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Encryption workarounds for Android

Abstract

Encryption on Android involves the process of encoding user data both on
the device and during transit using either symmetric or asymmetric encryption
keys. When a device is encrypted, all data created by the user is automatically
encrypted before being stored on the disk, and decryption occurs automatically
when the data is accessed by an authorized process. The purpose of encryption is
to ensure that unauthorized parties cannot read the data even if they gain access
to it.

Android offers two methods of device encryption: file-based encryption and full-
disk encryption. File-based encryption, introduced in Android 7.0, allows different
files to be encrypted with different keys that can be unlocked independently. On
the other hand, full-disk encryption has been supported since Android 4.4, but as
of Android 10, it is being phased out in favor of file-based encryption.

Over the years more and more encryption enabled Android devices and appli-
cations have been used by criminals to carry out illegal activities or to cover their
traces, making it difficult for forensic investigations to search for digital evidence.
As such, encryption has become an increasing concern for LEAs and a wide range
of encryption bypassing tools are being used to perform investigations on evidence
found in crime scenes.

According to some studies, encryption bypassing is categorized into six cate-
gories: find a copy of the key, guess the key, compel the key from someone who
knows it, exploit a flaw, access plaintext when the device is in use, locate a plain-
text copy of the encrypted artifact.

In this thesis we introduce a tool with Android encryption bypassing capa-
bilities offering logical extraction analysis and decryption of multiple widely used
Android applications such as Signal, Wickr and WeChat. Our tool also offers pass-
word brute-forcing capabilities and enables the orchestration of phishing attacks
aimed at the lockscreen. Furthermore we document the capabilities and short-
comings of each of the techniques implemented in the tool, while also listing the
improvements developers could use to fortify their applications and the habits users
should follow to protect their data stored in Android devices and applications.

From the experience we gained while implementing the tool we conclude that
while using encryption does not ensure the invincibility of the system, our tech-
niques are also not always effective. Their success often depends on conditions
related to the inner encryption implementation of the system and actions that
where performed by the user prior to the acquisition of the evidence.





Παράκαμψη κρυπτογράφησης για Android

Περίληψη

Η κρυπτογράφηση στο Android περιλαμβάνει τη διαδικασία κωδικοποίησης των
δεδομένων του χρήστη τόσο στη συσκευή όσο και κατά τη μεταφορά, χρησιμοποιών-
τας συμμετρικά ή ασύμμετρα κλειδιά κρυπτογράφησης. ΄Οταν μια συσκευή είναι κρυπ-
τογραφημένη, όλα τα δεδομένα που δημιουργούνται από τον χρήστη κρυπτογραφούνται
αυτόματα πριν αποθηκευτούν στο δίσκο και η αποκρυπτογράφηση γίνεται αυτόματα

όταν υπάρξει πρόσβαση στα δεδομένα απο μια εξουσιοδοτημένη διαδικασία. Ο σκοπός
της κρυπτογράφησης είναι να διασφαλίσει ότι χωρίς εξουσιοδότηση κανείς δεν μπορεί

να διαβάσει τα κρυπτογραφημένα δεδομένα ακόμη και αν αποκτήσει πρόσβαση σε αυτά.

ΤοAndroid προσφέρει δύο μεθόδους κρυπτογράφησης συσκευών: κρυπτογράφηση
μεμονωμένων αρχείων και πλήρης κρυπτογράφηση δίσκου. Η κρυπτογράφηση μεμο-
νωμένων αρχείων, που εισήχθη στο Android 7.0, επιτρέπει διαφορετικά αρχεία να
κρυπτογραφούνται με διαφορετικά κλειδιά που μπορούν να ξεκλειδωθούν ανεξάρτητα.
Από την άλλη πλευρά, η κρυπτογράφηση πλήρους δίσκου υποστηρίζεται από το An-
droid 4.4, αλλά από το Android 10, καταργείται σταδιακά υπέρ της κρυπτογράφησης
μεμονωμένων αρχείων.

Με τα χρόνια όλο και περισσότερες συσκευές και εφαρμογέςAndroid με δυνατότητα
κρυπτογράφησης έχουν αρχίσει να χρησιμοποιούνται από εγκληματίες για την άσκηση

παράνομων δραστηριοτήτων ή για την κάλυψη των ιχνών τους, καθιστώντας δυσκολότερη
την αναζήτηση ψηφιακών πειστηρίων κατά τη διάρκεια των ψηφιακών εγκληματολογικών

ερευνών.

Ως εκ τούτου, η κρυπτογράφηση έχει γίνει μια αυξανόμενη ανησυχία για τις ασ-
τυνομικές αρχές και ένα ευρύ φάσμα εργαλείων παράκαμψης κρυπτογράφησης χρησι-

μοποιείται για την εκτέλεση ερευνών πάνω σε στοιχεία που βρέθηκαν σε σκηνές εγκ-

λήματος.

Σύμφωνα με ορισμένες μελέτες, η παράκαμψη της κρυπτογράφησης κατηγορι-
οποιείται σε έξι γενικές κατηγορίες: βρείτε το κλειδί, μαντέψτε το κλειδί, αναγκάστε
τη παράδοση του κλειδιού, εκμεταλλευτείτε ένα ελάττωμα στη κρυπτογράφηση, αποκ-
τήστε πρόσβαση σε μη κρυπτογραφημένο μήνυμα όταν η συσκευή χρησιμοποιείται,
εντοπίστε ένα μη κρυπτογραφημένο αντίγραφο του μηνύματος.

Σε αυτή την εργασία παρουσιάζουμε ένα εργαλείο με δυνατότητες παράκαμψης

κρυπτογράφησης σε Android. Το εργαλείο επιτρέπει την αποκρυπτογράφηση πολ-
λαπλών ευρέως χρησιμοποιούμενων εφαρμογών Android όπως Signal, Wickr και
WeChat, τα οποία ανιχνεύονται σε ένα logical extraction. Το εργαλείο μας επίσης
προσφέρει δυνατότητες brute-forcing κωδικών κλειδώματος οθόνης και επιτρέπει την
ενορχήστρωση phishing επιθέσεων με στόχο την οθόνη κλειδώματος. Επιπλέον
τεκμηριώνουμε τις δυνατότητες και τις ελλείψεις καθεμιάς από τις τεχνικές που εφαρ-

μόζονται στο εργαλείο. Απαριθμούμε επίσης τις βελτιώσεις που θα μπορούσαν να
χρησιμοποιήσουν οι προγραμματιστές για να ενισχύσουν τις εφαρμογές τους και

τις συνήθειες που πρέπει να ακολουθούν οι χρήστες για να προστατεύουν τα απο-

θηκευμένα δεδομένα τους σε συσκευές και εφαρμογές Android.



Από την εμπειρία που αποκτήσαμε κατά την δημιουργία του εργαλείου συμπερ-

αίνουμε ότι ενώ η χρήση κρυπτογράφησης δεν διασφαλίζει πάντα την ασφάλεια ενός

συστήματος, οι τεχνικές παράκαμψης κρυπτογράφησης επίσης δεν είναι πάντα αποτε-
λεσματικές. Η επιτυχία τους εξαρτάται συχνά από συνθήκες που σχετίζονται με των
τρόπο κρυπτογράφησης του συστήματος και ενέργειες που πραγματοποιήθηκαν από

τον χρήστη πριν από την απόκτηση των στοιχείων.
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Chapter 1

Introduction

Encryption has become an essential component of our society. The encryption
market and the technology surrounding it have flourished, protecting everything
we use day to day, such as financial transactions, in-vehicle information, health
data and private communications. Over the years almost all of our online commu-
nications and transactions have been more and more secure thanks to the imple-
mentation of secure encryption practices which enable us to privately communicate
and distribute assets on the internet.

However, our personal data is not only at risk when it is traveling over the
internet. Despite our best efforts, there is a chance that our devices will be stolen,
lost or infected with malware. If this is the case, an unauthorized individual or
organization may gain access to sensitive data on our device. File encryption is
an important aspect of data security. By encrypting files on a device, sensitive
data remains protected even if unauthorized access to the device occurs. File
encryption ensures that the contents of the files are securely encrypted and can
only be accessed by authorized individuals who possess the decryption key or
password.

When files are encrypted, they are transformed into a scrambled format that
is unintelligible without the correct decryption key. This adds an additional layer
of security to sensitive information stored on devices, such as personal documents,
financial data, or private communications. Even if someone gains physical access
to the device or manages to bypass other security measures, they would still need
the encryption key or password to decrypt and access the files.

Although this technology plays an integral role in our lives, it also has some
bad applications. The use of encryption-enabled devices and applications by crim-
inals presents challenges to law enforcement agencies when it comes to decrypting
investigation-related information.

Secure messaging applications like Telegram and Signal have gained popularity
due to their strong encryption and privacy features. These applications use end-to-
end encryption, which ensures that only the communicating parties can access the
content of the messages, making it difficult for anyone, including law enforcement,

1



2 CHAPTER 1. INTRODUCTION

to intercept or decrypt the messages in transit.
Since in most countries it is unlawful for the state to compel a suspect to hand

over the access key or the data in an unencrypted format [21], many law enforce-
ment agencies proceed their investigations by using forensic tools or techniques
that could help them bypass the encryption mechanism used by the perpetrators
of the crimes under investigation. As a contribution to the work that is being done
assisting law enforcement agencies in their investigations, we have gathered and
documented a wide range of encryption bypassing techniques and assembled them
in a tool which could be used for educational purposes while also being a helpful
addition in the toolchain of a forensic investigator.

Accompanied by the created tool, in this theses we list different cases where
encryption can be bypassed and we demonstrate the techniques that are used to
do so. For each technique we show figures of the aforementioned tool and explain
the usefulness of the technique in a forensic investigation, while also listing defense
mechanisms against it.

In the following chapter we explain some basic concepts of cryptographic primi-
tives relative to Android security and Android forensics. In chapter 3 we introduce
our tool and explain its multiple features and options. In the chapters 4 and 5 we
explain the techniques we studied during our research and how we implemented
them on our tool. In chapter 6 we present some other tools similar to ours and we
compare the capabilities of those tools to the capabilities of our tool. In chapter
7 we list the features that could be introduced in future iterations of our tool and
talk about the conclusions we made from our findings.

In Figure 1.1 shown below we list the decryption techniques we studied and
the category each of them belongs to [74].



3

(a) Table 1

(b) Table 2

Figure 1.1: Techniques studied
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Chapter 2

Background

In this chapter we will present and analyze the basics of what someone needs
to know related to Android security, cryptographic primitives and the processes
followed during the a forensic investigation of mobile devices.

2.1 The Android Operating System

Android is primarily developed for touchscreen mobile devices like smartphones
and tablets, serving as a mobile operating system. It utilizes a modified version of
the Linux kernel and incorporates various open-source software. Initially developed
by Android Inc., which was bought in 2005 by Google, it is now being developed by
a developer consortium known as the Open Handset Alliance [2], in which Google
is part of. It was first announced in November 2007 and since then there have been
many major releases of the operating system with various features being added in
over the years.

The fundamental foundation of the operating system is commonly referred
to as the Android Open Source Project (AOSP) [36], which is freely available
and falls under the category of open-source software (FOSS). It is predominantly
licensed under the Apache License. However, the majority of devices utilize a
customized, proprietary version of Android created by Google. These devices
come pre-installed with additional proprietary closed-source software. Many of
these devices feature customized user interfaces and software packages developed
by vendors, such as Samsung’s TouchWiz and later One UI, as well as HTC’s Sense
[43]. Other competing ecosystems and AOSP forks exist, including Amazon’s Fire
OS, OPPO’s ColorOS, Vivo’s OriginOS, Honor’s MagicUI, and custom ROMs like
LineageOS.

Android has maintained its position as the best-selling operating system for
smartphones globally since 2012, as indicated by Figure 2.1 [80]. It has also been
the leading operating system for tablets since 2013 [83]. Android is widely utilized
in nearly all countries and holds the largest market share in many of them, like
India, where it surpasses 95% [79]. As of January 2022, Android boasted more

5



6 CHAPTER 2. BACKGROUND

than three billion monthly active users [11]. Additionally, as of March 2023, the
Google Play Store hosted an extensive collection of over 2.6 million applications
[81].

Figure 2.1: Android market share from 2012 to 2019

2.1.1 Filesystem Structure

The storage on Android devices is separated into several partitions, such as /sys-
tem/ for the OS, and /data/ for installed applications and user data [69]. Installed
applications specifically store their data inside their folder /data/data, where each
application gets its own directory that is named using the application identifier
(com.company.example). Application specific data can also be stored in the /sd-
card/Android/data directory (like the /data/data directory).

Similar to the internal application-data directory, each application is allocated
its exclusive directory that is accessible only to that specific application. Never-
theless, all the contents of the emulated SD card can be accessed and altered via
USB. This encompasses the application data stored in /sdcard/Android/data as
well.

Starting with Android 4.4 Kit Kat, the ability for user-installed applications
to have shared writing access to the /sdcard/ directory was restricted. Instead,
applications were limited to write data only in dedicated directories within An-
droid/data/ that corresponded to their respective package names. However, with
the release of Android 5 Lollipop, this restriction was lifted through the introduc-
tion of the Google Storage Access Framework interface, which was not backward-
compatible [1].

In contrast to typical desktop Linux distributions, Android devices do not grant
root access to the operating system by default. Sensitive partitions like /system/
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are read-only, and other partitions like /data/ are inaccessible to users without root
access. However, root access can be acquired by exploiting security vulnerabilities
in Android. The open-source community often exploits these vulnerabilities to
enhance device capabilities and customization options, but it also presents an
opportunity for malicious actors to install viruses and malware. Certain devices,
including most Google Pixel and OnePlus models, offer an OEM unlocking option
that allows users to unlock the bootloader, thereby granting root access. It’s
important to note that the unlocking process resets the system to its factory state,
erasing all user data [38].

2.1.2 Encryption

Android provides two methods for device encryption: file-based encryption [4] and
full-disk encryption [5]. The choice of encryption method depends on the Android
version and device capabilities.

Full-disk encryption was supported in Android versions 5.0 up to 9.0. It uses
a single key, protected by the user’s device password, to encrypt the entire user
data partition. This means that the user needs to provide their credentials during
boot before any part of the disk is accessible. While this provides strong security,
it also means that certain core functionalities of the phone, such as alarms and
accessibility services, are not immediately available after a device reboot.

Starting from Android 7.0, file-based encryption was introduced as an alter-
native method. File-based encryption allows different files to be encrypted with
different keys, which can be unlocked independently. This allows for a more granu-
lar and flexible approach to encryption. Devices that support file-based encryption
can also benefit from Direct Boot, which enables quick access to important de-
vice features, like accessibility services and alarms, straight from the lock screen.
With file-based encryption, apps can operate within a limited context even before
the user has provided their credentials, ensuring the protection of private user
information.

In Android 9, metadata encryption was introduced where hardware support
is available. Metadata encryption protects certain content that is not encrypted
by file-based encryption, such as directory layouts, file sizes, permissions, and
creation/modification times. The key used for metadata encryption is protected
by Keymaster, which is responsible for managing cryptographic keys in Android.
Keymaster itself is protected by Verified Boot, which ensures the integrity of
the boot process and guards against tampering with the device’s software.

These encryption methods and mechanisms aim to provide strong security
for user data on Android devices while balancing usability and access to core
functionalities.
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2.2 Cryptography

Here we are going to give a short introduction about certain cryptographic primi-
tives. Cryptography is the science of encryption. At least, that is how it began. It
is now much broader, covering authentication, digital signatures, and many other
security functions.

Modern cryptography is heavily rooted in mathematical theory and computer
science. Cryptographic algorithms are designed based on computational hardness
assumptions, which make them extremely difficult for adversaries to break in prac-
tical scenarios. While theoretically it is possible to breach a well-designed system,
it is infeasible to do so in practice. Therefore, such schemes are referred to as
”computationally secure.” These designs require continuous reevaluation and po-
tential adaptation due to theoretical advancements (e.g., improvements in integer
factorization algorithms) and the development of faster computing technology.

The proliferation of cryptographic technology has given rise to various legal
considerations. Governments, concerned about cryptography’s potential for espi-
onage and subversion, have classified it as a weapon and imposed limitations or
outright bans on its use and export. Cryptography also plays a significant role in
digital rights management and copyright infringement disputes concerning digital
media.

2.2.1 Symmetric Cryptography

Symmetric cryptography relies on symmetric-key algorithms, which employ the
same key for both the encryption of plaintext and the decryption of ciphertext, as
depicted in Figure 2.2. The keys can either be identical or have a straightforward
transformation to convert between them. In practice, these keys represent a shared
secret between two or more parties, allowing them to maintain a private informa-
tion channel. One significant limitation of symmetric-key encryption, compared
to public-key encryption (also known as asymmetric-key encryption), is that both
parties must have access to the same secret key. However, symmetric-key encryp-
tion algorithms are generally more efficient for bulk encryption tasks. They have
smaller key sizes, requiring less storage space and facilitating faster transmission.

Symmetric-key encryption can use either stream ciphers or block ciphers.

� Stream ciphers encrypt the bits (typically in bytes) of a message one at a
time.

� Block ciphers take a number of bits and encrypt them in a single unit,
padding the plaintext to achieve a multiple of the block size.

In symmetric-key algorithms, the sender and recipient of a message must share
the same secret key. In early cryptographic systems, this required physically secure
channels to transmit the secret key between parties.
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Figure 2.2: Symmetric-key encryption

Modern cryptographic systems still use symmetric-key algorithms for encrypt-
ing the majority of messages. However, they eliminate the need for physically
secure channels by employing techniques like Diffie-Hellman key exchange [34] or
other public-key protocols. These methods securely establish a fresh new secret key
for each session or conversation, thus overcoming the key distribution challenge.

Pseudorandom key generators are commonly used with asymmetric ciphers
for key transfer. It is crucial for the generators and their initialization vectors
to have sufficient randomness, as their lack of randomness in the past has led to
cryptanalytic vulnerabilities. Implementations should rely on high-entropy sources
for initialization.

Symmetric ciphers are not limited to encryption, they can be used for other
cryptographic purposes. To ensure the integrity of the ciphertext, a message au-
thentication code is often added. Hash functions can also be constructed from
block ciphers.

Historically, symmetric ciphers have been vulnerable to known-plaintext at-
tacks, chosen-plaintext attacks, differential cryptanalysis, and linear cryptanalysis
[19]. However, careful design of the cipher functions in each round can signifi-
cantly reduce the chances of a successful attack. Increasing the key length or the
number of rounds in the encryption process can enhance security but comes at
the cost of increased processing power and decreased speed due to the additional
computational operations required.

The most commonly used symmetric encryption algorithm nowadays is AES.
AES was selected by the U.S. National Institute of Standards and Technology
(NIST) in 2001 [64] as a replacement for the aging Data Encryption Standard
(DES) [73].

AES operates on fixed-size blocks of data (128 bits), with three key sizes: 128
bits, 192 bits, and 256 bits. The algorithm consists of a series of transformations,
including substitution, permutation, and mixing operations, applied in multiple
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rounds. These operations are designed to provide a high level of security and
resistance against various cryptanalysis techniques.

2.2.2 Asymmetric Cryptography

Asymmetric cryptography, also called public-key cryptography, is a field of cryp-
tography that utilizes pairs of interconnected keys. Each pair consists of a public
key and a corresponding private key. These key pairs are created using crypto-
graphic algorithms based on one-way functions. The security of public-key cryp-
tography relies on maintaining the secrecy of the private key, while the public key
can be freely shared without compromising security.

In a public-key encryption system, anyone possessing the public key can encrypt
a message, to create a ciphertext. However, only individuals with the correspond-
ing private key can decrypt the ciphertext and retrieve the original message, as
shown in Figure 2.3.

Figure 2.3: Asymmetric-key encryption

One of the key advantages of public key algorithms is their ability to provide
key distribution and secrecy through protocols like Diffie-Hellman key exchange.
This allows two parties to establish a shared secret key over an insecure channel
without the need for a pre-shared secret. It enables secure communication between
parties who have never communicated before.

Public key algorithms are also used in digital signatures, which are essential
for ensuring the authenticity and integrity of electronic messages and documents.
Digital signatures use the private key to sign a message, and the corresponding
public key is used to verify the signature. This provides a way to prove the identity
of the sender and detect any tampering or modifications of the message.

However, asymmetric encryption algorithms are generally slower than sym-
metric encryption algorithms [85]. Asymmetric encryption involves more complex
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mathematical operations, which require more computational resources. This makes
asymmetric encryption less efficient for bulk encryption of large amounts of data.
As a result, public key algorithms are often used in combination with symmetric
encryption. For instance, a symmetric key can be exchanged using an asymmet-
ric algorithm, and then the subsequent communication can be encrypted using a
symmetric encryption algorithm.

Two of the best-known uses of public key cryptography are:

� Public key encryption: A message is encoded using the public key of the
intended recipient. When suitable algorithms are employed and utilized cor-
rectly, it becomes practically impossible for anyone without the correspond-
ing private key to decrypt the message. The possession of the private key
assures ownership and association with the public key. This mechanism is
employed to guarantee the confidentiality of a message.

� Digital signatures: A message is signed using the private key of the sender
and can be validated by anyone who possesses the sender’s public key. This
verification serves as evidence that the sender had access to the private key,
strongly suggesting their association with the corresponding public key. It
also demonstrates that the signature was specifically generated for that par-
ticular message, as verification would fail for any other message that doesn’t
employ the private key.

Digital signature schemes serve as a means of sender authentication in cryp-
tographic systems. They are used in non-repudiation systems to ensure that the
originator of a document or communication cannot later deny their involvement.
Digital signatures form the foundation for various applications, including digital
cash, password-authenticated key agreement, time-stamping services, and non-
repudiation protocols.

Like any security-related system, it is crucial to identify potential weaknesses.
In addition to the risk of selecting an inadequate asymmetric key algorithm or using
a key length that is too short, the primary security concern is the compromise of
the private key in a key pair. If the private key becomes known to an unauthorized
party, the security of messages, authentication, and other cryptographic operations
will be compromised.

In theory, all public key schemes are vulnerable to brute-force key search at-
tacks [68]. However, these attacks are impractical when the computational effort
required exceeds the capabilities of potential attackers. Another potential security
vulnerability is the man-in-the-middle attack [65], where an attacker intercepts
the communication of public keys and modifies them to substitute different public
keys. To execute this attack, encrypted messages and responses must be inter-
cepted, decrypted, and re-encrypted by the attacker using the appropriate public
keys for different communication segments to avoid detection.

One approach to mitigate such attacks is the use of a public key infrastructure
(PKI). A PKI encompasses a set of roles, policies, and procedures necessary for
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the creation, management, distribution, usage, storage, and revocation of digital
certificates. It also facilitates public-key encryption and provides a framework for
secure and trusted communication [13].

2.2.3 Cryptographic Hash Functions

Cryptographic hash functions are mathematical algorithms used to transform an
input message of any length into a fixed-length output called a hash or a message
digest as shown in Figure 2.4. These functions are designed to be one-way and irre-
versible, meaning it is difficult or practically impossible to reconstruct the original
message from its hash. They are primarily used to provide message integrity and
authenticity, which are essential properties in secure communication protocols.

Figure 2.4: Cryptographic hash functions

A good cryptographic hash function should have two main properties: first, it
should be deterministic, meaning that the same input always produces the same
output hash and second, it should provide collision resistance, meaning that it
should be computationally infeasible for an attacker to find two different messages
that result in the same hash value.

The security of cryptographic hash functions is essential in applications such as
digital signatures, password storage, and data authentication. In digital signature
applications, a hash function is used to generate a unique message digest that can
be signed by the sender using their private key. The recipient can then use the
sender’s public key to verify the signature and ensure the integrity and authenticity
of the message.
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Several cryptographic hash functions have been developed over the years, with
varying degrees of security and practicality. Some popular examples include the
SHA family [63] and the MD family [50]. As computing power and cryptanalysis
techniques continue to advance, researchers constantly evaluate and improve hash
function designs to enhance their security and practicality.

2.3 Mobile Device Forensics

Mobile device forensics refers to a branch of digital forensics that focuses on re-
trieving digital evidence or data from a mobile device while adhering to forensically
sound practices, which means that a number of specific practices have to be fol-
lowed during the collection, preservation, and analysis of digital evidence to ensure
its reliability and admissibility in a court of law. Some of the key conditions that
have to be considered during a investigation, for maintenance of forensic soundness,
are listed below.

� Integrity: The integrity of the evidence must be preserved throughout the
entire process, from collection to analysis. This includes ensuring that the
evidence remains unaltered and protected against unauthorized access or
tampering.

� Chain of Custody: A proper chain of custody must be established and main-
tained for all digital evidence. This involves documenting the location, pos-
session, and movement of the evidence, along with the names of individuals
who handled it, to establish its authenticity and prevent contamination.

� Documentation: Thorough documentation is crucial in maintaining forensic
soundness. All actions taken during the investigation, including the collec-
tion, handling, and analysis of evidence, should be meticulously documented
to provide a clear record of the processes followed.

� Authenticity: The authenticity of the evidence must be established and main-
tained. This involves using validated and reliable tools and techniques to col-
lect and analyze the evidence, ensuring that the results obtained are accurate
and can be verified.

� Reproducibility: The methods and procedures used to collect and analyze
digital evidence should be reproducible. This means that another exam-
iner should be able to replicate the same results using the same tools and
techniques, which enhances the reliability and credibility of the evidence.

� Confidentiality: Sensitive information and evidence should be handled with
utmost confidentiality and in compliance with relevant laws and regulations.
Access to the evidence should be restricted to authorized personnel only, and
measures should be in place to protect the privacy of individuals involved.
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� Expertise: Digital forensic investigations should be conducted by qualified
and experienced professionals who possess the necessary skills and knowl-
edge to handle and analyze digital evidence accurately. Continuous training
and staying updated with the latest techniques and tools are essential for
maintaining forensic soundness.

The term ”mobile device” typically refers to mobile phones, but it can en-
compass any digital device that possesses internal memory and communication
capabilities. This includes devices such as PDAs, GPS devices, and tablet com-
puters.

Mobile devices serve as repositories for various types of personal information,
such as contacts, photos, calendars, notes, SMS and MMS messages. Smartphones,
in particular, may also store video files, email messages, web browsing history,
location data, and social networking communications and contacts.

With the advancement of mobile device technology, the volume and diversity
of data stored on these devices continue to expand. Potential evidence that can
be extracted from a mobile phone can originate from multiple sources, includ-
ing the device’s internal memory, SIM card, and attached memory cards like SD
cards. Traditional mobile phone forensics primarily focused on retrieving SMS
and MMS messages, call logs, contact lists, and phone identification information
(IMEI/ESN). Also, nowadays smartphones store a broader array of data, encom-
passing web browsing history, wireless network configurations, geolocation details
(e.g. geotags from image metadata), emails, and various forms of multimedia
content derived from internet-based platforms.

There is growing need for mobile forensics due to several reasons and some of
the prominent reasons are:

� Use of mobile phones to store and transmit personal and corporate informa-
tion

� Use of mobile phones in online transactions

� Activities like hacking, identity theft, cyberbullying, and online fraud often
involve the use of mobile devices

2.3.1 Challenges

Mobile device forensics poses several challenges, both in terms of evidence and
technical aspects. These challenges arise due to the dynamic nature of the mo-
bile device industry, where original equipment manufacturers (OEMs) frequently
introduce changes to mobile phone form factors, operating system file structures,
data storage methods and even pin connectors and cables. As a result, forensic
examiners must adapt their forensic processes to address these variations, which
differ from the procedures employed in computer forensics.
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One challenge is keeping up with the rapid advancements in storage capacity.
Mobile devices are increasingly becoming mini-computer-like devices with higher
processing power and larger storage capabilities. This means that the amount
of data that can be stored on a mobile device is constantly increasing, requiring
forensic examiners to handle larger volumes of data during investigations.

Also nowadays, mobile devices often employ strong encryption and security
measures to protect user data. These measures can make it difficult to access and
extract data from locked or encrypted devices without the necessary credentials
or technical expertise.

Many mobile applications store sensitive data and implement privacy mecha-
nisms to protect user information. These privacy measures can make it challenging
to access and extract relevant data, especially without the user’s cooperation or
access to app-specific credentials.

Mobile forensic investigations must adhere to legal and privacy regulations.
The proper acquisition and handling of evidence, ensuring the preservation of the
chain of custody, and respecting the privacy rights of individuals involved are
critical challenges in mobile forensics.

2.3.2 Tools

The complexity of mobile device forensics, coupled with the diverse landscape of
devices and operating systems, has prompted the development of numerous tools
for extracting evidence from such devices. It is crucial to recognize that there is
no universal tool or method capable of acquiring all evidence from every type of
device. As a result, forensic examiners, particularly those aspiring to be recognized
as expert witnesses in court, should undergo extensive training to understand the
capabilities and limitations associated with each tool and method that is being
used during a forensic investigation.

Forensic examiners need to be well-versed in how different tools and methods
acquire evidence, maintain forensic soundness, and meet legal requirements, such
as the Daubert [75] or Frye standards [76]. These standards establish the criteria
for the admissibility of scientific evidence in court proceedings and ensure that the
methods used are reliable and scientifically valid.

In the early stages of mobile device investigations, manual analysis was con-
ducted live on the device, with examiners taking photographs or writing down
relevant information as evidence. However, this approach had drawbacks as it
risked modifying the device’s content and limited access to proprietary parts of
the operating system. Specialized forensic photography equipment, such as the
Fernico ZRT [22], was sometimes used to overcome these limitations.

In recent years, a range of hardware and software tools have emerged to aid
in the recovery of logical and physical evidence from mobile devices. These tools
typically consist of both hardware components (such as cables for connecting the
device to the acquisition machine) and software components for extracting and, in
some cases, analyzing the evidence.
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Currently the 3 main types of data extractions techniques for mobile devices
are, logical extraction, physical extraction and chip-off extraction. Logical extrac-
tion, involves retrieving data that is readily accessible from the operating system
of the mobile device. It typically includes data such as call logs, contacts, mes-
sages, emails, and app data. Physical extraction, involves acquiring a bit-by-bit
copy of the entire storage of the mobile device, including system files, deleted data,
and unallocated space. It provides a more comprehensive set of data, including
deleted files and system-level information. Chip-off extraction, is utilized in cases
where other extraction methods are not feasible. It involves physically removing
the memory chip from the device’s circuit board and reading its contents using
specialized equipment.

Mobile forensics tools that perform extractions and analyze the extracted data,
include Belkasoft X [9], Cellebrite UFED [12], Oxygen Forensic Detective [28],
Elcomsoft Mobile Forensic Bundle [20], MOBILEdit Forensic Express [58], Magnet
Axiom [27] and MSAB XAMN [59].
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ALPS: Android Lock Picking
System

ALPS is a configurable and extendable tool for Android mobile forensics specifically
designed for encrypted artifacts analysis and encryption bypassing techniques. It
is developed for Linux using Python 3 and Flet [26], which is a Python library
that enables us to develop Flutter applications using Python.

ALPS provides us the option to choose between 3 tasks from its starting screen
as shown in Figure 3.1.

Figure 3.1: ALPS home screen
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� Encrypted artifacts analysis

� Brute-forcing payload generator

� Social engineering attack

3.1 Encrypted Artifacts Analysis

Encrypted artifacts analysis enables us to perform a logical extraction analy-
sis on data received from a device. Through the Encrypted artifacts analysis

panel shown in Figure 3.2, users can load a logical extraction and the tool will
search for encrypted artifacts and list the artifacts that it could decrypt, as well
as the keys and methods used for decrypting them.

Figure 3.2: Encrypted artifacts analysis panel

3.2 Brute-forcing Payload Generator

Brute-forcing payload generator enables us to create brute-forcing payloads
for a USB Rubber Ducky [41], which can be used to brute-force PINs or pass-
words. Through the Brute-forcing payload generator panel shown in Figure
3.3, users can generate a USB Rubber Ducky payload using predefined or custom
entries for the delays or wordlist used, they can modify the generated payloads
DuckyScript code and can also save it as text for future usage.
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Figure 3.3: Brute-forcing payload generator panel

3.3 Social Engineering Attack

Social engineering attack enables us to orchestrate a social engineering at-
tack specifically designed for acquiring mobile device PINs. Through the Social

engineering attack panel shown in Figure 3.4 users can create a phishing page
and generate a link pointing to it. Through the same panel they can view any
data acquired using that attack.

3.4 Other Tool Features and Settings

ALPS uses a tabbed view for its panels, which means that users are able to have
multiple tabs open and perform tasks parallelly, the only exception being the
Social engineering attack task, which allows only one panel being open for
that task at any time.

ALPS is configurable through a config.json configuration file and through
its settings dedicated panel as shown in Figure 3.5. Any change is the configura-
tion is displayed in any new tab opened during that session and future sessions,
without the need to restart the tool. The values that can be configured through
the configuration file or the settings panel are shown below.

� ngrok api key: value used for the API key of the ngrok service [60]

� logging enabled: defines if logging is enabled
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Figure 3.4: Social engineering attack panel

� log level: defines the logging level, it can be DEBUG, INFO or WARNING

� use relative paths: defines if relative or absolute paths should

be displayed in the encrypted artifacts analysis panel

� modules: contains the modules used for the encrypted artifacts analysis

Any output data or files created as a result of user actions using the tool, is
saved in a folder named out which is created in the same directory as the one were
we run our application from.

The tool also provides different levels of logging which can be configured, or
disabled entirely through the setting panel or the configuration file. If logging is
enabled log entries are output both in the console and in the session’s log file. Log
files are saved in the output folder of the tool. A log file is created for each session,
the name of the log file is set as the time when the session started using the format
"day month year hour minutes seconds". The log entries for both the console
and the log files are using the following format "time filename level message".

More information related to the installation and usage of the tool can be found
in Appendix B.



3.4. OTHER TOOL FEATURES AND SETTINGS 21

Figure 3.5: ALPS settings panel
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Chapter 4

Attacks on the Lock Screen

Encryption in Android is based on user-authentication-gated cryptographic keys [3]
for both full-disk and file-based encryption. That means that a third party with
knowledge of the authentication inputs provided for the encryption of contents
stored on a mobile device, could completely decrypt and a have a look at the raw
contents inside the device if given access to the device.

Android gives the option for PIN, pattern, password and biometric authentica-
tions such as fingerprint. Over the years biometric authentication has been widely
adopted by the mobile market industry with over 80% of the mobile devices coming
with fingerprint sensors or other biometric authentication mechanisms in 2020 [82].
Although biometric authentication is evolving to be the main form of authentica-
tion in mobile devices, Android enforces an additional option for authentication
for enabling features of the OS that could otherwise compromise sensitive data.
The second form of authentication can be either PIN, pattern or password.

4.1 A Social Engineering Attack

The problem with user-input based authentications is that they can easily be
attacked using phishing techniques [15]. Phishing is a form of social engineering.
Users trying to access content requiring input for authentication may be presented
with a user interface pretending to be a legitimate-looking input prompt belonging
to part of the system that the user is trying to access.

This technique has been used for stealing user passwords over the years, mostly
from social web platforms such as Facebook or Twitter. Recently the same tech-
nique has been seen being applied for stealing lockscreen PINs [14] and we saw
a chance to fully automate this technique and make it accessible for educational
purposes.
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4.1.1 Methodology

The way this technique works is by creating two webpage interfaces, one which
depicts a redirection page to an legitimate website and one which depicts a le-
gitimate looking lockscreen of an Android phone. A link that directs to the first
webpage is then sent to a target user e.g. through a convincing phishing email.
That page shows a message that tries to persuade the user clicking on an element
on the screen e.g. a link. That webpage could present a message similar to the
one shown below.

If not redirected automatically, click on the link shown below:

https://example.com

Then when the user tries to click on that link, instead of being redirected to
the webpage mentioned on the shown message, the webpage activates fullscreen
mode on the mobile browser. While on full screen mode the second webpage
interface is being displayed. At this stage the webpage simulates a locked mobile
phone screen asking for a PIN, password or pattern to be unlocked. If the user
proceeds to enter any input to unlock his presumably locked phone, the browser
exits full screen mode and the entered input is sent to the attacker, accompanied
with information about the IP address and model of the mobile device the user
used to visit the webpage. The user is then redirected to the previously shown
link. Figure 4.1 shows the two stages of this technique.

Figure 4.1: Example screens depicting the two stages of the lockscreen authenti-
cation acquiring technique
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4.1.2 Implementation & Usage

This technique is implemented in as two components. The first one is the view
and controller component as shown in Figure 3.4 and it handles user interactions
with our tool.

As shown in Figure 4.2 the view panel of this component provides two text field
inputs, one for the text message displayed during the first stage of the attack and
one for the depicted link. Alongside those two text fields a user can see previews
of the screen shown in both stages of the attack. Any change on the text fields is
automatically depicted in the preview of the first stage.

Users are also provided with the option of changing the style of the webpages.
Next to each preview, we can see 3 columns of hardcoded colors which users can
pick from. The first two columns are responsible for the background colors of the
pages using linear gradient coloring and the third column gives us the option to
change the text color.

Figure 4.2: Redirection and lockscreen page creation section

The default colors for the first stage are white for the background and black for
the text. For the second stage the default colors are black for the background and
white for the text. Users are also given the option to use backgrounds of theirs
choosing, by inserting a custom image. That way one can more accurately simulate
a real mobile device lockscreen. A collection of default background images shipped
with popular Android devices is provided inside a folder together with our tool,
when the user chooses to use a custom image for the a background he is sent to
that directory first for picking an image file.

Under the page creation section users can see a tabbed view which consists of
an output tab and a PIN codes tab. The output tab will display the messages
coming from the second component as shown in Figure 4.3. The PIN codes tab
will display any data acquired from a target mobile device e.g. PIN code, IP and
device model as shown in Figure 4.4.

The second component of the implementation of this technique consists of the
mechanisms which generate and forward the webpages based on the user inputs.
This component contrary to the rest of the tool is not implemented in Python but
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Figure 4.3: Output tab

Figure 4.4: PIN codes tab

is instead implemented using a combination of PHP, HTML/CSS/Javascript and
shell commands, which communicate with the rest of the tool through a Python
script that is responsible for the interactions between the user interface and the
shell script. A shell script generates the webpages for Android, iOS and PC Win-
dows and starts the required PHP and Ngrok local servers. PHP is used for running
a minimal backend server which will handle requests from the webpages. Ngrok
is then used to forward the localhost created webpage and an ngrok domain is
created which points to our frontend1.

The created link is displayed in the view panel of the user interface alongside a
copy icon so it can be easily transferred on the clipboard of the operating system.
All the stages of the initialization of the link used in this technique are displayed
on the output tab. Users can shutdown the link creation process at any point of
the initialization.

Although this technique is targeted at Android mobile devices lockscreen, the
same technique applies to interactions with the browser on other devices and op-
erating systems. For completeness, we have included the features for the creation
of legitimate looking lockscreens for PC Windows and iOS devices, although they
are not configurable using the user interface of our tool and the acquired data from
PC Windows and iOS devices will be visible in the output tab but not in the PIN
codes tab of our tool.

4.1.3 Evaluation

We evaluated our technique by accessing the created links from a Xiaomi A2 Lite,
a simulated view of a Pixel 3 device, a simulated view of an iPhone 12 Pro device
and a device using the Windows operating system. The simulated view for the
Pixel 3 and the iPhone 12 Pro devices was achieved through the Developer Tools of
the Chrome browser [37]. Figure 4.5 depicts the lockscreen as shown on a Xiaomi

1An ngrok executable is included in our tool and is ready to be used, although the user has
to specify an authentication token through the tool settings, to use the ngrok service.
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(a) Phishing lockscreen on a Xiaomi A2
Lite

(b) Phishing lockscreen on an emulated
iPhone 12 Pro device

Figure 4.5: Screenshots of the lockscreen on Android and iOS

A2 Lite device, on the second stage of this technique. Figure 4.5 depicts the
lockscreen as shown on the emulated iPhone 12 Pro device, on the second stage
of this technique. Figure 4.6 depicts the lockscreen on the second stage of this
technique, as shown on a device using a Windows operating system.
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(a) Windows idle lockscreen

(b) Windows lockscreen waiting for user inputs

Figure 4.6: Screenshots of the phishing lockscreen on a Windows device
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4.2 PIN / Password Brute-forcing

A password brute-force attack consists of an attacker submitting many passwords
with the hope of eventually guessing correctly. Such an attack is usually used
when there are no other viable options to bypassing the encryption mechanism of a
system, e.g. by utilizing weaknesses in the encryption system used. This method is
very fast when used to decrypt artifacts encrypted with short passwords. For longer
passwords other methods are preferably used because a brute-force attack takes
too long. Longer passwords have more possible values, making them exponentially
more difficult to crack than shorter ones [42]. A variation of this technique is a
dictionary attack [7], where instead of trying every possible password, we use a
collection of the more probable passwords.

4.2.1 Methodology

In our implementation we constantly try passwords or PIN codes on a mobile
device lockscreen. One way we could enable this approach is by making use of
an OTG cable [71] and a USB Rubber Ducky. The combination of those two
pieces of hardware will allow us automatic password input submission on a mobile
device. The OTG cable allows us to connect any supported peripheral piece of
equipment to the target device, such as a keyboard. Then we would use the OTG
cable to connect a USB Rubber Ducky as shown in Figure 4.7, which has the
ability to emulate a keyboard and inject keystrokes on any connected device in an
automated fashion. By inserting an appropriate payload containing inputs from a
desired wordlist in a USB Rubber Ducky and then connecting the aforementioned
USB in an Android device through the OTG cable we can orchestrate a dictionary
attack on the mobile device.

As soon as the USB Rubber Ducky connects to a target device it will start
following the instructions contained in the payload. Those instructions could be
typing inputs from the provided wordlist and waiting for a designated period of
time, before moving to the next instruction. That way we could address possible
timeouts by the Android operating system after a certain amount of failed password
or PIN input attempts.

One disadvantage of this brute-forcing technique is that we do not get any
programmatically attainable feedback in case of a successful attempt. This obstacle
can be overcome in various ways. For example, by placing a recording camera on
top of the mobile device, facing the screen of the device, we would have a record of
the brute-forcing session and witness at which point the brute-forcing attack was
successful and which was the correct password or PIN code.

4.2.2 Implementation & Usage

The way we integrated this technique in our tool, is by implementing a way in which
users could create payloads for a USB Rubber Ducky. This can later be used to
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Figure 4.7: A USB Rubber Ducky connected on mobile device using OTG adapter

brute-force the password or PIN code of a mobile device. While implementing this
feature of our tool we worked on two separate components which come together
to enable the payload creation feature.

Figure 4.8: Payload generation panel

The first component is the payload generation panel which enables our users to
interact with the payload generator. It consists of two sections, one configuration
section and one DuckyScript [40] editing section. The configuration section enables
us to edit various aspects of the brute-forcing process. This feature is needed since
Android allows up to a specific number of failed authentication attempts before
setting a timeout for the next attempt. Below we list the configuration options
that are available:
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� Common configurations: Allows us to select between 3 hardcoded useful
configurations (seen in Table 4.1).

� Delay between submissions (in seconds): Sets the delay time between each
password / PIN code submission.

� Wait time (in seconds) every N submissions: Sets the time the USB Rubber
Ducky should wait after trying N password / PIN code submissions. The
value N is also configurable.

� Delay between submissions (in seconds) after N submissions: Sets what the
new delay should be after N password / PIN code submissions. The value N
is also configurable.

� Use ENTER key for submissions: Sets if an ENTER keystroke is needed
after each password / PIN code submission.

� Keep sending keystrokes while waiting: Sets if keystrokes should be sub-
mitted at a constant rate, while waiting for timeouts or password and PIN
submissions. In most cases it is used to keep the screen active during the
brute-forcing processes. The TAB key is used for this action.

� Send keystroke after waiting: Sets if an extra keystroke should be send after
each timeout or other delay. In most cases it is used to prepare the target
input for the next submission after a timeout. The TAB key is used for this
action.

� Password / PIN list: Allows the user to choose between a selected collection
of wordlist for usage in the brute-force attack. Through this option users
can also add a custom wordlist, which will then be visible in the available
options. A user added wordlist is not preserved between sessions.

After selecting the preferable options for their use case, users can generate a
payload, by clicking the Generate payload from configuration button. When
generating a payload, the DuckyScript representation of that payload is also cre-
ated and displayed on the DuckyScript editing section. Users are also given the
option to make further changes to the produced payload using the DuckyScript
section and generate a new payload using the button Generate payload from

DuckyScript or save the results in a DuckyScript file using the button Export

DuckyScript to file.
The second component is the USB Rubber Ducky encoder which given the

options selected through the user interface, has the responsibility of creating the
DuckyScript file and the payload. These, depending on the action performed by
the user are saved in the files duckyscript.txt and inject.bin respectively.

After the payload generation process is completed, users can find the inject.bin
file in the output folder of the tool. The inject.bin file can then be transferred to
the microSD card of the USB Rubber Ducky for usage on a target device.
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Common configurations

Configuration 1 Configuration 2 Configuration 3

Delay between sub-
missions

1 1 1

Wait time every N
submissions (in sec-
onds)

30 every 5 sub-
missions

30 every 1 sub-
missions

30 every 1 sub-
missions

Delay between sub-
missions (in seconds)
after N submissions

30 after 10 sub-
missions

60 after 40 sub-
missions

0 after 0 sub-
missions

Use ENTER key for
submissions

Yes Yes Yes

Keep sending
keystrokes while
waiting

Yes Yes No

Send keystroke after
waiting

Yes Yes No

Password / PIN list
4 digit pass-
words (opti-
mized)

4 digit pass-
words (opti-
mized)

4 digit pass-
words (opti-
mized)

Table 4.1: Common configurations



4.2. PIN / PASSWORD BRUTE-FORCING 33

Xiaomi A2 Lite brute-forcing configuration

Delay between submissions 3

Wait time every N submissions (in seconds) 30 every 5 submissions

Delay between submissions (in seconds) after N
submissions

30 after 10 submissions

Use ENTER key for submissions Yes

Keep sending keystrokes while waiting Yes

Send keystroke after waiting Yes

Password / PIN list 4 digit passwords (optimized)

Table 4.2: Xiaomi A2 Lite brute-forcing configuration

4.2.3 Evaluation

The way we evaluated our technique is by attempting brute-forcing attacks using
the USB Rubber Ducky on 2 devices, a Xiaomi A2 Lite running Android 10 and a
Genymotion [32] emulated Samsung Galaxy S6 running Android 6. For these tests
we used a simple payload which was programmed to try all possible 4 digit PIN
codes from 0000 up to 9999. The actual PIN code that was set on both devices
was 1996.

We were not able to conclude our evaluation process on the Xiaomi A2 Lite
device since the brute-force throttling mechanism of the Gatekeeper [6] service
that has been introduced in Android 7, starts adding timeouts exponentially after
29 failed attempts. The timeouts sequence after every attempt for N number of
failed attempts is shown below.

� 0 to 4 failed attempts: 0 seconds

� 5th failed attempt: 30 seconds

� 6 to 10 failed attempts: 0 seconds

� 11 to 29 failed attempts: 30 seconds

� 30 to 139 failed attempts: 30 · 2⌊
x−30
10

⌋

� 140 or more failed attempts: 1 day

The exact configuration options that were used during the payload generation
process for the evaluation of the brute-forcing technique on the Xiaomi A2 Lite
device are seen in Table 4.2.
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Emulated Samsung Galaxy S6 brute-forcing configuration

Delay between submissions 3

Wait time every N submissions (in seconds) 30 every 5 submissions

Delay between submissions (in seconds) after N
submissions

30 after 10 submissions

Use ENTER key for submissions Yes

Keep sending keystrokes while waiting No

Send keystroke after waiting Yes

Password / PIN list 4 digit passwords (optimized)

Table 4.3: Emulated Samsung Galaxy S6 brute-forcing configuration

The evaluation process concluded successfully on the emulated Samsung Galaxy
S6 device, where the PIN was brute-forced in approximately 3 hours, as expected
after 361 attempts. The exact configuration options that were used during the
payload generation process for the evaluation of the brute-forcing technique on
the Android 7 device are seen in in Table 4.3.



Chapter 5

Extracting Encryption Keys
and Decrypting Application
Artifacts

Mobile devices, especially smartphones, have become a central part of our daily
lives. They contain a wealth of information about us, our activities, and our
connections. This information is not only valuable to the users themselves but
also to law enforcement agencies and forensic investigators. However, accessing
this information can be a challenging task, especially when the device and the
artifacts stored within it are encrypted or protected by password.

To address this challenge, a component of our tool targets encrypted artifacts
stored in Android devices. This component of the tool is similar to Autopsy [8], the
well-known open-source digital forensics platform and its Android targeted module
called ALEAPP [10], but is designed specifically to handle encrypted artifacts and
the unique characteristics of mobile applications.

With this function of our tool, forensic investigators can, analyze, and report on
a wide range of data types from Android devices, including encrypted passwords,
encrypted databases and encrypted messages or media. The tool performs on a
logical extraction of an Android device which has to be acquired beforehand with
a different tool. Most of the time, full access to the device is required to perform
a logical extraction, which on the surface makes the usage of our tool’s function
sound of no need. However the value of this function comes from the fact that
it provides the possibility to decrypt artifacts and extract encryption keys which
even if we had full access to the device, we would not be able to access.

One of the strengths of this tool’s function is its ease of use and configurability.
Its intuitive user interface makes it accessible to both novice and experienced users,
allowing them to quickly and efficiently extract the information they need such as
paths where the artifacts were found, encryption keys and encryption schemes
used.

35
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In this chapter we discuss ways to decrypt artifacts from 19 Android appli-
cations and one Android system component and we show how we implemented
those decryptions techniques in our tool. The Android applications and system
component analyzed are listed below.

� Android Lockscreen Pattern

� WeChat

� Wickr

� Signal

� Snapchat

� Viber

� Chromium Based Web Browsers

– Chrome

– Edge

– Brave

� Mega

� AVG

� AppLock

� WeVault

� Sgallery and similar ’Calculator’ apps

– Sgallery - hide photos & video

– Calculator - hide photos

– Calculator - photo vault

– LOCKED Secret Photo Vault

� Apps Lock & File Encryption

� Secret Calculator Lock Vault

� Vaulty : Hide Pictures Vid

5.1 Methodology

The way artifacts are analyzed on our tool is through separate modules which
handle those artifacts as part of the the application or Android system component
being analyzed.
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5.1.1 Android Lockscreen Pattern

On Android versions 5.1 and lower the pattern used for locking the screen is stored
under /data/system/gesture.key. The pattern is stored as an unsalted SHA-1
[84] value and the SHA-1 value is calculated using the method shown in the code
below, where each point in the pattern is represented by a number between 0 and
8 as shown in Figure 5.1.

private static byte[] patternToHash(List pattern) {

if (pattern == null) {

return null;

}

final int patternSize = pattern.size();

byte[] res = new byte[patternSize];

for (int i = 0; i &lt; patternSize; i++) {

LockPatternView.Cell cell = pattern.get(i);

res[i] = (byte) (cell.getRow() * 3 + cell.getColumn());

}

try {

MessageDigest md = MessageDigest.getInstance("SHA-1");

byte[] hash = md.digest(res);

return hash;

} catch (NoSuchAlgorithmException nsa) {

return res;

}

}

Figure 5.1: Interpretation of an L shaped pattern on the Android pattern lock

The amount of possible patterns that can be created on the Android lockscreen
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is 389,112. Since the amount is a finite and relatively small, someone could brute-
force the pattern almost instantly with the use of a rainbow table [62] containing
the precomputed hashes of all the possible patterns.

5.1.2 WeChat

WeChat [54] is an instant messaging, social media, and mobile payment app avail-
able for a multitude of platforms including Android and iOS. On Android, WeChat
stores all the messages, contacts, and other data exchanged through the application
on a database called EnMicroMsg.db. That database can be found under /data/
data/com.tencent.mm/MicroMsg/{a-random-hexadecimal-string}/EnMicroMsg.

db and is encrypted using SQLCipher 3 [86] and the PRAGMA value options shown
below.

� PRAGMA cipher use hmac = OFF

� PRAGMA cipher page size = 1024

� PRAGMA kdf iter = ’4000’

The encryption key of the database is created using the IMEI number of the
phone and the UIN of WeChat. On newer versions of Android such as 10 or
higher a fixed hexadecimal string is used for the encryption key creation process,
specifically 1234567890ABCDEF. The IMEI is the 15 digits unique number that you
can usually get at the back of the mobile phone, or by entering *#06# on the
phone. The UIN is the unique identification number tied to the user’s WeChat
account. Inside the Android filesystem we can possibly find the IMEI number
under /data/data/com.tencent.mm/MicroMsg/CompatibleInfo.cfg. Similarly
the UIN can be found under the following paths.

� /data/data/com.tencent.mm/shared_prefs/system_config_prefs.xml

� /data/data/com.tencent.mm/shared_prefs/com.tencent.mm_preferences.

xml

� /data/data/com.tencent.mm/shared_prefs/auth_info_key_prefs.xml

� /data/data/com.tencent.mm/MicroMsg/systemInfo.cfg

The way the encryption key is created is by concatenating the IMEI and UIN
strings, applying the MD5 hash function on their concatenation and then extract-
ing the seven first characters of the hash. That substring of the resulting hash
constitutes the key used for the encryption of EnMicroMsg.db. That way if we
are able to extract the IMEI(or use the fixed hexadecimal string instead) and UIN
values from the Android filesystem, then we should be able to decrypt the database
using the aforementioned PRAGMA values. The key creation procedure is shown
in Figure 5.2.
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Figure 5.2: WeChat’s EnMicroMsg.db encryption key creation process

5.1.3 Wickr

Wickr Me - Private Messenger [45] is an instant messenger application, specifi-
cally designed for encrypted communications. It is available for Windows, macOS,
Ubuntu, iOS and Android. On Android, messages that are stored in the device,
are saved in a database called wickr db. That database can be found under
/data/data/com.mywickr.wickr2/databases/wickr_db and is encrypted using
SQLCipher 4 [87] and the default PRAGMA value options.

The encryption key of the database can be created using two different ways,
depending on wether the user enabled password login on the application. If pass-
word login is enabled, the encryption key is created using the provided password.
If automatic login is enabled, the encryption key can be created using a file stored
in the filesystem. The encryption key can always be derived using the second
method, since both methods create the same encryption key and automatic login
is enabled by default when installing the application. Furthermore, if the user
changes the method of logging in, the files created for the automatic login process,
are not deleted [47]. The files used for the encryption key derivation, based on the
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automatic login process are shown below.

� /data/system/users/0/settings_ssaid.xml

� /data/data/com.mywickr.wickr2/files/kcd.wic

� /data/data/com.mywickr.wickr2/files/kck.wic

The database encryption key is stored using double encryption. Firstly the id
value of Wickr from settings ssaid.xml is used to decrypt the data in kcd.wic.
The id value is passed through the MD5 hash function, then from the generated
hash, offset 14 is changed to 3 and offset 19 is changed to 8, 9, a or b according to
the remainder of the division of the value by 4. By hashing the generated value
using the SHA-256 hash function, we can get the key to decrypt the data inside
kcd.wic using AES-256-GCM decryption. The kcd.wic file includes the ciphertext,
authentication tag and IV. The structure of the file is shown in Figure 5.3. Then
using the value from kck.wic we can further decrypt the value we got from the de-
cryption of the data inside kcd.wic, using AES-256-GCM. The structure of kck.wic
is similar to that of kcd.wic. Finally the database key will be contained between
the offsets 4 and 25 of the resulting value after the second decryption. The key
derivation process is shown in Figure 5.4.

Figure 5.3: The structure of kcd.wic and kck.wic

5.1.4 Signal

Signal Private Messenger [29] is an encrypted messaging service for instant
messaging, voice, and video calls. It is available for Android, iOS and Desktop. Sig-
nal uses an encrypted database for storage of messages and data used throughout
the application. On Android, the database can be found under /data/data/org.
thoughtcrime.securesms/databases/signal.db and is encrypted using SQLCi-
pher 4 and the PRAGMA value options shown below.
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Figure 5.4: Wickr’s wickr db encryption key derivation process

� PRAGMA cipher default page size = 4096

� PRAGMA cipher default kdf iter = 1

� PRAGMA cipher hmac algorithm = HMAC SHA1

� PRAGMA cipher kdf algorithm = PBKDF2 HMAC SHA1

The encryption key of the database is stored in an encrypted format inside an
XML file which can be found under /data/data/org.thoughtcrime.securesms/
shared_prefs/org.thoughtcrime.securesms_preferences.xml. The key that
decrypts the encrypted database key is stored inside the Android keystore. Since
the Android keystore implements extraction prevention mechanisms, we can’t ex-
tract the key directly from it [35]. We can though access Signal’s keystore through
a secondary application pretending to be Signal [47] [33]. The only downside to



42CHAPTER 5. EXTRACTING ENCRYPTIONKEYS ANDDECRYPTING APPLICATION ARTIFACTS

this solution is that the secondary application has to be installed on the same
Android device where the Signal application is installed and root access should be
available on that device.

After the secondary application gets installed on the Android device containing
the Signal application whose database we want to decrypt, it will create its own
keystore. Then after its keystore is replaced with Signal’s keystore, the application
will be able to access Signal’s keystore and decrypt the database decryption key us-
ing the values data and iv from org.thoughtcrime.securesms preferences.xml

with AES-256-GCM, the same way the actual Signal application is doing it to de-
crypt the data value and get the database decryption key. The key extraction
process is shown in Figure 5.5.

Figure 5.5: Signal’s signal.db encryption key extraction process

5.1.5 Snapchat

Snapchat [44] is a multimedia instant messaging application, available for Android
and iOS. The main feature of Snapchat is that pictures and messages are typically
accessible for a brief duration before they become inaccessible to the recipients.
Over time, the application has progressed from its initial emphasis on photo sharing
to its current inclusion of users’ Stories, which consist of 24 hours of chronological
content. It also provides a feature called My Eyes Only. This feature that enables
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users to save photos and Stories protected by a secret PIN. Someone can only
access them by entering the users’ PIN. To view My Eyes only, users can swipe
up from the camera screen to open Memories, then swipe left to the My Eyes Only

tab and enter their PIN.

That PIN is a 4 digit number saved in a database under /data/data/com.

snapchat.android/databases/memories.db. Inside the database on the table
memories meo confidential at entry hashed passcode we can find the hashed
PIN which was created using bcrypt [55]. Since the PIN is only 4 digits long we
can brute-force it within less than 17 seconds on most of the commercial processors
currently available, even in a worst case scenario [48].

5.1.6 Viber

Viber - Safe Chats And Calls [70] is a cross-platform voice over IP (VoIP) and
instant messaging (IM) software application available for Android, iOS, Windows,
macOS and Linux platforms. Viber provides a feature allowing users to hide
specific chats, protected by a secret PIN. On Android, to view the hidden chats,
users can open the application on their device and press the search bar available at
the top of the screen. Then after entering their hidden chats PIN in the search
bar, they will be able to view all the hidden chats.

The PIN is a 4 digit number saved in a database under /data/data/com.

viber.voip/databases/viber_prefs. Inside the database in the table kvdata

at the entry where key=’key hidden chats pin’, we can find the encoded PIN
by reading the corresponding value attribute. The way the PIN is stored in the
database is by concatenating it with the string value Shawl9 Valid Yeastv and
hashing the result using SHA-256 as shown in Figure 5.6, the resulting hash then
is stored in the database. Similarly to Snapchat, since the PIN is only 4 digits long
we can easily brute-force it in less than a second, even in a worst case scenario.

Figure 5.6: Viber’s PIN hashing process
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5.1.7 Chromium Based Web Browsers: Chrome, Edge & Brave

Google Chrome: Fast & Secure [51], Microsoft Edge: Web Browser [16] and
Brave Private Web Browser [77] are Chromium [39] based web browsers which
all use the same way of storing the saved logins data on their local databases. The
saved logins data is stored in a database called Login Data, which can be found
under /app_chrome/Default/LoginData relatively to the package path of the app
as shown below.

� Chrome: /data/data/com.android.chrome/app_chrome/Default/LoginData

� Edge: /data/data/com.microsoft.emmx/app_chrome/Default/LoginData

� Brave: /data/data/com.brave.browser/app_chrome/Default/LoginData

Each saved username and its corresponding encrypted password are saved un-
der a logins table inside the Login Data database. The passwords are encrypted
using AES-128 in CBC mode with PKCS#7 padding. The key used in the encryp-
tion is created using PBKDF2 [46] as shown in Figure 5.7, using the values shown
below.

� password = peanuts

� salt = saltysalt

� dkLen (size of the derived key in bytes) = 16

� count (number of iterations) = 1

A 16 character empty string is used as the IV in the encryption. After encryp-
tion the encrypted password is sometimes prepended with the strings v10 or v11.
During decryption, the prepended strings should be removed before the decryption
process.

Figure 5.7: Chromium based browser’s login data encryption key creation process
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5.1.8 Mega

MEGA [53] is a cloud storage and file hosting service which provides user-controlled
encrypted cloud storage that is accessed with web browsers and dedicated applica-
tions for mobile devices. On Android devices Mega stores its data needed for usage
of the application in a database under data/data/mega.privacy.android.app/
databases/megapreferences. Although the database itself is not encrypted, the
entries of the tables inside it are. The table entries are encrypted using AES-256
in ECB mode using as key the byte representation of the string android idfkvn8

w4y*(NC$G*(G($*G with PKCS#7 padding.
One table called completedtransfers holds the info related to the files up-

loaded, through the service. This means that although the files are uploaded in a
secure and privacy preserving way, we can still extract info related to those files
like file names and file sizes, by decrypting the entries of the aforementioned table.

5.1.9 AVG

AVG AntiVirus & Security [57] is a line of antivirus software available for Win-
dows, macOS, iOS and Android. AVG encompasses many standard functions
found in modern antivirus and internet security programs. These features include
regular scans, scanning of incoming and outgoing emails (with the option to add
footers indicating this), the capacity to repair certain virus-infected files, and a
quarantine area (virus vault) where infected files are securely stored.

On the Android version of the application there exists an extra functionality
called AVG Vault enabling users to encrypt and hide media files protected by a PIN
or a pattern provided by the user. The PIN or pattern set by the user is saved in an
XML file under /data/data/com.antivirus/shared_prefs/PinSettingsImpl.

xml. The PIN is a 4 digit number and it is saved under the encrypted pin entry
as a SHA1 hash. The pattern is saved under the encrypted pattern entry as a
SHA1 hash created using the same method as with the gesture.key file of Android.

Since the PIN is a 4 digit number it can easily be brute-forced in less than one
second, even in a worst case scenario. The same applies to the pattern which can
be brute-forced almost instantly as previously shown with the gesture.key file.

5.1.10 AppLock

AppLock [49] is an Android and iOS application which provides a wide array of
functionalities. It can hide itself, it can lock Settings, incoming calls and any app
the user chooses, protected by a user provided PIN or pattern. Moreover AppLock
can encrypt and hide pictures and videos. Hidden pictures and videos are vanished
from the gallery and are only visible in the pictures and video vault within the
application.

After running the application for the first time the user is prompted to create a
pattern which will be used for future authentications in the application. Accessing
all the hidden content inside the app requires authentication to the app when
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lauching it. Through the user settings, it is also possible to change from a pattern
to a PIN consisting of 1 to 16 digits.

The encrypted pattern or PIN in use, as well as the length of the PIN if a PIN is
used, are saved in an XML file under /data/data/com.domobile.applockwatcher/
shared_prefs/com.domobile.applockwatcher\_preferences.xml.

The encrypted PIN is saved under the password entry as the MD5 hash of
the user provided PIN concatenated with the string domobile. The PIN length is
saved under the password length entry unencrypted. The encrypted pattern is
saved under the image lock pattern entry. The pattern is hashed using a method
similar to the gesture.key file of Android, then the produced hash is encoded using
BASE64.

The BASE64 value is encrypted using AES-256 in CBC mode with the key and
IV being the SHA-256 hash value of domobile2011 and the hexadecimal represen-
tation of 2011071120170711 respectively. The padding used for the encryption is
PKCS#7. The encryption process of the pattern is demonstrated in Figure 5.8.

The encrypted photos and videos are stored in a folder under /data/media/
0/.do0mo7bi1le1/medias, which does not require root privileges to be accessed.
Each photo or video is encrypted in a file where the end of the file contains un-
ecrypted metadata related to the file in JSON format, with the last 11 character de-
noting the size of the metadata section. Both photos and videos are encrypted us-
ing AES in CBCmode with the key and IV being the value d7d19a4b2d25ff8bd3fc7f3b97b19
a5ac6def11d6377ab176eba1db365d07336 and the hexadecimal representation of
2011071120170711 respectively. The padding used for encryption is PKCS#7.

Figure 5.8: AppLock’s pattern encryption process

5.1.11 WeVault

WeVault - Hide Photos & Videos [18] is an Android application providing a way
to encrypt and hide your photos and videos protected by a PIN, pattern or a
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fingerprint lock. It also provides a private browser which can be accessed through
the application.

After running the application for the first time the user is prompted to create a
pattern which will be used for future authentication in the application. Accessing
all the hidden content inside the application requires authentication. Through the
user settings, it is also possible to change from a pattern to a PIN or a fingerprint
lock.

The encrypted pattern or PIN in use, as well as the encrypted user email, are
saved on an XML file under /data/data/com.iqmor.vault/shared_prefs/com.
iqmor.vault_preferences.xml. The user email is encrypted using AES-128 in
CBC mode using as key the hex representation of the string wxg20200415iqmor

and as IV the hex representation of the string iqmor20200415wxg. Then it is
encoded using BASE64 and it is saved under the user email entry.

The PIN is encrypted using AES-256 in CBC mode. The key used for encrypt-
ing the PIN and the rest of the artifacts in WeVault, except the email, is created
by interlacing the characters of the string qmor after each letter in the email and
then hashing the created string using SHA-256 as shown in Figure 5.8. The IV
used for encrypting the PIN is the same as the one used for encrypting the user
email. After encryption, it is encoded using BASE64 and it is saved under the
number lock password entry.

The pattern is converted to a hash using the same method as described for
the gesture.key file of Android in Subsection 5.1.1, then the hash is converted to
BASE64 and the encoded value is encrypted using the same method as used for
the PIN. Then the encrypted value is encoded using BASE64 and it is saved under
the pattern lock pwd entry.

The encrypted media files are saved in a folder under /data/media/0/.WeVault/
SFiles, which does not require root privileges to be accessed. The files are en-
crypted using the same method as the one used for encrypting the PIN. Then the
encrypted content of the files is prepended with some JSON formatted metadata
related to the file. The email of the user is included unencrypted in the meta-
data section. Finally another line of text is prepended to the resulting content,
containing the length of the metadata section and the encrypted content section
seperated by an underscore. More metadata related to the encrypted files is also
saved in encrypted files inside a folder under /data/media/0/.WeVault/SMetas,
which again does not require root privileges to be accessed. The metadata files are
encrypted using the same method as the one used for encrypting the PIN, before
being encoded to BASE64.

The padding used for all encryption processes in WeVault is PKCS#7.

5.1.12 Sgallery and similar ’Calculator’ apps

The applications listed below, provide the same functionality of encrypting and
hiding media files, while also providing a camouflaging mechanism for the applica-
tion itself. Specifically, the application will present itself as a functioning calculator
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Figure 5.9: WeVault’s encryption key creation process

and when a secret input will be passed to it, it will reveal the actual application
and the data hidden within.

� Sgallery - hide photos & video: com.hld.anzenbokusufake [25]

� Calculator - hide photos: com.hld.anzenbokusu [23]

� Calculator - photo vault: com.hld.anzenbokusucal [24]

� LOCKED Secret Photo Vault: com.lkd.calculator [31]

The applications listed above save their encrypted artifacts in the same loca-
tions, with the only difference being the path of the package of the application as
shown above.

The encrypted PIN, pattern and security question are stored in an XML file un-
der /data/data/{package-name}/shared_prefs/share_locked_vault.xml The
entries where they are stored are shown below.

� PIN: 57DFEA9AEC99CD87013E3862B9DE5B7D

� pattern: 85B064D26810275C89F1F2CC15E20B442E98874398F16F6717BBD5D34920E3F8

� security question: A4CDA7B11C92D7943C99DFE00A362E1503D904E2932364D4D66F22966789A926

The encrypted media files are stored inside a folder under /data/media/0/

.locked_vault, which does not require root privileges to be accessed. The en-
crypted database is stored under /data/data/{package-name}/db/privacy_safe.
db.
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All of the artifacts except the database are encrypted using AES-128 in CBC
mode using as key and IV the hex representation of the string Rny48Ni8aPjYCnUI,
with PKCS#7 padding. The database is encrypted using SQLCipher 4 using the
key Rny48Ni8aPjYCnUI and the default PRAGMA values options.

5.1.13 Apps Lock & File Encryption

Apps Lock & File Encryption [67] is an Android application providing a way to
encrypt and hide media files stored on the phone behind a pattern lock. Similarly
with other media encrypting applications, hidden media file are vanished from the
gallery and are only visible in the photo and video vault within the application.

After running the application for the first time the user is prompted to create
a pattern which will be used for future authentications. The pattern is saved in an
SQLite database under data/data/playground.develop.applocker/databases/
applocker.db. The pattern is stored in the table pattern in the pattern metadata

entry as a JSON formatted string. In the example shown in Figure 5.10 it is
demonstrated how an L shaped pattern would be saved in the database of this
application.

The encrypted media files are stored in a folder under /data/media/0/applocker/
vault, which does not require root privileges to be accessed. Each media file is
encrypted using Meta’s Conceal API [56]. In the background Conceal uses AES in
GCM mode. The key can be either 128 or 256 bits and the IV can be of variable
length. In this case, the size of key is 256 bits and the size of the IV is 24 bits. The
IV is stored in the beggining of each encrypted file, from the 3rd to the 14th byte,
while the data after the 14th byte up to the last 32 bits consists the encrypted con-
tent. The last 32 bits consists the GCM Authentication Tag. The structure of an
encrypted file can be seen in Figure 5.11. The key used for the encryption of every
media file is the same and it can be found inside an XML file under /data/data/
playground.develop.applocker/shared\_prefs/crypto.KEY\_256.xml in the
cipher key entry encoded using BASE64.

5.1.14 Secret Calculator Lock Vault

Secret Calculator Lock Vault [17] provides the ability to encrypt and hide
media files, while also providing a camouflaging mechanism for the application
itself, similarly to other calculator applications. The authentication mechanism
used is a PIN, which has to be entered as an input in the calculator to open the
application, the PIN can be up to 8 digits long.

The application stores the values related to its encrypted artifacts in an XML
file stored under /data/data/com.photovault.secret.calculator/shared_prefs/
AppPreferences.xml. Inside this file we can find encoded using BASE64 the en-
crypted encryption key for the media files under the entry symmetric encrypted files encryption key,
the SHA-256 hash of that encryption key under the hashed files encryption key

entry and a PBKDF2 salt value which is used to generate the encryption key which
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{

"a": [

{

"a": 0,

"b": 0

},

{

"a": 0,

"b": 1

},

{

"a": 0,

"b": 2

},

{

"a": 1,

"b": 2

},

{

"a": 2,

"b": 2

}

]

}

Figure 5.10: Interpration of an L shaped pattern on the Apps Lock & File En-
cryption pattern lock

Figure 5.11: The structure of a file encrypted using Meta’s Conceal API
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encrypts the media files encryption key under the pbkdf2 salt entry.

The encryption key is encrypted using Meta’s Conceal API, in other words AES
in GCM mode. The key used for the encryption is generated through PBKDF2
with SHA-256 HMAC. The values passed to the key derivation function are shown
below. The IV used in the encryption can be found in the first bytes of the
symmetric encrypted files encryption key value, from the 3rd to the 14th
byte, while the data after the 14th byte up to the last 32 bits consists the en-
crypted content. The last 32 bits consists the GCM Authentication Tag.

� password = PIN

� salt = the value pbkdf2 salt

� dkLen (size of the derived key in bytes) = 32

� count (number of iterations) = 4096

The SHA-256 hash of the media files encryption key is stored on the hashed

files encryption key and is used for verification of the PIN during login at-
tempts, since the PIN and the encryption key of the media files are directly con-
nected, the later being encrypted with a key created by using the former. The key
decryption process used by the application is shown in Figure 5.12.

Since we can create the encryption key for the media files encryption key from
the PIN, we can reverse the process and through brute-forcing, identify the PIN
used in the application by comparing the SHA-256 hash of the decrypted media
files encryption key with the value we got from hashed files encryption key.

The encrypted media files are stored in a folder under /data/data/com.photovault.
secret.calculator/files/calculator_encrypted_DoNotDelete. Each media
file is encrypted using Meta’s Conceal API. The size of the key is 256 bits and the
size of the IV is 24 bits. As with the encrypted encryption key, the IV is stored in
the beggining of each encrypted file, from the 3rd to the 14th index, while the data
after the 14th index up to the last 32 bits consists the encrypted content. The last
32 bits consists the GCM Authentication Tag. The key used for the encryption of
every media file is the same and it can be found using the brute-forcing method
mentioned above. The structure of an encrypted file can be seen in Figure 5.11.

5.1.15 Vaulty : Hide Pictures Videos

Vaulty : Hide Pictures Videos [52] is an Android application providing a va-
riety of features enabling users to hide media files. It can hide media files, it can
disguise itself as a Calculator application, it provides a decoy mechanism where
you can enter the application with alternative inputs and it can store online backup
copies of the files hidden in the application.

After running the application for the first time the user is prompted to create
a pattern which will be used for future authentications. Accessing all the hidden
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Figure 5.12: Secret Calculator Lock Vault’s key decryption process

content inside the application requires authentication to the app when lauching
it. Through the user settings, it is also possible to change from a pattern to a
fingerprint lock.

The PIN is saved in a file under /data/data/com.theronrogers.vaultyfree/
shared_prefs/com.theronrogers.vaultyfree_preferences.xml. The PIN is a
4 digit or a 6 digit number and it is saved under the password hash entry after
getting hashed using the MD5 hashing algorithm and encoded using BASE64.

Since the PIN is a relatively small at 4 or 6 digits long, it can easily be brute-
forced in less than one second, even in a worst case scenario.

5.2 Implementation & Usage

The way we intergrated the findings related to the analysis of applications data,
is by implementing a configurable and extendable component in our tool, specifi-
cally designed for performing encryption-centric logical extraction analysis on data
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acquired from Android devices. This component can be accessed through the
Encrypted artifacts analysis panel as seen in Figure 5.13.

Figure 5.13: Encrypted artifacts analysis panel

Users can load a logical extraction as a folder or as a compressed tar file
containing the extracted data folder of an Android device. If a folder is passed,
the tool will search all subdirectories of that folder until it finds a suitable Android
data folder, if none is found, an error message will be displayed to the user, as
shown in Figure 5.14.

If a tar file is passed the file will first be decompressed on a temporary folder in
the output folder of the tool, before the logical extraction analysis starts. If after
the decompression the extracted folder does not contain a suitable Android data

folder, an error message will be displayed to the user, as shown in Figure 5.14.

During analysis, the tool will search and try to decrypt artifacts related to
any module that was enabled when we loaded the logical extraction. In addition
to the Encrypted artifacts analysis panel, modules can also be enabled or
disabled through the configuration file or through the Settings panel. If a change
related to the modules occurs in the Settings panel, it will be displayed in any
new Encrypted artifacts analysis panel that the user opens.

During the analysis, users will be able to see the progress of the analysis process
via the progress bar shown at the botttom of the panel which displays the modules
remaining to be executed.

Any executed module with successfully located artifacts will be displayed in
the modules list on the left side of the panel. While the analysis is ongoing users
can view the results of the already executed modules by clicking on their specific
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Figure 5.14: The encrypted artifacts analysis panel error message banner

module button, which will then open the module’s view. Any executed module
will be presented with a colored bar on the bottom of its specific button as shown
in Figure 5.15. The colors idicate the level of success the module achieved.

� Green: the module completed execution successfully and was able to exctract
encrypted data from tha artifacts it found.

� Orange: although the module completed execution successfully and artifacts
were found, further actions are required by the user for the decryption of
available artifacts, usually through the module’s view extension.

� Red: although the module completed and artifacts that could be decrypted
were found, no decryption was possible.

If a module does not find any artifacts it will not be displayed in the modules
list. If a module fails while searching for artifacts it will be dispalyed in the
modules list with its button being greyed out and disabled to indicate that a
failure happenend while searching for artifacts.

Inside a module’s view users will see the Artifacts and Results tables. The
artifacts found by the module will be displayed under the Artifacts table, while
any results related to successfully decrypted data will be displayed under the
Results table as shown in Figure 5.15. In occasions where a module includes
a view extension, it will be displayed under the Results table.
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The Artifacts table provides three columns.

� Name = name of the artifact

� Path = path where the artifact was found (can be relative or full depending
on the settings option)

� Information = information about the artifact

The Results table provides four columns.

� From = the artifact or data that was decrypted

� To = where (path) or to what value it was decrypted

� Key / IV = key and IV used for decryption (if applicable)

� Encoding = encryption scheme / encoding used

Any paths displayed inside the Artifacts and Results tables are clickable, if
they exist as actual paths on the users filesystem. If a user clicks on a displayed
clickable path, a new operating system window will be automatically opened on
that path.

The encrypted artifacts analysis panel during the analysis process can be seen
in Figure 5.15.

Figure 5.15: The encrypted artifacts analysis panel during the analysis process
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This component is extendable through the configuration file of the tool. De-
velopers can add new code responsible for locating and decrypting a specific appli-
cation’s artifacts by adding a new module to our tool. A module can be added by
creating a new module entry under the modules field in the configuration file and
by adding a resspective Python file in the modules folder of the tool. The module
entry should be similar to the one shown below.

"example": {

"id": "example_id",

"name": "Example Name",

"developer": "Example Inc",

"package": "com.example",

"category": "Examples",

"view_extension": null,

"enabled": true

}

The way each entry is linked to its Python implementation file is by the value of
the id entry of the module, which has to be the same as the filename of its Python
implementation file inside the modules folder, excluding the .py extension.

More information related to the configurability and extendability of this com-
ponent can be found in Appendix B.

5.3 Evaluation

The way we evaluated this componenet of the tool is by following the steps shown
below.

1. Installed the applications that were mentioned in two devices (both rooted)1

� Xiaomi A2 Lite device running Android 10

� Gneymotion emulated Pixel 5 device running Android 11

2. Executed the applications so that some encrypted artifacts were created

3. Performed a logical extraction of the complete data inside the devices

4. Loaded the logical extractions in our tool and in ALEAPP

5. Compared the results of the two logical extractions loaded in our tool with
each other, to see that the same artifacts could be extracted from different
version of Android

1For validating the gesture.key bruteforcing technique we used a separate emulated Pixel 2
device running Android 6 with root access.
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6. Compared the results of the logical extractions loaded in our tool and the
logical extractions that were loaded in ALEAPP

The versions of the applications that were installed in both devices, are shown
in Figure 5.16. The versions are the latest as of 10/5/2023.

The way we validated and compared the results is by verifying the decryp-
tion of the located encrypted artifacts and data using CyberChef [30] and other
appropriate tools to open and view the decrypted artifacts.

For the located databases that were encrypted using SQLCipher, we confirmed
that the databases shown in the From column were encrypted by trying to open
the databases using an online SQLite viewer [61] and by trying to read the first
bytes of the encrypted database file using a simple text editor. In both cases the
database files were unreadable. In a similar way, we confirmed that the resulting
databases shown in the To column were decrypted successfully by opening them
using the online SQLite viewer mentioned previously. We also confirmed that we
could manually decrypt the databases shown in the From column by using the keys
displayed in the Key/IV column and the software tools SQLiteManager [78] and
DB Browser for SQLite [66] on Windows. In both cases the database file were
readable.

For the encrypted multimedia files that were located, we confirmed that the
encrypted images, videos and audio files that were found, were encrypted by tring
to open them using the standard multimedia applications of Ubuntu while having
all the apppropriate codecs installed. In a similar way, we confirmed that the
resulting multimedia files shown in the To column were decrypted successfully by
opening them using the same multimedia applications. We also confirmed that we
could manually decrypt the multimedia files shown in the From column by using
the keys displayed in the Key/IV column and CyberChef to decrypt the files using
the encryption scheme shown in the Encoding column.

For the encrypted binary files that were located we resorted to verifying that
the decryption of the file shown in the From column using the keys displayed in the
Key/IV column with CyberChef and the encryption scheme shown in the Encoding
column, results in the same file as the one shown in the To column.

For any arbitrary encrypted data retrieved from XML files, databases or other
files, we verified that the data shown in the To column was the same as the data
we got after decrypting the data shown in From column, using the keys displayed
in the Key/IV column with CyberChef and the encryption scheme shown in the
Encoding column.

From the comparisons between the two logical extractions being loaded and
examined on our tool we didn’t notice any difference in the results.

From the comparisons between the results of our tool and ALEAPP, we noticed
that ALEAPP as of 10/5/2023 didn’t support 7 out of the 19 applications available
in the logical extractions. On the other hand our tool was able to decrypt arti-
facts successfully for all the applications available in the logical extractions. The
applications that are supported by our tool but were not supported by ALEAPP
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(a) Table 1

(b) Table 2

Figure 5.16: Summary of applications studied
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are listed below.

� Wickr

� Wechat

� Signal

� AppLock

� WeVault

� Apps Lock & File Encryption

� Secret Calculator Lock Vault

As of June 14, any encryption related application supported by ALEAPP, is
also supported by our tool.
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Chapter 6

Related Work

There are a several Android forensics related tools available currently, some of
them commercial, like Belkasoft X and Cellebrite UFED. Some tools are open
source like Andriller [72] and ALEAPP. We chose to compare our tool to the two
afformentioned open source tools.

6.1 Andriller

Andriller, is a software utility, implemented in Python, which provides a collection
of forensic tools for smartphones. The tool has the capability to perform foren-
sically sound, data acquisition from Android devices. It offers various features,
including the ability to crack Lockscreen patterns, PIN codes, and passwords. It
also provides custom decoders for extracting data from databases of Android, iOS,
and PC Windows application. The extracted data can be decoded and presented
in reports available in HTML and Excel formats. For a comprehensive overview
of the tool’s features, please refer to the list provided below.

� Extraction of data from non-rooted devices using Android Backup.

� Extraction of data with root permissions, using options such as ADB (as
root).

� Analysis of extracted data.

� Decryption of encrypted WhatsApp databases (e.g., converting .crypt to
.crypt12, with the appropriate key file).

� Lockscreen pattern, PIN, and password cracking (excluding gatekeeper).

� Extraction of Android backup files.

� Screen capture of an Android device’s display screen.
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Figure 6.1: Andriller home screen

6.2 ALEAPP

Android Logs Events And Protobuf Parser (ALEAPP) is a tool, implemented in
Python, that utilizes a collection of scripts used for parsing Android application
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data and Android OS components data. The tool can parse logical file systems,
tar and zip extractions and provide reports in html and csv formats. Each script,
also referenced as an artifact plugin by the tool developers, is responsible for
parsing the data of a specific application or system component.

As the developers of the tool state on their GitHub page: “this tool is the result
of a collaborative effort of many people in the DFIR community”. This means,
other developers can contibute new artifact plugins to the tool by following the
relative documentation. ALEAPP is used as a plugin by other digital forensics
suites such as Autopsy.

Figure 6.2: ALEAPP home screen
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6.3 ALPS Comparison with ALEAPP and Andriller

Although our tool specializes in encryption bypassing techniques, it has a lot of
similarities with the two open source tools mentioned above, while it also provides a
lot of new fetures not seen in any publicly available tool that incorporates publicly
available techniques.

One such feature not available in ALEAPP, Andriller or other similar tools, is
the option for incorporating view extensions in the modules/plugins of the tool,
which provides each module with more capabilities for further actions and makes
our tool even more extendable. Using a view extensions module developers can
add custom user interface components and actions in a module’s view and in that
way provide users with fucntionalities that our tool does not normally support.
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Future Work & Conclusions

The encrypted artifcats analysis feature seems to be the most prominent
feature that our tool currently supports since it allows us to perform forensic
analysis on logical extractions which is on par with similar currently available tools
and in some occasions it even exceeds the capabilities of the other tools. Also the
configurability and extendability of this feature makes this component of the tool
easy to maintain and keep updated with a reasonable level of development support.
Furthermore, the findings that this feature could provide to forensic investigators
could have many side benefits not immediately visible to a non forensic user, some
of them are shown below.

� Brute-forced PINs, passwords and patterns could be used for other ser-
vices/applications used by the target, e.g. online social media platforms

� Decryption of metadata related to the files provides users of our tool with
valuable info related to the taget user actions, e.g. dates when then encryp-
tion or upload actions took place

� Enables users of our tool viewing media and messages otherwise unavailable
even if access to the live unlocked device was granted, e.g. media encrypting
applications

� Since the tool operates in a copy of the devices data, forensically sound search
operations could be conducted on the acquired data without fear of altering
the data in the device

The Lockphish technique for coordinating lockscreen oriented phishing attacks,
is also an intresting feature incorporated in our tool, although it has disadvantages
and blockages over the cases where it could be used lawfully since most jurisdictions
do not allow for activities that target users in a malicious and deceiving manner.
Even so though, this feature could be used for educational purposes and for training
users and preparing them for this kind of attacks.
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From the three encryption bypassing techniques that we implemented in our
tool, the bruteforcing technique using a USB Rubber Ducky is currently the least
viable one since it does not apply to many of the currently available Android
devices.

These features alone make for a very beneficial component in the toolchain
of a forensic investigator, however, there are still areas for improvement and fu-
ture research. As the first step for the future work in the development of our
tool we would like to focus on the continuous expansion of artifact support for
the encrypted artifcats analysis feature. Since the Android applications we
included constantly get updated and the Android operating system itself is also
changing drastically over the years it is crucial to actively maintain the tool and
keep it up to date and capable of extracting relevant artifacts even after changes
have been made to the afformentioned applications or the Android OS. Later we
could work on the addition of new features such as memory dump analysis for
encrypted artifacts, to be able to extract encryption keys from the live memory of
mobile devices.

Currently the tool is supported only on Ubuntu Linux and other Ubuntu based
distributions. Our goal is to make the tool cross-platform and even provide a way
for users to use it as a web application further in the future, so that it can be more
easily available to a wider range of users.

Also another potential option for future work is expanding the tool’s encrypted
artifacts analysis feature to support other operating systems, such as iOS or
Windows. By incorporating the ability to analyze multiple platforms, the tool
would become even more versatile and valuable for digital forensic investigators.
Some of our colleagues have already started incorporating some Windows modules
in the encrypted artifcats analysis feature, which shows that the tool is ready
for an expansion in supporting other operating systems and is also a proof of the
configurability and extendability of the tool.

Regarding the user interface and the usability of the tool, although we tried our
best to make the tool user friendly and intuitive, we are sure that we could benefit
from further improvements. Making the tool more intuitive, visually appealing,
and easier to navigate would enhance its accessibility to both experienced forensic
analysts and those new to the field.

Finally we plan on documenting all the features of the tool in a user and
developer guide for aiding future users and developers respectively in the usage of
the tool.
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Appendix A

Abbreviations

ADB Android Debug Bridge

AES Advanced Encryption Standard

ALEAPP Android Logs Events And Protobuf Parser

AOSP Android Open Source Project

CBC Cipher Block Chaining

CSS Cascading Style Sheets

DES Data Encryption Standard

DFIR Digital Forensics and Incident Response

ECB Electronic Codebook

ESN Electronic Serial Number

FOSS Free and Open-Source Software

GCM Galois/Counter Mode

HMAC Hash-based Message Authentication Code

HTML HyperText Markup Language

IMEI International Mobile Equipment Identity

IP address Internet Protocol address

MD Message digest

NIST National Institute of Standards and Technology

OEM Original Equipment Manufacturer
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OS Operating System

OTG On-The-Go

PC Personal Computer

PHP PHP: Hypertext Preprocessor

PIN Personal identification number

PKCS Public-Key Cryptography Standards

PKI Public Key Infrastructure

ROM Read Only Memory

SHA Secure Hash Algorithm

tar Tape Archive

U.S. United States

USB Universal Serial Bus

XML Extensible Markup Language
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ALPS Installation Instructions

ALPS

Android Lock Picking System

Requirements

An Ubuntu or Debian based Linux distribution and Python 3.9

or above.

Dependencies

Make sure Python is installed, the commands below assume you

are using Python 3.9, if another version of Python is used

change the python3.x commands with the commands corresponding

to the Python version you are using.

sudo apt-get install python3.9 python3.9-venv python3.9-dev

Some Linux packages will be needed to run the social engineering

module and modules that require sqlcipher. To install them run:

sudo apt-get install build-essential libsqlcipher-dev

sudo apt-get install php-fpm php-cli curl

It is recommended to setup a python environment before installing

the python dependencies. You can do it using the commands below.
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python3.9 -m venv alps_env

source alps_env/bin/activate

Dependencies for your python environment are listed in

requirements.txt. Install them using the below command.

pip install -r requirements.txt

Usage

./alps.sh

Configuration

The following values can be configured through the configuration

file config.json, or through the tool’s settings panel, except

the modules option which can be fully configured through the

configuration file and provides only the option to enable and

disable modules through the settings panel.

� ngrok api key: value used for the API key of the ngrok

service

� logging enabled: defines if logging is enabled

� log level: defines the logging level, it can be DEBUG, INFO

or WARNING

� use relative paths: defines if relative or absolute paths

should be displayed in the encrypted artifacts analysis

panel

� modules: contains the modules used for the encrypted

artifacts analysis

A custom configuration file can be used through a file named

custom_config.json. If that file exists in the root directory

of the tool, it will be the one used instead of config.json.

Contributing artifact analysis modules

Each module should be declared in the configuration file

config.json, as an entry in the modules object.
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For example:

"modules": {

"example": {

"id": "example_id",

"name": "Example Name",

"developer": "Example Inc",

"package": "com.example",

"category": "Examples",

"view_extension": null,

"enabled": true

}

...

}

Entry property definitions:

Property Type Description Required

id String ID linking to the module’s implementation and image Yes

name String Name of the module under analysis Yes

developer String Developer of the module under analysis No

package String Android package of the module under analysis No

category String Category of the module Yes

view extension String Identifier linking to the module’s view extension No

enabled Boolean Declares if the module is enabled Yes

Each module should be implemented in a Python source file which

should be added to the modules folder. The name of the source

file should be the same name as the id declared on the id

property of the module.

Each module can also have an image file linked to it, that image

is going to be shown on the UI next to information provided for

that module after a successful analysis has taken place for that

corresponding module. The image file should be added to the

assets/images folder. Its format should be png and its name

should be the same as the id declared on the id property of the

module.

ALPS identifies each module by the name (not the name property)

of the entry declared in the modules object. The id property of
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each entry is used to identify the module file that should be

loaded for that entry. The name of the entry and its id property

are recommended to be the same but declaring them with different

values is not prohibited.

The module’s source file should implement a decrypt function

which takes 3 arguments.

� Input folder: the path of the logical extraction’s data

folder.

� Output folder: the path where the module can store

decrypted files or other artifacts found during the

analysis.

� ID: id of the logical extraction analysis task (the id can

be used to differentiate the task from other tasks during

logging).

The decrypt function should return three arrays.

� The artifact’s array containing Artifact objects, which

represent the artifacts that have been found.

� The result’s array containing Result objects, which

represent the results that have been found.

� The data array containing arbitrary data which can later be

used in a view extension if one is declared.

The Artifact class is declared in utils/artifact.py.

To initialize an artifact object you need to pass the name of the

artifact, the path where it was found and a short description.

The Result class is declared in utils/result.py. To initialize a

result object you need to pass the value or the path from where

it got decrypted, the value or path to where it got decrypted,

the key and IV combination that was used during decryption if a

key and IV was used and the encoding that was used for the

original encryption of the information decrypted. The key and IV

combination should be passed as a KEY_IV object, the KEY_IV class

is defined inside utils/result.py.

Modules can utilize the logging capabilities of the tool, by



75

declaring and using the logging library with the ‘alps‘ logger

handler.

Example module implementation for finding and decrypting an

artifact file named "key" under the package "com.example":

import logging

from utils.helper import *

from utils.artifact import Artifact

from utils.result import Result, KEY_IV

logger = logging.getLogger(’alps’)

KEY = "/data/data/com.example/key"

def decrypt(input_path, output_path, id = 0):

artifacts = []

results = []

data = []

key_path = input_path + KEY

key_name = get_name(KEY)

try:

with open(key_path, "rb") as f:

key = f.read()

key_hex = key.hex()

except Exception as e:

logger.warning(log_message(id, e))

logger.info(log_message(id,

unable_to_extract_artifacts_or_missing_message(

key_name)

)

)

pass

else:

artifact = Artifact(get_name(key_path),

android_filesystem_path(key_path),

"The file containing the hash of the key"

)

artifacts.append(artifact)
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logger.info(artifact_log_message(id, artifact))

try:

actual_key = find_key(key_hex)

except Exception as e:

logger.warning(log_message(id, e))

logger.info(log_message(id, unable_to_extract("key")))

pass

else:

result = Result(key_hex, pattern, KEY_IV(), "SHA1")

results.append(result)

logger.info(result_log_message(id, result))

return artifacts, results, data

During each artifacts analysis task run, the enabled modules are

loaded dynamically. The artifacts and results returned are

displayed in their corresponding artifacts and results tables on

the module’s view. If a view extension is provided and the data

array returned is not empty, the view extension pointed by the

view_extension property of the module is attached on the module’s

view.
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ALPS Screenshots

Figure C.1: ALPS home screen
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Figure C.2: Encrypted artifacts analysis expanded

Figure C.3: Encrypted artifacts analysis collapsed
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Figure C.4: Encrypted artifacts analysis - Analyzing artifacts

Figure C.5: Encrypted artifacts analysis - Analysis finished
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Figure C.6: Encrypted artifacts analysis - Wickr

Figure C.7: Encrypted artifacts analysis - WeChat
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Figure C.8: Encrypted artifacts analysis - Signal

Figure C.9: Encrypted artifacts analysis - Signal: device found
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Figure C.10: Encrypted artifacts analysis - Signal: executing application

Figure C.11: Encrypted artifacts analysis - Signal: parsing key
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Figure C.12: Encrypted artifacts analysis - Signal: key found

Figure C.13: Encrypted artifacts analysis - Snapchat
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Figure C.14: Encrypted artifacts analysis - Viber

Figure C.15: Encrypted artifacts analysis - Microsoft Edge
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Figure C.16: Encrypted artifacts analysis - Brave

Figure C.17: Encrypted artifacts analysis - Mega
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Figure C.18: Encrypted artifacts analysis - AVG

Figure C.19: Encrypted artifacts analysis - AppLock
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Figure C.20: Encrypted artifacts analysis - Vaulty

Figure C.21: Encrypted artifacts analysis - WeVault
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Figure C.22: Encrypted artifacts analysis - Sgallery

Figure C.23: Encrypted artifacts analysis - Calculator hide photos
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Figure C.24: Encrypted artifacts analysis - Calculator photo vault

Figure C.25: Encrypted artifacts analysis - Apps Lock & File Encryption
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Figure C.26: Encrypted artifacts analysis - Secret Calculator Lock Vault

Figure C.27: Encrypted artifacts analysis - LOCKED Secret Photo Vault
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Figure C.28: Encrypted artifacts analysis - Android

Figure C.29: Brute-forcing payload generator
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Figure C.30: Brute-forcing payload generator - Generating payload

Figure C.31: Brute-forcing payload generator - Payload generated
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Figure C.32: Social engineering attack

Figure C.33: Social engineering attack - Editing fake lockscreen
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Figure C.34: Social engineering attack - Created link

Figure C.35: Social engineering attack - Received inputs
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Figure C.36: Social engineering attack - Page forwarder shutdown

Figure C.37: Settings



96 APPENDIX C. ALPS SCREENSHOTS



Bibliography

[1] NDTV Gadgets 360. Android 5.0 Lollipop Brings Full SD Card Ac-
cess for Third-Party Apps. https://www.gadgets360.com/mobiles/news/

android-50-lollipop-brings-full-sd-card-access-for-third-party-apps-616420,
2023. [Accessed 1-Jun-2023].

[2] Open Handset Alliance. Open Handset Alliance. https://www.

openhandsetalliance.com, 2023. [Accessed 1-Jun-2023].

[3] Android. Authentication. https://source.android.com/docs/security/

features/authentication, 2023. [Accessed 10-Jan-2023].

[4] Android. File Based Encryption. https://source.android.com/docs/

security/features/encryption/file-based, 2023. [Accessed 10-Jan-
2023].

[5] Android. Full Disk Encryption. https://source.android.com/docs/

security/features/encryption/full-disk, 2023. [Accessed 10-Jan-2023].

[6] Android. Gatekeeper. https://source.android.com/docs/security/

features/authentication/gatekeeper, 2023. [Accessed 14-May-2023].

[7] Jeff Atwood. Dictionary Attacks 101. https://blog.codinghorror.com/

dictionary-attacks-101/, 2009. [Accessed 8-Jun-2023].

[8] BasisTech. Autopsy - Digital Forensics. https://www.autopsy.com/, 2023.
[Accessed 1-Jun-2023].

[9] Belkasoft. Belkasoft X. https://belkasoft.com/x, 2023. [Accessed 1-Jun-
2023].

[10] Alexis Brignoni. Android Logs Events And Protobuf Parser. https://

github.com/abrignoni/ALEAPP, 2023. [Accessed 1-Jun-2023].

[11] Businessofapps. Android Statistics. https://www.businessofapps.com/

data/android-statistics/, 2023. [Accessed 1-Jun-2023].

[12] Cellebrite. Cellebrite UFED. https://cellebrite.com/en/ufed/, 2023.
[Accessed 1-Jun-2023].

97



98 BIBLIOGRAPHY

[13] Hung-Yu Chien. Dynamic Public Key Certificates with Forward Secrecy.
https://www.mdpi.com/2079-9292/10/16/2009, 2009. [Accessed 5-Jun-
2023].

[14] The Linux Choice. Lockphish. https://github.com/jaykali/lockphish,
2023. [Accessed 10-Jan-2023].

[15] Cloudflare. What is a phishing attack? https://www.cloudflare.com/

en-gb/learning/access-management/phishing-attack/, 2023. [Accessed
8-Jun-2023].

[16] Microsoft Corporation. Microsoft Edge: Web Browser. https://play.

google.com/store/apps/details?id=com.microsoft.emmx&hl=en&gl=US,
2023. [Accessed 20-Apr-2023].

[17] CUBETIX. Secret Calculator Lock Vault. https://play.google.com/

store/apps/details?id=com.photovault.secret.calculator&hl=en&

gl=US, 2023. [Accessed 20-Apr-2023].

[18] IQmor Dream. WeVault - Hide Photos & Videos. https://play.google.

com/store/apps/details?id=com.iqmor.vault&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[19] Wladyslaw Kozaczuk. Edited and translated by Christopher Kasparek.
Enigma: How the German Machine Cipher Was Broken, and How It Was
Read by the Allies in World War Two. University Publications of America,
1984.

[20] Elcomsoft. Elcomsoft Mobile Forensic Bundle. https://www.elcomsoft.

com/emfb.html, 2023. [Accessed 1-Jun-2023].

[21] Europol. Third report of the observatory function on encryption. https:

//www.europol.europa.eu/cms/sites/default/files/documents/3rd_

report_of_the_observatory_function_on_encryption-web.pdf, 2023.
[Accessed 1-Jun-2023].

[22] Fernico. ZRT3 - fernico. https://fernico.us/zrt3/, 2023. [Accessed 1-
Jun-2023].

[23] FishingNet. Calculator - hide photos. https://play.google.com/store/

apps/details?id=com.hld.anzenbokusufake&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[24] FishingNet. Calculator - photo vault. https://play.google.com/store/

apps/details?id=com.hld.anzenbokusucal&hl=en&gl=US, 2023. [Accessed
20-Apr-2023].



BIBLIOGRAPHY 99

[25] FishingNet. Sgallery - hide photos & video. https://play.google.com/

store/apps/details?id=com.hld.anzenbokusu&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[26] Feodor Fitsner. Flet. https://flet.dev/, 2023. [Accessed 10-Jan-2023].

[27] Magnet Forensics. Magnet Axiom. https://www.magnetforensics.com/

products/magnet-axiom/, 2023. [Accessed 8-Jun-2023].

[28] Oxygen Forensics. Oxygen Forensic Detective. https://oxygenforensics.

com/en/products/oxygen-forensic-detective/, 2023. [Accessed 1-Jun-
2023].

[29] Signal Foundation. Signal Private Messenger. https://play.google.com/

store/apps/details?id=org.thoughtcrime.securesms&hl=en&gl=US,
2023. [Accessed 20-Apr-2023].

[30] GCHQ. The Cyber Swiss Army Knife. https://github.com/gchq/

CyberChef, 2023. [Accessed 1-Jun-2023].

[31] Privacy Geeks. LOCKED Secret Photo Vault. https://play.google.com/

store/apps/details?id=com.lkd.calculator&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[32] Genymobile. Genymotion. https://www.genymotion.com/, 2023. [Accessed
8-Jun-2023].

[33] Kasagiannis Georgios. Security evaluation of Android Keystore. https://

dione.lib.unipi.gr/xmlui/handle/unipi/11252, 2022. [Accessed 6-Jun-
2023].

[34] Alexander S. Gillis. Diffie-Hellman key exchange. https://www.techtarget.
com/searchsecurity/definition/Diffie-Hellman-key-exchange, 2023.
[Accessed 1-Jun-2023].

[35] Google. Android Keystore system. https://developer.android.com/

training/articles/keystore, 2018. [Accessed 13-Jun-2023].

[36] Google. Android Open Source Project. https://source.android.com/,
2023. [Accessed 1-Jun-2023].

[37] Google. Chrome DevTools. https://developer.chrome.com/docs/

devtools/, 2023. [Accessed 8-Jun-2023].

[38] Google. Locking/Unlocking the Bootloader. https://source.android.com/
docs/core/architecture/bootloader/locking_unlocking, 2023. [Ac-
cessed 1-Jun-2023].



100 BIBLIOGRAPHY

[39] Google. The Chromium Projects. https://www.chromium.org, 2023. [Ac-
cessed 13-Jun-2023].

[40] Hak5. DuckyScript. https://docs.hak5.org/hak5-usb-rubber-ducky/

duckyscript-tm-quick-reference, 2023. [Accessed 10-Jan-2023].

[41] Hak5. Keystroke Reflection. https://cdn.shopify.com/s/files/1/

0068/2142/files/hak5-whitepaper-keystroke-reflection.pdf?v=

1659317977, 2023. [Accessed 10-Jan-2023].

[42] Ian Urbina (he New York Times). The Secret Life of Pass-
words. https://www.nytimes.com/2014/11/19/magazine/

the-secret-life-of-passwords.html, 2023. [Accessed 8-Jun-2023].

[43] Terry Hughes. Google and Android Are Not the Same...
and That’s a Good Thing. https://appdevelopermagazine.

com/google-and-android-are-not-the-same...-and-that’

s-a-good-thing/, 2023. [Accessed 1-Jun-2023].

[44] Snap Inc. Snapchat. https://play.google.com/store/apps/details?id=
com.snapchat.android&hl=en&gl=US, 2023. [Accessed 20-Apr-2023].

[45] Wickr Inc. Wickr Me - Private Messenger. https://play.google.com/

store/apps/details?id=com.mywickr.wickr2&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[46] Burt Kaliski. PKCS #5: Password-Based Cryptography Specification Ver-
sion 2.0. https://datatracker.ietf.org/doc/html/rfc2898#section-5.
2, 2000. [Accessed 13-Jun-2023].

[47] Jihun Son; Yeong Woong Kim; Dong Bin Oh; Kyounggon Kim.
Forensic analysis of instant messengers: Decrypt Signal, Wickr,
and Threema. https://www.sciencedirect.com/science/article/pii/

S2666281722000166?dgcid=rss_sd_all#!, 2022. [Accessed 6-Jun-2023].

[48] Kutatua. MD5, SHA1, MD5Crypt, BCrypt Password Time to Crack Calcu-
lator. https://kutatua.com/password/time-to-crack-calculator, 2000.
[Accessed 13-Jun-2023].

[49] DoMobile Lab. AppLock. https://play.google.com/store/apps/

details?id=com.domobile.applockwatcher&hl=en&gl=US, 2023. [Accessed
20-Apr-2023].

[50] RSA Laboratories. What are MD2, MD4, and MD5? https:

//web.archive.org/web/20170116172936/http://www.emc.com/

emc-plus/rsa-labs/standards-initiatives/md2-md4-and-md5.htm,
2017. [Accessed 5-Jun-2023].



BIBLIOGRAPHY 101

[51] Google LLC. Google Chrome: Fast & Secure. https://play.google.com/

store/apps/details?id=com.android.chrome&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[52] Squid Tooth LLC. Vaulty : Hide Pictures Videos. https:

//play.google.com/store/apps/details?id=com.theronrogers.

vaultyfree&hl=en&gl=US, 2023. [Accessed 20-Apr-2023].

[53] Mega Ltd. MEGA. https://play.google.com/store/apps/details?id=

mega.privacy.android.app&hl=en&gl=US, 2023. [Accessed 20-Apr-2023].

[54] WeChat International Pte. Ltd. WeChat. https://play.google.com/

store/apps/details?id=com.tencent.mm&hl=en&gl=US, 2023. [Accessed
20-Apr-2023].

[55] Niels Provos; David Mazières. A Future-Adaptable Password Scheme. https:
//www.usenix.org/legacy/events/usenix99/provos/provos.pdf, 1999.
[Accessed 13-Jun-2023].

[56] Meta. Introducing Conceal: Efficient storage encryption for
Android. https://engineering.fb.com/2014/02/03/android/

introducing-conceal-efficient-storage-encryption-for-android/,
2023. [Accessed 1-Jun-2023].

[57] AVGMobile. AVG AntiVirus & Security. https://play.google.com/store/
apps/details?id=com.antivirus&hl=en&gl=US, 2023. [Accessed 20-Apr-
2023].

[58] MOBILedit. MOBILedit Forensic. https://www.mobiledit.com/

mobiledit-forensic, 2023. [Accessed 1-Jun-2023].

[59] MSAB. XAMN - Mobile forensic data analysis software. https://www.msab.
com/product/analyze/, 2023. [Accessed 1-Jun-2023].

[60] Ngrok. Ngrok. https://ngrok.com/, 2023. [Accessed 10-Jan-2023].

[61] Juraj Novak. SQLite Viewer. https://inloop.github.io/sqlite-viewer/,
2023. [Accessed 1-Jun-2023].

[62] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off.
https://link.springer.com/chapter/10.1007/978-3-540-45146-4_36,
2023. [Accessed 13-Jun-2023].

[63] United States National Institute of Standards and Technology. Secure Hash
Standard. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.
pdf, 2015. [Accessed 5-Jun-2023].



102 BIBLIOGRAPHY

[64] United States National Institute of Standards and Technology. Federal Infor-
mation Processing Standards Publication 197. https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.197.pdf, 2023. [Accessed 1-Jun-2023].

[65] OWASP. Manipulator-in-the-middle attack. https://owasp.org/

www-community/attacks/Manipulator-in-the-middle_attack, 2023. [Ac-
cessed 7-Jun-2023].

[66] Mauricio Piacentini. DB Browser for SQLite. https://sqlitebrowser.org/,
2023. [Accessed 1-Jun-2023].

[67] The Android Playground. Apps Lock & File Encryption. https:

//play.google.com/store/apps/details?id=playground.develop.

applocker&hl=en&gl=US, 2023. [Accessed 20-Apr-2023].

[68] Christof Paar; Jan Pelzl; Bart Preneel. Understanding Cryptography: A Text-
book for Students and Practitioners. Springer, 2010.

[69] Haroon Q Raja. Android Partitions Explained: boot, system, recov-
ery, data, cache & misc. https://www.addictivetips.com/mobile/

android-partitions-explained-boot-system-recovery-data-cache-misc/,
2023. [Accessed 1-Jun-2023].

[70] Viber Media S.a r.l. Viber - Safe Chats And Calls. https://play.google.

com/store/apps/details?id=com.viber.voip&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[71] Samsung. What is an OTG cable and what is it used
for? https://www.samsung.com/nz/support/mobile-devices/

what-is-an-otg-cable-and-what-is-it-used-for/, 2023. [Accessed
10-Jan-2023].

[72] Denis Sazonov. Andriller. https://github.com/den4uk/andriller, 2023.
[Accessed 1-Jun-2023].

[73] Bruce Schneier. The Legacy of DES. https://www.schneier.com/blog/

archives/2004/10/the_legacy_of_d.html, 2004. [Accessed 7-Jun-2023].

[74] Bruce Schneier. Encryption Workarounds. https://www.schneier.com/

wp-content/uploads/2017/03/Encryption_Workarounds-2.pdf, 2017.
[Accessed 14-Jun-2023].

[75] Cornell Law School. Daubert standard. https://www.law.cornell.edu/

wex/daubert_standard, 2023. [Accessed 1-Jun-2023].

[76] Cornell Law School. Frye Standard. https://www.law.cornell.edu/wex/

frye_standard, 2023. [Accessed 1-Jun-2023].



BIBLIOGRAPHY 103

[77] Brave Software. Brave Private Web Browser. https://play.google.com/

store/apps/details?id=com.brave.browser&hl=en&gl=US, 2023. [Ac-
cessed 20-Apr-2023].

[78] SQLabs. SQLiteManager. https://www.sqlabs.com/sqlitemanager.php,
2023. [Accessed 1-Jun-2023].

[79] Statista. Market share of mobile operating systems in India from
2012 to 2022. https://www.statista.com/statistics/262157/

market-share-held-by-mobile-operating-systems-in-india/, 2023.
[Accessed 1-Jun-2023].

[80] Statista. Mobile operating systems’ market share worldwide from 1st quarter
2009 to 1st quarter 2023. https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/,
2023. [Accessed 1-Jun-2023].

[81] Statista. Number of available applications in the
Google Play Store from December 2009 to March
2023. https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store/,
2023. [Accessed 1-Jun-2023].

[82] Statista. Share of active phones with enabled biometrics in
North America, Western Europe & Asia Pacific from 2016
to 2020. https://www.statista.com/statistics/1226088/

north-america-western-europe-biometric-enabled-phones/, 2023.
[Accessed 10-Jan-2023].

[83] Statista. Tablet shipments market share by vendor worldwide from 2nd
quarter 2011 to 1st quarter 2023. https://www.statista.com/statistics/
276635/market-share-held-by-tablet-vendors/, 2023. [Accessed 1-Jun-
2023].

[84] Christoph Wille. Storing Passwords - done right! http://www.aspheute.

com/english/20040105.asp, 2023. [Accessed 13-Jun-2023].

[85] Rafael Alvarez; Candido Caballero-Gil; Juan Santonja; Antonio Zamora. Al-
gorithms for Lightweight Key Exchange. https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC5551094, 2017. [Accessed 5-Jun-2023].

[86] Zetetic. SQLCipher 3.0.0 Release. https://www.zetetic.net/blog/2013/

11/11/sqlcipher-300-release.html, 2013. [Accessed 13-Jun-2023].

[87] Zetetic. SQLCipher 4.0.0 Release. https://www.zetetic.net/blog/2018/

11/30/sqlcipher-400-release/, 2018. [Accessed 13-Jun-2023].


