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Preface

The Stable Marriage Problem was first introduced and solved by David
Gale and Lloyd Shapley in their paper entitled "College Admissions and the
Stability of Marriage" in 1962 [1]. The problem is formulated as follows:
Suppose we have 2 finite equally sized sets M , the set of men, and W , the
set of women, such that each element of M has a preference list of all the
elements in W and, similarly, each element of W has a preference list of all
the elements in M . Then, a stable matching or stable marriage is a bijection
of M onto W such that there are no m ∈ M and w ∈ W that prefer each
other to their assigned partners in the matching.

In [1] Gale and Shapley also introduced a polygamous version of the
problem and presented an algorithm for finding stable matchings in both the
polygamous and monogamous versions. On the practical side, the polyga-
mous version of the Gale-Shapley algorithm has been used for many years,
in fact preceding the Gale-Shapley paper, to assign "job applicants" to "job
positions". The best known amongst them is the placement of resident doc-
tors in training programs. Moreover, since the publication of their paper
several additional papers have been published studying different variations
of the problem.

In 2012, Lloyd S. Shapley and Alvin E. Roth were awarded a Nobel
Memorial Prize in Economic Sciences for "the theory of stable allocations
and practice of market design".

In this thesis, we are doing a review of literature on the stable mar-
riage problem, starting by presenting the Gale-Shapley algorithm and its
correctness and proceeding to also present a number of different results and
variations of the problem.

More specifically, we start by formally presenting the stable marriage
problem along with some basic notations, terminologies and definitions about
the stable marriage problem and complexity classes that will be used through-
out the thesis. In section 2, we firstly present the Gale-Shapley algorithm
along with a proof of the algorithm’s correctness and a number of conse-
quences of the algorithm, such as the fact that the matching obtained by
the algorithm is male-optimal and woman-pessimal. We also study the ex-
pected value of the number of proposals during the course of the algorithm
for arbitrary but fixed lists of preferences of the women when the lists of
men are constructed independently and uniformly at random. In section 3
we present 2 variations of the problem: The problem of stable matchings
with incomplete lists and the problem of admitting n students to m univer-
sities. Next, we study the set of stable matchings, proving that is has in
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fact a distributive lattice structure. Furthermore, we prove that the number
of stable matchings can grow exponentially with the size of the instance,
meaning that any algorithm generating all of the stable matchings could be
of exponential time complexity in the worst case. In section 5, continuing
our study of the number of stable matchings we prove that the problem of
determining the number of stable matchings is #P−complete and therefore
cannot be solved in polynomial time if P ̸= NP . In the process of do-
ing that, we introduce the concept of rotations presenting also a number of
results concerning the structure of the set of stable matchings.
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Εισαγωγικό σημείωμα

Το πρόβλημα του Σταθερού Γάμου εισήχθηκε για πρώτη φορά και λύθηκε

από τους David Gale και Lloyd Shapley στο paper τους με τίτλο "College Ad-
missions and the Stability of Marriage" το 1962 [1]. Το πρόβλημα διατυπώνε-
ται ως εξής: Υποθέτουμε πως έχουμε 2 πεπερασμένα σύνολα ίσου μεγέθους,
το σύνολο M των ανδρών και το σύνολο W των γυναικών τέτοια ώστε κάθε

στοιχείο του M έχει μια λίστα προτίμησης με όλα τα στοιχεία του W και,
όμοια, κάθε στοιχείο του W έχει μια λίστα προτίμησης με όλα τα στοιχεία

του M . Τότε, ένα σταθερό ταίριασμα ή αλλιώς σταθερός γάμος είναι μία 1-1
απεικόνιση από το M επί του W τέτοια ώστε να μην υπάρχει άντρας m ∈ M
και γυναίκα w ∈W που προτιμούν ο ένας τον άλλον από ότι τους "συζύγους"

που τους έχουν ανατεθεί στο ταίριασμα.
Στο [1] οι Gale και Shapley εισήγαγαν επίσης μία πολυγαμική εκδοχή του

προβλήματος και παρουσίασαν έναν αλγόριθμο για την εύρεση σταθερού ταιρ-

ιάσματος τόσο στην μονογαμική όσο και στην πολυγαμική εκδοχή. Μάλιστα,
η πολυγαμική εκδοχή του αλγορίθμου των Gale και Shapley χρησιμοποίουνταν
για πολλά χρόνια, στην πραγματικότητα πριν απο το paper των Gale-Shapley,
για την αντιστοίχηση "αιτούντων για δουλειά" σε "θέσεις εργασίας". Η πιο
γνωστή εφαρμογή τέτοιων αντιστοιχίσεων είναι η τοποθέτηση φοιτητών ια-

τρικής σε νοσοκομεία. Επιπλέον, από την δημοσίευση του paper τους, έχουν
δημοσιευθεί αρκετά επιπλέον paper που μελετούν διάφορες παραλλαγές του
αρχικού προβλήματος.
Το 2012, απονεμήθηκε στους Lloyd S. Shapley και Alvin E. Roth το

βραβείο Νόμπελ Οικονομικών Επιστημών για την "θεωρία των σταθερών κατανομών

και την εφαρμογή του σχεδιασμού αγοράς".
Σε αυτή την εργασία, μέσω μιας ανασκόπησης της βιβλιογραφίας, ξεκινάμε

παρουσιάζοντας τον αλγόριθμο των Gale και Shapley και την απόδειξη της
ορθότητάς του και συνεχίζουμε με την παρουσίαση διαφόρων αποτελεσμάτων

και παραλλαγών του προβλήματος.
Πιο συγκεκριμένα, ξεκινάμε ορίζοντας αυστηρά το πρόβλημα του γάμου

και παρουσιάζουμε κάποιους βασικούς συμβολισμούς, ορολογίες και ορισμούς
σχετικά με το πρόβλημα του γάμου αλλά και τις κλάσεις πολυπλοκότητας που

θα μας φανούν χρήσιμοι κατά τη διάρκεια της εργασίας. Στη δεύτερη ενότητα,
ξεκινάμε με τον αλγόριθμο των Gale και Shapley, συνεχίζοντας με την απόδειξη
της ορθότητάς του καθώς και με διάφορες ιδιότητες του ταιριάσματος του αλγο-

ρίθμου, όπως για παράδειγμα το γεγονός πως το ταίριασμα που προκύπτει από
τον αλγόριθμο είναι το βέλτιστο για τους άντρες και το χειρότερο για τις γυ-

ναίκες. Μελετάμε ακόμη την μέση τιμή των προτάσεων κατά τη διάρκεια του αλ-
γορίθμου για αυθαίρετες αλλά δοσμένες λίστες προτίμησης των γυναικών όταν
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οι λίστες προτίμησης των ανδρών κατασκευάζονται ανεξάρτητα και ομοιόμορφα

στην τύχη. Στην ενότητα 3 παρουσιάζουμε 2 παραλλαγές του προβλήματος: το
πρόβλημα του σταθερού γάμου όταν οι λίστες προτίμησης είναι ανολοκλήρωτες

καθώς και το πρόβλημα εισόδου n φοιτητών σε m πανεπιστήμια. Στη συνέχεια,
μελετάμε το σύνολο των σταθερών ταιριασμάτων αποδεικνύοντας πως έχει τη

δομή distributive lattice. ΄Επειτα αποδεικνύουμε πως ο αριθμός των σταθερών
ταιριασμάτων είναι δυνατό να μεγαλώνει εκθετικά με το μέγεθος του προβλή-

ματος, που σημαίνει πως οποιοσδήποτε αλγόριθμος παράγει όλα τα σταθερά
ταιριάσματα σε ένα δοσμένο στιγμιότυπο του προβλήματος θα μπορούσε να

είναι εκθετικού χρόνου στη χειρότερη περίπτωση. Στο κεφάλαιο 5, συνεχί-
ζοντας τη μελέτη του πλήθους των σταθερών ταιριασμάτων, αποδεικνύουμε
ότι το πρόβλημα της εύρεσης του αριθμού των σταθερών ταιριασμάτων σε ένα

πρόβλημα γάμου είναι #P−πλήρες και, ως αποτέλεσμα, δε μπορεί να λυθεί σε
πολυωνυμικό χρόνο αν P ̸= NP . Για να το αποδείξουμε αυτό, εισάγουμε την
έννοια των περιστροφών παρουσιάζοντας παράλληλα ένα πλήθος διαφορετικών

αποτελεσμάτων σχετικά με τη δομή του συνόλου σταθερών ταιριασμάτων.
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1 Preliminaries

1.1 Stable matchings: an introduction

Definition 1.1. Let M and W be two finite sets of n elements. A matching
is a bijection of M onto W .

Definition 1.2. An instance of size n of the stable marriage problem in-
volves two disjoint sets, the set M of men {m1, ...,mn} and the set W of
women {w1, ..., wn}. Each person has a strictly ordered preference list of the
members of the opposite sex.

Definition 1.3. A matching in a stable marriage problem instance is called
unstable if a man m and a woman w mutually prefer each other to their
spouses.

Definition 1.4. A matching is called stable if there is no man m and no
woman w that both prefer each other to their assigned partners.

The stable marriage problem asks for a stable matching in a given in-
stance of the problem. Naturally occurs the question of whether there is
always a stable matching in a given stable marriage instance. In the next
chapter we will prove, through Gale-Shapley’s algorithm, that indeed there
is always at least one stable matching. In fact, through the following exam-
ple we can see that it is possible that more than one stable matchings exist.

Example 1.5. Suppose we have the sets M = {m1,m2} and W = {w1, w2}
of men and women respectively, along with the following preference lists:

men’s preference lists women’s preference lists
m1 : w1 w2

m2 : w2 w1

w1 : m2 m1

w2 : m1 m2

Here we have 2 possible matchings:
M1={ (m1,w1),(m2,w2)} and M2={(m1,w2),(m2,w1)}
and we can easily check that, in fact, both of them are stable.

We now introduce some basic notations and terminology that will be used
throughout the next chapters.
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Notation 1.6.

• Let m be a man and w1, w2 be 2 distinct women. Then
w1mw2 ⇐⇒ man m prefers woman w1 to woman w2.

• Similarly, if w is a woman and m1, m2 are 2 distinct men then
m1wm2 ⇐⇒ woman w prefers man m1 to man m2

Notation 1.7.

• mr(i, k) = j ⇐⇒ woman k is in position j in the preference list of
man i

• wr(i, k) = j ⇐⇒ man k is in position j in the preference list of
woman i

Notation 1.8.

• mp(i, j) = k ⇐⇒ woman k is in position j in the preference list of
man i

• wp(i, j) = k ⇐⇒ man k is in position j in the preference list of
woman i

Notation 1.9. pM (x) = y ⇐⇒ person’s x partner in matching M is person
y.

Terminology 1.10. We say that a person x prefers a matching M to a
matching M ′ and we write MxM ′ if he prefers his partner in M to his
partner in M ′, meaning that his partner in M is higher in his preference
list than his partner in M ′. Note that this is strict preference. Generally, a
person might prefer a matching M to M ′ or M ′ to M or he/she might be
indifferent between them if pM (x) = pM ′(x).

Terminology 1.11. We say that a man m and a woman w block a matching
M or that m-w are a blocking pair for M if m,w are not partners in M
but they prefer each other to their assigned partners in the matching, that
is wmpM (m) and mwpM (w). Obviously, a matching for which there is at
least one blocking pair is not stable, whereas a matching for which there are
no blocking pairs is stable.
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1.2 Computational complexity

In this section we present a few basic definitions and results about com-
plexity classes that will be used in chapter 5.

Generally, an instance of a problem is obtained by specifying all problem
parameters and any problem Π is associated with a set DΠ of instances.

Definition 1.12. A decision problem is a problem that can be answered by
"yes" or "no".

Definition 1.13. P is the class of decision problems that can be solved by
an algorithm running in time polynomial in the size of the input.

For example, the problem of deciding whether 2 numbers a, b are rel-
atively prime is in class P : Using the euclidean algorithm, which runs in
polynomial time, we can find the greatest common divisor of a and b denoted
by gcd(a, b). If gcd(a, b) = 1 then a, b are relatively prime. Otherwise, a, b
are not relatively prime.

Definition 1.14. NP is the class of decision problems such that, given
a "yes" instance of the problem and a polynomial-size "certificate" of a
solution, there is a polynomial-time algorithm verifying that the certificate
is correct.

For example let’s consider the problem of examining whether a number
is composite. Given a composite number n and one of its divisors as a
certificate, we can check in polynomial time through the euclidean algorithm
that n is indeed composite.
Obviously P ⊆ NP since if a problem is in P we can solve it in polynomial
time without even being supplied a certificate.

Definition 1.15. A decision problem D1 is said to be polynomial-time re-
ducible to a decision problem D2 if there exists a function f : DD1 → DD2

that transforms an instance d1 of D1 to an instance d2 of D2 such that:

• The transformation takes polynomial time

• d1 is a "yes" instance of D1 ⇐⇒ d2 is a "yes" instance of D2

Definition 1.16. A problem Π is said to be NP−complete if:

• Π is in NP

• every other problem in NP is polynomial-time reducible to Π
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Informally, that means that if a problem Π is NP−complete then it is
at least as "hard" as any other problem in NP .
An immediate result of definitions 1.15 and 1.16 is the following:

Theorem 1.17. If a problem B is NP−complete and B is polynomial-time
reducible to A for a problem A in NP then A is also NP−complete.

A more general class of problems is the class of "search problems". A
search problem Π consists of a set DΠ of instances and, for each instance
I ∈ DΠ, a set SΠ(I) of finite objects called solutions for I. An algorithm is
said to solve a search problem Π if, given as an input any instance I ∈ DΠ,
it returns the answer "no" if SΠ(I) = ∅ and otherwise returns some solution
s ∈ SΠ(I) (the corresponding decision problem asks whether or not SΠ(I)
is empty).

The counting problem based on a search problem Π is, "Given I what
is the cardinality of SΠ(I) that is, how many solutions are there?".

Definition 1.18. #P is the class of all counting problems associated with
the decision problems in the class NP .

The concept of "completeness" for #P is once again used to capture the
notion of a "hardest" problem in a class.

Definition 1.19. If A and B are problems in #P , a polynomial time count-
ing reduction from A to B is a pair of polynomial-time computable functions
f , g such that

• function f maps an instance x of A to an instance f(x) of B and

• function g recovers from the number of solutions n of f(x) the number
of solutions g(n) of x.

A special case of polynomial-time counting reductions are parsimonious re-
ductions, where f preserves the number of solutions during the transforma-
tion, that is g is the identity function. Thus, a parsimonious reduction from
a problem A to a problem B is a polynomial-time computable function that
maps an instance x of A to an instance y of B such that x and y have the
same number of solutions.

We say that a problem A is #P−complete if it is in #P and for every
other problem B in #P , there is a polynomial-time counting reduction from
B to A.
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2 Existence of a stable matching:
The Gale-Shapley Algorithm

A fundamental algorithm, leading to the construction of a stable match-
ing, was developed by Gale and Shapley in 1962, constituting a proof by
construction of the existence of at least one stable matching in any given
instance of the problem.

2.1 Description of the algorithm

The idea of the algorithm is as follows: Suppose that initially no one is
married. Lets suppose that a man m proposes to a woman w. It would be
a mistake to say that the pair (m,w) would surely belong to the final stable
matching since the woman w might receive a proposal from another man
who she prefers more. It would also be a mistake to rule out the possibility
that the pair (m,w) is in the final matching, as the woman w might not
receive another proposal by a man she ranks as highly as m. As a result we
introduce an intermediate state, the engagement.

Algorithm 1 Gale-Shapley algorithm for stable matchings

1: initially all women and all men are free
2: while there is a man who is free do
3: choose a man m that is free
4: w ← first woman on m’s list to whom m has not yet proposed
5: if w is free then
6: engage m and w
7: else if w is already married to a man m′ then
8: if w prefers m to m′ then
9: engage m and w

10: m′ becomes free
11: else
12: m remains free
13: end if
14: end if
15: end while

Observation 2.1. The algorithm above involves an element of non deter-
minism since the order in which the free men propose is not specified. How-
ever, as we will see, this is of no consequence: the order in which the men
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propose is of no importance to the final outcome, which is always the same
for a specific stable marriage instance.

Note 2.2. The algorithm presented in Gale and Shapley’s paper was running
in stages: In the first stage, all men propose to their favorite woman. Each
woman that receives more than one proposals rejects all but her favorite
man. However, she does not accept him yet but keeps him on a string to
allow for the possibility that someone better might propose to her later. In the
second stage, the rejected men propose to their second choices, the women
reject all but their favorite amongst the group of the new proposers and
the boy at the string-if any- and again keeps her favorite in a string and
we continue in a similar manner. In [7], McVitie and Wilson presented a
recursive version of the Gale-Shapley algorithm, which was essentially the
Algorithm 1 presented above with the difference that every time, if there
is a man that is rejected he is the next one to propose. All algorithms give
the same result and the same proposals and rejections are made (although
in general in different order).

2.2 Proof of the algorithm’s correctness

Theorem 2.3. The algorithm terminates.

Proof. The algorithm would not terminate if the while loop did not termi-
nate, that is if there was a man m that always remained free. m would
always remain free if and only if he got rejected by all the women in his list.

Each woman can reject only when she is engaged and once she is engaged
she never again becomes free. So when m got rejected by the last woman on
his preference list that would mean that all n women were already engaged.
But since the number of men is equal to the number of women and there are
no men married to 2 women then all n men would also have to be engaged,
which is a contradiction. In fact, for an instance of size n, the total number
of iterations cannot exceed n2.

Theorem 2.4. The matching obtained from the algorithm is stable.

Proof. Suppose that the matching M obtained from the algorithm is not
stable, that is there is a man m and a woman w such that they both prefer
each other to their partners assigned by the algorithm. Suppose that m’s
partner in M is w1.

Since man m prefers woman w to w1 that means that woman w is higher
in his preference list than w1. However, m did not end up marrying w but
w1 who is lower in his preference list, meaning that, during the course of
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the algorithm, m proposed to w but w rejected him for someone else that
she preferred more. As a result, w prefers her current spouse to m, which
is a contradiction.

We have thus proved that the algorithm yields a stable matching. How-
ever, we have seen that it is possible that more than 1 stable matchings
exist. A natural question is whether all executions of the algorithm yield
the same results. The answer is yes and, in fact, every execution of the
algorithm gives the optimal result for each man, meaning that there is no
other stable matching in which he is paired with a woman that is ranked
higher in his preference list than the one he is assigned to by the algorithm.
We prove this in Theorem 2.7 below.

At the same time, this result constitutes the worst solution for the
women, meaning that in every other possible stable matching, each woman
is assigned to a man that is equal or superior in her preference list to the
one she is assigned to by the algorithm. We prove this result in Theorem
2.8 below.

Definition 2.5. A woman w is called a valid partner for a man m if there
is a stable matching containing the pair (m,w). Similarly, a man m is called
a valid partner for a woman w if there is a stable matching containing the
pair (m,w).

Definition 2.6. We say that a woman w is the best valid partner for a man
m if every other valid partner of m is after w in the preference list of m,
whereas a man m is the worst valid partner for a woman w if m is after any
other valid partner of w in the preference list of w.

Theorem 2.7. The matching obtained by the algorithm assigns each man
to his best valid partner.

Proof. Suppose that there is an execution of the algorithm such that, in the
matching M obtained by the algorithm, at least one man is not married to
his best valid partner. That means that at some point during the course of
the algorithm he was rejected by a valid partner.

Consider the first moment t1 in the algorithm in which a man m is
rejected by a valid partner w. The woman w rejects m at the moment t1
either because she was already married to another man she prefers more or
because she was married to m but, at the moment t1, another man who she
prefers more proposes to her so she breaks up with m. Either way, at the
moment t1, w forms or continues an engagement with a man m′ she prefers
more than m, that is m′wm. That means that w got engaged to m′ at the
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moment t1 or earlier, that is, if t0 is the moment when w got engaged to
m′, then t0 ≤ t1. As a result, at t0, m

′ had not been rejected by any valid
partner (because we defined t1 to be the first moment in the algorithm in
which a man m is rejected by a valid partner).

Moreover, since w is a valid partner for m there exists a stable matching
N containing the pair (m,w). Suppose that in N , m′ is paired with a woman
w′. Thus, at t0, m

′ had not been rejected by w′ since w′ is obviously a valid
partner for m′. Since the proposals in the algorithm happen in decreasing
order of preference, that means that wm′w′. Thus we have wm′w′ and
m′wm which is a contradiction since we supposed that the matching N is
stable.

Theorem 2.8. The matching obtained by the algorithm assigns each woman
to her worst valid partner.

Proof. Suppose that there is a woman w that is not assigned to her worst
valid partner by the algorithm. That is, if (m,w) is a pair in the matching
M obtained by the algorithm, there is a stable matching N containing the
pairs (m′, w) and (m,w′) such thatmwm′. Thus w′mw (or else the matching
N would not be stable). That contradicts the fact that the matching M of
the algorithm yields the best possible solution for m.

Observation 2.9. If we swap the roles of women and men, that is if women
make the proposals instead of men, then a woman-optimal and man-pessimal
stable matching would occur.

In fact, the man-optimal and woman-pessimal stable solutions possess a
further optimality property, often referred to as Weak Pareto Optimality:

Theorem 2.10 (Weak Pareto Optimality). For a given instance of the sta-
ble marriage problem, there is no matching, stable or unstable, in which ev-
ery man has a partner whom he strictly prefers to his partner in the matching
M obtained by the algorithm.

Proof. Obviously, from theorem 2.7, that is true for all stable matchings.
Suppose now that there is an unstable matching M0 with this property,
meaning that every man prefers his partner in M0 to his partner in M .
Observe that the Gale-Shapley algorithm terminates when the last woman
w receives her first proposal (since she was the last to receive a proposal,
that means all the other n− 1 women are already married to n− 1 different
men and since that was the first proposal she received that means she was
free before so she now becomes engaged to the n−th man and the algorithm
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terminates). As a result, no man was rejected by w during the course of
the algorithm. Let m and m0 be w’s partners in the matchings M and M0

respectively. Then m0 prefers w to his partner in M so w must have rejected
him during the course of the algorithm, which is a contradiction.

2.3 Conflict of Interest

The fact that the best stable matching for the men is the worst for the
women is a special case of the following more general result.

Theorem 2.11. Let M and M ′ be two stable matchings and suppose that
m and w are partners in M but not in M ′. Then one of m and w prefers M
to M ′ and the other prefers M ′ to M . In other words, if w′ is the partner
of m in M ′ and m′ is the partner of w in M ′ then either

wmw′ and m′wm

or

w′mw and mwm′.

Proof. By the definition of a stable matching, m and w cannot both prefer
M to M ′ (or else in M ′ where we have the pairs (m,w′) and (m′, w) we
would have mwm′ and wmw′ thus m and w would mutually prefer each
other to their spouses in M ′ which is a contradiction). It remains to show
that they also cannot both prefer M ′ to M .

Suppose w′mw, that is m prefers M ′ to M . It remains to show that
mwm′. Let m = X0, w = x0 and w′ = x1 so we have x1X0x0. Since m
prefers M ′ to M , w′ must prefer M to M ′ (or else M would not be stable).
Let X1 be the partner of w′ in M . Then X1x1X0. Similarly, since w′ prefers
M to M ′, X1 must prefer M ′ to M (or else M ′ would not be stable). Let
x2 be X1’s spouse in M ′, then x2X1x1.
Continuing in a similar manner, we obtain the sequence
(X0, x0), (X1, x1), (X2, x2) etc in M and
(X0, x1), (X1, x2), (X2, x3) etc in M ′

where Xk+1xk+1Xk and xk+1Xkxk ∀k ≥0
Since the number of people is finite, there exist Xi and Xj with i ̸= j,

let i > j, such that Xi = Xj . Let j be the smallest integer with that
property and, for that j, let i be the smallest integer with that property
such that i > j. Since Xi = Xj , we have xi = xj . Furthermore, we
have j = 0 because, if j ̸= 0, then (Xj−1, xj) would belong in M ′ along
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with (Xi−1, xi) = (Xi−1, xj). Hence we would have Xi−1 = Xj−1 which is
a contradiction since we assumed that j is the smallest integer with that
property.

Thus j = 0 and so xi = x0 = w and (Xi−1, x0) appears in the matching
M ′. As a result, Xi−1 = m′ and Xi = m. Thus, since XixiXi−1, we have
that mwm′, which is what we wanted to prove.

We now also present a second proof.

Proof. Let X and Y (respectively X ′ and Y ′) denote the sets of men and
women that prefer M to M ′ (respectively M ′ to M).

In M there can be no pair (m,w) with m in X and w in Y because
then, both m and w would prefer matching M to M ′ meaning that, both m
and w would prefer each other to their assigned partners in M ′, leading to
a contradiction since we supposed that M ′ is stable. As a result, every man
in X has an M−partner in Y ′ and, as a result, |X | ≤ |Y ′|. In other words,
if wmw′ then m′wm. Now all we have to prove is that if w′mw then mwm′

or, in other words, that every man in X ′ has an M−partner in Y .
Similarly as before, in M ′ there can be no pair (m1, w1) with m1 in X ′

and w1 in Y ′ because then, both m1 and w1 would prefer M ′ to M meaning
that, both m1 and w1 would prefer each other to their assigned partner in M
which is a contradiction. As a result, every man in X ′ has an M ′−partner
in Y and, as a result, |X ′| ≤ |Y |.

We also have that |X | + |X ′| = |Y | + |Y ′| since the left hand side is
the number of men and the right hand side is the number of women that
have a different partner in the two matchings. As a result, |X | = |Y ′|
and |X ′| = |Y | or else we would have |X | + |X ′| < |Y | + |Y ′| which is a
contradiction. Thus, every man in X ′ has an M−partner in Y (because if a
man in X ′ had anM−partner in Y ′ then |Y ′| > |X | which is a contradiction)
and the statement of the theorem follows.

2.4 Analysis of the algorithm: Expected value of the number
of proposals

We are interested in performing an average-case analysis of the Gale-
Shapley algorithm. We suppose that the lists of men are chosen indepen-
dently and uniformly at random, whereas the lists of women can be arbitrary
but are fixed in advance. Let N the random variable expressing the total
number of proposals made by the men during the course of the algorithm.
It is clear that the running time of the algorithm is proportional to N . We
want to study the expected value E(N) of N .
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In order to study the expected value of N we use a technique that will
simplify the problem, the principle of deferred decisions: The idea be-
hind it is that the entire set of random choices are not fixed in advance but
they are made during the course of the algorithm exactly when they are
needed.

To better understand this technique, we present the game of the clock
solitaire: We divide a deck of 52 cards in 13 stacks consisting of 4 cards
each. We place the stacks face down, arbitrarily, as the face of the clock.
Each hour represents a number except for:

• the stack at 1 o’ clock represents the Ace

• the stack at 11 o’ clock represent the Jack

• the stack at 12 o’ clock represents the Queen

• a stack at a center that represents the King

We start by turning over the first card at the top of the stack at the
center. The value of that drawn card will indicate which stack we will draw
from next (so for example if the card we turned over is a 2, we will next turn
over a card from the pile representing the number 2, if the card we turned
over is an Ace, we will next turn over a card from the pile representing
the Ace etc). Every time, the pile we will draw from next is the one that
represents the value of the card that was drawn at the previous move.

The game ends when we attempt to draw a card from an empty stack.
The empty stack that we arrive at can only be the one at the center rep-
resenting the King: If it was a different one, the fact that we attempted
to draw a card from it means that on our previous move we discovered a
card with the number that pile represents. At the same time, the fact that,
when we attempted to draw a card from that pile, it was already empty,
indicates that we had already drawn a card from that pile 4 times, that is
we had already found 4 cards with the value that pile represents, which is a
contradiction. As a result, the game ends when we draw the 4th King.

We say that we have won the game when all cards are uncovered by the
time the game ends, that is if the 4th King is the last card to be turned
over. We want to calculate the probability of winning.

Theorem 2.12. The probability of winning at the clock solitaire is 1
13 .

Proof. In order to find the probability of winning we will use the principle of
deferred decisions. In our case, that means that, instead of fixing a random
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placement of the entire set of cards in advance, we assume that, every time
we need to turn over a card, we choose the card we are going to turn over
uniformly at random from the set of cards that have not already been turned
over. Moreover, we assume that if the game ends before all the cards are
turned over, we "cheat" by turning over all the other remaining cards by
an arbitrary rule. In our new way of describing the game, it is clear that
the process of the game is equivalent to drawing, one by one, all the cards
from a deck of 52 cards uniformly at random and we win if the last card is
a King. In this game, the probability of winning is 51!×4

52! = 1
13 .

Returning to the problem of stable matchings, the principle of deferred
decisions means that for each man his random preference list is not chosen
in advance from the n! possible options but rather, each time he needs to
make a proposal he chooses at random a woman he has not yet proposed
to, to whom he addresses his proposal.

However, it still remains difficult to study the expected value E(N) of
the number of proposals since, at any step, the random choice of a woman
by a man depends at the previous proposals made by that man. To simplify
the problem even more and eliminate that dependency we assume that the
men are amnesiacs: when it is time for a man to choose a woman to propose
to, he forgets the women towards whom he has already made an advance.
Clearly, if a man proposes again to a woman he has already proposed to, that
woman will reject him since she has already rejected him once. Moreover,
the algorithm terminates once each woman is proposed to at least once.
Thus, the output of the algorithm when the men are amnesiacs is the same
as the output of the fundamental algorithm, with the only difference that
there might have been made a redundant number of proposals. As a result,
the expected value of the number of proposals made by the amnesiac men
in the algorithm will constitute an upper bound for the expected value of
the number of proposals in the fundamental algorithm.

Let’s take the sequence of women the amnesiac men make proposals to
with the order they are proposed to. (For example if the set of women is
the set {a, b, c, d} and we have the sequence d, b, d, b, c, c, b, c, d, a that means
that the first woman that received a proposal by a man was d, then b etc.)
Then, as mentioned earlier, the algorithm terminates as soon as each woman
receives at least one proposal, that is as soon as each woman appears on the
sequence at least once. As a result, the total number of proposals needed to
acquire a stable matching with amnesiac men is equal to the length of that
sequence.

The calculation of the expected value of the length of such a sequence

19



constitutes the coupons collector’s problem:
Suppose there are n different coupons and each time we buy an envelope

we obtain a coupon at random. Each coupon is equally likely to appear and
we keep buying envelopes until we find all n different coupons. Let X be the
random variable expressing the total number of envelopes needed to acquire
at least one from each of the n different coupons. We are looking for E(X).

Theorem 2.13. E(X) = nHn, where Hn is the sum of the first n terms of
the harmonic series

∑∞
n=1

1
n .

Proof. Let Xi= the amount of envelopes needed to be bought, after we have
collected i distinct coupons, in order to get a new, i+1−th coupon, different
from the ones we have already collected. So for example, X0= the number
of envelopes needed to collect the 1 − st coupon=1, X1= the number of
envelopes that we bought, after we got the first coupon, in order to acquire
the 2− nd distinct coupon etc. Then we have X = X0 +X1 + ...+Xn and
as a result

E(X) = E(X0) + E(X1) + ...+ E(Xn) (1)

Moreover, from the definition of Xi, it occurs that Xi follows the geometric
distribution with parameter

p =
n− i

n
(2)

Thus,

E(Xi) =
1

p
=

n

n− i
(3)

So from (1) and (3) we have that E(X) = n
n + n

n−1 + ...+ n
1 = n( 1n + 1

n−1 +

...+ 1
2 + 1)=nHn, where Hn is the sum of the first n terms of the harmonic

series
∑∞

n=1
1
n .

It is clear the the expected value of the number of envelopes needed to
acquire all n distinct coupons is equal to the expected value of the number
of proposals needed during the course of the algorithm when the men are
amnesiacs. Hence, nHn is an upper bound for the expected value of the
number of proposals E(N) made during the course of the fundamental al-
gorithm, where, in fact, Hn = lnn+ γ + 1

2n −
1

12n2 + ε, where 0 < ε < 1
120n4

and γ is Euler’s constant.
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3 Generalizations and variations of the problem

3.1 Incomplete lists

We consider the problem of stable matchings when the men have not
necessarily rated all women, thus their lists might be incomplete, and vice
versa the women have not necessarily rated all men. We are looking for
stable matchings with the extra condition that each person has to marry
someone that is included in their lists of preferences.

In the case of complete lists, we saw that there is always at least one
stable matching. However that is not the case with the incomplete lists.
Consider the following example of incomplete lists:

m1 : w2 w1

m2 : w1

m3 : w2 w1 w3

w1 : m3 m2 m1

w2 : m3 m1 m2

w3: m2 m3 m1

The only possible matching is {(m2, w1), (m1, w2), (m3, w3)} but it is
unstable because of w2 and m3. Thus the existence of at least one stable
matching does not extend to incomplete lists.

We may convert the problem of incomplete lists to a problem of complete
lists as follows:

We add a new man m′ and a new woman w′ such that m′ is the last
choice of w′ and w′ is the last choice of m′. Every woman rates m′ last on
her possibly incomplete list and then she classifies below m′, in an arbitrary
order, the rest of the men that were missing from her list. Similarly, every
man rates w′ last on his possibly incomplete list and then he classifies below
w′, in an arbitrary order, the women that were missing from his list.

Theorem 3.1. There exists a stable matching for the incomplete system
⇐⇒ there exists a stable matching for the complete system where m′ is
married to w′.

Proof. Let M = {m1, ...,mn} the set of men and W = {w1, ..., wn} set of
women.

If there exists a stable matching M for the incomplete system then this
stable matching along with the married couple (m′, w′) forms a stable match-
ing N for the complete system: Obviously, there is no blocking pair of the
form mi-wj (because then M would not be stable). As a result, if there was
a blocking pair it would be of the form mi-w

′ or m′-wi. In the first case,
that would mean that a man mi would prefer w′ to his spouse, which is a
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contradiction since we put w′ at the end of the incomplete lists. Similarly,
there could not be an unstable pair of the form m′-wi.

Conversely, lets assume that there exists a stable matching N for the
complete system where m′ is married to w′. Then, the pairs (mi, wj) yielded
from this stable matching constitute a stable matching of the incomplete
system: For every pair (mi, wj) the spouse wj of mi is higher in his list of
preference than w′ (if she was lower than w′, then, in the matching N , mi

and w′ would prefer each other to their spouses which is a contradiction).
Similarly, the spouse mi of wj is higher in her list of preferences than m′.
Thus, the spouses of every person belong in the incomplete lists and we have
a stable matching for the incomplete system.

Theorem 3.2. If there exists a stable matching with m′ married to w′ for
the complete system, then, for all stable matchings of this system, m′ is
married to w′.

Proof. The worst stable matching from the point of view of the women
contains (m′, w′) (since m′ is the last choice of w′). Thus that is also the
best stable matching for the men. As a result, every other stable matching
contains (m′, w′) (since in the best stable matching from the point of view
of the men m′ is married to his last choice w′, he will be married to w′ in
every other stable matching as well).

As a result, in order to decide on the existence of a stable matching
for the incomplete system, it suffices to find one stable matching for the
complete system. If, in this matching, m′ is not married to w′ then there
does not exist a stable matching for the incomplete system. Otherwise, if
in this matching m′ is married to w′, then this stable matching without the
pair (m′, w′) is also a stable matching for the incomplete system.

3.2 Admitting n students to m universities

We now consider the problem of admitting n students to m universities.
Each student has an order of preference for the universities and each uni-
versity has an order of preference for the students. An admission is stable
when there does not exist a student b and a university B such that b, not ac-
cepted to a university B, prefers B to his assigned university and university
B prefers b to at least one of its admitted students.

Suppose that the k−th university accepts nk students and that, without
loss of generality, n = n1+n2+ · · ·+nm. If the number of students surpasses
the number of possible admissions by the universities then we create an

22



imaginary university that is the last choice of all students and admits exactly
the required number of students (the preference list of the new university
is random). If the number of students is smaller than the total number
of admissions of the universities we create imaginary students who are the
last option for all universities (the preference lists of the new students are
random).

To reduce that problem to the problem of stable matchings we replace
the k − th university with nk

′universities′ such that each one of them have
the same preference list with k − th university and they admit exactly one
student. For each student, the nk new universities are placed at their pref-
erence lists at a random order at the place of the previous k− th university.
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4 The set of stable matchings: Lattice structure
and number of stable matchings

4.1 Lattice structure

We have seen so far that, for a specific stable marriage instance, more
than 1 stable matchings may exist and that the Gale-Shapley algorithm
gives the optimal matching for the men and, at the same time, the pessimal
matching for the women. In this section we study the structure of the set of
all stable matchings and, more specifically, we prove that the set of all stable
matchings forms a distributive lattice. First, we present some definitions.

Definition 4.1. For a given stable marriage M , we define the (man ori-
ented) dominance relation as follows: We say that matching M dominates
matching M ′, and we write M ⪯ M ′ if every man prefers M to M ′ or is
indifferent between them, that is if every man in M has a partner at least
as good as he had in M ′.

Definition 4.2. We say that M strictly dominates M ′ and we write M ≺
M ′ if M ⪯M ′ and M ̸= M ′.

It is easy to show that this dominance relation is a partial order on the
set M of all stable matchings.We will now show that the partially ordered
set (M , ⪯) is, in fact, a distributive lattice.

Definition 4.3. A lattice is a partially ordered set in which:

1. every pair of elements a, b has a greatest lower bound, called meet,
denoted by a ∧ b. In other words, a ∧ b ⪯ a, a ∧ b ⪯ b and for every
other element element c such that c ⪯ a, c ⪯ b we have that c ⪯ a∧ b.

2. every pair of elements a, b has a least upper bound, called join, denoted
by a∨b. In other words, a ⪯ a∨b, b ⪯ a∨b and for every other element
c such that a ⪯ c, b ⪯ c we have that a ∨ b ⪯ c.

Definition 4.4. A distributive lattice is a lattice in which the distributive
laws hold, that is

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

In order to prove that M is a distributive lattice, we present 2 lemmas
that lead to the interpretation of the meet and join in M .
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Lemma 4.5. For a given instance of the stable marriage problem, let M
and M ′ be 2 (distinct) stable matchings. If every man is partnered with the
best of his partners in M and M ′, the result is a stable matching.

Proof. First we prove that it is indeed a matching: Assume that it was not
a matching, that is there were 2 different men m and m′ that received the
same partner, say because (m,w) ∈ M and (m′, w) ∈ M ′. Then m prefers
M to M ′ and m′ prefers M ′ to M , because we give each man the best of
his partners in M and M ′. Then, by applying the theorem 2.11 to the pair
(m,w), w prefers M ′ to M . Similarly by applying the theorem 2.11 to the
pair (m′, w), w prefers M to M ′, a contradiction. Hence a matching, let’s
call it N , is formed. Now we prove that the matching is stable. Assume that
there is a man m and a woman w such that they both prefer each other to
their assigned partners in N . We have that pN (m) is the best amongst his
partners in M and M ′ so, since he prefers w to pN (m), we have wmpM (m)
and wmpM ′(m). Moreover, mwpN (w). But pN (w) is either her partner in
M or her partner in M ′. In the first case, if pN (w) = pM (w) then we have
mwpM (w) but we also have wmpM (m) which is a contradiction, since M
is stable. Similarly, if pN (w) = pM ′(w) then we have mwpM ′(w) but we
also have wmpM ′(m), a contradiction since M ′ is stable. In either case we
arrived at a contradiction, so N is stable.

Corollary 4.5.1. If each man is given the best of his partners in any fixed
set of stable matchings then a stable matching occurs. If the fixed set is the
set of all stable matchings the stable matching that occurs is exactly the one
yielded by the Gale-Shapley algorithm.

Notation 4.6. We denote by M ∧M ′ the stable matching obtained by as-
signing each man to his best partner between M and M ′. Similarly we denote
by ∧M∈SM or ∧S the stable matching obtained by assigning each man to
his best partner among his partners in all stable matchings in S.

An immediate consequence of the theorem 2.11 and the way we defined
M ∧M ′ is the following corollary:

Corollary 4.6.1. In M ∧M ′ each woman is assigned to the worst of her
partners in M and M ′.

Note that an easy consequence of this corollary is the fact that the man-
optimal stable matching is also the woman-pessimal, as shown earlier in
theorem 2.8.
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Lemma 4.7. For a given stable marriage instance let M and M ′ be 2 (dis-
tinct) stable matchings. If every man is partnered with the worst of his
partners in M and M ′, the result is a stable matching.

Proof. If each man is given the worst of his partners in M and M ′ then by
theorem 2.11 we get that each woman is assigned to the best of her partners
in M and M ′. As a result, this lemma is just a restatement of lemma 4.5
with the roles of men and women interchanged.

Notation 4.8. We denote by M ∨M ′ the stable matching obtained by as-
signing each man to his worst partner between M and M ′. Similarly we
denote by ∨M∈SM or ∨S the stable matching obtained by assigning each
man to his worst partner among his partners in all stable matchings in S.

It is now easy to see that M ∧M ′ is the greatest lower bound for M and
M ′ under the dominance relation and M ∨ M ′ is the least upper bound.

Theorem 4.9. For a given instance of the stable marriage problem, the
partial order (M ,⪯) is a distributive lattice, with M ∧M ′ being the meet of
M and M ′ and M ∨M ′ being the join of M and M ′.

Proof. By the definition ofM∧M ′ it is obvious thatM∧M ′ ⪯M , M∧M ′ ⪯
M ′. Also if there is stable matching M∗ such that M∗ ⪯ M and M∗ ⪯ M ′

then each man has in M∗ a partner at least as good as in each of M and M ′.
As a result M∗ ⪯ M ∧M ′. Thus, M ∧M ′ is the greatest lower bound for
M and M ′. Similarly, we can prove that M ∨M ′ is the least upper bound
for M and M ′, establishing that (M , ⪯) is a lattice.

For the first distributive law let X, Y and Z be stable matchings and
let U = X ∧ (Y ∨ Z), V = (X ∧ Y ) ∨ (X ∧ Z). We shall prove that U = V .
If pY (m) = pZ(m) = w then in both U and V m is assigned to whoever
of pX(m) and w he prefers. If pY (m) ̸= pZ(m) then we have the following
cases:

• Y mZ and ZmX (and as a result Y mX): m is partnered with pZ(m)
both in U and V

• Y mZ and XmZ and either Y mX or XmY : in both cases, m is part-
nered with pX(m) both in U and V

• ZmY and Y mX (and as a result ZmX): m is partnered with pY (m)
both in U and V

• ZmY and XmY and either ZmX or XmZ: in both cases , m is
partnered with pX(m) both in U and V
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Hence, we proved that in every case each man has the same partner in U
and V and therefore U = V . Similarly we can prove the second distributive
law, establishing that (M , ⪯) is a distributive lattice.

4.2 Number of stable matchings

As we have seen, it is possible that more than 1 stable matchings exist
for a given instance of the stable marriage problem. In this subsection, we
will show that the number of stable matchings can grow exponentially with
the number of the instance. As a result, it is possible that an algorithm
that finds all the stable matchings may need exponentially many steps to
do so. Furthermore, if we seek a stable matching with a specific property,
then a brute force algorithm examining all the stable matchings will be of
exponential time complexity in the worst case.

Below, we will give a lower bound for the number of stable matchings in
an instance of size n.

Lemma 4.10. Given stable marriage instances of sizes m and n with x and
y stable matchings respectively, there is a stable marriage instance of size
mn with at least max(xym, yxn) stable matchings.

Proof. Suppose that the men and the women in the given instances are
denoted by a1, a2,..., am, c1,c2,...,cm and b1,b2,...,bn, d1,d2,..,dn respectively.
Now consider the instance of size mn in which:

• the men are labeled (ai,bj) for i = 1, ...,m and j = 1, ..., n

• the women are labeled (ci,dj) for i = 1, ...,m and j = 1, ..., n

• the man (ai,bj) prefers (ck,dl) to (ck′ , dl′) if bj prefers dl to dl′ or if
l = l′ and ai prefers ck to ck′

• the woman (ci,dj) prefers (ak,bl) to (ak′ , bl′) if dj prefers bl to bl′ or if
l = l′ and ci prefers ak to ak′

Let M1,.., Mn be any sequence of (not necessarily distinct) stable match-
ings of the problem instance of size m and M a stable matching of the prob-
lem instance of size n. There are xny possible choices for M1,...,Mn and M .
We will now show that the mapping: (ai,bj) 7→ (pMj (ai), pM (bj))
gives a stable matching in the problem instance of size mn.

It is a matching because both M and Mj are matchings. Suppose it is
not stable, meaning that there is a man (a, b) and a woman (c, d) that prefer
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each other to their assigned spouses. Then among the following conditions,
we must have either one of 1 and 2 along with either one of 3 and 4:

1. dbpM (b)

2. d = pM (b) and capMj (a)

3. bdpM (d)

4. b = pM (d) and acpMj (c)

1 and 4 cannot be satisfied at the same time, same with 2 and 3, because
they are incompatible. Moreover, the combination of 1 with 3 is rejected
because then M would not be stable and the combination of 2 with 4 is
also rejected because then Mj would not be stable. As a result, all possible
combinations are rejected and the matching is stable. So we have now
found an instance of size mn with at least yxn stable matchings. Similarly,
by interchanging the roles of the original instances we can find an instance
with at least xym stable matchings.

Theorem 4.11. For each n ≥ 0, where n is a power of 2, there is a stable
marriage instance of size n with at least 2n−1 stable matchings.

Proof. We prove it by induction in the power of 2. For n = 20 = 1 the
problem of instance 1 obviously has 1 stable matching. Suppose that the
theorem holds for problems of instance n = 2k. We will prove that it holds
for problems of instance n = 2k+1. We apply lemma 4.10 for a problem
instance of size n = 2k which has at least y = 2n−1 = 22

k−1 stable matchings
(by induction hypothesis) and the following instance of size m = 2 which
has x = 2 stable matchings since both possible matchings are stable:

men’s preference lists women’s preference lists
m1 : w1 w2

m2 : w2 w1

w1 : m2 m1

w2 : m1 m2

As a result, there exists an instance of size mn = 2k · 2 = 2k+1 with at
leastmax(xym, yxn) = max(2·(22k−1)2, 22

k−1·22k) = max(22
k+1−1, 22

k+1−1) =

22
k+1−1 stable matchings, as required.
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5 The complexity of counting stable matchings

We have seen so far that, given an instance of a stable marriage problem,
we can find in polynomial time a stable matching. We have also seen that
more than one stable matchings can exist and in the section above we proved
that the number of stable matchings can grow exponentially with the number
of the instance. In this section, we will show that, in fact, the problem
of determining the number of stable matchings in a given stable marriage
instance, is #P−complete. In order to prove that, it suffices to prove that it
is in class #P and that there is a parsimonious transformation from a known
#P−complete problem such that the instance of the original problem and
the corresponding instance of the stable marriage problem have the same
number of solutions.

The fact that it is in class #P is easy:

Theorem 5.1. : Determining the number of stable matchings in a given
stable marriage instance problem is in #P .

Proof. Given a stable marriage problem instance and a specific matching it
is easy to check in polynomial time if that matching is stable.

In order to demonstrate the needed transformation from a known #P−complete
problem, we will be using, without proof, the following theorem of Provan
and Ball [10]:

Theorem 5.2. : Determining the number of antichains in a poset is #P−complete.

We now state our main theorem:

Theorem 5.3. Given a poset (P , ≤) with n elements, there exists an in-
stance I of the stable marriage problem, constructible from (P , ≤) in time
polynomial in n, such that the stable matchings of I are in one to one cor-
respondence with the antichains of (P , ≤).

In order to describe the transformation and prove that it has the required
property, we will be introducing a series of new concepts and theorems,
gaining at the same time further insight into the structure of the set of stable
matchings for a general stable marriage instance. We start by introducing
the concept of shortlists, followed by a number of properties.

Definition 5.4. We define the shortlists to be the lists obtained from the
original preference lists by a number of deletions as follows: We remove
m from w’s list and w from m’s if and only if w receives a proposal from
someone she likes better than m during the Gale-Shapley algorithm.
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We present some properties that are either immediate or explicit or im-
plicit consequences of the results presented in section 2:

1. m appears on w’s shortlist if and only if w appears on m’s.

2. If w does not appear on m’s shortlist, then there is no stable matching
in which m and w are partners.

3. w appears first on m’s shortlist if and only if m appears last on w’s.

4. If every man is paired with the first woman on his shortlist then the re-
sulting matching is stable, and it is the male optimal solution, meaning
that no man can have a better partner than he does in this matching.

5.1 Rotations

In this section we will introduce the concept of a rotation, which plays
an important role in establishing the relationship between the structure of
a stable marriage instance and that of an associated partially ordered set.

In the male optimal solution of the problem, every man is assigned to
the first woman on his shortlist. If we want to generate a different stable
matching, some of the men must sacrifice their optimal partners.

Suppose for example that man m sacrifices his optimal partner, woman
w. Then the best partner that m can have in the new stable matching is
the second woman on his shortlist, say woman v. If v was partnered with
a man k in the male optimal matching, man k would be the worst possible
partner for v, meaning that, compared to k, m is an improvement for v in
the new stable matching. In the new stable matching, k would sacrifice v
for someone worse. Repeating the same argument for the second woman
in man’s k shortlist, and so on, a chain of forced sacrifices is generated.
Because the number of men and women is finite that procedure can end in
one of the following ways:

(i) the chain eventually cycles, so we have a finite sequencem0,m1, ...,mr−1

of men such that the second woman on mi’s shortlist is the first one
in that of mi+1 (where the subscripts are taken modulo r) or

(ii) the chain reaches a man whose shortlist contains just one woman so
the procedure ends.

In case (i), we refer to such a cycle as a rotation relative to the shortlists.
The terminology arises because, as we shall see, the partners can be rotated
one place without destroying stability. A more precise definition of a rotation
will be given later below.
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Definition 5.5. For a given stable marriage problem, a set of reduced pref-
erence lists is a set of preference lists obtainable from the originals by zero
or more deletions, such that:

(i) no list is empty

(ii) woman w is absent from man m’s list ⇐⇒ man m is absent from
w’s list.

Notation 5.6. Relative to such a set A of reduced preference lists, we de-
note by firstA (x), secondA (x), lastA (x) the first, second and last person
respectively on x’s list. When it is obvious which set of lists we are talk-
ing about, we shall omit the subscript A . Of course, secondA (x) may be
undefined if x’s reduced preference list in A has only one entry.

Definition 5.7. A set A of reduced preference lists is called stable if, for
each man m and each woman w,

(i) w = firstA (m) ⇐⇒ m = lastA (w)

(ii) w is absent from m’s list ⇐⇒ wr(w,m) > wr(w, lastA (w))

A stable set of reduced preferences list will be referred to as a stable set
for short.

Lemma 5.8. The shortlists form a stable set.

Proof. Property (i) was noted above. For property (ii), by the definition of
shortlists, w is absent from m’s list if and only if, during the course of the
Gale-Shapley algorithm, w received a proposal from someone better than
m, meaning that the last proposal held by w is also by a man better than
m, which happens if and only if wr(w,m) > wr(w, last(w))

Lemma 5.9. If, relative to a stable set, each man is partnered with first(m),
then the result is a stable matching.

Proof. First we prove that the result is indeed a matching: if it wasn’t, that
is if there were 2 distinct men m1,m2 such that first(m1) = first(m2) = w
then by property (i) of stable sets we have m1 = last(w) = m2, a contra-
diction. The matching is also stable: If there was a man m that prefered a
woman w to his spouse first(m) then, since mr(m,w) < mr(m, first(m)),
w is absent from m’s list on that stable set. Hence, by property (ii) of stable
sets we have wr(w,m) > wr(w, last(w)) meaning that w prefers her spouse
last(w) to m so there can be no instability.
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The stable matching obtained from a stable set A as described in lemma
5.9 will be referred to as the stable matching corresponding to A .

Observation 5.10. In the stable matching S corresponding to a stable set
A , each man is partnered with the first woman on his preference list relative
to A , so, by property (i) of definition 5.7 of stable sets, each woman is
partnered with the last man on her preference list. As a result, (last(w), w) ∈
S for each woman w.

Lemma 5.11. If, for some stable set,

(i) mr(m, first(m)) < mr(m,w) and

(ii) w is absent from m’s list,

then there is no stable matching in which w and m are partners.

Proof. Suppose that there is a stable matching S′ such that (m,w) ∈ S′.
By lemma 5.9 (m, first(m)) ∈ S for some stable matching S. Then from
(i) m prefers S to S′. We also know that (last(w), w) ∈ S by observation
5.10. Moreover, since w is absent from m’s list, we have that wr(w,m) >
wr(w, last(w)) from the definition of stable sets. As a result, w prefers S
(where she is partnered with last(w)) to S′ (where she is partnered with m),
a contradiction by theorem 2.11.

Definition 5.12. An ordered sequence (m0, w0), ..., (mr−1, wr−1), r ≥ 2 of
man/woman pairs forms a rotation in a stable marriage instance if, relative
to some stable set A , wi+1 = first(mi+1) = second(mi) for each i (0 ≤ i ≤
r− 1, where i+1 is taken modulo r ). The rotation is said to be exposed in
A . Clearly, mi is in wi+1’s list in A and vice versa.

Lemma 5.13. Let A be a stable set, and let S be the corresponding stable
matching. If S′ is another stable matching in which man m has a worse
partner than firstA (m) (who is his partner in S) then there is a rotation
exposed in A all of whose male members have worse partners in S′ than in
S.

Proof. If first(m) is the only entry in m’s list, then by lemma 5.11 there
is no such stable matching S′ so there is nothing to prove. Otherwise, we
form the following sequence {(mi, wi)}, where:

(i) m0 = m

(ii) wi = first(mi), i=0,1,...
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(iii) mi+1 = last(second(mi)), i = 0, 1, ... (so second(mi) = first(mi+1) =
wi+1)

Since w0 = first(m0), then (m0, w0) ∈ S. Moreover, m0’s partner in S′

is second(m0) = first(m1) = w1 or someone worse. As a result, for S′

to be stable, w1’s partner in S′ must be m0 or someone better. Therefore
her partner in S′ is better than last(w1) = m1 (who is her partner in S).
Hence, by theorem 2.11, m1’s partner in S′ is someone worse than w1 =
first(m1). Therefore, by lemma 5.11, second(m1) is defined. Repeating the
same argument we can show that second(mi) is defined for all i and that all
the mi have worse partners in S′ than in S.

Now, since the number of men and women is finite, the sequence {(mi, wi)}
must cycle eventually. So let’s suppose that m0, ...,ms−1 are all distinct
but ms = mt for some t, 0 ≤ t ≤ s − 2 (we cannot have ms = ms−1 as
second(mi) = first(mi+1)). Then, (mt, wt), ..., (ms−1, ws−1) forms a rota-
tion that is exposed in A and has the required property.

For a given manm and a given stable set A , we call the rotation obtained
by m in the way that was described in Lemma 5.13 the rotation generated
by m. Clearly, if m is himself in a rotation exposed in A then this is the
rotation generated by m. The following corollaries are immediate results of
Lemma 5.13.

Corollary 5.13.1. If A is a stable set with a corresponding stable matching
S, then either:

(i) at least one rotation is exposed in A or

(ii) no man can have a worse partner in any stable matching than he has
in S (and as a result S is the female optimal solution).

Corollary 5.13.2. If (m0, w0), ..., (mr−1, wr−1) is a rotation and if, in some
stable matching S, some fixed mj has a partner worse than wj, then each of
the mi have an S−partner worse than wi.

Definition 5.14. Suppose that p = (m0, w0), ..., (mr−1, wr−1) is a rotation
that is exposed in some stable set A . If, for each i (0 ≤ i ≤ r − 1, i + 1
taken modulo r) all successors of mi are deleted from wi+1’s list in A and
wi+1 is removed from the corresponding men’s list, we say that the rotation
has been eliminated.

Observation 5.15. Since wi+1 = first(mi+1) ⇐⇒ mi+1 = last(wi+1),
we have that mi+1 is a successor of mi in wi+1’s list. As a result mi+1 is
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deleted from wi+1’s list and wi+1 = first(mi+1) is deleted from mi+1’s list
during rotation elimination.

Observation 5.16. We have second(mi+1) = first(mi+2) = wi+2 is deleted
from the lists of all men that are successors of mi+1 in wi+2’s list, so she is
not removed from mi+1’s list.

Lemma 5.17. If a rotation is eliminated from a stable set A in which it is
exposed, then the resulting set B of lists is also stable.

Proof. We have to prove properties (i) and (ii) of stable sets.

(i) • If m is not in the rotation, then
w = firstB(m) ⇐⇒
⇐⇒ w = firstA (m), since firstA (m) is not removed,
⇐⇒ m = lastA (w), since A is a stable set,
⇐⇒ m = lastB(w), since lastA (w) is not removed.

• If m is in the rotation and w = firstA (m) then from observa-
tions 5.15 and 5.16 we have that firstA (m) is removed from m’s
list but secondA (m) is not. As a result,
w = firstB(m) ⇐⇒
⇐⇒ w = secondA (m), since firstA (m) is removed but secondA (m)
is not,
⇐⇒ m = lastB(w), since all successors of m are removed from
secondA (m) = w’s list during rotation elimination

(ii) w is absent from m’s new list ⇐⇒
⇐⇒ (w was already absent from m’s old list) or
(w is removed from m’s list during rotation elimination) ⇐⇒
⇐⇒ (wr(w,m) > wr(w, lastA (w)) or
(wr(w, lastA (w)) > wr(w,m) > wr(w, lastB(w)) ⇐⇒
⇐⇒ wr(w,m) > wr(w, lastB(w)).

We will now establish a one-to-one relationship between stable sets and
stable matchings for any given instance of the stable marriage problem.

Lemma 5.18. For a given instance of the stable marriage problem, there
is a one-to-one correspondence between the stable matchings and the stable
sets. Furthermore, each stable set can be obtained from the set of shortlists
by a sequence of zero or more rotation eliminations.
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Proof. Given a stable set, a unique stable matching can be constructed as
in lemma 5.9 (that is, relative to the stable set, each man is partnered with
first(m)).
On the other hand, given a stable matching S = {(m0, w0), ..., (mn−1, wn−1)}
we construct a stable set as follows. We start from the set M of shortlists,
which of course has a corresponding stable matching M , the male optimal
solution. If M ̸= S then there is a woman wi such that wi ̸= firstM (mi),
in fact mr(mi, firstM (mi)) < mr(mi, wi). From lemma 5.11, wi is in mi’s
shortlist. Moreover, mi’s partner in S is worse than his partner in M so by
lemma 5.13 the exposed rotation p generated by mi is such that all of its
male members have worse partners in S than in M . Assume now that p is
eliminated to obtain, by lemma 5.17 a new stable set N . Then, again, by
lemma 5.11, wi remains in mi’s list and vice versa for all i. We now repeat
the same process relative to the new set of lists, as many times as needed
until wi = first(mi) for all i. We have then created a new stable set to
which the stable matching S corresponds, and it will have been obtained by
a sequence of zero or more eliminations from the set of shortlists.

Lemma 5.19. In a given stable marriage instance, no pair (m,w) can be-
long to 2 different rotations.

Proof. Suppose that the pair (m,w) belongs to 2 different rotations p1 and
p2. Since the rotations are different, suppose that the pair (m′, w′) belongs
to p1 but not to p2. We will show that these assumptions lead to a contra-
diction.

If A is a stable set in which p2 is exposed then w = firstA (m). Let
v = firstA (m′) the partner of m′ in the corresponding stable matching S.
Then, if mr(m′, v) > mr(m′, w′), Corollary 5.13.2 applied to the rotation p1
would force m to have an S−partner worse than w, which is a contradiction.
As a result mr(m′, v) ≤ mr(m′, w′).

Now let T be the stable set, and T the corresponding stable matching,
obtained by eliminating p2 from A . Since (m,w) ∈ p2 and T arises from
the elimination of p2, we have, from observation 5.15 that w = firstA (m)
is removed from m’s list so in T m has a partner worse than w. As a result,
applying corollary 5.13.2 to the rotation p1 and the stable matching T , we
deduce that, since m has a T−partner worse than w, then m′ should also
have a T−partner worse than w′.
We consider 2 cases:

Case 1: (m′, v) ∈ p2: since (m′,w′)/∈ p2 we have that v ̸= w′ and thus,
mr(m′, v) < mr(m′, w′). However, applying Lemma 5.11 to the stable set
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A , we have that, in A , w′ is present in the list ofm′: sincemr(m′, firstA (m′)) =
mr(m′, v) < mr(m′, w′) if w′ was not present in the list of m′ then Lemma
5.11 would lead to a contradiction. Furthermore, since (m′, w′) /∈ p2 the
presence of w′ in the list of m′ is not affected by the elimination of p2 so in
T , m′ has a partner at least as good as w′ which is a contradiction.

Case 2: (m′, v) /∈ p2: Then the elimination of p2 from A does not affect the
presence of v in the list of m′. As a result (m′, v) is a pair in the matching
T , a contradiction since m′ should have a T−partner worse than w.

Lemma 5.20. Suppose (m,w) belongs to a rotation. Then:

(i) (m,w) belongs to some stable matching;

(ii) in a stable set obtained from the shortlists by a sequence of rotation
eliminations, w is absent from m’s list if and only if the rotation con-
taining (m,w) has been eliminated.

Proof. (i) There must be a stable set in which the rotation containing
(m,w) is exposed. The matching obtained from that stable set includes
the pair (m,w).

(ii) If the rotation containing (m,w) has been eliminated, then w is re-
moved from m’s list. For the other direction, suppose we have a stable
set obtained from the shortlists by a sequence of rotation eliminations
such that w is absent fromm’s list. We will show that the rotation con-
taining (m,w) has been eliminated. When a rotation p is eliminated,
entries may disappear from m’s list in one of the following ways:

(a) the first entry in m’s list will disappear if (m, first(m)) ∈ p.

(b) one or more entries may disappear as a result of the deletion of
m from the lists of one or more women.

If w were to disappear from m’s list by method (b) then immediately
after the conditions of lemma 5.11 are satisfied and as a resultm and w
would not be partners in a stable matching, which is a contradiction.
As a result the only way for w to disappear from m’s list is from
method (a), meaning that the rotation containing (m,w) has been
eliminated.
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Given a rotation p of a stable marriage instance, there may be several
stable sets in which p is exposed. By lemma 5.18, any such stable set is
obtained from the set of shortlists by zero or more rotation eliminations.

Definition 5.21. • If no stable set in which a rotation p is exposed can
be obtained from the set of shortlists without eliminating rotation τ ,
then we say τ is a predecessor of p and we write τ < p. The relation
< is anti symmetric, transitive and reflexive and therefore defines a
partial order on the set of rotations. We call this the rotation poset
for that stable marriage instance.

• We say that τ is an immediate predecessor of p if τ < p and there is
no σ such that τ < σ < p

• We say that a subset of the poset is a closed subset if it is closed under
predecessors.

Note 5.22. An alternative representation for the poset is in the form of a
directed acyclic graph such that there is one node for every element of the
poset and an arc from the node representing rotation τ to the node repre-
senting rotation p iff τ is an immediate predecessor of p.

Definition 5.23. • An antichain in a poset (P,≤) is a subset A of P
such that there are no elements τ, p in A such that τ < p.

• For an antichain A, we define the closure A∗ of A as follows
A∗ = {τ ∈ P : τ < p for some p ∈ A}. Obviously, A∗ is a closed
subset of P .

• For any closed subset C of P , there is a unique antichain A such that
A∗ = C. We call this the spanning antichain of C.

Theorem 5.24. For any stable marriage instance, there is a one-to-one
correspondence between the stable matchings for that instance and the an-
tichains of its rotation poset.

Proof. First, we show that every antichain corresponds to a stable matching
and different antichains yield different stable matchings. Given an antichain
A, A∗ is closed: If τ ∈ A∗ then τ < p for some p ∈ A. If σ < τ < p then
σ ∈ A∗ so A∗ is closed under predecessors. As a result, starting from the set
of shortlists, all rotations in A∗ can be eliminated one by one, producing a
stable set with its corresponding stable matching.

If two different sets of rotations are eliminated, then from lemma 5.19
and lemma 5.20, the resulting stable sets are different so the corresponding
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stable matchings are also different. Moreover, A ̸= B =⇒ A∗ ̸= B∗ so,
since different rotations result to different stable matchings, it follows that
different antichains yield different stable matchings.

Now we prove that every stable matching corresponds to an antichain
and different stable matchings correspond to different antichains. By lemma
5.18, any stable matching corresponds to a stable set so every stable match-
ing arises from the shortlists via a sequence of rotation eliminations. The set
R of rotations concerned must be closed: a rotation cannot be eliminated
before it is exposed and it cannot be exposed before all of its predecessors
have been eliminated. As a result, R has a unique spanning antichain.

5.2 #P−completeness of counting stable matchings

We are now ready to complete the proof of the #P−completeness of the
problem as we can now prove theorem 5.3 by presenting a transformation
and then proving that it has the needed property.

First we construct a directed acyclic graph from the poset as follows:
We get one node for each element of P and there is an arc from node u to
node v iff u is an immediate predecessor of v, that is u ≤ v and ∄ s ∈ P
such that u ≤ s ≤ v. Moreover, two extra nodes are included: one called the
source, which has an outgoing arc towards every node representing a minimal
element of the poset and one called the sink, which has an incoming arc from
every node representing a maximal element of the poset.

The arcs of this graph are numbered arbitrarily 1, .., t. Furthermore,
each node, apart from the source and the sink, is labelled with an ordered
subset of 1, 2, ..., t, of size ≥ 2, which is the subset consisting of the numbers
of the arcs incident to or from that node. The numbers in the subset are
ordered in an arbitrary but fixed order, say increasing order.

In order to construct a stable marriage problem instance from that di-
graph, each node, with the exception of the source and the sink, is processed
according to the rules that will be described below. In order to ensure that
no node is processed before one of its predecessors the nodes are processed
according to a topological order, that is a one-to-one mapping f from the
nodes of the digraph onto the set {0, ...n − 1} such that if node u is a pre-
decessor of node v then f(u) ≤ f(v), essentially meaning that no node is
processed before all of its predecessors have been processed. Such a topo-
logical ordering of the nodes of an acyclic directed graph can be found in
time polynomial in the number of the nodes. During this node processing
phase, partial ordered lists are constructed for the men in natural (first to
last) order and for the women in reverse (last to first) order. When the
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processing of the nodes is over, the preference lists are completed by adding
arbitrarily all the absentees after those already present. The rules for the
node processing from which the partial preference lists are constructed are
the following:

• The stable marriage instance involves t men and t women (that is one
man and one woman for each one of the arcs of the graph). The first
woman on man i’s list is woman i and the first man on woman i’s list
is man i (for i = 1, .., t).

• After the first k nodes (k ≥ 0) of the graph have been processed
according to the topological order, we notate the woman most recently
appended to man i’s list as w(k, i).

• Node k + 1, labelled {a0, ..., ar−1}, is processed as follows:
For each i (0 ≤ i ≤ r − 1) woman w(k, ai+1) is appended to man
ai’s list after any women already present and man ai is appended to
woman w(k, ai+1)’s list ahead of any men already present.
More specifically, w(k, ai+1) is placed on man ai’s list right after woman
w(k, ai) (since that is the woman last appended to ai’s list after having
processed k nodes). Hence,

mr(ai, w(k, ai+1)) = 1 +mr(ai, w(k, ai)) (4)

Moreover, since w(k, ai+1) is the last woman appended on man ai+1’s
list after having processed k nodes, ai+1 is also the last man appended
to w(k, ai+1)’s list. As a result, man ai is placed right before man ai+1

on w(k, ai+1)’s list. Thus,

wr(w(k, ai+1), ai+1) = 1 + wr(w(k, ai+1), ai) (5)

where 0 ≤ i ≤ r − 1 and i+ 1 is taken modulo r.

It is clear that this whole construction is completed in polynomial time. In
order to prove that this construction has the required property, we first have
to prove that it does indeed give a stable marriage instance of size t.

Lemma 5.25. The construction described above does yield a stable marriage
instance of size t.

Proof. All we have to do is to show that during the processing of the nodes,
no woman can be appended twice to some man’s list (and thus no man can
be appended twice to some woman’s list).
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For a given arc i in the graph, denote by init(i) and term(i) the initial
and terminal nodes respectively for the arc i. According to the rules of nodes
processing stated above, woman i is first involved when man i appears on
some node’s label list, that is when node start(i) is processed, where start(i)
is init(i), except if init(i) is the source, in which case start(i) is term(i)
(because the source does not take part in the nodes processing). Specifically,
at this point she is appended to the list of man i1, where i1 immediately
precedes i in the label set of node start(i).

Since so far she is the last woman appended to man i1’s preference list,
by the rules of the construction of the preference lists stated above, in order
for her to be appended to some other man’s list, the list of man i1 must occur
again in the processing of the nodes. In other words, arc i1 must appear
again in some label set. Since i1 is included in the label set of start(i) then
either start(i) = term(i1) or start(i) = init(i1). In the first case, since the
nodes are processed in topological order, init(i1) is already processed so the
list of man i1 does not appear again and as a result woman i appears on
no other lists. In the second case, assuming that term(i1) is not the sink
(because the sink does not participate in the node processing procedure),
when term(i1) is processed, woman i is appended to the list of man i2,
where i2 is in the label set of node term(i1). Similarly as before, for i to
be appended in some other man’s list, i2 must be included in the label set
of some other node, meaning that term(i1) = init(i2) (for if term(i1) =
term(i2) then i2 would not be included in any of the label sets of the nodes
that have not yet been processed). Moreover, i would not be included in
the label of some other node if term(i2) was the sink, as the sink does not
participate in the node processing procedure. As a result, proceeding in the
manner described above, we obtain a sequence i1,i2,...,is (s ≥ 2) of men such
that:

1. start(i) = init(i1)

2. init(ij) = term(ij−1), for j = 2, ..., s− 1

3. stop(is) = term(is−1), where stop(is) is defined to be term(is) unless
term(is) is the sink, in which case stop(is) is defined to be init(is).

4. during the processing of the nodes, woman i is appended to the lists
of men i,i1,...,is and to no others.

By 2., arcs i1,...,is−1 form a directed path in the acyclic graph and so
are all distinct or else a cycle would be created.
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By 1., node i is distinct from i1,...,is−1: By the way we defined i1 we
have that i ̸= i1. Moreover, if i = ik for some 2 ≤ k ≤ s− 1 then:

• either start(i) = init(i) so init(i1) = init(i) = init(ik) = term(ik−1)

• or start(i) = term(i) so init(i1) = term(i) = term(ik)

In both cases, a cycle is created, which is a contradiction.
Similarly, by 3., node is is distinct from i1, ..., is−1: By the way we defined

the sequence, is ̸= is−1. If is = ik for some 2 ≤ k ≤ s− 2 then:

• either stop(is) = term(is) so term(is−1) = term(is) = term(ik) =
init(ik+1)

• or stop(is) = init(is) so term(is−1) = init(is) = init(ik)

In both cases a cycle is created, which is a contradiction.
Finally, i ̸= is: i1,...,is−1 is a path from init(i1) = start(i) to term(is−1) =

stop(is) and if i = is then we have the following possibilities:

• stop(is) = init(is) and start(i) = term(i) meaning that init(i) is the
source and term(is) is the sink but term(is) = term(i) so that would
mean that init(i) is the source and term(i) is the sink, a contradiction.

• stop(is) = init(is) and start(i) = init(i) so term(is) = term(i) is the
sink but term(i) would be the sink iff init(i) = init(i1) was repre-
senting a maximal element of the poset, which is a contradiction since
init(i1) is a predecessor of term(i1).

• stop(is) = term(is) = term(i) and start(i) = term(i) (meaning that
init(i) is the source) and so we have a path from term(i) to term(i)
which is a contradiction since the graph is acyclic.

• stop(is) = term(is) = term(i) and start(i) = init(i) so we would have
a path i1,...,is−1 from init(i) to term(i) which is a contradiction since
init(i) is an immediate predecessor of term(i).

so we necessarily also have that i̸= is.

Lemma 5.26. For the stable marriage instance constructed above, the set of
shortlists contains precisely the men and women appended before and during
the processing of the nodes.
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Lemma 5.27. (i) If {a0,...,ar−1} is the label set of the node numbered k
in the chosen topological ordering, then the stable marriage instance
constructed above contains a rotation pk = (a0, b0), ..., (ar−1, br−1) where
bi = w(k − 1, ai). This rotation has as its predecessors precisely those
rotations pj for which node j is a predecessor of node k. Furthermore,
when pk is eliminated from any stable set in which it is exposed, only
bi is removed from ai’s list, for each i (0 ≤ i ≤ r − 1), and no woman
is removed from any other man’s list.

(ii) There are no rotations other than those described in (i)

Proof. (i) We will prove this through induction. We first observe that this
statement is true for the node numbered 1 in the chosen topological
ordering: When this node was processed during the construction of
the stable marriage instance, for each i, woman bi+1 = w(0, ai+1) was
appended to man ai’s list which previously had only 1 woman. More
specifically,

secondM (ai) = mp(ai, 2) = w(0, ai+1) = mp(ai+1, 1) = firstM (ai+1),

where M is the set of shortlists. So from the above we have that
bi+1 = firstM (ai+1) = secondM (ai) which shows that rotation p1
as stated in (i) is exposed in M . Moreover, since M is the set of
shortlists, rotation p1 has no predecessors, exactly like the node 1.

Furthermore, when p1 is eliminated, from observation 5.15, we have
that bi = w(0, ai) = mp(ai, 1) is removed from ai’s list. Moreover,
we have that wr(bi, ai−1) = wr(w(0, ai), ai−1) = wr(w(0, ai), ai)− 1 =
wr(bi, ai) − 1 =⇒ wr(bi, ai−1) = wr(bi, ai) − 1, meaning that there
are no other men between ai−1 and ai in bi’s list so, by definition of
rotation elimination, only ai is deleted from bi’s list and, as a result,
only bi is removed from ai’s list and no woman is removed from any
other men’s list.

We now assume that (i) is true for all nodes numbered up to k and we
will prove that it must also be true for the node numbered
k + 1. Starting from the set of shortlists M , for each node j that is a
predecessor of k + 1, there is by the induction hypothesis, a rotation
pj that may be eliminated, provided that the procedure is done in
topological order. Let L be the stable set obtained from M after this
set of rotation eliminations. Let’s consider the preference list of ai in
L . Since ai is in the label of node k + 1 we have 2 possible cases:
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Case 1: Node k+1 is init(ai) or node k+1 is term(ai) and init(ai) is the
source. Then ai in not in any label set of any predecessor j of the
node k+1 (the source is not taken into consideration as it does not
take part in the processing). As a result, we have that ai is not
in any of the respective rotations pj and that after the processing
of the first k nodes the only woman on ai’s list is the first woman
on his list. Thus after the sequence of rotation eliminations, no
woman has been removed from ai’s list. Therefore, firstL (ai) =
firstM (ai) = w(k, ai)

Case 2: Node k + 1 is term(ai) and init(ai) is not the source. Then
node init(ai) is a predecessor of term(ai) and ai is also in the
label of the node init(ai). As a result, starting from the set
of shortlists M , by eliminating rotation pinit(ai), by induction
hypothesis, only woman firstM (ai) is removed from man ai’s
list. Moreover, since ai is in the label of one of the predecessors
of node k + 1, then after the processing of the first k nodes,
there are 2 women in ai’s list so w(k, ai) is the second woman on
ai’s shortlist. Hence, firstL (ai) = secondM (ai) = w(k, ai) since
firstM (ai) was deleted from ai’s list during rotation elimination.

So, in both cases we gave firstL (ai) = w(k, ai). Furthermore, since
from the construction of the stable marriage instance we have

mr(ai, w(k, ai+1)) = 1 +mr(ai, w(k, ai))

then, in both cases,

secondL (ai) = w(k, ai+1) = firstL (ai+1)

Therefore, by the definition of a rotation, pk+1 specified as in (i) is a
rotation exposed in L .

Now let’s assume that there is a rotation pj that has not been elim-
inated, where node j is a predecessor of node k + 1. Then there is a
rotation pm, where node m is an immediate predecessor of node k+1,
such that j is a predecessor of m so since pj has not been eliminated,
then pm has not been eliminated either. As a result, there is an ai in
the label set of node k + 1 such that node m is init(ai) and k + 1 is
term(ai) and pm = pinit(ai) has not been eliminated. Hence,

firstL (ai) = firstM (ai) ̸= w(k, ai)
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so the rotation pk+1 is not exposed, meaning that pj has to be elim-
inated so it is a predecessor of pk+1. As a result, rotation pk+1 has
as predecessors precisely all of the rotations pj for which node j is a
predecessor of node k. Finally, when pk+1 is eliminated, then, since
wr(bi, ai−1) = wr(bi, ai) − 1 for each i we have that the only en-
tries removed from the men’s lists are the bi from the list of ai, for
0 ≤ i ≤ r − 1.

(ii) If w is not in m’s shortlist, then by the way we defined a rotation,
(m,w) cannot be in a rotation. Moreover, if w = lastM (m) for the
set M of shortlists then (m,w) cannot be in a rotation: If it was in a
rotation exposed in M , then lastM (m) = w = firstM (m) =⇒ the
only woman on m’s shortlist is w and the only man on w’s shortlist is
m, which is a contradiction since second(m) must be defined for all m
in a rotation. Similarly it can not be in a rotation exposed in another
stable set L since then we would have lastL (m) = w = firstL (m).

All the other pairs (m,w) are in one of the rotations pk described
above and since, from lemma 5.19 no pair can belong to 2 different
rotations, then there are no rotations other than those described in
(i).

Proof of Theorem 5.3. From the given construction and lemma 5.25 we have
an instance of the stable marriage problem constructible from (P,≤) in
time polynomial in n. From Theorem 5.24 the stable matchings of the
constructed instance are in a one-to-one correspondence with the antichains
of its rotation poset. By Lemma 5.27, the rotations are in a one-to-one
correspondence with the nodes of the graph, where the nodes of the graph
are in a one-to-one correspondence with the elements of the poset P , and
the partial order in the set of rotations coincides with the partial order in
the original poset P . As a result, the antichains of the rotations poset are
in a one-to-one correspondence with the antichains of poset (P,≤) so the
stable matchings are in a one-to-one correspondence with the antichains of
(P,≤).

Corollary 5.27.1. Determining the number of stable matchings for an in-
stance of a stable marriage problem is #P−complete.
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