
University of Crete

Master’s Thesis

Non-Hermitian quantum photonic systems

Adamantios Panagiotis Synanidis
Department of Physics

Supervised by

Assistant Professor Konstantinos Makris
Department of Physics

11 October 2021



Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Prof. Konstanti-
nos Makris, for his support in the writing of this thesis, and his guidance throughout my
master’s studies. He is a great mentor, very passionate about his research, always there to
help his students with their struggles, and I am truly thankful for his support.

Besides my advisor, I would like to thank the other members of the advisory committee,
Prof. Ioannis Kominis and Dr. David Petrosyan for the time and effort they put into su-
pervising and examining my work.

Lastly, I wish to express my appreciation to my family, friends and colleagues, for always
providing me with support and continuous encouragement throughout my life.

1



Contents

1 Introduction 7

2 Theoretical Background 9
2.1 Derivation of the Jaynes-Cummings Hamiltonian . . . . . . . . . . . . . . . . 9

2.1.1 Quantization of the Electromagnetic Field in a Cavity . . . . . . . . . 9
2.1.2 Quantum Two Level System . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Atom-E/M Field Interaction . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Time Evolution of Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Closed Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Open Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Born-Markov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Lindblad Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Non-Hermitian-Hamiltonian Quantum Dynamics . . . . . . . . . . . . 19

2.3 Photon Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Example of Fully Distinguishable Photons . . . . . . . . . . . . . . . . 21
2.3.2 Example of Fully Indistinguishable Photons . . . . . . . . . . . . . . . 22
2.3.3 Derivation of Indistinguishability . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Calculation of the Time Correlation Functions . . . . . . . . . . . . . 26

3 Methods: The One Cavity System 28
3.1 Optical Master Equation of the single Cavity System . . . . . . . . . . . . . . 28
3.2 Calculation of the Time Correlation Functions . . . . . . . . . . . . . . . . . 30

4 Results for the One Cavity System 31
4.1 Coherent coupling regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Time Evolution of the Density Matrix . . . . . . . . . . . . . . . . . . 31
4.1.2 Calculation of the Green Function . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Calculation of the efficiency and the indistinguishability . . . . . . . . 32

4.2 The incoherent coupling regime . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Adiabatic Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 The bad cavity limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 The good cavity limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Results for the One cavity System . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Analysis of the Two Cavity System 45
5.1 Time Evolution of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Calculation of the Two-Time Correlation Functions . . . . . . . . . . . . . . . 47
5.3 Adiabatic elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Calculation of the Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 The effective emitter model . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Calculation of Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Analysis of the Three Cavity System 56
6.1 Three Cavity System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Calculation of the Time Correlation functions . . . . . . . . . . . . . . . . . . 58
6.3 Adiabatic Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Calculation of the efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Similar Cavity Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 The Identical 3 Cavity Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6.1 Results for Cavity c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2



6.6.2 Results for Cavities a and b . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.3 Results for the effective system . . . . . . . . . . . . . . . . . . . . . . 67

7 References 70

3



List of Figures

1 Illustration of an open quantum system S. . . . . . . . . . . . . . . . . . . . . 15
2 Illustration of a Beam-Splitter and the intensities of the input and output

beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Example of Fully Distinguishable Photons. . . . . . . . . . . . . . . . . . . . . 22
4 Example of Fully Indistinguishable Photons. . . . . . . . . . . . . . . . . . . . 23
5 Illustration of the general case of the indistinguishability between two photons. 24
6 Illustration of the experimental setup to measure the indistinguishability of

one photon produced by our system. . . . . . . . . . . . . . . . . . . . . . . . 25
7 Illustration of the One Cavity System. . . . . . . . . . . . . . . . . . . . . . . 28
8 Graph of the system’s efficiency as a function of the cavity decay κ and the

atom-cavity coupling g. Also, we divide the parameter space into the regions
of interest we described in the main text. . . . . . . . . . . . . . . . . . . . . 38

9 Graph of the produced photons’ indistinguishability as a function of the cav-
ity decay κ and the atom-cavity coupling g. . . . . . . . . . . . . . . . . . . . 39

10 Coherent coupling regime: Comparison of the analytical (dashed line) and
computational expression (blue for g = 104γ and green for g = 105γ solid
lines) of the indistinguishability. Note that the analytical expression is inde-
pendent of g, but is only valid in the strong coupling limit. . . . . . . . . . . 40

11 Coherent coupling regime: Comparison of the analytical (dashed line) and
computational (solid line) expression of the efficiency, for g = 105γ. . . . . . . 41

12 incoherent coupling regime: Comparison of the analytical expressions in the
bad and good cavity limit (green and red lines) with the computational ex-
pression (blue line) of the indistinguishability, for g = 10γ. Note that the
analytical expressions are only valid in the bad/good limit. . . . . . . . . . . 42

13 Incoherent coupling regime: Comparison of the analytical expressions in the
bad and good cavity limit (green and orange lines) with the computational
expression (blue line) of the indistinguishability, for g = 100γ. Note that the
analytical expressions are only valid in the bad/good limit. . . . . . . . . . . 43

14 Comparison of the analytical expressions (dashed lines) of the efficiency in
the incoherent regime (first graph) and coherent regime (second graph) with
the computational expression (solid lines), for g = 100γ and g = 105γ re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 Illustration of the two cavity system. . . . . . . . . . . . . . . . . . . . . . . . 45
16 Comparison of the theoretical efficiency for g = 500γ, κ = 100γ, J1 = 100γ

and γ̄ = 104γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
17 Illustration of the equivalent system. . . . . . . . . . . . . . . . . . . . . . . . 50
18 Comparison of the analytical expression (dashed line) of the indistinguishab-

ility with the computational expression (solid line) for g = 500γ, κ = 100γ, J1 =
100γ and γ̄ = 104γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

19 Graph of the efficiency of cavity a. . . . . . . . . . . . . . . . . . . . . . . . . 54
20 Graph of the Indistinguishability of the photons from Cavity a. . . . . . . . . 55
21 Illustration of the three cavity system. . . . . . . . . . . . . . . . . . . . . . . 56
22 Graph of the Efficiency of the Cavity c in the Identical Cavity Limit. . . . . . 64
23 Graph of the Indistinguishability of the photons from Cavity c in the Identical

Cavity Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
24 Graph of the Total Efficiency of the Cavities a and b in the Identical Cavity

Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
25 Graph of the Indistinguishability of the photons from Cavities a and b in the

Identical Cavity Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4



26 Graph of the Effective Efficiency of the 3 Cavity System in the Identical
Cavity Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

27 Graph of the Effective Indistinguishability of the 3 Cavity System in the
Identical Cavity Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5



Abstract

The goal of this thesis is the theoretical investigation of the production of indistinguishable
photons from Quantum Electrodynamics (QED)-cavities and the formulation of an experi-
mentally feasible system that maximizes the efficiency and the degree of the indistinguishabil-
ity of the emitted photons. Firstly, we do a brief review of the quantum mechanical treatment
of the interaction between light and matter, along with the physics of open quantum-optical
systems, and then derive the Hamiltonian of the Dissipative Jaynes-Cummings Model. Ad-
ditionally, we analytically derive the expression of the degree of the indistinguishability of
the produced photons. Furthermore, we theoretically investigate the production of indis-
tinguishable photons from a qubit placed inside an optical cavity (with dissipation). More
specifically, we calculate the efficiency and the degree of the indistinguishability for various
values of the system’s parameters, which are the qubit-cavity coupling (g), the qubit decay
rate (γ), the qubit pure dephasing rate (γ̄), and the cavity decay rate (κ). Also, we develop
computer code and reproduce the theoretical results numerically. Furthermore, we study the
addition of an empty cavity to the system, coupled to the first cavity, and investigate possible
regions of the above parameters where the efficiency and the degree of indistinguishability
are maximized. Lastly, we suggest a new extension of the initial system, where we add two
empty cavities, one on each side of the first cavity.
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1 Introduction

Historically, the first quantum "revolution" of the last century led to great technological in-
ventions, such as the laser and semiconductors, which were based on phenomena such as the
quantization of energy and the wave-particle duality of light. Respectively in the modern era,
the field of Quantum Technologies has to take advantage of other purely quantum mechanical
phenomena, such as the superposition of quantum states, the entanglement and the axioms
of quantum measurements. More specifically, the field of Quantum Optics, that studies the
properties of light and its interactions with matter, has attracted great research interest.
According to [1], for the progress of Quantum Optics the following technologies need to be
developed: efficient and fast photon counters, lineal and non-linear photonic circuits, and
single-photon sources. The desired features of such sources are the great efficiency, the cre-
ation of pulses of light of at most one photon with a certain polarisation and spatial/temporal
state, and the indistinguishability of the produced photon, in the sense that when two of them
enter a beam splitter they produce an interference pattern. Indistinguishable photons have
found a plethora of applications in field such as quantum information, quantum metrology
and others that are presented in great detail in [2].

The most common single-photon sources are based on non-linear frequency conversion. This
sources are based on a phenomenon called spontaneous parametric down-conversion [3], where
a photon passes through a non-linear optical medium (such as a non linear crystal or a χ(2)

medium) and two lower energy photons come out. By adjusting the conditions of the system
we can achieve the production of two photons in the same frequency, polarisation and spatial
mode, which then we can filter and collect high indistinguishability single photons. The
biggest drawback of this method, though, is the very low efficiency of the non-linear processes,
which limits their scalability.

In recent years, another single-photons source that is used is based in the spontaneous decay
of single solid state quantum systems, such as semiconducting quantum dots [1], [2]. More
specifically, it’s of great scientific interest whether or not it is possible to conduct interference
experiments using photons from two different quantum emitters. An ideal quantum emitter
with two energy levels coupled to quantum fluctuations of the vacuum produces fully indis-
tinguishable photons. In contrast with the first method, the photons produced from quantum
emitters don’t have a phase correlation. This happens even in the case when the two emitters
are pumped from the same laser and are filtered in a way to have the same polarisation and
transition frequency, because the emitters are coupled to an environment that causes different
phase loss in each of them. The loss of these phase correlations between the emitters leads to
a loss of phase correlations between the respective fields produced, affecting the interference
pattern between them. The above phenomenon is modeled in [4], where the authors derive
the expression of the indistinguishability of the photons to be:

I =
γ

γ + γ̄
, (1)

where γ = 1
T1

is the decay rate of the quantum emitter (spontaneous decay rate) and γ̄
2 is the

pure dephasing rate of the emitter. The fraction γ̄
γ for typical solid state quantum emitters

is of the order of magnitude 103 − 106, which consequently leads to very small values of
indistinguishability.

In this diploma thesis we present a theoretical study of the production of indistinguishable
photons from Cavity-QEDs with the goal of finding an experimentally feasible system that
maximizes the efficiency and the indistinguishability of the produced photons. Firstly, in
chapter 2, we present a brief review of the quantum mechanical treatment of the interaction
between light and matter, and we describe the physics of open quantum systems and derive the
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Jaynes-Cummings Hamiltonian with dissipation terms. Additionally, we analytically derive
an expression for the indistinguishability of the produced photons, using the Green Function
formalism. Then, in Chapter 3, we theoretically study the production of indistinguishable
photons from a simple system consisting of a Qubit placed inside an optical cavity with
losses [5]. Moreover, in Chapter 4 we calculate analytically and numerically the efficiency
and degree of indistinguishability of the system for the various parameters of the system, i.e.
the coupling constant g, the spontaneous decay γ, the cavity decay κ and the pure dephasing
rate γ̄. Afterwards, in Chapter 5, we add an empty cavity coupled to the above system, and
investigate possible regions where the efficiency and the indistinguishability are improved.
Lastly, in Chapter 6 ,we suggest a further extension of the setup, by adding another cavity
and analysing the Identical Cavity Limit.
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2 Theoretical Background

The goal of Chapter 2 is a brief presentation of the theoretical tools needed for the study
of the quantum systems that we will study in the next chapters. Firstly, we will derive the
Jaynes-Cummings Hamiltonian, deriving each term from first principles and explaining their
physical meaning. Next, we will outline some basic concepts about the time evolution of
closed and open quantum systems.Furthermore, in this chapter we will derive the expression
of the indistinguishability of the photons produced from the quantum systems of interest,
following the methodology of the paper of Imamoğlu [6]. For the analytical calculation of the
indistinguishability, and more specifically for the time correlation functions that appear, we
will use the Non-Equilibrium Green Function Formalism [7]. Lastly, we will discuss about
the indistinguishability of photons using some simple limiting cases to gain some physical
intuition.

2.1 Derivation of the Jaynes-Cummings Hamiltonian

The Jaynes-Cumming model, as was originally described [8], consists of a two-level atom that
interacts with a single normal mode of the quantized electromagnetic field with frequency
ω (almost equal to the transition frequency of the atom). Unlike the semi-classical case
of the light-matter interaction, where the atom is treated quantum mechanically and the
Electromagnetic (E/M) field classically, in the Jaynes Cummings (JC) model both of them are
treated quantum mechanically. This model quickly led to the discovery of novel phenomena,
such as the Rabi oscillations, the periodic spontaneous collapse and revival of the probability
[9] and others. Since then, this model has found many applications in quantum optics,
quantum information and atomic physics [10].

The Jaynes-Cummings Hamiltonian that describes the system is

Htotal = Hfield +Hatom +Hinteraction (2)

where the first term describes the quantized electromagnetic field, the second describes the
quantized two level atom and the third the interaction between the two. In the following
sections, we will derive the form of each term from first principles. We will follow the meth-
odology of [11]–[13].

2.1.1 Quantization of the Electromagnetic Field in a Cavity

The Electromagnetic field is defined by two quantities, the electric field E(r, t) and the mag-
netic field B(r, t), which in classical electromagnetism are functions of position and time that
satisfy Maxwell’s Equations:

∇ ·D = ρ, (3a)
∇ ·B = 0, (3b)

∇×E = −∂B
∂t
, (3c)

∇×H = J +
∂D

∂t
, (3d)

where J and ρ are the current and charge density respectively. In the vacuum there are no
free currents and free charges so J = ρ = 0 and the fields are equal to D = ε0E and H = 1

µ0
B,

where ε0 is the electrical susceptibility of the vacuum and µ0 is the magnetic susceptibility
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of the vacuum. So, Maxwell’s Equations in the vacuum are

∇ ·D = 0, (4a)
∇ ·B = 0, (4b)

∇×E = −∂B
∂t
, (4c)

∇×H =
∂D

∂t
. (4d)

The fields can be written with the help of a scalar potential φ(r, t) and of a vector potential
A(r, t) as

E = −∇φ− ∂A

∂t
, B = ∇×A. (5)

Since these potentials aren’t uniquely defined, we can choose a gauge, i.e. a transformation
of the form φ′ = φ − ∂χ

∂t and A′ = A +∇χ. We choose the Coulomb Gauge, where φ = 0
and ∇ ·A = 0 and so the fields are given by

E = −∂A
∂t

, (6a)

B =∇×A. (6b)

Thus, the equations (4) simplify to the following vector equation

∇2A(r, t) =
∂2A(r, t)

∂t2
. (7)

By using the method of separation of variables we can write the vector potential as

A(r, t) =
∑
k

ckuk(r)ak(t) + c∗ku
∗
k(r)a∗k(t). (8)

Substituting the above expression in the wave equation (7) we get

(∇2 + ω2
k)u(r) = 0, (9)

(
∂2

∂t2
+ ω2

k)ak(t) = 0. (10)

and thus we find

A(r, t) = −i
∑
k

√
~

2ωkε0
[uk(r)ake

−iωkt + u∗k(r)a∗ke
iωkt] (11)

Since the E/M is placed inside a cavity, uk must satisfy the boundary conditions of the
cavity, thus only certain modes of the field are allowed. The radiation modes satisfy the
orthogonality conditions ∫

d2ru∗n(r)um(r) = δnm. (12)
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We define the coordinates

qk =

√
~

2ωk
(a+ a∗), (13a)

pk = −i
√
ωk~

2
(a− a∗), (13b)

Using the above expansion, we can write the Hamiltonian as

Hfield =
1

2

∫
V
d3r(ε0E

2 + µ−1
0 B2)

=
∑
k

1

2

(
p2
k(t) + ω2

kq
2
k(t)

) (14)

The quantization of the electromagnetic field is straightforward, we just substitute p, q with
operators p̂(q̂) , which satisfy the commutation relations

[qi, qj ] = [pi, pj ] = 0

[qi, pj ] = i~δij
(15)

and define the annihilation and creation operators

an =
1√

2~ωn
(ωnqn − ipn),

a†n =
1√

2~ωn
(ωnqn + ipn),

(16)

that satisfy [
am, a

†
n

]
= δmn, (17a)

[am, an] = 0, (17b)[
a†m, a

†
n

]
= 0. (17c)

So the Hamiltonian of the field becomes

Hfield =
1

2

∫
V
d3r(ε0E

2 + µ−1
0 B2)

=
∑
k

~ωk(a†kak +
1

2
)

renormalization
=

∑
k

~ωka†kak.

(18)

The eigenstates of the operator a†kak are call Fock states |nk〉 and satisfy
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〈mk|nk′〉 = δmnδkk′ , (19)

a†kak |nk〉 = nk |nk〉 , (20)
ak |nk〉 =

√
nk |nk − 1〉 , (21)

a†k |nk〉 =
√
nk + 1 |nk + 1〉 , (22)

|nk〉 =
(a†k)

nk

(nk!)
1
2

|0〉 . (23)

2.1.2 Quantum Two Level System

Since we found the Hamiltonian of the field, next we have to find the Hamiltonian of the
atom. We assume that the lower energy state (ground state) |g〉 has zero energy Eg = 0 and
that the upper energy state (excited state) |e〉 has energy Ee = ~ωa. Thus the Hamiltonian
is

Hatom = Ee |e〉〈e|+ Eg |g〉〈g| = ~ωa |e〉〈e|+ 0 |g〉〈g| = ~ωa |e〉〈e| . (24)

It is convenient to define a set of lowering(raising) operators σ−(σ+), which in the basis |g〉 |e〉
are written as

σ+ = |e〉〈g| , σ− = |g〉〈e| . (25)

From the above we conclude that

|e〉〈e| = σ+σ−, |g〉〈g| = σ−σ+. (26)

And so, the Hamiltonian of the atom is written as

Hatom = ~ωaσ+σ−. (27)

2.1.3 Atom-E/M Field Interaction

In the previous section we found the Hamiltonian of each part of the system, without describ-
ing a mechanism where the two interact. In our analysis, we assume the electronic transitions
of the atom to be coupled to the electric part of the E/M field inside the cavity. In this case,
the atom-field interaction is caused by the coupling of the electric dipole moment of the atom
with the electric part of the field. We assume the field is monochromatic and so it’s written
as

E(r, t) = −i
√

~
2ωε0

[u(r)ae−iωt + u∗(r)a∗eiωt]

=

√
~ω

2ε0V
ε̂
[
a
{
eiknr

}
+ c.c.

]
,

(28)

where {} symbolises a superposition of plane waves that satisfy the boundary conditions. We
also assume that the wavelength of the field is much greater than the size of the atom. That
approximation is called Dipole Approximation and mathematically is given by

r/λ� 1
k= 2π

λ−−−→ k ·∆r� 1
∆r=R−r−−−−−−→ eik·r ≈ eik·R. (29)
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Thus, the electric field is written as

E(r, t) =

√
~ω

2ε0V
ε̂ [aE0 + c.c. ] , (30)

with E0 = {eiknR}. Using the above approximation, the interaction Hamiltonian is

Hint = −qr ·E(R), (31)

where R is the vector of the center of mass of the atom and qr is the electric dipole moment.
To proceed, we need to describe the dipole moment quantum mechanically. We follow the
steps of (24) and find

qr =
∑
i,j

|i〉〈i| qr |j〉〈j| , (32)

where the sum is taken over the eigenstates of the qubit |g〉 , |e〉. If we also assume that the
atom is center-symmetric, then it won’t have a permanent dipole moment and thus qr will
have only off-diagonal elements. So we define

p = q 〈e|r|g〉 , (33a)
p∗ = q 〈g|r|e〉 , (33b)

and we can write the dipole moment as

qr = p |e〉〈g|+ p∗ |g〉〈e| = pσ+ + p∗σ−. (34)

Using all of the above, we find that the interaction Hamiltonian is given by

Hint =

√
~ω

2ε9V
ε̂ · (E0a+ E∗0a

†)(pσ+ + p∗σ−). (35)

For simplicity, we consider a real electric field (E0 ∈ R) and a real dipole moment (p ∈ R)
and we get

Hint = ~g(a+ a†)(σ+ + σ−) = ~g(aσ+ + aσ− + a†σ+ + a†σ−), (36)

where g is the coupling constant between the field and the atom and is equal to g = pE0

√
ω

~ε0V .
Each term of (36) correspond to a physical process. More specifically,

• a σ+ → Photon Annihilation and Atom Excitation

• a σ− → Photon Annihilation and Atom De-Excitation

• a†σ+ → Photon Creation and Atom Excitation

• a†σ− → Photon Creation and Atom De-Excitation

We observe that the 2nd and 3rd term violate the conservation of energy principle. The
approximation that neglects these terms is called the Rotating Wave Approximation and its
use is justified mathematically if we treat the problem in the Interaction Picture. An operator
A in the Schrödinger picture can be expressed in the Interaction Picture using the formula
AI = e

iH0t
~ ASe

−iH0t
~ , where H0 is the unperturbed Hamiltonian, i.e. H0 = Hfield + Hatom.
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Thus we find that

aI = ae−iωt, a†I = aeiωt, (37a)

σ−I = σ−e−iωat, σ+
I = σ+eiωat, (37b)

and the interaction Hamiltonian in the Interaction Picture is written as

Hint,I = ~g(aσ+ei(ωa−ω)t + aσ−e−i(ωa+ω)t + a†σ+ei(ωa+ω)t + a†σ−e−i(ωa−ω)t). (38)

Assuming that the system is close to resonance (ω ≈ ωa) then we observe that the term
e±i(ωa−ω)t goes to one and the term e±i(ωa+ω)t oscillates rapidly and can thus be ignored. So,
the Hamiltonian after the Rotating Wave Approximation becomes

Htotal = ~ωa†a+ ~ωaσ+σ− + ~g(a†σ− + aσ+). (39)

2.2 Time Evolution of Quantum Systems

2.2.1 Closed Quantum Systems

According to Quantum Mechanics, the wave function ψ of a closed quantum system evolves
in time according to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (40)

The solution of the Schrödinger equation can be expressed via the unitary operator U(t, t0),
that transforms the initial state of the system |ψ(t0)〉 at time t0 to the state |ψ(t)〉 at time t.

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (41)

The operator U is called time evolution operator and it satisfies the relations

i~
∂

∂t
U(t, t0) = H(t)U(t, t0), (42a)

U(t0, t0) = I. (42b)

From Eq.(42a) and because the Hamiltonian is a Hermitian operator it’s proven that U(t, t0)†U(t, t0) =
U(t, t0)U(t, t0)† = I. Also, in the case of closed systems the Hamiltonian is time independent
and the differential equation (41) is solved by integration U(t, t0) = e−i

H(t−t0)
~ . There are

cases when the Hamiltonian is time dependent, e.g. controlled by external fields. In this
case the time evolution operator is given by U(t, t0) = Texp[− i

~
∫ t
t0
dτH(τ)]. If the system

initially is prepared in a mixed state that corresponds to a statistical ensemble then we need
to introduce the density operator ρ. For t = t0 we have

ρ(t0) =
∑
i

wi |ψi(t0)〉〈ψi(t0)| , (43)

where wi are positive numbers corresponding to the statistical weight of the state ψi(t0). So,
at time t the density matrix will be

ρ(t) =
∑
i

wi |ψi(t)〉〈ψi(t)| =
∑
i

wiU(t, t0) |ψi(t0)〉〈ψi(t0)|U †(t, t0)

= U(t, t0)ρ0U
†(t, t0).

(44)

14



If we differentiate the last part of the equation we have

ρ̇(t) = U̇(t, t0)ρ0U
†(t, t0) + U(t, t0)ρ̇0U

†(t, t0) + U(t, t0)ρ0U̇
†(t, t0)

=
1

i~
H(t)U(t, t0)ρ0U

†(t, t0) + 0 + U(t, t0)ρ0
−1

i~
H(t)U †(t, t0)

=
1

i~
(H(t)ρ(t)− ρ(t)H(t)) =

1

i~
[H(t), ρ(t)].

(45)

2.2.2 Open Quantum Systems

Figure 1: Illustration of an open quantum system S.

In general, an open quantum system [14], [15] consists of a quantum system S that is coupled
to another, much larger and with infinite degrees of freedom, quantum system B called
the environment (or bath). The total system S + B is considered to be closed, so it will
follow the dynamics discussed previously. In contrast with a closed system, the state of the
system S will change because of its internal processes and because of its interaction with
the environment. The dynamics of the system S is also called reduced, since it comes by
eliminating the environment from the dynamics of the whole system. We define as HS the
Hilbert space of the reduced system, as HB the Hilbert Space of the environment and as
Htot = HS ⊗HB the total. So the Hamiltonian is.

H(t) = HS ⊗ IB + IS ⊗HB +HI(t), (46)

where HS is the Hamiltonian of the system, HB is the Hamiltonian of the environment and
HI is the interaction Hamiltonian between the system and the environment. If the state of
the total system is described by the density matrix ρ, then the average value of an operator
of the system A⊗ IB is

〈A〉 = trS{AρS}, (47)

where

ρS = trB ρ, (48)
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is the reduced density matrix given by the partial trace with respect to the degrees of freedom
of the environment (trB). Since the total density matrix evolves as

(
ρ(t) = U(t, t0)ρ0U

†(t, t0)
)
,

the reduced density matrix evolves as

ρS(t) = trB{U(t, t0)ρ0U
†(t, t0)}. (49)

Following the steps of (45), we find that the differential equation that describes the time
evolution of ρS is

d

dt
ρS(t) =

1

i~
trB [H(t), ρ(t)]. (50)

2.2.3 Born-Markov Equation

Although Eq.(50) fully describes the time evolution of the reduced density matrix, it isn’t
easily evaluated analytically or numerically. That’s why, after a series of approximations as
described in [11] we will derive the Lindblad Equation.

It’s easier to describe the dynamics of the system in the interaction picture (we will denote
the operators in the interaction picture as ρ̃), where the time evolution of the system is

d

dt
ρ̃(t) =

1

i~

[
H̃I , ρ̃

]
, (51)

which can be integrated and gives

ρ̃(t) = ρ̃0 +
1

i~

∫ t

0
ds
[
H̃I(s), ρ̃(s)

]
. (52)

The above expression is problematic because of the integral. We substitute the integral
expression (52) to (51) and we find

d

dt
ρ̃(t) =

1

i~

[
H̃I(t), ρ̃0

]
− 1

~2

∫ t

0
ds
[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
. (53)

We are interested in the time evolution of the system, so we trace over the degrees of freedom
of the environment

d

dt
ρ̃S =

1

i~
trB{

[
H̃I(t), ρ̃0

]
} − 1

~2

∫ t

0
ds trB

[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
. (54)

In order to treat the quantum systems in the next chapters, we need to define the interaction
Hamiltonian of the open system. Without loss of generality, we can write HI(t) of (46) as

HI(t) =
∑
i

Si ⊗ Bi, (55)

with Si ∈ HS and Bi ∈ HB hermitian operators.

The expression (54) can be further simplified, because the density matrix of the environment
for t = 0 is diagonal with respect to the energy eigenbasis, since the environment is in thermal
equilibrium. So

trB{
[
H̃I(t), ρ̃0

]
} =

∑
i

trB{
[
S̃i ⊗ B̃i, ρ̃S,0 ⊗ ρ̃B,0

]
} =

∑
i

S̃iρ̃S,0 tr
{[

B̃i, ρ̃B,0

]}
= 0 (56)
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So we arrive at the equation

d

dt
ρ̃S = − 1

~2

∫ t

0
ds trB

[
H̃I(t),

[
H̃I(s), ρ̃(s)

]]
. (57)

This time evolution equation isn’t closed, since it depends on the total density matrix ρ̃,
so we need to make two extra approximations, the Born approximation and the Markov
approximation.

Born Approximation: We suppose that the coupling between the system and the environ-
ment is weak. That means that the state of the environment isn’t influenced by the interaction
with the system and thus stays unperturbed (ρB(t) = ρB,0). Thus ρ(t) ≈ ρS(t) ⊗ ρB,0 and
Eq.(57) becomes

d

dt
ρ̃S = − 1

~2

∫ t

0
ds trB

[
H̃I(t),

[
H̃I(s), ρ̃S(s)⊗ ρ̃B,0

]]
. (58)

Markov Approximation: The "future" evolution of the system ρS(t+ δt), doesn’t depend
only on the present ρS(t) but also on previous times because of the integral with ρS(s) in
(58). In general, the previous states of the system change the state of the environment and
these changes of the environment change the future states of the system (information flows
from the system to the environment and returns back). In the Markov Approximation we
assume that the small changes in the state of the environment because of the interaction with
the system S is weak or the environment is large . In other words, the environment quickly
"forgets" the information it gets from the system. So, we don’t consider the case where the
environment returns the information it got from the system back to the system. So, the
density matrix of the system S at time t only depends on t, so we substitute ρS(s) = ρS(t)
and the Eq.(58) becomes

d

dt
ρ̃S = − 1

~2

∫ t

0
ds trB

[
H̃I(t),

[
H̃I(s), ρ̃S(t)⊗ ρ̃B,0

]]
. (59)

An important note is that the time evolution does depend on the initial condition of the
system S. Because of the Markov Approximation, that dependence is negligible, and by
changing variables s → t − s and extending the upper limit of integration to infinity we get
the Born-Markov Master Equation

d

dt
ρ̃S = − 1

~2

∫ ∞
0

ds trB

[
H̃I(t),

[
H̃I(t− s), ρ̃S(t)⊗ ρ̃B,0

]]
. (60)

2.2.4 Lindblad Equation

In order to treat the quantum systems in the next chapters, we use an interaction Hamiltonian
HI(t) of (55). Firstly, we calculate the trace inside the integral of the Born-Markov equation,
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expanding the commutators

trB

[
H̃I(t),

[
H̃I(t

′), ρ̃S(t)⊗ ρ̃B,0
]]

=
∑
i,j

trB

[
S̃i(t)⊗ B̃i(t),

[
S̃j(t

′)⊗ B̃j(t
′), ρ̃S(t)ρ̃B,0

]]
=
∑
i,j

trB

[
S̃i(t)B̃i(t), S̃j(t

′)B̃j(t
′)ρ̃S(t)ρ̃B,0 − ρ̃S(t)ρ̃B,0S̃j(t

′)B̃j(t
′)
]

=
∑
i,j

trB(S̃i(t)B̃i(t)S̃j(t
′)B̃j(t

′)ρ̃S(t)ρ̃B,0 − S̃i(t)B̃i(t)ρ̃S(t)ρ̃B,0S̃j(t
′)B̃j(t

′)

− S̃j(t
′)B̃j(t

′)ρ̃S(t)ρ̃B,0S̃i(t)B̃i(t) + ρ̃S(t)ρ̃B,0S̃j(t
′)B̃j(t

′)S̃i(t)B̃i(t)).

(61)

Then, we will use the property of the partial trace trB(AS ⊗A′B) = AS tr{A′}, which gives

trB

[
H̃I(t),

[
H̃I(t

′), ρ̃S(t)⊗ ρ̃B,0
]]

=
∑
i,j

S̃i(t)S̃j(t
′)ρ̃S(t) tr

(
B̃i(t)B̃j(t

′)ρ̃B,0

)
− S̃i(t)ρ̃S(t)S̃j(t

′) tr
(

B̃i(t)ρ̃B,0B̃j(t
′)
)

− S̃j(t
′)ρ̃S(t)S̃i(t) tr

(
B̃j(t

′)ρ̃B,0B̃i(t)
)

+ ρ̃S(t)S̃j(t
′)S̃i(t) tr

(
ρ̃B,0B̃j(t

′)B̃i(t)
)
.

(62)

Lastly, we will use the cyclic property of the trace tr{ABC} = tr{BCA} = tr{CAB}, which
gives

tr
(

B̃i(t)B̃j(t
′)ρ̃B,0

)
= tr

(
B̃j(t

′)ρ̃B,0B̃i(t)
)

= tr
(
ρ̃B,0B̃i(t)B̃j(t

′)
)
,

tr
(

B̃j(t
′)B̃i(t)ρ̃B,0

)
= tr

(
B̃i(t)ρ̃B,0B̃j(t

′)
)

= tr
(
ρ̃B,0B̃j(t

′)B̃i(t)
)
,

(63)

and thus we find that

trB

[
H̃I(t),

[
H̃I(t

′), ρ̃S(t)⊗ ρ̃B,0
]]

=
(

S̃i(t)S̃j(t
′)ρ̃S(t)− S̃j(t

′)ρ̃S(t)S̃i(t)
)

tr
(

B̃i(t)B̃j(t
′)ρ̃B,0

)
+
(
ρ̃S(t)S̃j(t

′)S̃i(t)− S̃i(t)ρ̃S(t)S̃j(t
′)
)

tr
(

B̃j(t
′)B̃i(t)ρ̃B,0

)
=
(

S̃i(t)S̃j(t− s)ρ̃S(t)− S̃j(t− s)ρ̃S(t)S̃i(t)
)

tr
(

B̃i(t)B̃j(t− s)ρ̃B,0
)

+
(
ρ̃S(t)S̃j(t− s)S̃i(t)− S̃i(t)ρ̃S(t)S̃j(t− s)

)
tr
(

B̃j(t− s)B̃i(t)ρ̃B,0

)
.

(64)

Because of the Markov approximation we have that

tr
(

B̃i(t)B̃j(t− s)ρ̃B,0
)

= tr
(

B̃i(s)B̃j(0)ρ̃B,0

)
,

tr
(

B̃j(t− s)B̃i(t)ρ̃B,0

)
= tr

(
B̃j(0)B̃i(s)ρ̃B,0

)
,

(65)

meaning that the average value (correlation function) depends only on the time difference s.

We can define the quantities

Gij =
1

~2

∫ ∞
0

ds tr
(

B̃i(s)B̃j(0)ρ̃B,0

)
, (66)

Ḡij =
1

~2

∫ ∞
0

ds tr
(

B̃j(0)B̃i(s)ρ̃B,0

)
. (67)
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With the help of the above expressions, we get the Lindblad equation in the Interaction
Picture

˙̃ρS =
∑
i,j

Gij

(
S̃j ρ̃S S̃i − S̃iS̃j ρ̃S

)
+ Ḡij

(
S̃iρ̃S S̃j − ρ̃S S̃j S̃i

)
(68)

If we assume that Gij , Ḡij are real, and that S̃i = Si and S̃j = S†iδij ,then in the Schrödinger
picture the Lindblad equation becomes

ρ̇S =
i

~
[ρS , H] +

∑
i

γi

(
SiρSS†i −

1

2

{
S†iSi, ρS

})
. (69)

In the case when Gij , Ḡij are complex, we have to include in the Hamiltonian an extra term
to make up for the imaginary part. In this diploma thesis, we will assume this term negligible
and we won’t include it in our analysis.

2.2.5 Non-Hermitian-Hamiltonian Quantum Dynamics

As we proved in the previous section, the equation that fully describes the quantum system
is the Lindblad Eq.(69) . There we assumed that the Hamiltonian is hermitian H = H† and
that the dissipation is described by the Lindblad terms.

Another way of describing dissipation is by introducing non-hermitian Hamiltonians, which
won’t necessarily have real eigenvalues. To find the non-hermitian Hamiltonian of the Optical
Quantum Systems we are interested in we begin by rewriting Eq.69 as

ρ̇S =
i

~

{(
H − i~

∑
i

γiS
†
iSi

)
ρ − ρ

(
H − i~

∑
i

γiSiS
†
i

)}
+ 2

∑
i

SiρS†i . (70)

where 2
∑

i SiρS†i is the Jump (super)operator. We then define as the non-Hermitian Hamilto-
nian the term inside the parenthesis

H ′ = H − i~
∑
i

γiS
†
iS. (71)
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2.3 Photon Indistinguishability

Figure 2: Illustration of a Beam-Splitter and the intensities of the input and output beams.

When a photon passes through a beam splitter, there are two possible outcomes, it either is
reflected or transmitted. The probability of each outcome depends on the reflectance of the
Beam-Splitter. In the classical case, if we have classical fields in input 1 and 2, E1 and E2,
and the fields exiting from output 3 and 4 are E3 and E4, then the later will be given by(

E3

E4

)
=

(
r13 t23

t14 r24

)(
E1

E2

)
. (72)

The above transformation must satisfy the energy conservation, so it must satisfy |E1|2 +
|E2|2 = |E3|2 + |E4|2. So

|r13|2 + |t14|2 = |r24|2 + |t23|2 = 1, (73)
r13t

∗
23 + t14r

∗
24 = 0. (74)

Applying the above relations, we easily find that the BS Transformation is(
E3

E4

)
=

(√
1−R −

√
Re−iφ√

Reiφ
√

1−R

)(
E1

E2

)
. (75)

where R ≡ |r13| = |r24| and T ≡ 1−R = |t14| = |t23|.

Quantum mechanically [16], the BS acts on the initial state of the system |ψin〉 = |1〉i = a†i |0〉
as

a†3 =
√

1−Ra†1 −
√
Re−iφa†2,

a†4 =
√
Reiφa†1 +

√
1−Ra†2,

or
a†1 =

√
1−Ra†3 +

√
Reiφa†4,

a†2 = −
√
Re−iφa†3 +

√
1−Reiφa†4.

(76)

But, when two indistinguishable photons interfere in a BS then an interesting phenomenon
occurs, that was first experimentally observed by Chung Ki Hong, Zhe Yu Ou and Leonard
Mandel in 1967 [17]. This interference is named after them (HOM interference) and has many
applications in quantum optics and quantum technologies. Quantum mechanically, the state
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of the two incoming photons is

|ψin〉 = |1; i〉1 ⊗ |1; j〉2 = a†1,ia
†
2,j |0〉 . (77)

The state of the output photons is

|ψout〉 = UBSa
†
1,ia
†
2,j |0〉 =

(√
1−Ra†3,i +

√
Reiφa†4,i

)(
−
√
Re−iφa†3,j +

√
1−Reiφa†4,j

)
|0〉

=
(
−
√
R(1−R)e−iφa†3,ia

†
3,j +

√
R(1−R)eiφa†4,ia

†
4,j + (1−R)a†3,ia

†
4,j −Ra

†
4,ia
†
3,j

)
|0〉 .
(78)

In HOM Interference we are interested in the so called Coincidence Probability pc, which is
defined as the probability that both detectors in the exit of the BS click. From the Coincidence
Probability we can calculate the Indistinguishability I as

I = 1− 2pc. (79)

2.3.1 Example of Fully Distinguishable Photons

Suppose that the properties i, j described above are the polarization of the electric field of the
photons. Suppose that their polarizations are linear and orthogonal, i.e. i = H and j = V ,
then Eq.(78) gives

|ψout〉 =
(
−
√
R(1−R)e−iφa†3,Ha

†
3,V +

√
R(1−R)eiφa†4,Ha

†
4,V

+(1−R)a†3,Ha
†
4,V −Ra

†
4,Ha

†
3,V

)
|0〉

= −
√
R(1−R)e−iφ |1;H〉3 |1;V 〉3 +

√
R(1−R)eiφ |1;H〉4 |1;V 〉4

+ (1−R) |1;H〉3 |1;V 〉4 −R |1;V 〉3 |1;H〉4 .

(80)

For R = 0.5 and φ = π we find

|ψout〉 =
1

2
(|1;H〉3 |1;V 〉3 − |1;H〉4 |1;V 〉4 + |1;H〉3 |1;V 〉4 − |1;V 〉3 |1;H〉4) . (81)

The first term correspond to the state where the photons both exit from output 3 3 a), the
second on the case when both exit from output 4 3 b), the third term on the case when both
photons are transmitted 3 c) and the forth term on the case when both are reflected 3 d).
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Figure 3: Example of Fully Distinguishable Photons.

It’s straightforward to calculate the Coincidence Probability and the Indistinguishability

pc =
∣∣∣c|1;H〉3|1;V 〉4

∣∣∣2 +
∣∣∣c|1;V 〉3|1;H〉4

∣∣∣2 =

∣∣∣∣12
∣∣∣∣2 +

∣∣∣∣−1

2

∣∣∣∣2 =
1

2
, (82)

I = 1− 2pc = 1− 2
1

2
= 0. (83)

2.3.2 Example of Fully Indistinguishable Photons

This time we assume the photons have identical polarization, e.g. i = j = H. Then (78)
becomes

|ψout〉 =
(
−
√
R(1−R)e−iφa†3,Ha

†
3,H +

√
R(1−R)eiφa†4,Ha

†
4,H

+(1−R)a†3,Ha
†
4,H −Ra

†
4,Ha

†
3,H

)
|0〉

= −
√

2R(1−R)e−iφ |2;H〉3 +
√

2R(1−R)eiφ |2;H〉4
+ (1−R) |1;H〉3 |1;H〉4 −R |1;H〉3 |1;H〉4 .

(84)

The first term corresponds to the case when both photons exit from output 3 and the second
term to the case when both exit from output 4, and the last two on the case when one photon
exits from each output.
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For R = 0.5 and φ = π we find

|ψout〉 =
1

2
(|2;H〉3 − |2;H〉4 + |1;H〉3 |1;H〉4 − |1;H〉3 |1;H〉4)

=
1

2
(|2;H〉3 − |2;H〉4) .

(85)

The first term corresponds to the case when both photons exit from output 3 4 a) and the
second on the case when both exit from output 4 4 b). We observe that there is no case where
both detectors click, so the Coincidence Probability is pc = 0 and the Indistinguishability is
I = 1.

Figure 4: Example of Fully Indistinguishable Photons.
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2.3.3 Derivation of Indistinguishability

Figure 5: Illustration of the general case of the indistinguishability between two photons.

In contrast with the above examples, in our system it’s not possible to identify all the proper-
ties of the produced photons that make them distinguishable, as illustrated in Fig(5). That’s
why we need to use the correlation functions of first and second order. The correlation
function of first order is defined as

G(1)(t1, t2; r1, r2) = tr
{
ρE−(t1, r1)E+(t2, r2)

}
. (86)

The correlation function of second order is defined as

G(2)(t1, t2, t3, t4; r1, r2, r3, r4) = tr
{
ρE−(t1, r1)E−(t2, r2)E+(t3, r3)E+(t4, r4)

}
. (87)

Suppose now that two photons created from two different systems and interfered in a BS
and were detected by two different detectors that measure the time they reached them. The
result of this experiment is quantified using the normalised second order correlation function
g(2)(τ) that is defined as

g(2)(τ) =
G(2)(t1 = t3 = t, t2 = t4 = t+ τ ; r1 = r3, r2 = r4)

G(1)(t1 = t, r3)G(1)(t2 = t+ τ, r4)
. (88)

According to the analysis of [6], the coincidence probability is

pc =

∫
dt
∫
dτG

(2)
34 (t, τ)∫

dtG
(1)
3 (t)

∫
dτG

(1)
4 (t+ τ)

. (89)
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Firstly we calculate G(2)
34 (t, τ)

G
(2)
34 (t, τ) =

〈
a†3(t)a†4(t+ τ)a3(t)a4(t+ τ)

〉
=

1

4

〈(
a†1(t)− eiφa†2(t)

)(
e−iφa†1(t+ τ) + a†2(t+ τ)

)
(
a1(t)− e−iφa2(t)

)(
eiφa1(t+ τ) + a2(t+ τ)

)〉
.

(90)

If we expand the product we have terms of the form

a†i (t)a
†
i (t+ τ)ai(t)ai(t+ τ), a†i (t)a

†
i (t+ τ)ai(t)aj(t+ τ), a†i (t)a

†
i (t+ τ)aj(t)ai(t+ τ),

a†i (t)a
†
j(t+ τ)ai(t)ai(t+ τ), a†j(t)a

†
i (t+ τ)ai(t)ai(t+ τ), a†i (t)a

†
i (t+ τ)aj(t)aj(t+ τ),

a†i (t)a
†
j(t+ τ)ai(t)aj(t+ τ), a†i (t)a

†
j(t+ τ)aj(t)ai(t+ τ), (91)

where i = 1, 2 and j 6= i. From this terms only remain the last two, because the rest either
create or destroy two photons in one of the inputs of the BS. So we get

G
(2)
34 (t, τ) =

1

4

(〈
a†1(t)a†2(t+ τ)a1(t)a2(t+ τ)

〉
+
〈
a†2(t)a†1(t+ τ)a1(t)a2(t+ τ)

〉
−
〈
a†1(t)a†2(t+ τ)a2(t)a1(t+ τ)

〉
−
〈
a†2(t)a†1(t+ τ)a1(t)a2(t+ τ)

〉)
.

The systems we are interested in, produce only one photon per excitation, so we need a way
to define the indistinguishability of one photon. The way we measure it is by exciting the
system twice, delaying the first produced photon by making it take a longer path and then
interfering the two photons in a BS, as illustrated in Fig.(6).

Figure 6: Illustration of the experimental setup to measure the indistinguishability of one
photon produced by our system.

To calculate the indistinguishability of the photon of our system, we then assume that there
is no correlation between the incoming photons, since they are produced in different systems,
so we can eliminate the indices,

G
(2)
34 (t, τ) =

1

2

(〈
a†(t)a†(t+ τ)a(t)a(t+ τ)

〉
−
〈
a†(t)a†(t+ τ)a(t)a(t+ τ)

〉)
=

1

2

(〈
a†(t)a(t)

〉〈
a†(t+ τ)a(t+ τ)

〉
−
∣∣∣〈a†(t+ τ)a(t)

〉∣∣∣2) . (92)
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So the expression of the indistinguishability is

I =

∫∞
0 dt

∫∞
0 dτ

∣∣〈a†(t+ τ)a(t)
〉∣∣2∫∞

0 dt
∫∞

0 dτ 〈a†(t)a(t)〉 〈a†(t+ τ)a(t+ τ)〉
. (93)

2.3.4 Calculation of the Time Correlation Functions

As we see in Eq.(93), for the calculation of the indistinguishability it’s necessary to calculate
the two time correlation functions A(t)B(t+ τ). That’s why we will use the Non Equilibrium
Green’s Functions Formalism described in [7]. We will define lesser, greater and retarded
Green function

G<(x, t;x′, t′) =
〈
ψ†(x′, t′)ψ(x, t)

〉
, (94a)

G>(x, t;x′, t′) =
〈
ψ(x, t)ψ†(x′, t′)

〉
, (94b)

GR(x, t;x′, t′) = Θ(t− t′)
〈{
ψ(x, t), ψ†(x′, t′)

}〉
. (94c)

where ψ(x, t) = (ψ1(x, t), ψ2(x, t), · · · ) is an row vector of operators. The retarded Green
function is different than zero for t ≥ t′ and is used for the response of the system due to an
external cause. The lesser and greater Green functions are used to find measurable quantities
of the system, such as the number of particles. Another important property of the lesser
Green function is

ρ(t) = G<(t, t). (95)

Additionally, we have to define the Self-Energies of the system, to describe the markovian
dissipation terms of the system. The lesser and greater Self-Energies are analogously defined
as

Σ<(t, t+ τ) =
〈
Hint(t+ τ)G<(t, t+ τ)Hint(t)

〉
, (96)

ΣR(t, t+ τ) =
〈
Hint(t+ τ)GR(t, t+ τ)Hint(t)

〉
. (97)

Because of our Hamiltonian, the retarded Green function depends only on one variable, so
we can express it in terms of frequency (energy) as

GR(ω) = −i
∫
dωeiωtGR(τ). (98)

Using the definitions, we can derive the Dyson-Green equation, which is of the form(
H + ΣR(ω)

)
|ψ〉 = ~ω |ψ〉 , (99)(

~ω −H − ΣR(ω)
)
GR(ω) = 1. (100)

The time evolution of the Non-Equilibrium Green functions is given by the Kadanoff-Baym
equations. It’s proven that for markovian self-energies we have

G<(t, t+ τ) = GR(τ)G<(t, t) = GR(τ)ρ(t). (101)
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We are only interested in
〈
a†(t+ τ)a(t)

〉
, which is〈

a†(t+ τ)a(t)
〉

= 〈g, 1|G<(t, t+ τ)|g, 1〉 = 〈g, 1|GR(τ)ρ(t)|g, 1〉

=
(
0 1

)(GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)(
ρee(t) ρec(t)
ρce(t) ρcc(t)

)(
0
1

)
= GRcc(τ)ρcc(t) +GRce(τ)ρec(t).

(102)

So we conclude that for the calculation of the two time correlation function we need to solve
both the time evolution equation for the density matrix (Lindblad) and the time evolution
equation for the retarded Green function (Kadanoff-Baym). The later is derived by taking
the Fourier transform of Eq.(99)

i
d

dτ
GR(τ) = iδ(τ)1 +

(
H − iΣR(0)

)
GR(τ) . (103)

27



3 Methods: The One Cavity System

Figure 7: Illustration of the One Cavity System.

The goal of Chapter 3 is the investigation of the quantum system of Fig.(7), following the
methodology of [5]. The quantum system consists of one optical cavity and an atom (gray
area) inside it. The atom is modeled as a two-level system (two black lines) and is coupled
to one normal mode of the E/M field of the cavity (pink area), with coupling constant
g. Additionally, the system has dissipation terms, since photons leave the system to the
environment (curly red lines). More specifically, the photon leaving the atom is due to
spontaneous emission (rate γ) and the one leaving the cavity is due to the cavity decay
rate κ. Finally, there is another dissipative non-radiative term that corresponds to the pure
dephasing rate of the atom (γ̄) and which is illustrated as a line that starts and ends to atom.

3.1 Optical Master Equation of the single Cavity System

As we can see from Fig.(7), the system consists of a two level atom coupled to a normal mode
of the EM field inside the cavity, so the Hamiltonian that describes the system is

H = ~ωatomσ+σ− + ~ωcava†a+ ~g(σ+a+ σ−a†). (104)

We assume that the atom initially is in the excited state and that the cavity has no photons,
so the state of the system is |ψ0〉 = |e, 0〉. Also, we assume that the temperature is low, such as
that thermal photons are negligible .It’s straightforward to show that

[
H,σ+σ− + a†a

]
= 0,

so the total number of energy quanta is conserved. So, the basis that we will use to describe

the system is
{
|e, 0〉 =

(
1
0

)
, |g, 1〉 =

(
0
1

)}
. In this basis the Hamiltonian is written as

H = ~ωatom |e, 0〉〈e, 0|+ ~ωcav |g, 1〉〈g, 1|+ ~g(|e, 0〉〈g, 1|+ |g, 1〉〈e, 0|),
H = ~∆ |g, 1〉〈g, 1|+ ~g(|e, 0〉〈g, 1|+ |g, 1〉〈e, 0|),

(105)
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or in matrix form

H = ~
(

0 g
g ∆

)
, (106)

where ∆ = ωcav−ωatom is the detuning of the atom and the field, which is 0. Then, we define
the density matrix elements

ρ(t) =

(
ρee(t) = 〈σ+(t)σ−(t)〉 ρec(t) = 〈σ+(t)a(t)〉
ρce(t) =

〈
a†(t)σ−(t)

〉
ρcc(t) =

〈
a†(t)a(t)

〉) . (107)

The time evolution is given by the Lindblad equation

ρ̇ = i[ρ,H] +
∑
i

Li[ρ], (108)

ρ̇ =
i

~
[ρ,H] +

∑
i

γi

(
LiρL

†
i −

1

2

{
L†iLi, ρ

})
. (109)

In our analysis the dissipation terms are the spontaneous decay of the atom γ, the cavity
decay rate κ and the pure dephasing of the atom γ̄. They are described by the Lindbladian
of the operators L = σ−, L = a and L = σ+σ− respectively.

We calculate the Lindblad terms in our basis

LQE [ρ] = −γ
(
ρee ρec/2
ρce/2 0

)
, (110)

Lcav[ρ] = −κ
(

0 ρec/2
ρce/2 ρcc

)
, (111)

Ldeph[ρ] = −γ̄
(

0 ρec/2
ρce/2 0

)
, (112)

and also the commutator

[ρ,H] =

(
g(ρec − ρce) g(ρee − ρcc) + ∆ρec

g(ρcc − ρee)−∆ρce g(ρce − ρec)

)
. (113)

and we derive the system of time evolution equations

ρ̇ee = ig(ρec − ρce)− γρee,

ρ̇ec = ig(ρee − ρcc)−
γ + κ+ γ̄

2
ρec,

ρ̇ce = −ig(ρee − ρcc)−
γ + κ+ γ̄

2
ρce,

ρ̇cc = −ig(ρec − ρce)− κρcc.

(114)

The above system can’t be solved analytically for random values of our parameters {g, γ, κ, γ̄}.
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3.2 Calculation of the Time Correlation Functions

In our system the Self-Energies are

ΣR
QE(t, t+ τ) =

1

2
δ(τ)Θ(τ)γσ+σ−, Σ<

QE(t, t+ τ) = 0, (115)

ΣR
deph(t, t+ τ) =

1

2
δ(τ)Θ(τ)γ̄σ+σ−, Σ<

deph(t, t+ τ) = δ(τ)γ̄σ+σ−G<(t, t+ τ)σ+σ−, (116)

ΣR
cav(t, t+ τ) =

1

2
δ(τ)κΘ(τ)a†a, Σ<

cav(t, t+ τ) = 0, (117)

So, the total lesser(retarder) self-energy, i.e. Σ
<,(R)
tot (t, t+ τ) = Σ

<,(R)
QE (t, t+ τ) + Σ

<,(R)
deph (t, t+

τ) + Σ
<,(R)
cav (t, t+ τ) in matrix form in our basis is

ΣR
tot(t, t+ τ) = δ(τ)Θ(τ)

(
(γ+γ̄)

2 0
0 κ

2

)
, (118)

Σ<
tot(t, t+ τ) = δ(τ)

(
γ̄G<ee(t, t+ τ) 0

0 0

)
. (119)

Because of our Hamiltonian, the retarded Green function depends only on one variable, so
we can express it in terms of frequency (energy) as

GR(ω) = −i
∫
dωeiωtGR(τ). (120)

Using the definitions, we can derive the Dyson-Green equation, which is of the form(
H + ΣR(ω)

)
|ψ〉 = ~ω |ψ〉 , (121)(

~ω −H − ΣR(ω)
)
GR(ω) = 1. (122)

In matrix form, the Retarded Green function in the frequency domain is written as

GR(ω) =

(
ω + i

2 (γ + γ̄) g
g ω + i

2κ

)−1

. (123)

The time evolution of the Non-Equilibrium Green functions are the Kadanoff-Baym. It’s
proven that for markovian self-energies we have

G<(t, t+ τ) = GR(τ)G<(t, t) = GR(τ)ρ(t). (124)

We are only interested in
〈
a†(t+ τ)a(t)

〉
, which is〈

a†(t+ τ)a(t)
〉

= 〈g, 1|G<(t, t+ τ)|g, 1〉 = 〈g, 1|GR(τ)ρ(t)|g, 1〉

=
(
0 1

)(GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)(
ρee(t) ρec(t)
ρce(t) ρcc(t)

)(
0
1

)
= GRcc(τ)ρcc(t) +GRce(τ)ρec(t).

(125)
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4 Results for the One Cavity System

The goal of chapter 4 is the investigation of the indistinguishability of the produced photons
from the one cavity system we described in chapter 3 alongside with its efficiency. Firstly,
we will work on the limit of coherent coupling between the atom and the field and solve
analytically the Lindblad equation and the Kadanoff-Baym, in order to find an analytical
expression for the efficiency and the indistinguishability. Then, we will study the incoherent
coupling regime, where the dissipative terms dominate and so we can adiabatically eliminate
the coherences of the density matrix. Furthermore, we study this region in the good cavity
limit and the bad cavity limit and derive analytical expressions for the indistinguishability and
the efficiency. Finally, we numerically calculate the indistinguishability and the efficiency in
the other regions and summarize our results and compare them to our analytical predictions.

4.1 Coherent coupling regime

The coherent coupling regime corresponds to the region where 2g > γ + κ+ γ̄.

4.1.1 Time Evolution of the Density Matrix

We start from the time evolution equations for the density matrix (114) in matrix form
ρ̇ee(t)
ρ̇ec(t)
ρ̇ce(t)
ρ̇cc(t)

 =


−γ ig −ig 0

ig −γ+γ̄+κ
2 0 −ig

−ig 0 −γ+γ̄+κ
2 ig

0 −ig ig −κ



ρee(t)
ρec(t)
ρce(t)
ρcc(t)

 , (126)

We assume that the initial state of the system is ρ0 = |e, 0〉〈e, 0|, so
(
ρee(0) ρec(0)
ρce(0) ρcc(0)

)
=(

1 0
0 0

)
. We know that the term γ̄ is much greater than the other dissipation terms (γ, κ),

so in the coherent regime where 2g � γ+ κ+ γ̄ we can ignore these terms when they appear
individually.We define the parameters φ = γ+γ̄+κ

2 and Ω = 64g2 − (γ + γ̄ + κ)2 and we find
that

(
ρee(t) ρec(t)
ρce(t) ρcc(t)

)
= e−φt

(
(γ+γ̄+κ)

2
√

Ω
sin
√

Ωt
4 + 1

2 cos
√

Ωt
4 − 1

2i sin
√

Ωt
4

1
2i sin

√
Ωt
4 − (γ+γ̄+κ)

2
√

Ω
sin
√

Ωt
4 −

1
2 cos

√
Ωt
4

)

+ e−(γ+κ)t

(
1
2 0
0 1

2

)
. (127)

In the coherent regime 2g � γ + γ̄ + κ so we can simplify the expression

γ + γ + γ̄

2g
≈ 0, (128a)

Ω = 64g2

(
1−

(
γ + γ̄ + κ

2g

)2
)
≈ 64g2, (128b)

γ + γ + γ̄√
Ω

≈ 0, (128c)

cos

√
Ωt

4
≈ cos 2gt = cos2(gt)− sin2(gt)

= 2 cos2(gt)− 1 = 1− 2 sin2(gt). (128d)
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and thus we find that(
ρee(t) ρec(t)
ρce(t) ρcc(t)

)
= e−φt

(
cos2(gt) − 1

2i sin(2gt)
1
2i sin(2gt) sin2(gt)

)
+
(
e−

γ+κ
2
t − e−φt

)(1
2 0
0 1

2

)
. (129)

4.1.2 Calculation of the Green Function

We start from the Eq.(103), which in matrix form gives

i

(
ĠRee(τ) ĠRec(τ)

ĠRce(τ) ĠRcc(τ)

)
= i

(
δ(τ) 0

0 δ(τ)

)
+

(
−iγ+γ̄

2 g
g −iκ2

)(
GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)
, (130)

We assume GR(0) =

(
1 0
0 1

)
and we define the parameters φ = γ+γ̄+κ

2 and

Ω = [4g + (κ− γ − γ̄)] [4g − (κ− γ − γ̄)] .

Then we solve the above system and apply the inverse Laplace Transform and we find(
GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)
= e−φτ

(
κ−γ−γ̄√

Ω
sin
√

Ωτ
4 + cos

√
Ωτ
4 − 4ig√

Ω
sin
√

Ωτ
4

− 4ig√
Ω

sin
√

Ωτ
4 −κ−γ−γ̄√

Ω
sin
√

Ωτ
4 + cos

√
Ωτ
4

)
. (131)

In the coherent regime 2g � γ + γ̄ + κ so we can make the approximations

κ± (γ + γ̄)

4g
≈ 0, (132a)

Ω = 16g2

(
1 +

κ− γ − γ̄
4g

)(
1− κ− γ − γ̄

4g

)
≈ 16g2, (132b)

±(κ− γ − γ̄)√
Ω

≈ 0. (132c)

and thus we find the Green function to be(
GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)
= e−

γ+γ̄+κ
4

τ

(
cos gτ −i sin gτ
−i sin gτ cos gτ

)
. (133)

4.1.3 Calculation of the efficiency and the indistinguishability

The efficiency is given by

β = κ

∫ ∞
0

dtρcc(t)

= κ

∫ ∞
0

dte−
γ+κ+γ̄

2
t(sin2(gt)− 1

2
) +

1

2
e−

γ+κ
2
t

= κ
γ̄(γ + κ+ γ̄) + 16g2

(γ + κ) ((γ + κ+ γ̄)2 + 16g2)
= κ

2g
(
γ̄ γ+κ+γ̄

2g + 8g
)

4g2(γ + κ)

((
γ+κ+γ̄

2g

)2
+ 4

)
≈ κ 16g2

16g2(γ + κ)
=

κ

γ + κ
.

(134)
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The two-time correlation function
〈
a†(t+ τ)a(t)

〉
is given by (125), which gives∣∣∣〈a†(t+ τ)a(t)

〉∣∣∣2 =
∣∣GRcc(τ)ρcc(t) +GRce(τ)ρce(t)

∣∣2
=

∣∣∣∣∣cos gτ

(
e−

γ+κ+γ̄
2

t(sin2(gt)− 1

2
) +

e−
γ+κ

2
t

2

)
− sin (gτ)

2
e−

γ+κ+γ̄
2

t sin 2gt

∣∣∣∣∣
2

e−(γ+γ̄+κ)τ .

(135)

Since 2g � γ + γ̄ + κ, we can make the approximation

sinn(gt), cosn(gt)→

{
0, n = 1, 3, 5 · · ·
1
2 , n = 0, 2

, (136)

which gives 〈∣∣∣〈a†(t+ τ)a(t)
〉∣∣∣2〉 =

(
e−(γ+κ+γ̄)t

8
+
e−(γ+κ)t

8

)
e−(γ+κ+γ̄)τ . (137)

So the integral of the numerator of the indistinguishability is∫ ∞
0

∫ ∞
0

dtdτ

〈∣∣∣〈a†(t+ τ)a(t)
〉∣∣∣2〉 =

∫ ∞
0

dt
1

8

(
e−(γ+κ+γ̄)t + e−(γ+κ)t

)∫ ∞
0

dτe−(γ+κ+γ̄)τ

=
γ + κ+ γ̄

2

2(γ + κ)(γ + κ+ γ̄)2
. (138)

Lastly, the denominator is∫ ∞
0

∫ ∞
0

dtdτ
〈
a†(t)a(t)

〉〈
a†(t+ τ)a(t+ τ)

〉
=

∫ ∞
0

dt
〈
a†(t)a(t)

〉∫ ∞
t

dτ
〈
a†(τ)a(τ)

〉
≈ 1

2

∣∣∣∣∫ ∞
0

dt
〈
a†(t)a(t)

〉∣∣∣∣2 =
1√

2(κ+ γ)
.

(139)

So, the indistinguishability is

I =
γ + κ+ γ̄

2

2(γ + κ)(γ + κ+ γ̄)2

(
1√

2(γ + κ)

)−2

=
(γ + κ)(γ + κ+ γ̄

2 )

(γ + κ+ γ̄)
. (140)

4.2 The incoherent coupling regime

The next interesting limit we will investigate is the incoherent coupling regime between atom
and cavity, which corresponds to 2g < γ + κ+ γ̄.

4.2.1 Adiabatic Elimination

From Eq.(114), we observe that the time evolution of the off-diagonal density matrix elements
is given by

ρ̇ec = −γ + κ+ γ̄

2
ρec + ig(ρee − ρcc), (141a)

ρ̇ce = −γ + κ+ γ̄

2
ρce − ig(ρee − ρcc). (141b)
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In the incoherent regime (2g � γ + κ+ γ̄), the first term dominates, so the coherences are
exponentially decaying as

(
ρec ∝ e−

γ+κ+γ̄
2

t
)
, so in great times

(
t� 1

γ+κ+γ̄

)
the derivative

will be ρ̇ec = 0

ρec(t) =
2ig(ρee(t)− ρcc(t))

γ + κ+ γ̄
, (142a)

ρce(t) = −2ig(ρee(t)− ρcc(t))
γ + κ+ γ̄

. (142b)

We substitute the expressions of the coherences to the equations of the populations and get

ρ̇ee = −(γ +R)ρee +Rρcc, (143a)
ρ̇cc = −(κ+R)ρcc +Rρee. (143b)

where we define the atom-cavity exchange rate as

R =
4g2

γ + κ+ γ̄
. (144)

If the system is initially in the state ρ0 = |e, 0〉〈e, 0|, then the equations become(
ρ̇ee(t)
ρ̇cc(t)

)
=

(
−(γ +R) R

R −(κ+R)

)(
ρee(t)
ρcc(t)

)
→
(
s+ γ +R −R
−R s+ κ+R

)(
ρ̃ee(s)
ρ̃ee(s)

)
=

(
1
0

)
,

(145)

ρee(t) =
e−

t
2

(2R+γ+κ)
(
A cosh

(
At
2

)
+ (κ− γ) sinh

(
At
2

))
A

, ρcc(t) =
e−

t
2

(2R+γ+κ)R sinh
(
At
2

)
A

,

ρec(t) =
2ige−

t
2

(2R+γ+κ)

γ + κ+ γ̄

[(
1− R

A

)
cosh

(
At

2

)
+
κ− γ −R

A
sinh

(
At

2

)]
, (146)

where A =
√

4R2 + (γ − κ)2. It’s straightforward to find the efficiency

β = κ

∫ ∞
0

ρcc(t) = κ

∫ ∞
0

e−
t
2

(2R+γ+κ)R sinh
(
At
2

)
A

=
κR

κR+ γ(κ+R)
. (147)

4.2.2 The bad cavity limit

In the bad cavity limit the cavity decay rate is greater than the other dissipation terms
(κ� γ + γ̄). That’s why we can adiabatically eliminate both the coherences and the cavity
population, as such

ρ̇cc = −κρcc + ig(ρce − ρec) = 0

ρ̇ec = −γ + κ+ γ̄

2
ρec + ig(ρee − ρcc) = 0

 ρcc =
ig(ρce − ρec)

κ

ρec =
2ig(ρee − ρcc)
γ + κ+ γ̄


ρcc(t) =

R

κ+R
ρee(t),

ρec(t) =
iκ

2g
ρcc(t) =

iκR

2g(κ+R)
ρee(t).

(148)
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So, from the reduced population rate equations in the incoherent regime (143) we get

ρ̇ee = −(γ +R)ρee +
R2

κ+R
ρee

ρee(t) = e
−
(
γ+R− R2

κ+R

)
t ≈ e−(γ+R)t.

(149)

So, the density matrix is(
ρee(t) ρec(t)
ρce(t) ρcc(t)

)
= e−(γ+R)t

(
1 iκR

2g(κ+R)

− iκR
2g(κ+R)

R
κ+R

)
. (150)

It’s straightforward to calculate the efficiency

β = κ

∫ ∞
0

dt
R

κ+R
e−(γ+R)t =

κR

(κ+R)(γ +R)
≈ κR

κR+ γ(κ+R)
. (151)

On the other hand, we can apply the adiabatic elimination on the Retarded Green Function.
For times τ � 1

κ , we adiabatically eliminate the term GRce, substituting to (130) ∂GRce
∂τ = 0

which gives

GRce(τ) = −2i
g

κ
GRee(τ). (152)

We thus have to solve a reduced system of ODE’s

iĠRcc = gGRec − i
κ

2
GRcc = i

2g2

κ
GRcc − i

κ

2
GRcc,

iĠRee = gGRce − i
γ + γ̄

2
GRee = −i2g

2

κ
GRee − i

γ + γ̄

2
GRee.

(153)

We notice that

2g2

κ
=

1

2

4g2

γ + κ+ γ̄

γ + κ+ γ̄

κ
≈ 1

2

4g2

γ + κ+ γ̄
=
R

2
. (154)

which further simplifies the system

iĠRcc = −κ
2
GRcc

iĠRee = −γ + γ̄ +R

2
GRee

 GRcc = e−
κ
2
τ ,

GRee = e−
γ+γ̄+R

2
τ .

In matrix form, the solution is(
GRee(τ) GRec(τ)
GRce(τ) GRcc(τ)

)
=

(
e−

γ+γ̄+R
2

τ 2i gκe
− γ+γ̄+R

2
τ

−2i gκe
− γ+γ̄+R

2
τ e−

κ
2
τ

)
. (155)
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We now can calculate the indistinguishability, by first calculating the two-time correlation
function〈

a†(t+ τ)a(t)
〉

= GRcc(τ)ρcc(t) +GRce(τ)ρce(t)

= e−
κ
2
τ R

R+ κ
e−(γ+R)t +

2g

iκ
e−

γ+γ̄+R
2

τ iκR

2g(κ+R)
e−(γ+R)t

≈ R

κ
e−

γ+γ̄+R
2

τe−(γ+R)t.

(156)

The respective integrals are∫ ∞
0

∫ ∞
0

dtdτ
∣∣∣〈a†(t+ τ)a(t)

〉∣∣∣2 =
1

R+ κ
, (157a)∫ ∞

0

∫ ∞
0

dtdτ
〈
a†(t)a(t)

〉〈
a†(t+ τ)a(t+ τ)

〉
=

1

2(γ + κ)(γ + γ̄ +R)
. (157b)

We substitute the above expressions to the indistinguishability (93) and get

I =
γ +R

γ +R+ γ̄
. (158)

4.2.3 The good cavity limit

In the incoherent coupling region and the good cavity limit the atom dissipation terms domin-
ate, i.e. the spontaneous decay and the pure dephasing. In that limit we have 2g � γ+κ+ γ̄
and γ + γ̄ � κ. As in the case of the bad cavity limit, we can adiabatically eliminate both
the coherences and the atom population (since in this case the atom dissipation dominates)

ρ̇ee = −γρee + ig(ρec − ρce) = 0

ρ̇ec = −γ + κ+ γ̄

2
ρec + ig(ρee − ρcc) = 0


ρee =

ig(ρec − ρce)
γ

ρec =
2ig(ρee − ρcc)
γ + κ+ γ̄


ρee(t) =

R

γ +R
ρcc(t)

ρec(t) = − iγ
2g
ρee(t) =

−iγR
2g(γ +R)

ρcc(t)

(159)

and get the cavity population rate equation is

ρ̇cc = −(κ+R)ρcc +
R2

γ +R
ρcc

ρcc = e
−
(
κ+R− R2

γ+R

)
t ≈ e−(κ+R)t (160)

We can find the efficiency

β = κ

∫ ∞
0

dte−(κ+R)t =
κ

κ+R
≈ κR

κR+ γ(κ+R)
(161)

Then, we apply the adiabatic elimination in the Retarded Green Function. For times τ � 1
γ+γ̄

we adiabatically eliminate GRce, substitute in (130) ∂GRec
∂τ = 0 and find

GRec(τ) = −2i
g

γ + γ̄
GRcc(τ). (162)
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So, the reduced time evolution of GRcc is

iĠRcc = gGRec − i
κ

2
GRcc = −i 2g2

γ + γ̄
GRcc − i

κ

2
GRcc. (163)

We notice that

2g2

γ + γ̄
=

1

2

4g2

γ + γ̄ + κ

γ + γ̄ + κ

γ + γ̄
≈ R

2
. (164)

which further simplifies the rate equations

iĠRcc = −(
R

2
+
κ

2
)GRcc → GRcc = e−

κ+R
2
τ , (165a)

GRce = 2i
g

γ + γ̄
GRcc → GRce = i

2g

γ + γ̄
e−

κ+R
2
τ . (165b)

To find the indistinguishability, we calculate the two-time correlation function〈
a†(t+ τ)a(t)

〉
= GRcc(τ)ρcc(t) +GRce(τ)ρce(t)

= e−
κ+R

2
τρcc(t) + i

2g

γ + γ̄
e−

κ+R
2
τρce(t) ≈ e−

κ+R
2
τρcc(t).

(166)

So, the indistinguishability is

I =

∫∞
0 dtρ2

cc(t)
∫∞

0 dτe−(κ+R)τ

1
2

∣∣∫∞
0 dtρcc(t)

∣∣2 . (167)

We substitute the expression of ρcc from (146) and find∫ ∞
0

dtρcc(t) =
R

κR+ γR+ κγ
, (168a)∫ ∞

0
dtρcc(t)

2 =
R2

2(2R+ γ + κ)(κR+ γR+ κγ)
, (168b)∫ ∞

0
dτe−(κ+R)τ =

1

κ+R
. (168c)

So, the indistinguishability is

I =

R2

2(2R+γ+κ)(κR+γR+κγ)
1

κ+R

1
2

R2

(κR+γR+κγ)2

=
κR+ γR+ κγ

(2R+ γ + κ)(κ+R)
=

γ + κR
κ+R

2R+ γ + κ
. (169)

4.3 Results for the One cavity System

Graph 8 shows the efficiency of the one cavity system as a function of the cavity decay rate κ
and the atom-cavity coupling g, for fixed values of the spontaneous decay rate γ = 1 and the
pure dephasing γ̄ = 104. We distinguish a large area where the efficiency is close to one, which
corresponds to the limit where the coupling and the cavity decay are both large (κ, g � γ̄).
This is the ideal region because of its efficiency, but the problem is that it is difficult to
achieve such high values of g and κ. Close to that region, there is a "band" of values where
the efficiency isn’t one but takes sufficiently big values 20− 80%. That "band" corresponds
to the region where R = γ and κ > γ and to the region where κ ≈ γ and g > 500γ
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Figure 8: Graph of the system’s efficiency as a function of the cavity decay κ and the
atom-cavity coupling g. Also, we divide the parameter space into the regions of interest
we described in the main text.

Fig.(9) shows the indistinguishability of the photons as a function of the cavity decay rate κ
and the atom-cavity coupling g, for fixed values of the spontaneous decay rate γ = 1 and the
pure dephasing γ̄ = 104. We distinguish 2 regions where the indistinguishability is close to
one. The first one corresponds to the limit where the coupling and the cavity decay are both
large (κ, g � γ̄), the same as the region in Fig.(8) which experimentally isn’t reachable. The
second region corresponds to the region where κ < γ and both κ and g satisfy the inequality
R < γ. That second region is experimentally feasible and is interesting, even though the
efficiency is very low.

38



0.001

0.001

0.01

0.01

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

2g=γ+κ+ γ*

κ=γ

R=γ

1

2

3

κ=γ*

-2 0 2 4 6
-2

0

2

4

6

log(κ/γ)

lo
g(
g/
γ)

0

0.2

0.4

0.6

0.8

Figure 9: Graph of the produced photons’ indistinguishability as a function of the cavity
decay κ and the atom-cavity coupling g.

According to our analysis, we can split these graphs into 3 regions of interest, the coherent
coupling regime (region 1), the incoherent coupling and good cavity regime (region 2), and
the incoherent coupling and bad cavity regime (region 3). We will summarize the strategy
we need to follow to maximize the efficiency and the indistinguishability of each region and
we will compare them with our theoretical predictions.

In the coherent coupling regime between the atom and the cavity, the time evolution of
the system is oscillatory,it exhibits Rabi Oscillations, with decreasing amplitude due to the
dissipative terms of the system. In the limit (2g � γ + κ + γ̄), the indistinguishability is
given by Icc = (γ+κ)(γ+κ+γ̄/2)

(γ+κ+γ̄)2 . We notice that the indistinguishability is independent of the
atom-cavity coupling constant, which means that as long as the condition g � γ + κ + γ̄ is
satisfied, we don’t need to change it to improve the indistinguishability.

As we see from Fig.(10), in the coherent coupling regime (where g is sufficiently big, green
line), to increase the indistinguishability we need to increase the cavity decay rate κ. But,
when κ becomes comparable with g, the indistinguishability reaches it’s maximum value and
then quickly decreases, since we aren’t in the coherent coupling regime. The green line shows
the numerical value of the indistinguishability when g = 105γ � γ̄, and we see the maximum
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occurring when κ ≈ 105γ, while the blue line corresponds to the case when the cavity decay is
comparable to the dephasing, κ = γ̄, and it shows a similar behaviour but with the maximum
been at κ ≈ 104. Our analytical solution matches the numerical results in the appropriate
regime and starts diverging when g ≈ γ̄+κ, so we can use it only in the limit 2g � γ+ γ̄+κ.

I(g=104γ=γ*)

I(g=105γ)
Icc
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Figure 10: Coherent coupling regime: Comparison of the analytical (dashed line) and com-
putational expression (blue for g = 104γ and green for g = 105γ solid lines) of the indis-
tinguishability. Note that the analytical expression is independent of g, but is only valid in
the strong coupling limit.

The analytical expression for the efficiency in the coherent coupling regime is β = κ
κ+γ . From

the above expression it’s easy to conclude that in order to increase the efficiency we need to
increase the cavity decay rate κ without it surpassing the coupling g. This behaviour matches
the numerical results, as we can see in Fig.(11).
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Figure 11: Coherent coupling regime: Comparison of the analytical (dashed line) and com-
putational (solid line) expression of the efficiency, for g = 105γ.

In the incoherent coupling regime, the time evolution of the system is governed by the terms
of the incoherent population transfer from the atom to the cavity, described by an effective
transfer rate R = 4g2

γ+κ+γ̄ . That region can be split in two sub-regions, the good cavity limit
(κ < γ, g, γ̄) and the bad cavity limit (κ > γ, g, γ̄). In the bad cavity limit, the off-diagonal
terms of the density matrix and the Retarded Green function can be adiabatically eliminated,
giving rise to an effective system described by an effective atom with decay rate γ +R. The
analytical expression of the indistinguishability in the bad cavity limit (2g � γ + κ+ γ̄ and
κ � γ + γ̄) is given by Ibc = γ+R

γ+γ̄+R (see green line in Fig.(12)). Since γ, γ̄ are constant, in
order to increase the indistinguishability we have to increase R, which can be achieved by
increasing the coupling constant such that 2g � γ̄. Since we are in the incoherent coupling
regime, we simultaneously have to increase the cavity decay κ, which is difficult to achieve
experimentally. On the other hand, in the good cavity region the cavity keeps photons for
time greater or equal to the pure dephasing time of the atom 1/γ̄. In the good cavity limit

(2g � γ + κ + γ̄ and κ � γ + γ̄) the expression of the indistinguishability is Igc =
γ+ κR

κ+R

γ+κ+2R
(see red line in Fig.(12)). To increase the indistinguishability either κ < γ or R < γ. The
first condition is due to the fact that the cavity doesn’t immediately takes the photon, but
after time 1/γ, in which the population ρcc takes its maximum value. Then, after the initial
filling of the cavity, there still exists an incoherent exchange between the atom and the cavity
with rate R. The more frequent the exchange the greater the effect of the dephasing so the
smaller the indistinguishability, explaining the condition R < γ.
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Figure 12: incoherent coupling regime: Comparison of the analytical expressions in the bad
and good cavity limit (green and red lines) with the computational expression (blue line) of
the indistinguishability, for g = 10γ. Note that the analytical expressions are only valid in
the bad/good limit.

The analytical expression of the efficiency in the incoherent coupling regime is β = κR
κR+γ(κ+R) .

We observe that in order to achieve great efficiency we need R > γ and κ > R. As we see
from the Fig.(13), for small values of κ, where R > κ, the cavity doesn’t emit many photons
because of the small decay rate and so the efficiency is β = κ

κ+γ . On the other hand, when κ
is big, and κ > R, then the efficiency is given by β = R

R+γ .
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Figure 13: Incoherent coupling regime: Comparison of the analytical expressions in the bad
and good cavity limit (green and orange lines) with the computational expression (blue
line) of the indistinguishability, for g = 100γ. Note that the analytical expressions are only
valid in the bad/good limit.

Finally, the analytical expression of the efficiency in the incoherent cavity regime is β =
κR

κR+γ(κ+R) , which also matches the expression in the coherent coupling regime as seen in 14.
Indeed we have

βth =
κR

κR+ γ(κ+R)
=


βcc

g�γ+κ+γ̄→R�κ
≈ κR

κR+γR = κ
κ+γ

βgc
g�γ+κ+γ̄→R�κ

≈ κR
κR+γR = κ

κ+γ

βbc
g�γ+κ+γ̄,R�κ

≈ κR
κR+κγ = R

R+γ

(170)
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Figure 14: Comparison of the analytical expressions (dashed lines) of the efficiency in the
incoherent regime (first graph) and coherent regime (second graph) with the computational
expression (solid lines), for g = 100γ and g = 105γ respectively.
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5 Analysis of the Two Cavity System

Figure 15: Illustration of the two cavity system.

The goal of Chapter 5 is the study of the quantum system of two cavities Fig.(15), following
the methodology of the papers [18] and [19]. This quantum system is an extension of the
system we studied in Chapters 2 and 3, since it consists of an optical cavity (cavity c), that
includes an atom with two energy levels, and another empty optical cavity (cavity a). These
two cavities are coupled to each other, with coupling constant J1, giving rise to additional
degrees of freedom that determine the indistinguishability of the produced photons. The
characteristics of the cavity with the atom are the same as in Chapter 2. The second cavity
has only one dissipative term, the cavity decay rate κ1.

Also, we will analytically study the region where g, J1 � γ̄ and using the adiabatic elimin-
ation we will simplify the system of ODE’s we have to solve. Furthermore, we will apply a
transformation to reduce the system of two cavities to a system of one effective cavity, and
then calculate the efficiency and the indistinguishability of the photons produced from Cavity
a.

5.1 Time Evolution of the System

As we see from Fig.(15), the system consists of two optical cavities-QED with one them
including an atom. The Hamiltonian of the system is

H = ~ωatomσ+σ− + ~ωcava†a+ ~ωcav1a
†
1a1 + ~g(σ+a+ a†σ−) + ~J1(a†a1 + a†1a) (171)

where a† is the creation operator of the Cavity c and a†1 the creation operator of Cavity a. We
also define the coupling constant between the 2 cavities J1. We assume the atom is initially
in the excited state and that the cavities are empty. Then, we need to find the basis of the
system, since its general form is

(
{|g〉 , |e〉} ⊗ |n〉cav ⊗ |m〉cav1

with n,m = 0, 1, ...
)
. It’s easy

to show that
[
H,σ+σ− + a†a+ a†1a1

]
= 0, meaning that the total number of energy quanta is

conserved. So, the basis we will use is

|e, 0, 0〉 =

1
0
0

 , |g, 1, 0〉 =

0
1
0

 , |g, 0, 1〉 =

0
0
1

.

and we write the Hamiltonian in that basis

H = ~ωatom |e, 0, 0〉〈e, 0, 0|+ ~ωcav |g, 1, 0〉〈g, 1, 0|+ ~ |g, 0, 1〉〈g, 0, 1|
+ ~g(|e, 0, 0〉〈g, 1, 0|+ |g, 1, 0〉〈e, 0, 0|) + ~J1(|e, 0, 0〉〈g, 0, 1|+ |g, 0, 1〉〈e, 0, 0|)→

H = ~∆ |g, 1, 0〉〈g, 1, 0|+ ~∆1 |g, 0, 1〉〈g, 0, 1|
+ ~g(|e, 0, 0〉〈g, 1, 0|+ |g, 1, 0〉〈e, 0, 0|) + ~J1(|e, 0, 0〉〈g, 0, 1|+ |g, 0, 1〉〈e, 0, 0|).

(172)
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or in matrix form

H = ~

0 g 0
g ∆ J1

0 J1 ∆1

 . (173)

Then, we define the density matrix

ρ(t) =

ρee(t) = 〈σ+(t)σ−(t)〉 ρec(t) = 〈σ+(t)a(t)〉 ρea(t) = 〈σ+(t)a1(t)〉
ρce(t) =

〈
a†(t)σ−(t)

〉
ρcc(t) =

〈
a†(t)a(t)

〉
ρca(t) =

〈
a†(t)a1(t)

〉
ρae(t) =

〈
a†1(t)σ−(t)

〉
ρac(t) =

〈
a†1(t)a(t)

〉
ρaa(t) =

〈
a†1(t)a1(t)

〉
 . (174)

The time evolution of the density matrix will be given by the Lindblad equation

ρ̇ = i[ρ,H] +
∑
i

Li[ρ], (175)

ρ̇ =
i

~
[ρ,H] +

∑
i

γi

(
LiρL

†
i −

1

2

{
L†iLi, ρ

})
. (176)

In our system, the dissipation terms are due to the spontaneous emission (γ), the pure
dephasing (γ̄), the cavity c decay rate (κ) and the cavity a decay rate (κ1). These terms
correspond to L = σ−, L = σ+σ−, L = a and L = a1 respectively, and we find

LQE [ρ] = −γ

 ρee ρec/2 ρea/2
ρce/2 0 0
ρae/2 0 0

 , (177)

Lcav[ρ] = −κ

 0 ρec/2 0
ρce/2 ρcc ρca/2

0 ρac/2 0

 , (178)

Lcav1 [ρ] = −κ1

 0 0 ρea/2
0 0 ρca/2

ρae/2 ρac/2 ρaa

 , (179)

Ldeph[ρ] = −γ̄

 0 ρec/2 ρea/2
ρce/2 0 0
ρae/2 0 0

 , (180)

We also calculate the commutator of the density matrix with the Hamiltonian

[ρ,H] =

 g(ρec − ρce) g(ρee − ρcc) + J1ρea J1ρec − gρca
g(ρcc − ρee)− J1ρae g(ρce − ρec) + J1(ρca − ρac) J1(ρcc − ρaa)− gρea

gρac − J1ρce J1(ρaa − ρcc) + gρae J1(ρac − ρca)

 . (181)
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So, we have derived the following system of equations

ρ̇ee = ig(ρec − ρce)− γρee,

ρ̇ec = ig(ρee − ρcc) + iJ1ρea −
γ + κ+ γ̄

2
ρec,

ρ̇ea = iJ1ρec − igρca −
γ + κ1 + γ̄

2
ρea,

ρ̇ce = −ig(ρee − ρcc)− iJ1ρae −
γ + κ+ γ̄

2
ρce,

ρ̇cc = −ig(ρec − ρce) + iJ1(ρca − ρac)− κρcc,

ρ̇ca = iJ1(ρcc − ρaa)− igρea −
κ+ κ1

2
ρca,

ρ̇ae = −iJ1ρce + igρac −
γ + κ1 + γ̄

2
ρae,

ρ̇ac = −iJ1(ρcc − ρaa) + igρae −
κ+ κ1

2
ρac,

ρ̇aa = iJ1(ρac − ρca)− κ1ρaa.

(182)

5.2 Calculation of the Two-Time Correlation Functions

The Green functions of our system are

G<(t, t+ τ) =

〈σ
+(t+ τ)σ−(t)〉 〈σ+(t+ τ)a(t)〉 〈σ+(t+ τ)a1(t)〉〈
a†(t+ τ)σ−(t)

〉 〈
a†(t+ τ)a(t)

〉 〈
a†(t+ τ)a1(t)

〉〈
a†1(t+ τ)σ−(t)

〉 〈
a†1(t+ τ)a(t)

〉 〈
a†1(t+ τ)a1(t)

〉
 , (183a)

G>(t, t+ τ) =

〈σ
−(t)σ+(t+ τ)〉 〈a(t)σ+(t+ τ)〉 〈a1(t)σ+(t+ τ)〉〈
σ−(t)a†(t+ τ)

〉 〈
a(t)a†(t+ τ)

〉 〈
a1(t)a†(t+ τ)

〉〈
σ−(t)a†1(t+ τ)

〉 〈
a(t)a†1(t+ τ)

〉 〈
a1(t)a†1(t+ τ)

〉
 , (183b)

GR(t, t+ τ) = Θ(τ)
(
G<(t, t+ τ) +G>(t, t+ τ)

)
. (183c)

Also, the total Retarded Self Energy of the system is

ΣR
tot(t, t+ τ) = δ(τ)

γ+γ̄
2 0 0
0 κ

2 0
0 0 κ1

2

 . (184)

So, in matrix form, the Retarded Green function in the frequency domain is

GR(ω) =

ω + i
2(γ + γ̄) g 0
g ω + i

2κ J1

0 J1 ω + i
2κ1

−1

. (185)

and it’s time evolution is given by (103)

i

ĠRee(τ) ĠRec(τ) ĠRea(τ)

ĠRce(τ) ĠRcc(τ) ĠRca(τ)

ĠRae(τ) ĠRac(τ) ĠRaa(τ)

 = iδ(τ)1 +

−iγ+γ̄
2 g 0
g −iκ2 J1

0 J1 iκ1
2

GRee(τ) GRec(τ) GRea(τ)
GRce(τ) GRcc(τ) GRca(τ)
GRae(τ) GRac(τ) GRaa(τ)

 .

(186)
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We will only study the efficiency and the indistinguishability of the photons from cavity a,
which are given by

β = κ1

∫ ∞
0

dtρaa(t), (187a)

I =

∫∞
0

∫∞
0 dtdτ

∣∣∣〈a†1(t+ τ)a1(t)
〉∣∣∣2∫∞

0

∫∞
0 dtdτ

〈
a†1(t+ τ)a1(t+ τ)

〉〈
a†1(t)a1(t)

〉 . (187b)

5.3 Adiabatic elimination

In our system, the dissipation of the pure dephasing is greater than the other dissipation
terms, So, we can adiabatically eliminate the coherence term between the atom and cavity
a, ρea

ρ̇ea = iJ1ρec − igρca −
γ + κ1 + γ̄

2
ρea = 0 (188)

ρea =
2i(J1ρec − gρca)
γ + κ1 + γ̄

. (189)

The other coherence terms (atom-cavity c, cavity c-cavity a) become

ρ̇ec = ig(ρee − ρcc)−
γ + κ+ γ̄

2
ρec −

2J1(J1ρec − gρca)
γ + κ1 + γ̄

(190)

ρ̇ca = iJ1(ρcc − ρaa)−
κ+ κ1

2
ρca +

2g(J1ρec − gρca)
γ + κ1 + γ̄

. (191)

Then, we define the exchange constant between atom and cavity c, R̃ = 4g2

γ+κ1+γ̄ . So, the
coherence term between the two cavities becomes

ρ̇ca = −
κ+ κ1 + 4g2

γ+κ1+γ̄

2
ρca + iJ1(ρcc − ρaa) +

2gJ1

γ + κ1 + γ̄
ρec

≈ −κ+ κ1 + R̃

2
ρca + iJ1(ρcc − ρaa),

(192)

where we used the fact that J1ρec � gρca for times t � 1
R̃
. Since we are interested in the

photon of cavity a, for times t > 1
R̃
we can adiabatically eliminate the coherence term between

the two cavities, so that ρ̇ca = 0 and

ρca =
2iJ1(ρcc − ρaa)
κ+ κ1 + R̃

. (193)

Then, we substitute the above terms in the time evolution equation of ρec

ρ̇ec = ig(ρee − ρcc)−
γ + κ+ γ̄ +

4J2
1

γ+κ1+γ̄

2
ρec +

4iJ2
1g

(γ + κ1 + γ̄)(κ+ κ1 + R̃)
(ρcc − ρaa)

≈ ig(ρee − ρcc)−
γ + κ+ γ̄

2
ρec,

(194)
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where we ignored the terms of order 1
γ̄ . We can also adiabatically eliminate the coherence

term between the atom and the cavity c for t > 1
γ̄

ρec =
2ig(ρee − ρcc)
γ + κ+ γ̄

. (195)

Substituting the above, we derived the population rate equations

ρ̇ee = −γρee −
4g2

γ + γ̄ + κ
(ρee − ρcc),

ρ̇cc = −κρcc −
4g2

γ + γ̄ + κ
(ρcc − ρee)−

4J2
1

κ+ κ1 + R̃
(ρcc − ρaa),

ρ̇aa = −κ1ρaa −
4J2

1

κ+ κ1 + R̃
(ρaa − ρcc).

(196)

If we introduce another exchange constant from cavity c to cavity a, R1 =
4J2

1

κ+κ1+R̃
, the rate

equations in matrix form becomeρ̇eeρ̇cc
ρ̇aa

 =

−γ −R R 0
R −κ−R−R1 R1

0 R1 −κ1 −R1

ρeeρcc
ρaa

 . (197)

5.4 Calculation of the Efficiency

To solve the above system, we find the characteristic polynomial of the matrix

(s+ γ +R)
[
(s+ κ+R+R1)(s+ κ1 +R1)−R2

1

]
−R2(s+ κ1 +R1) = 0. (198)

The polynomial is of third order, so it has 3 roots, s1, s2, s3. So, the cavity a population is
ρaa = A1e

−s1t +A2e
−s2t +A3e

−s3t, where the Ai’s satisfy the initial condition of the system

ρaa(0) = 0,

ρ̇aa(0) = −(κ1 +R1)ρaa(0) +R1ρcc(0) = 0,

ρ̇cc(0) = Rρee(0)− (κ+R+R1)ρcc(0) +R1ρaa(0) = R,

ρ̈aa(0) = −κ1ρ̇aa(0)−R1(ρ̇aa(0)− ρ̇cc(0)) = RR1.

(199)

We apply the above conditions and we find

βa = κ1

∫ ∞
0

dtρaa(t) = κ1
−RR1

s1s2s3
. (200)

The term s1s2s3 is the constant term of the polynomial so its known. Substituting the above
into the efficiency we find

βa =
κ1R1

κ(κ1 +R1) + κ1R1
. (201)

This analytical expression closely matches the numerical results, as seen in Fig.(16).
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Figure 16: Comparison of the theoretical efficiency for g = 500γ, κ = 100γ, J1 = 100γ and
γ̄ = 104γ.

5.4.1 The effective emitter model

Figure 17: Illustration of the equivalent system.

Since the system of equations is difficult to solve analytically, we will apply matrix trans-
formation which will leave cavity a unchanged. In matrix form the transformation is

T =


2R

κ+R1−
√

(κ+R1)2+4R2
1

2R

κ+R1+
√

(κ+R1)2+4R2
1

0

1 1 0
0 0 1

 ≈
−1 1 0

1 1 0
0 0 1

 , (2R� κ+R1).

(202)

The populations {ρee, ρcc, ρaa} are transformed into {ρdd, ρss, ρaa} and the coefficient matrix
R to T−1RT . The term ρss is the sum of the populations of the atom and the cavity and ρdd
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the difference. So the new system is

ρ̇ddρ̇ss
ρ̇aa

 =


− (κ+R1)+2R+

√
(κ+R1)2+4R2

2 0 − RR1√
(κ+R1)2+4R2

0 − (κ+R1)+2R−
√

(κ+R1)2+4R2

2
RR1√

(κ+R1)2+4R2

− 2RR1√
(κ+R1)2+4R2−(κ+R1)

2RR1√
(κ+R1)2+4R2+(κ+R1)

−κ1 −R1


ρddρss
ρaa

 ,

(203)

where we ignored γ since it’s much smaller than the other terms. In the limit 2R � κ+ R1

we get ρ̇ddρ̇ss
ρ̇aa

 =

−(2R+ κ+R1
2 ) 0 −R1

2

0 −κ+R1
2

R1
2

−R1 R1 −(κ1 +R1)

ρddρss
ρaa

 . (204)

The term 2R+ κ+R1
2 � κ1 +R1, so the term ρdd decays much faster than the population of

cavity a, and thus can be neglected. So the system is simplified further to(
ρ̇ss
ρ̇aa

)
=

(
−κ+R1

2
R1
2

R1 −(κ1 +R1)

)(
ρss
ρaa

)
. (205)

The physical meaning of the above system is the following. Starting from three separate
systems, the atom and the two cavities, we have managed to combine the atom and the
cavity c into one system, which then interacts with cavity a. The coupling between the two
systems is asymmetric, since the cavity a pumps the system s with rate R1 and the system
s pumps the cavity with R1

2 . Solving the above system gives

ρaa(t) ∝ e
−κ(κ1+R1)+κ1R1

κ+2κ1+3R1
t
. (206)

5.5 Calculation of Indistinguishability

Since the photons we study come from cavity a, the expression of the indistinguishability is
given by

Ia =

∫∞
0

∫∞
0 dtdτ

∣∣∣〈a†1(t+ τ)a1(t)
〉∣∣∣2∫∞

0 dtdτ
〈
a†1(t+ τ)a1(t+ τ)

〉〈
a†1(t)a1(t)

〉 . (207)

This time, the two time correlation function relates to the Retarded Green function through〈
a†1(t+ τ)a1(t)

〉
= 〈g, 0, 1|GR(τ)ρ(t) |g, 0, 1〉

= GRaa(τ)ρaa(t) +GRac(τ)ρca(t) +GRae(τ)ρea(t).
(208)

The Eq.(186), in the limit γ + γ̄ − κ� g and R+ κ− κ1 � J1 has the solution

GRae(τ) ∝ e−
γ+γ̄−R

2
τ , (209a)

GRac(τ) ∝ e−
κ+R−R1

2
τ , (209b)

GRaa(τ) ∝ e−
κ1+R1

2
τ . (209c)
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Thus, the dominating term is GRaa(τ) and the two-time correlation function becomes〈
a†1(t+ τ)a1(t)

〉
≈ GRaa(τ)ρaa(t). (210)

If we substitute the above expression to the indistinguishability we get

Ia ≈
∫∞

0 dtρaa(t)
2
∫∞

0 dτ
∣∣GRaa∣∣2(τ)

1
2

∣∣∫∞
0 dtρaa(t)

∣∣2 . (211)

We calculate the integrals ∫ ∞
0

dtρ2
aa(t) =

1

2

κ+ 2κ1 + 3R1

κκ1 +R1(κ+ κ1)
, (212a)∣∣∣∣∫ ∞

0
dtρaa(t)

∣∣∣∣2 =

(
κ+ 2κ1 + 3R1

κκ1 +R1(κ+ κ1)

)2

, (212b)∫ ∞
0

dτ
∣∣GRaa∣∣2(τ) =

1

κ1 +R1
. (212c)

and we find

I =

1
2

κ+2κ1+3R1
κκ1+R1(κ+κ1) ∗

1
κ1+R1

1
2

(
κ+2κ1+3R1

κκ1+R1(κ+κ1)

)2 =
κκ1 +R1(κ+ κ1)

(κ1 +R1)(κ+ 2κ1 + 3R1)
=

κ+ κ1R1
κ1+R1

κ+ 2κ1 + 3R1

=
κ+ (κ1||R1)

κ+ 2κ1 + 3R1
. (213)

As we see from Fig.(18), our analytical expression matches the numerical results. We also
notice that for small values of κ1, our analytical prediction involving the effective emitter
model underestimates the true value of the indistinguishability. That happens because in
that regime the terms GRac(τ)ρca(t) +GRae(τ)ρea(t) are comparable to GRaa(τ)ρaa(t).
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Figure 18: Comparison of the analytical expression (dashed line) of the indistinguishability
with the computational expression (solid line) for g = 500γ, κ = 100γ, J1 = 100γ and
γ̄ = 104γ.

5.6 Results

We will summarize the resulting efficiency and indistinguishability for specified values for
cavity c, i.e. g = 500γ, κ = 100γ and γ̄ = 104γ. In the case of one cavity, the efficiency is
β = 0.98 and the indistinguishability is I = 0.18. Our goal is to achieve a higher efficiency
and indistinguishability using cavity a. For instance, we can change the coupling constant
J1 by changing the distance between the two cavities. Similarly to the one cavity case, we
define the population transfer rate from cavity c to cavity a, R1 =

4J2
1

R̃+κ+κ1
. As we see from

Fig.(19), the efficiency is maximized in the region where κ1, J1 � γ. There is also a "band"
region around it where the efficiency isn’t 1 but sufficient, similar to the one in the one cavity
system (see Fig.(8)). Although the efficiency is smaller than in the case of the one cavity
system, it’s large enough to continue studying the system.
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Figure 19: Graph of the efficiency of cavity a.

Then, we present the graph of the indistinguishability as a function of κ1, J1 in Fig.(20), for
the same values of the cavity c as previously. The indistinguishability is maximized in the
region where κ1, J1 � γ. We also distinguish a "band" region where the indistinguishability
takes moderate values. Thus, the indistinguishability shows a similar behaviour as in the
case of the one cavity system, in the region of of the incoherent atom-cavity coupling and
in the limit of the good cavity (see Fig.(9)). But, in contrast with the one cavity system,
where to achieve high values of indistinguishability the values of g, κ must be 5 to 6 orders
of magnitude smaller than γ̄, in the two cavity system they have to be 2 to 3 orders of
magnitude smaller. As a result, we have managed to increase the efficiency in the regions
where the indistinguishability is large by adding a cavity.
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Figure 20: Graph of the Indistinguishability of the photons from Cavity a.
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6 Analysis of the Three Cavity System

Figure 21: Illustration of the three cavity system.

The goal of Chapter 6 is the study of the quantum system illustrated in Fig.(21) following the
methodology of the previous chapters. This quantum system is an extension of the system
of Chapter 2. The quantum system consists of an optical cavity c that included an atom,
and other two empty cavities a and b on both sides of c. Each of these cavities is coupled to
cavity c with coupling constants J1 and J2 and have decay rates κ1 and κ2 respectively, giving
us more parameters to achieve higher indistinguishability and efficiency. The parameters of
cavity c are the same as in previous chapters. The above system is previously studied for
different phenomena in [20], [21].

Additionally, we will analytically study the region where the coupling constants g, J1, J2 � γ∗,
and using the adiabatic elimination method we will simplify the system of ODE’s we need
to solve. Also, we will present the methodology for the calculation of the efficiency and the
indistinguishability of the photons produced from all three cavities. Finally, we will present
the interesting limit of the same cavities, where the parameters of the empty cavities are the
same, a case when the photon produced from either cavity has the same indistinguishability
and thus we can collect the photon from either cavity.

6.1 Three Cavity System

As we see from Fig.(21), our system consists of three optical cavities QED, with one of them
including an atom modeled as a two-level system (cavity c). Both of the empty cavities
(cavities a and b) are coupled to cavity c with coupling constants J1 and J2 respectively. So,
the Hamiltonian describing the system is

H = ~ωatomσ+σ− + ~ωcava†a+ ~ωcav1a
†
1a1 + ~ωcav2a

†
2a2

+ ~g(σ+a+ a†σ−) + ~J1(a†a1 + a†1a) + +~J2(a†a2 + a†2a),
(214)

where a† is the creation operator of cavity c, a†1 is the creation operator of cavity a and a†2 is
the creation operator of cavity b. The basis of the system is(
{|g〉 . |e〉} ⊗ |n〉cav ⊗ |m〉cav1

⊗ |l〉cav2
, n,m, l = 0, 1, ...

)
.

Since the Hamiltonian commutes with σ+σ−+ a†a+ a†1a1 + a†2a2, the total number of energy
quanta is conserved, so the basis becomes |e, 0, 0, 0〉 , |g, 1, 0, 0〉 , |g, 0, 1, 0〉 , |g, 0, 0, 1〉.

and the Hamiltonian is written as

H = ~ωatom |e, 0, 0, 0〉〈e, 0, 0, 0|+ ~ωcav |g, 1, 0, 0〉〈g, 1, 0, 0|+ ~ωcav1 |g, 0, 1, 0〉〈g, 0, 1, 0|
+ ~ωcav2 |g, 0, 0, 1〉〈g, 0, 0, 1|+ ~g(|e, 0, 0, 0〉〈g, 1, 0, 0|+ |g, 1, 0, 0〉〈e, 0, 0, 0|)
+ ~J1(|e, 0, 0, 0〉〈g, 0, 1, 0|+ |g, 0, 1, 0〉〈e, 0, 0, 0|)
+ ~J2(|e, 0, 0, 0〉〈g, 0, 0, 1|+ |g, 0, 0, 1〉〈e, 0, 0, 0|),

(215)
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or in matrix form

H = ~


0 g 0 0
g ∆ J1 J2

0 J1 ∆1 0
0 J2 0 ∆2

 . (216)

Then, we calculate the dissipative terms of the system

LQE [ρ] = −γ


ρee ρec/2 ρea/2 ρeb/2
ρce/2 0 0 0
ρae/2 0 0 0
ρba/2 0 0 0

 , (217)

Lcav = −κ


0 ρec/2 0 0

ρce/2 ρcc ρca/2 ρcb/2
0 ρac/2 0 0
0 ρbc/2 0 0

 , (218)

Lcav1 = −κ1


0 0 ρea/2 0
0 0 ρca/2 0

ρae/2 ρac/2 ρaa ρab/2
0 0 ρba/2 0

 , (219)

Lcav2 = −κ2


0 0 0 ρeb/2
0 0 0 ρcb/2
0 0 0 ρab/2

ρbe/2 ρbc/2 ρba/2 ρbb

 , (220)

Ldef = −γ∗


0 ρec/2 ρea/2 ρeb/2

ρce/2 0 0 0
ρae/2 0 0 0
ρbe/2 0 0 0

 . (221)

and the commutator of the density matrix with the Hamiltonian

[ρ,H] =


g(ρec − ρce) g(ρee − ρcc) + J1ρea + J2ρeb J1ρec − gρca J2ρec − gρcb
g(ρcc−ρee)
−J1ρae−J2ρbe

g(ρce−ρec)
+J1(ρca−ρac)+J2(ρcb−ρbc)

J1(ρcc−ρaa)
−J2ρba−gρea

J2(ρcc−ρbb)
−J1ρab−gρeb

gρac − J1ρce J1(ρaa − ρcc) + J2ρab + gρae J1(ρac − ρca) J2ρac − J1ρcb

gρbc − J2ρce J2(ρbb − ρcc) + J1ρba + gρbe J1ρbc − J2ρca J2(ρbc − ρcb)

 .

(222)
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So, the system of ODE’s we need to solve is

ρ̇ee = ig(ρec − ρce)− γρee,

ρ̇ec = ig(ρee − ρcc) + iJ2ρeb + iJ1ρea −
γ + κ+ γ∗

2
ρec,

ρ̇ea = iJ1ρec − igρca −
γ + κ1 + γ∗

2
ρea,

ρ̇eb = iJ2ρec − igρcb −
γ + κ2 + γ∗

2
ρeb,

ρ̇ce = −ig(ρee − ρcc)− iJ1ρae − iJ2ρbe −
γ + κ+ γ∗

2
ρce,

ρ̇cc = −ig(ρec − ρce) + iJ1(ρca − ρac) + iJ2(ρcb − ρbc)− κρcc,

ρ̇ca = iJ1(ρcc − ρaa)− iJ2ρba − igρea −
κ+ κ1

2
ρca,

ρ̇cb = iJ2(ρcc − ρbb)− iJ1ρab − igρeb −
κ+ κ2

2
ρcb,

ρ̇ae = −iJ1ρce + igρac −
γ + κ1 + γ∗

2
ρae,

ρ̇ac = −iJ1(ρcc − ρaa) + iJ2ρab + igρae −
κ+ κ1

2
ρac,

ρ̇aa = iJ1(ρac − ρca)− κ1ρaa,

ρ̇ab = iJ2ρac − iJ1ρcb −
κ1 + κ2

2
ρab,

ρ̇be = −iJ2ρce + igρbc −
γ + κ2 + γ∗

2
ρeb,

ρ̇bc = −iJ2(ρcc − ρbb) + iJ1ρba + igρbe −
κ+ κ2

2
ρbc,

ρ̇ba = −iJ2ρca + iJ1ρbc −
κ1 + κ2

2
ρba,

ρ̇bb = iJ2(ρbc − ρcb)− κ2ρbb.

(223)

6.2 Calculation of the Time Correlation functions

The Green functions of our system are

G<(t, t+ τ) =


〈σ+(t+ τ)σ−(t)〉 〈σ+(t+ τ)a(t)〉 〈σ+(t+ τ)a1(t)〉 〈σ+(t+ τ)a2(t)〉〈
a†(t+ τ)σ−(t)

〉 〈
a†(t+ τ)a(t)

〉 〈
a†(t+ τ)a1(t)

〉 〈
a†(t+ τ)a2(t)

〉〈
a†1(t+ τ)σ−(t)

〉 〈
a†1(t+ τ)a(t)

〉 〈
a†1(t+ τ)a1(t)

〉 〈
a†1(t+ τ)a2(t)

〉〈
a†2(t+ τ)σ−(t)

〉 〈
a†2(t+ τ)a(t)

〉 〈
a†2(t+ τ)a1(t)

〉 〈
a†2(t+ τ)a2(t)

〉
 ,

(224a)

G>(t, t+ τ) =


〈σ−(t)σ+(t+ τ)〉 〈a(t)σ+(t+ τ)〉 〈a1(t)σ+(t+ τ)〉 〈a2(t)σ+(t+ τ)〉〈
σ−(t)a†(t+ τ)

〉 〈
a(t)a†(t+ τ)

〉 〈
a1(t)a†(t+ τ)

〉 〈
a2(t)a†(t+ τ)

〉〈
σ−(t)a†1(t+ τ)

〉 〈
a(t)a†1(t+ τ)

〉 〈
a1(t)a†1(t+ τ)

〉 〈
a2(t)a†1(t+ τ)

〉〈
σ−(t)a†2(t+ τ)

〉 〈
a(t)a†2(t+ τ)

〉 〈
a1(t)a†2(t+ τ)

〉 〈
a2(t)a†2(t+ τ)

〉
 ,

(224b)

GR(t, t+ τ) = Θ(τ)
(
G<(t, t+ τ) +G>(t, t+ τ)

)
. (224c)
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Also, the total retarder self-energies of the system are

ΣR
tot(t, t+ τ)δ(τ)


γ+γ∗

2 0 0 0
0 κ

2 0 0
0 0 κ1

2 0
0 0 0 κ2

2

 . (225)

So, in matrix form the retarded Green function in the frequency domain is

GR(ω) =


ω + i

2(γ + γ∗) g 0 0
g ω + i

2κ J1 J2

0 J1 ω + i
2κ1 0

0 J2 0 ω + i
2κ2


−1

. (226)

So the time evolution of the retarded Green function is

i


ĠRee(τ) ĠRec(τ) ĠRea(τ) ĠReb(τ)

ĠRce(τ) ĠRcc(τ) ĠRca(τ) ĠRcb(τ)

ĠRae(τ) ĠRac(τ) ĠRaa(τ) ĠRab(τ)

ĠRbe(τ) ĠRbc(τ) ĠRba(τ) ĠRbb(τ)

 = iδ(τ)1 +


−iγ+γ∗

2 g 0 0
g −iκ2 J1 J2

0 J1 −iκ1
2 0

0 J2 0 −iκ2
2



GRee(τ) GRec(τ) GRea(τ) GReb(τ)
GRce(τ) GRcc(τ) GRca(τ) GRcb(τ)
GRae(τ) GRac(τ) GRaa(τ) GRae(τ)
GRbe(τ) GRbc(τ) GRba(τ) GRbb(τ)

 .

(227)

Finally, we will study the efficiency and the indistinguishability of all the cavities, the cor-
responding terms will be

βa = κ1

∫ ∞
0

dtρaa(t) , βb = κ2

∫ ∞
0

dtρbb(t), (228a)

Ia =

∫∞
0

∫∞
0 dtdτ

∣∣∣〈a†1(t+ τ)a1(t)
〉∣∣∣2∫∞

0

∫∞
0 dtdτ

〈
a†1(t+ τ)a1(t+ τ)

〉〈
a†1(t)a1(t)

〉 , Ib =

∫∞
0

∫∞
0 dtdτ

∣∣∣〈a†2(t+ τ)a2(t)
〉∣∣∣2∫∞

0

∫∞
0 dtdτ

〈
a†2(t+ τ)a2(t+ τ)

〉〈
a†2(t)a2(t)

〉 .
(228b)

6.3 Adiabatic Elimination

In our problem, the cavities a and b don’t interact so we can adiabatically eliminate their
coherence terms

ρ̇ab = iJ2ρac − iJ1ρcb −
κ1 + κ2

2
ρab → ρab =

2i

κ1 + κ2
(J2ρac − J1ρcb). (229)

The dissipative term due to the atom’s pure dephasing is much larger than the other dissip-
ative terms so initially we can eliminate the coherences of the atom with the cavities a and
b.

ρ̇ea = iJ1ρec − igρca −
γ + κ1 + γ∗

2
ρea → ρea =

2i(J1ρec − gρca)
γ + κ1 + γ∗

, (230)

ρ̇eb = iJ2ρec − igρcb −
γ + κ2 + γ∗

2
ρeb → ρeb =

2i(J2ρec − gρcb)
γ + κ2 + γ∗

. (231)
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So, the other coherence terms become

ρ̇ec = ig(ρee − ρcc)−
2J2(J2ρec − gρcb)
γ + κ2 + γ∗

− 2J1(J1ρec − gρca)
γ + κ1 + γ∗

− γ + κ+ γ∗

2
ρec, (232)

ρ̇ca = iJ1(ρcc − ρaa)−
κ+ κ2

2
ρca +

2g

γ + κ1 + γ∗
(J1ρec − gρca)−

2J2

κ1 + κ2
(J2ρca − J1ρbc),

(233)

ρ̇cb = iJ2(ρcc − ρbb)−
κ+ κ2

2
ρcb +

2g

γ + κ2 + γ∗
(J2ρec − gρcb)−

2J1

κ1 + κ2
(J2ρac − J1ρcb).

(234)

We define, as in the case of the two cavity system, the population exchange rate R̃ = 4g2

γ+γ∗+κ1

between the atom and cavity a, the population exchange rate R̃′ = 4g2

γ+γ∗+κ2
between the

atom and the cavity b. We also define the quantities X1 =
4J2

1
κ1+κ2

and X2 =
4J2

2
κ1+κ2

. Since
J1ρec � gρca and J2ρec � gρcb we can ignore these terms. So, for times t � 1R̃, R̃′ we can
adiabatically eliminate the coherence terms between the cavities c and a, b. So we have

ρ̇ca = −κ+ κ1 + R̃+X2

2
ρca + iJ1(ρcc − ρaa) +

2J1J2

κ1 + κ2
ρba → ρca ≈

2iJ1

κ+ κ1 + R̃+X2

(ρcc − ρaa),

(235)

ρ̇cb = −κ+ κ2 + R̃′ +X1

2
ρcb + iJ2(ρcc − ρbb) +

2J1J2

κ1 + κ2
ρac → ρcb ≈

2iJ2

κ+ κ2 + R̃′ +X1

(ρcc − ρbb).

(236)

We substitute the above expression in ρec and find

ρ̇ec= ig(ρee − ρcc)−
γ + κ+

4J2
1

γ+κ1+γ∗ +
4J2

2
γ+κ2+γ∗

2
ρec

+
4igJ2

1

(γ + κ1 + γ∗)(κ+ κ1 + R̃+X2)
(ρcc − ρaa) +

4igJ2
2

(γ + κ2 + γ∗)(κ+ κ2 + R̃′ +X1)
(ρcc − ρbb)

≈ ig(ρee − ρcc)−
γ + κ+ γ∗

2
ρec → ρec =

2ig

γ + κ+ γ∗
(ρee − ρcc).

(237)

After the adiabatic elimination of all the coherences, the population rate equations are

ρ̇ee = −γρee −
4g2

γ + κ+ γ∗
(ρee − ρcc), (238)

ρ̇cc = −κρcc −
4g2

γ + κ+ γ∗
(ρcc − ρee)

− 4J2
1

κ+ κ1 + R̃+X2

(ρcc − ρaa)−
4J2

2

κ+ κ2 + R̃′ +X1

(ρcc − ρbb),
(239)

ρ̇aa = −κ1ρaa −
4J2

1

κ+ κ1 + R̃+X2

(ρaa − ρcc), (240)

ρ̇bb = −κ2ρbb −
4J2

2

κ+ κ2 + R̃′ +X1

(ρbb − ρcc). (241)

60



In matrix form, the rate equations are
ρ̇ee
ρ̇cc
ρ̇aa
ρ̇bb

 =


−γ −R R 0 0
R −κ−R−R1 −R2 R1 R2

0 R1 −κ1 −R1 0
0 R2 0 −κ2 −R2



ρee
ρcc
ρaa
ρbb

 , (242)

where R1 =
4J2

1

κ+κ1+R̃+X2
and R2 =

4J2
2

κ+κ2+R̃′+X1
.

6.4 Calculation of the efficiency

To find the efficiency, we need the characteristic polynomial

(s+ γ +R) [(s+ κ+R+R1 +R2)(s+ κ1 +R1)(s+ κ2 +R2)

−R2
1(s+ κ2 +R2)−R2

2(s+ κ1 +R1)
]
−R2(s+ κ1 +R1)(s+ κ2 +R2) = 0.

(243)

This equation is of fourth order, having four solutions s = s1, s2, s3, s4. So, the populations
of cavities a and b will be

ρaa = Aae
−s1t +Bae

−s2t + Cae
−s3t +Dae

−s4t (244)
ρbb = Abe

−s1t +Bbe
−s2t + Cbe

−s3t +Dbe
−s4t (245)

To find the coefficients Ai, Bi, Ci, Di, we need to apply the initial conditions of the problem

ρee(0) = 1 ρaa(0) = 0 ρbb(0) = 0 ρcc(0) = 0

ρ̇ee(0) = −γρee(0)−R(ρee(0)− ρcc(0)) = −γ −R
ρ̇aa(0) = −(κ1 +R1)ρaa(0) +R1ρcc(0) = 0

ρ̇bb(0) = −(κ2 +R2)ρbb(0) +R2ρcc(0) = 0

ρ̇cc(0) = Rρee(0)− (κ+R+R1 +R2)ρcc(0) +R1ρaa(0) +R2ρbb(0) = R

ρ̈ee(0) = −γρ̇ee(0)−R(ρ̇ee(0)− ρ̇cc(0)) = (γ +R)2 +R2

ρ̈aa(0) = −(κ1 +R1)ρ̇aa(0) +R1ρ̇cc(0) = RR1

ρ̈bb(0) = −(κ2 +R2)ρ̇bb(0) +R2ρ̇cc(0) = RR2

ρ̈cc(0) = Rρ̇ee(0)− (κ+R+R1 +R2)ρ̇cc(0) +R1ρ̇aa(0) + ρ̇bb(0) = −R(γ + κ+ 2R+R1 +R2)
...
ρ aa(0) = −(κ1 +R1)ρ̈aa(0) +R1ρ̈cc(0) = −RR1(γ + κ+ 2R+ 2R1 + κ1 +R2)
...
ρ bb(0) = −(κ2 +R2)ρ̈bb(0) +R2ρ̈cc(0) = −RR1(γ + κ+ 2R+R1 + 2R2 + κ2)

(246)

The efficiency of each cavity is given by

βa = κ1

∫ ∞
0

ρaa(t)dt =
Aa
s1

+
Ba
s2

+
Ca
s3

+
Da

s4

βb = κ1

∫ ∞
0

ρaa(t)dt =
Ab
s1

+
Bb
s2

+
Cb
s3

+
Db

s4

(247)

And we find the expression

βa =
κ1R1

κ(κ1 +R1) +R1κ1 +R2κ2

βb =
κ2R2

κ(κ1 +R1) +R1κ1 +R2κ2

(248)
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6.5 Similar Cavity Limit

The limit of the similar cavities corresponds to the region where the two empty cavities a, b
have the same parameters J1 = J2 and κ1 = κ2. In that limit, the constants of the previous
section become R̃ = R̃′, X1 = X2 and R1 = R2. So the system (242) becomes

ρ̇ee
ρ̇cc
ρ̇aa
ρ̇bb

 =


−γ −R R 0 0
R −κ−R− 2R1 R1 R1

0 R1 −κ1 −R1 0
0 R1 0 −κ1 −R1



ρee
ρcc
ρaa
ρbb

 . (249)

We observe that if we swap ρaa and ρbb the matrix remains the same. That symmetry,
combined with the common initial condition ρaa(0) = ρbb(0) leads us to the conclusion that
the populations evolve in time the same, ρaa(t) = ρbb(t). This condition further simplifies
our problem, which now becomesρ̇eeρ̇cc

ρ̇aa

 =

−γ −R R 0
R −κ−R− 2R1 2R1

0 R1 −κ1 −R1

ρeeρcc
ρaa

 . (250)

Also, it’s easy to show

βa = βb, (251)
Ia = Ib. (252)

Where

κa =
κ1R1

κR1 + 2κ1R1 + κκ1
(253)

Additionally, we can find the Green Functions of the problem

GRae(τ) = GRbe(τ) ∝ e−
γ+γ̄−R

2
τ , (254a)

GRac(τ) = GRbc(τ) ∝ e−
κ+R−R1

2
τ , (254b)

GRaa(τ) = GRbb(τ) ∝ e−
κ1+R1

2
τ . (254c)

Thus, the dominating terms are GRaa(τ) and GRbb(τ) and the two-time correlation function
becomes 〈

a†1(t+ τ)a1(t)
〉
≈ GRaa(τ)ρaa(t),〈

a†2(t+ τ)a2(t)
〉
≈ GRbb(τ)ρbb(t).

(255)

If we substitute the above expression to the indistinguishability we get

Ia ≈
∫∞

0 dtρaa(t)
2
∫∞

0 dτ
∣∣GRaa∣∣2(τ)

1
2

∣∣∫∞
0 dtρaa(t)

∣∣2 . (256)
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We calculate the integrals ∫ ∞
0

dtρ2
aa(t) =

1

2

κ+ 2κ1 + 3R1

κκ1 +R1(κ+ κ1)
, (257a)∣∣∣∣∫ ∞

0
dtρaa(t)

∣∣∣∣2 =

(
κ+ 2κ1 + 3R1

κκ1 +R1(κ+ κ1)

)2

, (257b)∫ ∞
0

dτ
∣∣GRaa∣∣2(τ) =

1

κ1 +R1
. (257c)

and we find

Ia =

1
2

κ+2κ1+3R1
κκ1+R1(κ+κ1) ∗

1
κ1+R1

1
2

(
κ+2κ1+3R1

κκ1+R1(κ+κ1)

)2 =
κκ1 +R1(κ+ κ1)

(κ1 +R1)(κ+ 2κ1 + 3R1)
=

κ+ κ1R1
κ1+R1

κ+ 2κ1 + 3R1

=
κ+ (κ1||R1)

κ+ 2κ1 + 3R1
. (258)

Thus, we conclude that by just adding another cavity similar to cavity a we can’t improve
the indistinguishability of the photon. Also, the efficiency of each external cavity is exactly
half of the efficiency of the external cavity of the 2 Cavity System, thus the efficiency isn’t
improved either.

6.6 The Identical 3 Cavity Limit

Since by just adding another external cavity, we effectively got the same system with regards
to its efficiency and photon indistinguishability, we will try another limit. We also engineer our
system so that all the involved cavities have the same decay rate and so that all the couplings
are the same. We will call this limit the Identical Three Cavity Limit, with parameters which
satisfies the conditions

κ = κ1 = κ2

g = J1 = J2
(259)

Also, the efficiency and the indistinguishability from the external cavities is

βa = βb

Ia = Ib
(260)

We will calculate numerically the indistinguishability of the photons produced from each
cavity.

6.6.1 Results for Cavity c

In Fig.(22) we plot the efficiency of the photons produced from the main Cavity c. The
efficiency takes moderate values in the region g > 50γ, with exceptionally high values at the
limit κ→ γ̄.
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Figure 22: Graph of the Efficiency of the Cavity c in the Identical Cavity Limit.

In Fig.(23) we plot the indistinguishability of the photons produced from the main Cavity
c. The indistinguishability takes moderate values in a band region, similar to the one in the
Single Cavity System.
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Figure 23: Graph of the Indistinguishability of the photons from Cavity c in the Identical
Cavity Limit.

6.6.2 Results for Cavities a and b

In Fig.(24) we plot the total efficiency βexternal = βa + βb of the photons produced from the
external Cavities a and b. The efficiency has the same form as the efficiency of the Single
Cavity Limit, but takes a smaller maximum value (around βmax = 50%).
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Figure 24: Graph of the Total Efficiency of the Cavities a and b in the Identical Cavity
Limit.

In Fig.(25) we plot the indistinguishability of the photons produced from the main Cavity
a and b. The indistinguishability takes values close to the indistinguishability of the main
cavity c and in the same band region of our systems parameters.
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Figure 25: Graph of the Indistinguishability of the photons from Cavities a and b in the
Identical Cavity Limit.

6.6.3 Results for the effective system

Because of the close resemblance between the indistinguishability of the photons produced
from the main and the external cavities, we employ a strategy to significantly increase the
efficiency of our system.

In the previous Chapters, we only collected the photons emitted from a specific cavity, a
method when we knew exactly the indistinguishability of the photon. But, in the Identical
Cavity Limit, the indistinguishability of the photons from the main cavity is almost equal
to the indistinguishability of photons from the external cavities. Thus we could collect the
photons from all the cavities, increasing the total efficiency of the system, which will take the
form

βeff = βc + βa + βb (261)

Despite the fact that the a photon emitted from an external cavity has a different temporal
profile than a photon emitted from the central cavity, before it is actually produced we have no
way of knowing from which cavity it will be emitted, thus we can’t know the exact value of the
indistinguishability beforehand. Thus we also need to define an Effective Indistinguishability
of the system

Ieff =
βcIc + βaIa + βbIb

βeff
(262)

which is the weighted average of each cavities emitted photon.
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In Fig.(26) we plot the effective efficiency of our system in the Identical Cavity Limit. The
efficiency now takes high values in the region where g > 500γ, thus spanning most of the
parameter space we can reach experimentally.

Figure 26: Graph of the Effective Efficiency of the 3 Cavity System in the Identical Cavity
Limit.

In Fig.(27) we plot the effective indistinguishability of the photons produced the system
in the Identical Cavity Limit. The indistinguishability takes moderate in a band region of
our parameter space. In contrast with our previous systems, the efficiency of the system
that produces these moderate-indistinguishable photons is close to 1. In the Single and Two
Cavity, the efficiency of the system would be ≈ 1% and ≈ 10% respectively.
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Figure 27: Graph of the Effective Indistinguishability of the 3 Cavity System in the
Identical Cavity Limit.
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