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Abstract

Proteins are large biomolecules, which perform a great variety of functions in the living
systems. The structure of biological macromolecules, like proteins can be provided by ex-
periments. However it is very difficult to get insight into the atomic structures and the way
that their various properties change in time experimentally.

Molecular Dynamics simulations have become a powerful technique in studying biological
macromolecules, like proteins. In the current work, we investigate two proteins in the native
state, the repressor of primer (Rop), and its loopless mutation (RM6), in aqueous solution.
We report data concerning hydrogen bonding, structural properties and stereochemical qual-
ity of the systems. Our results provide information both in molecular and in atomic level.

The native state is stable in Rop protein as well as in RM6 protein. In terms of Rop protein,
Ala is the only amino acid among the residues of the loop that hydrogen bonding with both
helices simultaneously. There are slightly different between Rop protein and RM6 protein.
Comparisons between Rop protein and its mutation RM6 have been also performed.

The analysis of our simulations show that native state of proteins is stable under specific
conditions. Additionally, hydorgens bonds are responsible for the stability of the secondary
structure in both proteins. Electrostatic interactions are very important for the stability
of the native state. Moreover, we could demonstrate the structure of our model with the
Ramachandran plot.
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Chapter 1

Introduction

1.1 Proteins

Proteins are complex biological macromolecules, that not only attain a wide variety of func-
tional roles but also they are the most abundant molecules in the living systems [11], [12],
[20]. The building blocks of proteins are some simple monomeric subunits, called amino
acids, which provide the key to the structure of the thousands of different proteins. Addi-
tionally, all proteins are constructed from the same set of 20 different amino acids, which
are linked covalently to one another in characteristic linear sequences. The amino acids are
linked to one another by peptide bonds forming a long chain of proteins.

To understand how the protein gets its final shape or conformation, we need to understand
the four levels of protein structure:

• Primary Structure is the linear sequence of amino acids in a peptide or protein. By
convention, the primary structure of a protein is reported starting from the amino-
terminal (N) end to the carboxyl-terminal (C) end.

Figure 1.1: Primary Structure [60].

• Secondary Structure refers to three dimensional form of local conformation of pro-
teins. Secondary structure focuses on particularly arrangements of amino acid residues
giving rise to recurring structural patterns of the polypeptide backbone. A few types
of secondary structure are particularly stable and occur widely in proteins. The most
prominent are the α-helix and β-sheet conformations, though β turns occur as well.

11



1.1. PROTEINS CHAPTER 1. INTRODUCTION

Figure 1.2: Secondary Structure [60].

• Tertiary Structure describes the three dimensional (3D) shape of protein. The
tertiary structure will have a single polypeptide chain ”backbone” with one or more
protein secondary structures, the protein domains. Amino acid side chains may interact
and bond in a number of ways. The interactions and bonds of side chains within a
particular protein determine its tertiary structure. The protein tertiary structure is
defined by its atomic coordinates. These coordinates may refer either to a protein
domain or to the entire tertiary structure. A number of tertiary structures may fold
into a quaternary structure.

Figure 1.3: Tertiary Structure [60].

• Quaternary Structure is the number and arrangement of multiple folded protein
subunits in a multi-subunit complex. It includes organisations from simple dimers
to large homooligomers and complexes with defined or variable numbers of subunits.
It can also refer to biomolecular complexes of proteins with nucleic acids and other
cofactors.

Figure 1.4: Quaternary Structure [60].
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1.1. PROTEINS CHAPTER 1. INTRODUCTION

The spatial arrangement of atoms in a protein is called its conformation. The possi-
ble conformations of a protein include any structural state that can be acheived without
breaking covalent bonds. Native proteins are the proteins in any of their functional folded
conformations, which is called native state.

Peptide Bond

A peptide bond is a covalent bond formed between two amino acids. When amino acids
combine to form proteins, an amine group and a carboxyl group form a covalent bond between
them with subsequent elimination of a molecule of water [11], [12], [20]. The chemical reaction
of amino acids to form a peptide bond is presented in Figure (1.5).

As we can see, two amino acids are shown in Figure (1.5), these are able to form a peptide
bond, when two Hydrogens and an Oxygen (the elements of water) are removed from them.
From the first amino acid a carboxyl group loses a hydroxyl group, whereas the amine group
of the other amino acid loses a hydrogen. Then, the Nitrogen (N) substitutes amide linkages.
So, after the formation of the peptide bond, we see a dipeptide and a water molecule.

Figure 1.5: Formation of a peptide bond between two amino acids [51].

In this way amino acids can be linked to form polypeptides, of almost any length. Take into
account that there are 20 amino acids to work with, an unlimited number of chains can be
imagined in which either the sequence or number of amino acids is different; hence we can
explain the chemical basis for the wide diversity of proteins.

By having different compositions or sequences, proteins can be formed to have
totally different structures and functions.

Amino acid structure and its classification

There are 20 amino acids [11], [12], [20]. All 20 of amino acids are α-amino acids. They have
a the carboxyl group (COOH) and an amino group (NH2) bonded to the same carbon

13



1.1. PROTEINS CHAPTER 1. INTRODUCTION

atom (α carbon). They differ from each other in their side chains (R groups), which vary
in structure, size, and electric charge, and which influence the solubility of the amino acids
in water.

Figure 1.6: General structure of an amino acid.

In Figure (1.6), the atom of Carbon (C), which is the center atom, and is bonded with N,
R, H and C, we are going to call it as Cα from now on.

In Table (1.1), we present the 20 amino acids, with their three and one letter code name. In
Figure (1.7), we show the chemical type of the twenty amino acids.

14
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Full name of amino acid name 3-letter name 1-letter name
Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartate Asp D
Cysteine Cys C

Glutamine Gln Q
Glutamate Glu E

Glycine Gly G
Histidine His H
Isoleucine Iso I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W

Tyrosine Tyr Y
Valine Val V

Table 1.1: The twenty amino acids.

15



1.2. THE PROTEIN FOLDING PROBLEM CHAPTER 1. INTRODUCTION

Figure 1.7: The chemical type of the 20 amino acids [52].

1.2 The Protein Folding Problem

Proteins must fold up into the native state before they can actively function in the living
cell [7]. According to the famous Levinthal paradox, if a peptide bond can adopt only
two conformations, and let us consider that we have a relatively short protein contained a

16



1.3. ROP PROTEIN CHAPTER 1. INTRODUCTION

hundred residues. Then, all the possible forms of it are around 2100 ≈ 1030. If the protein
should explore conformational space randomly with nearly one conformer per ps, which is
possibly the speed limit, then the time to find the native state should take more than the
age of the universe. So now, it is clear that there must be some other principles at work,
to make proteins fold in fractions of time. The path a protein follows to its native state is
known as the protein folding problem. We can summarize it in two basic subjects.

1. Can we predict the native structure of a protein from its amino acid sequence?

2. How does the protein find its path toward the native state?

1.3 Rop Protein

The Repressor of Primer (Rop) protein is a small homodimeric (Figure 1.8a) RNA binding
protein, which is involved in the regulation of copy number of ColE1 plasmids [1], [2], [3],
[4], [6]. Both methods X-Ray crystallography and NMR are used to study the structure of
Rop Protein. Each monomer of Rop protein consists of 63 amino acids (Figure 1.9), that
form two a-helices (in Figure 1.8b the yellow) connected by a loop of four amino acids (L29,
D30, A31, D32), see in Figure (1.8b) the green region. Moreover, the molecular weight of
its monomer (a chain) is about 7.500 Da. The two monomers (the two chains) related to a
two-fold symmetry, which means that the protein looks the same if we turn it 180 around
an axis.

Rop serves as a paradigm of a canonical 4-a-helical bundle. The apparent structural simplic-
ity of its folding motif led various groups to believe that Rop is a model system that we can
use for the investigation of the sequence-structure relationships in the folding and dynamics
of four a-helix bundles. The four helices packed in an antiparallel style of hydrophobic and
hydrophilic amino acids, as well as follow a specific pattern, known as heptad pattern, which
repeated every seven residues and it has the type (a,b,c,d,e,f,g). The positions a and d are
generally hydrophobic and their side chains packed in the central part of the structure ac-
cording to the ”knobs in holes” model forming the hydrophobic core. There is a disruption
of the heptad periodicity only once and leads to the formation of the loop. The role of Ala31
is crucial in the establishment of the loop region because among the amino acids it is the
only one that forms Hydrogen Bond to both helices simultaneously.

In Figure (1.8), we present in more details the Rop protein by a cartoon representation. In
Figure (1.8a), we show the two chains of Rop with different color. Then, we take one of the
chains (Figure 1.8b) and we colored it with different colors, in order to present the different
parts of the chain. With yellow is the two α-helices of the chain, with red is the tail and
finally, with green is the loop region.

17



1.4. LOOPLESS ROP (RM6) PROTEIN CHAPTER 1. INTRODUCTION

MET THR LYS GLN GLU LYS THR ALA LEU ASN MET ALA ARG PHE ILE

ARG

SERGLNTHRLEUTHRLEULEUGLULYSLEUASNGLULEUASPALA

ASP

GLU GLN ALA ASP ILE CYS GLU SER LEU HIS ASP HIS ALA ASP GLU

LEU

TYRARGSERCYSLEUALAARGPHEGLYASPASPGLYGLUASNLEY

Figure 1.9: The sequence of amino acids of the Rop monomer.

(a) A cartoon representation of Rop protein. (b) A cartoon representation of a single chain of
Rop protein, which we distinguish with different
color the different parts of it.

Figure 1.8: Rop protein.

1.4 Loopless Rop (RM6) Protein

The loopless mutation of Rop, known as RM6 protein, created in order to study the role
of heptad motif and the hydrophobic core of Rop protein [2], [5], [4]. As we have already
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mentioned, the heptad motif is interrupted in the loop, where there are only five residues
instead of seven. So, RM6 is a loop mutation, in which an uninterrupted pattern of heptad
repeats established through a five-residue deletion in the loop (from 30ASP up to and includ-
ing 34GLN). The monomer of this loopless mutant converted into a single helix. The whole
RM6 molecule is a homotetrameric, all anti-parallel, left-handed four-α-helix bundle, totally
reorganized relative to the dimeric Rop. Thereby, it is becoming a hyper-thermostable pro-
tein. Each monomer of the tetramer corresponds to one Rop polypeptide chain and forms a
continues α-helix in contrast with Rop where we have the form α-helix-turn-α-helix hairpin.

In the Figure (1.10), we present a chain of Rop protein, from which we remove 5 amino
acids, from the loop region and then, we present a chain of RM6. We observe that the chain
of RM6 looks like a linear line.

(a) A chain of Rop protein.

−→

(b) A chain of RM6 protein.

Figure 1.10: The transformation of the chain of Rop with the remove of the 5 residues from
the loop region to the linear chain of RM6.

In Figure (1.11), we represent with cartoon scheme the RM6 tetramer. We show each chain
of RM6 with different colour. Moreover, in Figure (1.12), we present the amino acid sequence
of RM6 monomer.
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METTHR LYS GLN GLU LYS THR ALA LEU ASNMETALAARGPHE ILE

ARG

SERGLNTHRLEUTHRLEULEUGLULYSLEUASNGLULEUALAASP

ILE

CYS GLU SER LEU HIS ASP HIS ALA ASP GLU LEU TYRARG SER CYS

LEU

ALAARGPHEGLYASPASPGLYLEU

Figure 1.12: The sequence of amino acids of an RM6 monomer.

Figure 1.11: A cartoon representation of RM6 protein.
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1.5 Goals of this thesis

The structure of biological macromolecules like proteins can be provided by experiments.
However it is very difficult to get insight into the atomic structures and the way that their
various properties change in time experimentally. Computer simulations constitute a power-
ful technique, which is based on fundamental physics providing information on how proteins
and different biomolecules move, vibrate, interact and generally operate [8]. We can analyze
the simulated structure in atomic detail, to investigate what is critical in determining biolog-
ical activity. Simulations have been assumed as the key in developing the theoretical context
which is now the core of biomolecular science. This is the understanding of the way that
biological molecules move, their structure and conformations. Biological macromolecules like
proteins are very complex and challenging in modeling.

In biology, one of the most important but still unanswered problems, is known as the protein
folding problem (Section:1.2), we can summarize it in two basic questions: 1) can we predict
the structure and function of proteins only from its amino acid sequence alone? 2) How
does the protein find its way toward the native state? As we have already mentioned in
Section (1.1), the function of protein is determined by its three-dimensional (3D) native
state. Biological function of proteins is based on molecular interactions of a consequence of
their structure. So, the study of the proteins structure is a key point in the understanding of
biology. The knowledge that governs the protein folding will allow us to design proteins with
desirable structural properties. The second question related with the first one, because the
protein’s stability and folding kinetics are crucial components of the structure and function
prediction.

However althought nowadays, atomistic simulations can reach the time scale of microseconds
(µs) for small proteins in solution, in the case of larger systems, simulations are limited to
tens up to hundreds of nanoseconds. This limitation in time can be overcome through proper
coarse grained models coming from hierarchical multi-scale modelling techniques.

In the current work, we explore, through atomistic Molecular Dynamics (MD) simulations
(Chapter:2), the native state of two proteins. The first one is the repressor of primer (Rop)
protein (Section: 1.3), and the second one is its loopless mutation (RM6) protein (Section:
1.4), in aqueous solution. MD generates a trajectory by numerical integration of classical
equations of motion (Section: 2.3.1). The produced trajectory, contains all dynamical infor-
mation, that we need for our analysis, in addition, we can characterize the time evolution of
the molecular structure, their fluctuations and interactions. Dynamics plays also a key role
in their functionality. Proteins undergo significant conformational changes while perform-
ing their function and this could lead to their rearrangement in the 3D space. The main
purpose of our study is to investigate the stability of the native state of these two proteins,
and to understand which are the driving forces for this stability. A clear advantage of per-
forming MD simulations over real experiments is the fact that we can obtain information
in microscopic level and express them in macroscopic properties. Concerning the stability
of the native state, we measure the root mean square deviation (RMSD), with respect to
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a reference (native state) structure . Then, we measure the radius of gyration (Rg), which
gives us information about the compactness of the 3D conformation of our protein molecules.
We perform a more detailed analysis in atomic level where the creation of hydrogen bonds
among proteins is detected. Additionally, the stereochemical quality of our two models, is
very significant, therefore we calculate the well known Ramachandran plot.

In the current work we study the Rop protein and its RM6 mutation, where five amino
acids are removed from the loop region. A totally different conformation compared to Rop
is observed in the native state of RM6. According to literature ([2]), even a single mutation
of an amino acid can drive to a complete different native state.

Molecular simulations provide the oportunity to explore the driving forces for the native
state conformation of various mutations as well as their structural and dynamical properties.
Therefore they provide information for the creation of mutation with desired functions.
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Chapter 2

Molecular Dynamics

2.1 Computer Simulations

Computer simulations are executed on a computer and are the imitation of a real-world
process or system over time [14], [16], [18]. If we want to perform a computer simulation,
we should develop a good model for the desired system we want to investigate. Computer
simulations have become a useful part of mathematical modeling of many natural systems in
physics, chemistry, as well as biology, to gain insight into the operation of those systems. We
perform Computer Simulations in the belief of understanding the properties of assemblies of
molecules, concerning their structure, as well as, the microscopic interactions between them.
We can learn through simulations something that cannot found out in other ways, like real
experiments. So, we can say that they serve as an addition to the conventional operations.
The two main families of simulation technique are molecular dynamics (MD) and Monte
Carlo (MC).

In Figure 2.1, we can see that computer simulation act as a link between microscopic length
and time scale and the macroscopic world of the laboratory. Therefore, if someone wants
to perform a real experiment in a laboratory is difficult or even impossible, for the reason
that the materials we want to use are too expensive or too dangerous for use. So, computer
simulations solve these kinds of problems, and we can study properties of systems, which
we could not through real experiments. If we want to compare directly experimental mea-
surements made on specific molecules (like proteins) to the results of simulation work, it is
essential to have a good model of molecular interactions.

In this work we focus on Molecular Dynamic Simulations, so we are going to discuss about
it in the next sections.
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Real Model

Make model

Model System

Model System

Test model

Simulation Results

Test Theory

Theoretical Predictions

Figure 2.1: Computer simulations act as a bridge between theory and experiment

2.2 Molecular Dynamics Simulations

Let us consider that we have a many-body system consisting of N particles that we want
to study [14], [16], [18]. Molecular Dynamics (MD) Simulation is a powerful technique of
computing the equlibrium and transport properties of such systems. The solution of the
classical equations of motion, which are integrated numerically gives us information about
the positions and velocities of atoms in the system, is at the heart of this technique. Before
we perform a real experiment, we follow specific steps, the same we do in a MD simulation.
First, we should prepare our sample. We select our model we want to study, consisting of N
particles and we solve Newton’s equations numerically for this system until we equilibrate
it, which means that the properties of our system no longer change with time. When we
reach equilibration, we perform the actual measurement. If we want to measure a quantity,
firstly, we should express it as a function of the positions and momenta of the particles.

After equilibration we perform the actual measurement. A simple flow diagram of a standard
MD algorithm is shown in the Figure 2.2 and includes the following steps:

STEP 1 First, a model configuration representing a molecular-level snapshot of the correspond-
ing physical system is chosen or constructed and is initialized (initial positions, veloc-
itites of each particle within the system).

STEP 2 Then, we compute the total force acting on each particle within our system.

STEP 3 We integrate the equations of motion by choosing an appropriate method.

STEP 4 After the system has reached equilibration, we performed the actual measurements (po-
sitions, velocities, energie, etc, are stored) after the system has reached equilibration,
periodically every Nk steps.
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STEP 5 After we complete the N steps of our loop, the averages of the measured quantities
that we want to study are calculated and printed.

Starting

Initial Configuration

Compute Forces for each atom within the system

Integrate equations of motion

Store positions energies etc. every Nk steps

Print out Final averages

End of MD

N steps

Figure 2.2: A simple flow diagram of standard MD algorithm

2.3 Force Calculation

In Molecular Dynamics simulations, the calculation of the force acting on every particle is
the most time-consuming part [14].

2.3.1 Classical equations of motion

In Molecular Dynamics simulation, the most time-consuming part is the calculation of the
forces [14], [16], [18], [15], [13]. The solution of the classical equations of motion, which are
integrated numerically and gives information for the positions and velocities of atoms in the
system, is the heart of MD simulation.

Let us assume a system of N interacting molecules interacting via a potential energy function
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V. If we consider a system of atoms with Cartesian coordinates then, we can write the
equations of motion in the following form:

mir̈i = Fi (2.1)

Fi = −∂V (r)

∂ri

where:

• mi is the mass of atom i

• Fi is the force acting on atom i

• ri is the coordinates of atom i

• ri = rxi , r
y
i r
z
i

• V (r) is the potential energy, where r = (r1, . . . , rN) represents the complete set of 3N
atomic coordinates.

• i = 1, . . . , N

In the equations dots denote time derivatives.

We can write the above equations (2.1) in various ways. While the equations are valid for a
broader formulation of classical mechanics enables us to develop equations of motion for any
coordinate system. For that reason, we should denote the generalized coordinates as q and q̇.
The latter coordinates describe the molecular configuration, as well as their time derivatives,
respectively. The most popular formalisms are the Lagrangian and the Hamiltonian.

In the Lagrangian formalism, the trajectory q(t)(= q1(t), q2(t), . . . , qk(t), . . . ) satisfies the
following set of differential equations:

d

dt
(
∂L

∂q̇k
)− ∂L

∂qk
= 0

where L = L(q, q̇, t) is the Lagrangian funtion of the system. The Lagrangian is defined in
terms of the kinetic K and the potential energy V as:

L = L(q, q̇, t) ≡ K(q̇)− V (q).

As we can see, the kinetic energy (K) is expressed as a function of the derivative of q and
the potential energy (V ) as a function of the q coordinates themselves. The generalized
momenta pk conjugate to the generalized coordinates qk are defined as

pk =
∂L

∂q̇k
.

26



2.3. FORCE CALCULATION CHAPTER 2. MOLECULAR DYNAMICS

Alternatively, we can use the Hamiltonian formalism, which is defined in terms of the gen-
eralized coordinates and momenta. These obey Hamilton’s equations of motion:

q̇k =
∂H

∂pk

ṗk = −∂H
∂qk

where H is the Hamiltonian of the system, which is strictly defined by the following equation:

H(p,q) =
3N∑
k=1

q̇kpk − L(q, q̇) (2.2)

Now, if the potential energy V is independent of velocities and time, then H becomes equal
to the total energy of the system: H(p,q) = K(p) + V (q). For the Cartesian coordinates,
Hamilton’s equations of motion become:

ṙi ≡ vi =
pi
mi

ṗi = −∇riV ≡ −
∂V

∂ri
= Fi

hence
mir̈i ≡ miq̇i = Fi (2.3)

where Fi is the force acting on atom i.

The classical equations of motion contain some impressive properties. The conservation law
is the most important one. Now, if we assume that K(q̇) and V (q) do not depend explicitly
on time, then it is easy to see that Ḣ = dH

dt
is zero, i.e the Hamiltonian is a constant of the

motion. This conservation law is satisfied in actual calculations when the forces acting on
the system are no explicitly time- or velocity-dependent.

A second important property is that Hamilton’s equations of motion are time reversible.
The time reversible means that, if we change the signs of all velocities, we will cause the
molecules to retrace their trajectories backward. The trajectories generated by the computer
should also contain this property.

2.3.2 Integration of equations of motion

Numerical Algorthms

The molecular dynamics simulations based on the numerical solution of the set of Newton’s
equations of motion [14], [16], [18], [15], [13]. In principle, the use of a proper algorithm for
the numerical integration of these equations seems to be very important. There are a lot
of different methods for solving ordinary differential equations. For that reason, a proper
algorithm should satisfy the following criteria:
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• algorithm should be executed fast, require low memory and be easy to implement.

• It should permit to use a large timestep.

• Additionally, the trajectory should be reproducible and time reversible.

• Finally, it has to converse the total energy.

Verlet Algorithm

The Verlet integrator was first introduced by Verlet in 1967. Verlet-like integrators are
symplectic. A symplectic integrator preserve phase space, as well as time-reversibility. For
distinctness, we will derive the Verlet equations according to a single coordinate, but we
should keep in mind that the following relations could be generalized to vector Cartesian
coordinates. Let us consider a Taylor expansion of the position coordinate in two distinct
directions in time:

r(t+ dt) = r(t) + dtv(t) +
dt2

2
r̈(t) +

dt3

6

...
r (t) +O(dt4) (2.4)

r(t− dt) = r(t)− dtv(t) +
dt2

2
r̈(t)− dt3

6

...
r (t) +O(dt4) (2.5)

Summing these two equations (2.4) and (2.5), we obtain:

r(t+ dt) + r(t− dt) = 2r(t) + dt2r̈(t) +O(dt4)

Now, we move the term r(t+ dt) of the above equation to the right hand side:

r(t+ dt) = 2r(t)− r(t− dt) + dt2r̈(t) +O(dt4) (2.6)

Here, we calculate the term r̈(t) = f(t)
m

from the forces at the current positions, by the use
of the force field.

The accuracy of the equation (2.6) is of order dt4. The equation (2.6) is the basis of the
Verlet algorithm for MD.

It is notable that no velocities are necessary to compute the new positions. The knowledge
of trajectory help us to derive the velocity by using:

r(t+ dt)− r(t− dt) = 2v(t)dt+O(dt3)

or

v(t) =
r(t+ dt)− r(t− dt)

2dt
+O(dt2). (2.7)

The expression of velocity has an accuracy of order dt2.

A disadvantage of the Verlet algorithm is that we have to store in memory two sets of
positions, r(t) and r(t− dt).
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In the next subsections, we discuss two modifications of Verlet algorithm, the first one is the
velocity Verlet algorithm and the second is the leapfrog algorithm, which is the one we use
in our simulations.

Velocity Verlet Algorithm

The Velocity Verlet algorithm introduced in 1982, which is more commonly in use. It is a
reformulation of Verlet scheme. More specifically the derivation way is pretty similar. As
we discussed in above subsection, by the Taylor expansion we have:

r(t+ dt) = r(t) + v(t)dt+
f(t)

2m
dt2 (2.8)

v(t+ dt) = v(t) +
f(t+ dt) + f(t)

2m
dt (2.9)

Let us show how the Velocity Verlet algorithm and the Verlet scheme are equivalent, we note
that the equation

r(t+ 2dt) = r(t+ dt) + v(t+ dt)dt+
t+ dt

2m
dt2

and the equation (2.8) can be written as

r(t) = r(t+ dt)− v(t)dt− f(t)

2m
dt2

By summing we obtain

r(t+ 2dt) + r(t) = 2r(t+ dt) + [v(t+ dt)− v(t)]dt+
f(t+ dt)− f(t)

2m
dt2

Then, by substitution of equation (2.9) assigns

r(t+ 2dt) + r(t) = 2r(t+ dt) +
t+ dt

m
dt2,

which, actually, is the coordinate version of Verlet algorithm.

A general strategy of this algorithm is the following:
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Step 1 Given an initial setup of the velocities (v(t)) and positions (r(t)) of our system, we
first compute the forces on each atom using the force field.

Step 2 Compute the new position:

r(t+ dt) = r(t) + v(t)dt+
f(t)

2m
dt2

Step 3 Do a computation of the intermediate velocity:

v(t+ dt/2) = v(t) +
f(t)

2m
dt

Step 4 Since the new positions r(t+ dt) are known, calculate the new forces f(t+ dt)

Step 5 Finish with the calculation of the new velocity:

v(t+ dt) = v(t+ dt/2) +
f(t+ dt)

2m
dt

Step 6 Return to step 1.

Table 2.1: A strategy of Velocity Verlet algorithm.

Leap Frog Algorithm

There are several algorithms equivalent to the Verlet algotihm. The simplest among them is
the leapfrog algorithm, which evaluates the velocities at half-integer time steps (dt/2) and
uses these velocities to compute the new positions of the particles. Before, we derive the
Leap Frog scheme from the Verlet algorithm, we should define the velocities at half-integer
time steps:

v(t− dt/2) ≡ r(t)− r(t− dt)
dt

as well as

v(t+ dt/2) ≡ r(t+ dt)− r(t)
dt

From the above equation we obtain an expression for the new positions, which bases on the
old positions and velovities:

r(t+ dt) = r(t) + dtv(t+ dt/2) (2.10)

According to the Verlet scheme, we get the following expression for the update of the veloc-
ities:

v(t+ dt/2) = v(t− dt/2) + dt
...
r (t) (2.11)
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Figure 2.3: An illustration of Leapfrog method.

There is a disadvantage of Leap Frog algorithm. As we notice the velocities and positions
are not defined at the same time. As a result, kinetic and potential energy are not defined
at the same time, and hence we are not able to compute the total energy at any one point
of time.

2.3.3 Statistical Ensembles

An ensemble is a collection of all possible systems which have different microscopic states
but have an identical macroscopic or thermodynamic state [14], [16], [18], [15], [13]. A
thermodynamic state is usually defined by a small set of parameters, like the number of
particles N, the temperature T, and the pressure P. In the previous section, we described
methods, which address the solution of Newton’s equation of motion in the microcanonical
ensemble (NVE). There is usually the need to perform MD simulations under specified
conditions such as temperature and/or pressure. Let us consider that we want to investigate
other ensembles, in practice there are three ensembles in common use:

• The microcanonical ensemble (NVE); in this ensemble the number of molecules N, the
volume V, and the energy E are kept constant,

• The canonical ensemble (NVT); here the number of molecules N, the volume V and
the temperature T are maintained constant,

• The isothermal-isobaric ensemble (NPT); in this ensemble the number of molecules N,
the pressure P, and the temperature are kept constant.

In the literature, there are a great variety of methodologies for performing MD simulations
under NVT or NPT ensemble. Most of these constitute a reformulation of the classical
equation of motion, in order to include the constarints of constant T and/or P. Before
proceeding to overview the details of the extended system method, it is better to separate
two issues: pressure and temperature control.
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2.3.4 Thermostats and Barostat

The temperature (T) is an important parameter because many experimental observables
that can be compared with the information obtained from MD simulations depends on it .
In order to control properly the temperature of the system we use the thermostats. The most
widely used class of thermostat algorithms is based on rescaling of atomic velocities. In this
section we are going to discuss about Berendsen thermostat and the V-rescale thermostat.

Berendsen Thermostat

Berendsen proposed a weak coupling method to an external heat bath at constant temper-
ature, which is called Berendsen thermostat [9], [?], [10]. Berendsen thermostat is trying to
correct the deviations of the actual temperature T form the prescribed one To. To achieve
that the system is forced to obey the following equation:

dT

dt
=

1

τT
(To − T ) (2.12)

where T is the desired temperature, τT is time constant characterizing the frequency of the
system coupling to temperature bath, and To is the instantaneous value of temperature,
calculated from the momenta of the system. The velocities are scaled each time step by the
following scaling factor:

λ =
(

1 +
dt

τT

(To
T
− 1
)) 1

2

V-rescale Thermostat

V-rescale thermostat is essentially a Berendsen thermostat with an additional stochastic
term that ensures a correct kinetic energy distribution by modifying it according to

dK = (Ko −K)
dt

τT
+ 2

√
KKo

Nf

dW
√
τT

(2.13)

where K is the kinetic energy, Nf the number of degrees of freedom, dW a Wiener process.

Without the stochastic term 2
√

KKo

Nf

dW√
τT

the equation (2.13) reduces to that of the standard

Berendsen thermostat [10].

Berendsen Barostat

Berendsen also proposed an algorithm for performing isobaric MD simulations, by coupling
the system into a pressure bath [16]. If we want to achiece this, the system is forced to obey
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the following equations:
dP

dt
=

1

τP
(Po − P ) (2.14)

whrere P is the desired pressure value, τP is the time constant characterizing the frequency
of the system coupling pressure bath. Po is the instantaneous value of pressure calculating
from the configuration of the system. The positions are scaled at each time step by the
following factor:

µ = 1− βT
dt

τT
(Po − P ) (2.15)

where βT is the isothermal compressibility of the system.

2.3.5 Periodic Boundary Conditions

Usually, the number of particles of the systems we want to study is at least N∼ 1023 [14],
[13]. In such systems, the effect of the walls on particles near them is negligible. When we
perform a MD simulation, the number of particles involved are 103−105, due to limited CPU
power. For these relatively small systems, there are surface effects to the particles near the
walls. To overcome the surface effect of our simulated systems, we apply periodic boundary
conditions (PBCs), pretending that boundaries do not exist.

Figure 2.4

The simplest way to understand how (PBCs) work,
we should think the game Pacman, see Figure (2.4).
When Pacman reaches one side of the box, it re-enters
on the opposite side. The same thing happens in a
molecular dynamics simulation, with the exception
that instead of Pacman, we have particles.

The simulation takes place in a computational box,
which is virtually surrounded by an infinite number
of identical copy boxes (Figure (2.5)). In our case,
we care about behavior only of one box, the ’central’
one, all the other copies, behave the same as the main
box. When PBCs are applied particles may freely
pass the boundaries of the box. For each particle
leaving, simultaneously an identical one from a copy box enters at the opposite side. The
particles of an MD system, are influenced by them who are in same simulation box as well
as in replicas boxes.
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Figure 2.5: 2D Periodic Boundary Condition. The main box (blue) surrounded by copies.

In 3D space, there are five types of a box that we are able to use: the triclinic box, the
hexagonal prism,two types of dodecahedrons, and the truncated octahedron. By the con-
clusion of what we mentioned above, a studied system with periodic boundary conditions is
like an infinite system.

2.4 Initial Conditions

2.4.1 Initial Coordinates and Velocities

Before the production of an MD simulation, we need the initial positions and the initial
velocities of all atoms in the studied system [13], [14], [15]. The initial positions correspond
to the Cartesian coordinates of the initial geometry of the system. In the current work
we study proteins, the initial 3D protein structure determined by NMR method (Rop) and
X-ray crystallography (RM6).

The initial velocities generated by selecting velocities from the Maxwell Boltzmann distri-
bution, for a specified temperature. The Maxwell Boltzmann distribution, p(u), provides
the range of values the program selects the initial velocities of all atoms. This distribution
function has the following form:

p(ui) =

√
mi

2πkbT
exp(−miu

2
i

2kbT
) (2.16)

In equation (2.16), we denote as mi the mass of each atom i, kb the Boltzmann constant, T
the temperature and finally ui the velocity of each atom i.
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Figure 2.6: Maxwell Boltzmann Distribution.

2.4.2 Force Field

The accuracy of the MD simulations is straightly related to the potential energy function
used to describe the interactions between molecules [22],[13], [15], [18]. Most commonly these
interactions are split into two terms, bonded interactions and non-bonded interactions. The
interatomic potential energy is:

U(r) = Ubonded(r) + Unonbonded(r)

A Force Field constituted by a set of these interactions, this set included into a topology file.

Figure 2.7: Force Field.

Bonded Interactions

The bonded interactions may be described by the following terms:

Ubonded(r) = Ubonds(r) + Uangles(r) + Udihedrals(r) + Uimproper(r) (2.17)
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If we want to model a covalent bond in a molecular structure, we use the harmonic potential.
The harmonic potential is the most common, and it can be used in any molecular dynamics
program.

Ubonds =
∑
bonds

kb(r − r0)2 (2.18)

In the above equation kb is the harmonic force constant, r = |ri − rj| is the current bond
length, where i and j are the two consequent along the bond and r0 is the equilibrium bond
length.

Figure 2.8: Bond [61].

An angle likely defined between two bonds sharing a common atom.

Uangles =
∑
angles

kθ(θ − θ0)2 (2.19)

where θ0 is the reference angle and kθ is the force constant for the harmonics version of the
angle potential.

Figure 2.9: Angle [61].

There are two types of torsion potentials, and we can distinguish them into two terms:
dihedral angle potential and improper torsions. Both of them depends on a quartet of atoms.
The first potential relies on four consecutive bonded atoms, whereas the second depends on
three atoms centered around a fourth atom. First, we discuss the proper dihedral type and
subsequently the improper type.

The proper torsion potential is expressed as a cosine series expansion:
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Uproper =
∑
proper

kφ(1 + cos(nφ+ φ0)) (2.20)

where kφ is the force constant belonging to the cosine type of potential, φ is the torsional
angle, φ0 determines where the torsion angle passes through its minimum value and n is
called multiplicity and gives the number of minimum points in the function as the bond is
rotated through 360◦.

Figure 2.10: Proper dihedral angle [61].

The improper torsion potential is mainly used to maintain the planarity in a molecular
structure. It only has one minimum and a harmonic potential may be used. Therefore the
improper torsion is given by the equation:

Uimproper =
∑

improper

kξ(ξ − ξ0)2 (2.21)

where kξ is the force constant for the harmonics version of the improper potential, ξ is the
torsional angle between the two planes and ξ0 the angle where the potential passes through
its minimum value.

Figure 2.11: Improper dihedral angle [61].

Non Bonded Interactions

Force Field also contains non-bonded interactions. The non-bonded inter- actions depend
on the distance between interacted molecules and can express as the sum of Lennard-Jones
potential and Coulomb potential:

Unonbonded(r) = ULJ(r) + Ucoulomb(r)
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Lennard-Jones Interactions

The van der Waals interactions are often modeled via the Lennard–Jones potential and is
given by the following equation:

ULJ = 4εij

[(σij
rij

)12
−
(σij
rij

)6]
(2.22)

where

• U is the intermolecular potential between two atoms or two molecules.

• εij is the well depth and a measure of how strongly the two particles attract each other.

• σij is the distance at which the intermolecular potential between the two particles is
zero and it is called van der Waals radii.

• rij = |ri − rj| is the distance of separation between both particles.

The Lennard-Jones model consists of two parts: a steep repulsive term r−6ij and smoother

attractive term r−12ij .

If we want to calculate the σij and εij parameters we could use the combination rules of
Lorent-Berthelot :

σij =
1

2
(σii + σjj)

εij = (εiiεjj)
1
2

It is obviously, that the parameters σij and εij depend on the type of molecules.

Figure 2.12: The Lennard Jones potential.
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Coulomb Interactions

Coulomb interaction describes the electrostatic interaction between two stationary ions (i.e.
charged particles). In the Coulomb interaction, the force is repulsive for the same-charged
ions and attractive for the opposite-charged ions. The magnitude of the repulsive/attractive
forces increases as the charge increases or the separation distance decreases.

The electrostatic potential between two charges Q1 and Q2 is described by the following
equation:

Ucoulomb(rij) =
QiQj

2πε0rij
(2.23)

where Qi Qj are the charges of atoms i and j respectively, and ε0 is the permittivity of free
space and rij = |ri − rj|.

The Coulomb interaction is considered to be a long-range interaction.

Cut-off

The computational cost associated with molecular dynamics simulations is very large and
it is a significant obstacle to the study of complex biological processes using MD simulation
technique [14].

The calculation of nonbonded interactions, both electrostatic and Van der Waals acting
between all pairs of atoms, is the most computationally expensive part in MD simulations.
MD simulations trade face a tradeoff between computational efficiency and accuracy. We
want to perform MD simulations less expensively or on longer timescales, in order to achieve
it a number of approximations of the potential energy function are often employed. There is
a common approach to decrease the computational cost, which is to ignore any interaction
between atoms separeted by more than some cutoff distance. This approach is accepted in
general as being sufficiently accurate for Van der Waals forces, which decay rapidly to zero
as the distance increases (Figure 2.12).

Verlet List

Let us consider that we want to simulate a large system, and we use a cutoff that is smaller
than the simulation box [14]. then many particles do not contribute to the energy of a
particle i.

In this method, we use a second cutoff radius rv > rc, and before the calculation of the
interactions, a list if made, known as the Verlet list, of all particles within a radius rv of
particle i. In the following calculations of the interactions, we have to consider only those
particles in this list. We have not save CPU time until now, which is our purpose. We gain
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such time when we next calculate the interactions. We compute the maximum displacement
of the particles, and if this is less than d, then we have to count only the particles in the
Verlet list. But if one of the particles is displaced more than d, we should update the Verlet
list.

Figure 2.13: The Verlet list: a particle i interacts with those particles within the cutoff radius
rc. The Verlet list contains all the particles within a sphere with radius rv > rc.

2.4.3 Particle Mesh Ewald Method (PME)

We can simulate biological systems which may contain 105 particles [14], [13], [46], [47], [48].
If we have such systems, it is crucial to avoid computing all pair interactions as otherwise the
computational cost would be O(N2). This issue is particularly relevant for long-range inter-
actions,such as Coulombic potential, although is simple. So, it is necessary to find an efficient
technique for computing the long-range part of the intermolecular interactions. Moreover,
the computation of electrostatic interactions is very complicated, for the reason that we apply
periodic boundary conditions, and it requires the calculations for the Coulombic interactions
to happen in numerous replicated simulation boxes.

The Smooth Particle Mesh Ewald method (SPME) is an efficient scheme for computing the
long-range electrostatic forces which exhibits improved O(NlogN) scaling in comparison to
the O(N2) scaling of standard Ewald summation, differing from the latter in the use of B-
spline interpolation and the 3D FFT in computing the reciprocal space summation. The use
of B-spline interpolation leads to an energy conservation. In the following, we introduce the
SPME method and B-spline interpolation.

Smooth Particle Mesh Ewald (SPME)

If we want to calculate the electrostatic interaction with periodic boundary conditions , we
should consider that our system is contained in a unit cubic cell U [46], [47]. Let U defined
by the edge vectors a1,a2,a3. We can also denote for later the conjugate reciprocal vectors a∗1,
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a∗2,a
∗
3 which are defined by the following relations a∗i aj=δij (Kronecker delta) for i,j=1,2,3.

The unit cell U contained all the N points charges q1, . . . , qN with positions r1, . . . , rN , as
well as, within the unit cell U charge neutrality

∑N
i=1 qi = 0 is satisfied. Now, we can define

the fractional coordinates of charge qj by slj=a, where l=1,2,3.

The charges interact according to Coulomb’s law F = k
qiqj
r2ij

, where k is the Coulomb’s

constant, rij = |ri−rj| and qi,qj are the charges of points, with periodic boundary conditions.
Thus a point charge qi at position ri interacts with other charges qj, j 6= i at positions rj as
well as with all of their periodic imags at positions rj+n1a1+n2a2+n3a3

We can write the electrostatic energy of a neutral unit cell U is given by:

E(r1, . . . , rN) =
1

2

′∑
n

N∑
i=1

N∑
j=1

q1qj
|ri − rj + n|

(2.24)

For simlpicity of notation, we are omitting all factos of 4πεo. The prime on the outer
sum indicates that summation term with i=j and n are omitted. The reason is that the
particle does not interact with itself. The 1

2
in front of the sum is to avoid double counting.

The infinite sum in equation (2.24) not only converges very slowly but also is conditionally
convergent, meaning that the result depends on the order of the summation. The Ewald
method evaluates E by transforming it into summations that converges absolutely: a direct
sum in Cartesian space, and a reciprocal sum in Fourier space .

In most MD simulations certain non-bonded interactions within the same molecule are omit-
ted, being handled by different terms in the potential calculation. The corresponding particle
pairs (i,j) for which nonimaged nonbond interactions are not calculated are said to be stored
in a mask pairlist called M. The masked list correction should be subtraced from the direct
and reciprocal energy sums. Usually the masked pairs are explicitly skipped over during the
direct sum calculation. The other contribution to the correction term is the charges acting
on themselves.

If we want to deal with the Fourier space, we should define the reciprocal lattice vectors
m by m=m1a

∗
1+m2a

∗
2+m3a

∗
3, with m1,m2,m3 integers not all zero. The so called structure

factor is defined as:

S(m) =
N∑
j=1

qjexp(2πim · ri) =
N∑
j=1

qjexp(2πi(m1s1j +m2s2j +m3s3j)) (2.25)

where slj are the fractional coordinates atom j and they defined above.

The electrostatic energy in equation (2.24) can be rewritten as follows:

E = Edir + Erec + Ecorr

where

Edir =
1

2

∗∑
n

N∑
i,j=1

qiqjerfc(β|ri − rj + n|)
|ri − rj + n|

(2.26)
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Erec =
1

2πV

∑
m

exp(−π2m2

β2 )

m2
S(m)S(−m) (2.27)

Ecorr = −1

2

∑
(i,j)M

qiqjerf(β|ri − rj|)
|ri − rj|

− β√
π

N∑
i=1

q2i (2.28)

In the equation (2.26), the asterisk over the n summation indicates that the terms with n=0
and i=j are omitted. The reciprocal energy Erec requires a generalization of the strucure
factor S(m) to include the multipolar interactions. Moreover, V is a unit cell volume (V =
a1 · a2 × a3)

The Coulombic force acting on atom i can be obtained by differentiating the sum

E(r1, . . . , rN) = Edir + Erec + Ecorr

with respect to rj. We are going to refer to the individual terms :

−∂Edir
∂ri

,−∂Erec
∂ri

,−∂Ecorr
∂ri

,

as the ”direct force”, ”reciprocal force”, and ”correction force”, accordingly.

B-splines interpolation on a grid

In order to approximate the complex exponentials appearing in the structure factors (2.25),
we use interpolation [46], [47]. Let us assume that we have a discrete 3D grid of sizes
K1, K2, K3 of the unit cell U. We can write the scaled fractional coordinates of the particle
with position r as: uj = Kja

∗
j · r, for j=1,2,3. Therefore,

exp
(

2πim · r
)

= exp
(

2πi
m1u1
K1

)
· exp

(
2πi

m2u2
K2

)
· exp

(
2πi

m3u3
K3

)
(2.29)

In the smooth PME method, we use cardinal B-splines Ml for the interpolation which pro-
duces sufficiently smooth energy functions, allowing for analytical differentiation to arrive
at the forces. If we use the Euler exponential spline, the exponential can be represented for
interpolation of order l as:

exp
(

2πi
miui
Ki

)
≈ bi(mi)

∑
k∈Z

Ml(ui − k)exp
(

2πi
miui
Ki

)
(2.30)

where bi(mi) is given by,

bi(mi) = exp
(

2πi
mi

Ki

(l − 1)
)
×
[ l−2∑
k=0

Ml(k + 1)exp
(

2πi
mik

Ki

)]−1
(2.31)
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Using the equation (2.30), the structure factor can be approximated as

where F is the Fourier transform,

Q(k1, k2, k3) =
N∑
i=1

∑
n∈N3

qiMl(u1i − k1 − n1K1)×Mk(u2l − k2 − n2K2) ·Ml(u3i − k3 − n3K3)

We can approximate the reciprocal energy by:

Ẽrec =
1

2πV

∑
m6=O

B(m)F (Q)(m)F (Q)(−m) =
1

2

K1−1∑
m1=0

K2−1∑
m2=0

K3−3∑
m3=0

Q(m1m2m3)(θrec∗Q)(m1m2m3)

(2.32)

where θrec is the pair potential and is given by

θrec = F (B · C)

and

B(m) = |b1(m1)|2 · |b2(m2)|2 · |b3(m3)|2 (2.33)

The reciprocal force does not depend on particle positions, so we can calculate the resulting
reciprocal force using the spline parameters:

Fij = −∂Ẽrec
∂rij

=

K1−1∑
m1=0

K2−1∑
m2=0

K3−3∑
m3=0

∂Q

∂rij
(m1m2m3)(θrec ∗Q)(m1m2m3) (2.34)
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Chapter 3

Simulated Systems and Definition of
Measured Quantities

In the current chapter, we describe the studied systems and the parameters of the simulations.
Then, we define the quantities that we have investigated.

3.1 Systems

In Table 3.1 we present our simulated systems and conditions. Listed are the simulation
identifiers, the total number of atoms in the simulation box, the number of water molecules,
the number of chains which each proteins has, the number of ions (Na+), which we added
to neutralize our systems, the total time of simulation for each system and the temperature.

System Protein Atoms Protein Chains Total Atoms Water Mol. Ions (Na+) Time (ns) T (K)
Rop (Native State) 1280 2 73861 24189 14 100 300

RRC (Remote chains of Rop) 1280 2 72160 23622 14 300 300
RM6 (Mutation of Rop) 2376 4 243199 80269 16 200 300

Table 3.1: Details of the simulated systems.

Atomistic molecular dynamics (MD) simulations were performed in (NPT) statistical en-
semble, using Gromacs software package (version 5.0.7) [54],[55], with gromos53a6 force field
[45]. In this force field the non polar hydrogen atoms are treated as united atoms together
with the carbon to which they are attached. The proteins were placed in a cubic box. The
proteins were solvated using the Extended Simple Point Charge (SPC/E) water model. The
solvated proteins were energy minimized using a steepest descent algorithm [13]. Simulations
were carried out using 1fs time step and periodic boundary conditions have been applied.
Initial velocities were assigned randomly applying Maxwell distribution at 300K. Long-range
electrostatic interactions were calculated using the particle mesh Ewald (PME) summation,
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with a 10Å cut-off for the direct space of sums, a 1.6Å FFT grid spacing and a 4-order
interpolation polynomial for the reciprocal space sums. The temperature was kept at 300K
by separately coupling the protein and solvent to an external temperature bath (t=0.1ps).
The thermostat we used was the V-rescale. The pressure was kept constant at 1 bar by weak
coupling (t=1.0ps) to a pressure bath according to Berendsen barostat using isotropic mode.
The pressure was maintained with a compressibility of 4.6 10−5/bar.

MD Simulations EM Simulations
dt (ps) 0.001 emtol 1.0

Tcoupling Yes/V-rescale emsteps 5000
tau t (K) 0.1
Pcoupling isotropic/Berendsen
tau p (ps) 1.0

compressibility (bar−1) 4.5 10−5

ref p (bar) 1.0

Table 3.2: A summary of the parameters used in the energy minimization (EM) amd MD
simulations.

3.2 Rop and RM6 in Native State

Generation and Equilibration of the model system

Before the produce MD runs, models system are generated and equilibrated through the
following steps.

Rop

1. We take the structure file of the protein from the protein data bank. This file contains
the coordinates of the protein. Then, we check pdb file to ensure that there are no
missing atoms or amino acids. If there are missing atoms or amino acids it is written
inside the pdb file. In the case of Rop the pdb file is fine.

2. Once, we are sure that there are no missing atoms or residues we create the topology
file. This file contains all the necessary information to define the molecule within a
simulation. This information includes nonbonded parameters (atom types and charges)
as well as bonded parameters (bonds, angles, and dihedrals). The topology file is
created with the gromacs tool (gmx pdb2gmx). Except from the topology this tool
creates a post-processed structure file in gro format (.gro file).

3. We want to simulate our systems in aqueous solution. This step is splitted into two
actions.
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(a) We define the dimensions of the simulated box and centere our protein molecule.

(b) Then, we fill the box with water molecules.

4. The Rop protein has a net charge of -14e (based on the amino acid chain composition).
We neutralize the system adding ions. Again, with a tool of gromacs (called genion),
we replaced water molecules with 14 positive charged ions Na+.

5. Before we perform the production of MD run, we had to ensure that it had no steric
clashes or inappropriate geometry. For that, we performed energy minimization.

6. After we completed all the above steps, we performed the production of MD simulation
run for time reported in Table (3.1).

7. When our simulation finished, we analyzed the simulated system.

8. In terms of Rop protein we keep 1600 configurations (we keep a configuration every
62.5 ps). In terms of RM6 protein we keep 1342 configurations (we keep a configuration
every 156.3ps).

RM6 protein

For the RM6 protein we also followe the same procedure describe above. However, in steps
1, 4 and 8 we do something different. In terms of step 1, there are missing residues in RM6
protein. So the process we follow to prepare the RM6 is the following:

1. The pdb file contain only the two chains of the tetramer. So, we have to build the
tetramer, this is done with the help of the tool called pisa [56].

2. When we create the tetramer, we check it once more. Then, we seethat the last seven
residues are missing from all the four chains, as well as the first four amino acids but
only from two of them. We surpass this issue with the help of a useful tool named
PyMol [57]. With this tool we add the missing amino acids.

3. Also, there are no Hydrogen atoms. This problem is easy to be solved because the tool
of gromacs (pdb2gmx) adds the missing Hydrogens, where they should be.

Now about step 4, accordingg to the amino acid chain composition RM6 has a net charge of
-16e. So, we add 16 ions Na+, in order to neutralize the system.

Finally, for the step 8, we keep 1342 configurations (we keep a configuration every 156.3ps).
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3.3 Measured Quantities

3.3.1 Bioinformatics Analysis: Root Mean Square Deviation (RMSD)

Quantitative comparisons of protein has a central importance in structural biology [41],[42],[43],
[44]. For example, biomolecular activity is often coupled to changes of biomolecular struc-
ture and dynamics. Therefore, it is useful to quantify the evolution of three-dimensional
(3D) structures of a protein molecule in time or to compare structure of similar proteins
(i.e mutations), coming from Molecular Dynamics simulations trajectories of proteins, are
commonly analyzed by comparison of each snapshot with respect to a reference structure.
We often take as reference structure the starting structure (coming from NMR or X-ray
diffraction measurements). The conformational changes of the protein during MD simula-
tions were checked by the root mean square derivations (RMSD). RMSD is the most widely
used measure for comparison protein structures; it is a measure of molecules mobility, from
its reference state. It is calculated by translating and rotating the coordinates of the in-
stantaneous structures in order to superimpose with the reference with a maximum overlap.
In order to use RMSD, the two structures (the reference and the one we want to compare)
should have identical number and types of atoms.

RMSD is generally computed after a least-squares fit of the structure to the reference struc-
ture to by removing the effects of global translation and rotation, which minimizes the
differences between the two structures.

The RMSD is defined by the following formula:

RMSD =

√∑N
i=1mi(ri − rref )2∑N

i=1mi

(3.1)

where:

• mi is the mass of atom i,

• ri = (ri,x, ri,y, ri,z) is the coordinates of atom i at a certain instance,

• rref = (rref,x, rref,y, rref,z) is the coordinates of atom i at its reference state.

In the following subsections, we explain what we mean by fitting and least-squares fit.

Superposition (fitting) of protein structures

We should reflect the internal motion of proteins, in order to achieve it we should have more
or less the same orientation in space [41],[42],[43]. This is done by fitting the models on the
reference structure.
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Least square fit

In a mathematical way, the superposition is actually a problem of minimize RMSD between
two models (two sets of identical atomic positions). In order to minimize the RMSD, we
need a rotation matrix R and we have:

RMSDmin =

√∑N
i=1mi(ri −Rrref )2∑N

i=1mi

In general, as least square fit is called any operation that has as result an appropriate rotation
matrix R.

An algorithm for achieving a minimum RMSD is introduced by W. Kabsch in 1976. Let us
assume, that we have two sets of centered atomic positions which are given by ri and rref,i.
If the points are not centered to the origin, it is very important to translate them in order
to their average coincides with it.

The 3 × 3 rotation matrix R is used to rotate the points of rref,i into ri. First two N × 3
matrices P and Q are produced, which contain the coordinates of ri and rref,i as row vectors
accordingly.

P =


x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN



Q =


xref,1 yref,1 zref,1
xref,2 yref,2 zref,2

...
...

...
xref,N yref,N zref,N


After that, we calculate the cross-covariance matrix as follows:

A = PTQ

Then, the rotation matrix is given by:

R = (ATA)1/2A−1

But, we can not guarantee that the matrix A has an inverse. In terms of these special cases,
that A has not an inverse, is carried out
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A = VSWT

So, the rotation matrix R is given by:

R = W

1 0 0
0 1 0
0 0 d

VT

where d = sign(det(WVT ))

If we have two identical protein configurations, then we expect that the function (3.1) equals
to zero [7]. In general, this is impossible due to the offset of translation and rotation. So,
for example, a configuration with an RMSD value less than 2.5Å is considered a very close
approximation to the native state. The RMSD is getting even worst for configurations away
from the native state.

3.3.2 Radius of Gyration (Rg)

Radius of gyration (Rg) is a measure which we generally use in order to predict the dimensions
of a macromolecule [29], [30]. It is an indicator of the protein size and of the protein
compactness. The radius of gyration is calculated using the formula:

Rg =

√∑N
i=1mir2i∑N
i=1mi

(3.2)

where:

• mi is the mass of the atom i

• ri is the distance of atom i from the center of mass of the protein.

3.3.3 Hydrogen Bonds

Atoms in proteins are held together by various types of bonds with different strength includ-
ing very strong covalent bond, moderate hydrogen bonds and weak Van der Waals bonds
[31], [32], [33], [34]. A Hydrogen Bond tends to be stronger than Van der Waals bonds, but
weaker than the covalent bonds or ionic bonds.

Hydrogen bonding constitutes one of the most significant inter-atomic interaction in biology.
Moreover, it plays an important role in the stability of conformations in secondary structures
of proteins.
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The typical definition of a hydrogen bond (HB) demand the presence of 3 atoms. Generally,
a HB within a protein molecule is an attractive interaction between an electronegative donor
(D) and a hydrogen (H) that is covalently bonded to an acceptor (A) atom of a non-adacent
residue. Following this convention, we represent the HB within dotted lines, as follows:

D-H · · · A

where the dash line between the D atom and the H represents a chemical bond.

There are two kinds of criteria, that are often used for determining the HBs i.e, by energy
and by geometry.

In the current work, we are going to use the geometric criteria to detect the existance of
a HB. With geometric criteria, the HB is determined by the relative configuration of the
two molecules. The geometric parameters involve interatomic distances and angles. A set
of geometric parameters are illustrated in Figure 3.1. The geometric criterion we used to
determine a HB is the following:

• |D−A| ≤ 3.50 Å, where |D−A| describes the distance between Donor and Acceptor.

• ∠HDA ≤ 30o, where the angle ∠HDA describes the Hydrogen-Donor-Acceptor angle.

Figure 3.1: Geometric Parameters of Hydrogen Bonds.

Intermolecular and Intramolecular Hydrogen Bonds

Typical HB donors would make only one HB, whereas typical oxygen acceptors can make
two HBs [19]. We separate two types of hydrogen bonds, namely:

1. intermolecular hydrogen bonds between two molecules

2. intramolecular hydrogen bonds within the molecule.

The intermolecular and intramolecular hydrogen bonds are represented in Figure (3.2).
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Figure 3.2: Intermolecular and Intramolecular Hydrogen Bonds.

3.3.4 Ramachandran Plot

In 1968, Ramachandran and Sasisekharan proposed that the conformation of amino acids in
proteins and peptides could be described by two torsion angles φ and ψ [35], [36], [37], [38],
[39], [40]. The phase diagram of the two torsion angles is known as the Ramachandran plot.
This plot was first used to predict the possible conformations of the main chain (i.e. backbone
of protein). We should note that the Ramachandran plot constructed before the first protein
structure had been determined to atomic resolution by X-ray diffraction. In the following
we define the dihedral angles in order to make clear the description of Ramachandran plot.
The torsion (or dihedral) angle is applicable to any molecule has a system of four atoms.
Let us denote them as A, B, C and D connected by covalent bonds. In Figure (3.3) we show
a schematic representation of them.

Figure 3.3: (a)A representation of a system of 4 atoms bonded linearly.Orientation in the
system ABCD (b) & (c) .In (b) we have ’cis’ form. In (c) we have the ’trans’ form.

In principle, a dihedral angle represents the angle between two intersecting planes as shown
in Figure (3.4) by subsequent triples of points (atoms), namely between the planes spanned
by A, B, C and by B, C, D [19]. We should keep in mind that a dihedral angle is an angle
of rotation about the line BC at the intersection of two planes.
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Figure 3.4: A schematic representation of torsion angle.

Dihedral is defined in terms of the angle between the normal vectors for the two planes. The
normal vector to the plane spanned by A, B, C, as well as by B, C, D is proportional to
n1 = ~AB× ~CB and n2 = ~BC× ~DC respectively, where × denotes the vector ”cross” product
in R3. The angle θ between these two normal vectors is given by the following formula:

cosθ =
n1n2

|n1||n2|

where |ni| denotes the Euclidean length of ni. Let θ =[A, B, C, D] denotes a dihedral (or
torsion) angle.

Ramachandran angles

Once, we briefly introduced what is a torsion angle, we are going to explain the two angles
of the Ramachandran plot. There are two bond whose rotations are permissible. These two
bonds are N − Cα, as well as, Cα − C, hence torsion angles have been defined with respect
to these bonds. These angles are going to be symbolized as φ and ψ and we define them as
follows:

• ψ(i)=[N(i),Cα(i),C(i),N(i+1)]

• φ(i)=[C(i),N(i+1),Cα(i+1),C(i+1)]

where i denotes the amino acid number.
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Figure 3.5: A schematic representaion of the two torsion angle in a dipeptide.

It is significant to note that the internal rotation around these bonds is restricted by possible
steric collisions in the produced conformations.

Moreover, the bond between C(i) and N(i+1), known as the peptide bond has partial double-
bond character. The peptide bond cannot rotate freely, contrary it is held in a planar
orientation, so this restriction drives it to have two possible configurations, the ’cis’ and the
’trans’ presented in Figure (3.3 (b) and (c), respectively) and in Figure (3.7). Due to steric
and electronic interactions the trans form is the most common, whereas the cis form is very
rare. In the cis form, it is very common to have a steric clash between the side chains. As we
have already mentioned, the basic unit of the peptide group comes in two forms (Figure 3.7)
that are related by a rotation around the peptide bond. For this reason this angle, which
defined as ω(i)=[Cα(i),C(i),N(i+1),Cα(i+1)], could take two possible values. These are the
following:

◦ ω=0o in the ’cis’ form and

◦ ω=180o in the ’trans’ form.
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(a) There is no clash. (b) There is a clash during the rotation of the two
bonds.

Figure 3.6: A schematic representation of a polypeptide chain. In the center we have a
complete alanine residue. The alanine is covalently bonded to other amino acids through
peptide bonds (pink). In Figure 3.6a there is no overlapping among the atoms, whereas in
Figure 3.6b there is an ovelapping, which is physically impossible. [53]

Figure 3.7: The trans and cis conformations.

Since the angle ω could obtain only two possible configurations, so primarily, the conforma-
tion of a protein described by the combination of angles φ and ψ.

Regions of Ramachandran plot

It is known that the atoms in a structure could not approach each other more closer than a
distance of above the sum of their Van der Waal’s radii. For some combinations of φ and ψ,
with the trans conformation of the peptide bond, atoms would collide, but as we said this
is a physical impossibility, for that reason ramachandran plot was used to plot the sterically
allowed regions. For example for alanine-like residues there are three major ”allowed” regions
that they can occupy. In this family do not belong Glycine and Proline. But the other 18
residues have a common Ramachandran plot. We should note that Glycine and Proline are
outliers since they are the extreme points in terms of conformational freedom, so these two
have their own Ramachandran plots.
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There are two major allowed regions of residue conformation, with the largest extend. These
are the α − region and the β − region and match to the two major classes of secondary
structure: the α-helix and the β-sheet respectively. If there is a succession of residues in the
α− region the generated structure is an α-helix. The α-helix is right-handed. Additionally,
a sequence of residues in the β − region produces a strand that is nearly fully extended.
This is the conformation of β-sheet. Therefore, there is a much smaller region known as
αL − region representing backbone conformations that are mirror images of those in the
α− region. These regions are ”allowed”, in the sense that, when the peptide given standard
radii they don not collide. There is also an additional region called the bridge region because
it acts like a bridge between α- and β- regions. It becomes approved if the atoms are given
smaller radii that represents the least values that could be considered plausible.

Let us explain the Ramachandran plot, which is shown in Figure 3.8. There are regions
shaded with dark blue. These areas reflect conformations that involve no steric overlap
and thus are fully allowed (and we will call them the favoured regions). Medium blue
indicates conformations allowed at the extreme limits for unfavourable atomic contacts.
Moreover, there is area shaded with the lightest blue which reflects the conformations that
are permissible if a little flexibility is allowed in the bond angles. Finally, the unshaded region
indicates sterically disallowed conformations. In total we can sum up that the gradient of
blue color from dark to light regions indicates the passage from the most to the less favorable
conformations.

Figure 3.8: A Ramachandran Plot for alanine-like residues. The values of φ and ψ for various
allowed regions [59].

Finally, we should note that in a Ramachandran plot, we do not plot the first and last amino
acids, because for the first amino acid we need a residue before it and for the last residue a
residue after it, in order to be able to find the (φ-ψ) angles.
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Based on all the above, nowadays, Ramachandran plot is converted into a useful tool for
assessing the correctness of a protein structure determination.

3.4 Sidechain Rotamers

The sidechains of an amino acid are flexible. So, the geometric description of sidechain
requires additional information [19]. As we remeber from the above section, the φ and ψ
angles define the positions of the backbone relative to the position of the N-terminal end, so
we can also use dihedral angles to describe the positions of the sidechains. For instance, we
can define them as follows:
χ1 = [N,Cα, Cβ, Cγ] , χ2 = [Cα, Cβ, Cγ, Cδ], and so forth, for all sidechains that have a Cβ
atom attached to an additional ”heavy atom” (not Hydrogen). From the sidechain rotamers
glycine and alanine are excluded.

The knowledge of the conformation of side chains is an important feature of protein archi-
tecture [27]. There are factors that affect the side-chain conformations and the knowledge
of them is significant, both for the understanding of protein folding and for the successful
design of mutated proteins.

Side chains in proteins prefer certain conformations, as shown by Janin et al. [23]. The
preferred conformations correspond to energy minima and generally represented by three
regions, which are known as gauche+, gauche-, and trans, corresponding to mean χ1

values of -60 degrees, +60 degrees, and 180 degrees, respectively, as shown in Figure (3.9b).
There are studies [24],[26],[25] , that revealed that the preferences of the rotamer of side
chains are strongly affected by the secondary structure.

(a) The dihedral angles of sidechains.

(b) Examples of the three main conformations.

Figure 3.9: In Figure: (3.9a) we present the sidechain dihedral angles, and in Figure: (3.9b),
we present the three possible conformations (gauche -, trans, gauche +).
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In Figure (3.10), we present the nine regions, which the compinations of angles (χ1-χ2) may
have. The nine regions are: (g-,g+), (g-,t), (g-,g+), (t,g+), (t,t), (t,g-), (g+,g+), (g+,t) and
(g+,g-).

Figure 3.10: The nine regions of Janin plot of (χ1-χ2) tosion angles.
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Chapter 4

Results

In this chapter, we present the results from our simulation work. In Chapter 3, we are defined
analytically the measured quantities . As we have already mentioned, we have simulated
two different systems. The results are going to be presented as follows (1). We present each
system separately, and then we perform a comparison between them (2). For each system we
provide the initial configuration snapshot (3). We calculate the root mean square deviation
(RMSD) as an indicator of the stability of the native state of our proteins (4). We quantify
the mean size of the proteins using the radius of gyration (5). In the following we carry out a
more detailed analysis, which is the calculation of the number of hydrogen bonds, which are
formed among the components of each system during the simulation (6). Finally, we check
the stereochemical quality of our model by plotting the Ramachandran plot.

4.1 Rop in Native State

The first system that we are going to present is the Rop protein in aqueous solution. In
Figure 4.1, we present two different snapshots one of the initial configuration of our system
and one of the final after the completion of the simulation run (100 ns). Not any observed
difference in the structure can be reported on the snapshot since the protein was already in
its native state (i.e stable).
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(a) (b)

Figure 4.1: Snapshots of Rop system in water solution, (4.1a) initial configuration and (4.1b)
final configuration.

Figure 4.2: Plot of the distance between the centers of mass of two chains of Rop.

In the native state,the distance between the centers of mass of the two chains is ∆Rcm = 1.2
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nm, where ∆Rcm = ‖Rcm,chain1 −Rcm,chain2‖. As shown in Figure 4.2 it is almost constant
during the simulation.

4.1.1 RMSD

We calculate the root mean square deviation (RMSD) as an indicator of the accuracy of our
model. This could also ensure that our system is in equilibrium. The RMSD is a measure of
the difference between two structures. Each configuration from a trajectory file is compared
to a reference structure. In our study, the reference conformation is the initial configuration
of the simulation. All the measurements of the RMSD are done based only on the Cα atoms,
since these atoms are often used in typical computations of RMSD.

The RMSD of all Cα backbone atoms with respect to the reference structure as a function of
time is shown in Figure 4.3. The RMSD of the protein at the end of the simulation is 0.258
nm= 2.58Å. According to the literature (ref), this is a very good result since a configuration
with a value of RMSD below 2.5Å thought as a close approximation of the native state.
RMSD after the first steps (very short times) attains values between [0.2− 0.3]

Figure 4.3: Root Mean Square Deviation (RMSD) plot showing the RMSD based on Cα
atoms as a function of time for the simulation of 100 ns for Rop in water.
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(a) The two chains of Rop protein.

(b) The three different parts of a chain.

Figure 4.4: Different parts of Rop.

Measured Quantities RMSD (nm)
loopA 0.023 ± 0.0017
loopB 0.013 ± 0.0008
tailA 0.156 ± 0.0234
tailB 0.350 ± 0.0445

ChainA 0.173 ± 0.0060
ChainB 0.317 ± 0.0256

Two Helices of chainA 0.119 ± 0.0059
Two Helices of chainB 0.131 ± 0.0049

Protein 0.275 ± 0.0201

Table 4.1: Results are averaged over all the trajectory. The unit of RMSD is in nm.

The RMSD analysis shows that the system is in an equilibrated structure. Moreove, in
Table: 4.1 we present a detailed analysis for the RMSD of the various parts of the protein
separeted into helix, loop, tail, chain. As we have already mentioned in Section 1.3, the
protein has two chains, and we are going to call them as ChainA and ChainB (Figure:4.4a).
Each chain consisting of the the following parts (Figure:4.4b), two α-helices, a loop, and a
tail. So, we marked with A the parts of ChainA and with B the parts of ChainB. Sometime,
we are going to refer as a molecules the protein consisting of two chains. We observe that
the RMSD of the last seven residues (the tail) of each chain is bigger than the rest chain,
which comes in agreement with th results from experiments, which say that the tail is very
flexible. We also calculate RMSD for the two tails and the four α-helices, and as we can see
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the conformations of them remain almost the same. Therefore, it is the flexibility of the two
tails, which renders the value of RMSD of the whole protein quite high.

4.1.2 Radius of Gyration (Rg)

The Radius of gyration (Rg) is a measure of the compactness of the protein conformation
in biomolecular simulations and quantifies their size. As we can see in Figure (4.5) the
value of Rg is relatively stable over time, which means that the Rop is stably folded at the
equilibrium conformation (native state).

Figure 4.5: Radius of gyrarion as a function of time for Rop in water.

The Rg in (nm) was computed by taking the average over all the trajectory and is presented
in Table (4.8).

Measured Quantities Rg (nm)
ChainA 1.404 ± 0.004
ChainB 1.410 ± 0.003
Protein 1.511 ± 0.004

Table 4.2: The average value of Rg over all the trajectory of Rop in water.

In the first column of Table (4.8), the ChainA and ChainB correspond to the first and
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second chain of Rop protein accordingly, and finally, the Protein corresponds to the whole
Rop protein.

4.1.3 Hydrogen Bonds

Next, we analyze hydrogen bonds using gromacs tool (gmx hbond ). For each pair of
atoms, which form hydrogen bond, the bond is counted once. We split the analysis of
hydrogen bonds into intermolecular and intramolecular hydrogen bonds, as we discussed
in Section: 3.2. More specifically in our case about Rop, we further categorize HB as fol-
lows: we split the intramolecular hydorgen bonds into intechain hydorgen bonds between the
two chains (ChainA-ChainB), as well as intrachain hydrogen bonds within the same cahin
(ChainA-ChainA or ChainB-ChainB). The intramolecular hydrogen bonds are within the
same molecule, in our case, the molecule is the Rop protein, which has two chains, let us
denote them A and B. So, we are going to call intramolecular hydrogen bonds, the bonds
within chain A, as well as within chain B. Additionally, we have the intermolecular hydrogen
bonds involve two or more molecules, such as Protein-Water, ChainA-Water, ChainB-Water,
Water-Water. The notation we are going to use for the protein is the letter P and the W for
water. The geometric criterion we used to calculate the number of hydrogen bonds per each
frame is: ∠DHA ≤ 30o & |D−A| ≤ 3.50 Å. According to the previous geometric criterion a
hydrogen bond exist if these two conditions are satisfied simultaneously. Then, we computed
the average number over all the trajectory. The average number of Hydrogen Bonds over all
the trajectory is in the Tables (4.3).

Measured Quantities <HB>
<ChainA-ChainA> 61.777 ± 0.2552
<ChainB-ChainB> 57.93 ± 1.7470
<ChainA-ChainB> 7 ± 0.2602

<P-W>/W 0.0126 ± 0.0000
<W-W>/W 1.79 ± 0.0002

<ChainA-W>/W 0.0061 ± 0.0000
<ChainB-W>/W 0.0064 ± 0.0001

Table 4.3: The average number of hydrogen bonds over all the trajectory of the simulation
of Rop protein in water.

Errors are calculated based on standard block averaging . In more detail, the run has been
divided in 3 blocks of equal distant time. Then, we have calculated the average value in each
block, and after that we have calculated the error of these three values. The average number
is calculated from the average values of the three blocks.

As we can notice from the values in Table (4.3), we can see that the number of intrachain
hydrogen bonds within the same chain is much higher than the number of interchain HB
between the ChainA and ChainB. So, HB plays a key role in maintained the secondary

63



4.1. ROP IN NATIVE STATE CHAPTER 4. RESULTS

structure of the proteins, whereas it is not the driving force that retains the two chains
in their specific cm-cm distance (native state). In the later case electrostatic interactions
constitute dominant factor as we eill describe through an MD test presenting in the following
subsection.

According to the reference [28] [21], the average number of hydrogen bonds of water per
water molecule was computed following, that each water molecule participates in, which
technically, is twice the average number of hydrogen bonds per molecule. In order to be able
to compare our average value of hydrogen bonds (in Table 4.3) to the average value in the
bulk system, we doubled it. So, the doubled value is 3.58, which is too close to the bulk [28].

According to the reference [1], 31ALA is the only amino acid that forms HBs to both helices
simultaneously. We performed an analysis of the average number of hydrogen bonds, which
produced during the simulation, for each of the four residues of the loop (29LEU, 30ASP,
31ALA, 32ASP). In Tables (4.4) and (4.5), we summarized the average number of HBs over
all the trajectory configurations. The Table (4.4) is for the Chain A, whereas the Table (4.5)
is for Chain B of the Rop protein. As we already mentioned in the introduction, each chain
has two α-helices, so we are going to call 1-αhelix the first one and 2-αhelix the second one.

Measured Quantities <HB>
<29LEU-1-αhelix> 0.96
<29LEU-2-αhelix> 0
<30ASP-1-αhelix> 0.54
<30ASP-2-αhelix> 0
<31ALA-1-αhelix> 0.69
<31ALA-2-αhelix> 0.95
<32ASP-1-αhelix> 0
<32ASP-2-αhelix> 1.42

Table 4.4: The average number of hydrogen bonds of the four amino acids of the loop region
with each of the α-helices of Chain A.

Measured Quantities <HB>
<29LEU-1-αhelix> 0.95
<29LEU-2-αhelix> 0
<30ASP-1-αhelix> 0.16
<30ASP-2-αhelix> 0
<31ALA-1-αhelix> 0.16
<31ALA-2-αhelix> 0.78
<32ASP-1-αhelix> 0
<32ASP-2-αhelix> 1.55

Table 4.5: The average number of hydrogen bonds of the four amino acids of the loop region
with each of the α-helices of Chain B.
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So, we can conclude from the above results (Tables:4.4 and 4.5), that 31ALA is the only
amino acid of the loop creating HB with both of the helices of each chain.

Rop withouts charges

As we have already mentioned about hydrogen bonds, they play a key role in the maintance
of the secondary structure of protein, but they are not responsible for retaining the native
state stable. For that reason, we perform a test simulation, where we remove all the charges
from our topology file, in order to check the role of the electrostatic interactions. In Figure
(4.6), we present the distance between cm-cm of the two chains and as we ca see the distance
decreasing immediatly.

Figure 4.6

Moreover, in Figure (4.7) we present the time evolution of conformation of the Rop protein
through some snapshots. As we can see the conformation of Rop change in 62.5 ps too fast
until it reaches in the last configuration where the change is obvious. In the last snapshot
(4.7d), we can not distinguish the two chains, the protein looks like ”a sphere”.
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(a) Snapshot at t=0
ps.

−→
(b) Snapshot at
t=62.5 ps.

−→
(c) Snapshot at
t=687.5 ps.

−→
(d) Snapshot at
t=65.5 ns.

Figure 4.7: The change evolution of the conformation of Rop protein without charges.

4.1.4 Ramachandran Plot

Based on the Ala theroy, the Ramachandran plot produced by PROCHECK [58] to validate
the backbone structure of the Rop protein. PROCHECK provides a detailed analysis of
the stereochemical quality of the 3D protein structure. In Figure (4.8), we present the
Ramachandran plot of Rop protein. As we can notice, there are triangles and squares in the
diagram. All the residues of Rop identified by squares except Glycine residues, which we
shown separately by triangles, because as it is explained in Section : (3.3.4) Gly constitutes
an exception. Each black square represents the conformation of the main chain of one residue
of the protein, as well as the same for each black triangle represents each Gly residue of the
protein. Moreover, in Figure (4.8), we show with the lines the triangles which belong to Gly
residue. We represent the different regions of the plot by shadings. By shading, we actually
mean the different areas with different colour. The darker they are, the more favourable the
φ− ψ combination.
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Figure 4.8: Ramachandran plot of Rop. This plot produced by PROCHECK.

The ’core’ regions, which are the darkest and are represented with the red color, are marked
them A (corresponds to the α-helix) and B (referred to residues in a β strand conformation
of the main chain) and L (it is the smallest red area and corresponds to the left-handed
α-helix conformation). The 90% of the residues of the protein structure should be ideally
there. In our case, we have in the most favored region 90.7% of them, that is 107 amino
acids. Moreover, we marked with a,b,l, and p the additional allowed regions (yellow). More
precisely, we marked with a the ”allowed alpha regions”, with b ”the allowed beta”, with l
the ”allowed left-handed alpha” and with p the ”allowed epsilon”. In these regions, there
are 9.3% of the amino acids, which are 11 residues. Then, with the lightest yellow are the
in generously allowed regions distinguished with ∼a (generous alpha), ∼b (generous beta),
∼l (generous left-handed aplha), and ∼p (generous epsilon). The disallowed areas are with
white color. In Rop protein, we have four α-helices so, we expect to see the majority of the
amino acids to be in the area A. As we can see from the diagram in Figure 4.8, the majority
of them are clustered in this area. It has also 4 Gly residues, and as we can notice from the
diagram combinations of the (φ− ψ) angles exist in the red, yellow and in the white region.
This happens because Gly has no side chain and is much less sterically prevented than other
amino acids. So, Gly is able to adopt pairs of φ, ψ angles that are not allowed for any other
residue. We should note here that this Ramachandran plot is for Ala-like residues and Gly
has its one Ramachandran plot with less regions disallowed. Finally, we do not plot the first
and last amino acids in the Ramachandran plot, because for the first amino acid we need a
residue before it and for the last a residue after it, in order to be able to find the (φ − ψ)
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angles.

In Figure (4.9), we present separate Ramachandran plots for each one of the 20 amino acids,
which has Rop protein. Above each plot, there is the name of the corresponding amino acid.
There is a number in brackets, following the name of each residue, shows the total amount
of data points on this graph. The darker the shaded area on each plot represents the more
favourable region. We may see a letter (A or B) following a number above some points. The
number and the letter refer to residue-number and the chain of the protein accordingly. This
notation stands for the amino acids which are in unfavourable regions of the plot.

We can also observe that there are squares that have a different color. Those with red means
it is located in unfavorable regions, whereas the squares with yellow are them in favorable
regions. Moreover, there are square points with different accents in orange color. The darker
it becomes the orange so farther are the squares from the favorable areas.

Let us now observe each plot, we notice, that the majority of points are clustered in the area
of a-helix, but there are also diagrams of particular interest.

As we have already mentioned, Rop protein has two chains, which have two loops, and in
the loop region, there is a residue of Ala. So, these two points may be these two residues,
which are in the unfavoured area. One more diagram of particular interest is the one of Asp
residue since it has points in different areas. Finally, Gly residue is a special residue and as
we said it has its own Ramachandran plot, because of its sidechain which is only a hydrogen
atom it can adopt more combinations of (φ− ψ) angles. So, if we notice the plot of Gly in
contrast with the others, we will see that it has more shaded regions than the others.

In Figure (4.10), we present the plots of the torsion angles χ1 vs χ2, which belong to the
sidechain angles, for all residue types whose sidechains are long enough to have both these
angles. The plots of (χ1 − χ2) angles are produced by PROCHECK.

If we notice, there is no plot for Cys residues, whereas we have 4 of them in our protein.
This happens because the sidechain of Cys is not long enough in order to calculate the χ2

angle. Additionally, we do not have this plot for Ala and Gly residues. As we have already
discussed in Section (3.4), these two amino acids are excluded from the calculations of χ1

and χ2 angles, for the reason that Gly has no Cβ atoms in its sidechain and in the case of
Ala its Cβ atom does not bond with another heavy atom except the Hydrogens.

In Figure (4.10), we present the plots of the torsion angles χ1 versus χ2, which belong to the
sidechain angles, for all residue types whose sidechains are long enough to have both these
angles.The ideal regions are represented by the points where dashed lines are crossed: the
gauche minus, the trans, as well as the gauche plus for the χ1 − χ2 dihedral angles. The
shading is based on data has come from a data set of 163 non-homologous, high-resolution
protein chains, that are chosen from structures solved by X-ray crystallography. The average
value of these data we are going to call them “ideal values”. The center of the crosses is at
the mean and the length represents the ±1 standard deviation of these ideal values. The
points marked with a letter (A, B) and a number. The number implies the residue-number,

68



4.1. ROP IN NATIVE STATE CHAPTER 4. RESULTS

Figure 4.9: The above plots show a Ramachandran plot (φ vs ψ) for each residue.
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and the letter refers to the protein chain. Again, the number in brackets, following the name
of amino acids, shows the total number of points on this graph.

From the plots of (χ1 − χ2) angles in Figure (4.10), we notice that the most favored is the
(t,g-) region. After this region, the next one where the points clustered is the (g+, t) region.
We also notice that at the regions where χ1 = +60 (gauche -) there are no points.

Figure 4.10: Plot of ( χ1 vs χ2)for each residue of Rop protein.

In order to study, the time evolution of the Ramachandran plot, we chose from our trajectory
six equal distant configurations. The total simulation time was 100 ns. Then, we performed
the analysis of Ramachandran plot in each of them. In Figure (4.11), we present the results
of this analysis. As we can see, in all plots there are one or two amino acids marked in red
lettering. These are in the generously allowed and disallowed regions. Only, the last frame
has not labeled residues. Therefore, we should note that in all time frames, the majority of
amino acids clustered in A region.
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(a) t=0ps (b) t=20ns

(c) t=40ns (d) t=60ns

(e) t=80ns
(f) t=100ns

Figure 4.11: The time evolution of Ramachandran Plot of Rop protein.
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4.2 RM6 in Native State

The second system that we are going to present is RM6 protein in aqueous solution. RM6
is a mutant of Rop protein in which we removed five amino acids from the loop region. We
present two different snapshots, one of the initial configuration of our system and one of the
last after we performed a simulation run of 209 ns. If we notice the two different snapshots,
we see no difference in the structure of our protein, due to the stability of the native state
4.12.

(a)
(b)

Figure 4.12: Snapshots of RM6 system in water solution, (4.12a) initial configuration and
(4.12b) final configuration.

4.2.1 RMSD

The root mean square deviation (RMSD) was calculated as an indicator of accuracy of our
model or as an indicator that our model reach in equilibrium. As we said, the RMSD is a
measure comparing two structures. Each conformation from a trajectory file is compared to
a reference structure. In our case, the reference structure is the initial configuration of the
simulation. All the measurements of the RMSD are done based on the Cα atoms.

The RMSD of all Cα backbone atoms with respect to the reference structure as a function of
time is shown in Figure 4.13. As we notice from the diagram (4.13), we see a great deviation
from the starting structure. Such difference was expected, since the seven last residues in
each chain, as well as the first four in two of them were added using the tool Pymol.
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Figure 4.13: Root Mean Square Deviation (RMSD) plot showing the RMSD based on Cα
atoms as a function of time for the simulation of 209ns for RM6 protein in water.

4.2.2 Radius of Gyration (Rg)

The radius of gyration (Rg) is a measure of the compactness of the protein conformation in
biomolecular simulations and quantifies their size. As we can notice in Figure (4.14), the
value of Rg starts being relatively stable after 50ns, which means that the RM6 is stably
folded at the equilibrium conformation. In the beginning, the value of Rg was higher this
may happen, for the reason that, we added seven last residues to all chains, and it needed
some time until finding an equilibrium conformation.
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Figure 4.14: Radius of gyrarion as a function of time for RM6 in water.

As we have already mentioned in the Introduction of RM6 protein, it is a tetramer protein,
which consisting of two molecules each of them has two chains. These two molecules we are
going to call them MoleculeA and MoleculeB. The RM6 has 4 chains, which we are going
to name them as ChainA, ChainB, ChainC, ChainD. The chains (ChainA and ChainB)
belongs to the MoleculeA, and the other two chains (ChainC and ChainD) corresponds to
the MoleculeB. By Protein we mean the whole molecule of RM6. After 50ns, the value of Rg
is relatively stable over time, which means that the RM6 is stably folded at th equilibrium
conformation.

The Rg in nm was computed by taking the average over all the trajectory and is presented
in Table (4.6).

Measured Quantities Rg (nm)
MoleculeA 2.510 ± 0.018
MoleculeB 2.506 ± 0.034

ChainA 2.445 ± 0.032
ChainB 2.528 ± 0.017
ChainC 2.500 ± 0.030
ChainD 2.464 ± 0.040
Protein 2.520 ± 0.026

Table 4.6: The average value of Rg over all trajectory frames of the simulation of RM6
protein.
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4.2.3 Hydrogen Bonds

Next, we analyze hydrogen bonds using gromacs tool (gmx hbond ). For each pair of atoms,
which form hydrogen bond, the bond is counted once. We split the analysis of hydrogen
bonds into intermolecular and intramolecular hydrogen bonds, as we discussed in Section:
3.2. More specifically in our case about RM6, we are going to further categorize HB as
follows. We split the intramolecular hydorgen bonds into four different categories:

1. intechain hydorgen bonds between the two chains (ChainA-ChainB, ChainA-ChainC,
ChainA-ChainD, etc.)

2. intrachain hydrogen bonds within the same cahin (ChainA-ChainA, ChainB-ChainB,
ChainC-ChainC, ChainD-ChainD)

3. intramolecularmol within the same molecule (MoleculaA-MoleculeA, MoleculeB-MolceculeB)

4. intremolecularmol between the two molecules (MoleculaA-MoleculeB).

The intramolecular hydrogen bonds are within the same molecule, in our case, the Protein
is the RM6 protein, which has four chains, let us denote them ChainA, ChainB, ChainC,
ChainD. Additionaly, it has two molecules and we are going to name them MoleculeA,
which has the chains: ChainA and ChainB, and MoleculeB, with the chains ChainC and
Chain D. Additionally, we have the intermolecular hydrogen bonds involve two or more
molecules, such as Protein-Water, ChainA-Water, ChainB-Water, ChainC-Water, ChainD-
Water, Water-Water. The notation we are going to use is the letter W for water. The
geometric criterion we used to calculate the number of hydrogen bonds per each frame is:
∠DHA ≤ 30o & |D−A| ≤ 3.50 Å. According to the previous geometric criterion a hydrogen
bond exist if these two conditions are satisfied simultaneously. Then, we computed the
average number over all the trajectory. The average number of Hydrogen Bonds over all the
trajectory is in the Tables (4.7).
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Measured Quantities <HB>
<ChainA-ChainA> 46.523 ± 0.6596
<ChainB-ChainB> 50.620 ± 0.3144
<ChainC-ChainC> 43.520 ± 1.364
<ChainD-ChainD> 51.578 ± 2.1132
<ChainA-ChainB> 8.779 ± 1.317
<ChainC-ChainD> 10.479 ± 0.963
<ChainA-ChainC> 5.694 ± 0.183
<ChainA-ChainD> 1.250 ± 0.001
<ChainB-ChainC> 4.943 ± 0.100

<MoleculeA-MoleculeB> 12.495 ± 0.549
<Protein-W>/W 0.0065 ± 0.00001
<W-W>/W 2.1862 ± 0.00005

<MoleculeA-W>/W 0.0032 ± 0.0000
<MoleculeB-W>/W 0.0033 ± 0.0000
<ChainA-W>/W 0.0016 ± 0.0000
<ChainB-W>/W 0.0016 ± 0.0000
<ChainC-W>/W 0.0017 ± 0.0000
<ChainD-W>/W 0.0015 ± 0.0000

Table 4.7: The average number of HB over all the trajectory frames of the simulation of
RM6 protein in aqueous solution.

We notice that the average number of intrachain HB of all the chains are high, which means
that the HB maintain stable the conformation of each chain. But again, as in Rop protein,
we observe that, between the two molecules MoleculeA and MoleculeB there are no many
HB. So, the hydrogens bonds are not responsible for the stable conformation of the native
state.

Additionaly, we observe that the chains do not hydrogen bonging with water molecules.

According to the reference [28], [21], the average number of hydrogen bonds of water per
water molecule was computed following, that each water molecule participates in, which
technically, is twice the average number of hydrogen bonds per molecule. In order to be able
to compare our average value of hydrogen bonds (in Table 4.7) to the average value in the
bulk system, we doubled it. So, the doubled value is 4.37, which is too close to the bulk [28].

4.2.4 Ramachandran Plot

The Ramachandran plot produced by PROCHECK [58] to validate the backbone structure
of the RM6 protein. PROCHECK provides a detailed analysis of the stereochemistry quality
of the 3D protein structure. In Figure 4.15, we present the Ramachandran plot of mutation
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RM6. As we can notice, there are both triangles and squares in this diagram. All the residues
of RM6 identified by squares except Glycine residues, which we shown by triangles. Each
black square represents the conformation of the main chain at one residue of the protein, as
well as the same for each black triangle represents each Gly residue of the protein. Moreover,
in Figure (4.15), we show with the lines the triangles which belong to Gly residue. We
represent the different regions of the plot by shading. By shading, we actually mean the
different areas with different colour. The darker the are, the more favourable the φ − ψ
combination.

Figure 4.15: Ramachandran plot of RM6.

As we can see from the diagram in Figure (4.15), the majority of them clustered in this area.

The ’core’ regions, which are the darkest and are represented with the red color, are marked
them A (corresponds to the α-helix) and B (referred to residues in a β strand conformation
of the main chain) and L (it is the smallest red area and corresponds to the left-handed
α-helix conformation). The 90% of the residues of the protein structure should be ideally
there. In our case, we have in the most favored region 93.5% of them, that is 202 amino
acids. Moreover, we marked with a,b,l, and p the additional allowed regions (yellow). More
precisely, we marked with a the ”allowed alpha regions”, with b ”the allowed beta”, with l
the ”allowed left-handed alpha” and with p the ”allowed epsilon”. In these regions, there
are 6.5% of the amino acids, which are 14 residues. Then, with the lightest yellow are the
in generously allowed regions distinguished with ∼a (generous alpha), ∼b (generous beta),
∼l (generous left-handed aplha), and ∼p (generous epsilon). The disallowed areas are with
white color.
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It has also 8 Gly residues, and as we can notice from the diagram combinations of the (φ−ψ)
angles exist in the red, yellow and in the white region. This happens because Gly has no
side chain and is much less sterically prevented than other amino acids. So, Gly is able to
adopt pairs of φ, ψ angles that are not allowed for any other residue. We should note here
that this Ramachandran plot is for Ala-like residues and Gly has its one Ramachandran plot
with less regions disallowed.

The plots in Figure (4.16) shows separate Ramachandran plots for each of 20 different amino
acids. There is a number in brackets, following the name of each residue, shows the total
amount of data points on this graph. The darker the shaded area on each plot represents the
more favourable region. We may see a letter (A or B or C or D) following a number above
some points. The number and the letter refer to residue-number and chain of the protein
accordingly. These marked amino acids are in unfavourable regions of the plot.

We can also observe that there are squares that have a different color. Those with red means
it is located in unfavorable regions, whereas the squares with yellow are them in favorable
regions. Moreover, there are square points with different accents in orange color. The darker
it becomes the orange so farther are the squares from the favorable areas.

If we observe each, we see, that the majority of points are clustered in the area of a-helix,
but there are also diagrams of particular interest.

Gly residue, as we have already said above, is a special residue and as we said it has its
own Ramachandran plot, because of its sidechain which is only a hydrogen atom it can
adopt more combinations of (φ−ψ) angles. So, if we notice the plot of Gly in contrast with
the others, we will see that it has more shaded regions than the others. Additionally, the
majority of the points of Gly seems to be in unfavorable regions.

In Figure (4.17), we present the plots of the torsion angles χ1 versus χ2, which belong to the
sidechain angles, for all residue types whose sidechains are long enough to have both these
angles. The three ideal regions are represented by the points where dashed lines are crossed:
the gauche minus, the trans and the gauche plus for the χ1−χ2 dihedral angles. The shading
is based on data has come from a data set of 163 non-homologous, high-resolution protein
chains, that are chosen from structures solved by X-ray crystallography. The average value
of these data we are going to call them “ideal values”. The center of the crosses is at the
mean and the length represents the ±1 standard deviation of these ideal values. We observe
that there are points labeled, these are points placed in more than 2.5 deviation away from
the ideal values. The points marked with a letter (A or B or C or D) and a number. The
number implies the residue-number, and the letter refers to the protein chain. Again, the
number in brackets, following the name of amino acids, shows the total number of points on
this graph. The darker the shaded area on each plot represent the more favorable regions.

In terms of Asp residue, we notice that the majority of points are clustered at the (t,g-) region.
Additionally, Asp residue has a point at (g-,g-) region. As we can see, the combinations of
angles (χ1 − χ2) for Glu residue prefer the regions (t,t) and (g+,t). In addition, there are
one or two points at the following regions: (g+,g+), (g+,g-) and (t,g+) All the points of Ile
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Figure 4.16: The above plots show a Ramachandran plot (φ versus ψ) for each residue.
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residue are in the region (g+,t). Leu residues have two favoured regions, where the points
are clustered, these are (t,g+) and (g+,t).

Figure 4.17: The above plots show a plot χ1 vs χ2 for each residue of RM6 protein, where it
is applicable.

In order to study, the time evolution of the Ramachandran plot, we chose from our trajectory
six equal distant configurations. The total simulation time was 209 ns. Then, we performed
the analysis of Ramachandran plot in each of them. In Figure (4.18), we present the results
of this analysis. As we can notice, in the first plot, which is our initial configuration, there is
a combination of (φ−ψ) angles that is in the disallowed region and marked in red lettering.
As simulation time passes, and as we observe the following Ramachandran plots, we see a
good enough stereochemical quality of our model. It is noticeable, that in all time panels
the majority of residues clustered in A region (α-helix region).
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(a) t=0ps (b) t=40ns

(c) t=80ns (d) t=120ns

(e) t=160ns (f) t=200ns

Figure 4.18: The time evolution of Ramachandran plot of RM6 protein.
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4.3 Remote Chains of Rop

This system has been used as a test-case for validation of the force field and the model that
we used. With the intention of this check, we did the following process. First of all, we
found the initial distance between the centers of mass of the two chains in the native state
of the Rop protein was 1.2 nm. Then, we kept the coordinates of the first one constant,
and we moved away the second one in a cm-cm distance equal to 2.027 nm. We started a
simulation of this system in aqueous solution. A snapshot of the initial conf is depicted in
Figure (4.19).

(a) A snapshot of MD simulation of Rop with re-
mote chains in water at t=0ps. (b) A snapshot of MD simulation of Rop with

remote chains in water at t=271ns.

Figure 4.19: Two snapshots of the RRC system with: (4.19a) is the two chains in water
solution at t=0ps and (4.19b) is the two chains in water at t=271ns.

Figure 4.20: Distance between centers of mass as a function of time.
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In Figure (4.20), the black line is the distance between the centers of mass in the native state
and the red line is the distance between the com in remote chains. The x-axis is the time in
ps and y-axis is the distance in nm. In Figure, we present the plot of the distance between
cm-cm of the two chains. As we can see, there are two lines, a blue one, and a red. The
blue belongs to the Rop protein in the native state, whereas the red one is of the system
with the moved chains. Moreover, the x-axis refers to the time of our simulation, whereas
the y-axis is the distance between the cm-cm of the two chains. We should also note, that
the simulation time of the remoted chains is longer than the time in the native state. The
time of the performed simulation of the RRC system (red line) was 271ns in contrast to the
Rop in native state (black line) which was 100ns. As we can notice from Figure (4.20), the
two remote chains tend to come close enough in a very short period of time. Specifically, at
t=2.500 ps the distance between the two centers of mass of the chains is 1.505nm, a slower
decrease of the cm-cm distance follows and beyond 100ns values approach the distance of the
native state ∼1.1nm still being somehow higher after 271ns. There are strong fluactuations
in distance values and the procedure evolves slowly.

In Figure (4.21), we present two snapshots of the RRC system, but only the protein. The
Figure (4.21a) is the initial structure of our protein at t=0ns and the Figure (4.21b) is the
last configuration at t=271ns. As we can see, there is a clear difference between the cm-cm
distance of chains.

(a)

(b)

Figure 4.21: Two snapshots of the RRC system with: (4.21a) is the two chains at t=0ps and
(4.21b) is the two chains at t=271ns.

In Figure (4.22), we present the root mean square deviation (RMSD) of our system. If we
observe the plot (Figure 4.22) thoughtfully, we are going to see, that the reference structure
starts differing with the structure of each consequent frame during the simulation time.
This is because the two chains tend to come closer to each other trying to find the native
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state (equilibrium conformation), which is very different from the initial one of the current
simulation.

Figure 4.22: Rmsd of system RRC.

4.4 Comparison Between the Rop and RM6

In the following we are going to do a comparison between Rop protein and its mutation
RM6. The differences between the two proteins are highloghted.

Radius of gyration

As we can observe from the diagram in Figure 4.23 the value of Rg of RM6 protein is bigger
than the Rg of Rop protein. This is expected, due to in Rop protein we have only two chains
and the two α-helices connected with a loop, whereas in RM6 which is a tetramer we have 4
chains in which we remove 5 residues from the loop and the two helices are in a linear line.
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Figure 4.23: Radius of gyrarion (Rg) plot.

Measured Quantities Rop RM6
ChainA 1.404 ± 0.004 (nm) 2.445 ± 0.032 (nm)
ChainB 1.410 ± 0.003 (nm) 2.528 ± 0.017 (nm)
ChainC - 2.500 ± 0.030 (nm)
ChainD - 2.464 ± 0.040 (nm)

MoleculeA 1.511 ± 0.004 (nm) 2.510 ± 0.018 (nm)
MoleculeB - 2.506 ± 0.034 (nm)

Table 4.8: Comparison of Rg values between RM6 and Rop.

In Table (4.8), in the system of Rop we denote as MoleculeA the whole protein, because it
has two chains. Moreover, we have ”-” in the positions of ChainC and ChainD because Rop
has only two chains.

We see that the values of Rg in RM6 is much greater than in Rop. In the case of the chains
this is norma because in Rop there is a loop so the chains are more ”compact”, than in RM6
in which they look like a linear line. Additionaly, the Molecules in RM6 are less compact
than in Rop.
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Hydrogen Bonds

The average number of hydrogen bonds among water molecules is greater in RM6 system
than in Rop protein. Therefore Rop structures causes bigger disturbance in the HB network
of water compared to RM6 structure.

Additionally, the average number of HB between ChainA-ChainB in RM6 is greater than in
Rop protein, as well as the number of ChainC-ChainD. The chains in Rop tend to create
more hydrogen bonds with themselves than the chains in RM6.

Measured Quantities Rop RM6
<ChainA-ChainA> 61.777 ± 0.2552 46.523 ± 0.6596
<ChainB-ChainB> 57.93 ± 1.7470 50.620 ± 0.3144
<ChainC-ChainC> - 43.520 ± 1.364
<ChainD-ChainD> - 51.578 ± 2.1132

<Water-Water>/Water 1.79 ± 0.0002 2.1862 ± 0.00005

Table 4.9: Hydrogen Bonds

In Table (4.9), the ”-” in Rop protein in terms of ChainC and ChainD is because Rop protein
has only two chain.

Ramachandran Plot

In Figure (4.24), we compare the Ramachandran plot of Ala residue. In RM6 we have
20 amino acids of Ala because we have four chains, but we have removed the Ala residue
from the loop region. The digram (4.24a) belongs to Rop and as we can see there are two
points away from the A region, this may caused because we have two residues of Ala in the
loop which has no α-helix conformation, compared to RM6 (4.24b) where all the points are
clustered in the A region.
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(a) Ramachandran plot of residue Ala in Rop.
(b) Ramachandran plot of residue Ala in RM6.

Figure 4.24: Comparison of Ramachandran plot of amino acid Ala between Rop and RM6.
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Chapter 5

Conclusions and Future Work

Conclustions

We have studied the Rop protein and its loopless mutatio RM6 in aqueous solution. Be-
tween them there is a big difference in the topology. RM6 is a tetramer, whereas Rop is a
homodimer. We see that the removal of five amino acids from the loop region drives to a
complete different topology.

In terms of the stability of the native state of the two proteins. According to the analysis of
rmsd and the Rg, we see that the two structures are stable. We should note that RM6 has
greater Rg than Rop.

The results above about hydrogen bonding of the residues in the loop regions shows that
indeed Ala is the only residue among them, which hydrogen bonding with both α-helices
of the chain simultaneously. According to hydorgen bonding analysis the secondary confor-
mation is stable because of the hydrogen bonds, but in the stability of the native state of
the protein the elecrostatic interactions play a fundamental role. The average number of
hydorgen bonds among water molecules is greater in RM6 system than in Rop protein.

Electrostatic interactions are very important for the stability of the native state of proteins.

Finally, from the analysis of Ramachandran plot we see that the stereochemical quality of
our models is good.

Future Work

Very recent results have been extracted related to the thermostability of RM6 which has
been observed experimentally. Our plans for the future is to continue the analysis of Rop
protein properties and we focus on the following topics:
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1. Srudy of trapped water molecules between the two chains has been done, and shows
no trapped molecules but a more systematic amalysis is going to be done in future.

2. A simulation of a mutation of a single amino acid in the loop region (mutate 31Ala with
Pro) is in progress, because according to experiments this mutation shows a change in
the topology of the protein.

3. Another interesting topic for the future is to study the thermal stability of Rop protein.

In our future plans, we are going to calculate the free energy of Rop protein. Additionally,
another interesting for future work is to examine if RM6 protein creates aggergations.
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