
Computer Science Department

University of Crete

Tagged Procedure Calls (TPC): Efficient runtime support

for task-based parallelism on the Cell Processor

Master’s Thesis

George Tzenakis

October 2009

Heraklion, Greece

University of Crete

Computer Science Department

Tagged Procedure Calls (TPC): Efficient runtime support for

task-based parallelism on the Cell Processor

Thesis submitted by

George Tzenakis

in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author:

George Tzenakis

Committee approvals:

Angelos Bilas

Associate Professor, Thesis Supervisor

Dimitrios Nikolopoulos

Associate Professor

Evangelos Markatos

Professor

Departmental approval:

Panos Trahanias

Professor, Director of Graduate Studies

Heraklion, October 2009

Abstract

Increasing the number of cores in modern CPUs is emerging as the main ap-

proach for improving system performance. A central challenge in this area is

the runtime support that multi-core systems ought to use for sustaining high

performance and scalability without, however, increasing disproportionally

the effort required by the programmer. In this work we present Tagged Pro-

cedure Calls (TPC), a runtime system for supporting task-based program-

ming models on architectures that require explicit data access specification

by the programmer, such as the Cell processor. We present the design and

implementation of TPC for the Cell and we examine how the runtime system

can support task management functions with on-chip communication only,

without requiring accesses to off-chip memory. Through minimizing off-

chip transactions in the runtime, we achieve sub-microsecond task initiation

latency —which represents an order of magnitude of improvement over ex-

isting task-parallel programming frameworks on the Cell– and minimum null

task initiation/completion latency of 385 ns. We evaluate TPC with several

kernels and applications, demonstrating that TPC achieves scalable on-chip

execution of codes previously parallelized and optimized for shared-memory

multiprocessors, can exploit additional fine-grain parallelism in codes previ-

ously parallelized at coarse levels of granularity, and performs competitively

to existing task-based parallel programming frameworks that statically op-

timize data layout and task placement.

i

Supervisor professor: Angelos Bilas

Per�lhyh
H aÔxhsh tou arijmoÔ twn pur nwn stou
 sÔgqronou
 epexergastè
 èqeianadeiqje� ta teleuta�a qrìnia w
 h kÔria mèjodo
 aÔxhsh
 th
 ep�dosh
 twnupologistik¸n susthm�twn. H megalÔterh prìklhsh ston tomèa twn po-luepexergast¸n e�nai to ti upost rixh qrei�zetai apì to perib�llon ektèle-sh
 ètsi ¸ste to sÔsthma na diathre� uyhlì ep�pedo epidìsewn kai klima-kwsimìthta qwr�
 wstìso na aux�netai dusan�loga h prosp�jeia pou apai-te�tai apì ton programmatist . Se aut n thn ergas�a parousi�zoume to
Tagged Procedure Calls (TPC), èna perib�llon ektèlesh
 gia upost rixhprogrammatistik¸n montèlwn pou bas�zontai se ergas�e
 kai apaitoÔn rht pe-rigraf tou trìpou prìsbash
 sta dedomèna, ìpw
 o epexergast
 Cell BE.Parousi�zoume ton sqediasmì kai thn ulopo�hsh tou (TPC) ston Cell kaiexet�zoume pw
 to perib�llon ektèlesh
 mpore� na uposthr�xei thn diaqe�rishtwn ergasi¸n qwr�
 na k�nei anaforè
 sthn exwterik mn mh kai na paramèneip�nta entì
 tou �diou chip. Me thn elaqistopo�hsh twn dosolhyi¸n me thnexwterik mn mh sto perib�llon ektèlesh
, katafèrnoume na èqoume kaju-stèrhsh ènarxh
 ergas�a
 mikrìterh apì èna microsecond �to opo�o e�nai m�at�xh megèjou
 ligìtero se sqèsh me up�rqouse
 ergas�e
 gia programmatisti-k� montèla pou bas�zontai se ergas�e
 gia ton Cell� kai el�qisth kajustèrh-sh gia thn arqikopo�hsh kai olokl rwsh mia
 ergas�a
 385 ns. AxiologoÔmeto TPC qrhsimopoi¸nta
 di�forou
 upologistikoÔ
 pur ne
 kai efarmogè
,epideiknÔonta
 ìti to TPC epitugq�nei klimakwt ektèlesh programm�twnpou e�qan dh g�nei par�llhla gia poluepexergastè
 diamoirazìmenh
 mn mh
,

iii

mpore� na axiopoi sei parallhlismì me pio analutikè
 ergas�e
 gia progr�m-mata pou e�qan ftiaqte� gia ligìtero analutikè
 ergas�e
, kai ìti apod�deiantagwnistik� se sqèsh me �lla programmatistik� montèla pou bas�zontaise ergas�e
 pou beltistopoioÔn statik� thn topojèthsh twn dedomènwn kaitwn ergasi¸n.
Epìpth
 kajhght
: 'Aggelo
 Mp�la

iv

Acknowledgments

I feel grateful to my supervisor, Angelos Bilas, for his valuable assistance

and guideline in my academic steps in the field of Computer Science. The

extensive discussions about my work and his wide knowledge have been of

a great value for me.

A big thanks to Dimitris Nikolopoulos for his support and help to a

major part of my work. Moreover, I would like to thank my friend and

colleague, Konstantinos Kapelonis, for his help, especially in the beginning

of my thesis.

My warmest appreciation to the following, past and current, members of

the CARV Laboratory of the ICS/FORTH, whom I feel to be friends more

than just colleagues: Mihalis Alvanos, Konstantinos Koukos, Giannis Ke-

sapides, Giannis Klonatos, Kostas Chasapis, Markos Fountoulakis, Giorgos

Nikiforos, Dimitris Tsaliagkos and Vangelis Mangas.

I would like also to thank my friends : Manolis Stiligkas, Manolis Zid-

ianakis, Sokratis Kartakis, Efthimis Kartsonakis, Giorgos Iakovidis, Kwn-

stantinos Kapakiotis, Panayiota Ignatiou, Leyteris Sardis, Manolis Stratakis,

Giorgos Kartakis and Giannis Papadakis. Their encouragement and discus-

sions have been a great value of me.

Last but not least, I would like to thank my family, my parents Lefteris

and Poppy and my sister Niki for their support and encouragement they

provided me with.

George Tzenakis

Heraklion, October 2009

v

Contents

1 Introduction 1

1.1 Thesis Contributions . 2

1.2 Thesis Organization . 4

2 Design 5

2.1 TPC Semantics . 5

2.2 Cell architecture . 7

2.3 TPC Design and Implementation 8

2.3.1 Task initiation . 10

2.3.2 Task pre-fetching and execution 11

2.3.3 Task completion . 12

3 Experimental Platform and Methodology 15

4 Experimental Results 19

4.1 Basic task overheads . 19

4.2 Impact of Queue Size . 21

4.3 Application Scaling . 23

4.4 Comparison to Sequoia . 28

4.5 Runs on QS20 BladeCenter 29

5 Related Work 33

vii

6 Discussion and Future Work 37

7 Conclusions 39

viii

List of Figures

2.1 TPC API (a) and code example for LU (b). 6

2.2 Cell processor architecture. 7

2.3 TPC runtime operations for task issue and completion (a),

and task descriptor (b). 13

4.1 (a) Null task latency for the different initiation and comple-

tion mechanisms. (b) Null task round-trip breakdown for

MMIO initiation and atomic DMA command. 20

4.2 Impact of queue size on null-task latency for different argu-

ment sizes. 22

4.3 Impact of queue size on null-task throughput for different

argument sizes. 23

4.4 LU and FFT execution times. LU uses 4K×4K matrix, with

block sizes 64× 64 and 16× 16. FFT computes 4M and 64K

complex elements respectively. 25

4.5 TPC execution time breakdowns for x264, 2D convolution

and PBPI. 27

4.6 PPE and SPE execution time breakdowns for 24M element

vectors for SAXPY and SGEMV with 32M element matrix. . 29

4.7 LU and FFT execution times. LU uses 4K×4K matrix, with

block sizes 64× 64 and 16× 16. FFT computes 4M and 64K

complex elements respectively. Runs on BladeCenter 30

ix

4.8 PPE and SPE execution time breakdowns for 24M element

vectors for SAXPY. Runs on BladeCenter 31

4.9 TPC execution time breakdowns for x264 on riverbed and

blue sky streams. Runs on BladeCenter. 32

x

List of Tables

2.1 Cell processor transfer mechanisms 8

4.1 LU execution statistics. 24

4.2 FFT execution statistics. 24

4.3 FFT execution time break down and speedup over 6 SPEs for

4M complex reals. Speedup is measured for overall execution

time, for computation time alone and for transpose time alone. 26

xi

Chapter 1

Introduction

Current technology trends indicate that future high-performance, general-

purpose and embedded, systems will be built out of heterogeneous chip

multi-processors (CMPs) with large numbers of cores and tightly-coupled

interconnects. However, scalable CMPs will require a large degree of paral-

lelism in applications as well as dealing with heterogeneity, without signifi-

cantly increasing programming effort.

For this reason, the role of the programming model is significant for fu-

ture CMPs. The two main, explicitly parallel, programming models used

today are shared memory and message passing. Shared memory requires

programs to specify synchronization information for memory accesses. Mes-

sage passing on the other hand requires programs to deal with data place-

ment and communication buffer management. In both cases, application

and system designers have been tantalized by the effort required to program

and debug such systems for over two decades. The main issue appears to be

drawing a different balance between the mechanisms that are available in the

underlying system and the abstraction that is exposed to the applications.

We believe that task-based programming models have the potential to

achieve this balance. At a high level, explicitly parallel, task-based program-

ming models have two advantages: On one hand they force the programmer

1

2 CHAPTER 1. INTRODUCTION

to consider code complexity and data transfers at design time without wor-

rying about the underlying mechanisms for communication and synchroniza-

tion. On the other hand they provide the underlying system (runtime and

architecture) with extensive information for efficient execution and runtime

optimization. Thus, tasks as an abstraction, present the potential for both

achieving efficient execution and reducing programmer effort.

Although task-based programming models have been proposed in the

past, modern CMPs present new opportunities. Previous efforts with task-

based programming models had to deal with coarse-grained tasks due to

task management overhead. Task management operations, such as initia-

tion, completion, queuing, and scheduling, in traditional parallel systems

cost in the order of tens of thousands of cycles, relative to the clock cycle

time of modern processors, due to communication and memory manage-

ment overheads [14]. In turn, coarse-grained tasks make it hard for the

programmer to identify and delineate tasks and, even more so, task and

data dependencies. In contrast, fine-grained tasks are easier to identify in

sequential codes by inspection as they require analyzing and resolving fewer

data and control dependencies. Modern CMPs have the potential of signif-

icantly reducing the required task size and achieve efficient execution while

reducing the associated effort to identify parallelism.

1.1 Thesis Contributions

In this thesis we introduce a runtime system for the Cell processor [8], TPC ,

that aims at supporting task-based programming models. The notion of a

task is general and can be interpreted in various ways. In our work we

consider a task to be a piece of code that can execute in parallel as well as

the data that will be accessed by the code. Despite their advantages, fine-

grained tasks impose significant challenges for the runtime system. They

require efficient basic mechanisms for task management, e.g. task initiation

1.1. THESIS CONTRIBUTIONS 3

and completion that now become common-path operations. In this work we

focus on better understanding and minimizing the basic overheads associated

with task management.

We first examine the overhead associated with task management oper-

ations on a real system. We focus on task initiation, task completion, task

queuing, and task data transfer. Our implementation of TPC achieves null

task initiation latency from 180 to 380 cycles on the 3.2 GHz Cell processor,

depending on the argument list size. This represents a significant improve-

ment over task initiation latencies reported in earlier work on task-level

parallel execution systems on the Cell [14]. The null task round-trip over-

head in TPC is about 385 ns, when the ideal DMA round-trip latency of

the Cell is reported to just under 312 ns [2].

Then we examine the performance of TPC using both kernels and real

applications. We port two applications from the SPLASH-2 [18] suite (FFT

and LU) and demonstrate that porting applications written and optimized

for shared-memory multiprocessors to TPC requires simple and mechani-

cal code changes, while TPC achieves nearly perfect scaling of these codes

on the Cell cores. We further port two applications written previously to

exploit coarse-grain parallelism on multi-processors and clusters, PBPI [7]

and an H.264 video encoder [17]. We demonstrate that TPC enables the

exploitation of further fine-grain on-chip parallelism in these applications,

with manageable programming effort. Lastly, we port and evaluate several

benchmarks distributed with the Sequoia programming language [6]. This

effort demonstrates that TPC performs competitively to existing task-based

parallel programming models for the Cell that perform static data layout

and placement optimizations.

4 CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the design

and implementation of TPC and its runtime system on the Cell processor.

Chapter 3 presents the hardware and software environment we used for

our performance evaluation. Chapter 4 presents our experimental results.

In Chapter 5 we discuss the advantages of TPC over previous efforts and

related work. Finally, we draw our conclusions in Chapter 7.

Chapter 2

Design

2.1 TPC Semantics

TPC uses program annotations to identify certain procedure calls as concur-

rent tasks. Annotations currently occur at the procedure level. Annotated

procedures execute in the same or another core, as asynchronous tasks, with

the current core continuing execution. Procedure arguments can be in, out,

or inout. The issuing task can wait for tasks using point-to-point or barrier

synchronization. When issuing an asynchronous task, the runtime returns

a handle that can be used later on for managing the specific instance of the

issued task, while the issuing task continues with program execution. When

a task completes, it notifies the issuer for its completion. TPC functions

have no return values and all arguments are passed by reference. Task argu-

ments and their sizes are determined at runtime before task initiation. TPC

supports continuous and fixed stride arguments. We expect that interfaces

and constructs for specifying memory layout for task arguments will play an

important role on programmer effort.

Figure 2.1(a) shows the basic TPC API and a simple usage example.

Figure 2.1(b) shows code example for the LU kernel.

5

6 CHAPTER 2. DESIGN

tpc_handle_t tpc_call(

task_id, total_args,

[arg1,size,IN/OUT/INOUT],

...);

tpc_wait(tpc_handle_t hdl);

tpc_wait_all();

mytask1(int *x);

mytask2(int *x, int *y);

mytask3(int *x, int *y, int *z);

int main(void){

int i, x[N], y[N], z[N];

for(i=0; i<N; i+=B) {

tpc_call(mytask1, 1,

x+i,B,INOUT);

}

tpc_wait_all();

for(i=0; i<N; i+=B) {

tpc_call(mytask2, 2,

x+i,B,INOUT,

y+i,N,IN);

}

tpc_wait_all();

for(i=0; i<N; i+=B) {

tpc_call(mytask3, 3,

x+i, B, OUT,

y+i, B, INOUT,

z+i, B, IN);

}

tpc_wait_all();

}

(a)

bdiv(A, D);

bmodd(A, D);

bmod(A, B, C);

int main(void){

for all diagonal blocks D {

factor_diagonal_block(D);

for all column blocks C {

tpc_call(bdiv, 2,

C, block_size, INOUT,

D, block_size, IN);

}

for all row blocks R {

tpc_call(bmodd, 2,

R, block_size, INOUT,

D, block_size, IN);

}

tpc_wait_all();

for all interior blocks IB {

tpc_call(bmod, 3,

IB, blocks_size, INOUT,

C, blocks_size, IN,

R, blocks_size, IN,);

}

tpc_wait_all();

}

}

(b)

Figure 2.1: TPC API (a) and code example for LU (b).

2.2. CELL ARCHITECTURE 7

Figure 2.2: Cell processor architecture.

2.2 Cell architecture

Figure 2.2 shows the architecture of Cell. The Cell processor [8] contains

a general purpose PowerPC Processing Element (PPE) and eight special

purpose Synergistic Processing Elements (SPEs) with their own instruction

set. Each SPE has 256 KBytes of local (on-chip) memory without any other

cache between this memory and the SPE core. There is also a global, off-

chip memory. The PPE has a coherent memory hierarchy with two levels

of cache prior to the single global external memory. Table 2.1 summarizes

the different access mechanisms that exist between the various stores and

processing elements. DMAs in the Cell are capable of scatter/gather func-

tions and can have multiple (16 per SPE) outstanding transfers. Moreover,

8 CHAPTER 2. DESIGN

PPE SPE(i) SPE(j)

SPEI(i) local store remote load/store, DMA load/store DMA

SPE(j) local store remote load/store, DMA DMA load/store

Global Memory cached load/store DMA DMA

Table 2.1: Cell processor transfer mechanisms

PPE can access the local stores of SPEs with remote load/stores as local

stores are mapped to main memory address space. Finally, the PPE and

SPEs can also communicate with messages via small mailboxes with and

without interrupts. These options create a wealth of trade-offs that need to

be understood before the runtime system is able to take advantage of them.

Finally, all communication in the Cell processor happens over an on-chip

element interconnect bus (EIB) that consists of four parallel, bi-directional

rings.

2.3 TPC Design and Implementation

The TPC runtime library consists of two parts, the initiator and the target.

Although any core can play the role of the initiator or target, currently,

and due to the Cell architecture, in our implementation we only support

task initiation from the PPE. Similarly, only SPEs can execute tasks as

targets. Each task consists of a descriptor. Task descriptors are prepared

by the initiator and are placed in task queues for execution. There is one

task queue per target, located in its local store. Figure 2.3(b) shows the

structure of a task descriptor. The task descriptor contains the function id

and the list of arguments (16 bytes per argument). For every argument, the

descriptor specifies the argument’s address in main memory, the argument

size, a flag indicating if it is in, out or inout, and for stride arguments the

stride between the elements.

2.3. TPC DESIGN AND IMPLEMENTATION 9

TPC uses a private task queue for each SPE. The task queue itself is an

array of task descriptors. Since our goal is to eliminate off-chip operations,

we place each task queue in the local store of the corresponding SPE. In

addition to the task queue, the runtime maintains a completion queue for

each SPE in main memory. The PPE polls each completion queue for task

status notifications from the SPEs. When a completion is received the task

entry in the corresponding task queue is released. Since tasks run to com-

pletion in each SPE, tasks complete in order. The task completion status

consists of a flag and a task id. The size of the completion status structure

is padded to 128 bytes for optimal DMA performance, as discussed next.

An important architectural aspect for implementing a task-based run-

time is the available mechanisms for communication among different memo-

ries and cores. DMAs in the Cell are capable of scatter/gather functions and

can have multiple (16 per SPE) outstanding transfers. The PPE and SPEs

can also communicate very short messages via small, word-size mailboxes,

with and without interrupts.

Although DMA performance on the Cell has been thoroughly analysed

in previous work [2], low-latency control transfer mechanisms have not been

fully explored. In this work we examine PPE to SPE round-trip latency

with various mechanisms. We use the PPE as initiator, so the available

options are: mailbox messages, remote stores to SPE’s local store (MMIO),

and PPE-initiated DMAs (DMA).

SPEs can communicate with the PPE via mailbox messages, DMA, or a

variant of DMA using the Atomic Cache Unit (ACU). The ACU is intended

for implementing atomic synchronization primitives in the global address

space, among SPEs and the PPE. Every SPE has a small cache memory

with four 128-Byte cache-lines which is used by ACU commands. Using

special commands the SPE can initiate a DMA from this cache memory to

the global address space. A simple, non-atomic DMA transfer writes results

10 CHAPTER 2. DESIGN

to main memory and invalidates the PPE’s cache requiring off-chip accesses.

Instead, an ACU-based DMA transfer remains in the SPE’s cache and when

PPE touches the cache line PPE’s cache is updated, eliminating off-chip op-

erations (PPE cache misses). This mechanism supports reserve-line (load-

locked), conditional-store, and unconditional-store operations. Task comple-

tions require only the “putqlluc” command that updates atomically and un-

conditionally the main memory location with the SPE’s data via an atomic

DMA transfer.

2.3.1 Task initiation

Mailboxes and PPE-initiated DMAs are not appropriate mechanisms for

initiating tasks. First, sending mailbox messages incurs in the PPE the same

cost as remote stores because the SPE mailbox register is memory mapped

to the PPE in the same way as the SPE local memory. In addition, to safely

use the mailbox register a remote load is required first to check the status

of the mailbox register and to ensure that previous mailbox messages have

been consumed by the SPE. This introduces a network round-trip latency

when posting the mailbox message. Using PPE-initiated DMA requires five

remote store operations to special SPE registers that are mapped to the

PPE. Then, the DMA controller of the SPE performs the actual DMA from

external memory to the local SPE memory.

Thus, after preparing a task descriptor in (cached) memory, the only two

realistic options for the PPE to initiate a task are: (a) issuing remote stores

to post the descriptor to the SPE task queue or (b) issuing fewer stores to

indicate the existence of a new task descriptor, which then the SPE can pull

using DMA. Note that the first approach results in on-chip traffic only but

requires a number of MMIO stores from the PPE for each task. The second

approach reduces the number of stores required at the PPE but introduces

a DMA transfer in the SPE. This DMA transfer will involve only on-chip

traffic, assuming the task descriptor is not evicted from the PPE cache.

2.3. TPC DESIGN AND IMPLEMENTATION 11

In both cases the SPE can simply poll to local memory and there is no

requirement for round-trip communication when posting a new task. In all

cases, PPE stores to SPEs are cache inhibited and complete in program

order. The PPE can use vector store instructions to reduce the number of

stores required for a single task descriptor. Furthermore, PPE incorporates

a six-slot store combining buffer, further reducing network latencies. The

final store instruction sets the active flag of the task descriptor in the task

queue to notify the SPE of a new task arrival. In our evaluation we examine

both options for task initiation.

2.3.2 Task pre-fetching and execution

Once a new task has been posted to the SPE task queue, the SPE extracts

the task descriptor, fetches in arguments, executes the designated function,

and writes back out arguments. The main challenge in executing these steps

is to maximize overlapping of argument and result transfers with task exe-

cution. To achieve this, TPC pipelines the different stages of task execution

and uses pre-fetching to overlap argument transfers and task execution.

Each task can be in one of the states ACTIVE, FETCH, READY,

WRITEBACK, COMPLETE. Before executing a task that is ready, the

SPE prepares and issues the DMA commands for as many active tasks as

possible from its task queue, depending on the available local store, and

places these tasks in the fetch state. Then, it turns to executing the first

task in the queue whose arguments are available. When a task is done ex-

ecuting, the SPE will initiate the write-back of out arguments and place

the task in the write-back state. During write-back, SPE tries again to pre-

fetch data for the next active tasks in the queue. After the completion of

the write-back, the next task starts execution as soon as its in data arrives.

12 CHAPTER 2. DESIGN

2.3.3 Task completion

When a task completes, the SPE sends its completion status to the SPE

completion queue that is placed in main memory. The transfer of the com-

pletion status is ordered with respect to the write-back of the task’s results.

The PPE polls these queues for completed tasks from each SPE. A task

completion signifies to the PPE that an entry in the corresponding task

queue is now free and that it can issue a new task. Thus, the PPE polls

the completion queue (a) when there is no more space in any task queue

and (b) when the application waits on task completion for synchronization

purposes. We indicate the first type of wait as queue stall time and the

second as synchronization wait time.

The two issues with the implementation of the completion queue are: (a)

what is the impact of polling on the PPE side and (b) what is the overhead

of signaling completion from the SPE. The SPE can signal completion via

a mailbox register or DMA transfer (with or without the ACU). Although

the writing of the mailbox register incurs very low overhead in the SPE,

it requires the PPE to poll the status of the register via loads that incur

a round-trip overhead. Thus, it is preferable for the SPE to use a DMA

transfer to a memory location. Then the PPE can poll using cached loads. In

this case, to avoid the cache invalidation and the resulting off-chip transfer,

we use the ACU, which allows the PPE cache to be updated by the SPE

DMA. Finally, the SPE DMA performs best with addresses aligned at 128-

bytes (cache line size), so each completion queue entry is padded and aligned

to cache line boundaries.

Overall, task management operations in TPC require only on-chip trans-

fers. Task and completion queues allow overlapping of task management

overheads. Moreover, different task states allow overlapping of DMA and

code execution.

Figure 2.3(a) shows an example of TPC execution. Initially, all task

2.3. TPC DESIGN AND IMPLEMENTATION 13

F A I I II W E
Task Queue

W
Completion Queue
C W W W C C C

Task 1
Data (W)

Task 3
Data (F)

Task 2
Data

Task 2

Task 3

Data

Data (F)

Task 1
Data (W)

L2 cache Local Store

PPE SPE

atomic DMA

MMIO

Main Memory

DMA out DMA in

(a)

flags

sizeaddress

Argument descriptor

stride

flags

sizeaddress

Argument descriptor

stride

flags

sizeaddress

Argument descriptor

stride

flags

sizeaddress

Argument descriptor

stride

fundtion id
total_aguments

Task Header

. . .

Task

Descriptor

(b)

Figure 2.3: TPC runtime operations for task issue and completion (a),

and task descriptor (b).

queue entries are in invalid (I) state and all completion queue entries are

in completed state. PPE initiates a task by posting the task descriptor via

remote stores which, sets the task queue entry to active (A) state and setting

the corresponding entry of the completion queue to waiting (W) state. SPE

polls task queue for active tasks and PPE polls completion queue until tasks

are set back to completed state. Moreover, only one task can be in execute

(E) state in the SPE, while there can be many tasks in fetch (F) or write-back

(W) states.

Next, we discuss our evaluation methodology and the applications we

use.

14 CHAPTER 2. DESIGN

Chapter 3

Experimental Platform and

Methodology

In our experiments we use a Playstation3 game console system, equipped

with a 3.2 GHz Cell processor and 256 MBytes of main memory. On the

PlayStation3, software is allowed access to only six of the SPEs. There is

also 256 GBytes of global, off-chip memory.

In our evaluation we use both application kernels as well as full appli-

cations. The applications we use are: FFT and LU from SPLASH-2 [18],

PBPI [7], and an H.264 Encoder [1]. We implemented LU and FFT with

both single and double precision floating point arithmetic, rather than the

initial double precision version only, because the SPEs exhibit significantly

higher performance with single precision floating point operations, resulting

in higher communication to computation ratios and a more realistic evalu-

ation.

Kernels: We ported SAXPY, SGEMV, and CONV2D directly from their

original implementation in Sequoia [6] to TPC , with no structural or al-

gorithmic modifications in the kernel code. SAXPY and SGEMV kernels

have a very low computation to communication ratio and are communica-

15

16CHAPTER 3. EXPERIMENTAL PLATFORM AND METHODOLOGY

tion bound. CONV2D uses convolution to apply a mask to a 2D image.

The initial image of size M × N , is decomposed into a set of parallel 2D

convolution subproblems, each computing a non-overlapping region of the

output image of size S × T . CONV2D is computation bound.

LU: We maintain the original algorithm [18] and modify the execution

control structure of LU to employ a single master and multiple slave cores.

Phases between barriers in the original code are translated to tasks, with the

master core waiting for completion between phases for all tasks to complete.

Porting LU to TPC essentially involved converting three computational-

intensive functions to TPC : bdiv(), bmod(), and bmodd(). The main

modification to these functions is the identification of shared memory ac-

cesses in their body and conversion of these updates to a task argument

list. We use the contiguous blocks version of LU from the SPLASH-2 suite,

therefore we avoid stride arguments.

FFT: The SPLASH-2 version of FFT uses a six-step algorithm that in-

volves alternating phases of transpose and FFT calculations. In our port-

ing, we re-organize the code as follows. We merge steps two and three in

a single asynchronous call to reduce data transfers, as both steps modify

the same data. We modify the transpose step to transpose the matrix in

place. We split the original matrix into blocks in a similar way as the origi-

nal SPLASH-2 FFT but we use the local store of SPEs as an intermediate

buffer to transpose each block. Although certain aspects of porting FFT

to TPC require understanding the existing code beyond syntactic modifi-

cation, eventually the changes required are simple structural changes that

do not require modifying data structures or re-writing the code. Similarly

to LU, this is because FFT has been optimized to avoid fine-grain accesses

to shared memory, which hinder scalability in traditional shared memory

multiprocessors.

17

PBPI: (Parallel Bayesian Phylogenetic Inference) [7] constructs phyloge-

netic trees from aligned homologous DNA sequences. The TPC version

preserves the original version and is integrated with MPI. The main pur-

pose of the TPC port is to achieve fine-grain on-chip parallelism within an

MPI task of the original PBPI implementation. Almost all execution time

in PBPI is spent in 3 parallel loops which are parallelized using TPC tasks.

The only adjustable parameter in these tasks is their input size, which also

defines task granularity. We use this parameter to implement a static load

balancing scheme for the application. We employ vectorization and we com-

pare our implementation of PBPI against an equivalent implementation in

Sequoia.

H.264 Encoder: A typical H.264 video encoder consists of three com-

ponents: prediction, transformation, and entropy encoder [17]. We port

an existing parallel encoder, x264 [1], originally written for shared-memory

multiprocessors, to the Cell using TPC . Although parallelization of x264

can occur at different granularities, the limited on-chip memory leads to

parallelization at the macro-block level, which allows a single frame to be

processed in parallel by all SPEs. This requires satisfying macro-block de-

pendencies in an antidiagonal-based manner [16]. We port the analyse and

encode phases to the SPEs, leaving the rest of the code on PPE. This allows

for parallelizing about 80%-85% of the serial execution time. We port most

kernels responsible for motion estimation, sum of absolute differences, sum

of absolute transformed differences, and pixel average. Finally, we vectorize

certain kernels of motion estimation for the SPEs (sum of absolute differ-

ences, sum of absolute transformed differences, and pixel average), whereas

the original code already includes vectorized versions for the PPE Altivec

extensions.

For each application, we present execution time breakdowns for both

the PPE and the SPEs. We break down the execution of the PPE in three

18CHAPTER 3. EXPERIMENTAL PLATFORM AND METHODOLOGY

parts: time spent in the TPC runtime, time waiting for SPEs to complete,

and time spent in application code. SPE breakdowns consist of task compute

time, library time (including data transfer time), and idle time. Note that

in general, the PPE wait time will be close to the average SPE breakdown,

however, due to overlapping initiation of asynchronous calls with processing

on the SPEs, the match is not always exact. Also, as a reference point, we

show application execution time for a single PPE, where this is possible.

Finally, in this work we assume that the code to be executed by each task

is already present on the target SPE and we always distribute tasks round-

robin across SPEs.

Chapter 4

Experimental Results

4.1 Basic task overheads

In this section we examine the basic overheads associated with task opera-

tions in TPC using null tasks, which perform no computation.

In Figure 4.1(a) we see the total latency for initiation/completion of a

null task. We evaluate two methods for initiation and two methods for com-

pletion. PPE can initiate a TPC task with remote stores directly to SPE’s

local store. We refer to this mechanism as MMIO initiation. Alternatively,

PPE can build the task descriptor locally in its L2 cache and initiate a DMA

command in the SPE’s DMA controller to fetch the descriptor to the local

store of SPE. We refer to this mechanism as DMA initiation. Completion

status from SPE can been sent with simple DMA command or using atomic

DMA command. We refer to these methods as DMA and atomic comple-

tion accordingly. We use zero-byte arguments to show how the overhead

of the runtime varies with the number of arguments without including the

DMA initiation and data transfer costs that are not affected by the runtime

system design. First, we see that minimum round-trip latency is about 1230

cycles or 385ns. Second, we note that using MMIO for task initiation and

the atomic DMA for task completion results in the lowest overhead. Using

19

20 CHAPTER 4. EXPERIMENTAL RESULTS

0 2 4 6 8
TPC arguments

0

1000

2000

3000

4000
cy

cl
es

MMIO/atomic
MMIO/DMA
DMA/atomic
DMA/DMA

(a)

0 1 4 8
TPC arguments

0

1000

2000

3000

cy
cl

es

SPE DMA list
SPE buffer alloc
SPE compl issue
SPE task detect
PPE issue
NoC

(b)

Figure 4.1: (a) Null task latency for the different initiation and completion

mechanisms. (b) Null task round-trip breakdown for MMIO initiation and

atomic DMA command.

DMA instead of MMIO adds about 1000 cycles whereas not using atomic

DMA adds about 250 cycles.

Figure 4.1(b) shows the breakdown of null-task latency in the best case

(MMIO / atomic DMA) and for variable numbers of zero-byte arguments.

PPE initiation includes the building of the task descriptor and issuing the

remote stores. We see that PPE initiation overheads increase slowly with

the number of arguments from 180 to 380 cycles. NoC round-trip latency is

about 800 cycles. We should note that both PPE and SPE are dual-issue,

in-order processors. This makes them vulnerable to register dependencies

and poor instruction scheduling. For this reason, in the PPE, we use a sep-

arate tpc callN() function for tasks with N arguments. In these versions of

tpc callN() functions, as the number of TPC arguments is fixed, we perform

loop-unrolling and appropriate instruction scheduling to help the compiler

produce more efficient code. However, we cannot follow the same approach

for SPE as run-time operations in SPE depend not only on the number of

TPC arguments but also depend on the types of these arguments.

4.2. IMPACT OF QUEUE SIZE 21

The SPE portion of the round-trip overhead, excluding DMA initiation

and NoC latency, involves four steps: Task detection recognizes the user

function to be invoked and setups internal structures. SPE DMA list step

builds the DMA list elements for input and output arguments, as described

in the task descriptor. SPE buffer allocation step allocates the required

space in local store and SPE completion issue step builds the completion

status and issues the atomic DMA command. We see that processing tasks

in the SPE is dominated by the time needed to create the DMA list for

fetching inputs and writing back results. The cost for a single argument

is 650 cycles and increases to 1450 cycles for eight arguments to build the

DMA list. On the other hand, the time needed for task detection, buffer

allocation and issuing the DMA for the completion status is about 280 cycles

and is not affected by the number of TPC arguments.

4.2 Impact of Queue Size

Figures 4.2 and 4.3 shows the impact of task queue size on null task latency

and throughput, when using a single argument of varying size, with the

generic version of tpc call() function. We see that the minimum average

latency for null task with a zero-byte argument is about 900-1000 cycles,

when using 2-6 SPEs and queue size of two or four, due to overlapping of

tasks on multiple SPEs. Larger queue sizes increase average latency to about

1200 cycles when using more than one SPEs. We observe similar behavior

in the case of non-zero arguments for null tasks. However, latency increases

when queue size increases above four.

When looking at throughput, we see that a single argument of 8 KBytes

or more can reach maximum throughput with queue sizes of two or more for

three or more SPEs. A queue size of one can reach maximum throughput

only when using all six SPEs. An argument size of 4 KBytes approaches

half of the maximum throughput for two SPEs and a queue size of four. The

22 CHAPTER 4. EXPERIMENTAL RESULTS

1 2 4 8 16 32
queue size

0

500

1000

1500

2000

2500

co
re

 c
yc

le
s

(a) 0 Bytes

1 2 4 8 16 32
queue size

0

1000

2000

3000

co
re

 c
yc

le
s

(b) 128 Bytes

1 2 4 8 16 32
queue size

0

1000

2000

3000

co
re

 c
yc

le
s

(c) 1 KB

1 2 4 8 16 32
queue size

0

1000

2000

3000

4000

5000

co
re

 c
yc

le
s

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

(d) 8 KB

Figure 4.2: Impact of queue size on null-task latency for different argument

sizes.

4.3. APPLICATION SCALING 23

1 2 4 8 16 32
queue size

0

1

2

3

G
B

/s

(a) 1 KB

1 2 4 8 16 32
queue size

0

5

10

G
B

/s
(b) 4 KB

1 2 4 8 16 32
queue size

0

5

10

15

20

G
B

/s

(c) 8 KB

1 2 4 8 16 32
queue size

0

5

10

15

20

G
B

/s

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

(d) 16 KB

Figure 4.3: Impact of queue size on null-task throughput for different

argument sizes.

maximum throughput achieved with a single 1-KByte argument is about 3

GBytes/s (12% of the theoretical maximum) with two SPEs and a queue

size of two or four.

Overall, we expect that a small task queue size of up to four will be

enough for achieving all possible overlap of communication and computation

in the SPEs.

4.3 Application Scaling

LU: Table 4.1 shows statistics about the number of tasks as well as the

total memory traffic for different problem sizes and block sizes. We note

24 CHAPTER 4. EXPERIMENTAL RESULTS

LU Block # tasks Memory Traffic

size size Total(MB) KB/task

4K × 4K 16 5624960 34204 6.2

64 89376 8274 94.8

2K × 2K 16 707136 4284 6.2

64 11408 1041 93.5

Table 4.1: LU execution statistics.

FFT # tasks Memory Traffic

Size Total(MB) KB/task

64K 620 8.2 13.5

256K 1432 32.3 23.1

1024K 3632 128.9 36.3

4096K 10336 514.5 51.0

Table 4.2: FFT execution statistics.

that the total number of task increases proportionally to the problem size.

On average, the amount of data passed to and returned by each task is

between 6.2 and 94.8 KBytes depending on the block size. LU, although a

shared memory application, has already been optimized to avoid scattered,

fine-grain accesses to shared data structures.

Figure 4.4 shows LU execution time breakdowns with 64×64 and 16×16

block sizes for both PPE and SPEs. We see that for both block sizes,

execution time scales with the number of SPEs. Maximum speedup for six

SPEs is 5.98 and 5.87 for 16× 16 and 64× 64 blocks respectively. However,

note that using 16 × 16 blocks is about 115% slower than using 64 × 64

blocks for the same problem size when using one SPE. With 64× 64 blocks

compute time dominates, as there is significantly fewer and larger DMA

4.3. APPLICATION SCALING 25

1 2 3 4 5 6

SPUs

0

5000

10000

15000

 m
se

co
nd

s
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) LU, B=64

1 2 3 4 5 6

SPUs

0

10000

20000

30000

40000

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) LU, B=16

1 2 3 4 5 6

SPUs

0

200

400

600

800

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(c) FFT, 4M

1 2 3 4 5 6

SPUs

0

5

10

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(d) FFT, 64K

Figure 4.4: LU and FFT execution times. LU uses 4K × 4K matrix,

with block sizes 64× 64 and 16× 16. FFT computes 4M and 64K complex

elements respectively.

transfers and the larger task compute time allows the runtime to effectively

pre-fetch future tasks.

FFT: Table 4.2 shows FFT statistics about the number of tasks and size

of transfers during execution for various problem sizes. The larger FFT

problem size of 4M complex reals (single precision) requires about 64 MBytes

of memory. The number of TPC tasks depends only on the problem size, as

the task granularity is fixed to a single row of the matrix. Figure 4.4 shows

the execution time breakdowns for the PPE and the SPEs for 4M and 64K

26 CHAPTER 4. EXPERIMENTAL RESULTS

Total Transpose Computation Transpose Overall

SPEs time (ms) fraction speedup speedup speedup

1 847.6 8.8% 1.00 1.00 1.00

6 167.8 23.0% 5.98 1.93 5.05

Table 4.3: FFT execution time break down and speedup over 6 SPEs

for 4M complex reals. Speedup is measured for overall execution time, for

computation time alone and for transpose time alone.

elements. We see that FFT exhibits good performance and scalability. For

4M FFT, TPC achieves speedup of 5.2 over 6 SPEs and for 64K FFT TPC

achieves speedup of 5.1. For the 4M problem size there are enough tasks

to fill the task queue of the SPEs. On the other hand, the 64K problem

size creates 256 tasks during the computation phases and 36 tasks during

the transpose phases. Thus, FFT does not create enough tasks to take

advantage of task pre-fetching and incurs higher sync wait times for the

PPE. On the SPE side, compute time dominates the total execution time,

whereas argument transfer overheads are less than 4% and 7% for the 64K

and 4M problem sizes respectively. Overall, scalability of FFT is currently

limited mainly by the transpose steps of the algorithm. Table 4.3 shows

that for the 4M FFT the computation and transpose times scale differently.

Computation time alone scales by a factor of 5.98 over 6 SPEs while the

transpose time scales only by a factor of 1.93 over 6 SPEs. However, the

transpose step varies between 8.8% (one SPE) and 23% (six SPEs) of the

total execution and has a lower impact on application scalability.

H.264 Encoder: In our experiments we use a number of full high defini-

tion (1920×1088) video inputs taken from the HD-VideoBench [3]. Although

the size of a single macro-block is the same for every task, the amount of

computation involved in processing it is different. Figures 4.9(a) and 4.9(b)

4.3. APPLICATION SCALING 27

PPE 1 2 3 4 5 6

SPUs

0

50000

100000

150000
 m

se
co

nd
s

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) x264:riverbed

PPE 1 2 3 4 5 6

SPUs

0

20000

40000

60000

80000

 m
se

co
nd

s

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) x264:blue sky

1 2 3 4 5 6

SPUs

0

50

100

150

200

250

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(c) CONV2D

1 2 3 4 5 6

SPUs

0

100

200

300

 s
ec

on
ds

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(d) PBPI

Figure 4.5: TPC execution time breakdowns for x264, 2D convolution and

PBPI.

present execution time breakdowns for both PPE and SPEs for three dif-

ferent videos. Each video has different computation complexity. We have

set the queue size to two slots for this application due to the high mem-

ory requirements for code in the SPEs (about 130 KBytes of code). In our

experiments we use three B-frames and one reference frame with 48 × 48

maximum motion vector search range. Finally, for the entropy encoding we

use the Context-based Adaptive Variable Length Coding. The achievable

speedup depends on the complexity of the input video sequence, since the

input stream affects the computation to communication ratio. Overall, us-

28 CHAPTER 4. EXPERIMENTAL RESULTS

ing 6 SPEs results in a speedup of about 2.9 for the blue sky stream and

4.2 for the riverbed stream, compared to the initial version of the encoder

running on the PPE.

4.4 Comparison to Sequoia

Finally, we compare TPC to Sequoia using the SAXPY, SGEMV and CONV2D

kernels that come with Sequoia. We port them to TPC using the same com-

putation functions and the same data partitioning schemes. We also port

PBPI to TPC and compare with its Sequoia implementation [15]. SAXPY

is a communication bound kernel that performs only two floating operations

for every three floats. SGEMV is similar to SAXPY but multiplies a matrix

with a vector rather than multiplying two vectors. The output of each task

is only a few floats. Figure 4.6 shows that TPC and Sequoia scale similarly

with both communication bound and compute bound kernels. For less than

32 floats, SGEMV performs transfers that are not cache aligned, causing se-

rious DMA performance penalties in the TPC runtime. The input we use for

CONV2D is a 4K × 4K matrix of single precision float numbers. Matrix is

constructed in row-wise form, therefore we use stride arguments for element

blocks. In order to acquire better DMA performance, we split the matrix

into 32 × 64 element blocks where each task processes one block. The per-

formance differences between TPC and Sequoia for SAXPY and SGEMV

kernels for more than one SPEs are under 3%. Figure 4.8(c) shows that

computation time dominates the SPE execution time in CONV2D. Sequoia

performs about 7% worse than TPC in CONV2D due to better overlapping

of DMA transfers in the TPC runtime.

For PBPI, we use various task sizes in TPC . We find that tasks with

argument sizes larger than 4 KBytes reach almost maximum speedup at

queue sizes of 4 or higher. Figure 4.5(d) shows that with 6 SPEs we achieve

a maximum speedup of 5.6 while Sequoia achieves a maximum speedup of

4.5. RUNS ON QS20 BLADECENTER 29

1 2 3 4 5 6

SPUs

0

10

20

30

40

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application
SPU Idle
SPU Lib
SPU Task
Sequoia

(a) SAXPY, B=4K

1 2 3 4 5 6

SPUs

0

10

20

30

40

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application
SPU Idle
SPU Lib
SPU Task
Sequoia

(b) SAXPY, B=2K

1 2 3 4 5 6

SPUs

0

5

10

15

20

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(c) SGEMV

Figure 4.6: PPE and SPE execution time breakdowns for 24M element

vectors for SAXPY and SGEMV with 32M element matrix.

4.2 with the same setup. TPC benefits from dynamic task execution and

better load balancing in PBPI. Overall, contrasting TPC to Sequoia using

kernels and applications shows that both runtime environments seem to scale

similarly.

4.5 Runs on QS20 BladeCenter

For complete evaluation of TPC runtime, we made additional runs for the

applications mentioned previously on QS20 BladeCenter machines. In QS20

the application has access to all 8 SPEs of the Cell processor. Computational

resources on QS20 are identical to those of PS3, but there are some minor

differences in the configuration of the memory interface. The Cell processor

runs at 3.2 GHz and includes 1 GByte of RAM.

In Figure 4.7, we can see that LU and FFT performs very close to PS3,

with QS20 being better by just 1.5% for the same number of SPEs. Both

LU and FFT scale naturally, achieving speedup of 7.73 and 6.96 accordingly

over 8 SPEs.

Figure 4.8 shows execution time breakdowns for SAXPY and CONV2D.

CONV2D is computation bound kernel, achieving speedup of 7.94 over 8

SPEs. On the other hand, SAXPY is communication bound and cannot

30 CHAPTER 4. EXPERIMENTAL RESULTS

1 2 3 4 5 6 7 8

SPUs

0

5000

10000

15000

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) LU, B=64

1 2 3 4 5 6 7 8

SPUs

0

10000

20000

30000

40000

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) LU, B=16

1 2 3 4 5 6 7 8

SPUs

0

200

400

600

800

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(c) FFT, 4M

1 2 3 4 5 6 7 8

SPUs

0

5

10

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(d) FFT, 64K

Figure 4.7: LU and FFT execution times. LU uses 4K × 4K matrix,

with block sizes 64× 64 and 16× 16. FFT computes 4M and 64K complex

elements respectively. Runs on BladeCenter

achieve speedup more than 2.78 over 8 SPEs. The memory interface on QS20

imposes higher DMA latencies for 1-2 SPEs, compared to PS3. For more

than 2 SPEs, the QS20 is favored, as it handles better the bus contention

than PS3. Sequoia performs similarly to TPC on QS20 for all applications

with small variations that are always under 4%.

Figure 4.9 shows execution time breakdowns for x264. Library overheads

in SPE are lower in QS20 than PS3 due to memory interface and task times

remain the same. For single SPE, performance is better in QS20 by 20%

4.5. RUNS ON QS20 BLADECENTER 31

1 2 3 4 5 6 7 8

SPUs

0

20

40

60

80

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application
SPU Idle
SPU Lib
SPU Task
Sequoia

(a) SAXPY, B=4K

1 2 3 4 5 6 7 8

SPUs

0

20

40

60

80

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application
SPU Idle
SPU Lib
SPU Task
Sequoia

(b) SAXPY, B=2K

1 2 3 4 5 6 7 8

SPUs

0

50

100

150

200

250

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(c) CONV2D

Figure 4.8: PPE and SPE execution time breakdowns for 24M element

vectors for SAXPY. Runs on BladeCenter

in average. For more than 4-5 SPEs, overall performance remains the same

because the reduced DMA latencies are traded with greater idle times in

SPEs. This happens because of limited concurrency in the application.

32 CHAPTER 4. EXPERIMENTAL RESULTS

PPE 1 2 3 4 5 6 7 8

SPUs

0

50000

100000

150000

 m
se

co
nd

s

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) riverbed

PPE 1 2 3 4 5 6 7 8

SPUs

0

20000

40000

60000

80000
 m

se
co

nd
s

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) blue sky

Figure 4.9: TPC execution time breakdowns for x264 on riverbed and blue

sky streams. Runs on BladeCenter.

Chapter 5

Related Work

The introduction of multi-core processors in mainstream computing envi-

ronments has given rise to numerous proposals and associated research ef-

forts on parallel programming models. We concentrate our discussion of

related work on task-level parallel programming models targeting hetero-

geneous multi-core processors with explicitly managed local memories and

cover briefly other related work due to space considerations.

Sequoia [6] is a programming language which relies on explicit data ac-

cesses and is similar to TPC in that locality is exploited through annota-

tion of data with in/out clauses. Sequoia follows a static execution model

where the programmer statically optimizes the mapping of data and tasks

relatively to the memory hierarchy. TPC implements a dynamic execution

model where the programmer expresses parallelism and locality without con-

sidering the mapping of tasks and data to cores. TPC is optimized towards

achieving low-overhead dynamic task management mechanisms in order to

exploit fine-grain task-level parallelism, whereas Sequoia is optimized for

explicit, static locality management.

CellSs [13] is a programming model for expressing task-level parallelism

with code annotations. Contrary to TPC ’s RPC-style programming model,

CellSs uses compiler directives to annotate tasks and data with in/out

33

34 CHAPTER 5. RELATED WORK

clauses. The distinguishing feature of CellSs is the use of a helper thread

which dynamically analyzes dependencies between tasks and schedules tasks

dynamically upon resolution of their input dependencies. Dynamic depen-

dence analysis incurs high overhead, which can be amortized if the analysis

can increase the degree of available parallelism. TPC does not perform

runtime dependence analysis although this is not precluded by its design.

TPC ’s task queues enable aggressive lookahead optimizations such as pre-

fetching via multi-buffering, similarly to CellSs. On the other hand, CellSs’s

scheduling model assumes coarse task granularity to mask the overhead of

runtime data dependence analysis, whereas TPC targets fine-grain task-

parallel execution. TPC ’s measure task initiation/completion times are 10

times lower than those currently reported for CellSs.

OpenMP has recently been extended with a task directive for supporting

task parallelism [12]. OpenMP tasks require the programmer to specify the

code region that will execute. Instead, TPC tasks require specification of

both the code and data involved in the computation (as arguments to the

call). The XLC [11] compiler for the Cell offers an OpenMP abstraction for

loop level parallelism, using DBDB [9]. Compared to XLC and its runtime,

TPC has significant differences. XLC splits loop iterations across SPEs and

then tries to calculate statically the ideal number of grouped iterations of a

loop in order to utilize all available local store and overlap as much commu-

nication with computation as possible. On the other hand, TPC generates

tasks dynamically, where a task can be a group of iterations provided by the

programmer. TPC uses task queues to overlap the transfer of arguments for

upcoming tasks with current task execution and hide the added overheads

of dynamic task management. The degree of pre-fetching depends on the

amount of available memory and is dynamically determined. Our evaluation

shows that TPC is successful in hiding DMA latencies, when adequate space

is available in the local stores. TPC relies on the programmer to specify

35

the type (simple, stride) and size of each argument, based on the argument

usage in the task code. DBDB automatically identifies access patterns to

data buffers and select the appropriate transfer scheme. Both TPC and

DBDB map contiguous accesses to a single DMA transfer of a contiguous

memory region (flat buffers in DBDB or simple arguments in TPC). TPC

maps non-contiguous accesses always to DMA-list elements, as described by

a stride TPC argument. This approach reduces argument processing and

minimizes transfer initiation overheads in the runtime when dynamically

fetching data before task execution. On the other hand, DBDB uses an an-

alytical model to predict whether those accesses should be mapped to single

DMA, including unnecessary data, multiple DMAs of individual elements,

or a single DMA list. However, author in DBDB find that DMA lists offer

almost always the best performance. Overall, the main difference is that

TPC aims at minimizing the runtime overhead for preparing and initiating

data transfers on both the PPE and SPEs, whereas DBDB aims at optimiz-

ing the data transfer time. Moreover, TPC is a runtime that aims mostly

on efficient dynamic task management mechanisms for the Cell, rather than

a high-level programming abstraction and automatic parallelism extraction.

Related work targeting heterogeneous multi-core architectures outside

the context of task-level parallel programming models includes data-parallel

programming models, such as RapidMind [10], and libraries for expressing

and managing communication between heterogeneous components, such as

IBM ALF and DaCs [5]. Other commonly used programming models for

shared-memory multiprocessors such as Cilk [4] do not provide support for

heterogeneous systems with explicitly managed local memories, although

anecdotal evidence suggests that there are several ongoing efforts for ex-

tending these models to support heterogeneous systems in the future.

36 CHAPTER 5. RELATED WORK

Chapter 6

Discussion and Future Work

Besides the issues we address in this work, we believe that runtimes for

future multicores will need to deal with three additional, broad issues: Min-

imization of data transfers, mapping of application natural task size to fine-

grained tasks for memory efficiency, scheduling of fine-grained tasks, and

code management.

In explicitly parallel programming models, executing a task on a core

typically involves reading data on the local memory, executing the task,

and then propagating updates to the location of the corresponding program

variables in a globally accessible external memory. However, fine-grain tasks

may have an adverse impact on the amount of data transferred between vari-

ous types of memories in explicitly managed memories in multi-core architec-

tures. Small tasks may require transferring multiple times the same (control)

data that could otherwise be transferred only once for each coarser-grained

task. Thus, there is a need for mechanisms that will minimize unnecessary

data transfers transparently, in the light of the additional knowledge pro-

vided by explicit data accesses in each task. This problem is reminiscent

of two other situations: (a) Coherent caches that use invalidations to move

the data on demand between different (fast and local) memories that map

to the same address range. (b) Register allocation that reduces the number

37

38 CHAPTER 6. DISCUSSION AND FUTURE WORK

of load/store operations from/to memory by scheduling instructions appro-

priately and ensuring appropriate use of data already in registers. These

solutions rely either on extensive hardware support or extensive static pro-

gram analysis. Similar decisions will be required in future multicores.

Explicit data accesses and fine-grained parallelism provide the opportu-

nity to hide low-level synchronization primitives from the programmer. In

principle, conflicts to data accesses can either be resolved by appropriate

synchronization or scheduling. Fine-grained task-based programming mod-

els seem to favor using scheduling to avoid waiting on conflicting accesses.

However, this requires dependence analysis at the task level, that although

possible at runtime, traditionally it has resulted in high runtime costs. This

issue will need to be re-examined carefully as the number of heterogeneous

tasks and cores scales over time.

Code management for future multicores is an important issue. On-chip

memory is limited, the large number of cores may require multiple copies of a

code region wasting memory resources or may result in frequent code replace-

ment operations and thus, high overhead and increased non-determinism

during execution. Storage management for code and data is undesirable

for programmers and significantly increases complexity and effort. Instead

it should lie in the responsibility of the architecture and runtime system.

Transparent solutions to these problems will rely on knowledge about how

frequently and dynamically cores will need to be re-programmed, how static

are the requirements of an application in each type of core, and even pos-

sibly the relative positioning of each core used by a single application in a

CMP. Explicit specification of data accesses at a fine granularity can help

the compiler and runtime environment manage task code more efficiently.

Chapter 7

Conclusions

We present Tagged Procedure Calls (TPC) a programming model for the Cell

processor, designed to exploit fine-grain parallelism and reduce programmer

effort for scaling to large numbers of cores. TPC requires the programmer

to annotate programs at the procedure level for specifying parallel tasks and

the data accessed by them.

TPC implements task management with on-chip operations only for task

creation, initiation, assignment, and completion. TPC achieves 385ns null

task initiation overhead on the Cell and null task initiation/completion over-

head close to the round-trip DMA latency. Furthermore, we find that appli-

cations previously implemented and optimized for shared-memory multipro-

cessors can be ported with manageable effort that involves mostly mechan-

ical code changes, and achieve high parallel efficiency on Cell. In addition,

our results show that TPC enables the exploitation of additional fine-grain

parallelism on-chip, in applications parallelized previously at coarse granu-

larity. Through a comparison with the Sequoia programming language and

its runtime, we demonstrate that TPC performs competitively to existing

task-level parallel programming frameworks that perform static optimiza-

tions for data layout and task placement.

Finally, based on our experience with TPC , runtime support for future

39

40 CHAPTER 7. CONCLUSIONS

CMPs will need to deal with three additional, broad issues: Mapping of

application natural task size to fine-grained tasks for memory efficiency,

scheduling of fine-grained tasks, and code management. We believe that

addressing these issues at the runtime and architectural levels can result in

efficient and scalable task-based programming models for future CMPs.

Bibliography

[1] http://www.videolan.org/developers/x264.html.

[2] J. Abellán, J. Fernández, and M. Acacio. Characterizing the Basic

Synchronization and Communication Operations in Duall Cell-Based

Blades. In Proc. of the 8th International Conference on Computational

Science, pages 456–465, June 2008.

[3] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. HD-VideoBench.

A Benchmark for Evaluating High Definition Digital Video Applica-

tions. In Proceedings of the IEEE Workload Characterization Sympo-

sium, pages 120–125, 2007.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Ran-

dall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System.

In PPOPP’95: Proceedings of the Fifth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 207–216, 1995.

[5] C. H. Crawford, P. Henning, M. Kistler, and C. Wright. Accelerating

Computing with the Cell Broadband Engine Processor. In CF ’08:

Proceedings of the 5th ACM Conference on Computing frontiers, pages

3–12, 2008.

[6] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem,

J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia:

1

2 BIBLIOGRAPHY

Programming the Memory Hierarchy. In Proceedings of ACM/IEEE

Supercomputing’2006, Nov. 2006.

[7] X. Feng, K. W. Cameron, C. P. Sosa, and B. E. Smith. Building the Tree

of Life on Terascale Systems. In Proceedings of the 21st International

Parallel and Distributed Processing Symposium, pages 1–10, Mar. 2007.

[8] H. P. Hofstee. Power Efficient Processor Architecture and The Cell

Processor. In Proceedings of the 11th International Symposium on High-

Performance Computer Architecture, pages 258–262, 2005.

[9] T. Liu, H. Lin, T. Chen, K. O’Brien, and L. Shao. DBDB: Optimizing

DMA transfer for the Cell BE architecture. In ICS, pages 36–45, 2009.

[10] M. D. McCool. Data-Parallel Programming on the Cell BE and the

GPU using the RapidMind Development Platform. In GSPx Multicore

Applications Conference, Santa Clara, CA, Oct. 2006.

[11] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Support-

ing OpenMP on Cell. International Journal of Parallel Programming,

36(3):289–311, 2008.

[12] OpenMP Architecture Review Board. Draft version 3.0 for public com-

ments. http://www.openmp.org/mp-documents/spec30 draft.pdf, Jan

2008.

[13] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it

easier to program the Cell Broadband Engine processor. IBM Journal

of Research and Development, 51(5):593, 2007.

[14] A. Rico, A. Ramirez, and M. Valero. Available Task-level Parallelism

on the Cell BE. Scientific Programming, 17:59–76, 2009.

[15] S. Schneider, J.-S. Yeom, B. Rose, J. C. Linford, A. Sandu, and D. S.

Nikolopoulos. A Comparison of Programming Models for Multipro-

BIBLIOGRAPHY 3

cessors with Explicitly Managed Memory Hierarchies. In PPOPP’09:

Proceedings of the 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 131–140, 2009.

[16] E. van der Tol, E. Jaspers, and R. Gelderblom. Mapping of H.264

Decoding on a Multiprocessor Architecture. In Image and Video Com-

munications and Processing, 2003.

[17] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview

of the H.264/AVC Video Coding Standard. volume 13 of Circuits and

Systems for Video Technology, pages 560 – 576, July 2003.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 programs: Characterization and methodological considera-

tions. In Proceedings of the 22nd International Symposium on Computer

Architecture, pages 24–36, July 1995.

