+

c2
O



F−∆, `
1
2 F−∆, `
− 1

2 F−∆, `
−F−∆, `
− 1

2 F+
∆, `

+ 1
2 F+

∆, `



+ ∑
A−

c2
O



0
0

− 1
2 F−∆, `
F−∆, `

0
1
2 F+

∆, `


+ ∑

B−
c2

O



F−∆, `
− 1

2 F−∆, `
1
2 F−∆, `
−F−∆, `
1
2 F+

∆, `
− 1

2 F+
∆, `


=



0
0
0
0
0
0

 .

(9.13)

These are completely equivalent to those of [101]. As was noticed in [101] there exist
kinks in the X sector, see e.g. Fig 9.1 and Fig 9.4.

Using the multi-correlator system described just above, we may isolate an island

1Where we have rescaled some OPE coefficients to simplify some factors of M and N. We also wrote
m instead of M and n instead of N.
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FIGURE 9.2: MN = 2, 3 island corresponding to the fixed point sat-
urating Fig 9.1 obtained using the mixed φa

i - Xbc system of cor-
relators. The island assumes that the second S, X and A opera-
tors have scaling dimensions that satisfy ∆ > 3.0. The first X op-
erator is assumed to have a scaling dimension that saturates Fig
9.1, also the first A operator satisfies ∆A = 2.0 since it is the con-
served vector of O(M). Lastly, we impose ∆φ′ > 1.0 for the sec-
ond operator in the defining representation. The figure was pro-
duced using the following parameters in qboot [41]: Λ = 27,
l = (0− 50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and

νmax = 25.

corresponding to the M = 2 and N = 3 X sector kink. This is done in Fig 9.2, the
corresponding assumptions are described in the caption. Also, in Fig 9.3 we display
the same island but with bigger gaps imposed on various sectors in order to demon-
strate that it obtains a more "regular" shape when gaps are pushed higher. Since in
Fig 9.3 we are only interested in the shape of the island we only use Λ = 20. In Fig
9.4 and 9.5 we show the kink in the X sector and its corresponding island for the
M = 2 and N = 2 case. Note that the crossing sum rules are somewhat simpler now.
The crossing sum rules in this case are the ones in 9.13, plus the ones in Appendix D
in which one must replace the external S operator with an X operator. This simplifi-
cation occurs because the representation X becomes one dimensional for N = 2.

Note that both our islands (N = 2 and N = 3) do not seem to agree with resummed
ε expansion predictions [70]. This is something that was already noticed in [101]
from the single correlator study. For N = 2 the ε expansion gives ∆S = 1.60(2) and
∆φ = 0.517(1), whereas for N = 3 it gives ∆S = 1.57(2) and ∆φ = 0.5172(8).

9.4.2 〈ZZZZ〉 Single Correlator Bootstrap

As a final application we will bootstrap the crossing equation 〈Zab
ij Zcd

kl Ze f
mnZgh

op〉 =

〈Ze f
mnZcd

kl Zab
ij Zgh

op〉, where Zab
ij is the operator appearing in 9.7. One motivation for

studying this crossing equation are the second kinks that have appeared in the X
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FIGURE 9.3: MN = 2, 3 island corresponding to the fixed point satu-
rating Fig 9.1 obtained using the mixed φa

i - Xbc system of correlators.
The island assumes that the second S, X and A operators have scaling
dimensions that satisfy ∆S′ > 3.5, ∆X′ > 3.0 and ∆A′ > 3.9 respec-
tively. The first X operator is assumed to have a scaling dimension
that saturates Fig 9.1, also the first A operator satisfies ∆A = 2.0 since
it is the conserved vector of O(M). Lastly, we impose ∆φ′ > 1.5 for
the second operator in the defining representation. The figure was
produced using the following parameters in qboot [41]: Λ = 20,
l = (0− 50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and

νmax = 25.
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FIGURE 9.4: φ - X mixed correlator system exclusion plot for the
scaling dimension of the first X operator for M = 2 and N = 2.
Points above the line are disallowed. The figure was produced us-
ing the following parameters in qboot [41]: Λ = 45, l = (0 −
50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and νmax =
20. Note that in contrast with Fig 9.1, here we use the full φ - X system
of correlators since it contains less sum rules, and thus is numerically

less costly, than the N = 3 one.

sector of SN n O(M)N theories, such as in [101] and [48]. We note that the afore-
mentioned studies used the 〈φφφφ〉 = 〈φφφφ〉 single correlator system. Notably, in
[48] the authors found that whatever theory is responsible for the second kink in the
X sector has a scaling dimension for the first Z operator very close to the unitarity
bound. This makes it a prime candidate for the 〈Zab

ij Zcd
kl Ze f

mnZgh
op〉 = 〈Z

e f
mnZcd

kl Zab
ij Zgh

op〉
(single correlator) bootstrap. In what follows we will work out the crossing equation
sum rules only for the G = O(M) and N = 2 case for simplicity of demonstration.
Since the indices can now only take values 1 and 2, without loss of generality we
can work out the tensor structures for 〈Z12

ij Z12
kl Z12

mnZ12
op〉 = 〈Z12

mnZ12
kl Z12

ij Z12
op〉, i.e. we

get rid of eight indices in the projectors. In order to decompose onto irreps, when-
ever lower indices are in the same copy of O(M) we decompose them onto irreps of
O(M). Thus, we obtain the following projectors

PS
ijklmnop = PS

ikmoPS
jlnp

PSY
ijklmnop = PS

ikmoPY
jlnp + PY

ikmoPS
jlnp

PSA
ijklmnop = PS

ikmoPA
jlnp + PA

ikmoPS
jlnp

PYA
ijklmnop = PY

ikmoPA
jlnp + PA

ikmoPY
jlnp

PYY
ijklmnop = PY

ikmoPY
jlnp

PAA
ijklmnop = PA

ikmoPA
jlnp

(9.14)
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FIGURE 9.5: MN = 2, 2 island corresponding to the fixed point sat-
urating Fig 9.4 obtained using the mixed φa

i - Xbc system of cor-
relators. The island assumes that the second S, X and A opera-
tors have scaling dimensions that satisfy ∆ > 3.0. The first X op-
erator is assumed to have a scaling dimension that saturates Fig
9.1, also the first A operator satisfies ∆A = 2.0 since it is the con-
served vector of O(M). Lastly, we impose ∆φ′ > 1.0 for the sec-
ond operator in the defining representation. The figure was pro-
duced using the following parameters in qboot [41]: Λ = 35,
l = (0− 50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and

νmax = 25.
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where PS, PA and PY are the projectors corresponding to the singlet, the antisymmet-
ric and the traceless symmetric representations of O(M) respectively. From these we
obtain the following sum rules2

∑
S+

c2
O



0
F−∆, `

0
0
0

F+
∆, `

+ ∑
SY+

c2
O



0
−2 F−∆, `

F−∆, `
2 F−∆, `
−2 F+

∆, `
m−4

2 F+
∆, `


+ ∑

YY+

c2
O



F−∆, `
F−∆, `
−F−∆, `

(m− 2)F−∆, `
(m + 2)F+

∆, `
2−m−m2

2 F+
∆, `


+ ∑

AA+

c2
O



F−∆, `
0
0
0

−m F+
∆, `

0



+ ∑
SA−

c2
O



0
0
−F−∆, `

0
−2 F+

∆, `
m
2 F+

∆, `


+ ∑

YA−
c2

O



2 F−∆, `
−m2 F−∆, `

F−∆, `
m F−∆, `
2 F+

∆, `
m2−m

2 F+
∆, `


=



0
0
0
0
0
0

 .

(9.15)

We can now apply 9.15 to e.g. the M = 100 and N = 2 case, which we present
in Fig 9.6. Note that the kink in Fig 9.6 does not seem to correspond to a known
Large m fixed point. This is because the value ∆Z = 0.53 is much further away from
∆Z = 0.5 than what is typically expected for a Large m fixed point with m = 100. See
e.g. the analytic predictions in [48]. Notably, the position of the kink in 9.6 seems to
be in agreement with the extremal functional prediction of [48] with respect to the
position of the fixed point in the ∆Z axis. In the ∆Y axis the kink in our plot seems to
be in agreement with the second Y operator in the spectrum of [48]. In other words
our plot does not "see" the first Y operator seen in [48]3. One possible explanation
for this would be that the first Y operator appears in the φ× φ OPE but not the Z× Z
OPE. We cannot presently comment further on this.

2With various rescalings in order to simplify some factors. Also we again denote M by m.
3It has been checked that the zero in the extremal functional presented in [48] which corresponds to

the first Y operator in the φ× φ OPE is not spurious. This was done by raising the gap in the Y sector
above the dimension of the first Y operator, and checking that the corresponding kink in the X sector
disappears.
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FIGURE 9.6: Single correlator exclusion plot for the scaling di-
mension of the first SY (note that SY = Y) operator for M =
100 and N = 2 appearing in the Z × Z OPE. Points above
the line are disallowed. The figure was produced using the
following parameters in qboot [41]: Λ = 20, l = (0 −
50, 55, 56, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90) and νmax =

25.
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Chapter 10

Discussion and Future Directions

In the main part of the thesis we studied three classes of CFTs numerically. These
were CFTs with Sn n (Z2)n, O(m)×O(n)/Z2 and Sn n O(m)n global symmetry. In
the case of cubic CFTs we found evidence of a new CFT that appears to be in very
good agreement with certain experimental data for perovskites. Specifically, in one
of the experiments our conjectured Platonic CFT is closer to the experimental data
for critical exponents than any other known relevant CFT. Consequently, we aimed
to obtain a closed isolated region in parameter space, without assuming that the the-
ory lives on the X sector exclusion bound. One of the main motivations in doing this
is to show that one can still obtain a theory without imposing that it must extremize
a direction in parameter space. An assumption which is somewhat arbitrary from
the physics point of view. We were able to drop the assumption of X sector satu-
ration by scanning over the dimensions of three low lying operators of the theory.
This has the upshot of bringing the theory to a form that is systematically improv-
able in the future. By e.g. using of the new technology developed in [92] we may
scan over OPE coefficient ratios in addition to the scaling dimensions. We expect
this to dramatically shrink the allowed region, and hence drastically improve our
determinations of the critical exponents.

In our study of O(m) × O(n)/Z2 theories we found the technique that provided
the most robust predictions to be the large n expansion. We found excellent agree-
ment in all sectors we looked at. More specifically, we found that the chiral and
anti-chiral fixed points in the large n, and fixed m = 2, limit saturate the single
correlator exclusion bound in two different sectors. Consequently, assuming the sat-
uration of these bounds we found islands which determined the scaling dimensions
of the scalar singlet S and the bifundamental φar operators. We again found good
agreement between these operators and their large n predictions. In order to make
contact with six loop resummed ε expansion predictions, we studied the m = 2 and
n = 6 case. We found the predictions here to be less accurate than the large n predic-
tions, but still in the correct ballpark. Lastly, in order to investigate the possible fixed
points found in resummations we looked at the m = 2 and n = 3 cases, in which we
found two islands. Unfortunately, given the large spread in the theoretical predic-
tions we could not make a meaningful comparison between the bootstrap and the
perturbative data. Note that the fixed points found in resummations are expected to
have operators with complex scaling dimensions. More specifically, these operators
are certain subleading (in terms of scaling dimension) scalar singlets which happen
to be the eigenvectors of the stability matrix1. The key point, though, is that the
couplings in these theories are real, hence they should be experimentally accessible.
Although the numerical bootstrap in its current implementation is only supposed

1We remind the reader that by stability matrix we mean the matrix of derivatives of the beta func-
tions corresponding to the quartic couplings.
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to find unitary theories, it has been known to also pick up islands for non-unitary
theories, see e.g. [9], [68]. Notably, in [68] the island disappeared once the numer-
ical precision was pushed. We cannot comment at the present stage whether the
islands we find correspond to the non-unitary theories from the resummations or
some other hitherto unknown CFTs. If our islands do correspond to the non-unitary
theories we expect them to eventually disappear once we push the numerics further.

In the last main part of the thesis we presented work in progress for Sn n O(m)n

theories and also worked out the projectors in the general case of Sn n Gn, where G
is arbitrary. We presented two islands, one for n = 2 and one for n = 3 both with
G = O(2), which are relevant to experiments2. Consequently, we studied the sin-
gle correlator bootstrap of a 4-pt function consisting of Z operators. Doing this we
found a kink that seems to correspond to the second kinks in the X sector reported
in [101] and [48].

Many natural extensions can be considered regarding the work presented in this
thesis. One first direction, especially since the development of [92] which simpli-
fied higher dimensional scans, is to improve upon the results of Chapter 5 where
we performed a 3D scan in parameter space. See e.g. Fig 5.9. Since we have already
proven that the three dimensional space which is spanned by the scaling dimensions
(∆φ, ∆S, ∆Y) can be reduced to an island around the Platonic theory3, we may im-
prove our results by including Yij as an external operator and furthermore scanning
over OPE coefficient ratios. This should lead to a considerably smaller island which
would give very precise estimates for critical exponents. These precision critical ex-
ponents should then provide significant motivation for experimentalists to study
the theory. Another similar direction is the study of the two flavour "cubic" theory,
i.e. C2 = S2 n Z2

2 . This is expected to be somewhat similar to the Platonic theory
(unpublished work). Using the techniques described above we would like to also
provide precision exponents for this theory as well. Lastly, with regards to cubic
theories we would also like to study the theories responsible for the kinks in 5.2.
One possibility that needs to be tested, is the existence of a theory responsible for
the kinks which is close to the unitarity bound. Such as what we found in Fig 9.6.
This would be important since the bootstrap tends to lose constraining power away
from the unitarity bound. Additionally, proximity to the unitarity bound might hint
at perturbative accessibility.

With regards to O(m) × O(n) theories, although fixed points in the large n limit
seem to be understood quite well, the small n fixed points remain contentious. We
would like to study e.g. the O(2)×O(3) case in Fig 8.9 and try and determine with
certainty if it is indeed the fixed point found in resummations or some other new
unknown (or known) fixed point. If it is the fixed point found in resummations it is
expected to have operators with complex scaling dimensions, hence we expect the
unitary numerical bootstrap to exclude it once it is able to see the non-unitarity in
practice. This could happen at some a priory unknown number of components in-
cluded in the bootstrap functional. A similar strategy was employed in [68], where
the island the authors were studying disappeared once the constraints were suffi-
ciently increased. This strategy, should in the worst case scenario shrink the island
considerably providing tighter estimates of critical exponents.

2See for example [71] [72] [7] and [73]. See also Appendix E.
3Plus other possible disconnected allowed regions we do not currently need to know about.
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We also plan to study the cubic fixed point of the ε expansion4. Although one can
get preliminary islands including the ε expansion cubic theory, these islands also
include the O(3) theory (unpublished work). Using the results of [92] we plan to
shrink this island enough such that it is finally distinct from the O(3) island.

There are numerous other projects, in addition to the ones described above, that
we may also pursue. Such as the study of biconical (type) theories, these can be ex-
pressed with e.g. a Hamiltonian H = H1 +H2 +H12 where H1 is a Hamiltonian
with symmetry G1,H2 a Hamiltonian with symmetry G2 andH12 is a term that cou-
ples G1 with G2. Hopefully, though, we have at this point convinced the reader that
the study of 3D CFTs, even in arguably the simplest case i.e. scalar field theories is
a largely unresolved and exciting field of research. Their systematic study should
have a direct impact on phenomenology and experiments, and in addition deepen
our understanding of field theory both perturbative and non-perturbative.

4Which we remind is different from the Platonic one.
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Appendix A

Generic Projectors of 4-pt
Functions

A.1 〈φiφjφkφl〉 and 〈φiOjkφlOmn〉 Type Projectors

We remind the reader that we use the terms "tensor structure" and "projector" inter-
changeably, usually by slight abuse of terminology since we do not always normal-
ize the tensor structures appropriately. It is useful to recall/re-derive some generic
properties these projectors have that are independent of the respective global sym-
metry. Let us first for simplicity consider the 4-pt function of operators in the defin-
ing 1 representation of some arbitrary global symmetry group G.

〈φiφjφkφl〉 ∼∑
R

PR
ijkl(....) (A.1)

where PR
ijkl is what we call the projector. It is typically made up of invariant tensors

of G. We label the irreps of G with R. Lastly, the .... in A.1 contains everything inde-
pendent of the global symmetry tensor structures. Next we assume a decomposition
of the following schematic form for the OPE

φi × φj ∼∑
R

OR
ij (A.2)

where we leave OPE coefficients implicit, thus

∑
R

∑
R′
〈OR

ij O
R′
kl 〉 ∼∑

R
PR

ijkl(....) (A.3)

using the fact that a two point function between non-identical operators vanishes
we get

PR
ijkl ∼ 〈OR

ij O
R
kl〉 (A.4)

contracting both sides with PR
klmn and using one of the defining properties of projec-

tors, namely PR
ijkl P

R
klmn = PR

ijmn , we obtain

OR
ij = PR

ijklO
R
kl (A.5)

which can be solved leading to

OR
ij = PR

ijklφkφl (A.6)

1See the "List of Abbreviations" in the beginning of the thesis.
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At this point it is important to stress that A.6 is only correct at the level of group
theory. This is because, in general, we can have arbitrary powers of φ appearing in
the OPE of φ with itself. The fact that we include only two powers of φ in A.6 will
not affect any of our results with respect to the projectors. With this in mind, we
plug A.6 into A.2

φi × φj ∼∑
R

PR
ijklφkφl (A.7)

this leads to

∑
R

PR
ijkl ∼ δikδjl (A.8)

We can also generalize A.7 for operators in different representations, two particu-
larly useful examples are:

φiOR
jk ∼∑

R′
PR′

ijklmnφlOR
mn (A.9)

and
OR

ij O
R
kl ∼∑

R′
PR′

ijklmnopOR
mnOR

op (A.10)

where in A.9 and A.10 R may, or may not, appear in the sum over R′, depending
on the specific group G. For an explicit application of A.9 in calculating a tensor
structure see Appendix B.

A.2 〈φiφjOklOmn〉 Type Projectors

When our 4-pt function of interest looks like 〈φiφjOklOmn〉, we can obtain some
slightly different consistency equations for the projectors. Assume that the φ × φ
and O×O OPEs have at least one representation in common which we will call R,
we then have

〈φiφjOklOmn〉 ∼ PR
ijklmn + ... (A.11)

consequently, following the analysis of the previous section we may act on both sides
with the four-index projector remembering that OR

ij = PR
ijklφkφl from A.6, hence

〈OR
opOklOmn〉 ∼ PR

opijP
R
ijklmn + ... (A.12)

now the left hand side is only non zero if the O×O OPE exchanges the operator OR.
For the right hand side to match we must then have

PR
opijP

R
ijklmn = PR

opklmn (A.13)

and
PR′

opijP
R
ijklmn = 0 (A.14)

where in A.14 R′ is assumed to be different from R. These equations, and those of
the preceding section, are extremely useful for calculating projectors in practice, as
well as checking that all calculations are consistent.
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Appendix B

Six Index Projectors in Cubic
Theories

We start with relation A.9, for six index projectors, restricted to the case of two irreps

φiXjk ∼ Pφ
ijklmnφlXmn + PA

ijklmnφlXmn (B.1)

Knowing that the three elements of the representation A are ( φ1(X22−X33) , φ2(X33−
X11) , φ3(X11 − X22) ) we can ask "What is the form of the projector PA

ijklmn such that
B.1 is consistent ?"

The answer is

PA
ijklmn = δi1δl1(δj2δk2 − δj3δk3)(δm2δn2 − δm3δn3)

δi2δl2(δj3δk3 − δj1δk1)(δm3δn3 − δm1δn1)

δi3δl3(δj1δk1 − δj2δk2)(δm1δn1 − δm2δn2)

(B.2)

which can be checked by contracting B.2 on to φlXmn. We would like to bring B.2
into a more convenient form. To do this we write the most general ansatz possible,
keeping in mind that we must always obey j = k and m = n:

PA
ijklmn = aδijklmn + bδilδjkmn + c(δjkδilmn + δmnδijkl) + dδilδjkδmn (B.3)

comparing B.2 and B.3 we have

PA
122133 = d = −1

PA
122111 = c + d = 0

PA
122122 = b + d = 1

PA
111111 = a + b + 2c + d = 0

(B.4)

hence, (a , b , c , d)= (−3 , 2 , 1 , −1) and

PA
ijklmn = −3δijklmn + 2δilδjkmn + (δjkδilmn + δmnδijkl)− δilδjkδmn (B.5)

One can check that the generalization to any number of index values N is
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PA
ijklmn = −δijklmn +

N − 1
N

δilδjkmn +
1
N
(δjkδilmn + δmnδijkl)−

1
N

δilδjkδmn (B.6)

where we have divided by a factor of N compared to B.5. Also, for completeness,
note that Pφ

ijklmn is (for general N)

Pφ
ijklmn = δijklmn −

1
N
(δjkδilmn + δmnδijkl) +

1
N2 δilδjkδmn (B.7)

Remarkably these invariant tensors can by used not only for Hypercubic theories
(CN = ZN

2 o SN), but for any theory with the symmetry G′ = GN o SN where G is
arbitrary. This is because the operator Xij is always a singlet of G. The only needed
modification is the multiplication of B.6 and B.7 with δrs where r and s are G indices
(i.e. we have φr

i instead of φi when G 6= Z2). An important observation is that δrs
factors out, thus it does not affect the crossing equation sum rules at all.
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φ− X crossing equations in generic
theories

C.1 〈φXφX〉 = 〈φXφX〉 and 〈φφXX〉 = 〈xφφX〉 crossing sum
rules

Note that for the 6 index projectors (B.6, B.7, 4.32, 4.33) we have the following two
relations (defining P1 = PS, P2 = PX, P3 = Pφ and P4 = PA)

P3 = P2 +
1
N

P1 (C.1)

P4 = −P2 +
1
N

P1 (C.2)

where we have left all indices implicit. Then 5.7 applied to the crossing equation
〈φφXX〉 = 〈XφφX〉 leads to

0 = ∑
O
[λφφOS+λXXOS+P1Fφφ,XX

∓,∆,l + λφφOX+
λXXOX+

P2Fφφ,XX
∓,∆,l

±(−1)l(P2 +
1
N

P1)λ2
φXOy

FXφ,φX
∓,∆,l

±(−1)l(−P2 +
1
N

P1)λ2
φXOA

FXφ,φX
∓,∆,l ]

(C.3)

consequently, the terms multiplying P1 give one pair of sum rules, and the terms
multiplying P2 give another (all indices on the projectors above have been dropped
since they are identical).

∑
O
(λφφOS+λXXOS+ Fφφ,XX

∓,∆,l ± (−1)l 1
N

λ2
φXOy

FXφ,φX
∓,∆,l ± (−1)l 1

N
λ2

φXOA
FXφ,φX
∓,∆,l ) = 0 (C.4)

∑
O
(λφφOX+

λXXOX+
Fφφ,XX
∓,∆,l ± (−1)lλ2

φXOy
FXφ,φX
∓,∆,l ∓ (−1)lλ2

φXOA
FXφ,φX
∓,∆,l ) = 0 (C.5)

As explained in Appendix B these equations are valid for any group G′ = GN o SN

with G arbitrary1. Lastly, since PA
ijklmn = PA

ljkimn and Pφ
ijklmn = Pφ

l jkimn , the sum rules
derived from 〈φXφX〉 = 〈φXφX〉 are easily worked out to be

1Assuming that N > 3. Since otherwise we have less representations appearing on the right hand
side of the φ× X OPE.
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∑
O

λ2
φXOA

FφX,φX
∓,∆,l = 0 (C.6)

and

∑
O

λ2
φXOφ

FφX,φX
∓,∆,l = 0 (C.7)

In all the above "+" subscripts on operators are used to denote that the sum should
be taken only over even-spin operators. Whereas if there is no subscript the sum
runs both over even and odd-spin operators.

C.2 〈XXXX〉 = 〈XXXX〉 crossing sum rules

As explained in Section 4.2 the operator X transforms in the defining representation
of SN . The crossing sum rules for Z2 × SN

2 have been worked out in [100] and [93]
hence we do not repeat the calculation here and simply report the results of [100].

∑
S+

c2
O


0

F−∆, `
F+

∆, `
0

+ ∑
X+

c2
O


0
0

− 4
N+1 F+

∆, `
F−∆, `

+ ∑
Y+

c2
O


F−∆, `

2(N−1)
N F−∆, `

− (N+1)(N−2)
N(N−1) F+

∆, `

− N+1
2(N−1) F−∆, `

+ ∑̄
S−

c2
O


F−∆, `

0
F+

∆, `
0



=


0
0
0
0

 . (C.8)

C.2.1 The case N = 3

The N = 3 〈XXXX〉 = 〈XXXX〉 crossing equation has the same sum rules as the
O(2) vector model. This can be seen since S3 is a subgroup of O(2) and they share
the same irreps on the right hand side of the OPE. Alternatively, one can derive the
crossing equations using the projectors from Section 4.2. The sum rules can be found
in e.g. [60].

∑
S+

c2
O

 0
F−∆, `
F+

∆, `

+ ∑
X+

c2
O

 F−∆, `
0

−2 F+
∆, `

+ ∑̄
S−

c2
O

 F−∆, `
−F−∆, `
F+

∆, `

 =

0
0
0


From the viewpoint of invariant tensors, the sum rules are reduced from four to
three in the N = 3 case due to 4.23.

2These crossing equations are the same as if we had neglected the Z2 in Z2× SN . The only difference
is that we will allow X to appear in the X× X OPE. Which we could not do if we had the Z2.
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Appendix D

Oa-S System of Correlators Sum
Rules

In this appendix we write down the sum rules resulting from the crossing equations
〈OaObSS〉 = 〈SObOaS〉, 〈OaSObS〉 = 〈ObSOaS〉 and 〈SSSS〉 = 〈SSSS〉. Where Oa
should be thought of as some arbitrary scalar operator (with respect to space-time
transformations) in some arbitrary representation of some arbitrary group, with its
indices collectively and schematically denoted by a.

The relevant OPEs schematically are

Oa × S ∼ Oa (D.1)

and
S× S ∼ S (D.2)

where on the right hand side we have left the sum over all possible operators in a
given representation and their OPE coefficients implicit. Plugging these formulas in
to the aforementioned correlators we obtain (schematically)

〈OaSObS〉 ∼ 〈OaOb〉 ∼ rab (D.3)

and
〈OaObSS〉 ∼ rab〈SS〉 (D.4)

where rab is some appropriate tensor that we do not need to write explicitly for our
present purposes.

With D.3 and D.4 in hand, and using 5.7, we obtain the following sum rules

∑
S+

λ2
SSOS

F−SS,SS
∆,l = 0 (D.5)

∑
V±

λ2
OSOV

F−OS,OS
∆,l = 0 (D.6)

∑
S+

λOOOS λSSOS F∓OO,SS
∆,l ±∑

V±
(−1)lλ2

OSOV
F∓SO,OS

∆,l = 0 (D.7)

where V in this case denotes the representation Oa transforms in. The superscripts
on the irreps that are summed over denote the allowed spins of the exchanged op-
erators (even/odd).
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Appendix E

Emergence of O(2)×O(n)
symmetry in physical systems

We will show in two separate cases, namely helimagnets and stacked triangular an-
tiferromagnets, how a O(2)×O(n) global symmetry can emerge. The global sym-
metry of the microscopic system, i.e. the lattice system, in both cases will be O(n).

E.1 Stacked Triangular Antiferromagnets

We will consider a lattice made up of stacked triangular sub-lattices. For example,
to build one in three dimensions, we need to stack two dimensional lattices. Each
of the two dimensional lattices is made up by placing particles on the vertices of
equilateral triangles1. Thus, nearest neighbours of a given particle in the sub-lattice
are positioned at angles of 2π

6 between each other. For figures see e.g. [56]. Our
starting point will be the microscopic Hamiltonian

H = ∑
ij

Jij~Si · ~Sj + ∑
ij

J′ij~Si · ~Sj (E.1)

where the first sum runs over antiferromagnetic nearest neighbor interactions within
the plane of the triangular lattice, and the second sum runs over nearest neighbors
in the transverse direction2. As will become apparent, it is not very important what
the sign of J′ is, as long as it is not zero. If it were zero the dimensionality of the
system would reduce but the global symmetry would be unchanged3. We can use a
Hubbard-Stratonovich transformation to exchange the fixed length spins in E.1 for
unconstrained length spins, see [40] for a pedagogic review. This leads us to the
following expression in wave vector space4

H = ∑
q
(E(q) + m2

0)~Sq · ~S−q + g ∑
q1,q2,q3,q4

δ(q1 + q2 + q3 + q4)~Sq1 · ~Sq2
~Sq3 · ~Sq4 (E.2)

the quantities m2
0 and g in E.2 are related to those in E.1. The only information we

need is that E(q) is related to the Fourrier transform of J and J′. The couplings J and
J′, as a function of the coordinates, are by definition only non zero at the location of
nearest neighbours. Thus, they may be parametrized as J ∼ δ(r− a)δ(z)∑θi

δ(θ− θi)

where (r2 = x2 + y2) and J′ ∼ δ(|z| − b)δ(x)δ(y). Where a is the distance between

1This is a hexagonal lattice with particles also in the center of each cell.
2I.e. the direction in which we stack the sub-lattices.
3In other words the system would be described by a D = d− 1 dimensional field theory.
4By abuse of notation we use the same symbol S for both the constrained and unconstrained length

spin.
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nearest neighbours in the x− y plane, b is the distance between nearest neighbours
located at two different planes (i.e. they are located at different values of z) and
θi = 2Nπ/6 are the angles at which nearest neighbours are located. The distances a
and b can be rescaled to unity without harm of generality. We then have

J(q) ∼∑
qx

∑
qy

eiqxxeiqyyδ(r− 1)∑
θi

δ(θ − θi) (E.3)

using x = rcosθ and y = rsinθ we obtain

J(q) ∼ cos(qx) + 2cos(
qx

2
)cos(

√
3qy

2
) (E.4)

including the contribution of the J′ term we obtain (for d > 3)

E(q) ∼ J(q) + J′(q) ∼ cos(qx) + 2cos(
qx

2
)cos(

√
3qy

2
) + k(cos(q3) + ... + cos(qd))

(E.5)
where k is proportional to the ratio of the two couplings in E.1. Also, q3 = qz etc.
The present author became aware of E.5 from [55].

One can check that E.5 has two minima

qmin = ±Q = ±(4π

3
, 0, 0, ..., 0) (E.6)

In order to study the theory we must expand around its minima. We have

Sr = ∑
q

eiqrSq

⇒ Sr = ∑
q→Q

eiqrSq + ∑
q→−Q

eiqrSq

⇒ Sr = ∑
q→0

(Sq−Qei(q−Q)r + Sq+Qei(q+Q)r)

(E.7)

where in the second line we have split the sum and kept only the dominant contri-
butions, which are centered around the two minima. In the third line we redefined
the variable summed over in order to collapse everything into one sum. We now
define Aq = Sq+Q and Bq = Sq−Q, thus

S?
q = S−q ⇒ A?

q = B−q and B?
q = A−q (E.8)

Using all the above, E.2 may be recast in the following form

H = ∑
q
(q2 + m2)(|A|2 + |B|2)

+g′ ∑
q1,q2,q3,q4

δ(q1 + q2 + q3 + q4)(~Aq1 · ~Aq2
~Bq3 · ~Bq4 + 2~Aq1 · ~Bq2

~Aq3 · ~Bq4)
(E.9)

where we have expanded in q around the minima of E(q). We can further define the
combinations ~φ1 = (~A + ~B)/2 and ~φ2 = (~A− ~B)/2i, and finally Fourrier transform
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back to real space to get

H =
1
2 ∑

a
∂µ~φa · ∂µ~φa +

u
24

(
∑

a

~φ2
a

)2

+
v
24 ∑

a,b

(
(~φa · ~φb)

2 − ~φ2
a~φ

2
b
)

(E.10)

which is precisely 6.2. For further details we refer to [56] and references therein. Note
that terms including factors of eiQr have been dropped. This is what is sometimes
referred to as the slowly varying approximation.

E.2 Helimagnets

In order to study helimagnets, we will consider the case of a hypercubic lattice where
all nearest neighbour interactions are ferromagnetic, but in one of the directions, e.g.
the x direction, we also have a next-nearest neighbour interaction that is antiferro-
magnetic. The Hamiltonian is

H = ∑
ij

Jij~Si · ~Sj + ∑
ij

J′ij~Si · ~Sj (E.11)

where now the first sum runs over all nearest neighbors and the second one over the
next-nearest neighbours in one of the directions. Thus, now we have (e.g. for d = 3)

J ∼ (δ(z)δ(r− a)∑
θi

δ(θ − θi) + δ(|z| − a)δ(r)δ(θ)) (E.12)

where r2 = x2 + y2, and

J′ ∼ δ(z)δ(r− 2a) ∑̄
θi

δ(θ − θ̄i) (E.13)

where a is again the lattice spacing, but this time θi=(0, π/2, π, 3π/2) and θ̄i=(0, π).
This leads us to

E(q) ∼ c1(cos(qx) + cos(qy) + cos(qz)) + c2cos(2qx) (E.14)

which again has two minima for appropriate values of c1 and c2. Thus all steps
follow through as in the previous section and we can again derive E.10.
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Appendix F

φi-Xjk system of correlators in cubic
theories

For completeness, in this appendix we write down the full system of crossing equa-
tions for hypercubic theories involving the operators φ and X with N = 3 as they
appeared in [62]. Note that there is a slight change of notation. The operator de-
noted as φ in the main text is denoted Y− here. This is due to a group theory duality
specific for N = 3. There exists a tensor such that φi = cijkY−jk ,where cijk is totally
symmetric and non-zero only if all its indices take different values.

∑
S+

(
λφφOS λXXOS

)
~TS,∆,`

(
λφφOS

λXXOS

)
+ ∑

X+

(
λφφOX λXXOX

)
~TX,∆,`

(
λφφOX

λXXOX

)
+∑

Y+

λ2
φφOY

~VY,∆,` + ∑
A−

λ2
φφOA

~VA,∆,` + ∑
Y′ ±

λ2
φXOY′

~VY′,∆,` + ∑
A′ ±

λ2
φXOA′

~VA′,∆,` + ∑̄
S−

λ2
φφOS̄

~VS̄,∆,` = 0

(F.1)

where ~VY,∆,`, ~VA,∆,`, ~VY′,∆,`, ~VA′,∆,`, and ~VS̄,∆,` are 13 component vectors of scalar quan-
tities, while ~TS,∆,` and ~TX,∆,` are 13 componentt vectors of 2× 2 matrices. They are
given by

T1
S,∆,` =

(
0 0
0 0

)
, T2

S,∆,` =

(
Fφφ;φφ
−,∆,` 0

0 0

)
, T3

S,∆,` =

(
Fφφ;φφ
+,∆,` 0

0 0

)
, T4

S,∆,` =

(
Fφφ;φφ
−,∆,` 0

0 0

)
,

T5
S,∆,` =

(
0 0
0 0

)
, T6

S,∆,` =

(
0 0
0 FXX;XX

−,∆,`

)
, T7

S,∆,` =

(
0 0
0 FXX;XX

+,∆,`

)
,

T8
S,∆,` =

(
0 1

2 Fφφ;XX
+,∆,`

1
2 Fφφ;XX

+,∆,` 0

)
, T9

S,∆,` =

(
0 1

2 Fφφ;XX
+,∆,`

1
2 Fφφ;XX

+,∆,` 0

)
, T10–13

S,∆,` =

(
0 0
0 0

)
,

(F.2)

T1
X,∆,` =

(
0 0
0 0

)
, T2

X,∆,` =

(
− 1

3 Fφφ;φφ
−,∆,` 0
0 0

)
, T3

X,∆,` =

(
− 1

3 Fφφ;φφ
+,∆,` 0
0 0

)
, T4

X,∆,` =

(
2
3 Fφφ;φφ
−,∆,` 0
0 0

)
,

T5
X,∆,` =

(
0 0
0 FXX;XX

−,∆,`

)
, T6

X,∆,` =

(
0 0
0 0

)
, T7

X,∆,` =

(
0 0
0 −2 FXX;XX

+,∆,`

)
,

T8
X,∆,` =

1
3 T10

X,∆,` =

(
0 1

6 Fφφ;XX
−,∆,`

1
6 Fφφ;XX
−,∆,` 0

)
, T9

X,∆,` =
1
3 T11

X,∆,` =

(
0 1

6 Fφφ;XX
+,∆,`

1
6 Fφφ;XX

+,∆,` 0

)
,

T12,13
X,∆,` =

(
0 0
0 0

)
,

(F.3)
V1

Y,∆,` = Fφφ;φφ
−,∆,` , V2

Y,∆,` = Fφφ;φφ
−,∆,` , V3

Y,∆,` = −Fφφ;φφ
+,∆,` , V4–13

Y,∆,` = 0 , (F.4)
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V1
A,∆,` = Fφφ;φφ

−,∆,` , V2
A,∆,` = −Fφφ;φφ

−,∆,` , V3
A,∆,` = Fφφ;φφ

+,∆,` , V4–13
A,∆,` = 0 , (F.5)

V1–7
Y′,∆,` = 0 , V8

Y′,∆,` =
2
3 V10

Y′,∆,` =
2
3 (−1)`FφX;Xφ

−,∆,` , V9
Y′,∆,` =

2
3 V11

Y′,∆,` =
2
3 (−1)`+1FφX;Xφ

+,∆,` ,

V12
Y′,∆,` = FφX;φX

−,∆,` , V13
Y′,∆,` = 0 ,

(F.6)
V1–9

A′,∆,` = 0 , V10
A′,∆,` = (−1)`+1FφX;Xφ

−,∆,` , V11
A′,∆,` = (−1)`FφX;Xφ

+,∆,` ,

V12
A′,∆,` = 0 , V13

A′,∆,` = FφX;φX
+,∆,` ,

(F.7)

V1–4
S̄,∆,` = 0 , V5

S̄,∆,` = −V6
S̄,∆,` = FXX;XX

−,∆,` , V7
S̄,∆,` = FXX;XX

+,∆,` , V8–13
S̄,∆,` = 0 . (F.8)

Where as usual

Fab,cd
±,∆O,l (u, v) ≡ v

∆c+∆b
2 g∆ab,∆cd

∆O,l (u, v)± u
∆c+∆b

2 g∆ab,∆cd
∆O,l (v, u) (F.9)
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Appendix G

One index MN notation.

In this appendix we present the one index notation for G′ = GN o SN theories in
the name of completeness. We will consider the specific example of G = O(2) and
N = 2 for simplicity. The generalizations will be straightforward. Invariant ten-
sors have been worked out in terms of the one index notation for G = O(M) and
G = Z2

2 o S2 in [101]. Our approach will be slightly different in that we will write
the projectors only in terms of Kronecker deltas.

Take for instance the representation I2 = A which appeared in 9.11. We want to
find the projector that corresponds to the appearance of Aij as an exchanged oper-
ator in the φi × φj OPE. The indices i and j now run over MN = 2 ∗ 2 = 4 values
given that we chose G = O(2) and N = 2. We take i = 1 and i = 2 to correspond to
the first copy of O(2) and i = 3 and i = 4 to correspond to the second. Then A has
the following two elements

A12 = φ1φ2 − φ2φ1 (G.1)
A34 = φ3φ4 − φ4φ3 (G.2)

remembering the relation Aij = PA
ijklφiφj it is easy to write down the projector explic-

itly

PA
ijkl =

1
2
(δi1δj2 − δi2δj1)(δk1δl2 − δk2δl1)

+
1
2
(δi3δj4 − δi4δj3)(δk3δl4 − δk4δl3)

(G.3)

Given that we have written what all operators look like in the φi × φj OPE in Chap-
ter 9 it is a straightforward exercise to write down all the relevant projectors, and
check that they give equivalent crossing equation sum rules. An interesting irrep to
comment further on is X. Remember that X is always a singlet of G and is traceless
in G′. Thus, in our current example

X11 = (φ1φ1 + φ2φ2)− (φ3φ3 + φ4φ4)

X22 = (φ1φ1 + φ2φ2)− (φ3φ3 + φ4φ4)

X33 = (φ3φ3 + φ4φ4)− (φ1φ1 + φ2φ2)

X44 = (φ3φ3 + φ4φ4)− (φ1φ1 + φ2φ2)

(G.4)

which leads to

PX
ijkl =

1
4
(δi1δj1 + δi2δj2 − δi3δj3 − δi4δj4)(δk1δl1 + δk2δl2 − δk3δl3 − δk4δl4) (G.5)
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which could of course be generalized for any G and N if we wished. What we
want to point out, though, is that all the elements of X for a given copy of G are
the same i.e. X11 = X22 and X33 = X44. This is equivalent to the fact that in the
two index notation X has only a and b indices but not i and j indices. If we define
X11 = X22 = X̃1 and X33 = X44 = X̃2, we have

Xij =
2

∑
m=1

(δi, 2m−1δj, 2m−1 + δi, 2mδj, 2m)X̃m (G.6)

the generalization to arbitrary group G and arbitrary number of copies N is

Xij =
N

∑
m=1

(δi, Mm−(M−1)δj, Mm−(M−1) + ... + δi, Mm−1δj, Mm−1 + δi, Mmδj, Mm)X̃m (G.7)

where M depends on what G is, e.g. for G = O(20) we have M = 20. This equation
is simply a generalization of 4.9. Thus all possible 〈XXXX〉 = 〈XXXX〉 crossing
equation sum rules are known automatically, and are written down in C.8 and C.2.1.
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