
University of Crete

Computer Science Department

Subscription Indexes for Web Syndication Systems

Harry Kourdounakis

Master's Thesis

Heraklion, January 2011

PANEPISTHMIO KRHTHS
SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

EURET'HRIA SUNDROM'WN GIA SUSTHMATA
DHMOSIEUSEWN PERIEQOMENOU STON ISTO

ErgasÐa pou upobl jhke apì ton
Qar�lampoc Kourdoun�khc

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh
METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Qar�lampoc Kourdoun�khc, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

BasÐlhc QristofÐdhc, Kajhght c, Epìpthc

Iw�nnhc TzÐtzikac, EpÐk. Kajhght c

Panagi¸ta FatoÔrou, EpÐk. Kajhght c

'Aggeloc MpÐlac, Anapl. Kajhght c
Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, Ianou�rioc 2011

Subscription Indexes for Web Syndication Systems

Harry Kourdounakis
Master’s Thesis

Computer Science Department, University of Crete

Abstract

Content syndication has become a popular means for timely delivery of frequently undated in-
formation on the Web. It essentially enhances traditional pull-oriented searching and browsing
of web pages with push-oriented protocols in which information publishers deliver brief sum-
maries of the content they publish on the Web, called news items, while information consumers
subscribe to a number of feeds seen as information channels and get informed about the addition
of recent items. Today, web syndication technologies such as RSS or Atom are used in a wide va-
riety of applications spreading from large-scale news broadcasting to medium-scale information
sharing in scientific and professional communities. However, they exhibit serious limitations for
coping with information overload in Web 2.0 since they imply a tight coupling between feed pro-
ducers with consumers while they do not facilitate users in finding news items with interesting
content. In this work, we are proposing an extension of existing web syndication systems with
content-based filtering and tracking facilities. In this way, users can express their information
interests as keyword-based queries (rather than subscribing a priori to an entire channel) which
will be matched at real time against the streams of news items originating from different feeds.

To efficiently check whether all keywords of a subscription also appear in an incoming news
item (i.e., board match semantics) we need to index the subscriptions. Two are the main in-
dexing schemes proposed in the literature, namely, Count-based (explicitly counting the number
of contained keywords) and Tree-based (implicitly counting the number of contained keyword).
Unfortunately, the majority of data structures employed in these indexes concern structured
subscriptions under the form of sets of attribute-value pairs. In our work, we are interested in
indexing unstructured subscriptions formed by sets of keywords according to both Count and
Tree-based schemes and study their behavior for critical parameters of realistic web syndication
workloads. More precisely, we rely on an ordering of vocabulary terms to build a Trie (for
tree-based index) that exploits the covering relationships between subscriptions compared to the
flat search space implied by an Inverted File (for count-based index). Then, we experimentally
investigate (a) how the morphology of the two indexes is affected by different workload parame-
ters, i.e. the vocabulary distribution, the size of the vocabulary, and the size of the subscriptions
and b) how the Trie and Inverted File morphology impacts the scalability and performance of
the two indices for realistic characteristics of subscriptions and news items.

The main conclusions drawn from our study are the following. Trie depth is bounded by the
size of the indexed subscriptions (in realistic settings is small from 2 up to 6 terms), while its
width by the size of the vocabulary of indexed terms (in realistic settings is very large up to
1,500,000 terms). To cope with large vocabulary sizes exhibited in reality we have considered
path compression on Trie nodes featuring a unique child. The total number of Trie nodes as
well as their morphology is affected by the vocabulary terms’ distribution (usually power laws).
When the actual terms’ frequency in subscriptions follows the initial Trie ordering, subscrip-
tion factorization will be important resulting to a left deed structured Trie. In the opposite,
factorization becomes less important resulting to a right shallow Trie where path compression
is now more intense. In particular, when the reverse ordering is followed a great number of
subscriptions will be stored at the sub-Tries of the low ranked terms (i.e., the most frequent
ones) and thus the pruning of the search space during matching will be significant. Besides Trie

morphology, matching time is also affected by the size of the incoming news items (in realistic
settings lies between 5 and 50 terms). In this context, Trie outperforms in matching time from
1 up to 3 orders of magnitude the Inverted File-based index at the expanse of double mem-
ory requirements while the Trie throughput rate when indexing with 10,000,000 subscriptions
achieves ≈ 500 items/sec (vs ≈ 34 news items/sec for Inverted File).

Supervisor: Vassilis Christophides
Professor

PerÐlhyh

H suneq c aÔxhsh twn diajèsimwn plhrofori¸n ston pagkìsmio istì èqei wc apotèlesma thn
oloèna kai perissìterh qrhsimopoÐhsh teqnologi¸n dhmosieÔsewc perieqomènou, gia thn ègkairh
di�jesh paragìmenhc plhroforÐac. Oi teqnologÐec dhmosieÔsewc perieqomènou, sthn ousÐa enisqÔ-
oun to paradosiakì montèlo èlxhc (pull) pou efarmìzetai kat� thn anaz thsh kai peri ghsh twn
istoselÐdwn me prwtìkolla tou diadiktÔou gia dhmosieÔseic kai sundromèc basizìmenec sto mon-
tèlo ¸jhshc. S mera, teqnologÐec gia thn dhmosÐeush perieqomènou, ìpwc gia par�deigma RSS
kai Atom , qrhsimopoioÔntai apì mia eureÐa poikilÐa efarmog¸n pou kumaÐnontai apì meg�lh-
c klÐmakac met�dosh eidhseografÐac mèqri mikr c klÐmakac antallag c plhrofori¸n mel¸n twn
koinwnik¸n diktÔwn. Wstìso, oi up�rqontec teqnologÐec dhmosÐeushc perieqomènou RSS Atom
parousi�zoun sobaroÔc periorismoÔc gia thn antimet¸pish thc uperfìrtwshc thc plhroforÐac sto
shmerinì perib�llon tou Web 2.0, en¸ par�llhla sunep�gontai mia dunat allhlex�rthsh metaxÔ
twn duo sumballomènwn pleur¸n (sundromhtèc kai ekdìtec). Se aut thn doulei� proteÐnoume
mia epèktash thc up�rqousac teqnologÐac susthm�twn dhmosieÔsewc perieqomènou ston istì me
uphresÐec filtrarÐsmatoc basismènec sto perieqìmeno kai entopismoÔ. Proc aut thn kateÔjunsh
oi qr stec ja mporoÔn na ekfr�soun endiafèron se plhroforÐa me eperwt seic basismènec se lèx-
eic kleidi� (antÐ ek twn protèrwn sundrom¸n se èna olìklhro kan�li) oi opoÐec ja apotimoÔntai se
pragmatikì qrìno p�nw apì roèc antikeimènwn eidhseografÐac RSS proerqìmena apì diaforetik�
feeds.

H apodotik apotÐmhsh enìc eiserqomènou stoiqeÐou eidhseografÐac, pou sunist�te ston èlegqo
e�n ìlec oi lèxeic kleidi� miac sundrom c epÐshc emfanÐzontai sto sugkekrimèno antikeÐmeno (l.q.
broad match semantics), proôpojètei thn eurethrÐash twn sundrom¸n. Oi basikèc proseggÐseic
eurethrÐwn pou èqoun protajeÐ sthn bibliografÐa eÐnai oi proseggÐseic basismènec se metrhtèc
(rht katamètrhsh twn lèxewn kleidi¸n pou perièqontai sto antikeÐmeno eidhseografÐac) kai oi
proseggÐseic basismènec sta dèntra (èmmesh katamètrhsh twn lèxewn kleidi¸n pou perièqontai sto
antikeÐmeno eidhseografÐac). Dustuq¸c h pleionìthta twn dom¸n pou èqoun protajeÐ gia up�r-
qonta euret ria aforoÔn domhmènec sundromèc apoteloÔmenec apì sÔnola zugari¸n pedÐou-tim c.
Sthn sugkekrimènh doulei� mac endiafèrei h eurethrÐash sundrom¸n apoteloÔmenec apì sÔnola
lèxewn kleidi¸n (adìmhth plhroforÐa) qrhsimopoi¸ntac kai tic dÔo proanaferjeÐsec proseggÐ-
seic kai h melèth thc sumperifor�c touc gia krÐsimec paramètrouc pragmatik¸n fìrtwn ergasÐac
susthm�twn dhmosieÔsewn perieqomènou ston istì. Pio sugkekrimèna, upojètoume mia di�taxh
tou lexilogÐou twn sundrìmwn gia thn kataskeu enìc Trie (prosèggish basismènh se dèntra) pou
ekmetalleÔetai tic sqèseic egkleismoÔ metaxÔ twn sundrom¸n se antidiastol me ton epÐpedo q¸ro
anaz thshc pou sunep�getai apì èna Anestrammèno Euret rio (Inverted File) (prosèggish basis-
mènh se metrhtèc). DiereunoÔme peiramatik� (a) pwc h morfologÐa twn dÔo eurethrÐwn ephre�zete
apì diaforetikoÔ paramètrouc tou fìrtou ergasÐac l.q. thn katanom tou lexilogÐou, to mège-
joc tou lexilogÐou kai to mègejoc twn sundrom¸n kai (b) pwc h parathroÔmenh morfologÐa tou
Trie kai tou Inverted File ephre�zei thn klimakwsimìthta kai thn epÐdosh twn dÔo eurethrÐwn gia
pragmatik� qarakthristik� sundrom¸n kai antikeimènwn eidhseografÐac.

Ta basik� sumper�smata pou sunep�gontai thc sugkekrimènhc melèthc akoloujoÔn. To b�joc
tou Trie oriojeteÐtai apì to mègejoc twn sundrom¸n pou èqoun eurethriasteÐ (k�tw apì realis-
tikèc proôpojèseic eÐnai mikrèc, apì 2 èwc 6 ìrouc), en¸ to pl�toc tou oriojeteÐtai apì to mègejoc
tou lexilogÐou twn eurethriasmènwn sundrom¸n (k�tw apì realistikèc proôpojèseic eÐnai meg�lo
kai fj�nei èwc kai touc 1,500,000 ìrouc). Gia na antepexèljei sta meg�la megèjh lexilogÐou, ìp-
wc parathroÔntai sthn pragmatikìthta, èqoume jewr sei sumpÐesh monopati¸n stouc kìmbouc tou
Trie pou apasqoloÔn èna monadikì paidÐ. O sunolikìc arijmìc twn kìmbwn pou apasqoleÐ to Trie
kaj¸c epÐshc kai h morfologÐa touc ephre�zetai apì thn katanom tou lexilogÐou twn sundrom¸n

(sun jwc akoloujeÐ nìmouc isqÔoc). Pio sugkekrimèna, ìtan h pragmatik di�taxh twn ìrwn b�sh
thc suqnìthtac emf�nishc touc akoloujeÐ thn di�taxh pou jewreÐ to Trie gia kataskeu , tìte h
paragontopoÐhsh twn sundrom¸n (subscription factorization) sthn b�sh twn koin¸n projem�twn
ja eÐnai meg�lh en¸ ja katal xoume na èqoume èna arister� bajÔ Trie. Sthn antÐjeth perÐptwsh
ja èqoume ligìterh paragontopoÐhsh kai ja katal xoume se èna arister� rhqì Trie, sto opoÐo
h sumpÐesh monopati¸n ja eÐnai ìmwc pio èntonh. Pèran thc morfologÐac, o qrìnoc apotÐmhshc
ephre�zetai kat� kÔrio lìgo kai apì to mègejoc tou eiserqomènou proc apotÐmhsh antikeimènou
eidhseografÐac (se pragmatikì perib�llon to mègejoc touc kumaÐnetai metaxÔ 5 kai 50 ìrwn). To
Trie upertereÐ tou Inverted File apì mÐa èwc treÐc t�xeic megèjouc, qrhsimopoi¸ntac ìmwc dipl�sia
mn mh. Gia autì ton lìgo h rujmapìdosh pou epitugq�nei to Trie èqontac eurethri�sei 10,000,000
sundromèc eÐnai ≈ 500 antikeÐmena eidhseografÐac to leptì (to Inverted File epitugq�nei ≈ 34
antikeÐmena eidhseografÐac to leptì).

Epìpthc Kajhght c: BasÐlhc QristofÐdhc
Kajhght c

EuqaristÐec

Sto shmeÐo autì ja jela na euqarist sw jerm� ton epìpth kajhght mou K. BasÐlh QristofÐdh
gia thn �yogh sunergasÐa, to qrìno pou mou afièrwse, kai thn polÔtimh kajod ghs tou. Kat� thn
di�rkeia twn akadhmaðk¸n mou qrìnwn kat�fera na ton gnwrÐsw ìqi mìno san kajhght all� kai
san �njrwpo kai ton euqarist¸ jerm� gia ta efìdia pou apokìmisa kont� tou, pou ja apotelèsoun
tic b�seic gia thn metèpeita karièra mou.

Den ja mporoÔsa na mhn anafèrw se autì to shmeÐo to InstitoÔto Plhroforik c tou IdrÔmatoc
TeqnologÐac kai 'Ereunac tìso gia thn ulik ìso kai thn oikonomik st rixh pou mou prìsfere.
EpÐshc ja jela na euqarist sw jerm� ìla ta mèlh thc om�dac twn Plhroforiak¸n Susthm�twn
tou InstitoÔtou Plhroforik c - ITE gia thn euq�risth sunergasÐa kai gia to gegonìc ìti up rxan
ìqi mìno sunerg�tec all� kai fÐloi. Eidikìtera, den ja mporoÔsa na mhn euqarist sw proswpik�
thn Nèllh BouzoukÐdou, gia to komm�ti thc genn triac sunjetik¸n dedomènwn pou mou èdwse kai
tic polÔ eÔstoqec suzht seic kai parathr seic tic genikìtera panw sthn doulei�. Epiprìsjeta,
ja jela na euqarist sw touc Zeinab Hmedeh kai Cedric du Mouza gia thn bo jeia p�nw sto
analutikì montèlo tou Trie.

EpÐshc ja jela se autì to shmeÐo na euqarist sw proswpik� touc polÔ kaloÔc mou fÐlouc
Gi¸rgo Ts�mh, Miq�lh Sk�ltsa kai Dani l Galouz , gia thn upost rixh kai tic kalèc stigmèc,
pou mou prìsferan kat� thn di�rkeia twn qrìnwn aut¸n (kai ìqi mìno). Epiprìsjeta ja jela
na euqarist sw thn KaterÐna gia thn amèristh sumpar�stash empistosÔnh, kai upomon pou mou
èdeixe tìso stic eÔkolec ìso kai stic pio dÔskolec stigmèc kat� thn di�rkeia ekpìnhshc thc
sugkekrimènhc ergasÐac.

Tèloc den ja mporoÔsa na paraleÐyw thn oikogèneia mou, Tsampikì, 'Anna kai MaÐrh gia thn
jerm upost rixh kai empistosÔnh pou mou èdeixan, qwrÐc thn opoÐa den ja tan dunat h ekpìnhsh
thc sugkekrimènhc ergasÐac.

Contents

Table of Contents iii

List of Figures iv

1 Introduction 1
1.1 Web Syndication Systems . 1

1.1.1 Web News Search Engines . 3
1.1.2 The Publish/Subscribe Interaction Paradigm 4
1.1.3 Quantifying Performance Targets of Web Syndication Systems 7

1.2 Problem Statement & Contributions . 8
1.3 Thesis Organization . 10

2 Subscription Indexes 11
2.1 Naive - Brute Force Method . 13
2.2 Count based Subscription Index . 14

2.2.1 Count Based Index - Construction . 17
2.2.2 Count Based Index - Matching . 20
2.2.3 Count Based Index Remarks . 21

2.3 Trie Subscription Index . 22
2.3.1 Trie Index - Construction . 25
2.3.2 Trie Index - Matching . 27
2.3.3 Trie Analytical Model . 28
2.3.4 Trie index remarks . 32

3 Implementing the Subscription Indexes 36
3.1 Count based index . 37

3.1.1 Simple Count based index . 37
3.1.2 Compact Count based index . 37

3.2 Trie index . 39
3.2.1 Simple Trie . 39
3.2.2 Compact Trie . 40

3.3 Synthetic data generation . 41

4 Experimental Evaluation 43
4.1 Impact of the Vocabulary Distribution . 44

4.1.1 Evaluation on Simple Implementations . 45
4.1.2 Full Scale Evaluation . 51

4.2 Impact of the Subscription Size . 56

4.3 Impact of the Vocabulary Size . 59
4.4 Impact of the News Item Size . 62
4.5 Evaluation on Scalability . 64
4.6 Summary on experimental results . 66

5 Related Work 69
5.1 Content based Publish/Subscribe Systems . 71

5.1.1 Publish/Subscribe systems with an attribute based event model 71
5.1.2 Publish/Subscribe systems with term based event model 72
5.1.3 Set-valued data indexes . 73

6 Conclusions & Future Work 76

i

ii

List of Tables

2.1 Example of a set of keyword based subscriptions 13
2.2 Parameters that characterize the workload . 18
2.3 Performance comparison(worst case) of Brute-Force and Count-Based methods . 22
2.4 Pascals Triangle (4,4) . 28
2.5 Partial Pascal’s Triangle . 30
2.6 Pacal’s Triangle over new item Ik . 32
2.7 The Trie as Pascal’s Triangle: summary . 32

3.1 influence of parameter C(capacity) . 39
3.2 memory in MB for different values of K . 39
3.3 Classification of nodes for Compact Trie . 41

4.1 Workload parameter values . 43
4.2 Out-degree distribution of nodes for Simple Trie index 50
4.3 Distribution of subscriptions over the nodes of the Simple Trie 50
4.4 Compact Count index characteristics when varying vocabulary distribution . . . 51
4.5 Compact Trie characteristics when varying vocabulary distribution 53
4.6 Matching Operations of Trie and Count-based Indices 55
4.7 Compact Count index characteristics for varying Subscription Sizes 56
4.8 Compact Trie Characteristics for Varying Subscription Sizes 57
4.9 Compact Count index characteristics for varying Vocabulary Size 59
4.10 Compact Trie characteristics for varying Vocabulary Size 60

iii

List of Figures

1.1 Example of RSS version 2.0 XML document . 2
1.2 Overview of Publish/Subscribe . 4
1.3 Topic-based Publish/Subscribe . 5
1.4 Content-based Publish/Subscribe . 6

2.1 Prospective versus Retrospective search . 12
2.2 Count-based index example . 15
2.3 Tree based index example . 23
2.4 Partial ordered set of inclusion relations . 24
2.5 Trie index example . 26
2.6 Complete Trie and corresponding Pascal Triangle representation 29
2.7 Example of prefix sharing . 33
2.8 Trie Morpholgy . 35
2.9 Trie Matching: suffix reduction . 35

3.1 Prototype Term Based Pub/Sub interface . 36
3.2 Compact Count index implementation . 38
3.3 Simple Trie implementation . 40

4.1 Empirical distributions for vocabulary and subscription/item size 44
4.2 Vocabulary distribution impact on Inverted File of the Simple Count index . . . 46
4.3 Vocabulary distribution impact on number of Trie nodes 47
4.4 Term occurences per rank (empirical vocabulary distribution) 48
4.5 Term occurences per rank (uniform vocabulary distribution) 48
4.6 Term occurences per rank (anti-correlated vocabulary distribution) 49
4.7 Vocabulary distribution impact on Compact Count index 52
4.8 Vocabulary distribution impact on Compact Trie 54
4.9 Subscription Size impact on Compact Trie and Compact Count indexes 58
4.10 Vocabulary size impact . 61
4.11 Item size impact on Compact Trie and Compact Count indexes 63
4.12 Scalability characteristics of Compact Trie and Compact Count indices 65

5.1 Event Processing systems . 69
5.2 POI index overview . 73
5.3 POI versus TRIE index . 74
5.4 POI versus TRIE index . 75

iv

Chapter 1

Introduction

1.1 Web Syndication Systems

With the continuous growth of online information, content syndication has become a popular
means for timely information delivery on the Web. It essentially enhances traditional pull-
oriented searching and browsing of web pages with push-oriented publishing formats and sub-
scription protocols of web content. Web syndication initially was aiming to exchange on a day-
to-day basis concise summaries of the information published on the Web such as news headlines,
search results, ’What’s New’, job vacancies, and so forth. Today, web syndication technologies
such as RSS1 or Atom2 are widely used in a variety of applications ranging from large-scale news
or social media (blog, wiki, etc.) broadcasting to medium-scale information sharing in scien-
tific3 and professional4 communities. Note also that web syndication technologies have recently
attracted interest in the context of the mobile web as a streaming protocol for mobile clients.

In the context of RSS/Atom, information publishers deliver brief summaries of the con-
tent they publish on the Web, called news items, while information consumers using adequate
RSS/Atom software subscribe to a number of feeds seen as information channels and get in-
formed about the addition of recent items. Each item consists of a title, a description, and a
link pointing back to the actual source of information, such as a news or a blog site. Additional
metadata regarding the published information also exist such as the author’s name, the publish-
ing date, the written language, etc. In essence, an RSS feed is an URL that returns an XML
document in an accepted RSS format, possibly with informal additions. Atom is an effort of
IETF to come up with a well-documented, standard syndication format. Although RSS pre-
ceded ATOM, the former still achieves wide acceptance, despite the fact that the latter is the
only one of the two that has an active working group supporting it and has been adopted by
major companies involved in the area of web data management such as Google (GData)5. Since
both standards provide the same basic functionally, the term ’RSS’ is commonly used to also
refer to Atom syndication.

Every time new information content becomes published, a new item is appended to the
specific XML file, encoding an RSS feed. An example of an RSS feed document is illustrated in
Figure 1.1.

Once a feed is available, specific software can regularly fetch the RSS/Atom file to get the

1web.resource.org/rss/1.0/
2tools.ietf.org/html/rfc5023
3For instance, biologynews.net/rss.php or ubio.org/index.php?pagename=ubioRSS
4For instance,rss-specifications.com/finance-rss-feeds.htm
5code.google.com/apis/gdata

1

Figure 1.1: Example of RSS version 2.0 XML document

most recent items on the list and presented them in a readable manner to the user. This is the
role of dedicated desktop (or web) applications known as RSS readers or aggregators. The user
specifies the feeds to which he/she wishes to subscribe by specifying their corresponding URLs.
Once subscribed to a feed, the RSS reader is able to check for new items at user-determined
intervals and retrieve the update. Examples of RSS readers are amongst others FeedReader6

and RSSOwl7. An example of a web based RSS reader is that of GoogleReader8.
More and more official news sites rely on web syndication technologies to inform potentially

interested users in a timely manner. Usually, news sites define a broad set of information
categories (e.g. economy, jobs, sports, etc.) and establish an RSS channel for each one of them.
Whenever a news item becomes available, the corresponding channel is updated with the RSS
item referring to the specific news article. News consumers are asynchronously informed about
news items, as soon as they are published by their producing source, or broadcasted by news
infomediaries.

In conjunction with their original usage for delivering news over the web originating from
authority sources (e.g., news agencies, newspapers, etc.), web syndication popularity has been
recently increased also due to the high volumes of user generated content, generated in various
social media (blogs, wiki, etc.). As opposed to the traditional news setting, where the roles
of information producers and consumers is clearly separated, these roles are actually blurred
in the setting of citizen journalism in social media. For example, with the use of web blogs
anyone can become a publisher and post content on the web. Another example is social media
such as Facebook9 and Twitter10. In such web applications, users regularly read from and post
to their community of friends small messages whose content spans from everyday activities a
person might be involved in, to subjective opinions on social matters and politics. Various forms
of social media is actually syndicated and delivered outside the social media applications via
RSS/Atom standards.

In this context, users may be overwhelmed by an important amount of information actually

6www.feedreader.com
7www.rssowl.org
8www.google.com/reader
9facebook.com

10twitter.com

2

delivered by web syndication systems. This can be a result either of users’ subscription to a large
amount of different channels simultaneously, or to frequently updated channels or even to both.
For instance, to get informed about todays economic crisis a user should subscribe to economy,
politics and business information channels around the world. In order for the user to cope with
the large amount of delivered news items, many RSS readers provide searching functionality that
filter the available news items according to particular user interests. FeedReader11 for example
allows users to assign a set of keywords (terms) to a specific RSS feed. Whenever a new item is
fetched for that specific feed, the application tests if all of the terms specified are also present
in the item, and notifies the user accordingly.

Recently, several mediator services have emerged providing filtering and management func-
tionality over RSS feeds. xFruites12 for example enables users to aggregate and transform RSS
feeds into other content types such as PDF. With the use of FeedRinse13 the user can automat-
ically filter out syndicated content that is not of interest to him/her. Filtering is performed at
a keyword basis on the set of feeds the user specifies. For the more experienced users, Yahoo
Pipes14 offers a graphical mashup development environment that serves as a composition tool
for aggregating, manipulate, and filtering syndicated content.

However, with the usage of RSS readers and management services, a user gets notified only
about items belonging to the channels she/he has already subscribed to. The existence of any
particular RSS channel must therefore be known beforehand. This tight coupling interaction
model gives of course to the end user a full control over what content finally gets delivered to
him/her, at the expanse of a priori knowledge of the information channels that might potentially
be of interest to her/him. Clearly, this is feasible only when the number of channels is limited
to few authority sites of news agencies and newspapers, and not to a myriad channels bounded
to personal blogs and social applications. In the news domain, Google News and Yahoo! News
are currently tracking 4500 and 5000 sources respectively [29]. For blogs, an event detection
system would have to deal with millions of blogs as sources. In reality, however, most users are
only interested in a small subset of news articles and blog posts. For this reason, existing web
syndication technology cannot effectively address the needs for accurate and timely delivery of
information published in social media.

1.1.1 Web News Search Engines

Nowadays few web applications have emerged providing search services for news articles pub-
lished mainly by authority news sites. Two typical examples are Google News Search15 and
Yahoo News Search16. These applications periodically crawl news agencies and newspapers’
sites for new articles and append them to the corpus of news items they maintain locally. Users
in turn issue short-living keyword based queries, which get evaluated over the set of stored items.
It should be stressed, that a similar approach also emerged for searching news articles from blogs
and other citizen journalism sites such as Google Blog Search17.

Web news search engines play essentially the role of infomediaries between producers and
consumers of news items, but unfortunately rely on a traditional pull model for searching and
browsing web content. However, rather than a coarse search on a news source/feed level as

11www.google.com/reader
12www.xfruits.com
13www.feedrinse.com
14pipes.yahoo.com
15news.google.com
16news.search.yahoo.com
17blogsearch.google.com

3

Figure 1.2: Overview of Publish/Subscribe

supported by RSS aggregators and RSS management services, web news search engines operate
upon individual news items. In addition, since they are able to crawl not previously known
news sources, web news search engines provide a transparent access to news items regardless of
whether the users are aware or not of their origin. The major shortcoming of web search engines
is related to intellectual property rights that have to be respected in face of different information
producers in order to host locally the news items. Furthermore, users have to periodically re-
issue their interests under the form of short- living queries every time they want to be informed
about recent news items. This may also incur delays in information dissemination when news
items are published in a bursty rate (e.g. during environmental or social crises).

A more attractive solution is proposed by publish subscribe systems handling long-lasting
user subscriptions against which the incoming news items are matched in a streaming mode.

1.1.2 The Publish/Subscribe Interaction Paradigm

A system employing the Publish/Subscribe paradigm consists of publishers, subscribers and
a notification service. Publishers generate content in the form of events (e.g. an incoming
news item). Subscribers specify their interest in specific events under the form of subscriptions.
The notification service serves as an intermediate and is responsible for delivering published
events to the appropriate subscribers whose subscriptions are satisfied. Subscribers typically
receive only a subset of the total events published. The process of selecting the correct subset
of subscriptions each event satisfies, is referred to as event matching. The component of the
notification service responsible for performing the matching of events is called event processing
engine. At the ’heart’ of this engine there exists one or more index structures responsible for
storing subscriptions against which the incoming events will be matched.

As we can see in Figure 1.2 one of the main benefits of the Publish/Subscribe messaging
paradigm is that it provides decoupling between information providers (publishers) and infor-
mation consumers (subscribers). Information generation and information consumption are per-
formed independent to each other. This decoupling holds in both space and time. Subscribers
are not aware of the existence of publishers and vice versa. In addition, both parties do not
have to be active at the same time for event delivery to occur. Publishers can generate content
when subscribers are disconnected. In a similar manner, subscribers can be notified about events
satisfying their interests when publishers are disconnected.

4

Figure 1.3: Topic-based Publish/Subscribe

The matching semantics adopted by the event processing engine conforms to the subscription
scheme a particular Publish/Subscribe system adopts and may differ in the level of expressiveness
it supports. Depending on the way events are matched a subscription scheme can be either topic
or content based.

Topic-Based Publish Subscribe

Topic based subscription schemes where the first to be proposed in the literature for Publish/-
Subscribe systems. In such a scheme, every event is assigned to a particular topic (e.g., politics,
economy, business). Topics are pre-defined, and users express their preferences by selecting a
subset of the topics that are of interest to them. Every time a particular event is published to
the system, subscribers whose subscriptions contain the topic assigned to the published event
will be notified.

Topics can be organized in a hierarchy of sub-topics. As we can see in Figure 1.3 users
subscribing to a topic will be notified about events matching to the specific topic but also any of
its sub topics in the hierarchy. The system defines two topics namely, ’Politics’ and ’Economy’.
The former is further organized into sub topics ’National’ and ’International’. The subscriber
interested in ’Politics’ will get notified about event1 since ’National’ falls under ’Politics’. Sub-
scriber 2 on the other hand will not be notified. Typical examples of Publish/Subscribe systems
following a topic based subscription scheme amongst others are Corona [36] and Scribe [38].

In a topic based subscription scheme, event matching is rather straightforward. The event
processing engine should maintain a mapping between topics and subscriptions: for every de-
fined topic, the list of corresponding subscriptions would be accessed. Every time a new event
is published to the system, the event processing engine would have to retrieve the subset of
subscriptions corresponding to the topic the particular event is assigned to, and notify each
corresponding subscriber about the event. Existing RSS/Atom technologies are essentially a
simplified version of the topic based subscription scheme where each channel information pro-
vides information about a topic or a set of topics.

Content-Based Publish Subscribe

This type of Publish/Subscribe systems use a subscription scheme based on the content of
the published events. Depending on the underlying data model used to represent the content

5

(structured or unstructured) of events, such Publish/Subscribe can be further specified as either
attribute or term based.

In the attribute based scheme all events conform to a global event schema (like a universal re-
lation) which specifies the number and type of allowed attributes. Each subscription is expressed
as a boolean query over the global event schema. More specifically, subscriptions consists of one
or more atomic predicates of the form Attr θ V al, where θ denotes the operator (i.e. =, <,>),
upon which comparisons are performed. An event is said to match a subscription if and only if
for every attribute binding of the subscription the corresponding predicate is satisfied [4].

To better demonstrate how the attribute based subscription scheme applies consider the
example of Figure 1.4 with a Publish/Subscribe system for disseminating stock quotes. When-
ever a stock quote gets updated an event is published to the system consisting of the fol-
lowing two attributes: the name of the quote and its current value. Let S1 = {name =′

NWK ′ AND value > 55} and S2 = {name =′ RBS′ AND value > 20} be two subscrip-
tions submitted to the system. Further suppose that a stock update initiated the following
event e = {name =′ RBS′, value = 60}. Matching event e against the set of subscription S1,
and S2 would result to S2 being notified since event e satisfies both predicates of S2 (but not
subscription S1).

Figure 1.4: Content-based Publish/Subscribe

The term based subscription scheme in turn is more appropriate when the content of pub-
lished events is unstructured usually taking the form of textual documents. Subscribers in this
schema express their interest to particular events via a keyword (term) based subscription lan-
guage. More than one terms can be logically combined to form boolean subscriptions. Matching
semantics depend on the logical operators the subscription language supports (i.e. conjunction,
negation, disjunction, etc). For example, under conjunctive semantics, a subscription will match
an event if and only if all of its terms also appear in a specific event. Consider for instance, a
subscription containing the terms ’greece’ and ’crisis’. Then, only events whose content contains
both of the terms ’greece’ and ’crisis’ will satisfy the subscription and will be finally distributed
to the respective subscriber.

It is obvious that content-based is more expressive than topic-based Publish/Subscribe sys-
tems as subscriptions can be considered as complex topics specified on demand: each different
combination of predicates can be seen as single dynamic topic. This enhanced expressiveness
however, introduces a greater complexity with regard to event processing. From an algorith-
mic viewpoint, the problem of matching is as hard as the partial match problem [24]. Hence,
efficient and scalable index structures and algorithms that exploit specific target application
domain characteristics should be devised to address the matching problem. Depending on how
matching is applied two major approaches exist, namely the count and tree approach.

6

A count based approach maintains a counter for each subscription. The purpose of a counter
assigned to a subscription Si is to facilitate matching by recording the number of predicates
satisfied by a current event. Given an event, the algorithm iterates over each of the attributes
of the event. For each such attribute, it finds the set of subscriptions whose corresponding
elementary predicate is satisfied by the attribute value of the event and increments the counter
for these subscriptions by one. Having tested all of the attributes of event e, the algorithm returns
all the set of subscriptions whose corresponding counter is equal to the number of predicates
they contain.

In a tree based approach subscriptions are organized into a rooted search tree. In this
matching tree, each node corresponds to a test on some of the attributes and edges are results
of such tests. Each node found within a lower level is a refinement of the tests performed in
higher levels. Subscriptions are stored at leaves. When evaluating against an event, a top down
traversal of the matching tree built over the predicates of the subscriptions is performed. At
each node, the test prescribed by the node is executed and the edges consistent to the result are
followed (more than one edges might be followed). This is repeated until the leaves of the tree
are reached. The set of subscriptions that correspond to the leaves upon which the algorithm
has concluded are reported as matched [4].

The advantages of the content based subscription scheme has lead to the realization of a vast
number of Publish/Subscribe systems within the scientific and industrial community. Examples
of such systems that employ an attribute based model for events are amongst others SIENA [12],
Gryphon [4] and Le Subscribe [33]. An example of a term based Publish/Subscribe system used
for the selective dissemination of text documents is that of SIFT [46]. Another example is that
of COBRA, a system that crawls, filters, and aggregates vast numbers of RSS feeds, delivering to
each user a personalized feed based on their interests expressed as term based subscriptions [37].
Finally, YFilter [16] considers the massivelly adopted semi-structured model of XML for events,
and aims in providing on-the-fly matching of XML encoded content to larger numbers of query
specifications.

1.1.3 Quantifying Performance Targets of Web Syndication Systems

According to a recent experimental evaluation of the characteristics of 8,135 news feeds over
an 8 month period [21], RSS/Atom items combine information from both authoritative (e.g.
news agencies and journals) and social sources (e.g., blogs or micro blogs), provide only a short
overview of the available web content (smaller than advertisement bids and social posts or
comments), they are by no mean interlinked (e.g., as Web page hyperlinks or post replies) while
the globally observed feeds activity is significantly inferior to the activity observed inside social
media applications involving a much large number of users. More precisely, the main conclusions
drawn from this experimental evaluation are:

1. 3.6% (which accounts for 292 news feeds of the total number of harvested RSS/Atom feeds
had an hourly update (>1 item per hour published) while the corresponding feeds account
for the 73.07% of the items published during the period of study. In addition, feeds with
a low publication rate exhibit more frequently bursts with an important strength. No
major variation in the behaviour of the feeds activity has been observed during the 8
month period of the study. Furthermore, authors haven’t observed any strong correlation
between feeds subject and their activity.

2. RSS/Atom items are intrinsically semi-structured. The most popular tags are the textual
title (with an average length of 6.81 terms) and description (with an average length of 45.56

7

terms). Thus the average length of items is 52.37 terms clearly greater than web queries
(2-3 terms [39, 47]), advertisement bids (4-5 terms [26]) or micro-blogs (≈ 10 terms), but
certainly smaller than blog posts (200-250 terms) or Web pages (450-500 terms excluding
tags [28]).

3. The size of the vocabulary employed in RSS items is extremely big. Authors in [21]
report a total number of 1,537,730 terms employed by the English feeds of their testbed.
For the 5000 most popular terms, 91% correspond to English words (i.e. terms belonging
to WordNet18 dictionary). This ratio decreases linearly to reach less than 50% after rank
20000. However, the weekly vocabulary does not exceed 176,600 terms (of which 85,600 are
English terms) with 81,600 (of which 31,400 are English terms) of them being already used
in the previous day. Finally, named entities and typos are much numerous than common
English terms: a sample of terms with a unique frequency gave 60% of typos among the
terms non appearing in WordNet.

However, to the best of our knowledge, no research has been conducted on the characteri-
zation of the statistical properties of term-based subscriptions. This is related to the fact that
term-based web syndication is still in its infancy and not many commercial systems supporting
such a subscription scheme exist. One such example, is Google Alerts19, however information
regarding user subscriptions is considered proprietary and it is not available for statistical analy-
sis. In the rest of our work we will project to term-based subscriptions the experimental finding
concerning related web technologies such as Web pages and queries [14, 39, 47, 7, 43, 28], textual
advertisements and sponsored search [23, 2, 18, 26]. With regard to the anticipated subscrip-
tion size, we expect that on average the number of terms a subscription would contain will fall
between the range of web queries (2-3 terms [39, 47]) and advertisement bids (4-5 terms [26]).
Given the nature of news/blogs, many of the keywords employed by users in queries are event-
related [30, 40] .Hence, we expect that the vocabulary size of subscriptions to be comparable to
the vocabulary of news items and follow the same term frequency distributions. In addition, we
anticipate, that term burstyness in subscriptions follow the burstyness of terms in items (users
are interested in news items concerning major events as long as they are published).

1.2 Problem Statement & Contributions

As we have seen, RSS or Atom syndication technologies exhibit serious limitations for coping
with information overload in the context of Web 2.0 while they imply a tight coupling between
feed producers with consumers. In this thesis we are interested in supporting the functionality
of news search engines according to a push model. A naive solution to this end is to handle user
queries as long lasting keyword based profiles and evaluate them every time the corpus of indexed
news items was updated. It becomes evident, that the naive approach is neither efficient nor
scalable given the high publishing rate of news items and the large number of profiles that need to
be maintained for real scale web applications. For this reason we advocate a Publish/Subscribe
messaging paradigm which implies to efficiently handle long-lasting user subscriptions against
which the incoming news items are matched in a streaming mode. In particular, we will like
to enable users to express their interests as keyword-based queries (rather than subscribing to
an entire channel) which will be matched at real time against incoming news items (i.e., events
in our setting) from different web feeds. News items are in turn represented as a set of terms

18wordnet.princeton.edu
19www.google.com/alerts

8

(i.e. keywords) and ignore the semi-structured tags of the involved RSS/Atom XML files (our
choice will be justified latter on in this section). In other terms, we are focusing on term-based
Publish/Subscribe systems for news items published on the web according to the RSS/Atom
standards.

Regardless of the employed subscription scheme, our primary concern is to build an event
processing engine that is both efficient time/space wise and scalable in terms of supported
subscriptions and news items in a centralized setting (distribution aspects are outside the scope of
our thesis). Efficiency refers to the time the notification service needs to match an incoming news
item against the set of stored subscriptions. Ideally, a term-based web syndication system should
be able to handle millions of users’ subscriptions, be able to manage high rates of published
news items and afford a small response time in order to achieve an on the fly event processing
which obviates the need for storing locally the news items.

It is obvious that, in order to ensure good performances of a Publish/Subscribe system in-
dependently of the setting employed (distributed/central) to implement the notification service,
it is required to efficiently solve the problem of event matching. Depending on how matching
is decided, for content based Publish/Subscribe systems, two main approaches been proposed
in the literature, namely count-based and tree-based. Towards that end, in this work, we are
interested in indexing unstructured subscriptions formed by sets of keywords according to both
Count and Tree-based schemes and study their behavior for critical parameters of realistic web
syndication workloads.

Contributions

The main contributions of this work are:

• We studied the memory and matching time requirements of both tree and count-based
subscription indices. More precisely, we relied on an ordering of the vocabulary terms to
build a Trie-based index that exploits the covering relationships between subscriptions to
address the scalability concerns when indexing and searching sets of keywords. As opposed
to the flat search space implied by the Inverted File structure of the Count index, the hi-
erarchical search space of the Trie index addresses the following two problems exhibited
by the Count-based alternative: (a) for frequent terms the search space of subscriptions is
extremely large and (b) in order to support broad match semantics (the universal quan-
tifier on the terms of subscriptions) an additional index structure, namely the counter, is
required. In addition we tried to bound the matching and memory requirements of the
Trie index based on the statistical properties of the vocabulary of terms.

• We implemented the Trie and Count based indices and devised sace-wide optimizations for
both. For the Count index the optimization accounts for: (a) the nodes of the postings sets
(compact representation) and (b) count structure (2-level indexing). As an optimization
for the Trie index we considered: (a) five different node types (depending on the number
of subscriptions and children a particular node contains) and (b) path compression (via
compact Trie nodes).

• We conducted a thorough experimental evaluation on both indices, considering all op-
timizations, with synthetic data generated from statistical properties observed in real
application settings. More specifically, we were interested in investigating (a) how the
morphology of the two indexes is affected by different workload parameters, i.e. the vo-
cabulary distribution, the size of the vocabulary, and the size of the subscriptions and

9

(b) how Trie and Count morphology impacts the scalability and performance of the two
indices for realistic characteristics of subscriptions and news items.

To the best of our knowledge, no previous work that performs a comparative study on the
behaviour of Count and Tree based indexing schemes for critical parameters of realistic web
syndication workloads exists.

1.3 Thesis Organization

The structure of this thesis is as follows: In Chapter 2 we formally define the matching problem
and present the index structures and algorithms used for matching. We instantiate the discussion
with Section 2.1 where we present a naive approach to matching. We argue the need for indexing
and next, in Section 2.2 present the Count index for which we provide a distribution based
analytical model. We discuss it’s properties and expose it’s basic limitations. In Section 2.3
we propose a Trie based index for storing subscriptions, and provide an upper bound on the
memory and matching requirements based on the Pascal’s Triangle construct.

Chapter 3 presents our prototype Publish/Subscribe system used for evaluating the index
structures. We provide implementation specific details, in a high enough level, to justify several,
essential to performance, design decisions for both the Count and Trie indices. The experimental
findings of the Trie index when compared to the Count index are presented in Chapter 4. Firstly,
in Section 4.1 we investigate the impact of different term distribution cases on the morphology
of both indices, next we show the results from the evaluation of the impact of several related
workload parameters. In Section 4.5 we measure the scalability characteristics of the Trie index
in comparison to the Count index.

Chapter 5 gives the related work in the more general area of event notification systems.
Finally, in Chapter 6 we present our main conclusions and some ideas for future work.

10

Chapter 2

Subscription Indexes

Nowadays a great amount of news content ranging from journal papers and articles to personal
blogs until microblogs in social media is being syndicated on the web. Hence, there exists a
demand for services that provide search capabilities for news information. Two typical examples
are Google News Search 1 and Yahoo News Search2. These services periodically crawl for news
and enrich their corpus with published content. These search services are essentially retrospective
in nature as users issue short living queries which get evaluated only once over already existing
content[22]. As web search engines, news queries are keyword based and adopt conjunctive
semantics. Assume a query qi and let I denote the news corpus indexed by such a retrospective
search system. Evaluating qi over I results to IMAT CHED = {Ik : ∀tj ∈ qi → tj ∈ Ik}. That
is to say that a particular news item Ik is considered as an answer when evaluating qi if and
only if every term (keyword) of qi is also contained within Ik. Consider for example the queries
q1 =′ greece′ ∧′ crisis′ and q2 =′ greece′ ∧′ crisis′ ∧′ IMF ′ and a news item corpus I of only
one news item I1 =′ greece′∧′ crisis′∧′ deficit′. Evaluating qi over I would return news item I1
because both of the terms ’greece’ and ’crisis’ of q1 are also present in I1. However, news item
I1 would not be in the answer set of q2 since the term ’IMF’ does not belong to I1.

In the publish/subscribe paradigm for web syndication, users submit long lasting subscrip-
tions instead of queries. Whenever a news item is published, it gets evaluated against the set of
indexed subscriptions and for every matching the corresponding subscriber is notified. Hence,
they are prospective in nature since a user submitted subscription will be matched to news items
encountered in the future. We assume a keyword base subscription scheme with similar con-
junctive semantics to web news search engines. A match occurs if and only if all of the terms
(keywords) of a particular subscription Si are also be present in a news item Ik. For example,
assume the subscriptions S1 =′ greece′∧′crisis′ and S2 =′ greece′∧′crisis′∧′IMF ′ and suppose
we want to match the news item Ik =′ greece′∧′ crisis′∧′ deficit′ against both S1 and S2. Since
all of the terms of S1 are also contained within Ik, S1 will be reported as matched. Subscription
S2 however, will not be contained in the answer set of Ik, since the term ’IMF’ is present within
S2 but not in Ik.

Within the context of web news search engines, it is the user queries that get evaluated over a
maintained news corpus. When the publish/subscribe paradigm is applied however, then it is the
arriving news items that are evaluated against the stored subscriptions. Clearly, the containment
relations with regard to what is being evaluated in each case have been inversed. As we can see
in Figure 2.1, within the context of publish/subscribe the roles of queries (subscriptions) and

1news.google.com
2news.search.yahoo.com

11

documents(news items) has been inversed.

Figure 2.1: Prospective versus Retrospective search

Notation

Consider a vocabulary of terms, VS = {t1, t2, ..., tn}. In the following we will denote the set of
subscriptions submitted to the system as S = {S1, S2, ...Sk} and will refer to the total number
of subscriptions maintained as |S|. Each subscription Si ∈ S that corresponds to a set of terms
denoted as Si = {t1, t2, ..., tn} is defined as Si ⊆ VS . The size of Si denoted as |Si| corrsponds to
the number of terms it contains. Publishers publish content to the system in the form of news
items which are also composed of terms. We will use I = [I1, I2, ...In] to denote the stream of
published news items. For every item Ij ∈ I it holds that Ij ⊆ VS . The size of Ik such that
Ik = {t1, t2, ...tm}, corresponds to the number of terms of Ik and is denoted as |Ik|.

Definition 1 (Covering Property). An item Ik is said to fully cover a subscription Si (Ik � Si)
if and only if ∀tj ∈ Si → tj ∈ Ik.

Definition 2 (Matching Semantics - Broad match). We say that a subscription Si matches an
item Ik if and only if Ik � Si.

Lemma 1. Given a subscription Si and an item Ik then Ik � Si → |Ik ∩ Si| = |Si|.

Problem

Given an item Ik, we want to find the set of subscriptions SM ⊆ S for which a match occurs
(w.r.t. Definition 2).

Example 2.1

To better illustrate how matching is applied, suppose the motivating example presented in Table
2.1. Matching item I1 = {t12, t1} against the set of subscriptions, will result to the set of matched
subscriptions SM = {S4}. Subscription S4, is in the resulting answer because both terms t1 and
t12 are also contained within item I2; it holds that S4 ⊂ I1. To demonstrate the differences from
retrospective search queries consider example I2 = {t24}. Apparently, for I2 it holds that I2 ⊂ S2.
However, the query answer would be SM = {} since according to Definition 2, it has to hold that
I2 ⊇ S2 and not vice versa. It is clear that the opposite containment relations with regard to what
is being queried in each case need to hold.

12

Table 2.1: Example of a set of keyword based subscriptions

Subscription Terms
S1 (t1 ∧ t2 ∧ t4)
S2 (t1 ∧ t24)
S3 (t1 ∧ t2 ∧ t3)
S4 (t1 ∧ t12)
S5 (t2 ∧ t4)
S6 (t2 ∧ t3 ∧ t13)

Despite the fact that we only consider conjunctive (AND) semantics, other operators under
the boolean model such as negation (NOT) and disjunction (OR) can also be applied, by pre
converting such complex subscriptions to their equivalent DNF form and treating each atomic
conjunctive formula as a normal subscription.

2.1 Naive - Brute Force Method

Assume that no index is built over the set of subscriptions. The simplest and most straight-
forward way to match a news item Ik against a set of subscriptions S is to iterate over S and
for each term tj contained within a subscription Si ∈ S check if that particular term tj is also
present in the item Ik. As soon as we encounter a term tj of a subscription Si that is not also
contained within the item under test, we proceed to the next subscription Si+1. If all terms ti
of Si are present in Ik, we report a match. This naive approach is illustrated in Algorithm 1
and will here after be referred to as the brute-force method.

Algorithm 1: BF MATCH(Ik,S)
Require: An item Ik for which |Ik| ≥ 0.
Require: The set of submitted subscriptions S.

1: SMATCHED ← {}
2: for all subscriptions Si ∈ S do
3: no match← false
4: for all terms tj ∈ Si do
5: if tj /∈ |Ik| then
6: no match← true;
7: break;
8: end if
9: end for

10: if no match = false then
11: SMATCHED ← SMATCHED ∪ {Si}
12: end if
13: end for
14: return SMATCHED

The brute force method does not require any additional space other than the subscriptions
themselves. The space requirements are O(|S|∗|Si|AV G). Because set membership between each
term tj of every subscription Si and the item (line 5 of Algorithm 1) is performed several times

13

(critical inner loop), methods for efficiently testing set membership need to be employed. One
way to efficiently perform such a test is to build a hash table for the incoming item in order to
quickly determine if a particular term is present within that specific item or not. The lookup of
a term in the item using a hash table can be done in O(1). Therefore, the time complexity is
equal to O(|S| ∗ |Si|AV G).

Even if testing for set membership is performed in a timely manner, the number of such tests
that need to be performed when the brute-force method is considered is still large. Recall from
the previous chapter that we anticipate |S| ≈ 106 and |Si| ≈ 3. Such figures, render the brute
force method inappropriate given the high publishing rate of news items. Obviously there exists
a dependency in |S| which is undesirable.

One way for improving matching performance when employing the brute-force method is by
exploiting statistical information (if any) regarding the probability of a term’s presence(absence)
within a subscription. If the vocabulary VS of subscription terms provides information about
the frequency of a particular term then, by ranking the terms according to that frequency and
storing them in reverse frequency rank order would result to better matching performance [45].
The idea is to exploit the conjunctive semantics as applied to matching (see Definition 2). Recall,
that the brute-force method stops testing a particular subscription Si as soon as it encounters
a term tj of Si that is not also contained in the item Ik being evaluated. Hence, by ordering
the terms of a subscription from the least frequent to the most frequent would ensure a faster
matching since non matching subscriptions will be discarded as early as possible (only few terms
per subscription need to be tested in order to decide a match). Consider example 2.2 bellow.

Example 2.2

Consider the set of subscriptions of our motivating example in Table 2.1 and assume that the term
subscripts denote their corresponding frequency ranks; we consider t1 to be more frequent than t2
which in turn is more frequent that term t3 and so on. Suppose now that we want to find subscrip-
tions matching item I1 = {t1, t2, t3}. The brute force method starts by testing the first subscription,
S1. The least frequent term which is t4 is first considered. Since t4 is not present within I1 the
algorithm proceeds to the next subscription,S2. The algorithm next processes term t24 ∈ S2, verifies
that it is not also within I1 and continuous to subscription S3. This procedure is repeated for all
stored subscriptions Si. The total number of set membership tests for item I1 in the improved brute
force method is equal to 8 as opposed to the naive case where 10 tests would need to be performed.
Observe that this frequency based improvement does not apply for subscription S3 (which is reported
as matched) where all three terms need to be examined.

The achieved performance gain for the optimized approach depends on the number of fre-
quent and infrequent terms the subscriptions contain. If subscriptions contain at least one
infrequent term but many frequent terms then frequency based term matching would result to
a significant gain. It must be stressed here though, that this simple optimization will not result
to any gain for subscriptions belonging to the resulting set of matched subscriptions, since by
definition all of their containing terms will be tested for set membership against Ik.

2.2 Count based Subscription Index

The brute-force algorithm needs to examine all of the subscriptions before returning the set of
matched subscriptions. Considering the fact that within our setting we need to be able to handle
millions of subscriptions it is obvious that such a simple solution does not scale. Any efficient

14

Figure 2.2: Count based index built over motivating example presented in table 2.1

solution to the matching problem should eliminate potentially non matching subscriptions as
soon as possible. This early subscription pruning can be achieved if make use of the following
observation: according to our matching semantics (see Definition 2), every subscription term
must also be present in the news item under consideration; a subscription containing terms not
belonging to a particular news item can safely be excluded from the resulting set of matched
subscriptions. More formally, we can reject subscriptions that contain any term tk ∈ VS for
which it holds, tk /∈ terms(I). The idea is to maintain an inverse mapping from terms to
subscriptions that confines the original search space to subscriptions only containing a term
which is also present within the news item being matched.

In a nutshell, the inverted file data structure can be used to map every term tj ∈ VS to
the set of subscriptions that contain that specific term since it provides fast access methods
to subscriptions containing a specific term. The inverted file structure is composed of two
main parts namely, the vocabulary of terms and the inverted sets(lists) of subscriptions. Each
vocabulary entry stores the term itself ∀tj ∈ VS and a pointer to the inverted set of subscriptions
containing tj . We will use the notation Postings(tj) here after to denote the set of subscription
postings assigned to term tj .

Figure 2.2 illustrates the inverted file built over the set of subscriptions of Table 2.1. Consider
for example subscription S6 = {t3, t13}. A posting entry labelled with S6 is contained in both
the inverted sets corresponding to each of the subscription terms t3 and t13. Observe that the
inverted set of postings for term t2 is equal to Postings(t2) = {S1, S3, S5, S6} and is of size
|Postings(t2)| = 4. Apparently, the size of a particular posting list is equal to the frequency of
a term in the total set of subscriptions S. Thus, we anticipate that the structure of the inverted
file to reflect the distribution that the terms of the vocabulary VS obey.

When processing a boolean query against an inverted file structure of documents, we can

15

simply get the answer by applying set operations on the inverted sets obtained for each particular
term[6]. For example AND (i.e. conjunctive semantics) operators are processed by intersecting
the inverted sets; OR (disjunctive semantics) operators are processed by unioning(merging) the
obtained inverted sets. However, this technique cannot be used in our context. Despite the fact
that we also assume a conjunctive subscription model, simply intersecting the inverted sets of the
terms does not lead to valid results. To better illustrate this fact, consider the example of Figure
2.2 and suppose we want to match news item I1 = {t1, t12, t24}. The answer set when simply
intersecting the inverted sets of terms of I1 (i.e. Postings(t1) ∩ Postings(t12) ∩ Postings(t24))
would be equal to the empty set {}; no matching subscriptions will be returned. This however
is not valid, since for I1 we should obtain SMATCHED = {S2, S4}.

Instead of intersecting the obtained inverted sets for given terms tj of a news item Ik, we can
alternatively union them. In our motivating example, unioning the inverted sets of terms for
I1 = {t1, t12, t24} would result to the subscription set {S1, S2, S3, S4}. Once again this is not equal
to the expected SMATCHED = {S2, S4}. However, it holds that the unioned set of subscriptions
is a superset of the actual answer. This superset relation can be explained by the following
observation: every subscription in the unioned set contains at least one term tj such that tj is
also contained within news item I1. It holds that: ∀Si ∈ SUNIONED → |Si ∩ I1| ≥ 1. Along
with the correct subset of subscriptions that will potentially get matched, false positives are also
obtained. These false positives refer to subscriptions that are partially but not fully covered by
news item I1 (Lemma 1). To obtain the correct set of matched subscriptions, further processing
is needed for excluding such false positive subscriptions. To determine if the subscription Si ∈
SUNIONED is an actual answer one would need to further check if all of its terms tj ∈ Si are also
contained within the news item. This procedure referred to here after as IF Match is presented
in Algorithm 2.

Algorithm 2: IF MATCH(Ik, IFS)
Require: An news item Ik for which |Ik| ≥ 0.
Require: The inverted file index, IFS built over the set of subscriptions S

1: SUNIONED ← {}
2: for all tj ∈ Ik do
3: Ptj ← obtain Postings(tj) from IFS
4: SUNIONED ← SUNIONED ∪ Ptj

5: end for
6: SMATCHED ← BF MATCH(Ik,SUNIONED)
7: return SMATCHED

The IF Match algorithm is a two step procedure; the first step involves the union operation
where all inverted sets are traversed and their subscriptions are merged (lines 2-5 of Algorithm
2); the second step involves the traversal of all unioned subscriptions from step 1, to exclude
false positives (line 6 of Algorithm 2). The greater the discriminative power the terms of a
news item have, the greater the gain of using the inverted file. If a news item contains terms
that do not appear in many subscriptions (i.e. are discriminative) then obtaining the inverted
sets of terms tj , unioning them, and then performing a brute force matching upon them will
result to an efficiency gain when compared to the naive method. This gain is due to the pruning
of the subscription search space incurred by step 1 IF Match. To better illustrate this, recall
our motivating example of Figure 2.2 and suppose we want to match the set of subscriptions
against news item I2 = {t2, t4}. The brute-force method would require to scan through the

16

whole set of subscriptions S, where as the IF Match would only need to examine subscriptions
{S1, S3, S5, S6} corresponding to Postings(t2) ∪ Postings(t4).

Although the IF Match reduces the search space of subscriptions it still requires two passes
over the indexed subscriptions; one pass to determine the unioned subscription set; a second
one to eliminate any possible false positives within the obtained set. Additionally, further
subscription pruning performed on the candidate set produced in step 1 additionally requires,
either supplementary data structures or accessing the subscriptions themselves. An improvement
could be achieved based upon the following observation: when iterating over the inverted sets for
the terms tj of Ik, a particular subscription posting Si could be considered more than one times.
The number of times Si is considered is equal to the common terms Si and Ik share; i.e. |Si∩Ik|.
Recall that, according to Lemma 1, for a news item Ik to match a subscription Si it has to hold
that |Si ∩ Ik| = |Si|. An extension to the IF Match method referred to as counting method
(count based index) that exploits this observation is presented in the next subsection. The idea
is to additionally maintain a counter per subscription in order to further improve efficiency by
matching in a single pass over the set of subscription postings. Along with the inverted file
structure, this technique also considers a Count3 structure that facilitates matching. As we can
see in Figure 2.2 the Count(er) maps every subscription to the total number of terms it contains
and is used to keep track of the number of matching terms per subscription in order to verify
satisfiability according to Lemma 1 when evaluating a news item.

2.2.1 Count Based Index - Construction

When adding a subscription Si into the index, an entry labelled Si is added, to the postings list
associated to every term ti of Si. Additionally, an entry is inserted in the Counter map with
the total number of terms, |Si|, subscription Si contains. Algorithm 3 illustrates the procedure.

Algorithm 3: CB ADD(Si)
Require: A subscription Si with for which |Si| ≥ 0.

1: cnt← 0
2: PostSet← {}
3: for all terms tj in Si do
4: PostSet← get subscription postings set for term tj
5: PostSet← PostSet ∪ {Si}
6: cnt← cnt+ 1
7: end for
8: Counter[Si]← cnt

Example 2.3

Consider that we want to index subscription S3 = {t1, t2, t3}. Initially, the postings set for term
t1 ∈ S3 is obtained and an entry labelled with S3 is added to it. This is repeated for both other terms
t2 and t3 of subscription S3. The number of additions equals to the size |S3| = 3. Additionally,
an entry within the Counter map is inserted for S3 with a value equal to 3 as depict in Figure 2.2.

3will be referred to simply as Counter

17

The set of parameters that affect construction time, memory requirements and matching
time of the subscription indices are summarized in Table 2.2. Parameters have been categorized
into two distinct classes, W(workload) and R(representation), respectively [8]. The first class
of parameters refer to characteristics that are machine independent and describe the workload
under consideration, such as the total number of subscriptions, the vocabulary size, etc. The
latter refer to machine dependant characteristics which capture internal representation and
influence internal subscription storage. This set of parameters as defined in table 2.2 will be
used throughout this thesis.

Table 2.2: Parameters that characterize the workload

Parameter Description Category

|S| Total Number Of Subscriptions W
|VS | Vocabulary Size W
|Si|AV G Expected Subscription Size W
|Ii|AV G Expected news item Size W

w(c) Width of Counter Entry R
w(v) Width of Vocabulary Entry R
w(p) Width of Subscription Posting Entry R

Construction Time Requirements

Adding a subscription Si requires for every term tj ∈ Si, one vocabulary probe to obtain the
respective inverted set as well as an addition to the corresponding posting set. One counter
update should also be performed. Hence, the total number of operations required to insert a
subscription Si is equal to:

Time(ADD SUBSCRIPTION) = |Si|AV G ∗ Time(V ocabulary Probe) +
|Si|AV G ∗ Time(Set Addition) +
Time(Counter Insertion) (2.1)

Assuming an inverted set addition, and a Counter update can be performed in O(1) we can
deduce that the time needed to insert a particular subscription Si ∈ |S| into the Count based
index can be performed in O(|Si|AV G). It is obvious that adding a subscription to the index is
scalable as it not affected by the total number of indexed subscriptions |S|

Memory Requirements

In the following we will present an analysis of the memory usage of the count based subscription
index. Recall that the count based approach is composed of two main structures, the inverted
file and the Counter. The inverted file is further decomposed to the vocabulary which stores the
set of terms found within S and the subscription postings which store the set of subscription
corresponding to particular terms. Therefore, the overall memory required by the index is:

Size(Index) = Size(IF) + Size(Counter)
= Size(V ocbualry) + Size(Postings) + Size(Counter) (2.2)

18

Each subscription indexed has a corresponding entry in the counter. Since every entry occupies
w(c) space, the memory required by the Counter is equal to:

Size(Counter) = w(c) ∗ |S| (2.3)

Let Pr(tj), denote the probability assigned to term tj . Pr(tj) corresponds to the observed
frequency of tj normalized over the size of VS . Hereafter we assume that the probability of
appearance of a term tj ∈ Si is independent of every other term tk ∈ Si. In addition we assume
that all subscriptions have the same size and use the notation |Si|AV G to denote the it. In a
similar manner we assume a constant news item size denoted as |Ik|AV G.

A subscription Si of size |Si| does not contain term tj if and only if the 1st, the 2nd, ... ,
the |Si|thAV G term of Si is not tj . Hence, the probability that tj appears within a subscription Si

with respect to Pr(tj), is:

Pr(tj ∈ Si) = 1− Pr(tj /∈ Si)

= 1− (1− Pr(tj))|Si|AV G (2.4)

Clearly, in order for a term tj to not be present within the vocabulary VS it has to hold
that tj does not appear in any of the subscriptions S1,S2,...,S|S| of S. Thus, the probalitity
Pr(tj ∈ S) is equal to:

Pr(tj ∈ S) = 1− Pr(tj /∈ S)

= 1−
|S|∏
i=0

(1− Pr(tj ∈ Si))

(2.4)
= 1− (1− (1− Pr(ti))|Si|AV G)

|S|
(2.5)

Having calculated the probability of a particular term tj to be stored within the vocabulary,
the vocabulary size could be defined as the expected number of stored terms, multiplied by the
space occupied by a vocabulary entry(w(v)):

Size(V ocabulary) =

|VS|∑
j=0

Pr(tj ∈ S)

 ∗ w(v)

(2.5)
=

|VS|∑
j=0

1− (1− (1− Pr(tj))|Si|AV G)
|S|

 ∗ w(v) (2.6)

Given a term tj , a subscription posting is inserted into Postings(tj), every time tj is en-
countered within a subscription Si ∈ S. The size of each inverted set Postings(tj) is thus equal
to the number of times tj is found within |S|. Let random variable, P tj

size, express the expected
number of subscription postings a particular term tj ∈ VS contains. P tj

size, follows the binomial
distribution Bin [|S|, P r(tj ∈ Si)].

Assuming that the mean of the binomial distribution Bin [x;N,Pr] is equal to N ∗Pr, then
using E

[
P

tj
size

]
to denote the average number of postings for term tj , we can define the total

19

space required for storing the set of postings as:

Size(Postings) =

|VS|∑
j=0

(E
[
P

tj
length

]
)

 ∗ w(p)

=

|VS|∑
j=0

(|S| ∗ Pr(tj ∈ Si)

 ∗ w(p)

(2.4)
=

|VS|∑
j=0

(|S| ∗ (1− (1− Pr(tj))|Si|AV G)

 ∗ w(p) (2.7)

The space consumed by the index in total is:

Size(index)
(2.3),(2.6),(2.7)

= |S| ∗ w(p) +|VS|∑
j=0

1− (1− (1− Pr(tj))|Si|AV G)
|S|

 ∗ w(v) +

|VS|∑
j=0

(|S| ∗ (1− (1− Pr(tj))|Si|AV G)

 ∗ w(p) (2.8)

2.2.2 Count Based Index - Matching

The Count based subscription index uses a copy of the Counter to keep track of the number
of terms currently satisfied per subscription and verify for matched subscriptions. The proce-
dure is illustrated in Algorithm 4 below. Every time a new matching process is launched, the
Counter cpy is initialized as an exact copy of the Counter. When matching a news item Ik
against the set of subscription currently indexed, the Count based approach iterates through
every term tj ∈ Ik and obtaines the corresponding inverted set of postings (line 3). Next, for
each subscription posting Si within the inverted set, a lookup in the Counter cpy is performed,
and the corresponding subscription value is decremented by one (line 5). If the decremented
value of a subscription Si under test is equal to zero, the Si is returned as matched.

Algorithm 4: CB MATCH(Ik)
Require: An news item, Ik for which |Ik| ≥ 0.

1: Counter cpy ← copy of Counter
2: for all terms tj ∈ Ik do
3: PostSet← Posting(tj)
4: for all Si in PostSet do
5: Counter cpy[Si]← Counter cpy[Si]− 1
6: if Counter cpy[Si] = 0 then
7: notify subscriber Si

8: end if
9: end for

10: end for

20

Example 2.4

To better demonstrate how matching is performed consider news item I1 = {t1, t24, t12} eval-
uated over the set of subscriptions of our motivating example defined in Table 2.1. Initially,
Counter cpy = {S1 : 3, S2 : 2, S3 : 3, S4 : 2, S5 : 2, S6 : 3}. After processing the first term t1 ∈ I1,
the Counter cpy will be update to Counter cpy = {S1 : 2,S2 : 1,S3 : 2,S4 : 1, S5 : 2, S6 : 3} since
S1, S2, S3 and S4 are all contained in Postings(t1). Processing the second term t24 ∈ I1 would
further update the Counter cpy to {S1 : 2,S2 : 0, S3 : 2, S4 : 1, S5 : 2, S6 : 3} and result to a
reported match for subscription S2 since its corresponding value in the Counter cpy map after decre-
menting, is equal to zero. In a similar manner, processing the final term t12 ∈ I1 would result to
Counter cpy = {S1 : 2, S2 : 0, S3 : 2,S4 : 0, S5 : 2, S6 : 3} and a reported match for subscription
S4.

Instead of copying the whole Counter, an alternate approach could consider counting upwards
by copying only the values of subscriptions considered when traversing the postings sets. To
determine the set of matching subscriptions however, this approach would require an additional
pass over the copied values in order to verify equality between the number of times a subscriptions
was considered and the number of tems it contains.

Matching Time Requirements

The time complexity of matching an item Ik against the set of indexed subscriptions S is equal
to the number of times the critical inner loop (line 4-9 of algorithm 4) is executed. This is equal
to the sum of the sizes of all of the inverted sets corresponding to terms tj within item Ik. Using

the same notation E
[
P

tj
length

]
as above to express the average expected size of the inverted set

of a particular term tj and assuming that the time needed to perform a counter decrement and
test is equal to time(Counter Decr) we can define the time needed to perform matching as:

Time(Match) =

 |Ik|∑
j=0

(E
[
P

tj
length

]
)

 ∗ time(Counter Decr)
=

 |Ik|∑
j=0

(|S| ∗ Pr(tj ∈ Si)

 ∗ time(Counter Decr)
(2.4)
=

 |Ik|∑
j=0

(|S| ∗ (1− (1− Pr(ti))|Si|AV G)

 ∗ time(Counter Decr) (2.9)

2.2.3 Count Based Index Remarks

Unlike the brute-force approach, the Count based index partitions the set of subscriptions ac-
cording to the terms each subscription contains. It thus confines the search space upon evaluation
resulting to more efficient matching. Table 2.3 summarizes the worst-case performance of the
naive and Count based techniques (see Algorithms 1 and 3-4) with regard to their memory
requirements and time (construction and matching).

As opposed to the IF Match that only uses the inverted file structure for matching, the count
base approach does not require any supplementary data structure nor accessing the subscriptions
themselves in order to return the set of matched subscriptions. A single pass over the inverted
set of subscriptions along with counting is sufficient to decide the satisfiability of the matching

21

Table 2.3: Performance comparison(worst case) of Brute-Force and Count-Based methods

Construction Time Construction Memory Matching Time
Brute-Force O(|Si|AV G) O(|S| ∗ |Si|AV G) O(|Si|AV G ∗ |S|)
Counting O(|Si|AV G) O(|S| ∗ (1 + |Si|AV G) + |VS |) O(|Si|AV G ∗ |S|)

conditions. This however, implies that subscription are redundantly stored within the inverted
file. Recall, that the number of times a particular subscription is stored in different term postings
sets is equal to its size (number of terms it contains).

For the Count-based index, matching is affected by the size of the news item and the ex-
pected size of the subscription postings corresponding to the terms the matching news item
contains. Although the inverted index does reduce the initial search space of subscriptions, the
number of candidate4 subscriptions could still remain large if the term distribution, for both
subscriptions and news items, is skewed. One such case, which is realistic, is when the terms of
the subscriptions obey the long tale (Zipf) distribution. If this is the case then a great fraction of
the terms are associated to a few subscriptions and only a small number of terms are associated
to many subscriptions. To demonstrate how this applies, consider as an example the frequent
term ’greece’. Since, ’greece’ appears in a great number of subscriptions, it is expected that it’s
corresponding inverted set to be also large. Apparently, when matching news items that also
contain the term ’greece’, a large number of subscription postings would need to be traversed
and hence matching becomes costly. The count based approach that utilizes the inverted file
structure can be considered wasteful under the afore mentioned circumstances since, a great
fraction of the candidate subscriptions initially considered will not result to a match as they
would also contain additional terms not contained within the news item under consideration.

This problem is not new and has been extensively studied within the IR community. Several
techniques aiming at reducing the retrieval cost, impacted by retrieval and decoding of the large
inverted lists, have been devised [48]. One optimization that exploits the best match semantics
as applied to text search engines, considers partial inverted list evaluation. More specifically,
inverted lists are sorted by decreasing similarity impact and processing stops as soon as a given
threshold is exceeded [44]. However, such techniques can not be applied within the specific
context. The matching semantics (see Definition 2), imply a universal qualifier on the terms of
a subscription (all of the terms of the subscription must be present in the news item) which in
turn does not permit partial inverted list evaluation. Hence, solutions that assume a more fine
grained partitioning of the subscription search space need to be devised.

2.3 Trie Subscription Index

The Count based index, that utilizes the inverted file structure, performs a one level partitioning
by grouping the set of subscriptions according to the terms they contain. However, as discussed
in the previous section, if both news items and subscriptions follow the same skewed distribution
then matching could become inefficient as a large number of subscription postings would need
to be traversed. In addition, the count index requires to maintain an additional structure for
counting. We overcome both of these limitations by devising a tree based approach for storing
subscriptions. As opposed to the flat vocabulary of the inverted file, organizing the set of
terms within the vocabulary into a tree hierarchy leads to a more fine grained partitioning

4the term candidate subscription refers to subscriptions which are considered when matching (a Counter
decrement has been perfromed)

22

of the subscription search space and thus enables a more efficient evaluation. Moreover, the
hierarchical structure alleviates the need for maintaining an additional structure counting as
counting would be performed implicitly.

We use a tree structure built over the vocabulary of subscriptions that reflects subscription
covering relations. In accordance to Lemma 1, a subscription Si is said to fully cover a subscrip-
tion Sj , denoted as Si � Sj , if and only if ∀tj ∈ Sj → tj ∈ Si. Each node of the tree contains a
specific term tj ∈ VS , a list of pointers to child nodes and the set of subscriptions assigned to
that particular node. A subscription stored at node n of the tree is assigned to the set of terms
that corresponds to the union of all terms found in the path from the root to node n. Edges
identify covering relations. For example, if a subscription Sj is stored at a particular node n,
then for every other subscription Si stored at a descendant node of n it holds that Si � Sj .
Subscriptions belong to the same node if and only if they are identical (they contain exactly the
same set of terms). To better demonstrate the idea consider the Example 2.5 following.

Example 2.5

Figure 2.3: Tree based index built over the subscriptions of Table 2.1.

Figure 2.3 depicts a possible tree structure build over the set of subscriptions of Table 2.1. Con-
sider subscription S3 = {t1, t2, t3} and let us define the node at which S3 is stored as n3. Observe
that the set of terms assigned to S3 is equal to the union of the terms found in the path form the root
to the node n3. In a similar manner, subscription S5 corresponds to the set of terms S5 = {t4}∪{t2}.
Subscription S1 fully covers subscription S5 since it is stored at a descendant node of that to which
S5 is stored. The common subset that both S5 and S6 share is equal to the path from the root the
sub-tree both the subscriptions belong to. For this specific example the common subset (i.e. prefix)
shared by both subscriptions S5 and S6 is equal to {t2}.

The example of Figure 2.3 is only one of the possible tree structures built over the set of
subscriptions of Table 2.1. Depending on the covering relations considered, a different tree
structure could be constructed in each case. If we consider the lattice of all of the partially
ordered inclusion (covering) relations for the set of vocabulary terms then, the number of different
trees indices that could be constructed is equal to all of the possible traversals. Figure 2.4 depicts
two possible cases. Observe that Figure 2.4(a) corresponds to the tree index presented previously
in Example 2.5. Clearly, tree index construction is non deterministic.

23

(a) A Traversal of covering relations corresponding to the Trie index of Figure 2.3

(b) Another possible traversal of covering relations corresponding to Trie index of Figure 2.5

Figure 2.4: The partial ordered set of inclusion(covering) relations for the vocabulary of our
motivating example of Table 2.1

24

In order to overcome the issue of non determinism, additional information needs to be con-
sidered with regard to construction. We thus consider a Trie structure for indexing subscriptions
by enforcing total order on the terms of the vocabulary. This total order could either be random,
or follow for example the term frequency ranking in subscription/news items if available. Using
the latter approach leads to several interesting findings which are discussed in later sections of
this work.

2.3.1 Trie Index - Construction

In the context of web syndication, we consider subscriptions as set of words (terms). Although
such a model is suitable for the inverted file index of the count based approach, it cannot be
applied for the Trie index. The Trie data structure is an ordered tree data structure and thus
subscriptions should be modelled as sequences of words. A total ordering among the terms
of the vocabulary VS needs to be applied. Let ORDER : V 7→ R denote the mapping that
maps a particular term tj to its corresponding order within the vocabulary. In the rest of our
thesis, unless specified differently, term subscripts will be used to denote ordering. The ORDER
function which is assumed to be known before hand is bijective since for any two terms tj , tk ∈ VS

for which j 6= k it has to hold that ORDER(tj) 6= ORDER(tk); different terms should never
map to the same rank order.

Subscription addition for the Trie index is illustrated in Algorithm 5 below. When adding
a new subscription Si to the Trie index the algorithm performs a top down traversal starting
from the index root. Initially, the terms of Si are sorted according to their ranking order (line
1). At the first step of the algorithm, the path corresponding to the first term of the ordered set
of terms is followed. This procedure is repeated for every term tj ∈ Si. If a particular path does
not exist, then a new node labelled with the term under consideration is created and inserted
into the Trie structure (lines 5-8). The node at which the top down traversal, after consuming
the whole set of terms concludes, is where Si is finally stored. Figure 2.5 depicts the Trie index
built for the set of subscriptions of Table 2.1.

Algorithm 5: TRIE ADD(Si)
Require: A subscription, Si with |Si| ≥ 0.

1: sorted terms← sort(Si)
2: currNode← root
3: for all terms tj in sorted terms do
4: childNode← get child of currNode corresponding to tj
5: if childNode = null then
6: childNode← new node with label tj
7: set childNode as child of currNode
8: end if
9: currNode← childNode

10: end for
11: add Si to currNode

Example 2.6

Consider in Figure 2.5 that all subscriptions except S6 = {t2, t13, t3} have already been added into
the index. The ORDER function is assumed to be known. Recall that term subscripts denote the

25

Figure 2.5: Trie index built over out motivating example of table 2.1

total ordering of terms within VS , i.e. ORDER(t13) = 13. Initially the set of terms are mapped
to the their corresponding rank and sorted in decreasing rank order (t1 is thought to be the highest
ranked term of |VS |). Top down traversal starts from the root. The algorithm first considers term
t2 of subscription S6. Term t2 indicates that the path corresponding to term t2 must be followed
and such the algorithm proceeds. After processing the first term of subscription S6, the second term
t3 from the sorted list is considered. However, no such path exists(recall that we have only indexed
subscriptions S1 to S5) so a new node for term t3 is created and inserted into the Trie as a child
of term t2. Finally, term t13 of S6 is processed. Once again, since no such path exists term t13 is
created and inserted as of t2. Having consumed all of the terms of the subscription, S6 is assigned
to node labelled with t13 where the top down traversal of the Trie concluded.

Construction time requirements

When adding a subscription, Algorithm, 5 initially sorts the terms of the subscription accord-
ing their rank (set up phase). Next, it iterates through all of the terms and performs a top
down traversal on the index (traversal phase). Hence, the time needed to insert a particular
subscription is equal to:

Time(ADD SUBSCRIPTION) = Time(Set up) + Time(Traversal) (2.10)

Since sorting can be performed in O(N ∗ logN) [25] the time required for the set up phase
is equal to:

Time(Set up) = |Si|AV G ∗ log |Si|AV G (2.11)

When adding a subscription, for every term in the subscription, a lookup is performed to de-
termine if the corresponding child node exists. If Time(Look up) denotes the time required to
perform such an operation, then the time required for traversal is equal to:

Time(Traversal) = |Si|AV G ∗ Time(Look up) (2.12)

If we suppose that Time(Look up) can be performed in O(1), then adding a subscription into
the Trie index can be accomplished in:

Time(ADD SUBSCRIPTION) = |Si|AV G ∗ (1 + log |Si|AV G) (2.13)

26

Clearly, construction time is independent to the number of subscriptions currently indexed
(O(|Si|AV G ∗ (1 + log |Si|AV G)). Thus, adding subscriptions into the Trie index is scalable.

2.3.2 Trie Index - Matching

In order to match an news item Ik against the set of stored subscriptions, a top down traversal
on the Trie index is performed. Initially, we obtain the sequence of the terms of Ik performing
the same pre-processing the set of subscriptions where subject to. Traversal starts from the
index root. Algorithm 6 illustrates the case. At each traversal step, the paths corresponding to
all of the terms of Ik, whose ranks are superior to that of the term assigned to the currently
considered node are followed (lines 4-9). Matching subscriptions are reported as the algorithm
proceeds; for every node visited the subscriptions stored at that specific node are returned(lines
1-3).

Algorithm 6: TRIE MATCH(TNode, [t1...tn])
Require: TNode: the current trie node
Require: [t1...tn]: the sequence of terms

1: if TNode contains subscriptions then
2: SMATCHED ← SMATCHED ∪ {Si|Si ∈ TNode}
3: end if
4: for all term tj , j ∈ [1...n] do
5: childNode← get child for term tj
6: if childNode 6= NULL then
7: TRIE MATCH(childNode, [tj+1...tn])
8: end if
9: end for

Example 2.7

Suppose that we want to match news item Ik = {t2, t1, t4} over the index of Figure 2.5. Pre-
processing Ik would result to the sequence TSEQ = [t1, t2, t4]. Top down traversal starts from the
index root. Initially, term t1 is considered. Since such a term exists in the index the algorithm proceeds
to the specific node. When at the new node the sequence of terms is updated to TSEQ.1 = [t2, t4].
While at term t1 the algorithm considers rank t2 of TSEQ.1. Since such a path exists, it is followed
and TSEQ.1 is further updated to TSEQ.1.1 = [t4]. In a similar manner, after processing the final
term t4 of TSEQ.1.1, the algorithm proceeds to term t4 and returns subscription S1. Back in the
root, having processed term t1 of TSEQ, the algorithm considers the next term namely t2. Since
such a path from the root exists, the algorithm then proceeds to term t2 of the Trie and updates
TSEQ to TSEQ.2 = [t4]. Once again the algorithm follows the specific path to term t4. Subscription
S5 is reported as matched. Finally the algorithm considers the last term t4 of TSEQ and concludes
since no such path exists to be followed.

The count based approach needs to maintain a counter when matching a news item in order
to ensure the conjunctive matching semantics applied. The Trie index structure on the other
hand does not require such a mechanism. The reason being is that due to the inherent nature
of how subscriptions are organized as a rooted tree, counting is performed implicitly as the
matching algorithm progresses. Every time an edge is followed and a new term of the Trie

27

is further considered, the matching algorithm implicitly increments a ’single’ counter for all
subscriptions present in the same sub Trie rooted at that particular term. Consider for example
the paradigm of figure 2.5 and suppose we want to match news item Ik = {t1, t2}. Further
suppose that the algorithm has processed both of the terms of Ik. Since the length of the path
from the root to the current term is equal to two, for both subscriptions S3 and S4 stored at
descendant nodes of term t2, the algorithm has implicitly counted two satisfied terms.

2.3.3 Trie Analytical Model

The memory requirements of the Trie index are directly related to the number of nodes (terms)
it occupies. Towards that end, we present an upper bound on the total term occurrences for the
Trie, based on the Pascal’s triangle construct [20]. More precisely, we argue that, the occurrences
per term of a complete Trie, can be modelled as a Pascal’s Triangle. By exploiting several
properties associated within, we then propose an analytical model for the memory requirements
of the Trie with respect to a specific vocabulary and subscription size.

Trie as a Pascal Triangle

In mathematics, a Pascal’s triangle is a triangular array of the binomial coefficients in a triangle.
The triangle can be represented as an N by N matrix where:

• T [0][j] = 1,∀j ∈ [0, N − 1]

• T [i][j] =
i−1∑
k=0

T [k][j − 1]

To better demonstrate the concept consider the example of Table 2.4 which depicts a Pascal’s
triangle as a 4 by 4 matrix. Observe that, all elements of the first column are equal to one. In
addition:

T [1][1] =
0∑

k=0

T [k][0] = T [0][0] = 1

T [3][1] =
2∑

k=0

T [k][0] = T [0][0] + T [1][0] + T [2][0] = 1 + 1 + 1 = 3

Table 2.4: Pascals Triangle (4,4)

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

Following are several properties of the Pascal’s Triangle that will be used in the sequel
where we devise the analytical models. We will use the notation Ck

n to denote the number of
k-combinations of n elements:

Property 2.3.1. If we represent the Pascal’s Triangle as a N by N matrix (let T denote the
Triangle) then, for each element of the matrix it holds that: T [i][j] = Cj

i

Property 2.3.2. A direct implication of Property 2.3.1 is that the sum of a column k in a

triangle with N rows is equal to:
N−1∑
n=0

Ck
n

28

Property 2.3.3. The sum of row n in a Pascal’s Triangle is equal to 2n

Lemma 2. Consider a vocabulary of size |VS | = N and that the terms of VS are ranked from
0 to N-1. Let occl(tj) denote the number of occurrences of term tj in level l of the Trie. If T
denotes the Pascal’s Triangle represented as an N by N matrix then: occl(tj) = T [j][l]

Proof. By construction, a term with rank r will be a child for each term with rank m superior
to its rank (m < r). Considering level l, the number of occurrences of term tr is equal to the
sum of occurrences of every term tm in level l− 1 for which it holds m < r. This is equal to C l

r.
However, according to Property 2.3.2, we know that T [r][l] = C l

r. Hence, occl(r) = T [r][l]

According to lemma 2, we can represent the complete Trie with a vocabulary of size |VS | =
N as Pascal’s Triangle. If we use the matrix representation for the Triangle then, rows will
correspond to the terms and columns to the levels of the Trie. This is better demonstrated by
example Figure 2.6 below. As we can see, every term of the vocabulary can exist only once at the
first level (L0). The first column of the Pascal matrix exposes this fact. Term t2 appears in level
L1 2 times, that is once for every term of level L0 with rank superior to 2 (t0 and t1). Observe
that this is equal to the third row of the second column of the Pascal’s matrix. Clearly, the
number of occurrences of a particular term tj of the Trie is equal to the sum of all occurrences
of tj for every level (sum of row j). In a similar manner, the number of terms assigned to level
Ll is equal to the sum of all occurrences of every term for that specific level (sum of column l).

Figure 2.6: Complete Trie and corresponding Pascal Triangle representation

With the use of the Pascal matrix we can compute the total terms the complete Trie contains,
by summing the occurrences for each term of every level:

Total Terms =
N−1∑
i=0

N−1∑
j=0

T [i][j] (2.14)

Memory Requirements

Although equation 2.14 defines the total terms a complete Trie can occupy, it only takes into
consideration the vocabulary |VS | of the subscriptions. This implies a Trie with a maximum
path of size |VS |. In the setting of web syndication where we expect small subscription size this
is however, far from true. We suppose that |Si|AV G| << |VS |. Obviously, the length |Si|AV G of
a subscription Si bounds the occurrences of a term to the first |Si|AV G levels of the complete
Trie. As table 2.5 illustrates, this ’trimmed’ sub Trie, corresponds only to a part of the Pascal’s
triangle.

29

Table 2.5: Partial Pascal’s Triangle

l0 l1 l2 - l|Si|AV G|−1

t0 1 0 0 - 0
t1 1 1 0 - 0
t2 1 2 1 - 0
- 1 - - - -

tN−1 1 N-1
N−2∑
k=0

k -
N−1∑
k=0

occ|Si|AV G|−1(tk)

Taking into account the cut-off effect of subscription size and Property 2.3.2, for a given
vocabulary of size |VS | = N the total terms occupied by the Trie are equal to:

TrieTerms =
|Si|AV G|−1∑

k=0

N−1∑
n=0

Ck
n (2.15)

Upper Bound on term occurences for the Trie

Equation 2.15 bounds the total terms of the Trie with respect to a given subscription and vocab-
ulary size. However, given the current setting this bound is practically unreachable. Towards
that end, we will devise an refinement, based on the findings of the previous sub section on the
Pascal’s Triangle, that additionally considers term distribution information. Let us first define
the number of expected terms for a given level.

Lemma 3. Let P (tj ∈ S) denote the probability a term tj exists within a subscirption of S. If
we use Pl(tj) to denote the probability we find occl(tj) (see Lemma 2) times term tj in level l
then:

Pl(tj) =
j−1∑
k=0

Pl−1(tk) ∗ P (tj ∈ S) ∗

|VS |−1∑
n=j+1

P (tn ∈ S)

|Si|AV G−l−1

, where:

P0(tj) = P (tj ∈ S) ∗

|VS |−1∑
k=j+1

P (tk ∈ S)

|Si|AV G−1

Proof. We will prove Lemma 3 by induction. Let us first consider the first level (l0) of the Trie.
For the first level we know that a term exists iff it is a prefix. For a term tj to be a prefix for
a subscription of length |Si|AV G, tj needs to exist in the subscription, and all other |Si|AV G − 1
terms need to have ranks inferior to j. We know that the probability to obtain a term inferior
to tj is equal to:

P (obtain a term inferior to tj) =
|VS |−1∑
k=j+1

P (tk ∈ S) (2.16)

30

Hence, the probability for term tj to be a prefix of Si is equal to:

P (tj prefix of Si) = P (tj ∈ S) ∗
|Si|AV G−1∏

k=1

P (obtain a term inferior to tj)

= P (tj ∈ S) ∗

|VS |−1∑
k=j+1

P (tk ∈ S)

|Si|AV G−1

(2.17)

So, P0(tj) can be computed as:

P0(tj) = P (tj prefix of Si)

= P (tj ∈ S) ∗

|VS |−1∑
k=j+1

P (tk ∈ S)

|Si|AV G−1

(2.18)

We will next compute the expected number of terms for the second level using level l0. To
better demonstrate the approach, observe Table 2.5 and lets consider the number of times term
t2 appears in level l1. We anticipate t2 to exist two times in level l1 if, t0 and t1 of l0 exist and
t2 is a prefix(t2 needs to be a prefix after we discard one of the terms, since we now consider
level l1). Hence, for a term tj we can say that:

P1(tj) =
j−1∑
k=0

P0(tk) ∗ P (tj prefix of sub with size |Si| − 2)

=
j−1∑
k=0

P0(tk) ∗ P (tj ∈ S) ∗

|VS |−1∑
n=j+1

P (tn ∈ S)

|Si|AV G−2

(2.19)

Suppose that we have computed the probability Pl−1(tk) for every term tk of level l−1 (induction
step). In order for a term tj to appear occl(tk) times in level l then it has to hold that, every
term tm (m < j) of level l − 1 exists (that is Pl−1(tm)) and that tj is a prefix of a subscription
of size |Si|AV G − (l + 1). Since we have computed Pl−1(tm) for all tm ∈ VS we can say that:

Pl(tj) =
j−1∑
k=0

Pl−1(tk) ∗ P (tj prefix of sub with size |Si| − (l + 1))

=
j−1∑
k=0

Pl−1(tk) ∗ P (tj ∈ S) ∗

|VS |−1∑
n=j+1

P (tn ∈ S)

|Si|AV G−l−1)

(2.20)

Matching Requirements

The time required to match an news item Ik against the set of stored subscriptions is propor-
tional to the number of terms visited. In a worst case scenario, the algorithm would have to
follow all the paths corresponding to every subset of Ik (O(2|Ik|)). In such a case, the sub Trie
corresponding to the traversal performed upon matching, is equal to the Trie built over the
terms of Ik. However, in order to obtain such a complexity the algorithm has to explore the

31

Trie data structure up to level |Ik|AV G which implies that |Ik| < |Si|. On the contrary, we
expect |Ik|AV G > |Si|; subscription size bounds the worst case. If we represent news item Ik as
a Pascal’s Triangle (observe Table 2.6) in the worst case the number of terms required by the
matching algorithm to be visited will be equal to:

V isitedTerms =
|Si|AV G|−1∑

k=0

|Ik|AV G−1∑
n=0

Ck
n (2.21)

Table 2.6: Pacal’s Triangle over new item Ik

l0 l1 l2 - l|Si|AV G−1

t0 1 0 0 - 0
t1 1 1 0 - 0
t2 1 2 1 - 0
- 1 - - - -

t|Ik|AV G−1 1 |Ik|AV G − 1
|Ik|AV G−2∑

k=0

k -
|Ik|AV G−1∑

k=0

occ|Ik|AV G−2(tk)

2.3.4 Trie index remarks

As opposed to the flat vocabulary considered by the Count index, the covering relations captured
by the Trie index allow frequent terms appearing as common prefixes to be organized in a fine-
grained hierarchical search space which in turn results to faster mathching. Moreover, the
tree structure alleviates the need for maintaining an additional structure as counting is now
performed implicitly. As Table 2.7 illustrates, w.r.t. the memory requirements, the size of the
subscriptions serve as a cut-off on the depth of the Trie. As for matching, the total number of
paths followed when matching is bound to the size of the news item.

Table 2.7: The Trie as Pascal’s Triangle: summary

l0 l1 l2 - l|Si|AV G−1 - N-1
t0 1 0 0 - 0

- 0
t1 1 1 0 - 0

- 0
− 1 - - - -

- 0

t|Ik|AV G−1 1 |Ik|AV G − 1
|Ik|AV G−2∑

k=0

occ1(tk) -
|Ik|AV G−2∑

k=0

occ|Si|AV G−2(tk) - 0

- 1 - - - - - 0

tN−1 1 N − 1
|Ik|AV G−2∑

k=0

k -
N−1∑
k=0

occ|Si|AV G−2(tk) - 1

32

Worst case (memory and matching):

TrieTerms =
|Si|AV G|−1∑

k=0

N−1∑
n=0

Ck
n

V isitedTerms =
|Si|AV G|−1∑

k=0

|Ik|AV G∑
n=0

Ck
n

Prefix Sharing

It is expected that users with similar interests to issue similar subscriptions. It is thus likely
for a great number of subscriptions to share common terms. Using the Trie index structure
proposed, in contradistinction to list structures employed by the inverted file case of the Count
based index could result to more compact representations with regard to the total number of
nodes each case occupies (Trie nodes versus inverter file subscription postings nodes). However
it is not always the case that two subscriptions sharing a common subset of terms to also share
a path within the Trie index.

Lemma 4. Any two subscriptions Si and Sj share a common path if and only if ∀tk ∈ {Si ∪
Sj} − {Si ∩ Sj},∀tl ∈ {Si ∩ Sj} → ORDER(tl) < ORDER(tk).

Recall, that the Trie is an ordered data structure. Hence, two subscriptions share a common
path if and only if ordering the terms according to rank order results to a common prefix. The
number of nodes they share is equal to the size of their common prefix. To better demonstrate
how this applies consider the example 2.8 below.

Example 2.8

Figure 2.7: Example of prefix sharing

Consider for example figure 2.7. In the first case on the left subscriptions S1 = {t2, t1} and
S2 = {t1, t3} are inserted into the Trie index. Both of the subscriptions S1 and S2 share the
common subset SCOMMON = {t1}. Obviously it holds that ORDER(t1) < ORDER(t2) and
ORDER(t1) < ORDER(t3); their common subset is also a common prefix. This property is also
reflected in the index as term t1 exists only once. In the second example on the right hand side of the

33

of figure 2.7 however where subscriptions S3 = {t3, t1} and S4 = {t3, t2} are indexed this is not the
case. Despite the fact that both of them share the common term t3 since it is not a common prefix
no node sharing will be activated (ORDER(t3) > ORDER(t2) (and ORDER(t3) > ORDER(t1))
).

Trie Characteristics

As Figure 2.8 illustrates, the morphology of the Trie index is affected by subscription size,
vocabulary size, and the relation between the actual ordering of the subscription terms and the
ordering used for construction.

Subscription Size: Impacts the height of the Trie. Recall that when inserting a subscription,
Algorithm 5 performs a top down traversal and in a worst case would insert |Si| terms in
the Trie. Hence, greater subscription sizes will produce deeper Tries.

Vocabulary Size: Impacts the width of the Trie. Greater vocabulary sizes will produce broader
Tries.

Term Ordering: If actual frequency based term ordering in subscriptions does not violate
the initial ordering considered for construction, then highly ranked terms will appear as
intermediate nodes (with several children), as a left-structured Trie. These highly ranked
terms will not appear in great numbers since due to construction constraints highly ranked
terms can appear only a few times in the Trie (i.e. the highest ranked term could only
appear once, the second highest twice, etc.)and in addition prefix sharing will take place,
as these highly ranked terms will also form common prefixes. In the opposite case, a
great number of lowly ranked terms (low ranked term are allowed to appear more times
than highly ranked terms) will appear as intermediate nodes (with a unique child) of a
right-structured Trie. As opposed to the former case, prefix sharing will not be activated.

In the worst case (no shared prefixes amongst the set of indexed subscriptions) the total terms
occupied by the Trie will be equal to the number of terms in the subscriptions. Apparently,
the Trie results to more compact representations when subscriptions share common prefixes.
Hence, memory wise it is of best practice to suppose an ordering for construction that does not
violate the actual frequency based ordering of the terms in the subscriptions. As opposed to
multiple term occurrences of the Trie, which are minimized when the actual frequency based
ordering of the subscription terms does not violate the initial ordering used for construction,
best performance with respect to matching is achieved if we consider reverse ordering (i.e. the
most frequent term to be low ranked). Recall that the time required when matching depends
on (a) the number of nodes visited and (b) the amount of reduction in the item suffix which will
be further checked in each step. Hence if reverse ordering is applied then (a) more subscriptions
will be stored at sub-Tries of lower ranked terms which in turn are expected to be looked up
less and (b) the expected reduction in the size of the suffix will be larger (see Figure 2.9).

Apparently, there exists a trade-off between the gain in memory and matching time with
respect to the relation between the ordering considered for construction and the actual frequecy-
based ordering of the subscription terms.

34

(a) Subscription Size (b) Vocabulary Size

(c) Vocabulary Distribution: no violation (d) Vocabulary Distribution: viola-
tion

Figure 2.8: Trie Morpholgy

(a) Actual ordering: no violation (b) Actual ordering: violation

Figure 2.9: Trie Matching: suffix reduction

35

Chapter 3

Implementing the Subscription
Indexes

In order to perform experimental evaluation and verify the analytical findings presented in
previous chapters, a prototype term based publish subscribe system was developed. The integral
component of our system is its filtering engine. The core component of our filtering engine is
a subscription index. The input to the system consists of subscriptions which are indexed and
items that are matched. The system outputs the set of matched subscriptions matched for a
given news item.

An overview of the systems interface is illustrated in Figure 3.1. Adding or deleting a particu-
lar subscription is performed via the addSubscriber() and deleteSubscriber() interface. Matching
is performed with the use of the matchItem() interface. Within our system, subscription and
item terms are encoded as integers which reflect their frequency rank and serve as identifiers.
Every subscription (news item) is assigned to a unique identifier and a list of integer term ids.
Subscription identifiers are provided by the system. The set of matched items for a specific sub-
scription can be obtained via the getMatchedItems() output interface. Current implementation
incorporate both the Count based and the Trie indexes. Implementations were coded and tested
within the Java platform.

Figure 3.1: Prototype Term Based Pub/Sub interface

36

3.1 Count based index

Two implementations of the Count based index have been considered [19]. The first one ref-
ered to as Simple implements all structural components via standard Java constructs. The
second implementation, refered to as Compact, considers custom implementations that extend
the standard Java structures for both the Inverted file and Counter to enable more compact
representations.

3.1.1 Simple Count based index

In the Simple count based index, the inverted file is implemented as a standard Java Hash Table.
Every entry of the hash table contains the term id and a reference to the list of corresponding
subscription postings. Subscription postings are stored in a standard Linked List of integer
wrapper objects. The counter is implemented as an array which doubles it’s capacity whenever
a given threshold of occupacy is exceeded.

3.1.2 Compact Count based index

The Compact Count based index is illustrated in Figure 3.2(c). This implementation maps
every term of the vocabulary to its inverted set of subscription postings via a hash table of fixed
capacity C. The standard hash table implementation of java is extended for this purpose. Hash
table collisions are resolved with the use of custom linked lists. Each node of the collision list
contains an integer term identifier, a pointer to the list of subscriptions corresponding to that
particular term and finally a pointer to the next node of the collision list. Subscription postings
corresponding to a particular term, are customly implemented as array lists. Each node of the
list contains an integer array of constant size K and a pointer to the next posting list node.
Figure 3.2(a) illustrates the case. The reason why such an approach was preferred over the
standard list implementation of java’s JDK is that it results to more compact representations.
Java standard list implementations store objects. Hence, if such a solution was devised then for
every subscription id stored within the posting lists an Integer wrapper object would need to be
created. Since java objects require more memory than that of the integer primitive type, storing
subscription postings using the custom approach results to smaller overall memory requirements
for the inverted file.

Whenever a new subscription is added to the inverted file index, a new entry within the
count structure with a value equal to the size of the subscription is inserted. Hence, the data
structure employed for counting has to be dynamic. That is to say, that it should grow along
with subscription insertion. A second requirement for the count structure is to provide fast
access to the number of terms a particular subscription contains given the subscription’s id.
Efficient matching requires obtaining the count value for a particular subscription to be done
in a timely manner. One way to trivially implement such a structure is to suppose an integer
array of specific initial capacity and accommodate dynamicity by doubling the capacity on
demand according to pre-defined policy (i.e. when the size of the array has reached its capacity).
The size of a particular subscription could be obtained by directly indexing the array via the
subscription identifier. However, the basic disadvantage of this approach is that it does not
handle well subscription deletions. Consider for example that the index has been loaded with
1,000,000 subscriptions and further suppose that 500,000 of them where deleted after insertion
was performed. Given that we directly index the count data structure via subscription identifier,
the size of the count structure should be at least equal to the largest subscription id currently
indexed. This leads to potential memory waste.

37

(a) subscription postings list implementation (b) two level counter for storing the total terms
of a subscription

(c) inverted file implementation

Figure 3.2: Compact Count index implementation

To confiscate the above observation within current development the count data structure
has been implemented as a two level index. The main idea is to employ a data structure
that partitions subscriptions into groups according to their id. Figure 3.2(b) depicts the case.
The entry point for that specific structure is the ground table. Every bucket of the ground
level corresponds to a group of subscriptions. Group size depends on the partitioning applied.
Each bucket of the ground level contains a pointer to the second level where subscriptions are
further segmented into more fine grained groups. All subscription sizes are stored within the
last level of the data structure. To demonstrate how indexing is applied suppose we want to
obtain the number of terms subscription with id 59,123 contains. Further assume that the
size of the ground level is |Level0| = 10, the second level is of size |Level1| = 20 and finally
the third level has a size of |Level2| = 50, 000. Since 59, 123/(|Level1| ∗ |Level2|) = 0 we
know that the particular subscription is contained within the first group of subscriptions and
proceed to the array the first bucket of the ground table points to. Next, we consider the index
59, 123%(|Level0|∗|Level1|∗|Level2|) = 59, 123. In a similar manner since 59, 123/(|Level2|) = 1
we proceed to the array of level two that the pointer of second bucket of the first level points
to. Finally we index the second level with 59, 123%(|Level2|) and return the specific value.

The inverted file structural behaviour could be controlled via the parameters C and K which
correspond to the hash table capacity and the size of the custom array list implementation used

38

for storing subscription postings respectively. Parameter C affects vocabulary storage. Larger
capacity results to more entries for the hash table. Assuming a good hash function (i.e. a
hash function that evenly distributes elements within all buckets) this would result however to
smaller collision lists. Parameter K on the other hand impacts the storage of subscriptions.
Larger values of K result to smaller numbers of subscription postings list nodes. This leads
to more compact representations since less postings list node objects would need to be created.
Nevertheless, this can result to memory waste since it might be the case that many empty entries
would exist. For example if we consider a size of k = 100 and assume only additions, then for
every term within the vocabulary, the last posting list node assigned to that specific term would
on average contain 50 unoccupied integer slots. The best performance for both parameters was
achieved when C and K where set to 50% and 25 respectively (see Tables 3.1 and 3.2) [19].
Experimental evaluations in next chapter consider these specific values.

The best combination of parameter values, as a simple experimental evaluation on the Count
based index was performed by varying both C and K. Tables 3.1 and 3.2 summarize the results.

Table 3.1: influence of parameter C(capacity)

Capacity Memory(MB) Index Insertion Index matching

50% 107.01 0.0427 5.3988

60% 109.93 0.0428 5.4241

70% 105.18 0.0424 5.3872

80% 105.24 0.0429 5.3891

90% 109.60 0.0417 5.3969

100% 109.74 0.0426 5.5109

Table 3.2: memory in MB for different values of K

K=10 K=25 K=50 K=100

500,000 53.01 51.10 62.61 83.1

1,000,000 92.72 88.83 104.68 132.23

4,000,000 324.29 275.51 301.41 343.95

9,000,000 681.71 492.71 538.61 633.29

3.2 Trie index

Many different approaches have been devised for implementing the Trie data structure [34, 5].
More specifically, a Trie could be implemented as a linked list, array or tree. In this work we
consider a hash tree based [35] implementation for the index.

3.2.1 Simple Trie

The integral components of a Trie node as described in earlier chapters are, the term rank
that identifies a particular node, the structure that stores the set of subscriptions assigned to
the node, and finally the child structure used for storing the set of children the node under
consideration contains. A first implementation of the Trie index referred to hereafter as Simple
Trie, distincts between internal and leaf nodes. An internal node contains: a Java primitive int
type for storing the term rank assigned to the node, a standard Java Linked List for storing
the subscriptions of the node, and finally a Java Hash Map for storing the childs. For internal
nodes, the initial capacity of the Hash Map is set to 2. As opposed to internal nodes, leaf nodes

39

only contain an int type for the rank and a standard Linked List for the subscriptions. Figure
3.3 depicts the index built over the example subscription set of Table 2.1. Internal nodes are
labeled with (I). Coloured nodes correspond to subscription list nodes.

The reason that motivated this approach (distinction between internal and leaf nodes) lies
in the fact that, since we expect a rather large vocabulary, we anticipate subscriptions to be
distributed to a large number of different Trie nodes. Hence, it is expected for the Trie to contain
many leafs.

Figure 3.3: Simple Trie implementation; internal nodes are labelled with (I); subscription lists
nodes are coloured.

3.2.2 Compact Trie

A second implementation that extends the Simple Trie and further exploits the anticipated
impact of the workload on the Trie structure, with respect to the number of subscriptions and
childs per node, was also considered. The Compact Trie as presented in the following, considers
a variety of different type node as well as path compression.

Depending on how a particular node nk stores subscriptions, it can be categorized into one
of the following three classes: nk is considered as a class ’a’ node if no subscriptions are assigned
to it; if only one subscription is stored at nk then it is considered to be a class ’b’ node; finally if
more than one subscriptions are assigned to node nk then that particular node is regarded as a
class ’c’ node. Within current implementation, class ’a’ nodes do not contain a field for storing
subscriptions, class ’b’ nodes use the simple integer primitive type of the JDK to store the single
subscription identifier assigned to nk, and class ’c’ nodes use the custom array implementation
presented earlier with parameter K set to K = 2.

The nodes of the Compact Trie are further partitioned into groups based on the number of
children they contain. As with the Simple Trie case, depending on weather a node nk contains
a child or not it can be classified as either internal or leaf node. The former are referred to as
class ’II’ nodes and the later as class ’I’ nodes. If a node nk is a class ’I’ node then no field
exists for storing child reference. On the contrary, if nk is an internal node then, it contains an
additional data structure for storing references to child nodes. Within current implementation,
type ’II’ nodes contain a standard Java hash map of initial capacity of two.

Based on the previous classification, the Compact Trie implementation considers five different
types of nodes all of which are depict in table 3.3. Clearly, a TypaIa node could not exist, since if

40

a particular node is a leaf then by construction a subscription would be assigned to that specific
node.

Table 3.3: Classification of nodes for Compact Trie

Child Structure Subscriptions Structure Node Type

none
none not applicable

integer type TypeIb
custom array list TypeIc

JDK hash map
none TypeIIa

integer type TypeIIb
custom array list TypeIIc

As table 3.3 illustrates, for nodes containing more than one nodes the standard JDK hash
map is employed for storing child references. However, such an approach could be considered
wastefull, as we anticipate a great number of nodes to contain a single child, given the workload
we consider. Hence, a better implementation concerning how children are stored should be de-
vised. One solution that would result to a more compact representation would be to additionally
consider a third classification that considers nodes with only a single child. Implementing such
a node type would result to a node with only one field instead of a Hash Map for the single
child. Doing so would result to single paths being trivially implemented as single linked lists.
Although this would lead to more memory efficient Trie indexes since single references replace
the hash map structure, a better solution would be to employ path compression.

Current development, considers path compaction for the Trie index. Single paths corre-
sponding to multiple nodes are compacted into one single compact node. Each compact node
is labelled with the set of terms corresponding to the labels the nodes that the non compacting
scheme would contain. For every primary node type illustrated in table 3.3 a compact dual ex-
ists (i.e. TypeIIb(compact)). As opposed to primary node types (no compaction is considered)
where term ranks are stored as integer types, compact nodes store the list of term ranks as java
int arrays.

3.3 Synthetic data generation

In order to evaluate the indexes, both subscriptions and news items where syntetically gener-
ated. Algorithm 7 below ilustrates the procedure. The workload parameters that define the
generated set and serve as an input in our synthetic data generation module are: a vocabulary
of terms V with information about the frequency of each particular term, the total number N
of elements generated, a generator LGen for determining the length of each element, and finally
the distribution that the terms of the generated subscription(news item) corpus would obey.

As Algorithm 7 illustrates, when generating an element I, l distinct terms, with respect
to the distribution dist under consideration, are independently drawn from the vocabulary
V . The length specified by LGen could either be fixed for all subscriptions or follow a user
specified ditribution. Three different sampling modes, referred to as empirical, uniform, and
anti-correlated are applicable. If an empirical term distribution mode is considered then the
terms are sampled from the vocabulary V according to the frequency distribution that the
terms of the vocabulary follow (recall that V contains term-frequency mappings). If a uniform
term distribution mode is selected to be applied, then the frequency distribution available for the
terms is simply discarded, and sampling is done in a uniform manner over the whole vocabulary.

41

Algorithm 7: Generator(V,N,LGen,Dist)
Require: V : A vocabulary V containing term-frequency mappings.
Require: N : The total amount of subscriptions(news items) to be generated.
Require: LGen : Element length generator; outputs the length for each element
Require: Dist : Controls sampling mode; values in {empirical, anti− correlated, uniform}.

1: Γ← {}
2: for i to N do
3: I ← {}
4: j ← 0
5: l← generate length acocrding to LGen
6: while j < l do
7: term← select terms from V according to Dist
8: if term /∈ I then
9: I ← I ∪ {term};

10: j ← j + 1;
11: end if
12: end while
13: Γ← Γ ∪ {I}
14: end for
15: return Γ

Finally, in the anti-correlated case, the elements are generated by sampling terms according
to the inverse term frequency distribution provided with V . The procedure outputs the set of
elements Γ1 generated according to the input workload parameters provided.

We have to stress out here that, the vocabulary applied for synthetic subscription (news
item) generation and the actual vocabulary of the generated subscriptions might be different.
In order to differientate between the two, the notation VU

S will be used hereafter to denote the
’universal’ vocabulary used for generating the set of subscriptions. Apparently, depending on
the parameters used by the generating module VU

S ⊆ VS .

1Stricktly speaking Gamma is a multi set as generation does not guarentee uniqueness of generated elements

42

Chapter 4

Experimental Evaluation

In this chapter we experimentally evaluate the performance of both the Trie and Count based
indices studied in Chapter 2. In particular we are interested on understanding how the memory
and time required to build the subscription index as well as the time required to match an
individual news item against the set of stored subscriptions is affected by a number of crucial
parameters in a web syndication setting. More precisely we ran a total set of 6 experiments,
each of which targeted an individual parameter (see Table 4.1) of the web syndication workload
we generated synthetically according to the method described in the previous Chapter. The two
main questions of our investigation was (a) how the morphology of the two indexes is affected by
different workload parameters, i.e. the terms frequency distribution, the size of the vocabulary,
and the size of the subscriptions and (b) how Trie and Count morphology impacts the scalability
and performance of the two indices for realistic characteristics of subscriptions and news items.
All experiments were conducted on a quadcore CPU machine at 2.40GHz with 3GB of memory
running Ubuntu 10.04.

Table 4.1: Workload parameter values

Name Description Range

|S| Total number of subscriptions {500000, 10000000}
|Si| The size of the subscriptions {3, 6, 9, 12} and empirical distr.
|Ik| The size of the items {5, 10, 20, 50} and empirical distr.
|VS | The size of the vocabulary {10000, 100000, 800000}

Sub Term Dist The distribution of the terms of the subscriptions {empirical, anti− correlated, uniform}
Item Term Dist The distribution of the terms of the items {empirical, anti− correlated, uniform}

We assume that the size of subscriptions is close to the size of web search engine queries
(see Section 1.1.3). Hence, the empirical subscription size distribution used in the experiments
throughout this Chapter will refer to the size distribution of Figure 4.1(c) which was extracted
from a series of search engine logs of three major search engine namely AltaVista, Excite and
AlltheWeb [32].

The empirical vocabulary distribution used for generating the set of subscriptions (and news
items), which corresponds to 10,799,285 news items acquired from 8,125 RSS feed [21] is depict
in Figure 4.1(a). The actual size of the vocabulary was 1,462,599, however as Table 4.1 illustrates
our domain of interest for |VS | was {10000, 100000, 800000}. Downsampling, was performed by
randomly picking in a uniform manner the the number of terms that were of specific interest;
i.e. if to obtain a smaller vocabulary of size |VS | = 10, 000, from the initial vocabulary, 10,000
terms (and their corresponding frequencies) were randomly selected.

43

Finally, the empirical news item size distribution used for specifying the size of the syntheti-
cally generated news items, is depict in Figure 4.1(b) and corresponds to the length distribution
the same set of 10,799,285 news items follow.

(a) Empirical vocabulary distribution (b) Empirical news item size distribution

(c) Empirical subscription size distribution

Figure 4.1: Empirical distributions for vocabulary and subscription/item size

4.1 Impact of the Vocabulary Distribution

In this first set of experiments we wish to capture the impact of the term distribution on the
structural characteristics of the two indexes. Measuring the number of nodes of the posting lists
in the Inverted File (IF) as well as of the Trie provides us a better understanding as to how
critical workload parameters such as terms’ frequency distribution actually impact the memory
requirements of the two indexes, and will allows us latter on to cross-validate our experimental
findings. Two series of evaluations where conducted by considering three possible term frequency
distributions, namely, empirical, anti-correlated, and uniform. The first one considers a smaller
scale experiment on a simple implementation (see Sub Sections 3.1.1 and 3.2.1) of the indexes
in order to better comprehend the behavior of the index structures under no optimization. The
second series regards a full scale experimental evaluation on both the compact Count based and
Trie index as presented in Sub Sections 3.1.2 and 3.2.2.

44

4.1.1 Evaluation on Simple Implementations

In this SubSection we are interested in studying the impact of the vocabulare distribution to the
size of the postings list in the Inverted File. Furthermore, for the Trie index we are interested
in understanding (a) how the Trie nodes increase as new subscriptions are added to the index,
w.r.t. a given vocabulary distribution (b) how many Trie nodes are created w.r.t. to terms’ rank
and (c) what is the morphology of the resulting Trie, especially its out-degree distribution. The
workload parameters where fixed to:

• |VS | = 10, 000

• |Si|AV G = 4

• |S| = 500, 000

Inverted File - Posting List Size

Figures 4.2(a) and 4.2(b) illustrate the results obtained with regard to the postings list size of
the Inverted File (IF), when the uniform and empirical vocabulary distributions are considered.
As expected, for both cases the underlying subscription term distribution is reflected within
the inverted file structure. When the empirical distribution is considered only a few terms are
assigned to large postings lists; many terms on the other hand are assigned to significantly
smaller postings lists. When terms are uniformly distributed, the size of the lists is roughly
equal to 200. This is reasonable, considering the specific workload parameters applied. Recall
that we assume a vocabulary size of 10,000, a total of 500,000 subscriptions and the length of
the subscriptions is equal to 4.

Figure 4.2(a) verifies our claims presented in Chapter 2, that the count based approach
does not enable to prune efficiently the subscription search space when matching incoming news
items. If both subscriptions and items follow the same skewed distribution (which is a realistic
assumption), then a large number of subscription postings will need to be traversed in order to
discover the matching subscriptions.

Trie - Increase rate of nodes

In Figure 4.3 we can see how the increase in the number of subscriptions indexed affects the total
number of nodes constructed by the Trie, per different vocabulary distribution. The blue, black
and red line of the plot concern a empirical, an uniform and an anti-correlated subscription term
distribution respectively. As the results exhibit, the Trie index occupies the greatest amount of
nodes (≈ 1,500,000) when the uniform vocabulary distribution case is considered. The empirical
distribution performs best node wise, as it only requires approximately 1,100,000 nodes (36% less
than when compared to the uniform case). Finally, when subscription vocabulary distribution is
anti-correlated, the total number of nodes occupied by the Trie index is approximately 1,450,000,
roughly 3% less than the uniform case.

This behavior can be explained as follows. When an empirical distribution is considered, it
is highly probable that a great fraction of the subscriptions will have common terms among the
most frequent ones, hence, many subscriptions are expected to share common prefixes. This
however, does not apply when an anti-correlated distribution is considered. Despite the fact
that the anti-correlated case is also skewed, the probability that two subscriptions share the
same prefix is low. This is due to the fact that skewness concerns mainly lower ranked terms.

45

(a) Empirical subscription vocabualry distribution

(b) Uniform subscription vocabulary distribution

Figure 4.2: Vocabulary distribution impact on Invered File (IF) of the Simple Count index:
|S| = 500, 000 , |VS | = 10, 000 , |Si|AV G = 4

The total number of posting list nodes that the Count based index would require, regarding
the same workload, would be: 2, 000, 000 (|Si|AV G ∗ |S|) nodes. In the worst case (uniform
distribution) the Trie occupies 1, 500, 000 nodes. If we consider the memory requirements in
terms of the total number of nodes both indices require, a gain for the Trie would exist if and
only if:

|trieNode|
|postingListNode|

< 4/3

However, for the implementations considered, such a relation does not hold. Recall that, a
node in the Simple Trie contains an integer type, a reference to a standard java Linked List for

46

Figure 4.3: Vocabulary distribution impact on number of Trie nodes: |S| = 500, 000 , |VS | =
10, 000 , |Si|AV G = 4

storing subscriptions and a reference to a HashMap for storing child nodes. Clearly this is much
greater than a single Linked List node.

Trie - Term Occurences

Next, we capture the distribution of the number of Trie nodes for the three term frequency dis-
tributions in subscriptions. As Figure 4.4 depicts, when the empirical distribution is considered,
the number of Trie terms rapidly increases, peaks and then decreases along with term rank. The
peak in the first part of the plot is explained by the fact that the occurance of a term of the
Trie exponentially increases for high ranked terms. Recall that by construction, it is allowed for
low ranked terms to exist many times in the Trie. However, due to the empirical distribution,
not many subscriptions containing such terms exist.

As Figure 4.5 illustrates, when a uniform distribution is considered, the number of times
a term appears in the Trie monotonically increases as the ranks of the terms decrease. The
frequency of the terms of the Trie corresponding to lower ranks is roughly bounded by 200.
The interesting finding here, is that this upper bound for the Trie, is in accordance to the size
of postings lists of the count based index as illustrated in Figure 4.2(b). When considering
lower ranked terms, we can say that in a way the Trie index degenerates to the Inverted File
with respect to the number of nodes both cases require per term (subscription posting nodes
versus Trie nodes). The reason why this effect appears only in lower ranked terms is once again
explained by the sharing of common prefixes. To better demonstrate consider the following
example. Suppose two subscriptions S1 = {t10000, t9999} S2 = {t10000, t9998} are indexed by
the Trie. Despite sharing a common subset ({t10000}), since {t10000} is not a prefix, 4 terms
would exist in the Trie (terms t10000,t9998, and t9999 would exist 2, 1 and 1 times respectively).
Observe that the count based approach would require the same number subscription postings
when indexing S1 and S2. This effect does not apply however to higher ranked terms, since

47

Figure 4.4: Term occurences per rank (empirical vocabulary distribution): |S| = 500, 000 ,
|VS | = 10, 000 , |Si|AV G = 4

there is a higher probability for prefix sharing. In example, suppose two subscriptions sharing
term t100. Since uniform sampling is applied, there is a great probability that all other terms
of both subscriptions, succeed term t100 (t100 would be a prefix). Hence, term t100, as a prefix,
would exist only once within the Trie.

Figure 4.5: Term occurences per rank (uniform vocabulary distribution): |S| = 500, 000 , |VS | =
10, 000 , |Si|AV G = 4

48

Finally, Figure 4.6 illustrates the corresponding Trie nodes when the anti-correlated distribu-
tion is considered in subscriptions. Once again, we can observe that the Trie index degenerates
to the inverted file with regard to the number nodes assigned to same term but this time for
terms with low ranks.

Figure 4.6: Term occurences per rank (anti-correlated vocabulary distribution): |S| = 500, 000
, |VS | = 10, 000 , |Si|AV G = 4

Trie - Morphology

In this experiment we investigate the impact of the different subscription term distributions
to the out-degree of the Trie nodes as well as the number of subscriptions assigned to them.
Tables 4.2 and 4.3 illustrate our experimental findings.

As Table 4.2 illustrates that the vast majority of nodes in the three vocabulary distributions
have up to three children. The percentage of leaf nodes (nodes with no out-degree equal to 0)
for the empirical case is equal to 41%. For the uniform and anti-correlated case the total number
of leaves is equal to 499, 040 (or 33.2%) and 466, 215 or (32.1%) respectively. In turn, the total
number of internal nodes with a single child is equal to 617, 964 (or 56.1%), 991, 362 (or 66.1%),
and 946, 767 (or 65.2%) for the empirical, uniform, and anti-correlated distribution respectively.
Observe that both the anti-correlated and uniform distributions behave in a similar manner
with regard to the number of nodes containing a single child (out-degree equal to 1). When
the anti-correlated and uniform case is considered, we do not anticipate many subscriptions to
share a common prefix. Hence, the Trie would contain many single paths, which implies a great
number of nodes containing only a unique child. The node with the highest number of children
in all three cases is the root.

Table 4.3 presents the corresponding distribution of subscriptions over the nodes of the Trie.
Two are the most significant findings. First, over 50% of the total number of nodes are not
featuring any subscription for the three vocabulary distributions. More specifically, when the
empirical case is considered a total of 649,305 nodes (i.e., 59%) of the Trie index are un-occupied.

49

Table 4.2: Out-degree distribution of nodes for Simple Trie index: |S| = 500, 000 , |V| = 10, 000,
|Si|AV G = 4

Out Degree empirical uniform anti-correlated

0 454,837 499,040 466,215

1 617,964 991,362 946,767

2 - 3 37,854 5,062 24,875

4 - 7 11,710 1,034 1,313

8 - 15 4,740 1,269 926

16 - 31 2,207 1,522 1,055

32 - 63 1,132 1,700 1,083

64 - 127 626 1,795 1,400

128 - 255 294 1,209 1,370

256 - 511 118 0 0

512 - 1,023 67 0 0

1,024 - 2,047 15 0 0

2,048 - 4,095 1 0 0

8,192 - 16,384 0 1 1

The uniform and anti-correlated case, ’waste’ 1,004,123 (i.e., 66.9%) and 963,006 (i.e., 66.4%)
nodes respectively. Secondly, the anti-correlated case ’borrows’ characteristics from both the
uniform and empirical distribution. In terms of un-occupied nodes both the uniform and anti-
correlated distribution behave in a similar manner. The total number of nodes that do not
contain any subscription are in both cases close to 1,000,000. However, when considering the
distribution of subscriptions for nodes with at least one subscription, the ant-correlated case
behaves in a similar way to the empirical case. In both cases approximately 472,000 nodes have
only a unique subscription.

Table 4.3: Distribution of subscriptions over the nodes of the Simple Trie: |S| = 500, 000 ,
|V| = 10, 000, |Si|AV G = 4

Number of Subscriptions empirical uniform anti-correlated

0 649,305 1,004,123 963,066

1 472,787 499,764 472,356

2 - 3 7,904 107 8,011

4 - 7 1,269 0 1,247

8 - 15 240 0 267

16 - 31 59 0 55

32 - 63 1 0 3

The awkward behavior exhibited by the anti-correlated case can be explained as follows.
Recall that the anti-coorelated distribution is the exact inverse of the empirical one. Hence,
the number of subscriptions, containing exactly the same terms is both distributions is the
same. Their only differance lies in the fact that skewines is exhibited in the emprical for high
ranked terms (versus low ranked for the anti-correlated case). For this reason no factorization
oppurtunities are exhibited in the anti-correlated case, and thus the number of nodes without
subscriptions is close to the uniform case.

The above experimental findings have motivated the compact versions of the two indices as
presented in Sections 3.1.2 and 3.2.2.

50

4.1.2 Full Scale Evaluation

Next, we investigate the performance of the optimized indexes with regard to all three different
distributions under a full scale evaluation. Work load parameters for this specific experiment
were fixed to:

• |S| = 10, 000, 000

• |VS | = 800, 000

• |Ik|AV G = empirical

Count based index

As Table 4.4 illustrates, for the Count based index, both the empirical and anti-correlated case
exhibit the same structural characteristics. Maximum hash table utilization is achieved when
subscription vocabulary distribution is uniform (100% versus ≈ 73% for empirical and anti-
correlated). This can be explained as follows. Within current implementation, the size of the
hash table is initialized and remains fixed to |VS |/2 (400,000 in our case). When applying a uni-
form sampling scheme upon |VS |, given the large number of subscriptions, it is expected for the
generated subscription set to cover a great (or whole in this case) part of the vocabulary. If this
is the case then, the total number of terms found within the actual generated set of subscriptions
is > |VS |/2. Hence, an entry exists for every hash table bucket (maximum capacity).

Table 4.4: Compact Count index characteristics when varying vocabulary distribution

empirical anti-correlated uniform

Total Hash Table Entries 292,457 292,480 400,000

Total Term Nodes 345,299 345,650 800,000

Average Collision List Size 1.18 1.182 2.00

Total Subscription List Nodes 1,308,676 1,308,965 1,501,159

Total Empty Slots 7,155,958 7,166,796 11,965,682

Average Empty Slots 20.72 20.73 19.02

As Figure 4.7(a) depicts, both the empirical and anti-correlated behave the same, with regard
to the total number of memory they require (≈ 210MB). This is in accordance to the structural
findings illustrated in Table 4.4. Interestingly, the memory requirements for the count based
index when the uniform distribution is considered, exceeds by 20% the other two cases. This
is due to implementation, and results from the fact that we consider a compact array list data
structure for storing subscription postings. According to the results of Table 4.4, when the
uniform case is considered, the count based index requires 192,483 (or 14.7%) more posting list
nodes than the other two cases. In addition, the index contains in total 4,809,697 (or ≈ 67.1%)
more empty slots.

51

(a) Memory requirements

(b) Build time requirements

(c) Matching time requirements

Figure 4.7: Vocabulary distribution impact on Compact Count based index: |S| = 10, 000, 000
, |VS | = 800, 000 , |Ik|AV G = empirical

52

According to Figure 4.7(b), the time required to index a subscriptions when the uniform
case is considered is greater than the other two cases, but the difference is not significant. As
expected, for all three distributions the required time is independent to the number of currently
indexed subscriptions. Finally, as Figure 4.7(a) illustrates, both the uniform and anti-correlated
case achieve approximately the same matching performance. The best performance is achieved
when both subscriptions and items follow the uniform distribution (≈ 33% gain when compared
to empirical and anti-correlated distribution). When considering an uniform sampling scheme
for subscriptions, it is anticipated for subscriptions to be evenly distributed over the vocabulary.
This even partitioning of the subscription search space, results to fewer subscription posting
traversals when compared to the other two distribution cases. Recall, that both items and
subscriptions follow the same distribution. The news item throughput rate for the worst case is
equal to 33 items/sec.

Trie index

As illustrated in Table 4.5, which depicts the findings for the Trie index, the total nodes oc-
cupied by the empirical, uniform and anti-correlated distribution case is equal to 7,419,246 ,
7,397,159 and 8,635,334 respectively. Interestingly, the variation in all three cases is less than
16% (anti-correlated and empirical only vary by 0.3%). This contradistincts the findings of
our previous experiment depict in Figure 4.4, where a maximum variation of 33% was observed.
This behaviour results from the fact that, as opposed to the previous experiment where the
simple trie was considered, the Trie evaluated in this experiment, considers path compression.
Many nodes corresponding to single paths, are represented in the compressed Trie as a single
compact node. This is also verified by the results obtained. As Table 4.5 illustrates the anti-
correlated and uniform case occupy 14.78% and 11.97% more compact nodes than the empirical
case. Clearly, the impact of the distribution on the total number of nodes is confiscated by path
compression.

Table 4.5: Compact Trie characteristics when varying vocabulary distribution

empirical anti-correlated uniform

Total Nodes 7,419,246 7,397,159 8,635,334

Total paths(leafs) 6,587,124 6,791,385 7,914,044

Average path length 3.456 3.064 2.990

Internal nodes percentage 11.22% 8.19% 8.35%

Leaf nodes percentage 88.78% 91.81% 91.65%

Total compact nodes 2,707,485 (36.49%) 3,792,186 (51.27%) 4,184,549 (48.46%)

Average compact node size1 2.687 2.90 2.845

The results obtained for the memory requirements of the Trie index are illustrated in Figure
4.8(a). As we can see, the empirical case performs the best space wise as it requires approx-
imately 625MB. Interestingly, the anti-correlated case and uniform perform quite well. The
uniform case needs 16% more memory than the empirical case; when an anti-correlated distri-
bution is considered the memory requirements for the index slightly increase about roughly 4%.
The results are in accordance to the structural findings showed in Table 4.5. In addition, as
illustrated in Figure 4.8(b), the time required to index a subscription, is as expected, indepen-
dent to subscription vocabulary distribution and the number of subscriptions currently indexed.
This verifies our analytical model devised in earlier chapters.

53

(a) Memory requirements

(b) Build time requirements

(c) Matching time requirements

Figure 4.8: Vocabulary distribution impact on Compact Trie: |S| = 10, 000, 000 , |VS | = 800, 000
, |Ik|AV G = empirical

54

The matching performance for all three distribution cases is illustrated in Figure 4.8(c). Sur-
prisingly, when both subscriptions and items follow the empirical case, the achieved performance
is 10 times greater than the anti-correlated (and uniform) case. This can be explained as follows.
As opposed to the anti-correlated (and uniform) vocabulary distribution case, when an empirical
distribution is considered, it is expected for many subscriptions to share a common prefix. The
Trie index would therefore contain more internal nodes that are in addition not compact. Hence,
when matching, the algorithm would need to recursively visit more Trie nodes. This does not
hold for the other two cases though, since in order for the matching algorithm to proceed to a
particular compact node, all of the terms of that node must also be present in the item being
matched. Therefore, in total, fewer nodes will be visited. Also observe that the matching is
sub-linear in the number of subscriptions. This is more obvious for anti-correlated and uniform
case. In the worst case, the Trie index achieves a throughput rate of 500 items/sec.

Vocabulary Distribution impact on Matching

In this SubSection we study the impact of the term frequency distribution to the number of
operations needed for matching. More specifically, for the count based index we measured the
times a counter decrement is performed; for the Trie index we captured the number of nodes
visited. The workload parameters for this experiment were fixed to:

• |S| = 10, 000, 000

• |VS | = 800, 000

• |Si|AV G = empirical

• |Ik|AV G = empirical

To obtain the credibility of our measurements, matching performance was averaged over a
set of 10,000 different items generated according to the workload parameters described above.
Table 4.6 depicts the results.

Table 4.6: Matching Operations of Trie and Count-based Indices

Subscription Term Dist Item Term Dist
Operations

Inverted File Trie

empirical
empirical 215,620.17 260.99
uniform 544.12 3.28

anti-correlated
anti-correlated 210,106.34 211.56

uniform 544.64 5.39

uniform
empirical 591.67 19.46

anti-correlated 576.82 17.78
uniform 559.62 18.31

The worst case performance for the inverted file is exhibited when both the items and sub-
scriptions follow the same distribution. The total amount of operations required is on average
215,620.17 or approximately 396.7 times more operations than in the case when both subscrip-
tions and items follow the empirical/uniform distribution. Recall that, the size of a posting list
in the Inverted File (IF) is proportional to the frequency of its corresponding term. If both
items and subscriptions follow the same skewed distribution then, the number of subscription
postings examined (which is equal to the number of the performed counter decrements) will be
large. Observe that the Trie index requires significantly less operations upon matching, when

55

compared to the IF. In the worst case, where subscription and item terms follow the empirical
distribution, the matching algorithm of the Trie index requires on average to examine 260.99
nodes. The Trie outperforms the inverted file index in all cases considered.

4.2 Impact of the Subscription Size

In this SubSection, we study the impact of the subscription size on the two indexes. We consider
four subscription size cases: |Si|AV G ∈ {3, 6, 9, 12}. Other workload parameters are fixed and
set to:

• |S| = 10, 000, 000

• |VS | = 800, 000

• Subscription term distribution: empirical

• Item term distribution: empirical

• |Ik|AV G = empirical

As predicted by our analytical cost model of the Count-based index the number of nodes
in subscription postings increase along with the size of subscriptions. In Table 4.7 we can see
that a fourfold increase in subscription size, results to a 2.5 times increase in the number of
posting nodes of the Inverted File. Furthermore, larger subscriptions imply a greater covering
of the vocabulary VS . According to Table 4.7, the total number Hash table entries (i.e., terms)
increase along with |Si|AV G. We can observe that the average number of empty slots of the
custom array based list data structure we employed for implementing subscription postings is
independent to the subscription size. As depicted in Figure 4.9(a), the memory requirements of
IF, when |Si|AV G = 12 are 750MB. A fourfold increase in the size of subscriptions results to a 1.9
(450MB) times increase in memory. This kind of behavior verifies the structural characteristics
of the IF presented in Table 4.7.

Table 4.7: Compact Count index characteristics for varying Subscription Sizes

|Si|AVG = 3 |Si|AVG = 6 |Si|AVG = 9 |Si|AVG = 12

Total Hash Table Entries 307,370 363,287 383,922 392,692

Total Term Nodes 371,651 496,922 575,226 629,374

Average Collision List Size 1.209 1.368 1.498 1.603

Total Subscription List Nodes 1,507,916 2,806,711 4,064,412 5,300,799

Total Empty Slots 7,697,900 10,169,275 11,610,300 12,519,975

Average Empty Slots 20.71 20.46 20.18 19.89

As we can se in Table 4.8 increasing the size of subscriptions does not significantly affect
the total number of nodes that the Trie needs to construct (less than 3% variation). This
behavior can be explained as follows. Given the large size of the vocabulary it is quite rare that
subscriptions will share many common terms. This effect become even more intense as the size
of subscriptions also increases and it is reflected to the Trie structure by the increasing number
of compact nodes that may exist (i.e., nodes compressing paths with a unique child). Hence,
increasing the size of subscriptions does not imply the creation of a large amount of nodes but
to compact nodes assigned to more terms. Returning to Table 4.8 when |Si|AV G = 3 the total
number of compact nodes is equal to 27.33%; when |Si|AV G = 6, then the total number of

56

compact dramatically increases to 88.91%. In addition, we can observe that when |Si|AV G > 3,
every subscription is stored in a different leaf node (recall that |S| = 10, 000, 000); this means
that no identical subscriptions exist. This is yet another indication that larger subscription sizes
result only to larger compact nodes.

Table 4.8: Compact Trie Characteristics for Varying Subscription Sizes

|Si|AVG = 3 |Si|AVG = 6 |Si|AVG = 9 |Si|AVG = 12

Total Nodes 11,247,416 11,247,290 11,507,983 11,652,566

Total paths(leafs) 9,972,546 10,000,000 10,000,000 10,000,000

Average path length 3.691 4.081 4.387 4.641

Internal nodes percentage 11.33% 11.09% 13.10% 14.18%

Leaf nodes percentage 88.67% 88.91% 86.90% 85.82%

Total compact nodes 3,073,859
(27.33%)

10,000,398
(88.91%)

10,001,269
(85.91%)

10,002,386
(85.84%)

Average compact node size 2.001 3.917 6.611 9.356

As we can see in Figure 4.9(a), the memory requirements for the Trie index when considering
|Si|AV G = 12 is equal to 1250MB (66% greater than the count based index). A fourfold increase
in subscription size results to a 56.25% increase in memory. As depicted in Figure 4.9(a), for
subscription sizes greater than six, we observe a linear memory increase. This stems from the fact
that, for subscription sizes greater than six and large vocabularies (in this experiment |V|AV G),
each individual subscription is stored a different leaf node.

Finally, as we can see in Figure 4.9(b), with regard to matching time, the Trie outperforms
the Count index by an order of magnitude. Recall that according to the analytical cost of
Equation 2.9, the matching time for the Count-based index increases linearly with respect to
the subscription size. Quite surprisingly this linear correlation is also observed for the Trie
index and can be explained as follows. The Trie matching time depends to the number of nodes
actually traversed by the matching algorithm. For subscription sizes greater than 6 that we
observed a linear memory increase, matching time also increases linearly.

57

(a) Build memory of Compact Trie and Compact Count index

(b) Matching ime of Compact Trie and Compact Count index

Figure 4.9: Subscription Size impact on Compact Trie and Compact Count indexes: |S| =
10, 000, 000 , subscription vocabulary distribution: empirical, item vocabulary distribution: em-
pirical , |Ik| = empirical, |VS | = 800, 000

58

4.3 Impact of the Vocabulary Size

In this SubSection, we are interested in studying the effect on the two indices of an increasing
vocabulary size. We consider three distinct values, VS = 10, 000, VS = 100, 000 and VS =
800, 000 upon which synthetic data generation will be applied. Other work load parameters are
fixed and set to:

• |S| = 10, 000, 000

• Subscription term distribution: empirical

• Item term distribution: uniform

• |Ik|AV G = empirical

• |Si|AV G = empirical

As we can see from Table 4.9, Hash table utilization decreases as vocabulary size2 increases.
In addition, the number of empty slots assigned to the last element of the subscription posting
set of each term, also increase. This can be explained as follows. Bigger vocabulary sizes
results to a sparser distribution of subscriptions over the terms of the vocabulary. As a result,
a larger number of entries are created in the Hash table which in turn implies more posting set
elements with empty slots. As expected, we do not observe any significant variation in the size
of subscription posting sets. Table 4.10 illustrates the corresponding behavior of the Trie index.
As we have seen in Section 2.3, the Trie optimizes the space requirements by factorizing common
prefixes and assigning them to common paths. Obviously, the number of common prefixes that
subscriptions would share is reversely proportional to the size of the vocabulary. This justifies
the increase of the total number of Trie nodes illustrated in Table 4.10, as well as, the increase
in the total number of compact nodes.

Table 4.9: Compact Count index characteristics for varying Vocabulary Size

|VS| = 10,000 |VS| = 100,000 |VS| = 800,000

Total Hash Table Entries 5,000 49,904 292,457

Total Term Nodes 10,000 90,248 345,299

Average Collision List Size 2.00 1.808 1.18

Total Subscription List Nodes 1,026,909 1,091,189 1,308,676

Total Empty Slots 109,187 1,716,793 7,155,958

Average Empty Slots 10.92 19.02 20.72

As depicted in Figure 4.10(a), the Count index clearly requires four times less memory than
the Trie. As expected, the memory required by the IF increases linearly with respect to the
size of the vocabulary3. Increased vocabulary sizes also affect the memory requirements of the
Trie. More precisely, an eightfold increase of the vocabulary results to a 75MB(50%) and
350MB(93%) increase for the IF and Trie respectively. It should be stressed that compared to
the effect of increasing subscription sizes (see Figure 4.9) the impact of vocabulary size in the
IF is significantly smaller (50% versus 190%).

Figures 4.10(b) and 4.10(c) depict respectively how matching time of Count and Trie vary
with respect to the vocabulary size. In both indices, increased vocabulary sizes results to a

2Unless otherwise specified, we will use the phrase ’vocabulary size’ to refer to the size of the ’universal’
vocabulary upon which generation is applied

3Please note that in Figure 4.10(a) it does not appear to be linear because the ’x’ axis is not in normal scale

59

Table 4.10: Compact Trie characteristics for varying Vocabulary Size

|VS| = 10,000 |VS| = 100,000 |VS| = 800,000

Total Nodes 2,970,398 5,399,669 7,419,246

Total paths(leafs) 2,553,389 4,754,301 6,587,124

Average path length 4.788 3.979 3.465

Internal nodes percentage 14.04% 11.95% 11.22%

Leaf nodes percentage 85.96% 88.05% 88.78%

Total compact nodes 645,138 (21.72%) 1,653,656 (30.63%) 2,707,485 (36.49%)

Average compact node size 2.457 2.601 2.687

decreasing time for matching an incoming news item against the set of indexed subscriptions
(for the Count index see Equation 2.9). We can observe however that the decrease in matching
time for the Trie index becomes more important. Trie matching performance improves as bigger
vocabulary sizes implies a sparser distribution of subscriptions to the vocabulary terms. At this
point recall that, both index structures partition the set of subscriptions according to the terms
they contain; the IF considers a flat partitioning scheme while the Trie a hierarchal one. Hence,
the matching performance of the Trie benefits from bigger vocabularies since a fine-grained
search space is actually explored.

60

(a) Memory Requirements of Compact Trie and Compact Count

(b) Compact Count index - Matching

(c) Compact Trie index - Matching

Figure 4.10: Vocabulary size impact: |S| = 10, 000, 000 , Subscription term distribution: empir-
ical , Item term distribution: uniform , |Ik|AV G = empirical , |Si|AV G = empirical

61

4.4 Impact of the News Item Size

In this SubSection, we study the effect of varying the size of incoming news items. We consider
the following set of values for |Ik|AV G ∈ {5, 10, 20, 50} and capture matching performance in
each case. All other workload parameters are set to:

• |S| = 10, 000, 000

• |VS | = 800, 000

• Subscription term distribution: empirical

• Item term distribution: empirical

• |Si|AV G = empirical

Figure 4.11(a) illustrates the results for the Count based index. According to the complexities
presented in Table 2.3, the matching time of Count index increases linearly with respect to the
size of news items. Recall, that for every term within the matching item, the inverted set of
subscription postings is obtained and traversed. Greater item sizes, result to more subscription
list traversal. As we can see in Figure 4.11(a), a tenfold increase in the subscription size leads
to a 68% increase in the time required for matching. However, this effect because more intense
in the Trie. As we can see in Figure 4.11(b), the time required to match an incoming news
item against 10,000,000 indexed subscriptions increases exponentially along with its size. This
exponential increase can be explained as follows: the time spent when matching for the Trie
index is proportional to the number of nodes the algorithm traverse. The algorithm traverse
a total number of paths, equal to all possible subsets of the terms of the item which are also
present in the indexed subscriptions. Hence, larger item sizes imply on average to traverse more
paths in the Trie.

62

(a) Compact Count index

(b) Compact Trie index

Figure 4.11: Item size impact on Compact Trie and Compact Count indexes: |S| = 10, 000, 000
, |VS | = 800, 000 , Subscription term distribution: empirical, Item term distribution: empirical
, |Si|AV G = empirical

63

4.5 Evaluation on Scalability

In this final experiment we evaluated the scalability of both indices. More specifically, we
incrementally indexed a total of 10, 000, 000 subscriptions. At each step, a batch of 500, 000
subscriptions were added to the index under evaluation. After loading each batch, we measured
the memory occupied by the indices, and the time required to match an individual news item.
Additionally, we captured the time required to index an individual subscription of a specific
batch (averaged over the set of subscriptions of each batch).

The workload paramters were set to:

• |S| = 10, 000, 000

• |VS | = 800, 000

• Subscription term distribution: empirical

• Item term distribution: empirical

• |Si|AV G = empirical

• |Ik|AV G = empirical

As Figure 4.12(a) illustrates, when indexing a total of 10, 000, 000 subscriptions the Count
and Trie index require approximately 215MB and 625MB respectively (the Count index outper-
forms the Trie by 1.9 times). As expected (see memory model in 2.8) the Count index exhibits
a linear behaviour with regard to the number of subscriptions indexed. Quite surprisingly, this
is also observed for the Trie. We would expect that as the number of subscriptions increase,
the Trie would occupy more nodes (representing the prefix relations of the set of indexed sub-
scriptions), hence there would be a greater probability that indexing new subscriptions would
require less space as there is a greater probability that they would share common prefixes of
subscriptions already indexed in the Trie; i.e. in a best case scenario, indexing a subscription
Si, would result to only storing Si to an already existing node (this requires that there exists
a subscription Sj s.t. Sj � Si). However, given the large vocabulary size, it is clear that even
when indexing a total of 10, 000, 000 subscriptions the anticipated saving due to prefix sharing
is not significant.

According to Figure 4.12(b), the time required to index an individual subscription for the
Count index is slightly less than that of the Trie. For both indices, the time required is indepen-
dent to the number of subscriptions currently indexed. This is in accordance to the analytical
models (see 2.1 and 2.13 respectively) devised in previous chapters. Finally, as we can see in
Figures 4.12(c) and 4.12(d), the Trie outperforms the Count index by 2 orders of magnitude
(22MS versus 0.01MS) when matching. As opposed to the Trie, for which the matching time
appears to stabilize as the number of indexed subscriptions increase, the time required when
matching for the Count index increases linearly along with the number of indexed subscriptions.

64

(a) Memory requirements of both indices (b) Time required to index a subscription

(c) Matching time for Compact Count index (d) Matching time Compact Trie index

Figure 4.12: Scalability characteristics of Compact Trie and Compact Count indices: |S| =
10, 000, 000 , |VS | = 800, 000 , Subscription term distribution: empirical, Item term distribution:
empirical, |Si|AV G = empirical, |Ik|AV G = empirical

65

4.6 Summary on experimental results

The main conclusions drawn from our experiments regarding the impact of critical workload
parameters to the morphology of the two indices are:

Vocabulary Distribution: The number of subscription entries that need to be stored in the post-
ings sets of the Count-based index is independent of the subscription vocabulary distri-
bution. However, the actual distribution of the sizes of the various postings sets depends
heavily on the terms’ frequency distribution. As a matter of fact, more frequent terms will
be assigned to larger posting sets which in turn directly impacts matching time. On the
other hand, the total number of terms in the Trie is affected by the subscription vocab-
ulary distribution with respect to the initial ranking considered. The most favoured case
for the Trie is when the subscription vocabulary distribution does not violate the initial
ranking considered for its construction. In this case, a great part of high ranked terms
would appear in the Trie structure (i.e., left deep tree). In the opposite, a large number
of low ranked terms would appear in the Trie (i.e., right width tree). Since prefix sharing
will not be activated many single paths would exist and the Trie essentially degenerates
to the inverted file. Although the occurrences of the terms depends on the underlying
relation between the vocbulary distribution and the ranking considered by the Trie, the
actual number of nodes does not vary significantly (empirical distribution requires ≈ 14%
more nodes), due to the path compression optimization employed for the Trie (uniform
and anti-correlated distribution occupy roughly 15% more compact nodes). The width and
height of the Trie is independent of the vocabulary distribution.

Subscription Size: The number of nodes in postings sets of the Count- based index increases
linearly along with the size of subscriptions. On the other hand, the size of subscriptions
impact the height of the Trie index: larger subscriptions imply deeper Trie structures. In
addition, the percentage of compact nodes gets almost stabilized after a certain subscrip-
tion size (percentage of compact nodes stabilized at roughly 86% for |Si| > 6). This is
due to the fact that each separate subscription is actually stored in a different leaf node
and, thus, greater subscription sizes result to larger compact nodes i.e. factorizing more
terms. More precisely the size of compact nodes increases linearly with respect to the size
of subscriptions.

Vocabulary Size: The number of subscription entries in the postings sets of the Count- based
index is independent of the vocabulary size. On the other hand, the size of the vocabulary
impacts the width of the Trie index: bigger vocabularies imply broader Trie structures.
The ratio of leaves to internal nodes remains almost stable (< 3% variation) due to an
increase in the number of compact nodes (10% per scale of vocabulary size).

In this context, the main performance figures exhibited by the Trie and Count-based indices
are:

Memory Requirements: In all cases, the Count-based index outperforms the Trie memory wise.
In our experiments, their difference lies between almost of half more memory (for empirical
distribution of vocabulary terms and subscription sizes, |VS | = 10, 000) and of a double
memory (for empirical distribution of vocabulary terms and |Si| = 3,|VS | = 800, 000)
required by the Trie w.r.t. the Count-based in order to index 10,000,000 subscriptions. As
described in section 1.1.3 we expect in a realistic setting the vocabulary to be large (order
of 106) and average subscription sizes to fall between 2-3 terms (as in web queries) and

66

4-5 terms (as in advertisement queries). Given that (a) the vocabulary impact is more
outstanding for the Trie when compared to the Count-based index (400MB increase versus
200MB increase for vocabulary size from |VS | = 10, 000 to |VS | = 800, 000), and (b) that
larger subscription sizes similarly impact both indices (500MB and 490MB increase in
memory for a four fold increase in subscription size for the Count and Trie respectively),
we anticipate that this realistic setting the Trie would require almost double memory than
Count-based. When we consider the empirical distribution for the size and vocabulary of
subscriptions, to index 10,000,00 subscriptions the Trie requires 1.99 times more memory
than the Count index (625MB versus 215MB).

Matching Time: In all cases, the Trie outperforms the Count index with respect to matching
time. In the best case (when the subscription vocabulary and size follow the empirical
distribution, news items vocabulary follows the uniform distribution and |VS | = 800, 000)
the time required for matching an incoming news item against a set of 10,000,000 indexed
subscriptions is 3 orders of magnitude greater than that of the Count index. Even in the
worst case (when the subscription/news item vocabulary follows the empirical distribution
and |Si| = 12, VS = 800, 000,) the matching time required by the Count-based index is
still 1 order of magnitude greater than that of the Trie index. In a realistic setting with
characteristics similar the workload previously described and in addition with an empirical
news items size distribution the Trie outperforms by 1 order of magnitude (2ms versus
30ms) the Count index when matching a single news items against a set of 10,000,000
subscriptions.

Construction Time: The number of currently indexed subscriptions does not impact the build
time of both indices. In addition it is not affected by the vocabulary distribution in
subscriptions.

With respect to matching, the impact of the size of the news item is more outstanding
for the Trie as opposed to the Count-based index (2 orders of magnitude versus 68% increase
for a 10 fold increase of |Ik|). As predicted by the cost models of Chapter 2 (see Table 2.3
and Equation 2.21), the Count and Trie index exhibit a linear and exponential dependency,
in the size of the news item being matched, correspondingly. However, even in the worst case
(|Ik| = 50), which is close to the anticipated workload of a realistic setting, the Trie outperforms
the Count-based index by an order of magnitude.

The memory and matching requirements for the Count based index w.r.t the number of
indexed subscriptions increase linearly. For the Trie index, an increase in the number of sub-
scriptions results to a linear increase in the memory required but a sub linear increase in the
time required for matching. Hence, both subscription indices address the matching problem in
a scalable manner.

As stated in Section 1.2, a Publish/Subscribe system should perform an on the fly news item
processing to alleviate the need for storing incoming news items. If we consider the throughput
rate as the number of news items the event processing system can process per second, then
the underlying subscription index must guarantee a throughput rate for news items greater
than their publishing rate. When subscription (and news item) size and vocabulary follow the
empirical distribution then the Trie index loaded with 10, 000, 000 subscriptions can guarantee
a throughput rate of ≈ 500 items/sec as opposed to the much smaller ≈ 34 items/sec of the
Count-based index at the expanse of 1.9 times more memory. Clearly, in a realistic setting (as
described in Section 1.1.3), the Trie as opposed to the Count index can easily guarantee on the
fly news item processing given (a) the high publishing rate (> 10/h) and burstyness (up to 215

67

times the average publication rate) that the news feeds can exhibit, and (b) the large amount
of publishing sources

68

Chapter 5

Related Work

Their has been much interest in event processing systems. In such systems, users submit long
lasting subscriptions which get evaluated over a stream of incoming events. Depending on tar-
get application domain, different workload characteristics may be applied. This disparity on
application requirements has lead to the development of a great number of event processing
systems with a great variety of expressiveness for subscriptions. Evidently, a trade off between
subscription language expressiveness and evaluation performance does exist. Figure 5.1 de-
picts a rough classification scheme based upon the expressiveness provided by such systems in
contradistinction to the number of subscriptions they can efficiently handle.

Figure 5.1: Event Processing systems

At the one end of the spectrum lie Publish/Subscribe systems. The goal of such systems
is to be able to handle a great number of subscriptions while simultaneously achieving a high
throughput rate for events. Hence, efficiency is attained at the expense of subscription language
expressiveness. The earliest publish subscribe systems where topic based. Example such systems
amongst others are Corona [36], and SCRIBE [38].

The notion of topics restricts the subscriber as he/she can only be notified about events

69

belonging to a particular group. Content based publish subscribe on the other hand provides
a more fine grained subscription model. Such systems give the user additional flexibility on
what events will he/she be finally notified about since subscriptions are now targeted on event
content. Examples of such systems are GRYPHON [4], SIENA [12] and LeSubscribe [33].

At the other end of the spectrum lie Data Stream Management Systems (DSMS). A data
stream management system, as opposed to that of traditional data base management systems ,
is based upon the notion of real time data streams. A data stream is considered as a sequence
of objects. The order of the objects within that sequence could either be explicitly defined
by the source or implicitly be given by the DSMS itself in the form of an unique identifier.
Every object within the sequence consists of a set of attributes, in a similar manner to that
of tuples of a relational data base. However, as opposed to traditional DBMS where tuples
are persistently stored which permits data to be read more than once, the streaming nature
of DSMS introduces the constraint that objects within a particular stream can only be read
once. Queries submitted by users are long lasting(continuous), an analogy to subscriptions of
publish subscribe systems. The query languages that these specific types of systems provide are
based upon the notion of order and time and contain amongst others operators for selection,
join, aggregation, multiplexing and others. The form of the queries, reflects the underlying data
model (i.e. relational, object based, semi-structured, etc). An example of a relational based
query language used within the STREAM system is CQL [31]. Another example of a system
supporting continuous querying over streaming data is that of TelegraphCQ [13] system. Finally
the work of [3] proposes the BOREALIS prototype DSMS that queries data based on procedural
model. As opposed to Publish/Subscribe systems where only selection operations are applied
in the form of subscription predicates, DSMSs target application domains where complex data
stream querying is the need (i.e. stock quote analysis, sensor network monitoring etc). This
additional expressiveness however comes at the expense of scalability in terms of the number of
queries such systems can support.

Publish subscribe systems achieve high efficiency at the expense of subscription language
expressiveness. Data stream management systems on the other hand provide continuous query
languages at the expense of scalability. A great deal of work has been conducted recently to
bridge the gap among the two in the form of Complex Event Processing [9](CEP) systems. A
CEP system extends the functionality of typical publish subscribe systems while simultaneously
maintaining a high through put rate for events. CEP provides operations upon real time event
streams such as filtering, correlation, aggregation and event manipulation. In order to supply
more expressive subscriptions to that of traditional Publish/Subscribe systems the notion of time
and sequencing of events is introduced. As opposed to traditional Publish/Subscribe systems
where subscription evaluation is performed only over individual events, CEP systems handle
state full subscriptions which can span over multiple events (also referred to in the literature as
state full pub/sub). Given the fact that subscriptions maintain state, CEP systems can provide
complex operators such as union, aggregation, iteration, negation, etc. The CAYAGA system
which is based on finite state automate for evaluating events over a set of complex subscriptions
is proposed in the work of [15]. Another example which evaluates complex queries over a stream
of data generated from RFIDS is that of SASE [1].

70

5.1 Content based Publish/Subscribe Systems

5.1.1 Publish/Subscribe systems with an attribute based event model

In the attribute based publish subscribe paradigm subscribers express their interest as boolean
predicates over the set of attribute value pairs employed to represent events. Depending on how
matching is applied there exist two major categories: count based algorithms and tree based
algorithms

An example of a count based approach for subscriptions adopting conjunctive predicate
semantics (featuring equality and inequality predicates), has been presented in [33] and relies on
a two phase matching scheme. In the first phase, the set of satisfied predicates is computed via
the use of a set of predicate indexes grouping in families predicates with the same attribute and
comparison operators. After selecting the set of satisfied predicates by the incoming event, the
set of corresponding subscriptions is obtained upon which counting is performed to decide the
set of subscriptions that fully match the event. A main drawback of the count based approach
is that subscriptions are systematically considered even when some of their predicates are not
satisfied.

For this reason [17] proposes a novel indexing scheme that limits the number of subscrip-
tions that need to be evaluated in the two phase matching approach. Instead of counting the
returned set of matching subscriptions, a clustering strategy is employed for grouping subscrip-
tions according to their size and common expressions of conjunctive predicates. In addition, the
proposed index structure benefits from the cache capabilities of modern processors. Authors de-
vise cost based algorithms for computing the optimal clustering scheme given knowledge about
subscriptions and statistics of incoming events.

An example of a Tree based approach for subscriptions adopting conjunctive predicate seman-
tics (featuring equality and inequality predicates), has been presented in [4]. Authors propose a
two phase matching scheme and assume a fixed total ordering amongst subscription predicates.
In the first phase (pre-processing) the algorithm creates a matching tree built over the subscrip-
tion predicates based on the considered ordering. Each node is a test of some type and edges are
the results to that tests. Each lower level is a refinement of the of the tests performed in higher
level. Subscriptions are stored at leafs. When matching (second phase) a top down traversal
of the built tree is performed where paths corresponding to successful tests are followed. The
set of subscriptions assigned to the leafs the traversal concludes are reported as matched. In
the case where subscriptions consist of conjunctions of equality tests of attributes against val-
ues, [4] achieves matching time and space complexity that is sub-linear linear correspondingly
with respect to the number of subscriptions indexed.

The work of RAPIDMatch [24], which assumes an event model similar to [4], proposes a tree
based index that applies a two level partitioning on the set of indexed subscriptions exploiting
the fact that in real world applications many events have only a few ’relative’ attributes. When
evaluating, RAPIDMatch confines it’s subscription search space since due to the partitioning
applied it can quickly identify a small subset of relevant subscriptions. Finally, the work of [42]
presents a multidimensional indexing scheme. The specific work proposes a subscription space
dimension transformation that considers events as range queries and subscriptions as points.
These multidimensional range queries are evaluated with the use of a UB-Tree index.

A rather different approach to content based filtering that uses Binary Decision Diagrams
(BDDs) [10] is presented in the work of [11]. Within that specific approach each elementary
subscription predicate is assigned to a boolean variable. Such, subscriptions which combine one
or more elementary predicates correspond to boolean functions. Subscriptions are represented

71

as BDDs and matching is performed via the use of BDD evaluation algorithms. The work of [11]
leverages the irrelevance property (although the total number of subscriptions is expected to be
large typically only a small fraction of the subscriptions will be interested in a specific attribute
value) for efficiently matching events. Additionally representing subscriptions as BDDs exploits
subscription predicate commonality between different subscriptions. As opposed to the work
of [4] and [17], the use of BDDs allows disjunctive subscription handling rather naturally.

5.1.2 Publish/Subscribe systems with term based event model

All of the work presented thus far supposes a content based subscription schema with a fixed
event model (usually small and with small attribute domains) which requires the number of
attributes to be defined before hand.

Few works on term based Publish/Subscribe systems have been published in the literature.
[37] presents the COBRA Publish/Subscribe system for RSS that crawls, filters, and aggregates
vast numbers of RSS feeds, delivering to each user a personalized feed based on their interests
expressed as term based subscriptions. The authors consider a distributed environment for
matching incoming RSS items against user issued subscriptions. We on the other hand consider
a centralized approach and focus on studying how several critical workload parameters influence
the bahaviour of both indexing scheme alternatives. The work of [45] conducts a study of several
indexing schemes used for the selective dissemination of text documents. The work considers a
setting where users submit relatively small user profiles (≈ 5 terms), stored in secodnary memory,
which get evaluated against incoming text documents (≈ 12, 000 terms). More specifically the
authors evaluate three different profile indexing schemes: (a) a count based approach as described
in section 2.2, (b) a key approach that uses the inverted file for storing a profile in only one
of the inverted sets of it’s terms (the selected term is called the key and each posting entry
contains the profile identifier, the length of the profile and the terms except the key) and (c)
a Trie approach as described in section 2.3. In accordance to our work the authors state that
Trie requires generally more space than the Count based approach, however, in contradiction
to our experimental findings, the authors found that the Trie method requires more time when
matching as the increased size in blocks leads to a higher number of I/O’s per document. As
opposed to their work where they considered intractable studying the analyticaly complexity
of the Trie index, we tried to bound the memory requirements of the Trie index based on the
statisitcal properties of the vocabulary. Moreover, we observed that the matching time is also
influenced by the size of the item. Finally, the authors did not study the impact of different
vocabulary distributions on the performance of the indexes. Another example that considers a
term based subscription scheme is presented in [22]. The authors consider the counting approach.
However, their primary focus in the work is on devising several query processing optimizations
for the count index and do not perform a comparative study on other subscription indexing
schemes (i.e. tree based). More specifically, [22] exploits term position information and term
frequencies for subscriptions and also considers a query clustering technique to further obtain
performance benefits.

Finally, in the work of [27], which is the closest to our work, the authors propose a novel
indexing scheme in the context of sponsored search. In such a setting advertisers express interest
to specific user queries in the form of bids. Whenever a new query is issued, the set of bids
that match the query in broad match terms (i.e. every term of the bid is also contained in
the query) are returned and displayed. To overcome the limitations of the count index when
considering skewed subscription term distributions (i.e. large subscription search space), the
authors propose a hash based index built over multi-term combinations of the bids that limits

72

the search space to only a small fraction of candidate bids. More specifically, the authors use
a hash table to index the bids. The value of each entry is a pointer to a so called data node
that contains specfic information for the bid (i.e. bid identifier, actual phrase, metadata). In
a simple approach they consider indexing the set of terms in each bid (i.e. one data node for
every indexed bid). Processing a query requires retrieving entries of data nodes associated to
all subsets of the terms in the bid. Apparently, evaluating a query becomes inefficient for large
query sizes; the number of probes grows exponentially with query size. To address this specific
problem the authors consider a maximum size on the term combinations indexed and propose
a mapping scheme that reorganizes bids sharing the same subset of terms to the same data
nodes based on a memory access cost model. However, the work addresses the problem of long
queries only theoretically (since short queries are the norm) and experimentally evaluates only
the simple approach. Apparently, in the setting of web syndication where we expect news items
to be much larger than web queries (see section 1.1.3), we cannot apply this simple technique as
we would have perform a number of hash table probes equal to the powerset of the item being
matched.

5.1.3 Set-valued data indexes

As described in section 2.3, the Trie index requires a total ordering amongst the vocabulary of
subscriptions. A rising question is if this serialization for the terms of the vocabulary is actually
necessary. A generic indexing scheme for storing set-valued data, based on partial order is POI
[41]. In essence, POI is a DAG whose structure reflects the partial ordering of the stored data
with respect to the containment (subset/superset) relations that hold. Edges express superset
relations; the contents of a particular set stored at a node n is equal to the union of the sets
stored in all nodes from n to the top elements of the graph. As opposed to the Trie, POI does
not consider serialization and such preserves all of the subset relations that hold. Figure 5.2
illustrates an example built over S = {S1, S2, S3}, where S1 = {t1, t2, t3}, S2 = {t1, t2}, and
S3 = {t1, t3}.

Figure 5.2: POI index overview

Despite the fact that this specific index has been proposed for the compact storage of RDF
KB versions (where a RDF KB is a set of triplets, in essence a set of triplet identifiers), the
POI index could also be used for our specific problem. Recall that, given a family of sets S (i.e.
subscriptions) and an set Ik (i.e. an item) our goal is to find the sets of S which are subsets of
Ik. More specifically, if we index subscriptions using the POI data structure, then finding the
set {Si|Si ⊆ Ik} could be performed as follows: we can use the proposed insertion algorithm
of POI as if we wanted to index Ik; the set of matched subscriptions would then correspond to
the parents of Ik. Inserting a subscription Si requires, (a) finding the direct parents of Si, (i.e.
direct subsets of Si), (b) finding the direct children of Si (i.e. the direct supersets of Si), and
(c) linking the new set in the graph. Matching an item Ik on the other requires only step (a)
since we are interested in finding the subscriptions that are subsets of Ik and not actually and

73

not storing it. The authors propose two algorithms for efficiently inserting a set in POI

Figure 5.3: POI versus TRIE index

For a comparative discussion of both approaches let us first consider the example indices
of Figure 5.3 built over the set S = {S1, S2, S3} of subscriptions where S1 = {t1, t2, t3}, S2 =
{t2, t3}, and S3 = {t3} (subscripts denote ordering). This specific subscription set exhibits two
properties: (a) a great deal of subset/superset relations exist, and (b) the ordering considered
violates the actual frequency based ordering of the terms (t3 appears the most times in S but
has the lowest rank). As we can see, this case favours the POI index memory wise. However,
if the ordering used for construction did not violate the ordering implied by the actual term
frequency distribution, then the two cases would behave similarly (right part of Figure 5.3).
Since POI does not require a predefined total ordering amongst the terms of the vocabulary, we
can say that it is more robust to vocabulary frequency distribution changes.

POI index performs well when there exists a lot of subset/superset relations amongst the
indexed set-valued data and in addition the common subset between them is large. In the
context of KB versioning where POI was proposed, this is often the case (versions are large
≈ 10, 000 and new versions are created by adding or deleting a small fraction of elements of
a previous version). However if this does not hold (i.e. many partial but not full covering
relations exist) then POI would not result to a significant gain. POI exhibits the worst case
when no containment relations amongst the stored data (i.e. subscriptions) hold. In such a
case, POI would become a flat graph and every individual subscription would be stored in a
different node. Memory requirements would be equal to the actual size of the subscriptions (no
gain), and matching would require examining each individual subscription (in the setting of web
syndication we anticipate S ≈ 106). Apparently, the worst case behaves equally poor to the
naive approach (describe in Subsection 2.1) both memory and time wise.

On the other hand, the TRIE index exhibits the worst case when the set of subscriptions do
not share any prefix. In such a case, as with POI, TRIE memory requirements would be equal
to the actual size of the subscriptions (no gain from prefix sharing). With respect to matching,
in a worst case TRIE would require to visit a number of nodes equal to all possible subsets up
to size |Si| of the item. In a realistic setting where |Ik|MAX = 50 and |Si|MAX = 4 this would be
equal to 251, 175, which is much better than the 106 set inclusion operations required by POI.

To better demonstrate the contradistinction consider Figure 5.4 which illustrates both struc-
tures built over the set of subscriptions of our motivating example of Table 2.1. As we can
see, for POI since not many containment relations exist (a) most of the subscriptions are stored
individually as is, and (b) in order to determine the set of matched subscriptions it is required to

74

test almost all of them (naive case). In this context, a more appropriate solution could be to use
a semi-lattice representation of the partially ordered covering relations amongst the subscrip-
tions. Since no serialization is applied, this specific approach is independent of the subscriptions’
vocabulary frequency distribution and such could result to more compact representations, when
compared to TRIE (i.e. when actual ordering violates the ordering used for TRIE construction).

Figure 5.4: POI versus TRIE index

A more extensive comparative and potentially experimental evaluation could be of particular
interest for future research. More specifically, it would be interesting to study the performance
of POI (memory and time wise) in the specific setting of web syndication, and to determine
under what circumstances each approach predominates.

75

Chapter 6

Conclusions & Future Work

With the continuous growth of online information content syndication has become a popular
means for timely information delivery on the Web. However, RSS/Atom technologies as are
today, exhibit serious limitations for coping with information overload in the context of Web
2.0 while they imply a tight coupling between feed producers and consumers. In this work we
were interested in employing the Publish/Subscribe interaction model for the context of web
syndication in order to address both of the limitating factors outlined above. In particular,
we considered a Publish/Subscribe framework that enables users to express their interests as
keyword based queries which will be matched against incoming news items.

In this work we were interested in studying the behaviour of both count and tree based indices
for storing subscrpitions for critical parameters of realistic web syndication workloads. Towards,
that end, we presented the well studied Count based index, for key-word based subscriptions,
and devised an analytical model that takes into account the distribution of the subscription
terms. Based on the model, we showed that under a heavily skewed distribution the Count
index’s performance heavily degrades and advocated the use of a Trie-based index for storing
subscriptions. Additionally, we provided an upper bound for the Trie for both it’s memory and
matching time requirements. With an extensive set of experimental evaluations, we investigated
how several workload parameters impact both indices. We also conducted a thorough investiga-
tion on the impact of different subscription term distributions to both indices, a study not yet
performed to the best of our knowledge

With respect to the memory required, the Count index outperforms the Trie index in all cases.
The memory requirements of the Count index increase linearly when greater subscription and
the vocabulary sizes are considered. Interestingly, the impact of the former is of much greater
significance than that of the latter. The matching performance for the Count index heavily
depends on subscription/news item term distribution. Worst case performance is obtained when
both subscriptions and news items follow the same heavily skewed distribution.

The Trie has an excellent matching performance independent to the subscription, vocabulary
size and subscription/news item distribution. The matching performance of the Trie outperforms
by at least an order of magnitude the Count index in all cases. Despite the fact that it requires
more memory than the Count index, by employing path compaction the additional overhead in
contradistinction to the performance gain achieved can be considered neglectable. When the
actual subscription term distribution follows the distribution based upon which the ordering
amongst the terms is applied then the Trie achieves the best performance memory wise.

It is expected for users with same areas of interest to issue similar subscriptions. Given that
the Trie compactly stores subscriptions by storing only once shared prefixes, as a future work, we
will study how several degrees of similarity amongst the subscriptions impact the performance

76

of the Trie in comparison to the Count based index. Moreover, we plan to study the problem
in a dynamic context where subscription term distributions change in time. Last but not least,
we plan to study the more general problem of matching for more complex data models such as
the semi-structured one.

77

Bibliography

[1] Eugene Wu 0002, Yanlei Diao, and Shariq Rizvi. High-performance complex event process-
ing over streams. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis, editors,
SIGMOD Conference, pages 407–418. ACM, 2006.

[2] Jian Huang 0002, Ziming Zhuang, Jia Li, and C. Lee Giles. Collaboration over Time:
Characterizing and Modeling Network Evolution. In Proc. Intl. Conf. on Web Search and
Web Data Mining (WSDM), pages 107–116, 2008.

[3] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack,
Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nes-
ime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the borealis stream processing
engine. In CIDR, pages 277–289, 2005.

[4] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar Deepak Chandra. Matching events in a content-based subscription system. In
PODC, pages 53–61, 1999.

[5] Jun-Ichi Aoe, Katsushi Morimoto, and Takashi Sato. An efficient implementation of trie
structures. Softw., Pract. Exper., 22(9):695–721, 1992.

[6] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

[7] Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David A. Grossman, and Ophir
Frieder. Hourly Analysis of a Very Large Topically Categorized Web Query Log. In Proc.
ACM Symp. on Information Retrieval (SIGIR), pages 321–328, 2004.

[8] Sven Bittner and Annika Hinze. A detailed investigation of memory requirements for pub-
lish/subscribe filtering algorithms. In Robert Meersman, Zahir Tari, Mohand-Said Hacid,
John Mylopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacobsen, Joseph P. Loyall,
Michael Kifer, and Stefano Spaccapietra, editors, OTM Conferences (1), volume 3760 of
Lecture Notes in Computer Science, pages 148–165. Springer, 2005.

[9] Blah. Complex event processing. http://www.complexevents.com/, 2008.

[10] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677–691, 1986.

[11] Alexis Campailla, Sagar Chaki, Edmund M. Clarke, Somesh Jha, and Helmut Veith. Effi-
cient filtering in publish-subscribe systems using binary decision. In ICSE, pages 443–452.
IEEE Computer Society, 2001.

78

[12] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of
a wide-area event notification service. ACM Trans. Comput. Syst., 19(3):332–383, 2001.

[13] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Vijayshankar Raman, Fred-
erick Reiss, and Mehul A. Shah. Telegraphcq: Continuous dataflow processing for an un-
certain world. In CIDR, 2003.

[14] Mark Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic: Evidence
and Possible Causes. IEEE/ACM Trans. Netw., 5(6):835–846, 1997.

[15] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker M.
White. Towards expressive publish/subscribe systems. In Yannis E. Ioannidis, Marc H.
Scholl, Joachim W. Schmidt, Florian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons
Kemper, Torsten Grust, and Christian Böhm, editors, EDBT, volume 3896 of Lecture Notes
in Computer Science, pages 627–644. Springer, 2006.

[16] Yanlei Diao, Peter M. Fischer, Michael J. Franklin, and Raymond To. Yfilter: Efficient and
scalable filtering of xml documents. In ICDE, pages 341–. IEEE Computer Society, 2002.

[17] Françoise Fabret, Hans-Arno Jacobsen, François Llirbat, João Pereira, Kenneth A. Ross,
and Dennis Shasha. Filtering algorithms and implementation for very fast publish/sub-
scribe. In SIGMOD Conference, pages 115–126, 2001.

[18] Anindya Ghose and Sha Yang. Analyzing Search Engine Advertising: Firm Behavior and
Cross-Selling in Electronic Markets. In Proc. Intl. World Wide Web Conference (WWW),
pages 219–226, 2008.

[19] Zeinab Hmedeh. Indexation pour la recherche par le contenu textuel de flux rss. Technical
report, CEDRIC Laboratory, CNAM Paris, France.

[20] Zeinab Hmedeh and Cedric du Mouza. Pascal’s triangle for modeling the trie index. Tech-
nical report, CEDRIC Laboratory, CNAM Paris, France.

[21] Zeinab Hmedeh, Cedric du Mouza, Nicolas Travers, Michel Scholl, Nelly Vouzoukidou,
and Vassilis Christofidis. Characterization of RSS Feeds behavior and content: The Roses
Testbed. In preperation, 2010.

[22] Utku Irmak, Svilen Mihaylov, Torsten Suel, Samrat Ganguly, and Rauf Izmailov. Efficient
query subscription processing for prospective search engines. In USENIX Annual Technical
Conference, General Track, pages 375–380. USENIX, 2006.

[23] Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real Life Infor-
mation Retrieval: A Study of User Queries on the Web. SIGIR Forum, 32(1):5–17, 1998.

[24] Satyen Kale, Elad Hazan, Fengyun Cao, and Jaswinder Pal Singh. Analysis and algorithms
for content-based event matching. In ICDCS Workshops, pages 363–369. IEEE Computer
Society, 2005.

[25] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

79

[26] Arnd Christian König, Kenneth Ward Church, and Martin Markov. A Data Structure for
Sponsored Search. In Proc. Intl. Conf. on Data Engineering (ICDE), pages 90–101, 2009.

[27] Arnd Christian König, Kenneth Ward Church, and Martin Markov. A data structure for
sponsored search. In ICDE, pages 90–101. IEEE, 2009.

[28] Ryan Levering and Michal Cutler. The portrait of a common html web page. In Proc. Intl.
ACM Symp. on Document Engineering, pages 198–204, 2006.

[29] Gang Luo, Chunqiang Tang, and Philip S. Yu. Resource-adaptive real-time new event
detection. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, SIGMOD
Conference, pages 497–508. ACM, 2007.

[30] Gilad Mishne and Maarten de Rijke. A study of blog search. In Mounia Lalmas, Andy
MacFarlane, Stefan M. Rüger, Anastasios Tombros, Theodora Tsikrika, and Alexei Yavlin-
sky, editors, ECIR, volume 3936 of Lecture Notes in Computer Science, pages 289–301.
Springer, 2006.

[31] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
processing, approximation, and resource management in a data stream management system.
In CIDR, 2003.

[32] Vouzoukidou Nelly. On the statistical properties of web search queries. Technical report,
ISL, ICS-FORTH, Greece.

[33] João Pereira, Françoise Fabret, François Llirbat, Radu Preotiuc-Pietro, Kenneth A. Ross,
and Dennis Shasha. Publish/subscribe on the web at extreme speed. In Amr El Ab-
badi, Michael L. Brodie, Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter
Schlageter, and Kyu-Young Whang, editors, VLDB, pages 627–630. Morgan Kaufmann,
2000.

[34] Bagwell Philip. Fast and space efficient trie searches. Technical report, EPFL Swtzerland.

[35] Bagwell Philip. Ideal hash trees. Technical report, EPFL Swtzerland.

[36] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer. Corona: A high
performance publish-subscribe system for the world wide web. In NSDI. USENIX, 2006.

[37] Ian Rose, Rohan Murty, Peter R. Pietzuch, Jonathan Ledlie, Mema Roussopoulos, and
Matt Welsh. Cobra: Content-based filtering and aggregation of blogs and rss feeds. In
NSDI. USENIX, 2007.

[38] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. Scribe:
The design of a large-scale event notification infrastructure. In Jon Crowcroft and Markus
Hofmann, editors, Networked Group Communication, volume 2233 of Lecture Notes in Com-
puter Science, pages 30–43. Springer, 2001.

[39] Amanda Spink, Dietmar Wolfram, Bernard J. Jansen, and Tefko Saracevic. Searching the
Web: The Public and Their Queries. Jour. of the American Society for Information Science
and Technology (JASIST), 52(3):226–234, 2001.

80

[40] Aixin Sun, Meishan Hu, and Ee-Peng Lim. Searching blogs and news: a study on popular
queries. In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-Seng Chua, and
Mun-Kew Leong, editors, SIGIR, pages 729–730. ACM, 2008.

[41] Yannis Tzitzikas, Yannis Theoharis, and Dimitris Andreou. On storage policies for se-
mantic web repositories that support versioning. In Sean Bechhofer, Manfred Hauswirth,
Jörg Hoffmann, and Manolis Koubarakis, editors, ESWC, volume 5021 of Lecture Notes in
Computer Science, pages 705–719. Springer, 2008.

[42] Botao Wang, Wang Zhang, and Masaru Kitsuregawa. Ub-tree based efficient predicate
index with dimension transform for pub/sub system. In Yoon-Joon Lee, Jianzhong Li,
Kyu-Young Whang, and Doheon Lee, editors, DASFAA, volume 2973 of Lecture Notes in
Computer Science, pages 63–74. Springer, 2004.

[43] Hugh E. Williams and Justin Zobel. Searchable words on the Web. Int. J. on Digital
Libraries, 5(2):99–105, 2005.

[44] Wai Yee Peter Wong and Dik Lun Lee. Implementations of partial document ranking using
inverted files. Inf. Process. Manage., 29(5):647–669, 1993.

[45] Tak W. Yan and Hector Garcia-Molina. Index structures for selective dissemination of
information under the boolean model. ACM Trans. Database Syst., 19(2):332–364, 1994.

[46] Tak W. Yan and Hector Garcia-Molina. The sift information dissemination system. ACM
Trans. Database Syst., 24(4):529–565, 1999.

[47] Jason Y. Zien, Jörg Meyer, John A. Tomlin, and Joy Liu. Web Query Characteristics and
their Implications on Search Engines. In Proc. Intl. World Wide Web Conference (WWW),
2001.

[48] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM Comput.
Surv., 38(2), 2006.

81

