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Effect of the finiteness of the atom number on the superfluid properties of
Bose-Einstein condensed gases

by Alexandra Roussou

In the present thesis I have studied problems which are related to the behaviour of
bosonic atoms at zero temperature and as a result they are Bose-Einstein condensed.
Quite generally my thesis explores some of the effects which belong to the collection
of phenomena that constitute “superfluidity”.

In all my projects I have assumed one-dimensional motion of the atoms, and I have
also imposed periodic boundary conditions, which is suitable for a ring potential. A
substantial part of my thesis focuses on the corrections due to the finiteness of the
atom number. These corrections come from correlations which show up beyond the
mean-field approximation. The derived results are based mostly on the method of
diagonalization of the many-body Hamiltonian, while I have also used the mean-
field approximation.

The novelty of my results relies on the combined effect of one-dimensional motion,
the imposed periodic boundary conditions, and the small atom numbers that I con-
sidered. As shown below, all of these give rise to effects which have not been inves-
tigated so far.

The experimental motivation for my studies comes from numerous experiments
which have created and observed persistent currents in atomic Bose-Einstein con-
densates in topologically-nontrivial traps, i.e., annular and toroidal. In addition, the
advances in atom detection has allowed experimentalists to lower the number of
atoms and even work with just a few of them.

In the first project of my thesis I investigated two questions. The first was the phe-
nomenon of hysteresis, i.e., the hysteresis loop and the corresponding critical fre-
quencies. The second question was the critical coupling for stability of persistent
currents, paying particular attention to the effect of the finiteness of the atom num-
ber on it.

In the second project of my thesis I studied the effect of the finiteness of the atom
number on the solitary-wave solutions, going beyond the mean-field approxima-
tion. To attack this problem, I developed a general strategy, and considered a linear
superposition of the eigenstates of the many-body Hamiltonian, with amplitudes
that I extracted from the mean field approximation. The resulting many-body state
has all the desired features and is lower in energy than the corresponding mean-field
state.
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iii

In the third project I studied the rotational properties of a two-component Bose-
Einstein condensed gas of distinguishable atoms. I demonstrated that the angular
momentum may be given to the system either via single-particle, or “collective” ex-
citation. Finally, despite the complexity of this problem, under rather typical condi-
tions the excitation spectrum has a remarkably simple and regular form.
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Chapter 1

Introduction

1.1 General overview

Boiling and freezing water are perhaps the most well-known examples of a phase
transition. The investigation of the phases of matter, as well as the transitions be-

tween them is a very interesting question which has been studied within many di-
verse fields of physics.

The problems I study in my thesis are all related with the phenomenon of “Bose-
Einstein condensation”. In 1924, Einstein [1], extending Bose’s work on photons
[2] argued that in a gas of massive bosonic particles there is a phase transition to
a “Bose-Einstein condensed” state, Fig.(1.1). While in the normal phase the aver-
age occupancy of all single-particle states of the system are of order unity, in the
condensed phase there is a macroscopic occupancy of a single-particle state of the
system. As a result, quantum, microscopic, effects show up on a macroscopic scale,
which give rise to fascinating phenomena [3, 4, 5, 6].
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FIGURE 1.1: Satyendra Bose and Albert Einstein, the two pioneers in
the phenomenon of condensation [7].
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More generally, the class of problems that I have studied in my thesis go back to
1908, when Helium was liquified by Heike Kamerlingh Onnes [8] (which occurs at
a temperature of around 2.17 K). In 1937 this, in turn, led Kapitza [9] and (indepen-
dently) Allen and Misener [10] to the observation of the fascinating properties which
nowadays constitute the collection of phenomena that we call “superfluidity” [11],
i.e., peculiar rotational properties — vortex states, reduced moment of inertia — per-
sistent currents, transport properties, collective effects (e.g., first and second sound),
the Hess-Fairbank effect, the Josephson effect, etc. Actually, F. London [12] was the
first one who argued in 1938 about the connection between the superfluidity of lig-
uid Helium and Bose-Einstein condensation.

Another closely-related problem is “superconductivity” [13], which was also discov-
ered by Heike Kamerlingh Onnes in 1911 [14] due to the very low temperatures that
he had achieved 3 years earlier with liquid Helium. More specifically, in 1911 Onnes
observed that the resistivity of mercury drops to zero below some critical tempera-
ture.

Ever since scientists have been studying the properties of superconducting materi-
als, even up to now. Actually, a more recent breakthrough in this field took place in
1986, when high-temperature superconductivity was discovered [15]. In addition to
the persistent currents that arise due to the drop of resistivity, other effects have also
been discovered in superconductors, including the Meissner effect, the Josephson
effect, etc.

Closely-related physical systems where superfluidity and superconductivity take
place include Helium III, atomic nuclei, neutron stars, positronium atoms, photons
in cavities, excitons in semiconductors, exciton polaritons, etc. [16, 17, 18, 19, 20, 21].
Other fascinating, quantum phenomena, which have been observed more recently
and require low temperatures include the quantum Hall effect [22], the Kosterlitz-
Thouless transition [23, 24], etc.

1.2 The general field of the present thesis — cold atomic gases

The field of my own thesis is that of cold atomic gases. This field is closely linked to
the areas of superfluidity and superconductivity. On the other hand, it also has some
serious differences compared with the “traditional” superfluids/superconductors,
and, more importantly, it stands on its own.

This field really started to develop in 1995 when the first Bose-Einstein condensates
in atomic vapors Fig. (1.2) were realized experimentally [25, 26, 27]. Remarkably, Eric
Cornell with Carl Wieman, and Wolfgang Ketterle were awarded the Nobel prize in
Physics in 2001 [25, 26, 28] for this achievement.

A few years earlier the combination of evaporative cooling with laser cooling had
allowed us to achieve ultra-low temperatures. Equally important were the advances
in trapping atoms. Combination of these techniques was necessary for the creation
of a confined and sufficiently cold gas of atoms. These developments had given
Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips the Nobel prize in
Physics a few years earlier, in 1997 [29, 30, 31, 32].
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FIGURE 1.2: The experimental realization of Bose-Einstein condensa-
tion in an atomic vapour, from the group of W. Ketterle [26].

By now, after more that 20 years, this field has given rise to the observation of an
impressive collection of phenomena. It is remarkable that it brings together various
diverse fields of physics, including condensed-matter, atomic and molecular, non-
linear and nuclear physics, statistical mechanics, particle physics, quantum optics,
quantum information, etc.

1.3 Some general remarks on cold atomic systems and some
characteristic scales

Two characteristic length scales which enter this problem are the inter-particle spac-
ing and the de-Broglie wavelength. Under typical conditions the de-Broglie wave-
length is much smaller than the inter-particle spacing. In this case the atoms behave
as classical particles, obeying Maxwell-Boltzmann statistics. Under sufficiently low
temperatures and/or high densities these two length scales become comparable to
each other, in which case interesting, quantum effects, show up.

Under these conditions, one has to distinguish between two cases. If the atoms are
bosons —i.e., if their total spin is integer — they obey Bose-Einstein statistics, while
if they are fermions — i.e., if their total spin is half integer — they obey Fermi-Dirac
statistics, Fig. (1.3).
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BEC Fermi sea

@® spin?
@® spinl
FIGURE 1.3: Occupancy of the single-particle energy levels of a har-

monic potential at zero temperature, for bosonic (left) and fermionic
(right) particles (with spin 1/2), due to their different statistics.

A serious problem that one has to overcome is the solidification of the atoms. This
may be prevented by lowering the density, which suppresses three-body collisions.
In order to reach the quantum regime this requires going to even lower tempera-
tures. This has become possible with the combination of the laser and evaporative
cooling techniques mentioned above.

Under typical conditions, the atom number is around 10° (varying between a few
thousands, to a few million), the typical spatial dimensions of the clouds (in har-
monic traps, where most of the experiments have been performed up to now) is 10
um, the typical densities are 10'* cm~3, while the typical temperatures are around
100 nK. In addition, the typical lifetime of these gases is on the order of a few min-
utes.

The zero-temperature limit of these systems thus leads to the formation of either a
Bose-Einstein condensate in the case of bosonic atoms, or a Fermi sphere in the case
of fermionic atoms (with the interesting possibility of pairing between the fermionic
atoms, very much like the BCS pairing in superconductors).

In the Bose-Einstein condensed phase there is a macroscopic number of bosonic
atoms occupying a single-particle state of the system. In more precise terms, there is
at least one eigenvalue of the single-particle density matrix which is of order of the
total number of particles in the system, N.

A major advantage of the atomic gases is that — contrary to both liquid Helium,
which is a strongly interacting liquid, as well as superconductors, which are solids
— under typical conditions they are dilute (roughly 10° times more dilute than air),
in the sense that the inter-particle spacing is much larger than the scattering length
for zero-energy atom-atom collisions (as a result, the critical transition temperature
is roughly 107 times smaller than that of liquid Helium.) Furthermore, they can be
manipulated easily, they have very low thermal velocities (as low as mm/sec), they
have an adjustable coupling constant and an adjustable effective dimensionality, and
even the functional form of the atom-atom interaction can be controlled.

As aresult, cold and trapped atoms provide an ideal laboratory for confirming basic
principles of physics and also for studying experimentally and theoretically a wide
variety of problems including coherence, quantum phase transitions, nonlinear ef-
fects, superfluidity and quantized vortex states, many-body effects, etc.
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1.4 Novel effects investigated in this thesis: Going beyond
the mean-field approximation

The field of cold atoms has been expanding with an impressive rate, especially after
1995 (when, as mentioned above, the first atomic Bose-Einstein condensates were
achieved experimentally) [25, 26, 27]. The main goals of the initial experiments, as
well as of the corresponding theoretical studies, were to confirm some fundamen-
tal effects on superfluidity and superconductivity. One of the main and interesting
aspects of these systems is the spatial confinement. As a result, while most studies
which had been performed until then had investigated homogeneous systems, the
confinement introduced novel effects.

More recently this field has followed various different directions. One direction is
when the atom number N is reduced to the extent that finite-N corrections are impor-
tant [33]; in this limit atomic systems resemble atomic nuclei. A crucial development
that has allowed scientists to perform such experiments is the improvement in the
experimental techniques on atom detection. All the three (theoretical) projects that I
worked on in this thesis involved Bose-Einstein condensed atoms at zero tempera-
ture, with a finite atom number N.

Some of the most interesting and novel aspects of the problems I considered in this
thesis include the following.

o The first one is the assumed spatial confinement. All the problems I attacked have
the common feature that they assume (quasi-) one dimensional motion under peri-
odic boundary conditions. The corresponding physical model is that of atoms which
are confined in a toroidal /annular potential, with the transverse degrees of freedom
frozen out due to the assumed tight confinement along this direction. In more simple
terms, the atoms were assumed to move in a “ring” potential.

The finiteness of the radius of the ring, combined with the imposed periodic bound-
ary conditions is another interesting and non-trivial effect which played an impor-
tant role in the problems I considered. More specifically, the two relevant length
scales are the circumference of the ring and the coherence length. Typically, in
“large” systems, the coherence length is much smaller than the circumference of
the ring and the problem reduces to that of an infinite system. Here, however, the
two length scales were allowed to be also comparable to each other and thus novel
effects showed up.

Finally, the spatial confinement has the effect of a discrete energy spectrum, which
also introduces novel effects compared to the traditional “infinite” systems.

e The second novel aspect that is investigated in this thesis is the finiteness of the
number of atoms. Typically the atom number is much larger than unity and in this
case the mean-field approximation is valid. Actually, the vast majority of theoretical
studies of these systems relies on the mean-field approximation. Within this approx-
imation the many-body state is assumed to have a product form, and is remarkably
successful because of the diluteness of these systems.

Still, for the problems that I studied this approximation is not as accurate: For the
small systems that I considered, there are correlations between the atoms which are
not captured by the mean-field approximation. In this case the finite-N corrections
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are significant and introduce corrections, which are not captured by the mean-field
approximation. A major part of my thesis was to identify such effects.

Since the mean-field approximation is not valid, I used the method of diagonaliza-
tion of the many-body Hamiltonian, which does not make any assumption about
the functional form of the many-body state and in that respect is exact. In addi-
tion, I also used the mean-field approximation. Since these two approaches have to
converge to the same results for any observable in the appropriate limit of large N,
the mean-field approximation provides the asymptotic limit of the solution derived
from the numerical diagonalization.

I describe these two approaches in detail below. For the moment I just mention that
within the diagonalization approach very often the atom number has to be rather
low, because of the correspondingly (very) large dimensionality of the Hamiltonian
matrix.

1.5 The three projects which were investigated in my thesis

In my thesis I worked on three different problems, which I describe briefly below.

Paper I: Hysteresis and metastability of Bose-Einstein-condensed clouds of atoms confined
in ring potentials

In my first project [34] I investigated the rotational response of a Bose-Einstein con-
densate in a ring potential, focusing on the effects of the finiteness of N. This work
was up to a certain extent motivated by an experiment which was performed by G.
K. Campbell [35] and her group, which studied the effect of hysteresis in a Bose-
Einstein condensate that is trapped in an annular potential and set into rotation.

In this problem I first evaluated the critical frequencies associated with the effect of
hysteresis, starting with the mean-field approximation and then using the method
of diagonalization. This allowed me to extract the effect of a finite number of atoms
on the critical frequencies which are associated with the phenomenon of hysteresis.

Then, from the derived energy spectrum that I evaluated from the diagonalization, I
also studied problems associated with the stability of the persistent currents, includ-
ing the critical coupling for stability of the currents in a system with a small atom
number N. I performed a detailed analysis of the effect of a finite N on the critical
value of the coupling for stability of the currents.

Finally, introducing a single-particle operator that induces transitions from the current-
carrying states to the zero-momentum state, I studied the matrix element which en-
ters the decay mechanisms of these currents and concluded that this decreases very
rapidly with increasing atom numbers.
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Paper II: Rotating Bose-Einstein condensates with a finite number of atoms confined in a
ring potential: Spontaneous symmetry breaking beyond the mean-field approximation

In my second project [36] I studied the limit of solitonic solutions for a finite (and
small) number of atoms N. This problem was motivated by numerous experiments
which have observed solitary-wave solutions in elongated traps, as well as in toroidal
/annular traps.

The basic question that I had in mind was the fact that the solitary-wave solutions
result as solutions of the non-linear Gross-Pitaevskii equation [37, 38], which is in-
timately connected/linked with the mean-field approximation. Still, for the small
atom numbers that I considered, the validity of the mean-field approximation is
questionable, and thus so is the accuracy/validity of the mean-field solitonic solu-
tions.

To attack this problem, I again started with the diagonalization of the many-body
Hamiltonian. I developed a general strategy, considering a linear superposition
of the eigenstates of the many-body Hamiltonian, with amplitudes that I extracted
from the mean-field approximation.

The derived many-body state that I constructed thus breaks the (assumed axial) sym-
metry of the Hamiltonian. Interestingly enough, it has the same energy to leading
order in N as the mean-field state and the corresponding eigenstate of the Hamilto-
nian, however, it has a lower energy to subleading order in N. This many-body state
thus has a lower energy, and is inherently energetically favorable, with the energy
difference being more pronounced in small systems.

A “side” result of this study is that it also provides insight into the question of spon-
taneous symmetry breaking, since the Hamiltonian is axially symmetric (and so are
its eigenvectors), while the mean-field solutions break the axial symmetry of the
problem. Finally, it introduces a well-defined strategy which allows us to link the
eigenstates of the many-body problem with the mean-field states of broken symme-

try.
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Paper III: Excitation spectrum of a mixture of two Bose gases confined in a ring potential
with interaction asymmetry

In my third project [39] I investigated the rotational properties of a two-component
Bose-Einstein condensed gas of distinguishable atoms. Again, numerous experi-
ments have studied this question, where the extra degrees of freedom associated
with the existence of a second component introduce novel effects.

Considering again a ring potential, with the two species coexisting along the ring
(I assumed repulsive interactions), I investigated the rotational properties of this
system. More specifically, one of the main questions that I examined is how the
angular momentum is distributed between the two components. As I demonstrated,
the angular momentum may be given to the system either via single-particle, or
“collective” excitation.

When the angular momentum is carried by single-particle excitation, an important
conclusion is that under typical conditions it is the minority component that carries
the angular momentum for small values of the angular momentum. This fact has se-
rious consequences on the more general structure of the dispersion relation, which
takes a remarkably simple and regular form, despite the complexity of this prob-
lem. I stress that this regularity goes well beyond the one dictated by the periodic
boundary conditions, i.e., by Bloch’s theorem.

The angular momentum may also be carried by collective excitation (under certain
conditions). Interestingly enough, in this case the corresponding many-body state,
which, in addition to the interaction energy minimizes also the kinetic energy, is
dictated by elementary number theory. As a result, the spectrum shows a form of
“quantum chaos”, where changes in the atom number of even one unit may change
it dramatically.
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FIGURE 1.6: Some of the main results of Paper III, i.e., of the problem
with mixtures.



Chapter 1. Introduction 13

1.6 Outline of the thesis

In what follows below, I start in Chap. 2 with the theoretical background, where I de-
scribe some fundamental concepts and I also describe the theoretical methods/tools
I'have used in my studies.

I start with the definition of Bose-Einstein condensation via the eigenvalues of the
density matrix. I then present briefly the results for the critical temperature of an
ideal Bose gas, the effect of the (effective) dimensionality on this phase transition,
and the effect of the finiteness in the atom number, as well the presence of a trapping
potential. I also present some well-known results for the irrotational nature of the
superfluid velocity and the quantization of the circulation.

I then turn to the mean-field approximation, which makes the assumption of a prod-
uct form for the many-body state and leads to the nonlinear Gross-Pitaevskii equa-
tion. I focus on the case of a ring geometry, presenting some results on solitary-
wave excitation, Bloch’s theorem, and the variational approach. Then I present a
toy model, which demonstrates some of the effects that I have studied in my thesis
(solitary waves, persistent currents etc). Finally, I give the mean-field equations for
a two-component system.

A major part of this section also includes the alternative method that I have used
in my thesis, namely the method of diagonalization of the many-body Hamiltonian.
Since this is central in my thesis, after describing this approach, I give an explicit
example of this method and I also comment on its advantages and disadvantages as
compared to the mean-field approximation. Finally, I comment on the comparison
between the two methods, and how they link.

In the following three chapters, Chaps. 3, 4, and 5, I turn to the three projects I have
worked on within my thesis, namely the hysteresis, the “quantum solitons”, and the
problem of mixtures.

Finally, in Chap. 6 I give some general conclusions and an overview of my work.
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Chapter 2

Relevant theoretical background

In this chapter I present the relevant theoretical background for the three main chap-
ters of my thesis (i.e., the three different projects I worked on), which follow below.

As it was mentioned already in the previous chapter, the most common method
that is adopted in these problems is the mean-field approximation [37, 38], which
assumes a product form for the many-body state. This is very convenient, since
the many-body problem reduces to a non-linear equation, of only one variable.
This equation may vary from the standard nonlinear Schrodinger equation, with
a quadratic nonlinear term, depending on the effective dimensionality, the trapping
potential and the interaction strength. Still, standard numerical methods allow us to
derive solutions of this equation.

The mean-field approximation has been tested and under “typical" conditions it is
very successful, providing accurate answers. However, especially under certain con-
ditions (e.g., when the atom number is small, as in the problems that I considered)
this approximation fails. An alternative approach that I have used in my thesis is
the method of diagonalization of the many-body Hamiltonian. The main advan-
tage of this approach is that it does not make any assumption about the form of the
many-body state, and thus it goes beyond the mean-field approximation, capturing
correlations between the atoms.

Within the diagonalization of the Hamiltonian, one starts from a suitably chosen
single-particle basis, and writes down the Hamiltonian in this basis (the more sparse
the matrix, the better, as the numerical diagonalization becomes faster). Apparently,
truncation of the Hamiltonian is necessary, as in general the dimensionality of the
Hamiltonian is infinite.

Special care has to be taken in order to make sure that the derived results have con-
verged with respect to the truncated space. While exact, this method may be applied
to relatively small systems only — actually, it is a challenge to extract the behaviour
of a large system (i.e., with a realistically large number of atoms) within this ap-
proach. Interestingly, the method of diagonalization gives the whole energy spec-
trum without any extra effort (contrary to the mean-field approximation), however
it is reliable mostly for the lowest-energy state, as well as for the low-lying excited
states, depending on the imposed truncation.
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2.1 Definition of Bose-Einstein condensation

Penrose and Onsager [40] provided a rigorous criterion for the existence of Bose-
Einstein condensation. Starting from the N-particle wave function ¥ (ry, 1a,...,1N)
of a system, one determines the eigenvalues of the (Hermitian) one-body density
matrix,

W'my()), @1

po(r,Y') =N / dry . ..deNY (r, 10, ... en) Y (Y, 10, ..., 1N)

where 1(r) is the operator that annihilates a particle at point r.

Since p(r,r’) is Hermitian it is always possible to find a complete orthonormal basis
of single-particle eigenfunctions ¢;(r), such that

p(r,x') = ) nig} (£)¢i(r). (2.2)

If none of the eigenvalues #; is of order N, then we do not have Bose-Einstein con-
densation. If only one of the eigenvalues, say ng, is of order N, we have single
Bose-Einstein condensation, with the corresponding eigenvector ¢o(r) being the or-
der parameter,

p(x,1') = nogg (r)o(r') + ) nigpy (1) i(r'). (2.3)
i#0
Finally, if more than one eigenvalues is of order N, then the condensate is said to be
fragmented [6].
Here are some remarks:
e Setting r = 1’ in the density matrix, we get the single-particle density.

e The off-diagonal components of the density matrix also contain the information
about the momentum distribution

n(p) = (" (p)y(p)), (2.4)

where ¢t (p) is the Fourier transform of ¢’ (r), i.e., it is the field operator in momen-
tum space.

e Within the mean-field approximation, where the many-body state is a product
state, according to the above criterion, the system is Bose-Einstein condensed, while
the order parameter is the corresponding single-particle state.

2.2 Bose-Einstein condensation in an ideal gas

Let us start with an infinite system in three dimensions, and then we will see the
effect of both the finiteness of a system in the particle number N, as well as of the
dimensionality.

The well-known Bose-Einstein distribution is

1

f(E’ ‘u/ T) = (E*V)/kBT .

= T (2.5)
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where E is the energy, u is the chemical potential and T is the temperature. In three
spatial dimensions (in a volume V) the density of states g(E) is given by

VM3/2
E)= —~——E'? 2.6
8(E) o (2.6)

while the number of particles at the excited states is

oo VM3/2 o0 E1/2
Nexe = /0 S(EN(Ep=0)dE= s /O o dE. 2.7)
The corresponding density is thus:
Nexc = ((3/2 2.8
(6/2) (5o, @9

where {(x) is the zeta function. The above is the well-known result that along the
phase boundary of a Bose-Einstein condensation ey o T3/2. This is equivalent to
the condition that the de-Broglie wavelength A = 27t/ +1/2MkpgT is comparable with
the inter-particle spacing, ngxlc/ 3, Setting in Eq. (2.8) nexc = o, i.e., the density of the
(homogeneous) gas, this equation gives the critical temperature T, for some given
density no.

Finally, for T < T, the number of atoms in the condensate Ny(T) is given by
T\ 3/2
No(T) =N [1 - <> ] . (2.9)
T

2.2.1 Bose-Einstein condensation in lower dimensions

For arbitrary spatial dimensions, the density of states ¢(E) o E4/2~1, where d is the
dimensionality (this holds for d = 3, 2, and 1).

An important consequence of this is that for d = 2 and d = 1 the integral that
appears above has a divergence which is not integrable. This is the well-known
result that there is no “true" Bose-Einstein condensation in two dimensions, or in
one dimension for finite temperatures, in the thermodynamic limit.

2.2.2 Bose-Einstein condensation in a finite/confined system

In a system with finite number of atoms, or in a trapped system the above conclu-
sions about the absence of “true" Bose-Einstein condensation in lower spatial di-
mensions do not hold (see, e.g., Refs. [41, 42, 43]). Another subtle point is that “real"
phase transitions occur only in the thermodynamic limit.

The main observation here is that in a system with a finite number of atoms (as in a
ring potential that we have considered), and for some set of excited states E;, Eq. (2.7)
should be replaced by the sum [41]

> 1
Zl eEi/kBT _ 1’

=

Nexe = (2.10)
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which does not suffer from the problems of divergence described above. Alterna-
tively, if one uses an integral representation instead, a cut-off has to be used in the
lower bound of integration.

In addition, if there is a confining potential the density of states is also affected and
Bose-Einstein condensation is present, even in lower dimensions [42]. For example,
in a harmonic potential in d spatial dimensions the density of states g(E) scales as
E4-1,

The main conclusion from the above remarks is that the statement about the absence
of Bose-Einstein condensation in one-dimensional and two-dimensional systems in
the thermodynamic limit is irrelevant in the problem of cold atomic gases, due to
the finiteness of the atom number and their spatial confinement.

2.3 Rotational response of a Bose-Einstein condensate

Most of the problems that I have studied in my thesis involve Bose-Einstein conden-
sates under rotation. Let me thus examine the rotational response of a Bose-Einstein
condensed gas. As we saw earlier, the density matrix was examined, in the heart of
Bose-Einstein condensation is the macroscopic occupancy of a single-particle state
$o(r), see Eq. (2.3). This fact has serious consequences, as discussed below.

Since ¢y(r) is a complex field in general, it may be written as

¢o(r) = \/H(T) e?lr), @.11)

where n(r) is the density and ¢(r) is the phase.

Evaluating the current density

, ho * h _
j(x) = 9" (1) V(r) — p(r) Vo~ (r)] = n(r) 3V (r) = n(r)os(r), (2.12)
from which it follows that the superfluid velocity vs(r) is

vs(r) = :/IVgo(r). (2.13)

The above equation implies that the rotational response of a condensate is very pe-
culiar, since the curl of its velocity field consists of singularities, which correspond
to vortex states located at the positions ¢ = ¢; (assuming motion on a plane),

V xvsox2) 6%(0—0i) (2.14)
i

Furthermore, the fact that the energy has to be finite, and since the velocity field
diverges at ¢ = ¢;, the density vanishes at these points.

Finally, the line integral of the velocity field around a closed loop —i.e., the circulation
—is quantized,
27th
%Us(r) -dl = kw, (215)

where k is an integer.
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FIGURE 2.1: Density and phase of a Bose-Einstein condensate with a
single vortex state.

For example, if there is a single vortex state at o; = 0,

h
vs(r) = eM—p (2.16)

Figure (2.1) shows such an example, of a single vortex state located at (x,y) = (0,0).

It should be stressed that vortex states also appear in classical fluids, however the
difference here is the quantization of circulation, Eq. (2.15), as well as the possibility
of persistent currents, which will be examined below.

2.4 Mean-Field approximation — Gross-Pitaevskii equation

Starting from the Schrodinger equation for the many-body wavefunction ¥ (ry, 12, ..., 1y),

N hZ 1 N
Z( ZMVZ+V I‘z Z th >T(I‘1,I‘2,...,I‘N):ET(rl,rz,...,I‘N),
i=1 ]:1 JjFi

(2.17)
where V (r) is the external potential, and Vin¢(r; — 1;) is the potential due to two-body
interactions.

Making the assumption of a product many-body state,

N
‘P(I‘l,l‘Q, e ,I‘N) = qu()(l‘i), (2.18)
i=1

the expectation value of the energy is

2
(H) = ~N [ S0 () V%0(x) e+ N [ V(Do) +

FaN(N=1) [ dr [ e Vin(x =)o) lgo(x) - (2.19)
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Minimizing the above energy functional while respecting the condition of particle
normalization,

/ po(r)[Pdr =1, (2.20)

we end up with the following equation,

hz
3 V() VO + (V=) ([ Ve =) ) ) o) = (o)
(2.21)
Here yu is a Lagrange multiplier associated with the normalization of ¢y(r) and it
corresponds to the chemical potential. When the interaction potential is assumed to
be a contact potential,

Vine(r — ') = gap o(r — '), (2.22)
and for N — 1 =~ N (for large N), then Eq. (2.21) takes the more familiar form

2
o V0() + V(©)o(r) + Nesolpo(n)Pgols) = ppo(r),  (2.29)

which is the Gross-Pitaevskii equation [37, 38]. Here g3p is the matrix element for
elastic atom-atom s-wave collisions and is equal to 4rth?ag./ M, where ag. is the scat-
tering length.

The validity of the mean-field approximation, i.e., Eq. (2.18), relies on the condition
nad, < 1, where n is the typical atom density. In other words, this is a good approx-
imation when the scattering length is much smaller than the mean distance between
the atoms, n~1/3. Under typical conditions as. is on the order of 100 A= 108 cm,
while for n ~ 10 ecm=3, n=1/3 =~ 10~% cm.

To conclude this subsection, the corresponding time-dependent Gross-Pitaevskii equa-
tion follows directly from Eq. (2.23),

hZ

I g0(x,8) + V(E)n(r,£) + Ngalgo(e ) Pgo(e, ) = in 220 200

ot

2.4.1 Bose-Einstein condensed atoms confined in a ring potential

In all the problems that I considered I assumed one-dimensional motion with peri-
odic boundary conditions, as in a ring potential. This corresponds to experiments
where the atoms are confined in either toroidal, or annular potentials, where the
transverse degrees of freedom are frozen out. This condition is fulfilled when the
quantum of energy of the trapping potential in the transverse direction is much
higher than the interaction energy and thus these degrees of freedom are effectively
frozen.
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FIGURE 2.2: Ring potential

Mean-field, Gross-Pitaevskii equation

Under these conditions the order parameter ¢y (r) depends on the angle 6 only. As-
suming that the transverse profile of the cloud is constant, then ¢ (r) = ¢(6)/+/RS,
where R is the radius of the ring and S is the cross section of the torus/annulus.
Then, the Gross-Pitaevskii equation, Eq. (2.23), takes the form

n? 92
—WW"’(Q) + V(0)p(6) +2tNg|p(0)*p(6) = pugp(6), (2.25)

where ¢ = ¢3p/(271RS). The corresponding time-dependent equation is in this case

w9 9¢(0,¢)

~ 531z 52 (0 1) + V(0)p(0, 1) + 27TNg|$ (0, H(0,t) = === (2.26)

Eigenvalue problem
In the absence of interactions and V(6) = 0 the above equation reduces to the well-
known problem of a single particle moving on a ring. The eigenfunctions are

imo

Pu(6) = (227)

where m corresponds to the quantum number of the angular momentum and is an
integer. The corresponding eigenenergies are

72 m?

Ey=——.
" 2MR2

(2.28)

Solitary-wave solutions

Solitary-wave solutions of Eq.(2.26) are self-localized solutions, which correspond
to density waves that propagate around the ring without any change in their shape
(I set the external potential V(6) equal to 0).

These will have the form ¢(6,t) = ¢(z)e /", where z = § — Ot, with Q being the
angular velocity of propagation of the wave, and y the chemical potential. Equation
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(2.26) then becomes time-independent,

n 92 Y
~ iRz 329 () + 2Nl ()P — p)g(z) = —thq;(ZZ). (2.29)

Obviously the solutions of the above equation have to satisfy periodic boundary
conditions and may be expressed in terms of Jacobi elliptic functions [44, 45].

Before I examine this more general problem let me start with the well-known prob-
lem of an “infinite" ring, i.e., the limit N — oo and R — oo, with N/R finite.
The density far away from the center of the wave approaches the constant density,
nip = N/(27tR). The solution then takes the form [47, 48]

¢(z):\/127n<iz+\/l—bcftanh [gm_ﬁ]), (2.30)

where u = Q)R is the velocity of propagation of the wave, c is the sound speed, and
¢ is the coherence (or healing) length that corresponds to the density n;p. This is
defined as h?/(2M¢?) = nipg and it gives the characteristic width of the solitary

wave. In the above solution

u Nmin
— = . 2.31
2~ (2.31)

When #min = 0, the solitary wave has a node in the density (i.e., we have a “dark"
solitary wave, which is the well-known “pi-kink" solution), then u = 0, i.e., the wave
is also static. As we see below, in a ring with a finite radius this is no longer true.

I stress that this solution does not satisfy periodic boundary conditions (for exam-
ple, the pi-kink solution has a phase difference of 7). Still, in this limit this is a valid
solution, since it is possible to impose periodic boundary conditions [46] by match-
ing the phase at the interval where the density is homogeneous, i.e., “far" from the
center of the solitary wave.

I turn now to the more interesting case of a ring with a finite radius. The two relevant
length scales which enter the problem are the radius of the ring R and the coherence
length .

When ¢ < R then one goes to the limit of a “large" ring and the solitary-wave
solutions are the ones given in Eq. (2.30). In this limit the wave is localized within a
length scale that is set by the coherence length, and the density is constant elsewhere.

Depending on the phase difference at the edges of the system (which is either zero, or
some integer multiple of 277), two different situations can arise [45]. For zero phase
difference, the minimum possible value of the density is zero, and the velocity of
propagation varies between a lowest nonzero value, and a maximum velocity, which
is set by the speed of sound. In the case of a nonzero phase difference, the velocity of
propagation can be zero, but the corresponding density cannot vanish. Again, when
N — oo and R — oo, with N/R finite, one finds agreement with known results.

In the opposite limit of “small" rings, ¢ > R, the density becomes sinusoidal with
a length scale given by R itself. Furthermore, the velocity of propagation saturates
to a constant value, which scales as 1/ R, and the minimum density of the wave can
become zero.

A final remark that I should mention is that Eq.(2.29) may also be viewed as the
equation that results from extremizing (minimizing) the energy under two constraints:
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FIGURE 2.3: The density and the phase of a solitary-wave solution for

two values of the velocity of propagation (denoted as v here), v = 0

and v/c = 0.6. The case v = 0 is the “dark" solitary-wave, i.e., the
pi-kink solution.

fixing the angular momentum (term with the first derivative) and the atom number
(term with the chemical potential). In other words, the equation for solitary-wave
excitation coincides with the equation for rotational excitation [50] (obviously for the
same boundary conditions). This observation is useful in what follows below.

Dispersion relation and Bloch’s theorem

Another interesting aspect of this problem is the dispersion relation, i.e., the energy
of the system, for some given angular momentum. The assumed one-dimensional
motion, in combination with the periodic boundary conditions imply that the energy
spectrum is quasi-periodic, i.e., it is a periodic function, on top of a parabola, as
described by Bloch’s theorem [49]. As we will see below, this behaviour affects all
three problems which are examined in the following chapters.

More specifically, let us denote as ¢ = L/N the units of angular momentum given
to the system where L7 is the total angular momentum. If ¢; is the value of ¢ in
the interval between zero and unity, according to Bloch’s theorem, the energy per
particle E(¢) /N of the system may be written as

hZ
2MR?

E(¢)/N = % +e(ly), (2.32)
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where e(ly) = e({p+n), withn = 1,2,..., i.e, e({p) is a periodic function, with
a period equal to unity. The function e(/p) is also even, e(—{y) = e({p). In other
words, if one evaluates e({y) for 0 < ¢y < 1, then from Eq. (2.32) the whole excitation
spectrum follows, for any value of /.

Furthermore, if any eigenstate ¥, (61, ...,0xn) of the many-body Hamiltonian (not
necessarily the lowest-energy state) is known for any value of ¢y between zero and
unity, then the many body state for ¢ = ¢y +n, withn =1,2,...1is

Fyoin(01,...,0n) = MOt (g, 6y). (2.33)

The general structure of the dispersion relation E(L) is shown in the following plot,
Fig. (2.4).

energy
\

0 Nh 2Nh 3Nh
angular momentum L

FIGURE 2.4: Schematic figure of the dispersion relation for N bosons

in a ring potential. The dashed line is the envelope part, proportional

to L2, and the dotted line is the periodic part; the solid line is their sum

i.e., the dispersion relation. The local minima give rise to persistent
currents.

Variational approach

Alternatively Eq.(2.25) may also be solved numerically, or variationally. For ex-
ample, if one wants to follow the variational approach, one may expand the or-
der parameter in the (complete) basis of the plane-wave eigenfunctions of the non-
interacting problem, Eq. (2.27),

¢$o = chﬂ,bm (2.34)

Then, the energy has to be minimized under two constraints, namely normalization,

Y2 =1, (2.35)
m

and a fixed expectation value of the angular-momentum operator,

Y mcs, =4, (2.36)
m
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where / = L/ N is the angular momentum per particle. This constraint minimization
determines the amplitudes c;,.

Weak interactions — a toy model

An easy and instructive limit, which allows us to derive analytic expressions for
various observables, is that of weak interactions, where nipg < n*/ (ZMRZ) and
one may work with two modes only, using the variational approach. Given that
there are two constraints, these determine the two variational amplitudes (up to a
phase, as we discuss below).

When the expectation value of the angular momentum is in the range mh < /(i <
(m + 1)k (I take m to be positive for simplicity), the order parameter is, due to the
limit of weak interactions,

O = V1= Lo +Vloe ™ Py (2.37)

Here 0 < /p < 1and A is a real number and constant (to be explained below).

The energy per particle is
En
o= 2 = P (14 7)h(1 - ho), (2.38)

where ¢y = hZ/(ZMRz), v = nipg/eo and ¢ = {y + m is the angular momentum
per atom. From the above expression we see that indeed, the energy is periodic (last
term) on top of a parabola (first term on the right side of the equation), in agreement
with Bloch’s theorem [49].

Furthermore, the density (in the rotating frame) is given by

1w (0) = nip[1 4+ 24/4o(1 — £y) cos(8 — A)]. (2.39)

We see that in this limit of weak interactions the density is sinusoidal, as mentioned
also above. The parameter A determines the center of the wave and is arbitrary
because of the rotational invariance of the problem. We also see that 1,,(0) is the
same at any interval mh < (h < (m + 1)h, and is independent of m, due to Bloch’s
theorem.

Equation (2.39) minimizes the energy for a fixed expectation value of the angu-
lar momentum. As mentioned above, this is actually equivalent to a nonlinear
travelling-wave — i.e., a solitary-wave — solution [50], and it represents a density
wave that propagates around the ring with a velocity v,,. This propagation velocity
is given by the derivative of the energy with respect to the angular momentum and
is equal to

v 14y +2(m — yb)). (2.40)

"= MR
From this equation we also observe that for ¢y = 1, i.e., for { = m + 1, its slope
vanishes for the critical coupling

Ym = 2m + 1. (2.41)
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This equation implies that persistent currents — i.e., local minima in the dispersion
relation — appear at these critical values of the coupling, at / = m + 1. Of course,
we should not forget that self consistence requires that ¢ has to be small within
this trial wavefunction. Actually, the exact result for the critical coupling is v, =
(2m+1)(2m +3)/2[51].

A mixture with two components

In my thesis I have also considered the case of a mixture of two, distinguishable
bosonic species. Equation (2.25) is generalized for the two order parameters, say

$A(0) and ¢p(0), as

92
—mﬁ%(f)) + V(0)pa(0) +27t(Naganldpa(0)* + Npgap|ps(0)|*)pa(0)

= naga(0),
(6) + V(0)$p(0) +271(Npgnalp(6)|* + Nagaslda(6)*)¢s(6)

= upps(0),
(2.42)

92
~oMR2 9029

where we now have the atom numbers N4 and Np in each component, the parame-
ters gaa for A — A collisions, gpp for B — B collisions, and g4p for A — B collisions,
and the chemical potential 4 and pp for each species. Finally, the atom mass M of
the two species is assumed to be the same.

The above coupled equations also support solitary-wave solutions, the so-called
“vector solitons", as I analyze in detail in Chap. 5. In this case both the periodic
boundary conditions — in connection with the finiteness of the radius of the ring —
as well as the additional degrees of freedom associated with the second component
introduce novel effects [52].

2.5 Diagonalization of the many-body Hamiltonian

2.5.1 General remarks

I turn now to the alternative approach mentioned earlier, i.e., to the solutions of the
many-body Schrodinger equation, which in matrix notation takes the form

H[Y) = E|'¥). (2.43)

To solve this problem one starts with a single-particle basis of states and expresses
the Hamiltonian matrix in this basis. For example, one may choose the eigenstates of
the non-interacting problem — a “suitably" chosen basis of states will make the corre-
sponding matrix more sparse and will speed up the diagonalization, or equivalently
it will allow us to handle matrices of a larger dimensionality.

In general the dimensionality of the Hamiltonian matrix is infinite. Given that typ-
ically we are interested in either the lowest-energy state, or the low-lying excited
states, the space of single-particle states is truncated, since states of higher energy
contribute very little to the low-energy many-body states.
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It is a challenge to make sure that the observables we evaluate from the diagonaliza-
tion have converged with respect to the truncation. One of my achievements is that
I developed a dynamic algorithm, which allowed me to perform the diagonalization
in a space with a tuned truncation, and thus I managed to check the convergence of
my results.

Furthermore, the dimensionality of the Hamiltonian matrix increases rapidly with
the atom number N, as well as with the units of angular momentum L (in the prob-
lems that involve rotational properties that I have considered). As a result, within
this approach both N and L are very limited (compared to the ones in current, typical
experiments).

I'stress that the many-body states that result from the diagonalization have all the in-
formation that is needed for the evaluation of any observable. On the other hand, the
only observables that follow immediately from the diagonalization are the eigenen-
ergies (actually not only the lowest one, but the whole excitation spectrum). For any
other observable that one may need (e.g., single-particle density, pair-correlation
function, etc.), extra effort is required.

2.5.2 Atoms confined in a ring potential

Let me now consider the problem of atoms confined in a ring potential. The single-
particle basis states that I choose are the plane-wave states, Eq. (2.27). The Hamilto-
nian H that I use is, in second-quantized form,

hz mmax
~ 2MRZ Y i + ‘% Y ananara Smn st (2.44)

M=Mmin m,n,k,l

H

where a,, annihilates an atom with angular momentum m#. The first term on the
right corresponds to the kinetic energy, while the second to the interaction energy
(the interaction is assumed to be a contact potential). Also mmin denotes the mini-
mum (integer) value of the quantum of angular momentum that we choose in our
space, and mmax the maximum one. We consider only the single particle states ¢y,
with Mmin S m S Mmax-

In order to proceed with the diagonalization, we have to construct the many-body
basis states. Since the Hamiltonian operator is axially symmetric, it commutes with
the angular momentum operator,

[H,L] =0, (2.45)
and also with the number operator,
[H,N] = 0. (2.46)
The many-body basis states
Ninyp; N"lmax
|¢Mm§‘\‘“/ s (Z)\]O’ ©* 07 ¥ Mmax > (247)

will thus be eigenstates of both L. and N. Here the upper index denotes the occu-
pancy of the single-particle state.The constraints due to fixing N and L take the form
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M=Mmax

Y Nu=N, (2.48)
M=Mmin
and
M=Mmax
Y. mNy =L (2.49)
M=Mmin

Therefore, after the construction of the many-body basis states of some fixed N and
L, the Hamiltonian matrix is written in this basis and diagonalized. The derived
eigenstates are also expressed in terms of these many-body basis states, while the
corresponding eigenenergies follow immediately.

A mixture with two components

If there are two distinguishable components, the Hamiltonian takes the form (as-
suming equal masses for the two species)

hz Mmax

_ 844
2MR?

2/ .+ + + ot
m=(a;,anm + by, by ) + 5 Z Ay, 0y Ak] Oy iy et ]
M=Mmin m,n,k,l

ggB Y b bbb gt + 8aB Y, anbharby Spn it (2.50)

mn,k,l m,n,k,l

where a,, destroys an atom of species A with angular momentum m#, and b, de-
stroys an atom of species B with angular momentum m?.

2.5.3 An explicit example
Let me consider N = 4 atoms, L = 3 units of angular momentum, ¢ = 0.1, and
truncate to the space with mmin = —2, and mmax = 2.

Starting with the many-body basis states which satisfy the two constraints for N and
L, these are

1) = [(=2)%(-1)°0',1°2%
2) = [(=2)%(-1)°0%1%,2")
3) = [(=2)%(-1)',0°%122")
4) = [(=2)%(-1)',0',1°,2%)
5) (=2)!,(-1)%,0°1",2?) (2.51)

Here in the notation “mN»" the lower index denotes the quantum number m of the

single-particle state ¢, and the upper index denotes the occupancy of this single-
particle state.

If Hj is the kinetic-energy operator and H, the interaction-energy operator, the corre-
sponding matrices are the following two, which lead to the total Hamiltonian matrix
H,
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[H ) [2) [3) 14) 5|

m 3 0 0 0 0
2) 0 5 0 0 0
3 0 0 7 0 0
4 0 0 0 9 0
5 0 0 0 0 13
[H: ) 2) 3) 4) 5 |
1) 09000 03464 03464 0 0
2) 03464 1.1000 0.2000 0.4000 0.2000
3) 03464 02000 1.1000 0.2000 0.4000
[4) 0 04000 02000 1.1000 0.2000
5 0 02000 0.4000 0.2000 1.1000
| H D) 12) 3) 14) 5 |
1) 39000 03464 03464 0 0
2) 03464 61000 0.2000 0.4000  0.2000
3) 03464 02000 81000 0.2000  0.4000
[4) 0 04000 02000 10.1000 0.2000
5 0  0.2000 0.4000 0.2000 14.1000

Diagonalizing this matrix implies that the eigenenergies are

H Eigenenergies H

3.
6.
8.
10.1468
14.1447

8227
0859
0999

and the corresponding eigenvectors are

H Figenstates

|

—0.9864[1) + 0.1460[2) -+ 0.0741|3) — 0.0115[4) — 0.0055|5)
0.1381|1) -+ 0.9800|2) — 0.1087|3) — 0.0914|4) — 0.0168|5)
—0.0882|1) — 0.0854|2) — 0.9843|3) -+ 0.1090|4) + 0.0648|5)
0.0109|1) -+ 0.1001|2) + 0.0955|3) + 0.9882[4) — 0.0647|5)
0.0033|1) + 0.0294|2) + 0.0689|3) + 0.0555|4) + 0.9956|5)




29

Chapter 3

Hysteresis in a Bose-Einstein
condensate

The phenomenon of hysteresis appears in various physical systems. One of the most
well-known examples of hysteretic behaviour is magnetism: When a ferromagnetic
material is subjected to an external magnetic field, it becomes a magnet, and then,
even in the absence of the field, it remains a magnet. In order for the material to
become non-magnetic, an opposite field has to be applied, or to be heated. Therefore,
quite generally, hysteresis refers to the fact that the state of a system depends on its
history.

Hysteresis is in the heart of the collection of phenomena associated with superfluid-
ity (and superconductivity). In this chapter, I examine the phenomenon of hysteresis
in a Bose-Einstein condensed cloud of atoms which rotate in a toroidal /annular po-
tential [49, 53, 54, 55, 56, 57]. Assuming one-dimensional motion, I evaluate the
critical frequencies associated with the effect of hysteresis and the critical coupling
for stability of the persistent currents [6, 66], as well as their decay mechanisms.

I perform these calculations using both the mean-field approximation (where the im-
plicit assumption of a large atom number has been made), as well as the method of
numerical diagonalization of the many-body Hamiltonian (considering, in this ap-
proach, a small atom number), thus identifying the corrections due to the finiteness
of the atom number.

3.1 Experimental motivation

Over the last years, scientists have managed to trap and manipulate Bose-Einstein
condensed clouds of atoms in a wide variety of trapping potentials of different
topologies. Numerous experiments have been performed in topologically-nontrivial
trapping potentials, namely in annular/toroidal traps [58, 59, 60, 61, 62, 63, 64, 65].
More recently the phenomenon of hysteresis was also observed in an annular poten-
tial [35].

In this experiment — see Fig. (3.1) and Fig. (3.2)— a Bose-Einstein condensate of sodium
atoms, which was trapped in an annular trap and it was initially at rest, was stirred.
As the rotational frequency of the stirring potential increased, the cloud was ob-
served to make a transition to a state with one unit of circulation at a critical fre-
quency, ()1. On the other hand, in the reverse process (i.e., starting with the gas
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having one unit of circulation and decreasing the frequency of the stirrer) the sys-
tem was observed to return to the state with zero circulation at a different critical
frequency, (). This is indeed a clear indication of hysteresis.

FIGURE 3.1: Schematic picture from the experiment of Ref.[35],

where the phenomenon of hysteresis was observed. A combination of

magnetic fields trapped the atoms (left), resulted into a cloud of atoms

which were confined in the annulus (right). A green laser beam was

applied locally, reducing the atom density, and forcing the atoms to
rotate.

a \\__ Stirrer b Phase ¢
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FIGURE 3.2: Schematic picture from the experiment of Ref. [35]. The
left and the middle plots show the density and the phase of the con-
densate, respectively. The right shows the hysteresis loop.

In what follows below I first present the model in Sec. 3.2 and comment on the phe-
nomenon of hysteresis in Sec.3.3. Then, I evaluate in Sec.3.4 the relevant critical
frequencies within the mean-field approximation. In Sec. 3.5 I perform the same cal-
culation beyond the mean-field approximation, where I consider corrections of order
1/ N (and lower), which result due to the finiteness of the atom number N. I also in-
vestigate in Sec. 3.6 the corresponding finite-N corrections on the critical coupling
for metastability and the matrix element for the decay rate of persistent currents.
Finally in Sec. 3.8 I present some conclusions of the results of the present chapter.
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3.2 Hysteresis in a system with a finite number of atoms in a
ring potential

3.2.1 Model

Contrary to the mean-field approximation - which makes the implicit assumption of
a large particle number - the diagonalization approach includes corrections due to
a finite number of atoms. In addition, it avoids the assumption of a simple product
state for the many-body wavefunction that is central to the mean-field approach. As
a result, this approach captures correlations that are built when the atom number is
very low or when the diluteness condition is violated.

I stress that in various recent experiments it became possible to trap and detect very
small numbers of atoms, which can even be of order unity. Indeed, there appears
to be a more general tendency in the field of cold atoms to move towards the study
of small systems. Interestingly, the vast majority of the theoretical studies which
have been performed on the superfluid properties of cold atomic gases and on the
phenomenon of hysteresis assume the opposite limit of large particle numbers, since
they are based on the mean-field Gross-Pitaevskii approximation. As a result, very
little is known about the effect of the finiteness of systems with a small number of
atoms.

I'assume one-dimensional motion of bosonic atoms under periodic boundary condi-
tions, as in a ring potential. This model is expected to be valid in an annular/toroidal
trap as long as the interaction energy is much smaller than the energy of the trapping
potential in the transverse direction.

If a,, and a4, are annihilation and creation operators of an atom with angular mo-
mentum mf, the Hamiltonian has the form of Eq. (2.44)

hz Mmax g
H=_—= Z m?at 4y, + S Z alatapa Omtn k- (3.1)
2MR2 M=Mmin " 2 m,n,k,l "

Here M is the atom mass, R is the mean radius of the torus/annulus, with R > +/S,
where S is the cross section of the torus/annulus in the transverse direction. Also
g = g3p/(21tRS), where g3p = 4A7th?as./ M is the matrix element for elastic s-wave
atom-atom collisions, with a scattering length a,..

3.3 The dispersion relation and its effect on hysteresis

In analysing the phenomenon of hysteresis and of the metastability of superflow [6,
66], the main feature to be considered is the dispersion relation [49, 53, 54, 55, 56, 57],
i.e., the energy of the system as a function of the angular momentum.

Let E(¢) denote the total energy where ¢fi = Lh/N is the angular momentum per
atom and L is the total angular momentum. As we saw in the previous section,
according to Bloch’s theorem [49], E(¢) consists of a periodic part plus a quadratic
part which comes from the motion of the center of mass. Thus, one needs to consider
only 0 < L < N (0 < ¢ < 1); the remainder of the spectrum follows trivially as a
consequence of Bloch’s theorem.
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The periodic part has minima at L = 0 and L = N, and thus local minima in the
dispersion relation may occur at these values of L. The dispersion relation is shown
schematically in Fig.(2.4). We note that since only the periodic part is the one that
can cause local minima, and only the periodic part depends on the internal motion of
the atoms, it is the interactions that may cause local minima to appear. If interactions
are sufficiently weak, there will be no local minima and the system will not support
persistent currents.

3.3.1 Non-interacting problem

In the absence of interactions E(¢) consists of straight lines, see Fig.(3.3). In the
intervals m < ¢ < m + 1, where m is an integer,

E(£)/Ney = m? + (2m + 1)4,, (3.2)

where ¢ = {p+mand 0 < ¢y < 1. Obviously, at the end points of each interval the
first derivative of E(/) is discontinuous.

Energy (Ep)
N WA o

—

0 2 4 6 8 10 12 14
Momentum (p,)

FIGURE 3.3: Dispersion relation in the absence of interactions.

3.3.2 Effect of the interactions

In the presence of repulsive/attractive interactions these discontinuities remain, while
the curvature is negative/positive, respectively. Figures (3.4), (3.5) show a schematic
picture of the dispersion relation E(¢) for the repulsive interactions which we con-
sider here. Such a spectrum will give rise to hysteresis. If one goes to the rotating
frame and considers E,;(¢)/N = E(¢)/N — £Q), there are competing local minima
as the rotational frequency of the trap () is varied. These competing minima give
rise to discontinuous transitions and thus to hysteresis. The two critical frequencies
(1 and ), (see Fig. (3.5)) of the hysteresis loop correspond to the value of the slope
of the dispersion relation E(¢) for ¢ — 0" and ¢ — 17, respectively.
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FIGURE 3.4: Dispersion relation for repulsive interactions.

The effect of hysteresis is thus a generic feature of this problem. On the other hand,
for an effective attraction between the atoms, hysteresis is absent, since the curvature
of E({) is positive, and thus there are no discontinuous transitions as the rotational
frequency of the trap is varied.

It is convenient to write (in the interval 0 < ¢ < 1) the total energy per particle
E(/)/Nas'

E(¢) h?

N  2MR?

0+ e(0). (3.3)

In the case of the non-interacting problem the first term on the right gives the ki-
netic energy, and &(¢) vanishes. Due to Bloch’s theorem, é({) is symmetric around
¢ = 1/2 and a periodic function with a period equal to unity. Expanding é(¢)
for £ — 0%, &f) = &(0) + el + O(¢?). This implies that the slope of the dis-
persion relation for £ — 0% is #*/(2MR?) 4 e. On the other hand, for £ — 1-,
é(¢) = é(0) +¢e(1 —¢) + O(1 — £)?, and thus the slope of the dispersion relation for
¢ — 1~ is * /2MR? — ¢. In the hysteresis loop it is precisely these slopes that deter-
mine the two critical frequencies, 1) = */(2MR?) + ¢ and i), = 1>/ (2MR?) — ¢
as seen in the schematic plot of Fig. (3.5).

Therefore, itis crucial to determine the value of . Interestingly, the difference (0 —
()) is equal to 2¢. Furthermore, the sign of (), determines the stability of persistent
currents. Specifically, the condition (2, = 0 represents the critical value of the cou-
pling for metastability of the currents, and metastability will be present if (), < 0.

!T stress that this expression is consistent with Bloch’s theorem, since the energy may also be writ-
tenas E(¢)/N = [i®/ (2MR?)][£% + (2 — )] 4 e(£), where the last term is periodic.
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FIGURE 3.5: (a) Energy in the lab frame, E(¢), (middle curve) as well

as in the rotating frame, E,t(¢) /N = E(¢)/N — (). (b) The two crit-

ical frequencies (2; and (), for which the slope of E;,; vanishes for

¢ — 0" and ¢ — 17, respectively. The arrows in the upper plot indi-

cate the instability that results from the disappearance of the energy

barrier; in the lower plot they indicate the hysteresis loop as the rota-
tional frequency varies.

3.4 Hysteresis within the mean-field approximation

I begin with the mean-field approximation and consider the limit £ — 17. One can
construct a Taylor-series expansion of the energy as a function of the small parameter
1 — /. Since I am interested in the slope of the dispersion relation, we only need the
linear term in the expansion for the energy. To get that, it suffices to consider only
the dominant state in the order parameter ¥, which is ¢;, with ¢, = em? /\/27T as
well as the neighbouring modes ¢y and ¢». This is due to the fact that there is a cross
term in the energy that comes from the scattering of two atoms with m = 1 resulting
an atom with m = 0 and m = 2. This term can be negative and thus lowers the
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energy [67]. Therefore, I write the order parameter as

Y = coo + c1¢1 + c2¢2, (3.4)

where the coefficients are real variational parameters and also |c1] is of order unity,
while |co| and |c| are both of order 1 — ¢. I stress that a completely analogous calcu-
lation holds for ¢ — 0, in which case one should assume that ¥ = c_1¢_1 + cogo +
c1¢1. We should also mention that one may work more generally with the three
states ¢1_x, Px, and ¢ with k = 2,3,..., however the fact that the kinetic energy
of the states ¢, scales as m? necessarily implies that x = 1.

The coefficients appearing in Eq. (3.4) must satisfy the normalization condition, ¢ +
7+ ¢3 = 1, and the constraint of fixed angular momentum, ¢ +2¢3 = for c3 — 5 =

1 — /. The expectation value of the energy per particle in the above state is

£
NEO

= c% + 4c% + %(cé + c‘f + c% + 4c%c% + 4c%c% + 4c%c% — 4|C0’C%|C2|),

(3.5

where ¢y and ¢, have been assumed to have opposite signs in order to minimize
the energy. Here, 7v/2 = Ng/(2ep) = 2NaR/S is the ratio between the interaction
energy of the gas with a homogeneous density distribution and the kinetic energy
eo = h*/(2MR?). After linearization, the above expression may also be written as

E Y 2 2
— = 2 — . .
No ~ 3 = 28+ (]~ lel) (36)

Writing cp = /1 —{cosh0, c; = /1 —{sinh6, the value of § that minimizes the
energy is 6y = (1/4) In(2y + 1). Therefore, the minimized energy is

E
Y [y +1-1)(1-0). (3.7)
N€0 2
The derived value of € is thus €¢/eg = /27 + 1 — 1 and therefore

OV /w=+27+1, (3.8)

while

M/w=2—/27+1, (3.9)

where w = ep/h. We note here that (), will vanish if v = 3/2. This is the well-
known result for the stability of persistent currents in a single-component gas, see,
e.g., Ref.[68].

One can generalize the above results (using Bloch’s theorem) in the interval m < ¢ <
m + 1, where

O /w=2m++/2v+1, (3.10)

and

Oy/w=2(m+1)—/27y+1. (3.11)
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From the last equation it follows trivially that the critical value of the coupling for
stability of persistent currents (for { = m +1)is y = (2m +1)(2m +3) /2.

3.5 Hysteresis beyond the mean-field approximation

Inow examine the same problem beyond the mean-field approximation. To do this, I
use the method of diagonalization of the many-body Hamiltonian. The order param-
eter can be written as Eq. (3.4), although the actual space, consisting of the number
of single-particle states, | ), is infinite. Therefore the eigenstates may be written in
the form

¥a) =Y chlp), (3.12)
P

where n = 0,1,2,... denotes the excited state with index n. Here the states |p) are
defined as |07, 1N-2p 2p ), since we have only taken into account the three single-
particle states of Eq. (3.4), meaning ¢, ¢1 and ¢».

The notation |0N0, 1N, 2N2> indicates that Ny atoms occupy the state ¢y, etc. Clearly,
the states |p) are eigenstates of the number operator and of the angular momentum
for a system of N atoms with angular momentum L = N.

Again, one can work more generally with the three states ¢1_, ¢1 and ¢;,, with
k = 2,3,..., however the corresponding problem becomes block diagonal, with the
triplet of the states with x = 1 giving the slope we are looking for [68].

One can diagonalize the Hamiltonian in this truncated space using the Bogoliubov
transformation to obtain the eigenvalues E, (L), which are

E.(L=N)/eg—y(N—1)/2=N—(y+1)+ 27+ 1(1+2n). (3.13)

Considering the states |p’) = |0P*1,1P=2" 2P~1) with N atoms and L = N — 2 units
of angular momentum, one can follow the same procedure as before to find that

Ef(L=N=2)/eg—y(N=1)/2=N—4— (y+1)+ 27+ 13 +2n). (3.14)

From the lowest eigenvalues of each of the last two equations it follows that (), /w =
2 — /27 + 1, in agreement with the result of the mean-field approximation, Eq. (3.9).

The approach considered above has assumed that N is > 1, while the expectation
value of m [in Eq. (3.12)] is of order unity. To find the finite-N corrections for the
critical values of ()1 and (), I have diagonalized the many-body Hamiltonian nu-
merically without making any approximations beyond the truncation to some set of
single-particle states ¢, with —mmax < m < mmax. Figure (3.6) shows the result of
such a calculation for N = 5 atoms, 0 < L < 10, vy = Ng/ey = 0.5, and mmax = 4,
where we plot a few eigenvalues for each value of L. The dispersion relation satis-
fies Bloch’s theorem. The fact that the form of this figure is the same as that of the
schematic plot of Fig.(3.5) indicates the presence of hysteresis. I stress that for the
small values of N that we consider here one can easily reach the Tonks-Girardeau
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FIGURE 3.6: The lowest eigenvalues E; of the Hamiltonian for N = 5
atoms as a function of L. The calculation was performed for 7 =
Ng/ey = 0.5, and mmax = 4.

limit. In this limit - is at least of order N?. Thus, in order for the mean-field approx-
imation to be valid, - has to be much less than N2.

3.5.1 Critical rotational frequencies of the hysteresis loop

Having diagonalized the Hamiltonian, I extract the slope of the dispersion relation
from the difference Eg(L = 1) — Eo(L = 0) to determine ();. Finally, by varying the
atom number, 2 < N < 51 find that ()1 can be approximated as

0y /w ~ 1.0953 — 0.8782/N — 0.7513/N?, (3.15)

for v = 0.1. A subtle point in this calculation is the fact that the interaction strength
increases with increasing N. This results in a greater depletion of the condensate.
Thus, in order to extract the critical frequencies associated with the hysteresis, we
keep 7 fixed or equivalently allow g to scale like 1/N.

In obtaining Eq. (3.15) mmax was set equal to 5. Clearly, mmax must be sufficiently
large so that the fitting parameters have saturated. The differences in these param-
eters due to changing mmax = 4 to Mmax = 5 are in the seventh, third, and second
significant figures respectively. The value of the leading term is remarkably close to
the value of /1 + 2 ~ 1.09544 found in Eq. (3.8), which is the asymptotic value of
() for N — co. Similar calculations for v = 1 yield

O /w = 1.7453 — 0.6101/N — 0.1353/ N>, (3.16)

Although the leading term is still reasonably close to /1 + 27 =~ 1.73205, the agree-
ment is materially worse. This is presumably because of the larger depletion of the
condensate due to the stronger interaction strength.

One general observation that emerges from the above analysis is that the effect of
the finiteness of the system and of the correlations, captured by the method of di-
agonalization, is to decrease the value of (); from its asymptotic value (and thus to
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increase the value of ();). I comment on this observation in the following section.

Last but not least, we mention that the value of the angular momentum for which
the winding number of the order parameter changes is exactly / = 1/2. In the
equivalent language of solitary waves [69] the lowest-energy state with this value of
the angular momentum corresponds to a “dark" solitary wave (i.e., a solitary wave
with a node) which, although dark, still has a finite propagation velocity due to the
finiteness of the ring [45, 69]. Assuming without loss of generality that the center
of the solitary wave is located at 8 = 7, the real part of the order parameter has a
fixed sign. Its minimum value (at 6 = 71) vanishes as ¢ — (1/2)~. The imaginary
part of the order parameter has sinusoidal behaviour and vanishes at = 0, 7r, and
27t. This necessarily implies that the net phase change is zero. On the other hand,
for £ — (1/2)", the minimum value of the real part of the order parameter, which
remains 0 = 7, is negative and approaches zero from below. This tiny change in
the minimum value of the real part of the order parameter from slightly positive to
slightly negative is sufficient to change the winding number of the phase. I stress
that this tiny change can be described perturbatively and, although there is a violent
rearrangement of the phase of the order parameter, this rearrangement can in no
way prevent hysteresis.

3.6 Metastability of persistent currents in a small system

The dispersion relation can develop an energy barrier for sufficiently strong and
repulsive interatomic interactions which separates the state with L = N from the
state with L = 0 [6]. While Eo(L = N) will always have a higher energy than
Eo(L = 0) [in fact, Eo(L = N) — Eg(L = 0) = Neyp], the state with L = N is then
metastable. As a result, if the system is prepared in the state L = N, it will require
an exponentially long time for the system to decay, since this process must occur via
quantum tunnelling. Furthermore, the energy and the angular momentum of the
gas must be dissipated by small non-uniformities in the trapping potential.

In this section I investigate two different questions. The first is the critical value of
the coupling required for the system to develop an energy barrier with particular
concern for finite-N effects. The second question is how the matrix element of a
symmetry-breaking single-particle operator AV, that can connect the two eigenstates
of lowest energy, [L = N) and |L = 0), depends on the atom number N (for reasons
explained below).

Starting with the first question, according to Eq. (3.9) the critical value of - for the
existence of a local minimum for £ — 17 is 7y = 3/2. This is an asymptotic result,
which does not include finite-N corrections. To find these corrections, I choose a
fixed value of the atom number N and identify the critical value of g, g.r, which gives
a zero slope in the dispersion relation for ¢ — 17, i.e.,, Eo(L = N) = Eo(L =N —1).
The result of this calculation is given in Fig. (3.7) where I plot the number of atoms
on the x axis and the product Ngo = 7o on the y axis, for mmax = 4. These results
can be fit as

Yer &~ 1.5106 + 0.6020/ N + 8.2820/N? — 34.8262/N°® +73.3879/N*.  (3.17)

The small deviation of the asymptotic value of 7., in the above expression from the
expected value of 3/2 is presumably due to the truncation, mma.x = 4, the limited
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number of atoms we have considered, N < 10, and correlations which are absent
in the calculation within the mean-field approximation. Interestingly, as seen from
Fig.(3.7), the value of 7. for a finite number of atoms is higher than 3/2. Since
this is determined by the slope Eo(L = N) — Eo(L = N — 1), we conclude that the
correlations which are captured within the present approach (but are absent within
the mean-field approximation) lower the energy of the state with L = N — 1 more
than that of the state with L = N. Thus, a higher value of -y is necessary to stabilize
the currents in the state with L = N. The same mechanism which increases 7 is
also responsible for the decrease (increase) of (31((),) found in the previous section.

I turn now to the second question regarding the decay rate of the persistent current.
In order for the energy barrier (which develops for sufficiently strong interatomic
interactions) to prevent the decay of the currents and render them metastable with
an exponentially long decay time, the matrix element of any symmetry-breaking
single-particle operator AV connecting the states [L = N) and |L = 0) must be
vanishingly small 2.

Otherwise the presence of the energy barrier becomes irrelevant and the currents
will decay:.

To investigate this problem, I consider a single-particle operator AV = Vo YN, 6(6;),
which is a sum of delta function potentials intended to mimic irregularities in the
trap [54]. This potential breaks the axial symmetry of the Hamiltonian and induces
transitions between the two states [L = N) and |L = 0). I thus evaluate the matrix
element (L = N|AV|L = 0), making use of the lowest-energy states |L = 0) and
|[L = N) that I got from the diagonalization of the axially-symmetric Hamiltonian.
Clearly the only terms which give a nonzero contribution to this matrix element are
those that raise the angular momentum by L = N units when acting on |L = 0),

(L=NIJAV|L =0) = Vy Y (L = Nlaya}, y|L = 0). (3.18)

n

In the absence of interactions, when all the atoms are in the single-particle state ¢;
and ¢y, respectively, this matrix element vanishes for all N > 1. This is also the
case in the mean-field approximation. To get a non-vanishing matrix element it is
necessary to consider non-zero interactions that deplete the condensate and a finite
number of atoms.

Figure (3.8) shows the value of [(L = N|AV|L = 0)/Vp| as function of N. Again, I
keep v = gN fixed for the reasons stated above. Here, I have chosen vy = gN = 0.1,
while the states |L = 0) and |L = N) have been evaluated for mmax = 5. As seen
from this plot, this matrix element shows an exponential decay as function of N.

To get an understanding of this decay we recall that the operator AV excites atoms,
increasing their angular momentum by N units. Furthermore, the amplitudes cy,
in the expression of Eq.(3.12) decay very rapidly with m, as seen in Fig. (3.9) for
N = 50 atoms with a rate that does not depend on N. This is a more general result
that also holds in more extended spaces. The fact that the amplitudes of the states
contributing to |L = 0) and |L = N) decrease rapidly as one moves away from |0V)
and |1V) along with the nature of AV, which induces single-particle excitations by N
units of angular momentum, combine to make this decay matrix element extremely
sensitive to N.

ZProcesses due to perturbation theory of higher-order are allowed, but they are suppressed for
weak irregularities.
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FIGURE 3.7: The value of .- obtained with the method of diagonal-
ization as a function of N for mmax = 4. The horizontal line shows
the asymptotic value of v = 3/2.

10° ¢
)
= .
>
< 40*
.
10° . . .
1 2 3 4 5

Number of atoms

FIGURE 3.8: The matrix element of the operator AV between the

states with |[L = N) and |L = 0), |(L = N|AV|L = 0)/Vp], as function

of the atom number N, for a fixed value of v = gN = 0.1. Here the
states |L = 0) and |L = N) have been evaluated for #max = 5.
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FIGURE 3.9: The amplitudes |c,| which appear in Eq. (3.12) as func-
tion of the index m, for N = 50 atoms, L = 0, v = 5, and truncation
within the single-particle states ¢_1, ¢o, and ¢.

Thus, the main result of this section is, quite generally, that a combination of suf-
ficiently strong interatomic interactions and a finite number of atoms enhances the
size of the matrix element and thus reduces the timescale that is associated with
the decay rate of the persistent currents. This result may be interesting to explore
experimentally in small systems with an interaction whose strength can be tuned.

3.7 Connection with the experiments on hysteresis and metasta-
bility

In order for our assumption of one-dimensional motion to be valid, I stress that
the interaction energy must be much smaller than the quantum of energy associ-
ated with the motion of the atoms in the transverse direction (or, equivalently, the
coherence length must be much larger than the transverse dimensions of the annu-
lus/torus). However, this assumption is violated under current typical conditions,
and thus the motion is not quasi-one-dimensional.

For example, in the experiment of Ref. [35], where 23Na atoms were used, the chem-
ical potential is /% ~ 27 x 1.7 kHz, while the frequencies of the annular-like trap-
ping potential (in the transverse direction) are w; ~ 472 Hz and w, ~ 188 Hz. (As
a result, it has been argued that vortex-antivortex pairs form in this experiment.)
Thus, it is not possible to make neither a quantitative nor a qualitative compari-
son of the present theory and the experiment of Ref. [35]. An investigation of this
problem using a more realistic model is underway and will be described in a future
publication.

If one wants nonetheless to get an estimate for the critical frequencies of hystere-
sis for the parameters of Ref. [35] using the present theory, it follows for a radius of
R ~ 19.5 ym, that w = 1/(2MR?) =~ 3.6 Hz. Given thata ~ 28 A, N ~ 4 x 105,
and S = majay with a; = /h/(Mwjy), ie, a1 ~ 242 ym and a; ~ 3.83 ym, the
dimensionless parameter v = 2NaR/S has the value ¢y ~ 1500.0. It then follows
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from Egs. (3.8) and (3.9) that (); ~ 197.2 Hz and ()3, ~ —190.0 Hz. Clearly, these
large frequencies (as compared to the observed frequencies, which are on the order
of 10 Hz) are due to the very large value of -y, which is the ratio between the interac-
tion energy of a homogeneous cloud with a density np = N/ (271RS) and the kinetic
energy associated with the motion in the ring, #*/(2MR?).

It is also interesting to make estimates for the case where the motion is quasi-one-
dimensional. Consider, for example, the case where the experimental conditions are
identical to those of Ref. [35] but where the number of atoms is reduced by, e.g., a
factor of 4 x 10* to the value N = 10. This would reduce the interaction energy to
the extent that the conditions for one-dimensional motion would be fulfilled. This
reduction in N would also reduce the value of 7y to ~ 0.04. The corresponding critical
frequencies would become (); ~ 3.7 Hz and (), ~ 3.5 Hz. While the difference
between () and (), is small, ~ 2yw, it would still be of interest to investigate their
dependence on N, which, according to the results of Sec.3.5,is 1/ N to leading order.

It would also be interesting to investigate the effect of finite system size on the critical
value for stability of the persistent currents in such small systems. According to the
results of Sec. 3.6, the value of 7 also scales as 1/N to leading order. Last but not
least, the decay time of the currents would show a much more rapid —and thus more
pronounced — decrease as N decreases.

3.8 Summary and conclusions

In this chapter I investigated the phenomenon of hysteresis and of metastability in
a Bose-Einstein condensed cloud of atoms which are confined in a ring potential.
Interestingly, this problem has recently been examined experimentally [35], while
many other experiments have focused on the question of persistent currents in such
topologically nontrivial potentials [58, 59, 60, 61, 62, 63, 64, 65].

In the phenomenon of hysteresis the main question is the evaluation of the criti-
cal frequencies. As I have shown, in a purely one-dimensional system these two
frequencies are related as a consequence of Bloch’s theorem. Further, I have eval-
uated those both within the mean-field approximation and beyond mean field (i.e.,
by numerical diagonalization of the many-body Hamiltonian) in order to determine
finite-N corrections.

I also performed calculations of the critical coupling for the metastability of super-
flow and of the matrix element associated with the decay rate in a finite system of
atoms. As I have argued, the depletion of the condensate due to the interaction com-
bined with the finiteness of the atom number can cause the decay rate to increase
exponentially with decreasing N. Thus, the general tendency is that the finiteness
of a system makes the supercurrents more fragile, in the sense that it increases the
decay rate of the currents, and it also increases the critical coupling for metastability.

Given the recent experimental activities on the problems of hysteresis and of metasta-
bility, and also given the more general tendency in the community of cold atoms to
move to small systems (i.e., systems with a small atom number N) the present re-
sults, which I believe are of theoretical interest, may also become experimentally
relevant in the near future.



43

Chapter 4

"Quantum solitons" in a
Bose-Einstein condensate

The problem that is investigated in this chapter is motivated by recent experiments
on Bose-Einstein condensed atoms which rotate in annular/toroidal traps. I study
the effect of the finiteness of the atom number N on the states of lowest energy for
a fixed expectation value of the angular momentum (yrast states'), under periodic
boundary conditions. To attack this problem, I develop a general strategy, consid-
ering a linear superposition of the eigenstates of the many-body Hamiltonian, with
amplitudes that I extract from the mean field approximation. This many-body state
breaks the symmetry of the Hamiltonian, it has the same energy to leading order
in N as the mean-field state and the corresponding eigenstate of the Hamiltonian,
however it has a lower energy to subleading order in N and thus it is energetically
favorable.

Therefore, this project offers a suitable framework for the investigation of the effect
of the finiteness of the atom number N on the states of lowest energy for a fixed
expectation value of the angular momentum, under periodic boundary conditions.
Thus, the problem examined in the present chapter attacks the more general ques-
tion of the relationship between the mean-field approximation - where one assumes
a product many-body state and fixes the expectation value of the angular momen-
tum - and the diagonalization of the many-body Hamiltonian - that is associated
with eigenstates of the angular momentum and of the number operator.

As mentioned in the previous chapter, several recent experiments in the field of cold
atomic gases have managed to rotate, and even create persistent currents in clouds
of Bose-Einstein condensed atoms which are confined in annular/toroidal traps [58,
59, 60, 61, 62, 63, 64, 65, 70]. Furthermore, the phenomenon of hysteresis has also
been observed in an annular trap [35], as presented in Chap. 3. Thus, a question
which arises naturally from these experiments is what is the state of lowest energy
of the atoms for a fixed expectation value of their angular momentum.

IThe terminology of the “yrast" state that we use below refers to the eigenstate with the lowest
eigenenergy, i.e., the state which minimizes the energy for some given eigenvalue of the angular mo-
mentum. The same term is used within the mean-field approximation, where one fixes the expectation
value of the angular momentum, instead. We stress that these yrast states play a fundamental role in
the rotational response of these systems, very much like the phonon-roton spectrum in the problem of
liquid Helium.
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4.1 The state of lowest energy for a fixed expectation value of
the angular momentum

Within the mean-field, Gross-Pitaevskii, approximation the answer to this question
is given by the well-known solitary-wave solutions [56, 69], which have been inves-
tigated thoroughly [71, 72, 73]. When a trapping potential is present — as in the case
of cold atomic gases — interesting phenomena arise. The easiest problem is that of
an infinite system in the longitudinal direction, with a very tight trapping potential
in the transverse direction. In this case the transverse degrees of freedom are frozen
and the problem essentially reduces to that of an infinite line. As the transverse
trapping potential becomes less tight and/or the interaction strength increases, the
transverse degrees of freedom start to play a role, and as a result deviations from the
standard quadratic nonlinear Schrodinger equation [74] arise.

4.1.1 Dark and grey solitary-wave solutions

Another interesting possibility is that of a ring-like trap, where one has to impose
periodic boundary conditions. As discussed also in Sec. (2.4.1), in this case the solu-
tions are given by Jacobi elliptic functions [44, 45]. Depending on the ratio between
the coherence length and the periphery of the ring the density of these solutions is
either sinusoidal, or exponentially localized [45]. In an infinite system the “dark"
solution (i.e., the one with a density notch) is also static. On the other hand - as a
result of the periodic boundary conditions — in a ring of a finite length the dark soli-
tary wave has a finite velocity, while the static solitary-wave solution is “grey" (i.e.,
the lowest value of the density is nonzero), however no solution exists which is both
dark and static [45].

4.1.2 Experimental relevance of the finiteness in the atom number

The behavior becomes more complicated when correlations are introducted beyond
the mean-field approximation [75, 76], which is actually the subject of the present
study. More specifically, in what follows below, I investigate the effect of the finite-
ness of the atom number N (assumed to be of order unity) on the state of lowest
energy, for a fixed expectation value of the angular momentum. I stress that this
question is not only interesting theoretically, but also it is experimentally relevant,
since recent experiments have managed to trap and detect very small numbers of
atoms, see, e.g., Ref.[77] and also Ref. [78]. I should also mention that other studies
[79, 80, 81, 82, 83, 84, 85, 86, 87] have investigated a closely-related question, i.e., the
relationship between the “classical" and the “quantum" solitons, according to their
terminology.

4.1.3 A problem with the symmetry of the many-body Hamiltonian

To go beyond the mean-field approximation the method of diagonalization of the
many-body Hamiltonian may be used. The questions which are associated with the
energy of the system (i.e., the dispersion relation, or the velocity of propagation of
the waves, which is given by the slope of the dispersion relation) are examined in a
straightforward way from the eigenvalues of the Hamiltonian.
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On the other hand, extracting the density is much more challenging, since the eigen-
states that one gets from the diagonalization of the many-body Hamiltonian are also
eigenstates of the angular momentum and thus they are rotationally invariant. Still,
the physically-relevant solutions are the ones which break the axial symmetry of the
Hamiltonian and clearly are not eigenstates of the angular momentum.

To answer this question, it is instructive to recall that the energy of the mean-field
state for some fixed expectation value of the angular momentum coincides to leading
order in N with that of the corresponding “yrast" state [88, 89] (an “yrast" state is the
lowest-energy eigenstate of the Hamiltonian and is also an eigenstate of the angular
momentum, however, the yrast state has a lower energy to subleading order in N.

4.1.4 Adopted approach

Having all this in mind, I adopt the following strategy, which is based on the min-
imization of the energy: First of all, I evaluate the yrast states (diagonalizing the
many-body Hamiltonian). Then, I evaluate the corresponding product, mean-field-
like many-body state. Projecting this state on the yrast state of some given angular
momentum, I evaluate the amplitude that corresponds to the yrast state of this spe-
cific value of the angular momentum. Using these amplitudes, I thus construct a
many-body state which is a linear superposition of yrast states. This state has an
energy which coincides to leading order in N with that of the corresponding yrast
state, and of the mean-field state, but it has a lower energy to subleading order in N,
even than the yrast state, provided that the effective interaction between the atoms
is repulsive.

In what follows below I first describe the model in Sec. 4.2. In Sec. 4.3 I then present
my results for the many-body state that I construct. I then apply this method to the
case of weak interactions in Sec. 4.4, where I solve the (two-state) model analytically.
In Sec. 4.5 1 go beyond the two-state model, presenting my numerical results and the
finite-N corrections that I am interested in. In Sec. 4.6 I investigate the asymptotic
form of the many-body state, which reduces to the well-known state of the mean-
field approximation in the appropriate limit of a large atom number. In Sec.4.7 I
discuss the experimental relevance of the results of this chapter. Finally, in Sec. 4.8 1
give a summary of the main results of this chapter and some conclusions.

4.2 A variational many-body state

I assume for simplicity one-dimensional motion of bosonic atoms under periodic
boundary conditions, as in a ring potential. This assumption is valid provided that
the interaction energy is much smaller than the quantum of energy of the trapping
potential in the transverse direction, in which case the transverse degrees of freedom
are frozen.

If a,, and af, are the annihilation and creation operators of an atom with angular
momentum mfi, the Hamiltonian that I consider is the same as in Eq. (2.44)

hz Mmax g
2t t 1
H= VR Y. mPayam + > Y ayatara; Supn -
M=Mmin m,n,k,l

(4.1)



Chapter 4. "Quantum solitons" in a Bose-Einstein condensate 46

Here 1min and mmayx are the lowest and the highest values of m, M is the atom mass,
R is the radius of the ring, and g is the matrix element for elastic s-wave atom-atom
collisions (assumed to be positive).

There are thus two energy scales in the problem, namely the kinetic energy per parti-
cle ey = h?/ (2MR?) associated with the motion of the atoms along the ring, and the
interaction energy per particle, which for a homogeneous gas is equal to (N —1)g/2.
It is convenient to introduce the dimensionless quantity < as the ratio between the
interaction energy (N — 1)g and the kinetic energy eg, v = (N —1)g/eo.

4.2.1 Constructing the many-body state as a superposition of yrast states

The first step in this calculation is the evaluation of the yrast states |Pex(L)), which
are eigenstates of the Hamiltonian H, of the operator of the angular momentum L
and of the number operator N. As mentioned above, the Hamiltonian is axially
symmetric and thus the eigenstates respect this symmetry, which implies that the
corresponding single-particle density distribution is axially symmetric. Indeed, if
¥ (0) is the destruction operator of a particle at an angle 6, then the single-particle
density is,

n(0) = (Pex(L)[¥'(0)¥(0)|Pex(L)) =

N
- m, (4:.2)
i.e., n(0) is spatially independent and equal to the mean density for any value of L,

since the matrix elements appearing above are diagonal.

On the other hand, the physically-relevant solutions are not axially symmetric (in
general), and this is a major problem. Actually, this problem has a much more gen-
eral aspect, namely the relationship between the mean-field solutions, which break
the axial symmetry of the problem, and the eigenstates of the many-body Hamilto-
nian — where one is working with eigenstates of the angular momentum, too, and as
a result they respect the axial symmetry of the problem. Here the general strategy
that I develop allows us to extract the spatially-dependent single-particle density
distribution from the yrast states, going beyond the mean-field approximation.

A widely-used method for breaking the symmetry

It should be mentioned that a method that is often used to overcome this difficulty
of breaking of the axial symmetry is to introduce correlation functions, for example
[90],

1) (6,00) o< (Dex(L)[FF(6)F"(60)F (60)F () |Pex(L)), (4.3)

whre 6 is some reference point. While this method does indeed break the axial
symmetry and allows to get a qualitative answer, it cannot be trusted quantitatively.
The easiest example is that of weak interactions (examined in detail below), where
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it turns out that

n(0,00) o« [N(N—1)+2L(N—L)cos(8 —6p)]
x (1—1/N)+24(1—¢)cos(6 — 6), (4.4)

where ¢ = L/N. The above expression cannot in any way be related to the density
that results from the mean-field approximation,

e (0) = ZNR(l +2,/6(1 — £) cos ), 45)

not even in the limit of large values of N. (In the above expression I have assumed
that the arbitrary position of the minimum of the density is at 8 = 0.) Therefore, I
conclude that 7?)(8, 6) cannot be used for quantitative comparisons.

Breaking the symmetry

The way that I proceed is thus the following. I introduce an essentially variational
many-body state, namely

Lmax

[@(lo)) =C ) (Pex(L)|Pmr(f0)) [Pex(L)), (4.6)

L=Lmin

where C is the normalization constant. In other words, I take the inner product be-
tween the mean-field state with some angular momentum per atom (of1, |Pyvp(£4)),
and some yrast state with total angular momentum L7, |Pex(L)), to get the ampli-
tudes (Pex(L)|Pmp(£o)). From these amplitudes I then construct a linear superposi-
tion of eigenstates |®ex (L)), which constitute the many-body state |®(4p)).

This state has the following crucial features: (i) it has the desired expectation value
of angular momentum, (ii) to leading order in N it has the same energy as the mean-
field state, as well as the yrast state, but it has a lower energy to subleading order in
N, (iii) it gives the same single-particle density distribution as the mean-field state
for large values of N, and (iv) finally it is not fragmented.

Turning to |Pye(fp)), this is a product many-body state, which corresponds to the
order parameter of the mean-field approximation; obviously we work in the same
basis of single-particle states, with muyin < m < Mmpay, as in the method of diagonal-
ization,

\ N' M=Mmin

where |0) denotes the vacuum; also ¢, are real, variational parameters, which I eval-
uate by minimizing the corresponding expectation value of the energy

Mmax N
Dur(l)) = 1( ¥ ) 0), 47)

hz Mmax 22 1 4
E = -1)
wmr(4o) NZMR2 Z mc, + 5N(N g/

mmax
CmPm

M=Mmin

(4.8)

Here ¢, = €™ /~/27 are the single-particle eigenstates of the ring potential with an
eigenvalue of the angular momentum equal to mh and an eigenenergy E,, = m?ey.
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The normalization imposes the constraint ZC%1 = 1, while there is the additional
constraint that comes from the expectation value of the angular momentum being
é() = Lo/N, chZm = Eo.

4.3 Results of the method for weak interactions

I'start with the limit of weak interactions, where I can solve this problem analytically,
and then proceed with the more general problem of stronger interactions.

To define the limit of “weak"/“strong" interactions let us introduce quite gener-
ally the ratio between the interaction energy per particle of the homogeneous gas
(N —1)g/2 and the kinetic energy E,, = m*h*/(2MR?), which is 7/ (2m?). For some
given value of v, setting v/ (2m?) ~ 1, the maximum value of |m| has to be (much)
larger than //2 in order to achieve convergence. In terms of length scales, the pa-
rameter /7 gives the ratio between the radius of the ring R and the coherence length
¢ (ignoring terms of order unity). The limit v < 1 defines the regime of “weak" in-
teractions, where ¢ > R, while for 1 < 7 < N2, then R/N < & < R, which is the
“Thomas-Fermi" limit. When -y becomes of order N?, then the system approaches
the Tonks-Girardeau limit, where the coherence length ¢ becomes comparable to the
inter-particle spacing R/ N and correlations play a crucial role.

4.4 The two-state model

When ¢ < 1 one may work with the single-particle states ¢y and ¢; only. In this
case |®ex (L)) has the very simple form (because of the two constraints)

|@ex (L)) = [ON7E, 11y, (4.9)
In the above notation the state ¢g has N — L atoms, and the state ¢; has L atoms.
The mean-field, many-body state is

1
[ Pme(fo)) = (cong + c1a7)™|0)

2

N! _ _
(N—D)L! co e (ah)NH(a])t0)

N! _ _
~pme o
0 - . .

I
™=z

Il
o

I
™=

I

dr (£o)|ONTE, 11, (4.10)

Il
=

I
o

The actual value of c% is 1 — ¢y, while C% =Y.

The amplitudes of the above state of Eq. (4.10) have the interesting feature that

N! 2(N-L
dL(o))> = mco( et
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e~ (L=N{o)?/[2N{y(1~Lo)] 1
: o ()]
2Nl (1 — 4o) VN

4.11)

where the approximate expression holds for large N and /y(1 — ¢p) not close to zero.
Therefore, |d|? is a Gaussian, with its peak at Ly = NY¥j (scaling as N) and a width
which is of order /N, , which becomes a delta function in the limit of large N. The
above observations are generic features and not specific to the two-state model and
thus are central in the analysis that follows below.

In the final step of our calculation I evaluate |®(¢)), which is, as described earlier,

N
|®(Ly)) = C Y dr(to)|ONF,1F). (4.12)
L=0

In the two-state approximation, |®(£y)) coincides with |®yr(fp)). However, I stress
that this is not a general result, as I explain below.

4.4.1 Calculating the observables in the two-state model: Energy spec-
trum and density profile

The single-particle density matrix of |®(£y)), pij = (P (lo)|afaj|P (L)) (with i,j =

0,1),is
p = N < C% COgl > .
CcoC1 o

The two eigenvalues are A = 0 and A = 1 (the determinant of the above matrix van-
ishes and thus one of the eigenvalues has to vanish). The state |®(¢p)) is not frag-
mented, as one expects. The eigenvector that corresponds to A = 1 is the expected
one, namely ¢ = coo + c1¢1. The single-particle density distribution in |®(¢p)) is
given by

n(0) = (@(l)¥'(0)¥(0)|P (b)) =

N
= ﬁ[l + 2co]|c1| cos(6 — 6p)]

= ZZR [1+ ZMCOS(H —60)], (4.13)

where 6 is the relative phase between ¢g and c;. This phase is arbitrary reflecting the
rotational invariance of the Hamiltonian; assuming that cy and c; are real, it is equal
either to zero, or 1. However, this degeneracy is lifted when the symmetry is broken
(see more in the following paragraph). The result of Eq. (4.13) coincides with that
of Eq. (4.5), and therefore in the two-state model the density that one gets from the
many-body state |®({p)) is the same as the one derived from the Jacobi (sinusoidal)
solutions of the mean-field Gross-Pitaevskii approximation.

Furthermore, the expectation value of the energy & in the state |®(4p)) is

£ %N(N 1) = =% 4 oLo(N — Lo)(1 - 1/N),
(4.14)
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where again the phase 6y does not appear in the energy due to the assumed axial
symmetry of the Hamiltonian. When a “weak" symmetry breaking potential AV =
Vi cos 6 is added to the Hamiltonian, then

h?Lo
E—gN(N-1)/2 = W—FgLO(N—LO)(l—l/N)—f—
4+ cos6yNVy 50(1—&))/2. (4.15)

Here we see an explicit dependence of the energy on 6y. Obviously 6y has to take
the value 77 in order for the energy to be minimized. As a result, the single-particle
density is n(6) = N(1 —24/4(1 —¢)cos6)/(2mR), and thus the minimum of the
density is at 8 = 0, where the value of the potential is maximum.

In Egs. (4.14) and (4.15) above we observe that to leading order in N the interaction
energy agrees with that of the eigenstates |0N —Lo, 1L0>, Eex, Which is

2

_8N(N—1) = o _

but is lower to subleading order. This result is due to the fact that the dispersion
relation has a negative curvature and the fact that |®(¢y)) samples other states — of
order /N —around the “pure" state |®ey(Lo)) = |[0N7Lo, 1L0). Actually, this lowering
of the energy to subleading order in N of the state that breaks the axial symmetry
reflects precisely this fact, namely that the curvature of the dispersion relation is
negative (provided that the effective interaction is repulsive).

Indeed, quite generally, a distribution P(L) « e~(L=L0)*/N /\/N [see Eq. (4.11)] gives
an average of ¢L(N — L) which differs from gLo(N — L) [see Eq. (4.16)] that is pro-
portional to —gN, as in Eq. (4.14),

g(L(N —L)) —gLo(N — Lo) o —gNerf(Ly/VN)
~ —gN, 4.17)

where erf(x) is the error function.

4.5 Beyond the two-state model: Finite-N corrections and nu-
merical results

The two-state model discussed above has the advantage that all the calculations may
be performed analytically. In addition, it provides an accurate description of |®(¢p))
in the limit of weak interactions, v < 1. The results of the previous section demon-
strate that in this limit the state |®({y)) — even in a system with a finite number
of atoms N — essentially coincides with the one of the mean-field approximation
(which, in the limit of weak interactions, gives a sinusoidal density distribution).

On the other hand, as we also saw earlier, the very drastic restriction to the states ¢y
and ¢; (only) forces the yrast states to have the trivial form [ON~L,11) and therefore
all the angular momentum is carried by the single-particle state ¢;. It is thus neces-
sary to work in a more extended space. In the interval 0 < ¢ < 1 and for relatively
stronger interactions in addition to ¢y and ¢4, ¢, and ¢_; have the most significant
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contribution, while if one wants to go even further ¢3 and ¢_, have to be included,
too, and so on, as Bloch’s theorem implies [49].

4.5.1 The three-state model

Before I turn to a higher truncation, it is instructive to examine the case with ¢y and
¢1, and ¢, only. In this subspace the yrast states have the form

| @ex (L)) = Y (—1)"by, JON L™, 1572 om), (4.18)

m

where the amplitudes b,, are Gaussian distributed [88, 89]. The corresponding mean-
field, product many-body state has the form

1
|Pme(4o)) = N(Coué + crat + cpab)N|0)
— ﬁe Zk: NC(I)\] Cl mCZ |0N—k 1k—m 2m>
i=om=0 v/ (N —k)!l(k — m)m!
N k
=Y Y dugoN K 1 2m), (4.19)
k=0m=0

Taking the inner product between the states |Dex (L)) and |Pyp(£p)) forces the index
“k” to be equal to L — m and therefore the only non-zero amplitudes are d,,; 1,
which are also Gaussian distributed. When more single-particle states are included
in the calculation the general picture is the same, with the only difference being that
one has a multi-dimensional space; if r is the number of single-particle states, the
dimensionality is r — 2, because of the two constraints. In each direction in this space
one still obtains Gaussian distributions and on a qualitative level the final result is
essentially the same.

4.5.2 Results from an expanded Hilbert space

I proceed now with the calculation within the states ¢_»,¢_1, ¢o, P1,¢> and ¢3. 1
stress that y has to be sufficiently large in order to have a significant occupancy of the
states other than the ones with m = 0 and m = 1, since otherwise one goes back to
the two-state model described earlier. In addition we have to make sure that we have
reached convergence with respect to the number of single-particle states that are
considered and finally we have to ensure that Bloch’s theorem [49] is not violated.
As described also above, I first evaluate the yrast states |®Pex (L)) for —2N < L < 3N,
diagonalizing the many-body Hamiltonian. I also evaluate |®pg(lp))

|Pae(4o))

N
( Z Cmad ) ), (4.20)

m=-—2

where c_»,c_1,co, ¢1,¢2 and c3 are evaluated from the constraint minimization of the
energy. In the final step I evaluate |®(¢y)) using Eq. (4.6), which then gives us the
single-particle density distribution (or any other observable).
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In Figs. (4.1) and (4.2) I plot the corrections of the density in a finite system of atoms
for various values of the angular momentum. The solid curves show the single-
particle density n(0) that corresponds to |®(¢)), while the dashed ones show the
density nyp(0) that corresponds to the mean-field state |Pyg(4p)). In Fig. (4.1) N =
4, and in Fig. (4.2) N = 8, while v = 0.9 in both of them. Also ¢, takes the three
values /y = 0.5,0.75, and 1. According to Bloch’s theorem [49] for any 0 < ¢y < 1, the
density distribution is the same also for ¢, = 1 — {, as well as for ¢, = ¢y + x, where
k is an integer. In other words, the three graphs for ¢y = 1 (L = 4),¢y = 3/4(L = 3),
and ¢y = 1/2 (L = 2) shown in Fig. (4.1) cover all the possible values of the angular
momentum of the whole spectrum (for N = 4).

For ¢y = 1 both nyr(0), as well as 1n(0) are constant, even for small values of N.
I stress, however, that the two states are different, since |®({j)) coincides with the
yrast state for L = N = 4. For example, even within the space with m = 0,1, and 2,

| Pue(bo = 1)) = [0°,1%,27), (4.21)

while
[@(l = 1)) = A1]0°,1%,2%) + A;0%,1%,21) + A3]0%,1°,2%), (4.22)

where A; are constants. As a result, the energy of the two states is also different, see
Fig. (4.3), which shows the dispersion relation, that we discuss in the next section).

Returning to the density shown in Figs. (4.1) and (4.2), while for ¢y = 1 the situation
is not interesting (at least with regards to the density), for {p = 1/2 and ¢y = 3/4
there are deviations (between the dashed and the solid curves). For £y = 1/2 within
the mean-field approximation, the “dark" solitary wave forms and nyg(6) has a
node. As seen from Fig. (4.1), n(6) still has a node. The most significant deviations
appear at the maxima of the density. The state of lower energy flattens out within a
larger interval compared to the mean-field density. These deviations (almost) disap-
pear for N = 8, as shown in Fig. (4.2), where 7 is still 0.9 (I discuss the asymptotic
behavior of |®(¢)) in the following section). Finally, for £y = 3/4, there is still a sig-
nificant deviation between 7(0) and nygp(0), with roughly the same characteristics
as the case ¢y = 1/2.

Although the difference between the density is small (due to the relatively small
value of 7, which makes |co| and |¢1| to be much larger than all the other coefficients —
for example, for £ = 1/2, |co| = |c1| are roughly 7 times larger than |c_1| = |c2|), still
these results are generic. Increasing y will give more pronounced differences, how-
ever the problem becomes more demanding computationally, since we also need to
make sure that convergence with respect to the single-particle states that we have
considered has been achieved.

4.6 Asymptotic limit of the many-body state

It is crucial to confirm that the observables from the state that I have introduced
coincide with the ones of the mean-field state in the appropriate limit of large N. The
relevant limit is the one where N increases, with the ratio between the interaction
energy and the kinetic energy kept fixed (which in our notation is ).

As seen already in the previous section, the density indeed approaches that of the
mean-field state. Turning to the energy, as argued in Sec. 4.4, in the above limit, the
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FIGURE 4.1: Solid lines: The single-particle density distribution n(6)
corresponding to |®(¢)) of a finite system of atoms, within the space
of states withm = —2,...,3, for N = 4 atoms, v = (N —1)g/ep =
09,and ¢/ = L/N = 0.50,0.75, and 1.00, from top to bottom. Dashed
lines: The single-particle density distribution nyr(6), corresponding
to |Pyvp(f)), derived within the mean-field approximation, via the
minimization of the energy, for the same set of parameters.

dominant amplitude in |®(¢p)) is the one that corresponds to Ly = N¥j, which is the
yrast state |Dex (L)) with this value of L = Ly. As shown in Ref. [88, 89] |®ex(Lo))
has the same energy to leading order in N as the mean-field state |®yg(¢p)), and the
same result is true for |®(¢p)). Therefore, all these three states have the same energy
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FIGURE 4.2: Same as Fig.(4.1), with N = 8 and v = 0.9. The differ-
ence between the two curves is hardly visible.

to leading order in N.

Still, I stress that there is a clear hierarchy of the energies of the three states to sub-
leading order in N: |®y\p(fp)) has the highest energy, |Pex(Lo)) has a lower energy,
and |®({p)) has the lowest. The first inequality has been analysed in Ref.[88, 89],
while the second is due to the simple reason stated earlier [see Eq. (4.17)].

In Fig. (4.3) I plot the dispersion relation, which is evaluated within the mean-field
approximation, the energy of the corresponding eigenstates of the many-body Hamil-
tonian, and the energy of |®(/)) that I have evaluated. In the middle curve L on
the x-axis is the eigenvalue of the angular momentum operator L, while in the other
two curves L is the expectation value of the angular momentum operator L. These
results provide full support of the arguments we made about the hierarchy of the
energies. I should also mention that according to Bloch’s theorem [49], the total en-
ergy spectrum (i.e., for higher values of /) is the one shown in Fig. (3.7), on top of a
parabola.

Turning to the question of fragmentation, the single-particle density matrix of |®(¢y)),
pij = (®(lo)|afa;|®(Ly)) = cicj. This result generalizes the one I found earlier for
the case of two modes only. This matrix has one eigenvalue which is equal to unity,
while all the other eigenvalues vanish and indeed |®(¢y)) is not fragmented. The
eigenvector that corresponds to the nonzero eigenvalue is the expected one, i.e.,

Zcmfpm-
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FIGURE 4.3: The energy per particle as function of the angular mo-
mentum per particle for N = 4 atoms, v = (N —1)g/¢p = 0.9,
and ¢ = L/N = 0.50,0.75, and 1.00, within the space of states with
m = —2,...,3. The lowest data corresponds to the expectation value
of the energy of |®(¢)), the middle to the eigenvalues of the yrast
states |Pex(L)), and the top to the energy of the mean-field state
|®ymE(€)). Istress that in the middle curve L on the x-axis is the eigen-
value of L, while in the other two curves L is the expectation value of
L.

4.7 Experimental relevance

In order to make contact with experiment, the first question is the extent that under
typical conditions the motion of the atoms is quasi-one-dimensional, as I have as-
sumed here. If we consider the experiment of Ref. [35] as an example, the system is
far from this limit. In this experiment, where N ~ 4 x 10° 2Na atoms were used,
their chemical potential /% ~ 27t x 1.7 kHz, was much larger than the frequencies
of the (annular-like) trapping potential, w; ~ 472 Hz and w, ~ 188 Hz. The dimen-
sionless quantity that describes the transition to the one-dimensional limit may also
be expressed in terms of Na/R, which has to be < 1 in this limit. Here R ~ 19.5
pm is the mean radius of the torus/annulus and a ~ 28 A is the s-wave scattering
length for atom-atom collisions. Since Na/r is = 5 x 102, the system is not in the
limit of quasi-one-dimensional motion.

In addition, the dimensionless parameter y = 2NaR/S, where S is the cross section
of the torus/annulus, for the parameters of this experiment is on the order of 1500
[34]. As a result, this experiment is in the Thomas-Fermi regime (see Sec. 4.5), where
1l <€ 7v¥ K N2, and the solitary waves will resemble the well-known ones of an
infinite system.

According to the results of this chapter three conditions have to be satisfied in order
for the corrections that we have predicted to be substantial. First of all, N should not
exceed ~ 10, since otherwise the corrections will be suppressed. Also the interaction
energy has to be sufficiently strong, i.e., v should be at least of order unity, since
otherwise the system is in the limit of weak interactions, where the deviations we
have found are also suppressed. Finally, Na/R has to be < 1.

If one simply reduces N under the conditions of the experiment of Ref. [35], by e.g.,
a factor of order 10°, so that N will become equal to 4, then Na/R ~ 5 x 1073,
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i.e., indeed it will be < 1, however 7 ~ 1.5 x 1072, i.e., 7 will also become < 1,
which will bring the system to the limit of weak interactions. Therefore, in addition
to reducing N by a large factor, one should also decrease S « 1/,/wiw, (by, e.g.,
increasing the trapping frequencies in the transverse direction), in order to make
v~ 1.

4.8 Summary and conclusions

To summarize the results of this chapter, the general problem that I investigated is
the relationship between the mean-field approximation and the method of diagonal-
ization of the many-body Hamiltonian, in connection with the spontaneous breaking
of the symmetry of the Hamiltonian (assumed to be axially symmetric). While the
mean-field states break the symmetry of the Hamiltonian by construction, the eigen-
states of the Hamiltonian respect this symmetry, thus giving rise to a single-particle
density distribution which is always axially symmetric. Still, in a real system the
axial symmetry is broken, even under very weak symmetry-breaking mechanisms
(if one is interested in the solutions which do not break the symmetry, these are the
eigenstates of the Hamiltonian.)

One of the main goals of this project was to investigate how one breaks the symme-
try, going also beyond the mean-field approximation. To achieve this goal, I made
use of the mean-field approximation and then constructed a linear superposition of
the eigenstates of the many-body Hamiltonian. This state breaks the symmetry and
is not a product state, i.e., it goes beyond the mean-field approximation. I stress that
the method that I have developed is general and may be applied to other problems,
as well.

Another main result of this project is the actual problem where I have applied this
method, namely the finite-N corrections of the well-known solitary-wave solutions
which result within the (one-dimensional) nonlinear Schrodinger equation in a fi-
nite ring. Interestingly, the state that I have used is one of “minimum-uncertainty"
and in a sense it is the mostly “classical”. According to the results, for low inter-
action strengths, where the two-state model is a good approximation, the finite-N
corrections are negligible and one gets back to the ordinary Jacobi solutions of the
nonlinear Schrodinger equation (which are sinusoidal in this limit). For larger inter-
action strengths and/or small atom numbers, where more than two single-particle
states need to be considered, these corrections become non-negligible and there are
significant deviations between our many-body state and the mean-field state.

While I have not proven that the many-body state that I have constructed provides
the absolute minimum of the energy, what I do know is that it has the same energy
to leading order in N, and a lower energy to subleading order in N, as compared
the mean-field state, and the corresponding eigenstate of the Hamiltonian. In other
words, this many-body state lowers the energy bound. One subtle point in these
arguments is of course that in this comparison the yrast state is an eigenstate of the
operator of the angular momentum [, and thus “L” is the corresponding eigenvalue.
Within the other two states, since they break the symmetry, “L” is the expectation
value of L.

When the angular momentum is an integer multiple of 7 within the mean-field ap-
proximation the density of the cloud is predicted to be homogeneous. According to
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my results, the single-particle density distribution remains homogeneous even for
a small atom number. When the angular momentum per particle is equal to a half
integer within the mean-field approximation the “dark" solitary wave forms, which
has a node in its density. According to the presented analysis in a system with a
small atom number the single-particle density distribution still has a node, with the
main effect of the finiteness appearing at the “edges” of the wave. Interestingly, a
“universal” feature of the dark solitary wave is its velocity of propagation, which
turns out to be 71/ (2MR) (for any interaction strength, or any atom number N), as I
have found numerically, essentially due to Bloch’s theorem [49]. Last but not least,
deviations in the density between the two states are also present in the intermediate
values of the angular momentum (between 0.5 and 1). These corrections vanish in
the appropriate limit of large N. My suggested many-body state is not a “solitary-
wave state" in the strict sense of a travelling-wave solution and for this reason I have
not used this terminology here.

The interaction strengths that I have considered keep us away from the correlated,
Tonks-Girardeau limit. It would be interesting to try to push this calculation to this
regime [85, 91]. In the spirit of density functional theory, one may develop a mean-
field description [92] and then use the present approach, which may still provide an
accurate description of the system. It would be interesting to study this problem and
get some quantitative answers.
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Chapter 5

Mixtures of two Bose gases

In this chapter I study the rotational properties of a two-component Bose-Einstein
condensed gas of distinguishable atoms which are confined in a ring potential using
both the mean-field approximation, as well as the method of diagonalization of the
many-body Hamiltonian. I demonstrate that the angular momentum may be given
to the system either via single-particle, or “collective” excitation. Furthermore, de-
spite the complexity of this problem, under rather typical conditions the dispersion
relation takes a remarkably simple and regular form. Finally, I argue that under cer-
tain conditions the dispersion relation is determined via collective excitation. The
corresponding many-body state, which, in addition to the interaction energy mini-
mizes also the kinetic energy, is dictated by elementary number theory.

5.1 Introduction

I have already mentioned in the previous chapters that experimentalists have man-
aged to trap atoms in toroidal/annular traps and have even created persistent cur-
rents in them [58, 59, 60, 61, 62, 63, 64, 70]. Going one step further, the addition of
an extra, distinguishable, component may also be considered. This problem is even
more interesting. The extra degrees of freedom associated with this extra compo-
nent introduce novel and highly non-trivial effects. Interestingly enough, this has
also become possible experimentally [65].

On the theoretical side [51, 95, 96, 97, 98, 99, 100, 101, 102], the general problem of
a Bose-Einstein condensate with two distinguishable components — which I label as
“A” and “B” —that is confined in a ring potential may be attacked at various levels of
complication/difficulty. Assuming equal masses M for the two components, there
are two cases that one may distinguish. The first is the “symmetric" one, where the
scattering lengths a4, apg, and a,p for elastic atom-atom collisions between AA,
BB, and AB atoms respectively are all equal to each other. The second (and more
realistic) is the “asymmetric"” one, where at least two of the scattering lengths are not
equal to each other.

In the symmetric case the dispersion relation is exactly linear within the mean-field
approximation [51] for 0 < L < Npand Ny < L < N = Ny + Np, where L is
the total angular momentum of the system, and N4, Np are the numbers of particles
in each component (here I assume without loss of generality that Ng < Nj4). In
the asymmetric case, the linearity of the spectrum disappears [101, 102], while for
Np < L < Ny in both the symmetric and the asymmetric case the dispersion relation
is more complex.
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In the present project I focus on the asymmetric case and use both the mean-field
approximation, as well as the method of diagonalization of the many-body Hamil-
tonian to study the rotational properties of this system. Two crucial assumptions are
made throughout the present chapter. The first is that the inter- and intra-component
effective interaction is repulsive. The second is that the two components coexist
spatially. The condition for phase coexistence in a finite ring has been derived in
Ref. [51] and we make sure we do not violate it with any set of parameters that we
use. Roughly speaking this condition demands that the repulsion within the same
species is stronger than that of the different ones.

In a real experiment there is also of course the question of dynamic instability. As
shown in Ref. [51] the condition of energetic stability coincides with the one of dy-
namic stability of the system. I should also mention that in spinor condensates re-
alistic dynamic simulations show that the spatial separation of the two components
is possible, and this may affect significantly the rotational behaviour of the system,
see, e.g., Ref. [97].

According to the results which are described below, under rather typical conditions,
the minority component carries the majority of the angular momentum in the whole
interval 0 < L < Np. One of the novel results of this project is that under certain
conditions the whole excitation spectrum is quasi-periodic (in addition to the peri-
odicity dictated by the Bloch theorem [49], which holds also in a two-component
system [51]) and may be derived from the one for 0 < L < Njp by exciting the center
of mass motion, either of the A component, of the B component, or both.

Furthermore, in the limit of “strong" interactions there is a very simple candidate
state that minimizes the interaction energy of the system (under the assumption that
there is no phase separation). This is the one where the density is homogeneous in
each component separately, i.e., the one where the two order parameters (¥4, ¥p) of
the two components are in the plane-wave states (¢, ¢ ). Here ¢, (0) = €% /+/27tR
are the eigenstates of the non-interacting problem, where R is the radius of the ring,
which have an angular momentum m#. The corresponding total angular momentum
in the pair of states (¢m, ¢n) is Lh, with L = mN4 + nNp. A suitable choice of the
integers m and n allows us to give any value to L, provided that Ny and Np are
relatively prime. Clearly, among all the possible values of m and n that satisfy the
constraint of the angular momentum, one has to choose the pair of (¢, ¢,) that
minimize the kinetic energy.

The number-theoretic arguments presented above hold for any atom number. For
large atom numbers the mean-field approximation provides an excellent description
of the state of the system. Still, within the mean-field approximation one fixes the
population imbalance x; = N;/ N, treating x; as a continuous variable. Even though
the number-theoretic behaviour that results from the analysis presented above still
applies, it has more dramatic effects in the limit of small atom numbers. To explore
these finite-N effects, I use the method of numerical diagonalization of the many-
body Hamiltonian.

In what follows below I describe in Sec.5.2 the model that I use and the two ap-
proaches, namely the mean-field approximation and the diagonalization of the many-
body Hamiltonian. In Sec. 5.3 I study the excitation spectrum, starting with the limit
of long-wavelength excitation. In the same section I then focus on the mean-field ap-
proximation and show how one can derive the whole excitation spectrum starting
from the one for 0 < L < Np. Then, in Sec. 5.4 I investigate the excitation spectrum
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beyond the mean-field approximation, diagonalizing the many-body Hamiltonian. I
first present an alternative way of exciting the system collectively and present an ap-
proximate generalization of Bloch’s theorem. Finally, I compare the results that I get
from the diagonalization with the ones of the mean-field approximation. In Sec.5.51
present a conjecture about the form of the many-body state that is expected to be the
state of lowest energy under some conditions that are analysed. Finally, in Sec. 5.6 I
give a summary and an overview of the results of this chapter. Section 5.7 has the
form of an appendix. There, I present a specific example of the diagonalization of
the many-body problem.

5.2 Model and approach

The Hamiltonian that I consider is the one already discussed in Chap. 2, Eq. (2.50),

h2 Mmax

_ 8AA
H= 2MR2

2/ + + t ot
m=(a,,anm + by, by) + Z Ay, 0y Ak] Oy iy et ]
M=Mmin m,n,k,l
SBB N ptptp b6 tptah 6
+ 2 Z mYnPkYl Om-+n k41 +gAB Z A1, 0,0k0] Ot k+1,

m,n,k,l m,n,k,l

(5.1)

Here h*m?/ (2MR?) is the eigenenergy of the single-particle eigenstates ¢,,(6). The
mass M is assumed to be the same for the two species, while g;; being the matrix
elements for zero-energy elastic collisions between the AA, BB, and AB components.
Also, a,, and b, are the operators which destroy an A, or a B atom with angular
momentum mfi, respectively. In what follows below I set E,;, = m2ey, where ey =
n*/(2MR?) and alsoh =2M = R = 1.

In the case of a single component this problem has been attacked by Lieb and Liniger
[103, 104] with use of the Bethe ansatz. The case of two species with equal scattering
lengths has also been considered, see, e.g., Refs. [105, 106, 107, 108, 109, 110, 111].

In the present project I attack this problem in two ways. The first is within the mean-
field approximation, introducing the two order parameters ¥ 4 and Y3 of the two
components, thus solving the corresponding coupled, Gross-Pitaevskii-like equa-
tions, as described also in Eq. (2.42) (with ¥ 4 and Y5 normalized to unity),

*Y

_WQA +271(gaaNA|Ya|* + g4 NB[¥E[))¥Ya = pa¥a
*¥p 2 2

~ 502 +27(gpNB|YB|” + 848Na|¥Y 4| )Y = up¥s,

(5.2)

where 14 and pp is the chemical potential, and Ny and Np is the number of atoms
in each component. I find the solutions of lowest energy of the above equations
imposing the constraint of some fixed angular momentum, as described in detail in
Ref. [102].

Alternatively I solve this problem by diagonalizing the many-body Hamiltonian.
Within this scheme I choose a set of single-particle states ¢, (0), with #min < m <
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Mmax- As before, in this subspace of basis states I impose the constraints of a fixed
number of atoms A and B, N4 and Np, respectively. I also impose the constraint
of some fixed angular momentum L (which can be shared between the two compo-
nents), see, e.g., [51]. Finally I diagonalize the resulting Hamiltonian matrix in this
subspace, thus deriving the eigenstates and the corresponding eigenenergies.

Finally, I stress that the problem of fixing the angular momentum is intimately con-
nected with the one where the angular velocity of the trap is fixed, instead.

5.3 Excitation spectrum — Mean-field approximation

5.3.1 Elementary excitations

I start with the mean-field approximation. When the system has zero angular mo-
mentum, L = 0, it is in the state

IL=0) = |0N*) 4 X)[0"?)5, (5.3)

where in this notation I have N4 and Np atoms in the single-particle state with m =
0. The total energy of the system is

1 1
Eyp = EgAANA(NA—1)—|—gABNANB+§gBBNB(NB—1). (5.4)

Giving one unit of angular momentum via single-particle excitation to, e.g., the B
component, then

IL=1)=[0"), &) [0Ne~1, 1), (5.5)
and correspondingly for the species A. The total energy of this state is
1 1
E' =1+ EgAANA(NA - 1) + g4BNANp + EgBB[(NB - 1)(NB - 2) —|—4(NB - 1)]

(5.6)
Therefore,

E'—Eo =1+ gpp(Np—1), (5.7)

where the last term comes from the exchange interaction. From the above equation
it follows that it is the ratio

. 888(Np—1)
gaA(Na—1)°

which determines whether the angular momentum goes to the one, or the other
component.

(5.8)

In what follows below I set gaa = gpg = g, and thus as Eq. (5.8) implies, with
the assumption Ny > Np that I have made, I conclude that it is the B (minority)
component that carries the angular momentum, for L = 1. By the way, Eq. (5.7) may
be identified as the speed of sound c of the B component, or equivalently as the slope
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of the dispersion relation for L — 07 for exciting it. More specifically,

c=1+g(Ns—1). (5.9)

5.3.2 Distribution of the angular momentum between the two compo-
nents

While the above result holds for L = 1, it turns out that more generally, under “typ-
ical" conditions (which will be analysed below) the minority component carries the
largest part of the angular momentum, all the way up to L = Np.

The two order parameters may be expanded in the basis of plane-wave states,

Mmax Mmax
Ya= Y. cupm Yo=Y, dupm (5.10)
M=Mmin M=Mmin

The corresponding energy per atom is

E Mmax
N E m?(xac3, + xpd>,)
M=Mmin
Mmax 4
—i—xi‘nNg/ Z CmPm| Ao
M=Mmin
Mmax 4
+x%7rNg/ Y dupm| do
M=Mmin
2 2
Mmax Mmax
+xAxB7'cNgAB/ Y. Cum Y. dupm| db, (5.11)
M=Mmin M=Mmin

where x; = N;/N.

Considering the limit of weak interactions, in the interval 0 < ¢ < 1 one may work
with the states with m = 0 and m = 1, only,

Y4 = copo+cip1, ¥Yp =dopo+dig, (5.12)

where ¢ = L/N = x4c3 + xgd? is the angular momentum per particle. In the “sym-
metric" case (¢ = gap) it turns out that for 0 < ¢ < xp [95],

2_a=-00-0 ,_ (-0t
0 xa(1=20) " VT xa(1-20)

(5.13)

and

(2 -01-0) o _ (a0}

2 -~ 7
d = xp(1—20) " 17 xp(1-20)

(5.14)
with coc1dod; negative (as minimization of the energy implies). In this symmetric
case the maximum value of the angular momentum carried by the majority compo-
nent in the interval 0 < ¢ < xp is of order x% /4, for £ ~ xp/2 (for relatively small
xp). Figure (5.1) shows C%, C%,d(z), and d% for x4 = 0.8 and xg = 0.2. T have seen
numerically that in the asymmetric model (§ > g4p) the angular momentum of the



Chapter 5. Mixtures of two Bose gases 63

majority component decreases as g/ g ap increases. This is expected, since in the limit
of gap — 0, the two components decouple. Thus, from the above expressions we can
get an upper bound on the angular momentum carried by the majority component,
which is &~ x% /4, at least for reasonably small values of xg < 0.3.

For stronger interactions (and still in the asymmetric case), as we have seen in the
numerical results, the angular momentum carried by the majority component for
0 < ¢ < xp is still very small, on the order of 1%, at least up to xp < 0.3 and
g/84 =5/3.

Actually, I argue that this is a very general result, due to energetic reasons. There
are four energy scales in the problem [see, e.g., Eq. (5.11)], namely the kinetic energy
(which is set equal to unity), the interaction energy among the A particles, ~ x3¢N,
among the B particles, ~ x3¢N, and the interaction energy between the A and the
B particles, x 4xpgapN. There are thus three dimensionless parameters, namely the
coupling g, the interaction asymmetry g/ g4, and the population imbalance x4 / x.
Clearly, for large values of g§/gap and/or large values of x4/ xp, there is a clear hi-
erarchy in the three energy scales of the interaction energy, which makes it energeti-
cally favorable for the system to carry its angular momentum by the one component
(i.e., the B component in this case).

1
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FIGURE 5.1: The occupancy of the four states, C%, C%, d%, and d%, for

x4 = 0.8 and xp = 0.2 from Egs. (5.13) and (5.14). One can hardly
distinguish the coefficients c3 and ¢? from 1 and 0, respectively.

5.3.3 Quasi-periodic structure of the dispersion relation and a specific ex-
ample

As shown in Ref.[102], for x4 = 0.8, x5 = 0.2, Ng¢/ey = 1250/ 7%, and Ngap/eo =
750/ 1%, to high accuracy the energy spectrum is given by the formula

E(£) = Eine + Po(€) + ¢, (). (5.15)

Here Ejy is the interaction energy of the homogeneous system, e, () is a periodic
function of ¢, and

Po(€) = [£)*xa + (€ — xa[€])*/x8, (5.16)

where [¢] denotes the nearest-integer function.
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FIGURE 5.2: Density and phase of the order parameters ¥y = /71y €%
of the two components A and B, for x4 = 0.8, xp = 0.2 and for
£ =0,0.03,0.1,0.19, and 0.2. Here Ng/eq = 1250/ 2 and Ngap/ey =

750/ 2.



Chapter 5. Mixtures of two Bose gases 65

092 0.18
o 1=0.3
=
& 0.88 10.23 = 0.09
= 084 1=0.39 @ 0
> 1=0.2, 0.4 -
@ 08 — -0.09
@
(]
0.76 -0.18
=TT 0 T - 0 T
5] 5]
024 6 F
€ o2 \ 4
& T 1=0.3
= 0.16 t=0.2, 0.4 &2 2 120.23
& 012 =039 2 0} |02
2 0.08 =0.23 a 2|
2 ) 1=0.39
g oo 1=0.3 4 1=0.4
0 -6
=T 0 T =TT 0 T
5] 5]

FIGURE 5.3: Density and phase of the order parameters ¥y = /71y €%

of the two components A and B, for x4 = 0.8, x3 = 0.2 and for ¢ =

0.2,0.23,0.3,0.39, and 0.4. Here Ng/ey = 1250/ 2 and Ngap/ey =
750/ 7.

In Figs. (5.2) and (5.3) I show the density and the phase of the two order parameters
Y4 and ¥p, in the two intervals 0 < ¢ < 0.2 and 0.2 < ¢ < 0.4. Comparing the
density of the same species for values of ¢ which differ by xpg = 0.2 we observe
that the difference is hardly visible. On the other hand, the phases of the two order
parameters do change. These observations are explained in the analysis that follows
below. Finally, the angular momentum carried by the majority component in the
interval 0 < ¢ < 0.2 is very small, smaller than 1%, as I argued also above.

The above results follow from the facts that (i) at the interval 0 < ¢ < xp the minority
component carries essentially all the angular momentum, and (ii) if one starts from
the order parameters in the interval 0 < ¢ < xp, the rest of the spectrum results
by exciting the center of mass motion of each component separately. This operation
changes the kinetic energy only, leaving the interaction energy unaffected. I thus
essentially show below that Egs. (5.15) and (5.16) follow from these two facts.

In order for the above procedure to give the yrast states, for a fixed population im-
balance and a fixed interaction asymmetry, ¢ has to be sufficiently large. Consider-
ing, for example, ¢ = 0.4, the yrast state — which has to be (¥4, ¥Y5) = (¢o, ¢2), as
the quasi-periodic behaviour implies — is indeed the expected one for a sufficiently
strong interaction, as analysed in Ref.[101]. For a fixed interaction asymmetry and
a fixed g, the population imbalance has to be sufficiently large. Finally, for a fixed
g and a fixed population imbalance the interaction asymmetry has to be sufficiently
large.
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To see the above arguments it is instructive to consider the specific example x4 =
0.8, xg = 0.2. First of all, the possible values of the angular momentum carried by
(purely) plane-wave states is a multiple of 0.2 in this case, since { = mx4 + nxg =
0.2(4m + n). It is also important to notice that the condition for a state (¥,,, ¥,) to
become an yrast state, depends only on |m — n| [101]. Thus, when, e.g., the state
(¥, ¥n) = (¢o,¢2) with £ = 2xp = 0.4, becomes the yrast state, also the state
(¥, ¥n) = (¢p1,_1) with £ = 3xp = 0.6, becomes the yrast state, as well. (This also
follows from Bloch’s theorem, however it is a more general result).

Having solved the yrast problem in the interval 0 < ¢ < xp = 0.2, one may construct
solutions at the interval 0.2 = xp < ¢ < 2xp = 0.4, etc., all the way up to 4xp <
¢ < 5xp = 1 keeping the correlations unaffected and putting all the energy in the
form of kinetic energy, by exciting the center of mass motion. In other words, the
spectrum will “repeat" itself in a quasi-periodic way (explained below) all the way
up to £ = 1. Beyond this point Bloch’s theorem determines the rest of the excitation
spectrum [51].

Let me thus assume that in the interval 0 < ¢ < xg = 0.2 the two order parameters
are

(FPa, ¥s) = (T, ¥3). (5.17)

One should keep in mind that ¥Y, carries a very small amount of angular momen-
tum, and I will assume that it is zero. The angular momentum per particle of the
above pair of states is

{=xx chi + xp Zmd%n = Xp Zmd%n (5.18)
The kinetic energy per particle is
KO(0) = xa Zmzczm + xp Zmzd%ﬂ (5.19)
and the total energy per particle is
E(¢)/N =K°(¢)+V(£)/N, (5.20)

where V (¢) is the total interaction energy. Finally, for the kinetic energy K°(¢ = 0) =
0and K°(¢ = x3) = xg = 0.2.

For 0.2 = xgp < ¢ < 2xp = 0.4 the order parameters are
(Fa,¥5) = (Y9, e97Y). (5.21)

The factor that multiplies ¥% does not affect the interaction energy and thus the
interaction energy is identical to the one in the interval 0 < ¢ < xp, V({) = V(¢ —
xg). The interesting part is the kinetic energy, which is

K(¢) = K%(¢ — xp) +2¢ — x, (5.22)

with K({ = xg) = xg = 0.2 and K({ = 2xp) = 4xp = 0.8.

For 0.4 = 2xp < ¢ < 3xp = 0.6 we have two competing solutions around ¢ = 1/2.
For values of ¢ smaller than 1/2,

(Ya,¥5) = (Y5, e¥°¥). (5.23)
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The kinetic energy is
K(¢) = K°(¢ — 2xp) + 4¢ — 4xp, (5.24)

with K(¢ = 2xp) = 4xp = 0.8 and K(¢ = 3xp) = 9x5 = 1.8.
For larger values than ¢ = 1/2,

(Y4, ¥p) = (€999, e 209Y). (5.25)
The kinetic energy is
K(¢) = K°(¢ — x4 +2xp) +5 — 40 — 9xp, (5.26)

with K(¢ = 2xg) = 5 —17xg = 1.6 and K(¢ = 3xp) = 5 —20xg = 1. Comparing
the energies one sees that they cross at ¢ = 5x4/8 = 1/2. This gives rise to a
discontinuity in the derivative of the dispersion relation at £ = 1/2. I have evaluated
the slope tobe 1/xgas ¢ — (1/2)” and (1 —2x,4)/xp for £ — (1/2)*, and therefore
the difference between the right and the left slopes is —2x4 / x3.

I stress that this discontinuous transition at £ = 1/2 is also experimentally relevant,
since the slope of the dispersion relation gives the velocity of propagation of the cor-
responding solitary waves. Interestingly, at this point the sign of the slope changes
and thus the velocity of propagation also changes sign.

For 0.6 = 3xg < /¢ <4xp =0.,
(P4, ¥p) = (€999, e 09Y). (5.27)
The kinetic energy is
K(¢) = K°(£ —xp +xp) +1—2042x4 — 2xp, (5.28)
with K({ = 3xp) = 1 and K(¢ = 4xp) = 0.8.
Finally, for 0.8 = 4xp < /¢ <1,
(Fa,¥5) = (€999, ¥Y). (5.29)
The kinetic energy is
K=K(£—xa)+ x4, (5.30)

with K(¢ = 4xg) = x4 = 0.8 and K(¢ = 1) = 1. Figure (5.4) shows the result of this
calculation for x4 = 0.8 and xg = 0.2.

The results presented above imply Egs.(5.15) and (5.16), which were motivated nu-
merically [102], as mentioned also earlier. They are also consistent with the numer-
ical results of Figs.(5.2) and (5.3). I also stress that, although the arguments were
presented within the mean-field approximation, they do not rely in any way on the
validity of the mean-field approximation, but rather they are much more general, as
I also demonstrate in Sec.5.4. As a final remark I mention that when N4 and Ng are
relatively prime, e.g., x4 = 0.7 and xp = 0.3, a similar picture develops.
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FIGURE 5.4: The kinetic energy K(¢), evaluated at ¢ =

0,0.2,0.4,0.6,0.8, and 1.0, for x4 = 0.8, and xp = 0.2, from Egs. (5.22),

(5.24), (5.26), (5.28), and (5.30). Knowing the energy at the interval

0 < ¢ < xp, one may derive the rest of the spectrum using the trans-
formations described in the text.

5.4 Excitation spectrum — many-body problem

5.4.1 *“Collective" excitation of the system

Up to now we have seen how the yrast states progress with increasing angular mo-
mentum via essentially single-particle excitation of the system. In other words, as L
increases, the additional momentum is carried by moving single particles to differ-
ent single-particle states.

Still, there is another way to excite the system “collectively". By this term I mean
that even an increase of the angular momentum by one unit requires a major rear-
rangement of the atoms in the single-particle states. Before we go to the many-body
problem, we should recall the results of Ref. [101], where it was argued that for suf-
ficiently strong interactions, the mean-field state (Y4, ¥Y5) = (¢m, ¢n) becomes the
yrast state, where obviously the angular momentum is ¢ = x m + xpn.

A way to argue about the state (¢, ¢) becoming the yrast state for the specific
value of ¢ and for sufficiently strong interactions is that any density variation costs
interaction energy. If this is the dominant term in the Hamiltonian, it is minimized
by these plane-wave states, which have a constant density distribution. The expense
that one pays is the corresponding kinetic energy, which is x4m? + xpn?, and has to
be sufficiently small in order for the argument to be self-consistent; this argument
is analysed further in Sec.5.5. The details of this calculation (performed within the
mean-field approximation), as well as the corresponding phase diagram are given
in Ref. [101].

Let us thus consider a toy model which demonstrates the above arguments about
the collective excitation. Assuming for convenience that N4 — Np = 1, a state that
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competes with the one of Eq. (5.5) is
IL=1)=1"),Q|(— (5.31)
The energy of this state E is

E'=N+ %gNA(NA —1) +84BNaNp + %gNB(NB —1) = N+ Eo, (5.32)
or
E'—Ey=N. (5.33)
Therefore
E'—E =(N—-1)—g(Ng—1). (5.34)
For values of ¢ larger than the critical value which satisfies the equation

N-1
g= Ny 1 (5.35)
it is energetically favourable to excite the system collectively. In the limit of large N
and Np, g is of order unity which is necessary in order for the system not to enter
the highly-correlated Tonks-Girardeau regime. (One should not forget that for the
low atom numbers that we have used, the system easily makes the transition to the
Tonks-Girardeau limit, when g becomes of order N [54]).

I stress that the above calculation is just a toy model and should not in any way be
trusted quantitatively. Besides, for ¢ of order unity, the typical interaction energy
per atom is of order N and thus (much) larger than the kinetic energy. Thus, the
interaction energy will deplete the condensate significantly, while the depletion will
also make the result dependent on g 4p; all these effect have been ignored here.

5.4.2 A “generalization" of Bloch’s theorem

The arguments presented above ignore the depletion of the condensate. However,
the depletion lowers the energy to subleading order in the number of atoms N and,
in particular for small systems, it may have a rather important effect. Below, I sug-
gest a different way of constructing a many-body state, taking into account also the
depletion. Essentially this ansatz state generalizes (in an approximate way) Bloch’s
theorem, which also holds in a two-component system [51].

The ansatz many-body state that I introduce is based on the “exact" many-body state
for L = 0. The many-body state of each component will be a linear superposition of
the “Fock" states of the form

Nﬁmin m max "’mm N, rgmax
’mmin s+« Mmax ® |mmm s+ Mmax >B
(5.36)
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for some given truncation to the single-particle states with #yin < m < Mmmay, with
the obvious constraints in each state

Y N, =N, (5.37)
m

withi = A, B and also with ‘
ZmN,’ﬂ =0. (5.38)
m,i

Then, one may excite the center of mass coordinate using the same amplitudes, thus
creating the state

|(anin + 11.0) Nimin, ., (i + 11.4) Nomax) 4 )
| (timmi + 15) Nimin, ., (Mimax + 115) Nimax) . (5.39)
The resulting state has an angular momentum
L = Ngmy + Npmg. (5.40)

Also, this state has the same interaction energy as the one with L = 0, since the
matrix elements do not depend on the angular momentum of the colliding particles.
Its total energy is higher than the total energy of the many-body state with L = 0,
E(L = 0), due to its higher kinetic energy,

"

= V(L=0)+) (m+ma)’Ny+ Y (m+mp)*N,
m m
= E(L=0)+ Nym?% + Ngm% +2(maLa +mpLp). (5.41)

Here V(L = 0) is the exact, total, interaction energy of the full many-body state with
L =0, and Ly, Lp is the angular momentum of the A and B components of the state
with L = 0. In general, their sum has to vanish, L4 + Lg = 0, without each of them
vanishing separately. Still, the states with the dominant amplitudes are the ones for
which Ly = 0 and Lp = 0, separately, because of the condition § > gap, which is
roughly the condition for phase co-existence. As a result,

"

— E(L =0) =~ Nam?% + Npm3, (5.42)

which becomes exact for g4p = 0. Equation (5.42) is also exact within the mean-field
approximation, since the terms with L4 # 0and Lg # 0 appear due to the depletion.
On the other hand, whether the resulting (mean-field, or many body) state is the
yrast state, depends on the parameters. Finally, I also mention that Eq. (5.42) reduces
to Eq. (5.33) when m4 =1 and mp = —1, as expected.

From Egs. (5.40) and (5.41) if follows trivially that when L is an integer multiple of
N, L = gN, then my = mp = ¢, in which case Bloch’s theorem [49] holds exactly,
even in a two-component system [51], E" —E, = Ng?. In the case of the “tradi-
tional" Bloch theorem (i.e., in the case of one component) starting from the L = 0
state, by exciting the center of mass motion one gets (exactly) only the states with an
additional angular momentum which is an integer multiple of the total number of

particles N.

On the other hand, in the present case of a two-component system, this procedure
allows us to give L any desired value, at least when the populations Ny and Njp



Chapter 5. Mixtures of two Bose gases 71

are relatively prime, otherwise the argument will hold for values of L which are
integer multiples of their greatest common divisor. Still, the generated states are not
necessarily the yrast states, but rather they are candidate yrast states.

5.4.3 Results of numerical diagonalization

I turn now to the results that I got from the diagonalization of the many-body Hamil-
tonian. I consider as a first example the case No = 16, Np = 4,344 = BB = § =
0.1,g4p = 0.05, with mmin = —1, and mmax = 2 and the results are shown in the
Appendix. For 0 < L < 4(= Np) we see that indeed the angular momentum of
the majority component, A, is less than 10% of the total, which is consistent with
the results of Sec. 5.3. Partly this relatively large value is due to finite-N corrections;
increasing N will make this number even smaller. For 5 < L < 9 the dominant state
of the B (minority) component is ¢, carrying 4 units of angular momentum, while
the additional angular momentum is carried by the A component. This is because
exciting the B component costs kinetic energy. The state with L = 10(= N/2) is
analysed in detail below, for N = 10 and L = 5 (= N/2). The rest of the spectrum
follows from Bloch’s theorem.

In order to see the effects that I investigate in the present project I turn now to higher
couplings using the above as a “reference" example. To achieve a decent convergence
I expand the space of single-particle states to #min = —2, and mmax = 3, which forces
us to reduce the atom number, as otherwise the dimensionality of the Hamiltonian
matrix explodes. I thus consider Ny = 8, Np = 2,944 = g8 = § = 1.5,945 = 0.15.
Another example, where ¢ and gp are closer to each other, follows below.

For L = 0 and in the space with #min = —1 and mmax = 1 the dimensionality of the
Hamiltonian matrix is 26, while the lowest eigenenergy is ~ 38.5864. For mmin = —2,
and Mmax = 2 the dimensionality becomes 457 and the lowest eigenenergy reduces
to ~ 33.8139, i.e., there is a reduction of roughly 14%. For mmin = —2, and mmax =
3 the dimensionality becomes 1163 and the lowest eigenenergy reduces further to
~ 32.8452, i.e., there is a further reduction of roughly 3%, indicating that although
convergence has not been achieved, the results are relatively accurate.

A generic feature of the above problem is that there is a very rapid increase of the
dimensionality of the Hilbert space as more single-particle states are included, as
seen also in the numbers mentioned above. I should also mention that in order to
satisfy Bloch’s theorem for e.g.,, 0 < L < N the single-particle states have to be
“symmetric" around 1/2. This is the reason why I choose to work, for example, with
Mmin = —2, and mmax = 3. The fact that we have to increase the single-particle
states in pairs makes it even more difficult to investigate the convergence of the
results and to increase the Hilbert space. For example, going e.g., from mmin = —2,
and Mmax = 3 t0 Mmin = —3, and Mmax = 4 may result in a very large increase of the
dimensionality of the Hamiltonian matrix (for some fixed N4 and Ng).

The lowest-energy eigenstate with L = 0 (and with an eigenenergy equal to ~
32.8452), consists of the following four Fock states (with the amplitudes with the
largest absolute value)



Chapter 5. Mixtures of two Bose gases 72

Comp. A Comp. B
Ampl. | ¢ | ¢1 [P0 |1 | P2 | P3| P2 | ¢1 | Po|P1| 2| P3
02559 1 | 0 |[6[0[1[0] 00 [2]0]|0]0
02650 0 | 0 | 8] 0|0|0| 0|1 |0 |1]0]0
04326 0 | 1 |6 1]0|0] 0|0 [2]0|0]0
0.6465 0 0 8101010 0 0 2101010

In the above notation, the Fock state with e.g., 8 “A" atoms in the single-particle state
¢o and 2 “B" atoms in the single-particle state ¢y has an amplitude 0.6465, etc.

To understand the arguments which follow, it is instructive to get some insight into
the structure of the above many-body state. The Fock state with the largest ampli-
tude has zero kinetic energy and it puts all 8 “A" atoms at the m = 0 state, as well as
all 2 “B" atoms at the state with m = 0, also. The following three have a kinetic en-
ergy which is equal to 2, 2, and 8, respectively. The degeneracy between the first two
is lifted by the interactions. More specifically, in the two specific states there are pro-
cesses where atoms are transferred from the m = 0 state to the states with m = +1,
m = %2, etc.,, which lower the energy (they are off-diagonal matrix elements which
come from, e.g., c3c" ;cd [67]).

For L = 1, the lowest eigenenergy is ~ 34.6431, while the states with the four largest
amplitudes are

Comp. A Comp. B
Ampl. | ¢2 | p1 [P0 | P1 | P2 | P3| P2 | D1 | 0| P1| P2 ¢3
02506 1 | 0 |60 1|00 ] 0 |1[1]0]0
02904 0 [ 0 [8|O0[O0[O0[ 01 [0[O0]1T]0O
-0.4223 | 0 1 6 | 1100 0 0 111100
0.6323 0 0 8101010 0 0 1 (1100

Here we see that indeed it is the minority component that carries the angular mo-
mentum (in all four Fock states).

For L = 2, the lowest eigenenergy is ~ 34.8276, with

Comp. A Comp. B
Ampl. |2 | ¢1 [P0 | P1 | P2 | P35 | P2 | P1 | Po | P1 | ¢2 | 3
-0.2557 | 1 0 6 | 010 0 0 012010
-0.2644 | 1 0 6 | 0|10 0 0 170|160
-04322 | 0 1 6 | 1|00 0 0 0121010
0.6461 0 0 8101010 0 0 0121010

The minority, B, component still carries the angular momentum (in all four Fock
states). The state with the largest amplitude is the one expected also from the mean-
field approximation. Furthermore, this state does indeed result (to high accuracy)
from the one with L = 0 by exciting the center of mass coordinate of the minority
component, while the difference between the eigenenergy of this state and the one
with L = 0is ~ 1.9814, i.e., very close to the value 2(= Npg). These are in agreement
with the results presented in Sec. 5.3.

For L = 3 the lowest eigenenergy is ~ 38.7296, with
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Comp. A Comp. B
Ampl. | ¢ | ¢1 [P0 |1 | P2 | P3| P2 | ¢1 | Po|P1| 2| P3
02401 1 [ 0 [6]0o[1[0] 00 o110
0324 0 | 0 |[8]0]0|0| 0|0 [1|0|0][1
04035 0 | 1 |6 1]0|0] 0|0 01|10
0.6057 0 0 8101010 0 0 0110

In agreement with the results of Sec.5.3, and contrary to the corresponding state
with L = 5, the above state results to rather high accuracy from the one with L =1
by exciting the center of mass of the minority component. The energy difference is
~ 4.0865, while the one predicted by the results of Sec.5.3 is 2L — Np = 4.

For L = 4 the lowest eigenenergy is ~ 40.8526, with

Comp. A Comp. B
Ampl. | ¢2 | p1 [P0 | P1 | P2 | P3| P2 | D1 | o | P1| P2 ¢s
-02494 | 1 0 6 | 0110 0 0 010210
-0.2970 | O 0 810010 0 0 0]1]0]1
-04218 | 0 1 6 | 1|00 0 0 0101210
0.6305 0 0 8101010 0 0 0101210

Here we observe that the Fock state with the dominant amplitude is the one where
all 8 “A" atoms occupy the m = 0 state, as well as all 2 “B" atoms occupy the state
with m = 2. Again, this state results approximately from the states with L = 0 and
L = 2, by exciting the center of mass motion of the minority component. The energy
difference between this state and the one with L = 0 is &~ 8.0074, while the one that
one gets from Sec. 5.3 is 8. I stress that for weaker interactions the many-body state
does not have the structure seen above. For example, the state with L = 8(= 2Np),
where the state with the largest amplitude is 0.6158 |0,12,4,0) 4 |0, 0,4, 0) 5.

For L = 5 the lowest eigenenergy is ~ 45.7010, with

Comp. A Comp. B
Ampl. | ¢2 | ¢1 [P0 | P1 | P2 | P3| P2 | P1 | o | P1| P2 ¢3
0.3194 0 1 5121010 0 0 0101210
0.3194 0 0 2151110 0 2 00|00
-0.3516 | 0O 0 7111010 0 0 0101210
-0.3516 | O 0 117100 0 2 0101010

Interestingly, this state with L = N /2 = 5 cannot in any way be linked to any other
state and it does not result from exciting the center of mass motion !. This is seen
by comparing this eigenstate with the ones with L = 1 and L = 3. The state that
one would construct following this rule has an energy equal to ~ 46.8276, which
is higher than the actual eigenenergy. Therefore, the system manages to construct
a state that lies lower in energy. We should recall here that within the mean-field
approximation for L = N /2 one gets a “dark" solitary wave in the minority compo-
nent, and the winding number changes.

LA state that resembles this one has been seen in Ref. [95], for g = g4B, and for weak interactions.
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Furthermore, this eigenstate has the peculiar feature that the Fock states go in pairs,
having the same amplitudes (modulo signs). This can be seen by the fact that for
every Fock state, there has to be another one, which is its mirror image that results
from the transformation m — 1 — m. The first state will have an angular momentum
Y. mN,, = N/2, while the other one } (1 —m)N,, = N — L = N/2. Furthermore,
the kinetic energy of the first will be K = Y m?N,,, while that of the other will be
Y (1 —m)?N,; = K+ N — 2L = K. Since the interaction energy will also be the same,
that is the reason that these states go in pairs.

It is interesting that within the mean-field approximation and for ¢ = 1/2 there are
two degenerate solutions, with a very different structure in ¢4, i.e., the phase of the
order parameter ¥ 4 of the majority component. For ¢ — (1/2)* we get either the
one, or the other solution (in practice depending, e.g., on the initial condition that we
use in the algorithm). This is an example of spontaneous symmetry breaking. This
symmetry is restored within the method of diagonalization, where, for ¢ = 1/2, we
get a superposition of these two states.

Returning to the results from numerical diagonalization, the rest of the spectrum, for
L =6,...,10, as well for L > 10, follows (exactly) from the above states, according
to Bloch’s theorem, as I have also checked numerically.
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FIGURE 5.5: Top figure: The solid curve connects the lowest eigenen-
ergies, for Ny = 2, Ng = 8, gaa = g = 1.5, and g4p = 0.15, for
L = 0 up to 10, in the truncated space mmin = —2, Mmax = 3. The
dashed curve connects the energies evaluated by the phase transfor-
mations described in Sec. 5.3, which result from the eigenenergies for
L =0and L = 1. Bottom figure: Same as the top one, with g45 = 0.9.

Another example that I show below has a larger value for gap, g4 = 9/10, with
Ny =8,Np = 2,944 = §8B = § = 3/2 being the same as before. The ratio g/g4p is
the same as the one in the mean-field calculation of Ref. [102]. In this project the cho-
sen couplings were rather strong, however here considering the same parameters
would require inclusion of a large space of single-particle states and a correspond-
ingly huge dimensionality of the resulting Hamiltonian matrix.

The lowest-energy eigenstate with L = 0 has an eigenenergy equal to ~ 43.7724.
The Fock states with the four largest amplitudes are
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Comp. A Comp. B
Ampl. | ¢ | ¢1 [P0 |1 | P2 | P3| P2 | ¢1 | Po|P1| 2| P3
02420 1 [0 |60 1[0o] 0|0 |2]0]0]0
02422 0 | 0 [8[0[0]0] 0] 1 ]0][1T]0]O
04146 | 0 | 1 |6 1]0|0] 0|0 |2]0|0]0
0.6468 0 0 8101010 0 0 2101010

For L = 1, the lowest eigenenergy is ~ 45.0110, while

Comp. A Comp. B
Ampl. | ¢2 | p1 [P0 | P1 | P2 | P3| P2 | D1 | 0| P1| P2 ¢3
-0.2312 | 0 0 8101010 0 1 0O/10111]0
-0.2370 | 1 0 6 | 010 0 0 1 (1100
-0.3676 | 0 1 6 | 1100 0 0 111100
0.6135 0 0 8101010 0 0 111|060

Again, we observe that the angular momentum is carried by the minority compo-
nent. For L = 2, the lowest eigenenergy is ~ 45.2024, with

Comp. A Comp. B
Ampl. | ¢ | P1 [P0 | P1 | P2 | P3| P2 | P | Po |1 | P2 | ¢3
-0.2205 0 0 8101|0710 0 0 1 0 1 0
-0.2369 1 0 6 | 0 1 0 0 0 012110710
-0.4035 0 1 6 1 0|0 0 0 0|l 2110710
0.6351 0 0 8101|0710 0 0 0|1 21]1071]0

This state is linked with |L = 0) the way we discussed above. The only difference
is that the Fock states with the two smallest amplitudes are reversed. For L = 3 the
lowest eigenenergy is ~ 48.0354, with

Comp. A Comp. B
Ampl. |2 | ¢1 [P0 |1 | P2 | P3| P2 | P1 | Po | P1| 2| P3
-0.2857 | 0 1 6 |1 ,01]0 0 O11111]0
0.3043 0 1 5121010 0 0 0121010
-0.3555 | 0 0 711,010 0 0 0121010
0.4900 0 0 8101010 0 0 O11111]0

The difference between this state and |L = 1) is more pronounced (in the second and
the third lines). In these two Fock states we observe that there are 2 units of angular
momentum, as compared to the first and the fourth lines, where there are 3 units of
angular momentum, as a result of the increase of g4p. Still, the Fock state with the
largest amplitude is the one expected from the earlier discussion.

For the state with L = 4 the lowest eigenenergy is ~ 50.3904, with
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Comp. A Comp. B
Ampl. | ¢ | ¢1 [P0 |1 | P2 | P3| P2 | ¢1 | Po|P1| 2| P3
02058 1 | 0 |6[0[1[0] 00 o020
02074 0 | 0 |7|1]0[0] 0|0 O |1|1]0
03488 0 | 1 |6 1]0|0] 0|0 0|0|2]0
0.5529 0 0 8101010 0 0 0101210

Again, this state is linked with the states [L = 0) and |L = 2), with the main dif-
ference in the third Fock state, which has 3 units of angular momentum, while the
other ones have 4 units. Finally, for L = 5 the lowest eigenenergy is ~ 52.7947, with

Comp. A Comp. B
Ampl. | ¢ 2 | ¢y [P0 | ¢1 | P2 | P3| P2 | 1| o | 1| P2 ¢3
-0.1817 | O 1 413100 0 0 o1 |10
-0.1817 | O 0 3 (41110 0 1 1100710
0.1920 0 0 414100 0 0 1110710
0.2038 0 0 6 | 2|00 0 0 o110
0.2038 0 0 216|010 0 1 1100710

which still is not linked with the other states.

Figure (5.5) shows the eigenenergies for 0 < L < 10 for the two values of g 4p. In the
same figure I have also used the eigenenergies for L = 0 and L = 1 and evaluated the
other ones using the arguments presented in Sec.5.3. The agreement for the lower
value of gp is better. With increasing gap the two systems become more coupled
and as a result there are processes like, e.g., coc{d$d1, which lower the energy and
become more important. These processes make the amplitudes of the Fock states
which constitute the L = 0 yrast state and have L4 # 0and Lg # 0 (with Ly + L =
0) larger. These states are responsible for the observed deviations [see Eq. (5.41)].
We also observe the relatively large deviation that appears for L = 5 = N /2. This
deviation is due to the fact that this eigenstate does not result from the other ones
via excitation of the center of mass motion.

To conclude, interestingly enough, essentially the whole excitation spectrum (with
the exception of the distinct values of L = N /2 + Ng, with g being an integer), can
thus be derived by the states L = 0 and L = 1 only — at least approximately — very
much the same way that we saw in Sec. 5.3.

5.5 A conjecture: Dispersion relation based on the minimiza-
tion of the kinetic energy

As I argued in Sec.5.4, starting from the many-body state of a system with L =
0 it is possible to create a many-body state with some nonzero value of L at the
expense of kinetic energy only, which is of order N (in the total energy of the system).
Alternatively the many-body state may result from single-particle excitation with an
energy expense in the interaction energy which is of order Ng (still in the total energy
of the system), for a4 ~ gpB ~ gap, and equal to g. Furthermore, for sufficiently
strong interactions, i.e., when ¢ becomes of order N, the system enters the Tonks-
Girardeau regime, where the energy does not depend on g, which is not desirable.
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Therefore, provided that
N <« Ng < N?, (5.43)

it may be energetically favorable for the system to carry its angular momentum via
the collective excitation described above. In this case, provided that N4 and Np are
relatively prime one may achieve any value of L = mN,4 + nNp. The integers (1m, n)
are the ones which minimize the kinetic energy per particle

K = m*N4 + n®Np, (5.44)
under the obvious constraint
L =mNy4 + nNp. (5.45)

Self-consistency requires that the resulting integers m and n have to be of order unity.
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FIGURE 5.6: The dispersion relation (i.e., the kinetic energy) eval-
uated from the minimization of Eq.(5.44) under the constraint of
Eq. (5.45), for the numbers of N4 and Np shown in each plot.
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FIGURE 5.7: Same as in Fig. (5.6).

It is important to point out that Eq. (5.44) and (5.45) are linear in N4 and Ng. Thus,
scaling N4 and Np the same way will leave the resulting integers m and n unaffected.
On the other hand, Eq. (5.43) will always be satisfied for a sufficiently large value of
N = N4 + Ng, for some fixed g.

The inequality of Eq. (5.43) implies that in order for each term to differ by, e.g., one
order of magnitude, ¢ has to be at least 10, while N has to be at least 100. This
introduces a very serious problem in the method of numerical diagonalization that
we use. Convergence of the results requires that the space that one should work with
iS [Mmin| & Mmax ~ \/Ng ~ 30. This implies that the dimensionality of the resulting
matrices is too large and certainly beyond the capability of current technology.

Still, if one could reach these parameters — which is certainly possible experimen-
tally — there is an interesting behaviour, which I investigate below. The most in-
teresting aspect is that under the conditions presented above, the yrast spectrum is
determined from the minimization of the kinetic energy and thus becomes trivial.
In addition to the simplicity of the spectrum, even more interesting is that the dis-
persion relation may become very sensitive to N4 and Ng, due to number-theoretic
reasons.

In Figs. (5.6) and (5.7), instead of diagonalizing the many-body Hamiltonian, I min-
imize Eq.(5.44) under the constraint of Eq.(5.45) and plot the dispersion relation
[measuring the energy from E(L = 0)]. As an example, I have chosen Ny = 49 and
Npg from 28 up to 35. For Np = 28, the greatest common divisor of N4 and Np is 7
and for this reason we find a solution for the values of L which are integer multiples
of7,ie.,0,7,14,21,28,35,42,49, 56, 63, 70, and 77.

For all other values of L the energy will be much higher, so the predicted dispersion
relation will have minima at these values of L. Increasing the population of Np by
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one unit, i.e., for Np = 29, the greatest common divisor of N4 and Np is 1. This has
dramatic consequences on the dispersion relation, since it is now possible to find a
solution for all values of L between 0 and N4 + Np = 78. Various interesting patterns
show up as Np continues to increase by one unit, until Np increases by seven units,
N = 35, in which case the greatest common divisor of N4 and Nj is again equal to
7,in which case the dispersion shows a similar structure as in the case Np = 28.

A remarkable observation that follows from these results is that even if the popu-
lation changes by one particle, this may change the dispersion dramatically. This
is a direct consequence of the number-theoretic nature of the problem, much like
shell-effects for fermions, due to the Pauli exclusion principle.

5.6 Summary and conclusions

In the project investigated in this chapter I examined the dispersion relation of a
two-component Bose-Einstein condensed gas that is confined in a ring potential.
The structure of the derived excitation spectrum and the corresponding states have
immediate consequences on the rotational properties of the system that I have ex-
amined and thus they have a very interesting physical interpretation.

To name just the most important ones, we need to recall that the local minima of the
dispersion relation correspond to non-decaying states, i.e., persistent currents. Fur-
thermore, the states that [ have evaluated correspond to “vector” solitary-wave solu-
tions, i.e., density disturbances in both components (see Figs. (5.2) and (5.3)) which
propagate together around the ring without change in their shape. In addition, the
slope of the dispersion relation gives the velocity of propagation of these waves. Fi-
nally, the dispersion relation may be used to predict the behaviour of the system as
it is driven by some external rotation of the trap and also it allows us to extract the
hysteretic behaviour.

Turning to the more specific properties I have derived,  have shown that, quite gen-
erally (and not only within the mean-field approximation) under certain and rather
typical conditions the whole energy spectrum repeats itself in a quasi-periodic way.
More specifically, if one knows the spectrum in the range of the angular momentum
between L = 0 and L = Np, i.e., the population of the minority component, the rest
may be derived by exciting the center of mass motion of the two components.

An interesting result that is directly related with the above is the fact that in this
range of angular momentum the majority of the angular momentum is carried by
the minority component, which is a definite experimental prediction. Another inter-
esting physical consequence of these results is that, within the mean-field approxi-
mation — when the “dark" soliton appears (in the minority component), the velocity
of propagation of the solitary waves changes discontinuously. Furthermore, within
the many-body scheme the state with this value of the angular momentum has some
peculiar properties.

One important observation in the problem I have studied is the fact that the matrix
elements that determine the interaction do not depend on the angular momentum of
the colliding particles. As a result, one may start from the non-rotating many-body
state and use these correlations to build many-body states with some nonzero angu-
lar momentum. In the limit of relatively strong interactions these are possible yrast
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states. The reason is that the energy expense that one pays to give the angular mo-
mentum is purely kinetic energy and for sufficiently strong interatomic interactions
this kind of excitation provides an energetically inexpensive way for the system to
carry its angular momentum (since the correlations are unaffected).

As a result in this limit it is the kinetic energy that has to be minimized, with the
interesting consequence that the energy spectrum is trivial to calculate. Further-
more, much like non-interacting fermions, due to number-theoretic reasons the en-
ergy spectrum also becomes very sensitive to the population of the two components,
as well as the angular momentum carried by the system. In a sense, this is an indica-
tion of “quantum chaos", where even infinitesimally small changes in the number of
atoms (i.e., of order unity) have very significant changes in the dispersion relation,
and as a result in the rotational properties of the system. While I cannot demonstrate
this conjecture numerically because of the huge dimensionality of the resulting ma-
trices, there are definite predictions, which may be tested experimentally.

5.7 A specific example

Below I give the result for Ny = 16, Ng = 4,344 = g88 = § = 0.1,g4p = 0.05 in the
space with —1 <m < 2.

The lowest-energy eigenstate with L = 0 has an eigenenergy equal to ~ 15.1799.
Furthermore, the dimensionality of the matrix is 846. The states with the four largest
amplitudes are

Comp. A Comp. B
Ampl. | ¢1 | o | P | P2 | ¢1 | do | P1 | ¢
0.0944 2 (1212 ]0 0 41010
01139 | 0 (160 | 0| 1 |2 1/0
03122 1 (141 ]0] 0 |4 ,01|0
09301 | 0 (16| 0O | O | O |4 |0 |O

For L = 1, the lowest eigenenergy is ~ 16.3549, while

Comp. A Comp. B
Ampl. | ¢1 | o | P1 | P2 | p1 | do | 1| P2
01221 | 1 |13} 2 | 0| O |4 /0|0
02695 0 (151 0| 0 | 4,00
-02811 | 1 |14 10| 0 |3 |1]0
08893 | 0 (16| 0O | O | O |3 |10

For L = 2, the lowest eigenenergy is ~ 17.4151, with

Comp. A Comp. B
Ampl. | ¢y | Po | P | P2 | P1 | P | P1 | ¢2
01245 | 1 (13| 2| 0| O [3 | 1]0
-02742 | 1 (14|10 0 |2 2|0
-02814 | 0 |15 1 (0| O |3 |1]0
08840 | O (16| 0O | O | O |2 |2 |0




Chapter 5. Mixtures of two Bose gases

82

For L = 3 the lowest eigenenergy is ~ 18.3432, with

Comp. A Comp. B
Ampl. | ¢y | Po | P | P2 | P1 | P | P1 | ¢2
0108 | 1 (13| 2| 0| 0 |2 |20
02461 | O |15 1 | O 0 21210
02826 1 (14| 1|0 0 1130
089%0 | 0 16| 0|0 | O [1 3]0
For L = 4 the lowest eigenenergy is ~ 19.1274, with
Comp. A Comp. B
Ampl. | -1 | ¢o | ¢1 | P2 | P-1 | do | P | ¢
-01025| 0 |16/ 0|0 O |1 ]2]|1
-01791 | 0 |15 1 [0 | O | 1|3 ]O
03017 1 (14| 1| 0 0 0|40
09153 | 0 (16| O | O | O |0 | 4 |O
For L = 5 the lowest eigenenergy is ~ 21.0242, with
Comp. A Comp. B
Ampl. | ¢ 1 | do | ¢1 [ P2 | P-1 | do | ¢1 | P2
-01791 | 0 |16 0 | O | O | 0| 3 |1
-02520 | 0 |14 2 |0 | O | 1|30
03693 | 1 |13|2 |0 0 |O0O| 4]0
0834 | 0 (151 0| 0 |0 | 4|0
For L = 6 the lowest eigenenergy is ~ 22.8034, with
Comp. A Comp. B
Ampl. | ¢1 | ¢o | ¢1 | P2 | P-1 | do | ¢1 | P2
-02058 | 0 |15 10| 0O | O] 3|1
-03104 | 0 (13| 3|0 0O |1 3|0
-03910 | 1 |12 3 |0 | O | 0| 4]0
07640 | O (14| 2 | 0| O [0 | 4]0
For L = 7 the lowest eigenenergy is ~ 24.4524, with
Comp. A Comp. B
Ampl. | ¢y | Po | P | P2 | P1 | fo | P1 | ¢2
02136 | 1 10| 50| 0O [1 3]0
-03627 | 0 |12 4 | 0| O | 1|3 |0
-03855 | 1 |11 | 4 | 0| O |0 | 4|0
06938 | 0 13| 3| 0| O [0 | 4]0

For L = 8 the lowest eigenenergy is ~ 25.9611, with
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Comp. A Comp. B
Ampl. | ¢1 | o | P | P2 | ¢1 | do | 1| ¢
02451 | 1 | 9|6 0| 0O |1 3|0
-03568 | 1 |10 5|0 0 |O0O| 4]0
-04100 | O (11|50 0 |1 3|0
06158 | O (12| 4 | 0| O |0 | 4|0
For L = 9 the lowest eigenenergy is ~ 27.3137, with
Comp. A Comp. B
Ampl. | ¢y | Po | P1 | P2 | P1 | fo | P1 | ¢2
02956 | 1 |9 |6 | 0| 0 |0 4|0
02957 | 0 |9 |7 ]0| 0 |2 |20
-04401| 0 (10| 6 | O | O | 1 |3 |0
05067 | O (11| 5 | 0| 0 |0 | 4|0
Finally, for L = 10 the lowest eigenenergy is ~ 28.4570, with
Comp. A Comp. B
Ampl. | ¢y | Po | P | P2 | Pa | P | P1 | ¢2
-02882| 0 |6 (10| O | O |4 0O
-02882| 0 (10| 6 | O | O | O | 4|0
03625 | 0 |79 |0| 0 |3 |10
03625 | 0 |9 |7 | 0| 0 |1 |3 |0
-03784| 0 | 88| 0| 0 |2 2|0
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Chapter 6

Conclusions and Outlook

The problems that I have investigated in my thesis are all related with the behavior
of bosonic atoms which are confined in a ring potential, at zero temperature. Fur-
thermore, one of the main questions that I have posed is the effect of a finite atom
number, where the usual mean-field approximation is expected to either fail (to some
extent), or at least not provide a very accurate description of the system. According
to the results of my thesis such “small" systems have a lot of novel and interesting
physics.

The method that I have used to overcome this difficulty is the diagonalization of the
many-body Hamiltonian. Within this approach the many-body state is not assumed
to have a product form, and thus it allows for correlations between the atoms to
develop, which are expected to be enhanced in the limit of a small atom number.

At zero temperature the atoms form a Bose-Einstein condensate, where in the ab-
sence of interactions all of them occupy the lowest-energy state of the ring potential.
While the non-interacting problem is trivial, the interesting and non-trivial question
is the effect of interactions.

6.1 Projectl

In the first project that I have analyzed in Chap. 3, I studied the phenomenon of
hysteresis in a rotating Bose-Einstein condensate that is confined in a ring potential,
as well the stability of persistent currents in this system.

Based on trivial arguments one may see that the dispersion relation in the absence of
interactions consists of straight lines with different slopes. In this case no hysteresis
effects are present, nor stable persistent currents are possible. Both effects show
up due to the assumed repulsive interatomic interactions, which give a negative
curvature to these straight lines. The crucial quantity that appears in both effects is
the slope of the dispersion relation as the angular momentum tends to zero. Both
the critical rotational frequencies, which appear in the problem of hysteresis, as well
the critical value for stability of persistent currents may be linked to this slope, as
Bloch’s theorem implies.

The results that I have derived within the mean-field approximation and the diago-
nalization of the Hamiltonian agree and provide a unified description of the system,
all the way from the limit of small atom numbers, up to the thermodynamic limit of
large atom numbers. From the fitting I have done, I have also extracted the correc-
tions of the critical frequencies due to the finiteness of the atom number.
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The second question that [ have investigated within this project is the stability of per-
sistent currents in a ring with a finite number of atoms. While the critical coupling
has been evaluated with use of the mean-field approximation, my study was the one
which provided the corrections on the critical coupling due to the finite number of
atoms. Again, to do that, I used the method of diagonalization of the Hamiltonian,
and I focused on the slope of the dispersion relation as the angular momentum tends
to zero.

The fitting that I performed gave an asymptotic value for the critical coupling which
agrees with the one derived from the mean-field approximation. In addition, the
finiteness of the atom number works against the stability of the currents, forcing it
to have a higher value than its asymptotic, mean-field, value.

Finally, an implicit assumption that is made in the arguments for the stability of
the persistent currents is that the matrix element of any single-particle operator that
connects the current-carrying state with the non-rotating state is suppressed. To
confirm this I introduced a delta-function single-particle operator and evaluated this
matrix element, thus demonstrating that indeed it decays rapidly with increasing
atom number. Again, I saw that decreasing the atom number works against the
stability of the persistent currents.

6.2 Project2

The second project that I worked on is described in Chap. 4 of my thesis. Under
the conditions that the mean-field approximation is valid (which is basically the di-
luteness condition, in combination with the condition of a large atom number), the
system is very well described by the Gross-Pitaevskii equation, which is a nonlinear
Schrodinger equation.

In the absence of an external potential this nonlinear equation supports travelling,
solitary-wave solutions (which are given by Jacobi elliptic functions for the periodic
boundary conditions imposed by the ring geometry).

A natural question that arises is whether these solutions persist in the case of a sys-
tem of a small atom number. As mentioned also above the mean-field approximation
itself becomes questionable in this limit, and so does the validity of these solutions.

In order to attack this problem a crucial observation is that the mathematical prob-
lem of solitary-wave solutions is equivalent to the minimization of the energy of the
system for some fixed value of the angular momentum (see Chap. 2).

Thus, in the limit of small atom numbers, I have used the method of diagonalization
of the Hamiltonian in order to evaluate the state of the system for some value of the
angular momentum. Still, this is an eigenstate of the Hamiltonian, which has axial
symmetry. To overcome this difficulty, I had to consider a linear superposition of
these eigenstates with amplitudes which are taken from the mean-field solutions.

The resulting many-body state is thus a state that breaks the rotational invariance (as
the mean-field solutions). Furthermore, by construction has an energy which lower
that the mean-field. As I have demonstrated this correction is to sub-leading order
in the number of atoms.
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In addition to the fact that I have constructed a many-body state of lower energy
than the mean-field solution, the arguments that I have developed in this project are
of more general value. The question of spontaneous symmetry breaking is of great
importance and my study provides insight into it. Furthermore, the method that I
have introduced is of more general importance, since it may be used in other similar
problems which are related with the breaking of the symmetry of the Hamiltonian.

6.3 Project3

The third and last project of my thesis is described in Chap. 5. There I have investi-
gated the effect of a second component. Quite generally, the problem of mixtures is
interesting, since the extra degrees of freedom due to the second component intro-
duce novel effects.

One of the main results of this project is that under rather typical conditions the
dispersion relation develops a regularity which goes way beyond the one imposed
by the periodic boundary conditions, i.e., by Bloch’s theorem.

Furthermore, despite the complexity of this problem the dispersion relation shows
a remarkable simplicity. The main reason for this is that at an “initial" interval the
angular momentum is not shared by the two components, but rather it is carried by
the minority component.

The above results are valid both within the mean-field approximation, as well as
within the diagonalization of the Hamiltonian, for a low atom number. The com-
bination of these two approaches provides a complete description of the system,
starting from the limit of very small systems (in the atom number), and extending
all the way up to (realistically) large numbers.

Furthermore, the derived dispersion relation has a very rich structure, with a cor-
respondingly rich collection of consequences on physical observables. First of all,
the local minima which form under certain conditions correspond to persistent cur-
rents. These are highly sensitive to the populations of the two components and have
a remarkable dependence on elementary number theory. The states of lowest energy
for some fixed value of the angular momentum correspond to “vector solitons", i.e.,
bound states of solitons in the two components. Finally, the slope of the dispersion
relation corresponds to the velocity of propagation of these solitons, which has also
an interesting structure.

6.4 Some last, more general, thoughts

In this interesting field, which has been expanding with an impressive rate in roughly
the last three decades, one of its more recent ambitious goals is the realization of cor-
related, non-mean-field states. Various different directions have been followed in
order to achieve this goal.

For example, experimentalists have tried to reach the limit of rapid rotation in a
harmonically-trapped Bose-Einstein condensate and realize the so-called (correlated)
bosonic Laughlin state. Another possibility is the increase of the scattering length,
in order to violate the diluteness condition. Also, interesting experiments have been
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performed in optical lattices, i.e., periodic potentials, where tuning the lattice con-
stant, the interatomic interaction, or the lattice depth leads to non-mean-field states
and to interesting quantum phase transitions. Tuning the effective dimensionality
of these gases has also attracted a lot of attention, where quasi-one-dimensional, as
well as quasi-two-dimensional confining potentials give rise to novel phases.

My own studies, presented in my thesis, contribute to the above variety of pos-
sible correlated states, where decreasing the atom number introduces correlations
in the many-body state of the atoms which go beyond the mean-field approxima-
tion. While the experimental realization of such states may be tricky (due to the low
signal resulting from the low atom number), still this possibility is within current
experimental reach and certainly it will become even easier in the following years.
Therefore, the results presented here are not only valuable from a theoretical point
of view, but also are of experimental relevance.
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