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Abstract 

Memory formation, consolidation and recall are essential brain functions for ordinary life and these 

mnemonic processes are widely associated with hippocampus. Although hippocampus is a broadly 

studied brain region, both experimentally and computationally, the mechanisms underlie memory 

function remain a mystery. Hippocampus is widely hypothesized that involves in distinct mnemonic 

processes, such as pattern separation/completion and spatial encoding. Specifically, different regions 

accomplish the aforementioned tasks with dentate gyrus to be crucial for distinguishing overlapping 

memories, while CA1 subregion with spatial navigation and formation of the spatial map of the brain. 

Taking advantage of computational modeling, we implemented two different computational networks in 

order to reveal and study in-depth the mechanisms being key mediators during these functions. Our 

results indicate that sparsity is a key feature of dentate gyrus principal cells and we showed that various 

mechanisms could mediate this feature, such as the number of dendrites, the dendritic path-length as well 

as the mossy cells. In addition, we explored the role of each interneuron during spatial navigation. Our 

results show that each type of interneuron has a distinct role during place cell formation, with PV
+
 and 

VIP
+
/CCK

+
 basket cells being more critical. Our model generates a number of experimentally testable 

predictions that may lead to a better understanding of the physiological and pathological function of 

hippocampus.  
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Abstract in Greek 

Ο σχηματισμός, η αποθήκευση και η ανάκληση της μνήμης είναι απαραίτητες λειτουργίες του εγκεφάλου 

για την καθημερινή ζωή. Συγκεκριμένα, αυτές οι μνημονικές διαδικασίες συνδέονται ευρέως με τον 

ιππόκαμπο. Αν και ο ιππόκαμπος είναι μια πλήρως μελετημένη περιοχή του εγκεφάλου, τόσο σε 

πειραματικό επίπεδο όσο και με χρήση υπολογιστικών μοντέλων, οι ακριβείς μηχανισμοί που 

εμπλέκονται στη λειτουργία της μνήμης παραμένουν ένα άλυτο μυστήριο. Ο ιππόκαμπος υποτίθεται ότι 

εμπλέκεται σε μνημονικές διαδικασίες, όπως ο διαχωρισμός και η ολοκλήρωση προτύπων, καθώς  και 

χωρική κωδικοποίηση. Συγκεκριμένα, διαφορετικές περιοχές του ιππόκαμπου παίζουν ρόλο στις 

προαναφερθείσες λειτουργίες. Ειδικότερα, η οδοντωτή έλικα έχει έναν πολύ σημαντικό ρόλο στη 

διάκριση παρεμφερών εξωτερικών ερεθισμάτων, ενώ η περιοχή CA1 βοηθάει στη χωρική πλοήγηση και 

στο σχηματισμό του χωροταξικού χάρτη του εγκεφάλου. Αξιοποιώντας την ισχύ που μας παρέχει η 

χρήση υπολογιστικών μοντέλων, υλοποιήσαμε δύο διαφορετικά δίκτυα προκειμένου να αποκαλύψουμε 

και να μελετήσουμε σε βάθος τους μηχανισμούς που αποτελούν τις βασικές μεταβλητές κατά τη διάρκεια 

αυτών των λειτουργιών. Τα αποτελέσματά μας υποδεικνύουν ότι η αραιή ενεργοποίηση των κύριων 

κυττάρων της οδοντωτής έλικας αποτελεί βασικό χαρακτηριστικό και δείξαμε ότι διάφοροι μηχανισμοί 

θα μπορούσαν να το επηρεάσουν αυξομειώνοντας το, όπως ο αριθμός των δενδριτών, το μήκος των 

δενδριτικών διαδρομών καθώς και άλλα δευτερεύοντα κύτταρα που βρίσκονται στην ίδια περιοχή του 

ιππόκαμπου. Επιπλέον, διερευνήσαμε το ρόλο του κάθε διαφορετικού τύπου ενδονευρώνα κατά τη 

χωρική πλοήγηση ενός ζώου σε μία ευθύγραμμη πίστα. Τα αποτελέσματά μας δείχνουν ότι κάθε είδος 

ενδονευρώνα διαδραματίζει έναν ξεχωριστό ρόλο κατά τη διάρκεια του σχηματισμού κυττάρων που 

ενεργοποιούνται σε συγκεκριμένα σημεία στο χώρο. Ειδικότερα, οι ανασταλτικοί νευρώνες που 

εκφράζουν είτε την PV
+
 είτε τις VIP

+
/CCK

+
 διαδραματίζουν έναν πολύ σημαντικό ρόλο στην 

προαναφερθείσα διαδικασία. Τα υπολογιστικά μοντέλα μας έχουν οδηγήσει σε μια σειρά από 

προβλέψεις, οι οποίες αν επιβεβαιωθούν και πειραματικά θα μπορούσαν δυνητικά να οδηγήσουν στην 

καλύτερη κατανόηση της φυσιολογικής αλλά και της παθολογικής λειτουργίας του ιππόκαμπου.  



v 

 

Abbreviations 

AAC: axo-axonic cells 

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

BC: basket cell 

BSC: bistratified cells 

CA: cornu ammonis areas 

CCK: cholecystokinin 

CR: calretinin 

DG: dentate gyrus 

EC: entorhinal cortex 

GABA: γ-aminobutyric acid 

GC: granule cell 

HIPP: hilar perforant path-associated cells 

NMDA: N-methyl-D-aspartate 

OLM: oriens-lacunosum moleculare cells 

PP: perforant path 

PP: perforant pathway 

PV: parvalbumin 

SOM: somatostatin 

VIP: vasoactive intestinal peptide 



vi 

 

List of Figures 

Figure 1. Hippocampal formation. ................................................................................................................ 2 

Figure 2. Current-Voltage (I-V) curves for the Granule cell, Mossy cell, Basket cell, and HIPP cell 

models. ........................................................................................................................................................ 23 

Figure 3. Current-frequency (I-f) relationship of Granule, Mossy, Basket and HIPP cells. ....................... 24 

Figure 4. Morphological structure of neuronal models. .............................................................................. 31 

Figure 5. Validation of neuronal models. ................................................................................................... 39 

Figure 6. The CA1 network model. ............................................................................................................ 42 

Figure 7. Schematic diagram of DG network and pattern separation task. ................................................. 46 

Figure 8. Measured EPSP - Arithmetic sum of somatic voltage relationship for GCs in the control, 

pruning and growth conditions. .................................................................................................................. 48 

Figure 9. Measured EPSP-Arithmetic sum of somatic voltage relationship of GCs after correcting for the 

Input Resistance. ......................................................................................................................................... 49 

Figure 10. Complete mossy cell removal reduces pattern separation efficiency in the DG network. ........ 54 

Figure 11. Effect of GC dendrite pruning on pattern separation. ................................................................ 56 

Figure 12. Effect of GC dendrite growth on pattern separation. ................................................................. 58 

Figure 13. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation 

when the input resistance (Rin) is the same across models. ......................................................................... 60 

Figure 14. Effect of GC dendritic pruning and growth after matching (modification) on pattern separation 

estimated using the ‘rate distance’. ............................................................................................................. 62 

Figure 15. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation 

when matching the input resistance (Rin) via increasing the somatic size. ................................................. 64 

Figure 16. Effect of GC dendritic pruning and growth after matching (soma size modification) on pattern 

separation estimated using the ‘rate distance’. ............................................................................................ 66 

Figure 17. Effect of matching sparsity on pattern separation efficiency. ................................................... 68 



vii 

 

Figure 18. Imaging of identified Mossy Cells. ........................................................................................... 75 

Figure 19. Activity of Mossy and Granule Cells. ....................................................................................... 77 

Figure 20. Tuning profiles of Mossy and Granule Cells during a discrimination experiment. ................... 79 

Figure 21. The Role of Mossy Cells in Pattern Separation: A Computational Approach. ......................... 81 

Figure 22. Grid like inputs from EC LIII and CA3 Schaffer collateral. ..................................................... 86 

Figure 23. Place cell dynamics under pre- and post-learning protocol. ...................................................... 90 

Figure 24. Place cell dynamics under distinct interneuronal lesions in the pre-learning condition. ........... 92 

Figure 25. Place cell dynamics under various interneuronal lesions in the post-learning condition. ......... 94 

Figure 26. Parametric exploration of synaptic strength between VIPCRs and BCs/OLMs........................ 97 

  



viii 

 

List of Tables 

Table 1. Morphological properties of GCs ................................................................................................. 20 

Table 2. Model parameters for all neuronal types ...................................................................................... 21 

Table 3. Passive properties of neuronal models .......................................................................................... 22 

Table 4. Connectivity and synaptic properties ............................................................................................ 27 

Table 5. Morphological properties of Axoaxonic, Basket, Bistratified, VIP
+
/CCK

+
, VIP

+
/CR

+
 interneurons

 .................................................................................................................................................................... 30 

Table 6. Morphological properties of the Pyramidal Cell ........................................................................... 32 

Table 7. Passive parameters and active ionic conductances of channels for all compartments of pyramidal 

model cells .................................................................................................................................................. 33 

Table 8. Passive parameters and active ionic conductance of channels ...................................................... 34 

Table 9. Passive parameters and active ionic conductance of channels ...................................................... 35 

Table 10. Passive parameters and active ionic conductance of channels .................................................... 35 

Table 11. Morphological properties of OLM cells. .................................................................................... 36 

Table 12. Passive properties and active ionic conductance of OLM cell ................................................... 36 

Table 13. Passive properties and active ionic conductance of VIP
+
/CCK

+
 cell .......................................... 37 

Table 14. Passive properties and active ionic conductance of VIP
+
/CR

+
 cell ............................................. 37 

Table 15. Passive properties of neuronal models in CA1 ........................................................................... 38 

Table 16. Connectivity properties of CA1 network .................................................................................... 43 

Table 17. Synaptic properties of CA1 network connections ....................................................................... 44 

 

  



ix 

 

Table of Contents 

Chapter 1 Introduction ............................................................................................................................... 1 

1.1 Anatomy of the basic hippocampal subregions ............................................................................ 1 

1.1.1 Dentate Gyrus ....................................................................................................................... 3 

1.1.2 The CA3 subregion ............................................................................................................... 4 

1.1.3 The CA1 subregion ............................................................................................................... 6 

1.2 Anatomy of the Entorhinal Cortex ................................................................................................ 7 

1.3 Morphology of hippocampal principal neurons (GCs, CA1PCs) ................................................. 9 

1.3.1 Granule Cells of the Dentate Gyrus ...................................................................................... 9 

1.3.2 Pyramidal Cells of the CA1 ................................................................................................ 11 

1.4 Memory functions of the hippocampus ...................................................................................... 12 

1.4.1 Pattern separation ................................................................................................................ 13 

1.4.2 Spatial navigation ................................................................................................................ 14 

Chapter 2 Motivation ............................................................................................................................... 17 

Chapter 3 Methodology ........................................................................................................................... 18 

3.1 The DG network model............................................................................................................... 18 

3.1.1 Model neurons .................................................................................................................... 18 

3.1.2 Validation ............................................................................................................................ 21 

3.1.3 Modeling Synapses ............................................................................................................. 24 

3.1.4 Connectivity ........................................................................................................................ 28 

3.2 CA1 network model .................................................................................................................... 29 



x 

 

3.2.1 Model neurons .................................................................................................................... 30 

3.2.2 Validation ............................................................................................................................ 38 

3.2.3 Modeling Synapses ............................................................................................................. 39 

3.2.4 Connectivity ........................................................................................................................ 40 

Chapter 4 GC dendrites mediate pattern separation via controlling sparsity ........................................... 45 

4.1 Preamble ..................................................................................................................................... 45 

4.2 Materials & Methods .................................................................................................................. 45 

4.2.1 Model manipulations........................................................................................................... 47 

4.2.2 Pattern separation metrics ................................................................................................... 50 

4.2.3 Stimulus and Input protocol ................................................................................................ 51 

4.2.4 Simulations and Statistical Analysis ................................................................................... 52 

4.3 Results ......................................................................................................................................... 53 

4.3.1 Understanding the role of inhibition in pattern separation .................................................. 53 

4.3.2 Dendrites of granule cells and pattern separation ............................................................... 55 

4.3.3 Controlling sparsity with non-dendritic mechanisms.......................................................... 59 

4.3.4 Sparsity is the key determinant of pattern separation ......................................................... 67 

4.4 Discussion ................................................................................................................................... 69 

4.4.1 What we have learnt from the model? ................................................................................ 69 

4.4.2 Implications to pathology .................................................................................................... 71 

4.4.3 Simplifications and future directions .................................................................................. 72 

Chapter 5 Role of mossy cells in pattern separation ................................................................................ 73 



xi 

 

5.1 Preamble ..................................................................................................................................... 73 

5.2 Materials & Methods .................................................................................................................. 73 

5.2.1 Overview of the experiments .............................................................................................. 73 

5.2.2 Modification of the DG network (no dendrites) ................................................................. 76 

5.3 Results ......................................................................................................................................... 76 

5.3.1 Activity of mossy cells in vivo ........................................................................................... 76 

5.3.2 Spatial tuning profiles of mossy cells ................................................................................. 78 

5.3.3 Mossy cells robustly discriminate contexts ......................................................................... 80 

5.4 Discussion ................................................................................................................................... 82 

Chapter 6 Role of dendritic and somatic inhibition in place cell dynamics ............................................ 84 

6.1 Preamble ..................................................................................................................................... 84 

6.2 Materials & Methods .................................................................................................................. 85 

6.2.1 Network construction .......................................................................................................... 85 

6.2.2 Grid-like input ..................................................................................................................... 85 

6.2.3 Place cell quantification ...................................................................................................... 87 

6.2.4 Behavioral paradigm simulation ......................................................................................... 88 

6.2.5 Interneuronal manipulations ............................................................................................... 89 

6.2.6 Network simulation and statistical analysis ........................................................................ 89 

6.3 Results ......................................................................................................................................... 90 

6.3.1 Simulation of the behavioral (linear track) paradigm ......................................................... 90 

6.3.2 Role of different interneurons ............................................................................................. 91 



xii 

 

6.3.3 Exploration of VIP
+
/CR

+
 synaptic weights ......................................................................... 96 

6.4 Discussion ................................................................................................................................... 98 

Chapter 7 Conclusions ........................................................................................................................... 100 

7.1 Key players mediating pattern separation ................................................................................. 100 

7.2 Exploring the role of distinct interneurons in place cell dynamics ........................................... 102 

Chapter 8 References ............................................................................................................................. 104 

APPENDIX A – Grid like inputs mathematical formalization ................................................................. 118 

APPENDIX B – Ionic Channels used in CA1 model (Hodgkin-Huxley formalization) .......................... 119 

Pyramidal Neurons ................................................................................................................................ 119 

Interneurons .......................................................................................................................................... 125 

Axoaxonic, Basket, Bistratified and VIP
+
/CCK

+
 cells ...................................................................... 125 

O-LM cells ........................................................................................................................................ 128 

VIP
+
/CR

+
 cells .................................................................................................................................. 130 

 

 



1 

 

Chapter 1  Introduction 

1.1 Anatomy of the basic hippocampal subregions 

The hippocampus, also referred to as archicortex, is a crucial component of the mammalian brain. Most 

mammals, including humans, have two hippocampi, one in each side of their brains. The hippocampus is 

located under the cerebral cortex, in the temporal lobe of mammals. It is a part of the limbic system and 

plays a significant role in memory formation, storage and consolidation (Squire et al., 2004), while it is 

also essential for spatial navigation (O’Keefe et al., 1998) and control of attention (Muzzio et al., 2009). 

The hippocampus consists of three subregions; the hippocampus proper (consisting of four Cornu 

Ammonis areas – CA4, CA3, CA2 and CA1), the dentate gyrus and the subiculum (Figure 1A). The 

hippocampus together with the presubuculum, parasubiculum and entorhinal cortex form a structure 

known as the hippocampal formation (Amaral and Lavenex, 2007). The cell types and basic connectivity 

properties of neurons within the hippocampal formation are similar across mammals. 

The hippocampus receives its major input from cortical areas via the entorhinal cortex superficial layers. 

The first station of information is the Dentate Gyrus (DG). Subsequently, information flows into the CA3 

area via strong connections called mossy fibers, and then passes to the CA1 area through the Schafer 

collaterals. Both directly from the CA1 and indirectly through the subiculum, processed information 

returns to the deeper layers of the Entorhinal Cortex (Figure 1B). 
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Figure 1. Hippocampal formation. 

A. Basic circuit of the hippocampal formation as drawn by Santiago Ramón y Cajal. EC: entorhinal Cortex, DG: Dentate Gyrus, 

CA: Cornu Ammonis, Sub: Subiculum. At bottom left, a schematic diagram of the EC and the hippocampus is shown in which 

the famous trisynaptic loop is represented (EC  DG  CA3  CA1). The image is adopted from 
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https://en.wikipedia.org/wiki/Hippocampus. B. Schematic diagram of the hippocampal network. MF: Mossy Fibers. SC: Schafer 

Collateral. The information enters the hippocampus via EC LII. From there it travels to DG, CA3 and the CA2 subregions. Latin 

numbers denote the different layers of the EC. Additionally, EC LIII sends afferents to CA1 and Subiculum directly. Information 

flows through hippocampus via the mossy fibers (DG to CA3) and the Schaffer collaterals (CA3 to CA1). The processed 

information returns to the deeper layers of the EC, via the CA1 direct connections and via the subiculum. 

 

1.1.1 Dentate Gyrus 

The DG is the first subregion of the hippocampus that receives incoming information from other brain 

areas, mainly via the EC LII. DG principal neurons, the Granule Cells (GCs), receive input from 

excitatory afferents coming from EC layer II cells and project to the CA3 subregion. In addition, they 

receive input from other DG excitatory cells, the Mossy Cells (MCs), and various types of interneurons 

(Sik et al., 1997) with Basket Cells (BCs) and Hilar Perforant Path associated (HIPP) cells being the most 

important. MCs form an inhibitory circuit as their axons contact the BCs. The net effect of MC excitation 

to both GCs and BCs is considered to be inhibitory (Jinde et al., 2012).  

The DG is a three-layered structure. From the outside there is a relatively cell free layer called molecular 

layer, followed by the granule cell layer, which is densely packed with granule cells, followed by the 

polymorphic cell layer or hilus. Hilus is also referred to as the CA4 hippocampal subregion (Amaral, 

1978). Dentate principal neurons, GCs, are small cells with elliptical somata that send their dendritic tree 

into the molecular layer. Under healthy conditions they do not have basal dendrites. GCs are one of the 

few cell types in the central nervous system that undergo adult neurogenesis, thus new neurons are 

continuously formed throughout adulthood. Both the molecular layer (albeit sparsely) and the 

polymorphic layer are occupied by multiple classes of (poorly characterized) neuron types. Underneath 

the granule cell layer a large number of different types of cells are laid, usually called hilar cells. The 

majority of cells in the hilus are GABAergic interneurons which provide inhibition to the network. 

https://en.wikipedia.org/wiki/Hippocampus
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Excitatory MCs are also lying in the hilus, contacting GCs and BCs via excitatory glutamatergic 

synapses. Generally, the GCs are not recurrently connected. 

Input from the EC LII arrives - through the perforant pathway- on the dendrites of the granule cells in the 

molecular layer (distal dendrites). The DG, in turn, projects to CA3 and CA2 via strong axons called 

mossy fibers originating from GCs (Kohara et al., 2013). Mossy fibers form unique connections with the 

dendrites of CA3/CA2 pyramidal neurons. There are no neurons that run in the reverse direction; 

therefore there are no bilateral connections between these two regions (dentate gyrus to entorhinal 

cortex).  

There is also evidence that the DG receives smaller input from the presubiculum and parasubiculum areas 

(Köhler, 1985), but their specific dentate targets are highly elusive. Interestingly, the presubiculum is a 

region that receives all of its direct input from the thalamus, and hence provides a potential pathway 

through which thalamic information can reach the DG. 

The DG receives very few inputs from subcortical structures which mainly arise from the septal nuclei 

(Swanson, 1977; Amaral and Kurz, 1985). These nuclei project profoundly to the hilus and their vast 

majority is cholinergic, whereas other septal neurons are inhibitory. The excitatory and inhibitory septal 

cells target different cell types preferentially, GABAergic afferents to GABAergic neurons lying in the 

polymorphic layer, while cholinergic fibers to GCs onto the inner third of the molecular layer of the DG, 

and a small population target MCs in the hilus (Amaral and Kurz, 1985; Lübke et al., 1997). Finally, DG 

receives input from hypothalamus, brainstem, ventral tegmental area, and raphe nuclei (Amaral et al., 

2007). 

1.1.2 The CA3 subregion 

The second station of processed information in the hippocampus proper is the CA3 subregion. In contrast 

to DG, the CA3 is a five layer region. The somata of the principal cells of the CA3, namely the pyramidal 

neurons, lay in the Stratum Pyramidale (SP) layer. Their basal dendrites are located deeper, in the Stratum 
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Oriens (SO) layer. Many of the CA3-to-CA3 associational connections are in this layer and also few 

connections from DG via MFs. Just above the SP, Stratum Lucidum (SL) is one of the thinnest layers in 

hippocampus, hosting axons from DG neurons that terminate onto SP neurons. The next layer is the 

Stratum Radiatum (SR) in which most of the recurrent connections among pyramidal cells are formed. 

Finally, the last layer most superficial from SP is the Stratum Lacunosum-Moleculare (SLM). In this layer 

perforant path (EC LII) axons onto the distal apical dendrites of pyramidal neurons are found. 

The vast majority of cells in the CA3 are pyramidal neurons, however there are also a large variety of 

interneurons (Freund and Buzsáki, 1996). Among others, Basket Cells provide the network with somatic 

inhibition, while OLM, RLM and Bistratified cells make contacts on the dendritic tree of pyramidal cells. 

Interneurons in CA3 can be found in all layers. 

The CA3 area is also divided in three subregions: the CA3c, the CA3b and the CA3a. Input to the CA3 

comes primarily from the DG via strong axons called mossy fibers, which form giant synapses onto 

proximal apical and basal dendrites of CA3 pyramidal neurons. DG also excites CA3 interneurons, 

creating a form of feed-forward inhibition. Interneurons also receive excitatory input from EC LII via the 

perforant path onto their distal apical dendrites. CA3 also exhibits strong recurrency among pyramidal 

neurons, which  form synapses onto dendrites located in the SR and SO (Witter, 2007). CA3 pyramidal 

neurons also connect with DG mostly in the polymorphic layer, and thus excite both interneurons and 

MCs. In addition, they connect with the CA1 region via the Schaffer collateral pathway and with 

contralateral CA1 via a commissural pathway (Ishizuka et al., 1990). 

Apart from these excitatory inputs from EC LII, DG and CA3 principal cells also receive input from other 

cortical areas. In contrast to DG, these inputs are rather limited. The main nonhippocampal connection of 

CA3 is with the septum, in that CA3 receives input from the medial septum/diagonal band complex and 

projects preferentially to the lateral septal nuclei (Witter, 2007). Other inputs to CA3 originate from the 

amygdaloid complex and endopiriform nucleus and some of the aminergic nuclei (Witter and Amaral, 

2004). Notably, the CA3 region, similar to the DG, does not receive thalamic input (Vertes et al., 2006). 
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1.1.3 The CA1 subregion 

The CA1 subregion is the last station of information flow through hippocampal proper. It is a four layer 

structure, in which the somata of pyramidal cells (CA1PCs) are tightly packed in the pyramidal cell layer 

or Stratum Pyramidale (SP). The narrow, relatively cell-free layer located deeper to the SP layer is the 

Stratum Oriens (SO). This layer contains the basal dendrites of pyramidal cells and several classes of 

interneurons. SO can be defined as the infrapyramidal region in which some of the Schaffer collateral 

connections are located. The Stratum Radiatum (SR) is found immediately above the SP and can be 

defined as the suprapyramidal region in which the majority of the CA3 input is located. The most 

superficial layer of the CA1 region is called Stratum Lacunosum-Moleculare (SLM) layer. In SLM the 

afferents from EC LIII terminate. Afferents from other regions, such as the nucleus reuniens of the 

midline thalamus, also terminate in the SLM. In both the SR and the SLM a variety of interneurons are 

present. 

The most important interneurons that have been extensively studied are divided in three basic categories, 

according to the location of their postsynaptic targets (Freund and Buzsáki, 1996; Klausberger and 

Somogyi, 2008). The first category contains the interneurons that provide CA1PCs with perisomatic or 

axonal inhibition. The majority of these cells are Basket Cells (BCs), which contact pyramidal somata, 

and are either PV
+
 or CCK

+
 basket cells. Axoaxonic cells (AACs) contact CA1PCs at the axon. The 

second category consists of interneurons that synapse onto the dendrites of CA1PCs. Two main neuronal 

types are involved in dendritic inhibition; the Bistartified Cells (BSCs, PV
+
 interneurons) and the Oriens 

Lacunosum-Moleculare cells (OLMs, SOM
+
 interneurons), making synapses onto the proximal (SR) and 

distal (SLM) apical dendrites of pyramidal cells, respectively. The third category contains interneurons 

that mainly contact other interneurons providing the network with disinhibition. The majority of these 

cells are VIP
+
 cells, which mainly inhibit BCs and OLMs (Chamberland and Topolnik, 2012; Tyan et al., 

2014; Francavilla et al., 2015). 
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The CA1 area receives major input connections from several extrinsic sources (Takács et al., 2012). The 

major cortical input to CA1 comes from afferents originating in EC LIII and terminating onto the distal 

dendrites of CA1PCs, located in SLM, through the temporo-ammonic pathway (Steward and Scoville, 

1976), as well as to several interneurons (Desmond et al., 1994). Likewise, CA3 provides CA1 with 

excitatory inputs via Schaffer collaterals which synapse onto proximal and basal dendrites of CA1PCs, 

located in SR and SO, respectively (Amaral and Witter, 1989). The predominant input to CA1 is coming 

through afferents from CA3 pyramidal cells also terminate onto several interneurons (Wittner et al., 

2006). In addition to the excitation arriving from extrinsic sources, CA1PCs have sparse local collaterals 

which were shown to innervate both pyramidal cells (Deuchars and Thomson, 1996) and interneurons 

(Buhl et al., 1994). 

Other glutamatergic inputs to the CA1 come from the thalamus (Dolleman-Van der Weel and Witter, 

2000; Bokor et al., 2002), the amygdala (Pitkänen et al., 2000; Ghosh et al., 2013) and the perirhinal 

cortex (Naber et al., 1999; Burwell, 2006). There is a dual serotonergic and glutamatergic projection from 

the median raphe nucleus (Varga et al., 2009) while glutamatergic inputs also originate from the medial 

septum (Huh et al., 2010). The medial septum also connects to CA1 via GABAergic synapses onto 

interneuronal populations (Dragoi et al., 1999) and these connections are important for hippocampal 

network oscillations. 

1.2 Anatomy of the Entorhinal Cortex 

The entorhinal cortex (EC), together with the perirhinal cortex, the parahippocampal cortex and the 

hippocampus, form the medial temporal lobe in the mammalian brain. Specifically, EC constitutes the 

major node of cortico-hippocampal circuits.  Thus, it is a crucial structure for memory formation due to 

its forceful reciprocal connections with the hippocampus. In mammals, the medial temporal lobe is 

organized in parallel circuits; an anterior circuitry connects perirhinal cortex to lateral EC, whereas a 

posterior links parahipocampal cortex with medial EC.  
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In the EC, like other cortical areas, neurons are grouped into distinct layers that are characterized by a 

principal cell type. In order to match the neocortex notation, six layers are defined of which layers I and 

IV contain no neurons. The main recipients of incoming information and the major source of EC output to 

a variety of cortical and subcortical structures are pyramidal cells or stellate cells (in LEC these are often 

referred to as fan cells; Canto et al., 2008; Moser et al., 2010).  

Cortical inputs to the EC mainly target neurons in layers II and III and come from both cortical (Burwell 

and Amaral, 1998; Agster and Burwell, 2009) and subcortical regions (Tomás Pereira et al., 2016). The 

lateral and mEC are innervated primarily by perirhinal, insular, piriform, and postrhinal cortices, while 

the medial EC receives cortical input predominantly from piriform and postrhinal cortices. The EC 

connects to the hippocampal subregions via the perforant and temporo-ammonic pathways, projecting to 

all hippocampal subregions, providing them with their major cortical input (see §1.1). Layer II neurons 

mainly project to the DG and CA3 subregions, while cells in layer III innervate largely the CA1 and the 

subiculum hippocampal areas. Subcortical inputs, such as cholinergic and monoaminergic inputs from the 

septum and brainstem as well as afferents from the thalamus, amygdala, and claustrum exhibit an overall 

diffuse terminal distribution in the EC (Tomás Pereira et al., 2016). Output of the hippocampal formation 

preferentially targets deeper layers of the EC (i.e., V and VI), which in turn are the origin of widespread 

reciprocal cortical projections to numerous cortical regions (Agster and Burwell, 2009) and subcortical 

projections mostly to the amygdala, septum, striatum, and thalamus (Agster et al., 2016). Although this 

apparent separation between input and output layers provides a simple functional concept, it has recently 

been challenged by a number of findings indicating that reciprocal interactions between deep and 

superficial layers are quite substantial, and that major cortical inputs also target the apical dendrites of the 

neurons located in deeper layers (Canto et al., 2008). 
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1.3 Morphology of hippocampal principal neurons (GCs, CA1PCs) 

1.3.1 Granule Cells of the Dentate Gyrus 

GCs are characterized by a strictly bipolar morphology with spiny dendrites originating from the upper 

pole of the soma and an emerging axon from the base (Claiborne et al., 1990; Schmidt-Hieber et al., 

2004). The small, round cell somata have a diameter of approximately 10 μm and are located densely 

packed in the GC layer. One to four primary dendrites arise from the soma and bifurcate three to six times 

to form a dendritic tuft in the molecular layer. Terminal branches extend mostly to the hippocampal 

fissure and the tuft occupies a conical-shaped volume within the molecular layer with a wider transverse 

and a narrower septo-temporal extent. Dendrites show a gradual reduction in size with diameters, varying 

from almost 1.5 μm in proximal dendrites to 0.7 μm in distal dendrites (Schmidt-Hieber et al., 2007). The 

total dendritic length ranges between 2,300 and 4,600 μm, substantially shorter than the respective length 

in pyramidal cells (Claiborne et al., 1990). While morphological features of these neurons are largely 

homogeneous, quantitative differences exist between the upper and the lower blades, as well as between 

superficial (near the molecular layer) and deep cells near the hilus (Claiborne et al., 1990). Superficial 

neurons in the upper blade have the largest total dendritic length and the widest arbor, whereas deep 

neurons in the lower blade have the smallest length and the narrowest transverse extent. GC dendrites are 

densely covered with spines with a total number varying between 3,000 and 7,000 on the basis of a light 

microscope estimate of spine density of about 2.39 ± 0.06 μm
−1

. Electron microscopic analysis acquired 

similar density values and pointed out adequate differences between proximal, medial, and distal dendritic 

parts, with 3.36, 2.88 and 2.02 μm
−1

, respectively (Hama et al., 1989). The differences in density are 

largely explained by the decreasing diameter and surface area of proximal to distal dendrites. In fact, the 

surface density of spines is comparable in the dendritic compartments with values ranging from 0.79 to 

0.88 μm
−2

 (Hama et al., 1989). Spine surface contributes by a factor of 0.91–1.05 to the total surface area 

of the neurons (Hama et al., 1989; Schmidt-Hieber et al., 2007). There are only limited quantitative data 
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on the synaptic inputs to GCs. The number of excitatory synapses can be estimated on the basis of spine 

densities. The three main afferent systems, the commissural/associational path, the medial and the lateral 

perforant path, terminate in a strictly laminated fashion in the inner, middle, and outer molecular layer, 

respectively. The proportions of the dendrites falling into these layers are approximately 35%, with 

largest values in distal dendrites (Claiborne et al., 1990; Schmidt-Hieber et al., 2007). The corresponding 

spine numbers on the surface of GC with a dendritic length of 3,200 μm vary from 3,000 to 2,500 in 

proximal to distal dendrites, respectively (Vida, 2010). Therefore, the number of excitatory synapses onto 

a single GC could be as high as 8,500 contacts. 

The distribution of inhibitory terminals was analyzed in a combined immunocytochemical and electron 

microscopy study (Halasy and Somogyi, 1993). Results indicate that in the molecular layer ∼7.5% of the 

synapses are GABAergic and these synapses account for 75% of all inhibitory synapses, with the 

remaining 25% located in the granular layer. Hence, the number of inhibitory synapses onto a single GC 

can be estimated around 900, with roughly 650 in the molecular layer and the remaining in the granular 

layer. The compartmental distribution of the inhibitory input is broken down to almost 70% dendritic 

shafts and 30% spines in the molecular layer. In the cell body layer the majority, approximately 50%, are 

on GC somata, 25% on proximal dendrites, 15% on spines, and 10% on axon initial segments (Halasy and 

Somogyi, 1993).  

The axons of GCs, the mossy fibers (MF), provide the major output of the DG to the CA3 and CA2 

subregions. The unique features of mossy fibers are the 10–18 sparsely spaced large varicosities, the so-

called mossy fiber boutons, which form synapses onto complex spines of CA3 pyramidal cells in the SL 

and with MCs in the hilus (Hartmann et al., 1994). Furthermore, MFs innervate a large number of 

inhibitory interneurons in both regions either through small, en passant boutons and or via axonal 

extensions emerging from the large MF boutons mentioned above (Acsády et al., 1998). 
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1.3.2 Pyramidal Cells of the CA1 

Pyramidal cells of the CA1 are probably the most extensively characterized neurons in the brain. These 

neurons are characterized by a pyramidal (ovoid) soma, a large-caliber apical dendrite extends to SR and 

SLM, and a number of small-caliber basal dendrites extend to SO. The cell bodies have a diameter of 

about 15 μm and a total surface area of almost 465 μm
2
 (Megías et al., 2001). Each CA1PC consist of 

typically one apical dendrite (sometimes two) which extends into the SR giving off nine to thirty oblique 

side branches in this layer (Bannister and Larkman, 1995a). They terminate with a bifurcation in the SR 

and form a dendritic tuft in the SLM. Two to eight basal dendrites emerge from the base of the cell body 

in the SO and bifurcate repeatedly close to the soma, while their long terminal branches expand toward 

the alveus.  

The total dendritic length of CA1PCs is in the range of 11.5 to 17.5 mm (Vida, 2010). Corresponding 

estimates of the total surface area are 28,860 and 36,000 μm
2
, without taking into account dendritic spines 

(Bannister and Larkman, 1995b). As dendrites of CA1PCs are densely covered with spines, whose 

number is over 30,000 (Bannister and Larkman, 1995b; Megías et al., 2001), the actual surface area is 

much larger. Specifically, spines increase the dendritic surface area by a factor of 0.89. Importantly, the 

distribution of spines is not homogeneous on the dendritic tree. Density is higher within the SO and SR 

layers and lower in the SLM (Bannister and Larkman, 1995b). 

Spines of CA1PCs are postsynaptic targets predominantly for glutamatergic terminals, and therefore their 

high numbers is a reflection of the massive excitatory synaptic input that these cells receive. In fact, an 

average of 30,600 terminals are connected with a single CA1PC forming asymmetrical, putative 

excitatory synapses. More than 99% of these synapses are located on dendritic spines, apart from the 

SLM where up to 17% of the synapses are located on dendritic shafts. On the contrary, somata of 

CA1PCs do not generally have excitatory synapses. The number of symmetrical putative inhibitory 

synapses formed by GABAergic synapses is much lower. A single neuron receives about 1,700 

symmetrical synapses, which account for only 5.6% of the total synapses (Megías et al., 2001). In contrast 
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to excitatory synapses, a significant number of inhibitory synapses are located in the perisomatic domain. 

Only a small proportion can be found on the soma and the initial axonal segment, while the majority is 

located at proximal dendrites. In these compartments, inhibitory synapses comprise 50-100% of all 

synapses. In contrast, on dendrites in the SR and SO, the proportion of these synapses is only 4-5%. 

Interestingly, on distal apical dendrites in the SLM the proportion increases again to 16%. On the 

dendrites, almost all inhibitory terminals form contacts with dendritic shafts. However, as an exception to 

this rule, in the SLM 10-20% of the inhibitory synapses have been found on spines (Megías et al., 2001).  

The axon of pyramidal cells typically originates from the base of the soma, but it may also emerge from 

one of the proximal basal or apical dendrites. The main collaterals run in the alveus and are directed 

toward the fimbria/fornix, the subiculum, and the deeper layers of the EC. Although the extent of local 

arborization is limited, axon collaterals are present in the SO and to a lower degree in the SR. These 

axons provide a major excitatory input to interneurons providing the principal cells with feedback 

inhibition. Additionally, these collaterals also form synapses onto neighboring CA1 pyramidal cells; 

however, the recurrent connectivity in the CA1 area is very low, ∼1% (Deuchars and Thomson, 1996). 

1.4 Memory functions of the hippocampus 

The hippocampus is known to be involved in memory formation, storage and consolidation (Squire et al., 

2004), yet its specific functionalities remain a mystery. A traditional view entails that the hippocampus 

forms a unitary memory storage system – along with other Medial Temporal Lobe (MTL) structures 

(Squire and Zola-Morgan, 1991; Squire and Wixted, 2011). Another widespread interpretation is that the 

hippocampus mediates recollective memory rather than familiarity-based recognition (Eldridge et al., 

2000; Diana et al., 2007; Shimamura, 2010; Yonelinas et al., 2010). Other studies suggest that MTL 

activity is not exclusive to memory, but is also involved in perceptual processing of complex scenes 

(Eacott et al., 1994; Buckley et al., 2001; Lee et al., 2005; Lech and Suchan, 2013). The aforementioned 

views show the many different functions that have been ascribed to the MTL. The main goal of this thesis 
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is to investigate two of these functions, namely the ability to discriminate similar inputs (pattern 

separation) and the ability to navigate through space via the formation of place cells. 

1.4.1 Pattern separation 

Two key functionalities of the hippocampus concern the ability to rapidly store non-overlapping 

representations of similar inputs and thereafter, retrieve them given a partial or noisy stimulus. 

Theoretical models refer to these processes as pattern separation and pattern completion, respectively 

(Marr, 1971; Treves and Rolls, 1994; Yassa and Stark, 2011; Santoro, 2013). The Dentate Gyrus (DG), in 

particular, has been proposed to implement pattern separation by sparsifying and orthogonalizing its 

input, coming mainly from the Entorhinal Cortex (EC), and thereafter, projecting this information to the 

CA3 area via the mossy fibers (Treves and Rolls, 1994), whereas the CA3 subregion is responsible for 

retrieving an already stored memory given partial or noisy stimuli.  

DG has been hypothesized to separate two distinct but overlapping patterns through the activation of 

different Granule Cells (GCs), through the expression of different firing rates in identical neuronal 

populations (Deng et al., 2010) or a combination of the two. While several studies have investigated 

pattern separation both in rodents (Leutgeb et al., 2004, 2005, 2007) and humans (Kirwan and Stark, 

2007; Bakker et al., 2008; Lacy et al., 2011; Motley and Kirwan, 2012), the role of dendrites in this 

phenomenon remains unknown. 

Experimental studies have shown that only a small population of GCs, ~5%, are active in a single context 

(Marrone et al., 2011; Satvat et al., 2011; Danielson et al., 2016a), a phenomenon termed sparse coding 

(Olshausen and Field, 2004). It has been proposed that sparse coding in GCs enhances pattern separation 

by recruiting different subgroups of GCs to encode similar incoming stimuli (Treves et al., 2008; 

Petrantonakis and Poirazi, 2014, 2015). Computational models (Santhakumar et al., 2005; Yim et al., 

2015) and experimental studies (Nitz and McNaughton, 2004; Jinde et al., 2012) have proposed that 
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inhibition controls GC activity which, in turn, mediates pattern separation (Myers and Scharfman, 2009, 

2011; Ikrar et al., 2013; Faghihi and Moustafa, 2015). 

The ability to perform pattern separation is critical for normal brain functioning and its impairment is 

associated with cognitive decline. Diseases such as schizophrenia (Das et al., 2014) and Alzheimer’s 

Disease (AD) (Ally et al., 2013), where cognitive decline is evident, are both characterized by pattern 

separation deficiencies. Interestingly, these conditions are also characterized by alterations in the 

anatomical properties of GC dendrites, such as a decrease in the total dendritic length (Einstein et al., 

1994) and spine loss (Jain et al., 2012). Dendritic growth on the other hand has been associated with 

pattern separation enhancements. Specifically, voluntary running was recently shown to enhance pattern 

separation and this enhancement was attributed to an increase in the neurogenesis rate that was 

accompanied by increased GC dendrite outgrowth in active compared to sedentary animals (Bolz et al., 

2015). These findings suggest that the dendrites of GCs are likely to play a key role in pattern separation 

mediated by the DG. 

1.4.2 Spatial navigation 

Another functionality of hippocampus is its involvement in spatial navigation (O’Keefe and Nadel, 1978) 

both in humans (Burgess et al., 2002) and in animals (Clark et al., 2005a; Vorhees and Williams, 2014). 

Increased hippocampal volume relative to brain and body size has been documented in small mammals 

and birds involving in behavioral tasks requiring spatial memory, such as food storing and retrieval (Lee 

et al., 1998). In some species, hippocampal volumes enlarge specifically during periods when demand for 

high spatial capacity is increased (Smulders et al., 1995; Lee et al., 1998). In healthy humans, structural 

brain dissimilarities between different groups of subjects have been reported, such as between males and 

females (Gur et al., 1999) and between musicians and non-musicians (Schlaug et al., 1995). However, the 

aforementioned studies could not verify whether the reported differences in brain anatomy are 

predetermined or are existed due to plastic nature of the brain in response to enriched environmental 
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stimulation (van Praag et al., 2000). Besides, even though lesion works (Maguire et al., 1996; Clark et al., 

2005b, 2007) and functional neuroimaging studies (Maguire et al., 1999; Lee et al., 2013; Zeidman and 

Maguire, 2016) confirm the involvement of the mammalian hippocampus in spatial memory and 

navigation, its precise role remains mysterious.  

“The process of determining and maintaining a course or trajectory from one place to another” (Gallistel, 

1990) is an accurate definition of navigation. The experimental examination of how spatial 

representations are encoded in the brain began with the discovery of place cells (O’Keefe and Dostrovsky, 

1971). O’Keefe and Dostrovsky reported spatial receptive fields in complex-spiking neurons in the rat 

hippocampus. These place cells fired whenever the rat passes from a certain place in the local 

environment, which is called place field of the cell. Place cells were suggested to provide the animal with 

a dynamic, continuously updated representation of allocentric space and the position of the animal in that 

space. Nowadays, there is lavish evidence from a number of mammalian species indicating that the 

hippocampus plays a key role in navigation and spatial memory (Nadel, 1991; Ekstrom et al., 2003; 

Ulanovsky and Moss, 2007), although new evidence suggests that position is only one of several facets of 

experience stored in the hippocampal network (Leutgeb et al., 2005; Eichenbaum, 2017). 

All subfields of the hippocampal region contain place-modulated neurons, but the most distinct firing 

fields are found in the hippocampal proper, mainly in CA3 and CA1 regions (Park et al., 2011). On the 

basis of the apparent amplification of spatial signals from the EC LII to the CA fields (Quirk et al., 1992), 

many investigators thought, until recently, that place signals depended primarily on inter-hippocampal 

computations. This view was challenged by the observation that spatially-tuned firing persisted in CA1 

neurons after lesion of inputs from the DG (McNaughton et al., 1989) and CA3 (Brun et al., 2002). This 

raised the possibility that spatial signals were conveyed to CA1 by the direct projections from EC LIII. 

Projection neurons in layers II and III of the medial EC were then shown to exhibit sharply tuned spatial 

firing profiles, commonly to place cells in the hippocampus, except that each cell had multiple firing 

fields (Fyhn et al., 2004). These fields formed a periodic triangular array, or grid, that covered the entire 



16 

 

environment explored by the animal (Hafting et al., 2005). Each grid is characterized the spacing, i.e., 

distance between the fields, the orientation, i.e., tilt relative to an external reference axis, and phase, i.e., 

displacement relative to an external reference point. Even though cells in the same part of the medial EC 

have similar spacing and orientation, the phase of the grid is nontopographic, thus the firing vertices of 

co-localized grid cells appear to be shifted randomly, just like the fields of neighboring place cells in the 

hippocampus. Taken all together, there is a spatial map in the brain which is responsible for the accurate 

navigation through complex spaces. The information is transformed in grid cells, which subsequently pass 

it to hippocampus and transform the place cells. However, if this map is a cognitive (Eichenbaum, 2015) 

or predictive (Stachenfeld et al., 2017) is a matter of debate. 
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Chapter 2  Motivation 

Driven by the vast, yet fragmented, studies on hippocampal role in memory formation, consolidation and 

retrieval, this dissertation aims to shed light on specific mechanisms that are crucial for distinct mnemonic 

processes. Specifically, the main target is the investigation and exploration of dendritic role in pattern 

separation task, as well as the inhibitory effect on spatial navigational skills. The methodological 

approach includes the development and application of large scale neural networks consisting of spiking 

neuronal models and biophysically detailed microcircuits of dentate gyrus and CA1 hippocampal 

subregions, respectively. These areas are selected as there is a numerous research implicating dentate 

gyrus with pattern separation ability and CA1 with spatial navigation. 

The following open questions are tangled in this study: 

1. What is the role of granule cell dendrites in pattern separation? 

2. Are dendrites sufficient and necessary for dentate gyrus to be a key mediator of pattern 

separation? 

3. Are other mechanisms that affect pattern separation efficacy through mediating sparsity? 

4. What is the role of mossy cells in pattern separation? 

5. What is the role of interneurons in place cell formation? 

Overall this thesis seeks to establish a link between dendritic morphology and pattern separation efficacy 

inspired observed alterations of granule cell dendrites during neurodegenerative diseases. In addition, the 

secondary aim of this project is to reveal the mechanisms underlie spatial navigation ability which is 

another mnemonic process that is crucial for everyday life. We focus here on the role of the different 

interneurons found in CA1 area and their impact on place cell formation and dynamics. 
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Chapter 3  Methodology 

3.1 The DG network model 

The model was developed mainly based on the structure and connectivity features described by Myers 

and Scharfman (2009), and incorporates the four major dentate cell types. These are the GCs, MCs, BCs 

and HIPP cells. As the Hilar Commissural-Associational Pathway (HICAP) cells are relatively rare and 

poorly understood (Sik et al., 1997), they are not included in the model. All simulations were performed 

using the BRIAN (BRIAN v1.4) network simulator (Goodman and Brette, 2009; Brette and Goodman, 

2011) running on a High-Performance Computing Cluster (HPCC) with 312 cores under 64-bit CentOS 

Linux. 

3.1.1 Model neurons 

The four types of DG neurons were modeled as simplified phenomenological neurons of the integrate-

and-fire (I&F) type (Izhikevich, 2003; Burkitt, 2006), with no internal geometry (“point neurons”). The 

GCs incorporated dendrites in order to study their role in pattern separation; however the MCs, BCs and 

HIPP cells were simulated as simple somatic compartments. 

3.1.1.1 Modeling BC, MC and HIPP cells 

Specifically, an adaptive exponential I&F model (aEIF) (Brette and Gerstner, 2005) was used to model 

MCs, BCs and HIPP cells. The model is mathematically described by the following differential equations 

(Equation 1, 2): 
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where    is the membrane capacitance,    the membrane voltage,    the “leak” conductance,    the 

“leak” reversal potential (i.e., the resting potential),      the synaptic current flow onto the neuron,   the 

adaptation variable,    the slope factor,    the effective threshold potential,   the adaptive coupling 

parameter, and    is the adaptation time constant. 

The exponential nonlinearity describes the spike action potential and its upswing. In the mathematical 

interpretation of the model a spike occurs at time        when the membrane voltage reaches a finite limit 

value, and thereafter the downswing of the action potential is described by a reset fixed value       , as 

follows: 

            (             ) 

                                

where            is the voltage threshold above which the neuron fires a spike, and   is the spike triggered 

adaptation parameter. For all neuron types the effective threshold is equal to the voltage threshold (see 

Table 1 for model parameters). 

3.1.1.2 Modeling principal neurons, GC 

In order to investigate the role of GC dendrites in pattern separation, an extended point neuron was 

implemented. The GC model consisted of a leaky Integrate-and-Fire somatic compartment connected to a 

variable number of dendritic compartments whose morphology relies on anatomical data (see Table 2 for 

structure characteristics). Furthermore, an adaptation parameter   was used, only in the somatic 

compartment, to reproduce spike frequency adaptation reported in these neurons. The equation that 

describes the membrane, somatic and dendritic, potential of GC model cells is as follows: 

  
   
  

       (    )    ∑         
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The adaptation parameter ( ) was set to zero for the dendritic compartments. There is no evidence for 

dendritic spikes in GCs (Krueppel et al., 2011), thus the spike mechanism was only applied in the somatic 

equation.  

The DG is divided into three distinct layers (Fig. 1A); the molecular, granular, and polymorphic (hilus) 

(Amaral et al., 2007). The GC dendrites extend in the molecular layer (Amaral et al., 2007), which is 

further divided into the inner, middle, and outer molecular layers, and therefore dendritic compartments 

are discretized accordingly. Table 2 lists the morphological characteristics of the GC model. According to 

anatomical data, (Claiborne et al., 1990) GCs have 10-15 dendrites; thus, the control GC model includes 

12 dendrites and its physiological responses are validated against experimental data (see Table 1 for GC 

model parameters). 

Table 1. Morphological properties of GCs 

Structure of GC 

models 

Control Pruning Growth 

12 dendrites 6 dendrites 3 dendrites 6 dendrites 3 dendrites 

# of compartments 

total 

proximal 

medial 

distal 

 

21 

3 

6 

12 

 

15 

3 

6 

6 

 

9 

3 

3 

3 

 

9 

3 

6 

- 

 

3 

3 

- 

- 

length per 

compartment (um) 
83 83 83 83 83 

total dendritic 

length (um) 
1743 1245 747 747 249 

diameter per 

compartment (um) 

proximal 

medial 

distal 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

- 

 

1.0 

- 

- 

 

In order to investigate whether the number of GC dendrites affects pattern separation, we used two 

different approaches; dendritic pruning and growth. First, two more GC models were implemented which 

differ only in their number of dendrites (6 and 3), but the path length remained the same across these 

models. Secondly, two GC models were implemented which differ both in their dendritic number and 
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their total path length. The morphological differences among the three models are shown in Table 2. The 

membrane capacitance of the dendritic compartments was increased compared to the somatic one in order 

to account for spines reported in GC dendrites (Aradi and Holmes, 1999). 

3.1.2 Validation 

The intrinsic model properties that were validated against experimental data are the input resistance (   ), 

the sag ratio, defined as the ratio between the exponentially extrapolated voltage to the steady-state 

voltage, and the membrane time constant (  ). In line with experimental procedures (Lübke et al., 1998), 

we used 1-second somatic current injection to calculate the intrinsic properties. The input resistance is 

calculated by the equation                  ⁄ , where     is the membrane response to current 

stimulation. Finally, the membrane time-constant is approximated by the formula         , which is a 

valid approximation for passive compartments (Table 2). As experimental data were obtained in the 

presence of synaptic activity blockers, a somatic current injection at the model cell was used to replicate 

those conditions. 

Table 2. Model parameters for all neuronal types 

 

 

 

 

 

 

 

 

Model Parameter 
Granule cells 

Mossy cells Basket cells HIPP cells 
Soma dendrites 

EL (mV) Resting potential -87 -82 -64 -52 -59 

gL (nS) “Leak” conductance 0.00003
a 

0.00001
a 

4.53 18.054 1.930 

Cm (nF) Membrane capacitance 1.0
b 

2.5
b 

0.621 0.1793 0.0584 

Vreset (mV) Reset voltage -74 -49 -45 -56 

VT = Vthr (mV) Threshold voltage -56 -42 -39 -50 

ΔT (mV) Slope factor - 2 2 2 

α (nS) Adaptation coupling parameter 2.0 2 0.1 0.82 

τw (ms) Adaptation time constant 45 180 100 93 

b (nS) Spike triggered adaptation 0.0450 0.0829 0.0205 0.015 

aFor the GC model the “leak” conductance is given in Siemens/cm2 
bFor the GC model the membrane capacitance is given in μF/cm2 
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Using the parameters listed above we validated each one neuronal model against experimental evidence. 

The passive properties of the neurons are shown in Table 3. 

Table 3. Passive properties of neuronal models 

Cell 

Rin (MΩ) τm (ms) Sag ratio fmax (Hz) 

Model Biological Model Biological Model Biological Model Biological 

GCs 360 292 ± 34 41.2 31 ± 2 0.91 0.96 ± .1 60 70 ± 10 

MCs 105 199 ± 19 33.7 35 ± 5 0.98 0.81 ± .3 45 50 ± 6 

BCs 55 56 ± 9 9.67 10 ± 1 0.99 0.97 ± .02 247 230 ± 15 

HIPPs 363 371 ± 47 21.4 15 ± 0 0.84 0.82 ± .04 113 101 ± 24 

Sources 
Lubke et al., 1998, 

Krueppel et al., 2009 

Lubke et al., 1997, 

Ratzliff et al., 2004 

Lubke et al., 1998, 

Bartos et al., 2001 
Lubke et al., 1997 

 

Then we validated each individual neuronal model against experimental evidence using the current-

voltage curve (Figure 2) as well as using the frequency as a function of current amplitude (Figure 3). 
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Figure 2. Current-Voltage (I-V) curves for the Granule cell, Mossy cell, Basket cell, and HIPP cell models. 

Blue dots indicate the steady state points, while the dashed green line represents the linear regression through the steady state 

points. The current injection duration is 1 second. A. I-V curve for the granule cell. Voltage responses to current injections of -50 

to +80 pA with 10-pA stepsize. B. I-V curve for the mossy cell. Voltage responses to current injections of -150 to +150 pA with 

50-pA stepsize and -40 to 40 pA with 10 pA stepsize. C. I-V curve for the basket cell. Voltage responses to current injections of -

100 to +200 pA with 20-pA stepsize. D. I-V curve for the HIPP cell. Voltage responses to current injections of -20 to +25 pA 

with 5-pA stepsize. Insets: The corresponding experiments adopted from (Lübke et al., 1998). 
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Figure 3. Current-frequency (I-f) relationship of Granule, Mossy, Basket and HIPP cells. 

The y-axis represents the firing rate of each neuron in Hz, while x-axis shows the somatic current injections in pA. A. I-f curve of 

granule cell. Corresponding frequency (Hz) to current injections of 0 to +250 pA with 25-pA stepsize. B. I-f curve of mossy cell. 

Corresponding frequency (Hz) to current injections of 0 to +1000 pA with 50-pA stepsize. C. I-f curve of Basket cell. 

Corresponding frequency (Hz) to current injections of 0 to +900 pA with 50-pA stepsize. D. I-f curve of HIPP cell. 

Corresponding frequency (Hz) to current injections of 0 to +200 pA with 25-pA stepsize. 

3.1.3 Modeling Synapses 

Since the DG network consists of both glutamatergic cells (GCs and MCs) and GABAergic interneurons, 

AMPA, NMDA and GABA synapses were included in the network model. Therefore, the total synaptic 
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current (Equations 1 and 4) consisted of two components; the excitatory current through AMPA receptors 

(     ) and NMDA receptors (     ), and the inhibitory current via GABAα receptors (     ). The 

majority of ligand-gated ion channels mediating synaptic transmission, such as AMPA and GABA 

receptors, display an approximately linear current-voltage relationship when they open. We modeled 

these channels as an ohmic conductance (    ) multiplied by the driving force: 

           ( )  (       ) 

where      is the AMPA and GABA reversal potential, respectively. 

The NMDA receptor-mediated conductance depends on the postsynaptic voltage due to the gate blockage 

by a positively charged magnesium ion (Mg
2+

). The fraction of NMDA channels that are not blocked by 

Mg
2+

 can be fitted by a sigmoidal function (Jahr and Stevens, 1990): 

 ( )   
 

    [    ]    (    )
 

where   is the sensitivity of Mg unblock,   the steepness of Mg unblock, and [    ]  is the outer 

magnesium (Mg) concentration. For NMDA receptors in MCs, BCs and HIPP cells we used   

         , [    ]       , and               . Instead, for GCs we tuned these parameters in to 

match the latest experimental data found in literature (Krueppel et al., 2011) with the corresponding 

values equal to           , [    ]       , and              . Consequently, the NMDA 

synaptic current is calculated by the following equation: 

           ( )   ( )  (  ( )       ) 

The ohmic conductance is simulated as a sum of two exponentials (Bartos et al., 2001), one term based on 

rising and the other on the decay phase of the postsynaptic potential. This function allows time constants 

to be set independently. We simulated such a function as a system of linear differential equations (Roth 

and Van Rossum, 2009): 

    ( )         ( ) 
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        (   ) 

 
  

  
    

 

     
 

where       and        are the rise and decay constants respectively,    a scaling factor and  ( ) is the 

function of two exponentials  ( )       (         )       (        ), which is divided by its 

maximum amplitude in order for the maximum conductance to be equal to one. The scaling factor is set to 

       for all AMPA and GABA receptors and all neuronal types. The NMDA scaling factor is set to 

         apart from the synapses form on GCs where it is set to       . Because axons of neurons are 

not included in the model, a delay is used between pre- and postsynaptic transmission. The role of the 

delay is to account for both the synaptic transmission and the axonal conduction delay, and its value 

depends on the presynaptic and postsynaptic neuronal types. The peak conductance (    ), rise and decay 

time constants, and the delay of various network connections were estimated from experimental data 

(Kneisler and Dingledine, 1995; Geiger et al., 1997; Bartos et al., 2001; Schmidt-Hieber et al., 2007; 

Larimer and Strowbridge, 2008; Schmidt-Hieber and Bischofberger, 2010; Krueppel et al., 2011; Chiang 

et al., 2012) and are given in Table 4. Specifically, the GC peak conductance both for AMPA and 

NMDA, was validated against experimental data (Krueppel et al., 2011), where it is evidenced that a 

single synapse provokes a        somatic EPSP, and also the NMDA and AMPA peak current ratio is 

equal to     . These values were reproduced in the GC model cells. The models also incorporate 

background activity, in order to simulate the experimental findings of spontaneous activity in DG. 

Accordingly, we used Poisson independent spike trains in order to reproduce the experimental data for 

MCs (2-4 Hz spontaneous activity) (Henze and Buzsáki, 2007) and for BCs (1-2 Hz spontaneous activity) 

(Kneisler and Dingledine, 1995). GCs infrequently generate spontaneously activity, even if inhibition is 

blocked (Lynch et al., 2000). Thus, we implemented noisy inputs in order to only evoke spontaneous 

EPSPs (0.05 Hz spontaneous activity). 
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Table 4. Connectivity and synaptic properties 

From (column) / To (row) Granule cells Mossy cells Basket cells HIPP cells 

AMPA         

Perforant Path         

gmax (nS) 0.8066     0.240 

τrise (ms) 0.1 2.0 

τdecay (ms) 2.5 11.0 

delay (ms) 3.0 3.0 

Granule cells         

gmax (nS)   0.500 0.210   

τrise (ms) 0.5 2.5 

τdecay (ms) 6.2 3.5 

delay (ms) 1.5 0.8 

Mossy cells         

gmax (nS) 0.1066   0.350   

τrise (ms) 0.1 2.5 

τdecay (ms) 2.5 3.5 

delay (ms) 3.0 3.0 

NMDA         

Perforant Path         

gmax (nS) 0.8711     0.276 

τrise (ms) 0.33 4.8 

τdecay (ms) 50.0 110.0 

delay (ms) 3.0 3.0 

Granule Cells         

gmax (nS)   0.525 0.231   

τrise (ms)   4.0 10.0 

τdecay (ms)   100.0 130.0 

delay (ms)   1.5 0.8 

Mossy Cells         

gmax (nS) 0.1151   0.385   

τrise (ms) 0.33 10.0 

τdecay (ms) 50.0 130.0 

delay (ms) 3.0 3.0 

GABAA         

Basket cells         

gmax (nS) 14.0       

τrise (ms) 0.9 

τdecay (ms) 6.8 

delay (ms) 0.85 

HIPP cells         

gmax (nS) 0.12       

τrise (ms) 0.9 

τdecay (ms) 6.8 

delay (ms) 1.6 
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3.1.4 Connectivity 

The DG network model consists of 2000 simulated GCs, a scale that represents 1/500 of the one million 

GCs found in rat brains (West et al., 1991). The chosen number of GCs provides enough power to explore 

pattern separation, while maintaining computational efficiency. The population of GCs is organized in 

non-overlapping clusters, with each cluster containing 20 GCs, respectively. This kind of organization 

roughly corresponds to the lamellar organization along the septotemporal extent of DG (Sloviter and 

Lømo, 2012). 

Apart from the principal excitatory dentate cells (GCs), the model comprises two kind of inhibitory 

interneurons, the perisomatic (BCs), which form synapses at the soma of the GCs, and dendritic (HIPP) 

inhibitory cells, which contact the GCs at their distal dendritic compartments. There is one BC per cluster 

of GCs, which in turn corresponds to 100 simulated BCs in the model. This is a form of “winner-take-all” 

competition (Coultrip et al., 1992) in which all, but the most strongly activated GCs in a cluster, are 

silenced. Given 100 clusters in the model, and with one winner within each cluster, approximately 5% of 

GCs are active for a given stimulus; this is in agreement with the theoretically and experimentally 

estimation of 2-5% granular activity in the substrate (Treves et al., 2008; Danielson et al., 2016a). 

Moreover, the model includes simulated hilar MCs and HIPP cells. Estimated numbers for these neuronal 

types vary from 30,000 to 50,000 MCs in rats (West et al., 1991; Buckmaster and Jongen-Rêlo, 1999), 

which in turn corresponds to 3-5 MCs per 100 GCs. Accordingly, the model includes 80 MCs per 2,000 

GCs. Experimental counts for HIPP cells vary significantly, but the latest estimates suggest about 12,000 

HIPP cells in rats (Buckmaster and Jongen-Rêlo, 1999) meaning less than 2 HIPP cells per 100 GCs. To 

reflect this empirical data, we simulated 40 HIPP cells in the network model (Fig. 1A). 

External input to the network model is provided by 400 afferents representing the major input that DG 

receives from Entorhinal Cortex (EC) Layer II cells, via the Perforant Path (PP). The ratio of GCs to PP 

afferents is aligned with estimations of about 200,000 EC Layer II cells in the rat (Amaral et al., 1990), 

suggesting a ratio of 20 EC cells per 100 GCs. Therefore, the model incorporates synaptic input that 
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corresponds to 400 EC Layer II cells. For simplicity, the input cells are simulated as independent Poisson 

spike trains, with frequency of 40 Hz, which is in line with experimental data (Hafting et al., 2005). 

Previous experimental studies have shown that dentate GCs receive input from 10% of the 4,000 afferents 

that contact a given GC in the rat during a task (McNaughton et al., 1991), which in turn suggests that an 

approximate 10% of EC Layer II cells are active. The simulations reported here assume that 10% is the 

active PP afferents representing a given stimulus. According to McNaughton et al., 1991, 10% of the total 

entorhinal input is necessary to discharge one GC. However, the EC-GC connection is sparse, with each 

GC receiving input from about 2% of EC Layer II neurons. Assuming only 400 input cells; one GC could 

have only 8 afferents from EC, which in turn would make it impossible for the GC to become active. As a 

compromise, we used a randomly determined 20% of EC Layer II cells as input to each GC and 

additionally, 20% randomly determined EC Layer II cells as input to each HIPP cell; GCs contact each 

MC with 20% probability; GCs and HIPP cells each feedback to contact a randomly determined 20% of 

GCs and finally, each MC connects with every BC in the network. Connections are initialized randomly 

(uniform random distribution) before the start of the simulations and remain fixed across all simulations 

(no rewiring). The connectivity matrix was the same for all experiments and across all using GC models, 

apart from the PP to GCs, and HIPP to GCs synapses due to the difference in GC number of dendrites. 

3.2 CA1 network model 

The model was developed mainly based on the structure and connectivity features described by 

(Cutsuridis et al., 2010; Bezaire et al., 2016), and incorporates the major CA1 cell types. These are the 

CA1PCs, AACs, BCs, BSCs, OLMs and VIP
+
/CCK

+
 and VIP

+
/CR

+
 cells. Additionally, the external input 

to the network was provided by EC LIII, CA3 Schaffer Collaterals and Septum. The principal neurons 

receive excitatory background activity on their dendrites. All simulations were performed using the 

NEURON (NEURON v7.3) network simulator (Hines and Carnevale, 1997) running on a High-

Performance Computing Cluster (HPCC) with 312 cores under 64-bit CentOS Linux operating system. 
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3.2.1 Model neurons 

All neurons were modeled as simplified biophysical neurons with various numbers of active dendrites 

using the Hodgkin-Huxley formalism. Specifically, the CA1PCs incorporated various dendrites in order 

to capture their complex structure; however the interneurons were simulated with a simplistic 

morphological structure. The morphological structures of neuronal models are shown in Figure 4, while 

their morphological features are given in Table 5, Table 6 and Table 11. In addition to neuronal models 

found in (Cutsuridis et al., 2010), we added two more interneurons in the network. Mathematical details 

for their specific simulated ionic channels are in Appendix B. 

Table 5. Morphological properties of Axoaxonic, Basket, Bistratified, VIP+/CCK+, VIP+/CR+ interneurons 

Name of 

compartment 

Axoaxonic cell Basket cell Bistratified cell VIP+/CCK+ cell VIP+/CR+ cell 

Length x diameter 

(μm2) / # 

compartments 

Length x diameter 

(μm2) / # 

compartments 

Length x diameter 

(μm2) / # 

compartments 

Length x diameter 

(μm2) / # 

compartments 

Length x diameter 

(μm2) / # 

compartments 

soma 10 x 20 1 10 x 20 1 10 x 20 1 10 x 20 1 10 x 20 1 

radProx 4.0 x 100 2 4.0 x 100 2 4.0 x 100 2 4.0 x 100 2 4.0 x 100 2 

radMed 3.0 x 100 2 3.0 x 100 2 3.0 x 100 2 3.0 x 100 2 3.0 x 100 2 

radDist 2.0 x 200 2 2.0 x 200 2 2.0 x 200 2 2.0 x 200 2 2.0 x 200 2 

lmM 1.5 x 100 2 1.5 x 100 2 - - 1.5 x 100 2 1.5 x 100 2 

lmt 1.0 x 100 2 1.0 x 100 2 - - 1.0 x 100 2 1.0 x 100 2 

oriProx 2.0 x 100  2 2.0 x 100  2 2.0 x 100  2 2.0 x 100  2 2.0 x 100  2 

oriMed 1.5 x 100 2 1.5 x 100 2 1.5 x 100 2 1.5 x 100 2 1.5 x 100 2 

oriDist 1.0 x 100 2 1.0 x 100 2 1.0 x 100 2 1.0 x 100 2 1.0 x 100 2 

Total  17  17  13  17  17 
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Figure 4. Morphological structure of neuronal models. 

A. Schematic diagram of the pyramidal cell. The different colors represent the different compartments. The model includes also 

an axon (not shown here for consistency). The grey-scale shaded area denotes the different layers found in CA1 subregion. B. As 
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in A, but here the schematic diagrams of the Axoaxonic, Basket, Bistratified, OLM, VIP/CCK and VIP/C models are shown. Yet 

again, the shaded area represents the different layers. Note that the thickness and the length of each compartment is not represent 

the values we used, rather they used for clarity. 

3.2.1.1 Simplified Pyramidal cell 

The pyramidal cell (CA1PC) was implemented as per Cutsuridis et al, 2010 and modified accordingly in 

order to be more complex. Each CA1PC had 27 compartments, each containing a calcium pump and 

buffering mechanism, calcium activated slow AHP and medium AHP potassium (K
+
) currents, an HVA 

L-type Ca
2+

 current, an HVA R-type Ca
2+

 current, an LVA T-type Ca
2+

 current, an h current, a fast 

sodium and a delayed rectifier K
+
 current, a slowly inactivating K

+
 M-type current and a fast inactivating 

K
+
 A-type current (Poirazi et al., 2003a, 2003b). Each PC soma rested in the SP, while its dendrites 

extended across the strata from SO (basal dendrites) to SR and SLM (proximal and distal apical 

dendrites). Each pyramidal cell received somatic synaptic inhibition from the basket cells, mid-dendritic 

excitation from CA3, distal apical excitation from the entorhinal cortex (EC), and proximal excitation 

from around 1% of other pyramidal cells in the network, somatic inhibition from the BC and VIPCCK, 

axonic inhibition from the AAC, mid-dendritic synaptic inhibition from the BSC population, and distal 

synaptic inhibition on each from the OLM cell. Thus, we added more compartments (sister branches) at 

distal, medial and basal dendrites. In addition, we used a series of dendritic channels as described in 

Appendix B. The maximum conductance of each channel is given in Table 7. 

Table 6. Morphological properties of the Pyramidal Cell 

Name Dimensions (diameter x length) μm2 Number of compartments 

Soma 10 x 10 1 

Axon 1.0 x 150 1 

RadProx 4.0 x 100 1 

RadMed 3.0 x 100 1 

RadDist 2.0 x 200 1 

radthick 2.0 x 100 2 

radmedium 1.5 x 100 2 

radthin 1.0 x 50 4 

lmthick 2.0 x 100 2 

lmmedium 1.5 x 100 2 
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lmthin 1.0 x 50 4 

oriprox 2.0 x 100 2 

oridist 1.5 x 100 4 

Total  27 

 

Table 7. Passive parameters and active ionic conductances of channels for all compartments of pyramidal model cells 

 Compartment 

Mechanism Soma Axon RadProx RadMed RadDist LM/R OriProx OriDist 

Leak conductance [S/cm2]  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

Na+ conductance [S/cm2] 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

Delayed rectifier K+ conductance 

[S/cm2]   
0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 

Proximal A-type K+ conductance 

[S/cm2] 
0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 

Distal A-type K+ conductance 

[S/cm2] 
- - - - - - - - 

M-type K+ conductance [S/cm2] 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 

Ih conductance [S/cm2] 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 

L-type Ca2+ conductance [S/cm2] 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 

R-type Ca2+ conductance [S/cm2] 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

T-type Ca2+ conductance [S/cm2] 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 

Ca2+-dependent mAHP K+ 

conductance [S/cm2] 
0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

Ca2+-dependent sAHP K+ 

conductance [S/cm2] 
0.09075 0.09075 0.09075 0.09075 0.09075 0.09075 0.09075 0.09075 

Membrane capacitance Cm 

[μF/cm2] 
1 1 1 1 1 1 1 1 

Membrane resistance Rm [Ohm 

cm2] 
20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 

Axial resistance Ra [Ohm cm] 150 150 150 150 150 150 150 150 

Vhalf,h [mV] -73 -73 -73 -73 -73 -73 -73 -73 

EL [mV] -70 -70 -70 -70 -70 -70 -70 -70 

ENa [mV] 50 50 50 50 50 50 50 50 

EK [mV] -80 -80 -80 -80 -80 -80 -80 -80 

Eh [mV] -10 -10 -10 -10 -10 -10 -10 -10 

ECa [mV] 140 140 140 140 140 140 140 140 

 

3.2.1.2 Axoxaxonic Cell (AAC) 

Each AAC consisted of 17 compartments, which included a leak conductance, a sodium (Na
+
) current, a 

fast delayed rectifier potassium (K
+
) current, an A-type K

+
 current, L- and N-type calcium (Ca

2+
) currents, 

a Ca
2+

-dependent K
+
 current and a Ca

2+
-dependent and voltage-dependent K

+
 current (Table 8). AACs 

received excitatory inputs from the EC LIII to their SLM dendrites and excitatory inputs from the CA3 

Schaffer collateral to their SR dendrites. In addition, the AACs received inputs from the CA1PCs in their 
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SR medium and thick dendritic compartments as well as inhibitory input from the septum in their SO 

thick dendritic compartments. Moreover, they received inhibitory input from BCs, BSCs and OLMs to 

their soma and dendrites, respectively. 

Table 8. Passive parameters and active ionic conductance of channels  

of Axoaxonic cell  

Mechanism All compartments 

Leak conductance [S/cm2]  0.00018 

Na+ conductance [S/cm2] 0.15 

Delayed rectifier K+ conductance [S/cm2]   0.013 

A-type K+ conductance [S/cm2] 0.00015 

L-type Ca2+ conductance [S/cm2] 0.005 

N-type Ca2+ conductance [S/cm2] 0.0008 

Ca2+-dependent K+ conductance [S/cm2] 0.000002 

Ca2+- and voltage dependent K+ conductance [S/cm2] 0.0002 

Membrane capacitance Cm [μF/cm2] 1.4 

Axial resistance Ra [Ohm cm] 100 

EL [mV] -60 

ENa [mV] 55 

EK [mV] -90 

ECa [mV] 130 

[Ca2+] steady state [mM] 0.000005 

[Ca2+]o 2 

τCa [ms] 10 

 

 

3.2.1.3 Basket Cell (BC) 

Each BC consisted of 17 compartments, containing a leak conductance, a Na
+
 current, a fast and slow 

delayed rectifier K
+
 current, an A-type K

+
 current, L- and N-type Ca

2+
 currents, a Ca

2+
- dependent K

+
 

current, and a Ca
2+

- and voltage-dependent K
+
 current (Table 9). All BCs received excitatory connections 

from the EC LIII to their distal SLM dendrites, from the CA3 Schaffer collaterals to their medium SR 

dendrites and from active pyramidal cells to their medium and thick SR dendritic compartments and 

inhibitory connections from neighboring BCs, BSCs, OLMs and VIPCRs in their soma and dendrites 

(Freund and Buzsáki, 1996; Bezaire and Soltész, 2013) and from the medial septum in their SO thick 

dendritic compartments. 
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Table 9. Passive parameters and active ionic conductance of channels  

of Basket cell  

Mechanism All compartments 

Leak conductance [S/cm2]  0.00018 

Na+ conductance [S/cm2] 0.2 

Delayed rectifier K+ conductance [S/cm2]   0.013 

A-type K+ conductance [S/cm2] 0.00015 

L-type Ca2+ conductance [S/cm2] 0.005 

N-type Ca2+ conductance [S/cm2] 0.0008 

Ca2+-dependent K+ conductance [S/cm2] 0.000002 

Ca2+- and voltage dependent K+ conductance [S/cm2] 0.0002 

Membrane capacitance Cm [μF/cm2] 1.4 

Axial resistance Ra [Ohm cm] 100 

EL [mV] -60 

ENa [mV] 55 

EK [mV] -90 

ECa [mV] 130 

[Ca2+] steady state [mM] 0.000005 

[Ca2+]o 2 

τCa [ms] 10 

 

3.2.1.4 Bistratified Cell (BSC) 

Each BSC consisted of 13 compartments, which included the same ionic currents as the BC and AAC 

cells (Table 10). All BSCs received excitatory connections from the CA3 Schaffer collaterals in their 

medium SR dendritic compartments and from the active pyramidal cells in their thick SO dendritic 

compartments and inhibitory connections from the medial septum in their thick SO dendritic 

compartments and from neighboring BC, BSC, OLM and VIPCCK cells in both their somata and 

dendrites. 

Table 10. Passive parameters and active ionic conductance of channels  

of Basket cell  

Mechanism All compartments 

Leak conductance [S/cm2]  0.00018 

Na+ conductance [S/cm2] 0.3 

Delayed rectifier K+ conductance [S/cm2]   0.013 

A-type K+ conductance [S/cm2] 0.00015 

L-type Ca2+ conductance [S/cm2] 0.005 

N-type Ca2+ conductance [S/cm2] 0.0008 

Ca2+-dependent K+ conductance [S/cm2] 0.000002 

Ca2+- and voltage dependent K+ conductance [S/cm2] 0.0002 

Membrane capacitance Cm [μF/cm2] 1.4 

Axial resistance Ra [Ohm cm] 100 
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EL [mV] -60 

ENa [mV] 55 

EK [mV] -90 

ECa [mV] 130 

[Ca2+] steady state [mM] 0.000005 

[Ca2+]o 2 

τCa [ms] 10 

 

3.2.1.5 O-LM Cell (OLM) 

Each OLM cell had four compartments, which included a Na
+
 current, a delayed rectifier K

+
 current, an 

A-type K
+
 current, and an h-current (Table 12). Each OLM cell received excitatory connections from the 

CA1PCs in their basal dendrites as well as inhibitory connections from the BCs, BSCs, OLMs, and 

VIPCRs and form medial septum in their soma. 

Table 11. Morphological properties of OLM cells. 

Name Dimensions (diameter x length) μm2 Number of compartments 

Soma 10 x 20 1 

Axon 3.0 x 250 1 

dend 1.5 x 150 2 

Total  4 

 

Table 12. Passive properties and active ionic conductance of OLM cell 

 Compartment 

Mechanism Soma Axon Dendrite 

Leak conductance [S/cm2]  0.00005 0.00005 0.00005 

Na+ conductance [S/cm2] 0.0107 0.01712 0.0234 

Delayed rectifier K+ conductance [S/cm2]   0.0319 0.05104 0.0460 

A-type K+ conductance [S/cm2] 0.0165 0.00015 0.004 

Membrane capacitance Cm [μF/cm2] 1.3 1.3 1.3 

Axial resistance Ra [Ohm cm] 150 150 150 

EL [mV] -65 -65 -65 

ENa [mV] 90 90 90 

EK [mV] -100 -100 -100 

 

3.2.1.6 VIP
+
/CCK

+
 Cell (VIPCCK) 

Each VIPCCK cell had 17 compartments, containing a leak conductance, a sodium current, a fast delayed 

rectifier K
+
 current, an A-type K

+
 current, L- and N-type Ca

2+
 currents, a Ca

2+
- dependent K

+
 current, and 
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a Ca
2+

- and voltage-dependent K
+
 current (Table 13). All VIPCCKs received excitatory connections from 

the EC LIII to their distal SLM dendrites, from the CA3 Schaffer collaterals to their medium SR dendrites 

and from active pyramidal cells to their medium and thick SR dendritic compartments and inhibitory 

connections from neighboring BCs, BSCs and OLMs in their soma (Bezaire and Soltész, 2013) and from 

the medial septum in their SO thick dendritic compartments. 

Table 13. Passive properties and active ionic conductance of VIP+/CCK+ cell 

Mechanism All compartments 

Leak conductance [S/cm2]  0.00018 

Na+ conductance [S/cm2] 0.3 

Delayed rectifier K+ conductance [S/cm2]   0.013 

A-type K+ conductance [S/cm2] 0.00015 

L-type Ca2+ conductance [S/cm2] 0.005 

N-type Ca2+ conductance [S/cm2] 0.0008 

Ca2+-dependent K+ conductance [S/cm2] 0.000002 

Ca2+- and voltage dependent K+ conductance [S/cm2] 0.0002 

Membrane capacitance Cm [μF/cm2] 1.4 

Axial resistance Ra [Ohm cm] 100 

EL [mV] -60 

ENa [mV] 55 

EK [mV] -90 

ECa [mV] 130 

[Ca2+] steady state [mM] 0.000005 

[Ca2+]o 2 

τCa [ms] 10 

 

3.2.1.7 VIP
+
/CR

+
 

The CR interneuron model consisted of 17 compartments including mechanisms for slow K
+
 current, fast 

Ca
2+

-activated K
+
 current and N-type Ca

2+
 current (Table 14). Each VIPCR cell received excitatory input 

from EC LIII, CA3 Schaffer collateral and CA1PCs. Also, it received inhibitory input from medial 

septum at the somatic compartment. This cell was then validated against experimental evidence (Tyan et 

al., 2014; Francavilla et al., 2015). 

Table 14. Passive properties and active ionic conductance of VIP+/CR+ cell 

Mechanism All compartments 

 Soma Dendrites 

Leak conductance [S/cm2]  0.00005 0.00005 

Na+ conductance [S/cm2] 0.015 0.075 

Delayed rectifier K+ conductance [S/cm2]   0.018 0.009 
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D-type K+ conductance [S/cm2] 0.000725 - 

N-type Ca2+ conductance [S/cm2] 0.001 - 

Ca2+-dependent K+ conductance [S/cm2] 0.00003 - 

Membrane capacitance Cm [μF/cm2] 1.2 1.2 

Axial resistance Ra [Ohm cm] 150 150 

EL [mV] -65 -65 

ENa [mV] 55 55 

EK [mV] -90 -90 

ECa [mV] 130 130 

 

3.2.2 Validation 

The first step was to validate the passive (intrinsic) properties of every individual neuronal type against 

experimental evidence. In this line, we used the input resistance, the rheobase current, and the membrane 

time constant. The passive membrane properties are given in Table 15 and in Figure 5. 

Table 15. Passive properties of neuronal models in CA1 

Cell 

Rin (MΩ) τm (ms) Vrest (mV) rheobase (pA) 

Model Biological Model Biological Model Biological Model Biological 

PCs 85.9 139.5 ± 38 9.4 21.5 ± 8.6 -64.9 
-70.7 ± 

1.2 
110 182.4 ± 55 

AACs 70.0 122 ± 57 11.1 11.9 ± 2.2 -64.4 
-64.4 ± 

4.5 
270 283 ± 152 

BCs 98.4 56 ± 9 16.4 13.3 ± 5.4 -64.3 
-61.4 ± 

2.0 
150 307 ± 109 

BSCs 98.7 109 ± 30 14.8 12.2 ± 0.6 -67.0 
-63.6 ± 

4.7 
260 101 ± 24 

OLMs 507.1 592.3 ± 97 21.3 30.0 ± 12 -65.9 
-65.2 ± 

1.3 
30 20 ± 0 

VIPCCKs 228.8 281.7 ± 78 22.2 25.5 ± 5 -61.4 
-61.4 ± 

3.2 
50 60 ± 0 

VIPCRs 318.3 320 26.0 25.0 -63.2 -63.0 20 - 

Sources Bezaire et al, 2016, Tyan et al, 2014 
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Figure 5. Validation of neuronal models.  

3.2.3 Modeling Synapses 

Since the CA1 network consists of both glutamatergic cells (CA1PCs) and GABAergic interneurons, 

AMPA, NMDA and GABAA and GABAB synapses were included in the network model. More specific, 

we used NMDA synapses on pyramidal neurons only. The interneurons receive excitatory afferents via 

AMPA only, as NMDA on those neurons is not well studied yet. Yet again, the AMPA, NMDA, GABAA 

and GABAB synapses are simulated as a sum of two exponentials (§ 3.1.3 for more details). All synaptic 

properties (i.e., conductance g, rise time τr, and decay time τd) are the same as in Bezaire et al, 2016 

(Table 17). For simplicity, all conduction delays are set to 1.0 ms. 
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AMPA, GABA synapses 

The AMPA, GABAA and GABAB synapses were simulated as a two state kinetic scheme and is described 

as a rise phase and a decay phase. The synaptic current through these synapses is calculated by the 

following equations: 

         ( )  (      )       {                } 

    ( )   ( )   ( )     ( )   
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NMDA synapse 

The NMDA synapse was simulated as a two state kinetic scheme as well, but it involved also a factor 

with represented the voltage dependency. The corresponding equations were: 
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where V is the membrane voltage (more details in §3.1.3). 

3.2.4 Connectivity 

The CA1 network model consists of 98 simulated neurons, with 80 pyramidal neurons and 18 

interneurons. Although the chosen number of CA1PCs represents only a small portion of neurons found 

in adult rat brain, which are 320,000 – 380,000 (West et al., 1991), yet provides enough power to explore 

place cell dynamics, while upholding computational complexity at significantly convenient levels.  

Apart from the principal neurons, which were the majority in our network, the model consists of various 

types of interneurons. The majority of this sub-population was the PV
+
 expressing cells consisting of 
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BCs, AACs and BSCs. We simulated eight BCs, two AACs and two BSCs providing the principal 

neurons with perisomatic, axonal and dendritic inhibition, respectively. These neurons are the majority of 

total interneurons found in CA1, with BCs to outnumber rest of other inhibitory neuronal types (Baude et 

al., 2007). Furthermore, we included SOM
+
 interneurons in the network, OLM, which contacted principal 

neurons at distal dendrites providing the network with dendritic inhibition. Finally, we added two more 

types in the network, two CCK
+
/VIP

+
 which innervate the soma of principal neurons and two CR

+
/VIP

+
 

which inhibit both BCs and OLMs by contacting them at their somatic compartment. Interestingly, an 

immense number of interconnections within interneurons were presented in the network (Figure 6). 
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Figure 6. The CA1 network model. 

The input is provided from CA3 SC, EC LIII and SEP (only to interneurons). There is a high complexity to the network as 

interneurons form local circuitries with other internueronal populations. AAC: Axo-axonic cell, BC: Basket cell, BSC: 

Bistratified cell, OLM: O-LM cell, VIPCCK: VIP+/CCK+ basket cell, VIP+/CR+ cell. Notice that VIP+ cells provided the network 

with perisomatic inhibition and disinhibition. The SEP innervates all interneurons with GABAergic synapses. 

The number of connections receives each pyramidal neuron from the EC LIII and the CA3 pyramidal 

cells were equal to eight as any CA1PC receives an octal of grid-like inputs. The connections from and on 
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interneurons were approximated as per (Bezaire and Soltész, 2013; Bezaire et al., 2016). All connections 

were scaled down 36 times in order to be in line with the decrease in neuronal numbers. The connectivity 

features are given in detail in Table 16. Finally, all interneurons receive GABAA and GABAB inhibitory 

connections from septum in order to maintain the theta cycle observed in hippocampus. 

Table 16. Connectivity properties of CA1 network 

From/to CA1PCs AACs BCs BSCs OLMs VIPCCKs VIPCRs 

EC LIII 8 27 3 24 x 10 30 

CA3 8 231 336 321 55 111 139 

SEP x 10 10 10 10 10 10 

CA1PC 3 14 35 31 198 115 115 

AAC 1 1 x x x x x 

BC 3 5 1 1 x 1 x 

BSC 2 3 4 4 11 4 x 

OLM 2 3 3 3 2 11 x 

VIPCCK 2 3 x 3 x 8 x 

VIPCR x x 3 x 11 x x 
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Table 17. Synaptic properties of CA1 network connections 

From/to  CA1PCs AACs BCs BSCs OLMs VIPCCKs VIPCRs 

EC LIII  AMPA NMDA AMPA AMPA AMPA AMPA AMPA AMPA 

 g (nS) 2.0e-4 2.0e-4 1.2e-4 0.1e-4 1.5e-4 x 3.0e-4 3.0e-4 

 τr (ms) 0.5 2.3 2.0 2.0 2.0 x 2.0 2.0 

 τd (ms) 3.0 100 6.3 6.3 6.3 x 6.3 6.3 

CA3 SC  AMPA NMDA AMPA AMPA AMPA AMPA AMPA AMPA 

 g (nS) 1.5e-4 1.5e-4 1.2e-4 2.2e-4 1.5e-4 1.05e-4 1.05e-4 1.05e-4 

 τr (ms) 0.5 2.3 2.0 2.0 2.0 2.0 2.0 2.0 

 τd (ms) 3.0 100 6.3 6.3 6.3 6.3 6.3 6.3 

SEP  GABAA GABAB GABAA GABAB GABAA GABAB GABAA GABAB GABAA GABAB GABAA GABAB GABAA GABAB 

 g (nS) x x 2.0e-4 2.0e-4 8.0e-4 8.0e-4 8.0e-4 8.0e-4 0.1e-5 0.1e-5 2.0e-4 2.0e-4 2.0e-4 2.0e-4 

 τr (ms) x x 1 35 1 35 1 35 1 35 1 35 1 35 

 τd (ms) x x 8 100 8 100 8 100 8 100 8 100 8 100 

CA1PCs  AMPA AMPA AMPA AMPA AMPA AMPA AMPA 

 g (nS) 7.0e-3 4.0e-5 7.0e-4 1.9e-3 2.0e-4 5.0e-4 5.0e-4 

 τr (ms) 0.1 0.3 0.07 0.11 0.3 0.5 0.5 

 τd (ms) 9.5 0.6 0.20 0.25 0.6 3.0 3.0 

AACs  GABAA GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) 1.15e-3 x x x x x x 

 τr (ms) 0.28 x x x x x x 

 τd (ms) 8.40 x x x x x x 

BCs  GABAA GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) 2.0e-4 1.2e-4 1.6e-3 2.9e-3 x 1.2e-3 x 

 τr (ms) 0.3 0.29 0.08 0.29 x 0.29 x 

 τd (ms) 6.2 2.67 4.80 2.67 x 2.67 x 

BSCs  GABAA GABAB GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) 5.1e-4 1.1e-4 6.0e-4 9.0e-3 5.1e-4 2.0e-5 8.0e-4 x 

 τrise (ms) 0.11 35 0.29 0.29 0.29 1.0 0.29 x 

 τdecay(ms) 9.70 100 2.67 2.67 2.67 8.0 2.67 x 

OLMs  GABAA GABAB GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) 3.0e-4 3.0e-4 1.2e-4 1.1e-3 1.1e-4 1.2e-3 1.2e-3 x 

 τr (ms) 0.13 35 0.73 0.25 0.6 0.25 0.73 x 

 τd (ms) 11.0 100 10.0 7.50 15 7.50 20.20 x 

VIPCCKs  GABAA GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) 5.2e-4 7.0e-4 x 7.0e-4 x 4.5e-4 x 

 τr (ms) 0.3 0.43 x 0.43 x 0.43 x 

 τd (ms) 4.2 4.49 x 4.49 x 4.49 x 

VIPCRs  GABAA GABAA GABAA GABAA GABAA GABAA GABAA 

 g (nS) x x 9.0e-3 x 7.0e-4 x x 

 τr (ms) x x 0.43 x 1.0 x x 

 τd (ms) x x 4.49 x 8.0 x x 
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Chapter 4  GC dendrites mediate pattern separation via controlling sparsity 

4.1 Preamble 

It is widely hypothesized that hippocampus plays a critical role in pattern separation, the process of 

converting similar incoming information to highly dissimilar, non-overlapping representations. Sparse 

firing granule cells (GCs), which are the principal neurons in the Dentate Gyrus (DG), have been 

proposed to undertake this computation, but which of their specific properties mediate pattern separation 

remains highly elusive. Dendritic atrophy has been reported in diseases associated with pattern separation 

deficits and adult neurogenesis has been shown that affects pattern separation, suggesting a possible role 

for dendrites during this computational task. To examine whether and how the dendrites of GCs 

contribute to pattern separation, we have implemented a simplified, biologically relevant, computational 

model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern 

separation efficiency while their atrophy leads to increased excitability and performance deficits. 

Additionally, these deficits can be rescued by restoring GC sparsity to control levels through various 

manipulations. Thus, we have predicted that dendrites contribute to pattern separation as a mechanism for 

controlling GC sparsity. 

4.2 Materials & Methods 

To investigate this possibility, we implemented a morphologically simple, yet biologically relevant, 

scaled-down spiking neural network model of the DG. The model consists of four types of cells (MCs, 

BCs, HIPP and GCs) modeled as simplified integrate-and-fire neurons. The GC model alone was 

extended to incorporate dendrites. The electrophysiological properties of all cell types were calibrated 

according to a range of experimental data. An advantage of using such a simplified approach lies in the 

small number of parameters that make it possible to characterize their role in the behavior of the model. 
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Despite its simplicity, the model exhibits realistic pattern separation under several conditions and explains 

how inhibition to GCs provided directly from BCs and indirectly via the inhibitory circuitry through MCs 

impact this task, as suggested by a number of recent studies (Myers and Scharfman, 2011; Jinde et al., 

2012), thus, supporting its biological relevance. We use the model to investigate whether and how GC 

dendrites may contribute to pattern separation. Specifically, these neurons are the granule cells, the mossy 

cells, the basket cells and the HIPP cells. The network and its neuronal models and their synaptic 

properties are extensively described in Chapter 3 and its schematic representation is shown in Figure 7. 

Below, we describe the stimulus and the protocol we have used to study pattern separation. 

 

Figure 7. Schematic diagram of DG network and pattern separation task. 
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A. Schematic representation of the implemented DG network model. Different shades of green illustrate the layer division. PP: 

perforant path, GC: granule cells, BC: basket cells, MC: Mossy cells, HIPP: hilar perforant path-associated cells. Perforant path 

afferents curry the input to the network, and project on both the GCs and the HIPP cells. MCs and GCs are connected in a 

recurrent manner. GCs provide the output of the DG network. B. Schematic representation of pattern separation using population-

based approach. When two highly overlapping EC inputs (input patterns 1 and 2, with equal mean firing rates) arrive in DG, the 

corresponding outputs are highly dissimilar. Note that the output pattern is sparse because of the low number of GCs that encode 

any given pattern. C. Schematic representation of pattern separation using rate-based approach. When two highly overlapping EC 

inputs (input patterns 1 and 2, with different mean firing rates but equal input populations) arrive in DG, the corresponding 

outputs are highly dissimilar in their firing rates but also likely to differ in the populations they activate. Rate distances are 

estimated over the set of common neurons (red box). 

4.2.1 Model manipulations 

4.2.1.1 GC dendritic models 

In order to study the effect of dendrites in pattern separation, we have used two different approaches. 

First, we have used two additional GC neuronal models with fewer dendrites. Starting from the control 

model consists of 12 dendrites, we have reduced to half (6-dendrite model) and to quarter (3-dendrites 

model) by removing various number of compartments, respectively. Note that the total path length 

remains the same across models and only the dendritic complexity has been changed. Subsequently, we 

examined the dendritic integration profile for all models (Figure 8A and B). 

The second approach was to perform the opposite experiment and therefore, we have started from a 

model with three, short and thick dendrites. Thereafter, we have added various numbers of compartments 

and hence, the path length as well as the complexity has been increased in order to have the 6- and 12-

dendrite models (Figure 8C). It is important to mention that the 12-dendnrite model is exactly the same as 

the one used before. 
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Figure 8. Measured EPSP - Arithmetic sum of somatic voltage relationship for GCs in the control, pruning and growth 

conditions.  

The y-axis represents the measured somatic EPSP of each neuron in mV, while the x-axis shows the linear summation of somatic 

voltage in mV. The dashed gray line represents the linear summation (   ), while the solid black line the gain (       ) 

according to (Krueppel et al., 2011). A. The 12-dendrite GC control model. The curve is in line with experimental data as shown 

in the inset adopted from (Krueppel et al., 2011). B. Curves for 12-(green), 6-(red) and 3-dendrite (blue) GC models in the 

pruning experiment. C. Curves for 12-(green), 6-(red) and 3-dendrite (blue) GC models in the growth experiment. 

4.2.1.2 Leakage channel density, Somatic dimensions, Synaptic weights 

To study the effect of various parameters on pattern separation, we have chosen to modify the leakage 

channel conductance and the size of the GC soma in order to match the input resistance across the 

different GC models. As a result, we have modified the gleak parameter of the GC model and the soma 

dimensions (length, diameter). Finally, to tune the models by their sparsity level, we have further changed 
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the aforementioned parameters, as well as the synaptic strength from the input afferents to the GC 

dendrites. In the model, this change is translated in a reduction in the corresponding synaptic weights. The 

corresponding input-output curves of the aforementioned models are shown in Figure 9. 

 

Figure 9. Measured EPSP-Arithmetic sum of somatic voltage relationship of GCs after correcting for the Input Resistance. 

The y-axis represents the measured somatic EPSP of each neuron in mV, while x-axis shows the linear summation of somatic 

voltage in mV. The dashed gray line represents the linear summation (   ), while the solid black line the linear summation 

with gain (       ) according to (Krueppel et al., 2011). A. Curves for 12-(green), 6-(red) and 3-dendrite (blue) GC models 

used in the pruning experiment after matching     by modifying the “leak” conductance. B. Curves for 12-(green), 6-(red) and 3-

dendrite (blue) GC models used in the growth experiment after matching     by modifying the “leak” conductance. C. Curves for 

12- (green), 6- (red) and 3-dendrite (blue) GC models used in the pruning experiment after matching     by modifying the soma 

size. D. Curves for 12-(green), 6-(red) and 3-dendrite (blue) GC models used in the growth experiment after matching     by 

modifying the soma size. 
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4.2.2 Pattern separation metrics 

Generally, a network performs pattern separation whenever the distance between two input patterns is 

lower that the distance between the corresponding output patterns. In this project, the input patterns are 

presented as the activity along the 400 PP afferents. Each input pattern has 40 active PP afferents (10% 

input density), an amount of which are common between two patterns; hence the two patterns are 

overlapping. In order to quantify the pattern separation efficiency we used two custom metrics denoted by 

f1 (‘population distance’) and f2 (‘rate distance’), respectively. 

4.2.2.1 Population-distance metric 

The population-distance metric calculates the distance between two patterns based on differences among 

neurons that are active (Figure 7B). Active cell is considered every GC that fires at least one spike during 

stimulus presentation (Myers and Scharfman, 2009), thus the output patterns correspond to the GC 

activity. The population-distance metric is given from the equation below: 

  (   )  
     

 (      )    
 

where the i and o subscripts denote the calculation in the input and output patterns, respectively, HD the 

Hamming Distance between two patterns, defined as the number of neurons found in different states 

(active/inactive) between patterns, s the sparsity (i.e., the ratio of inactive-silent neurons to all neurons), 

and N denotes the number of neurons. The factor of 2 in the denominator is in order to limit the metric 

value to zero. The network is said to perform pattern separation whenever the input distance is lower than 

that in the output, i.e., f1,i < f1,o. Thus far, the metrics used to quantify pattern separation take into account 

only the hamming distance between two patterns. However, as the active number within each pattern is 

different (1-5% GCs active), we disengage the dependency on sparsity by dividing the HD with the 

number of neurons that are active.  
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4.2.2.2 Rate-distance metric 

Whereas the f1 metric quantifies the distance between two binary vectors containing active and non-active 

neurons (‘population distance’), we have defined an additional metric, denoted by f2, which quantifies the 

distance in the firing rates of common neurons that encode two patterns by using their firing rates (‘rate 

distance’). The f2 metric is calculated by dividing, for each neuron that is active in both patterns, its mean 

firing rate given one stimulus (control stimulus, A) by its mean firing rate given a stronger stimulus (B), 

and averaging these ratios across the population of input and output neurons, respectively (Leutgeb et al., 

2004), taken into account only the neurons that are active in both patterns. We subtract this ratio from one 

in order to convert the ‘rate similarity’ into a ‘rate distance’. The corresponding equation is given below: 
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where  Nc denotes the number of common neurons that are active for both inputs (A and B), and r denotes 

the firing rate of jth neuron using input A and B, respectively. Here, B represents the low firing frequency 

input, while A the high frequency input (Figure 7C). We subtract the global minimum firing rate of GCs 

found in all trials in order to normalize the dynamic range of firing rates. For this experiment, the 

population of active EC neurons in each pair of inputs was identical. The network performs pattern 

separation if the input ‘rate distance’ is smaller than the corresponding distance in the output, i.e., f2(input) < 

f2(output). 

4.2.3 Stimulus and Input protocol 

For simplicity, we have implemented the input to the DG coming from EC LII via performant pathway as 

independent Poisson spike trains. The input consists of 400 of those spike trains with mean firing rate of 

40 Hz, which is in line with experimental evidence (Hafting et al). In line with experimental evidence, for 

every given stimulus only a 10% of input neurons are active. To study pattern separation we have 

constructed a variety of different input patterns and the active neurons are uniformly random chosen. 
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First, we have constructed four groups of input pattern pairs, with different degrees of similarity and 

calculated the input and the corresponding output population distances for each group independently. We 

have constructed a variety of input patterns with input density 10% (i.e., 40 active neurons) and 

consequently, four additional input patterns were built with 40 active neurons, 8, 16, 24, and 32 of which 

are common between patterns, respectively, which, in turn, corresponds to f1(input) = 0.4, 0.3, 0.2, and 0.1. 

The reasoning behind this approach is to examine highly overlapping patterns, as well as less similar 

ones. Thus, each trial was composed of two simulations using two input patterns within each group.  

For the rate-based metric, instead of using the four additional patterns with different degrees of similarity, 

we have used the same input patterns with mean firing rate of 40 Hz (input B), and a second set of 

stronger input patterns with mean firing rate of 50 Hz (input A) consists of the same active neurons. 

Specifically, we have built pairs of input patterns with the same active neurons but with different firing 

rate. 

4.2.4 Simulations and Statistical Analysis 

For each trial, the network was simulated for 850 milliseconds (ms). The first 300 ms were simulated in 

order for the network to reach its stable state, so they were excluded from the analysis. The input onset 

was at 300 ms and the stimulus was applied for 500 ms. The last 50 ms were simulated in order for the 

network to reach again its steady state and they were excluded from the analysis as well. The time step for 

all simulations was set to 0.1 ms. We have used 50 trials per pattern separation protocol and then, the 

results were then averaged across all trials. Unless otherwise mention, the error bars are given as the 

standard error of the mean. 

The data analysis and the figures describing the results were made using custom made programs in python 

2.7.10
TM

 (www.python.org) while the statistical analysis was made using the R3.3.1 programming 

language (https://www.r-project.org). We used the two-sided, two-sample Wilcoxon signed-rank test for 

the pattern separation efficiency comparisons and the two-sided, two-sample Kolmogorov–Smirnov test 
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(K–S test) to compare the GC activity probability density functions (Neuhauser, 2011). The model is 

available for download in Model DB (accession number: 206372) at http://dendrites.gr/en/publications-8/ 

software-23. 

4.3 Results 

4.3.1 Understanding the role of inhibition in pattern separation 

The GCs receive inhibition directly, via basket and HIPP cells, and indirectly via the MC to BC 

connection. The first step was to validate our network against experimental evidence, and to match the 

most critical parameter which is the sparsity of GCs activity. Therefore, we tune model parameters in 

order to have 5% of active GCs under control conditions. It is known that inhibition mediates sparsity and 

that the net effect of MCs is in inhibition. Thus, after removal of BCs the model has lost its ability to 

perform pattern separation as an almost 30% of GCs responded strongly to any stimulus. These findings 

are also in line with experimental evidence reporting increased memory interference under conditions of 

reduced BC activity in hippocampus (Engin et al., 2015). 

Since MCs have also been suggested to control the excitability of DG granule cells (Jinde et al., 2013), 

we simulated a complete MC-loss lesion (Figure 10A) as per (Ratzliff et al., 2004). This manipulation led 

to an increase in the proportion of active GCs for all input patterns tested (Figure 10B and D), and a 

decrease in pattern separation efficiency, measured both with the population-based (p < 0.001) and rate-

based metric (p < 0.01) (Figure 10C and E). Importantly, for the population coding experiment, the mean 

GC firing frequency increased from 3.5 to 4.82 Hz, while for the rate-based coding experiment from 3.75 

to 4.94 Hz and from 5.24 to 8.07 Hz for 40 and 50 Hz inputs, respectively. These findings are in line with 

the experimental data of (Ratzliff et al., 2004) where MC-loss did not lead to an over-excitation of GCs. 
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Figure 10. Complete mossy cell removal reduces pattern separation efficiency in the DG network.  

A. Schematic representation of the 12-dendrite DG network with MC loss denoted by the red crosses. B. The corresponding 

probability density functions of GC activity in response to 40 Hz input for the control (dark green) and MC-loss conditions (light 

green). The mean activity percentage is 5 and 9% for the control and MC-loss networks, respectively. C. Input/output population 

distances (f1) for the control (dark green) and MC-loss (light green) networks estimated using input patterns with increasing 

similarity. The dashed line denotes the limit above which the model performs pattern separation. MC removal decreases pattern 

separation efficiency for all input patterns tested. D. Probability density functions of GC activity using control and MC-loss 

models presented with two input patterns that differ only in their firing rates. Shades of green represent the high frequency input 

(50 Hz), while shades of brown represent the low frequency input (40 Hz). Dark and light shades represent the control and MC-

loss condition, respectively. E. Input/output rate distances (f2) for the control (dark green) and MC-loss (light green) networks 

estimated using two input patterns with different firing frequencies, 40 and 50 Hz, respectively. MC deletion slightly reduces the 

efficiency of pattern separation. 
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Taken together, the proposed DG network model exhibits single-neuron response properties that are in 

line with experimental data, implements a connectivity profile that relies on experimental observations, 

exhibits robust pattern separation, and finally, replicates experimental data about the role of BCs and MCs 

in the examined computational task. The aforementioned features support the biological plausibility of the 

network which is next used to investigate the role of GC dendrites to pattern separation. 

4.3.2 Dendrites of granule cells and pattern separation 

4.3.2.1 Dendritic pruning 

The crucial question in this project is whether and how dendrites may affect the pattern separation. To 

address this question we have started by studying whether the number of dendrites correlates with pattern 

separation performance as we prune the GC (sister) branches from 12 (control) to six and three (Figure 

11A). Thus, we have used three different GC models as described in Chapter 3. To assess the effect of 

dendritic number, we kept all other parameters (such as the path length, the dendritic diameter in the IML, 

MML, and OML layers, membrane capacitance, “leak” conductance, number of activated synapses, and 

input firing rates) of the two additional GC models identical to those of the control. While the absolute 

number of activated synapses remained the same (both excitatory and inhibitory), their spatial distribution 

on terminal dendrites (afferents from EC and HIPP cells) was different in the three GC models. 

Interestingly, pattern separation of pairs of inputs with increasing similarity (measured either by 

population distances, Figure 11C, or by rate distances, Figure 11E) was successfully performed in the 

control as well as both pruned models for all pairs of inputs tested. Nonetheless, the efficiency of pattern 

separation correlated with the number of dendrites in GCs (Figure 11C and E), with the 12-dendrite GC 

model achieving the best performance for both population (p < 0.001) and rate based (p < 0.001) coding 

schemes. 
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Figure 11. Effect of GC dendrite pruning on pattern separation. 

A. A schematic drawing of the three GC models with three, six and 12 dendrites. B. Corresponding probability density functions 

of GC activity for the three GC models in response to a single input pattern at 40 Hz. The mean activity is inversely analogous to 

the number/length of dendrites: as dendrites pruned, the GC population becomes less sparse, i.e., more GCs are active. C. 

Input/output population distances (f1), for the 12-dendrite (green), 6-dendrite (red), and 3-dendrite (red) GC models in response to 

the presentation of two overlapping input patterns at 40 Hz, with different degrees of overlap, as depicted in Figure 7B. The 

dashed line denotes the limit above which the model performs pattern separation. Performance drops with the pruning of 

dendrites. D. Probability density functions of GC activity for the three GC models in response to presentation of two input patters 

with different firing rates (low rate 40 Hz, high rate 50 Hz), as depicted in Figure 7C. GC activity decreases with the number of 

dendrites and increases with the input firing rate. E. Input/output rate distances (i.e., f2) for the three models. The number of GC 

dendrites is analogous to the pattern separation performance. 

These findings are better understood by looking at the sparsity levels exhibited by the three GC network 

models. As shown in Figure 11B, the percentage of active GCs for the population-based experiment 

increased substantially when the number of dendrites was reduced. It rose from ~5%, to ~10 and ~20%, 

for GC model cells with 12, 6 and 3 dendrites, respectively. These differences in activity distributions 
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were statistically significant (p < 0.001). The same differences are found using the rate code approach. 

Input patterns with high firing rates induced lower sparsity levels in the 12-dendrite GC model, followed 

by the 6- dendrite model and then the 3-dendrite model (p < 0.001). These data suggest that high levels of 

sparsity (namely low levels of GC activity) and thus, pattern separation efficiency in the network model 

are a direct consequence of having multiple and more complex dendrites and therefore, propose that 

dendrites may contribute to pattern separation in a positive manner through their mediation of sparsity; as 

the number of dendrites is reduced the pattern separation efficiency significantly drops. 

4.3.2.2 Dendritic growth 

To further test whether the presence of dendrites helps pattern separation by increasing sparsity, we also 

simulated the opposite process, namely the dendritic dendrites. We have built two additional GC models 

containing three, six and 12 dendrites with shapes that roughly mimic the stages of dendritic growth 

(Figure 12A): starting with a GC model consisting of three short and thick dendritic compartments and 

adding a branch point with two thinner sister branches at each terminal dendrite we end up with a 12- 

dendrite model which is identical with our control one. Notably, the number, length, and mean diameter 

of dendrites differ between the three models during this experiment. 
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Figure 12. Effect of GC dendrite growth on pattern separation. 

A. A schematic drawing of the three GC models with three, six and 12 dendrites. B. Corresponding probability density functions 

of GC activity for the three GC models in response to a single input pattern at 40 Hz. The mean activity is inversely analogous to 

the number/length of dendrites: as dendrites grow, the GC population becomes sparser, i.e., fewer GCs are active. C. Input/output 

population distances (f1), for the 3-dendrite (blue), 6-dendrite (red), and 12-dendrite (green) GC models in response to the 

presentation of two overlapping input patterns at 40 Hz, with different degrees of overlap, as depicted in Figure 7B. The dashed 

line denotes the limit above which the model performs pattern separation. Performance improves with the growth of dendrites. D. 

Probability density functions of GC activity for the three GC models in response to presentation of two input patters with 

different firing rates (low rate  40 Hz, high rate 50 Hz), as depicted in Figure 7C. GC activity decreases with the number of 

dendrites and increases with the input firing rate. E. Input/output rate distances (i.e., f2) for the three models. The number of GC 

dendrites is again analogs to the pattern separation performance. 

In line with the findings of the pruning experiment, the percentage of active GCs declined as the number 

of dendrites increased (Figure 12B and D). The average GC activity for the population-coding experiment 

started at ~70% when 3-dendrite model used, dropped to ~28% for the network with 6-dendrite GC model 

and to ~5% for the 12-dendrite GC model. Similar differences in GC sparsity were seen in the rate-based 
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experiment (Fig. 5D). In both cases, the 3-dendrite model exhibited much higher activity levels than the 

ones seen in the pruning experiment (Figure 11B and D), primarily because of additional alterations in 

dendritic length and diameter. Moreover, pattern separation measured by the population metric was 

completely impaired in the 3-dendrite model (Figure 12C, blue line falls below the diagonal) while 

performance based on rate coding remained above the limit (Figure 12E, blue bar). Pattern separation was 

successfully performed in the 6-dendrite model albeit with lower efficiency compared to the 12-dendrite 

model, as evaluated both with the population and rate coding schemes. Yet again, the network containing 

the 12-dendrite model performs better comparing with 6- and 3-dendnrite models (p < 0.001). Taken 

together, the “pruning” and “growth” simulations suggest a strong link between pattern separation 

efficiency and GC population sparsity (Deng et al., 2010; Aimone et al., 2011) and predict that dendrites 

may serve as a mechanism for increasing the sparsity of the GC population (reducing number of active 

GCs) which in turn enhances pattern separation. 

4.3.3 Controlling sparsity with non-dendritic mechanisms 

The above simulations predict that dendrites can be sufficient for mediating sparsity, which in turn 

enhances pattern separation. We next ask whether they are necessary for this task, as it is possible that a 

GC neuron can counteract the decrease in sparsity induced by having fewer and/or shorter dendrites 

through alternative mechanisms. First, we evaluated the effect of input resistance differences among the 

various GC models on sparsity and pattern separation efficiency. A possible explanation of the above 

findings is that a GC model with a small dendritic tree has increased input resistance which in turn leads 

to higher excitability and thus, to decreased sparsity. We thus corrected the input resistance in the 6- and 

3-dendrite models to match the one in the 12-dendrite model (at the soma) by modifying (a) the “leak” 

channel conductance (gleak) or (b) the size of the somatic compartments (see Chapter 3). 
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Figure 13. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation when the input resistance 

(Rin) is the same across models.  

To match Rin, the leak conductance (gleak) was increased by a factor of 1.695 and 1.230, in the 3- and 6-dendrite models, 

respectively. A. Corresponding probability density functions of GC activity for the three GC models in response to a single input 

pattern at 40 Hz. B. Input/output population distances (f1), for the 3-dendrite (blue), 6-dendrite (red), and 12-dendrite (green) GC 

models in response to the presentation of two overlapping input patterns at 40 Hz as depicted in Figure 7B. The dashed line 

denotes the limit above which the model performs pattern separation. Performance improves with the number of dendrites. C. 

The same as in A for the growth experiment. While distributions move closer to one another, the inverse relationship between 

dendritic number and mean sparsity is preserved. D. Same as in B for the growth experiment. Pattern separation efficiency still 
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correlates with the number of dendrites. Figure 14 depicts the corresponding pattern separation efficiency based on ‘rate 

distance’. 

Specifically, for the pruning models, gleak increased by 1.230 and 1.635 times for the 6- and 3-dendrite 

models while for the growth models, these numbers were 1.596 and 2.438, respectively. Figure 13 shows 

the outcome of this correction for both pruning (Figure 13A and B) and growth (Figure 13C and D) cases. 

As evident from the figure, correcting the input resistance by increasing the “leak” conductance in the 

pruning case, reduced but did not eliminate differences in sparsity (Figure 13A). Similar findings were 

seen in the growth case; both for the sparsity (Figure 13C) and pattern separation efficiency (Figure 13D) 

(p < 0.001). Both sparsity and pattern separation efficiency were highest in the 12-dendrite, followed by 

the 6-dendrite and the 3-dendrite models. The same was seen when using the rate-based distance metric to 

evaluate sparsity and pattern separation (Figure 14). In all cases, differences were more pronounced in the 

growth compared to the pruning case, in line with the findings of Figure 11 and Figure 12. 
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Figure 14. Effect of GC dendritic pruning and growth after matching (modification) on pattern separation estimated using the 

‘rate distance’. 

A. Probability density functions of GC activity for the three GC models (pruning experiment) in response to presentation of two 

input patterns with different firing rates (low rate 40 Hz, high rate 50 Hz), as depicted in Figure 7C. GC activity increases with 

the number of dendrites and the input firing rate. B. Input / Output rate distances (i.e., f2) for the three models. The number of GC 

dendrites is again analogous to the pattern separation efficiency. C. Probability density functions of GC activity for the three GC 

models (growth experiment) in response to presentation of two input patterns with different firing rates (low rate = 40 Hz, high 

rate = 50 Hz), as depicted in Figure 7C. GC activity decreases with the number of dendrites and the input firing rate. D. Input / 

Output rate distances (i.e., f2) for the three models. Pattern separation efficiency is significantly worst only for the 3-dendrite 

model. 
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Similar results were obtained when correcting the input resistance by increasing the dimensions of the 

somatic compartment. For the pruning models, the soma increased by a factor of 1.278 and 1.527 in the 6- 

and 3-dendrite models, respectively while for the growth models, these factors were 1.513 and 1.746, 

respectively. As shown in Figure 15 (A, B), for the pruning case, differences in sparsity and pattern 

separation efficiency among corrected models decreased significantly but were not eliminated. Similar 

findings were seen in the growth case Figure 15 (C, D), both for the sparsity and pattern separation 

efficiency (p < 0.001). Both sparsity and pattern separation efficiency remained highest in the 12-

dendrite, followed by the 6-dendrite and the 3-dendrite models.  
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Figure 15. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation when matching the input 

resistance (Rin) via increasing the somatic size.  

The neuronal soma of the 3- and 6-dendrite models was increased by a factor of 1.527 and 1.278, respectively. A. Corresponding 

probability density functions in response to a single input pattern at 40 Hz. B. Input/output population distances (f1), for the 3-

dendrite (blue), 6-dendrite (red), and 12- dendrite (green) GC models in response to the presentation of two overlapping input 

patterns at 40 Hz as depicted in Figure 7B. The dashed line denotes the limit above which the model performs pattern separation. 

Performance becomes similar yet statistically different among the three corrected models and remains analogous to the number of 

dendrites. C. Same as in A, for the growth experiment. The inverse relationship between dendritic number and mean sparsity is 
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preserved. D. Same as in B, for the growth experiment. Pattern separation efficiency remains different and analogs to the number 

of dendrites. 

Similar findings were obtained when using the rate-based distance metric to assess pattern separation 

(Figure 16). Note that correcting the input resistance via increasing the somatic compartment is more 

effective than increasing the leak conductance, as both Cm and gleak increase proportionally, keeping the 

membrane time constant identical across model cells. 
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Figure 16. Effect of GC dendritic pruning and growth after matching (soma size modification) on pattern separation estimated 

using the ‘rate distance’. 

A. Probability density functions of GC sparsity for the three GC models (pruning experiment) in response to presentation of two 

input patterns with different firing rates (low rate 40 Hz, high rate 50 Hz), as depicted in Figure 7C. GC activity increases with 

the number of dendrites and the input firing rate. B. Input / Output rate distances (i.e., f2) for the three models. The number of GC 

dendrites is again analogous to the pattern separation performance. C. Probability density functions of GC activity for the three 

GC models (growth experiment) in response to presentation of two input patterns with different firing rates (low rate = 40 Hz, 

high rate = 50 Hz), as depicted in Figure 7C. D. Input / Output rate distances (i.e., f2) for the three models. Here, the 6- and 12-

dendrite GC models have approximately the same output ‘rate distance’; however the 3-dendrite model performs worst. 
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Overall, these simulations suggest that while the input resistance is a key determinant of GC neuron 

activity, it does not fully explain the differences in sparsity and pattern separation efficiency among 

models with three, six or 12 GC dendrites. 

4.3.4 Sparsity is the key determinant of pattern separation 

The question that arises naturally from the above findings is whether further manipulations of the leak 

conductance and/or somatic dimensions could match sparsity across all models. Moreover, would 

matching sparsity result in identical pattern separation efficiency, thus making sparsity the key 

determinant of pattern separation (O’Reilly and McClelland, 1994; Johnston et al., 2015)? To answer 

these questions we explored the effects of manipulating intrinsic (gleak and somatic dimensions) as well as 

extrinsic (synaptic weight) mechanisms in the 3-, 6-, and 12-dendrite GC models. Due to the consistent 

nature of the previous results, the remaining simulations were performed using the pruning experiment 

configuration to generate the 3- and 6-dendrite GC models and the population-based metric to assess 

pattern separation. As shown in Figure 17Ai, increasing gleak by a factor of 1.58 and 2.48, in the 6- and 3-

dendrite GC models respectively, eliminated the differences in sparsity distributions compared to the 

control (p>0.1). The same was observed with respect to pattern separation efficiency (Figure 17Aii). All 

three models exhibited identical performance across all difficulty levels (p>0.1). Similarly, increasing the 

diameter and length of the somatic compartment in the 6- and 3-dendrite models by 1.480 and 1.870, 

respectively (Figure 17Bi) resulted in similar sparsity (p>0.1). Similarly, pattern separation efficiency was 

identical across all models and difficulty levels (Figure 17Bii) (p>0.1). It should be noted that the 

abovementioned sizes are not realistic for the soma of a GC neuron. Nevertheless, these findings highlight 

the key role of sparsity in controlling pattern separation efficiency, irrespectively of the number of GC 

dendrites. Moreover, these simulations predict that intrinsic mechanisms of GC neurons could potentially 

be used to correct for morphological alterations in order to control sparsity levels. 
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Figure 17. Effect of matching sparsity on pattern separation efficiency. 

A. The “leak” conductance, gleak, of the 6- and 3- dendrite GC models increases by a factor of 1.58 and 2.48, respectively. Left 

panel: Resulting GC activity distributions are not statistically different. Right panel: Networks with corrected GC models have 

identical performance. Differences in pattern separation using the population metric are not statistically significant. B. Left panel: 

GC activity distributions are matched by increasing the soma diameter and length of the 6- and 3-dendrite GC models by 1.48 

and 1.87, respectively. Right panel: The network with corrected 3-dendrite GC models has a slightly smaller pattern separation 

efficiency compared to the other two probably because its activity distribution is wider. Generally the three models have very 

similar pattern separation performance. C. Left panel: GC activity distributions are matched decreasing the EC to GC synaptic 

weight from 1.00, to 0.75 and 0.56 in the 6-, and 3- dendrite models, respectively. Right panel: Pattern separation efficiency is 

statistically the same across all corrected GC models. 
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In sum, these simulations predict that sparsity is the key determinant of pattern separation efficiency. 

Sparsity of the GC neuronal population can be controlled via multiple mechanisms, including the growth 

of dendrites. Pruning of dendrites can be compensated by the growth of very large somata, a large 

increase in the leak channel conductance or a significant decrease in the strength of the EC input via 

synaptic weight changes (Figure 17C). 

4.4 Discussion 

4.4.1 What we have learnt from the model? 

The goal of this study was to reveal whether and how dendrites of dentate principal cells can intervene in 

pattern separation via using a computational network. Towards this goal, we implemented a novel 

network model of the DG consisting of the four major neuronal types found in this subregion, namely 

Granule Cells, Mossy Cells, Basket Cells, and HIPP cells. GCs were modeled as two stage integrators by 

adding dendritic branches whose properties are loosely constrained by experimental data, both 

electrophysiological and anatomical ones. The rest of the neuronal types were simulated as exponential 

leaky integrate-and-fire neurons with adaptation. The proposed hybrid model of GC serves as a bridge 

between simplified point neuron models (Myers and Scharfman, 2009) and more detailed biophysical 

models (Santhakumar et al., 2005) of the DG. As such, it provides a biologically relevant and 

computationally efficient tool for the in depth exploration of different factors that possible have an 

important role during pattern separation task. The selective use of dendritic compartments only in GCs 

keeps the model complexity low while at the same time allowing the dissection of some basic GC 

dendritic mechanisms in pattern separation. To our knowledge this is the first DG network model of its 

kind. 

Inhibition is known to control neuronal activity by increasing sparsity, as the number of active neurons is 

decreased for a given stimulus (Jung and McNaughton, 1993) therefore, enhancing pattern separation 
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(Aimone et al., 2011). In the presented model, inhibition is provided to the network both directly via BCs 

(somatic inhibition) and HIPP cells (dendritic inhibition) and indirectly through the MC circuitry. We find 

that MC loss, while increasing GC cell activity in line with the experimental data of (Ratzliff et al., 2002), 

does not lead to hyper-excitability yet we do predict a measurable and statistically significant drop on 

pattern separation efficiency. 

To the extent of our knowledge, our model is the first to highlight a role of GC dendrites in pattern 

separation. This role is an indirect one and consequents from the inherent increase in sparsity of the GCs 

that is endowed by the presence of dendrites. Specifically, we show that the number of GC dendrites 

correlates positively with pattern separation efficiency due to the higher sparsity levels provided by 

having multiple and more complex dendrites. In our control model, higher sparsity arises from the 

requirement of having at least two dendrites simultaneously active in order to fire a GC model neuron. 

This emerged from the calibration of GC properties against experimental data, thus is considered 

biologically relevant. Consequently, GCs with large numbers of dendrites have a lower probability of 

activation given a fixed number of afferents, therefore increased network sparsity. We also predict that 

under conditions of dendritic pruning and/or early in the growth stages of GCs, high sparsity can be 

achieved with alternative mechanisms, both intrinsic (e.g., leak conductance, somatic dimensions) and 

extrinsic (e.g., synaptic weights) making dendrites a sufficient but not necessary condition for high 

pattern separation efficiency. These results support the hypothesis that sparsity in GC activity improves 

pattern separation (O’Reilly and McClelland, 1994) and provide a list of alternative mechanisms for 

controlling sparsity in the DG. It is likely that there exist other mechanisms that mediate and control 

sparsity, such as specific membrane channels and the geometry of the dendritic tree. However, the 

modifications of these mechanisms could not been explored by using the presented simplified 

computational network. 
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4.4.2 Implications to pathology 

As part of the hippocampus, the DG is long hypothesized to play a key role in associative memories, and 

especially when those are related with events (Morris, 2006). Moreover, the hippocampal DG has been 

implicated as the subregion most sensitive to the effects of ageing (Small et al., 2004). While the CA1 

subregion is directly associated with Alzheimer’s Disease (AD) due to cell loss of pyramidal neurons, as 

demonstrated in humans (West et al., 2006), DG alterations have also been reported in patients with this 

disease (Scheff and Price, 2003), including changes in granular dendrites (Einstein et al., 1994). 

Specifically, the dendrites of GCs in AD patients appear shorter, with fewer branches and fewer spines 

than those of matched controls. Moreover, in AD patients the dendrites of GCs were reported to lose 

approximately 50% of their spines (Einstein et al., 1994). Our simulations show that the most important 

of the above-listed observations with respect to pattern separation would be the shortening of dendritic 

branches via the loss of branch points rather than the loss of side branches while maintaining the same 

dendritic path length. Total dendritic length of GCs was previously linked to AD, which in turn is aligned 

with the indication that patients with AD, who have extensive hippocampal and parahippocampal 

damage, lost their ability to encode information in distinct, orthogonal representations (Ally et al., 2013). 

The DG is also associated with epileptogenesis in temporal lobe epilepsy (TLE) and hence, many 

computational models are used to investigate the effect of GC alterations in epilepsy (Tejada and Roque, 

2014; Faghihi and Moustafa, 2015). Additionally, hilar cell loss has been reported in animal models after 

concussive head injury and also under TLE (Mathern et al., 1995). It remains unknown however, which 

specific hilar neurons are missing in animal models of TLE. As a result, there are currently three theories 

for TLE: i) the “dormant basket cell” hypothesis according to which the hyper-excitability in GC 

population is due to the loss of MCs which normally excite BCs providing with inhibition the GCs, ii) the 

“irritable mossy cell” hypothesis according to which surviving MCs hyper-excite GCs by sending 

uncontrolled excitation to granular proximal dendrites, and iii) the “MC loss-induced” sprouting 

hypothesis (mossy fiber sprouting) (Ratzliff et al., 2002). We showed that when MCs are completely 



72 

 

removed from the network, GCs exhibit increased activity (but not hyper-excitability) which should lead 

to pattern separation discrepancies. While our results are in agreement with the findings of (Ratzliff et al., 

2002), more experiments need to be done to revolve this debatable issue. 

4.4.3 Simplifications and future directions 

Several simplifications were made in modeling the individual cells as well as in designing and building 

the DG network. First, we used simple point neurons in order to simulate the neuronal cells of DG. While 

these models could capture the average spiking properties of a given neuron, it remains vague how the 

geometrical characteristics of those neurons could affect their behavior. Another simplification concerns 

the effects of synaptic failure rates and receptor desensitization (Harney and Jones, 2002) in the DG, 

which were not included in the model. 

An important aspect of DG function is the long-term synaptic plasticity, by which the connections from 

PP to GCs are adjusted. Previous DG models used a form of Hebbian learning that incorporates features 

of long-term potentiation and depression (Rolls, 2007). However, such a function is most likely to be 

relevant when stimuli are presented repetitively. Conversely, the current model is used to distinguish 

patterns presented in single instances and hence, plasticity is not presented in this model. Future work 

may address such issues along with including other types of interneurons such as the Molecular layer 

Perforant Path-associated (MOPP) and the Hilar Commissural-Associational pathway related (HICAP) 

cells, especially when more data on their intrinsic and connectivity properties become available. 

Furthermore, GCs are among few cells that undergo adult neurogenesis (Eriksson, 2003; Aimone et al., 

2010). In a recent study by (Nakashiba et al., 2012), the role of young GCs in pattern separation was 

investigated and it was concluded that new neurons are required for distinguishing similar incoming 

information. Since the presented model is used to study specific alterations of GCs and their effect on 

pattern separation, neurogenesis is not combined but would be taken into account in the future. Overall, 
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the aforementioned simplifications are unlikely to have a major effect on the basic conclusions about the 

contribution of morphological alterations of GC dendrites to pattern separation. 

Chapter 5  Role of mossy cells in pattern separation 

5.1 Preamble 

Mossy cells in the hilus of the dentate gyrus constitute a major excitatory principal cell type in the 

mammalian hippocampus; however, it remains unknown how these cells behave in vivo and which is 

their role in specific memory processes. In this collaborative project the goal was to examine mossy cells 

in vivo, and to explain their contribution in context discrimination using a computational model. The 

project was done in collaboration with Losonczy lab (http://www.losonczylab.org/). Specifically, two-

photon Ca
2+

 imaging has been used to monitor the activity of mossy cells in awake, behaving mice. We 

have found that mossy cells are significantly more active than dentate GCs in vivo, exhibit spatial tuning 

during head-fixed spatial navigation, and undergo robust remapping of their spatial representations in 

response to contextual manipulations. Our results provide a functional characterization of mossy cells in 

the behaving animal and demonstrate their active participation in spatial coding and contextual 

discrimination. 

5.2 Materials & Methods 

5.2.1 Overview of the experiments 

The first part of this project was held in Losonczy lab, under supervision of Dr. Attila Losonczy. Here we 

describe briefly the experimental procedures with retrogradely-labeled MCs. Two-photon (2p) Ca
2+

 

imaging has recently become available for optical recordings of the DG in vivo, comprising its 

http://www.losonczylab.org/
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polymorphic layer (i.e., the hilus), during head-fixed behavioral experiments in mice (Danielson et al., 

2016a).  

We first sought to selectively label MCs with the genetically encoded Ca
2+

 indicator GCaMP6f by taking 

advantage of two characteristic anatomical features: MCs are immunoreactive for glutamate receptor type 

2 or 3 (GluR2/3) (Ratzliff et al., 2004); and MCs comprise the predominant hilar cell population 

projecting to the contralateral DG (Frotscher et al., 1991; Ribak et al., 1985) (Figure 18). Therefore, we 

used a retrograde variant of recombinant adeno-associated virus (rAAV2-retro) (Tervo et al., 2016) 

expressing Cre-recombinase injected into the contralateral DG, in combination with a Cre-dependent 

rAAV expressing GCaMP6f injected ipsilaterally into the hilar imaging site, to label contralaterally 

projecting hilar neurons (Figure 18 A and B). This strategy labeled hilar but not CA3 neurons (Figure 

18B), and in agreement with previous reports (Ratzliff et al., 2004), the vast majority of retrogradely 

labeled hilar neurons were immunopositive for GluR2/3; we therefore identified these cells as GluR2/3+, 

contralaterally projecting MCs (identified MCs – iMCs) (Figure 18B). 
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Figure 18. Imaging of identified Mossy Cells.  

A. Viral labeling of mossy cells. B. Top: confocal image of a horizontal section through the hilus of the dorsal DG. GCaMP6f-

expressing and GluR2/3-expressing cells are labeled green and magenta, respectively. The area indicated is shown at high 

resolution at right. Bottom left: low-magnification image through the hilus shows the lack of CA3 pyramidal cell labeling. 

Bottom right: nearly all GCaMP6f+ cells were also GluR2/3+, and approximately half of MCs were labeled with GCaMP6f. C. 

Experimental timeline. D. Schematic of the experimental apparatus. Head-fixed mice explored multisensory contexts comprised 

of the treadmill belt and other sensory stimuli (light, odor, sound). E. Max Z-projection image of a volume acquired in vivo of 

three GCaMP6f-expressing MCs. Example regions of interest in red. F. ΔF/F traces of three simultaneously recorded MCs. 

Significant transients in red (p < 0.05). The mouse’s position on the treadmill is indicated below. 

Following viral injection, mice were implanted with a chronic imaging window above the dorsal DG to 

provide the optical access necessary for visualizing the hilus (Figure 18C). To record Ca
2+

 activity from 

iMCs, we performed head-fixed 2p imaging as the animals (n = 6) performed a random foraging task by 

running for water reward on a treadmill across three sessions in different linear environments (Figure 

18D–F) (Danielson et al., 2016a, 2016b). In total, we recorded from 57 iMCs in 6 animals. Signals were 
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extracted from the resulting binary masks, and significant Ca
2+

 transients were identified as in (Danielson 

et al, 2017). 

5.2.2 Modification of the DG network (no dendrites) 

Here we have modified the DG network (Chavlis et al., 2017) in order to make it simpler. Thus, we have 

replaced the hybrid GC model with a simple, point neuron with adaptation. The rest DG network is the 

same as the one presented before. For the purpose of the presented project, we have used the population-

base coding scheme and hence, we have used the corresponding f1 distance metric. For simplicity, two 

input patterns have been used with a medium overlap between them. Specifically, two patterns with 

distance equals to 0.20 have been built. Yet again, the results have been averaged across 100 trials. We 

used non-parametric Mann-Whitney U test for the pattern separation efficiency comparisons and the two-

sided, two-sample Kolmogorov–Smirnov test (K–S test) to compare the GC activity probability density 

functions (Neuhäuser, 2011). The model is available for download from Model DB (accession number: 

206397) and from Poirazi lab web page: http://dendrites.gr/. 

5.3 Results 

5.3.1 Activity of mossy cells in vivo 

We first quantified the activity of iMCs during head-fixed navigation by measuring the rate of area under 

significant Ca
2+

 transients (AUC rate, Figure 19). In each session, nearly every cell fired at least one 

transient (and most fired many more), resulting in a high non-silent fraction (Figure 19B) across both 

recordings and behavioral states (running and non-running). Within this active population, the frequency 

of transients across all frames was 1.6 ± 1.2 transients/min, (mean ± std, n = 57 cells) and of large 

amplitude (79% ± 46% ΔF/F, mean ± std, n = 57 cells), resulting in a high AUC
1
 rate within the non-

silent population (Figure 19C). This finding was in stark contrast to the activity levels we previously 

                                                      
1
 AUC: area under the curve. Quantification of Ca

2+
 in a cell, which is extracted from a transient. 

http://dendrites.gr/
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reported for GCs in our recent study (identical behavioral paradigm, Danielson et al., 2016a), and we 

therefore directly compared the activity of iMCs and GCs (pooling our adult-born and mature recordings). 

GCs fired transients at a very low frequency (0.08 ± 0.14 transients/min, mean ± std, n = 8,396 cells), and 

iMCs were thus considerably more active than GCs (Figure 19B and C). 

 

Figure 19. Activity of Mossy and Granule Cells.  

A. Schematic of GC and MC activity. Only a small fraction of GCs are active (red shading) relative to MCs, and active MCs 

exhibit a significantly higher rate of Ca2+ activity than active GCs. Ca2+ traces from three example active GCs (right) and three 

example MCs (top). Significant Ca2+ transients (p < 0.05) are red. Β. Activity was assessed by the rate of area under significant 

transients. The fraction of cells exhibiting non-zero activity is shown. Each circle represents a single recording session (with a 

minimum of three recorded cells) and is colored by the frames included in the analysis (non-running, running, and all frames). 

iMCs were significantly more active than GCs. pMCs were not included in this analysis. C. The activity of non-silent cells within 

each condition (non-running, running, all) is shown. Non-silent iMCs were significantly more active than non-silent GCs. 

Similarly, the activity of pMCs was significantly higher than GCs. 

Because our GC and iMC recordings were acquired in different animals, we attempted to control for any 

possible differences between preparations by retrospectively analyzing our previous DG imaging dataset 

(Danielson et al., 2016a) to look for the presence of putative MCs (pMCs) in those recordings. The high 

spatial resolution of 2p imaging allows for the unambiguous separation of GCs from other cells lying in 



78 

 

hilus based on their location and distinct morphology. In our previous imaging study, GCaMP6f imaging 

was performed with broad labeling of all neuron types in the DG. In four of our fields of views (n = 4 

animals), we could identify large, multipolar cells in the hilus, which were excluded from the original GC 

imaging dataset. In a subset of these hilar cells (n = 11 out of 20), we were able to detect large-amplitude 

transients with fast onset and exponential decay similar to the pattern observed in iMCs (Figure 19A, 

bottom). When we compared the activity rates between these simultaneously recorded hilar pMCs and 

non-silent GCs, we again found a highly significant difference in activity between these populations 

(Figure 19B and C). 

5.3.2 Spatial tuning profiles of mossy cells 

Because principal cells throughout the hippocampus are known to exhibit spatially selective, ‘‘place cell’’ 

firing (Hartley et al., 2014), we next sought to determine whether this feature extends to MCs. Thus, for 

each MC we calculated a spatial firing rate map and identified those cells whose distribution of Ca
2+

 

transients contained statistically significant spatial information (Skaggs et al., 1993) (Figure 20A). In 

contrast to the very low place cell fraction among GCs (1.4% ± 1.0%, mean ± std, n = 32 recording 

sessions), we found a significant spatial coding population among MCs: 16% ± 20% (mean ± std, n = 18 

recording sessions, Figure 20B) of our iMCs were classified as spatially tuned. Previous extracellular 

electrophysiological recordings suggested that GCs (Leutgeb et al., 2007), perhaps with preference 

toward adult-born GCs located closer to the hilus border (Neunuebel and Knierim, 2012), exhibit multiple 

firing fields. While the sparse activity in our imaging dataset precluded precise quantification of the 

number of place fields, we attempt ted to address this question by comparing the tuning specificity 

(Danielson et al., 2016a, 2016b) between the subpopulations of spatially tuned GCs and combined MCs 

(cMCs), in which the spatially tuned iMCs and pMCs were pooled to increase the statistical power. 

Finding both significant spatial information and low tuning specificity would indicate the presence of 

multiple firing fields. We found that the tuning specificity for spatially tuned cMCs was significantly 
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lower than for spatially tuned GCs (Figure 20C). These results indicate that although MCs are more likely 

to unveil spatially tuned firing than GCs, MCs exhibit more distributed spatial firing patterns than GCs. 

 

Figure 20. Tuning profiles of Mossy and Granule Cells during a discrimination experiment.  

Α. Spatial tuning plots for three example GCs and MCs identified as spatially tuned. Each running-related transient is represented 

as a vector (direction, position at onset; magnitude, inverse of occupancy), and the complex sum of these vectors forms the tuning 

vector (black). B. The fraction of cells identified as spatially tuned (  4 Ca2+ transients, spatial information p < 0.05) within GC 

and iMC recording sessions. A higher fraction of MCs were spatially tuned than of GCs across recording sessions. C. Among 

cells identified as spatially tuned, cMCs exhibited a significantly lower tuning specificity than GCs. D. Top: experimental 

schematic. Mice ran on a treadmill for randomly administered water reward during three 12 min sessions in multisensory 

contexts A and B. Contexts differed in auditory, visual, olfactory, and tactile cues, and sessions were separated by 60–90 min. 

Bottom: spatial tuning curves are shown for an example GC and MC. E. The 1D correlation in spatial rate maps for GCs and 

cMCs were correlated in the A-B and B-B conditions. For a cell to be included, it was required to be active and spatially tuned in 

at least one of the two sessions being compared. Both populations exhibited a higher correlation in B-B than A-B. F. To calculate 
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the Δstability, we examined the subset of cells satisfying the inclusion criterion for both conditions. The Δstability was significantly 

higher for cMCs than GCs. 

5.3.3 Mossy cells robustly discriminate contexts 

GCs in the hippocampus are thought to implement a pattern separation computation by remapping their 

firing fields in response to a contextual manipulation (Leutgeb et al., 2007; Knierim and Neunuebel, 

2016). We asked whether this feature is unique to GCs or whether we could find evidence for pattern 

separation within MC population as well. Towards this goal, we compared the similarity of single cell 

spatial tuning profiles between two sequential exposures to either different (A-B, sessions 1 and 2) or 

identical (B-B, sessions 2 and 3) multisensory contexts (Figure 20D). To quantify remapping in each of 

the two conditions (A-B and B-B), we required that cells were spatially tuned in at least one of the two 

sessions being compared. This was the same paradigm used in Danielson et al. (2016a), and therefore we 

could directly compare the remapping of cMCs with that of GCs. For both cMCs and GCs, we found that 

place maps were more stable in the B-B than in the A-B conditions, as was indicated by the tuning curve 

correlation (Figure 20E). By considering the subset of cells incorporated in both comparisons, we 

calculated Δstability as the difference in stability between the B-B and A-B conditions (Figure 20F) and 

consequently, we found that cMCs had a significantly higher Δstability than GCs. These data suggest that 

MCs have the ability to robustly discriminate contexts and additionally this is accomplished based on 

their spatial tuning profiles. 

The efficiency of pattern separation is thought to depend on the sparsity of the GC representation (Treves 

and Rolls, 1994; Alme et al., 2010; Chavlis and Poirazi, 2017; Chavlis et al., 2017). To investigate 

whether and how MCs might affect sparsity, and thus pattern separation efficiency of GCs, we 

implemented a simple, yet biologically relevant, computational network model of the DG (Figure 21A) as 

per (Chavlis et al., 2017) albeit with GCs modeled as point neurons without dendrites. The model was 

adjusted to reproduce an approximate sparsity of 5% (Figure 21B-D, top, green) under control conditions, 
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replicating the portion of GCs we found to reliably code for an environment by regularly firing transients. 

We then simulated the effect on GC sparsity resulting from the complete removal of MCs (Figure 21B). 

Removal of MCs resulted in the recruitment of significantly more GCs in response to simulated 

entorhinal input (Figure 21B, top, purple), and this in turn led to a decrease in the pattern separation 

efficiency of GCs (Figure 21B, bottom), as measured by the distance between GC populations responding 

to two overlapping input patterns. To investigate whether this effect was primarily mediated through the 

direct excitatory or indirect inhibitory pathways between MCs and GCs, we deleted each of these 

connections separately. While deletion of the direct excitatory connection had little effect on GC 

excitability and pattern separation efficiency (Figure 21C), we found that deletion of the MC to BC 

connection significantly increased GC excitability at the expense of pattern separation performance 

(Figure 21D). 

 

Figure 21. The Role of Mossy Cells in Pattern Separation: A Computational Approach.  

A. Schematic of the DG computational model. Granule cells (GC, green) receive excitatory input from the perforant path (PP) 

and mossy cells (MC) in addition to feedforward inhibition from hilar perforant path-associated (HIPP) cells and feedback 

inhibition from basket cells (BC). MCs also provide excitation to BCs. B-D. Top: the fraction of recruited GCs in response to PP 

input. Green denotes the model under control conditions, while purple reflects the fraction of active GCs under various deletion 

conditions: complete MC deletion (B), deletion of the direct excitatory (C), or deletion of the disynaptic inhibition (D). Deletion 
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of MCs (B) increased the fraction of GCs recruited (KS Stat = 0.49, n = 100 control, 100 deletion simulations, p < 0.001, two-

sample KS Test). This effect was mediated by disynaptic inhibition (D; KS Stat = 0.45, n = 100 control, 100 deletion simulations, 

p < 0.001, two-sample KS Test). Bottom: pattern separation efficiency is measured as the output distance between the GC 

populations responding to two highly overlapping PP inputs for the three aforementioned cases. MC deletion (B) results in a 

reduction in pattern separation efficiency (U(98) = 395, p < 0.001, Mann Whitney U), and this effect again was mediated by the 

disynaptic inhibitory pathway (D; U(98) = 349, p < 0.001, Mann Whitney U). 

5.4 Discussion 

In summary, we performed cellular-resolution 2p Ca
2+

 imaging of MCs during head-fixed navigation in 

addition to computational modeling of the local DG network. We characterized the in vivo activity levels, 

spatial coding fractions, context specificity, and remapping dynamics of MCs, and we identified 

prominent differences in these properties between MCs and GCs. We found that MCs were more active 

and more likely to have detected place fields than GCs, and therefore, MCs represent an active population 

of spatially tuned hippocampal principal neurons during behavior. In addition to exhibiting a higher place 

coding fraction, our results also suggest that these cells are more likely to exhibit multiple firing fields 

than GCs. While we cannot exclude the possibility that in vivo GCaMP Ca
2+

 imaging is biased toward the 

detection of burst events over single spikes in GCs, burst spiking is thought to be the most efficient mode 

of transmission from granule cells to their downstream targets (Bischofberger et al., 2006; Henze et al., 

2002), and our most active GCs fired transients at a rate of 1–2 per minute, comparable to the burst rate 

reported in a previous in vivo intracellular recording study of GCs (Pernía-Andrade and Jonas, 2014). 

Moreover, although we cannot completely exclude the possibility that differences in intracellular Ca
2+

 

buffering contributed to the observed differences in activity between GCs and MCs, the highly significant 

differences in activity, as reflected by both the transient AUC rate and the frequency of sharply peaked 

transients, suggest that differences in Ca
2+

 buffer protein expression are unlikely to fully explain our 

results. 

Because the primary excitatory inputs onto MCs originate from large, ‘‘detonator’’ mossy terminal 

synapses from the mossy fibers of GCs (Scharfman, 2016), it is possible that the spatially tuned firing 
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pattern of MCs we observed is conveyed to MCs by GCs. However, given both the very sparse firing of 

GCs (Danielson et al., 2016a) and the low convergence of GCs to MCs (Scharfman, 2016), our results 

suggest that GC activity alone is unlikely to fully account for the high activity level and distributed 

spatially tuning of MCs we observed. Relatedly, it is possible that MCs are preferentially innervated by 

young adult-born GCs, which exhibit higher activity and more diffuse firing compared to their mature 

counterparts (Danielson et al., 2016a). Excitation from EC inputs (Scharfman, 1991), backprojecting CA3 

pyramidal cells into hilar layer (Ishizuka et al., 1990; Myers and Scharfman, 2011) or various subcortical 

neuromodulatory inputs (Scharfman, 2016) might also contribute to the activity and tuning profiles of 

MCs. 

We also found that MCs exhibit strong remapping of their firing fields during random foraging in distinct 

contexts, suggesting that MCs may contribute to pattern separation on the behavioral level. Our 

computational model also suggests that MCs contribute to the sparseness of GC representations and may 

thus support pattern separation in this manner as well. Furthermore, we found that this effect is primarily 

mediated through disynaptic inhibition, in agreement with previously published experimental data 

(Scharfman, 1995, 2016; Jinde et al., 2012). Indeed, an active role for MCs in pattern separation and a 

disinhibitory influence of MCs on GCs are supported by previous experiments in which MC loss caused 

transient GC hyperexcitability and impaired contextual fear learning (Jinde et al., 2012, 2013). The 

enhanced remapping of firing field in MCs compared to GCs we observed also suggests that context-

specific inputs by sources other than GCs are conveyed to MCs. Taken together, our results support a 

view of hippocampal DG function in which pattern separation is implemented by the joint action of both 

MCs and GCs. Future in vivo studies combining recording with cell-type-specific manipulations will help 

to unravel the exact mechanisms by which GCs, MCs, and other excitatory and inhibitory neurons of the 

DG (Williams et al., 2007; Hosp et al., 2014) interact to accomplish hippocampal-dependent tasks. 
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Chapter 6  Role of dendritic and somatic inhibition in place cell dynamics 

6.1 Preamble 

Decades of accruing evidence have landed strong credence to the idea of the hippocampus being an 

indispensable part of the episodic memory formation, storage and retrieval processes. Specifically, in the 

CA1 subregion a substantial percentage of the pyramidal neurons, now called place cells, exhibit a firing 

pattern strongly modulated by environment location, thus acting as neural anchors of spatial memories. 

However, in the brain, no player is acting alone, and it is no surprise that pyramidal cells are tuned by a 

wide variety of local-network interneurons. Among those, interneuron-targeting, disinhibitory 

interneurons, expressing Vasoactive Intestinal Polypeptide (VIP) have recently been proposed to play an 

important role in spatial learning behavior during a goal oriented task in mice (Zaremba et al., 2017). It is 

hypothesized that one mechanism by which VIP
+
 cells affect spatial learning is the alterations they induce 

in place field properties. 

To examine this hypothesis we developed a biophysically constrained network model of the CA1 region 

that consists of 100 cells. More specifically, the network includes 80 pyramidal cells and 18 interneurons 

of which eight basket, two bistratified, two axoaxonic, two OLM and four VIP
+
 cells. All neuron models 

were validated against experimental data regarding basic electrophysiological, connectivity and input 

properties (Lee et al., 2011; Schneider et al., 2012; Bezaire and Soltész, 2013; Sun et al., 2014; Turi et al., 

2016). To simulate place cell formation in the network model, we generated grid cell input from the 

Entorhinal Cortex (EC) and the CA3 regions, activated in a realistic manner as observed when an animal 

transverses a linear track (Dombeck et al., 2010). Some of the data used to simulate the grid-like inputs 

are taken from in vivo experiments, such as the animal’s speed and the path it follows. Realistic place 

fields emerged in a subpopulation of pyramidal model neurons (50-60%), in which similar EC and CA3 

grid cell inputs converged onto distal/proximal apical and basal dendrites.  
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Ongoing work aims to assess the role of VIP
+
 interneurons in the formation and/or tuning properties of 

place fields. Towards this goal, we will selectively remove connections for VIP
+
 cells onto basket cells 

and VIP
+
 cells onto OLM cells, and will lesion the whole VIP

+
 population. Given the lack of experimental 

data on the precise role of VIP
+
 cells in spatial memory, our modeling manipulations will provide new 

predictions as to the mechanistic effects of these neurons at the cellular level. These predictions can in 

turn guide experimental testing that will ultimately reveal whether VIP
+
 cells contribute to the formation 

and learning related reorganization of place cells via their disinhibitory effects on somatic and/or dendritic 

inhibition. 

6.2 Materials & Methods 

6.2.1 Network construction 

The network was implemented based on prior models (Cutsuridis et al., 2010; Bezaire et al., 2016). 

Specifically, the neuronal models and their ionic channels were implemented as per Cutsuridis et al. 

(2010), while the connectivity and synaptic properties were adopted from Bezaire et al. (2016). Moreover, 

the new single cell models for VIP-CCK and VIP-CR interneurons were simulated based on (Cutsuridis et 

al., 2010; Konstantoudaki et al., 2014) and adapted to experimental data. Every model cell type was 

heavily validated against experimental evidence with respect to both active and passive membrane 

properties, such as input resistance, membrane time constant, resting potential, rheobase current etc. 

6.2.2 Grid-like input 

The grid-like inputs were simulated as simple summation of three sinusoidal waves (Trygve Solstad et al., 

2007). Specifically, a single place field was generated from the convergence of eight grid cells differing 

in their size and phase (see Figure 22A and APPENDIX A). The superposition of these eight grid-like 

inputs produced a strong input around the predefined location, while areas outside of this location 

received less or no input, thus creating a place cell (Figure 22B). To cover a linear track of 100 
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centimeters (Zerembra et al, 2017), we used 21 subsequent locations where each place cell received a 

perfect octal of inputs, like the ones shown below. In this example the pre-allocation of position was in 

the middle of the linear track. 

 

Figure 22. Grid like inputs from EC LIII and CA3 Schaffer collateral. 
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A. The eight different grid cells. The size of grid cells is incrementally increased from the first to the last cell of the octal. 

Additionally, their phase is also changing. The color-map indicates the normalized spike numbers as a function of the linear track 

position (yellow denotes the maximum and blue the minimum firing rate). B. The theoretical place field is in the middle of the 

track. This field is a result of the linear summation of the eight grid-like cells shown in A.  

6.2.3 Place cell quantification 

The following procedure was implemented to quantify place cell dynamics. For each pyramidal neuron, 

we first created the so called spike maps: each spike map consisted of the total number of spikes fired 

within a given space bin (1cm size).  Spike maps were turned to rate maps by dividing spike counts with 

the time the animal spent in each space bin. Rate maps where processed with an 1-D Gaussian filter with 

sigma equal to 3.0, in line with the experimental procedures of our collaborators (Danielson et al., 2016b; 

Zaremba et al., 2017).  

A number of metrics were subsequently used to characterize place field properties. These included: a) the 

specificity of the field in terms of the information content (spatial information) of cell discharge (Skaggs 

et al., 1993, 1996; Markus et al., 1994). Spatial information is the information (in bits) that a single spike 

conveys about the animal’s location (i.e., how well cell firing predicts the animal’s location). The spatial 

information content of a pyramidal model cell was calculated using the formula: 

                     ∑  
  

 ̅
    

  

 ̅

 

   

 

where N is the total number of bins, pi is the probability of occupancy of i-th bin, λi and λ represent the 

firing rate of each bin and the mean firing rate in Hz across all bins, respectively. Thus, a cell with high 

spatial informational content is likely to be a place cell. b) A second metric was the sparsity index of the 

spatial firing distribution, indicating the relative proportion of the track on which the cell fired: 
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Notation is the same as before. For example, a sparsity index of 0.10 means that the cell fired on 10% of 

the track length. A good place cell should therefore have a low sparsity index. c) The selectivity score 

indicates how selective a pyramidal model cell is, based on its location-specific firing rate. The selectivity 

score is given by: 

             
   
   

 

 ̅
 

Where the nominator is the maximum firing rate and the denominator the overall mean firing rate of a 

model cell. Contrary to the sparsity index, the selectivity of a place cell should be as high, assuming a 

reasonable field size. d) Two additional metrics, the peak firing rate within a place field and the size of 

the place field were also used. Field size is given by the spatial extent (bins) around the peak firing rate 

location, in which the firing rate remains greater than 1 Hz. 

6.2.4 Behavioral paradigm simulation 

Experiments from collaborators reported a place-specific enrichment, namely an increase in the number 

of place cells encoding the reward-location in linear track experiments in mice (Zerembra et al, 2017). To 

simulate such learning-induced changes, we implemented two distinct scenarios, termed pre-learning and 

post-learning, whereby the enrichment was observed only in the post-learning scenario. Specifically, in 

pre-learning the artificial mouse was assumed to uniformly spend ~50ms (normal random distribution 

with mean and standard deviation 50 and 2 ms, respectively) in each space bin, in line with 

experimentally measured velocities (Cabral et al., 2014). In the post-learning condition, the mouse was 

assumed to spend more time (Hok et al., 2007) in the reward zone (normal random distribution with mean 

and standard deviation, 500 and 10 ms, correspondingly). This information was used to construct the path 

of locations visited and in turn the grid-like inputs. 

All pyramidal cells in the network model received a convergent octal of grid-like inputs from both EC 

layer 3 and CA3. However, only 60% of them had input weights strong enough to generate a place field. 
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The remaining 40% had very small input weights, is essence representing a pool of silent place cells.. 

During post-learning, the weights of these silent places increased by 10. Together with the increased time 

spent in the reward zone, this manipulation was sufficient to generate the reward-zone specific 

enrichment effect observed experimentally (Zerembra et al, 2017). 

6.2.5 Interneuronal manipulations 

To study the role of different types of interneurons in place cell formation we simulated their deletion in 

the network model. Specifically, we removed: a) type of interneuron separately; b) all dendritic-targeting 

interneurons, c) all somatic-targeting interneurons, d) all axonic-targeting interneurons and e) all 

inhibitory neurons. Deletions were simulated as removal of a specific neuron type and all of its incoming 

and outgoing connections. 

6.2.6 Network simulation and statistical analysis 

The network model was simulated for 5000 and 1800 milliseconds (ms), with a time step of 0.1ms,  for 

the pre- and post-learning protocols, respectively. The first 400ms were excluded from the analysis to 

enable the network to reach an equilibrium state. Simulations were repeated 10 times (runs), whereby 

each run represented a single passing of the linear track.  Spike maps were generated using the summed 

activity within the 10 runs. Rate maps for each pyramidal model cell were calculated by dividing spike 

counts per bin with the time spent in each bin. Unless otherwise mentioned, error bars show the standard 

error of the mean. 

Data analysis, figures and statistical analysis were done using custom made software in python 2.7.10
TM

 

(www.python.org). The two-sided, two-sample Kolmogorov–Smirnov test (K–S test) was used to 

compare density functions (Neuhäuser, 2011) while the t-test was used to compare their average values. 

file:///C:/Users/user/Downloads/www.python.org
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6.3 Results 

6.3.1 Simulation of the behavioral (linear track) paradigm 

According to experimental data from our collaborators, place cells encode the entire space (i.e., the linear 

track). To replicate this finding we tuned our model so as to generate a place cell every 5 cm of the track. 

Figure 23A shows the encoding of the linear track, which is well aligned with experimental data 

(Zaremba et al., 2017). This ability to encode all positions along the linear track was completely 

eliminated when removing all types of interneurons (Figure 23B).  

 

Figure 23. Place cell dynamics under pre- and post-learning protocol. 
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A.  The firing rate of all pyramidal neurons under control conditions in the pre-learning protocol is shown as a function of space. 

Cell indexing is (sorted) according to peak firing rate position As shown by the elevated firing rates in the diagonal, the entire 

track is covered by place cells. B. Same as in A with inhibition removed. All place cells fire strongly in every position of the 

linear track C. Same as in A, under the post-learning condition. There is an increased representation of place cells in the reward 

zone (40-60 cm). D. Same as in B under the post-learning condition. Place cells fire strongly along the entire linear track. 

In the post-learning condition, the mice spent more time in the reward zone and all synaptic weights of 

place cells encoding the reward zone increased by 10%. As a result, the network reproduced the 

experimentally observed enrichment in the number of place cells encoding the reward zone (Figure 23C). 

Removal of all inhibitory neurons eliminated the specificity of all place cells, leading to a significant drop 

in the spatial coding ability of the simulated network (Figure 23D). These simulations a) demonstrate the 

ability of the CA1 network model to reproduce both the pre- and the post-learning experimental findings 

regarding place-cell encoding of a linear track and b) reproduce the key role of inhibition in place cell 

formation (Royer et al., 2012). 

6.3.2 Role of different interneurons 

To investigate the contributions of different types of interneurons in place cell dynamics, we simulated 

the deletion (see §6.2.5) of each interneuron type independently, keeping all other parameters unchanged. 

We predict that BCs, VIPCCKs and OLMs have the largest contribution, as their removal impair, place 

cell formation under both pre-learning (Figure 24A) and post-learning (Figure 25B) conditions. The same 

conclusion can be reached by quantifying the place encoding capabilities of the CA1 network using the 

spatial information metrics (Figure 24B and Figure 25B). 
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Figure 24. Place cell dynamics under distinct interneuronal lesions in the pre-learning condition. 

A. While the entire track remains well represented by place cells in all but the total inhibition removal case, the level of 

background noise increases substantially. B. Probability density function of the spatial information calculated in bits/spike. 

Notably, when BCs, BSCs, OLMs and VIPCCKs are lesioned a significantly drop in information is observed. On the contrary, 

AACs and VIPCRs seem to have almost no effect on place cell formation.  
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The role of AACs cells is smaller, as the network remains capable of accurately encoding the linear track. 

On the contrary, the BSCs and OLMs, which provide the network with dendritic inhibition, reduce the 

place cell encoding efficiency, under both pre- and post-learning conditions (Figure 24 and Figure 25). 

Taken together, the above-mentioned results indicate that different interneuron types have distinct 

contributions to place cell dynamics, with BCs and VIPCCKs serving as key mediators. 
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Figure 25. Place cell dynamics under various interneuronal lesions in the post-learning condition. 

A. Place encoding is primarily affected by the deletion of BCs, VIPCCKs, BSCs and OLMs. B. Probability density function of 

the spatial information calculated in bits/spike. Notably, when BCs, BSCs, OLMs and VIPCCKs are lesioned a significant drop 

in information is observed. AACs and VIPCRs seem to have almost no effect on place cell formation.  
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Interneurons expressing VIP in CA1 mainly come from two classes; those that co-express CCK and those 

that co-express CR (Chamberland and Topolnik, 2012). The first class contacts CA1PCs at the soma, thus 

providing the network with additional perisomatic inhibition, while the latter is part of a disinhibitory 

circuit in CA1 contacting both BCs and OLMs. Experimental evidence suggests that in the absence of 

VIP cells, place cell enrichment during the reward zone is impaired. To assess whether this finding is 

causally linked to VIP-expressing neurons, we first simulated VIPCCK deletion in the pre- and post-

learning conditions. In absence of VIPCCKs, the network lost its ability to encode the entire space and the 

number of place cells dropped substantially compared to the control in both pre- (Figure 24) and post-

learning conditions (Figure 25). 

Next, we removed VIPCRs from the network, thus reducing the level of disinhibition. This manipulation 

led to an increase in firing rates for both BCs and OLMs which in turn led to a decrease in pyramidal 

neuron firing rates. However, this reduction in excitability did not impair place cell formation and thus 

place encoding remained unaffected. These simulations suggest that soma-targeting but not disinhibitory 

VIP-expressing interneurons play a role in place cell formation and enrichment. 

Next, we studied the role of dendritic vs. somatic/axonal inhibition in place cell formation. Hence, we 

implemented two model networks: one without dendritic inhibition to CA1PCs, i.e., BSCs and OLMs 

were removed, and a second without somatic and axonal inhibition, i.e., AACs, BCs and VIPCCKs were 

removed. Interestingly, in both cases we noticed that our network lost its ability to create place cells, and 

therefore the number of place cells reduced under both cases. This was evident either by inspecting the 

heat maps or by comparing the place cell metrics with the control case, under both pre- and post-learning 

conditions.  

In summary, these simulations predict that the lesion of one interneuronal type at a time provoke only a 

small change in place encoding. However, some types and more specifically the BCs, VIPCCKs and the 

OLMs seem to have a greater effect on place cell formation. On the contrary, when inhibition is killed by 
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removing all interneurons the model failed in forming place cells. Interestingly, the VIPCR cells seem to 

have no effect on place cell formation. A possible explanation of this observation is that the used synaptic 

weights from those neurons onto BCs and OLMs were not optimized. These cells are poorly studied and 

thus, we moved forward to explore their weights.  

6.3.3 Exploration of VIP
+
/CR

+
 synaptic weights 

Given the lack of experimental data regarding the connectivity strength of VIPCR synapses, we 

performed an extensive parameter exploration to test whether these interneurons play a role under 

conditions that differ from those currently incorporated in our network model. For these simulations we 

systematically modified the weights from VIPCR to BCs and/or to OLMs and assessed spatial 

information, sparsity, selectivity and place field size.  
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Figure 26. Parametric exploration of synaptic strength between VIPCRs and BCs/OLMs. 

Synaptic weights were multiplied by a factor of 0.0 to 100.0, with unequal steps. A. Spatial information in bits/spike. Values 

shown are averages across all pyramidal cells. B. Sparsity index. All values are calculated as averages across all pyramidal cells. 

C. As in A and B, but here the selectivity is shown as the average over all pyramidal neurons. D. As in A., but here the place cell 

size is depicted as the average over all pyramidal cells. 

These simulations identified a parameter sub-region that maximizes place cell formation efficiency Figure 

26. Weights from 0.0 to 5.0 in the VIPCR to OLM connection, and 0.0 to 2.0 in the VIPCR to BC 

connection have significantly larger spatial information, selectivity and lower sparsity and field size. This 

suggests that weights used in our network model maybe be suboptimal for revealing the role of VIP 
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interneurons in place cell formation. It is of high importance to mention that connections from VIPCR to 

other interneurons are poorly studied experimentally and thus, the exploration of these values using our 

computational model is critical. 

6.4 Discussion 

The purpose of the current study was to determine the role of inhibition in place cell formation, and 

therefore to understand the mechanisms that underlie spatial memory formation. Towards this goal, we 

developed a biophysical CA1 network model consisting of 80 pyramidal cells and six different types of 

inhibitory interneurons: two AACs, two BSCs, two OLMs, two VIPCCKs, two VIPCRs and eight BCs. 

All neuronal types were constructed as per (Cutsuridis et al., 2010), apart from the VIPCR interneuron 

which was based morphologically on (Cutsuridis et al., 2010) and biophysically on (Konstantoudaki et 

al., 2014). Input to the network was provided by several grid-like cells which represent the EC LIII and 

CA3 predominant input to the CA1 area. In addition, all interneurons received inhibitory input from the 

septum in order to simulate the theta rhythm found in hippocampus (Buzsáki, 2002). 

The main experiments of this project were to replicate the place cells that formed in mice hippocampi 

under the exploration of a linear track (Zaremba et al., 2017). Therefore, we have implemented the grid-

like input in such a way that the whole linear track is covered with place cells and hence, the space is 

encoded by specific CA1PCs. Our model replicates both pre- and post-learning conditions, whereby the 

animal learns to stop in a specific location of the track where a reward is provided. Specifically, in the 

post-learning condition, under which the animal spends more time within the reward zone, our model 

captures the reported enrichment, namely the increase in the number of place cells firing within the 

reward zone. To explore how different types of interneurons contribute to place cell formation and/or 

reward zone enrichment, we simulated the deletion of each type of interneuron in the model. We predict 

that removal of all forms of inhibition is detrimental for place encoding while individual interneuron 

types have varying effects. 
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Specifically, removal of either BCs or VIPCCKs impairs place encoding capability while removal of 

AACs had minimal effect. Moreover, BSCs and OLMs appeared to be critical for place cell dynamics as 

when separately removed the network lost its efficiency in spatial encoding. Surprisingly, the VIPCRs 

which disinhibit the network had a very small effect on place cell formation. One possible explanation is 

that the synapses made by these neurons on BCs and OLMs were not strong enough and hence, in their 

absence the BC and OLM firing rate was slightly increased. However, when we manipulated the 

aforementioned weights their effect was significant. 

Although this research extends our knowledge of place cell dynamics and the distinct role of different 

inhibitory neurons in this complex computational circuitry, more research is required to determine the 

efficacy of distinct interneurons in place cell dynamics. 
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Chapter 7  Conclusions 

This dissertation aims to unravel some of the mysteries surrounding memory formation and storage in the 

brain. Therefore, the study of the hippocampus was critical as it is a fundamental brain region for memory 

formation, storage and retrieval and its function is highly associated with spatial navigation. This 

investigation will enhance our understanding of how memories are encoding in the brain and which are 

the key mechanisms that affect their efficient function. This dissertation is divided in two main projects; 

the first part is a thorough examination of pattern separation, while the second scrutinizes the spatial 

memory formation. Hence, a DG and a CA1 network were implemented in order to study the key 

hippocampal areas involved in the aforementioned tasks. The methodological approach taken in this study 

was a computational modeling approach, which would enable us to study aspects of these areas that were 

not studied yet, mainly because many features are hard to be studied experimentally. 

7.1 Key players mediating pattern separation 

The main goal of the current study was to determine, if any, the role of granular dendrites in pattern 

separation task. Pattern separation is the ability that our brain has to distinguish similar incoming 

information. There is a growing body of literature that recognizes the importance of DG in pattern 

separation. Due to several reasons, DG is considered as the perfect candidate to accomplish this task. One 

reason is that GCs found in DG outnumber both the incoming cell population (EC LII) and the next 

subregion, the CA3. Furthermore, the sparse connectivity from EC LII is another factor as well as the 

sparse firing of GCs in general. However, there is a little published data in literature about the 

morphology of GCs and also there has been no detailed investigation of the role of dendrites in pattern 

separation. Thus, the purpose of this investigation is to explore the relationship between GC dendrites and 

pattern separation providing insights on new players that mediate pattern separation efficacy. 
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By implementing a simple, yet biologically relevant, spiking neural network we aimed to identify the role 

of dendrites in the aforementioned computational task. Towards this aim, we built a hybrid spiking neural 

model with various dendritic compartments. The current study found that dendrites serve as another 

mechanism to pattern separation efficacy accomplishing this by mediating sparsity of GCs activity. 

Specifically, we found a positive correlation with dendritic number and pattern separation efficacy; as the 

dendritic number becomes greater, the pattern separation efficacy increased and also, when dendritic 

number was decreased we observed a significant pattern separation drop. However, the results of this 

study unravel other mechanisms through which the sparsity is mediated and the pattern separation 

performance is better such as the leak current, the somatic size and the synaptic weights suggesting that 

dendrites are not necessary and sufficient for pattern separation efficacy, rather they are an indirect 

mechanism that controls sparsity. 

Next, we used a simplistic version of this model to study the explicit role of the mysterious MCs during a 

behavioral task. MCs are located in the polymorphic DG layer (or hilus) and are glutamatergic cells. They 

form a circuitry with GCs and BCs as they contact both of them. The most obvious finding to emerge 

from the analysis is that MCs are more excitable and less sparse comparing with DGs. On the contrary 

they had spatial tuning profiles and their firing was less stable across different environments. Using our 

model, we explored how their afferents affect pattern separation efficacy. In this direction, we have used 

our model and we test the DG network against a pattern separation protocol. Interestingly, we found that 

MC to BC connection was responsible for the high pattern separation efficacy under control conditions, 

and thus in a model with deletion of this connection the performance of the network significantly 

dropped. On the contrary, the excitatory connection from MCs to GCs seemed to have no effect in pattern 

separation performance. 

Overall, this study strengthens the idea that dendrites are key mediators of memory processes. Although a 

direct link of dendritic structure and morphology with pattern separation efficacy was not found, their 

indirect role in this task should be taken into account as dendrites mediate sparsity in a positive way. 
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Together with the role of MCs in pattern separation, these findings enhance our understanding of how 

different mechanisms could eventually be involved in a mnemonic process such as pattern separation. 

Further experimental investigations regarding the role of granular dendrites and mossy cell in this 

mnemonic process is needed in order to unravel their contribution when pattern separation ability is 

highly demanded. 

7.2 Exploring the role of distinct interneurons in place cell dynamics 

The second aim of this study was to investigate the effects of inhibition and disinhibition in spatial 

memory. Spatial navigation is important for ordinary life and it is another form of memory in which 

hippocampus is widely believed that plays an important role. Specifically, different hippocampal and 

parahippocampal areas are involved in this task, such as the CA3 and CA1 hippocampal subregions and 

EC of medial temporal lobe. Hence, we used a computational model of CA1 network as there is a 

considerable amount of literature which implicates this region with spatial memory and navigational 

skills. These cells are spatially tuned, i.e., they fire when an animal is passing from a specific location in 

space. Additionally, several theories recognize the EC grid cells as a key mediator of place cell formation 

and thus, we have incorporated grid-like input to our network. Although it is widely known that inhibition 

is crucial for normal brain function, little has been done in order to investigate the exact role of inhibitory 

neurons in spatial memory. The CA1 subregion contains numerous types of interneurons and together 

with pyramidal cells form a very complex network. Thus, assessing spatial memory with a computational 

model eventually enabled us to examine individually each type of interneuron and its contribution to 

place cell formation and dynamics. 

The most obvious finding to emerge from this study is that inhibition is necessary in order for place cells 

to be formed across the linear track. When inhibition is killed by removing all interneurons the network 

lost its ability to encode the space. Then we asked what, if any, are the effects of each one interneuron in 

place cell formation and dynamics. Interestingly, we have found that BCs and VCCKs had a major 
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impact, as well as OLMs and BSCs. However, in absence of AACs the place cell characteristics seem to 

be similar to ones found under control conditions. Contrary to expectations, we did not find a significant 

difference between control and VIPCR lesioned conditions. A possible explanation for these results may 

be the lack of adequate experimental evidence about the synaptic properties of VIPCR neurons and 

specially, we did not found their exact efferent properties in synapses formed from VIPCR to BCs and 

OLMs. Thus, a follow up question to ask is what would be the role of VIPCR if we change their synaptic 

weights. Towards this direction, we ran our model against the same input protocol for different synaptic 

weights and we could infer a more appropriate set of parameters under control conditions. Further studies, 

which take these variables into account, will need to be undertaken. 

Despite its exploratory nature, this study offers some insight into place cell formation and characteristics 

in accordance with inhibitory neurons found in CA1 area. The present study confirms previous findings 

and contributes additional evidence that suggests a role of interneurons in spatial memory formation. 

However, further experimental and computational research is required to examine more accurate the 

passive and active properties of VIP
+
 interneurons, as well as to define their connectivity properties.  
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APPENDIX A – Grid like inputs mathematical formalization 

In our model the net somatic potential in a hippocampal cell is expressed as a weighted sum of excitatory 

inputs from a set of N grid cells and some additional inhibitory inputs. The grid-cell functions are 

constructed from a sum of three two-dimensional sinusoidal grating, specified by their wave vectors. The 

grid-like functions are given in the following equation: 
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where the subscript     (      ) specifies the spacing  , the orientation  , and the spatial position of 
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and   denotes the wave vectors with  
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The grid-like functions thus return the probability of generating a spike given the current position of the 

animal and the theoretical place field which we want to build. 

Finally, we pass a sinusoidal filter in the abovementioned probabilities in order to take into account the 

theta modulation found in the hippocampal formation. 
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where               and            degrees denoting the theta-cycle frequency and phase, 

respectively, and t is the time in ms. If the probability  ( ) is greater than     a spike is generated for this 

specific grid-like cell. The process is repeated for all grid-like cells and for all theoretical place-fields. For 

any octal of grid-like cells we start with       and       for the first cell and for any other cell 

belonging in the same octal its spacing and its orientation are increased by     and    , respectively. 
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APPENDIX B – Ionic Channels used in CA1 model (Hodgkin-Huxley 

formalization) 

Pyramidal Neurons 

Pyramidal neurons consisted of various compartments such as soma, axon, radiatum (rad), lacunosum-

moleculare (lm) and oriens (ori). Each compartment was governed by the following differential equations: 
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where Cm is the membrane capacitance, V the membrane potential, IL is the leak current, INa the fast 

sodium current, IKdr the delayed rectifier potassium current, IA the A-type K
+
 current, IM the M-type K

+
 

current, Ih the hyperpolarizing h-type current, ICaL, ICaR and ICaT the L-, R- and T-type Ca
2+

 currents, IsAHP 

and ImAHP the slow and medium Ca
2+

 activated K
+
 currents, Ibuff the calcium pump/buffering mechanism 

and Isyn the synaptic current. 

The sodium current is described by: 

     ̅    
      (     ) 

where the extra variable s accounts for the dendritic location-dependent slow attenuation of the sodium 

current (Poirazi et al, 2003,a,b). The activation and inactivation parameters are given by: 
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The time constant τs is given by the following equation: 
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where                  ,                         ,                 and   the 

temperature in degrees of   . The Naatt represents the attenuation of sodium current and varies linearly 

as function of distance from the soma, and takes values within range [0, 1] with zero denoting the 

maximum and one the minimum attenuation.  

The delayed rectifier potassium current is governed by the equation: 
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The activation parameter is given by: 
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The sodium and delayed rectifier channel properties are slightly different in the soma and axon comparing 

with the dendritic arbor (given above). To fit experimental data regarding the backpropagation of spike 

trains, soma and axon compartments have a lower threshold for Na
+
 spike initiation (~ -57 mV) than 

dendritic ones (~ -50 mV). Thus, the activation and inactivation parameters for soma and axon were 

modified as follows. 

For sodium channel 
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For delayed rectifier channel 

   
 

    
      
 

              

The fast inactivating A-type K
+
 current is described by: 

    ̅      (    ) 

The corresponding activation and inactivation parameters are given from equations below: 
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The slowly activating voltage-dependent potassium current is given by the equations: 
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And the corresponding activation parameter is governed by the following equations: 
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The hyperpolarizing h-current is given by 
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The activation parameter is given by 
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where  ,     and     are    ,    ,     and     respectively. The a0t is              ,               

and       .  

The slow after-hyperpolarizing current is given by 
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The medium after-hyperpolarizing current is given by: 

       ̅       (    ) 

         (   
 
  
  )  (     )                   

 

     
 

   
        

  
      
    

           ( )
       

        

  
    

                ( )

 



123 

 

 

The somatic high-voltage activated (HVA) L-type Ca
2+

 current is described by 
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while the dendritic L-type calcium channels are given by 
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The function ghk is calculated from the following set of equations: 
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and cain and caout are the internal and external calcium concentrations, respectively.  
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The HVA R-type Ca
2+

 current is described by 

      ̅     
    (     ) 

         (   
 
  
  )  (     )          

         (   
 
  
  )  (     )          

For the somatic compartment, τm = 100 ms and τh = 5 ms, while for the dendritic compartments    

       and         . The alpha and beta parameters for the somatic compartments are given by 
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whereas for the dendritic compartments by 
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The low-voltage activation (LVA) T-type Ca
2+

 current is given by 
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Finally, a calcium pump/buffering mechanism is inserted at the cell soma and along the apical and basal 

trunk. The kinetic equations are given by 
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Interneurons 

Axoaxonic, Basket, Bistratified and VIP
+
/CCK

+
 cells 

All compartments of AAC, BC, BSC and VIPCCK are described by the following current equation: 
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where Cm is the membrane capacitance, V the membrane potential, IL is the leak current, INa the sodium 

current, IKdr,fast the fast delayed rectifier potassium current, IA the A-type K
+
 current, ICaL and ICaN the L-

and N-type Ca
2+

 currents, IC is the Ca
2+

-dependent K
+
 current (SK), IAHP the calcium and voltage 

dependent K
+
 current (BK),  and Isyn the synaptic current. 

The sodium current is given by: 
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The fast delayed rectifier current is described by: 
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While the slow delayed rectifier current by: 

The fast delayed rectifier current is described by: 
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The A-type K
+
 current is described by: 
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The N-type Ca
2+

 current is given by: 
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The L-type Ca
2+

 current is given by: 
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As in the previous section, the function ghk is given below: 
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where      and       are the internal and external calcium concentrations, respectively and    
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The calcium and voltage dependent K
+
 current (BK) is described by: 
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The Ca
2+

-dependent K
+
 current is described by: 
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where A is the surface area, d is the thickness,           is the calcium removal rate, and [    ]  

      the resting calcium concentration. 

 

O-LM cells 

The OLM soma, axon and dendrites are described by the following equations: 
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Where Cm is the membrane capacitance, V the membrane potential, IL the leak current, INA and IK are the 

sodium and potassium currents, respectively. Additionally, IA is A-type K
+
 current, Ih the nonspecific 

cation current and Isyn the synaptic current. 

 

The sodium current is given by: 

     ̅    
    (     ) 

  

  
    (   )          

  

  
    (   )       



129 

 

  
          

     (    )

  
(    )
    

      
                

    
   

  
                 

    
        

          
 

    
(    )
  

 

  
     

     (    )

  
(    )
    

      
           

    
   

  
            

    
        

     
 

    
(    )
  

 

The potassium current is given by: 
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The transient potassium current is given by: 
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The non-specific cation channel is described by: 
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VIP
+
/CR

+
 cells 

The VIP/CR compartments are governed by the following equations: 
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Where Cm is the membrane capacitance, V the membrane potential, IL the leak current, INa and IK are the 

sodium and potassium currents, respectively. Additionally, ID is the A-type K
+
 current, IAHP the Ca

2+
-

dependent K
+
 current, the Ibuff a calcium pump/buffer and Isyn the synaptic current. 

The fast sodium current is given by: 
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The delayed rectifier potassium current is given by: 
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The fast Ca
2+

- and voltage-dependent K
+
 current is given by: 
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The slowly inactivation K
+
 current is described by: 
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The N-type Ca
2+

 current is described by: 
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Where              ,         and          are     and        respectively, and    and    are      

and     respectively. The temperature function  ( ) is given from the formula that mentioned before. 

The D-type K
+
 current is given by: 
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where activation and inactivation half potentials are                 and                 , 

respectively. The               , and the temperature sensitivity is       . 

Finally, a calcium pump/buffering mechanism is inserted at the cell soma and along the apical and basal 

trunk. The kinetic equations are given by 
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