Computer Science Department

University of Crete

Tagged Procedure Calls (TPC): Efficient runtime support

for task-based parallelism on the Cell Processor

Master’s Thesis

George Tzenakis

October 2009

Heraklion, Greece

University of Crete

Computer Science Department

Tagged Procedure Calls (TPC): Efficient runtime support for

task-based parallelism on the Cell Processor

Thesis submitted by
George Tzenakis
in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL
Author:

George Tzenakis

Committee approvals:

Angelos Bilas

Associate Professor, Thesis Supervisor

Dimitrios Nikolopoulos

Associate Professor

Evangelos Markatos
Professor

Departmental approval:

Panos Trahanias

Professor, Director of Graduate Studies

Heraklion, October 2009

Abstract

Increasing the number of cores in modern CPUs is emerging as the main ap-
proach for improving system performance. A central challenge in this area is
the runtime support that multi-core systems ought to use for sustaining high
performance and scalability without, however, increasing disproportionally
the effort required by the programmer. In this work we present Tagged Pro-
cedure Calls (TPC'), a runtime system for supporting task-based program-
ming models on architectures that require explicit data access specification
by the programmer, such as the Cell processor. We present the design and
implementation of TPC for the Cell and we examine how the runtime system
can support task management functions with on-chip communication only,
without requiring accesses to off-chip memory. Through minimizing off-
chip transactions in the runtime, we achieve sub-microsecond task initiation
latency —which represents an order of magnitude of improvement over ex-
isting task-parallel programming frameworks on the Cell- and minimum null
task initiation/completion latency of 385 ns. We evaluate TPC with several
kernels and applications, demonstrating that TPC achieves scalable on-chip
execution of codes previously parallelized and optimized for shared-memory
multiprocessors, can exploit additional fine-grain parallelism in codes previ-
ously parallelized at coarse levels of granularity, and performs competitively
to existing task-based parallel programming frameworks that statically op-

timize data layout and task placement.

Supervisor professor: Angelos Bilas

ITepiAndn

H abZnon tou aprdpol twv nuphvey otoug olyypovoug enclepyaotég €yet
avaderyVel ta teheutaia ypdvia we 1 xOpta pédodoc avinong tng enidoong Twv
uToAOYIOTIX®WY ouoTnudtwy. H yeyahltepn npdxhnon otov Touéd TV TO-
Auene€epyao TV elvon o Tt utooTAEEY yeetdletar and To TepBdAhoy exTéhe-
ong €10t OOoTE T0 oVo TN Vo datneel uPnAd eninedo emdOoEWY XAt XALo-
AWOWOTNTA Ywple woTOG0 Vo avgdveton ducavdhoya 1 Tpoondieio ToU omou-
Teltar and TOV TPOYPUUUATIOTH. Xe auTAv TV gpyacio mapouctdlouvye To
Tagged Procedure Calls (TPC), évo nepBdhhov extéleons yior unoo thplen
TEOYPUUUATIO TIXWY LOVTEAWY Tou Pacilovion ot epyacieg xat anoutoly pnty| e-
prypapt Tou TpéTou TpdcPaocrg ota dedouéva, 6Twg o encéepyacthc Cell BE.
Hapouotdlovpe tov oyediaopd xor tny vhoroinon tou (T'PC) otov Cell xa
e€etdloupe mwg To TEpBdALOV exTéleong unopel vo utootnpilel Ty Slayelplon
TWV EQYACIOV YOEIC VoL XAVEL avapopég G TNV EEWTEPLXT VAW X0 VO TOROEVEL
mévta eVTOC Tou (Blou chip. Me tny ehoyiotonoinon twv 6ocohnPLdv e v
e€wTtep?] UvAun 010 TEPBIANOV EXTENEOTC, XATAPEQVOUUE VoL EYOUUE X u-
otépnon €vaplng epyaoiag wxpdtepn and Eva microsecond —to omofo elvon uia
Ta4EnN peyéVoug AyoTeERO OE OYEOT UE UTAP)YOVOES EQYACIES YIU TROY POUUATIO TL-
x4 povtéha mov Pactlovtan oe epyaoies yia tov Cell— xar ehdyiotn xaduotépn-
on Yo TNV apyxonoinom xau ohoxAfpwor wag epyaciog 385 ns. A&oloyolue
10 TPC ypnotuonouvtag Sidgopoug UTOAOYIO TIXOUS TUPHVES Xo EQUPUOYEC,
emdeviovtag Ott 10 TPC emtuyydvel xApaxmTh EXTENEST] TPOYPUUUAT®DY

Tou elyav Non yiver mapdhinia yio tohvenelepyac Tég dlapotpaldUevng Lvhune,

iii

uropel vo a&lonoloetl TapaAANAIOUS UE THO avahUTIXES EpYaoieg Yiol TEOYEAY-
wotar mou elyay @Tioytel Yoo Mydtepo avalutixég epyaocieg, xou 6Tl amodidet
AVTAYWVIOTIXA OE OY€0m PE dANL TROYPUUUATIo TiXd woviéha mou Bacilovtat
o€ gpyooiec mou BeATioTONOLY GTATIXE TNV TOTOVETNOT TwV JEBOUEVLDY X

TWV EQYACLDY.

Enéntne xadnyntic: Ayyehog Mnilog

v

Acknowledgments

I feel grateful to my supervisor, Angelos Bilas, for his valuable assistance
and guideline in my academic steps in the field of Computer Science. The
extensive discussions about my work and his wide knowledge have been of
a great value for me.

A big thanks to Dimitris Nikolopoulos for his support and help to a
major part of my work. Moreover, I would like to thank my friend and
colleague, Konstantinos Kapelonis, for his help, especially in the beginning
of my thesis.

My warmest appreciation to the following, past and current, members of
the CARV Laboratory of the ICS/FORTH, whom I feel to be friends more
than just colleagues: Mihalis Alvanos, Konstantinos Koukos, Giannis Ke-
sapides, Giannis Klonatos, Kostas Chasapis, Markos Fountoulakis, Giorgos
Nikiforos, Dimitris Tsaliagkos and Vangelis Mangas.

I would like also to thank my friends : Manolis Stiligkas, Manolis Zid-
ianakis, Sokratis Kartakis, Efthimis Kartsonakis, Giorgos lakovidis, Kwn-
stantinos Kapakiotis, Panayiota Ignatiou, Leyteris Sardis, Manolis Stratakis,
Giorgos Kartakis and Giannis Papadakis. Their encouragement and discus-
sions have been a great value of me.

Last but not least, I would like to thank my family, my parents Lefteris
and Poppy and my sister Niki for their support and encouragement they

provided me with.

George Tzenakis

Heraklion, October 2009

Contents

1 Introduction
1.1 Thesis Contributions

1.2 Thesis Organization

2 Design
2.1 TPC Semantics
2.2 Cell architecture L.
2.3 TPC Design and Implementation
2.3.1 Task initiationo
2.3.2 Task pre-fetching and execution.

2.3.3 Task completion
3 Experimental Platform and Methodology

4 Experimental Results
4.1 Basic task overheads L.
4.2 Impact of Queue Size
4.3 Application Scaling Lo
4.4 Comparison to Sequoia

4.5 Runs on QS20 BladeCenter

5 Related Work

vii

10
11
12

15

19
19
21
23
28
29

33

6 Discussion and Future Work

7 Conclusions

viii

37

39

List of Figures

2.1
2.2
2.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

TPC API (a) and code example for LU (b).
Cell processor architecture.

TPC runtime operations for task issue and completion (a),

and task descriptor (b). o Lo

(a) Null task latency for the different initiation and comple-
tion mechanisms. (b) Null task round-trip breakdown for
MMIO initiation and atomic DMA command.
Impact of queue size on null-task latency for different argu-
ment Sizes. Lo
Impact of queue size on null-task throughput for different
argument Sizes.
LU and FFT execution times. LU uses 4K x 4K matrix, with
block sizes 64 x 64 and 16 x 16. FFT computes 4M and 64K
complex elements respectively. L.

TPC execution time breakdowns for x264, 2D convolution

PPE and SPE execution time breakdowns for 24M element
vectors for SAXPY and SGEMV with 32M element matrix. .

LU and FFT execution times. LU uses 4K x 4K matrix, with
block sizes 64 x 64 and 16 x 16. FFT computes 4M and 64K

complex elements respectively. Runs on BladeCenter

ix

23

29

4.8

4.9

PPE and SPE execution time breakdowns for 24M element
vectors for SAXPY. Runs on BladeCenter

TPC execution time breakdowns for x264 on riverbed and

blue sky streams. Runs on BladeCenter.

32

List of Tables

2.1

4.1
4.2
4.3

Cell processor transfer mechanisms 8
LU execution statistics. 24
FFT execution statistics.. 24
FFT execution time break down and speedup over 6 SPEs for

4M complex reals. Speedup is measured for overall execution

time, for computation time alone and for transpose time alone. 26

xi

Chapter 1

Introduction

Current technology trends indicate that future high-performance, general-
purpose and embedded, systems will be built out of heterogeneous chip
multi-processors (CMPs) with large numbers of cores and tightly-coupled
interconnects. However, scalable CMPs will require a large degree of paral-
lelism in applications as well as dealing with heterogeneity, without signifi-
cantly increasing programming effort.

For this reason, the role of the programming model is significant for fu-
ture CMPs. The two main, explicitly parallel, programming models used
today are shared memory and message passing. Shared memory requires
programs to specify synchronization information for memory accesses. Mes-
sage passing on the other hand requires programs to deal with data place-
ment and communication buffer management. In both cases, application
and system designers have been tantalized by the effort required to program
and debug such systems for over two decades. The main issue appears to be
drawing a different balance between the mechanisms that are available in the
underlying system and the abstraction that is exposed to the applications.

We believe that task-based programming models have the potential to
achieve this balance. At a high level, explicitly parallel, task-based program-

ming models have two advantages: On one hand they force the programmer

2 CHAPTER 1. INTRODUCTION

to consider code complexity and data transfers at design time without wor-
rying about the underlying mechanisms for communication and synchroniza-
tion. On the other hand they provide the underlying system (runtime and
architecture) with extensive information for efficient execution and runtime
optimization. Thus, tasks as an abstraction, present the potential for both

achieving efficient execution and reducing programmer effort.

Although task-based programming models have been proposed in the
past, modern CMPs present new opportunities. Previous efforts with task-
based programming models had to deal with coarse-grained tasks due to
task management overhead. Task management operations, such as initia-
tion, completion, queuing, and scheduling, in traditional parallel systems
cost in the order of tens of thousands of cycles, relative to the clock cycle
time of modern processors, due to communication and memory manage-
ment overheads [14]. In turn, coarse-grained tasks make it hard for the
programmer to identify and delineate tasks and, even more so, task and
data dependencies. In contrast, fine-grained tasks are easier to identify in
sequential codes by inspection as they require analyzing and resolving fewer
data and control dependencies. Modern CMPs have the potential of signif-
icantly reducing the required task size and achieve efficient execution while

reducing the associated effort to identify parallelism.

1.1 Thesis Contributions

In this thesis we introduce a runtime system for the Cell processor [8], TPC,
that aims at supporting task-based programming models. The notion of a
task is general and can be interpreted in various ways. In our work we
consider a task to be a piece of code that can execute in parallel as well as
the data that will be accessed by the code. Despite their advantages, fine-
grained tasks impose significant challenges for the runtime system. They

require efficient basic mechanisms for task management, e.g. task initiation

1.1. THESIS CONTRIBUTIONS 3

and completion that now become common-path operations. In this work we
focus on better understanding and minimizing the basic overheads associated

with task management.

We first examine the overhead associated with task management oper-
ations on a real system. We focus on task initiation, task completion, task
queuing, and task data transfer. Our implementation of TPC' achieves null
task initiation latency from 180 to 380 cycles on the 3.2 GHz Cell processor,
depending on the argument list size. This represents a significant improve-
ment over task initiation latencies reported in earlier work on task-level
parallel execution systems on the Cell [14]. The null task round-trip over-
head in TPC' is about 385 ns, when the ideal DMA round-trip latency of
the Cell is reported to just under 312 ns [2].

Then we examine the performance of TPC using both kernels and real
applications. We port two applications from the SPLASH-2 [18] suite (FFT
and LU) and demonstrate that porting applications written and optimized
for shared-memory multiprocessors to TPC requires simple and mechani-
cal code changes, while TPC achieves nearly perfect scaling of these codes
on the Cell cores. We further port two applications written previously to
exploit coarse-grain parallelism on multi-processors and clusters, PBPI [7]
and an H.264 video encoder [17]. We demonstrate that TPC enables the
exploitation of further fine-grain on-chip parallelism in these applications,
with manageable programming effort. Lastly, we port and evaluate several
benchmarks distributed with the Sequoia programming language [6]. This
effort demonstrates that TPC performs competitively to existing task-based
parallel programming models for the Cell that perform static data layout

and placement optimizations.

4 CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the design
and implementation of TPC and its runtime system on the Cell processor.
Chapter 3 presents the hardware and software environment we used for
our performance evaluation. Chapter 4 presents our experimental results.
In Chapter 5 we discuss the advantages of TPC over previous efforts and

related work. Finally, we draw our conclusions in Chapter 7.

Chapter 2

Design

2.1 TPC Semantics

TPC uses program annotations to identify certain procedure calls as concur-
rent tasks. Annotations currently occur at the procedure level. Annotated
procedures execute in the same or another core, as asynchronous tasks, with
the current core continuing execution. Procedure arguments can be in, out,
or inout. The issuing task can wait for tasks using point-to-point or barrier
synchronization. When issuing an asynchronous task, the runtime returns
a handle that can be used later on for managing the specific instance of the
issued task, while the issuing task continues with program execution. When
a task completes, it notifies the issuer for its completion. TPC functions
have no return values and all arguments are passed by reference. Task argu-
ments and their sizes are determined at runtime before task initiation. TPC
supports continuous and fixed stride arguments. We expect that interfaces
and constructs for specifying memory layout for task arguments will play an

important role on programmer effort.

Figure 2.1(a) shows the basic TPC' API and a simple usage example.
Figure 2.1(b) shows code example for the LU kernel.

5

CHAPTER 2. DESIGN

tpc_handle_t tpc_call(bdiv(A, D);
task_id, total_args, bmodd (A, D);

[argl,size,IN/OUT/INOUT],
)5

tpc_wait (tpc_handle_t hdl);

bmod (A, B, C);

int main(void){
tpc_wait_all();
for all diagonal blocks D {
mytaskl(int *x); factor_diagonal_block(D);
mytask2(int *x, int *y);

mytask3(int *x, int *y, int *z); for all column blocks C {

int main(void){ tpc_call(bdiv, 2,

int i, x[N], y[NI, z[NI;
for(i=0; i<N; i+=B) {
tpc_call(mytaskl, 1,
x+i,B, INOUT);
}
tpc_wait_all();
for(i=0; i<N; i+=B) {
tpc_call(mytask2, 2,
x+i,B,INOUT,
y+i,N,IN);
}
tpc_wait_all();
for(i=0; i<N; i+=B) {
tpc_call(mytask3, 3,
x+i, B, OUT,
y+i, B, INOUT,
z+i, B, IN);
}

tpc_wait_all();

C, block_size, INOUT,
D, block_size, IN);

for all row blocks R {
tpc_call(bmodd, 2,
R, block_size, INOUT,
D, block_size, IN);
}

tpc_wait_all();

for all interior blocks IB {
tpc_call(bmod, 3,
IB, blocks_size, INOUT,
C, blocks_size, IN,
R, blocks_size, IN,);
}

tpc_wait_all();

(a)

(b)

FIGURE 2.1: TPC API (a) and code example for LU (b).

2.2. CELL ARCHITECTURE 7

L1 | PPU SPE7T 4 SPU
L2 PPE SPE1 SPE3 SPES MFC LS

F 3 F 3 F F Y F 3

A 4 A 4 A A y A A

Memory SPEO SPE2 SPE4 SPE6

Interface

Controller

(MIC)
PPE: PowerPC Processor Element
: SPE: Synergistic Processor Element
. MFC: Memory Flow Controller
off-chip global system memory LS: Local Store

FiGURE 2.2: Cell processor architecture.

2.2 Cell architecture

Figure 2.2 shows the architecture of Cell. The Cell processor [8] contains
a general purpose PowerPC Processing Element (PPE) and eight special
purpose Synergistic Processing Elements (SPEs) with their own instruction
set. Each SPE has 256 KBytes of local (on-chip) memory without any other
cache between this memory and the SPE core. There is also a global, off-
chip memory. The PPE has a coherent memory hierarchy with two levels
of cache prior to the single global external memory. Table 2.1 summarizes
the different access mechanisms that exist between the various stores and
processing elements. DMAs in the Cell are capable of scatter/gather func-

tions and can have multiple (16 per SPE) outstanding transfers. Moreover,

8 CHAPTER 2. DESIGN

PPE SPE(i) SPE())

SPEI(i) local store | remote load/store, DMA | load/store DMA

SPE(j) local store | remote load/store, DMA DMA load /store

Global Memory cached load/store DMA DMA

TABLE 2.1: Cell processor transfer mechanisms

PPE can access the local stores of SPEs with remote load/stores as local
stores are mapped to main memory address space. Finally, the PPE and
SPEs can also communicate with messages via small mailboxes with and
without interrupts. These options create a wealth of trade-offs that need to
be understood before the runtime system is able to take advantage of them.
Finally, all communication in the Cell processor happens over an on-chip
element interconnect bus (EIB) that consists of four parallel, bi-directional

rings.

2.3 TPC Design and Implementation

The TPC runtime library consists of two parts, the initiator and the target.
Although any core can play the role of the initiator or target, currently,
and due to the Cell architecture, in our implementation we only support
task initiation from the PPE. Similarly, only SPEs can execute tasks as
targets. Each task consists of a descriptor. Task descriptors are prepared
by the initiator and are placed in task queues for execution. There is one
task queue per target, located in its local store. Figure 2.3(b) shows the
structure of a task descriptor. The task descriptor contains the function id
and the list of arguments (16 bytes per argument). For every argument, the
descriptor specifies the argument’s address in main memory, the argument
size, a flag indicating if it is in, out or inout, and for stride arguments the

stride between the elements.

2.3. TPC DESIGN AND IMPLEMENTATION 9

TPC uses a private task queue for each SPE. The task queue itself is an
array of task descriptors. Since our goal is to eliminate off-chip operations,
we place each task queue in the local store of the corresponding SPE. In
addition to the task queue, the runtime maintains a completion queue for
each SPE in main memory. The PPE polls each completion queue for task
status notifications from the SPEs. When a completion is received the task
entry in the corresponding task queue is released. Since tasks run to com-
pletion in each SPE, tasks complete in order. The task completion status
consists of a flag and a task id. The size of the completion status structure

is padded to 128 bytes for optimal DMA performance, as discussed next.

An important architectural aspect for implementing a task-based run-
time is the available mechanisms for communication among different memo-
ries and cores. DMAs in the Cell are capable of scatter/gather functions and
can have multiple (16 per SPE) outstanding transfers. The PPE and SPEs
can also communicate very short messages via small, word-size mailboxes,

with and without interrupts.

Although DMA performance on the Cell has been thoroughly analysed
in previous work [2], low-latency control transfer mechanisms have not been
fully explored. In this work we examine PPE to SPE round-trip latency
with various mechanisms. We use the PPE as initiator, so the available
options are: mailbox messages, remote stores to SPE’s local store (MMIO),

and PPE-initiated DMAs (DMA).

SPEs can communicate with the PPE via mailbox messages, DMA, or a
variant of DMA using the Atomic Cache Unit (ACU). The ACU is intended
for implementing atomic synchronization primitives in the global address
space, among SPEs and the PPE. Every SPE has a small cache memory
with four 128-Byte cache-lines which is used by ACU commands. Using
special commands the SPE can initiate a DMA from this cache memory to

the global address space. A simple, non-atomic DMA transfer writes results

10 CHAPTER 2. DESIGN

to main memory and invalidates the PPE’s cache requiring off-chip accesses.
Instead, an ACU-based DMA transfer remains in the SPE’s cache and when
PPE touches the cache line PPE’s cache is updated, eliminating off-chip op-
erations (PPE cache misses). This mechanism supports reserve-line (load-
locked), conditional-store, and unconditional-store operations. Task comple-
tions require only the “putqglluc” command that updates atomically and un-
conditionally the main memory location with the SPE’s data via an atomic

DMA transfer.
2.3.1 Task initiation

Mailboxes and PPE-initiated DMAs are not appropriate mechanisms for
initiating tasks. First, sending mailbox messages incurs in the PPE the same
cost as remote stores because the SPE mailbox register is memory mapped
to the PPE in the same way as the SPE local memory. In addition, to safely
use the mailbox register a remote load is required first to check the status
of the mailbox register and to ensure that previous mailbox messages have
been consumed by the SPE. This introduces a network round-trip latency
when posting the mailbox message. Using PPE-initiated DMA requires five
remote store operations to special SPE registers that are mapped to the
PPE. Then, the DMA controller of the SPE performs the actual DMA from
external memory to the local SPE memory.

Thus, after preparing a task descriptor in (cached) memory, the only two
realistic options for the PPE to initiate a task are: (a) issuing remote stores
to post the descriptor to the SPE task queue or (b) issuing fewer stores to
indicate the existence of a new task descriptor, which then the SPE can pull
using DMA. Note that the first approach results in on-chip traffic only but
requires a number of MMIO stores from the PPE for each task. The second
approach reduces the number of stores required at the PPE but introduces
a DMA transfer in the SPE. This DMA transfer will involve only on-chip

traffic, assuming the task descriptor is not evicted from the PPE cache.

2.3. TPC DESIGN AND IMPLEMENTATION 11

In both cases the SPE can simply poll to local memory and there is no
requirement for round-trip communication when posting a new task. In all
cases, PPE stores to SPEs are cache inhibited and complete in program
order. The PPE can use vector store instructions to reduce the number of
stores required for a single task descriptor. Furthermore, PPE incorporates
a six-slot store combining buffer, further reducing network latencies. The
final store instruction sets the active flag of the task descriptor in the task
queue to notify the SPE of a new task arrival. In our evaluation we examine

both options for task initiation.

2.3.2 Task pre-fetching and execution

Once a new task has been posted to the SPE task queue, the SPE extracts
the task descriptor, fetches in arguments, executes the designated function,
and writes back out arguments. The main challenge in executing these steps
is to maximize overlapping of argument and result transfers with task exe-
cution. To achieve this, TPC pipelines the different stages of task execution

and uses pre-fetching to overlap argument transfers and task execution.

Each task can be in one of the states ACTIVE, FETCH, READY,
WRITEBACK, COMPLETE. Before executing a task that is ready, the
SPE prepares and issues the DMA commands for as many active tasks as
possible from its task queue, depending on the available local store, and
places these tasks in the fetch state. Then, it turns to executing the first
task in the queue whose arguments are available. When a task is done ex-
ecuting, the SPE will initiate the write-back of out arguments and place
the task in the write-back state. During write-back, SPE tries again to pre-
fetch data for the next active tasks in the queue. After the completion of

the write-back, the next task starts execution as soon as its in data arrives.

12 CHAPTER 2. DESIGN

2.3.3 Task completion

When a task completes, the SPE sends its completion status to the SPE
completion queue that is placed in main memory. The transfer of the com-
pletion status is ordered with respect to the write-back of the task’s results.
The PPE polls these queues for completed tasks from each SPE. A task
completion signifies to the PPE that an entry in the corresponding task
queue is now free and that it can issue a new task. Thus, the PPE polls
the completion queue (a) when there is no more space in any task queue
and (b) when the application waits on task completion for synchronization
purposes. We indicate the first type of wait as queue stall time and the
second as synchronization wait time.

The two issues with the implementation of the completion queue are: (a)
what is the impact of polling on the PPE side and (b) what is the overhead
of signaling completion from the SPE. The SPE can signal completion via
a mailbox register or DMA transfer (with or without the ACU). Although
the writing of the mailbox register incurs very low overhead in the SPE,
it requires the PPE to poll the status of the register via loads that incur
a round-trip overhead. Thus, it is preferable for the SPE to use a DMA
transfer to a memory location. Then the PPE can poll using cached loads. In
this case, to avoid the cache invalidation and the resulting off-chip transfer,
we use the ACU, which allows the PPE cache to be updated by the SPE
DMA. Finally, the SPE DMA performs best with addresses aligned at 128-
bytes (cache line size), so each completion queue entry is padded and aligned
to cache line boundaries.

Overall, task management operations in TPC' require only on-chip trans-
fers. Task and completion queues allow overlapping of task management
overheads. Moreover, different task states allow overlapping of DMA and
code execution.

Figure 2.3(a) shows an example of TPC execution. Initially, all task

2.3. TPC DESIGN AND IMPLEMENTATION 13

PPE SPE Task
Descriptor
L2 cache Local Store Task Header
Completion Queue Task Queue
[wlETFTATTTITT]
N K

“~. _.—"' add
RN RVTTCY e S [[on
T et = | wa
4

) Argument descriptor
DMA out/ DMAm‘ [address | sze |
_ 4 fl

Main Memory Tesk 1 ERECN
Data Data Argument descriptor
ades
| s |

(a) (b)

FIGURE 2.3: TPC runtime operations for task issue and completion (a),

and task descriptor (b).

queue entries are in invalid (I) state and all completion queue entries are
in completed state. PPE initiates a task by posting the task descriptor via
remote stores which, sets the task queue entry to active (A) state and setting
the corresponding entry of the completion queue to waiting (W) state. SPE
polls task queue for active tasks and PPE polls completion queue until tasks
are set back to completed state. Moreover, only one task can be in execute
(E) state in the SPE, while there can be many tasks in fetch (F) or write-back
(W) states.

Next, we discuss our evaluation methodology and the applications we

use.

14

CHAPTER 2. DESIGN

Chapter 3

Experimental Platform and

Methodology

In our experiments we use a Playstation3 game console system, equipped
with a 3.2 GHz Cell processor and 256 MBytes of main memory. On the
PlayStation3, software is allowed access to only six of the SPEs. There is

also 256 GBytes of global, off-chip memory.

In our evaluation we use both application kernels as well as full appli-
cations. The applications we use are: FFT and LU from SPLASH-2 [18],
PBPI [7], and an H.264 Encoder [1]. We implemented LU and FFT with
both single and double precision floating point arithmetic, rather than the
initial double precision version only, because the SPEs exhibit significantly
higher performance with single precision floating point operations, resulting
in higher communication to computation ratios and a more realistic evalu-

ation.

Kernels: We ported SAXPY, SGEMV, and CONV2D directly from their
original implementation in Sequoia [6] to TPC, with no structural or al-
gorithmic modifications in the kernel code. SAXPY and SGEMV kernels

have a very low computation to communication ratio and are communica-

15

16CHAPTER 3. EXPERIMENTAL PLATFORM AND METHODOLOGY

tion bound. CONV2D uses convolution to apply a mask to a 2D image.
The initial image of size M x N, is decomposed into a set of parallel 2D
convolution subproblems, each computing a non-overlapping region of the

output image of size S x T. CONV2D is computation bound.

LU: We maintain the original algorithm [18] and modify the execution
control structure of LU to employ a single master and multiple slave cores.
Phases between barriers in the original code are translated to tasks, with the
master core waiting for completion between phases for all tasks to complete.
Porting LU to TPC essentially involved converting three computational-
intensive functions to TPC: bdiv(), bmod(), and bmodd(). The main
modification to these functions is the identification of shared memory ac-
cesses in their body and conversion of these updates to a task argument
list. We use the contiguous blocks version of LU from the SPLASH-2 suite,

therefore we avoid stride arguments.

FFT: The SPLASH-2 version of FFT uses a six-step algorithm that in-
volves alternating phases of transpose and FFT calculations. In our port-
ing, we re-organize the code as follows. We merge steps two and three in
a single asynchronous call to reduce data transfers, as both steps modify
the same data. We modify the transpose step to transpose the matrix in
place. We split the original matrix into blocks in a similar way as the origi-
nal SPLASH-2 FFT but we use the local store of SPEs as an intermediate
buffer to transpose each block. Although certain aspects of porting FET
to TPC require understanding the existing code beyond syntactic modifi-
cation, eventually the changes required are simple structural changes that
do not require modifying data structures or re-writing the code. Similarly
to LU, this is because FF'T has been optimized to avoid fine-grain accesses
to shared memory, which hinder scalability in traditional shared memory

multiprocessors.

17

PBPI: (Parallel Bayesian Phylogenetic Inference) [7] constructs phyloge-
netic trees from aligned homologous DNA sequences. The TPC version
preserves the original version and is integrated with MPI. The main pur-
pose of the TPC port is to achieve fine-grain on-chip parallelism within an
MPI task of the original PBPI implementation. Almost all execution time
in PBPI is spent in 3 parallel loops which are parallelized using TPC tasks.
The only adjustable parameter in these tasks is their input size, which also
defines task granularity. We use this parameter to implement a static load
balancing scheme for the application. We employ vectorization and we com-
pare our implementation of PBPI against an equivalent implementation in

Sequoia.

H.264 Encoder: A typical H.264 video encoder consists of three com-
ponents: prediction, transformation, and entropy encoder [17]. We port
an existing parallel encoder, x264 [1], originally written for shared-memory
multiprocessors, to the Cell using TPC. Although parallelization of x264
can occur at different granularities, the limited on-chip memory leads to
parallelization at the macro-block level, which allows a single frame to be
processed in parallel by all SPEs. This requires satisfying macro-block de-
pendencies in an antidiagonal-based manner [16]. We port the analyse and
encode phases to the SPEs, leaving the rest of the code on PPE. This allows
for parallelizing about 80%-85% o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>