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Abstract 

 

Whispering gallery modes (WGMs) exhibit unique characteristics, involving 

high Q factor and sensitivity to refractive index changes. These parameters 

provide useful information about the material’s physical parameters, such as its 

dimensions, or its mechanical properties under the application of axial strain. 

The latter, reflects the basis of our experimental work, where light confinement 

within polypropylene cylindrical microresonators is extensively examined. The 

main purpose of our experiments is the investigation of WGM spectral behavior 

under the material’s mechanical deformation, in order to determine the photo 

– elastic properties of polypropylene. 

Whispering gallery mode resonances are studied for the first time in 

polypropylene cylindrically symmetric microcavities. Spectra for both TE and 

TM polarization states are obtained. Spectral shifts under applied strain are 

used for determining the strain optical coefficient of polypropylene. 

Light propagation and mode formation inside polypropylene resonators is also 

simulated, with the aid of proper computational programs, in order to estimate 

the modal eigenstates. These are characterized based on their modal indices 

and selected WGM spectral description. WGM resonance response under the 

application of mechanical deformation is extensively studied in this work, 

providing a non – destructive method for the determination of the material’s 

photo - elastic parameters. An insight of polypropylene’s photo – elastic 

properties is considered very important in the field of applied Photonics, 

yielding in the application of future photonic devices based on polypropylene’s 

characteristics. 
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1. Introduction 

 

This chapter contains a perceptive introduction to the physics and applications 

of whispering gallery mode resonators as well as, the aim and structure of this 

thesis.  

 

1.1 Whispering gallery mode resonators 

 

Whispering gallery modes can be defined as closed beams travelling along 

circular symmetry microresonators, spatially localized by total internal 

reflection [1], [2]. Light circulation inside microcavities at specific resonant 

frequencies is significant in a variety of scientific fields, such as photonics, 

cavity quantum electrodynamics, biosensing and nonlinear optics [3].  

Lord Rayleigh originally studied WGMs in St. Paul’s cathedral, in London. He 

observed that sound (whispers) could be heard in any place near the gallery 

wall, [4] due to the suppression of wave diffraction occurring when waves are 

reflected from the wall. [5] In 1909, Debye studied light resonances in dielectric 

and metallic spheres, taking into consideration WGM resonances [2].  

Since then, many studies about whispering gallery modes have been developed 

at sound waves, also at optical and microwave wavelengths. Such resonances 

have been observed in various systems and geometries, including cylindrical 

microcavities, liquid droplets with micrometric – sized volumes, as well as 

small glass spheres. [6] Whispering gallery modes exhibit remarkable light 

resonation properties. These high – finesse cavities enhance light interaction 

with the optical material through high Q – factors achievable in micron - size 

cavities. The quality factor is defined as the ratio between the energy stored in 

the resonator and the power dissipated at a resonant frequency, denoting the 

efficiency of the cavity in trapping light at a specific wavelength. The high 

quality factor (up to ~ 109 for specific materials and configurations) 

characterized by small modal volumes, make WGM resonators excellent optical 
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sensor hosts. Figure 1, demonstrates some examples of microresonator cavities 

with different geometries [7], [8], [9].  

 

 

 

 

 

 

 

 

 

 

 

 

1.2 State of the art on WGM cavities for material 

characterization 

 

The investigation of a material’s photo - elastic properties is a significant 

approach in correlating macroscopic properties of the material with its micro – 

coordination structure. Photo – elasticity describes the change in refractivity 

and birefringence under mechanical stimulation of the optical material under 

study. In other words photo – elasticity correlates the optical (birefringence) 

and mechanical (Young’s modulus, Poisson’s ratio) into a single quantity which 

in turn reflects the structure of the material in the domain of molar refractivity. 

Photo – elasticity has been investigated in several experimental configurations 

(i.e. Twyman – Green interferometry, optical fiber Bragg gratings), while being 

used for studying structural health state of transparent materials (crack 

propagation, deformation etc.) [10]. Strain – and stress – optical coefficients of 

several optical materials have been determined with methods employing 

whispering gallery mode resonation inside glass and polymeric microcavities,. 

Figure 1: WGM resonator cavities (A) microtoroid (B) microdisk (C) microring (D) microsphere (E) 
microbottle (F) microbubble [7] 
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Also strain has been used for tuning the resonation properties of polymer and 

crystalline WGM cavities [11], [45], [46].  

Photo – elastic experiments including whispering gallery mode excitation, have 

been conducted on silk fibroin cylindrical microcavities [12] spherical glassy 

polymer resonators [11], silica glass, borosilicate fibers and PMMA cylindrical 

cavities [47], [48], [49]. In all cases, WGM resonances for TE and TM polarization 

states appear to differentially shift under the application of axial strain, 

allowing estimation of the strain – induced birefringence and the stress – 

induced optical coefficient by accounting Young’s modulus and Poisson’s ratio.  

The illustration of the photo – elastic behavior of polymer or glass dielectric 

materials allows further insights into their segmentation and micro – 

coordination properties (i.e. poly – dispersity for polymers, or ion – doping for 

glasses), also helping the development of optical materials and tailored 

birefringence properties [50]. 

 

1.3 Aim of this thesis 

 

The main purpose of this thesis involves the use of whispering gallery mode 

resonation in polypropylene microcavities for the investigation of the material’s 

photo – elastic properties. There have been extremely few investigations of the 

photo – elasticity of polypropylene. This is due to the fact that polypropylene is 

not a widely used optical material since suffers high optical attenuation at 

visible wavelengths, and high optical scattering behavior due to its poly – 

crystalline nature (especially for isotactic materials). However, polypropylene 

has an excellent chemical durability to most inorganic acids/bases and organic 

solvents, high tensibility and particularly well positioned transparency at THz 

wavelengths/bands. Polypropylene can also exhibit reversible diffusivity to 

many organic solvents, rendering that a promising material for the 

development of chemosensing probes. 

In this thesis we couple light inside polypropylene cylindrical cavities (no – core 

optical waveguides) at the 1550 nm band, and excite/characterize WGMs in 

those. Then, we apply controlled longitudinal strain onto those polymeric micro 
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– cavities, measure differential shifts for TE and TM modes and estimate strain 

– induced birefringence. From those quantities we calculate the strain optical 

coefficient of polypropylene and by accounting the Young’s modulus and 

Poison’s ratio the stress optical coefficient. In addition, we apply powerful 

simulation tools for identifying modal order in the WGMs excited in those 

cavities and correlate these findings with the experimental results. 
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2. Theory 
 

2.1 Light propagation in optical fibers 

 

The main subject of this chapter, is the investigation of light propagation inside 

optical fibers. Furthermore, the theoretical foundations of waveguide modes 

are set, employing Maxwell’s equations. Finally, the theoretical groundwork of 

tapered optical fibers is presented.  

 

2.1.1. Optical fibers 
 

 

Optical fibers are a specific type of waveguides. Optical fibers consist of a core, 

with refractive index n1, surrounded by a cladding with refractive index n0 

(n1>n0). Light in optical fibers is confined inside the core, as it is supported by 

total internal reflection.  Figure 2, depicts the basic optical fiber structure and 

its refractive index profile. 

The light inside optical fibers is confined forming specific modes. Modes are the 

solutions of Helmholtz equations for waves. Each mode corresponds to light 

rays, transmitted at discrete propagation angles, obtained by electromagnetic 

mode analysis. Modes indicate the way of light propagation in waveguides.  

 

 

Two fundamental parameters are commonly used for optical fiber 

characterization. The first one, is known as the relative core – cladding 

refractive index difference (Δ) and is defined as [14]:  

 

Figure 2: Optical fiber structure and refractive index profile [15] 
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𝛥 =  
𝑛1 − 𝑛0
𝑛1

        (2.1.1) 

 
Furthermore, the normalized frequency (V) is a measure of guidance quality 

and is defined as:  

 

𝑉 = 𝑘0𝑟√𝑛1
2 − 𝑛0

2        (2.1.2) 

In Eq. 2.2, k0=2π/λ, is the wavenumber, with λ being the wavelength and r is 

the core radius. [15]  

Based on the number of modes supported, optical fibers can be divided into two 

groups: single mode fibers (SMF) and multimode ones. Single mode fibers are 

designed for allowing the propagation of the same mode, while in multimode 

fibers, all types of dispersion exist simultaneously. Optical fibers are commonly 

made of SiO2. [16, 17] Typical core diameter values in single mode fibers are 

around 8 μm, with cladding diameter of 125 μm. The core refractive index is 

1.447, while the one of the cladding typically equals 1.445. Multimode fibers 

usually have larger cores than the single mode ones, although the total cladding 

diameter does not exceed 125 μm. [16] 

 

2.1.2.  Total internal reflection 
 

The refraction of electromagnetic waves on the interface between two media of 

different refractive indices is described by Snell’s law [17]: 

 

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2       (2.1.3) 

 

In equation (2.1.3), n1 and n2 are the refractive indices between the two media. 

The angle between the incident wave and the normal vector of the incidence 

surface is denoted as θ1. Angle θ2 is formed between the vector normal to the 

surface and the refracted wave. 
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Assuming that light is transmitted from an optically dense to an optically 

thinner medium (n2<n1), then refraction occurs when the angle of incidence (θ1) 

satisfies the following condition: 

𝜃1 < 𝜃𝑐  =  𝑠𝑖𝑛
−1 (

𝑛2
𝑛1
)       (2.1.4) 

Where, θc is defined as the critical angle. If θ1≥θc, then the incident wave 

undergoes total internal reflection from the interface separating the two media. 

In the following paragraph, the electromagnetic field in medium 2 is presented. 

The electric field in the medium mentioned, can be described as [18], [19]:  

  

𝐸2 = 𝐸02𝑒
𝑖(𝒌𝟐∙𝒓−𝜔𝑡)       (2.1.5) 

Where, 

 

𝑘2 = 
𝑛2𝜋

𝜆
       (2.1.6) 

 

It is k2 = kx+ky, where kx describes the light propagation parallel to the interface 

and ky the propagation perpendicular to it. From Snell’s law one can obtain: 

 

𝑘𝑥 = (1 −
𝑛1
2𝑠𝑖𝑛2𝜃1

𝑛2
2 )

1/2

       (2.1.7) 

 

 

𝑘𝑦 = 𝑖𝑘2 (
𝑛1
2𝑠𝑖𝑛2𝜃1

𝑛2
2 − 1)

1/2

= 𝑖𝛽       (2.1.8) 

Using equation (2.1.7), since kx is real and ky is complex, it can be derived: 

 

𝐸2 = 𝐸02𝑒
𝑖(𝑘𝑥𝑥−𝜔𝑡)𝑒−𝛽𝑦       (2.1.9) 
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Equation (2.1.9) describes the evanescent field, which decays exponentially 

with penetration depth: 

 

1

𝛽
=  

𝜆0

2𝜋√𝑛1
2𝑠𝑖𝑛2𝜃1 − 𝑛2

2
      (2.1.10) 

 

2.1.3. Waveguide modes in optical fibers 
 
Optical fiber mode analysis is established by Maxwell’s equations. These 

equations, describe the propagation of the electromagnetic fields inside certain 

materials and structures. In the case of optical fibers specifically, some 

boundary conditions are also needed for light propagation description. This 

analysis, starts with the differential form of Maxwell’s equations [20], [21]: 

 

𝛁 × 𝑬 = −
𝜕𝑩

𝜕𝑡
= −𝜇

𝜕𝑯

𝜕𝑡
       (2.1.11) 

 

𝛁 ×𝑯 =
𝜕𝑯

𝜕𝑡
= 𝜀

𝜕𝜠

𝜕𝑡
       (2.1.12) 

 

𝛁 ∙ 𝑫 = 0       (2.1.13) 

 

𝛁 ∙ 𝑩 = 0        (2.1.14) 

 

Where D and H represent the vectors for electric and magnetic displacements 

and can be defined as: 

 

𝑫 = 𝜇 ∙ 𝜠        (2.1.15) 

 

𝜝 = 𝜇 ∙ 𝜢        (2.1.16) 

We can easily obtain the homogeneous electromagnetic wave equation, as it is 

written in the two following equations: 
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(𝛁2 − 𝜇𝜀
𝜕2

𝜕𝑡2
)𝑬(𝑟, 𝑡) = 0       (2.1.17) 

 

(𝛁2 − 𝜇𝜀
𝜕2

𝜕𝑡2
)𝑯(𝑟, 𝑡) = 0       (2.1.18) 

 

The solutions of equations (2.1.17) and (2.1.18), for the electric and magnetic 

field respectively, can be written as: 

 

𝑬(𝑟, 𝑡) = 𝑬(𝑟, 𝜑)𝑒𝑖(𝜔𝑡−𝛽𝑧)       (2.1.19) 

 

𝑯(𝑟, 𝑡) = 𝑯(𝑟, 𝜑)𝑒𝑖(𝜔𝑡−𝛽𝑧)      (2.1.20) 

 

In general, dielectric waveguides can support a finite number of modes. Optical 

fibers constitute cylindrical waveguides. Thus, the modal analysis inside them 

should start with the time – independent wave equation written in the 

cylindrical coordinate system, (r, φ, z) shown in equations (2.1.21) and (2.1.22). 

 

[
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜑2
+ (𝑘2 − 𝛽2)]𝑬(𝑟, 𝜑)     (2.1.21) 

 

[
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜑2
+ (𝑘2 − 𝛽2)]𝑯(𝑟, 𝜑)     (2.1.22) 

 

Optical fibers are symmetrical structures. Therefore, the homogeneous wave 

equations can be solved for their r and φ components separately. Since such 

resonators are cylindrical, we should solve Maxwell’s equations in the 

cylindrical coordinate system. These equations are written below: 

𝑖𝜔𝜀𝐸𝑟 = 𝑖𝛽𝛨𝜑 +
1

𝑟

𝜕𝐻𝑧
𝜕𝜑

        (2.1.23) 
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𝑖𝜔𝜀𝐸𝜑 = −𝑖𝛽𝛨𝑟 +
𝜕𝐻𝑧
𝜕𝑟

        (2.1.24) 

 

−𝑖𝜔𝜇𝛨𝑟 = 𝑖𝛽𝛦𝜑 +
1

𝑟

𝜕𝛦𝑧
𝜕𝜑

        (2.1.25) 

 

−𝑖𝜔𝜇𝛨𝜑 = −𝑖𝛽𝛦𝑟 −
𝜕𝐸𝑧
𝜕𝑟

        (2.1.26) 

 

From equations (2.1.27) to (2.1.30), one can obtain the electric and magnetic 

field components in cylindrical coordinates, as presented in the following 

equations: 

 

𝐸𝑟 =
−𝑖𝛽

𝑘2 − 𝛽2
(
𝜕𝐸𝑧
𝜕𝑟

−
𝜔𝜇

𝛽

1

𝑟

𝜕𝛨𝑧
𝜕𝜑

)       (2.1.27) 

 

𝐸𝜑 =
−𝑖𝛽

𝑘2 − 𝛽2
(
1

𝑟

𝜕𝐸𝑧
𝜕𝜑

−
𝜔𝜇

𝛽

𝜕𝛨𝑧
𝜕𝑟
)       (2.1.28) 

 

𝐻𝑟 =
−𝑖𝛽

𝑘2 − 𝛽2
(
𝜕𝐻𝑧
𝜕𝑟

−
𝜔𝜀

𝛽

1

𝑟

𝜕𝛦𝑧
𝜕𝜑

)       (2.1.29) 

 

𝛨𝜑 =
−𝑖𝛽

𝑘2 − 𝛽2
(
1

𝑟

𝜕𝛨𝑧
𝜕𝜑

+
𝜔𝜀

𝛽

𝜕𝛦𝑧
𝜕𝑟
)       (2.1.30) 

 

Now, based on the previous conclusions, we can re – write the time independent 

wave equation described in equations (2.1.21) and (2.1.22), in cylindrical 

coordinates as follows: 

 

[
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟

1

𝑟2
𝜕2

𝜕𝜑2
+ (𝑘2 − 𝛽2)] [

𝛦𝑧
𝐻𝑧
] = 0       (2.1.31) 
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Where, Ez and Hz are the longitudinal components of the electric and magnetic 

fields respectively. These components represent the guided modes in optical 

fibers. By applying the separation of variable method, the mentioned 

components can be written as solutions of the differential equations (2.1.21) 

and (2.1.22) as [20]: 

 

𝐸𝑧(𝑟, 𝜑) = 𝛢𝑅(𝑟)𝛷(𝜑)  ⇒ 𝐸𝑧(𝑟, 𝜑) = 𝑅(𝑟)𝑒
±𝑖𝑙𝜑   (2.1.32) 

 

𝛨𝑧(𝑟, 𝜑) = 𝛢𝑅(𝑟)𝛷(𝜑) ⇒ 𝛨𝑧(𝑟, 𝜑) = 𝑅(𝑟)𝑒
±𝑖𝑙𝜑     (2.1.33) 

 

Where we assumed the angular function Φ(φ) to have the form Φ(φ)=Αe±ilφ, 

with l being an integer with values l=0,1,2,… Therefore, from equations (2.1.21), 

(2.1.22), (2.1.32) and (2.1.33), we can derive Bessel’s differential equation, for 

electromagnetic wave propagation in cylindrical structures [20]. 

 

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+ (𝑘2 − 𝛽2 −

𝑙2

𝑟2
)𝑅(𝑟) = 0       (2.1.34) 

 

Bessel’s function solution is written as: 

 

𝑅(𝑟) = {
𝐶1𝐽𝑙(ℎ𝑟),     ℎ

2 = 𝑘2 − 𝛽2 > 0

𝐶2𝐾𝑙(ℎ𝑟), −𝑞
2 = 𝑘2 − 𝛽2 < 0

        (2.1.35) 

 

Where Jl(r) and Kl(r) are Bessel’s functions of the first and second kind 

respectively. Jl(r) functions indicate that the electromagnetic field in the center 

of the optical fiber (r=0) should be finite. At the same time, electromagnetic 

field components in the fiber cladding exhibit an exponential decay, thus Kl(r) 

functions are appropriate for their description. In conclusion, the electric and 

magnetic field longitudinal components inside and outside of the fiber can be 

written in the following form: 
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{
𝐸𝑧(𝑟, 𝜑) = 𝐴𝐽𝑙(ℎ𝑟)𝑒

𝑖𝑙𝜑

𝛨𝑧(𝑟, 𝜑) = 𝛣𝐽𝑙(ℎ𝑟)𝑒
𝑖𝑙𝜑
 , 𝑟 < 𝑎        (2.1.36) 

 

{
𝐸𝑧(𝑟, 𝜑) = 𝐶𝐾𝑙(ℎ𝑟)𝑒

−𝑖𝑙𝜑

𝛨𝑧(𝑟, 𝜑) = 𝐷𝐾𝑙(ℎ𝑟)𝑒
−𝑖𝑙𝜑

 , 𝑟 > 𝑎      (2.1.37) 

 
Assuming a fiber with radius r=α. Α, Β, C and D are constants which can be 

determined with the application of proper boundary conditions. The transverse 

field components, already mentioned in equations (2.1.27) to (2.1.30) can be 

written by substituting equations (2.1.36) and (2.1.37) into them. 

 

𝐸𝑟(𝒓, 𝑡) =

{
 

 −𝑖
𝛽

ℎ2
[𝐴ℎ𝐽𝑙

′(ℎ𝑟) + 𝑖
𝜔𝜇𝑙

𝛽𝑟
𝐵𝐽𝑙(ℎ𝑟)] , 𝑟 < 𝑎

𝑖
𝛽

𝑞2
[𝐶𝑞𝐾𝑙

′(𝑞𝑟) + 𝑖
𝜔𝜇𝑙

𝛽𝑟
𝐷𝐾𝑙(𝑞𝑟)] , 𝑟 > 𝑎

× 𝑒𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)        (2.1.38) 

 

𝐸𝜑(𝒓, 𝑡) =

{
 

 −𝑖
𝛽

ℎ2
[
𝑖𝑙

𝑟
𝐴ℎ𝐽𝑙(ℎ𝑟) − 𝑖

𝜔𝜇

𝛽
𝐵𝐽𝑙

′(ℎ𝑟)] , 𝑟 < 𝑎

𝑖
𝛽

𝑞2
[
𝑖𝑙

𝑟
𝐶𝑞𝐾𝑙(𝑞𝑟) − 𝑖

𝜔𝜇

𝛽𝑟
𝐷𝑞𝐾𝑙

′(𝑞𝑟)] , 𝑟 > 𝑎

× 𝑒𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)        (2.1.39) 

 

𝐻𝑟(𝒓, 𝑡) =

{
 

 −𝑖
𝛽

ℎ2
[𝐵ℎ𝐽𝑙

′(ℎ𝑟) + 𝑖
𝜔𝜀1𝑙

𝛽𝑟
𝛢𝐽𝑙(ℎ𝑟)] , 𝑟 < 𝑎

𝑖
𝛽

𝑞2
[𝐷𝑞𝐾𝑙

′(𝑞𝑟) + 𝑖
𝜔𝜀2𝑙

𝛽𝑟
𝐶𝐾𝑙(𝑞𝑟)] , 𝑟 > 𝑎

× 𝑒𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)        (2.1.40) 

 

𝐻𝜑(𝒓, 𝑡) =

{
 

 −𝑖
𝛽

ℎ2
[
𝑖𝑙

𝑟
𝐵ℎ𝐽𝑙(ℎ𝑟) − 𝑖

𝜔𝜀1
𝛽
𝛢𝐽𝑙

′(ℎ𝑟)] , 𝑟 < 𝑎

𝑖
𝛽

𝑞2
[
𝑖𝑙

𝑟
𝐷𝐾𝑙(𝑞𝑟) − 𝑖

𝜔𝜀2
𝛽𝑟

𝐶𝑞𝐾𝑙
′(𝑞𝑟)] , 𝑟 > 𝑎

× 𝑒𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)        (2.1.41) 

 

In order to obtain the constants A, B, C and D included in the field components, 

the continuity equation of both the electric and magnetic field should be solved 

at the interface separating the core from the cladding (r=α): 

 

𝐽𝑙(ℎ𝑎)𝐴 − 𝐾𝑙(𝑞𝑎)𝐶 = 0        (2.1.42) 
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[
𝑖𝑙

ℎ2𝑎
𝐽𝑙(ℎ𝑎)] 𝐴 + [−

𝜔𝜇

ℎ𝛽
𝐽𝑙
′(ℎ𝑎)]𝐵 + [

𝑖𝑙

𝑞2𝑎
𝐾𝑙(𝑞𝑎)]𝐶 + [−

𝜔𝜇

ℎ𝛽
𝐽𝑙
′(ℎ𝑎)]𝐷 = 0 (2.1.43) 

 

𝐽𝑙(ℎ𝑎)𝐵 − 𝐾𝑙(𝑞𝑎)𝐷 = 0       (2.1.43)     

 

[
𝜔𝜀1
ℎ2𝛽

𝐽𝑙
′(ℎ𝑎)] 𝐴 + [

𝑖𝑙

ℎ2𝑎
𝐽𝑙(ℎ𝑎)]𝐵 + [

𝜔𝜀2
𝑞𝛽

𝐾𝑙
′(𝑞𝑎)]𝐶 + [

𝑖𝑙

𝑞2𝑎
𝐾𝑙(𝑞𝑎)]𝐷 = 0    (2.1.44) 

 

 

After solving the equations (2.1.42) up to (2.1.44), we obtain the time – 

dependent solutions of electromagnetic fields longitudinal components as: 

 

 

𝐸𝑧(𝒓, 𝑡) = {
𝐴𝐽𝑙(ℎ𝑟)𝑒

𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧), 𝑟 < 𝑎

𝐶𝐾𝑙(ℎ𝑟)𝑒
𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧), 𝑟 > 𝑎

       (2.1.45) 

 

𝐻𝑧(𝒓, 𝑡) = {
𝐵𝐽𝑙(ℎ𝑟)𝑒

𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧), 𝑟 < 𝑎

𝐷𝐾𝑙(ℎ𝑟)𝑒
𝑖𝑙𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧), 𝑟 > 𝑎

       (2.1.46) 

 

 

Transverse electric (TE) modes correspond to Ez=0 and Eφ, Hr, Hz ≠0. Similarly, 

transverse magnetic (TM) modes correspond to Hz=0 and Er, Ez, Hφ ≠ 0. The 

electric field vectors and intensity profile correlation is depicted in Figure 3 

below.  
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2.1.4. Tapered optical fibers 
 

As mentioned earlier, the normalized frequency (V) is a measure of the 

guidance quality of a waveguide. Thus, this quantity provides information 

about higher order mode transmission. A specific kind of optical fiber 

structures, allowing the transmission of specific order modes which interact 

well with the outer environment are optical fiber tapers (OFTs). These 

structures are specially thinned optical fibers, where modes propagate in the 

cladding at a specific point. OFT fabrication includes heating of a single mode 

optical fiber, leading to melting and softening of the material, while, the fiber 

undergoes a tensile force. [23] 

The structure of an optical fiber taper includes an untapered region, a region 

corresponding to taper transition and the taper waist region, with the smallest 

diameter, achieved after material melting. Tapering of the optical fiber leads to 

a modal field distribution shift. The diameter change rate of the taper, results 

in a variation in energy transfer from the fundamental mode to the closest 

higher order modes. [23], [24]  

Figure 3: Electric field vectors and intensity profiles of the three first modes [22] 
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An optical fiber taper is considered adiabatic when the initial fundamental fiber 

mode is converted to a fundamental mode inside the taper. This condition 

occurs when there is minimum power coupling between the core and cladding 

modes, and scattering losses are minimized as well, during light propagation 

inside the tapered region. [25] In adiabatic tapers, the beat length between the 

fundamental mode and the one of the first higher order mode (zb), is connected 

with the local taper length (zt) as:  

 

𝑧𝑏 < 𝑧𝑡       (2.1.47) 

 

𝑧𝑏 =
2𝜋

𝛽1 − 𝛽2
       (2.1.48) 

 

𝑧𝑡 =
𝜌

𝑡𝑎𝑛𝛺
 (2.1.49) 

 

In the above equations, β1(r) and β2(r) correspond to the propagation constants 

of fundamental and second order mode at radius r respectively. ρ=ρ(z) refers to 

the radius of the local core, and Ω=Ω(z) is the taper angle. Therefore, 

 

|
𝜕𝜌

𝜕𝑧
| = 𝑡𝑎𝑛𝛺 <

𝜌(𝛽1 − 𝛽2)

2𝜋
       (2.1.50) 

 

With |
𝜕𝜌

𝜕𝑧
|defined as the rate of change in the radius of the local core, leading to: 

 

|
𝜕𝑟

𝜕𝑧
| <

𝑟(𝛽1 − 𝛽2)

2𝜋
       (2.1.51) 

 

 

Therefore, according to the conditions mentioned above, the fiber radius 

should decrease gradually in order to prevent the excitation of higher order 

modes. [24] 
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2.2. Whispering gallery mode theory 

 

2.2.1. Whispering gallery modes 

 
Whispering gallery modes (WGMs) are extensively investigated in this thesis. 

In such resonators, light propagates along a circular path where it is confined 

by total internal reflection, leading to modal formation with high quality factors 

and small volumes. The geometry and composition of a WGM microresonator 

strongly affects many resonant parameters, including the resonant frequencies 

observed, and the modal quality factors. [26]  

In order to investigate various WGM resonator applications, some spectral 

parameters need to be taken into account, starting with the modal power, which 

distribution is defined by a Lorentzian function [27]: 

 

𝑃(𝜔) = 𝑃0

𝛾0
2

2

(𝜔 − 𝜔0)
2 +

𝛾0
2

2

        (2.2.1) 

 

Where, ω0 is the resonant frequency, γ0 defines the full width at half maximum 

(FWHM) of this distribution, and P0 refers to the power amplitude. The 

resonant wavelength λ0 and the FWHM, also expressed as Δλ, are related to the 

quality factor (Q – factor) of the resonance as [28]: 

 

𝑄 =
𝜆0
𝛥𝜆
       (2.2.2) 

The total resonance linewidth is highly affected by loss mechanisms, including 

radiation, light scattering at resonator surface, bulk scattering and light 

absorption from the material. Therefore, the WGM resonance FWHM can be 

written as Δλ = Δλrad+ Δλsca+ Δλmat+…, while Q factor is influenced as Q-1=Qrad-

1+Qsca-1+Qmat-1+…. Losses attributed to radiation are dominant in smaller 

resonators, while absorption becomes the main loss mechanism as the cavity 

size is increased. [29], [30], [31] 
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2.2.2. Wave equation in cylindrical resonators 
 

WGM propagation is azimuthal in resonators with rotational symmetry, 

including cylindrical resonators. The resonances occur at specific wavelengths, 

with their spectral positions being directly dependent on the resonator radius 

and refractive index. WGMs inside microresonators are supported by total 

internal reflection, leading to a continuous wave propagation along the 

microresonator’s surface. The condition in which resonances occur relates the 

resonant wavelengths with the radius and refractive index by the following 

equation: 

 

𝜆𝑅 =
2𝜋𝛼𝑛𝑒𝑓𝑓

𝑚
        (2.2.3) 

 

 
Where, λR refers to the wavelengths in which resonances occur, neff is the WGM 

effective index, α is the microresonator’s radius and m is the azimuthal modal 

order, corresponding to the total number of wavelengths around the 

microresonator.   

In the case of cylindrical microresonators, neff, are obtained from the solutions 

of Maxwell’s equations combined with the proper boundary conditions. 

Cylindrical resonators have translational symmetry around axial direction, 

where two regions with different refractive indices can be defined as: region I, 

with refractive index n1 and region II with refractive index n2, with n1>n2. In 

general, there is a difference in the material’s refractive index (n1) in the axial 

and transversal directions, mentioned as n1z and n1t respectively. According to 

the above, a refractive index tensor can be defined as [32]: 

 

𝑛2 = (

𝑛1𝑡   0   0
0   𝑛1𝑡   0
0   𝑛1𝑧   0

)       (2.2.4) 
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In this case, region I is assumed to be a dielectric medium with anisotropic 

permittivity ε0ε1, while region II, is assumed to be an infinite dielectric medium 

(typically air) with isotropic permittivity ε0ε2. Both regions have the same 

magnetic permeability μ0. 

Since wave propagation in cylindrical resonators is entirely azimuthal, the 

electric and magnetic field components depend on the parameter e-iβφ, with β 

being the propagation constant. Also, the electromagnetic field exhibits a 

harmonic time dependence described as ejωt. Therefore, the electric and 

magnetic field vectors, obtained from Maxwell’s equations solutions in 

cylindrical coordinates, can be written as: 

 

𝑬(𝒓, 𝑡) = 𝒆(𝜌)𝑒−𝑖𝛽𝜑𝑒𝑗𝜔𝑡      (2.2.5 𝛼) 

 

𝜢(𝒓, 𝑡) = 𝒉(𝜌)𝑒−𝑖𝛽𝜑𝑒𝑗𝜔𝑡      (2.2.5 𝑏) 

 

With electromagnetic field amplitudes described as: 

 

 

𝒆(𝜌) = 𝑒𝜌(𝜌)𝒖𝜌̂ + 𝑒𝜑(𝜌)𝒖𝜑̂ + 𝑒𝑧(𝜌)𝒖𝑧  ̂       (2.2.6 𝑎) 

 

𝒉(𝜌) = ℎ𝜌(𝜌)𝒖𝜌̂ + ℎ𝜑(𝜌)𝒖𝜑̂ + ℎ𝑧(𝜌)𝒖𝑧  ̂       (2.2.6 𝑏) 
 
 

Figure 4: (a) WGM azimuthal propagation inside a microresonator (b) Cylindrical 
coordinate system with mentioned regions [32] 
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The amplitude of both the electric and magnetic fields depends entirely on the 

radial coordinate (r) and not on z, since the cylinder length is assumed to be 

infinite. Translational direction is also assumed to be symmetrical.  The 

anisotropy tensor of the material can be descried as: 

 

𝜀̅ = (

𝜀𝑡    
  𝜀𝑡

        𝜀𝑧
)       (2.2.7) 

 

 

With εt being the anisotropy component transversal to z coordinate and εz being 

parallel to z coordinate.  

According to the above, Maxwell’s equations can be written as: 

 

∇ × (∇ × 𝑬) = 𝜔2𝜇0𝜀0𝜀𝜠̅        (2.2.8 𝛼) 

 

∇ × (𝜀̅−1∇ × 𝜢) = 𝜔2𝜇0𝜀0𝜢        (2.2.8 𝑏) 

 

 

The wave equations describing the axial components are: 

 

 

[𝜌2𝜕𝜌
2 + 𝜌𝜕𝜌 + (𝜌

2𝑘0
2𝜀𝑧 − 𝛽𝜑)]𝜀𝑧(𝜌) = 0       (2.2.9 𝛼) 

 

[𝜌2𝜕𝜌
2 + 𝜌𝜕𝜌 + (𝜌

2𝑘0
2𝜀𝑡 − 𝛽𝜑)]ℎ𝑧(𝜌) = 0       (2.2.9 𝑏) 

 

In the above equations, k0 is denoted as the vacuum wavenumber. The form of 

equations (2.2.9 a) and (2.2.9 b) resembles the one of Bessel’s equation. 

Boundary conditions need to be applied at the interface between the different 

regions. WGM resonant waves propagate azimuthally, leading to their self – 

confinement after each round trip on the resonator’s surface. Therefore, the 

confined wave phase should have a difference of 2π to the previous one, after 

each round trip is completed. The modes supported by a microresonator, can 

be divided into three groups, depending on their polarization: hybrid modes, 

TE modes and TM modes. [20] Hybrid modes propagating entirely azimuthally 
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cannot exist in the case of dielectric isotropic cylindrical resonators.[33] 

Therefore, the electromagnetic field components for each region in cylindrical 

coordinates, for both TE and TM polarization states can be described as: 

 

ΤΜ Modes: 

Region I (ρ<α): 

𝐸𝑧
𝐼 = 𝐴1𝐽𝑚(𝑘0𝑛1𝑧𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐻𝜌
𝐼 =

𝑚

𝜔𝜇0

1

𝜌
𝐴1𝐽𝑚(𝑘0𝑛1𝑧𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐻𝜑
𝐼 =

𝑘0𝑛1𝑧
𝑗𝜔𝜇0

𝐴1𝐽𝑚
′ (𝑘0𝑛1𝑧𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐸𝜌
𝐼 = 𝐸𝜑

𝐼 = 𝛨𝑧
𝐼 = 0 

 

Region II (ρ>α): 

 

𝐸𝑧
𝐼𝐼 = 𝐴2𝐻𝑚

(2)
(𝑘0𝑛2𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡  
 

𝐻𝜌
𝐼𝐼 =

𝑚

𝜔𝜇0

1

𝜌
𝐴2𝐻𝑚

(2)
(𝑘0𝑛2𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

 

𝐻𝜑
𝐼𝐼 =

𝑘0𝑛2
𝑗𝜔𝜇0

𝐴2𝐻𝑚
(2)′
𝑒−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

 

𝐸𝜌
𝐼𝐼 = 𝐸𝜑

𝐼𝐼 = 𝛨𝑧
𝐼𝐼 = 0 

 

 

 

 

 

 

 

 

 

(2.2.10) 

(2.2.11) 
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TE Modes: 

 

Region I (ρ<α): 

 
 

𝐻𝑧
𝐼 = 𝐵1𝐽𝑚(𝑘0𝑛1𝑡𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐸𝜌
𝐼 = −

𝑚

𝜔𝜀0𝜀𝑡

1

𝜌
𝐵1𝐽𝑚(𝑘0𝑛1𝑡𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐸𝜑
𝐼 = −

𝑘0𝑛1𝑡
𝑗𝜔𝜇0

𝐵1𝐽𝑚
′ (𝑘0𝑛1𝑧𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐻𝜌
𝐼 = 𝐻𝜑

𝐼 = 𝐸𝑧
𝐼 = 0 

 

Region II (ρ>α): 

 

 

𝐻𝑧
𝐼𝐼 = 𝐵2𝐻𝑚

(2)
(𝑘0𝑛2𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐸𝜌
𝐼𝐼 = −

𝑚

𝜔𝜀0𝜀2

1

𝜌
𝐵2𝐻𝑚

(2)
(𝑘0𝑛2𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐸𝜑
𝐼𝐼 = −

𝑘0𝑛2
𝑗𝜔𝜀0𝜀2

𝐵1𝐻𝑚
(2)′
(𝑘0𝑛2𝜌)𝑒

−𝑗𝑚𝜑𝑒𝑖𝜔𝑡 

𝐻𝜌
𝐼𝐼 = 𝐻𝜑

𝐼𝐼 = 𝐸𝑧
𝐼𝐼 = 0 

 

 

In the above equations, Jm represents the Bessel function of the first kind, while 

Hm is Hankel function of second kind. Boundary conditions on the interface 

between the different regions (ρ=α) can be written as: 

 

 

 

 

 

(2.2.12) 

(2.2.13) 
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TM Modes: 

 

𝐸𝑧
𝐼(𝜌 = 𝛼) = 𝐸𝑧

𝐼𝐼(𝜌 = 𝛼) 
 

𝐻𝜑
𝐼 (𝜌 = 𝛼) = 𝐻𝜑

𝐼𝐼(𝜌 = 𝛼) 
 

 

 

TE Modes:  

 

𝐻𝑧
𝐼(𝜌 = 𝛼) = 𝐻𝑧

𝐼𝐼(𝜌 = 𝛼) 
 

𝐸𝜑
𝐼 (𝜌 = 𝛼) = 𝐸𝜑

𝐼𝛪(𝜌 = 𝛼) 
 

 

 
The application of the above boundary conditions leads to the generation of 

TM and TE modes characteristic equations respectively [20], [32]: 

 

𝑛1𝑧
𝐽𝑚
′ (𝑘0𝑛1𝑧𝛼)

𝐽𝑚(𝑘0𝑛1𝑧𝛼)
= 𝑛2

𝐻𝑚
(2)′
(𝑘0𝑛2𝛼)

𝐻𝑚
(2)
(𝑘0𝑛2𝛼)

 (𝑇𝑀)      (2.2.15 𝑎) 

1

𝑛𝑡

𝐽𝑚
′ (𝑘0𝑛1𝑧𝛼)

𝐽𝑚(𝑘0𝑛1𝑧𝛼)
=
1

𝑛2

𝐻𝑚
(2)′
(𝑘0𝑛2𝛼)

𝐻𝑚
(2)
(𝑘0𝑛2𝛼)

 (𝑇𝐸)      (2.2.15 𝑏) 

 

 

2.2.3. Tapered optical fiber – resonator coupling 

 

In order to observe high Q factor whispering gallery modes, it is crucial to 

achieve an efficient coupling between the optical fiber taper and the 

microresonator. This section includes a theoretical approach related to energy 

coupling into the examined resonator.  In the system, there is an input electric 

field, denoted as Ei, which is responsible for the coupling between the taper and 

the microresonator. Part of this input field is reflected back (Er), while another 

part exerts the optical fiber taper and does not contribute to the coupling 

process (Et). Parameter η refers to the coupling strength between the taper and 

the resonator under investigation. Its value indicates the overlapping degree 

(2.2.14 a) 

(2.2.14 b) 
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between fiber and microresonator fields. The value of g constant indicates the 

coupling coefficient between two counter – propagating fields (Ecw and Eccw) 

due to in homogeneities on the surface between the fiber and the resonator. 

Meanwhile, Kc describes the coupling rate and is defined as [34]:  

 

 

𝐾𝑐 =
𝜂2

2𝜏
=

𝜔

2𝑄𝑐
        (2.2.16) 

 

The equations describing coupling mode are: 

 

𝐸𝑐𝑐𝑤(𝑡) = 𝑗𝜂𝛦𝑖(𝑡) + √1 − 𝜂
2𝛦𝑐𝑐𝑤(𝑡 − 𝜏)𝑒

−𝑘0𝜏𝑒𝑗𝛿𝜔𝜏

+ 𝑗𝑔𝜏𝛦𝑐𝑤(𝑡)        
 

𝐸𝑐𝑤(𝑡) = 𝑗𝑔𝜏𝛦𝑐𝑐𝑤(𝑡) + √1 − 𝜂
2𝛦𝑐𝑤(𝑡 − 𝜏)𝑒

−𝑘0𝜏𝑒𝑗𝛿𝜔𝜏 

 

𝐸𝑟(𝑡) = 𝑗𝜂𝐸𝑐𝑤(𝑡) 
 

𝐸𝑡(𝑡) = 𝑗𝜂𝐸𝑐𝑐𝑤(𝑡) + √1 − 𝜂
2𝛦𝑖(𝑡) 

 
 

Assuming that the system has low losses, the above set of equations can be 

also written as: 

 

(2.2.17) 

Figure 5: Schematic description of field coupling between an optical fiber taper and a microresonator 
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𝑑𝑐𝑐𝑤
𝑑𝑡

= −(𝑘0 + 𝑘𝑐 − 𝑗𝛿𝜔)𝐸𝑐𝑐𝑤(𝑡) + 𝑗
𝜂

𝜏
𝛦𝑖 + 𝑗𝑔𝛦𝑐𝑤(𝑡) 

 
𝑑𝑐𝑤
𝑑𝑡

= −(𝑘0 + 𝑘𝑐 − 𝑗𝛿𝜔)𝐸𝑐𝑤(𝑡) + 𝑗𝑔𝛦𝑐𝑐𝑤(𝑡) 

 

𝐸𝑟(𝑡) = 𝑗𝜂𝐸𝑐𝑤(𝑡) 
 

𝐸𝑡(𝑡) = 𝑗𝜂𝐸𝑐𝑐𝑤(𝑡) + √1 − 𝜂
2𝛦𝑖(𝑡) 

 

 

 
 

In a stationary system, the transmittance and reflectivity can be defined as: 

 

𝑇(𝜔) = |
𝛦𝑡
𝐸𝑖
|
2

= |√1 − 𝜂2 −
2𝑘𝑐(𝑘0 + 𝑘𝑐 − 𝑗𝛿𝜔)

(𝑘0 + 𝑘𝑐 − 𝑗𝛿𝜔)
2 + 𝑔2

|
2

 

 

𝑅(𝜔) = |
𝛦𝑟
𝐸𝑖
|
2

= |
2𝑘𝑐𝑔

(𝑘0 + 𝑘𝑐 − 𝑗𝛿𝜔)
2 + 𝑔2

|
2

 

 

 

 

 

2.3. Strain – Optical effect in cylinders 

 

The term “strain – optical effect” describes the change in the optical properties 

of a material under the application of mechanical strain. The relative dielectric 

permittivity tensor describes this effect in terms of the induced strain and is 

defined as [35], [36]: 

𝜼𝑖,𝑗(𝜀) = 𝜼𝑖,𝑗
(0)
+ 𝛥𝜼𝑖,𝑗(𝜀) = 𝜼𝑖,𝑗

(0)
+∑𝒑𝑖,𝑗,𝑘,𝑙𝜺𝑘,𝑙

𝑘,𝑙

        (2.3.1) 

 

In the above equation, 𝜼𝑖,𝑗
(0)

 refers to the impermeability tensor of the non – 

disturbed material, while 𝒑𝑖,𝑗,𝑘,𝑙 correspond to the strain – optical coefficients. 

(2.2.18) 

(2.2.19) 
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The strain tensor induces a symmetry (𝜼𝑖,𝑗 = 𝜼𝑗,𝑖) a simpler equation for the 

relative permittivity tensor can be written using the notation of m and n indices 

as: 

𝜼𝑚(𝜀) = 𝜼𝑚
(0)
+ 𝛥𝜼𝑚(𝜀) = 𝜼𝑚

(0)
+∑𝒑𝑚,𝑛𝜺𝑛

𝑘,𝑙

       (2.3.2)   

Strain – optical coefficients are dimensionless quantities, forming a tensor, 

which is written as follows for the case of isotropic materials: 

 

𝒑𝑖,𝑗 =

(

  
 

𝑝11   𝑝12   𝑝12…
𝑝12   𝑝11   𝑝12…
𝑝11   𝑝12   𝑝11…

…  …  …   …      𝑝44
…  …  …  …  …             𝑝44

…  …  …  …  …                        𝑝44)

  
 
        (2.3.3) 

 

With 𝑝44 =
1

2
(𝑝11 − 𝑝12). At this point, it is essential to describe the deformation 

of a cylinder under the strain application along its axial direction. 

 

Figure 6: (a) Cylinder of length L0 under equilibrium (b) Cylinder of length L0 under strain application 

 

Under the application of strain, the cylinder with length L0 and radius r in its 

initial condition, undergoes a deformation due to the strain induced on it. As a 
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result, its initial length increases to a factor ΔL and its radius decreases from 

the initial value a to a value a’, in the way that is depicted in Figure 6. The axial 

deformation, noted as εz, is responsible for material elongation and equals εz 

=ΔL/L0. Except from the elongation, the material also undergoes deformations 

in its two transversal directions. The ratio between these deformations is 

described through Poisson’s ratio: v=-εx/εz=- εy/εz. According to the above, the 

impermeability variation tensor can be described as:  

 

(

 
 
 
 

𝛥𝜂𝑥
𝛥𝜂𝑦
𝛥𝜂𝑧
𝛥𝜂𝑥𝑦
𝛥𝜂𝑦𝑧
𝛥𝜂𝑧𝑦)

 
 
 
 

=

(

  
 

𝑝11   𝑝12   𝑝12…
𝑝12   𝑝11   𝑝12…
𝑝11   𝑝12   𝑝11…

…  …  …   …      𝑝44
…  …  …  …  …             𝑝44

…  …  …  …  …                        𝑝44)

  
 

(

  
 

−𝑣𝜀𝑧
−𝑣𝜀𝑧
𝜀𝑧
0
0
0 )

  
 
        (2.3.4) 

 

 

The refractive index of a material is related with the electric and magnetic 

permittivity (εr and μr respectively) as 𝑛 = √𝜀𝑟𝜇𝑟, with μr=1 at optical 

frequencies. Therefore, the impermeability variation tensor can also be 

described through the strain – induced variation tensor as: 

 

(

𝛥𝜀𝑥
−1

𝛥𝜀𝑦
−1

𝛥𝜀𝑧
−1

) = (

𝑝11   𝑝12   𝑝12
𝑝12   𝑝11   𝑝12
𝑝12   𝑝12   𝑝11

)(

−𝑣𝜀𝑧
−𝑣𝜀𝑧
𝜀𝑧

)        (2.3.5) 

 

 

The above equation can also be obtained in the form:  

 

𝛥𝑛 =
1

(𝑛 + 𝛥𝑛)2
−
1

𝑛2
= (

𝑝11   𝑝12   𝑝12
𝑝12   𝑝11   𝑝12
𝑝12   𝑝12   𝑝11

)(

−𝑣𝜀𝑧
−𝑣𝜀𝑧
𝜀𝑧

)        (2.3.6) 

 

 

Assuming 
𝛥𝑛

𝑛
→ 0 and 

𝛥𝑛

𝑛
= 𝑥, a Taylor series expansion of function 

1

(1+𝑥2)
 around 

x=0, results in: 
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(

𝛥𝑛𝑥
𝛥𝑛𝑦
𝛥𝑛𝑧

) = −
𝑛3

2
(

𝑝11   𝑝12   𝑝12
𝑝12   𝑝11   𝑝12
𝑝12   𝑝12   𝑝11

)(

−𝑣𝜀𝑧
−𝑣𝜀𝑧
𝜀𝑧

)        (2.3.7) 

 
The variations of refractive index can be written in terms of longitudinal (Δnz) 

and transversal (Δnx=Δny=Δnt) directions respectively as: 

 

𝛥𝑛𝑧 = −
𝑛3

2
[𝑝11 − 2𝑣𝑝12]𝜀𝑧        (2.3.8) 

 

𝛥𝑛𝑡 = −
𝑛3

2
[−𝑣𝑝11 + (1 − 𝑣)𝑝12]𝜀𝑧       (2.3.9) 

 
Equations (2.3.8) and (2.3.9) can be rewritten in terms of Pockel’s coefficients 

for TM and TE polarization states respectively as:  

 

𝛥𝑛𝑧
𝑛𝜀𝑧

= −
𝑛2

2
[𝑝11 − 2𝑣𝑝12] = 𝑝𝑇𝑀         (2.3.10) 

 

𝛥𝑛𝑡
𝑛𝜀𝑧

= −
𝑛2

2
[−𝑣𝑝11 + (1 − 𝑣)𝑝12] = 𝑝𝑇𝐸        (2.3.11)         

 
As mentioned earlier, the application of axial strain on a cylindrical resonator 

results in a change of its radius. This change also affects the resonant positions. 

These changes in radius and resonant wavelengths are described by the 

following equations:  

 

𝛥𝛼 = −𝛼𝑣𝜀𝑧 = −𝑎𝑣
𝛥𝐿

𝐿0
        (2.3.12) 

 

𝛥𝜆𝑅
𝜆𝑅

= (
1

𝑎

𝑑𝑎

𝑑𝑆𝑧
+

1

𝑛𝑒𝑓𝑓

𝑑𝑛𝑒𝑓𝑓
𝑑𝑆𝑧

)𝛥𝜀𝑧        (2.3.13) 
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Where, mλR=2πneff. Combining these equations, we can obtain a first – order 

approximation of the resonant wavelength shifts [37]: 

 

[
𝛥𝜆𝑅
𝜆𝑅
]
𝑇𝐸,𝑇𝑀

=
𝛥𝛼

𝛼
+ (1 − 𝐶𝑇𝐸,𝑇𝑀)

𝛥𝑛𝑡,𝑧
𝑛0

        (2.3.14) 

 

With CTE, TM being a coefficient related with the resonant wavelength, the 

microresonator radius and the material’s refractive index. The slopes of 

resonant wavelength shifts as a function of strain for each polarization state, 

STE, TM, can be written as: 

 

𝑆𝑇𝐸,𝑇𝑀 = −𝑣 − (1 − 𝐶𝑇𝐸,𝑇𝑀)𝑝𝑒𝑡,𝑒𝑧       (2.3.15) 
 

The change in refractive index, phenomenon described as birefringence, is then 

calculated as: 

 

𝛥𝑛𝑠𝑡𝑟𝑎𝑖𝑛
𝑛0

=
𝛥𝑛𝑇𝑀
𝑛0

−
𝛥𝑛𝑇𝐸
𝑛0

=
𝛥𝜆𝛵𝛭
𝜆𝛵𝛭

−
𝛥𝜆𝛵𝛦
𝜆𝛵𝛦

        (2.3.16) 

 

According to the above, the strain optical coefficient is defined as: 

 

𝐾′ ≡
𝛥𝑛𝑠𝑡𝑟𝑎𝑖𝑛
𝜀𝑧(1 + 𝑣)

=
𝑛3

2
(𝑝12 − 𝑝11)       (2.3.17) 

 

While stress – optical coefficient related with the material’s Young modulus as: 

 

𝐾 ≡ 𝐾′
1 + 𝑣

2𝐸
       (2.3.18) 
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3. Experimental  
 

3.1. WGM excitation experimental setup 

 
The experimental setup used for whispering gallery mode resonation within a 

polypropylene cylindrical microresonator is depicted in Fig. 7. Light from a CW 

infrared laser source (SLD) is transmitted through a single – mode optical fiber 

(SMF – 28) which is coupled with a 2.2μm diameter optical fiber taper. The 

taper, is used for whispering gallery mode (WGM) excitation within the 

polypropylene cylindrical cavity. After light interacting with the polypropylene 

cavity, is transmitted through the OFT to a polarizing optical fiber resolving into 

TE and TM modes. The signal obtained is guided through the same fiber, using 

an optical spectrum analyzer (OSA) (ANDO AQ6317B®). 

 

 

 

 

Figure 7: Experimental apparatus for polypropylene suture spectral characterization  
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For imaging light coupling between the PP cylindrical microcavity and the 

taper, we used a broadband lamp combined with a CMOS sensor –based 

camera with a 20x magnification objective lens.  

The polypropylene microcavity is fixed on a specialty bronze mount, with fine 

thread Vernier adjustments. On top of this mount, a mechanical actuator 

(Z906® stage) is placed, applying controllable strain on the cylindrical 

resonator. The actuator is designed to perform 0.2 μm steps and is manipulated 

through a DC servo motor (TDC 001 cube). This system is also controlled 

automatically, through Kinesis® software, provided by Thorlabs®. 

Signal is obtained using an optical spectrum analyzer. 

 

3.1.2. Polypropylene no – core waveguide cavity 

Polypropylene (PP) is a linear hydrocarbon polymer, expressed as (C3H6)n. 

Polypropylene is a semi-rigid, cost-effective, and tough thermoplastic linear 

hydrocarbon polymer resin that offers excellent chemical, electrical, and fatigue 

resistance at high temperatures. It is considered a hazard-free plastic and as 

such, it is used for the production of products ranging from plastic furniture 

and machinery to pill containers and syringes. Depending the position of the 

methyl pendant group, PP can form three basic chain structures, atactic, 

isotactic and syndiotactic. Figure 8 below, illustrates these chain structures.  

 

 

 

 

 

 

 

 

 
Figure 8: Polypropylene chain structures 
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In WGM excitation experiments, polypropylene no – core waveguide cavities 

are used of cylindrical diameter, and diameter 150μm. They consist of 

polypropylene in its isotactic form, where all the methyl groups lay on the same 

side of the polymer chain, providing high crystallinity on the material. 

 

3.2. Experimental Apparatus Calibration 

 

3.2.1. Polarizing optical fiber calibration 

 

A polarization maintaining fiber is a part of the experimental setup, in order to 

distinguish TE and TM polarization states, leading to the specific readout of the 

corresponding modes. A polarization maintaining optical fiber is made of a 

birefringent material, for maintaining the polarization state of the incoming 

light during propagation [44]. In our setup, the polarization maintaining optical 

fiber is placed on a rotating mount, indicating the rotation angle values, as 

shown in Figure 9. The fiber allows the propagation of a specific polarization 

state (TE or TM) when placed on the right angle. It is therefore crucial to 

determine the proper fiber angle leading to the excitation of TE or TM modes 

within the microcavity.  

Figure 9: SEM image of the polypropylene microcavity 
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The fiber calibration setup is depicted in Figure 8. Light from a non – polarized 

tunable laser in the IR spectrum range (~1550 nm) is transmitted through a 

single mode fiber (SMF – 28) connected with the light source, and is collimated 

with the aid of two 10x objective lenses into the polarization maintaining fiber. 

A Rochon polarizer is also placed between the two lenses for selecting the 

polarization state. This polarizer, made with MgF2 crystal, is used in order to 

distinguish the ordinary and extra – ordinary rays of the non – polarized 

incoming light when rotated at the right angle. The polarization maintaining 

fiber is then connected with an optical spectrum analyzer to obtain the 

transmitted signal. In order to perform the fiber’s calibration, we rotate its 

mount by 10 degrees each time and obtain intensity measurements as a 

function of the fiber’s angle. The obtained measurements are plotted in Figure 

11, for the two different light rays exerting Rochon (ordinary and extra – 

ordinary ray). 

 

 

 

 

 

 

 

 

 

Laser source  

Figure 10 (a): Laser source – polarizing fiber calibration setup 
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Figure 10 (b): Polarization maintaining fiber calibration setup 

Figure 11: Intensity measurements vs polarizing fiber angle 
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From the measurements obtained, minima and maxima in intensity are 

observed for different angles. Using the above diagram and reference WGM 

spectra in SMF-28 optical fiber, using a former calibrated polarization 

maintaining fiber, we conclude that TE modes appear at 170o while TM modes 

at 260o, having a 90o difference with each other. 

 

 

3.2.2. Strain mount apparatus calibration 

 
The polypropylene microcavities investigated in our experiments, are fixed on 

a bronze mount using small screws, as shown in Figure 12. On top of this mount, 

the mechanical actuator (Z906 stage by Thorlabs®) moves vertically, applying 

strain on the bottom part of the mount. The main issue arising in this setup is 

on how to accurately calculate the strain applied on the polypropylene 

resonator. A calibration of this system is necessary for maintaining high 

experimental accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Resonator mount and mechanical actuator apparatus 
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actuator 

Mount 
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Initially, we obtain strain measurements on an optical fiber Bragg grating 

(FBG) fixed with UV glue between two XYZ micrometric stages, in the way 

shown in Figure 13. 

 

 

 

 

Knowing that the initial FBG’s length is 11.6 mm, we can easily calculate the 

strain applied at each 1 μm micrometric stage displacement, using the form 𝜀 =

𝛥𝐿

𝐿
=

1 𝜇𝑚

11.6×104𝜇𝑚
= 8.6 𝜇𝜀. As we apply strain on the grating, we obtain 

measurements of its transmission signal. From the spectral shifts observed, we 

can determine the FBG’s strain – optical coefficient.  

 

 

FBG UV glue 

XYZ stage 

Figure 13: Experimental apparatus for determination of FBG’s strain – optical coefficient 
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As shown in Figure 15 below, there is a linear response between the longitudinal 

strain applied and the Bragg wavelength of the FBG, The slope corresponds to 

the FBG’s strain – optical coefficient and its value equals 0.92 pm/με, as shown 

in Figure 13 below. 

 

 

 

 

 

1541 1542

-50

-45

-40

-35

T
ra

n
s
m

is
s
io

n
 [
d
B

m
]

λ [nm]

 1 μm

 2 μm

 3 μm

 4 μm

 5 μm

Applied strain 

Figure 14: FBG transmission spectral shift vs applied strain 
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The next step is to remove the grating from the stages and fix it on the metallic 

mount used in our experimental setup, using UV glue. As the actuator moves, 

applying strain on the mount, and therefore the microcavity, we also obtain the 

spectral shifts of the FBG transmission signal. Knowing the strain – optical 

coefficient of the grating, we can accurately calculate the strain applied on the 

mount at each actuator step. A figure of the actuator fork apparatus is depicted 

in Figure 16 (a), as well as the FBG’s transmission spectra obtained for each 

step. 

 

  

 

 

 

 

 

             Figure 16 (a): Actuator mount apparatus 
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Figure 15: Spectral shift vs. applied strain measurements 
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The strains applied the polypropylene microcavities as a function of the 

actuator step, are plotted in the following diagram:  

 

 

 

 

 

 

 

 

 

 Figure 17: Applied strain vs. actuator position 

Figure 16 (b): FBG transmission signal shift for each strain step 
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A linear response of the applied strain as a function of the actuator position is 

observed from Figure 17. The slope related to this linear function corresponds 

to the amount of strain applied on the mount on each actuator step. The value 

of this slope indicates that the strain load is 45.9 με for each micrometer 

displacement step of the actuator. 

 

 

4. Results and discussion 

 

4.1. Simulation results 

 

Light confinement in 150 μm diameter cylindrical polypropylene microcavities, 

is enhanced through multiple total internal reflections (TIRs) along the 

cylindrical surface, leading to the formation of distinct modes, supported within 

the resonator. During modal excitation using OFT a number of radial modes 

are excited leading to complex WGM spectrum that has to be identified and 

correlated with modal types (azimuthal and radial). Also, it is important to 

perform modal allocation for the identification of modes appearing in the 

obtained spectra. In order to examine the overall modal behavior, we perform 

simulations, using the finite element method (FEM) with the aid of COMSOL 

Multiphysics® computational program. 

A careful design of the investigated problem is crucial for WGM 

characterization based on their radial (l) and azimuthal (m) orders. For this 

purpose, we assume a perfectly symmetric cylindrical geometry. A circular cross 

– sectional area made of polypropylene, with 15o μm diameter is selected as the 

resonant medium, which is surrounded by air, as shown in Figure 18. TE and 

TM modes formed within this cavity, correspond to the solutions of Maxwell’s 

equations, combined with the appropriate boundary conditions on the interface 

between the two media, for the electric and magnetic field respectively. Figure 

18 below, represents the investigated resonator, along with WGM formation in 

it. WGM resonances of 1st (l=1), 2nd (l=2) and 3rd (l=3) are shown. 
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Figure 18: Schematic representation of the microresonator and WGM radial order modes 

 

In order to perform modal allocation of the experimental WGM spectra 

obtained, eigenvalue simulations have been carried out. A part of the 2D cavity 

representation, is depicted in Figure 16 (a). In the cavity examined, 

homogeneity along the z – axis is assumed (d/dz=0). At first, we define the 

dimensional parameters related to this problem. Specifically, rcavity = 75 μm and 

rair = 80 μm are the radius values for the polypropylene cavity and surrounding 

air respectively. It should be mentioned that the cavity under study is assumed 

to have no external cladding. The refractive indices of these media are taken to 

be ncavity = 1.4811 and nair = 1. 

Whispering Gallery Modes of first (l=1), second (l=2) and third (l=3) radial 

orders are observed in our experimental data. These eigenvalue problem 

solutions are also depicted in Figure 16 (b)-(d).   
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4.2.    Spectral experimental results 

 
4.2.1. WGMs in SMF – 28 optical fiber resonators 

 
Our research work focuses on the investigation of light localization within 

cylindrical microresonators, and especially those made from polypropylene. In 

order to better understand the way light is confined inside resonators with this 

symmetry, we studied at first, WGM resonance formation within SMF – 28 

optical fibers, as a reference point. SMF – 28 optical fibers are made of silica 

glass, with refractive index of n = 1.445. They are cylindrically symmetric, with 

radius r = 125 μm.  

In our experiments, we obtained WGM spectra, formed within SMF – 28 fibers, 

using the same setup as the one described in Section 3.1, for both TE and TM 

polarization states. In these spectra, the resonances appear as notches, 

resulting from intensity drops for the resonant wavelengths. Using finite 

element method, we performed the modal allocation, with the aid of COMSOL 

Multiphysics® simulation program, similarly described as in the previous 

section, but changing the radius and refractive index to the values mentioned 

in this section. The WGM spectra obtained for TE and TM polarization states 

are presented in Figure 19 below. 
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In Table 4.1, we present a comparison between the resonant wavelengths 

observed experimentally and the ones evaluated from the simulations. 

 

Table 4.1: Experimental vs. simulation data of specific WGMs in SMF – 28 optical fiber 

 Experimental data Simulation data 

 TE Modes TM Modes TE Modes TM Modes 

l = 1 1543.6nm 1543.2nm 1543.0nm 1542.8nm 

l = 1 1547.5nm 1547.9nm 1547.1nm 1547.6nm 

 

The WGM spectra obtained, are related to two important parameters: the free 

spectral range (FSR) and Q factor, also related with the resonator’s geometrical 

characteristics. FSR describes the frequency or wavelength spacing between 

two successive resonance peaks. FSR is related to the resonator radius through 

the following relationship: 
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Figure 19: TE and TM WGMs on SMF – 28 optical fiber resonator  
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𝐹𝑆𝑅 = 
𝜆0
2

2𝜋𝑛𝑟
       (4.1.1) 

Where, λ0 is the resonant wavelength, n is the medium’s refractive index, while 

r is the resonator radius.  

Q factor is a dimensionless quantity, characterizing the resonance sharpness 

and providing a measure of energy storage within an optical system. Q factor 

can be defined as the ratio between the resonant wavelength over the FWHM 

of the resonant peak: 

𝑄 = 
𝜆0

𝐹𝑊𝐻𝑀
        (4.1.2) 

 

Therefore, the quality of the SMF – 28 spectra obtained, is strictly related to the 

above two parameters. Specifically, the FSR calculated from the obtained 

spectra equals to FSR = 4.3 nm, resulting in a fiber diameter of 2r = 123 μm. 

We also estimate the Q factors related to these resonances by fitting a spectral 

peak with a Lorentzian function. SMF – 28 resonant peaks appear to have Q 

factors of ~ 2 × 104. 

 

 

Table 4.2: FSR and diameter calculations on SMF – 28 optical fiber 

 

 

 

  

 

FSR (nm) 

 

Diameter 

(Experimental) 

(μm) 

 

Diameter 

(SMF – 28) 

(μm) 

TE Modes 4.35 122.0 125.0 
TM Modes 4.31 123.0 125.0 
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4.2.2. WGMs in polypropylene microcavities 

The main target of our work is the investigation of polypropylene’s photo – 

elastic properties. For this purpose, in our experiments, we extensively 

investigate WGM formation inside cylindrical polypropylene microcavities. 

Furthermore, we examine the WGM spectral response to an applied strain. The 

modal shift observed while strain is applied on the resonator, correlates the 

optical and mechanical properties of the resonator material. In our work, we 

obtain the spectra mentioned for TE and TM polarization states and observe 

their behavior when the resonator undergoes mechanical deformation. In 

addition, we perform modal allocation as is described in section 4.1 of this 

chapter. Figure 20, depicts the spectral data obtained for (a) TE polarization 

and (b) TM polarization state over a broad wavelength range in the IR part of 

the spectrum, for the polypropylene resonator under study. 

 

 

 

a b 

l=1 

l=2 l=3 
l=1 

l=2 

Figure 20: WGM resonance spectra for TE and TM polarization states indicating the modal orders observed 
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In the spectra shown above, we observe WGM resonances of first (l=1), second 

(l=2) and third (l=3) orders for TE polarization, as indicated in the figure, while 

only resonances of first and second order are observed for TM polarization 

state. Table 4.3 summarizes a comparison between the spectral resonant 

wavelengths formed in polypropylene and the ones estimated from our 

simulations for first (l=1) and second (l=2) radial order WGMs.  

 

 

These spectra provide information about the resonator size and resonance 

quality, through the FSR and Q factor, described in equations (4.1) and (4.2). 

Since we consider WGM resonances to be described by Lorentzian functions, 

after performing a proper fitting on TM450,1 resonance peak the quality factor is 

found to be Q ~ 1.7 × 103, since it is the highest in the cavity examined. The 

Table 4.3: Experimental vs. simulation data of specific WGMs in polypropylene resonator  

 Experimental data Simulation data 

 TE Modes TM Modes TE Modes TM Modes 

l = 1 1550.3nm 1552.9nm 1550.4nm 1552.8nm 

l = 2 1548.3nm 1548.2 1548.8nm 1548.8nm 

c 

TE451,1 

TE450,1 TE449,1 

TE448,1 TM451,1 
TM450,1 TM449,1 TM448,1 

Figure 21: (a) TE WGMs (b) TM WGMs in polypropylene resonator (c) TE and TM WGMs merged in a 
single graph 
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resonant quality factor is approximately 10 times less in polypropylene than in 

SMF – 28 resonances. The free spectral range (FSR) is measured to be 3.60 nm 

in the TE modal spectrum and 3.50 nm in the TM modal spectrum. Free 

spectral range calculations for the polypropylene microresonator are gathered 

in Table 4.4. 

 

 

 

 

4.2.3. Polypropylene strain test results 

The polypropylene microcavity is considered to be perfectly cylindrical (
𝜕

𝜕𝑧
= 0). 

In COMSOL resonant simulations, it is estimated to be a circular 2D structure, 

as described in Section 4.1. The resonator undergoes mechanical deformation, 

as it is subjected to controllable strain along the z – axis. As polypropylene is 

elongated, changes in the arrangement and structure of its polymer chains are 

observed, influencing its optical refractivity and thus, refractive index and 

birefringence. These optically driven changes are also reflected in WGM 

resonance spectra. 

As strain is applied on the resonator, a shift of WGM resonance peaks is 

observed. Figure 18, presents the transmission spectral shift of (a) TE450,1  and 

(b) TM450,1 resonances respectively. We observe that the resonant wavelength 

shift is oriented to the blue side of the spectrum. The calibration of the fork 

apparatus described in section 3.2.1, indicates that for each actuator step, the 

  

 

FSR (nm) 

 

Diameter 

(Experimental) 

(μm) 

 

Nominal 

diameter 

(Polypropylene 

resonator) 

(μm) 

TE Modes 3.60 143.4 150.0 
TM Modes 3.50 147.5 150.0 

Table 4.4: FSR calculations in polypropylene microcavity 
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applied strain is 45.9 με. In this case, the actuator is adjusted to perform a 

displacement of 10 μm at each step, applying 459 με strain on the mount. At 

each step, an averaged wavelength shift 0.5 nm is observed. 

 

 

 

 

 

 

 

 

Figure 22 illustrates the spectral shifts observed for TE and TM whispering 

gallery modes of the polypropylene resonator. The strain applied on the 

resonator causes a reduction of its radius, resulting in changes of the material’s 

refractive index. This strain – induced birefringence is correlated to the 

wavelength shifts observed, through equation (2.3.16) presented in Chapter 2, 

written here again as: 

 

𝛥𝑛𝑠𝑡𝑟𝑎𝑖𝑛
𝑛0

=
𝛥𝑛𝑇𝑀
𝑛0

−
𝛥𝑛𝑇𝐸
𝑛0

=
𝛥𝜆𝛵𝛭
𝜆𝛵𝛭

−
𝛥𝜆𝛵𝛦
𝜆𝛵𝛦

        (4.2.1) 

 

The strain – induced birefringence increases linearly as a function of the 

applied strain. This linear behavior comes in agreement with previous studies 

in other cylindrical microresonators. Birefringence measurements vs axial 

applied strain are presented in Figure 23 below. 

0 με 

459 με 

918 με 

1377 με 

Applied strain Applied strain 

TE450,1 TM450,1 

Figure 22: Transmission spectral shift of (a) TE450,1 and (b) TM450,1 resonance peaks under applied strain 

a b 



 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WGM spectral shifts indicate a linear behavior as a function of the applied 

strain, indicating no material detachment. Also, after relaxing the strains to the 

Figure 23: WGM spectral shift data vs applied strain for TE and TM polarization states 

Figure 24: Strain – induced birefringence as a function of the applied strain 
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initial state minor hysteresis (~0.3nm for TE and ~ 0.2nm for TM), indicating 

slowly elastic and minor plastic rearrangements into the polypropylene matrix. 

The slopes of wavelength shifts, however are not the same for TE and TM 

polarizations, although they fall in the same order of magnitude. Specifically, 

TE mode relative shift has a slope equal to -0.075, while the corresponding 

slope for TM mode resonances is -0.063, with a ~ 16% percentage difference 

between them. This difference probably indicate a degree of orientation of the 

polymer olefin chains, causing birefringence as the material undergoes 

elongation. 

The wavelength slopes of Figure 19 are correlated with polypropylene’s Pockel’s 

coefficients p11 and p12 described in the strain – optical sensor of equation 

(2.3.3). Equations (2.3.8) and (2.3.9) form a 2 x 2 linear system, used for 

evaluating the coefficients mentioned. Equation (2.3.15) relates the observed 

slopes for each polarization, with a correction factor CTE, TM, which is a small 

correction constant accounting for the intrinsic polarization sensitivity of TE 

and TM modes. The value of this constant is determined experimentally from 

measurements of the radius shrinkage (obtained by FSR values), and from the 

experimental values of the slopes mentioned. From our experimental results, 

we have to take into account a 0.01 correction factor. The photo – elastic 

properties of isotactic polypropylene, related with strain - and stress – optical 

coefficients, described in equations (2.3.17) and (2.3.18) respectively, are 

summarized in Table 4.5 below. 

 

Table 4.5: Experimentally obtained photo – elastic properties of polypropylene microcavities 

Photoelastic 

coefficients 

Strain – optical 

coefficient (K’) 

  

 

Stress – optical 

coefficient (K) 

p11 p12 

0.321758 0.313975 1.26 × 10-2 6.88 Br 

 

In order to calculate the parameters mentioned in Table 4.5, we considered the 

Young’s modulus of isotactic polypropylene to be 1.3 GPa and the Poisson’s 
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ratio to equal 0.42. Similar experiments have been carried out for the 

investigation of the photo – elastic properties in other polymers. For instance, 

in PMMA, the Pockels coefficients are: p11 = 0.298 and p12 = 0.294. PMMA is a 

well – known optical material. Therefore, a similarity in strain – optical 

coefficient behavior of the two polymers is observed. Of course, more 

experiments for the estimation of polypropylene’s photo – elastic properties 

should be carried out for obtaining accurate results.   
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5. Conclusions 

The purpose of our work was the investigation of the photo – elasticity of 

polypropylene polymer by employing whispering gallery mode resonation in 

cylindrical microcavities. Such a type of investigation is expected to be 

significant for the field of polymer science and soft photonic components, also 

for developing new types of optical sensors while exploiting the interesting 

chemical and mechanical properties of polypropylene.  

In the studies performed in this thesis, isotactic polypropylene microcavities of 

approximate diameter of 150μm, were characterized by means of their 

whispering gallery mode light localization properties at the 1550nm band, while 

using optical fiber taper light excitation. Resulting Q – factors for those cavities 

obtained were ~ 1.7 × 103, together with FSR of ~ 147.5μm for the first order l = 

1 radial modes. Additional investigations, included the theoretical simulation 

of those polypropylene microcavities using COMSOL for identifying modal 

order and confinement for the WGMs measured in these experiments.   

Subsequently, these polypropylene WGM cavities were longitudinally strained 

using a motorized control unit and a specialty clamping fork, while obtaining 

spectra for TE and TM polarization, for different azimuthal modal states. The 

strain application resulted in blue shift of the corresponding WGMs of the same 

order, showing differential behavior for TE and TM polarization, manifesting 

strain induced birefringence of the order of 10-3 for typical strain of 5000 με. 

From the above optical characterization measurements a strain optical 

coefficient of 1.26 × 10-2 was estimated for polypropylene, and Pockel’s 

coefficients p11 = 0.3218 and p12 = 0.3140. Accounting the Young’s modulus and 

Poisson’s ratio of polypropylene, the stress – optical coefficient was estimated 

to be 6.88 Br. 

We believe that the investigations carried out in this thesis will be a first step 

for implementation of polypropylene fibers and slabs in optical sensing 

applications, especially those subjected in continuous mechanical stimulations 

such those of wearables. 
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