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Anthus: Index Shipping for LSM-based Key-Value
Stores Utilizing Hybrid Key-Value Placement

Abstract

Key-Value (KV) stores based on LSM tree have become a foundational layer in the
storage stack of Data Centers and Cloud Services. In state-of-the-art distributed
KV stores, the communication over the network is a severe performance bottle-
neck. Current designs reduce the network traffic by sending only user data across
nodes to achieve system reliability and availability. As a result, they perform costly
compaction operations to reorganize data in both primary and backup nodes. This
approach increases device I/O traffic and CPU overhead and eventually hurts over-
all system performance.

Initially, Tebis introduced the notion of Index-Shipping. Index-Shipping is an
efficient solution for two reasons: Firstly, Tebis uses RDMA thus reduces the net-
work overhead compared to traditional practices (TCP/IP) and secondly it reduces
resource consumption at the backup nodes by maintaining the replica index. How-
ever, Tebis utilizes KV separation. In case of small KV pairs, which dominate
modern workloads, this method is impractical because it heightens garbage collec-
tion costs resulting to increased I/O amplification.

In this work we introduce Anthus; an efficient replicated LSM-based KV store
which extends Tebis. In our implementation we utilize an Index-Shipping method
for KV stores that relies on hybrid KV placement instead of KV separation. Hybrid
KV placement is an emerging technique that reduces I/O amplification regardless
of the KV pair sizes. Our results show that our design increases throughput by
1.06�2.90⇥, CPU efficiency by up to 1.21�2.78⇥ and decreases I/O amplification
by 1.7� 3.27⇥ over baseline implementations. Also, Anthus increases throughput
by 1.06 � 1.95⇥, CPU efficiency by 1.14 � 1.8⇥ and minimizes I/O amplification
by 1.5� 1.87⇥ over Tebis.





Apostol† eurethr–ou gia sust†mata
Kleidio‘-Tim†c basismËna se LSM pou
qrhsimopoio‘n ubridik† topojËthsh

Kleidio‘-Tim†c

Per–lhyh

Ta sust†matà apoj†keushc Kleidio‘-Tim†c pou bas–zontai se dËntro LSM Ëqoun
g–nei Ëna basikÏ kommàti sto logismikÏ apoj†keushc dedomËnwn sta KËntra Dedo-
mËnwn kai twn Uphresi∏n NËfouc. Sta s‘gqrona katanemhmËna sust†matà apo-
j†keushc Kleidio‘-Tim†c, h epikoinwn–a mËsw tou dikt‘ou apotele– Ëna shmantikÏ
perioristikÏ paràgonta gia thn apÏdosh touc. Katà sunËpeia, oi trËqontec sqedia-
smo– mei∏noun thn k–nhsh sto d–ktuo, apostËllontac mÏno dedomËna qrhst∏n (user
data) metax‘ twn kÏmbwn, gia na epit‘qoun thn axiopist–a kai thn diajesimÏthta tou
sust†matoc. Wc apotËlesma, pragmatopoio‘n dapanhrËc leitourg–ec sump‘knwshc
(compaction operations) gia thn anadiàtaxh twn dedomËnwn sto s‘nolo twn kÏmbwn.
Aut† h prosËggish auxànei thn k–nhsh I/O, ton fÏrto tou epexergast†, kai telikà
ephreàzei arnhtikà thn sunolik† apÏdosh tou sust†matoc.
Arqikà, to Tebis eis†gage th Ënnoia tou Index-Shipping. To Index-Shipping e-

–nai mia apotelesmatik† l‘sh gia d‘o lÏgouc: Pr∏ton, to Tebis qrhsimopoie– RDMA
gia na mei∏sei to kÏstoc tou dikt‘ou se s‘gkrish me tic paradosiakËc praktikËc
(TCP/IP) kai de‘teron, mei∏nei thn katanàlwsh pÏrwn stouc ant–grafouc (backup)
kÏmbouc apostËllontac to euret†rio tou prwte‘ontoc (primary) kÏmbou. WstÏso,
to Tebis qrhsimopoie– thn teqnik† diaq∏rishc Kleidio‘-Tim†c (KV separation). Se
per–ptwseic fÏrtou ergasi∏n apotelo‘menwn apo zeugària Kleidio‘-Tim†c mikro‘
megËjouc, oi opo–ec kuriarqo‘n stic mËrec mac, aut† h mËjodoc e–nai anefàrmosth
epeid† auxànei to kÏstoc thc leitourg–ac anàkthshc q∏rou (garbage collection) o-
dhg∏ntac se auxhmËno I/O.
Se aut†n thn ergas–a parousiàzoume to Anthus, Ëna apodotikÏ katanemhmËno

s‘sthma apoj†keushc Kleidio‘-Tim†c, basismËno sto dËntro LSM, pou epekte–nei to
Tebis. Sthn ulopo–hs† mac qrhsimopoio‘me mia mËjodo Index-Shipping gia sust†ma-
ta Kleidio‘-Tim†c pou bas–zontai sthn ubridik† topojËthsh Kleidio‘-Tim†c (Hybrid
KV Separation) ant– gia thn mËjodo tou diaqwrismo‘ Kleidio‘-Tim†c (KV Separa-
tion). H ubridik† topojËthsh Kleidio‘-Tim†c apotele– mia apotelesmatik† teqnik†
kaj∏c mei∏nei to epiplËon I/O anexàrthta apÏ to mËgejoc twn zeugari∏n Kleidio‘-
Tim†c. Ta apotelËsmata mac de–qnoun Ïti o sqediasmÏc mac auxànei thn apÏdosh
katà 1.06� 2.90⇥, thn apotelesmatikÏthta tou epexergast† katà 1.21� 2.78⇥ kai
mei∏nei to epipleon I/O katà 1.7 � 3.27⇥ se s‘gkrish me tic trËqousec teqnikËc.
EpiplËon, sugkritikà me to Tebis, to Anthus auxànei thn apÏdosh katà 1.06�1.95⇥,
thn apotelesmatikÏthta tou epexergast† katà 1.14 � 1.8⇥ kai mei∏nei to epipleon
I/O katà 1.5� 1.87⇥.
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Chapter 1

Introduction

Key-Value (KV) stores are the heart of modern datacenter storage stacks [27,
24, 14, 12, 2]. These systems typically use an LSM tree [28] index structure be-
cause it achieves: 1) fast data ingestion capability for small and variable size data
items while maintaining good read and scan performance and 2) low space over-
head on the storage devices [15]. However, LSM-based KV stores suffer from high
compaction costs for reorganizing the multi-level index [26, 29], including both I/O
amplification and CPU overhead.

Furthermore, to provide reliability and availability, state-of-the-art KV stores [12,
24] replicate KV pairs in multiple, typically two or three [9], nodes. Current de-
signs [34, 24, 12] perform costly compactions to reorganize data in the primary and
backup nodes to ensure minimal network traffic by moving only user data across
nodes. However, this approach significantly increases read I/O traffic, CPU utiliza-
tion, and memory use at the backups. Since all nodes function simultaneously as
primaries and backups, this approach eventually hurts overall system performance.

To increase the data processing capacity given the exponential data growth [33]
and power restrictions, we need to design CPU-efficient KV stores. Toward this
goal, in this work, we rely on two observations in the datacenter: 1) the wide use
of flash devices (NVMe SSDs) and 2) the increased use of RDMA [36, 18]

Flash storage devices (NVMe SSDs) achieve hundreds of thousands of IOPs
per device and operate at their maximum throughput even with I/O sizes in the
order of tens of KB with adequate queue depths. Additionally, RDMA increases
available throughput at low CPU utilization making it viable to trade network
traffic for CPU and device I/O.

This work suggests Anthus, an efficient replicated LSM-based KV store which
extends Tebis [39]. To reduce compaction overhead at the backups, Anthus similar
to Tebis ships a pre-built index from the primary. This approach reduces read I/O
amplification, CPU overhead, and memory utilization in backup nodes. The main
challenge is an efficient rewrite mechanism of the index at the backup nodes: The
index received at the backups contains segment offsets of the device in the primary.
Anthus creates mappings between aligned primary and backup segments. Then, it

1



2 CHAPTER 1. INTRODUCTION

uses these mappings to rewrite device locations at the backups efficiently.
Anthus replicates KV pairs, using an efficient RDMA-based primary-backup

communication protocol that does not require the involvement of the backup CPUs
in communication operations [37]. In addition, to reduce CPU overhead for client-
server communication, Anthus uses one-sided RDMA write operations. The pro-
tocol of Anthus supports variable-size messages using a single round trip to reduce
the processing overhead at the server.

Each server in Anthus uses Parallax [41] LSM KV store to organize its data
efficiently. Parallax introduces a hybrid KV placement technique that reduces I/O
amplification in the following manner. It uses different KV placement strategies
for different KV pair sizes. Parallax stores small KV pairs in-place within each
LSM level. It uses a B+-tree index for each LSM level and stores small KV pairs
in its index leaves while it performs transfers from level to level as in LSM-type
approaches [17, 35].

For medium and large KV pairs, it purposefully introduces small and random
I/Os to reduce I/O amplification. It always places large KV pairs in a log with a
clear benefit in I/O amplification at low GC cost. For medium KV pairs, Parallax
uses a new technique: It places medium KV pairs in a log up to the last level and
then compacts the medium log to the last level, freeing the medium log. Given
that it frees the medium log when KV pairs are replaced in the LSM structure,
there is no GC overhead associated with the medium log. Therefore, medium KV
pairs combine most of the I/O amplification benefits with almost no GC overhead.
Using hybrid KV placement in multiple logs and in-place introduces challenges
with ordering and recovery. Parallax uses log sequence numbers to maintain the
ordering of keys within each region. In addition, Parallax offers crash consistency
and can recover to a previous (but not necessarily the last) write, discarding all
subsequent writes, as is typical in modern KV stores [17].

We evaluate Anthus using a modified version of the Yahoo Cloud Service Bench-
mark (YCSB) [13] that supports variable KV sizes for all YCSB workloads, similar
to Facebook’s [10] production workloads. Our results show that our index ship-
ping method requires 1.21 � 2.78⇥ fewer CPU cycles per operation compared to
a baseline implementation that performs compactions at the backups. Further-
more, it achieves 1.06 � 2.90⇥ higher throughput and reduces I/O amplification
by 1.7 � 3.27⇥. Overall, our technique of sending and rewriting a pre-built index
trades CPU, memory, and read I/O amplification for increased network traffic.

Our work extends Tebis as follows. We redesign the Tebis storage engine to use
hybrid KV placement [41, 25] instead of KV separation [29, 26, 30]. KV separation
of small KV pairs is impractical for operational environments because it heightens
garbage collection costs and thus increases I/O amplification, compared to LSM KV
stores that always store KV pairs in-place (RocksDB [17]). In contrast, hybrid KV
placement is a state-of-the-art technique that reduces I/O amplification regardless
of the KV pair sizes. Index shipping for hybrid KV placement poses the additional
challenge of managing and keeping consistent multiple logs at the replicas. Anthus
uses appropriate protocols between primary and backups to ensure correctness. In
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addition, we show that even though in hybrid KV placement, more data are sent
through the network because of small and medium KV pairs, CPU gains compared
to repeating the compaction process at the backups range between 1.21� 2.78⇥.

Furthermore, we implement a protocol for last write recovery that can handle
N-1 failures in a replica group, adding a small overhead in throughput up to 1.15⇥.
Our protocol relies on the efficient, in terms of CPU and latency, message delivery
of RDMA. Our protocol also incorporates the appropriate mechanisms to detect
torn writes at the backups. Finally, we implement a client-server protocol based on
TCP/IP and quantify the CPU gains for sending and receiving messages in Anthus
compared to RDMA.

The rest of this article is organized as follows: Section 2 provides background.
Section 3 presents our design and implementation of Anthus. Section 4 presents
our evaluation methodology and experimental results and Section 5 provides our
conclusions.

1.1 Contributions

This thesis suggests Index Shipping for LSM-based KV stores that utilize hybrid
KV placement. To achieve this, the author extends Tebis to support hybrid KV
placement by redesigning its storage engine. This required a complete system re-
implementation (referred to as Anthus throughout this work), as Tebis was closely
tied to its original storage engine. Specifically, to support hybrid KV placement,
Anthus introduces:

1. a new mechanism for replicating the value logs of its new storage engine.

2. an Index Shipping process to properly replicate and rewrite the index of the
primary.

3. a new Build-Index process in order to properly measure its overheads.

Moreover, the author designs and implements a protocol for last write recovery
that can handle N-1 failures in a replica group. The protocol relies on the efficient,
in terms of CPU and latency, message delivery of RDMA. Also, this work includes
the implementation of a client-server protocol based on TCP/IP, to quantify the
CPU gains for send/receive operations in Anthus compared to RDMA. Further-
more, the author modifies the I/O path of Parallax to maximize the I/O utilization
by exploiting the performance capabilities of both direct and memory-mapped I/O.

Finally, Anthus is evaluated through multiple configurations using a modified
version of the Yahoo Cloud Service Benchmark (YCSB). This modified benchmark
supports variable KV sizes for all YCSB workloads, emulating production work-
loads similar to Facebook [10].

Our results show that in all setups where Send-Index has the same L0 size with
Build-Index, Send-Index method of Anthus increases throughput by 1.06� 2.90⇥,
CPU efficiency by up to 1.21�2.78⇥ and decreases I/O amplification by 1.7�3.27⇥.
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Our approach increases network traffic by 1.32�3.76⇥, creating a trade-off between
network utilization and backup region servers resource use.

Compared to Tebis, in the same setups, Anthus increases throughput by 1.06�
1.95⇥, CPU efficiency by up to 1.14� 1.8⇥, decreases I/O amplification by 1.50�
1.87⇥, while it increases network utilization by 1.21� 2.06⇥.



Chapter 2

Background

2.1 LSM tree

The LSM tree is a write-optimized data structure commonly used in modern
database systems for storing and retrieving data. It organizes data into multiple
levels, with each level’s size growing by a constant growth factor, denoted as ’f’.
The first level, known as L0 or the memtable, resides in-memory and has a size
in the order of hundreds of megabytes. The subsequent levels are stored on the
underlying storage device.

In LSM tree implementations, different strategies exist for organizing data
across levels. In this work, we focus on leveled KV stores that organize each
level in non-overlapping ranges, which is also the most broadly used approach.

To minimize I/O amplification, which refers to the increase in I/O operations
compared to the number of writes the application expects, a growth factor of f
= 4 results in the minimum I/O amplification. However, production KV stores
often utilize larger growth factors, typically ranging from 8 to 12. While larger
growth factors increase overall I/O amplification, they reduce the number of lev-
els required. This level reduction leads to decreased space usage on the storage
device, particularly in scenarios with high update ratios, assuming intermediate
levels primarily contain update and delete operations.

One critical aspect of LSM trees is the compaction process, which manages
the merging and removal of redundant data across different levels. Compaction
is necessary to ensure efficient read performance and disk space utilization. The
compaction process is typically triggered when certain conditions are met, such
as when data size in a level exceeds a predefined threshold or when the system is
under low disk utilization.

During compaction, the LSM tree merges multiple sorted files from different
levels into a new file, eliminating redundant key-value pairs and creating a more
compact representation. The merged file is then written to the next level, replacing
the existing files. By compacting the data, the LSM tree reduces the number of
disk reads required during query processing.

5



6 CHAPTER 2. BACKGROUND

The frequency and strategy of compaction operations can vary across LSM
tree implementations and depend on factors such as system workload, storage con-
straints, and performance requirements. Some systems employ background com-
paction processes that run continuously or periodically in the background, while
others may use more aggressive strategies, to optimize performance and space uti-
lization.

2.1.1 The Notion of KV Separation

Current KV store designs [23, 26, 29, 11, 16] exploit the ability of fast stor-
age devices to operate at a high percentage (close to 80% [29]) of their maximum
read throughput under small and random I/Os to reduce I/O amplification. The
main techniques are KV separation [23, 26, 29, 11, 16, 4] and hybrid KV place-
ment [41, 25]. KV separation appends keys and values in a separate value log,
instead of storing values with the keys in the index. The index keeps metadata
to the corresponding value in the log. As a result, they only re-organize keys and
value pointers in the multi-level structure. This approach, depending on the KV-
pair sizes, reduces I/O amplification by up to 10x [5]. Hybrid KV placement [25, 41]
is a technique that extends KV separation and reduces garbage collection overhead,
especially for medium (� 100 B) and large (� 1000 B) KV pairs [10]. Hybrid KV
placement also places large KV pairs in a separate log, small KV pairs in-place
within each LSM tree level, and medium KV pairs in a separate value log until the
last, one or two, level(s) where it reclaims the medium value log.

2.2 Remote Direct Memory Access

RDMA (Remote Direct Memory Access) is a networking technology that en-
ables efficient data transfer between remote systems in a distributed computing
environment. RDMA allows one computer to directly access the memory of a re-
mote computer without involving the operating system at any host. This enables
zero-copy transfers, reducing latency and CPU overhead.

2.2.1 One-Sided RDMA Operations

One-sided RDMA operations, also known as remote memory operations, allow
a process on one system to directly access the memory of another system without
involving the remote host’s CPU. These operations enable efficient data transfer
by bypassing the need for traditional message passing or remote procedure calls.

In one-sided RDMA, a process initiates a memory operation by specifying the
remote memory address and the local data buffer. The data is transferred directly
from the local buffer to the remote memory, without any involvement of the remote
host’s CPU. This approach minimizes the overhead of data movement and provides
high throughput and low latency.
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2.2.2 Two-Sided RDMA Operations

Two-sided RDMA operations involve communication between two processes,
where both processes actively participate in the data transfer. Unlike one-sided
RDMA operations, two-sided operations require coordination between the sender
and receiver processes.

In a two-sided RDMA operation, the sender process initiates the operation by
posting a work request that includes the remote memory address and the data
buffer. The receiver process, upon receiving the request, validates the request and
performs the necessary operations on its side, such as reading or writing data. The
sender process is then notified about the completion of the operation.

Two-sided RDMA operations are commonly used in message passing paradigms,
where explicit coordination between sender and receiver processes is required.
These operations allow for more flexibility in terms of control and synchroniza-
tion compared to one-sided operations.

2.2.3 Reliable Connections

Reliable Connections(RC) is one of the transport protocols provided by RDMA
networks. Reliable Connections offer several important features that ensure reliable
and ordered data transfer between endpoints. One of these features is the FIFO
ordering of messages. When multiple messages are sent over a Reliable Connection,
they are guaranteed to be delivered in the same order they were sent. In addition to
message ordering, using Reliable Connections also guarantees that RDMA writes
are applied in increasing address order (e.g., if the last byte of a message is written
in-memory, then it is guaranteed that the whole message is written).

These features of Reliable Connections provide strong guarantees for data in-
tegrity and ordering, making them particularly valuable for applications that re-
quire precise control over data consistency and reliability.

2.3 Tebis

2.3.1 Overview

Tebis partitions the key-value space into non-overlapping key ranges, named
regions. Tebis assigns each region to multiple servers with either the primary or
backup role. Each region stores and organizes data in an LSM tree with KV
separation. Tebis consists of three main entities (Figure 2.1):

1. Tebis region servers, which host the regions with either a primary or backup
role.

2. The master which orchestrates the recovery process in case of failures and
performs load balancing operations.
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Figure 2.1: Tebis overview.

3. Zookeeper [20] stores information about the metadata of each region. Zookeeper
is not in the common path of client operations in Tebis since changes in re-
gions are triggered either by membership changes due to failures or load
balancing operations. Furthermore, the master of Tebis uses the member-
ship service of Zookeeper to detect changes in server status (join or fail) and
trigger appropriate action.

2.3.2 Value Log Replication

When Tebis receives updates and inserts from clients, the primary server repli-
cates each operation to its set of backup servers in three steps (Figure 2.2). First,
it inserts the key-value pair in Kreon, which returns the offset of the pair in the
value log tail segment. Then, it appends(via an RDMA-write operation) the key-
value pair to the RDMA buffer of each backup server at the corresponding offset.
Tebis waits for acknowledgment that all the RDMA write operations have been
replicated in the memory of the backup servers. Tebis uses the work completion
events of reliable queue pairs [36].

Persisting the tail segment involves the CPU of both the primary and backup
servers. When the tail segment of the log in the primary server becomes full, it
flushes the segment to persistent storage and sends a flush tail message to each
backup server to persist their RDMA buffer. Upon receiving the flush request, the
backup servers write their corresponding RDMA buffer to persistent storage and
send an acknowledgment to the primary server.

Each backup region maintains a log map that specifies the location of each
segment on the storage device in both the primary and backup servers. The log
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Figure 2.2: Tebis log replication.

map has a small memory footprint and is updated when a primary server changes
due to a failure or load balance operation.

2.3.3 Index Shipping in Tebis

In this Send-Index method, when Li becomes full, the primary region executes
the compaction process of Li and Li+1 and sends the resulting index L0

i+1 to the
backup regions. Backup regions do not need to keep an in-memory L0. L0 is used
to amortize I/O cost during compaction with L1 by keeping KV pairs sorted in-
memory. For L0 to L1 compactions, backup regions do not need to read L0 and
L1, instead, they receive and rewrite the primary L0

1 index.
In Tebis, the main device structures are the value log and the B+ tree indexes

of the levels. Tebis stores both the value log and the B+ tree indexes as a list of
fixed segments. Similar to log segments, each segment is 2 MB and its starting
device offset is segment aligned. During rewriting, Tebis replaces the high order
bits of the primary segment with the new segment number in the backup device.

The index of a region (Figure 2.3) consists of leaf and index nodes. For each
KV pair, leaf nodes contain a key prefix, which reduces I/O operations to the value
log [29], and a device offset which points to the device location of the KV pair
in the value log. Index nodes store variable size pivot keys and pointers to device
locations of their successor, index or leaf, nodes. Backups need to rewrite the device
offset of KV pairs in leaf nodes and index nodes (dashed arrows in Figure 2.3).

Backups keep track of two mappings for segments: the log map and the index
map. The index map is updated dynamically during the Send-Index method and it
is valid only during compaction from Li to Li+1. During compaction, the primary
builds its index bottom-up and left to right. As a result, the primary can send the
new index incrementally as it is being build, segment by segment.

After producing an index segment for L0
i+1, the primary sends it to its backups.

The backup region allocates a new local segment and adds a new entry to its index
map. Then, it parses and rewrites the index segment by modifying device offsets
for all pivot (index nodes) and KV pairs (leaf nodes).

Finally, on compaction completion, the primary sends the offset of the root
node in L0

i+1, which is the entry point of the index, to each backup. Then, each
backup translates to the root offset of its storage space using its index map.
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Figure 2.3: Tebis index shipping.

2.3.4 Failure Detection and Recovery

Tebis uses the ephemeral nodes mechanism of Zookeeper to detect failures.
Zookeeper automatically deletes an ephemeral node when the node stops respond-
ing to heartbeats. Every region server creates and registers an ephemeral node
with its host-name during initialization.

Tebis has to handle three distinct failure cases: 1) backup failure, 2) primary
failure, and 3) master failure. Since each region server is part of multiple region
groups, a single node failure results in numerous primary and backup failures, which
the master handles concurrently.

In case of a backup failure, the master replaces the crashed region server with
a new node that is not already part of the region. In this case, the new node has
backup role and the master instructs the rest of the region servers in the group to
transfer their region data to the new backup. The region experiencing the backup
failure will remain available throughout the whole process since its primary is
unaffected.

In case of a primary failure, the master first promotes one of the existing
backups in the region group to the primary role and updates the region map. The
new primary already has a complete KV log and an index for levels Li, where
i � 1. The new primary region server replays the last few segments of its value log
to construct L0 in its memory before starting to serve client requests. The L0 size
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Figure 2.4: Overview of index and log design for levels L1 to Ln�1 in Parallax.
Levels L0 and Ln always store medium values in-place.

that Tebis has to replay is in the order of tens or hundreds of MB. When the new
primary region server is ready, the master handles this failure as a backup failure.
During primary reconstruction, Tebis cannot serve client requests for the affected
region.

When the master fails, Zookeeper notifies the rest of the region servers through
the ephemeral node mechanism. Then, the region servers use Zookeeper to elect
a new master. During downtime, Tebis can serve requests from existing primaries
but will not handle any additional failure. If a primary or backup region fails, the
respective region become unavailable until a new master is elected and it handle
the primary or backup failure as before.

2.4 Parallax

Parallax [41] is a leveled, LSM KV store that offers a dictionary API (insert,
delete, update, get, scan) for variable size KV pairs. KV pairs are organized in
non-overlapping ranges, called regions. Each level in a region uses a concurrent
B+-tree index [7, 6, 35, 29] and the region as a whole uses three logs: L0 recovery
log, medium log, and large log. Figure 2.4 shows an overview of Parallax. All
KV logical structures consist of fixed size segments on the device (Figure 2.5).
Currently, Parallax uses 2 MB segments.



12 CHAPTER 2. BACKGROUND

Per region 
Superblocks

... SN-1 SN

Allocator 
Superblock

S1

Ownership 
Registries

Segments4 KB 4 KB / region 64 KB / TB

Figure 2.5: Device layout used by Parallax and its allocator. A segment may belong
to the large, medium, L0 recovery, or region allocation log, or to a level index.

The B+-tree index for each level consists of two types of nodes: index and leaf
nodes. Index nodes store pivots (full keys), whereas leaf nodes store either (a) the
pair <key, pointer> to the KV location or (b) the actual <key, value> pair. Index
and leaf nodes have a configurable size. We set their size to 8 KB which leads to
better performance as we have seen experimentally.

When a KV pair is placed in a log, Parallax stores in the index leaf the key and
a pointer to the KV pair. To store a variable number of KV pairs with variable size
in leaves, we use two dynamically growing segments, the slot array and the data
segment [11, 24]. The slot array is a small array with 4 B cells that grows from left
to right. We reserve the three high-order bits of each cell to store the KV category.
The rest of the bits contain an offset inside the leaf with the location of the actual
data. The data segment is an append only buffer that contains either pointers to
the log or the in-place KV pairs themselves, and grows from right to left. When
the slot array and the data segment meet, the leaf becomes full. Update operations
append the new value to the data segment and update the slot array.

Get operations examine hierarchically all levels from L0 to Ln and return the
first occurrence. Similar to other KV stores, Parallax uses bloom filters per level
to reduce I/Os during lookup operations. Scan operations create one scanner per
level and use the index to fetch keys in sorted order. They combine the results of
each level to provide a global sorted view of the keys. Delete operations mark keys
with a tombstone and defer the delete operation similar to RocksDB [17], freeing
up space at the next compaction. Update operations are similar to a combined
insert and delete. Finally, insert operations write each KV pair in L0, similar to
all LSM KV stores. At each insert operation, the KV pair is categorized as small,
medium, or large derived from its KV size. Based on the category, Parallax uses
its hybrid strategy for placement, as we discuss next.

2.4.1 Handling Small KV Pairs

Parallax stores small KV pairs in-place in the B+-tree leaves and moves them
from level to level with regular compactions. Parallax compacts level Li to Li+1 in
a bottom-up fashion: It merges the sorted leaves of levels Li and Li+1 and builds
the B+-tree index for L0

i+1. In this manner, leaves are always full and compactions
require fewer CPU cycles because they avoid index traversals.
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2.4.2 Handling Large KV Pairs via GC

For large KV pairs, Parallax always performs KV separation [16, 26, 29, 11]:
It places large KV pairs in the large log, maintains and compacts pointers in the
index from level to level, and uses GC to reclaim space, as follows.

First, Parallax avoids full scans in the large log. For this purpose, it stores in
a recoverable map per region, named GC map, information about the space used
by invalid KV pairs in each segment as a pair <segment, invalid-byte-count>. We
represent segments with their 8-byte device offset and use an 8-byte invalid-bytes
counter per segment. Each compaction thread updates a private GC map when
it discovers a deleted or updated large KV pair. At the end of the compaction, it
atomically updates the GC map of the region with the contents of its private GC
map. Parallax logs and commits in a batch these updates in a per-region operation
log to be recoverable after failures. Although this operation incurs overhead, it
is only required for large KV pairs and eliminates the need for full log scans. In
addition, reads to the GC map are always served in-memory because the GC region
is small and fits in-memory, e.g., 8 MB for a 1 TB device with 2 MB segments.

Then, Parallax reclaims segments with invalid KV pairs. It places segments
that exceed a pre-configured threshold (10%) in an eligibility list. If there are no
such segments and there is capacity pressure, it considers all segments in the GC
region eligible. Parallax uses a dedicated GC thread to scan eligible segments. It
iterates over all KV pairs for each segment and uses lookup operations to identify
valid KV pairs and append them to the large log. After all valid KV pairs are
appended, it reclaims the segment.

2.4.3 Handling Medium KV Pairs

For medium KV pairs, Parallax uses a hybrid technique: It performs KV sep-
aration for all levels except the last one or two levels by placing medium KV pairs
in the medium log. As a result, it defers compaction of medium values up to the
last few levels. At the last level(s), e.g. Ln, it moves medium KV pairs in-place,
similar to small KV pairs. Once medium values are moved in-place, Parallax can
reclaim the medium log segments without needing expensive GC. Placing medium
KV pairs in a log and deferring their compaction raises two questions: (a) What
is the size of the medium log and the associated space amplification? (b) How can
we efficiently merge the medium log back into the LSM structure?

Efficient merging of the medium log: The compaction process in LSM tree [28]
requires inserting keys from Li to Li+1 in sorted order to amortize I/O costs. Oth-
erwise, this process will result in excessive data transfers. When Parallax merges
medium KV pairs from the log in-place, e.g. in level N, the index of level N-1 al-
ready contains sorted pointers to the KV pairs of the medium log. However, a full
scan of an unsorted medium log will cause a significant penalty in traffic: Medium
KV pairs in the order of hundreds of bytes will result in 4 KB I/O operations, i.e.
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up to 40x traffic for 100 B KV pairs.
To overcome this cost, Parallax maintains sorted segments in the medium log.

To achieve this, Parallax uses L0 and its recovery log as follows. Initially, it inserts
medium KV pairs in-place in L0 (in-memory), and it also appends them to the L0

recovery log, along with small KV pairs for recovery purposes. During compaction
from L0 to L1, it uses the L0 index to store medium KV pairs in the medium log
as a sorted run of segments, and it stores pointers in the L1 index. Merging the
medium log in-place requires at most one segment from each sorted run of segments
in the medium log.

One concern for merging the medium KV pair log in-place is the amount of
buffering required in-memory for the sorted runs, during the merge operation.
Assuming only inserts of distinct keys, medium KV pairs, and a device capacity of
about 10 TB, the medium log at Ln�1 is about 1 TB with a growth factor of 10.
If L0 is 64 MB, there are about 16 K sorted runs for medium KV pairs in a 1 TB
Ln�1 medium log. Given that fast storage devices, such as SSDs, operate at peak
throughput with I/Os of tens or hundreds of KB, we need only to fetch in memory,
e.g. a 64 KB chunk for each sorted run of the medium log. As a result, we need at
most 1 GB memory for buffering purposes, when merging at Ln�1. If medium KV
pairs are merged at Ln�2, then we only require about 100 MB of buffering.

In the presence of updates, the maximum size for the medium log can exceed
the above calculation. In case updates occur to different keys, e.g. each key is
updated once, then the medium log size will remain manageable. In case updates
occur to a small set of keys, then the size of the medium log can become excessive.
In this case, when the medium log exceeds a threshold, Parallax merges medium
KV pairs in place earlier and reclaims the medium log. Essentially, the percentage
and type of updates affect how late or early the medium log will be merged in-place.

Finally, during the compaction that merges medium KV pairs in-place, e.g.
at Ln, the size of Ln�1 and Ln needs to be calculated based on their number of
bytes rather than the number of keys to satisfy the growth factor and maintain the
properties of the LSM tree.

2.4.4 Recovery

Recovery in Parallax relies on value logs. In addition to the medium and large
logs, for recovery purposes, Parallax uses the L0 recovery log as a temporary log
for small KV pairs (Figure 2.4). Conceptually, Parallax places each KV pair in the
respective log. After a failure, Parallax can recover all KV pairs by replaying the
logs.

Parallax always places large KV pairs directly in the large log upon insert,
where they remain for their lifetime. We place small KV pairs in the L0 recovery
log and write them in-place in L0. When Parallax compacts L0 in L1, it can fully
reclaim the L0 recovery log. Parallax could place medium KV pairs directly in the
medium log. However, this would require more I/O traffic to sort medium long
runs. For this reason, it initially inserts medium KV pairs in-place in L0. When
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compacting L0, it also sorts medium KV pairs and places them in the medium log
as a sorted run. To ensure medium KV pairs are recoverable while they live in L0,
Parallax also writes them to the L0 recovery log. Medium KV pairs do not affect
reclaiming the L0 recovery log, which still occurs after L0 compactions.

Parallax needs to maintain-order across the large and L0 recovery logs (but not
the medium log) and handle cases with KV pairs that change the category after an
update. For this reason, it uses region 8-byte Log Sequence Numbers (LSNs). Each
appended KV pair has an LSN, which we increment atomically before appending.
During region recovery, Parallax replays each log entry of the two logs with the
correct order, as indicated by their LSN number.

Finally, like other KV stores [21], Parallax acknowledge writes as soon as they
are written in-memory. KV pairs are recoverable after a group commit operation
that flushes the log tail asynchronously to the device, currently in chunks of 256 KB
for I/O purposes. Therefore, Parallax can recover to a previous consistent point,
which may not include the last (acknowledged) write(s). Most KV stores (and
Parallax) can be configured to acknowledge writes after they are written to the
device or to perform more frequent flush operations, but these are not commonly
used as they increase acknowledgment delay or I/O overhead.

2.4.5 Direct and Memory-Mapped I/O

Parallax carefully utilizes two I/O paths, direct I/O via system calls and memory-
mapped I/O. Parallax performs device I/O on the following occasions:

1. During compactions (Section 2.1), Parallax reads the source and destination
level and writes the new level by issuing large, full-segment (2MB).

2. Large reads of full log segments (2 MB) during garbage collection.

3. Large writes of log chunks (256 KB) at log flushes.

4. Small (B-KB) reads and writes for region metadata.

5. Small, random reads of the index and leaf nodes (B KB) and log pages (B-
KB) during get, scan operations.

Parallax uses direct I/O for all cases except 1) the GC operation, 2) the compaction
of the medium-log to the last level, and 3) the get and scan operations. Parallax
uses direct I/O because (a) it is more efficient for large I/Os, (b) it allows explicit
control of the allocator state in the device for recovery purposes, and (c) it avoids
pollution of the read cache with data that need not reside in-memory. Although
memory-mapped I/O is suitable for get and scan operations as it eliminates system
calls and data copies, its usage in the GC and the compaction of the medium-log
operations can result in significant system overheads.
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2.5 ZooKeeper

ZooKeeper is a distributed coordination service that plays a crucial role in
building reliable and highly available distributed systems. At its core, ZooKeeper
is designed to solve the challenges associated with coordinating distributed sys-
tems. In a distributed environment, it is essential to ensure that multiple nodes or
processes work together in a consistent and coordinated manner. This coordina-
tion includes tasks such as leader election, configuration management, distributed
locking, and synchronization.

One of the key features of ZooKeeper is its simplicity. It offers a file system-
like hierarchical namespace, where each node in the hierarchy is called a "znode."
These znodes can store small amounts of data, typically a few kilobytes, and are
accessed using unique paths. ZooKeeper provides APIs that allow applications to
create, read, update, and delete znodes, as well as watch for changes on specific
znodes.

Except from data storage, ZooKeeper provides several powerful primitives to fa-
cilitate coordination among distributed processes. It offers sequential and ephemeral
znodes, enabling ordered access and temporary presence, respectively. Addition-
ally, ZooKeeper supports watches, allowing applications to receive notifications
when the state of a znode changes. This event-driven model enables efficient and
reactive coordination between distributed components.

ZooKeeper’s architecture follows a server-client model. A set of ZooKeeper
servers form a quorum to provide high availability and fault tolerance. Clients
connect to any server in the ensemble, which then handles requests and coordinates
with other servers to ensure data consistency. ZooKeeper employs a consensus pro-
tocol to maintain consistency across servers, ensuring that all updates are applied
in the same order and clients observe a linear view of the system’s state.
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Implementation

3.1 Anthus

3.1.1 Overview

Anthus, partitions the key-value space into non-overlapping key ranges, named
regions. Anthus assigns each region to multiple servers with either the primary or
backup role. Each region stores and organizes data in an LSM tree with hybrid KV
placement. Anthus consists of three main entities:

1. Anthus region servers, which host the regions with either a primary or backup
role.

2. The master which orchestrates the recovery process in case of failures and
performs load balancing operations. The master reads the region map during
initialization and issues open region commands to each primary region server
of each region in the Tebis cluster.

3. Zookeeper [20] stores information about the metadata of each region. Zookeeper
is not in the common path of client operations in Anthus since changes in
regions are triggered either by membership changes due to failures or load
balancing operations. Furthermore, the master of Anthus uses the member-
ship service of Zookeeper to detect changes in server status (join or fail) and
trigger appropriate action. Anthus can make use of similar systems [1, 31, 40]
that provide strongly consistent metadata replication and notifications ser-
vices.

During initialization, clients read and cache the region map. The region map
size is small and in the order of hundreds of KB. Changes to the region map incur
only after a failure or load balancing operation. Prior to each KV operation, clients
look up their local copy of the region map to determine the primary region server
where they should send their request. When a client issues a KV operation to a
region server that is not currently responsible for the corresponding range due to

17
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Figure 3.1: The three scenarios that can happen when a primary crashes while
writing a KV pair to its backup nodes.

a system reconfiguration, the region server instructs the client to update its region
map.

3.1.2 Primary-Backup Value Log Replication

3.1.2.1 Replication Mechanism in Anthus 1○

In Anthus, similar to Tebis, the log replication occurs without involving the
CPU of the backup servers, thanks to the exclusive use of RDMA-write opera-
tions for communication. Whenever the primary node receives updates, inserts,
or deletes from clients, it replicates each operation to its set of backup servers.
Both primary and backup nodes in Anthus maintain in-memory buffers, which
temporarily store the KV pairs that require replication.

Upon applying an operation at the primary, Tebis performs out-of-order repli-
cation. Each worker thread appends (via an RDMA-write operation) the corre-
sponding KV pair to the remote memory of backups concurrently, and atomically
alters the metadata related to buffer fullness. However, we believe out-of-order
replication should be replaced with in-order replication based on two observations.
Firstly, as shown in Section 4.3.7, the performance benefits of out-of-order repli-
cation are minimal. Secondly, out-of-order replication cannot provide last-write
(group commit) guarantees in the event of a primary crash. When relying on out-
of-order replication, Tebis cannot determine which KV pairs are live in the remote
memory buffers of its backup servers, making it unable to provide reliable last-write
guarantees by design.



3.1. ANTHUS 19

This work introduces in-order replication in Anthus. To achieve this, when a
primary node detects a new operation (update, insert or delete), it inserts the KV
pair in Parallax, categorizing the KV pair according to its KV size: Small, medium,
or large. It then assigns a log sequence number (LSN) to the KV pair and appends
it to L0 recovery or big log for recovery purposes. Then, it appends the KV pair
to the corresponding (big or L0 recovery) RDMA buffer of each backup at the
corresponding offset, ensuring that the replication requests occur with increasing
order to the LSNs.

3.1.2.2 Replication Acknowledgement 2○

When using Anthus, it is important to determine when to acknowledge client
operations. In this work, we focus on two possible scenarios. The primary can
choose to (1) respond to client requests after initiating asynchronous RDMA write
operations to all of its backups. Alternatively, it can (2) respond to clients once it
receives completion signals from the remote NICs, indicating that the KV pair has
been successfully stored in the backups’ memory.

Each solution carries specific implications, particularly in recovery scenarios.
In the first case, if a primary crash occurs, the system can recover to a previous
consistent point, but it may not include the last acknowledged write(s). On the
other hand, in the second case, the system can recover from the last acknowledged
write, as the primary awaits acknowledgments from remote NICs before responding
to clients.

In our work, we have designed Anthus to support both (last-flush recovery)
and (b) last-write recovery from the memory of the backups. In the first case,
the primary responds to client requests only after initiating asynchronous RDMA
write operations to all its backups, thus enabling Tebis to recover from the last
persistent flush request. In the second case, we have developed a protocol for last-
write recovery capable of handling up to N-1 failures in a replica group. Section 3.2
provides a detailed description of this protocol.

3.1.2.3 A Working Paradigm: Value Log Replication

Here, we combine the mechanisms above and describe their operation and in-
teraction. For this purpose, we illustrate an operation paradigm in Figure 3.1.
When Anthus receives updates, inserts, and deletes from clients, the primary repli-
cates each operation to its backup servers in four steps. As discussed in 1○, the
log replication occurs without involving the CPU of the backup servers. Anthus
inserts the KV pair in Parallax, categorizing the KV pair according to its KV size.
Then, it appends in an increasing LSN order, the KV pair to the corresponding
(big or L0 recovery) RDMA buffer of each backup at the corresponding offset(step
1 in Figure 3.1).

On the other hand, persisting the tail segment involves the CPU of both the
primary and backups. When the tail segment of either big or L0 recovery log in the



20 CHAPTER 3. IMPLEMENTATION

primary becomes full, the primary flushes the segment to persistent storage and
sends a flush tail message to each backup to persist both RDMA buffers (step 2 in
Figure 3.1). Upon receiving a flush request, backups write their RDMA buffers to
persistent storage. Finally, they send an acknowledgment to the primary (step 4
in Figure 3.1).

As discussed in 2○, Anthus can support either a) last-write recovery or b) last-
flush recovery. In the first case, the primary responds to clients after it has received
completion from the remote NICs, while in the second case, the primary responds
after issuing the RDMA-write operation to all of its backups.

Each backup region maintains a log map with entries <primary segment num-
ber, backup segment number>, specifying the location of each big and medium
log segment on the storage device in the primary and the backup. Backups use
these to rewrite the primary pointers in the Send-Index method, as described in
Section 3.3.1. The log map has a small memory footprint in the order of MB. Each
entry in the map is 16 B, and a value log of 1 TB with a segment size of 2 MB
requires a log map of 8 MB.

For this purpose, the primary piggybacks the flush message with the tail seg-
ment numbers in its storage device. Backup servers, after persisting their value log
tail segments, use this information to create the corresponding entries in their log
map (step 3 in Figure 3.1). Note that the log map in the backups is valid until a
primary changes due to a failure or load balance operation. In these cases, Anthus
promotes a backup as the new primary, and the rest of the backups need to update
their log map. This procedure is also an in-memory operation without requiring
I/O. The new primary sends its log map to the rest of the backups. The backups
iterate over the map and replace the segment numbers of the previous with the
segment numbers of the new primary.

3.1.2.4 Medium Value Log Replication

Parallax uses a hybrid KV placement strategy that involves three logs: the L0

recovery log, the big log, and the medium log. Initially, medium KV pairs are
inserted in-place into L0. During the compaction of L0, medium KV pairs are
placed in the medium log as a sorted run (Section 2.4). This poses the problem
that the value log replication of Anthus alone is insufficient, as it does not replicate
the medium log. Anthus achieves to replicate its medium log as follows:

During an L0 to L1 compaction, the primary instructs the backup nodes to
create and register a dedicated memory region explicitly for receiving the context
of the medium log segments. Once a compaction operation fills a medium log
segment, the primary performs the following steps before flushing the segment to
the device:

1. The primary writes the context of the segment to the remote memory region
of its backups.
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2. It sends a flush-segment message to all its backups, including the segment’s
number as a piggybacked parameter.

Subsequently, the primary node flushes the segment into the medium log and waits
for the backup nodes to complete their tasks.

Upon receiving the flush-segment message, a backup node a) persists the con-
tents of its memory region into its local medium log and b) updates its log map
mappings, similar to the flush tail procedure. Then, it acknowledges the operation
to the primary. It is important to note that RDMA’s Reliable connections deliver
messages in a FIFO order. This FIFO guarantee ensures that when a backup flushes
its memory region to the medium log, all the related data are present, preventing
any potential data inconsistencies or corruption.

3.2 Last-Write Recovery from the Memory of the Back-
ups

State-of-the-art persistent KV stores [17] offer crash consistency with last-flush
recovery (group commit) semantics. In last-flush recovery, the system recovers to a
previous (but not necessarily the last) write, discarding all subsequent writes. KV
stores mainly adopt last-flush recovery for performance reasons. This choice aligns
with the conventional wisdom of distributed system design that the network is a
severe performance bottleneck. Replication protocols that incorporate last-flush
semantics aim to optimize network utilization by generating larger messages. As
we show in Section 4.3.3 aggressive network access, especially for transmitting small
KV pairs which dominate modern workloads, can result in substantial performance
overhead on the CPU due to the message processing overhead imposed by the
operating system.

In Anthus, RDMA enables the design of a last-write recovery protocol with
small overhead up to 4% in throughput compared to last-flush recovery, as we
experimentally show in (Section 4.3.3). Anthus can support either last-flush or
last-write recovery. In Anthus, last-write recovery can tolerate up to N-1 failures,
where N denotes the number of replicas in the replica group. In particular, An-
thus recover writes from the memory of backups in case of a primary failure. In
last-write recovery, primary acknowledges a client write request after receiving ac-
knowledgments from the NICs of all backups, ensuring that the KV pair is in their
memory [3].

The main challenge in providing last-write recovery semantics is to handle torn
writes. Torn writes can occur when the primary crashes during a KV pair replica-
tion operation. In this case, the contents of the KV pair may be partially applied
in the memories of the backups, resulting in corrupted KV pairs. To address torn
writes we need to enable backups to verify the integrity of KV pairs stored in their
RDMA buffers and recover them successfully.

Our last-write recovery protocol relies on two observations. Because Anthus
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Figure 3.2: The three possible outcomes of the replication process of a KV pair.

uses RDMA’s reliable queue pair connections, Anthus 1) issues RDMA write oper-
ations in each RDMA buffer sequentially, in increasing address order and 2) apply
remote memory writes in FIFO order. Based on these two observations, Anthus
introduces two markers in the in-memory KV pair layout to enable backups to
handle torn writes in case of a primary failure.

The in-memory KV pair layout consists of a header that includes the size of
the key and the value and the actual variable size KV data. Anthus adds two
marker bytes, one after the header and one after the variable size KV data. The
first marker indicates that the backup has received the header correctly, while
the second marker shows that backup has received the KV payload successfully.
Eventually, the in-memory KV pairs will be flushed or inserted into the storage
engine of Anthus. In order for the storage engine to work properly, we enabled
Parallax to use the new KV pair layout for all its internal operations.

Figure 3.2 illustrates how backup nodes handle corrupted data in the event of
a primary failure. In the first scenario, a valid KV pair transmission is depicted
with successfully replicated markers, allowing backup nodes to recover all data up
to that KV pair safely.

In the second scenario, the backup received the KV pair but not the data
marker. In this case, the integrity check fails. The backup can recover all the
previous KV pairs but ignores the latest. Notably, the Put procedure of Anthus
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Figure 3.3: Index Shipping in Anthus.

has yet to acknowledge the insertion of this specific KV pair, so ignoring it is safe.
The third scenario is similar to the second, where backups ignore the currently

processed KV pair. Although the marker for the sizes of the key-value pair may or
may not be successfully transmitted, there is no guarantee regarding the transmis-
sion of the actual KV pair data. Finally, to ensure the correctness of the markers,
backup zeroes the contents of its RDMA buffers after a flush buffer request from
the primary.

3.3 Index Shipping

3.3.1 Index Shipping and Rewrite at the Backup

Anthus avoids the full compaction process at the backup regions to save device
read I/O throughput, CPU, and memory. Instead, after each compaction, the
primary ships a new index to the backups. The main challenge in Anthus is to
rewrite the index at the backups to contain valid device addresses since servers do
not share a global storage name space [2, 19, 8].
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In the Send-Index method, when Li becomes full, the primary region executes
the heavy, in terms of CPU and device I/O, compaction process of Li and Li+1.
Then, the primary sends the resulting index L0

i+1 to the backup regions. This
method reduces in each backup (a) device read I/O traffic from reading Li and
Li+1, (b) CPU since it avoids in-memory sorting, and (c) memory for L0. Backup
regions do not need to keep an in-memory L0. L0 is used to amortize I/O cost
during compaction with L1 by keeping KV pairs sorted in-memory. For L0 to L1

compactions, backup regions do not need to read L0 and L1. Instead, they receive
and rewrite the primary L0

1 index. Omitting L0 in backup regions reduces the
memory budget for L0 by 2⇥ for one replica per region or 3⇥ for two replicas.
This is important because a server may host hundreds of regions, especially with
increasing device capacities, for concurrency and load balancing purposes. As a
results, assuming and L0 size of 64 MB, the reduction of the memory budget for
the Send-Index method is in the order of tens of GB.

A consequence of the Send-Index method is that it increases network traffic.
Essentially, Send-Index sends over the network the reorganized indexes. This in-
creased traffic uses network throughput instead of the device read I/O throughput.
In addition, the CPU required for RDMA communication is reduced compared to
the CPU required for merge-sort and read I/O.

In Anthus, the main device structures are the logs (L0 recovery, medium, big)
and the B+-tree indexes of the levels. Anthus stores its logs and the B+-tree
indexes as a list of fixed segments. Each segment is 2 MB in size, and its starting
device offset is segment aligned. During rewriting, Anthus replaces the high-order
bits of the primary segment with the new segment number in the backup device.

The index of a region (Figure 3.3) consists of leaf and index nodes. Leaf nodes
(bottom in Figure 3.3) contain in-log and in-place KV pairs. in-log KV pairs belong
to the big or medium category (which Anthus has not transferred in-place). In
contrast, in-place KV pairs are either small or medium that Anthus has transferred
in-place.

in-place KV pairs consist of the key and value, whereas in-log KV pairs consist
of the key and a device offset pointing to the location of the KV pair in either
the big or medium log. Index nodes store variable-size pivot keys and pointers to
device locations of their successor, index, or leaf nodes. Backups need to rewrite
the device offset of KV pairs in leaf nodes and index nodes (dashed arrows in
Figure 3.3).

Backups keep track of two mappings for segments: The log map and the index
map. The log map is updated during the flush operation (Section 3.1.2.3) and
contains mappings for the big and medium logs. The index map is updated dy-
namically during the Send-Index method, and it is valid only during compaction
from Li to Li+1. The primary builds its index bottom-up and left to right during
compaction. As a result, the primary can send the new index incrementally as it
is being built, segment by segment.

After producing an index segment for L0
i+1, the primary sends it to its backups.

The backup region allocates a new local segment and adds a new entry to its index
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map. Then, it parses and rewrites the index segment by modifying device offsets
for all pivot (index nodes) and in-log KV pairs (leaf nodes). Each source device
offset replaces the high-order bits with the local segment from the segment map.
During this procedure, the primary proceeds with its compaction process. The
primary stalls only when producing a new index segment, but its backups have not
finished rewriting the previous one. This collision is not in the common path since
the index rewriting is an in-memory operation. When the index rewriting of a
segment finishes, backup flushes the segment to the persistent storage of Parallax.

Finally, on compaction completion, the primary sends the offset of the root
node in L0

i+1, which is the entry point of the index, to each backup. Then, each
backup translates to the root offset of its storage space using its index map.

It is important to note that the index shipping and rewriting technique can be
applied to KV stores that perform full compactions, such as RocksDB or use KV
separation [26, 16, 25]. In these systems, SSTs may contain device offsets of the
primary to its value log or an internal SST index that needs rewriting similar to
Anthus.

3.3.2 Send-Index Interface

The Send-Index functionality of Anthus revolves around a Send-Index API,
which enables seamless integration with other storage engines. Our primary objec-
tive was to ensure that engineers can easily utilize Anthus by designing it agnostic
to the underlying storage engines. To achieve this, we provide an asynchronous
interface describing the send index procedure through callback functions. These
callbacks specifically handle a storage engine’s compaction process and log man-
agement.

This approach allows third-party engineers to effortlessly notify Anthus and
manage events within their storage engine. As a result, the required modifica-
tions to the storage engine’s code are minimal, while the core functionality can
be implemented within Anthus. Notably, the Send-Index API can be extended to
accommodate the specific needs of a storage engine. The following listings present
pseudo code about Parallax’s implementation of the Send-Index API.

s t r u c t send_index_callback_funcs {
void (∗ compaction_started_cb ) ( void ∗ context , . . . ) ;
void (∗ compaction_ended_cb ) ( void ∗ context , . . . ) ;
// In the event o f a compaction with an empty d e s t i n a t i on l e v e l ,
// Para l l ax swap the l e v e l s by updating in−memory metadata
void (∗ swap_levels_cb ) ( void ∗ context , . . . ) ;
// A new index segment i s produced , send i t to the backups
void (∗ comp_write_cursor_flush_segment_cb ) ( void ∗ context , . . . ) ;
// Checks i f backups have r ewr i t ed the prev ious index segment
// and r e p l i e d
void (∗ comp_write_cursor_got_flush_replies_cb ) ( void ∗ context , . . . ) ;
} ;
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3.3.3 Build-Index Procedure in Anthus

In Anthus, the Build-Index method serves as the baseline metric for measuring
the performance gains of Index Shipping (Section 3.3.1). The primary objective of
the Build-Index method is to minimize network traffic by replicating only the user
data while leaving the backup nodes to handle the resource-intensive compactions
necessary for reorganizing their data. We implement the Build-Index method as
follows:

Each backup node maintains one RDMA buffer in its memory. When Anthus
receives an insert, update, or delete operation, the primary first applies the opera-
tion locally. After, it replicates the corresponding KV pair to the RDMA buffer of
each backup node and updates the metadata associated with the RDMA buffer’s
fullness. Once the RDMA buffer reaches its capacity, the primary sends a blocking
flush tail message to all the backup servers.

Each backup node has a consumer thread responsible for inserting new KV pairs
into its storage engine, similar to the primary, and a producer thread that posts new
KV pairs for insertion. When a new flush tail message is detected, the producer
thread copies the contents of the RDMA buffer to a private buffer in a buffer
pool owned by the consumer thread. Then, the producer thread acknowledges the
operation to the primary. The consumer thread scans its buffer pool, detects new
KV pairs, and inserts them into the backup’s storage engine.

This approach allows us to accurately measure the performance of the Build-
Index method since the primary does not wait for the backup nodes to apply the
changes in their RDMA buffers. Waiting for backup nodes to apply changes could
result in significant stalls lasting tens to hundreds of seconds due to compactions.
Therefore, our approach ensures a more efficient evaluation of the Build-Index
method, unaffected by potential compaction delays.

3.4 Communication Protocol

3.4.1 RDMA Buffer Management

Anthus performs a client-server communication approach using one-sided RDMA
write operations [22] to minimize network interrupts and reduce CPU overhead on
the server [22, 21]. Once the connection is established, the server and client allocate
a pair of buffers with configurable sizes (currently set to 8 MB) and zero their con-
tents. These buffers are freed by the server when a client disconnects or encounters
a failure. To ensure the validity of inactive queue pairs, a dedicated thread mon-
itors them through a heartbeat procedure. This thread sends an empty RDMA
write message to the server and waits for its completion. If the RDMA write is
successfully completed, RDMA’s Reliable Connection guarantee the server’s on-
line status. Currently, the thread continuously polls the RDMA buffer, but an
alternative sleep-wake up approach could also be implemented.

To avoid synchronization among workers on the server, clients manage both



3.4. COMMUNICATION PROTOCOL 27

Client Server

Send Buffer Receive Buffer

Receive Buffer

2. RDMA Write request

1. Allocate
request & reply 3. RDMA Write reply

Worker N

Send Buffer

Figure 3.4: Allocation and request-reply flow of Tebis RDMA Write-based com-
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request and reply buffers. Before each KV operation, clients consult their local
copy of the region map to determine the primary region server to which they
should send their request. Then, the clients allocate a pair of messages for each
KV operation: one for their request and one for the server’s reply (refer to step 1
in Figure 3.4). The request header includes the buffer offset where the server can
write its reply.

Workers on the server asynchronously complete requests and respond to clients
out-of-order. To track the arrival of server responses, clients use a dedicated thread
called the reply checker. This thread iterates through the communication buffers
where the server posts its replies and acknowledges whether an operation was
successful or not to the the clients. Furthermore, after the acknowledgement of a
server reply, the reply checker thread is responsible for freeing the memory allocated
for both the request and the reply.

For put requests, the reply size is fixed, allowing the client to allocate the
required memory before performing the operation. Conversely, forget and scan
requests have variable and unknown reply sizes. If the value size exceeds the buffer
size of the reply, the server sends a partial reply and informs the client to increase its
allocation size for reply buffers to avoid similar scenarios in subsequent requests.
The client can then retrieve the remaining portion of the value from the offset
provided by the server. Consequently, the penalty in this case is a round trip with
a minimal impact on the overall latency.

Scaling the RDMA protocol of Anthus to large numbers of clients requires using
more memory for RDMA buffers and polling for new messages in more rendezvous
points. To limit the required memory for RDMA buffers, Anthus could divide this
memory elastically between more and less active clients. Also, other approaches
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such as LITE [38] could be appropriate for persistent LSM KV stores since the 90-
percentile tail latency of LSM KV stores is in the order of hundreds of µs. Polling
a large number of rendezvous points can be mitigated by adjusting the number
spinning threads in Anthus and distinguishing hot from cold clients to reduce the
polling frequency. We leave these as extensions for future work.

3.4.2 An Overview on Segmented vs. Non-Segmented Communi-
cation

After discussing the RDMA buffer management for client-server communica-
tion, it is crucial to consider the representation of messages inside these RDMA
communication buffers and the trade-offs associated with different approaches.
In this work, we focus on two approaches: segmented communication and non-
segmented communication. Possible implementations of these in the context of
Anthus could be the following:

Segmented communication involves dividing messages into equal-sized chunks.
The first chunk, typically containing the message header with relevant metadata,
is followed by a variable number of chunks containing the actual KV data and
additional control information. Each chunk includes a metadata field (e.g., a receive
field) indicating whether it has been received. When a message is allocated and
filled with data, the client initializes the receive fields of the first and last chunks
to a magic number. The server waits for the arrival of the receive fields of the first
and last chunks to detect new messages. To free a message, the server simply zeros
the receive fields of all the chunks associated with that message. In this way, there
are no conflicts between freed and future message chunks.

On the other hand, non-segmented communication allocates space for the entire
message, consisting of a message header with metadata followed by the actual data.
The client fills the receive field of the message header and includes a receiving field
at the end of the variable-sized payload. The server detects new messages by
waiting for the arrival of the message header and spinning on the receive field of
the payload. To prevent conflicts with future messages, the server must zero all
the memory associated with that message.

3.4.2.1 Trade-Offs Between Segmented and Non-Segmented Commu-
nication

Choosing between segmented and non-segmented communication involves a
trade-off between network traffic and CPU usage. Segmented communication al-
locates more memory than necessary for storing the KV pairs, which increases
network traffic. On the other hand, non-segmented communication requires the
complete freeing of message contents on the server side to properly detect new
messages, increasing the CPU usage. In the case of Anthus, we have chosen the
segmented communication approach due to its lower CPU usage on the backups.
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3.4.3 Segmented Communication in Anthus

The main design challenge with variable size messages is how to detect their
arrival at the region server given the absence of network interrupts and completion
events generated at the receiver.

All messages in Tebis consist of a message header of size 32 B and a variable size
payload. To support variable size payloads, Tebis pads the payload to a multiple
of the message header size. To detect incoming messages each region server uses a
spinning thread, as shown in Figure 3.5. The spinning thread polls a fixed memory
location in each RDMA buffer it shares with a client. The spinning thread detects
a new message by checking for a rendezvous magic number at the last one byte
of the current message header. Then, it reads the payload size from the message
header to determine the end of the variable size message and the next header.
A second rendezvous point is used at the end of the payload to check that the
whole message has arrived. Upon receiving a message, the spinning thread creates
a new client request for one of its workers, zeroes of the message in the RDMA
buffer, and advances its rendezvous point to the next message header. The fact
that all messages are multiple of message header size has the benefit that the
spinning thread does not have to zero the whole message memory area. Instead, it
only zeroes the possible locations of message header size in the area where future
message headers may arrive.

When clients reach the end of the RDMA buffer, the client informs the server
spinning thread to reset the rendezvous points at the start of the buffer. There
are two possible cases: (a) When the last message received reaches the end of the
buffer, the spinning thread sets automatically the rendezvous point without any
communication with the client. (b) When the remaining space in the circular buffer
is not enough for the current message, the client sends a NO-OP request message
to the server with a size equal to the remaining space in the buffer. The spinning
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thread detects it and assigns it to a worker. The worker then sends a NO-OP reply.
When the clients detect the NO-OP reply, it proceeds as in case (a).

3.4.4 Task Scheduling

To limit the max number of threads, Anthus use a configurable size of workers.
Each worker has a private task queue to avoid the CPU overhead associated with
shared accesses contention. In this queue, the spinning thread places new tasks, as
shown in (Figure 3.5). Workers poll their queue to retrieve a new request and sleep
if the spinning thread does not assign them a new task within a period (currently
100 µs). The primary goal of Anthus’s task scheduling policy is to limit the number
of wake-up operations, which include user/kernel crossings. The spinning thread
assigns a new task to the same worker as long as its task queue has fewer pending
tasks than a threshold (currently set to 64). Then, the spinning thread selects the
next running worker with fewer than threshold tasks. If all running workers exceed
the task queue limit, it wakes a sleeping worker and en-queues this task to their
task queue.

3.4.5 RDMA-Write Detection in Anthus

Anthus uses one-sided RDMA write operations for all protocol messages. There
are three possible ways to detect the arrival of a new message when using RDMA
one-sided write operations: targeted polling (busy wait), blind polling, and inter-
rupts. However, to minimize CPU costs, Anthus does not utilize interrupts.

Targeted polling involves the sender instructing the receiver’s network card to
generate a completion event when a new message arrives. This completion event
entry (CQE) contains relevant information such as the queue pair that received
the message and the number of bytes written. To check for new CQE entries, the
receiver actively polls its completion queue (CQ), which is shared among its queue
pairs. By continuously monitoring the CQ, the receiver can detect the arrival of
new messages.

In contrast, blind polling does not rely on completion events at the receiver’s
end. Instead, the receiver independently checks the memory area of the commu-
nication buffer associated with each queue pair to determine if a new message has
arrived. This method eliminates the need for CQE events on top of the PCI at the
receiver’s end, thereby reducing CPU costs.

Choosing between blind polling and targeted polling is a trade-off between
message cost and CPU. Anthus employs blind polling to detect incoming RDMA
messages because it provides the fastest messages.

3.5 Failure Detection and Recovery

Anthus, similar to Tebis, utilizes the ephemeral nodes mechanism of Zookeeper
for efficient failure detection. By leveraging this feature, Zookeeper automatically
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removes an ephemeral node when a node stops responding to heartbeats. The
failure detection process is critical in ensuring system reliability and availability.

In case of a backup failure, the master replaces the crashed region server with
a new node that is not already part of the region. In this case, the new node
has backup role, and the master instructs the primary server to coordinate the
replication group to transfer in parallel their region data to the new backup. During
the synchronization of the new backup process, the region experiencing the failure
remains unavailable for the replica group to reach a consistent state. We leave as
future work protocols that enable the operation of the region in parallel with the
synchronization of the new backup.

When a primary failure occurs, the master promotes the next backup in line
with the primary role and updates the region map accordingly. To achieve re-
covery, Anthus initiates the closure of all DBs associated with the failed region,
ensuring any pending operations are discarded or flushed to the storage engine.
Subsequently, the new primary clears its state and communicates with its backups
to clear its states. Finally, the new primary establishes new connections with its
backups. It is important to note that the new primary possesses a complete KV
log and index for levels Li, where i � 1. By replaying the last few segments of its
value log, the new primary constructs L0 in memory before becoming operational
to serve client requests which incur some downtime for the affected region.

When the master fails, Zookeeper notifies the rest of the region servers through
the ephemeral node mechanism. Then, the region servers use Zookeeper to elect a
new master. The new master replays the region log to build a consistent state about
the regions currently in the system. During downtime, Tebis can serve requests
from existing primaries but will not handle any additional failure. If a primary or
backup region fails, the respective region becomes unavailable until a new master
is elected, and it handles the primary or backup failure as before.

3.6 Changes in the I/O Path of Parallax

As discussed in Section 2.4 Parallax carefully utilizes two I/O paths, direct I/O
via system calls and memory-mapped I/O. It uses direct I/O for all cases except
a) the GC operation, b) the compaction of the medium-log to the last level, and c)
the get and scan operations. Although memory-mapped I/O is suitable for get and
scan operations as it eliminates system calls and data copies, its usage in the GC,
and the compaction of the medium-log operations can result in significant system
overheads.

During the compaction of the medium log to the last level(s), Parallax moves
medium in-log KV pairs to in-place, similar to small KV pairs. This process involves
fetching the actual KV data from the medium log, performing merge sort, and
writing them in-place to the new level. When using memory-mapped I/O, fetching
data from the medium log can trigger a page fault, leading to small random I/O if
there is no valid memory mapping. When memory pressure is high, the system’s
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Figure 3.6: Parallax’s LRU cache

page cache fills up, forcing the operating system to evict pages from memory,
resulting in significant system overheads. Similarly, the garbage collector parses
a set of segments to determine the liveliness of KV pairs. Since the segments are
parsed sequentially, this introduces a page fault for every 4K segment chunk.

Furthermore, these operations may overlap with the system serving client-read
requests. In such cases, page faults pollute the read cache, significantly impacting
the performance of read operations. Due to these considerations, direct I/O should
be preferred over memory-mapped I/O for these operations. In this work, we
tackle this problem by changing the I/O path of the GC and the compaction of
the medium log to the last level from memory-mapped to direct I/O as follows:

During the compaction process, which involves transferring in-log medium KV
pairs to in-place, we introduce an in-memory LRU cache as shown in Figure 3.6.
This cache is designed to store recently accessed segment chunks and is initialized at
the start of the compaction process. The LRU cache consists of a HashTable and a
linked list. The linked list is sorted based on node accesses, with the most recently
accessed node at the tail and the oldest accessed node at the head. HashTable
entries are represented as pairs, denoted as <chunk_offt, node pointer>. The
chunk_offt value serves as a unique identifier, indicating the starting offset of the
chunk on the disk. The node pointer field refers to the location of the actual chunk
data within the linked list.
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During compaction, before accessing the device to retrieve the contents of an
in-log medium KV pair, we initiate a search in the LRU cache using the chunk offset
of the KV. If there is a cache hit, we retrieve the contents directly from the cache.
In the case of a cache miss, we fetch the segment chunk from the device where the
KV pair is located. As the cache operates in an LRU manner, the fetched chunk is
inserted into the cache, replacing the oldest entry in the case of insufficient space.

Regarding garbage collection, when fetching a segment for GC, we utilize direct
I/O to retrieve the entire segment. This shift eliminates the use of memory-mapped
I/O in garbage collection.
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Chapter 4

Evaluation

4.1 Evaluation Methodology

Our experimental setup consists of three identical region servers equipped with
two Intel(R) Xeon(R) CPU E5-2630 running at 2.4 GHz, with 16 physical cores for
a total of 32 hyper-threads and with 256 GB of DDR4 DRAM. All region servers
run CentOS 7.3 with Linux kernel 3.10.0. Each server has a 1.5 TB Samsung
PM173X NVMe SSD and a 56 Gbps Mellanox ConnectX 3 Pro RDMA network
card. To ensure our experiments exhibit significant I/O activity, we use cgroups to
limit the buffer cache used by memory-mapped I/O to 25% of the dataset size in
all cases as shown in Table 4.2.

In our experiments, we run the YCSB benchmark [13] and its workloads Load
A and Run A to Run D. Table 4.1 summarizes the operations run during each
workload. We run Tebis with 32 regions equally distributed across all region servers.
Furthermore, each server has two spinning threads and eight worker threads in all
experiments. region servers use the remaining cores to perform compactions.

In all experiments, we use two separate region servers to run the clients. In
each server, we run four client processes with two threads per process. To generate
enough outstanding requests for each server, each client process uses one queue
pair per server which is shared among each client’s threads. Clients send requests
asynchronously to all 32 regions as long as there is space in the RDMA buffers of the
channel to each server, therefore, the outstanding number of requests is limited by
RDMA buffer size. Each client generates the same number of operations. The total
number of operations is 100 million requests for Load A and 50 million operations
for each of the Run A – Run D phases in YCSB.

In our evaluation, we also vary the KV pair sizes according to the KV sizes
proposed by Facebook [10], as shown in Table 4.2. We first evaluate the following
workloads where all KV pairs have the same size: either Small (S), Medium (M),
or Large (L). For this purpose, we use a C++ version of YCSB [32] and we modify
it to produce different values according to the KV pair size distribution we study.

In addition, we evaluate workloads that use mixes of small, medium, and large

35
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Workload

Load A 100% inserts
Run A 50% reads, 50% updates
Run B 95% reads, 5% updates
Run C 100% reads
Run D 95% reads, 5% inserts

Table 4.1: Operation mix for YCSB.

KV Size Mix Dataset Cache per
S%-M%-L% #KV Pairs Size (GB) Server (GB)

S 100-0-0 100M 3.0 0.38
M 0-100-0 100M 13.7 1.7
L 0-0-100 100M 114.3 14.2
SD 60-20-20 100M 27.4 3.4
MD 20-60-20 100M 31.7 3.9
LD 20-20-60 100M 71.9 8.9

Table 4.2: KV size distributions.

KV pairs. We use a small-dominated (SD) KV size distribution as proposed by
Facebook [10], as well as a medium dominated (MD) and a large dominated (LD)
workload. We summarize these KV distributions in Table 4.2.

We examine the throughput (ops/s), efficiency (cycles/op), I/O amplification,
and network amplification of Tebis for the following three setups: (1) without
replication (No-Replication), (2) with replication, using our mechanism for sending
the index to the backups (Send-Index), and (3) with replication, where the backups
perform compactions to build their index (Build-Index), which serves as a baseline.
In all three configurations we use an L0 size that stores 128 MB per server. We
note that Build-Index uses one L0 for each replica, whereas Send-Index uses a
single L0 for the primary replica only. Thus, Send-Index is more memory-efficient
than Build-Index.

We measure efficiency in cycles/op and define it as:

efficiency =
CPU_utilization

100 ⇥ cycles
s ⇥cores

average_ops
s

cycles/op,

(4.1)

where CPU_utilization is the average of CPU utilization among all processors,
excluding idle and I/O wait time, as given by mpstat. As cycles/s we use the
per-core clock frequency. Finally, average_ops/s is the throughput reported by
YCSB, and cores is the number of system cores, including hyper threads.



4.2. EXPERIMENTAL EVALUATION 37

I/O amplification measures the excess device traffic generated due to com-
pactions (for primary and backup regions) by Tebis, and we define it as:

IO_amplification =
device_traffic
dataset_size

,

where device_traffic is the total number of bytes read from or written to the storage
device and dataset_size is the total size of all key-value requests issued during the
experiment.

We measure network amplification as traffic to all region servers over application
data written and read by the clients.

network_amplification =
network_traffic
dataset_size

,

where network_traffic is the total number of bytes sent and received by the server(s).
Note that application data do not include network overhead (headers, acknowl-
edgements), therefore, network traffic is always higher than application data. In
addition, our RDMA client-server protocol uses a minimum payload of 64 B to
reduce CPU usage for detecting variable size messages in the region servers, since
for small messages the bottleneck is the packet rate in the NICs. This minimum
payload is reflected in client-server network traffic for all experiments, including
the No-Replication configuration.

4.2 Experimental Evaluation

Our goal is to answer the following questions:

1. How does our backup index shipping method (Send-Index) compare to per-
forming compactions in backup regions (Build-Index) to construct the index?

2. Where does Anthus spend its CPU cycles? How many cycles does Send-Index
save compared to Build-Index for index maintenance?

3. How does Send-Index improve performance and efficiency in small-dominated
workloads?

4. What are the gains in throughput, efficiency, and I/O amplification for three-
way replication?

5. Does using a smaller L0 in Build-Index, to counterbalance the L0 memory
budget compared to Send-Index, has an impact on performance, efficiency,
and I/O amplification?

6. What are the CPU efficiency gains of RDMA vs TCP/IP?
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Figure 4.1: Performance and efficiency of Anthus for workloads Load A, Run A –
Run D with the SD KV size distribution.

4.3 Experimental evaluation

4.3.1 Anthus Performance and Efficiency

In Figure 4.1, we evaluate Anthus for two-way replication using YCSB work-
loads Load A and Run A to Run D for the SD KV distribution [10]. Since repli-
cation does not have impact on read-dominated workloads, the performance in
workloads Run B to Run D is similar for all three configurations. We focus the
rest of our evaluation on the insert and update heavy workloads Load A and Run
A, respectively.

We run Load A and Run A for all six KV distributions with a growth factor of
8. Figure 4.2 shows that compared to Build-Index and for all KV size distributions,
Send-Index increases throughput by 1.04� 2.24⇥, CPU efficiency by 1.06� 1.9⇥,
and reduces I/O amplification by 1.08� 1.28⇥. This happens because Send-Index
1) eliminates reads for Li and Li+1 levels and 2) replaces in-memory sorting with
index rewriting in backup regions. However, this trade-off favors Anthus since it
uses available network throughput to reduce device I/O traffic and CPU usage.
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Figure 4.2: Throughput, efficiency, I/O amplification, and network amplification
for the different key-value size distributions during the (a) YCSB Load A and (b)
Run A workloads.
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Figure 4.3: Overheads breakdown for the primary and backup role

4.3.2 Overhead Breakdown

To assess the overheads of each server role of Anthus, we run a Load A and
Run A for the S KV distribution experiment with two-way replication. One server
assumed the primary role, while the other served as the backup for all 32 regions,
enabling accurate correlation of server overheads with their respective roles. As
shown in Figure 4.3, I/O amplification is constant for the primary role as neither
Send-Index nor Build-Index approaches impose excessive device traffic. The ad-
vantages of using the Send-Index approach are evident in the backup role, where it
eliminates Read I/O Amplification compared to Build-Index, and CPU usage is re-
duced by 1.8�4⇥. This is because Send-Index backups only need to perform index
rewriting operations for translating the primary index, which is significantly less
taxing on the CPU than Build-Index’s compaction’s merge sort operations. Ad-
ditionally, Read I/O Amplification elimination is the result of the index-shipping,
where backup nodes only need to persist the pro-constructed primary index.
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Figure 4.4: Throughput (Kops/s) and efficiency (Kcycles/op) for last flust and last
write recovery protocols.

4.3.3 Replication Protocols Trade-offs

This experiment examines the performance and efficiency of Anthus’s replica-
tion protocols: the last flush and last write recovery protocols. To evaluate these
protocols, we use a growth factor of 8 and maintain one replica per region (two-way
replication). We run the Load A and Run A workloads for all YCSB’s mixed KV
distributions. As shown in Figure 4.4, the last write recovery protocol exhibits
a minimal reduction in throughput by 1 � 1.14⇥ and a slight decrease in CPU
efficiency by 1.05 � 1.15⇥ compared to the last flush recovery protocol. For both
protocols, the I/O and network amplification remain the same.

4.3.4 Three-way Replication

We run Load A and Run A for all six KV distributions with a growth factor of
8. In this experiment, we keep two replicas per region, in addition to the primary
copy. We set the L0 size to 128 MB per server for the No-Replication, Build-Index,
and Send-Index configurations.

Figure 4.5 shows that for Load A, compared to Build-Index, Send-Index im-
proves throughput by 1.05 � 2.46⇥, increases CPU efficiency by 1.2 � 2.1⇥, and
decreases I/O amplification by 1.11� 1.42⇥. Compared to two-way replication we
see that the gains increase for throughput from 1.04�2.24⇥ to 1.05�2.46⇥, for ef-
ficiency from 1.06�1.9⇥ to 1.2�2.1⇥, and for I/O amplification from 1.08�1.28⇥
to 1.11� 1.42⇥. Compared to two-way replication, in three-way replication we ob-
serve this relative increase in throughput, efficiency, and I/O amplification because
we have more compactions that compete for device I/O throughput.

4.3.5 L0 Memory Usage

It is important to note that compared to Send-Index, Build-Index uses 2⇥ more
memory for L0 when keeping two replicas and 3⇥ more memory for three replicas.
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Figure 4.5: Throughput, efficiency, I/O amplification, and network amplification
for three-way replication with different KV size distributions for (a) Load A and
(b) Run A.

A server may host hundreds of regions, especially with increasing device capacities,
for concurrency and load balancing purposes. As a result, the additional memory
budget for Build-Index is in the order of tens of GB, e.g. assuming an L0 size of
64 MB. In the Send-Index configuration the excess DRAM may be used for other
purposes, such as RDMA communication buffers or a larger I/O cache. To show
the impact of higher memory use, we use the configuration Build-Index Reduced L0

(Build-IndexRL) which uses the same total memory budget for L0 as Send-Index,
by setting L0 to 128 MB for all primary and backup regions.

Compared to Build-IndexRL, Send-Index improves throughput by 1.06�2.90⇥,
increases CPU efficiency by 1.21�2.78⇥, and decreases I/O amplification by 1.7�
3.27⇥. Compared to Build-Index, we observe that the 3⇥ smaller L0 size of Build-
IndexRL increases I/O amplification proportional to the number of small KV pairs
which results in drop of throughput and efficiency.
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Figure 4.6: Anthus throughput (Kops/s) and CPU efficiency (Kcycles/op) for
Load A workload using the SD, MD, and LD KV size distributions.

4.3.6 RDMA gains over TCP/IP

cycles/op in Load A, SD, 100 M KV pairs
Recv Send Parallax Other Total

TCP/IP 22223 14815 15344 531 52913
RDMA 2895 2481 15096 208 20680
Reduction 87% 83.3% 1.7% 61% 61%

Table 4.3: Breakdown of the cycles spent by all server threads in each component
of Anthus for TCP/IP and RDMA.

In this experiment, we quantify the CPU efficiency gains of RDMA in addition
to a version of Anthus that uses TCP/IP for communication with the clients. We
use a standalone Anthus server (No-replication) with 32 regions and run the Load
A phase of YCSB benchmark for the SD, MD, and LD KV size distributions. As
we observe from Figure 4.6, compared to TCP/IP, RDMA increases throughput
from 1.39⇥ up to 2.07⇥ and CPU efficiency from 2.4⇥ up to 2.55⇥.

To further investigate the benefits of RDMA, we run Load A using the SD KV
size distribution with 100 M KV pairs. We divide each operation into four stages
and show for each operation the CPU cycles spent per stage (Table 4.3). The four
stages are:

1. Recv: Data path from the network card up to the copy of data in the Anthus
server application buffer.
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Figure 4.7: Anthus throughput (Kops/s) and CPU efficiency (Kcycles/op) for
Load A workload using the SD, MD, and LD KV size distributions.

2. Send: Data path for sending data from an application buffer of Anthus

3. Parallax: includes cycles spent per operation in KV storage engine and other
time.

As we observe from Table 4.3, the receive and send path are 87% and 83% more
CPU efficient. The CPU efficiency gains in the RDMA come from the removal of
interrupts and memory copies.

4.3.7 Out-of-Order Replication vs In-Order Replication

In this experiment, we quantify the throughput and CPU efficiency gains of
Anthus when replicating out-of-order compared to in-order. We run Load A for
the SD,MD and LD KV distributions with a growth factor of 8. In this experiment,
we keep two replicas per region, in addition to the primary copy. We set the L0

size to 128 MB.
Figure 4.7 shows that for Load A, compared to in-order replication, the per-

formance gains of out-of-order replication on both throughput and CPU efficiency
are negligible. Specifically, throughput increases by 1.01 � 1.05⇥ and for CPU
efficiency by 1.03� 1.1⇥.
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Conclusions

In this thesis, we propose Anthus, a replicated persistent LSM KV store that
targets fast storage devices and fast RDMA-based networks. This work suggests a
Send-Index method for KV stores utilizing hybrid KV placement, to keep efficiently
an up-to-date index at the backups. Instead of performing compactions at the
backups region servers, the primary in Anthus sends its pre-built index of L0

i+1 after
each level compaction of Li with Li+1 to all backups. As a result, backup regions
incur less I/O amplification since they do not read Li and Li+1. In addition they
incur less CPU overhead because they replace in-memory sorting with a lightweight
index rewrite operation.

In all setups where Send-Index has the same L0 size with Build-Index, our
evaluation shows that Send-Index increases throughput by 1.06 � 2.90⇥, CPU
efficiency by up to 1.21 � 2.78⇥ and decreases I/O amplification by 1.7 � 3.27⇥
for Load A and Run A. Our approach increases network traffic by 1.32 � 3.76⇥,
creating a trade-off between network utilization and backup region servers resource
use. Compared with Tebis, in the same setups, Anthus increases throughput by
1.06� 1.95⇥, CPU efficiency by up to 1.14� 1.8⇥, decreases I/O amplification by
1.50� 1.87⇥ while it increases network utilization by 1.21� 2.06⇥.

Additionally, we propose a last-write replication protocol capable of handling
N-1 failures in a replica group. Leveraging the efficiency of RDMA message delivery
in terms of CPU and latency, we demonstrate that the last-write recovery protocols
impose minimal overhead on throughput, ranging from 1� 1.15⇥.

45
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