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Abstract

This thesis describes Paillier’s cryptosystem, a form of homomorphic encryp-
tion. Based on composite residuosity, it proposes a trapdoor mechanism lead-
ing to three encryption schemes; two homomorphic probabilistic schemes and
one trapdoor permutation, which will be examined separately. All three of
them will be proven valid and secure. Modular arithmetics and number the-
ory will be our main tools used.



Contents

Acronyms & Notations

Introduction

1

5

6

Preliminaries

1.1  One-way functions . . . . . .. ... ... .. ....
1.2 Reductions . . ... ... ... ... ...
1.3 Carmichael’s Lambda Function . . .. ... ... ..
1.4 Notations . . . . . . . . . . ...

Deciding Composite Residuosity
Computing Composite Residuosity Classes
A New Probabilistic Encryption Scheme
A New One-Way Trapdoor Permutation

Almost Reaching Quadratic Complexity

Bibliography

ii

iii

0O > W — =

10

14

24

32

36

45



Acronyms & Notations

Classin, g] n-th Residuosity Class Problem
the problem of computing the class function in base g

CCRA Computational Composite Residuosity Assumption
the hypothesis that Class|n| is intractable

CR|[n] the problem of deciding n-th residuosity

CRCP Composite Residuosity Class Problem
the computational problem Class|n]
given w € Z*,, g € B, compute [w],

n2’

D-Class[n]  the decisional problem associated to Class|n]
given w € Z',, g € B, x € Z,, decide whether [w], = x

DCRA Decisional Composite Residuosity Assumption
the hypothesis that CR[n| is intractable

D-PDLIn,g| the decisional problem associated to PDL[n, ¢]
given w € (g), g € B, © € Z,, decide whether [w], = x

PDLI[n, g Partial Discrete Logarithm Problem
gwen w € (g), g € B, compute [w],

RSA[n, €] the problem of extracting e-th roots mod n.
RSR Random Self Reducible
[w], n-th Residuosity Class of w with respect to g

the unique = € Z,, for which 3y € Z; s.t. £,(z,y) = w
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Introduction

Since the discovery of public-key cryptography by Diffie and Hellman in the
1970s, very few convincingly secure asymmetric schemes have been discovered,
despite considerable research efforts.

Two major species of trapdoor techniques are in use today. The first refers
to RSA and other variants. The technique conjugates the polynomial-time
root extraction of polynomials over finite fields with the intractability of fac-
toring large numbers. Another famous technique combines the homomorphic
properties of intractability of extracting discrete logarithms over finite groups.

However, very soon, a progressive emergence of a third class of trapdoor
techniques occurred. Those techniques were firstly identified as trapdoor in the
discrete logarithm, but they actually arise from the common algebraic setting
of high degree residuosity classes. That need led Paillier to introduce in 1999
a new trapdoor mechanism. By contrast to prime residuosity, his technique is
based on composite residuosity classes, i.e. of degree set to a hard-to-factor
number n = pq, where p and ¢ are large primes.

In this paper we describe thoroughly Paillier’s technique. Starting with
some notions such as one-wayness, we continue by discussing n-th residuosity
mod 7n? in order to examine computing composite residuosity classes. We define
the computational problem Composite Residuosity Class Problem (CRCP),
whose intractability will be our main assumption. We, then, introduce the
main probabilistic encryption scheme and later on its modification leading to
smaller decryption complexity. Both schemes are proven additively homomor-
phic on the encryption function and semantically secure under appropriate
intractability assumptions. Last, but not least, a trapdoor permutation is pre-
sented too. Our purpose is to approach the cryptosystem from the number
theoretic viewpoint.
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Chapter 1

Preliminaries

1.1 One-way functions

In cryptography, security is an essential matter. In order to enable it, we use
a type of functions called one-way functions.

Definition 1.1. A function f : {0,1}* — {0, 1}* is strong one-way or simply
one-way iff:

(i) f is polynomial time computable

(ii) for any probabilistic polynomial time algorithm A, the probability that
A successfully inverts f(z), for random = € {0,1}*, is negligible.

Consider a communication channel. Two people who want to communicate
through it should easily encrypt and decrypt, while for an intruder it must be
computationally intractable to decrypt without the secret key. In order for
this computational gap to exist, there must be a limit on the computational
capabilities of the intruder which also applies on the original users. Thus there
exists the assumption that any user can only perform probabilistic polynomial
time computations. For the same reasons it is essential that such a function is
hard to invert.

However, by being hard to invert, followingly decrypt, we do not mean
impossible. Such an assumption would be unrealistic as there is a small, but,
nevertheless, non-zero chance that if each time the intruder guesses the mes-
sage, the guess might be correct. Instead, we want that, under the use of any
probabilistic polynomial time algorithm, the probability the intruder decrypts
ciphertext ¢ = E(m), m random message and E the encryption function, is
negligible, even if he repeats the attacks a polynomial number of times.



Examples

Discrete Logarithm Problem (DLP)

Let p be prime, g a primitive root (mod p). We define
dexp : (L1, +) — Z,
T— g
which is well defined. Consider x7 = x5, then
Ty =xy (mod p) < ¢*' =¢™ (mod p).

The result depends on the class of x, not the representative. Whilst this
output is easy to compute since exponentiation mod p can be performed in
polynomial time, it is considered extremely hard to inversely compute x.

Factoring of the product of two large primes

Let p, g large primes randomly chosen. We define

mult : PxP — 7
(p,q) — pq

where [P is the set of prime numbers . This one is believed to be hard to invert.
Discrete Root Extraction Problem (RSA encryption)

Let n = pq, where p, q large primes, e € Z* with (e, p(n)) =1 and y € Z*
the message. We define

ey : Ly — 7,
Yy y°

RSA encryption is thought to be a strong one-way function as it relies on the

factoring of n in order to compute the message y using the Chinese Remainder
Theorem.

Other examples are:
Quadratic residue problem
Subset sum problem



Trapdoor Functions

A trapdoor function f is a one-way function with an extra property; there
exists a special information, called the “trapdoor”, that allows inversion of the
function when possessing it. It should be easy to compute f on any point,
but infeasible to invert it on any point without knowledge of the trapdoor.
Moreover, it should be easy to generate matched pairs of f and corresponding
trapdoor. Once a matched pair is generated, the publication of f should not
reveal anything about how to compute its inverse on any point. Trapdoor
functions are widely used in cryptography, yet it is hard to find one.

1.2 Reductions

As we will define and refer to some algorithmic problems, we need to set a
notion of algorithmic relation that will be used to connect two of them.

Definition 1.2. A computational problem A is polynomial-time reducible to
a computational problem B if there exists an algorithm A for solving problem
A that is allowed to make a polynomial (in the size of the input) number of
calls to an algorithm B for problem B.

The relation A <= B will denote that the problem A is polynomial reducible
to the problem B.

Definition 1.3. We will call two problems A and B equivalent if A <= B and
B < A.

Random-Self-Reducibility

Definition 1.4. Suppose f : A — B and A an algorithm that calculates f.
We call f random-self-reducible (RSR) if there exists a probabilistic algorithm
G:A— Ast. A(G(x)) = f(z) for an input x.

Random-self-reducibility can be used to show that a problem is as hard in
the average, as it is in the worst case. Problems with this property, such as
Factoring, DLP, RSA, are thought to be good candidates for one-way functions.
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1.3 Carmichael’s Lambda Function

Definition 1.5. Let n be a positive integer. We define as the Carmichael’s
Lambda function, A(n), the smallest positive integer m s.t.

a™=1 (modn), Vae{l,..n}, (a,n)=1

Proposition 1.1. We have that A(n) equals the exponent of the multiplicative

*

group Z, that is
A = A(n) =lem{ord,(a) : (a,n) = 1}.

Proof. Suppose Z;, = {a1,a, ..., ayn) } and we note

lem = lem(ord (a1), ord (ag), . . ., ord(agm)))-

We have that

a? =1 (mod n) af™ =1 (mod n)
a =1 (mod n) N as™ =1 (mod n)
ord (ag(n)) em

) “™7 =1 (mod n) agiy =1 (mod n)

Counsider there exists r < lem s.t.

Then
ord(ay) | r

ord(as) | r
= lem | r

ord(agm)) |

contradiction, so it must be lem the minimum number m s.t.
a™=1 (modn), YaeZ.

4



It follows that A = lem
O

Below they are compared the Carmichael function and Euler’s totient func-
tion for some values of n.

n |[1/2/3|4/56/7(8/9|1011|12|13 |14 15|16 |17 |18|19|20 21|22 23 |24 25 26 27 |28 29 30 31 32 33 34 35 36
A(n) |1|1|2|2|4|2|6|2|6|4|10|2 12| 6 |4|4 |16 6 (18| 4|6 |10 /22| 2 |20(12(18| 6 28| 4 |30|8 1016 (12| 6
p(n) |1|1]/2|2/4|2|6|4|6|4 (10| 4|12 6|8 |8 |16|6 (18| 8 |12/10|22|8 |20(12|18|12(28| 8 |30 16|20 |16 24|12

Figure 1.1: Comparison between Carmichael’s function and Euler’s totient
function

Proposition 1.2. For a,n € N, o < n, (a,n) = 1 the following hold:
(i) ordn(@) [ A(n)
(ii) If ™ = 1(modn), Ya, then A(n) | m
(iii) A(n) | ¢(n)
(iv) If a | b, then A(a) | A(b)
(v) Alem(a, b)) = lem(A(a), A(b))
(vi) A(2F) <22 fork # 3
Proof. (i) We have shown that
A(n) = lem{ord,(«) : (a,n) =1}

SO

ord,(a) | A(n), Va
(ii) Suppose that m = A(n)g+r, 0 <r < A(n)
a™ =1 (mod n) = o Matr I o =1 (mod n), Va
By definition we have that A is the smallest number m s.t.
a™=1 (modn), Va

so the above contradicts with the minimality of A(n), unless r = 0.
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(iii) From (ii) for m = ¢(n) we get

A(n) [ o(n)

For the rest of the properties suppose w € N, (w,lem(a, b)) = 1.

(iv) If a | b, then b =aq, q € Z, (a,q) = 1.
w'® =1 (mod b) = w*® =1 (mod a)

But A(a) is the smallest number that satisfies the last congruence, so it
must be A(a) | A\(b).

(v) On the one hand we have
wem(@?) =1 (mod lem(a, b))

and also

a | lem(a,b) = Aa) | Mlem(a, b))
b|lem(a,b) = A(b) | A(lem(a, b))

Which leads to
lem(A(a), A(B)) | Allem(a, b))
On the other hand,

lem(A(a), \(b)) = kX(a), k € Z or lem(A(a), A(D))

tA(b), teZ

And so,

wemA@AB) = 1 (mod a) = wimM@)A0) _ 1 = (mod a)
WA @AWD) = | (mod b) = wimA @A) _ 1 = (mod b)

From the above we have

WmA@A®) _ 1 =0 (mod lem(a,b)) =
W' A@AG) =1 (mod lem(a, b)) Sl
A(lem(a, b)) | lem(A(a), A(b))

The result follows.



(vi) An easy induction can show that for r > 3

o " =1 (mod 27) , for every o odd.

For r = 3 we get a®> =1 (mod 8) which is true. Suppose it holds for r,
that is o " =1+ k2", for some k € Z. We square the equality and we
get @ =14+ 2k +27k2 =1 (mod 27H).

Now by (ii) we get A\(27) | 2" 2.

Computing Carmichael’s Lambda function

Proposition 1.3. Let p prime. We have that,

Ap) = e(p") ,ifp>3orr<2
b= so(p") , ifp=2andr >3

Proof. We start by examining the different cases.
° p Z 3

Since p” is an odd prime power, there exists a primitive root g (mod p") s.t.

ordy,(g9) = ¢(@").

We have that

so it should be

ordy () | A(p") = ¢(p") | Mp").
But we know that A(p") | ¢(p"), so

. p:2

For r = 1,2 we can easily see that \(2") = ¢(2").
For r > 3 we get from property (ii) that A(2") | 22 and an easy induction
shows that

577 =142"" (mod 2").



This tells us that the order of 5 does not divide 2773, but it is a power of 2, so
it must be 2772,
This shows that

M2T) =22 = %¢(2T).

O

Now let’s consider the unique factorization of any n > 1 as n = pi*p...p*,
where p; < py < ... < p are primes and 71,79, ...,7; are positive integers.
Then,

A(n) = lem(A(pT'), A(ps*), -, AM(Di*))-

Proof. Now let n = pi'ph*...p.", where p; < py < ... < p; are primes and
T1,T2, ..., Ty are positive integers and m = lem(A(pi!), ..., A(py"))-

For each p; there exists a primitive root g; (mod p;’). We will use the Chinese
Remainder Theorem. Consider a map

6 . ZZ & Z*rl ® ® Z*rk
Py Py
gr— (glu 7gk)
We have that,

0(g™) = 0(9)" = (91, 96)™ = (97", 937) = (1,..., 1) = 6(1) =
g™ = 1(modn) = ord(g) | m, Vg € Z;, == X | m.

What is more, there exists g € Z st. ord(g) = Ap;'), Vpi. Then, by
definition of A\, we have that

A@i) T A, Vpi = lem(A(py'), -, A(pit)) | A = m | A
The result follows. O

1.4 Notations

From now on we set n = pgq, where p and ¢ are large primes s.t.

(p,g—1)=(p—-1,9 =1

It follows that,



pn)=(p-1)(g-1) and  A(n)=A=lam(p—1lg—1)

In particular,
(A\,n)=1

as (p,q—1)=(p—1,q) =1 . Furthermore,

A(n?) = lem(A(p?), M(¢?)) = lem(p(p — 1), q(q — 1))
=nlem(p—1,¢—1) =nA

We will work on Z,. It holds that

Z:2| = p(n®) = 0(0°¢*) = 0(0*)¢(¢*) = p(p — 1)glg — 1) = np(n)
and that for any w € Z?

n2

(mod n)

1
1 (mod n?)

——
g g
i >
Il

due to the Carmichael’s Lambda function. More specifically, w* = 1 (mod n)
from the definition of A and w™ = w ™) =1 (mod n?).

Finally, we denote the following sets we will also work on:
Z,=40,1,..n—1}

and
Zy={yeN|ged(y,n) =1,y <n}



Chapter 2

Deciding Composite Residuosity

We note that from now on we will use the assumptions introduced in the
previous section "Notations”.

We begin by briefly introducing composite degree residues as a natural
instance of higher degree residues and give some basic related facts. The
originality of the setting resides in using a square number as modulus.

Definition 2.1. A number z is said to be a n-th residue modulo n? if there
exists a number y € Z, s.t.

z=1y" (mod n?).

Proposition 2.1. For any y € Z, it holds that
y" =1 (mod n?) =y =1 (mod n).

Proof. If y» =1 (mod n?), then y" =1 (mod n).
Furthermore we know that

y» =1 (mod n)
But (A, n) =1, so there exist s, € Z s.t. 1 = s\ +tn, so

Y = ys)\-l-tn = ys)\ytn =1 (mod n)

Proposition 2.2. The n-th roots of unity are the numbers of the form

10



(1+n)*=1+kn (modn?), 0<k<n-—1

Proof. We have

y"=1 (modn?*)=y=1 (modn), y€Z
=y=14+kn, 0<k<n-1

On the other side,

i=0
=1+ <1>k‘n + ng(é 7;) k'n'=?)
=1 (mod n?
Furthermore
(1+n)k=3%gn’ =1+ kn (mod n?)
The result follows. O

Proposition 2.3. The set of n-th residues is a multiplicative subgroup of 7.,
of order p(n).

Proof. Suppose
z=9y" (modn?), y€Z..

Now consider an homomorphism 6 s.t.
g : ZZQ — Z:;z
yr—y"
The n-th residues are exactly the image of § and im(0) C Z7., thus the set of

n2s
n-th residues is a multiplicative subgroup of Z;,.
Now, by the First Isomorphism Theorem, we get that

: Lns : | Z7, |
im(6) ker 0 =~/ im(6) | | ker§ |’

where
ker ={y €ZH|y" =1 (mod n?},

in other words, the n-th roots of unity modulo n?.
We have already shown that they are numbers of the form

11



y=1+kn (modn?), 0<k<n-1
It remains to prove that for every value of k, we have a different result.
Suppose 0 < i< j<n-—1s.t.
1+in=1+jn (mod n?).
It follows that
i=j7 (modn),
that is
| ker 6 |= n.

So,

Proposition 2.4. Each n-th residue z has exactly n n-th roots.

Proof. We will use the previous homomorphism #. We have that im € is all the
n-th residues and we want to count all the y s.t. 0(y) = 2.
Let yo € Z; s.t.

0(yo) = 2.
We claim that
01 (2) = yo ker()
If y € yo ker(0), then
y =1yor , for some r € ker(d)
and

0(y) = 0(yor) = 0(yo)0(r) = O(yo) = z = yo ker() C 67" (=)
Now let y € 71(z), then
0(y) = 2=0(yo) = 0(y)0 (yo) =1 =0(yy; ") =1 = yy;* € ker(h)
=y = yor € yoker(d), for some r € ker(0)

= 071(2) C yoker()

Therefore,
|07 (2) |=] kex(6) |=n

12



Definition 2.2. We note as C'R[n] the problem of deciding n-th residuosity,
i.e. distinguishing n-th residues from the non-n-th residues.

CR[n] is RSR that is, all of the instances are polynomially equivalent. Each
case is thus an average one and the problem is either uniformly intractable or
uniformly polynomial. However,

Conjecture. There exists no polynomial time distinguisher for n-th residues

modulo n?, i.e. CR[n] is intractable.

Definition 2.3. The hypothesis that C'R[n] is intractable will be noted as
Decisional Composite Residuosity Assumption (DCRA).

Due to the RSR property its validity only depends on the choice of n.

13



Chapter 3

Computing Composite
Residuosity Classes

We now proceed to describe the number-theoretic framework underlying the
cryptosystems introduced later on.

Definition 3.1. Let g be some element of Z7,. We denote by &, the integer-
valued function defined by

ggZZnXZ:L—>Z:2
(z,y) — ¢*y"  (mod n®)

We denote by B, C Z, the set of elements of order na, o € {1, ..., \};

B, ={g9 € Z, | ord(g) = na}

and by B their disjoint union;

Depending on g, £ may feature some interesting properties.

Lemma 3.1. If the order of g is a non-zero multiple of n, then &, is bijective.

Proof. We have to show that £, is 1 — 1 and onto.
As | Z, x 2} |=| Z2 |= np(n), it suffices to show that £, is 1 — 1.
Let g € B, and (x1,y1), (x2,y2) € Z, X Z} be s.t.

g7y = g™y (mod n?)

14



We know that y; € Z7, so its invertible exists, then we have,

gl@21) <%> =1 (mod n? (3.1)
hn
and
o, yr € 25 =yt € 25 = (yayr m) = 1 (3.2)
= (yoyi s n?) = 1= poy ' € 25
It is known that
w* =1 (mod n)
, Yw € Z,*ﬂ (33)
w” =1 (mod n?)

So,
(31) = PE oy P =1 (mod n?)

(3:'3; AMei=22) =1 (mod n?

(3.2) B =1 ) (3.4)
= ord(g) | Mz — x2) = na | ANz — 2)
%n[xl—mgéa:l—xgzO (mod n)

This leads to

T1—T2 O=1 (mod n?)

Il
Q

It, then, follows that,

(3.1) = (%)n
- ()

Lermatls <@> =2 -1 (modn)
Theorem U U1

1 (mod n?)

1 (mod n)

We conclude that z; = x5 and y; = y», which means &, is 1 — 1, thus bijective.
O

Having defined the function &;, we now introduce an important notion
arising from &,.

15



Definition 3.2. Assume that g € B. For w € Z ., we call n-th residuosity
class of w with respect to the g the unique integer x € Z,, for which there exists
y € Z;s.t.

Ey(z,y) = w.

The class of w is denoted [w],.
It is worthwhile noticing the following property.

Lemma 3.2. Let w € Z}» and g € B. We have that
[w], = 0 if and only if w is a n-th residue modulo n*.
What is more,
Ywy,wy € Zyo,  [unws]y = [wi]y + [we], (mod n) (3.1)

that is, the class function w — [w], is a homomorphism from (Z%., x) to
(Zn,+), for any g € B.

Proof. Let w € Z), and g € B. As &, is bijective, we have that

[w], =0 &£,(0,y) =w & ¢°y" = w (modn?) < w = y" (modn?)
for some y € Z;.
Now we will prove that the function is an homomorphism.

Take wy,wy € Z» and x € Z, s.t. Juywy] = x. Then, for some y € Z* we
have,

E(x,y) = wwe = ¢°Y" = wywy (mod n?) (3.2)

But

wy = Ey(x1,11), for some (x1,y1) € Z, X 2
wy = Ey(T2,Y2), for some (x2,y2) € Z, X 2,

Which means

wy = ¢"ty?  (mod n2)

wy = ¢g"%yy  (mod n2)

16



Then,

(3.2),(3.3), (3.4) = ¢"y" = ¢"'y g™y = ¢" T (y12)"  (mod n?)

= g)\:cy)\n =

Ar

Ax1+z2) (

g y1y2))‘n (mod ”2)

=g @22 (mod n?)

= g)\x(l . g>\(331+a:2—1")) =0 (mod n2)
S/

9L o 1— gA(mH—acz—a:) =0 (mod n2)

- g)\(w1+mfx) =1 (mod n2)

= ord(g) | Mz1 + 22 — )

= na | Az + 22 — )

(An)=1

—> i ‘ I + To — X

=r=x+2y (modn)

= [wiws]y = [wi]y + [wa], (mod n)

Thus, w — [w], is a homomorphism.

Definition 3.3. We call the problem of computing the class function in base
g as the n-th Residuosity Class Problem of base g, denoted Class[n, g];

*

*2, compute [w], from w.

for a given w € Z
We now state the following useful observations.

Lemma 3.3. Class/n, g/ is RSR over w € Z».

Proof. We can easily transform any w € Z;, into a random instance w’ € Z,
with uniform distribution.
Take uniformly random (o, ) € Z,, x Z and let

w' = wg®B"  (mod n?).

17



After [w'], has been computed, one can recover

[wly = [w']y —a (mod n).

Lemma 3.4. Class [n, g/ is RSR over g € B, i.e.

Class[n, g1 = Classn, ga], Vg1,92 € B

Proof. Firstly we show that

Vw e Z;‘;z v 91,92 € B : Hw]]gl = [[w]]éh Hg2]]91 (mOd n)
Suppose [w]y, = z1, [w]y, = 22 and [gz2]5, = 212, then,

Ep(z1, 1) =w = w=g{'y! (mod n?)
x2 ,,m

Eg(T2,2) =w = w = g3%yy  (mod nz)

Eg (T12,y12) = g2 = g2 = g{%yly  (mod n?)
for some y1, y2, Y12 € Z;.

(3.3),(34) = w = gi*"y{3"ys  (mod n?)
B grryr = gremyiztys (mod n)
= 07" = gy " (mod n?)
= 9" = g™ (mod n?)
= \r1 = A9 (mod ord(g))
= A1y = A\r1909  (mod na)
(

= Ar1 = A\x1929  (mod n)

)=t r1 = T1222  (mod n)

= [wlg = [g2lg [w]y, (mod n)

18
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This yields to
lg1lg, = [[gg]]g_l1 (mod n) (3.5)

as

(3.1) = [w]g[91]g = [wlgal92]gi[91]g  (mod n)
= [[w]]gz = [[w]]gz [[92]]91 [[gl]]gz (mOd n)

= [92]g:[01]5. =1 (mod n)

Thus [gz]4, is invertible mod n.
Suppose that we are given an oracle for Class[n, g1]. Feeding go and w into the
oracle respectively, gives [gz2],, and [w],, and by straightforward deduction :

[[w]]gz = [[w]]zh [[gl]];gl (mOd n)
O

This Lemma essentially means that the complexity of Class[n, g| is inde-
pendant from g. This enables us to look upon it as a computational problem
which purely relies on n.

Definition 3.4. We call Composite Residuosity Class Problem (CRCP) the
computational problem Class[n] defined as follows:

given w € Z», and g € B, compute [w],.

We now proceed to find out which connections exist between the Composite
Residuosity Class Problem and standard number-theoretic problems.
Observe that the set

S,={u<n?|u=1 (modn)}

is a multiplicative subgroup of modulo n?. More specifically, S,, C Z*,. This
set is exactly the n-th roots of unity which are a subgroup of the n-th residues
modulo n? which are a multiplicative subgroup of Z*,.
Over §,, the function L s.t.
Vu €S, L(u) ==L

n

is well-defined.
That is because:
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(i) Let u € S,,, then n | L(u)

(ii) Yu e S, = L(u) € Z,

Lemma 3.5. For any w € Z},,
L(w* mod n?) = Mw]i4n, modn

Proof. We have that 1 +n € B.
(1+n,n%) =1

Suppose that ord(1 +n) =, then (1 +n)" =1 (mod n?).
We have, though, that the n-th roots of unity are the numbers of the form

(1+n)*=1+nz (mod n?).
From the above we have that
nr=0 (mod n?) =r=na, acZ
We also have that
r|en?) =na|npn)=alen)=pP-1)(G¢-1)=aec{l,.., A}

Sol+neB,CB.
As it follows, there exists a unique pair (¢,b) € Z,, X Z s.t.

w = (1+n)D" (mod n?)
and ¢ = Jw]y+n by definition. Then
w* = (1 +n)*b™ =1+ nle (mod n?)
which yields to

1+neh—1

L(w* mod n?) = L(1+ncA mod n?) =
n

= A= Nw]i4n (mod n)

d
Below they are presented two reductions related to our problem Class|n].

Theorem 3.6. Class|n| < Fact|n|

Proof. Let g € Z*,. By (3.5) we have that
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l9lis. =1 +n], (mod n)
It applies that
L(g* mod n?) = A\[g]14» mod n
From the above, we take that L(g* mod n?) is also invertible mod n.

Factoring n leads to the knowledge of A, therefore Vg € B, Yw € Z*

n?2»

L(w/\ mod n2) o )\[[’LU]]prn _ [[w]]1+n T o n
L(g* modn?)  A[glisn  [9]isn = [wl, d (3.1)

O

Theorem 3.7. Class[n] < RSA[n,n/.

Proof. Since all the instances of Class[n, g] are computationally equivalent for
g € Band 1+ n € B, it suffices to show that
Class[n,1+n] < RSA[n,n]
Supposing an oracle for RSA[n,n]. We know that
w= (1+n)%" (mod n?) for some (v,y) € Z, x Z*
Therefore we have
w =y" (mod n)

and we get y by giving w (mod n) to the oracle.

From the above we get
w
yn

which discloses = [w];4, as announced.

=(14+n)*=1+2an (mod n?)

O

Having set the computational approach of Class[n|, we now proceed to the
decisional one.

Definition 3.5. We define D-Class|n|, the decisional problem associated to
Class|n/,

i.e. given w € Z»,g € B and = € Z,, decide whether z = [w], or not.
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Theorem 3.8. CR[n| = D-Class[n] < Class|n].

Proof. As it is easier to verify a solution than to compute it, it applies that
D-Class[n] <= Class|n].
Now, let’s move to the left-side equivalence.
(=) Suppose we want to solve D-Class[n] for w € Z}», g € B, z € Z,,.
Let an oracle solving CR[n], that is, given z € Z*,, decide whether z is a n-th
residue or not. Now consider wg™® mod n? and submit it to the oracle.
In case of n-th residuosity we get from Lemma 3.2 that [wg~"], = 0, in other
words,

wg = &,(0,y), for some y € Z.

Then,

wg " =y" (mod n?) = w=g¢"y" (mod n?) = [u], =2z
and the answer to D-Class[n] is ”Yes”.
In the other case, the answer would be "No”.
(<) Suppose we want to check if w € Z}, is a n-th residue.
Let an oracle solving D-Class[n], that is, given w € Z*,, g € B, x € 2, decides
whether [w], = x. We, then, choose an arbitrary g € B, (1 + n will do) and
submit the triple (g, w,z = 0).
If the oracle responds "Yes”, then we have w = ¢°y" = y™ (mod n?) for some
y € Z; and w is an n-th residue.
In the other case we get the opposite.

0

To conclude, the computational hierarchy we have been looking for is
CR[n] = D-Class|n] < Class[n| <= RSA[n,n| < Fact[n]

with serious doubts concerning a potential equivalence, expected possibly be-
tween D-Class[n| and Class[n].

Now, our second intractability hypothesis will be to assume the hardness
of the CRCP by making the following conjecture.

Conjecture. There exists no probabilistic polynomial time algorithm that
solves CRCP i.e. Class[n] is intractable.
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Definition 3.6. The hypothesis that Class[n] is intractable is called the Com-
putational Composite Residuosity Assumption (CCRA).

As in the DCRA, the RSR implies that the validity of CCRA is only
conditioned by the choice of n.

Proposition 3.9. If DCRA is true, then CCRA is true as well.

Remark. However the converse still remains a challenging question.
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Chapter 4

A New Probabilistic Encryption
Scheme

Based on the CRCP, we now proceed to describe a public-key encryption
scheme. The methodology is to employ the function &, for encryption and the
polynomial reduction Class[n| < Fact[n| for decryption using the factoriza-
tion as a trapdoor.

Firstly set n = pq as usual and randomly select a base g € B. This can be
done efficiently by employing the following proposition.

*
n2»

Proposition 4.1. For g € Z*,, we have that g € B if and only if

ged (L(¢* mod n?),n) = 1. (4.1)

Proof. We know that an element ¢ forms a base if and only if ord,z(g) = na,
a € {1,...,A}. So we can paraphrase the proposition by

ord,2(g) = na < ged (L(g*  mod n?),n) = 1.

From now on we write ged (L(g* mod n?),n) as ged.
By definition of L, we have



(=) Take n | ord,2(g) and let gecd = p, then,

-1
=~ =pk, kel
n
=g¢* —1=pkn (mod n?)

=g¢*=1+pkn (mod n?)

This shows that

SO
)

n| Aq L= | ¢, contradiction.
Following the same procedure for ged = ¢, we are lead to n | p, also a contra-
diction, that is ged = 1.
(<) Consider ged = 1.
[gA]n2 -

n

Set =k, k<n and let d = ord,2(g), we take

P =14+kn (modn?) = ¢»*=(1+kn)? =1+pkn (mod n?).
It is n? { pkn, as in different case it must be
n? | pkn = n|pk=k=tq, 0<t<np.

But then it would be L(¢g* mod n?) = tq which means ged = ¢, contradiction
to our hypothesis.
So that is

g #1 (mod n?).

Likewise we have
g #1 (mod n?).
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We have previously shown that ¢’ =1 (mod n?), so
d| = n=rd, reN= \pg=rd.

If g1 d, then d | Ap, which is not possible, as ¢*” # 1 (mod n?), that is ¢ | d.
Equally p | d.
It follows that n | d.

L]

Now, consider
(n,g) — public key
(p,q) — private key

Remark. Using \ as a private key is equivalent to the pair (p, ¢) as its knowledge
leads to calculation of both primes.

The cryptosystem is illustrated in the scheme below called Scheme 1.

Encryption

Step 1: Chose plaintext m < n
Step 2: Select random r < n, (r,n) =1
Step 3: Calculate ciphertext ¢ = ¢g™r" (mod n?)

Decryption

Step 1: Receive ciphertext ¢ < n?
L(¢* mod n?)
L(g* mod n?)

Step 2: Retrieve plaintext m = mod n

Validation & Correctness of the Scheme The validity of the scheme is

based on eq. (3.1) as
L(¢* mod n) B B
m mod n = [[C]]g =m (mOd n),

which is the plaintext, by definition of &,(c).
We can easily see that the encryption function is a trapdoor function with
A as the trapdoor secret. Knowledge of A leads to knowledge of the factors of
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n, that is use of the factorization as a trapdoor, as mentioned earlier. One-
wayness lies on the computational problem discussed in the previous section.
More specifically,

Theorem 4.2. Scheme 1 is one-way iff the CCRA holds.

Proof. Inverting the encryption function we get by definition the C RC' P, thus
if Class|n| is intractable, the scheme is one-way.
O

We now introduce a notion of security that is extremely strong and refers
to our cryptosystems. When it is met, there is no point for an adversary to
eavesdrop the channel, regardless of what messages are being sent, of what he
already knows about the message, and of what goal he is trying to accomplish.

Definition 4.1. Let m given message, ¢ € C, where C a set of ciphertexts,
and E the encryption function. We call a cryptosystem semantically secure if
we cannot distinguish whether ¢ = E(m).

Specifically in our scheme, we have that, given message m < n, g € B
and ¢ € Z*,, we cannot decide whether ¢ = ¢™r™ (mod n?) for some r < n,

(ryn) =1.

Theorem 4.3. Scheme 1 is semantically secure iff the DCRA holds.

Proof. (=) Suppose the scheme is semantically secure but DCRA does not
hold.

Let m < n given message, ¢ € Z}» a ciphertext and g € B. Now consider an
oracle solving DCRA that takes n € N and z € Z}, as input and decides if z
is a n-th residue. We feed the oracle with cg™™ € Z,.

If the oracle answers "Yes”, then there exists y € Z7» s.t.

cg ™ =y" (modn?) = c=g"y" (mod n?)

that is ¢ is the ciphertext of m and the system is no longer semantically secure.
(<=) Suppose the scheme is not semantically secure, yet the DCRA holds.

Consider an oracle that given ¢ € Z7>, m < n and g € B has as output "Yes”
if ¢ = ¢g™y™ (mod n?) for some y € Z* and "No” in any other case. We now

feed 2g™ € Z;, to the oracle. If we get "Yes” as an answer, then we have
zg™ = g™y" (mod n®) = z=9y" (mod n?
that is z is a n-th residue, contradiction to the assumption that DCRA holds.
O
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Below we give a numerical example with small numbers in order to under-
stand better the procedures of the scheme.

Example Take p =5 and g = 7, suitable primes as
p—19 =47 =1
and
(¢—1,p)=(6,5) =1
That is n = 35 with
o(n) =24 and A(n) = lem(4,6) = 12.

We now need to find a base g € B, for some a € {1,...,12}.
Take g = 2. This will form a base iff

ged(L(g® mod n?),n) = 1.

We have
22 =421 (mod 357)
i 21 -1
L(2" mod 35%) = L(421) = 5 =12 (mod 35)
and

ged(12,35) = 1.

Now let’s consider m = 14 < 35 a message.
For the encryption, we randomly select r = 3 < 35, (3,35) = 1.
The ciphertext would be

c=g"r" (mod n?) = c=2"3% =538 (mod 35%).

For the decryption, we calculate L(¢* mod n?) as above, where

5382 =981 (mod 35?)

and we have 981 — 1
L(981) = ar =28 (mod 35).

To retrieve m we compute

L(c* mod n?)  L(5382 mod 35%) 28 .
= = —=28-127 .
L(¢g® mod n?) L(2'2 mod 352) 12 s (mod 35)
Let k < 35 s.t. 12k =1 (mod 35). We get k = 3, thus
L(538"2 mod 35%)

L(2"2 mod 35?)

=28.127'=28-3=14 (mod 35) = m = 14.
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Decryption complexity

In order for our scheme to be effective, we need to take into consideration the
computational time, principally that of decryption. The decryption function
includes computations of L and an inversion mod (n). Its complexity, though,
relies mainly on the calculation of the input of L which is of the form a™
(mod n?) for a,m,n € Z.

We will first show how to calculate that computational time. We write m
in binary:

m = by +2by + 2%y + -+ 20, b; € {0,1}, i € {0,...,k}
We then have

bi=1
_ —h— _9ok _9i
a™ = ara® .. g% = H a’

0<i<k

The algorithm of doing so is:

P+1
q+a
while m >0 do
b+ m mod 2
m < m div 2
if b==1 then
P+ Pq
end if
q ¢
end while

To compute its complexity we have to count the number of calculations and
their cost. In every loop of while, there are at most 2 complex calculations;
P = Pg and/or ¢ = ¢>. The amount of loops is the length of m in bits, that
is logm. The cost of calculations in Z; and Z?, is the following:

Z; + —logn
o —log’n

*
n2

+ — logn® =2logn
o — log?n? =2log’n

Our complex calculations take place in Z7, and from the above we have that
the total cost is
2logm2log® n = 41log mlog® n.
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If m and n are the same length, i.e. |m| = |n|, then the cost becomes
4log® n,

that is
O(log* n) = O(|n?).

The rest of calculations in Scheme 1 are negligible to the final result, so it
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