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Abstract 

 

As computing and embedded systems evolve towards highly parallel multiprocessors, major 

research and development efforts are being focused on network interface (NI) architectures that 

enable efficient interprocessor communication (IPC). This thesis is focused on NI architecture, 

prototyping and design issues for cluster and chip multiprocessors. This work includes the 

development of a NI queue manager, key NI design issues with respect to IPC and a proposed NI 

design well suited to chip multiprocessors. 

The first part of this thesis presents the architecture design and implementation of a NI queue 

manager that supports Virtual Output Queuing, Variable-Size Multi-Packet Segmentation and 

QFC flow control. To increase the available network buffer space VOQs can migrate to external 

memory in the form of memory blocks connected in linked-lists. Free-List Bypass and Free Block 

Preallocation optimization techniques are employed to minimize the required number of accesses 

to external memory and achieve higher bandwidth. In addition, a novel packet processing 

mechanism that converts arbitrary traffic segments into autonomous network packets was 

implemented. Detailed FPGA hardware cost results are presented for each individual module, as 

well as for three different implementations of the queue manager. Network performance 

experiments were carried out using the developed queue manager on a FPGA-based prototyping 

platform and confirmed previous theoretical and simulation results about the behavior and 

performance of the buffered crossbar switch.  

The second part starts with a discussion of fundamental NI design issues that affect IPC. 

Various approaches and solutions are evaluated based on performance, scalability, reliability and 

protection. The issues addressed include NI placement, virtualization and protection, address 
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translation, data transfer mechanisms and the software interface. Relevant academic and 

commercial approaches and solutions are referenced throughout the discussion.  

The second part also contains a proposal for a design of a NI that is lightweight and tightly 

coupled to the processor, making it well suited to future chip multiprocessors. Two powerful 

communication primitives are offered: Message Queues and Remote DMA. Message Queues are 

intended for low latency communication, mainly synchronization and control messages or small 

low-overhead data transfers. Remote DMA minimizes processor involvement in communication, 

is well suited for bulky data transfers and facilitates zero-copy protocols. Furthermore, the 

proposed NI supports a versatile protection and security solution, based on the existence of 

protection zones that can easily be adapted to the specific security requirements of a system. 

 

 

Keywords: network interface, chip multiprocessors, virtual output queues, hardware 

linked-lists, variable-size multi-packet segmentation 
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Περίληψη 

 

Καζώο ηα ππνινγηζηηθά θαη ελζσκαησκέλα ζπζηήκαηα εμειίζζνληαη ζε παξάιιεινπο 

πνιπεπεμεξγαζηέο, γίλνληαη κεγάιεο πξνζπάζεηεο ζηελ έξεπλα θαη αλάπηπμε αξρηηεθηνληθώλ 

δηεπαθώλ δηθηύνπ (ΔΔ) πνπ επηηξέπνπλ ηελ απνδνηηθή επηθνηλσλία κεηαμύ επεμεξγαζηώλ 

(ΕΜΕ). Απηή ε εξγαζία εζηηάδεη ζηελ αξρηηεθηνληθή, αλάπηπμε θαη ζρεδίαζε ΔΔ γηα ζπζηνηρίεο 

ππνινγηζηώλ θαη πνιπεπεμεξγαζηηθά chip. Σπγθεθξηκέλα παξνπζηάδνληαη ε αλάπηπμε ελόο 

δηαρεηξηζηή νπξώλ ΔΔ, ζεκαληηθά ζέκαηα ζρεδίαζεο ΔΔ γηα ΕΜΕ, θαζώο θαη κηα πξνηεηλόκελε 

ζρεδίαζε ΔΔ θαηάιιειε γηα πνιπεπεμεξγαζηηθά chip.  

Σην πξώην θνκκάηη απηήο ηεο εξγαζίαο παξνπζηάδεηαη ε ζρεδίαζε ηεο αξρηηεθηνληθήο θαη ε 

πινπνίεζε ελόο δηαρεηξηζηή νπξώλ ΔΔ πνπ ππνζηεξίδεη Πνιιαπιέο Οπξέο Εμόδνπ (ΠΟΕ), 

θαηάηκεζεο κεηαβιεηνύ κεγέζνπο πνιιαπιώλ παθέησλ θαη έιεγρν ξνήο QFC. Γηα ηελ αύμεζε 

ηνπ δηαζέζηκνπ ρώξνπ απνζήθεπζεο δηθηπαθήο θίλεζεο νη ΠΟΕ κπνξνύλ λα κεηαλαζηεύνπλ ζε 

εμσηεξηθή κλήκε ζε κνξθή ζπλδεδεκέλσλ ιηζηώλ από κπινθ κλήκεο. Γίλεηαη ρξήζε ησλ 

ηερληθώλ βειηηζηνπνίεζεο παξάθακςεο ιίζηαο ειεύζεξσλ κπινθ θαη πξνδέζκεπζεο ειεύζεξσλ 

κπινθ γηα ηελ ειαρηζηνπνίεζε ησλ απαξαίηεησλ πξνζβάζεσλ ζηελ εμσηεξηθή κλήκε θαη έηζη 

ηελ βειηίσζε εύξνπο δώλεο. Επηπιένλ, αλαπηύρζεθε έλαο λεσηεξηζηηθόο κεραληζκόο 

επεμεξγαζίαο παθέησλ γηα κεηαηξνπή ηπραίσλ θνκκαηηώλ δηθηπαθήο θίλεζεο ζε απηόλνκα 

παθέηα δηθηύνπ. Παξνπζηάδνληαη αλαιπηηθά ην θόζηνο ζε πιηθό γηα θάζε ππνηκήκα ηεο ΔΔ, 

θαζώο θαη γηα ηξεηο δηαθνξεηηθέο πινπνηήζεηο ηεο ΔΔ. Φξεζηκνπνηώληαο ηελ παξνύζα ΔΔ έγηλαλ 

πεηξάκαηα απόδνζεο δηθηύνπ πνπ επηβεβαίσζαλ ηελ ζπκπεξηθνξά θαη απόδνζε ηνπ buffered 

crossbar, όπσο απηή είρε πξνθύςεη από ζεσξεηηθέο κειέηεο θαη πξνζνκνίσζε. 

Τν δεύηεξν θνκκάηη απηήο ηεο εξγαζίαο δηαπξαγκαηεύεηαη βαζηθά ζέκαηα ζρεδίαζεο ΔΔ πνπ 

επεξεάδνπλ ηελ ΕΜΕ. Εθηηκώληαη δηάθνξεο πξνζζεγγίζεηο θαη ιύζεηο κε βάζε ηελ απόδνζε, 
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δπλαηόηεηα θιηκάθσζεο, αμηνπηζηία θαη πξνζηαζία. Τα ζέκαηα πνπ ζπδεηώληαη πεξηιακβάλνπλ 

ηελ ηνπνζέηεζε ηεο ΔΔ, δεηήκαηα πξνζηαζίαο, κεηάθξαζεο δηεπζύλζεσλ, κεραληζκώλ 

κεηαθνξάο δεδνκέλσλ θαζώο θαη ηε δηεπαθή ινγηζκηθνύ. Σηελ πνξεία παξνπζηάδνληαη δηάθνξεο 

αθαδεκατθέο θαη εκπνξηθέο πξνζεγγίζεηο.  

Επίζεο πξνηείλεηαη ε ζρεδίαζε κηαο ΔΔ κηθξνύ θόζηνπο πξννξηδνκέλε γηα ηνπνζέηεζε 

θνληά ζηνλ επεμεξγαζηή, θαζηζηώληαο ηελ θαηάιιειε γηα ρξήζε ζε κειινληηθά 

πνιπεπεμεξγαζηηθά chip. Παξέρνληαη δύν ηζρπξνί κεραληζκνί γηα επηθνηλσλία: Οπξέο 

Μελπκάησλ θαη Remote DMA. Οη νπξέο κελπκάησλ πξνζθέξνπλ επηθνηλσλία ειάρηζηεο 

θαζπζηέξεζεο θαη απεπζύλνληαη θπξίσο ζε κελύκαηα ειέγρνπ θαη ζπγρξνληζκνύ ή κηθξέο 

κεηαθνξέο δεδνκέλσλ. Τν Remote DMA ειαρηζηνπνηεί ηελ αλάκεημε ηνπ επεμεξγαζηή ζηελ 

επηθνηλσλία, πξνζθέξεηαη γηα κεηαθνξά κεγάινπ όγθνπ δεδνκέλσλ θαη δηεπθνιύλεη ηελ 

πινπνίεζε πξσηνθόιισλ zero-copy. Επηπξνζζέησο, ε πξνηεηλόκελε ΔΔ ππνζηεξίδεη έλαλ 

επέιηθην κεραληζκό πξνζηαζίαο, βαζηζκέλν ζηελ ύπαξμε δσλώλ, πνπ κπνξεί εύθνια λα 

πξνζαξκνζηεί ζηηο εθάζηνηε αλάγθεο αζθάιεηαο ελόο ζπζηήκαηνο. 
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1 Introduction 

As computing and embedded systems evolve towards highly parallel multiprocessors, major 

research and development efforts are being focused on network interface (NI) architectures that 

enable efficient interprocessor communication (IPC). This thesis is focused on NI architecture, 

prototyping and design issues for chip and cluster multiprocessors. The work presented was 

performed at the Institute of Computer Science of the Foundation for Research & Technology - 

Hellas (ICS-FORTH) as part of the cross-European projects ―Scalable Intelligent Video Server 

System‖ (SIVSS) [1] and ―Scalable Computer Architecture‖ (SARC) [2] and consists of two 

major parts. 

The first part is focused on the development of a NI queue manager, which implements 

Virtual Output Queues (VOQs) and supports Variable-Size Multi-Packet Segments (VSMPS) [3]. 

The use of VOQs eliminates the performance-degrading head-of-line blocking effect, thus greatly 

improving the NI’s performance and localizing the effects of congestion. Variable-size multi-

packet segmentation is well suited to buffered crossbar switches and eliminates padding 

overheads, reduces crosspoint buffer size and is suited for use with external DRAM memories. 

The architecture is described in section 2 and the implementation and testing in section 3. 

The second part of this thesis discusses various NI design issues and is focused on a NI 

design well suited to chip multiprocessors, considering various design issues, approaches and 

alternatives. The design is targeted at a scalable lightweight NI that offers support for many 

connections and is tightly-coupled with the processor, sharing common local memory. Message 

Queues and Remote DMA (Direct Memory Access) operations are the two basic communication 

primitives offered. NI design issues are discussed in section 4 and the proposed NI design is 

presented in section 5. 

1.1 Contributions of this work 

The contributions of this thesis will be presented separately for each of the two parts. The 

first part (sections 2 and 3) presents the architecture and design of a NI queue manager and offers 

a ―proof of concept‖ implementation for the variable-size multi-packet segmentation scheme [3]. 

This is important for two reasons. Firstly it proves the feasibility of the design, while also 

providing a very accurate estimate of the implementation cost in hardware. Secondly, we 

conducted various network performance tests, confirming some of our group’s previous 

theoretical and simulation results. Moreover the system developed runs on real hardware and is 

used on a daily basis for various experiments.  
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The second part of this thesis (sections 4 and 5) makes two contributions. Section 4 presents a 

comprehensive review of various NI design issues with respect to interprocessor communication; 

relevant academic and commercial approaches and solutions are referenced throughout the 

discussion. Section 5 provides the detailed design of a NI well suited to future chip 

multiprocessors. It also deals with security, protection and virtualization issues and includes an 

analysis of the supported communication primitives, the software interface and a full description 

of the state that needs to be kept by the NI.  

1.2 Outline 

The remainder of this thesis is organized as follows. Section 2 provides the detailed 

architecture of a NI queue manager with VOQ and VSMPS support. Based on this architecture, 

section 3 presents the implementation of a queue manager prototype along with hardware cost 

and performance results. Section 4 discusses various NI design issues with respect to 

interprocessor communication, providing citations to previous work and approaches. Section 5 

presents a NI design for chip multiprocessors, while considering various design issues, 

approaches and alternatives. Finally section 6 contains the conclusions of this thesis and future 

work directions.  

 

 



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 3 of 84 

2 NI Support for Variable-Size Multi-Packet Segments 

This section presents the design and detailed architecture of a NI queue manager, which 

implements Virtual Output Queues (VOQs) and supports Variable-Size Multi-Packet Segments 

(VSMPS). Some basic introductory terms and key concepts are explained in section 2.1. Section 

2.2 elaborates on network traffic segmentation schemes and section 2.3 presents the actual 

architecture of the design, as well as design considerations. 

2.1 Key Concepts 

This subsection explains some introductory terms, key concepts and approaches, which are 

essential in understanding sections 2 and 3. This includes an introduction to flow control, QFC 

credits, Head-of-Line Blocking, Virtual Output Queues and Hardware Linked lists.  

2.1.1 Flow Control 

In buffered networks flow control refers to the process of managing network buffer 

occupancy in order to avoid overflows and guarantee that no packets are dropped
1
. When two 

nodes communicate, buffer overflow can occur when the sending node is producing traffic at a 

higher rate than the rate at which the receiving node is consuming it. Flow control is usually 

achieved by providing feedback to the sending node in order to adjust the transmission rate 

accordingly.  

2.1.2 QFC-Style Credit-Based Flow Control 

There are various ways to implement flow control in a network depending on the kind of 

feedback that is sent. In credit-based flow control the receiving node sends credits back to the 

sending node to inform about the available buffer space. One specific form of credit-based flow 

control is Quantum Flow Control (QFC) [4]. In QFC, credits are accumulated at the receiving 

node and are only sent, in the form of a cumulative credit count modulo some power of 2, when 

they exceed a given threshold. In addition to providing all of the benefits of credit-based flow 

control, such as lossless and efficient communication, QFC is also robust, since it can tolerate lost 

or corrupt feedback messages.  

                                                      

 

1
 This is true for lossless flow control 
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2.1.3 Head-of-Line Blocking 

A buffered network switch usually consists of an ingress line card with input queues, a 

switching fabric and an egress line card with output queues. Because of the FIFO nature of the 

input queues, the switching fabric can only switch packets at the head of an input queue at any 

given time. When a packet of a certain queue at the input cannot be switched to an output port 

because of contention, the rest of the packets in that queue are blocked by that Head-of-Line 

packet, even if there is no contention at the destination output ports for those packets. This 

phenomenon is called Head-Of-Line (HOL) blocking and may lead to significant network 

performance loss, particularly throughput limitation [5]. 

Figure 2.1 illustrates the head-of-line blocking effect. The head packets of inputs 1 and 2 are 

both destined to output 1. However they cannot be both transmitted at the same time. Assuming 

that input 1 is chosen to transmit its head packet, the second packet of input 2, which is destined 

to output 2 will be blocked, although there is no contention for output 2. 

 

Figure 2.1: Head-of-Line Blocking 

2.1.4 Virtual Output Queues 

As explained previously the use of a single queue for all outgoing traffic regardless of 

destination leads to head-of-line blocking resulting in significant performance-degrading effects. 

In order to overcome the head-of-line blocking drawback multiple virtual output queues (VOQs) 

– usually at least one per potential destination - are introduced. When using VOQs instead of 

having one queue at each switch input, multiple queues are used and incoming traffic, consisting 

of network packets is sorted and stored in the different queues according to its destination, as seen 

in Figure 2.2. Potentially, the number of queues per switch input can grow to be as large as the 

number of available destinations in the network.  
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Figure 2.2: Virtual Output Queues (VOQs) 

The simple way of implementing a queue in hardware is using a piece of statically allocated 

memory as a circular buffer, as shown in Figure 2.3. In a system that supports VOQs, if each 

queue is implemented in this manner, the total memory capacity requirements, even for a modest 

number of network destinations, can be very large and prohibitively expensive. Moreover, there is 

a significant probability that the memory used to implement the VOQs will be underutilized, 

since usually only a few destinations are very popular and their respective queues will use most of 

their buffer space, while the rest will be almost empty.  

 

Figure 2.3: Queue implemented as a circular buffer in statically allocated 

memory 

In order to efficiently utilize the available memory resources, VOQs should allocate memory 

in a dynamic manner according to their specific capacity requirements. However this is not 

possible if queues are implemented as simple circular buffers. Rather, dynamic resizing of queues 

is required, to support efficient sharing of a common memory hosting multiple queues. Ideally, 

each queue should allocate the exact amount of memory it requires for its packets at any given 

time. 

Head Pointer

Tail Pointer

Data Memory

Dequeue data from here 

Enqueue new data here 
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2.1.5 Hardware Linked Lists  

A common way of dynamically sharing a memory among multiple queues is dividing the 

memory in equal, fixed-sized blocks and implementing each queue inside that memory as a 

hardware-managed linked list of such blocks. Each block is associated with a Next Block Pointer 

that indicates which block is next in the queue. The Next Block Pointer may be stored either 

inside the block itself, along the data, or in a separate dedicated memory. In addition to storing a 

pointer for each block, each queue also requires memory space to store its Head and Tail pointers, 

which point to the first and the last block of the queue respectively. Figure 2.4 is a diagram of a 

linked-list in hardware.  

 

Figure 2.4: Hardware Linked-List 

There are many parameters and trade-offs to consider when designing hardware linked-lists. 

Various alternatives exist for placing Next Block, Head and Tail pointers, ranging from having 

everything reside in the same physical memory to using a separate physical memory for each 

item. Many implementation-specific optimizations also need to be considered. For instance, when 

using DRAM memory it makes great sense to store the Next Block Pointers right next to the data 

blocks to achieve high DRAM memory throughput. Implementation optimizations are further 

discussed in subsection 2.3.5. 
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2.2 Network Traffic Segmentation 

Network traffic waiting in VOQs at the input queues of an ingress line card usually consists 

of variable-size packets. In many cases this traffic needs to be segmented in order to go through 

the switching fabric. In most cases, this requires reassembly of segments when these exit the 

switching fabric at the output ports of the egress card. The segmentation scheme used greatly 

depends on the switching fabric characteristics. In this thesis the network switch is considered to 

be implemented as a buffered crossbar [6]. 

Figure 2.5 gives an overview of the segmentation schemes, which are presented in 

subsections 2.2.1 through 2.2.3 and relate to the work presented in subsection 2.3.  

 

Figure 2.5: Overview of Segmentation Schemes 

2.2.1 Fixed-Size Segments  

Traditional crossbars, with no buffers at their crosspoints, require segmenting network traffic 

into fixed-sized segments i.e., cells, since transmissions need to be synchronized [6]. This ensures 

adequate time for the scheduler to make a scheduling decision and thus makes things simpler.  

The traditional approach is to have each segment contain only a single packet or fragment 

thereof, but this leads to a waste of bandwidth and memory space due to header and padding 

overheads. Moreover, to accommodate small network packets, segments would need to be 

equally small, which requires a high-scheduling rate. Fixed-size unipacket segmentation is shown 

in (a) of Figure 2.5. 
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An improved approach to fixed-size segmentation is to allow a segment to contain more than 

one packet or fragments thereof [7]. This allows larger segments, since a minimum-size packet 

does not need a dedicated segment, but still suffers from padding overheads and could possibly 

lead to increased delays, because a segment might need to wait for accumulation of more traffic 

before departing. Fixed-size multi-packet segmentation is shown in (b) of Figure 2.5. 

2.2.2 Variable-size Segments 

Buffered crossbars, which have small buffers at their crosspoints, are capable of switching 

variable-size segments. Although the segmentation and reassembly approach is not absolutely 

necessary for buffered crossbars, since they are capable of directly switching variable-size 

packets [8], it greatly reduces the required buffer size per crosspoint, increasing implementation 

feasibility. 

One approach to segmentation suitable for buffered crossbars is to have each variable-size 

segment contain only one packet or part thereof. This completely eliminates padding overhead, 

but still imposes a high header overhead and is not well suited to maintaining linked lists for 

storing network traffic, as described in subsection 2.3.5. The variable-size unipacket segments 

approach is shown in (c) of Figure 2.5. 

2.2.3 Variable-Size Multi-Packet Segments 

The Variable-Size Multi-Packet Segmentation (VSMPS) [3] is a better segmentation scheme 

that is well suited to buffered crossbars and storing traffic in linked lists. In the VSMPS approach 

each variable-size segment contains one or more packets or fragments thereof. This approach 

combines all the advantages of the segmentations schemes previously described. Variable-size 

segments completely eliminate padding overhead and packets need not be delayed, waiting for 

segments to fill up. Multi-packet segments allow larger segment sizes reducing header overhead 

and providing more slack for scheduling decisions. The VSMPS approach is shown in (d) of 

Figure 2.5. 

2.3 NI Queue Manager Design & Architecture 

The queue manager is a hardware module that manages and processes network traffic right 

before it enters the switching fabric. Packet processing may include traffic segmentation or 

header processing. The queue manager is also partly responsible for scheduling decisions and 

network flow control, which is usually done cooperatively with the switching fabric and the 
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egress card. This subsection describes the architecture of a NI queue manager that supports 

VOQs, VSMP segmentation and implements QFC credit-based flow control.  

2.3.1 Design Constraints/Requirements 

The queue manager described in this thesis was implemented in real hardware using FPGA-

based boards, as part of the development of a broader research prototyping platform, which is 

described in more detail in section 3. During the design phase, the specific target hardware and 

platform characteristics had to be considered and vastly influenced many design decisions.  

For instance, the packet processing mechanism was specifically tailored to accommodate the 

custom packet format used in the rest of the system. Other examples include the scheduler and 

credit handling mechanisms, which also had to be compatible with the flow control that was 

already employed in the rest of the prototyping platform. The design was also influenced by 

specific characteristics of the implementation target board and had to be a accordingly adapted.  

2.3.2 Design Overview  

Figure 2.6 is a block diagram depicting the modules of the queue manager and the 

communication and data transfer paths among them. The thick yellow arrows show the network 

packet flow through the various modules. The solid black thick and thin  arrows are used to depict 

the flow of network data and control information through the modules respectively. The host 

module on the left represents a node generating traffic, while the Network module on the right 

accepts traffic and forwards it through the switching fabric. The Network module periodically 

sends flow control information to the Scheduler. 

 

Figure 2.6: Block Diagram of NI Queue manager 
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The design of the queue manager consists of 5 modules, which are presented in more detail in 

the following order: 

 Packet Sorter 

 On-Chip VOQs 

 Scheduler 

 Linked List Manager 

 Packet Processor 

2.3.3 Packet Sorter 

The Packet Sorter receives network traffic in the form of packets through an elastic buffer 

and enqueues them, according to various types of header information into the appropriate on-chip 

VOQ. When necessary, the Scheduler is notified about the incoming traffic. 

There are quite a few alternatives as to how the packets are sorted. The most straight-forward 

scheme, which is also used to eliminate Head-of-Line Blocking, is to sort the packets according 

to their final destination. Other schemes could take into account other information found in the 

packet header, such as priority. If the available VOQs are fewer than all of the potential packet 

destinations, predefined sets of destinations can be grouped in order to share a common VOQ.  

Aside from sorting the packets, the packet sorter module is also well suited to simple, light-

weight packet processing tasks, such as enforcing a maximum packet size. All packets that 

exceed the maximum size are then split into a number of smaller packets. If the system also 

demands the existence of a minimum packet size, this has to be taken into consideration as well, 

as seen in Figure 2.7.  

 

Figure 2.7: The existence of minimum packet size influences packet 

segmentation. For instance, if the maximum packet size is 256 bytes and the 

minimum packet size is 40 bytes, then a packet of size 280 bytes would have to be 

split into two packets, one of size 240 bytes and another one of size 40 bytes. 
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2.3.4 On-Chip VOQs 

The On-Chip VOQ module stores network packets until they are ready either to travel 

towards the switching fabric or to be stored in DRAM due to congestion. The On-Chip VOQs are 

hosted in on-chip memory – usually SRAM - as their name implies.  

One approach to implementing On-Chip VOQs is through use of statically allocated circular 

buffers. This can be done using either a single memory block or many smaller memory blocks, 

one per VOQ. A different approach is to implement hardware linked lists in a single on-chip 

memory block that is dynamically shared among all VOQs. The first approach requires more 

memory, but results in simpler hardware, while the second approach requires less memory but 

more complex hardware. 

Choosing the appropriate implementation for the On-Chip VOQs is a trade-off between 

memory capacity requirements and hardware complexity. The deciding factor is external memory 

block size, since it dictates the maximum memory capacity requirements per VOQ. In the 

presented design, the memory required by each VOQ is at least two times the size of an external 

memory block. 

2.3.5 Linked List Manager 

As its name suggests, the Linked List Manager’s main task is to manage the linked lists of 

external memory blocks that hold VOQ traffic, which has migrated to external memory due to 

congestion. This module is also responsible for carrying out segment transfers, as instructed by 

the Scheduler.  

Segment Transfers 

The segment transfers performed by the Linked List Manager fall into 3 categories as 

indicated by respective numbers in Figure 2.8. 

1. VOQ segment transfers from on-chip memory to the Packet Processor 

Packets received by an empty VOQ that has sufficient credits should be directly forwarded in 

the form of variable-size segments towards the switching fabric. Under light traffic, and thus low 

VOQ occupancy, this is expected to be the majority of segment transfers and is the most straight-

forward. 



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 12 of 84 

2. VOQ segment transfers from on-chip memory to off-chip memory 

Packets residing in a VOQ that is out of credits due to congestion may not proceed towards 

the switching fabric until flow control allows them to do so. If the accumulating pending packets 

exceed a given threshold, they are transferred to external memory in fixed-sized blocks that are 

organized in linked lists. Only the tail packets of a VOQ consume on-chip memory, while the rest 

of the VOQ, head and body, resides entirely in external off-chip memory. On-Chip VOQ packets 

are expected to migrate to off-chip memory when congestion starts to build up in the network. 

3. VOQ segment transfers from off-chip memory to the Packet Processor 

These transfers happen when a congested VOQ that has migrated to external memory 

receives credits. As explained previously, when a VOQ grows excessively large it migrates to 

external off-chip memory, except for its tail, which remains in on-chip memory. Since the head of 

the tail resides in external memory, when this VOQ becomes eligible for service, a block needs to 

be transferred from the off-chip VOQs towards the Packet Processor and thereafter to the 

switching fabric. 

 

Figure 2.8: Segment Transfer Categories 

In the two latter cases, when off-chip memory is involved, the segments transferred are 

always of fixed-size and are also called External Memory Blocks. External Memory Block Size 

should be chosen carefully to ensure peak external memory throughput. Block sizes for modern 

DRAM memories, which are quite commonly used as off-chip memories, range between 256 and 

512 bytes. The exact block size is greatly influenced by external memory-specific characteristics, 

such as burst length and bank interleaving. 
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Linked List Management 

As explained briefly in subsection 2.1.5, linked list implementation in hardware requires 

keeping track of Next Block, Head and Tail Pointers. The Linked List Manager is responsible for 

storing and updating this information for each VOQ, as well as for the free block list. The free 

block list is an additional linked-list used for storing all of the free external memory blocks. A 

linked list needs to support two basic operations: enqueueing and dequeueing. 

The enqueue operation consists of the following actions: 

1. Get a free block from the free block list.
1
 

2. Write the data in the new block. 

3. Read the tail pointer of this VOQ to locate its last block. 

4. Update the next block pointer of the last block to point to the new block. 

5. Update the tail pointer of this VOQ and have it point to the new block. 

The dequeue operation consists of 5 equivalent actions: 

1. Read the head pointer of this VOQ to locate its first block. 

2. Read the data from the first block. 

3. Read the next block pointer of the first block to find the second block. 

4. Update the head pointer of this VOQ and have it point to the second block. 

5. Put the original first block in the free block list. * 

Depending on the type of external memory used, there are a few possible optimizations to 

consider that can deliver improved performance. Two such optimizations, both employed to 

reduce external memory accesses, are Free Block Preallocation [9] and Free List Bypass [10]. 

In Free Block Preallocation each VOQ always allocates a free block ahead of time. Thus, 

when an enqueue operation is is to be performed, instead of searching the free block list for a new 

block, the preallocated block is immediately used. This optimization is usually applied when the 

external memory comprises of DRAM and the next block pointer for each block is stored along 

with the block data. A minor disadvantage of this technique is that each VOQ uses an extra block 

of space, which, however, is insignificant for external DRAM. 

                                                      

 

1
 The free block list needs to be managed in a similar manner. 
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Free List Bypassing is used to reduce the number of total memory accesses. Assume that 

there is at least one pending enqueue operation for some VOQ and at least one pending dequeue 

operation for another or even the same VOQ. Rather that dequeueing a new block from the free 

block list for the enqueue opearation and enqueueing the used block in the free block list as part 

of the dequeue operation, these two operations are combined. The enqueue operation uses the 

block that was just freed for the dequeue operation, completely avoiding free block list 

manipulation. 

In order to implement the above optimizations, the Linked List Manager needs to properly 

coordinate pending Enqueue and Dequeue requests. A simplified finite state machine that offers 

support for Free List Bypassing is shown in Figure 2.9. The path indicated by the green arrows 

corresponds to the state transitions for Free List Bypassing.  

 

 

Figure 2.9: Linked List Manager FSM with support for Free List Bypassing 

2.3.6 Scheduler 

The scheduler keeps track of the state of the VOQ handling system, both on-chip and off-

chip, in order to enforce the scheduling policy and implement network flow control. Based on the 

gathered information and the chosen scheduling policy, the scheduler instructs the Linked List 

Manager on which VOQ to service next. When a VOQ is almost out of space, the scheduler also 

implements local flow control by notifying the host interface to stop generating traffic for the 

corresponding destination. 

The Scheduler stores and keeps track of the following information for each VOQ:  

 on-chip occupancy (number of data words) 
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 off-chip occupancy (number of external memory blocks) 

 number of sent data words  

 available credits  

This information is used to enforce a scheduling policy and to implement network and local 

flow control.  

Scheduling - Eligibility 

Scheduling refers to determining which VOQs are eligible, with respect to the actions 

performed by the Linked List Manager, and serving them according to a chosen scheduling 

policy. As described in subsection 2.3.5, the Linked List Manager is capable of performing VOQ 

segment transfers that fall into one of the three following categories: 

1. VOQ segment transfers from on-chip memory to the Packet Processor 

2. VOQ segment transfers from on-chip memory to off-chip memory 

3. VOQ segment transfers from off-chip memory to the Packet Processor 

VOQs are categorized according to their eligibility for the above transfers. However, a VOQ 

need not belong to exactly one category. For instance, an empty VOQ that does not have any 

segments to be transferred does not fall into any category. On the other hand, a VOQ that has a 

few packets stored on-chip and also has a few credits can simultaneously belong to two categories 

and segments can be forwarded to either the Packet Processor or the off-chip memory. In such 

cases it is up to the scheduler to choose the most appropriate action. 

Determining eligibility for segment transfers from off-chip memory to the Packet Processor is 

quite straight-forward. If a VOQ has migrated to off-chip memory due to congestion and at some 

point its credits are replenished, then the VOQ is eligible for this kind of transfers. 

On the contrary, when determining eligibility for the other two types of transfers, there are 

many parameters to consider, such as the size that a VOQ can grow on-chip before it is 

considered eligible to migrate to off-chip memory and/or the number of credits and/or the state of 

the rest of the VOQs. 

One simple approach for dynamically allocated on-chip VOQs is to set an occupancy 

threshold and have each on-chip VOQ be eligible only for one kind of transfer at a time. If the 

occupancy of an on-chip VOQ is below the threshold it is considered eligible only for segment 

transfers towards the Packet Processor. Otherwise, if the occupancy becomes equal or greater 

than the threshold, the VOQ is only considered eligible to transfer segments to off-chip memory. 
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Assuming that an empty VOQ with plenty of credits suddenly starts receiving traffic, another 

important issue is determining the appropriate time to form and dispatch a segment from the on-

chip VOQs towards the Packet Processor.  

One approach is to be ―eager‖ and create minimum-sized segments immediately after traffic 

starts to appear. This minimizes latency but can lead to continuous production of minimum-sized 

segments, which impose a greater overhead on the network, since they carry a relatively smaller 

payload. Another approach is to be ―patient‖ and wait for traffic to build up, until a maximum-

size segment is built and dispatched. In this case, network overhead is minimized but latency may 

be increased, since, when a segment is half full, it is impossible to know when and if the rest of 

the segment is filled. This problem can be addressed by the presence of a timer, which ensures 

that traffic will not be stuck in a VOQ forever. When the timer expires, a segment is created and 

dispatched regardless of its size. This ―lazy‖ approach, however, increases complexity. 

Scheduling - Policy  

Determining eligibility and enforcing scheduling policy are closely related. The scheduling 

policy decides the order in which eligible VOQs are serviced. There are many scheduling 

algorithms to choose from. The more sophisticated the algorithm the more complex the hardware.  

One of the simplest and easiest to implement scheduling algorithms that is commonly used in 

many scientific disciplines is the Round-Robin scheduling, in which eligible VOQs are serviced 

in order, one after another, transferring at most one segment each at a time. Since segments may 

be of variable-size, Round-Robin scheduling can lead to ―unfairness‖. For instance, VOQs 

transferring large segments have an advantage over VOQs transferring smaller segments. 

Deficit Round-Robin [11] is a scheduling algorithm that also takes into account the size of 

each segment transferred. In the long term this scheduling algorithm guarantees that each eligible 

VOQ transfers an equal amount of data. A positive characteristic of all the Round-Robin-based 

algorithms is that they are ―starvation-free‖, which means that a VOQ will under no 

circumstances have to perpetually wait to be serviced. 

Other alternatives to the above algorithms include weighted Round-Robin and strict-priority 

scheduling, as well as other custom scheduling algorithms. For instance one possibility would be 

to always service the most occupied VOQ. Although this would be unfair and even could lead to 

starvation of other VOQs, it would minimize total memory occupancy for VOQs implemented in 

statically partitioned memory. 
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Choosing the right scheduling algorithm greatly depends on the specific characteristics of the 

system at hand. On-chip and off-chip memory latency, size and bandwidth, available hardware, 

network flow-control, traffic patterns as well as quality of service guarantees, all play important 

roles when choosing which scheduling policy to implement. 

Flow Control  

There are two categories of flow control management performed by the Scheduler: 

i. Network Flow Control 

Network flow control is performed by keeping track of the available flow control information 

for each VOQ, which is periodically received by the network switches. This information, in 

conjunction with the occupancy of each VOQ, is used to determine the eligibility of a VOQ. Each 

time a segment is dispatched towards the switching fabric it is the scheduler’s responsibility to 

ensure the existence of adequate credits. 

ii. Local Flow Control 

Local flow control is about regulating the generation of traffic at the host. This can be simply 

done by requesting that the host stop generating traffic for a specific VOQ if its occupancy grows 

larger than a certain threshold. For example, this threshold could be set to be 3/4 of the available 

on-chip memory space for each VOQ. 

2.3.7 Packet Processor 

The Packet Processor receives segments, which are parts of a stream of packets ―chopped‖ at 

arbitrary points originating from either the on-chip or the off-chip VOQs, produces independent 

packets and then forwards them towards the switching fabric. To accomplish this, it needs to keep 

track of the most recent header for each VOQ and can insert, remove or alter packet headers to 

maintain packet integrity. The Packet Processor guarantees that only valid packets will be 

transmitted towards the network, regardless of the size, content and origin (on-chip or off-chip 

memory) of an incoming segment.  

The employed network packet format greatly influences the capabilities of the Packet 

Processor module. It is not always possible to build a smaller autonomous packet using just a part 

of the original packet. For instance, remote DMA packets, whose header contains (among other 

information) the size and the destination address of the DMA transfer, are moderately easy to 

split into smaller packets. Conversely, it is usually not possible to split packets carrying small 
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synchronization or control messages. This module is also well-suited to performing simpler 

packet processing tasks, such as static packet header manipulation.  



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 19 of 84 

3 Implementation and Testing 

This section describes the implementation and testing of a queue manager based on the 

architecture described in section 2. An overview of the system is presented in subsection 3.1, 

followed by a description of the hardware platform in subsection 3.2 and the methodology and 

implementation details in subsections 3.3 and 3.4 respectively. Subsection 3.5 describes the 

testing procedures and issues and subsection 3.6 presents the results in terms of hardware cost and 

network performance. 

3.1 System Overview 

The work presented in this section was conducted as part of the cross-European research 

project Scalable Intelligent Video Server System (SIVSS) [1] aiming at the development of a 

prototyping platform for conducting experiments related to high-speed networking and 

interprocessor communication. The prototyping platform, which is shown in Figure 3.1, was built 

at the Computer Architecture and VLSI (CARV) Laboratory of the Institute of Computer Science 

(ICS), FORTH and comprises of commercial personal computers (PCs) linked through a custom 

interconnect.  

 

 Figure 3.1: Prototyping Platform at the CARV Laboratory of ICS, FORTH 
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A FPGA development board plugs into the PCI-X bus of each PC, and is configured as its 

network interface (NI). An additional FPGA board is configured as a buffered crossbar network 

switch. The key features of this platform are: 

 High throughput network 

 PCI-X interface 

 Remote Direct Memory Access (RDMA) support 

 Buffered Crossbar Switch Implementation 

3.1.1 NI Overview 

The implemented NI card supports the PCI-X interface [12] to communicate with the host 

PCs and the RocketIO interface [13] to connect to the network. Software running on the host PCs 

views the (PCI-X) NI card as a memory-mapped peripheral. 

This project focused on the queue manager, which is a module that resides between and 

connects the PCI-X and RocketIO interfaces. This module is responsible for network traffic 

storage and handling, flow isolation (VOQs), flow control (QFC credit-handling) and packet 

processing and segmentation (VSMPS). 

3.1.2 Remote Direct Memory Access (RDMA) 

An important feature of the NI developed is support for Remote Direct Memory Access 

(RDMA). RDMA allows a host to directly access the memory of a remote node. In this 

implementation RDMA operations are allowed for continuous physical address regions which 

have been first properly setup (i.e. pinned) by the operating system. Initiating an RDMA 

operation is accomplished by having software issue a RDMA request through the PCI-X 

interface. This triggers the construction of a RDMA packet that contains the data and among 

other information the remote physical target address where the data should be written.  

In more detail, each RDMA packet header travelling through the network contains the 

following information: 

 a 32-bit remote host physical destination address 

 the size of the transfer in 64-bit words (maximum size is 512 words) 

 the flow ID of the destination host (currently up to 128 hosts) 

 an ―opcode‖ that controls transfer details (such as completion notification) 
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It is important to note that the RDMA packet format used in this system allows for hassle-free 

segmentation of large RDMA packets into smaller autonomous packets. Essentially this means 

that the segmentation of a RDMA packet at the source node does not require reassembly at the 

destination node. This characteristic of RDMA packets is of great importance to the operation of 

the queue manager and specifically the packet processor module that was developed, which are 

described in more detail in subsection 3.4.5. 

3.2 Hardware Used 

The hardware used for implementing the queue manager includes FPGA (Field 

Programmable Gate Array)-based boards (DN6000k10SC) provided by the Dini Group 

(www.dinigroup.com). The Dini boards use FPGAs (VirtexII-Pro 2vp40) provided by Xilinx 

(www.xilinx.com). Two PowerPC processor cores designed by IBM are embedded in each 

FPGA. The FPGA boards were installed in the PCI-X slot of personal computers provided by 

Dell (www.dell.com) running the Linux operating system. Additional larger FPGA-based boards 

were configured as buffered crossbar switches to connect the Dini boards together through 

RocketIO links. 

3.2.1 Dini Board 

The board provided by Dini (DN6000k10SC) is a complete logic emulation system 

appropriate for logic, memory and embedded systems prototyping [14]. The system is configured 

around the VirtexII Pro series FPGA manufactured by Xilinx and can be used stand-alone or 

hosted in a 32/64-bit PCI/PCIX slot. A block diagram of the Dini board can be seen in Figure 3.2. 

The Dini board includes eight serial RocketIO ports, which can support a variety of serial 

communication protocols at speeds up to 3.125 GB/s. The board also features four external 

memory chips all clocked at 133 MHz, two SRAM chips with 2-Mbits capacity each and two 

512-Mbit DRAM chips. Specialized clock-generator chips (―Roboclocks‖) made by Cypress 

provide clock input to the various components of the board. 

The FPGA also offers four serial ports, various JTAG connectors, as well as a smart media 

connector that allows programming of the FPGA using smartmedia cards. A total of 162 signals 

are provided via a 200-pin connector for logic analyzer-based debugging or pattern generator 

stimulus.  

 

http://www.dinigroup.com/
http://www.xilinx.com/
http://www.dell.com/


 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 22 of 84 

 

Figure 3.2: Block Diagram of the Dini board 

Finally there are 10 LEDs that can be used as debugging tools or simply for visual indication 

of the system’s status. Two push-buttons are also present on the board: one for resetting and 

configuring the FPGA and one that is user configurable. 

3.2.2 VirtexII Pro 

The FPGA of the Dini board belongs to Xilinx’s VirtexII Pro family of FPGAs [15] and its 

specific device type is xc2vp40. It is built on a 130 nm 9-layer copper process technology and is 

capable of over 400 MHz operation frequencies, offering 46632 logic cells, 3456 Kbits of 

embedded memory (Xilinx BlockRAM or BRAM) and 192 18x18 Multipliers. It also includes 8 

Digital Clock Management Blocks (DCMs) and 12 high-speed RocketIO transceivers. The heart 

of the VirtexII Pro FPGA accommodates two IBM PowerPC processor cores capable of operating 

at over 300 Mhz. 

3.3 Methodology 

Verilog HDL was the primary hardware description language used, although the development 

tools also demanded the sporadic use of the VHDL hardware description language. A Concurrent 

Versioning System (CVS) repository was used to keep track of all changes, versions and branches 

of the source code. 
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The developed modules comprising the queue manager are fully parametrizable and can 

easily be adapted to specific implementation requirements. The number and width of VOQs, 

maximum segment size, size of on-chip memory, as well as other parameters can be manually set. 

The simulations that were carried out through the various phases of the project were done 

using Modelsim by Modeltech (www.model.com) and NCLaunch by Cadence 

(www.cadence.com).  

The main software tools used for development were provided by Xilinx. The Xilinx Project 

Navigator was used to synthesize the verilog code and produce the appropriate files for 

programming the FPGAs, while the Xilinx Chipscope Pro Analyzer software was used for clock-

cycle granularity verification.  

3.4 Implementation 

This subsection provides implementation details for each of the queue manager’s modules, 

which were presented at the architectural level in subsection 2.3. A block diagram of the queue 

manager can be seen in Figure 3.3. The yellow arrows correspond to packet copying, while the 

black arrows correspond to exchange of control information. 

All modules enclosed within the dashed rectangle belong to the queue manager. The PCI-X 

module on the left implements the PCI-X interface and provides packets to the queue manager. 

The RocketIO module, on the right, receives packets from the queue manager and transmits them 

towards the switching fabric, which in this platform is implemented as a buffered crossbar.  

 

Figure 3.3: Block Diagram of the Queue manager 

http://www.model.com/
http://www.cadence.com/
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The queue manager, which is the top module, consists of three major versions, which were 

concurrently and continuously developed following varying project goals. The queue manager 

versions are differentiated based on the supported features and are presented below:  

i. Full version: The full version of the queue manager module includes all available 

features. This includes both variable-size multi-packet segmentation and migration of 

VOQs to off-chip memory in hardware-manages linked lists. 

ii. No external memory: This version does not support VOQ migration to external 

memory. Unfortunately the external memory found on the implementation 

development board offered less than half of the bandwidth of the on-chip memory 

(Xilinx BRAM). Enabling external memory support, and thus VOQ migration to 

external memory would force the queue manager to operate at less than half of its 

potential rate/bandwidth. This version vastly simplifies the Linked List Manager and 

Scheduler modules. 

iii. No VSMP segmentation: This version does not segment traffic according to the 

VSMP segmentation scheme presented in subsection 2.2.3. The motivation behind 

the creation of this version was to lower the hardware cost and complexity of the 

queue manager module allowing for greater flexibility and creation of other modules 

on the FPGA. This version imposes many changes to the Scheduler and eliminates 

the Packet Processor module. 

Apart from the three major versions of the queue manager as a whole, in certain cases more 

than one variations of individual modules were developed to satisfy specific project goals. In such 

cases further information is provided about each different implementation and module variations 

directly related to different queue manager major versions are explicitly mentioned.  

The queue manager implemented at the CARV laboratory operates at the same clock rate as 

the PCI-X interface, which is 100 MHz and all modules employ a 64-bit-wide datapath. The card 

supports 8 VOQs, since the prototyping platform consists of 8 PCs, but the number of supported 

VOQs is configurable and can be easily changed.  

The maximum DMA request size is set to 4Kbytes, while the maximum network packet size 

is 512 bytes. The minimum network packet size allowed is 8 bytes, i.e. its payload consists of a 

single 64-bit word. All packet headers occupy 16 bytes, i.e. 128 bits.  
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The external memory used comprises of two DDR DRAM memories operating at 133 MHz 

and a 16-bit-wide datapath each. External memory block size is set to 512 bytes, which is 

sufficiently large for achieving maximum DRAM throughput. 

The modules comprising the queue manager are presented in the following order:  

 Packet Sorter 

 On-Chip VOQs 

 Scheduler 

 Linked List Manager 

 Packet Processor 

3.4.1 Packet Sorter 

Two variations of this module were implemented. The basic version classifies packets 

according to their destination, enqueues them in the on-chip VOQs and notifies the scheduler. 

The alternate version of the packet sorter also enforces a maximum packet size by segmenting 

larger packets into smaller ones. Only the later version is presented in this thesis because it 

supersedes the former. The interface of the Packet Sorter module comprises of the signals 

presented in Table 3.1.  

Table 3.1: Packet Sorter Interface 

Signal Name In/Out Width Short Description 

clk In 1 Queue Manager Clock 

reset In 1 Queue Manager Reset 

fifo_din In 68 
Data bus for incoming network traffic originating from the PCI-X 

interface 

fifo_re Out 1 Read Enable/Dequeue signal for PCI-X fifo 

fifo_empty In 1 Indicates empty PCI-X fifo 

VOQ_out Out 3 Indicates VOQ for currently outgoing traffic 

Enq Out 1 Enqueues data into the On-Chip VOQs 

fifo_dout Out 68 Data bus for outgoing traffic headed towards the On-Chip VOQs 

sram_inc Out 1 Notifies the Scheduler when a packet is stored in the On-Chip VOQs 

sram_in_size Out 10 Indicates the size of the current packet in 64-bit words 

The packet sorter receives packets from the PCI-X module through a simple FIFO-based 

interface. When this FIFO is not empty, new packets are constantly received. Each time a packet 

header is encountered it is saved until the next header replaces it. If a large packet has to be split 

in smaller parts, then new headers are created for each part based on the original header that was 

stored.  
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The Packet Sorter module connects to the On-Chip VOQs module through another simple 

FIFO-based interface. Enqueueing a packet into the On-Chip VOQs is as simple as indicating the 

appropriate VOQ through the VOQ_out signal and asserting the Enq signal.  

While a packet passes through the packet sorter its size is monitored in order to be reported to 

the scheduler. Each time a whole packet is forwarded to the On-Chip VOQs the scheduler is 

notified about its size through the sram_inc and sram_in_size signals.  

3.4.2 On-Chip VOQs 

The On-Chip VOQs module employs flow isolation by storing packets into different queues 

(VOQs) according to their destination. It receives packets from the Packet Sorter and supplies 

packets to the Linked List Manager.  

Incoming packets are stored in fixed-sized queues of 8Kbytes each. Once again two 

variations of this module were built, which differ in their queue implementation. The first 

variation implements all of the queues inside a common shared statically partitioned on-chip 

Xilinx BRAM memory. The second variation instantiates separate Xilinx FIFO modules for each 

queue. The interface of the On-Chip VOQs module comprises of the signals presented in Table 

3.2.  

Table 3.2: On-Chip VOQs Interface 

Signal Name In/Out Width Short Description 

clk In 1 Queue Manager Clock 

reset In 1 Queue Manager Reset 

enq In 1 Enqueues data into the On-Chip VOQs 

voq_in In 3 Specifies a VOQ for incoming packets 

data_in In 68 Data bus for incoming packets from the Packet Sorter 

deq In 1 Dequeues data from the On-Chip VOQs 

voq_out Out 3 Specifies VOQ for outgoing traffic 

data_out Out 68 Data bus for outgoing packets headed towards the Packet Processor 

or the Off-Chip VOQs 

VOQs_dout Out 8*68 Carries the first word of data at the head of each VOQ 

The first variation of this module implements the VOQs as independent circular buffers 

inside a shared 64 Kbyte memory and requires head and tail pointers to be maintained for each 

VOQ (Figure 3.4). The head pointer of each VOQ points at the first data word that will be read 

for a dequeue operation, while the tail pointer points at the first free word, where data will be 

written for an enqueue operation. When a VOQ is empty the head and tail pointer both point at 

the same place (as is the case for Queue 3 in Figure 3.4).  
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Figure 3.4: VOQs implemented as circular buffers 

The second variation of the On-Chip VOQs module used Xilinx FIFO modules to implement 

each VOQ. Each Xilinx FIFO module is built using one or more BRAMs. This approach results 

in somewhat more complicated hardware, but provides more advanced features thus allowing 

more complex operations. For instance by enabling the First-Word Fall-Through feature it is 

possible to look-ahead to the next data word available from a FIFO without issuing a dequeue 

operation. This can be used to peek at the header of a packet and inform the Scheduler about 

packets waiting at the head of a VOQ. The VOQs_dout signal serves exactly this purpose and it is 

only present in the ―No VSMP segmentation‖ version of the ingress card. 

3.4.3 Scheduler 

The Scheduler is the most important and complicated module of the queue manager. Based 

on information it receives from the Packet Sorter, the Linked List Manager, the Packet Processor, 

the switching fabric and occasionally from the On-Chip VOQs it instructs the Linked List 

Manager on what operation to perform next. The Scheduler also implements flow control 

between the queue manager and the traffic-generating host as well as between the queue manager 

and the switching fabric. The Scheduler was kept as independent as possible to allow easy change 

of policies and scheduling algorithms without affecting the rest of the modules. The interface of 

the Scheduler module comprises of the signals presented in Table 3.3. A block diagram of the 

Scheduler can be seen in Figure 3.5.   
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Table 3.3: Scheduler Interface 

Signal Name In/Out Width Short Description 

clk In 1 Queue Manager Clock 

reset In 1 Queue Manager Reset 

sram_voq_in In 3 Specifies the VOQ for currently incoming traffic from the On-chip 

VOQs module 

sram_in_size In 10 Specifies the size of the current incoming packet from the On-chip 

VOQs in 64-bit words 

sram_inc In 1 When asserted the on-chip occupancy for the specified VOQ is 

increased by ―sram_in_size‖ 64-bit words 

sram_voq_out In 3 Specifies the VOQ for currently outgoing traffic originating from 

the On-chip VOQs module 

sram_out_size In 10 Specifies the size of the current outgoing packet from the On-chip 

VOQs in 64-bit words 

sram_dec In 1 When asserted the on-chip occupancy for the specified VOQ is 

decreased by ―sram_out_size‖ 64-bit words  

dram_voq In 3 Specifies the currently selected off-chip VOQ 

dram_inc In 1 Increments the occupancy of the selected off-chip VOQ by one. 

(occupancy is measured in external memory blocks) 

dram_dec In 1 Decrements the occupancy of the selected off-chip VOQ by one. 

(occupancy is measured in external memory blocks) 

RIO_clk In 1 Provides the clock signal of the RocketIO interface 

credit_from_RIO In 32 Carries flow control information for up to two VOQs 

sent_voq In 3 Specifies the VOQ for traffic departing towards the switching 

fabric 

sent_size In 10 Specifies the size of the packet currently departing towards the 

switching fabric 

sent_inc In 1 When asserted the number of sent packets for the specified VOQ is 

increased by ―sent_size‖ 64-bit words 

xbar_voq Out 3 Informs the Packet Processor which VOQ the current segment 

belongs to 

seg_size Out 10 Specifies the size of the segment currently being transferred 

towards the Packet Processor 

sram2dram_begin Out 1 Requests a segment transfer from on-chip to off-chip VOQs 

sram2dram_VOQ Out 3 Specifies a VOQ for on-chip to off-chip segment transfers 

sram2dram_done In 1 Indicates that a on-chip to off-chip VOQ transfer is done 

dram2xbar_begin Out 1 Requests a segment transfer from off-chip VOQs to the Packet 

Processor 

dram2xbar_VOQ Out 3 Specifies a VOQ for off-chip VOQs to Packet Processor segment 

transfers 

dram2xbar_done In 1 Indicates that an off-chip VOQs to Packet Processor transfer is 

done 

sram2xbar_begin Out 1 Requests a segment transfer from on-chip VOQs to the Packet 

Processor 

sram2xbar_VOQ Out 3 Specifies a VOQ for on-chip VOQs to Packet Processor segment 

transfers 

sram2xbar_size Out 10 Specifies the size of on-chip VOQs to Packet Processor segment 

transfers 

sram2xbar_done In 1 Indicates an on-chip VOQs to Packet Processor transfer is done 

PCI_2_VOQ Out 8 Informs the PCI-X interface about blocked VOQs 

VOQs_dout In 8x68 Carries the first word of data at the head of each VOQ 
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Figure 3.5: Scheduler Block Diagram 

The Scheduler keeps track of the status of the on- and off-chip VOQs. This corresponds to 

on-chip (BRAM) and off-chip (DRAM) occupancies for each VOQ, which are measured in 64-bit 

words and DRAM blocks respectively. In the FPGA implementation two small register files are 

used to store this information. 

For flow control purposes, the Scheduler keeps track of two quantities for each VOQ: 

i) from the Packet Processor it receives the number of data words that have been transmitted 

towards the switching fabric 

ii) from the downstream (next-hop) network switch (in the switching fabric) it receives the 

number of data words that have been forwarded and thus have left the crossbar’s buffers. 

Using the number of sent words in conjunction with the reported number of forwarded words, 

it is possible to calculate the available buffer space at the next-hop switch for each VOQ. As with 

occupancy information, two small register files are used to store this information. 

Information regarding forwarded packets is periodically received from the switching fabric 

and enqueued as a 32-bit word in a special asynchronous FIFO residing in the Scheduler. Each 
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32-bit word may carry flow control information for up to two VOQs and contains the number of 

forwarded 64-bit words, specifies the VOQ and utilizes parity bits for error detection. 

The scheduler decides which VOQ to service next based on the occupancy and flow control 

information described above. This is done using 3 eligibility masks for segment transfers:  

i. from on-chip to off-chip VOQs (SRAM2DRAM) 

ii. from on-chip VOQs to the network (SRAM2XBAR) 

iii. from off-chip VOQs to the network (DRAM2XBAR) 

Each eligibility mask dedicates one bit for each VOQ. If this bit is asserted the VOQ is 

eligible for this kind of segment transfer; otherwise it is not considered to be eligible. The 

SRAM2XBAR and the DRAM2XBAR eligibility masks are combined – using a binary OR 

operation - into a single eligibility mask, namely VOQ2XBAR, which represents the VOQs, on-

chip or off-chip, that are allowed to sent packets towards the network. Each time a decision needs 

to be made, the two remaining eligibility masks, VOQ2XBAR and SRAM2DRAM, are fed into 

two round-robin schedulers, which output the next VOQ to be serviced. 

Periodic updating of the eligibility mask is a fundamental responsibility of the Scheduler. For 

each and every possible event that affects a VOQ, whether this is an occupancy change, off-chip 

memory migration or arrival of flow control information, the corresponding eligibility mask 

needs to be updated. Specifically, the eligibility masks are updated for each one of the following 

VOQ events:  

 An empty VOQ that has credits receives traffic and becomes eligible 

 A VOQ that has credits runs out of packets and becomes ineligible 

 A VOQ that has traffic runs out of credits and becomes ineligible 

 A VOQ that has traffic receives credits and becomes eligible
1
  

In the full version of the queue manager, where VSMP segmentation support is enabled, the 

Scheduler is allowed to transfer an arbitrary number of words, always within the segment size 

limits, from any VOQ ignoring packet boundaries. The only requirement is the existence of 

credits for sending a minimum network packet. In this case the queue manager relies on the 

                                                      

 

1
 This can happen for two VOQs that simultaneously receive credits. As mentioned previously each 32-bit 

flow control information packet may contain credits for up to two. 
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Packet Processor to transform the transmitted arbitrary piece of traffic into autonomous network 

packets. This is explained in more detail in subsection 3.4.5. 

In contrast, in the ―No VSMP segmentation‖ version of the queue manager, the Scheduler 

needs to constantly be aware of the size of the first packet sitting at the head of each VOQ and is 

only allowed to initiate a transfer when sufficient credits exist for this packet. This is the reason 

for the VOQs_dout signal, which is only present in this ―no VSMP segmentation‖ version of the 

queue manager.  

In the ―no external memory‖ version of the queue manager the Scheduler is much simpler. The 

register file that stores off-chip VOQ occupancies is completely omitted, while all VOQs always 

appear as ineligible in the SRAM2DRAM and DRAM2XBAR eligibility masks, thus simplifying 

scheduling decisions. Likewise, in the ―no VSMP segmentation‖ version of the queue manager 

the Scheduler is accordingly altered.  

In order to notify the Linked List Manager about pending transfers the Scheduler uses 3 

signals, namely sram2dram_begin, sram2xbar_begin and dram2xbar_begin. More than one of 

these signals can be asserted simultaneously; it is up to the Linked List Manager to choose in 

which order to service the requests. When the transfers involve external memory (DRAM) 

transfer size is implicitly assumed to be equal to the External Memory Block Size, while for 

transfers involving on-chip memory transfer size needs to be specified using the sram2xbar_size 

signal. When the Linked List Manager is finished with a segment transfer it asserts the 

sram2dram_done, sram2xbar_done or dram2xbar_done accordingly. This triggers the round-robin 

scheduler in the Scheduler to specify the next segment transfer to be carried out.  

3.4.4 Linked List Manager 

As its name suggests, the Linked List Manager’s main task is to manages the linked lists of 

external memory blocks that hold VOQ traffic, which has migrated to external memory due to 

congestion. This module also connects to the off-chip memory controller through a simple FIFO-

based interface and is also responsible for performing segment transfers, as instructed by the 

Scheduler. The interface of the Linked List Manager module comprises of the signals presented 

in Table 3.4. 

Table 3.4: Linked List Manager Interface 

Signal Name In/Out Width Short Description 

clk In 1 Queue Manager Clock 

reset In 1 Queue Manager Reset 

sramDeq Out 1 Dequeues data from the On-Chip VOQs 
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The heart of this module is a finite state machine (FSM) that coordinates segment transfers 

and can be seen in Figure 3.6. Linked list managements is optimized using the Free Block 

Preallocation [9] and Free List Bypass [10] techniques, introduced in subsection 2.3.5. This 

module also monitors the occupancy of the RocketIO FIFO, that accepts departing packets, and 

can delay a transfer until adequate space is available.  

 

Figure 3.6: Linked List Manager FSM 

dram2xbarData In 64 Data bus that connects to the DRAM memory controller 

dram2xbarEnq In 1 When asserted valid data is available from the DRAM memory 

dramAddr Out 27 Provides the address to the DRAM memory controller  

dramXSize Out 15 Specifies the DRAM transfer size in bytes  

dramXOp Out 2 Specifies the DRAM access type (read or write) 

dramXDone In 1 Signals the completion of a DRAM transfer 

sram2dram_begin Out 1 Requests a segment transfer from on-chip to off-chip VOQs 

sram2dram_VOQ Out 3 Specifies a VOQ for on-chip to off-chip segment transfers 

sram2dram_done In 1 Indicates that a on-chip to off-chip VOQ transfer is done 

dram2xbar_begin Out 1 Requests a segment transfer from off-chip VOQs to the Packet 

Processor 

dram2xbar_VOQ Out 3 Specifies a VOQ for off-chip VOQs to Packet Processor segment 

transfers 

dram2xbar_done In 1 Indicates that an off-chip VOQs to Packet Processor transfer is 

done 

sram2xbar_begin Out 1 Requests a segment transfer from on-chip VOQs to the Packet 

Processor 

sram2xbar_VOQ Out 3 Specifies a VOQ for on-chip VOQs to Packet Processor segment 

transfers 

sram2xbar_size Out 10 Specifies the size for on-chip VOQs to Packet Processor segment 

transfers 

sram2xbar_done In 1 Indicates that an on-chip VOQs to Packet Processor transfer is 

done 

sram_voq_out Out 3 Indicates VOQ for transfers concerning On-Chip VOQs 

sram_out_size Out 10 Indicates about the size for transfers concering On-chip VOQs  

sram_dec Out 1 Instructs the Scheduler to update On-chip VOQs occupancy 

NxtPtr_mux Out 1 Used to capture the Next Block Pointers stored in the first 64-bit 

word of each DRAM block. 

wr_count In 10 Monitors the RocketIO FIFO occupancy 

xbarEnq In 1 Enqueues data words to the Packet Processor  
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The FSM consists of 11 states implemented using one-hot encoding. To simplify things, in 

the depicted FSM, states that belong to the same operation were grouped into six bigger states, 

namely IDLE, SRAM2XBAR, DEQUEUE, PUSH FREE BLOCK, POP FREE BLOCK and 

ENQUEUE. The state transitions for each kind of segment transfer are listed below: 

 SRAM2XBAR: IDLESRAM2XBAR  IDLE 

 DRAM2XBAR: IDLE DEQUEUE  PUSH FREE BLOCK  IDLE 

 SRAM2DRAM: IDLE  POP FREE BLOCK  ENQUEUE  IDLE 

In order to benefit from the Free List Bypass optimization both a SRAM2DRAM transfer and 

a DRAM2XBAR transfer need to be pending. In this case an additional state transition path 

becomes valid: IDLE  DEQUEUE ENQUEUE  IDLE. The DRAM block freed by the 

DEQUEUE operation can be directly used for the ENQUEUE operation, completely avoiding 

costly Free List operations. 

In DRAM, traffic is stored in 512-byte fixed-sized blocks. Block sizes were chosen to 

maximize DRAM throughput. The first 64-bit word of each block contains the Next Block 

pointer and the remaining (31or 63) 64-bit words store actual segment data. 

Since Free Block Preallocation is employed an extra block is allocated for each VOQ. This 

means that even an empty VOQ has a spare free block. For each enqueue operation, instead of 

first finding a new block and then writing the data, the already allocated free block is directly 

used, while a new free block is preallocated for the next enqueue operation. 

3.4.5 Packet Processor 

The Packet Processor module is essential for supporting VSMP segmentation. This module 

receives variable-size multipacket segments from the on-chip and off-chip VOQs and transforms 

them into fully autonomous packets that do not require segmentation at the receiving end. To 

achieve this, the Packet Processor needs to remember the last packet header for each VOQ. These 

headers are stored inside a small register file. Additionally the Packet Sorter also informs the 

Scheduler about the actual number of words sent towards the switching fabric for each VOQ. The 

interface of the Packet Processor module comprises of the signals presented in Table 3.5. 

Table 3.5: Packet Processor Interface 

Signal Name In/Out Width Short Description 

clk In 1 Queue Manager Clock 

reset In 1 Queue Manager Reset 

data_in In 64 Data bus for incoming segments 

enq In 1 Indicates the presence of valid data at the input (data_in) 
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Each segment received by the packet processor contains an arbitrary number of continuous 

64-bit words that belong to one or more packets. In most cases packet boundaries are note aligned 

with segment boundaries. Each segment can be of any size within segment size limits and may 

contain an arbitrary number of whole packets and at most 2 fragmented packets. The Packet 

Processor is capable of performing three operations on incoming segments as seen in the example 

of Figure 3.7: 

 

Figure 3.7: Packet Processor Operations 

 Modify: An existing header of a packet needs to be modified if and only if the remaining 

packet is longer than the remaining segment. When modifying a header the number of 64-bit 

words to be transmitted remains the same. At most one header will be modified per segment. 

In Figure 3.7 this is the case for packet 0 and packet 3. 

 Insert: If the first 64-bit word of an incoming segment does not contain a header a new 

header needs to be created and inserted. At most one header is inserted in any given segment. 

Thus when only inserting a header in a segment the number of transmitted 64-bit words is 

increased by exactly one word. In Figure 3.7 this happens for segments 1, 2,3 and 4. 

 Delete: A header is only deleted if it is located at the end of the segment, i.e. in the last 64-bit 

word. This special case exists to avoid the injection of zero-sized packets into the network. 

Otherwise, under normal circumstances, and following the ―modify‖ operation described 

above, the Packet Processor would modify the header instead of deleting it (creating a zero-

VOQ In 3 Indicates the VOQ for the current incoming segment 

seg_size In 1 Indicates the specified segment size 

fifo_dout Out 68 Data bus for outgoing packets towards the RocketIO interface 

fifo_we Out 1 Enqueue data into the RocketIO FIFO  

sent_size Out 10 Indicates the outgoing packet size (after header modifications) 

sent_voq In 1 Indicates the VOQ for the current outgoing packet 

sent_inc In 1 Instructs the Scheduler to update the ―Sent‖ information 
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sized packet). When only deleting a header of a segment the transmitted number of words is 

decreased by one word. However, when inserting and deleting a header from a segment, the 

number of transmitted words remains the same. In Figure 3.7 this is the case for segment 1. 

3.5 Results 

This subsection includes hardware implementation cost and network performance results for 

the implemented queue manager. Hardware cost results include FPGA post placement & routing 

results for each individual module, as well as for each major version of the queue manager as a 

whole. Network performance results were obtained using a special modified version of the NI to 

conduct delay and throughput experiments
1
 for the buffered crossbar.  

3.5.1 Hardware Implementation Cost 

Table 3.6 presents the hardware cost of each individual module of the queue manager. 

Separate results are presented for modules with more than one variations. The results presented 

concern the Xilinx VirtexII Pro xc2vp40 FPGA and were obtained using back-end tools provided 

by Xilinx.  

The results for the On-Chip VOQs are quite interesting. They indicate that using the feature-

rich FIFOs provided by Xilinx imposes a very large hardware cost. If these additional features are 

not required by a design it seems more attractive to implement the FIFOs from scratch, using 

simple circular buffers in a single statically partitioned memory.  

Table 3.6: Hardware Cost Results of Individual Modules 

Module LUTs Slices Flip Flops BRAMs Gate Count 

Packet Sorter with segmentation 179 (1%) 135 (1%) 80 (1%) 0 (0%) 1909 

Packet Sorter no segmentation 42 (1%) 25 (1%) 12 (1%) 0 (0%) 392 

On-Chip VOQs in BRAM 320 (1%) 236 (1%) 170 (1%) 31 (16%) 2035342 

On-Chip VOQs in Xilinx FIFOs 904 (2%) 1408 (7%) 1648 (4%) 32 (16%) 2119015 

Scheduler 2240 (5%) 1256 (6%) 428 (1%) 1 (1%) 86226 

Linked List Mgr with ext mem 680 (1%) 365 (1%) 425 (1%) 0 (0%) 7069 

Linked List Mgr no ext mem 33 (1%) 23 (1%) 18 (1%) 0 (0%) 426 

Packet Processor 521 (1%) 511 (2%) 617 (1%) 0 (0%) 9983 

                                                      

 

1
 The experiments were conducted by Vassilis Papaefstathiou, member of the CARV team. 
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Table 3.7 presents the hardware cost results for the three major versions of the queue 

manager module. It is interesting to note that the ―No VSMPS‖ version of the ingress card is 

more costly than the both the ―Full‖ and the ―No External Memory‖ version that both include 

VSMPS. The explanation has to do with the On-Chip VOQs module. As mentioned in subsection 

3.4.2 the ―No VSMPS‖ version of the ingress card requires the existence of the Xilinx FIFOs, 

because it uses some of the advanced features they provide. Not only does Hence, for this FPGA 

implementation , not only does VSMPS make the buffered crossbar work more efficiently, but it 

also lowers the hardware cost.  

Table 3.7: Hardware Cost of each Queue Manager Version 

Ingress Card Version LUTs Slices Flip Flops BRAMs Gate Count 

Full 2962 (7%) 2106 (10%) 1571 (3%) 34 (17%) 2263151 

No External Memory 2713 (6%) 1900 (9%) 1467 (3%) 34 (17%) 2260321 

No VSMPS 3430 (8%) 2639 (13%) 2286 (5%) 37 (19%) 2471047 

 

3.5.2 Network Performance Results  

Obtaining network performance results required modifications to various modules in the 

prototyping platform, which mostly affected the PCI-X module and the buffered crossbar switch. 

To obtain accurate results cycle-precise timestamps were recorded and appended in the payload 

of the packets at various points in the system. Using special software to generate traffic patterns, 

delay and throughput experiments were conducted in order to validate the simulation results for 

the buffered crossbar [16]. 

For each packet traversing the network, timestamps were recorded at the following points: 

(i) upon packet creation, when the host processor writes a transfer descriptor 

(ii) upon packet departure from the NI to the network 

(iii) upon packet arrival at the switch port 

(iv) upon departure of the packet from the switch 

Timestamps (i) and (ii) measure the queuing delay and the pipeline latency in the NI, which 

includes delays imposed by the queue manager. Timestamps (iii) and (iv) measure the delay and 

latency in the switch.  



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 37 of 84 

Average Delay vs. Input Load under uniform traffic network performance results are 

presented in Figure 3.8, while throughput measurements using unbalanced traffic patterns can be 

seen in Figure 3.9. The observed curve closely follows the simulation results of [16]. 

 

Figure 3.8: Average Delay vs. Input Load under uniform traffic. Max load is 96%. 

 

Figure 3.9: Throughput measurements using unbalanced traffic patterns. 
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4 Interprocessor Communication: NI Design Issues  

Interprocessor Communication (IPC) refers to the passing of data among the processors of a 

parallel computer during the execution of a parallel program. This section focuses on several 

fundamental NI design issues that affect IPC and presents resolution approaches used in 

commercial and academic systems. The information provided in this section also serves as 

background for understanding and evaluating the proposed NI design presented in section 1. 

4.1 Fundamentals of IPC 

IPC can be implemented through Shared Memory or Message Passing. In the first case, a 

shared memory is assumed and communication happens implicitly by processors writing into and 

reading from this shared address space. To the contrary, in Message Passing each processing node 

has its own private local memory and communication takes place in an explicit manner using 

send and receive operations. In addition to the extreme cases of Shared Memory and Message 

Passing there are possibilities for hybrid designs that combine features of both. 

The traditional implementation for Shared Memory systems is using a shared bus to connect 

all of the processors to the memory. To improve performance and reduce bus contention each 

node usually has a local cache. In order to preserve a coherent view of memory by all nodes some 

cache coherency scheme needs to be employed, such as MESI or some other snooping cache 

coherence protocol [17].  

In an effort to improve the scalability of shared memory systems, distributed shared memory 

systems were introduced where each processing node owns and is responsible for a small piece of 

the entire system memory. In this case local caching of data is usually carried out through some 

kind of a directory-based coherence protocol [18]. Shared Memory offers great performance for 

small-scale dense systems, but it suffers from scalability issues, which is the main reason that 

large-scale parallel computers do not support it.  

Message Passing systems comprise of processing nodes, each with its own private memory, 

that are connected through an interconnection network. Communication among computing nodes 

is explicit, through initiation of send and receive operations. Although highly scalable, and 

therefore well-suited to large-scale parallel machines, Message Passing systems are harder to 

efficiently program and debug, especially when fine-grain communication is required/involved. 

Shared Memory and Message Passing systems come with their respective programming 

models, namely the Shared Memory and the Message Passing programming models. Shared 
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memory parallel machines usually offer support for both programming models, since it is 

relatively easy to efficiently implement the message passing programming model on a shared 

memory machine. To the contrary, it is very hard and inefficient to implement shared memory on 

message passing machines.  

As parallel computers shifted away from bus-based systems due to scalability issues, 

engineers realized that NI design plays a vital role in achieving high performance, affecting both 

distributed shared memory and message passing machines. Technology and application trends 

indicate that communication latency will become a critical bottleneck. In order to accommodate 

processor performance increases and parallel software complexity it is imperative that modern 

NIs offer efficient, reliable, high performance communication. 

4.2 NI Design Goals 

The design of NIs for parallel computers requires consideration of numerous design 

parameters. However there seems to be a set of fundamental NI design goals, which are valid 

regardless of the specific parallel machine requirements. To build a powerful parallel machine it 

is imperative that the NI offers high performance, scalability, reliability, protection and 

minimizes overheads. 

4.2.1 High Performance 

To deliver high performance an NI needs to offer low latency and high bandwidth. Latency 

reduction mostly affects short frequent transfers and is crucial for implementing request-grant 

protocols, offering efficient fine-grain communication and communicating control traffic.  

Latency has three components [19]: 

1. the software protocol latency 

2. the latency through the operating system, and 

3. the hardware latency to access the interconnection network. 

Careful NI design can greatly improve on all three components of latency. 

The second aspect of performance is high bandwidth, which mostly affects bulky transfers, 

when data or entire memory regions migrate from one node to another, or when pieces of data 

need to be broadcasted to many nodes in the system. In most cases, it is the interconnection 
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network that sets the hardware limits for bandwidth. However the amount of the available 

bandwidth that is utilized is greatly influenced by NI design. 

4.2.2 Scalability 

The number of nodes in a parallel computer is rapidly growing, making scalability an 

increasingly important consideration in NI design. Even today’s parallel machines employ tens of 

thousands of processing nodes, e.g. [20], and advances in silicon technology indicate that this 

trend will continue at least for the next few years. In simple terms scalability means maintaining 

high performance and good speedup values when building a larger parallel machine.  

4.2.3 Reliability 

In addition to performance and scalability, reliability is another very important NI design goal 

for two reasons. The first reason is quite obvious. A parallel machine with a reliable NI can spend 

less time dealing with communication errors and more time doing useful work, which directly 

translates to greater utilization of the available bandwidth. The second reason is more subtle; the 

presence of an unreliable NI requires complex protocol software to accommodate for the frequent 

errors. This ultimately leads to higher network message latencies, a problem that is greatly 

manifested in the TCP/IP protocol stack [21]. 

4.2.4 Protection 

Offering elementary protection can be a fairly easy task. The challenge is to combine 

protection with high performance. The most straight-forward form of protection is across 

different processes running on the same node and sharing a common NI. In NI design protection 

is usually tightly related to address translation issues, i.e. a process is only aware of virtual 

addresses, while the NI can only access the memory through physical addresses. On another note, 

it is also important for an NI to offer mechanisms for efficient protection between the kernel and 

the user-level processes, as well as among different nodes. 

4.2.5 Overhead minimization 

Overhead minimization suggests that the NI should reduce the cost of communication as 

much as possible. Each time a network message has to be sent or received the processor should be 

―distracted‖ as little as possible. There are many techniques to minimize communication 

overhead, such as the use of zero-copy or minimal-copy protocols and allowing the NI to perform 

DMA operations to and from main memory. Providing protection and minimizing communication 
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overhead are in some cases two conflicting goals and it is quite important not to sacrifice the one 

for the other; they both are desired goals.  

4.3 NI Placement 

NI placement greatly affects interprocessor communication performance, i.e. latency and 

bandwidth. The main way of classifying different NI placements is by the proximity of the NI to 

the processor. Placing the NI closer to the processor grants lower latency and higher bandwidth. 

On the other hand, as one moves away from the processor, more buffer space is available and 

interfaces become more standardized and thus easier to develop for. NIs mapped to processor 

registers and located on the I/O bus provide the two extremes of NI placement. Figure 4.1 shows 

4 candidate locations for placing the NI. The numbers indicate proximity to the CPU, e.g. 

location 1 is the most distant from the processor, while location 4 is closest to the processor. 

  

Figure 4.1: Alternative NI Placements 

Traditionally NIs have been placed on the I/O bus along with other peripheral devices, such 

as hard disks. Even today, most commercial NIs made by third-party vendors sit on the I/O bus, 

because it offers a standard interface. However performance-wise this is the worst possible NI 

placement choice, for both bandwidth and latency. Today’s 64-bit PCI-X buses running at 100 

MHz can offer a maximum theoretical bandwidth of 800 Mbytes/sec, which is at least an order of 

magnitude less than what current memory buses can offer. In order to truly offer high-
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performance the NI needs to move away from the I/O bus, closer to the processor. NI Placement 

on the I/O bus corresponds to location 1 in Figure 4.1. 

 

Memory buses offer both very high bandwidth and relatively low access latencies, which 

makes them great candidates for NI placement. Unfortunately memory buses are, with very few 

exceptions [22], proprietary, so only companies that manufacture processors are able to design 

such NIs, as, for example, Intel’s Teraflop supercomputer, where the NI sat directly on the 

PentiumPro memory bus [23]. To allow the production of high-performance third-party NIs a few 

processor vendors have created standard interfaces that connect to the memory bus and offer 

greater performance than the I/O bus. Examples include the SGI Power Challenge [24] and the 

Intel 82547EI Gigabit Ethernet Controller [25]. NI Placement on the memory bus corresponds to 

location 2 in Figure 4.1. 

 

As NIs move closer to the processor, they become even more proprietary. Placing the NI in 

the processor cache is only a choice for processor manufacturers, but can yield excellent 

performance results. Latency is very low, in the order of tens of cycles, while enormous 

bandwidth is available. An additional advantage of integrating the NI in the cache is the 

opportunity for resource sharing, which reduces overheads. In its simplest form this means that 

the processor and the NI can share some parts of memory. The idea of resource sharing can be 

taken even further, as, for example, in making the memory hierarchy TLB accessible to the NI for 

address translation. Moreover, cache eviction mechanisms can be used to implement copy-on-

write protocols. Examples of such NIs include the MIT Alewife machine [26] and the MIT *T-

NG [27]. NI placement near the cache corresponds to location 3 in Figure 4.1 and seems to be a 

strong candidate for future Chip Multiprocessors with hundreds or thousands of nodes on the 

same die. 

 

A few research projects, such as the MIT J-machine [28] and the MIT M-machine [29] have 

attempted to map the NI to processor registers. Such designs are very intrusive and may thus 

require complete redesign of a significant part of the processor itself. On top of that, NIs usually 

require large amounts of buffer space which cannot easily be offered with this placement. 

Nevertheless NIs mapped to the processor registers offer the lowest possible access latency which 

is in the range of one to two processor clock cycles, i.e. a few nanoseconds. NI placement near 

the processor registers corresponds to location 4 in Figure 4.1. 
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4.4 NI Virtualization & Protection: User-Level NIs 

To share an NI among many processes traditional implementations require that user-level 

software executes a system call each time the NI is accessed to send or receive a message. This 

virtualization approach, which is also the way Unix sockets work, imposes tremendous overheads 

to the entire parallel machine, with the most apparent disadvantage being enormous latencies to 

initiate a transfer. Transitions from user mode to kernel mode and back cost in the order of 

hundreds or thousands of instructions [30] and this number is expected to rise as processor 

performance increases.  

 

To alleviate this problem, modern NIs allow direct user-level access to the NI. This is 

achieved by mapping the NI resources to the user-level virtual address space, in a way similar to 

virtual memory being allocated to processes. The operating system can still be used to manage NI 

resources, but sending and receiving network messages, which are the usual tasks, do not have to 

suffer from OS intervention overheads. Such network interfaces are called User-Level Network 

Interfaces (ULNIs), which are quite common in high-performance parallel computers. Examples 

include Myricom Myrinet [31] and U-Net [32]. Figure 4.2 shows the two ways of accessing the 

NI.  

 

Figure 4.2: Accesing the NI. (1) Traditional NIs access the NI through the 

Operating System.(2) ULNIs bypass the Operating System when accessing the 

NI. 

When using ULNIs, special care needs to be taken to guarantee protection among different 

processes that are accessing the NI. A trivial approach to implementing protection is to only allow 

the existence of a single process per node, i.e. completely disallow multiprogramming. A similar 

approach is to allow the existence of many processes per node – i.e. allow multiprogramming - 
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but allocate the NI only to a single process. Again, if only one process accesses the NI there are 

obviously no protection issues, as was done in TMC CM-5 [33]. These approaches, however, do 

not really solve the problem, but rather turn a blind eye to it.  

 

To allow both multiprogramming and simultaneous user-level access to the NI by multiple 

processes on the same node, a different protection scheme needs to be used. NI resources (e.g. 

buffer space) need to be divided and separately mapped through different virtual address ranges 

to the various processes that desire to access the NI. Protection is implicitly present (in a 

―natural‖ way) through the OS memory virtualization mechanisms, i.e. the paging system. An 

advantage of this approach is that it is possible to dynamically allocate the exact amount of NI 

resources for each process. For instance a process that constantly sends messages can be allocated 

a lot of outgoing buffer space. A slight disadvantage of this approach is that resource division and 

protection are done at memory page granularity. If NI resources are scarce, it is likely that some 

form of finer grain protection is desirable. The Mondrian Memory Protection scheme [34] is a 

solution for fine-grained protection 

4.5 NI Data Transfer Mechanisms 

In addition to bypassing the operating system through the use of ULNIs the overheads 

associated to sending and receiving a message are also greatly affected by the NI Data Transfer 

Mechanisms offered by a NI. NI Data Transfer mechanisms describe the available ways to 

transfer data to/from the NI and belong to two major categories:  

4.5.1 Using Store/Load instructions 

In the first category, the processor sends/receives messages by conducting consecutive 

stores/loads to/from the memory region that is mapped to the NI. In traditional systems, where the 

NI is ―just another‖ I/O device, the loads and stores performed need to be uncached, to ensure 

that they bypass the processor cache and reach the NI. Unfortunately, this approach is not a viable 

solution for building high-performance parallel machines, because uncached loads and stores 

offer very low bandwidth.  

An alternative to transfer data to and from the NI through the use of cached stores and loads. 

This approach, however, requires the employment of some kind of coherence protocol that the NI 

participates in. If no cache coherency is present there is no guarantee that the NI will be notified 

about the processors actions. To receive arriving messages the processor issues loads, which lead 

to cache misses and are served by the NI. Sending messages is very similar and happens through 

consecutive stores, while cache coherency mechanisms make sure that the data will get delivered 
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to the NI. The main advantage of this approach  is that data are transferred in cache blocks, thus 

offering more bandwidth.  

An even more aggressive approach is to allow the NI to place data directly into the processor 

cache. In fact, Intel has proposed such a mechanism, called DCA [35]. Although it completely 

eliminates the cache miss penalty for receiving new messages, this approach may lead to the 

processor cache being polluted. Firstly, the processor might not be ready to process the just 

received data that have possibly evicted useful data from the cache. Secondly, and even worse, 

the received data might not be designated to the processor, but to some other device (i.e. the hard 

disk). 

4.5.2 Using Direct Memory Access (DMA) 

The second major category consists of DMA-based data transfer mechanisms. When using 

DMA to send a message the processor informs the NI about the memory location of the data to be 

sent. From there on, it is the NI’s responsibility to fetch the data and construct the message. The 

advantage of this approach is that the processor does not spend useful cycles to copy data; instead 

the processor is decoupled and can perform useful computations, while the DMA engine performs 

the copy.  

User-level software only has knowledge of virtual addresses, while DMA engines can only 

operate on physical addresses. In traditional DMA-based implementations when sending 

messages, a costly system call is required to get the virtual to physical address translation for the 

data to be sent. This adds a considerable overhead to sending messages and makes DMA only 

attractive for bulky data transfers (to compensate for the associated overheads).  

To completely avoid the operating system when sending a message, special address 

translation techniques need to be employed. Either the NI needs to have access to the system’s 

translation table or the user-level software needs to somehow supply the physical address location 

of the data it wishes to send, as was done in the SHRIMP NI [36]. 

4.6 Address Translation 

As explained earlier, if a ULNI is to support DMA as one of its data transfer mechanisms, an 

address translation mechanism is required. User-level software is only aware of virtual address, 

while the NI requires the physical location of data to initiate a transfer. Modern ULNIs usually 

support one of two address translation schemes.  
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In the first scheme, only a few ranges of the virtual address space, for which the virtual to 

physical translation is known, can be used by user-level software for communication. This 

constrain forces user-level processes to place their communication data structures in these regions 

and may also lead to frequent copying of data into and out of this restricted virtual address 

memory region. Moreover these physical memory pages need to be pinned, to avoid being 

swapped out to the hard disk. Each time a new virtual address space region is to be used for 

communication, a system call has to be performed to pin the physical pages and inform the NI 

about the corresponding physical pages. When a process requires large buffers for 

communication-intensive tasks it is usually best to find an address region that consists of 

contiguous physical pages, which can sometimes be hard to find.  

In the second address translation scheme, the whole virtual address space of each process can 

be used to communicate data to the NI. Obviously, this requires that the NI has access to each and 

every entry of the operating system translation table. The advantage of this approach is that user-

level software is able to initiate a transfer, regardless of the location of the data to be transferred. 

One awkward way of letting the NI know all of the virtual to physical memory translations is to 

place the whole translation table inside the NI, as was done in the T3E Multiprocessor [37].  

In other solutions, the most used translation table entries are cached in the NI. In this case, 

care should be taken to update this cache when pages are remapped or swapped to disk. Again 

pages that are used by the NI need to be pinned. The NI translation cache can be filled either by 

interrupting the operating system on each miss, which can be quite costly, or by using shadow 

address spaces to fill the cache in user-level mode without any operating system intervention. 

This shadow address space technique was used in the SHRIMP NI [36] and the Stanford Flash 

Multiprocessor [38].  

An example of the SHRIMP NI approach can be seen in  

Figure 4.3. Both virtual and physical address spaces are divided into two regions—a regular 

space and a shadow space. For each address space there exists one-to-one mappings from the 

regular space to the shadow space. To initiate a DMA to a destination virtual address 0XYZ, the 

user process does a store to the corresponding shadow virtual address 1XYZ. The shadow 

mapping is obtained through a simple invertible function such as flipping a bit. The virtual 

memory hardware translates the shadow virtual address to the shadow physical address 1ABC, 

which the UDMA device observes on the bus. Finally, the NI converts the shadow physical 

address back to the regular physical address by flipping the first bit and interprets the store to 

1ABC as the user-level process’ intention to initiate DMA to the destination physical address 

0ABC. Thus, a user-level process delivers authentic physical addresses (in this case the 
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translation from 0XYZ to 0ABC) using commodity virtual memory hardware to the UDMA 

device without invoking the operating system. 

 
 

Figure 4.3: Address translation through the use of a shadow address space. 

4.7 Software Interface 

The NI Software Interface is essentially the programmer’s view of the NI, i.e. the provided 

Application Programming Interface (API). In its most primitive form the NI Software Interface 

can simply expose the NI data transfer mechanisms described in subsection 4.5. For instance 

Programmed I/O (PIO) corresponds to transferring data through consecutive uncached stores and 

loads. Likewise a user-level DMA API directly matches the DMA-based transfer mechanism 

offered by a NI. 

However, in certain cases, it can be advantageous to design richer software interfaces with 

higher-level features using the data transfer primitives offered by the NI. Such interfaces are 

commonly provided in the form of queues. Queue semantics have been used in quite a few 

systems, such as the Cornell U-Net [32], the Mitsubishi DART [39] and the Wisconsin Coherent 

Network Interfaces (CNIs) [40].  

For outgoing queues, the sender enqueues data at the tail of the queue by issuing stores and 

triggers a message dispatch by updating the tail pointer. The NI needs to read the data, construct 

the outgoing message and advance the head pointer. Likewise for incoming queues the receiver 

dequeues from the head of the queue by issuing loads and informs the NI about complete message 
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reception by updating the head pointer. Again, the NI is responsible for writing incoming data 

and updating the tail pointer. 

 Queues may be located in dedicated NI buffer space, main memory or the cache, while 

hybrid solutions, where the incoming and outgoing queues reside in different locations, are also 

viable. An advantage of providing high-level interfaces is that the NI data transfer mechanisms 

are decoupled from the NI API, allowing for future NIs to preserve and implement the same 

software interface using alternative data transfer mechanisms. 

The software interface also defines the mechanism for notifying the processes about 

incoming messages. The two most widely used notification schemes are through interrupts and 

polling. In the first case, each arriving message causes an interrupt, which needs to be handled by 

the operating system and is therefore a very costly method, mostly suitable to scarce traffic. In the 

second case, user-level software needs to poll on specific NI locations to find about the arrival of 

new messages. Polling is a lot cheaper and efficient when there is lots of incoming traffic. 

However if there is little or no incoming traffic polling can greatly reduce the processor 

performance. To get the best of both cases, many systems use a combination of interrupts and 

polling [41]. 

4.8 NI Complexity 

As seen to this point, NIs can range from very simple and primitive peripheral devices to very 

complicated, feature-rich, semi-autonomous hardware systems. NI complexity seems to be tightly 

related to NI placement. A good metric for evaluating NI complexity is to compare the NI to the 

processor with respect to hardware logic and buffer space.  

In one extreme, the NI is chosen to be almost as complex as the processor itself. This is a 

viable solution when the NI is located relatively far from the processor, usually on the I/O bus. 

Such an example is the Stanford Flash Multiprocessor [38], which uses the Magic processor 

inside each NI to implement various protocols. In the Intel Paragon massively parallel 

supercomputer [42] each node has two identical processors; one for computation and the other, 

exclusively for NI utilization.  

As NIs move closer to the processor their complexity usually decreases, for two reasons. 

Firstly, a device placed closer to the processor needs to operate at the same speed range as the 

processor, which in turn means that simpler hardware has to be used to achieve such high speeds. 

Secondly, the closer the NI is placed to the processor the more opportunities exist to share 
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resources. For instance, if the NI is placed on the memory bus, it makes sense to use main 

memory regions instead of dedicated buffer space.  

When considering future chip multiprocessor systems with hundreds of nodes, where the NI 

is placed even closer to the processor (e.g. in the cache), it makes even more sense to keep the NI 

very simple, since area is limited anyway and it also keeps the per node overhead low. Register-

mapped NIs are placed so close to the processor that they cannot afford to be complex. These NIs 

are so intrusive, that each feature added risks increasing the processor clock cycle period, thus 

degrading the whole system’s performance. For the same reasons register-mapped NIs also offer 

very limited buffer space. 
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5 Proposed NI Design 

Based on the design issues addressed in section 0, this section describes a proposed NI 

design, well-suited to chip multiprocessors (CMPs) and other dense and tightly integrated parallel 

machines. The presented NI was designed for use in the new prototyping platform currently being 

built at the CARV laboratory of ICS, FORTH. This prototyping platform consists of many 

interconnected FPGA-based prototyping boards and its development is part of the cross-European 

―Scalable Computer ARChitecture‖ (SARC) project (www.sarc-ip.org), which investigates future 

NI design and interprocessor communication mechanisms. 

5.1 Design Goals / Desired Features 

Future chip multiprocessors will contain hundreds to thousands of interconnected processing 

cores and memory blocks. In tiled architectures processing cores are usually placed in a grid 

formation surrounded by memory blocks as seen in Figure 5.1. Either a fixed amount of memory 

blocks can be statically allocated to each processor, as seen in (1) of Figure 5.1. or memory 

blocks can be dynamically allocated on demand, according to each processor’s current memory 

needs, e.g. as in (2) of Figure 5.1. In either case, it is assumed that these memory blocks offer 

very low latency and very high throughput (through the use of interleaving) equivalent to the 

level one (L1) or level two (L2) cache of a processor. 

 

Figure 5.1: Tiled CMP Architecture.                                                                    

(1) Static memory block allocation. (2) Dynamic memory block allocation. 

The NI described in this section is intended to be included next to each one of the hundreds or 

thousands processing cores. Thus, each parallel system will contain a vast number of such NIs. 

http://www.sarc-ip.org/
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To afford placing such a large number of NIs inside a CMP, it is of great importance to keep their 

cost and complexity very low (compared to the processor). Such NIs are referred to ―lightweight‖ 

NIs.  

Traditional NIs are usually expensive because they require dedicated memory for buffering 

messages and implement complex protocols through the use of dedicated costly hardware, e.g., 

protocol processors. To avoid use of dedicated buffer space, which leads to the underutilization of 

the available memory, the proposed NI can dynamically share available resources, such as 

memory, with the node processor. For instance, nodes that perform communication-intensive 

tasks can allocate most of their memory to the NI for message buffer space and storage of 

connection metadata. On the other hand, nodes performing mainly computation can use most of 

their memory as a local processor cache or scratchpad memory for storing computation data. An 

additional advantage of the NI and the processor sharing memory is that it helps the 

implementation of zero-copy protocols.  

As for dealing with complex protocol processing there are two ways to confront this problem. 

Firstly, in a fixed and constrained CMP environment just employing simpler protocols may 

suffice, as costly protocols are usually required in more diverse and complex environments, like 

the Internet. Secondly, the presence of so many processors on a single chip makes it more 

tolerable to have the main processor handle higher-level protocols. Ultimately, maybe a small set 

of processors can be solely dedicated to protocol processing.  

In addition to keeping the NI cost low and sharing resources with the node processor, a third 

design goal is to offer a set of primitives for versatile powerful communication with minimal 

overheads. The first aspect of powerful communication is offering very low NI access latency - in 

the order of the time needed to execute a few instructions – useful for short synchronization and 

control traffic. This is achieved through a versatile queue mechanism for sending and receiving 

short messages. The proposed Message Queues support one-to-one, one-to-many and many-to-

one communication. The second aspect of powerful communication is offering high-bandwidth, 

low-overhead communication for bulky transfers. This is achieved by adding support for Remote 

DMA (RDMA). To minimize overheads, RDMA operations are designed to be carried out in 

user-level, without any OS intervention.  

With the advent of CMPs future parallel machines will consist of thousands or even million 

of nodes making scalability a major issue. In a CMP environment, on-chip memory is a very 

precious resource that should be carefully managed to preserve scalability. In a large-scale 

parallel system, NI data structures containing one entry per each available node in the system 

would be prohibitively large, flooding the entire on-chip memory. Hence, no data structure in the 



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 53 of 84 

NI should be required to hold as many entries as there are nodes in the system. In the proposed 

NI, connection-related data are efficiently stored in a data structure called the ―Connection Table‖ 

that follows the above guidelines. 

5.2 Target Hardware/System 

The prototyping platform for which the proposed NI was designed consists of many 

interconnected FPGA-based boards that aim to replicate the behavior of a CMP. Each node of the 

system is implemented using the ―Xilinx XUP‖ FPGA-based development board provided by 

Xilinx. Each ―Xilinx XUP‖ board hosts a Xilinx VirtexII-Pro 2VP30 FPGA, which has two 

embedded PowerPC processor cores, designed by IBM. Additional larger FPGA-based boards 

[ref] were configured as switches to connect the ―Xilinx XUP‖ boards together through RocketIO 

links. 

The available hardware influenced and occasionally constrained NI design aspects. For 

instance, although the prototyping platform was intended to replicate a CMP the characteristics of 

the FPGA-boards that represented CMP nodes were quite different from the characteristics of an 

actual CMP node. In particular, communication between two FPGA boards suffers from very 

high latency compared to the communication latency between two nodes in a CMP. Furthermore 

the performance of the processor in each FPGA is quite low and disproportional to the bandwidth 

offered by the interconnection network.  

5.2.1 “Xilinx XUP” Board 

The ―Xilinx XUP‖ board [43], which can be seen in Figure 5.2, is a complete logic emulation 

system that can function as a digital design trainer, a microprocessor development system or a 

host for embedded processor cores and complex digital systems. The system is configured around 

the VirtexII Pro series FPGA manufactured by Xilinx. 

The Xilinx XUP board includes 4 serial RocketIO ports, which can support a variety of serial 

communication protocols at speeds up to 2.5 GB/s. The board also features one DDR SDRAM 

DIMM slot that can accept up to 2Gbytes of DRAM, as well as a compact flash memory card 

slot. A variety of I/O ports are supported, which include 100 Mbit Ethernet, USB 2, VGA Video, 

Stereo Audio, SATA, PS/2, RS232 and JTAG ports. 
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Figure 5.2: The Xilinx XUP board 

Additional I/O pins are provided through four 60-pin headers for logic analyzer-based 

debugging or pattern generator stimulus. Finally there are 4 LEDs that the user is free to use as 

debugging tools or simply for visual indication of the system’s status. Nine DIP switches and five 

push-buttons are also present on the board: one for resetting and configuring the FPGA and four 

that are user configurable.  

5.2.2 VirtexII Pro 

The FPGA on the ―XilinxXUP‖ board belongs to Xilinx’s VirtexII Pro family of FPGAs [2] 

and its specific device type is xc2vp30. It is built on a 130 nm 9-layer copper process technology 

and is capable of over 400 MHz operation frequencies, offering 30816 logic cells, 2448 Kbits of 

embedded memory (Xilinx BlockRAM or BRAM) and 136 18x18 Multipliers. It also includes 8 

Digital Clock Management Blocks (DCMs) and 8 high-speed RocketIO transceivers. The heart of 
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the VirtexII Pro FPGA accommodates two IBM PowerPC processor cores capable of operating at 

over 300 Mhz. 

5.2.3 Node Configuration/Overview 

A block diagram of each node’s configuration is presented in Figure 5.3. The dashed box 

represents the Xilinx XUP board. The inner box corresponds to the VirtexII Pro FPGA, which 

hosts a PowerPC processor clocked at 266 MHz along with dual-port on-chip memory and the 

Network Interface (NI). The on-chip memory consists of 8 memory banks allowing for high 

throughput through memory interleaving. Each memory bank is 32 bits wide and comprises of 

dual-port Xilinx BRAM blocks. The PLB bus connects the PowerPC to one port of the on-chip 

memory and to DRAM external memory, located on the ―Xilinx XUP‖ board. The NI connects to 

the second port of the on-chip memory module. In order to maximize throughput, future plans 

include also utilization of a dedicated bus, called OCM , to connect the processor to the on-chip 

memory.  

 

Figure 5.3: Node Configuration 

Initially the on-chip memory will operate as a local scratchpad memory. However, the long-

term plan is to dynamically configure some portions of the on-chip memory as scratchpad 

memory and configure some other portions as typical level-one cache memory. Scratchpad 

memories can be explicitly accessed by software, using a dedicated part of the address space. 

They serve as high-speed local storage and can be thought of as software controlled caches. 
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Scratchpad memories are widely used in embedded processing because the offer deterministic 

access times. On the other hand, cache memories are ―transparent‖ to the software and do not 

match to a specific part of the memory address space. Although the NI presented here only 

requires the presence of scratchpad memory, it could also benefit from the existence of a cache 

memory. 

5.3 Communication Primitives 

The proposed NI offers two fundamental, powerful communication primitives: Queues and 

Remote DMA. Message Queues are intended for low latency communication, mainly 

synchronization and control messages or small low-overhead data transfers. Remote DMA 

minimizes processor involvement in communication and is well suited for bulky data transfers 

and facilitates zero-copy protocols. 

5.3.1 Message Queues 

Message Queues are powerful communication and synchronization primitives and play a very 

central role in the proposed NI design. They offer minimal overhead, low-latency and FIFO-

based one-to-one, one-to-many and many-to-one communication. Using one-to-one queues, 

which is the simplest case, a source node can send messages by specifying the ID of a queue 

residing on a remote node. One-to-many Queues allow for a source node to transmit many 

messages destined to different queues, residing on remote nodes, through a single local queue. 

Likewise many-to-one queues allow a node to receive messages from multiple senders in a single 

queue. Examples of the different type of queues can be seen in Figure 5.4. 

 

Figure 5.4: Message Queue Types. 
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When sending a message to a queue the sender only specifies the ID of the queue where its 

data will be placed. The exact memory location for each incoming datum is only determined upon 

arrival at the receiving node where the queue is maintained. The receiving NI maintains the write 

pointer, and atomically increments it upon each message arrival. This behavior makes many-to-

one queues a valuable synchronization primitive. One-to-many queues can be used as a powerful 

job dispatching mechanism. While Queues are excellent for job dispatching and synchronization 

purposes, they are not well suited to bulk transfers, because data arrive at non-controlled 

locations, and will usually have to be copied elsewhere to be used, especially when they are to be 

accessed multiple times or in non-sequential order. 

5.3.2 Remote DMA 

Remote Direct Memory Access (RDMA) allows data residing in the local memory of one 

node to directly move into a remote node’s memory and is well suited to pair-wise (one sender, 

one receiver) producer-consumer type communication. There are two types of RDMA operations, 

RDMA Write and RDMA Read. In RDMA Write, the transfer initiator specifies the source of the 

data transfer in one of its local memory regions, and the destination of the data transfer within a 

remote memory region on another node. In RDMA Read, the transfer initiator specifies the source 

of the data transfer at a location in a remote node’s memory region, and the destination of the data 

transfer within a local memory region. RDMA Read can easily be implemented using RDMA 

Write. (revise) Instead of issuing a RDMA Read operation, a message can be sent to the remote 

node requesting a RDMA write to be performed.  

RDMA is the basic data transfer operation needed to enable zero-copy protocols. Zero-copy 

protocols deliver data in-place, i.e. at the precise memory location where these data will 

eventually be needed, so as to avoid the receiver having to copy them from one memory location 

to another. Copying data induces major costs in latency, memory throughput and energy 

consumption, which makes zero-copy protocols a very important factor in overhead reduction. 

Every RDMA network packet specifies its destination address, where its data should be written, 

and can therefore be delivered directly in place. In a sense RDMA packets are somewhat 

―autonomous‖, because upon arrival they do not rely on protocol software to copy data from a 

temporary buffer to their eventual final location.  

A central issue in implementing RDMA is to properly integrate it with virtual-to-physical 

address translation and protection. The proposed NI supports DMA operations for data residing in 

memory regions that have been previously registered through OS interventions, i.e. a system call. 

The memory registration process defines one or more both virtually and physically contiguous 

pages as a Memory Region. When a Memory Region is registered, every page within the region is 
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locked down in physical memory. This guarantees that the memory region is physically resident 

(not paged out) and that the virtual to physical translation remains fixed when the NI is 

processing requests that refer to that region. Memory is registered on a per process basis, which 

means that all threads within a process can access the same registered memory regions. 

Additionally if two processes share memory, which means that they both own mappings to the 

same piece of physical memory, they can both register the same memory region. 

5.4 Connections  

Connections form the mechanism for sending messages and initiating RDMA operations to 

enable communication among two or more nodes. Each Connection describes a Queue pair, that 

offers bidirectional communication, and holds the information needed for performing RDMA, as 

well as various Queue, DMA and Flow Control meta data. Each such Queue pair, consisting of an 

incoming Queue and an Outgoing Queue, allows for both one-to-one or many-to-many 

communication. The Outgoing Queue of a Connection is used to post commands that trigger 

RDMA operations and to send messages to remote nodes. Similarly, messages and notifications 

concerning RDMA operations that have been completed are received through messages appearing 

in the incoming Queue of a Connection.  

Connections comprise a powerful and versatile communication mechanism and come in two 

―flavors‖, one-to-one and many-to-many. One-to-one Connections, offer bidirectional pair-wise 

communication between two nodes with support for both messages and RDMA operations. The 

Incoming and Outgoing Queues of one-to-one Connections on a node pair are only allowed to 

send and receive messages to and from each other and the same goes for RDMAs. Such a 

scenario can be seen in (1) of Figure 5.5, where Node A and Node B have established a set of 

bidirectional one-to-one Connections. When two nodes are to exchange lots of data, one-to-one 

connections is the preferred method for communication, because the proposed NI offers special 

support to minimize overheads and latency for this kind of connections, as will be seen in 

subsection 5.7. In addition one-to-one connection offer higher levels of protection, as will be 

explained in subsection 5.8. 

While one-to-one connections are well suited to a few pairs of nodes transferring lots of data, 

they do not scale well, especially in the case of some large-scale parallel applications, which 

require sporadic low-traffic global communication for synchronization and notification purposes. 

For instance, in a parallel application where every node in the system needs, at some point during 



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 59 of 84 

the execution, to send a little piece of data to a single particular node
1
. If one-to-one connections 

were the only available communication mechanism, this would require that the receiving node, 

that collects the data, establishes an enormous amount of connections, one with each node in the 

system. This way of implementing many-to-one communication is terribly inefficient due to 

excessive resource consumptioin. The same is true for one-to-many communication patterns. For 

example, if during the execution of a parallel program a single node desires to send short 

messages to all of the nodes in the system, a massive number of one-to-one connections would 

need to be established.  

 

Figure 5.5: Connection Types 

To alleviate the above problems and satisfy global communication needs the proposed NI 

offers support for many-to-many connections. When using many-to-many connections it is 

possible for a node to send messages to multiple destinations through a single Outgoing Queue 

and to receive messages from multiple sources in a single Incoming Queue. Such an example can 

be seen in (2) of Figure 5.5. Node C uses a single connection to communicate with multiple nodes 

(Nodes A, B and D). Similarly Node A uses a single connection to receive data from multiple 

nodes (Nodes B, C and D). Many-to-many connections minimize the required resources for 

                                                      

 

1
 This communication pattern resembles the transpose operation in the Complex 1D FFT application of the 

SPLASH benchmarks [45] 
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communication, but impose additional initiation overhead. More on this matter is presented in 

subsection 5.7.  

It is important to realize that Connections do not constrain the software. Quite the opposite; 

they allow software to dynamically adjust the type and cost of communication. If a node has a lot 

of available memory for the NI, it can serve most of its communication needs through dedicated 

one-to-one connections. If memory resources are becoming sparse, sets of several one-to-one 

connections can be grouped into fewer many-to-many connections. Ultimately in a large-scale 

parallel application it is up to the software to choose the portion of the required communication 

that will be served through one-to-one connections and the portion that will be served through 

many-to-many connections. As a rule of thumb it is usually beneficial to satisfy the needs for 

global communication through many-to-many communication, so as to reduce overheads and 

resource consumption. 

An example of a communication pattern representative of several scientific parallel 

applications
1
 is shown in Figure 5.6. Nodes are placed in a grid formation and spend most of their 

time communicating with their four neighbors which is represented by the thick lines. 

Occasionally every node also needs to take part in global communication, which is represented by 

the thin lines. This mainly consists of exchanging short control and synchronization messages 

with the rest of the nodes in the system. The naïve and inefficient choice would be to create a 

one-to-one connection for each line. However this would lead to the establishment of countless 

connections leading to inefficient resource consumption and huge overheads.  

A better approach is to only use one-to-one connections for the communication represented 

by the thick lines and use many-to-many connections for the thin lines. Four one-to-one 

connections for communicating with neighboring nodes and one many-to-many connections to 

satisfy global communication needs. This way establishing 5 connections suffices for each node; 

If plenty of memory resources are available, to achieve better performance, even more than one 

many-to-many connections per node could be used for global communication to initiate the 

required transfers in a pipelined fashion. It is also important to note that the number and type of 

connections can also potentially be dynamically handled by low-level software transparently from 

the application software. 

                                                      

 

1
 This communication pattern resembles the transpose operation in the Ocean Simulator application of the 

SPLASH benchmarks [45] 



 Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors 

July 2007 Master Thesis  page 61 of 84 

 

Figure 5.6: A Grid Communication Pattern. 

5.5 Connection Table 

From the hardware perspective, each Connection encapsulates all of the necessary 

information to support the communication primitives described in subsection 5.3. Information 

regarding Connections is stored and organized inside a data structure, called the Connection 

Table (CT) in the form of Connection Table Entries (CTEs). The CT, which plays a very central 

role in the proposed design, occupies a contiguous variable-size piece of scratchpad memory, 

which is accessible by both the NI hardware and the node software and can be seen in Figure 5.7. 

CTEs are uniquely identified by their Connection IDs (CIDs), which essentially are the 

scratchpad memory addresses that correspond to CTEs. As described later, in subsection 5.6, 

which describes the packet format, CIDs are contained in packet headers and are used to directly 

index the CT and find the CTE that is needed to handle an arriving packet. 

Each CTE has the capacity to host one connection. This can be a one-to-one connection, a 

many-to-many connection or a hybrid connection, which is a combination of a one-to-one and a 

many-to-many connections that share some common characteristics. A CTE consists of several 

fields that store Connection-specific data and the information necessary for managing Queues and 

performing RDMA. CTEs are also well-suited to storing other types of metadata concerning 

Connections, such as Flow Control Information.  
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Figure 5.7: Connection Table in scratchpad memory. 

The fundamental information contained in a CTE is listed below: 

 Destination Info: Contains information about the destination, if the connection is used for 

one-to-one communication. This may include the id of a remote node, used for routing and 

the CID of the CTE that receives traffic on the remote node 

 Protection Info: Contains Protection information. For example this could be a Process 

Group ID that is used to form groups of processes and offers protection for many-to-many 

connections. 

 Incoming/Outgoing Queue Info: Describes Outgoing/Incoming Message Queues by 

specifying the location of Queues in memory, as well as head and tail pointers. 

 Incoming/Outgoing RDMA Info: Contains info about RDMA operations, such as a list 

of the preregistered RDMA-capable regions. 

 Flow Control Info: Depending on the interconnection network, each CTE may need to 

dedicate a few bits for flow-control information. For instance, this can hold credit 

information or just be a pointer to the next CTE waiting to be serviced. 

 Other Info: In addition to the above other connection-specific information can be stored 

in each CTE. An example is a field that specifies the kind of notification for arriving 

messages.  

Figure 5.8 shows how information is arranged in the CTE devised for the proposed NI. The 

numbers enclosed in parentheses represent number of bits, each CTE occupying 256 bits. The 
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length of the CTE was chosen to match the width of each node’s memory in the prototyping 

platform, which consists of 8 interleaved 32-bit banks. An effort was made to place independent 

information in independent banks, to allow parallel accesses to a CTE.  

 

Figure 5.8: Connection Table Entry. 

The first two memory banks contain information about the Connection. In a one-to-one or 

hybrid connections the first bank contains the Node ID of the remote node. A Node ID uniquely 

identifies a node in the system and is used for routing purposes. The second bank contains two 

fields. The first field is again used in one-to-one or hybrid connections and is the CID identifying 

a CTE in the CT of the remote node. The second field defines a Process Group ID (PGID) which 

is used to offer protection among nodes communicating with many-to-many connections. 

Processes running on different nodes with CTEs that are sharing the same PGID, belong to the 

same Process Group. A PGID value of zero means that this CTE is exclusively used for a one-to-

one connection. The next four memory banks, banks 3, 4, 5 and 6, are used to store information 

related to outgoing and incoming Message Queues or RDMA.  

The third and fifth memory banks contain compacted information about the Outgoing and 

Incoming Queues of a connection. The description of a Queue consists of a set of upper and lower 

Queue boundary addresses and a head and tail pointer, each of which is 16 bits wide which use a 

common 6-bit base address in the proposed CTE. These 16 bits correspond to 64K of 4-byte word 

addresses, which means that in the presented CTE a queue can be located anywhere within a 256 

Kbyte region in the scratchpad memory. In our prototyping platform 256 Kbytes is far beyond the 
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available scratchpad memory of a node, which means that queues can be located anywhere within 

the scratchpad. 

Complete definition of a Queue in the proposed CTE requires values of the Base, Start, End, 

Head and Tail fields. For Outgoing Queues these values can be found in the third and seventh 

bank. Similarly for Incoming Queues these values reside in the fifth and seventh bank. Using 

these values found in the CTE it is possible to ―reconstruct‖ the Queue boundary addresses and 

the head and tail pointers, as is shown in Figure 5.9.  

 

Figure 5.9: Queue Representation in Scratchpad Memory. 

Getting the byte address for the upper Queue boundary, requires concatenation of the Base 

value with the Start value and appending two zeros. Likewise, the byte address of the lower 

Queue boundary requires concatenation of the Base value with the End value and appending two 

zeros. Appending two zeros means that queue boundaries cannot point to any valid 4-byte word 

address in the scratchpad memory. In fact, upper and lower Queue boundaries can be set every 

four memory words. Thus the size of a queue needs to be a multiple of 4 words and the smallest 

possible queue size is 4 words. The maximum queue size is 1024 words. 

The process for reconstructing the head and tail pointers is similar. Getting the word address 

for the head pointer of a queue requires concatenation of the Base value with the Head value. 

Similarly, the word address of the tail pointer requires concatenation of the Base value with the 

Tail value. The resulting 16 bits correspond to the head and tail pointers. As described in more 

detail in subsection 5.7, Outgoing Queues have their tail pointer written by software and their 

head pointer advanced by hardware. Conversely, in Incoming Queues the tail pointer is advanced 
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by hardware while the head pointer is written by software. When a head or tail pointer reaches the 

lower queue boundary, its value has to be set to the upper queue boundary. 

The fourth and sixth memory banks contain information regarding Incoming and Outgoing 

RDMA operations. A simple approach is to have each CTE define two small fixed-sized 

contiguous physical memory regions for use with outgoing and incoming RDMA operations. The 

size of each such region can be set to a few 4 Kbyte pages, e.g. 64 Kbytes. The memory pages 

corresponding to these physical address regions need to be pinned by the operating system so that 

they are always resident in memory and never swapped out. (As described in subsection 5.7 each 

RDMA packet travelling through the network can not specify an absolute physical memory target 

address, but only a RDMA offset. Upon arrival this offset is added to the Incoming RDMA base 

address of the CTE to calculate the final memory destination for the arriving data.) Similarly, 

when initiating a RDMA operation only the offset of the data to be transferred is specified, which 

is added to the Outgoing RDMA base address to find the location of the data in physical memory.  

A more advanced and versatile approach is to associate more than one physical memory 

regions with each CTE. In this case the RDMA information in each CTE could point to a location 

in scratchpad memory that hosts a small list of valid RDMA base addresses for use with Outgoing 

and Incoming RDMA transfers. Such memory regions can also have different lengths. Ultimately, 

these lists of RDMA base addresses can be shared among several CTEs to more effectively utilize 

the available scratchpad memory. A drawback of this approach is that it requires a few additional 

memory accesses for each RDMA operation. Again, all of the pages belonging to the specified 

physical memory regions need to be pinned by the operating system. This solution resembles the 

Buffer Descriptor Tables found in the SiCortex SC5832 and SC648 parallel machines [44]. 

 The remaining memory bank (Bank 8) of a CTE can be used for other kinds of information. 

A possible candidate is Flow Control information, which can have the form of a pointer to 

another CTE that needs to be serviced next. Offering a ―Next pointer‖ for each CTE is quite 

useful and allows for maintaining linked-lists of CTEs. Alternatively, this bank can hold the 

number of available credits. In addition to flow control information this remaining memory bank 

can store configuration parameters for a CTE. For instance there could be a field indicating the 

type of desired notification mechanism for incoming traffic. This field could then be used to turn 

on/off interrupts for arriving messages.  

It is important to keep in mind that the CT structure presented in this subsection was custom 

tailored for a specific prototyping platform. For instance, the placement of different fields in 

different memory banks was done in a way that allows for parallel access in frequently used fields 

containing independent data. As an example, Incoming and Outgoing Queue information is stored 
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in different memory banks, avoiding access conflicts in the CTE for simultaneous incoming and 

outgoing messages.  

The fact that the interleaved memory in each node has a width of 256-bits allowed for 

spreading CTE information to occupy the whole memory width using the 8 interleaved banks. 

Under other circumstances, for CTEs residing in non-interleaving narrower memories, it might 

have been more efficient to have each CTE occupy less space by compacting, migrating or even 

eliminating some fields. The essence of CTEs is not the specific placement of the data inside 

them, but that they encapsulate all of the data required to support the available communication 

primitives of a system. 

5.6 Packet Format 

When travelling through the interconnection network, messages destined to remote queues 

and RDMA data need to organized in packets. This subsection presents the proposed packet 

format for queue messages and RDMAs. Although the proposed NI was intended for a 

prototyping platform, the objective was to create a packet format that could be used unaltered in a 

real large-scale parallel machine, i.e., to be as close as possible to the intended, ―real‖ system. For 

instance, the selected packet header offers support for up to 16 million nodes, which is many 

orders of magnitude greater than the number of nodes to be ever present in our prototyping 

platform, but is quite realistic for future systems. In general an effort was made to not restrict the 

design by constraints that were specific to this prototyping platform.  

5.6.1 Packet Format Considerations  

When designing the packet format of a system, there are several trade-offs to consider. For 

instance, offering support for very large packets and minimizing the required buffer space in the 

interconnection network and at the NI are two conflicting goals. Large packets minimize header 

overhead, but require excessive buffer space in the interconnection network and at the NI. 

Furthermore, using a unified same-size packet header for all kinds of traffic may lead to 

overheads in the form of underutilized space, but greatly simplifies the switch and NI designs. 

For instance, switches do not need to implement separate logic for different kinds of packets; 

rather, they can switch all of the packets in a uniform manner. 

Another important issue is how to protect the packet against errors, boiling down to the 

placement and the number of available checksums. One solution is to use a single checksum at 

the end of the packet, both for the packet header and the packet data. However this forces the NIs, 

and possibly the switches too, to store the whole packet before finding out if it is corrupt. An 
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approach that tries to alleviate this problem places two checksums inside each packet; one at the 

end of the packet header and another at the end of the packet body. This way, the network 

switches need not wait for the whole message before forwarding it. Upon receiving the packet 

header and checking it for errors against the checksum the packet can be dropped or forwarded 

using cut-through switching.  

5.6.2 Proposed Packet Format 

Figure 5.10 presents the proposed unified packet format for both queue messages and RDMA 

packets. The numbers enclosed in parentheses represent number of bits, which makes the entire 

header of any network packet 96 bits or (12 bytes) long. The packet header is pieced into 4-byte 

words, because this is the memory word size and datapath width in each node. Essentially, this 

means that as a message is being received, its header will be processed 4 bytes at a time, which 

influences the placement of information in the packet header. 

 

Figure 5.10: Proposed Unified Packet Format for messages and RDMAs 

The first 2 bits of the header belong to the Packet Type field. Specifically the first bit of the 

Packet Type is used to distinguish communication packets from control packets, i.e., 0 for 

communication and 1 for control packets. Control packets are consumed by the network 

hardware, i.e. the switches and the NIs. The second bit of the Packet Type further classifies a 

packet. For communication packets the second bit is used to distinguish queue messages from 

RDMA packets, i.e., 0 for queue messages and 1 for RDMA packets. In the case of control 

packets the second bit separates flow control packets that carry credits and configuration 
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messages consumed by the NIs. The next 6 bits of the packet header define the size of the packet, 

which is measured in 4-byte words. Maximum packet size is 256 bytes. The remaining 24 bits 

uniquely specify the destination node and are used for routing purposes. A maximum of 

16.777.216 nodes are supported. 

The second 4-byte word of the packet header is used to specify the Connection ID and 

contains a 16-bit field that is differentiated for queue messages and RDMA packet to supply the 

RDMA offset or user data. The Connection ID field identifies a specific connection within the 

destination node and is used to index the destination node’s Connection Table, which is presented 

in more detail in subsection 5.5; 16 bits allow for 65.536 connections per node. The Process 

Group ID field corresponds to a group of processes that trust each other and is used for protection 

purposes. 16 bits allow for the existence of 65.536 process groups. As presented later, in 

subsection 5.7, setting the connection ID or the Process Group ID to 0 has a special meaning.  

The third 4-byte word of the packet header contains a 16-bit field that is differentiated for 

queue messages and RDMA packets. For queue messages these 2 bytes can be used for arbitrary 

user data. It is important to note that tiny messages carrying a payload of only 2 bytes can be sent 

using this field in zero-sized packets. For RDMA packets, this field specifies an offset that is 

added to a preconfigured base address at the receiving node to determine the final physical 

memory location for delivering the RDMA data. The remaining 16 bits store the header 

checksum, which is used to check the integrity of the header while the packet is in transit. The 

rest of the packet contains the body of the packet, which ranges from 0 to 252 bytes of data, and 

finally a 32-bit checksum, which is separately calculated for the body of the packet. 

5.7 Software Interface 

The interface presented to the software for communicating with other nodes is based on the 

notion of Connections, which were described in subsection 5.4. In order to communicate with a 

remote node or with a set of remote nodes a one-to-one or many-to-many connection needs to be 

established respectively. Software uses the Outgoing Queue of a Connection to send messages to 

remote nodes as well as commands that trigger RDMA operations. Likewise, messages and 

notifications concerning RDMA operations that have been completed are received through 

messages appearing in the Incoming Queue of a Connection.  

5.7.1 Descriptors 

Assuming that a process has already established a connection with the nodes it wishes to 

communicate, it can send a message or initiate a RDMA operation by posting a Descriptor in the 
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Outgoing Queue of a CTE. Descriptors are ―stripped down‖ packet headers
1
 containing all 

necessary information for sending a message or carrying out RDMA operation and act as 

commands towards the NI. Having the software post Descriptors instead of the actual packet 

headers reduces both communication initiation overhead and, more importantly, plays a basic role 

in protection as described in subsection 5.8. The proposed NI supports four different kinds of 

Descriptors which are distinguished by their first two bits and are shown in Figure 5.11 – 

numbers enclosed in parentheses represent bits. Two of these Descriptors are used to send 

messages, while the other two are used to initiate RDMA operations.  

 

 

Figure 5.11: Message and RDMA Descriptors 

The first type of Descriptors is used to send messages through one-to-one Connections and 

corresponds to (1) of Figure 5.11. This type of descriptor only consists of a single 4-byte word, 

offering the lowest possible communication initiation latency. It only contains the size of the 

message and 16 bits of user data. Zero is a valid message size and results in very small messages 

that contain only 16 bits of data embedded in the header of a packet. For non-zero sized messages 

the data to be transmitted has to be placed in the Outgoing Queue following the Descriptor. When 

                                                      

 

1
  ―stripped down‖ means that they contain a subset of the fields found in a network packet header 
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using this type of Descriptors the rest of the information required to build the network message 

packet, namely the Destination ID, Connection ID and Process Group ID fields, are copied from 

the corresponding CTE. This approach ensures that packets are destined to the node 

corresponding to the Destination ID of the CTE. 

The second type of Descriptors is also used to send messages, but through many-to-many 

connections and corresponds to (2) of Figure 5.11. Since these messages are not necessarily 

destined to the Destination ID described in the CTE, additional information is needed in the 

Descriptor to specify the recipient of the message. These Descriptors consist of two 32-bit words. 

In addition to the information needed for message Descriptors of one-to-one connections these 

Descriptors also contain the Destination ID and Connection IDs of the receiving node. As before, 

if the size is not set to zero, the message body needs to be placed directly after the Descriptor. To 

construct the network packet header the NI only needs to copy the Process Group ID field from 

the CTE. 

The two remaining Descriptors are for RDMA operations. The third type of Descriptors is 

used to initiate RDMA operations through one-to-one connections and can be seen in (3) of 

Figure 5.11. Such Descriptors consist of two 4-byte words containing the size and the local and 

remote RDMA offsets. The local RDMA offset is added to the Outgoing RDMA base address 

found in the CTE to get the local location of the data to be transferred. In a similar manner at the 

receiving node, the NI adds the remote RDMA offset to the Incoming RDMA base address of the 

CTE to find the destination address for placing data. As with the first type of descriptors, the rest 

of the information required to build the network RDMA packet, namely the Destination ID, 

Connection ID and Process Group ID fields, are copied from the corresponding CTE.  

Although RDMA is typically used in pair-wise one-to-one communication the proposed 

design also supports RDMA for many-to-many connections
1
. This feature is useful in satisfying 

scatter-gather communication patterns. The fourth type of Descriptors is used exactly for this 

purpose, i.e. for initiating RDMA operations through many-to-many connections and is shown in 

(4) of Figure 5.11. These Descriptors consist of three 32-bit words. In addition to the information 

                                                      

 

1
 RDMA over many-to-many communication requires careful coordination. For instance if many nodes are 

performing RDMA write operations within the same memory region of a receiving node, care needs to be 

taken to avoid overwriting someone else’s data.  
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needed for RDMA Descriptors of one-to-one connections these Descriptors also contain the 

Destination ID and Connection ID of the receiving node. 

5.7.2 Initiating Communication 

To trigger the transmission of one or more network packets after posting one or more 

descriptors in the Outgoing Queue of a CTE,, the software needs to advance the tail pointer of the 

Outgoing Queue. When the previous value of the tail pointer is overwritten, NI hardware, that 

monitors ―writes‖ to the memory banks containing the Tail field of the Outgoing Queue of CTEs, 

checks for new Descriptors in the Queue and services them. An advantage of this approach is that 

it allows sending multiple messages or initiating multiple RDMA operations at a time by posting 

multiple descriptors in the Outgoing Queue. Only when the Tail updated is advanced will the 

creation and transmission of all of the corresponding network packets be triggered. When the NI 

hardware services a descriptor, it advances the head pointer, which the software can check to find 

out if a message has been sent or if a RDMA transfer is complete. 

The steps for sending a message or initiating a RDMA operation are as follows: 

1. Get Head and Tail pointers of the Outgoing Queue of a CTE to see if there is enough 

available space to post the Descriptor. 

2. Write the Descriptor at the tail of the Outgoing Queue. 

3. Advance the Tail pointer to trigger the NI 

4. (Poll the Head pointer of the tail to find out if the message/RDMA was sent) 

Likewise, the steps for receiving a message or a RDMA notification are as follows: 

1. Poll the Tail pointer of the Incoming Queue of a CTE or wait for an interrupt if 

interrupts are enabled, to find out about received messages or RDMA notifications.  

2. Get the Head pointer of the Incoming Queue of a CTE. 

3. Read message or RDMA notification from the head of the Incoming Queue. 

4. Advance the Head pointer of the Incoming Queue to inform the NI hardware that the 

space has been freed. 

5.7.3 Connection Establishment 

If a process running on a node desires to communicate with another process running on a 

remote node, it needs to find a way to request a new connection. However, in the absence of an 

already established connection, it is impossible to notify another process to create a new 

connection. To solve this issue, each node in the system has a special Connection, called System 
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Connection, which accepts messages from any node in the entire system. This connection has a 

CID of zero and occupies the first CTE of the CT in each node. This Special Connection is 

handled by the operating system for protection purposes and is primarily used for sending and 

receiving messages concerning the establishment of new connections. Thus, user-level software 

needs to perform a system call to create a new connection with another node.  

Establishing a Connection among two or more nodes corresponds to creating a new CTE in 

the CT of each node involved in the Connection. A rough outline of the process necessary to 

establish a one-to-one Connection is as follows. Initially, the process desiring to communicate 

finds a new CTE in the CT of its node. Subsequently a message, containing the CID of the newly 

found CTE, is sent to the System Connection of the remote node. The remote node also allocates 

and fills-in a new CTE in its CT and sends a response message with the corresponding CID back 

to the first node. Upon receiving the response, the first node fills in the remaining fields of its 

CTE, concluding the connection establishment process. The connection establishment process 

presented in the example above has been simplified to some extent and does deal with protection 

issues which are presented in the next subsection. 

5.8 Protection & Virtualization 

Protection is a very central issue in the proposed NI design and can be broken into two major 

domains, intranode protection and internode protection. Intranode protection deals with protection 

issues within a node, which also includes typical NI virtualization issues. Internode protection 

deals with protection issues among different nodes and is closely related to network security.  

5.8.1 Intranode Protection 

Intranode protection includes protection among user-level processes that are running on the 

same node and protection between the user-level processes and the operating system kernel. The 

main objective is to isolate malicious processes and prevent them from causing harm to other 

processes or even worse the kernel. Intranode protection greatly depends on the NI virtualization 

mechanisms, which allow for many processes to efficiently simultaneously communicate through 

a single NI and share its resources, in the same manner that memory virtualization allows for 

many processes to efficiently use and share the memory of a system.  

Figure 5.12 shows a set of three user-level processes running on a single node. Process 13 is 

labelled as malicious. Malicious does not necessarily describe a process that is intentionally 

trying to cause damage to the system. For instance, a process can also be considered malicious 

due to programming errors. Intranode protection guarantees that a malicious process will not 
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affect other processes. In particular this means that a malicious process (e.g. process 13 in the 

figure) should not be able to read or write data that belong to the connections of other processes 

(e.g. processes 27 & 42 in the figure). Generally malicious processes should not be able to corrupt 

or tamper with connections of other processes. 

 

Figure 5.12: Intranode Protection Example. 

5.8.2 Internode Protection 

As mentioned previously internode protection has to do with protection issues among 

different nodes. The main issue in internode protection is to deal with compromised nodes. A 

node is considered as compromised if the kernel or the operating system responsible for the node 

has been taken over, or is even just behaving erroneously due to a programming error. Internode 

protection guarantees that compromised nodes are isolated and do not cause problems harm to 

other nodes.  

Figure 5.13 shows a set of five nodes, where node C has been compromised. The first priority 

is to ensure that nodes with no connections to the compromised node (Nodes B and E in the 

figure), are not affected. For the nodes that have connections with the compromised node (Nodes 

A and D in the figure) it is crucial to limit the harm to those specific connections and processes 

that were communicating with the compromised node. For example in Figure 5.13 node A will 

possibly receive malicious traffic through the connection it has with the compromised node C, but 

this should not affect A’s communication with B or D.  
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Figure 5.13: Internode Protection Example 

5.8.3 Integrating Protection into the proposed NI 

Implementing intranode and internode protection requires proper support from the NI 

hardware and is tightly related to the organization of the Connection Table (CT) and the way it is 

accessed by the processes and the kernel. In the presented system, each Connection Table Entry 

(CTE) of the CT is 256 bits wide and is spread across 8 memory banks. To implement protection, 

the CT is split into 3 vertical protection zones, as seen in Figure 5.14. Protection zones are 

essentially used to control write access to the various memory banks comprising a CTE.  

 

Figure 5.14 Connection Table Protection Zones 
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This first protection zone includes banks 1 and 2. As explained in subsection 5.5, one-to-one 

connections use these banks to hold the Node ID and Connection ID for communicating with 

remote nodes. Many-to-many connections use these banks to store information about the Process 

Group they belong to. In both cases, NI hardware directly copies the Node ID and Connection ID 

or the Process Group fields to the headers of the packets that are injected into the network. Thus 

software does not have control over these fields of the packet header. These banks need to be 

highly protected, because they control the allowed destinations or process groups for the packets 

injected into the network. Internode protection is primarily based on restricting access to these 

banks. If these banks are kept safe, even a compromised node is unable to impersonate another 

node or generate malicious traffic towards nodes that it doesn’t have established a connection 

with.  

The second protection zone contains banks 3, 4, 5 and 6. These banks hold critical 

connection-specific information that identifies the memory regions that the NI hardware is 

allowed to access, such as the RDMA base addresses. The main purpose of this protection zone is 

to prohibit access to the user-level software. For example, if a user-level process could alter the 

Incoming RDMA physical base address, it would indirectly gain write access to any physical 

address in the node; even to physical addresses belonging to the kernel. However the harm that 

can be caused is only local and does not affect other nodes of the system, which means protection 

for these banks is not as crucial as for banks 1 and 2. In the case something goes wrong, This 

protection zone is crucial to supporting intranode protection.  

The third protection zone concerns banks 7 and 8. These two banks store connection-specific 

information that may be written by everyone, including user-level software. For example these 

banks hold the tail pointer for the Outgoing Queue of a connection. As described in subsection 

5.7, the tail pointer needs to be written by user-level software to trigger a transfer. This zone has 

the lowest level of protection and resembles the protection of normal scratchpad memory that has 

been allocated to a process, which means it is only allowed to access it if it has first acquired a 

virtual address mapping to it. 

The memory of a node can be accessed by the NI and by several layers of software, such as a 

run-time system, a virtual machine monitor, system-level software and user-level software. To 

implement protection, each protection zone described above needs to be delegated to either the NI 

hardware or to some layer of software. To achieve a sufficient level of internode protection, the 

banks that belong to the first protection zone should only be written by the NI hardware or the 

lowest level of software (e.g. run-time system or virtual machine monitor) during the connection 

establishment. This ensures that even a node with a compromised kernel will not affect other 

nodes of the system. 
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The banks belonging to the second protection zone should only be written by a ―privileged‖ 

software layer, such as the NI kernel driver. This zone mainly affects intranode protection, in that 

it prohibits malicious user-level software from ―tricking‖ the NI hardware and gaining access to 

memory it does not own. Thus, a user-level process desiring to change the contents of fields that 

belong to the ―moderate‖ protection zone should perform a system call. 

An alternative approach to the above, is to merge the first and second protection zones into a 

single larger protection zone that contains all six banks from 1 to 6. These banks may only be 

written by the NI hardware and by privileged software, such as the NI kernel driver. This 

eliminates the ―high‖ protection zone making the system less secure, but is an attractive solution 

for systems where high levels of protection cannot be afforded or are not a major concern.  

5.8.4 Controlling Access to the Connection Table 

Enforcing different access rights to the three protection zones presented above and among 

different user-level processes, requires special protection mechanisms that allow for the NI to 

recognize who is making the access. Firstly, a mechanism is required to distinguish accesses 

made by user-level processes and the OS kernel. Secondly, to provide protection among different 

processes using the NI, a mechanism to distinguish which process makes the access is also 

necessary.  

 

Figure 5.15: Protection between user-level processes and the kernel 

Providing different access rights to a user-level process and the kernel can be done through 

the use of a shadow address space, as shown in Figure 5.15. The user-level process and the kernel 

driver are given separate virtual address mappings to access the CT. These mappings correspond 
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to a normal physical address space and a shadow address space, which differ in only one bit (or a 

small number of bits) and are both mapped to the CT. In this manner the NI can distinguish if an 

access to the CT is made by a user-level process or the kernel driver and enforce proper 

protection according to the existing protection zones. This technique doubles the size of the 

required address space that corresponds to the CT, but this is a minor drawback, since the CT 

only occupies a tiny part of modern 32-bit or 48-bit bit address spaces. 

The CT hosts many connections that belong to different user-level processes, which requires 

the existence of a fine-grain protection mechanism among processes using the CT. Although 

traditional virtual memory systems offer sufficient protection at page granularity, the CT requires 

finer-grain protection. In the proposed system a typical 4Kbyte page can host 128 Connections. 

Using traditional virtual memory protection, this would force each process to own a minimum of 

128 connections, which would either limit the number of processes that communicate or require a 

very large CT.  

 

Figure 5.16: Protection among user-level processes sharing a CT page 

A technique for sharing a page of the CT (containing 128 CTEs) among many processes is 

shown in Figure 5.16. Each page of the CT is mapped to more than one physical pages, which are 

in turn mapped to virtual pages that belong to different user-level processes. The number of 

physical and virtual pages used to access a single page of the CT is equal to the number of 

processes sharing that particular page of the CT. This can range from a single page, offering 128 
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CTEs to a single process, up to 128 pages, offering 1 CTE to 128 processes. The latter case 

occupies 512Kbytes of physical and virtual address space for every page of the CTE.  

To guarantee that a user-level process can only access its own CTEs in the CT, special NI 

hardware logic is needed to manipulate the physical addresses that reach the CT, as shown in 

Figure 5.17. Although a whole physical page is mapped to each user-level process, access has to 

be limited to only a subset of the CTEs in that particular page. To achieve this, for each physical 

address that reaches the CT, a few of the LSBs of the Page Number are copied and overwrite a 

few of the MSBs of the page number. This prevents processes from accessing CTEs that belong 

to another process. The number of bits copied can range from 0 to 7, which corresponds to the 

number of processes (1-128) sharing a single CT page.  

 

Figure 5.17: NI Physical Address Manipulation 

The above physical address manipulation scheme can be combined with the shadow address 

space technique for protection among user-level processes and the kernel to provide a full 

protection solution that takes advantage and is built on top and of the standard virtual memory 

system. A drawback of this scheme is that many processes simultaneously communicating and 

sharing a single page of the CT will use many Translation Look-aside Buffer (TLB) entries. 

However this can be alleviated by limiting the number of processes that share each page of the 

CT, i.e., to 4 or 8 processes with 32 or 16 CTEs each, which also occupies less of the virtual and 

physical address space. An alternative fine-grain protection solution, which requires additional 

hardware and OS support has been proposed in [34]. 
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6 Conclusions & Future Work 

As computing and embedded systems evolve towards highly parallel multiprocessors, major 

research and development efforts are being focused on NI architectures that enable efficient 

interprocessor communication. NI design goals include high performance (i.e. low latency, high 

bandwidth), scalability, reliability and protection. The work presented in this master thesis 

includes the development of a NI queue manager for use in computer clusters and a proposed NI 

design well suited to chip multiprocessors.  

The NI queue manager implements Virtual Output Queues (VOQs) and supports Variable-

Size Multi-Packet Segments (VSMPS) and QFC flow control. To increase the available network 

buffer space, the queue manager supports VOQ traffic migration to external memory, stored in 

the form of memory blocks connected in linked-lists. Free-List Bypass and Free Block 

Preallocation optimization techniques are employed to minimize the required number of accesses 

to external DRAM, thus achieving higher bandwidth. 

Three versions of the presented queue manager were implemented in real hardware on 

FPGA-based boards and are used on a daily-basis at the CARV laboratory of ICS, FORTH for 

interprocessor communication research. The FPGA-based implementation of the design proved 

the feasibility and effectiveness of variable-size multipacket segmentation [3] and to our 

knowledge the developed NI is the first one to employ such a segmentation scheme. The FPGA 

hardware cost results for each individual module, as well as for each version of the queue 

manager, show that the flow-control related register files and the on-chip buffers are the limiting 

factors for scalability.  

Network performance experiments using the developed queue manager confirmed previous 

theoretical and simulation results about the behavior and performance of the buffered crossbar 

switch [6]. Network performance results indicate that the presented queue manager offers 

satisfactory performance, both in terms of bandwidth and latency. The novel packet processing 

mechanism employed to convert arbitrary traffic segments into autonomous network packets 

completely eliminated the need for reassembly, dramatically reducing buffer space and hardware 

complexity at the receiving end. 

The proposed NI design is lightweight and tightly coupled to the processor, making it well 

suited to future chip multiprocessors. It is customized for implementation in the new prototyping 

platform of the CARV laboratory, which will be used to replicate and explore the architecture of 

future chip multiprocessors, offering two powerful communication primitives Message Queues 
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and Remote DMA. Message Queues are intended for low latency communication, mainly 

synchronization and control messages or small low-overhead data transfers. Remote DMA 

minimizes processor involvement in communication, is well suited for bulky data transfers and 

facilitates zero-copy protocols. 

The proposed NI is based on the notion of connections, which support one-to-one and many-

to-many communication patterns among processing nodes. From a hardware perspective 

connections contain and organize all of the required state for the ongoing communication. From a 

software perspective connections are a powerful and versatile mechanism and form the interface 

for sending messages and initiating remote DMA operations. Furthermore the proposed NI 

supports a versatile protection and security solution, based on the existence of protection zones, 

that can easily be adapted to the specific security requirements of a system. 

NI design for chip multiprocessors is an emerging field and there is plenty of future work to 

be conducted. Open issues include NI support for migration of processes from one node to 

another and proper support for virtualization to enable the presence of multiple operating systems 

on a single node. Flow control poses another important issue that needs attention and requires 

proper support from the NI. Finally, in the case of shared memory systems, it is also important to 

investigate NI mechanisms for efficiently supporting cache coherence.  
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