

University of Crete

Computer Science Department

Monitoring the QoS of Web Services using SLAs -

Computing metrics for composed services

Chrysostomos Zeginis

Master’s Thesis

Heraklion, March 2009

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Παρακολούθηση των QoS χαρακτηριστικών των ηλεκτρονικών υπηρεσιών

χρησιμοποιώντας SLA έγγραφα - Υπολογισμός μετρικών σε σύνθετες υπηρεσίες

Εργασία που υποβλήθηκε από τον

Χρυσόστομο Κ. Ζεγκίνη

ως μερική εκπλήρωση για την απόκτηση

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ

Συγγραφέας:

Χρυσόστομος Ζεγκίνης, Τμήμα Επιστήμης Υπολογιστών

Εισηγητική Επιτροπή:

Δημήτρης Πλεξουσάκης, Καθηγητής, Επόπτης

Ευάγγελος Μαρκάτος, Καθηγητής, Μέλος

Ιωάννης Τζίτζικας, Επίκουρος Καθηγητής, Μέλος

Δεκτή:

Πάνος Τραχανιάς, Καθηγητής

Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

Ηράκλειο, Μάρτιος 2009

i

Monitoring the QoS of Web Services using SLAs -

Computing metrics for composed services

Chrysostomos Zeginis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

The Web services are an emerging technology which attracts a lot of attention

from both academic and industry areas these recent years. Once Web services

become operational, their execution needs to be managed and monitored to gain a

clear view of how services perform within their operational environment, make

management decisions and perform control actions to modify and adjust their

behavior. Many approaches have been proposed and have proven that Web services’

monitoring is very crucial for successful invocations.

This thesis analyzes the methods that can be used to monitor the execution of

a Web service, in order to comply with the corresponding Service Level Agreement

(SLAs) and the ways various metrics can be computed for composed services, having

available the metric values of the constituent Web services. Nowadays, most of Web

service providers sign SLA contracts with their clients to guarantee the offered

functionality of their services. A monitoring system is introduced to check violations

in the pre-agreed metric values of SLAs. These results can be very helpful for service

providers, who can then take corrective actions to improve their services.

As far as the computation of QoS for composed Web services is concerned,

this thesis proposes some basic metric types, provided that we know the composition

pattern. Based on this pattern, appropriate formulas are used to compute the response

time, the throughput, the reliability and the cost of the composed Web services. The

validity of these formulas is verified with experimental results.

ii

In summary, the contribution of this work lies in introducing a monitoring

system, intended to check the Web services’ compliance with SLAs, as well as in

computing metrics for composed Web services.

Supervisor: Dimitris Plexousakis
Professor

iii

Παρακολούθηση των QoS χαρακτηριστικών των ηλεκτρονικών

υπηρεσιών χρησιμοποιώντας SLA έγγραφα- Υπολογισμός μετρικών

σε σύνθετες υπηρεσίες

Χρυσόστομος Ζεγκίνης

Μεταπτυχιακή Εργασία

Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης

Περίληψη

Οι ηλεκτρονικές υπηρεσίες είναι μια αναπτυσσόμενη τεχνολογία που τραβάει

όλο και περισσότερο την προσοχή τόσο της ακαδημαϊκής όσο και της βιομηχανικής

κοινότητας. Από τη στιγμή που οι ηλεκτρονικές υπηρεσίες απέκτησαν

λειτουργικότητα, η εκτέλεση τους πρέπει να ελέγχεται και να παρακολουθείται, έτσι

ώστε να αποκτήσουμε μια ξεκάθαρη όψη πώς οι υπηρεσίες αποδίδουν μέσα στο

λειτουργικό τους περιβάλλον, για να πάρουμε αποφάσεις διαχείρισής τους και για να

εφαρμόσουμε πράξεις ελέγχου που έχουν ως σκοπό την τροποποίηση και την

προσαρμογή της συμπεριφοράς τους. Πολλές προσεγγίσεις έχουν προταθεί γύρω από

αυτό το θέμα και έχουν αποδείξει τη σημαντικότητά του για επιτυχημένη εκτέλεση

ηλεκτρονικών υπηρεσιών.

Η συγκεκριμένη εργασία αναλύει τις μεθόδους, με τις οποίες μπορούμε να

παρακολουθήσουμε την εκτέλεση μιας ηλεκτρονικής υπηρεσίας, ώστε να

συμμορφώνεται με το αντίστοιχο SLA και τους τρόπους με τους οποίους μπορούμε

να υπολογίσουμε διάφορες μετρικές για σύνθετες υπηρεσίες, έχοντας διαθέσιμες τις

τιμές των μετρικών των υπηρεσιών που τις αποτελούν. Στις μέρες μας, σχεδόν όλοι

οι πάροχοι ηλεκτρονικών υπηρεσιών υπογράφουν συμβόλαια SLA με τους πελάτες

τους για να εγγυηθούν την προσφερόμενη ποιότητα των υπηρεσιών τους. Στην

εργασία αυτή προτείνεται ένα σύστημα που ελέγχει για πιθανές αποκλίσεις στις

συμφωνηθέντες τιμές των μετρικών. Στη συνέχεια, αυτά τα αποτελέσματα μπορεί να

είναι πολύ χρήσιμα για τους πάροχους, που μπορούν με διορθωτικές ενέργειες να

βελτιώσουν τις υπηρεσίες τους.

iv

Όσον αφορά την μέτρηση της ποιότητας των σύνθετων υπηρεσιών, αυτή η

εργασία προτείνει κάποιους βασικούς τύπους μετρικών, με την προϋπόθεση ότι

γνωρίζουμε το πρότυπο της σύνθεσης. Βασισμένοι σε αυτό, μπορούμε να

υπολογίσουμε το χρόνο απόκρισης, το ρυθμό εξυπηρέτησης, την αξιοπιστία και το

κόστος των σύνθετων υπηρεσιών. Η εγκυρότητα των αποτελεσμάτων αποδεικνύεται

μέσα από πειραματική μελέτη.

Συμπερασματικά, η συνεισφορά αυτής της εργασίας έγκειται στην

παρουσίαση ενός συστήματος παρακολούθησης, που έχει ως σκοπό τον έλεγχο

συμμόρφωσης της ηλεκτρονικής υπηρεσίες με το SLA, καθώς επίσης και στον

υπολογισμό μετρικών για σύνθετες υπηρεσίες.

Επόπτης Καθηγητής: Δημήτρης Πλεξουσάκης
Καθηγητής

v

Ευχαριστίες

 Στο σημείο αυτό θα ήθελα να ευχαριστήσω τον επόπτη καθηγητή μου κ.

Δημήτρη Πλεξουσάκη για την άψογη συνεργασία μας τα τελευταία 2 χρόνια, καθώς

επίσης και για την ουσιαστική του καθοδήγηση και συμβολή στην ολοκλήρωση της

παρούσας εργασίας.

 Επίσης, θα ήθελα να εκφράσω τις ευχαριστίες μου, στους καθηγητές κ.

Ευάγγελο Μαρκάτο και κ. Ιωάννη Τζίτζικα, για τη μεγάλη προθυμία τους να

συμμετέχουν στην τριμελή εξεταστική επιτροπή.

 Παράλληλα, θα ήθελα να ευχαριστήσω τον Κυριάκο Κρητικό για τη μεγάλη

του βοήθεια και καθοδήγηση σε όλη τη διάρκεια εκπόνησης της εργασίας.

 Πολλές ευχαριστίες θα ήθελα να εκφράσω στους φίλους μου, Αγάπη

Περυσινάκη, Ελευθερία και Ελένη Σπυριδάκη, Κάλλια Μπαθιανάκη, Θέμη

Δακανάλη, Κώστα Καστελλάκη, Βαγγέλη Μάγγα και Αντώνη Παπαδογιαννάκη για

τη στήριξή τους και για όλες τις στιγμές που μοιραστήκαμε μαζί όλο αυτό τον καιρό.

 Τέλος, θα ήθελα να ευχαριστήσω ιδιαιτέρως τους γονείς μου, Κωνσταντίνο

και Ελένη και τον αδερφό μου, Δημήτρη, για την υποστήριξη και την αγάπη με την

οποία με περιέβαλλαν.

vi

vii

Contents

List of Tables ______________________________________ ix

List of Figures _____________________________________ x

1 Introduction __________________________________ 1

1.1 Web services _______________________________________ 1
1.1.1 History of Web services ___ 2
1.1.2 Types of Web services __ 3
1.1.3 Differences between Web services and Web pages ____________________ 4

1.2 The Web services technology stack _____________________ 5

1.3 The need for monitoring _____________________________ 8

1.4 Quality of service (QoS) _____________________________ 10

1.5 Service-Level Agreements (SLAs) ____________________ 12
1.5.1 Why a Service Level Agreement is Important _______________________ 15
1.5.2 SLA Life Cycle __ 15
1.5.3 Qualities That Can Be Defined in an SLA __________________________ 17

1.6 Contributions _____________________________________ 19

1.7 Organization of the thesis ___________________________ 19

2 Monitoring of Web services _____________________ 20

2.1 Introduction ______________________________________ 20

2.2 Services involved in compliance monitoring ____________ 22

2.3 Monitoring and Managing SLAs _____________________ 24
2.3.1 Why we use WSLA ___ 27
2.3.2 SLA Parameters and metrics ____________________________________ 31
2.3.3 Obligations __ 33
2.3.4 Service level objectives __ 33
2.3.5 Action guarantees ___ 35

2.4 Implementation ___________________________________ 37
2.4.1 Implementing Tools ___ 37
2.4.2 Implementation procedure ______________________________________ 41
2.4.3 UML diagrams ___ 45

3 Computing QoS Values of WS Compositions ______ 48

3.1 Introduction ______________________________________ 48

3.2 Types of Web service composition ____________________ 49
3.2.1 Static Services Composition ____________________________________ 49
3.2.2 Dynamic Services Composition __________________________________ 51

viii

3.3 Web service composition patterns ____________________ 51
3.3.1 Sequence Pattern __ 51
3.3.2 Parallel pattern __ 52
3.3.3 Synchronization pattern ___ 52
3.3.4 Exclusive choice pattern __ 52
3.3.5 Simple merge pattern ___ 53
3.3.6 Conditional pattern __ 53
3.3.7 Synchronizing merge pattern _____________________________________ 54
3.3.8 Multi-merge pattern __ 54
3.3.9 Loop pattern ___ 55
3.3.10 Deferred choice pattern ___ 55
3.3.11 Interleaved Parallel Routing _____________________________________ 55
3.3.12 Milestone pattern __ 56

3.4 Computing basic metrics for composed services _________ 57
3.4.1 Computing response time _______________________________________ 57
3.4.2 Computing throughput ___ 58
3.4.3 Computing reliability __ 60
3.4.4 Computing cost ___ 61

3.5 Summarizing the results ____________________________ 62

3.6 Use case __ 63

4 Experimental Evaluation _______________________ 69

4.1 Introduction ______________________________________ 69

4.2 Experiments ______________________________________ 69

5 Related Work _________________________________ 76

5.1 Monitoring Approaches _____________________________ 76
5.1.1 Monitoring Web service compositions _____________________________ 76
5.1.2 Assertion-Based monitoring _____________________________________ 80
5.1.3 Run-Time monitoring __ 82
5.1.4 Planning and monitoring service requests ___________________________ 87
5.1.5 Monitoring tools __ 88

5.2 Comparing monitoring approaches ___________________ 92

5.3 Computing metrics of composed services ______________ 94

5.4 Comparison of our work with existing studies __________ 96

6 Conclusion and Future Work ____________________ 98

Bibliography _____________________________________ 100

ix

List of Tables

Table 2.1: Assessment of the introduced approaches .. 30

Table 3.1: Metric Types for composed Web services .. 62

Table 3.2: Metric values for constituent Web services (use case) 64

Table 4.1: Response time for the constituent and the composed Web service 72

Table 4.2: Throughput for the constituent and the composed Web service 73

Table 4.3: Response Time and throughput .. 74

Table 5.1: Comparing monitoring approaches ... 94

x

List of Figures

Figure 1.1: The Web Service technology stack .. 6
Figure 1.2: SLA Life Cycle .. 16

Figure 2.1: Services involved in SLA-compliance monitoring with multiple parties 23
Figure 2.2: Conceptual Architecture for SLA Monitoring and Management 25
Figure 2.3: SLA structure as defined in WSLA ... 31
Figure 2.4: Sample Elements of Service Description .. 32
Figure 2.5: Metric example in WSLA .. 32
Figure 2.6: SLA parameter example in WSLA .. 33
Figure 2.7: Service Level Objective example in WSLA .. 35
Figure 2.8: Action Guarantee example in WSLA .. 36
Figure 2.9: Main window of the WSLA plug-in for eclipse 39
Figure 2.10: A sample WSLA document extracted from the eclipse plug-in 40
Figure 2.11: WSLA elements stored in the PostgreSQL database 42
Figure 2.12: Metrics values in asadmin console .. 43
Figure 2.13: Graphical depiction of the Response Time .. 43
Figure 2.14: The UML class diagram of our implementation 45
Figure 2.15: The UML sequence diagram ... 47

Figure 3.1: Orchestration and choreography .. 50
Figure 3.2: Sequence pattern .. 52
Figure 3.3: Parallel pattern ... 52
Figure 3.4: Synchronization pattern ... 52
Figure 3.5: Exclusive choice pattern .. 53
Figure 3.6: Simple merge pattern ... 53
Figure 3.7: Conditional pattern .. 53
Figure 3.8: Synchronizing merge pattern ... 54
Figure 3.9: Multi-merge pattern ... 54
Figure 3.10: Loop pattern ... 55
Figure 3.11: Deferred choice pattern .. 55
Figure 3.12: Interleaved parallel routing .. 56
Figure 3.13: Milestone pattern ... 56
Figure 3.14: UML activity diagram for use case ... 63
Figure 3.15: Response time activity diagram (use case) .. 64
Figure 3.16: Throughput activity diagram (use case) .. 65
Figure 3.17: Reliability activity diagram (use case) .. 67
Figure 3.18: Cost activity diagram (use case) .. 68

Figure 4.1: Response Time and number of BPEL activities 70
Figure 4.2: Response time and number of requests ... 71

xi

Figure 4.3: Response Time of composed Web services .. 72
Figure 4.4: Throughput of composed Web services .. 73
Figure 4.5: Relationship between response time and throughput 74
Figure 5.1: The Active BPEL engine extended with the run-time monitor
environment ... 77
Figure 5.2: The domain monitor generation algorithm .. 79
Figure 5.3: A standard process annotated with contracts transformed into a monitored 81
Figure 5.4: Monitoring framework .. 82
Figure 5.5: Transforming the ECA rules to Statecharts ... 84
Figure 5.6: WS-Policy definitions and attachments ... 86
Figure 5.7: BP-Mon architecture ... 91
Figure 5.8: The travel site Web service ... 94
Figure 5.9: Pseudo code for computing QoS of a WS-workflow 96

1

Chapter 1

1 Introduction

1.1 Web services

A Web Service is a self-describing, self-contained software module available

via a network, such as the Internet, which completes tasks, solves problems, or

conducts transactions on behalf of a user or application. Web services constitute a

distributed computer infrastructure, made up of many different interacting

application modules trying to communicate over private or public networks to

virtually form a single logical system.

A more precise definition is published by the World Wide Web Consortium

(W3C):

A web service is a software system identified by a URI, whose public interfaces

and bindings are defined and described using XML. Its definition can be

discovered by other software systems. These systems may then interact with the

Web service in a manner prescribed by its definition, using XML-based

messages conveyed by Internet protocols. [34]

In essence, a web service provides an interface defined in terms of XML

messages and that can be accessed over the Internet (or, of course, an Intranet). It is

an application that exposes a function which is accessible using standard Web

technology and that adheres to Web services standards. This is significant because

Web services are developed for and deployed onto any platform using any

programming language.

2

A Web service can be: (i) a self-contained business task, such as funds

withdrawal or funds deposit service; (ii) a full-fledged business process, such as the

automated purchasing of office supplies; (iii) an application, such as a life insurance

application or demand forecasts and stock replenishment; or (iv) a service-enabled

resource, such as access to a particular back-end database containing patient medical

records. Web services can vary in function from simple requests (e.g. credit checking

and authorization, pricing enquiries, inventory status checking, or a weather report)

to complete business applications that access and combine information from multiple

sources, such as an insurance brokering system, an insurance liability computation,

an automated travel planner, or a package tracking system. [26]

1.1.1 History of Web services

The Internet began its success story in the early nineties, even though it was

used in the academic world before for many years. The main driver for the Internet’s

success was the World Wide Web, whose main innovation was the easy access to

information, from any place, using standard Internet protocols and a simple data

access protocol that enabled the implementation browsers on a variety of platforms.

Together with the spread of the WWW, the Internet and its related technologies

became the de facto standard to connect computers all around the world.

 With the spread of the Internet, it became clear that the infrastructure that

was introduced by the Internet could be used not just to retrieve information that was

to be presented using a browser (called human-to-application, H2A, scenarios).

Rather, there was also an increased demand for application-to-application (A2A)

communication using the existing technologies. And, it was hoped that the existing

protocols could be used for this purpose.

However, it soon became clear that this was not the case. HTTP had been

designed with the retrieval of information in mind, following a very simple access

path that basically relies on documents being linked together by means of hypertexts.

The protocol does not cater for complex operations that arise from A2A scenarios.

And some of the protocols that were defined at this time could not be used either

because they did not fit into the Web World or they were too restrictive.

3

In late 1999 [32], Microsoft published an XML-based protocol, called SOAP

that could be used for A2A scenarios. As it was one among many protocols

suggested, it may be the fact that IBM started supporting SOAP in early 2000 that

eventually lead to a public acceptance of SOAP by the industry.

At this point in time, SOAP was just a protocol to perform complex A2A

scenarios. However, it quickly gained popularity and it was clear that there was a

need for better describing and finding the services that were implemented using

SOAP. The term Web services was coined several months later, when IBM,

Microsoft, and Ariba jointly published the Web Services Description Language

(WSDL). Eventually, UDDI (a Web service repository) was also introduced, thus

completing the set of standards and protocols that make up the basis of Web services.

In the following years, many propositions were made about how to improve

this technology such that it can be used not only for simple service invocation but

also in more demanding environments. Among the most important ones, the Web

services security (WSS) suite of standards is of particular interest, because it allows

for a quality of service that is required by many enterprises and organizations. Since

now, more than 40 specifications and standards have been published.

1.1.2 Types of Web services

In their simplest form [6], services are stateless, i.e. they provide a functional

abstraction: the same service provides identical results, if it is invoked twice with the

same arguments. If several instances of the same service are active for different

clients, they all provide the same functional abstraction. An example can be a service

that converts temperatures values from Celsius degrees to Fahrenheit. More complex

services require some notion of state. It can be useful, however, to distinguish among

different notions of stateful services.

Conversational services are yet another kind of stateful services. In a

conversational service an instance of the service keeps a local state that depends on

the conversation with its client. Every instance has its own local state, not visible to

the others. Such kinds of services correspond to the well-known notion of data

abstractions. Using familiar terms of object-oriented programming, each service can

be viewed as an abstract data type and each instance as an object that can be

4

manipulated only through operations exposed in the service interface, which may

modify the local state of the object. As an example of a conversational service, we

consider the well-known shopping cart, available on most web sites providing e-

commerce facilities. Each client has its own instance of the shopping cart, which

contains the items selected by the client.

1.1.3 Differences between Web services and Web pages

Although Web pages provide access to applications across the Internet and

across organizational boundaries, they are very different from Web services. Web

pages are targeted at human users, whereas Web services are developed for access by

humans as well as automated applications. As terminology is often used very loosely,

it is easy to confuse someone by describing a “service” as a Web service when it is in

fact not. Consequently, it is useful to examine first the concept of software-as-a-

service on which Web services technology builds and then compare Web services to

Web server-based functionality.

When comparing Web Services to Web-based applications we may

distinguish four key differences:

 Web services act as resources to their applications that can request and

initiate those Web services, with or without human intervention. This means

that Web services can call on other Web services, providing a high degree of

flexibility and adaptability not available in today’s Web-based applications.

 Web services are modular, self-aware, and self-describing applications; a

Web service knows what functions it can perform and what inputs it requires

to produce its outputs, and can describe this to potential users and to other

Web services. A Web service can also describe its non-functional properties:

for instance, the cost of invoking the service, the geographical areas the Web

service covers, security measures involved in using the Web service,

performance characteristics, contact information, and more.

 Web services are more visible and manageable than Web-based applications;

the state of a Web service can be monitored and managed at any time by

using external application management and workflow systems. Despite the

5

fact that a Web service may not run on a local system or may be written in an

unfamiliar programming language, it still can be used by local applications,

which may detect its state and manage the status of its outcome.

 Web services may be brokered or auctioned. If several Web services perform

the same task, then several applications may place bids for the opportunity to

use the requested service. A broker can base its choice on the attributes of the

“competing” Web services, such as cost, speed and degree of security.

1.2 The Web services technology stack

The goal of Web services technology is to allow applications to work

together over standard Internet protocols, without direct human intervention. By

doing so, many business operations can be automated, creating new functional

efficiencies and new, more effective ways of doing business. The minimum

infrastructure required by the Web services paradigm is purposefully low to help

ensure that Web services can be implemented on and accessed from any platform

using any technology and programming language.

By intent, Web services are not implemented in a monolithic manner, but

rather represent a collection of several related technologies. The more generally

accepted definition for Web services leans on a stack of specific, complementary

standards, which are illustrated in Figure 1.1. The development of open and accepted

standards is a key strength of the coalitions that have been developing the Web

services infrastructure; at the same time, as can been seen in Figure 1.1, these efforts

have resulted in the proliferation of a dizzying number of emerging standards and

acronyms. Below we provide a classification scheme for the most important

standards in the Web services technology stack.

6

Figure 1.1: The Web Service technology stack

Enabling technology standards. Although not specifically tied to any specific

transport protocol, Web services build on ubiquitous Internet connectivity and

infrastructure to ensure nearly universal reach and support. For instance, at the

transport level Web services take advantage of HTTP, the same connection protocol

used by Web servers and browsers. Another enabling technology is the Extensible

Markup Language (XML). XML is a widely accepted format for all exchanging data

and its corresponding semantics. Web services use XML as the fundamental building

block for nearly every other layer in the Web services stack.

Core services standards. The core Web services standards comprise the baseline

standards SOAP, WSDL, and UDDI:

 Simple Object Access Protocol: SOAP is a simple XML-based messaging

protocol on which Web services rely to exchange information among

themselves. It is based on XML and uses common Internet transport protocols

like HTTP to carry its data. SOAP implements a request/response model for

communication between interacting Web services, and uses HTTP to penetrate

firewalls, which are usually configured to accept HTTP and FTP service

requests.

 Service description: Web services can be used effectively when a Web service

and its clients rely on standard ways to specify data and operations, to represent

contracts and to understand the capabilities a Web service provides. To achieve

this, the functional characteristics of a Web service are first described by

means of the Web Services Description Language. WSDL defines the XML

7

grammar for describing services as collections of communicating endpoints

capable of exchanging messages.

 Service publication: Web service publication is achieved by UDDI, which is a

public directory that provides publication of online services and facilitates

eventual discovery of Web services. Companies can publish WSDL

specifications for services they provide and other enterprises can access those

services using the description in WSDL. In this way, independent applications

can advertise their present business protocols or tasks that can be utilized by

other remote applications and systems. Links to WSDL specifications are

usually offered in an enterprise’s profile in the UDDI registry.

Service composition and collaboration standards. These include the following

standards:

 Service composition: Describes the execution logic of Web-services-based

applications by defining their control flows (such as conditional, sequential,

parallel, and exceptional execution) and prescribing the rules for consistently

managing their unobservable business data. In this way enterprises can

describe complex processes that span multiple organizations – such as order

processing, lead management, and claims handling – and execute the same

business processes in systems from other vendors. The Business Process

Execution Language (BPEL) is the de-facto standard and is used to achieve

service composition for Web services.

 Service collaboration: Describes cross-enterprise collaborations of Web

service participants by defining their common observable behavior, where

synchronized information exchanges occur through their shared contact points,

when commonly defined ordering rules are satisfied. Service collaboration is

materialized by the Web Services Choreography Description Language (WS-

CDL), which specifies the common observable behavior of all participants

engaged in business collaboration. Each participant could be implemented not

only by BPEL but also by other executable business process languages.

 Coordination/transaction standards: Solving the problems associated with

service discovery and service description retrieval is the key to success of Web

services. Currently there are attempts underway towards defining transactional

8

interaction among Web services. The WS-Coordination and WS-Transaction

initiatives complement BPEL to provide mechanisms for defining specific

standard protocols for use by transaction processing systems, workflow

systems, or other applications that wish to coordinate multiple Web services.

These three specifications work in tandem to address the business workflow

issues implicated in connecting and executing a number of Web services that

may run on disparate platforms across organizations involved in e-business

scenarios.

 Value-added standards: Additional elements that support complex business

interactions must still be implemented before Web services can automate truly

critical business processes. Value-added services standards include

mechanisms for security and authentication, authorization, trust, privacy,

secure conversations, contract management, and so on.

Today there are several vendors including companies such as IBM,

Microsoft, BEA, and Sun Microsystems which supply products and services across

the realm of Web services functionality and implement Web services technology

stack. These vendors are considered as platform providers and provide both

infrastructure, e.g. WebSphere, .NET framework, WebLogic, for building and

deploying Web services in the form of application servers, as well as tools for

orchestration and/or composite application development for utilizing Web services

within business operations.

1.3 The need for monitoring

Once services and business processes become operational, their progress

needs to be managed and monitored to gain a clear view of how services perform

within their operational environment, take management decisions, and perform

control actions to modify and adjust the behavior of Web-services-enabled

applications. Service-level monitoring is a disciplined methodology for establishing

acceptable levels of service that address business objectives, processes, and costs.

9

The service monitoring phase concerns itself with service-level measurement;

monitoring is the continuous and closed loop procedure of measuring, monitoring,

reporting, and improving the QoS of systems and applications delivered by service-

oriented solutions. Service monitoring involves several distinct activities including

logging and analysis of service execution details, obtaining business metrics by

analyzing service execution data, detecting business situations that require

management attention, determining appropriate control actions to take in response to

business situations, whether in mitigating a risk or taking an opportunity, and using

historical service performance data for continuous service improvement.

The service monitoring phase targets continuous evaluation of service-level

objectives, monitoring the services layer for availability and performance, managing

security policies, tracking interconnectivity of loosely coupled components,

analyzing the root cause and correcting problems. To achieve this objective, service

monitoring requires that a set of QoS metrics is gathered on the basis of SLAs, given

that an SLA is an understanding of service expectations. In addition, workloads need

to be monitored by the service provider to ensure that the promised performance

level is being delivered, and to take appropriate actions to rectify non-compliance

with an SLA, such as reprioritizing and reallocating resources.

To determine whether an objective has been met [26], SLA-available QoS

metrics are evaluated based on measurable data about a service (e.g. response time,

throughput, availability, and so on), performance during specified times, and periodic

evaluations. SLAs include other observable objectives, which are useful for service

monitoring. These include compliance with differentiated service-level offerings, i.e.

providing differentiated QoS for various types of customers, individualized service-

level offerings and requests policing which ensures that the number requests per

customer stays within a predefined limit. All these also need to be monitored and

assessed. A key aspect of defining measurable objectives is to set warning thresholds

and alerts for compliance failures. For instance, if the response time of a particular

service is degrading then the client could be automatically routed to a back up

service.

10

1.4 Quality of service (QoS)

QoS refers to the ability of the Web service to respond to expected

invocations and to perform them at the level commensurate with the mutual

expectations of both its provider and its customers. Several quality factors that reflect

customer expectations, such as constant service availability, connectivity, and high

responsiveness, become key to keeping a business competitive and viable as they can

have a serious impact upon service provision. QoS thus becomes an important

criterion that determines the service usability and utility, both of which influence the

popularity of a particular Web service, and an important selling and differentiating

point between Web services providers.

Delivering QoS on the Internet is critical and significant because of its

dynamic and unpredictable nature. Applications with very different characteristics

and requirements compete for all kinds of network resources. Changes in traffic

patterns, securing mission-critical business transactions, and the effects of

infrastructure failures, low performance of Web protocols, and reliability issues over

the Web create a need for Internet QoS standards. Often, unresolved QoS issues

cause critical transactional applications to suffer from unacceptable levels of

performance degradation.

Traditionally, QoS is measured by the degree to which applications, systems,

networks, and all other elements of the IT infrastructure support availability of

services at a required level of performance under all access and load conditions.

While traditional QoS metrics can be applied, the characteristics of Web services

environments bring both greater availability of applications and increased complexity

in terms of accessing and managing services and thus impose specific and intense

demands on organizations, which QoS must address. In the Web services’ context,

QoS can be viewed as providing assurance on a set of quantitative characteristics.

These can be defined on the basis of important functional and non-functional service

quality properties that include implementation and deployment issues as well as other

important service characteristics such as service metering and cost, performance

metrics (e.g. response time), security requirements, integrity, reliability, scalability,

and availability. These characteristics are necessary requirements to understand the

11

overall behavior of a service so that other applications and services can bind to it and

execute it as part of a business process.

The key elements for supporting QoS in a Web services environment are

summarized in what follows [26]:

1. Availability: Availability is the absence of service downtimes. Availability

represents the probability that a service is available. Larger values mean that

the service is always ready to use while smaller values indicate

unpredictability over whether the service will be available at a particular

time. Also associated with availability is time-to-repair (TTR). TTR

represents the time it takes to repair a service that has failed. Ideally smaller

values of TTR are desirable.

2. Accessibility: Accessibility represents the degree with which a Web service

request is served. It may be expressed as probability measure denoting the

success rate or chance of a successful service instantiation at a point in time.

A high degree of accessibility means that a service is available for a large

number of clients and that clients can use the service relatively easily.

3. Conformance to standards. Describes the compliance of a Web service with

standards. Strict adherence to correct versions of standards by service

providers is necessary for proper invocation of Web services by service

requestors. In addition, service providers must stick to the standards outlined

in Service-Level Agreements between service requestors and providers.

4. Integrity. Describes the degree with which a Web service performs its tasks

according to its WSDL description as well as conformance with Service-

Level Agreement (SLA). A higher degree of integrity means that the

functionality of a service is closer to its WSDL description or SLA.

5. Performance. Performance is measured in terms of two factors: throughput

and latency. Throughput represents the number of Web service requests at a

given time period. Latency represents the length of time between sending a

request and receiving the response. Higher throughput and lower latency

values represent good performance of a Web service. When measuring the

12

transaction/request volumes handled by a Web service it is important to

consider whether these come in a steady flow or burst around particular

events like the open or close of the business day or seasonal rushes.

6. Reliability. Reliability represents the ability of a service to function correctly

and consistently and provide the same service quality despite system or

network failures. The reliability of a Web service is usually expressed in

terms of number of transactional failures per month or year.

7. Scalability. Scalability refers to the ability to consistently serve the requests

despite variations in the volume of requests. High accessibility of Web

services can be achieved by building highly scalable systems.

8. Security. Security involves aspects such as authentication, authorization,

message integrity, and confidentiality. Security has added importance

because Web service invocation occurs over the Internet. The amount of

security that a particular Web service requires is described in its

accompanying SLA, and service providers must maintain this level of

security.

9. Transactionality. There are several cases where Web services require

transactional behavior and context propagation. The fact that a particular Web

service requires transactional behavior is described in its accompanying SLA,

and service providers must maintain this property.

1.5 Service-Level Agreements (SLAs)

As organizations depend on business units, partners, and external service

providers to furnish them with services, they rely on the use of SLAs to ensure that

the chosen service provider delivers a guaranteed level of service quality. An SLA

sets the expectations between the consumer and provider. It helps define the

relationship between the two parties. It is the cornerstone of how the service provider

sets and maintains commitments to the service consumer. A properly specified SLA

describes each service offered and addresses:

 how delivery of the service at the specified level of quality will become

realized

13

 which metrics will be collected

 who will collect the metrics and how

 actions to be taken when the service is not delivered at the specified level of

quality and who is responsible for doing them

 penalties for failure to deliver the service at the specified level of quality

 how and whether the SLA will evolve as technology changes (e.g., multi-core

processors improve the provider’s ability to reduce end-to-end latency) [3]

In the definition of an SLA, realistic and measurable commitments are

important. Performing as promised is important, but swift and well communicated

resolution of issues is even more important.

The challenge [33] for a new service and its associated SLA is that there is a

direct relationship between the architecture and the maximum levels of availability.

Thus, an SLA cannot be created in a vacuum. An SLA must be defined with the

infrastructure in mind. An exponential relationship exists between the levels of

availability and the related cost. Some customers need higher levels of availability

and are willing to pay more. Therefore, having different SLAs with different

associated costs is a common approach.

An SLA may contain the following parts:

 Purpose: This field describes the reasons behind the creation of the SLA.

 Parties: This field describes the parties involved in the SLA and their

respective roles, e.g. service provider and service consumer (client).

 Validity period: This field defines the period of time that the SLA will cover.

This is delimited by start and end time of the agreement term.

 Scope: This field defines the services covered in the agreement.

 Restrictions: This field defines the necessary steps to be taken in order for the

requested service levels to be provided.

 Service-level objectives: This field defines the levels of service that both the

service customers and the service providers agree on, and usually includes a

set of service level indicators, like availability, performance, and reliability.

Each of these aspects of the service level will have a target level to achieve.

14

 Penalties: This field defines what sanctions should apply in case the service

provider underperforms and is unable to meet the objectives specified is the

SLA.

 Optional services: This field specifies any services that are not normally

required by the user, but might be required in case on an exception.

 Exclusion terms: These specify what is not covered in the SLA.

 Administration: This field describes the processes and the measurable

objectives in an SLA and defines the organizational authority for overseeing

them.

SLAs can be either static or dynamic in nature. A static SLA is an SLA that

generally remains unchanged for multiple service time intervals. Service time

intervals may be calendar months for a business process that is subject to an SLA, or

may be a transaction or any other measurable and relevant period of time for other

processes. They are used for assessment of the QoS and are agreed between a service

provider and service client. A dynamic SLA is an SLA that generally changes from

service period to service period, to accommodate changes in provision of service.

To enter into a Web services SLA, specific QoS metrics that are evaluated

over a time interval to a set of defined objectives should be employed. Measurement

of QoS levels in an SLA will ultimately involve tracing Web services through multi-

domain (geographical, technological, application, and supplier) infrastructures. In a

typical scenario, each Web service may interact with multiple Web services,

switching between the roles of being a service provider in some interactions to being

a consumer in other interactions. Each of these interactions could potentially be

governed by an SLA. The metrics imposed by SLA should correlate with the overall

objectives of the services being provided. Thus an important function that an SLA

accomplishes is addressing QoS at the source. This refers to the level of service that

a particular service provides. [26]

The credibility [16] of SLAs is essential for the functioning of such a service

market. Unreliable SLA advertisements decrease the overall welfare of the market,

since clients do not have accurate information to plan their business. As clients are

usually required to pay for an SLA before receiving the requested service, providers

have an opportunity to cheat. They may provide lower QoS than advertised, and thus

15

save costs. It is therefore necessary to create incentives for service providers to

respect their advertised SLAs by stating penalties that must be paid when the

delivered QoS is less than promised.

1.5.1 Why a Service Level Agreement is Important

A good SLA is important [33] because it sets boundaries and expectations for

the following aspects of data center service provisioning.

 Customer commitments. Clearly defined promises reduce the chances of

disappointing a customer. These promises also help to stay focused on

customer requirements and assure that the internal processes follow the right

direction.

 Key performance indicators for the customer service. By having these

indicators established, it is easy to understand how they can be integrated in a

quality improvement process. By doing so, improved customer satisfaction

stays a clear objective.

 Key performance indicators for the internal organizations. An SLA drives

internal processes by setting a clear, measurable standard of performance.

Consequently, internal objectives become clearer and easier to measure.

 The price of non-conformance. If the SLA has penalties non-performance can

be costly. However, by having penalties defined, the customer understands

that the provider truly believes in its ability to achieve the set performance

levels. It makes the relationship clear and positive.

1.5.2 SLA Life Cycle

Service Level Agreements have a certain life cycle, which they are running

through from the initial preparation of the templates for an agreement up to the

evaluation whether the agreement has been fulfilled, or partly or completely violated.

W. Sun et al [5] describe that the SLA life cycle consists of six phases; these phases

are shown in Figure 1.2.

16

Figure 1.2: SLA Life Cycle

1) Service and SLA Template Development: This phase includes the identification of

service consumer needs, the identification of appropriate service characteristics

and parameters that can be offered given the service execution environment, and

the preparation of standard SLA templates.

2) Negotiation: This phase includes the negotiation of the specific values for the

defined service parameters, the costs for the service consumer, the costs for the

service provider when the SLA is violated, and the definition and periodicity of

reports to be provided to the service consumer.

3) Preparation: The service (or a specific instance of it) is prepared for

consumption by the service consumer. This phase may require the

reconfiguration of the resources that support service execution in order to meet

SLA parameters.

4) Execution: This phase is the actual operation of the service. It includes service

execution and monitoring, real-time reporting, service quality validation, and

real-time SLA violation processing.

5) Assessment: This phase has two parts:

a) Assessment of the SLA and the QoS that is provided to an individual

consumer. QoS, consumer satisfaction, potential improvements, and changing

requirements are reviewed periodically for each SLA.

b) Assessment of the overall service. This assessment can be tied to an internal

business review. Elements to be covered in this review are the QoS provided

to all consumers, the need for the realignment of service goals and operations,

17

the identification of service support problems, and the identification of the

need for different service levels.

6) Termination and Decommission: This phase deals with termination of the service

for reasons such as contract expiration or violation of contract, as well as the

decommission of discontinued services.

1.5.3 Qualities That Can Be Defined in an SLA

In theory, it is possible to specify any quality in an SLA [8], provided that all

parties understand how to measure or verify its achievement. We’ve seen two

categories of qualities that can be specified in SLAs: measurable and unmeasurable.

Measurable qualities can be measured automatically using metrics; for example, the

percentage of time a system is available. Unmeasurable qualities are those that

cannot be measured automatically from a given viewpoint; for example, determining

the cost of changing a service is difficult to automate.

Measurable Qualities

• Accuracy is concerned with the error rate of the service. It is possible to specify the

average number of errors over a given time period.

• Availability is concerned with the mean time to failure for services, and the SLAs

typically describe the consequences associated with these failures. Availability is

typically measured by the probability that the system will be operational when

needed. It is possible to specify

− the system’s response when a failure occurs

− the time it takes to recognize a malfunction

− how long it takes to recover from a failure

− whether error handling is used to mask failures

− the downtime necessary to implement upgrades (may be zero)

− the percentage of time the system is available outside of planned

maintenance time

18

• Capacity is the number of concurrent requests that can be handled by the service in

a given time period. It is possible to specify the maximum number of concurrent

requests that can be handled by a service in a set block of time.

• Cost is concerned with the cost of each service request. It is possible to specify

− the cost per request

− the cost based on the size of the data

− cost differences related to peak usage times

• Latency is concerned with the maximum amount of time between the arrival of a

request and the completion of that request.

• Provisioning-related time (e.g., the time it takes for a new client’s account to

become operational)

• Reliable messaging is concerned with the guarantee of message delivery. It is

possible to specify

− how message delivery is guaranteed (e.g., exactly once, at most once)

− whether the service supports delivering messages in the proper order

• Scalability is concerned with the ability of the service to increase the number of

successful operations completed over a given time period. It is possible to specify the

maximum number of such operations.

Unmeasurable Qualities

• Interoperability is concerned with the ability of a collection of communicating

entities to share specific information and operate on it according to an agreed-upon

operational semantics. It is possible to specify the standards supported by the service

and to verify them at runtime. Significant challenges still need to be overcome to

achieve semantic interoperability at runtime.

• Modifiability, in this context, is concerned with how often a service is likely to

change. It is possible to specify how often the service’s

− interface changes

− implementation changes

• Security is concerned with the system’s ability to resist unauthorized usage, while

providing legitimate users with access to the service. Security is also characterized as

a system providing non-repudiation, confidentiality, integrity, assurance, and

auditing. It is possible to specify the methods for

19

− authenticating services or users

− authorizing services or users

− encrypting the data

1.6 Contributions

In a nutshell, the main contributions of this thesis are:

 We propose a system that combines the web service monitoring with SLA

compliance.

 We study the ways the metrics for composed web services can be calculated,

having available only the metrics of the constituent services.

 We propose types for calculating the response time, the throughput, the

availability and the cost of composed services.

 Interesting experimental results are reported.

1.7 Organization of the thesis

Chapter 2 introduces the fundamentals about monitoring. We discuss why the

monitoring is appropriate in SOA systems, we mention which services are involved

in the monitoring procedure and we analyze the use of WSLA for expressing SLAs.

Finally, we briefly mention the implementation procedure of our work and the tools,

used for it.

Chapter 3 presents the basic composition patterns. Furthermore, we propose

some formulas for computing the response time, the throughput, the reliability and

the cost of complex Web services. A use case in the end clarifies the afore-mentioned

work.

Chapter 4 examines the state of the art approaches and tools used for

monitoring Web services and computing metrics for composed services.

Chapter 5 presents an experimental analysis of our work. We use some

simple experiments that validate our work.

Chapter 6 summarizes the results of this thesis and identifies topics that are

worth further work and research.

20

Chapter 2

2 Monitoring of Web services

2.1 Introduction

Monitoring consists of a verification at run-time that the requirements,

specified by the clients and by the service providers, are met during execution. The

requirements can obviously be of very diverse nature. There are three

complementary dimensions to the coexisting monitoring problem: [14]

• Assertion-based monitoring

• Event-based monitoring

• History-based monitoring

Assertion-based monitoring consists of asking the BPEL process to use an

external monitor service to verify the correctness of certain assertions at given points

of the process execution. The assertions that must be monitored are the pre- and post-

conditions derived from the conjunction of those provided by the service provider

and those provided by the client of the process. Starting from a complete BPEL

process —the unmonitored process— assertions are added to the process in the form

of commented annotations. The location in which they are added indicates where in a

process an assertion must be checked. Once an annotated version of the unmonitored

process is available, it is passed through a transformation algorithm called

BPEL2BPEL, which produces what we call the monitored process. The algorithm

adds BPEL code to the process to support the use of an external monitor service to

check the validity of the assertions. The added code prepares the message to be sent

to the external monitor, sends it, and verifies the monitor’s answer. The message that

21

is sent to the external monitor service contains two items: the assertion to be checked

and the data on which the assertions must be checked. These data typically consist of

information about the internal state of the process in execution. Depending on the

implementation of the external monitor, the data on which to verify the assertions

might also be obtained elsewhere.

This approach obviously has a substantial impact on performance, since the

process execution is momentarily stopped to execute the monitoring. However, it is

simply a technique that is offered to the process designer, which can be used as

needed. For example, it might be used only sporadically or even be switched off

totally or partially at any time. Its strength is that, since the monitoring is inserted in

the form of annotations, the business logic remains separate from the monitoring

logic up until when the BPEL2BPEL performs the transformation that weaves the

two to produce a new version of the monitored process. The original version is not

touched. Second, the resulting process remains pure BPEL code and is executable on

any standard BPEL engine. The inter-weaving should be able to take into account the

different monitoring necessities of different stake-holders and/or different times of

the life-cycle of the process. It usto be noted that in this approach it is easier to

monitor functional contracts, with respect to non-functional contracts.

Event-based monitoring comes into play when it is necessary to verify non-

functional qualities of a service or of a composition. It consists of a less-intrusive

approach to monitoring where, in parallel to the execution of a business process, a

monitoring component can listen to the events launched by the BPEL engine. Since

this is done in parallel to the execution, almost no impact on performance is

expected. Obviously, this approach is closely tied to the particular implementation of

the BPEL engine in use. For example, using ActiveBPEL, an open source BPEL

engine, it is possible to listen to a series of events that the engine provides. In

particular, these events are tied to the standard BPEL activities (i.e. invoke, receive,

etc.) and to their state changes. Each activity can be, for example, in a Ready to

execute state, in an Executing state, in a Terminated state or in a Faulted state.

Another possible approach would be to position an observer service between

the BPEL engine and the outside world and to monitor the contents of the SOAP

messages flowing in and out of the system. Both approaches must be further

22

investigated in order to discover the strengths and weaknesses of each. At the

moment, it is clear that both work at a lower-level with respect to the BPEL process

and to the assertion-based approach in monitoring. As a consequence, once an

erroneous behavior is observed, it is not possible to simply freeze the execution of

the process to implement a recovery action, like dynamic reconfiguration of the

process. Intervention in the execution could be obtained by selecting points in the

process in which to introduce an assertion. This assertion could represent a

synchronization point between the process execution and the collection of events. By

adding an assertion, we would be effectively mixing event-based monitoring with

assertion-based monitoring. So, if the assertion is false, at least one of the checked

LTL formulas must be false, meaning recovery actions should be taken.

History-based monitoring is an extension to event-based monitoring. By

collecting events in a history event repository it is possible to reason upon QoS

requirements that deal with a history of process executions. An example of such a

requirement could be “eighty percent of the times a process goes into execution it

must complete within one minute”. The event-based approach and the history-based

approach still have to be studied in depth, although it already seems clear that the

three should coexist to obtain complete functional and/or non-functional monitoring.

2.2 Services involved in compliance monitoring

During the contracting process, after the main elements of the SLA are agreed

upon, customer and provider may define third parties (in the WSLA context we refer

to these as supporting parties) to which SLA monitoring tasks may be delegated.

When the SLA is finalized, both provider and customer make the SLA

document available for deployment. The deployment service is responsible for

checking the validity of the SLA and distributing it either in full or in part to the

supporting parties.

Figure 2.1 [8] illustrates the services involved in compliance monitoring

when multiple parties are involved. Services that may be outsourced to third parties

are either measurement services or condition evaluation services.

23

Figure 2.1: Services involved in SLA-compliance monitoring with multiple parties

The measurement service maintains information on the current system

configuration and runtime information on the metrics that are part of the SLA. It

measures SLA parameters, such as availability or response time, either from inside,

by retrieving resource metrics directly from managed resources, or from outside the

service provider’s domain, for example, by probing or intercepting client

transactions. A measurement service may measure all or a subset of the SLA

parameters. Multiple measurement services may simultaneously measure the same

metrics, e.g., a measurement service may be located within the provider’s domain

while another measurement service probes the service offered by the provider across

the Internet from various locations.

As depicted in Figure 2.1, measurement services may be cascaded, that is, a

third measurement service may be used to aggregate data computed by other

measurement services. In this way, we refer to metrics that are retrieved directly

from managed resources as resource metrics. Composite metrics, in contrast, are

created by aggregating several resource (or other composite) metrics according to a

specific algorithm, such as averaging one or more metrics over a specific amount of

time or by breaking them down according to specific criteria (e.g., top 5 percent,

minimum, maximum, mean, median etc.). This is usually done by a measurement

service within a service provider’s domain, but can be outsourced to a third-party

measurement service as well.

The condition evaluation service is responsible for monitoring compliance of

the SLA parameters at runtime with the agreed-upon service level objective (SLO)

24

by comparing measured parameters against the thresholds defined in the SLA and

notifying the management services of the customer and the provider. It obtains

measured values of SLA parameters from one or more measurement services and

tests them against the guarantees given in the SLA. This can be done each time a new

value is available, or periodically.

Finally, both service customer and provider have a management service.

Upon receipt of a notification, the management service takes appropriate actions to

correct a problem, as specified in the SLA. The main purpose of the management

service is to execute corrective actions on behalf of the managed environment if a

condition evaluation service discovers that a term of an SLA has been violated.

2.3 Monitoring and Managing SLAs

Figure 2.2 shows a conceptual architecture for an SLA monitoring and

management infrastructure. Instrumentation is added to the service user and to the

service provider to generate metrics. The measurement subsystem receives the

metrics from instrumentation on one or more components and computes or combines

data to produce values for the parameters specified in the SLA (i.e., the service level

parameters). Figure 2.2 also shows measurement subsystem components on the

service user and service provider sides, but there are also other alternatives. The

measurement subsystem could exist only on the service user side or only on the

service provider side, but the party providing measurement needs to be trusted by the

other party. Measurement could also be partially or totally implemented by a third-

party component running on a separate machine. As Figure 2.2 illustrates, the values

of the SLA parameters are input for the evaluation procedure, which can run on

 either the service user or service provider

 both the service user and service provider

 a third-party machine

25

Figure 2.2: Conceptual Architecture for SLA Monitoring and Management

The evaluation procedure checks the values against the guaranteed conditions

of the SLA. If any value violates a condition in the SLA, predefined actions are

invoked. Action-handler components are responsible for processing each action

request. While the functionality they execute will vary, it will likely include some

form of violation notification or recording. Action handlers may exist on the service

user machine, service provider machine, and/or third-party machines.

An important output of SLA management not shown in Figure 2.2 consists of

reports that contain analyses of the metrics and thresholds. These reports can guide

planning and implementation of improvements to the service infrastructure.

The same service may be invoked by different service users under different

service level agreements. In that case, each service call may need to identify the

agreement that applies to that invocation. Alternatives to agreement identification

include tagging service calls with agreement identifiers, identifying the service user

based on information exchanged at binding time, and selecting agreements based on

the user.

26

Expressing SLAs in the WSLA Language

In this section, we provide a brief overview over the parts of the WSLA

language that relate to the definition of SLA parameters and the way they are

monitored.

The Parties [12] section identifies the contractual parties and contains the

technical properties of a party, i.e. their address and interface definitions (e.g. the

ports for receiving notifications). The Service Description section of the SLA

specifies the characteristics of the service and its observable parameters as follows:

For every Service Operation, one or more Bindings, i.e., the transport encoding for

the messages to be exchanged, may be specified. In addition, one or more SLA

Parameters of the service may be specified. Examples of such SLA parameters are

service availability, throughput, or response time. Every SLA parameter refers to

one Metric, which, in turn, may aggregate one or more other (composite or raw)

metrics, according to a measurement directive or a function. Examples of composite

metrics are maximum response time of a service, average availability of a service, or

minimum throughput of a service. Examples of raw metrics are: system uptime,

service outage period, number of service invocations. Measurement Directives

elements are used when the value of a Metric should be measured directly from a

resource by probing or instrumentation of the system. There are seven types of

measurement directives in the WSLA specification. Typical examples of

measurement directives [17] are the uniform resource identifier of a hosted computer

program, a protocol message (e.g., an SNMP GET message), the command for

invoking scripts or compiled programs, or a query statement issued against a

database or data warehouse. Function elements are used for a metric if the metric

value is derived from the value of other metrics or constants. There are eighteen

types of functions used in WSLA document. Examples of functions are formulas of

arbitrary length containing mean, median, sum, minimum, maximum, and various

other arithmetic operators, or time series constructors. For every function, a Schedule

is specified. It defines the time intervals during which the functions are executed to

retrieve and compute the metrics. These time intervals are specified by means of

start time, duration, and frequency. Examples of the latter are weekly, daily, hourly,

or every minute. Obligations, the last section of an SLA, define the SLOs, guarantees

and constraints that may be imposed on the SLA parameters.

27

2.3.1 Why we use WSLA

In fact, there are many approaches towards the QoS specification and

management for Web services. In this subsection we provide more details for five of

them and we conclude to our choice to choose WSLA for our work. These five

approaches are:

 the Web Service Level Agreement (WSLA) developed by IBM,

 the Web Service Offering Language (WSOL) developed at Carleton

University of Canada

 SLAng developed at University College London, UK

 a UDDI eXtension (UX) developed at Nanyang Technological University,

Singapore, and

 UDDIe developed at Cardiff University, UK.

Web Service Level Agreement (WSLA)

As already described, WSLA was developed by IBM and is used to define

SLA documents [18]. A WSLA is an agreement between a service provider and a

customer and as such defines the obligations of the parties involved. Primarily, it is

the obligation of a service provider to perform a service according to agreed-upon

guarantees for the service parameters on the technical level.

The design goals of WSLA are a formal and flexible XML-based language

for SLA definitions between different organizations, a wide acceptance and

applicability to existing e-business systems and standards, nested relationships of

service clients and providers, delegation of monitoring tasks to third parties, and an

SLA-driven configuration of the managed resources, i.e. deriving configuration

settings directly from SLAs.

28

Web service offering language (WSOL)

A research group from Carleton University in Canada has developed [31] the

notion of providing various classes of service for one and the same functional service

specification, which differ in QoS level and management efforts. WSOL allows the

formal and unambiguous specification of prices, monetary penalties, management

responsibilities and third parties, especially accounting parties.

The main targets of the WSOL project are the creation of service offerings,

definition of QoS constraints, management statements, reusability, and a mechanism

called service offering dynamic relationship (SODR) allowing for switching between

services.

Another important design goal is a low run-time overhead achieved through

defining classes of services instead of individually managed SLAs. WSOL also

supports reusability of specifications. This is realized by means of the concept of

constraint groups and constraint group templates to include formerly defined

elements and import of elements defined in other WSOL files.

SLAng

As an XML-based language for defining service level agreements, SLAng

[20], was developed at the University College London, UK. The main targets of

SLAng are middleware, and applications as well as the specification of non-

functional parameters at service level in order to enable QoS description and

negotiation.

At the moment SLAng can be used only for static SLAs, since it does not

support dynamic lookup of new services and update of non-functional service

properties at runtime.

UX

UX [34] is an architecture providing QoS-aware and cross organizational

support for UDDI, developed at the School of Computer Engineering, Nanyang

Technological University, Singapore. The first goal of UX is to rate services with

29

reputation in order to allow service requestors to discover services with good quality.

The second one is to share the ratings among UX servers in different domains.

UDDIe

UDDIe [30] was developed at Cardiff University, UK. It extends UDDI’s

functionalities within UDDI. Service providers can associate their services with QoS

properties such as bandwidth, CPU, and memory requirements, which are encoded in

the service interface. They can make their services available for a period of time by

means of leasing. UDDIe introduced a concept allowing the definition of three

leasing types including finite, infinite, and future lease. Furthermore, UDDIe

supports qualifier-based search by introducing qualifiers such as EQUALto,

LESSthan, and GREATERthan.

Comparison of approaches

Here we make a comparison of the previous approaches, used for specifying

and managing SLAs. The assessment criteria used are requirement specification,

class of service, QoS aspects, QoS mapping, and flexibility:

Requirement specification: Both Web service clients and providers need to specify

non-functional requirements and offers. The specification should ensure the

compatibility and comparability of the specifications done by clients and service

providers.

Class of service: QoS parameters differ in quality, quantity, and the corresponding

monetary charge. Grouping similar parameters into a class or category that

characterize a service will ease the utilization of the service.

QoS aspects: A Web services related framework should support more than the

classical QoS parameters such as jitter and bandwidth. Aspects such as security,

reliability, transaction as well as custom defined aspects should also be considered.

QoS mapping: An overall QoS support requires QoS support during the whole

communication process, ranging from the QoS specification to monitoring at

runtime. QoS has also to be considered through the different layers in terms of the

30

Internet Model. Specifications in higher layers have to be carefully mapped onto

lower layers.

Flexibility: An approach should be easy to use, extensible, and standards

conforming.

The assessment of the introduced approaches is summarized in Table 1. The symbols

mean:

“++”: excellent concept

“+”: good concept

“O”: satisfying

“-“: poor or not available

 Requirements
specification

Class of
service

QoS
aspects

QoS
mapping

Flexibility

WSLA ++ O + - ++

WSOL ++ ++ + - +

SLang + - + - +

UX O - O - O

UDDIe O - O - O

Table 2.1: Assessment of the introduced approaches

From the table above we can conclude that none of the introduced approaches

satisfy all the assessment criteria. WSLA and WSOL are the best solutions as they

meet almost all criteria, except QoS mapping that is not supported. Slang is a

“medium” solution as it has a good concept of three criterias and UX and UDDIe are

the least used approaches, as they only have a satisfying concept of three criterias.

From the first two approaches, we used WSLA because it supports the

definition of Service Level Objectives that are appropriate in our work. In addition,

in WSLA all the metrics with the agreed values are defined explicitly, in contrast to

WSOL that supports only the creation of service offerings and definition of QoS

constraints. Finally, WSLA is an XML-based language that is very easy in use and is

supported by many tools.

31

Figure 2.3: SLA structure as defined in WSLA

2.3.2 SLA Parameters and metrics

SLA parameters [18] are properties of a service object; each SLA parameter

has a name, type and unit. SLA parameters are computed from metrics which either

define how a value is to be computered from other metrics or describe how it is

measured. For this purpose, a metric either defines a function that can use other

metrics as operands or it has a measurement directive that describes how the metric’s

value should be measured. Since SLA parameters are the entities that are surfaced by

a Measurement Directive to a Condition Evaluation Service, it is important to define

which party is supposed to provide the value (source) and which parties can receive

it, in an event-driven manner (push) or through polling (pull). In Figure 2.4, one

metric is retrieved by probing an interface (service probe) while the other ones

(TXcount, Timecount) are directly retrieved from the service provider’s management

system.

32

Figure 2.4: Sample Elements of Service Description

 A metric’s purpose is to define how to measure or compute a value. Besides a

name, a type and a unit, it contains either a function or a measurement directive and a

definition of the party that is in charge of computing this value. Figure 2.5 shows an

example of composite metric, containing a function.

Figure 2.5: Metric example in WSLA

The example above describes the average response time metric. The metric is

of type double and its unit is seconds. ACMEProvider will measure its value. In its

function definition, the function Divide is applied to two operands, which in turn are

again functions. The function TSSelect yields elements of a time series. The element

33

“0” means the most recent value. Specific functions, such as Minus, Plus or TSSelect

are extensions of the common function type. Operands of functions can be metrics,

scalars and other functions. It is expected that a measurement service implementation

is able to compute functions. Specific functions can be added to the standard set as

needed.

Figure 2.6: SLA parameter example in WSLA

2.3.3 Obligations

Based on the common terminology established in the service definition part

of the WSLA document, the parties can unambiguously define the respective

guarantees that they give to each other. The obligations section of the SLA may

contain any number of guarantees. The WSLA language provides two kinds of

guarantees:

• Service level objectives represent promises with respect to the state of SLA

parameters.

• Action guarantees are promises to perform an action. This may include

notifications of service level objective violations or invocation of management

operations. Important for both types of guarantees is the definition of the obliged

party and the definition of when they need to be evaluated. The actual definition of

the guarantees’ content is specific to each type.

2.3.4 Service level objectives

A service level objective expresses a commitment to maintain a particular

state of the service in a given period. Any party can take the obliged part of this

34

guarantee. However, this is typically the service provider. A service level objective

has the following elements:

 The Obliged is the name of a party that is in charge of delivering what is

promised in this guarantee.

 One or many ValidityPeriods define when the guarantee is applicable.

 A logic Expression defines the actual content of the guarantee, i.e., what is

asserted by the service provider to the service customer. A logic expression

follows first order logic. Expressions contain the usual operators and, or, not,

etc., which connect predicates or, again, expressions. Predicates can have

SLA parameters and scalar values as parameters. By extending an abstract

predicate type, new domain-specific predicates can be introduced as needed.

Similarly, expressions could be extended e.g., to contain variables and

quantifiers. This provides the parties the expressiveness to define complex

states of the service.

 A service level objective may have an EvaluationEvent, which defines when

the expression of the service level objective should be evaluated. The most

common evaluation event is NewValue, each time a new value for an SLA

parameter used in a predicate is available.

 Alternatively, the expression may be evaluated according to a Schedule. A

schedule is a sequence of regularly occurring events. It can be defined within

a guarantee or a commonly used schedule can be referred to.

The example of figure 2.7 illustrates service level objectives:

35

Figure 2.7: Service Level Objective example in WSLA

The example shows a service level objective given by ACMEProvider for one

month in 2002. It guarantees that the SLA parameter AverageResponseTime must be

less than 0.5 if the SLA parameter Transactions is less than 10000. This condition

should be evaluated each time a new value for the SLA parameter is available.

2.3.5 Action guarantees

An action guarantee [9] expresses a commitment to perform a particular

activity if a given precondition is met. Any party can be the obliged of this kind of

guarantee. This particularly includes also the supporting parties of the contract. An

action guarantee comprises of the following elements and attributes:

 The Obliged is the name of a party that must perform an action as defined in

this guarantee.

 A logic Expression defines the precondition of the action. The format of this

expression is the same as the format of expression in service level objectives.

An important predicate for action guarantees is the Violation predicate that

determines whether another guarantee, in particular a service level objective,

has been violated.

36

 An EvaluationEvent or an evaluation Schedule defines when the

precondition is evaluated.

 The QualifiedAction contains a definition of the action to be invoked at a

particular party. The concept of a qualified action definition is similar to the

invocation of an object method in a programming language, replacing the

object name with a party name. The party of the qualified action can be the

obliged or another party. The action must be defined in the corresponding

party specification. In addition, the specification of the action includes the

marshalling of its parameters. One or more qualified actions can be part of an

action guarantee.

 The ExecutionModality is an additional means to control the execution of

the action. It can be defined whether the action should be executed if a

particular evaluation of the expression yields true. The purpose is to reduce,

for example, the execution of a notification action to a necessary level if the

associated expression is evaluated very frequently. Execution modality can be

either: always, on entering a condition or on entering and leaving a

condition.

The following example (figure 2.8) illustrates an action guarantee:

Figure 2.8: Action Guarantee example in WSLA

37

2.4 Implementation

2.4.1 Implementing Tools

For the purposes of our work, we have chosen to use some tools for the

implementation, among many alternative solutions. The criteria for our selection

were the connectivity and the efficient collaboration between them. These tools are:

 Sun GlassFish Application Server

 Eclipse

 WSLA plug-in for Eclipse

 PostgreSQL

Sun GlassFish Application Server

GlassFish Application Server 1 is an open-source application server

implementation of Java EE 5. In project GlassFish, Web services are first-class

objects that can be easily monitored and managed.

GlassFish can track and graphically display operational statistics, such as the

number of requests per second, the average response time and the throughput. One

can enable monitoring for each of the Web services within an application and set the

monitoring level to one of the following:

 HIGH — GlassFish monitors the response times, throughput, the total

number of requests, the faults, and the details of the SOAP message trace.

 LOW — GlassFish monitors only the response times, throughput, the total

number of requests, and the faults.

 OFF — GlassFish collects no monitoring data.

1 https://glassfish.dev.java.net/

38

If monitoring is on for a Web service, it applies to all the operations in that

Web service.

Eclipse and WSLA plug-in for eclipse

Eclipse 2 is a free open-source Java program environment, using a custom

user interface toolkit that runs on all platforms that supports Java 2. Eclipse requires

a Java 2 runtime, so you need to install the Java 2 SDK first before installing Eclipse.

It provides a powerful and feature rich integrated development environment (IDE)

for Java.

There's an active community of third party Eclipse plug-in developers, both

open source and commercial. As an Eclipse user, you're regularly rewarded with

great new features from official Eclipse releases and from the plug-in development

community. Such a plug-in is the WSLA plug-in 3 for eclipse developed by SOA-

Blog.net. It is a free Eclipse plug-in that adds Web Service Level Agreement

(WSLA) Language Support to the Eclipse platform. This tool is very useful as it

provides a graphical interface to create WSLA documents with all its elements,

including the Parties, the SLA Parameters and the Obligations.

The WSLA plug-in itself can be grouped into five main components:

 WSLA Core Model: provides access to WSLA model objects by mapping

the XML document to a semantic model.

 WSLA Multipage Editor: a user-friendly form based editor to modify

service level agreements that hides the complexity of XML. However, the

editor also allows you to edit the XML source code directly, providing

advanced editing capabilities such as syntax highlighting and outline views.

2 http://www.eclipse.org/

3 http://soa-blog.net/index.php?/archives/29-WebService-Level-Agreement-WSLA-Eclipse-
Plugin.html

39

 WSLA Report Generator: service level agreements reports can be printed

out for review or audition from an WSLA model. This is especially beneficial

to communicate SLAs with non technical users.

 WSLA Wizards: assist in the creation and management of WSLA

documents.

 WSLA Help System: a comprehensive and extensive help system

familiarizes with the usage of the plug-in. The help system can be accessed

via the packaged eclipse help, the invocation of context sensitive help or

online by visiting the WSLA InformationCenter. In addition, the entire

WSLA specification is included as a reference in the help system.

Figure 2.9: Main window of the WSLA plug-in for eclipse

 Figure 2.10 shows a sample WSLA document, as extracted by the WSLA

plug-in of eclipse. It is like an XML-editor, which discriminates with different colors

the elements, the values and the types.

40

Figure 2.10: A sample WSLA document extracted from the eclipse plug-in

PostgreSQL

PostgreSQL 4 is a powerful, open source object-relational database system. It

has more than 15 years of active development and a proven architecture that has

earned it a strong reputation for reliability, data integrity, and correctness. It runs on

all major operating systems, including Linux, UNIX and Windows. It is fully ACID

compliant, has full support for foreign keys, joins, views, triggers, and stored

procedures in multiple languages. It includes most SQL92 and SQL99 data types,

including INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR, DATE,

INTERVAL, and TIMESTAMP. It also supports storage of binary large objects,

including pictures, sounds, or video. It has native programming interfaces for C/C++,

Java, .Net, Perl, Python, Ruby, Tcl, ODBC, among others, and exceptional

documentation.

It also provides a graphical interface, called pgAdmin. pgAdmin is a

graphical front-end administration tool for PostgreSQL, which is supported on most

popular computer platforms. The program is available in more than a dozen of

4 http://www.postgresql.org/

41

languages, and is free software released under the Artistic License. The stable release

(named pgAdmin II) was first released on 16 January 2002.

2.4.2 Implementation procedure

In this section we analyze the implementation procedure of our work. It consists of

six steps that are given in detail below:

1. Creation of WSLA documents using WSLA Plug-in for Eclipse.

2. Parsing of the WSLA document.

3. Storing of the ServiceLevelObjectives in a PostgreSQL database.

4. Execution of the Web Service using Sun GlassFish Application Server and

extraction of the available metrics.

5. Computing of further metrics using the metrics, provided by GlassFish.

6. Comparing the agreed metrics values of SLA with the metrics extracted by

the monitoring system

Figure 2.11: Steps of the implementation procedure

Creation of WSLA documents using WSLA Plug-in for Eclipse

For the purposes of our work it is essential to create WSLA documents, as it

is difficult to have the real SLA documents the provider signs with the client. They

are usually private documents that are not publicly available. For this reason, we

used a WSLA plug-in for eclipse to create our WSLA documents.

Parsing of the WSLA document

As described in the previous section, a WSLA document has many elements,

such as parties, service definition, obligations etc. From all of these, we are interested

in the obligations, that define the metrics values that were agreed between the service

provider and the client. In order to collect this information, we made a parser that is

42

basically an XML parser. This parser collects the following elements of the WSLA

document:

 The Web service name

 The obliged party

 The start of validity period

 The end of validity period

 The predicate that applies for the specific value

 The name of the SLA parameter

 The agreed value of the SLA parameter and

 The EvaluationEvent

Storing of the ServiceLevelObjectives in a PostgreSQL database

The previous collected elements must be saved permanently, in order to be

used later. For this reason, we have used a PostGreSQL database to save them. In

this database, we have created a table with nine columns (plus one for the ID), each

of which store the corresponding value. The web service name, the obliged party, the

predicate, the SLA parameter name and the Evaluation Event are stored as text

values, the start and validity period as date values and the agreed value of the SLA

Parameter as a numeric value.

Figure 2.12: WSLA elements stored in the PostgreSQL database

43

Execution of the Web Service on Sun GlassFish Application Server and

extraction of the available metrics.

As described in the tools subchapter, Sun GlassFish Application Server is a

very useful tool that allows us to manipulate web services uploaded on it. We use the

monitoring feature to collect all the metrics that are available. The metrics values are

also depicted with graphs along with the time (figure 2.15), but we use the asadmin

console to collect them via command line. As mentioned below, there are three levels

of monitoring in Glassfish. We set the monitoring level to HIGH, in order to have as

many metrics as possible. Below (figure 2.14), is the output of the statistics results of

the running web service in the asadmin console.

Figure 2.13: Metrics values in asadmin console

Figure 2.14: Graphical depiction of the Response Time

44

The command line results are more detailed, as they also provide composed

metrics, such as min response time or average response time. Specifically, the

extracted metrics values are:

 Average response time

 Min response time

 Max response time

 Response time

 Throughput

 Total number of authentication failures

 Total number of authentication successes

 Total number for requests that caused SOAP faults

 Total number of successful invocations of the method

Computing of further metrics using the metrics, providing by GlassFish

There are some other metrics that can be calculated using the above metrics,

provided by GlassFish. These metrics are availability and reliability:

Availability is the probability that a service is up and running. It can be calculated in
the following way:

ationsTotalInvoc

sInvocationsuccessful
tyavailabili

Reliability [28] is the Ratio of the number of error messages to total messages

and can be calculated in the following way:

100x
gestotalMessa

stotalFault
yreliabilit

45

Comparing the agreed metrics values of SLA with the metrics extracted by the

monitoring system

Now that we have the metrics values of the web service and the agreed values

of the SLA, we can do the condition evaluation. Thus, we check if the web service

running on the application server has a corresponding SLA with the agreed values

stored in the database. If there is such a matching, we can compare the metric values

to see and if there is any violation. Once the Condition Evaluation Service has

determined that an SLO has been violated, corrective management actions need to be

carried out. The Management Service will retrieve the appropriate actions to correct

the problem, as specified in the SLA.

2.4.3 UML diagrams

The UML class diagram of our implementation is shown in Figure 2.14. The

ServiceLevelObjectiveClass implements objects of the corresponding type. It defines

all the fields of the ServiceLevelObjective as string type and contains all the

appropriate set and get methods to handle them.

Figure 2.15: The UML class diagram of our implementation

46

 The role of the DomParser class (step 2) is to parse the WSLA document. As

we have already mentioned, WSLA is an XML-based language, so a simple XML

parser is needed. Methods parseDocument() and parseXmlFile() are responsible for

the parsing, getIntValue(), getServiceLevelObjective() and getTextValue() methods

are used to get the values of each of the corresponding types and the printData()

method prints the results (name and values of metrics), after we have inserted the

parsed values in the PostGreSQL database with the insertDatabase() method.

The RunCommand class (steps 4-6) collects the metrics from the GlassFish

ApplicationServer and computes additional metrics, such as availability and

reliability. It checks the web service names to see if there is a corresponding WSLA

document for the deployed Web services at the database and if there is such a

correlation it checks for possible violations in all available metric values. An alert

message is shown for every violation.

The UML sequence diagram is shown in Figure 2.15 and corresponds to steps

4-6 of the previous section. In the beginning, the user asks the condition evaluator if

there are any violations in the metrics values. The condition evaluator follows four

steps to complete the procedure.

1. It asks for and gets the metrics from the Glassfish Application Server.

2. The metric computer, after getting the retrieved metrics from Glasshfish,

computes some further metrics and returns them to the condition evaluator.

3. The condition evaluator gets the agreed metric values and the predicate

from the WSLA database and

4. The condition evaluator computes possible violations and returns them to

the user.

47

Figure 2.16: The UML sequence diagram

48

Chapter 3

3 Computing QoS Values of WS Compositions

3.1 Introduction

 Enterprises can use a singular service to accomplish a specific business task,

such as billing or inventory control. However, for enterprises to obtain the full

benefit of Web services, business process and transactional-like Web services

functionality is required that is well beyond that found in informational Web

services. When enterprises need to compose several services together to create a

business process such as customized ordering, customer support, procurement, and

logistical support, they need to use complex Web services. Complex or composite

services typically involve the assembly and invocation of many pre-existing services

possibly found in diverse enterprises to complete a multi-step business interaction.

Consider for example a supply-chain application involving order taking, stocking

orders, sourcing, inventory control, financials, and logistics. Numerous document

exchanges will occur in this process including requests for quotes, returned quotes,

purchase order requests, purchase order confirmations, delivery information, and so

on. Long-running transactions and asynchronous messaging will also occur, and

business “conversation” and even negotiations may occur before the final agreements

are reached. This functionality is a typical characteristic of business processes.

Complex Web services can in turn be categorized according to the way they

compose simple services. Some complex Web services compose simple services that

exhibit programmatic behavior whereas others compose services that exhibit mainly

interactive behavior where input has to be supplied by the user. This makes it natural

to distinguish between the following two types of Web services:

49

 Complex Web services that compose programmatic Web services: The clients of

these Web services can assemble simple services, to build complex services. A

typical example of a simple service exhibiting programmatic behavior could be

an inventory checking service that comprises part of an inventory management

process.

 Complex services that compose interactive Web services: These services expose

the functionality of a Web application’s presentation layer. They frequently

expose a multi-step Web application behavior that combines a Web server, an

application server, and underlying database systems and typically deliver the

application directly to a browser and eventually to a human user for interaction.

Clients of these Web services can incorporate interactive business processes into

their Web applications, presenting integrated applications from external services

providers. Obviously interactive services can be combined with programmatic

services thus delivering business processes that combine typical business logic

functionality with Web browser interactivity. [26]

3.2 Types of Web service composition

There are two types of Web service composition based on the distinction

between syntactic and semantic Web services: Static and Dynamic Compositions.

3.2.1 Static Services Composition

A relevant feature for Web services is the mechanism for their reuse when

complex tasks are carried out. Composition rules deal with how different services are

composed into a coherent global service. In particular, they specify the order in

which services are invoked, and the conditions under which a certain service may or

may not be invoked. Two possible approaches are currently investigated for the static

service composition.

The first approach, referred to as Web services orchestration, combines

available services adding a central coordinator (the orchestrator) which is responsible

50

for invoking and combining the single sub-activities. Orchestration refers to an

executable business process that may result in a long-lived, transactional, multi-step

process model. With orchestration, the business process interactions are always

controlled from the perspective of one of the business parties involved in the process.

The second approach, referred to as Web services choreography, does not

assume the exploitation of a central coordinator but it defines complex tasks via the

definition of the conversation that should be undertaken by each participant.

Choreography tracks the sequence of messages that may involve multiple parties and

multiple sources, including customers, suppliers, and partners, where each party

involved in the process describes the part it plays in the interaction and no party

“owns” the conversation.

Figure 3.1: Orchestration and choreography

Choreography is more collaborative in nature than orchestration (figure 3.1).

It is described from the perspectives of all parties, and, in essence, defines the shared

state of the interactions between business entities. This common view can be used to

determine specific deployment implementations for each individual entity.

Choreography offers a means by which the rules of participation for collaboration

can be clearly defined and agreed to, jointly. Each entity may then implement its

portion of the choreography as determined by their common view.

51

3.2.2 Dynamic Services Composition

Web Services [7] are designed to provide interoperability between different

applications. The platform and language independent interfaces of the web services

allow the easy integration of heterogeneous systems. Web languages such as UDDI,

WSDL and SOAP define standards for service discovery, description and messaging

protocols. However, these web service standards do not deal with the dynamic

composition of existing services. The new industry initiatives to address this issue

such as BPEL4WS focus on representing composition where flow of the information

and the binding between services are known a priori. A more challenging problem is

to compose services dynamically. In particular, when a functionality that cannot be

realized by the existing services is required, the existing services can be combined

together to fulfill the request. The dynamic composition of services requires the

location of services based on their capabilities and the recognition of those services

that can be matched together to create a composition. The full automation of this

process is still the object of ongoing research activity, but accomplishing this goal

with a human controller as the decision mechanism can be achieved. The main

problem for this goal is the gap between the concepts people use and the data

computers interpret. This barrier can be overcome using semantic web technologies.

3.3 Web service composition patterns

Web services can be composed using different patterns. These patterns are

based on the usual workflow patterns and are analyzed in this subsection. There are

many situations where two or more of these patterns are combined to create a

complex web service composition. We’ll illustrate each of the patterns with a figure.

3.3.1 Sequence Pattern

The sequence pattern indicates that the web services are executed one after

the other, not in parallel but in sequence. The sequential order is predefined and must

be followed up in order to have a successful execution.

52

Figure 3.2: Sequence pattern

3.3.2 Parallel pattern

The parallel pattern (figure 3.3) indicates that two or more web services can

be executed in parallel. This means that they are independent and the execution of

WS2 does not affect the execution of WS3. The order in which they are processed is

not defined, but in the end they are merged with synchronization.

Figure 3.3: Parallel pattern

3.3.3 Synchronization pattern

The synchronization pattern (figure 3.4) indicates that the process will

continue after the parallel pattern of the Web service is executed. This pattern is

implemented mostly by the use of receive statements.

Figure 3.4: Synchronization pattern

3.3.4 Exclusive choice pattern

The exclusive choice pattern (figure 3.5) defines a point in the business

workflow, where a certain condition based on a decision in the flow is taken. In fact

a XOR condition is used.

53

Figure 3.5: Exclusive choice pattern

3.3.5 Simple merge pattern

The simple merge pattern (figure 3.6) defines a point in the flow of execution,

where two or more alternative branches are merged. It is important to mention that

the simple merge pattern does not support any kind of synchronization, which means,

that none of the alternative processes is ever executed in parallel.

Figure 3.6: Simple merge pattern

3.3.6 Conditional pattern

The conditional pattern (figure 3.7) indicates that there are multiple activities

(a1, a2, …, an) among which only one activity can be executed. As we’ll describe

later, each of these activities ai have a pi probability to be executed.

Figure 3.7: Conditional pattern

54

3.3.7 Synchronizing merge pattern

The synchronizing merge pattern (figure 3.8) marks a point in the process

execution, where several branches merge into a single one. If one or more processes

are active, the flow is triggered until these processes are finished.

Figure 3.8: Synchronizing merge pattern

3.3.8 Multi-merge pattern

The multi-merge pattern (figure 3.9) joins two or more different workflows

without synchronization together. This means that results, processed on different

paths, are passed to other activities in the order in which they are received.

Figure 3.9: Multi-merge pattern

55

3.3.9 Loop pattern

The loop pattern (figure 3.10) indicates that a certain point in the composition

block is executed repeatedly. There have to be no restrictions on the number,

location, and nesting of these points. In our examples we use the while loop.

Figure 3.10: Loop pattern

3.3.10 Deferred choice pattern

The deferred choice pattern (figure 3.11) describes a point in a process where

some information is used to choose one among several alternative branches. This

information is not necessarily available when this point is reached.

Figure 3.11: Deferred choice pattern

3.3.11 Interleaved Parallel Routing

In this pattern, a collection of activities is executed in an arbitrary order

(figure 3.12). Each activity in the collection is executed once and the order between

the activities is decided at run-time. In any case, no two activities in the collection

can be active at the same time.

56

Figure 3.12: Interleaved parallel routing

3.3.12 Milestone pattern

This pattern [25] describes a situation in which a certain activity can only be

enabled if a milestone has been reached which has not yet expired (figure 3.13). A

milestone is a point in the process where a given activity A has finished and a

subsequent activity B has not yet started. For example, this is the case of a student

which can cancel a subject at any time after the semester has begun and prior to the

first exam.

Figure 3.13: Milestone pattern

57

3.4 Computing basic metrics for composed services

In this section we study the problem of computing some basic metrics for

composed web services, having available the corresponding values of the constituent

simple services. As it is difficult and inaccurate to define formulas for all the metrics

mentioned in chapter 1, we have made an effort to calculate the most commonly used

metrics for as many as possible composition patterns. These metrics are: response

time, throughput, reliability and cost, defined as RT(s), T(s), R(s) and C(s)

respectively. The constituent web services are denoted as s1, s2, …, sn and the web

service composition that includes these services as w(s1, s2, …, sn). For the

conditional pattern we denote as pi the probability of a service si to be selected.

Finally we denote as SO(si, pi) the selection operation for the conditional patterns,

which selects the service si with execution probability pi.

3.4.1 Computing response time

The response time metric compute the time a service provider needs to serve

a client request. It is usually defined in milliseconds and is the most commonly used

metric for web services.

For the sequential pattern, the response time is defined as the sum of the

response times of the constituent web services:

 For the parallel, the synchronization and the simple merge pattern, the

response time of the compositions is defined as the maximum response time of the

constituent web services.

58

For the exclusive choice and the deferred choice pattern, the response time is

calculated by the selection operation, which selects one of the n possible Web

services. In particular it is equal to the response time of the selected web service and

is defined as:

)

 For the conditional and the synchronizing merge pattern, the response time is

defined as the maximum response time of the selected web services, chosen by the

selection operation.

 Finally, the response time of the loop pattern is n times the response time of

the loop, where n is the number of iterations.

3.4.2 Computing throughput

Throughput computes the number of instances completed per unit time,

usually per second. It is a very useful metric as it measures the performance of a web

service. For composed web services, throughput can be extracted if we have

available the throughputs of the constituent web services.

For the sequential pattern, if we have n constituent web services, each of

them executed only once, the throughput of this composed service is defined from

the type:

59

Proof: Suppose that we have three web services, with throughputs x req/s, y req/s

and z req/s, respectively. Then, for one invocation of the first web service 1/x

seconds are needed. Accordingly, 1/y seconds and 1/z seconds lasts one invocation

of the second and third web service. If we compose these web services sequentially,

we need (1/x + 1/y + 1/z) seconds. So, the throughput of the composed service is the

inverse of this sum.

 If we have web services, that are executed in parallel, the throughput of the

composed web service is equal to the minimum of the constituent services’

throughputs. This means that in order for the composed service to increase the

overall throughput, it would need to optimize the service with the lowest throughput.

So, the throughput’s type, for the parallel, the synchronization and the simple merge

patterns is:

For the exclusive choice and the deferred choice patterns, the throughput is

equal to the throughput of the selected web service.

For the multi-choice/conditional and the synchronizing merge patterns, the

throughput is equal to the minimum throughput of the selected web services.

Finally, the throughput of a composed web service using the pattern loop with

n iterations is defined by the type:

60

 n

i loopT

sT

1)(

1
1

)(

3.4.3 Computing reliability

As described in the first chapter reliability represents the ability of a service

to function correctly and consistently and is usually expressed in terms of number of

transactional failures per month or year. In our work we define reliability as the

probability that the service can be successfully completed.

 For the sequential, parallel, synchronization, simple merge and loop pattern,

reliability is defined as the product of the reliabilities of the constituent web services.

This happens because in all these situations all the services of the composition are

executed. For example, if we have a composition of three web services s1, s2, s3,

following one of the above mentioned patterns, with probability 70%, 80% and 90%

to be completed successfully, respectively, the overall reliability of the composed

service is approximately 50%.

 For the loop pattern the availability is equal to the loop’s availability powered

to n, where n is the number of iterations.

61

For the exclusive choice and the deferred choice pattern, the overall

reliability is defined by the reliability of the selected web service. The selection

operation SO is used once again for this reason.

Finally, the reliability for multi-choice/conditional and synchronizing merge

patterns depends on the reliability of the selected services. Thus, it is equal to the

product of the n corresponding reliabilities.

3.4.4 Computing cost

Computing cost is defined the amount of money paid for the composed

service. It is obvious, that the cost is equal to the sum of costs of the n constituent

web services, except for the case of conditional patterns where it is exactly the same

with the cost of the selected service. Thus, the cost for sequential, parallel and

synchronization patterns is:

For the conditional and synchronizing merge patterns, the cost is:

For the loop pattern, if we have n iterations, the cost is:

For the exclusive choice and deferred choice patterns, the cost is:

n

i
ii psSOCsC

1

)),(()(

62

3.5 Summarizing the results

In table 3.1, we summarize the results of the previous section. As we can see,

there are three groups of composition patters that have the same metric types. These

groups are: exclusive choice – deferred choice, multi-choice – synchronizing merge

and parallel – synchronization – simple merge. The sequence pattern has different

types for the response time and throughput metric and the same reliability and cost

types with the other patterns, while the loop pattern is differentiated in all the metrics

from the other patterns.

 Metric

Pattern

Response Time Throughput Reliability Cost

Sequence

Parallel

Synchronization

Exclusive choice)

Simple merge

Multi-choice/
conditional

Synchronizing
merge

Loop

Deferred choice)

Table 3.1: Metric Types for composed Web services

 n

i loopT

sT

1)(

1
1

)(

n

i
ii psSOC

1

)),((

n

i
ii psSOC

1

)),((

63

3.6 Use case

In this section, we provide a use case example to exemplify how we can

compute the previous metrics of a composed service that combines many different

patterns. We assume that we have a composed web service that simulates the use of a

calculator and we want the result of the following mathematical operation:

This operation can be described with a UML sequence diagram:

Figure 3.14: UML activity diagram for use case

As we can see from the diagram, this complex service combines sequence

and synchronization patterns. Specifically, the second block of operations includes

two synchronizations patterns and two sequence patterns, while the third block

includes one synchronization pattern and one sequence pattern. The power to 3 and

64

power to 2 aren’t loop operations, since we already know the result of each block.

Thus, the power to three of the second block means that we have two more

multiplication operations (RT(block)
3). Let’s now compute the metrics described in the

previous section having available the metrics of the constituent services, as described

in table 3.2:

 Metric
Operation

Response Time Throughput Reliability Cost

Add 10ms 40req/s 98% 5

Minus 10ms 40req/s 98% 5

Multi 40ms 10req/s 95% 20

Division 40ms 10req/s 95% 20

Table 3.2: Metric values for constituent Web services (use case)

Response time: To compute the response time of this composed web service

we start from the inner operations. To make the calculation clearer we use the same

UML sequence diagram with the evolution of the response time at the right corner of

each constituent operation.

Figure 3.15: Response time activity diagram (use case)

65

As we can see, the response time of the composed service that computes the

complex mathematical operation is 220ms.

Throughput: With the same descriptive way, we calculate the throughput of

the composed service.

Figure 3.16: Throughput activity diagram (use case)

As we can see, the throughput of the composed service that computes the

complex mathematical operation is 20/11 1,8req/sec. To exemplify the calculation,

below we prove the throughput value of the second block.

The throughput of the first inner synchronization pattern is:

T(s) = min{40,40,10} = 10req/sec

Then, an add operation is executed in sequence:

66

This addition is executed in parallel with the division operation:

T(s) = min{10,8} = 8req/sec

Then, a multiplication activity is executed in sequence:

 Finally, two multiplications operations take place to execute the power to 3
operation:

 Reliability: The UML diagram below shows how we compute the reliability

value of our composed service:

67

Figure 3.17: Reliability activity diagram (use case)

 The reliability of the composed service is 54%. That means that the

probability to be executed successfully is 54%. This value is the result of the

multiplication of the availability values of all the constituent services.

 Cost: Finally, we compute the cost of the composed service, which is in fact

the amount of money that the client has to pay in order to use this service. The

following diagram shows the evolution of the cost value.

68

Figure 3.18: Cost activity diagram (use case)

The cost of our composed service is 210 units. This value is the result of the

addition of the costs of all the constituent services.

69

Chapter 4

4 Experimental Evaluation

4.1 Introduction

In this Section we experimentally measure some basic metrics of web

services. We provide diagrams that depict the performance of the services. It is worth

mentioning that our experimental findings confirm to a great extent the theoretical

analysis of the previous chapter.

To provide a representative overview on the QoS values, we monitored the

Web services for over 10 hours, while constantly evaluating all parameters. Our Web

services were implemented with Java and the composition was fulfilled in the

ActiveBPEL environment.

All experiments were carried out in a PC with processor Intel Core2 Duo 1,80

GHz, 2 GB Ram, running Windows Vista 32-bit. Also, time was measured in

milliseconds and the throughput in requests per second. We assumed that the cost of

a web service is measured in Euros for our experiments.

4.2 Experiments

The first experiment we have performed is measuring the time in connection

with the number of BPEL requests (figure 4.1). The Web service we use is an

addition Web service, which simply adds two integers. We start the experiments

from five requests, and we scale up to 25 activities, corresponding to a service that

performs the addition operation in equal time.

70

Figure 4.1: Response Time and number of BPEL activities

As expected, the response time is increasing accordingly to the number of

BPEL activities. For example, the case of 5 activities takes 12ms, for 15 activities the

response time is 33ms and for 25 requests it is 55ms.

In figure 4.2 we report the results of our second experiment. We are running a

simple service on the Glassfish application server and we measure its response time

for consecutive executions. As we can see, only for the first execution the response

time is 20 ms, while for all others it fluctuates from 1ms to 4ms. This behavior may

be justified by the server’s instantiation of the service. We must mention that nothing

else was running in the background, except the application server, so as to affect the

service’s execution.

71

Figure 4.2: Response time and number of requests

Our next experiment has been executed to validate the response time of

composed services, following a simple sequence pattern. We use 7 different

examples in order to have more precise results. We have 5 different simple Web

services and we combine them sequentially in pairs to collect the total response time.

This composition of Web services simulates the use of a calculator, while each of

these Web services executes a different operation (add, minus, multiplication,

division, power).

72

Figure 4.3: Response Time of composed Web services

 WS1 RT (ms) WS2 RT (ms) composite service RT (ms)
add-multi 16 18 36
add-division 15 17 33
multi-division 19 18 40
multi-power 18 21 42
division-power 19 23 43
minus-power 14 20 35
multi-minus 19 15 36

Table 4.1: Response time for the constituent and the composed Web service

The experimental results of figure 4.3, confirm the response time formula for

complex Web services, proposed in the previous chapter. We can observe that the

response time of the composed service with two sequent web services is almost equal

to the sum of the response times of the constituent Web services. In all examples,

there is deviation of 1-3ms, that is maybe due to the workload of the engine during

the initialization for each of the compositions.

 A similar experiment (figure 4.4) is used to verify the throughput of

composed services, following a sequence pattern.

73

Figure 4.4: Throughput of composed Web services

WS1 Throughput
(req/s)

WS2 Throughput
(req/s)

composite service
Throughput (req/s)

add-multi 62 56 29
add-division 67 59 30
multi-division 53 56 27
multi-power 56 48 25
division-power 53 43 23
minus-power 71 50 29
multi-minus 53 67 29

Table 4.2: Throughput for the constituent and the composed Web service

The table 4.2 and the corresponding figure illustrates how the throughput of

the composed service is affected by the throughputs of the simple services

composing it. As we can see, the composed service has less throughput that the

throughput of its constituent services and this throughput follows almost precisely

the formula we proposed in the previous chapter. Some little variations, as in the

previous experiment, are due to the engine’s workload for the initializations.

 Another experiment we have conducted is to investigate the relationship

between the response time and the throughput of a Web service. Response time is the

time needed to serve a client’s request, while throughput is the number of requests

that can be served in unit time. So, we expect that these two metrics are reversely

74

proportional. We ran 20 different web services on GlassFish, and we monitored their

absolute response time and throughput metrics. In Table 4.3, we arrange the

executions by ascending order of response time. Figure 4.5, validates exactly the

relationship of the two metrics. As response time gets bigger, the throughput gets

lesser.

Figure 4.5: Relationship between response time and throughput

Response time Throughput
6,2 161,29
6,9 144,93
7,1 140,85
7,5 133,33
8,3 120,48
8,8 113,64
9,1 109,89
9,3 107,53
9,7 103,09

10,2 98,04
11,7 85,47
11,9 84,03
12,3 81,30
12,8 78,13
12,9 77,52
13,8 72,46
14,1 70,92
14,9 67,11
15,9 62,89
16 62,50

Table 4.3: Response Time and throughput

75

 In a nutshell, from the previous experiments, we conclude that the composed

services “behave” as expected introduced in the previous chapter of this thesis. We

must mention here that we have no experiments for reliability and cost metrics,

because all our services, used in the examples put 100% reliability while the cost is

simply the sum of the costs of the constituent services. Furthermore, we have not

carried out any experiment for other composition patterns, since the ActiveBPEL

engine we have used for the experimental analysis does not support the extraction of

the appropriate values for these patterns.

76

Chapter 5

5 Related Work

5.1 Monitoring Approaches

This section reviews a number of research and industrial monitoring

approaches and discusses their properties in terms of the classification items. A

summary of our comparative analysis of all the approaches is presented in Table 5.1.

5.1.1 Monitoring Web service compositions

Barbon, Traverso et. al. [1] propose a solution to the problem of monitoring

web service composition, and in particular, to the monitoring of distributed business

processes implemented on BPEL for Web services. Their solution has the following

main characteristics:

 They devise an architecture where the monitor engine and the BPEL

execution engine are executed in parallel on the same application server. This

allows for an integration of the two engines, still maintaining the two run-

time environments distinct, and keeping the monitors clearly separated from

the BPEL processes. As a result, they obtain a clear separation of the business

logic from the monitoring task, which allows for an easier adaptation of the

business process to the evolving business needs.

 The architecture supports both instance and class monitors: instance monitors

deal with the execution of a single instance of BPEL business process, while

class monitors extract information from and/or check the behavior of all the

individual instances of a business process. For instance, an instance monitor

can check if the bank has rejected the online payment during a specific

77

session, while a class monitor can provide statistics about on-line payment

rejections.

 They provide a novel, rather expressive language for the specification of both

instance and class monitors. The language allows for specifying boolean,

statistic, and time related properties to be monitored. Beyond monitors of

usual boolean properties, they can specify instance monitors that should, e.g.,

count the number of iterations that are executed in a given session, such as

the number of times that a client changes the selected item to buy. They can

specify that the monitor should issue an alert if the number of iterations

exceeds a given threshold. Moreover, they can specify class monitors that

collect information from all existing instance monitors, and check situations

of interest — such as the fact that there has been at least one rejection of

money transfer by the bank—and/or report on statistics—such as the

percentage of payment rejections by the bank.

 Finally, they devise a technique for the automatic generation of the code

implementing the instance and class monitors, thus reducing the effort in their

design and implementation. Monitors are automatically generated as Java

programs that can be deployed in the run-time environment of the monitor

engine. To the best of our knowledge, none of the existing approaches for the

run-time monitoring of web services supports class monitors and their

automated generation from high level specifications.

Figure 5.1: The Active BPEL engine extended with the run-time monitor environment

78

While there have been several works on the automated synthesis of web

services and on monitoring web services, much less emphasis have been devoted to

the problem of the “assumption-based synthesis and monitoring of web services”, i.e.

to the problem of automatically generating composed services by possibly taking into

account assumptions at design time, which are then monitored at run-time.

Pistore and Traverso [22] delved into this problem. Given a formal

composition requirement, a set of component service descriptions in BPEL and a set

of choreographic assumptions expressed in temporal logic, they synthesize

automatically an executable BPEL process that, once deployed, satisfies the

composition requirement, as well as a set of Java monitors that report at run-time

assumption violations. The automated generation of the composed BPEL process

takes into account the choreographic assumptions during the synthesis, by discarding

behaviors that violate them during the search for a solution. A first advantage of this

assumption-based synthesis is that the search for a solution may be simpler and scale

up to more complex problems. But, more importantly, this approach is mandatory in

the case the composition only exists under the choreographic assumptions. This

means that the assumptions are so crucial that, if they are violated, the composition

does not make sense. In these cases, assumption-based synthesis and monitoring is

the only viable solution.

There are two kinds of monitors: domain monitors, which are responsible to

check whether the component services respect the protocols, described in their

abstract BPEL specification, and assumption monitors, which check whether the

component services satisfy additional assumptions on their behavior.

Monitors can only observe messages that are exchanged among processes. As

a consequence, they cannot know exactly the internal state reached by the evolution

of a monitored external service. Non-observable behaviors of a service (such as

assign activities occurring in its abstract BPEL) are modeled by τ-transitions, i.e.,

transitions from state to state that do not have any associated input/output. From the

point of view of the monitor, this kind of evolutions of external services cannot be

observed, and states involved in such transitions are indistinguishable. Such sets of

states are called belief states, or simply beliefs.

The generation of a domain monitor for an external abstract BPEL process is

based on the idea of beliefs and belief evolutions. The domain monitor generation

79

algorithm (Fig. 5.2) incrementally generates the set MS of beliefs starting from the

initial belief ms0, by grouping together indistinguishable states of the STS. The

beliefs in MS are linked together with (nonτ) transitions MT MS × (I O)×MS, as

described by function Evolve. Beliefs that contain at least one state that is final for

the STS are considered possible final states also for the domain monitor, and are

stored in MF. Once the algorithm in Fig. 5.2 has been executed, the Java code

implementing the domain monitor can be easily generated.

Figure 5.2: The domain monitor generation algorithm

The algorithm for the generation of assumption monitors takes as input the

abstract BPEL processes of the external services plus an assumption to be monitored.

Assumptions are express in LTL, using as propositional atoms the input/output

messages of the component services as well as the properties labeling the states of

the STSs modeling these services. To build an assumption monitor, the

corresponding LTL formula is mapped onto an STS, which is then emitted as Java

code. The evolution of the assumption monitor depends on the input/output messages

received by the composite services, which are directly observable by the monitor.

However, it also depends on the evolution of the truth values of those basic

propositions labeling the states of the components STSs which appear in the LTL

formula. These truth values are computed by tracing the evolution of the beliefs of

80

the component services relevant to the formula. However, it is possible in this case to

simplify the “domain” monitor, by pruning out parts of the protocol that are not

relevant to tracing the evolution of the basic propositions which appear in the

formula. When a stable partition is reached, the reduced monitor is obtained by

merging beliefs in the same class of the partition.

5.1.2 Assertion-Based monitoring

Pistore and Traverso [27], specify monitors as assertions that annotate the

BPEL code. Assertions can be specified either in the C# language or as pre- post-

conditions expressed in the CLIX constraint language. Annotated BPEL processes

are then automatically translated to “monitored processes”, i.e. BPEL processes that

interleave the business processes with the monitor functionalities.

Their approach provides three main mechanisms to monitor service

compositions defined by BPEL programs. These mechanisms correspond to three

classes of undesirable behaviors: timeouts, runtime errors and violations of

functional contracts. These represent three kinds of service behaviors that can be

stated using suitable contracts and may request suitable reaction on the service

orchestration side. They express contracts for composed web services using

assertions. A non intrusive way of adding assertions is to annotate our BPEL process

by inserting them in the form of comments. In this way, the BPEL process remains

standard in its definition and executable by any standard BPEL engine. This means

that the first step (Fig. 1) in designing a monitored process is to design a standard

unmonitored process. After a standard process has been produced, the designer can

annotate it with comments representing the contracts he or she wishes to define on

timeouts, the desired behavior of the process in presence of errors, and functional

contracts in terms of pre- and post-conditions. These comments represent the core of

the design overhead necessary for monitoring processes. In fact, these comments are

automatically translated into the sequence of BPEL activities that augment the

original process in order to make it monitored.

Contracts [3] are translated in different ways: Timeouts and errors in service

implementations can be handled using standard BPEL and good design patterns

81

functional contracts (pre- and post-conditions) require dedicated monitors. As we

mentioned, functional contracts are monitored by special-purpose components called

monitors. The monitor is itself a web service and consequently becomes a part of the

monitored composition. The monitored process reacts to misbehaviors by

terminating the execution and signaling the detected problem.

Figure 5.3: A standard process annotated with contracts transformed into a monitored

Baresi and Guinea [2], also extended their work with the ability to perform

“dynamic monitoring”, i.e. the ability to specify monitoring rules that are

dynamically selected at run-time, thus providing a capability to dynamically

activate/deactivate monitors, as well as to dynamically set the degree of monitoring

at runtime. Monitoring rules abstract web services into UML classes that are used to

specify constraints on the execution of BPEL processes. Assertions, are specified in

WS-COL (Web Service Constraint Language), a special purpose language that

extends JML (Java Modeling Language), with constructs to gather data from external

sources. Monitoring rules are defined with parameters that specify the degree of

monitoring that has to be performed at run-time. The user can instantiate dynamically

these parameters at run-time, changing in this way the amount of monitoring that is

performed.

82

5.1.3 Run-Time monitoring

Requirement-Based monitoring

Run-time requirements monitoring has been the focus of different strands of

requirements engineering research which have investigated: (i) ways of specifying

requirements for monitoring and transforming them into events that can be monitored

at run-time; (ii) the development of event-monitoring mechanisms; (iii) the

development of mechanisms for generating system events that can be used in

monitoring; and (iv) the development of mechanisms for adapting systems in order to

deal with deviations from requirements at run-time.

The need for run-time requirements verification is very important, especially

for service-based software (SBS) systems (i.e. systems which are composed from

autonomous web services co-ordinated by some composition process). This is

because the web-services that constitute an SBS system may not be specified at a

level of completeness that would allow the application of static verification methods,

and some of these services may change dynamically at run-time causing

unpredictable interactions with other services.

Figure 5.4: Monitoring framework

83

Mahbub and Spanoudakis [22] propose a framework that supports the run-

time monitoring of behavioral properties of an SBS system or assumptions about the

behavior of the different web services that constitute it or agents in its environment.

Behavioral properties are automatically extracted from the specification of the

composition process of the SBS system. Assumptions are additional requirements

about the behavior of agents interacting with the system, or the individual services of

it. Assumptions are specified in event calculus using an XML schema they have

developed to support the representation of event calculus formulas.

Both behavioral properties and assumptions are expressed in event calculus

and are being monitored by using a variant of techniques developed for checking

integrity constraints in temporal deductive databases. The choice of event calculus as

the requirements representation language has been motivated by the need to express

the properties to be monitored in a formal language with well-defined semantics that

allows: (a) the specification of temporal constraints and (b) reasoning based on the

inference rules of first-order logic.

This framework can monitor three different types of deviations from

behavioral properties and assumptions. These are: (i) violations of assumptions by

the recorded system behavior, (ii) violations of behavioral properties and

assumptions by the expected system behavior (i.e. the behavior that would have been

exhibited by the system if assumptions other than the one being checked had been

satisfied), and (iii) cases of unjustified system behavior that may arise when a system

acts incorrectly due to incorrect information about its state.

Monitoring is performed in parallel with the normal operation of an SBS

system without interrupting it. This is possible by intercepting events which are

exchanged between the composition process of an SBS system and its services and

the effects of these events on the state of the composition process of the system. This

approach makes run-time monitoring non intrusive as: (a) it does not affect the

performance of SBS systems, and (b) it does not require the instrumentation of the

code of the composition process of SBS systems or their services to generate the

events which are required for monitoring.

84

Event-based monitoring

Given a monitoring-enabled infrastructure to detect and route service

operational events, it is imperative that these events be processed efficiently, and that

the QoS metric values be computed and saved efficiently as well. Although most

complex event processing systems support high throughput of events, they primarily

focus on event filtering and compound event detection. They do not address metric

computation, where event data triggers and contributes to a complex flow of

computation. Further, they don’t consider the issue of state persistence. Zeng et al.

[34] advocate a series of model analysis techniques to improve event throughput in a

monitoring environment.

Event-driven rule-based programming is user friendly, particularly for

business integration developers. However, because of the overhead in locating rules

to be executed at runtime, the event-driven model does not lend itslef to efficient

execution, especially when the number of rules is very large, such as in the case of

service QoS monitoring. In this design, the rule-based model is transformed to a

state-based model, wherein statecharts are adopted to reorganize the rules. The

rationale for such a model transformation is that statecharts organize the rules by

states, which can greatly reduce the overhead in locationg rules at runtime.

The construction of statecharts is based on user-defined ECA rules: a state

represents either an event or a metric, while a transition between two states

represents the triggering relationship (see figure 5.5). For example, if the event

pattern is a service operational event in an ECA rule, then there is a transition from

the event state to the metric state. In another case, the event pattern is the value

change of a metric, and the corresponding transition is from one metric state to

another metric state.

Figure 5.5: Transforming the ECA rules to Statecharts

85

Zeng et al. [34] propose a hybrid approach, in which, state transition logic is

interpreted, while the expression in a rule is compiled into standalone executable

code. The advantages of such a hybrid approach are twofold. On the one hand, by

interpreting the state transition logic, the computation engine can plan the execution

of rules in finer granularity. On ther other hand, the execution of an individual

expression is done be executing pre-compiled code, which enjoys the efficiency of

the compilation approach.

Run-time monitoring using WS-Policy

WS-Policy is emerging as the standard way to describe the properties that

characterize a Web service. By means of this specification, the functional description

of a service can be tied to a set of assertions that describe how the Web service

should work in terms of aspects like security, transactionality, and reliable

messaging. These assertions can be used to express both functional and non-

functional aspects. Policies can be defined by several actors and during different

phases of the Web service life-cycle. Besides implementing the application, service

developers also specify the properties that must hold during the execution regardless

of the platfrom on which the services will be deployed (service policies). On the

other hand, service providers specify the features supported by the application

servers on which services are deployed (server policies). The intersection of service

and server policies results in supported policies, which define the properties of the

services deployed on a specific platform. Finally, Web service users state the features

that should be supported by the services they want to invoke (requested policies). By

combining requested policies and supported policies, we obtain the so called effective

policies.

Effective policies respresent the set of assertions that specify the properties of

a Web service deployed on a particular server and invoked by a specific user. The

Web service to which effective policies apply is linked by definition and it can be a

simple Web service or a WS-BPEL process. Once effective policies are derived,

services should be monitored at runtime to guarantee that they offer the service levels

stated by their associated policies.

86

Figure 5.6: WS-Policy definitions and attachments

The tradeoff between monitoring and performance might be influenced by

many different factors. We cannot define a strict relationship between WS-BPEL

processes and monitoring directives. Users must be free to change them to cope with

new and different needs. For example, the execution of these processes in different

contexts might require a heavier burden in terms of monitoring, while when selected

services are well-known and reliable, users might decide to privilege performance

and adopt a looser monitoring framework.

These considerations led Baresi, Guinea and Plebani [2] to propose

monitoring directives as stand-alone (external) monitoring policies rendered in WS-

Policy. These constraints do not belong to the workflow description, that is, the WS-

BPEL process, but they are weaved with it at deployment-time. For each policy, the

embedded location indicates the point of the process in which BPEL substitutes the

WS-BPEL invoke activity with a call to the monitor manager, which is then in

charge of evaluating the policy and call the service if it is the case. BPEL also adds

an initial call to the monitoring manager, to send the initial configuration (such as the

priority at which the process is being run) to initialize it, and a final call to

communicate it has finished executing the business logic and that resources can be

released. BPEL only adds calls to the monitoring manager. This means that policies

can change without re-instrumenting the process.

87

5.1.4 Planning and monitoring service requests

A significantly different approach is proposed by Lazovik et al. [21]. They

present a planning architecture (with a specially tailored run-time environment) in

which service requests are presented in a high-level language called XSRL (Xml

Service Request Language). They adopt a proprietaty orchestrated approach to

collaboration, since they claim that current standards, like BPEL, do not have the

necessary flexibility to satisfy user requirements that heaviliy depend on run-time

context information.

The planning architecture is based on a continuous interleaving of planning

steps and execution steps. Because BPEL lacks formal semantics, the authors

decided to extrapolate state-transition systems from BPEL specifications and to

enrich them with domain operators and constructs.

This framework is based on reactive monitoring. In particular, designers can

define three kinds of properties: (1) Goals that must be true before transitioning to

the next state (2) goals that must be true for the entire process execution, and (3)

goals that must be true for the process execution and evolution sequence. The XSRL

language also allows for the definition of constraints as boolean combinations of

linear inequalities and boolean propositions. It provides sequencing operators such as

“achieve-all”, “before” and “then”, “prefer” goal x “to” goal y, and “then”. It also

defines a number of operators that can be used on the propositions themselves,

defining how these propositions should be satisfied such as “vital” and “optional”.

The delivery platform continuously loops between execution and planning. In

particular, the latter activity is achieved by taking into account context and the

properties specified for the state-transition system. This makes it possible to

discover, each time it is undertaken, whether a property has been violated by the

previously executed step, or if execution is proceeding correctly.

88

5.1.5 Monitoring tools

Cremona

Cremona [13] is a proposal from IBM, which stands for “Creation and

Monitoring of WS-Agreements”, is a special-purpose library devised to help clients

and providers in the negotiations and life-cycle management of WS-Agreements (i.e.,

their creation, termination, run-time monitoring, and re-negotiation).

WS-Agreement [26] specifies an XML-based language for creating contracts,

agreements, and guarantees from offers between a service provider and a client. An

agreement may involve multiple services and includes information on the agreement

parties, references to prior agreements, service definitions, and guarantee terms. In an

agreement the service definition is part of the terms of the agreement and must be

established prior to the creation of the agreement. The motivations for the design of

WS-Agreement stem out of QoS concerns, especially in the context of load balancing

heavy loads on a network of Web services.

The Cremona framework provides an “Agreement Provider” component,

whose structure incorporates, among other things, a “Status Monitor”. This

component is specific to the system providing the service. By consulting the

resources available on the system and the terms of an agreement, it helps decide

whether a negotiation proposal should be accepted or refused. Once an agreement

has been accepted by both parties (the client and the provider), its validity is checked

at run-time by a “Compliance Monitor”, a sophisticated system-specific component

that can check for violations as they occur, predict violations that still have to occur,

and take corrective actions. Since both monitoring components are system

dependent, designers are guaranteed great flexibility in terms of the properties they

can check.

Colombo

Colombo [13] is a lightweight platform for developing, deploying, and

executing service-oriented applications. It provides optimized, native runtime

support for the service-oriented-computing model, as opposed to the approach of

layering service-oriented applications on a legacy runtime. This approach allows

89

Colombo to provide high runtime performance, a small footprint, and simplified

application development and deployment models. The Colombo runtime natively

supports the full Web Services (WS) stack, providing transactional, reliable, and

secure interactions among services. It defines a multi-language service programming

model that supports, among others, Java™ and Business Process Execution

Language for Web Services (BPEL4WS) service composition, and offers a

deployment and discovery model fully based on declarative service descriptions

(Web Service Description Language [WSDL] and WS-Policy).

Colombo manages incoming and outgoing messages by passing them through

two corresponfing pipes of dedicated policy verifiers and enforcers (i.e. one for each

kind of policy supported by the system), it can discover erroneous behavior in a

timely fashion, but is intrusive in nature. It provides support for important issues,

such as security.

GlassFish

As mentioned in the previous chapter, GlassFish was used in our work. It is

an open-source community implementation of a server for Java EE 5 applications.

Regarding the monitoring of deployed services, GlassFish provides a number of

specific tools. The nature of the monitored aspects depends on the level of

monitoring chosen for a given service. There are three possible levels: low, which

monitors response times, throughput, and the total number of requests and faults;

medium, which adds message tracing under the form of content visualization; and off,

in which no data is collected. Captured information can also be automatically

aggregated to obtain “minimum response times”, “maximum reponse times”,

“average response times”, etc.

IBM Tivoli Composite Application Manager for SOAs

Another similar approach is the IBM Tivoli Composite Application Manager

[15] for SOAs, which is an application manager that uses an event-based

collaboration paradigm, implemented through a special-purpose integration bus.

In this environment, traditional tools that monitor individual resources

performance typically cannot solve composite application performance and

90

availability problems. Instead, Web services need to be incorporated into the end-to-

end management domain over composite applications and resources that support an

SOA environment. Because many Web services are used to make mainframe

applications and middleware available at the front end, it is not adequate to monitor

and manage only at the Web services level. Instead, businesses need to view Web

services as part of their end-to-end infrastructures. Otherwise, operations and

development teams waste countless hours trying to identify, isolate and fix problems

— all while poorly performing composite applications negatively affect the top- and

bottom-line results of the business.

 IBM Tivoli Composite Application Manager (ITCAM) for SOA delivers

unparalleled, integrated management tools for Web and enterprise infrastructure that

help maintain availability and performance on demand business. With ITCAM for

SOA, you can monitor, manage and control the service layer of your IT architecture.

This application manager uses an event-based collaboration paradigm, implemented

through a special-purpose integration bus. Messages enter and leave the bus

continuously, passing through special components called the “ServiceBusInbound”

and the “ServiceBusOutbound”, making it easy to monitor their behavior and, in

particular, their performance. However, the application manager lacks the specially

tailored tools present in other similar approaches.

BP-Mon: Query-Based Monitoring of BPEL Business Processes

The BP-Mon [4] system is part of BP-Suite, a novel tool suite based on the

BPEL standard. BP-Suite offers a uniform, query-based, user-friendly interface that

gracefully combines the analysis of process specifications, monitoring of run time

behavior, and log analysis, for a comprehensive process management. BP-Suite

consists of three tightly coupled query subsystems: BP-QL allows one to query and

analyze BP specifications; BP-Mon allows for monitoring the execution of BP

instances; and BP-Ex allows for a posteriori analysis of the their execution traces

(logs).

BP-Mon allows users to monitor process instances at run-time and to visually

define monitoring tasks and associated reports, using a simple intuitive interface

similar to those used for designing BPEL processes. Also, BP-Mon queries are

91

translated to BPEL processes that run on the same execution engine as the monitored

processes.

BP-Mon system makes the following contributions:

 Query language. The system is based on an intuitive graphical query

language that allows for simple description of the execution patterns to be

monitored. The BP-Mon query language is an adaptation of the sister query

languages used in BP-QL (for specification analysis) and BP-Ex (for logs

analysis), to run-time monitoring. In all three query languages, the data (i.e.

the BP specification or its execution traces) is abstractly viewed as a nested

set of Directed Acyclic Graphs. A query consists of two parts. The first

specifies the execution patterns that are of interest to the user. The second

part of the query, consists of Report icons that can be attached to the patterns.

Figure 5.7: BP-Mon architecture

 Deployment. To support flexible deployment, the system compiles a BP-Mon

query q into a BPEL process specification S, whose instances perform the

monitoring task. As for all standard BPEL specifications, S can now be

automatically compiled into executable code to be run on the same BPEL

application server as the monitored BP.

In summary, BP-Mon allows one to design complex monitoring tasks that

deal with both events and flow; it offers easy, user friendly design of such tasks; and

it compiles these tasks into standard BPEL processes, thus providing easy

deployment, portability, and minimal overhead.

92

5.2 Comparing monitoring approaches

As described below, there are many monitoring approaches. Each of them has

its advantages and disadvantages. In this section we make a comparison of the

previous approaches and in the end there is a pivot table of the comparative analysis.

On the one hand, the approach described in [4,5] provides some advantages

with regard to [22]. First, monitors are themselves services implemented in BPEL.

As a consequence, they can run on standard BPEL engines without requiring any

modification. Second, annotations of BPEL processes with assertions constitute an

easy and intuitive way to specify monitor tasks. Finally, the approach is extended to

dynamic monitoring, a feature that is not provided in our framework.

On the other hand, in [22] Pistore and Traverso’s approach allows for the

monitoring of properties that depend on the whole history of the execution path.

These kinds of monitors would be hard to express as assertions. Moreover, they

allow for a clearer separation of the business logic from the monitoring task than in

[4,5], since they generate an executable monitor that is fully distinguished from the

executable BPEL that runs the business logic. Finally, their monitors can capture

misbehaviors generated by the internal mechanisms of the BPEL execution engine.

For instance, since there is no way to guarantee that a message is sent to a process

instance only when the instance is ready to consume it, in BPEL, messages can be

consumed in a different order from how they are received: indeed a process may

receive a message that it is not able to accept at the moment, which can be followed

by another message that can instead be consumed. The first message can be

consumed later on by the process, or may never be consumed. This phenomenon,

called message overpass, cannot be captured by monitors based on assertions that

annotate the BPEL code.

There are also some similarities between Mahbub and Spanoudaki’s approach

in [22] and Pistore and Taverso’s approach. Both share the idea to have a monitor

that is clearly separated from the BPEL processes. Another similarity is that the

framework allows for specifying requirements that represent either behavioral

properties or assumptions to be monitored. [13]

93

Approach

Name

Type of

Properties

Collaboration

paradigm

Collecting

monitoring

data

Timeliness Abstraction

level

Validation

technique

Monitoring

goals

Dynamo Mainly

functional

(and simple

non-

functional

properties

BPEL-based

orchestrations

Collected by

the process

itself, or

through

external data

sources

Blocking

pre- and

post-

conditions

Programming

level

Assertion-

checking

Tools for

composition

providers

who need to

monitor the

external

services used

Requirements

monitoring

Mainly

functional

(and simple

non-

functional

properties)

BPEL-based

orchestrations

An

interceptor

component

listens for

low-level

engine events

Post-mortem Low-level

sequences of

engine events

Variant of

intergrity

checking in

temporal

deductive

databases

Tools for

composition

providers

who need to

monitor the

external

services

Planning and

monitoring

Service

Requests

Process and

evolution

sequence

goals

Proprietary

orchestratuin-

based delivery

framework

Collected

within the

proprietaty

framework

Errors

discovered

as soon as

they occur

Requirements

and

specification

level (market

domain

terminology)

Assertion-

checking

apporach

Tools for

composition

providers

who need to

monitor

process

evolution

Cremona Functional

and non-

functional

and

properties of

histories of

interactions

No specific

paradigm, but

any interaction

between a caller

and the provider

Server-side

regarding the

interaction

channel and

the system’s

resources

Reactive

approach

WS-

Agreement

templates

with different

property

description

languages

Implementation-

specific

techniques

Tools for

service

providers

who need to

monitor

agreements

with their

clients

Colombo Mainly non-

functional

properties

(WS-policy)

Optimized

middleware for

SOA that

supports BPEL

Through a

pipe of

dedicated

policy-

specific

verifiers

Before a

message

leaves the

system, or

before the

incoming

message is

processed

Service,

operation, or

message level

Validation is

policy

dependent

Tools for

service

providerts

who need to

monitor

policy

compliance

of incoming

and outgoing

messages

GlassFish Mainly non-

functional

properties

Proprietary

deployment

infrastructure

Response

times,

throughput,

number of

requests and

message

tracing

No

automatic

analysis.

Timeliness

does not

depend on

the system

Three

standard

macro-

degress or

monitoring

No automatic

validation

Tools for

service

providers

who need to

monitor

statistics of

client-service

interactions

IBM Tivoli

Composite

Application

Manager

Mainly non-

functional

properties

Event-based

system

(integration bus)

Messages as

they enter or

leave the

integration

bus

No

automatic

analysis.

Timeliness

does not

WS-Policy for

QoS

No automatic

validation

Tools for

service

providers

who can

pesonalize

94

depend on

the system

monitoring

on-top of the

serivce bus

stucture

BP-Mon Mainly non-

functional

properties

Event-based

system

Collected by

the process

itself, or

through

external data

sources

No

automatic

analysis.

Timeliness

does not

depend on

the system

Programming

level

No automatic

validation

Tools for

service

providers

who want to

monitor BPs

at run-time

and analyze

the logs

Table 5.1: Comparing monitoring approaches

5.3 Computing metrics of composed services

Menasce [24] proposes a method to estimate the throughput of a composed

service from those of its constituent Web services. To make his work clearer, he uses

Web service flow graphs (WSFG), whose nodes are either Web Sites or Web

services. A directed edge between nodes a and b indicates that a uses the service b.

The label on the edge (a,b), called the relative visit ratio, is the average number of

times node b is visited per visit to node a. So on average, each travel booking request

to the travel site generates Va requests to the airline Web service, Vh requests to the

hotel Web service, and Vc requests to the car rental Web service.

Figure 5.8: The travel site Web service

The author’s goal is to establish an upper bound on the throughput XTA of the

travel site based on the throughputs of the three Web services it uses. The throughput

95

Xa of the airline service therefore needs to be at least equal to Va × XTA, since that

service must be able to serve all requests it receives from the travel site as well as all

requests coming from other sites that use its service. Thus, we have the equations:

Xa ≥ Va × XTA (1)

Xh ≥ Vh × XTA (2)

Xc ≥ Vc × XTA (3)

where Xa, Xh,, and Xc represent the throughputs of the airline, hotel, and car rental

Web services, respectively.

 A combination of 1-3 is used to establish an upper bound on the throughput

of the travel site:

To see the usefulness of this equation, suppose that the throughput of the

airline, hotel, and car rental Web services is 20 requests/sec, 15 requests/sec, and 10

requests/sec, respectively, and that on average, each travel site request will visit the

airline Web service four times, the hotel Web service twice, and the car rental service

only once. So, using the previous equation:

This equation says that in order for the travel site to increase the upper bound

on its throughput, it would need to use a better airline Web service, because this is

the Web service that limits the maximum throughput of the travel site. Alternatively,

the travel site could try to reduce the number of times it has to invoke the airline Web

service per transaction.

Hwang et al. [27] propose a probabilistic QoS model and computation

framework for Web Services-Based workflows. They identify a set of QoS metrics in

the context of Web services. Each QoS measure of a Web service is regarded as

discrete random variable with a probability mass function (PMF).

They also explore alternative algorithms for computing probability

distribution functions of WS-workflow QoS. The efficiency and accuracy of these

algorithms are compared.

96

Figure 5.9: Pseudo code for computing QoS of a WS-workflow

SequentialQoS(A.activities), ParallelQoS (A.activities),

ConditionalQoS(A.activities), FaultTolerantQoS(A.activities), Loop-

QoS(A.activities) are used to compute cost, response time, reliability and fidelity

QoS metric values for sequential, parallel, conditional, fault tolerant, and loop

constructs respectively.

5.4 Comparison of our work with existing studies

In this section, we make a comparison of the afore-mentioned related work

with ours. As already analyzed, the existing work focus basically on requirement-

based and event-based systems. The first ones check if the pre-conditions that were

defined are fulfilled after the execution, while the event-based systems are waiting

for specific events to get a monitored value. Both approaches are separated from

BPEL processes. As far as the computation of QoS for composed Web services is

concerned, the existing work is limited to the very basic metrics for compositions

following the sequence pattern.

Our approach now, combines a monitoring system with SLA compliance. In

essence, it acts as a mediator between a monitoring system and the SLA document. If

we would like to classify our work to a general monitoring group, we could say that

97

it is requirement-based. The requirements are expressed in the WSLA document and

after the monitoring process, they are checked for their correctness. In the

computation of QoS for composed Web services area, we have extended the current

state-of-the-art work to express formulas for more metrics and for many more

composition patterns.

98

Chapter 6

6 Conclusion and Future Work

Our work is separated in two different, but related knowledge domains of

Web services: monitoring the QoS compliance of Web services using SLAs and

computing the QoS of composed Web services.

As far as the QoS compliance is concerned, we propose a system that

combines the monitoring system of Sun Application Server GlassFish with SLA

documents, written in WSLA, an XML-based language. Our system requires to have

available, both the Web services to be deployed on the application server and the

corresponding SLA of the Web service. If these requirements are fulfilled, then the

system compares the pre-agreed metric conditions with the monitored metric values

and if there is a violation, it alerts the interested parties with the detected differences.

The results are satisfying, compared to other similar systems, as they seem to be fast

and precise. Furthermore, these results are very helpful for the service provider, who

can take corrective actions in case metric values don’t comply with SLAs. In

addition, statistical analysis of the results can extract many useful conclusions

toassist the provider in developing new and more effective Web services.

As far as the computing of QoS is concerned, we propose some basic metric

formulas, provided that we know the composition pattern, which may be a

combination of other patterns. Based on this, we use the appropriate formulas to

compute the response time, the throughput, the reliability and the cost of the

composed Web service. From our experimental results, we conclude that the

proposed types are precise enough and can be used in every complex service

compositions, described with the afore-mentioned patterns. Our experiments focus

basically on using a variety of composition patterns in the BPEL engine and the

results validate to a great extent our work for computing metrics for composed

services.

99

Finally, we believe that the main issue remaining for future work is to

examine more formulas for all possible metrics and composition patterns. Also, it

would be ideal to make our monitoring system work at runtime with the Web service

execution engine. In this way, the provider could take statistical results and correct

any violations very quickly and without any mediators. Another interesting direction

is to focus on the corrective actions after a violation is detected. This can be

perfrormed by another management service that would take as input the condition

evaluation results and then, if appropriate, would try to make the service compliant

with the SLA document.

100

Bibliography

[1] F. Barbon, P. Traverso, M. Pistore, M. Trainotti. "Run-Time Monitoring
of Instances and Classes of Web Service Compositions". In Procs of
ICWS'06, pages 63-71, Salt Lake City, Utah, USA, July 2006.

[2] L. Baresi, S. Guinea and P. Plebani. "WS-Policy for Service Monitoring".
In Procs of TES 2005, pages 72-83, Trondheim, Norway, September 2006.

[3] L. Baresi, C. Ghezzi and S. Guinea. "Smart Monitors for Composed
Services". In Procs of ICSOC'04, pages 308 - 315, New York, USA,
November 2004.

[4] C. Beeri, A. Eyal, T. Milo and A. Pilberg. "BP-Mon: Query-Based
Monitoring of BPEL Business Processes". In SIGMOD Record, Vol. 37, No
1, March 2008.

[5] P. Bianco Philip, G. Lewis and P. Merson. "Service Level Agreements in
Service-Oriented Architecture Environments". Technical Note of Software
Engineering Institute, September 2008.

[6] D. Bianculli and C. Ghezzi. "Monitoring Conversational Web Services". In
Procs of IW-SOSWE, pages 15-21, Dubrovnik, Croatia, September 2007.

[7] A. Bucchiarone and S. Gnesi. "A Survey on Services Composition
Languages and Models". In Procs of WS-MaTe 2006, Palermo, Italy, June
2006.

[8] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer and A. Youssef. "Web services on demand:
WSLA-driven automated management". In IBM Systems journal, Vol. 43,
No 1, 2004.

[9] A. Dan, H. Ludwig and G. Pacifici. "Web Services Differentiation with
Service Level Agreements". In Tech Report of IBM Corp., 2003.

[10] A. Daniel, A. Barbir, C. Ferris, S. Garg. "Web Services Architecture
Requirements", February 2004. http://www.w3.org/TR/wsa-
reqs/#id2604831.

[11] A. David and F. Xavier. "SALMon, Service Level Agreement Monitor". In
Procs of 7th International Conference on Composition-Based Software
Systems, pages 224-227, Madrid, Spain, February 2008.

101

[12] M. Debusmann and A. Keller. "SLA-driven management of distributed
systems using the Common Information Model". In Procs of IM 2003,
pages 563-576, Colorado, USA, March 2003.

[13] C. Ghezzi and S. Guinea. "Run-Time Monitoring in Service-Oriented
Architectures". In Test and Analysis of Web Services, Springer Publications,
pages 237-264, September 2007.

[14] S. Guinea. "Self-healing Web Service Compositions". In Procs of ICSE '05,
pages 655-658, St. Louis MO, USA, May 2005.

[15] IBM. "IBM Tivoli Composite Application Manager for SOAs", In
Technical Report of IBM, 2006.

[16] R. Jurca, W. Binder and B. Faltings. "Reliable QoS Monitoring Based on
Client Feedback". In Procs of WWW'07, pages 1003-1012, Banff, Alberta,
Canada, May 2007.

[17] R. Kassab and Aad van Moorsel. "Mapping WSLA on Reward Constructs
in Mobius", In Procs of UKPEW 2008, London, England, July 2008.

[18] A. Keller and H. Ludwig. "The WSLA Framework: Specifying and
Monitoring of Service Level Agreements for Web Services". IBM research
report RC22456, May 2002.

[19] A. Keller and H. Ludwig. "Defining and Monitoring Service Level
Agreements for dynamic e-Business". In Procs of LISA 2002, pages 189-
204, Philadelphia, PA, USA, November 2002.

[20] D. Lamanna, J. Skene and W. Emmerich. "SLAng: A language for
defining Service Level Agreements". In Procs of FTDCS'03, pages 100-
106, San Juan, Puerto Rico, May 2003.

[21] A. Lazovik, M. Aiello and M. Papazoglou. "Planning and monitoring the
execution of web service requests". International Journal on Digital
Libraries, pages 235-246, Vol. 6, No 3, June 2006.

[22] K. Mahbub and G. Spanoudakis. "A Framework for Requirements
Monitoring of Service Based Systems". In Procs of ASE'04, pages 379-384,
Linz, Austria, September 2004.

[23] K. Mahbub and G. Spanoudakis. "Run-time Monitoring of Requirements
for Systems Composed of Web-Services: Initial Implementaion and
Evaluation Experience". In Procs of ICWS 2005, pages 257-265, Orlando,
Florida, USA, June 2005.

102

[24] D. Menasce. "QoS Issues in Web Services". IEEE Internet Computing,
pages 72-75, vol. 6, no. 6, November-December 2002.

[25] M. Musicante and E. Potrich. "Expressing Workflow Patterns for Web
Services: The Case of PEWS". Journal of Universal Computer Science,
pages 903-921, Vol. 12, No 7, 2006.

[26] M. Papazoglou. "Web Services: principles and tenchnology", Pearson
Publications, 2008.

[27] M. Pistore and P. Traverso. "Assumption-Based Composition and
Monitoring of Web Services", In Test and Analysis of Web Services,
Springer Publications, pages 307-335, September 2007.

[28] F. Rosenberg, C. Platzer and S. Dustdar. "Bootstrapping Performance
and Dependability Attributes ofWeb Services". In Procs of ICWS'06, pages
205-212, Chicago, USA, September 2006.

[29] H. San-Yih, Wang H., S. Jaideep and P. Raymond. "A Probabilistic QoS
Model and Computation Framework for Web Services-Based Workflows".
In Procs of ER2004, pages 596-609, Sanghai, China, November 2004.

[30] A. ShaikhAli, F. Rana, R. Al-Ali and W. Walker. "UDDIe: An Extended
Registry for Web Services". In Procs of SAINT'03 Workshops, pages 85-89,
Orlando, Florida, January 2003.

[31] V. Tosic V, B. Pagurek, K. Patel, B. Esfandiari and W. Ma.
"Management Applications of the Web Service Offerings Language
(WSOL)". In Procs of CAiSE'03, pages 564-586, Klagenfurt/Velden,
Austria, June 2003.

[32] U. Wahli, O. Burroughs, O. Cline, A. Go and L. Tung. "Web Services
Handbook for WebSphere Application Server Version 6.1", IBM Red Books
Publication, 2006.

[33] E. Wustenhoff. "Service Level Agreement in the Data Center". Sun
BluePrints, April 2002.

[34] L. Zeng, H. Lei and H. Chang. "Monitoring the QoS for Web Services",
In Procs of ICSOC 2007, Springer Publications, pages 132-144, Vienna,
Austria, September 2007.

[35] C. Zhou, L. Chia, S. Bilhanan and B. Lee. "UX – An Architecture
Providing QoS-Aware and Federated Support for UDDI". In Procs of
ICWS'03, pages 171-176 , Las Vegas, USA, June 2003.

