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Visual Simultaneous Localization And Mapping for
Humanoid Robots with Dense Techniques

Abstract

One of the hardest problems in modern robotics is the estimation of robot’s pose while si-
multaneously creating the map of the environment, termed Simultaneous Localization and
Mapping (SLAM ). This problem is often confronted with the use of visual sensors such as
RGB and depth cameras and it is mentioned in the literature as visual SLAM (vSLAM ).
In addition, solely determining the robot’s pose is called Visual Odometry (VO). vSLAM
algorithms can be divided into two different groups, dense algorithms that have to deal
with a huge amount of data and sparse algorithms that handle less data but they have to
choose them meticulously. vSLAM is particularly hard due to sensor’s noise, blurriness of
the input image, approximation errors and limited resources. The problem is even harder
when it is applied to humanoids. Humanoids’ bipedal movement cause sudden accelera-
tion of the camera’s motion and extra blurriness in the image.
This work starts with an evaluation of vSLAM systems and their properties. Then it fol-
lows an evaluation of novel feature extraction algorithms that use neural network in order
to extract descriptors from 3D data. Algorithms such as 3DMatch [56] and 3DSmoothNet
[10] were compared with more conventional methods such as SIFT. Next it proposes an
algorithm that produces better pose estimation and map representation for humanoids.
This is achieved with the combination of two systems, Kinect Fusion [13] SLAM system
and State Estimation RObot Walking (SEROW ) [35] which fuses VO with kinematics.
Moreover it provides a lightweight implementation that runs on embedded devices such
as jetson tx2. Finally this work studies the combination of dense methods with sparse
features in a unified graph representation.





Ταυτόχρονος Προσδιορισμός της Πόζας και

Χαρτογράφηση για Ανθρωποειδή Ρομπότ με χρηση

Πυκνών Τεχνικών

Περίληψη

΄Ενα από τα δυσκολότερα προβλήματα της σύγχρονης ρομποτικής είναι το πρόβλημα του προσ-

διορισμού της πόζας του ρομπότ μαζί με την ταυτόχρονη χαρτογράφηση του περιβάλλοντός

του (Simultaneous Localization and Mapping - SLAM ).Το πρόβλημα αυτό συχνά αντιμε-
τωπίζεται με χρήση οπτικών αισθητήρων όπως κάμερες βάθους ή χρώματος και αναφέρεται

στην βιβλιογραφία ως ταυτόχρονος εντοπισμός της θέσης και χαρτογράφηση με οπτικά μέσα,

visual SLAM (vSLAM). Αντίστοιχα, ο αποκλειστικός εντοπισμός της πόζας ονομάζεται Ο-
πτική οδομετρία, Visual Odometry (VO). Οι αλγόριθμοι vSLAM χωρίζονται κυρίως σε δύο
ομάδες ανάλογα με το μέγεθος των δεδομένων που χρησιμοποιούνται: α) Στους πυκνούς

αλγορίθμους, που χρησιμοποιούν μεγάλο όγκο απο σημεία στο χώρο, και β) στους αραιούς

αλγορίθμους που μειώνουν τον αριθμό των σημείων, επιλέγοντας μόνο κάποια χαρακτηριστικά

σημεία του χώρου. Γενικά, το πρόβλημα του vSLAM είναι ιδιαίτερα δύσκολο λόγω υψηλού
θορύβου στους αισθητήρες, θολότητα στις εικόνες εισόδου, σφάλματα στους προσεγγιστι-

κούς αλγορίθμους, περιορισμένοι υπολογιστικοί πόροι κ.τ.λ. Το πρόβλημα όμως είναι ακόμα

πιο δύσκολο όταν εφαρμόζεται σε ανθρωποειδή ρομπότ. Η δίποδη βάδιση των ανθρωποειδών

ρομπότ προκαλεί ξαφνική επιτάχυνση της κίνησης της κάμερας μαζί με αυξημένη θολότητα

στην εικόνα.

Η παρούσα εργασία ξεκινάει με μια ανάλυση των υπαρχόντων συστημάτων vSLAM και των
ιδιοτήτων τους. ΄Επειτα ακολουθεί μια σύγκριση καινοτόμων αλγορίθμων όπως το 3DMatch
[56] και 3DSmoothNet [10], οι οποίοι εξάγουν χαρακτηριστικά σημεία με χρήση νευρονικών
δικτύων. Οι αλγόριθμοι αυτοί μελετούνται σε σχέση με πιο συμβατικές τεχνικές οπως ο

αλγόριθμος των SIFT . Εν συνεχεία παρουσιάζεται μια μέθοδος που επιτυγχάνει καλύτερη
εκτίμηση της πόζας μαζί με πιο ακριβή χαρτογράφηση. Αυτό γίνεται με τον συνδυασμό δυο

συστημάτων, του vSLAM συστήματος Kinect Fusion [13] και του State Estimation RObot
Walking (SEROW ) [35] που συνδυάζει οπτικη οδομετρια με κινηματική. Επίσης παρέχεται
μια χαμιλή σε υπολογιστικούς πόρους υλοποίηση που επιτυγχάνει εκτέλεση σε πραγματικό

χρόνο σε ενσωματωμένες συσκευές όπως το jetson tx2. Τελος μελετάται ο συνδιασμος πυ-
κνών αλγοριθμων μαζι με αραιά χαρακτηριστικά σημεία σε μια ενοποιημένη αναπαρασταση

γράφου.
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Chapter 1

Introduction

1.1 Simultaneous Localization and Mapping

In autonomous navigation, agents calculate their desired trajectory in order to reach their
destination. For that task, the knowledge of its current position is crucial. The process
of determining agent’s position with respect to its environment is known as localization.
In addition, in order to plan an efficient trajectory, agents need to know the world that
surrounds them. The world is represented either as a map in a two dimensional plane or as
a more complex structure in three dimensions. The problem of building and maintaining
such a map is called mapping. Frequently, localization and mapping problems coincide.
While a robot navigates in an unknown environment, it has to build the map of the
surroundings and, in addition, it has to determine its location within it. The problem of
solving Localization and mapping simultaneously is called Simultaneous Localization and
Mapping or SLAM. The first SLAM algorithms focused on fussing together information
from robots’ sensors and control system into a global probabilistic model. Shortly SLAM
was spread to multiple applications in computer vision and virtual reality where the use
of cameras is essential. This created the problem of Visual SLAM which deals with the
SLAM problem with only the use of cameras. In addition, solely determining robot’s pose
with cameras is called Visual Odometry (VO). Usual SLAM algorithms calculate VO at
first, and then integrate the visual information into a map.

1.2 Algorithms Categorization

Existing SLAM algorithms can be classified into two major categories, according to the
number of points that they extract from camera images. Algorithms that use only a small
subset of points or pixels from a camera image are called sparse, while algorithms that
use most or all of the camera information are called dense.

1.2.1 Sparse Algorithms

Sparse algorithms extract a set of distinguished points from images called features. Fea-
tures are characteristic points such as edges, corners etc. that are extracted through feature
extraction techniques. Additionally to points’ location, a high dimensional descriptor is
calculated in order to distinguish each specific point. Such points form a sparse represen-
tation of the world and they are tracked from consecutive images in order to determine
the camera’s displacement. There are two highly used algorithms for feature tracking,
probabilistic filters and bundle adjustment.

3



4 CHAPTER 1. INTRODUCTION

Probabilistic Filters: In this approach, features are treated as unknown variables with
a mean value and uncertainty modeled as a covariance matrix. Then, probabilistic filters
such as Kalman Filters are applied in order to track them between multiple frames. These
algorithms work well with a relatively small number of features, since increased number
of features require more filters and highly increased computations. An example of such an
algorithm is MonoSLAM [8].

Bundle Adjustment: Bundle adjustment is a technique that minimizes the re-
projection error of features from the 3D space to camera frame between multiple images
[54]. Figure 1.1 displays the bundle adjustment process between three images (C1, C2, C3).

Figure 1.1: Bundle Adjustment.

Formally Bundle adjustment can be described as a non linear least squares problem
by the following formula:

min
n∑

i=1

m∑
j=1

(uij − p(Cj , Xi))
2

Where uij is the feature i in camera frame j, Xi is the 3D coordinates of feature i and
p is a function that projects the given feature in camera frame j.
One generic Bundle Adjustment framework that supports a wide range of parametrization,
is Sparse Bundle Adjustment or SBA [27]. SBA is written in ANSI C but it also supports
linking with C++ and MATLAB through MEX-files. An example of a SLAM algorithm
that utilizes Bundle Adjustment is PTAM [18].
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Generally bundle adjustment suffers from memory and efficiency requirements in large
scale reconstruction and for that reason it is used only in sparse algorithms.

1.2.2 Dense Algorithms

In contrary to sparse algorithms, dense algorithms do not extract characteristic points but
they use most or all the pixels of the image. This approach highly increases the amount
of processing data but it is relieved of feature extraction and therefore it is not sensitive
to feature selection.

Iterative Closest Point: The most common algorithm for calculating camera’s dis-
placement from dense points clouds is Iterative Closest Point (ICP). [2]. ICP finds the
rigid transformation that aligns a source point cloud towards a target point cloud by min-
imizing an error function. There are two error metrics commonly used, Point-to-point and
Point-to-plane metric. Point-to-point metric defines the error function as the sum of the
square distances between the corresponding points, while point-to-plane metric minimizes
squared distances between a point and the tangent plane. More specifically the point-to-
point metric is formulated in equation (1.1) bellow, while equation (1.2) is a depiction of
the point-to-plane metric:

J =
n∑

i=1

(R · Pi + T −Qi)
2 (1.1)

J =

n∑
i=1

(
(R · Pi + T −Qi) · ni

)2
(1.2)

where:

R = rotation
T = translation
Pi = source point
Qi = target point
ni = tangent vector of point i

Accordingly, ICP attempts to find the optimal Ropt, Topt that minimize its error func-
tion:

[Ropt|Topt] = arg min
[R|T ]

J(R, T )

This problem is a nonlinear least-squares optimization problem and solving it is often
computationally involved. In addition the correspondences between source points Pi and
target points Qi are needed. ICP simply matches a source point with its nearest one in
the target point cloud. This however may not be the optimal match and outliers may
deteriorate it further. For that reason, ICP is applied iteratively and points that their
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distance exceeds a threshold are excluded. In every iteration ICP calculates the rigid
transformation between the inliers that minimizes the error function. The problem of
determining the rigid transformation between two sets of corresponding 3D points is known
as Absolute orientation. ICP usually assumes a small relative orientation between the two
point clouds and approximates the solution with a linear system of equations than can
be solved by Singular Value Decomposition (SVD) [24]. Hence ICP converges iteratively
toward the optimal solution and it is often applied in a coarse to fine pyramid scheme.
Nevertheless, if the small rotation assumption does not hold, ICP may not converge or
may be trapped in a local minimum.
Additionally to SVD other methods have also been proposed for the Absolute Orientation
problem. Lourakis proposed an efficient solution to the absolute orientation problem [22]
and later together with Terzakis reviewed the performance of various direct methods for
Absolute Orientation [23].

1.2.3 Loop Closure

A common problem in visual odometry methods is the accumulation of error. Most al-
gorithms calculate the displacement of the camera from its previous position. Such cal-
culations are in most cases erroneous and as the camera moves, this error accumulates.
Loop Closure techniques add extra constraints to pose estimation in order to bound the
accumulated error. A widespread method for loop closure is the implementation of a Pose
Graph.

Pose Graph: A Pose Graph, like a regular graph, contains nodes and edges. Nodes are
divided into two categories. Nodes that have been associated with robot’s poses (Pose
nodes) and nodes that have been associated with landmarks (landmark nodes). Pose
nodes represent robot’s poses taken from different points in time while landmark nodes
indicate a distinct location in the world. Furthermore edges express constrains between
nodes. Hence an odometry measurement is a constraint from a previous location to the
next one and it is represented by an edge on the graph. The value of this edge contains
the displacement as well as the uncertainty of the measurement.
Figure 1.2 illustrates a Pose Graph with pose nodes (blue nodes) and landmarks (green
nodes).

Figure 1.2: Pose Graph, blue nodes are poses while green nodes are landmarks.

When a Pose Graph contains circles, the values of the edges can be optimized in order
to minimize uncertainty.
There are two widely used implementations of Pose Graph: General Graph Optimization
(G2O) [20] and Incremental Smoothing and Mapping (ISAM) [15].
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1.3 vSLAM in Humanoids

The environment that we live in, is created and modified specially for human needs. Ac-
cordingly, mobile robots are often inadequate for completing tasks in this environment.
For that reason humanoid robots have been developed that resemble the actual human
body and can interface better within our environment. Moreover humanoid robots feel
more familiar to us improving human to robot interaction.
Generally, humanoids have a torso, a head, two arms, and two legs. Also they are charac-
terized by their bipedal locomotion. The bipedal movement of humanoids is calculated by
the inverse kinematics. However, calculating the inverse kinematics is a complex problem,
due to high degrees of freedom, and can not be solved analytically. Furthermore, regular
kinematics suffer from slippage in bipedal gait, discontinuous ground contacts and actua-
tion errors. As a result, localization solely based on kinematics is prone to error. Hence a
visual SLAM system can increase localization accuracy.

1.3.1 Nao Robot

One widely used humanoid is the Nao Robot (Figure 1.3). Nao is preferred by multiple
laboratories due to its compact size and relatively low cost. It is developed by SoftBank
robotics and since 2008 was used in RoboCup. It has 57.3 centimeters height and 25
degrees of freedom. In addition, Nao contains nine tactile sensors, eight pressure sensors,
sonar, gyroscope and two cameras. However, despite its variety of features, its sensors are
of low quality because of its low cost and they are often inadequate for SLAM purposes.
Specifically, the gyroscope is of low quality and produces measurements in low frequency.
In addition, the overlapping section between the field of view of the cameras is very narrow,
making the cameras insufficient for stereo matching.

(a) Nao Robot (b) Joints of Nao

Figure 1.3: Characteristics of the Nao Robot.

1.4 Thesis Contribution

This work addresses the SLAM problem and its application in humanoid robots focusing
on RGB-D sensors and embedded devices. It begins with a performance evaluation of
various SLAM systems and their components in simulated experiments. The purpose of
this evaluation is to study the performance of SLAM algorithms in order to use them
in embedded GPUs and humanoid robots. The above evaluation showed that Kinect
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Fusion performs well with respect to achieved frame-rate and memory usage and thus, it
is well suited for on-board execution. Then it follows an evaluation of geometric feature
descriptors extracted from convolutional neural networks. Sparse features are used later
in this work for an implementation of a loop closure mechanism. In this evaluation,
3DMatch [56] and 3DSmoothnet [10] were studied along with SIFT features [25]. Based
on the obtained evaluation results, this thesis subsequently proposes two modifications
of Kinect Fusion. The first modification combines Kinect Fusion with State Estimation
RObot Walking (SEROW). SEROW provides a humanoid robot’s state estimation that
fuses multiple information including VO. The proposed modification improves at the same
time state estimation and map representation and achieves real time execution on a Jetson
tx2. The second modification enhances Kinect Fusion with a loop closure mechanism. The
mechanism incorporates VO from Kinect Fusion with sparse features into a common Pose
Graph. It achieves to bound the accumulated error but runs offline.

1.5 Thesis Structure

The structure of this thesis is as follows. Related work is first presented in Chapter
2. Then, Chapter 3 contains the evaluations of SLAM system and feature descriptors.
Chapter 4 describes the modifications of Kinect fusion with both SEROW and Pose Graph
and Chapter 5 includes the results of the modified Kinect Fusion. The thesis concludes
with Chapter 6 that summarizes our work and provides directions for future work.



Chapter 2

Related Work

2.1 Simultaneous Localization and Mapping Algorithms

A turning point on SLAM systems was the creation of Microsoft Kinect sensor with RGB
and Depth information. Since then, many algorithms exploited the new technology to
utilize depth for pose estimation and map creation, which is also the case in the current
work. The first algorithm that used Kinect sensor was Kinect Fusion [13]. Kinect fusion
performs solely on depth data, consequently it works in variable lighting conditions. It
stores the map in a dense volumetric representation and it achieves high frame rate due
to its GPU based implementation. The main disadvantage of Kinect fusion is the pre-
allocation of memory resulting in a fix map size. Many algorithms have been proposed to
expand the map size dynamically and also reduce the accumulated error.
Fioraio et al. [9] propose a system of multiple volumes. Volumes contain at maximum k
frames so the drift inside a volume should be minimal. Then they are aligned together
through an energy minimization procedure on their zero-level set.
Another algorithm that is based on Kinect fusion is InfiniTAM v3 [17]. InfiniTAM creates
sub-maps every k frames. These sub-maps may overlap and the camera may be positioned
in more than one. The ray-tracing process is carried out in every sub-map that contains
the camera. Hence the relative positions of the camera also align the sub-maps together.
InfiniTAM achieves real time execution by implementing hashing techniques in voxel grid,
increasing ray-tracing performance and reducing memory usage. Additionally [32] imple-
ments voxel hashing that allows arbitrary large grids. However it does not deal with the
accumulated estimation error.
Moreover Whelan et al. [49] implemented a system that divides volume into slices. As
the camera moves, volume map is sifted by removing the most distant slice and inserting
an empty one at the end of the map. Slices form a circular buffer so no extra memory
allocation is required. The data of the removed slice are stored in form of surfels. Finally
camera’s location during a sift is stored in a Pose Graph and a loop closure mechanism is
developed with the use of SURF features.
Another dense SLAM algorithm is Elastic Fusion [50]. Elastic Fusion represents the world
with Surface elements or surfels. Similar to ICP, Elastic Fusion calculates VO by solving
an energy minimization problem which considers both geometry and photometry of the
scene. In addition, it performs local and global loop closure by applying non-rigidly de-
formation in surfels elements.
In addition there are multiple sparse slam algorithms in the literature. One such algorithm
is ORB-SLAM2 [31]. ORB-SLAM2 works on multiple cameras (monocular, stereo and
RGB-D) and utilizes Oriented FAST and Rotated BRIEF or ORB features [41]. Moreover

9
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it implements a loop closure mechanism based on a Pose Graph. Parallel to a main thread,
a second thread is running that detects loops and optimizes the graph.
Another sparse algorithm that operates with monocular cameras is MonoSLAM [8].
MonoSLAM creates a probabilistic map with state estimates for every feature as well as
their uncertainty. In every frame, it applies Extended Kalman Filters in order to predict
the camera’s motion and features displacement. MonoSLAM achieves real time execution
by limiting the features number to around 100.
One SLAM algorithm that has been used in augmented reality is Parallel Tracking and
Mapping (PTAM) [18]. PTAM works on monocular cameras and separates tracking and
mapping into two different threads. One thread tracks camera’s motion while the other
optimizes the map using bundle adjustment.
Recently a modification of PTAM, Stereo Parallel Tracking and Mapping (S-PTAM ) [37]
has been proposed in order to extent PTAM capabilities into stereo cameras and avoid
the bootstrapping problem in monocular systems.
An additional monocular algorithm is VINS-Mono [39]. VINS-Mono overcomes the lack
of depth information by fusing IMU with visual odometry creating the Visual-Inertial
Odometry (VIO). VINS-Mono tracks corner features with a sparse optical flow algorithm
and rejects outliers with RANSAC. Additionally to VIO, it provides a loop detection
mechanism with bag-of-word place recognition as well as a loop closure and re-localization
module based on Pose Graph optimization.
Finally BundleFusion [7] is a recent slam system that combines sparse and dense meth-
ods. It utilizes SIFT features for an initial coarse global alignment and then it refines this
alignment with a geometric and photometric energy minimization problem. This approach
achieves instantaneous and globally consistent relocalization.

2.1.1 Datasets

Besides SLAM algorithms, there are multiple datasets to test and assess their perfor-
mance. The Technical University of Munich provides the TUM [46] datasets with RGB-D
data from a variety of environments such as an office environment, an industrial hall etc.
RGB-D information was captured from a Microsoft Kinect which was either handheld or
mounted into a Pioneer 3 mobile robot. Along with the camera data, the ground truth
trajectory of the sensor was obtained from an eight cameras motion-capture system.
Moreover Imperial College London and National University of Ireland Maynooth (ICL-
NUIM) [11] datasets simulates camera motion in synthetically generated environments.
ICL-NUIM includes RGB-D data as well as ground truth trajectories and surface models.
RGB-D information includes real world artifact by modeling sensor’s noise in RGB and
depth. In addition due to the synthetically generated nature of the dataset, the ground
truth trajectory and models are perfect.
Another recently published collection of datasets is OpenLORIS [43]. OpenLORIS pro-
vides visual, inertial and odometry data from Intel’s RealSense cameras mounted on a
mobile robot. It also includes several scenes from an office environment, a household, a
market etc. In addition it captures scene changes such as day-night shifts, human motion
and others. The ground truth trajectory of OpenLORIS was captured by either OptiTrack
motion capture system or by offline LiDAR SLAM, based on the Hokuyo laser scans.

2.1.2 Evaluation Software

SLAM algorithms can be evaluated with the Slambench2 [3] software. Slambench2 is a
platform for SLAM systems evaluation that provides implementation of the most popular
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SLAM algorithms in addition with a unified framework for bench-marking them. It was
developed by a collaboration between University of Edinburgh, Imperial College and Uni-
versity of Manchester under the umbrella of the PAMELA project. Among others, Slam-
bench2 records the processing time, memory usage and error in pose estimation. Moreover
it provides tools for importing algorithms and datasets. Finally, in 2019, Slambench2 was
succeed by Slambench3 [4]. Slambench3 includes implementations of the latest SLAM al-
gorithms and supports dynamic SLAM and scene understanding with convolutional neural
networks.

2.1.3 Simultaneous Localization and Mapping in Humanoids

Visual SLAM is especially challenging in humanoids. While wheeled robots can navigate
using a 2D representation of the world, humanoids require a 3D structure in order to
plan their footsteps. Moreover their bipedal movement causes sudden accelerations due to
contact switching. This on its part, results in visual motion blurriness that deteriorates
the performance of SLAM systems. Furthermore, humanoid robots have limited power
and computational resources. Consequently the computational efficiency of the algorithms
together with an optimized implementation is necessary.
For such reasons, multiple studies focus especially on humanoid robots and how to inte-
grate a SLAM system into them.
Kagami et al. [16] use stereo images together with a localization module to produce a 2.5D
map of the environment. The map consists of a 2D grid with extra height information.
Stasse et al. developed a system for humanoids that integrates walking and vision in
order to increase autonomy [44]. They based their SLAM system on Extended Kalman
Filters (EKF) and sparse feature extraction. The authors in [51] attempted to implement
a sparse visual SLAM algorithm in Nao robot but they encountered several difficulties.
Specifically they found out that Nao cameras are subject to strong motion blurriness and
also they are inadequate for stereo vision since they do not have a shared field of view. In
addition, Nao’s CPU is limited and can not run heavy procedures such as Kalman filters.
Finally, feet slippage and hip design cause systematic deviation in the walk and odometry
drifting. The authors however achieved to track orientation changes and build a visual
compass with only one camera.
Maier et al. [26] overcame Nao’s cameras problems by mounting an external Asus xtion
RGB-D camera on Nao. They used depth and kinematics in order to produce a high-
resolution map with height and uncertainty information for every cell. Later this map was
used to produce collision-free footsteps and whole-body motions.
In addition, the authors in [33] produce a more accurate odometry for Nao robot using
EKF and fusing multiple sources including IMU, kinematics and VO. Briefly, joint en-
coders are used in the prediction step of EKF while VO from PTAM SLAM algorithm
and IMU are used as correction measurements.
Complementary to sparse algorithms, also dense SLAM systems have been integrated into
humanoid robots due to their good performance in environments with poor features. In
[57] the authors propose a dense method for map reconstruction working in dynamic en-
vironments with human motion in it. They based their method on human body detection
through deep learning and a graph-based segmentation that separates moving objects from
a static environment.
In [42] the authors combine Elastic Fusion with kinematics and IMU. They expand the
energy function of Elastic Fusion in order to consider photometric, geometric and kine-
matic errors. Finlay, they embedded and tested their system in the Valkyrie humanoid
robot.
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2.1.4 Simultaneous Localization and Mapping for Specific Purposes

In addition to SLAM algorithms for Humanoid Robots, other SLAM algorithms have
been proposed for specific systems. For instance Hourdakis et al. [12] proposed a SLAM
system for Planetary Rovers. Their system detects geological elements such as boulders
either on the ground or in orbit and use them to update VO reducing pose drift. Moreover
Lentaris et al. [21] focus on FPGA implementation of VO also for Planetary Rovers. They
perform a hardware and software codesign that achieves one order of magnitude faster
execution. Furthermore, Panteleris et al. [34] proposed a SLAM system motivated by the
c-Walker device. The latter is a smart walker platform that aims to safely guide elderly
people though public spaces and crowded areas. The proposed system detects and tracks
independently moving objects while progressively building the map of the environment.
Also it achieves near real time performance on ARM based embedded systems.

2.2 Feature Extraction

Sparse algorithms depend on local feature tracking between consecutive images. Gen-
erally local features are pieces of information that describe distinct areas either on the
image plane or in the 3D world. They consist of key-points and descriptors. Key-points
define feature locations while descriptors characterize the corresponding feature uniquely.
Features can be extracted either from RGB or depth information of the scene. Most of
the algorithms that extract features from RGB assume that the photometry of the scene
does not change, and that the object reflects the light evenly to every direction. This
assumption however does not always hold true. For that reason geometric features that
operate solely on depth have been introduced, although in various cases they are prone to
noise.

2.3 Photometric Features

The Scale-Invariant Feature Transform or SIFT [25] was one of the first feature extraction
algorithms introduced in the literature. SIFT features rely on the Difference of Gaussians
(DoG) applied on grayscale images and they produce rotation and scale invariant key-
points and descriptors. Later Mikolajczyk et al. [29] performed PCA analysis on SIFT
descriptors and showed that they have high distinctiveness. In addition, Yan Ke et al. [52]
proposed PCA-SIFT that reduce the size of the relevant descriptor from 128 dimensions
to 36.
Another feature algorithm that outperforms SIFT in execution time is Speeded-Up Robust
Features (SURF ) [1]. SURF uses an approximation of the determinant of Hessian that can
be calculated with very few operations, thus improving performance. Similarly, Binary
Robust Independent Elementary Features (BRIEF ) [5] introduces a binary descriptor that
outperforms SURF. Moreover similarities between multiple BRIEF descriptors are calcu-
lated with the Hamming distance instead of euclidean. This greatly decreases the needed
calculations and at the same time increases performance. Nevertheless BRIEF does not
provide a key-point extraction method. Later Oriented FAST and rotated BRIEF (ORB)
[41] features combined BRIEF with FAST key-point detector [40] in order to provide a
fast and free of license feature extraction mechanism. The ORB descriptor was used in
Orbslam [30] SLAM algorithm.
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2.4 Geometric Features

Geometric features extract key-points and descriptors from depth data. They do not con-
sider the photometry of the scene, hence perform well under different lighting conditions.
Nevertheless depth data are usually more noisy and come in low resolution.
Kovács et al. [19] propose a method for corner detection in simple objects. In addition
they provide a descriptor generation algorithm. This method however was tested only in
simple synthetic scenes. Normal Aligned Radial Feature (NARF )[45] provides a geomet-
ric feature technique for key-points and descriptor extraction from range images. NARF
selects key-points in position where the surface is stable so the estimation of the normal
is robust and also there are sufficient changes in the immediate vicinity.
Another common approach is to use neural networks for feature extraction. 3DMatch
[56] is a neural network model that learns a local descriptor from 3D patches. It selects
random key-points and produces local patches around them. Then a convolutional neu-
ral network calculates the actual descriptor. 3DMatch also aligns the local patches by
using the RANSAC algorithm. A different model that calculates local descriptors with
convolution networks is 3DSmoothNet [10]. Contrary to 3DMatch, it uses a different rep-
resentation for the local patches that achieves better rotation invariance and more dense
matrices.

2.5 Robot Operating System - ROS

All algorithms described here are independent from the sensors hardware and can perform
under different platforms. Thus, a hardware abstraction is necessary for their efficient
implementation. Robot Operating System or ROS offers such abstraction for robotics
applications. ROS is widely used in research and industry. It is a mid-ware that stands in
a layer above the actual operating system, and bellow the processes. It provides low level
device code and hardware abstraction by a message passing mechanism. Processes in ROS
are called nodes and they communicate with each other using streaming topics, services,
and the Parameter Server. Topics are the most common way of communication. They
are data-streams with a message type and a topic name. So arbitrary nodes may publish
messages in a topic and subscriber nodes access such messages. With that mechanism,
ROS achieves the hardware abstraction as stated above. A device driver is an independent
node that streams information into a topic. For instance a camera driver streams images
in the camera topic. Therefore, any subscriber node accesses camera’s images without any
knowledge of the hardware.
Software in ROS is organized in packages. A ROS package contains ROS nodes, source
code, libraries, executables etc. In addition it has build instructions and dependencies.
A package may depend on other packages for their compilation or node execution. That
forms a complicated build system. Fortunately, ROS provides its own tool for compilation
and resolving dependencies called catkin. Finally, ROS provides its own emulation system
called Gazebo.
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Chapter 3

Performance Evaluations

This chapter contains the results of the performance evaluations conducted in this work.
In Section 3.1, SLAM algorithms and their components are tested with the purpose to be
used in embedded devices. Then in Section 3.2 feature descriptors are tested for a latter
implementation of a loop closure mechanism. Specifically 3DMatch and 3DSmoothNet
feature descriptors that are extracted from convolutional neural networks are compared
with more conventional methods such as SIFT.

3.0.1 System Description

All evaluations were executed on a desktop computer with the following specifications:

CPU: intel i7-8700K

CPU frequency: 3.7Ghz (Turbo boost 4.7Ghz)

CPU cores: 6

Threads per core: 2

RAM: 32Gb

gpu: GeForce GTX 1070

gpu memory: 8Gb

gpu Cores: 1820

15



16 CHAPTER 3. PERFORMANCE EVALUATIONS

3.1 Evaluation of Simultaneous Localization and Mapping
Systems

In this section we study the performance and requirements of different components that
inhere in various SLAM systems. Specifically we conducted three sets of experiments. In
the first set we studied the performance and the quality of the results of Visual Odom-
etry, implemented by ICP on depth data. For that reason the Kinect Fusion algorithm
implementation was used. Next we tested the performance of VO when extra photometric
together with geometric constrains are applied. For this particular case, Elastic fusion was
used. Finally we examined the requirements of loop closure on sparse algorithms using
Orbslam2. All the experiments were contacted using the Slambench2 platform [3].

3.1.1 Datasets

In all the evaluation experiments, two different datasets were used:

� Living room trajectory 2 dataset from ICL-NUIM [11].

� Freiburg1 360 dataset from TUM [46].

(a) Living Room Dataset. (b) Freiburg1 360 Dataset.

Figure 3.1: Snapshots from the two employed datasets.

Living room: This dataset contains RGB-D data from a common living room. The data
are synthetically generated and hence the ground truth trajectory is perfect. In addition
the noise of the sensor has been modeled in both RGB and depth. In this dataset, the
camera is moving slowly in a large circle. Figure 3.1a displays a screenshot of Slambench2,
where the green line is the ground truth trajectory of the camera. This is a characteristic
example of a domestic area and we expect good performance of SLAM algorithms and
accurate map representation.

Freiburg1 360: This is a common office environment. However it contains multiple
rotations which are expected to stress the algorithms. As in the above case, the green line
in figure 3.1b demonstrates the ground truth trajectory of the camera.
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3.1.2 Performance Evaluation for the Case of Depth Data

In this case we study the requirements of Visual Odometry (VO) as it was implemented by
point-to-plane ICP. ICP was operating on depth data taking into account solely the geom-
etry of the scene. For this particular experiment we use Kinect Fusion and its Slambench
2 OpenCL implementation. We measured per frame and VO processing time, memory
usage and pose estimation error. The absolute error of the graphs represent the transla-
tion error per frame in meters while the mean error represents the average error until the
corresponding frame
Figures 3.2a and 3.3a show the execution time per frame (green line) and VO (red line).
The x axis represents the frame number while the y axis is the time in seconds. From the
graph it is clear that the execution time of each frame is mainly influenced by VO. Fur-
thermore the measured frame-rate was 188,7 frames/s. Considering that regular cameras
run at 30 frames pes second, Kinect Fusion can apparently achieve real time execution.
Nevertheless Slambench is a simulator and is not concerned about system issues that may
deteriorate the frame rate, like camera drivers, memory copying of images etc.
Figures 3.2b and 3.3b represent the absolute and mean translation error of pose estimation
per frame. Generally the error is increasing. Nevertheless in the room dataset, we detect
a drop in the absolute error after the camera has finished a cycle.
Finally diagrams 3.4 present the memory usage of Kinect Fusion, which is pre-allocated
and it is common for every dataset.
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(a) VO and Frame processing time.

(b) Pose estimation error (Translation).

Figure 3.2: Processing Time and translation error from Kinect Fusion in Living Room
Dataset.
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(a) VO and Frame processing time.

(b) Pose estimation error (Translation).

Figure 3.3: Processing Time and translation error from Kinect Fusion in Freiburg1 360
Dataset.
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Figure 3.4: Kinect Fusion memory usage.

3.1.3 Performance Evaluation of in the Case of Photometric and Depth
Data

At the second case we study the extra computational cost that photometric constrains
introduce to ICP. For this scenario, we use the cuda implementation of Elastic Fusion in
Slambench2. Similarly to previous case, we measure the processing time per frame, the
processing time of VO per frame as well as the memory usage and pose estimation error.
As previously, the absolute error is the translation error in meters and the mean error is
the average error until the corresponding frame.
Figures 3.5a and 3.6a demonstrate the execution time of Elastic Fusion. As in the previ-
ous case, the green line denotes the processing time per frame, while the red line is the
processing time of Visual Odometry. While the VO processing time remains relative low,
the frame processing time is much higher. The average frame-rate is 55.1 frames/s.
Comparing VO from Kinect and Elastic fusion, the performance difference is insignificant,
therefore the extra photometric constrains do not deteriorate the execution time. However
the total frame rate of elastic fusion is much lower, probably due to algorithmic differences
and not optimized implementation. Moreover the memory usage, as shown in figure 3.7,
is much higher. In addition, Figures 3.5b and 3.6b show the translation error of Elastic
Fusion. In the Room dataset, Elastic Fusion performs worst than Kinect Fusion. How-
ever in the Freiburg1 360 Dataset, Elastic Fusion manages to reduce the translation error
probably due to its loop closure mechanism.
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(a) VO and Frame processing time.

(b) Pose estimation error (translation).

Figure 3.5: Processing Time and translation error from Elastic Fusion in Living Room
Dataset.
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(a) VO and Frame processing time.

(b) Pose estimation error (translation).

Figure 3.6: Processing Time and translation error from Elastic Fusion in Freiburg1 360
Dataset.
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Figure 3.7: Elastic Fusion memory usage.

3.1.4 Performance Evaluation of Pose Graph and Loop Closure

In this case we study the requirements of Pose Graph and loop closure mechanism using
ORB-SLAM2 and its Slambench2 implementation. We measured the processing time of
VO and ORB detection as well as the total processing time per frame. Furthermore we
measured the performance of loop closure which runs on a separate thread. For that
reason the duration of loop closure detection was measured in addition to the Pose Graph
optimization time. Finally Figures 3.8c and 3.9c present the translation pose estimation
error.
Plots 3.8a and 3.9a demonstrate the total execution time per frame (green line), processing
time of ORB detection (red line) and processing time of VO (blue line). Frame proceeding
time is mainly the sum of ORB detection and VO proceeding time. This implementation
of ORB-SLAM2 is based on CPU, and for that reason the execution time is much slower
than the others algorithms.
Moreover graphs 3.8b and 3.9b depict loop closure’s performance. The green line is the
time lapsed for loop detection whereas the red line is for graph optimization. The x axis
in these graphs is the number of key frames. We can observe that the loop detection is
more time consuming that the actual graph optimization.
Examining the pose estimation error in figures 3.8c and 3.9c, we notice that the loop
closure mechanism limits the accumulated error in the Freiburg1 360 dataset.
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(a) ORB Detection, VO and Frame processing time.

(b) Duration of loop detection and graph optimization.

(c) Pose estimation error (translation).

Figure 3.8: Processing Time and translation error from ORB-SLAM2 in Living Room
Dataset.
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(a) ORB Detection, VO and Frame processing time.

(b) Duration of loop detection and graph optimization.

(c) Pose estimation error (translation).

Figure 3.9: Processing Time and translation error from ORB-SLAM2 in Freiburg1 360
Dataset.
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3.1.5 Summary

The performance of the dense algorithms (Kinect Fusion and Elastic Fusion) indicate that
high frame-rates can be achieved with parallel GPU implementations even in large data
sizes. Kinect Fusion can accomplish a very high frame rate and good memory usage due
to its thorough optimization, making it well suited for on-board execution. Furthermore
extra photometric constrains do not negatively affect the performance of ICP. Lastly, loop
closure mechanisms can reduce the accumulated error but the loop detection problem is
computationally harder than the actual graph optimization.
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3.2 Evaluation of Aspects Related to Features

This chapter compares 3DMatch and 3DSmoothNet geometric descriptors in addition with
the well known Scale-Invariant Feature Transform (SIFT) features from photometry [25].
Both 3DMatch and 3DSmoothNet choose key-points randomly from dept data. Here we
also tested a combination of 3DSmoothNet with Harris Corners as key-point extraction
mechanism instead of a random selection. Moreover we preform Principal Component
Analysis (PCA) to find the principal components that hold more than 90% of the infor-
mation. Also we compute the Distinctiveness of descriptors as the sum of the eigenvalues
of the principal components, Mikolajczyk et al. [28] have also used this metric to measure
the Distinctiveness of SIFT descriptors.

3.2.1 3DMatch: Learning Local Geometric Descriptors from RGB-D
Reconstructions

Figure 3.10: 3DMatch Feature Descriptors (from [56]).

3DMatch [56] is a model that learns a local descriptor for establishing correspondences
between partial 3D data. It creates a voxel representation of the world using the Truncated
Distance Function (TDF). TDF is the absolute value of the Truncated Signed Distance
Function (see section 4.2). This representation loses the distinction between free and
occupied space but the largest gradients between voxel values are concentrated around
the surfaces. The voxel grid is aligned with respect to the camera view, hence this may
deteriorate the rotation invariant property of the descriptor. 3DMatch selects random key
points in the grid, and creates local patches of 30× 30× 30 voxels around them, as shown
in figure 3.10. Then these patches are passes into a 3D convolution network. For every
local patch, 3DMatch creates a descriptor with 512 elements. Finally the local patches
are aligned using the RANSAC algorithm.

3.2.2 3DSmoothNet

3DSmoothNet [10] utilizes convolutional networks in order to calculate local descriptors
from depth data. It employs a novel voxelization method called Smoothed Density Value
(SDV). SDV relies on the Local Reference Frame (LRF) in order to create rotation invari-
ant descriptors. LRF produces a rotation matrix based on the covariance of the points
inside a neighborhood. Then these points are rotated and thus a rotation invariant rep-
resentation is achieved. Next 3DSmoothNet creates the actual voxel grid, whose elements
are computed using a Gaussian smoothing kernel. Gaussian smoothing results in a more
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dense grid than other voxel representations and in addition reduces the noise of the data.
Finally, 3DSmoothNet passes this grid into a stack of multiple convolutional layers, pro-
ducing a descriptor with 32 elements. 3DSmoothNet also chooses key-points randomly
and aligns the point clouds using the RANSAC algorithm.
Figure 3.11 depicts the pre-processing operations that 3DSmoothNet performs on the
data. Image (a) shows the initial input data. Then 3DSmoothNet calculates the LRF
matrix (image (b)) and rotates the data accordingly (image (c)). Finally in image (d),
3DSmoothNet creates the vocalized representation and applies the aforementioned Gaus-
sian smoothing (image (e)).

Figure 3.11: (a)Input image. (b) LRF (c) Data rotation (c) Voxelization (c) Smoothing
(from [10]).

3.2.3 Scale-Invariant Feature Transform - SIFT

Scale-Invariant Feature Transform or SIFT features are well tested and highly used in
computer vision [25]. The SIFT algorithm is based on the Difference of Gaussians
(DoG) to extract key-points and feature descriptors. Initially, it creates a pyramid scheme
of octaves and scales. Each octave has half the size of the previous one. Within an
octave, there are multiple blurred versions of the image, produced by Gaussian smoothing
at different widths (scales). Then the subtraction of the images between consecutive
scales forms the Difference of Gaussians or DoG. Afterwards, key-points are extracted
on the maxima and minima values of the DoG images. Moreover the eigenvalues of the
Hessian matrix of DoG provide information about the orientation of the descriptor, thus
accomplishing rotation invariance. Figure 3.12, illustrates the multiple layers of the image
and the DoG representation.
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Figure 3.12: Octaves, Scales and Difference of Gaussian (from [25]).

3.2.4 Experimental Setup

The experiments described in this section were conducted with two images from the Room
dataset (see section 3.1.1). The images display a sofa in a slightly rotated angle. Figure
3.14 shows these RGB data of these images while Figure 3.13 shows the depth information.
The depth of these data is aligned to RGB. Additionally, the camera displacement between
these two images is known from the ground truth trajectory and it is indicated in Table
3.1.

(a) Sofa:position 1 (b) Sofa:position 2

Figure 3.13: Depth data of sofa from two different angles.
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(a) Sofa:position 1 (b) Sofa:position 2

Figure 3.14: RGB data of sofa from two different angles.

Table 3.1: Ground truth displacement

x(m)) y (m) z (m) roll(deg.) pitch(deg.) yaw(deg.)

-0.519 0.021 0.092 -2.779 22.944 2.020

We conducted four experiments and we tested the execution time, distinctiveness of
descriptors as well as the transformation between these two images. The transformation
was calculated either with RANSAC or kNN. In case of RANSAC, the algorithm chooses
random points from the key-points set of the first image. The initial correspondences
between these points and the key-points of the second image are detected with the Nearest
Neighbor method applied to descriptors. RANSAC also excludes outliers by checking if
the two point clouds build polygons with similar edge lengths. Specifically it checks if the
lengths of any two arbitrary edges within the first set of key-points is similar to the edge
formed by the corresponding points of the second key-point set. For the implementation
of RANSAC the Open3D library was used.
In case of kNN, the two Nearest Neighbors were detected. Then a point was considered as
inlier if the ratio of first Nearest Neighbor to the second one was less than a threshold value,
in this case 0.7. This method assures that the descriptor distances between the inliers are
much closer than the other points. Then the final transformation was calculated with
SVD. For this method the OpenCV library was used.

3.2.5 Local Descriptor Consistency

In this section we studied the consistency of the local descriptors from 3DMatch and
3DSmoothNet. Initially, random key-points were selected from the first image. Then
these key-points were transformed with the ground truth transformation. Points outside
the common field of view were excluded. With this approach we obtained the ground
truth correspondence between key-points. Figure 3.15 shows the selected key-points with
red dots.
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Figure 3.15: Key-point on the first image was chosen randomly. Then it was transformed
with gt transformation at the second image.

Generally we expect the descriptors from the corresponding key-points to be close
with respect to their Euclidean Distance. In addition we measured the average distance
of the whole descriptor set. Finally we performed Principal Component Analysis in the
descriptors of both algorithms. We determined the number of Principal Components with
more than 90% variance, as well as the summation of the eigenvalues as proposed in [28].
The table bellow (Table 3.2) contains the results of these measurements.

Correspondence dist.(avg) total dist.(avg) PCA (90%) PCA(sum)

3DMatch 0.121 0.511 4 / 512 0.153

3DSmoothNet 0.328 0.866 18 / 32 0.498

Table 3.2: Euclidean distance of descriptors and PCA.

As expected, the descriptors of the corresponding key-points are closer than the av-
erage distance. Moreover PCA shows that 3DMatch has very few principal components,
only 4 from a set of 512. Thus, despite the huge size of the descriptor vector, there is no
much information in it. On the contrary 3DSmoothNet performs better with 18 principal
components out of a set of 32.
Next we determine again the correspondence between the key-points with Nearest Neigh-
bor (NN) and RANSAC and compare it against the ground truth. Figures 3.16 and 3.17
contains a visualization of the correspondences generated from the Nearest Neighbor al-
gorithm of 3DMatch and 3DSmoothNet respectively. Moreover, Figures 3.18 and 3.19
display the correspondences from the RANSAC algorithm. For visualization purposes,
only a sub-set of 100 key-points was used.
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Figure 3.16: 3DMatch - Nearest Neighbor (100 points).

Figure 3.17: 3DSmoothnet - Nearest Neighbor (100 points).

Figure 3.18: 3DMatch - RANSAC (100 points).
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Figure 3.19: 3DSmoothnet - RANSAC (100 points).

Table 3.3 shows the success rate of the two algorithms. Evidently, Nearest Neighbor
fails to find accurate correspondences. On the contrary, RANSAC performs well with both
3DMatch and 3DSmoothNet.

NN RANSAC

3DMatch 13.99% 97.19%

3DSmoothNet 28.81 98.32%

Table 3.3: Nearest Neighbor and RANSAC success rate.

3.2.6 Correspondence with Random Key-points

In this experiment we calculated two random sets of key points for the two images. For
every set, 1000 key-points were chosen uniformly. Then the camera displacement was
calculated using the RANSAC algorithm. Table 3.4 contains the camera transformation
error compared to ground truth. In addition Table 3.5 indicates the percentage of inliers
of RANSAC (fitness) as well as the execution time of feature extraction (average execution
time of two frames). In case of 3DSmoothNet, a heavy pre-processing operation takes place
on the CPU for the calculation of LRF and SDV representation. Hence we measured the
execution time of LRF and SDV separately.

x y z roll(deg.) pitch(deg.) yaw(deg.)

3DMatch 0.012 0.005 0.001 -0.693 0.285 0.032

3DSmoothNet 0.000 0.000 0.010 -0.014 0.000 -0.555

Table 3.4: Transformation error (m).

LRF SDV CNN TOTAL Fitness

3DMatch - - 3402 3402 25.9 %

3DSmoothNet 5350 5382 2129 12861 27.0 %

Table 3.5: Operation time (ms) and RANSAC fitness



34 CHAPTER 3. PERFORMANCE EVALUATIONS

Considering the transformation error, 3DSmoothNet is slightly better in both, transla-
tion and rotation. However, the LRF and SDV calculations of the 3DSmoothNet are com-
putational heavy and even slower than the actual neural network. This makes 3DSmooth-
Net’s execution time more that 12 seconds. Nevertheless, higher parallelization can be
achieved with GPU implementation on LRF and SDV calculations.
Regarding the fitness of RANSAC, both show very low percentage of inliers (25.9% and
27.0% respectively), which is due to random key-point selection. Random selection offers
no guarantee that there would be any correspondence. For that reason we have to select
a large amount of key points, deteriorating execution time and yet accomplish very small
fitness. Small fitness also makes RANSAC prone to error. In addition it is unclear if small
fitness is due to bad alignment or due to minimum key-points correspondence because of
randomness. For those reasons, it is essential to employ a better key-points extraction
technique.

3.2.7 Harris Corners

The above experiments show that random key-point selection mechanism is not appropri-
ate. In this experiment we extracted Harris corners and used them as key-points. Harris
corners were extracted from RGB and then, the corresponding depth vertex was used as
key-point. The implementation of the extraction was based on the OpenCV library and
specifically the good feature to track method [14] with Harris corners parameter activated.
The number of corners that were found was 100.
We evaluated this method only on 3DSmoothNet due to better PCA results. The next
images (Figure 3.20) display the selected key-points.

(a) Harris Corneres - position 1 (b) Harris Corneres - position 2

Figure 3.20: Harris Corners of two images.

The final transformation between these two images was computed with RANSAC,
similarly to the previous experiment. Table 3.6 shows the transformation error of RANSAC
against the ground truth. In addition Table 3.7 contains the execution time of feature
extraction and PCA results.

x y z roll(deg.) pitch(deg.) yaw(deg.)

0.004 0.006 0.001 0.012 -0.115 -0.110

Table 3.6: Transformation error (meters).
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Harris LRF SDV CNN TOTAL Fitness PCA (90%) PCA(sum)

6.4 666 713 822.79 2208.19 70 % 14 / 32 0.630

Table 3.7: Operation time (ms), RANSAC, PCA.

The results indicate a slightly worse transformation error and fewer principal com-
ponents. The error however remains considerably low. Moreover, we observe a major
increase of the fitness of RANSAC with way less key-points. Fewer key-points also lead to
better execution time. Nevertheless Harris Corners are based on RGB information, hence
the feature extraction mechanism is no more pure geometric.

3.2.8 SIFT Features

At the previous experiment we created descriptors by combining photometry and geometry
of the scene. If, however, we utilize the photometry of the scene, then SIFT is a reliable
and well tested descriptor. In this section we tested the SIFT descriptors using the same
images. For every key-point in the image plane, we took the associated vertex in 3D
space. Then we found the correspondence between these points with two different methods:
RANSAC and kNN. Regarding the kNN method, we found the two nearest neighbors of
a key-point and we added this point to the matching set only if their distance ratio was
below a threshold, in our case 0.7. Then the final transformation was calculated with
SVD.
Figure 3.21 displays the selected key-points. In addition Figures 3.22 and 3.23 show the
correspondences found with kNN and RANSAC respectively. Moreover Table 3.8 contains
the transformation error of kNN and RANSAC and Table 3.9 contains the percentage
of inlier with these two methods. Finally, Table 3.10 shows the number of principal
components with more than 90% variance and the distinctiveness of the SIFT descriptors.

(a) SIFT - position 1 (b) SIFT - position 2

Figure 3.21: SIFT features of two images.

x y z roll(deg.) pitch(deg.) yaw(deg.)

kNN 0.004 0.023 0.009 -0.308 -0.184 -0.263

RANSAC 0.001 0.007 0.000 0.166 0.159 0.133

Table 3.8: Transformation error (m).
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Fitness

kNN 39.92%

RANSAC 67.37%

Table 3.9: kNN and RANSAC fitness.

Figure 3.22: kNN correspondence.

Figure 3.23: RANSAC correspondence.

PCA (90%) PCA(sum)

SIFT 36 / 128 1.4520e+05

Table 3.10: Principal components.

This experiment shows that kNN performs well in this task. kNN excludes a large
amount of key-points and thus, it suffers of small fitness (39.93%). Nevertheless the
remaining points achieve a relative small transformation error. RANSAC also performs
well with more inliers. Considering the Principal Component Analysis, SIFT descriptors
have the 90% of their variance in 36 principal components. This indicates that they have
more information than the previous tested methods. Finally the average feature extraction
time was 43.4ms making SIFT extraction faster than 3DMatch and 3DSmoothNet.
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3.2.9 Summary

The following tables contain a summary of the results of the experiments in this section.
Table 3.11 shows the transformation error of all the tested methods and Table 3.12 contains
the execution time for each descriptor. Finally, Table 3.13 includes the results of PCA
and the distinctiveness for each descriptor.

x y z roll(deg.) pitch(deg.) yaw(deg.)

3DMatch 0.012 0.005 0.001 -0.694 0.285 0.032

3DSmoothNet 0.000 0.000 0.010 -0.014 0.000 -0.555

3DSmoothNet+Harris 0.004 0.006 0.001 0.012 -0.115 -0.110

SIFT kNN 0.004 0.023 0.009 -0.308 -0.185 -0.263

SIFT RANSAC 0.001 0.007 0.000 0.166 0.159 0.133

Table 3.11: Transformation error (m).

3DMatch 3DSmoothNet 3DSmoothNet+Harris Sift

3401.7 12860.7 2208.19 43.4

Table 3.12: Total operation time (ms).

Size PCA (90%) PCA(sum)

SIFT 128 36 1.4520e+05

3DMatch 512 4 0.1527

3DSmoothNet 32 18 0.4976

3DSmoothNet+Harris 32 14 0.6295

Table 3.13: Distinctiveness of descriptors (PCA).

Generally, both neural network algorithms are much slower than conventional methods
such as SIFT and it is difficult to include them in a real time SLAM system. In addition,
they show small distinctiveness and few principal components. For that reason, Nearest
Neighbor fails to find accurate correspondences. However, a better key-point extraction
mechanism in combination with RANSAC, may produce accurate estimations of camera
displacement.
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Chapter 4

Kinect Fusion: Proposed
Modifications

This section introduces two modifications of Kinect Fusion. Kinect Fusion was the vSLAM
system employed in this Thesis due to the achieved high frame-rate and low memory
usage, as indicated in Section 3.1. The first modification combines the VO from Kinect
Fusion with kinematics using the SEROW state estimation system [35]. This mechanism
reduces the pose estimation error and achieves real time execution on embedded devices.
The second modification of Kinect Fusion incorporates VO together with SIFT features
into a common Pose Graph. This modification manages to reduce the accumulated error
at the expense of offline execution.

4.1 Kinect Fusion

Kinect Fusion was the first algorithm that used the Microsoft Kinect sensor and its depth
capabilities. It approaches the SLAM problem in a depth frame-to-model method and it
achieves real time execution due to its GPU based implementation. The map representa-
tion of Kinect Fusion is solely stored in GPU with a dense volumetric representation as
described in section 4.2.
The workflow of Kinect Fusion, as shown in Figure 4.1, can be separated into four proce-
dures:

� Preprocessing

� Tracking (VO)

� Integration

� Raycasting

39
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Figure 4.1: Kinect Fusion workflow (from [13]).

Initially Kinect Fusion pre-processes the input data by applying a bilateral filter kernel
for noise reduction. Then it produces the surface vertexes and normal maps for input
data. Next, Kinect Fusion executes the tracking process by aligning the input data with
the model’s vertices and normal map from the previous camera position. The alignment
is found with a point-to-plane ICP in coarse to fine pyramid scheme. After tracking, the
new camera pose is calculated. Using this pose, Kinect Fusion integrates the input data
into the model. Afterwards the algorithm commits raycasting in order to determine the
new model vertices and normals.

4.2 Truncated Signed Distance Function - TSDF

Truncated Signed Distance Function (TSDF) is a volumetric scene representation that
allows integration of multiple depth images taken from different viewpoints. It has sev-
eral benefits like time and space efficiency, representation of uncertainty and incremental
updates. Moreover it supports high parallelization, thus it is well suited for GPU imple-
mentation. TSDF is an extension of Singed Distance Function (SDF ) proposed in [6]. The
Signed Distance Function consists of a three dimensional grid divided into voxels. Each
voxel has two relevant values, the signed distance function sdfi and its weight wi.
sdfi(x) is the distance of the center of voxel x from the nearest surface, towards the di-
rection of the measurement. Hence positive values denote the free space, while negative
values are behind or inside the objects. Furthermore, the zero levels of SDF form the
actual surface. So it is clear that large distances (either negative or positive ones) do
not contribute to surface reconstruction. For that reason, such values can be truncated
in order to maintain numerical stability and reduce memory footprint. These truncated
sdf values form the Truncated Signed Distance Function (TSDF ). The following formula
describes the truncation of signed distance function.

tsdfi(x) = min(1,max(−1, sdfi(x))) (4.1)

where:

i = is the sequence number of measurement.
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Figure 4.2: TSDF volume representation

As mentioned above, voxels also have a weight value. Weights indicate the uncertainty
of the voxel and can be used to fuse multiple measurements together. A voxel x holds the
TSDFi(x) and Wi(x) values for frame i. When a new measurement of x arrives, these
values have to be updated. The new measurement has a new tsdfi(x) and also uncertainty
wi(x). The following formula fuses a new measurement to voxel grid.

TSDFi(x) =
Wi−1(x) · TSDFi−1(x) + wi(x) · tsdfi(x)

Wi−1(x) + wi(x)

Wi(x) = Wi−1(x) + wi(x) (4.2)

A common approach for the uncertainty is to set wi(x) = 1 for every voxel update. This
simple technique averages measurements over time. This is also the approach that follows
Kinect Fusion. In addition the initialization of voxel grid is important. Usually the
TSDF0 is set to one to mark all the voxels in the grid as empty and W0 is set to zero.
For surface reconstruction the zero level of TSDF must be found. This can be done by
raycasting from a given camera viewpoint. Rays pass through voxels until there is a
change in sign. Then the actual zero crossing is calculated via interpolation.
More information about the TSDF and its parameters can be found in [48].

4.3 Kinect Fusion and SEROW

The State Estimation Robot Walking or SEROW [35] is a home-made software module
that estimates the state of the Center of Mass (CoM) for humanoid robots. It incorporates
multiple sources including VO in order to produce more accurate estimations. The current
section proposes an algorithm that combines Kinect Fusion with SEROW.
SEROW incorporates VO independently from the method that produces it. In this case
we chose Kinect Fusion since it is well suited for embedded devices and its structure allows
separation of VO and Mapping. SEROW fuses VO form Kinect Fusion with kinematics
improving the accuracy of pose estimation. Subsequently, the refined poses are used for
mapping, achieving better map representation. This in turn leads to even more accurate
estimation and so on. Moreover, the whole system is lightweight and can run on embedded
devices such as Jetson tx2, maintaining high frame rates. Finally, we tested and evaluated
this system in real world experiments. This work has been published in [36] and the
implementation is publicly available in [47].
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4.3.1 State Estimation RObot Walking - SEROW

Estimating the state of CoM is essential for stable walk and gait planning in humanoids.
Generally gait planning is a very difficult task due to the large number of degrees of
freedom and the highly non-linear rigid-body dynamics of humanoids. For that reason,
the dynamics are often approximated with mass concentrated models and consequently
the estimation of CoM is crucial. SEROW estimates accurately the 3D position of CoM
as well as its velocity and acting external forces.

Briefly, it fuses measurements from different sources such as joint encoder, IMU,
Force/Torque and VO in a modular and probabilistic way.
Formally it estimates the following vector:

xt = [bυb
wRb

wpb bw ba]T (4.3)

where:

bυb = linear velocity
wpb = base position with respect to world frame w
wRb = base rotation with respect to world frame w
bw, ba = IMU biases, in the base frame b.

Figure 4.3: SEROW architecture (from [35]).

The estimation scheme of SEROW (Figure 4.3) consists of two cascading Extended
Kalman Filters, which furnish it with low computational complexity and hence appropriate
for on-board execution.

4.4 Architecture

In order to combine SEROW with Kinect Fusion we have to separate the second into two
different functionalities.

� Visual Odometry (VO).
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� Mapping.

Then SEROW stands between them as shown in Figure 4.4.

Figure 4.4: Kinect Fusion and SEROW architecture.

VO operates in the usual way by aligning the input data against the model’s vertices
and normals. Next the output of VO is directed to SEROW which produces a more
accurate estimation that is used later for map integration and raycast. With that technique
we have successfully enhanced vSLAM with information from IMU, encoder, and F/T
measurements.

4.4.1 Implementation

For this work we port the implementation of Kinect Fusion from Slambench2 [3] into ROS.
Although there are other implementations of Kinect Fusion, we showed in chapter 2 that
this implementation achieves high accuracy and frame rate. Meanwhile SEROW is already
implemented in ROS. Therefore a standalone ROS node was developed for Kinect Fusion
independent of SEROW. Figure 4.5 depicts the ROS structure with nodes as rectangles
and topics noted as arrows.

Figure 4.5: ROS nodes and topics as arrows.
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4.5 Kinect Fusion with Pose Graph

ICP based algorithms accumulate error over time. The algorithm presented in this section
bounds the accumulated error by incorporating a Pose Graph in dense data. Poses from
ICP are integrated in the graph as nodes. Furthermore, in every key frame sparse features
are extracted from images and added in the graph as landmark nodes. SIFT features
are used for this purpose due to their robustness and established means to estimate their
uncertainty [55]. The correspondence between SIFT features from two consecutives key-
frames is found with the Nearest Neighbor algorithm and then a novel method named
TEASER++ [53] is applied to remove outliers. TEASER++ was published recently and
outperforms RANSAC. Finally after optimization, depth information is removed from the
map, and re-integrated with the new poses.

4.6 Pose Graph

Pose graph consists of pose and landmark nodes as well as edges connecting them. An
edge represents a measurement or a displacement from the source node to the target
one. Together with the measurement, a covariance matrix represents its uncertainty.
Consecutively, at every frame a new node is added to the graph connected thought the ICP
measurement. Moreover, at every key-frame, SIFT features are extracted and incorporated
into the graph as landmarks.
Figure 4.6 offers a visualization of a Pose Graph. The blue nodes are the camera poses
connected with VO measurements. In addition the green nodes are landmarks extracted
by the SIFT algorithm.

Figure 4.6: Pose Graph: blue nodes are poses while green nodes are landmarks.

Also the uncertainty of the above measurements is needed in order to integrate them in
the Pose Graph. Generally we assume that the measurements follow a normal distribution,
hence their uncertainty is formalized as a covariance matrix. Sections 4.6.1 and 4.6.2
describe the calculations of ICP covariance and SIFT covariance, respectively. For the
implementation of the Pose Graph the ISAM [15] library was used.

4.6.1 Covariance of Visual Odometry

The covariance of visual odometry can be calculated based on the second order derivative
of the error metric of ICP. Prakhya et al. [38] provide closed-form calculations for both
point-to-point and point-to-plane metrics.
The general formula is:
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cov(x) ≈
(
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)−1
·
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·
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(4.4)

where:

z = input measurement
x = output vector
cov(z) = covariance of sensor
J = error function

Hence setting J with the formula of point-to-plane ICP (see chapter 1 equation 1.2)
gives the required covariance. Nevertheless this covariance is relevant only for the inliers
and only if ICP converges to a solution. Therefore this is not an appropriate tool for
convergence test.

4.6.2 Covariance of Landmarks

SIFT features have been employed as landmark. Consequently the covariance of SIFT
features is required for the landmark’s measurements which can be estimated according to
Zeisl et al. [55]. Initially the operating response function is defined as D(x, ci). This func-
tion detects features at the neighborhood of point x and at scale ci. Then the covariance
is estimated as the inverse Hessian matrix of D.

Σ = H−1 = ±
[
Dxx(p, σ) Dxy(p, σ)
Dxy(p, σ) Dyy(p, σ)

]−1
(4.5)

The above formula calculates the covariance at scale σi. Then this covariance has to be
propagated at the initial image. Lets denote it as Σ(0). Then:

Σ(0) = Σ

(
res(D(•, σ0))
res(D(•, σi)

)2

(4.6)

where:

res = Rescaling in case of different resolution between scales.

Subsequently, this covariance has to be propagated from the image plane to three
dimensions:

Let:

xk, yk, zk = Coordinates of point k to 3 dimensions
xpk, y

p
k = Coordinates of pixel k on image plane

Zk = Depth of pixel k
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The following formula computes the 3D coordinates from pixels and depth:
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Nevertheless depth measurements are prone to noise:

Ẑk = Zk +N (0, σ) =⇒
Zk = Ẑk − wz (4.8)

Then from equations (4.7) and (4.8):
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The previous model is linear, thus the uncertainty is propagated according too:

Pk = Ak ·Qp ·AT
k + Lk ·Qz · LT

k

Where:

Qp = Pixel uncertainty
Qz = Depth uncertainty (sensors depending)

The above formulas propagate the covariance of SIFT from image plane to 3D space.
On the contrary, in the case of Pose Graph, uncertainties in feature correspondences are,
by construction, not supported.



4.7. ROBOTIC PLATFORM 47

4.6.3 Map Fixes

The Pose Graph provides new corrected estimations of camera poses. These corrections
needs to be propagated in the map. This is accomplished by removing data (de-integrate
them) and integrating them again with the correct pose. We remove the data similarly
with [9] by the following formula:

TSDFi(x) =
Wi−1(x) · TSDFi−1(x)− wi(x) · tsdfi(x)

Wi−1(x)− 1

4.7 Robotic Platform

Both systems (Kinect Fusion with SEROW and Kinect Fusion with Pose Graph) were
evaluated in real life experiments. In particular, we conducted experiments with a Nao
Robot enhanced with an Asus Xtion camera (Figure 4.7a). In addition, Kinect Fusion
and SEROW run on an Nvidia Jetson tx2 , placed on the back of the Nao robot (Figure
4.7b). This system was independent of external resources allowing Nao to move complete
autonomous. On the contrary, Kinect Fusion with Pose Graph was evaluated offline on a
desktop computer.

(a) Nao with xtrion camere (b) Nao with Nvidia Jetson tx2

Figure 4.7: Nao Robot Configuration.
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Chapter 5

Experimental Results

In the current Chapter the results of the two proposed modification of Kinect Fusion
are presented. We conducted separate experiments for Kinect Fusion with SEROW and
Kinect Fusion with Pose Graph. Kinect Fusion with SEROW was tested in real world
experiments in a lab environment while Kinect Fusion with Pose Graph was tested in
Gazebo simulator and in the Nao robot.

5.1 Results from Kinect Fusion and SEROW

The lab environment shown in Figure 5.1 was used in our evaluation experiment. In the
latter, we recorded and compared the output of three different sources, Kinect Fusion,
kinematics and Kinect Fusion with SEROW. Figures 5.2 and 5.3 depict the estimated
robot position and orientation for each output. Moreover the final position of the robot
was measured with conventional means (metre and protractor). The actual drift of every
output from this position is included in Table 5.1.

Figure 5.1: Navigation environment.

We observe that Kinect Fusion differs from kinematics, especially in the vertical axis.
In addition, Table 5.1 indicates that Kinect Fusion and Kinematics are prone to drift.
Due to robot’s bipedal motion, the camera experiences sudden acceleration on the vertical
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axis, which degrades the performance of Kinect Fusion in this axis. On the contrary,
feet slippage, deteriorates the estimation of kinematics on the ground plane (x and y
axes). Evidently, the combination of Kinect Fusion with SEROW produces more accurate
estimates for all involved quantities. It achieves to correct the divergence of Kinect Fusion
in the vertical axis and also reduces the final pose drift of Kinematics. Correction
on pose estimation also results to a better map representation. Figure 5.4 draws the
final world map, as it has been produced by Kinect Fusion with SEROW. The resulting
representation indicates an accurate map of the environment. Finally Kinect Fusion with
SEROW achieved frame rate of 29 fps running on jetson tx2 with all the visualizations
disabled.

0 10 20 30 40 50
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2
KFusion
Kinematics
KFusion + SEROW

0 10 20 30 40 50
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0 10 20 30 40 50
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Figure 5.2: Position error.
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Figure 5.3: Orientation error.

wpx(m) wpy
wpz roll (deg) pitch (deg) yaw (deg)

Kinect Fusion 0.025 0.047 0.287 3 2 2

Kinematics 0.261 0.331 0.023 < 0.5 1 7

KF+SEROW 0.011 0.038 0.031 < 0.5 1 3

Table 5.1: Pose Drift: Precision 1 mm, 1 deg.

Figure 5.4: Resulting map.
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5.2 Results from Kinect Fusion with Pose Graph

To assess the performance of Kinect Fusion with Pose Graph, we conducted two types of
experiments: a) simulated experiments in Gazebo simulator, b) real world experiments
with the Nao robot. We measured the error per frame before and after the optimization
as well as the average error for every trajectory. In case of the Nao robot we did not
have the actual ground truth trajectory and we compared the results with the odometry
measurements.

5.2.1 Simulated Experiments

The experiments in this section were conducted in the Gazebo simulator. The simulated
robotic platform was a TurtleBot2 with asus xtion RGB-D camera, while the virtual
navigated environment was an office room (Figure 5.5).
In this environment, the robot followed two different trajectories as shown in Figures
5.6 and 5.7. The yellow lines are the ground truth trajectories, the green lines are the
trajectories before the optimization which are equivalent to Kinect Fusion while the red
lines are the optimized trajectories. We can observe that the optimized trajectories are
closer to ground truth than Kinect Fusion. The actual improvements can be observed in
Figures 5.8 and 5.9 which indicate the translation error. The blue lines represent the error
of Kinect Fusion while the green lines the error of the optimized trajectories. Generally
there is an significant drop of the error, however in the beginning of each trajectory,
Kinect Fusion has not yet diverged. In these frames, the error of the optimized trajectory
is greater than Kinect Fusion. This is due to the fact that Pose Graph tends to spread
the error across the frames. Nevertheless Table 5.2 shows that the average error is greatly
reduced in the optimized trajectories. Complimentary to translation error, we measured
the rotation error which was less than 0.2 degrees on each trajectory.
Finally Figure 5.10 shows the map projection to the camera frame for the two trajectories,
before and after the optimization. The visual results look better in surfaces such as the
painting in the wall (trajectory 1) or the two chairs (trajectory 2). On the contrary they
are worse in small surfaces such as the coffee table (trajectory 1) or the library (trajectory
2). As noted above, this is due to the fact that Pose Graph spreads the error across the
frames reducing the number of details in the map.
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Figure 5.5: Office environment in Gazebo.

Figure 5.6: Trajectory 1.



54 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: Trajectory 2.

Figure 5.8: Translation error in Trajectory 1 (m).
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Figure 5.9: Translation error in Trajectory 2 (m).

(a) Pre-optimization (traj 1). (b) Post-optimization (traj 1).

(c) Pre-optimization (traj 2). (d) Post-optimization (traj 2).

Figure 5.10: Map projection before and after optimization.
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Trajectory 1 Trajectory 2

Kinect fusion 0.099 0.183

optimized 0.053 0.087

Table 5.2: Average translation error (m).

5.2.2 Experiments with the Nao Robot

In addition to simulated experiments, we also conducted experiments in the real world
with the Nao Robot and an Asus Xtion camera as described in Section 4.7. In these
experiments we did not have the actual ground truth trajectory of the camera, therefore
we used the odometry of the Nao robot as baseline.
Figure 5.11 shows such a trajectory of the Nao Robot. The yellow line in this graph
represents the odometry measurement. The green line represents the estimated trajectory
of Kinect Fusion while the red line the optimized trajectory. Images in Figure 5.12 display
the projection of the map to camera frame before and after the optimization. As can be
observed, there is a significant visual improvement of the image. Moreover Figure 5.13
depicts the deviation in meters from odometry. The average deviation of Kinect fusion
was 0.078 while the deviation of the optimized trajectory was 0.060. We can observe a
drop of the error, however it is not as high as in the simulated experiments. Nevertheless,
it is noted that the comparison with Nao’s odometry is not an accurate metric.

Figure 5.11: Trajectory of Nao (cell size: 25cm2).
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(a) Pre-optimization (b) Post-optimization

Figure 5.12: Map projection before and after optimization.

Figure 5.13: Trajectory 1.
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Chapter 6

Conclusions

6.1 Summary

This thesis addresses the SLAM problem in the case of humanoid robots. It begins with
an evaluation on SLAM systems and their properties. This evaluation shows that Kinect
Fusion [13] is well suited for on-board execution due to its high frame rate and low memory
usage. In addition, the extra photometric constraints that Elastic Fusion [50] introduces
do not negatively affect the operation time of VO. Moreover, loop closure of ORB-SLAM2
[31] can bound the accumulated error. Nevertheless the loop detection problem is more
computationally heavy than the actual loop closure and Pose Graph optimization.
There follows a comparative study of 3DMatch [56] and 3DSmoothNet [10] geometric
descriptors. Both descriptors are extracted from random key-points using convolutional
neural networks and they are compared to more conventional methods such as SIFT [25].
The results show that 3DMatch has very few principal components (only 4 out ot 512).
3DSmoothnet performs better with 18 principal components out of 32 and finally SIFT
ends up with 32 out of 128. Generally, both methods are slower than SIFT and need an
excessive amount of random key-points in order to find an accurate alignment between
two point clouds. Finally, a combination of Harris Corners from RGB with 3DSmoothnet
descriptors from depth can greatly reduce the necessary key-points and consequently re-
duce operation time.
The evaluation phase indicated that Kinect Fusion is suitable for embedded devices.
Hence, this work continued with two proposed modification of Kinect Fusion. The first pro-
posed modification takes advantage of the SEROW state estimation system [35]. SEROW
fuses multiple sources including VO, kinematics and odometry. The introduced modifica-
tion operates by propagating VO to SEROW for better pose estimation. Then this refined
pose is used for new data integration into the map. This approach achieves better pose
estimation and map representation. However it does not include any loop closure mecha-
nism and hence it is prone to the accumulated error. This method was tested in real world
experiments with the Nao robot and accomplished real time execution on a Jetson tx2.
The second modification establishes a loop closure mechanism by combining Kinect Fusion
and SIFT features into a common Pose Graph. Poses from Kinect Fusion are incorporated
into the Pose Graph together with SIFT features as landmarks. We evaluated this algo-
rithm with simulated and real word experiments. The experiments showed reduction of
error per frame in every case. This algorithm however runs offline in a desktop computer.
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6.2 Future Work

Both algorithms presented here were based on Kinect Fusion. Kinect Fusion has limited
map size as it pre-allocates the memory. This work did not deal with this problem. Nev-
ertheless, voxel hashing methods similar to one applied here [32] can address this issue.
In addition Kinect Fusion with SEROW do not contain any loop closure mechanism or
re-localization technique.
Regarding Kinect Fusion with Pose Graph, at the moment this method does not contain a
key-frame extraction mechanism. Such mechanism can be developed with a bag of words
on input images. Furthermore, other feature extraction methods can be tested together
with the Pose Graph. 3DSmoothNet with Harris corners is a promising alternative, how-
ever the covariance of these features has to be calculated. Besides that, Pose Graph runs
offline and it is not suitable for real time execution. Finally Pose Graph can be combined
with kinematics and odometry. Both measurements can be added as pose nodes in the
graph, an issue that requires further research.
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