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Abstract 

 

The advent of powerful and stable laser sources has recently revived the 

interest for optical free space communication systems. Besides the progress in this 

field a major problem that still has to be solved is the effect of air turbulence on signal 

quality. A straightforward method to overcome the deteriorating effects of turbulence 

is to use non-diffracting beams that in principle have the ability to self heal. In this 

thesis we numerically study the propagation of non-diffracting beams, Airy and 

Bessel, in turbulent media. Their propagation is compared with the propagation of 

plane waves, Gaussian beams and a recently presented type of accelerating self 

focusing beams the Airy Ring beam. Our simulations were preformed both in 1+1D 

by numerically solving the paraxial approximation of the wave equation and in 2+1D 

using a slit step technique involving the propagation of the angular spectrum and 

random phase screens to represent the turbulence. Our simulations indicate that in 

general turbulence can severely affect the propagation of non-diffracting beams since 

it scrabbles the wavefront in a continuous and distributed way that cannot be balanced 

by the self healing action. On the other hand under some conditions, Airy Beams can 

be better when propagating in turbulence from Gaussian Beams while Bessel Beams 

had almost the same response to turbulence as Gaussian Beams. Interestingly, Airy 

Ring Beams seem to be quite promising in propagating though high turbulence in 

comparison to all other beam types used in our simulations. 
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1. Introduction 

 

In recent years, and after the invention of Ruby laser in 1960, there has been a 

growing interest in the subject of free space optical communication techniques. 

Especially at the beginning of research scientists thought that it would help space-

based applications, but the lack of proper systems in laser technology delayed this 

development. Research in free optical communications began a cycle of declining 

interest and funding different from time to time
1
. 

At late 90’s, free space laser communication come back to the surface, in 

order to cover the great demand for high bandwidths communications. The explosion 

of internet was a reason for the creation of this great demand. This period of time, the 

establishment of optical fiber communications, led scientists to span these efficient 

components in Free Space Optical (FSO) systems, but a drawback was that it was 

costly. 

Nowadays, difficulties and the high cost of laying a network of optical fibers 

in urban areas, created a need of modulation and propagation of optical signals over a 

line-of sight path (Figure 1). Additionally, the great advantages in the sector of 

communications made them one of the hottest technologies of this decade. These 

advantages are rapidly deploy-ability, support for high bandwidth transmissions, high 

security, the ability to extend the reach of the optical fiber backbone and the use in 

physical disaster recovery situations (valuable for quick reconstruction of 

communications in areas with damages in copper wires, optical fibers and/or radio 

frequency antennas). 

 

Figure 1: Representation of a FSO system  

(http://zyumed.com/modules/com_ccboard/free-space-optics-1688.html) 

Although FSO are promising, there are components that could not be 

neglected such as atmospheric turbulence, aerosols and molecular attenuation. These 
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components generate problems to the propagation of beams in atmosphere and 

scientists are trying to overcome them. 

In this thesis, the problem of propagation in atmospheric turbulence will be 

investigated numerically. The atmospheric turbulence and the propagation of different 

types of beams will be simulated. The purpose of this study is to find a more “proper” 

beam from the laser beam, in order to improve the signal that finally reaches from the 

transmitter to the receiver in FSO systems. 

The types of beams that will be simulated numerically and compared for 

1+1dimensions and for 2+1 dimensions are: 

� 1+1 Dimensions 

o Gaussian Beams 

o Airy Beams 

o 2 Colliding Airy Beams  

� 2+1 Dimensions 

o Gaussian Beams 

o Airy Beams 

o Bessel Beams 

o Airy Ring Beams (accelerating auto focusing beams) 

Initially paraxial approximation will be described and the connection of it with 

beams. Also the parameters of propagation of beams and the numerical modeling 

approach for 1+1 and 2+1 dimensions will be described. And finally the results and 

further research will be presented. 

At this direction was the theoretical approach for evolution of Airy Beams in 

turbulence given by Chu
2
 . He found that when the value of a in an Airy Beam is 

small, the Airy Beam can be more resilient against turbulence perturbations. 

Additionally, Gu’s
3
 simulations for 4 Airy Beams that collapse show that Airy Beams 

parameters should be chosen appropriately in order Airy beams’ intensity peaks to 

retain their displacements. Another work of Gu
4
 for pseudo-Bessel Beams in 

atmospheric turbulence results that with proper manipulation of the parameters; 

pseudo-Bessel Beams are more “proper” for propagation in turbulence than Gaussian 

Beams. These previous works and the new type of beams, Airy Ring Beams, led to 

the result that non-diffracting beams are challenging for research and their behavior in 

turbulence should be checked.  
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2. Paraxial approximation 

 

2.1 Wave Equation 

 

Maxwell's equations for a region with no charge or current (p=0, j=0) are, in 

differential form: 

 0D∇⋅ =  (1) 

 0B∇⋅ =  (2) 

 

B
E

t

∂
∇× = −

∂
 (3) 

 

D
H

t

∂
∇× =

∂
 (4)  

There are two variables that describe the electric properties of the electromagnetic 

field E and D, and also two variables for the magnetic properties of the field H and B 

(this is necessary when some materials are present with oriented electric and magnetic 

dipoles). If the electric dipole density is denoted by P and the magnetic dipole density 

by M, then the following definitions for D and B can be used (for isotropic materials): 

 ( , , )D x y z Eε= ⋅  (5)  

 B Hµ= ⋅  (6)  

where ε is the electric permeability and µ is the magnetic permeability 

From equations (5), (6), it is taken at equations (3), (4):
 

 

H
E

t
µ
∂

∇× = − ⋅
∂

 (7) 
 

 

E
H

t
ε
∂

∇× = ⋅
∂

 (8)  

From Equation 7 it is taken: 

 ( ) ( )
2

2

B H E
E H

t t t t
µ µ ε µ

   ∂ ∂ ∂ ∂
∇× ∇× = ∇× = ∇× ⋅ = − ⋅ ∇× = − ⋅ ⇒   ∂ ∂ ∂ ∂   

   

 ( )
2

2

2

E
E E

t
ε µ

∂
∇ ⋅ ∇ ⋅ −∇ = − ⋅

∂  (9)  

From equation (5) it can be assumed (for weak perturbations) that: 
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 ( ) 0E∇ ⋅ ∇ ⋅ ≅  (10)  

 

Finally from equations (9) and (10) it is taken: 

2
2

2
0 (11)

E
E

t
ε µ

∂
∇ − ⋅ ⋅ =

∂
 

So Maxwell equations lead directly E and B  satisfying the wave equation for which 

the solutions are linear combinations of plane waves travelling at the speed

 1υ
ε µ

=
⋅  (12). 

2.2 Paraxial approximation 

If the Laplacian operator is expanded, it is obtained: 

 

2 2 2 2
2 2

2 2 2 2
x y z z

⊥
   ∂ ∂ ∂ ∂

∇ = + + = ∇ +   ∂ ∂ ∂ ∂   
 (13) 

where 
2 2

2

2 2x y
⊥

∂ ∂
∇ ≡ +

∂ ∂
 is the transverse part of the Laplacian equation. From 

equations (11), (12), (13), it is taken  

 

2 2
2

2 2 2

1
0

E
E

z tυ
⊥

 ∂ ∂
∇ + ⋅ − ⋅ = ∂ ∂ 

 (14) 

In paraxial approximation the complex magnitude of the electric field ( , , , )E x y z t  

becomes  

 
0 0( , , , ) ( , , ) i k n z i t

E x y z t f x y z e
ω⋅ ⋅ ⋅ − ⋅ ⋅= ⋅  (15) 

where �� is the mean value of the refractive index, 0k  is the free space wavenumber 

related to the free space wavelength 0λ , ω is the angular frequency and c is the speed 

of light in vacuum and the complex valued function ( , , )f x y z  is a slowly varying 

function of z on a scale of 0 01 k n⋅ .The phase of f describes the departure of the 

phase front of the wave from that of a plane wave.  

And so the longitudinal derivative 
2

2
z

∂
∂

 is equal to: 
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0 0 0 0 0 0

2 2
2 2

0 0 0 02 2
2

i k n z i t i k n z i t i k n z i tE f f
e i k n e k n f e

z z z

ω ω ω⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅∂ ∂ ∂
= ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

∂ ∂ ∂
 (16) 

Additionally: 

 

( )0 022
2

2 2

i k n z i t
f eE

f
t t

ω

ω
⋅ ⋅ ⋅ − ⋅ ⋅∂ ⋅∂

= = − ⋅
∂ ∂

 (17) 

Substituting (15), (16) and (17) into equation (14) it is obtained the following: 

0 0 0 0

2 2
2

2 2
( , , ) 0 (16)

i k n z i t i k n z i t
f x y z e e

z

ω ωω
υ

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
⊥

 ∂
∇ + ⋅ ⋅ + ⋅ = ⇒ ⇒ ∂ 

 

0 0 0 0 0 0

0 0 0 0

2 2 2

0 02 2 2

2
2 2

0 0 2

2

0

i k n z i t i k n z i t i k n z i t

i k n z i t i k n z i t

f f f f
e e i k n e

x y z z

k n f e f e

ω ω ω

ω ωω
υ

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

 ∂ ∂ ∂ ∂
+ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ − ∂ ∂ ∂ ∂ 

− ⋅ ⋅ ⋅ + ⋅ ⋅ = ⇒

 

 

2 2
2 2 2

0 0 0 02 2
2 0

f f
f i k n k n f f

z z

ω
υ

⊥
∂ ∂

∇ + + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ =
∂ ∂  

(18) 

The paraxial approximation places certain upper limits on the variation of the 

amplitude function ( , , )f x y z  with respect to longitudinal distance z. 

A variation of � can be written as: ,
A

A z A z
z

δ δ δ λ
∂

= ⋅
∂

≪ ∼  �� is the wavelength)  

so that: 
f f

k f
z λ
∂

⋅
∂
≪ ∼ and also:  

 

2
2

2

f f
k k f

z z

∂ ∂
⋅ ⋅

∂ ∂
≪ ≪  (19) 

Because of the paraxial inequalities stated above (19), the term 
2

2

f

z

∂
∂

 can be neglected 

in comparison to
f

z

∂
∂

. This yields the paraxial approximation of the wave equation 

(12): 

 

2
2 2 2

0 0 0 0 2
2 0

f
f i k n k n f f

z

ω
υ

⊥
∂

∇ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ =
∂

 (20) 
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In addition: 0k n n k
c c

n

ω ω ω
υ

= = = ⋅ = ⋅ (where 0k is the wavenumber of vacuum) and 

so: 

 

2 2 2 2 2

0 0 0 0 0
2 0

f
f i k n k n f k n f

z
⊥

∂
∇ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ = ⇒

∂
 

 ( )2 2 2 2

0 0 0 0
2 0

f
f i k n k n n f

z
⊥

∂
∇ + ⋅ ⋅ ⋅ ⋅ + − ⋅ = ⇒

∂
 

 ( ) ( )
2 2

0 0 0 0 0
2 0

f
f i k n k n n n n f

z
⊥

∂
∇ + ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ − ⋅ = ⇒

∂
 

For a small disturbance of the refractive index it is taken
0 0

2n n n+ ≅ ⋅ . And also by 

setting
0

n n n∆ ≡ − , finally is taken the paraxial equation
5
: 

 

2 2

0 0 0 0
2 2 0

f
f i k n k n n f

z
⊥

∂
∇ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ∆ ⋅ =

∂
 (21)  

 

Normalized paraxial wave equation (1+1D) 

In order to normalize the paraxial equation for 1+1D it is applied the following 

coordinate transformations (x, z coordinates): 

 

0

2

0 0 0

2 2

0 0 0

x
s

w

z

w n k

V w k n n

ξ

= 



= ⇒
⋅ ⋅ 

= ⋅ ⋅ ⋅ ∆



 (22)

 

  

 

 

 

 

 

2

2

1
0 (23)

2

f f
i V f

s ξ
∂ ∂
⋅ + ⋅ + ⋅ =
∂ ∂
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Normalized paraxial wave equation (2+1D) 

In order to normalize the paraxial equation it is applied the following coordinate 

transformations: 

 

0

0

2

0 0 0

2 2

0 0 0

'

'

'

x w x

y w y

z w n k z

V w k n n

= ⋅ 
= ⋅ 
⇒

= ⋅ ⋅ ⋅ 
= ⋅ ⋅ ⋅ ∆   (24)

 

  

 

 

  

21
0 (25)

2 '

f
f i V f

z
⊥

∂
⋅∇ + ⋅ + ⋅ =

∂
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3. Beams 

3.1 Gaussian Beams 

 

Gaussian beams are a well-known beam of electromagnetic radiation. Their 

transverse electric field and intensity (irradiance) distributions can be approximated 

by Gaussian functions. Laser beams are a good approximation of Gaussian beams. 

They are a solution of paraxial approximation (Equation 25) with initial condition for 

2+1 dimensions (for ( ', ', ')E x y z being the complex amplitude of beam’s electric field 

and 'z being the direction of propagation): 

 

2 2

0 2

0

( ' ' )
( ', ',0) exp

x y
E x y E

w

 +
= ⋅ − 

   (26)

 

where 0E is the electric field in the center of the beam and 0w is the waist of the beam. 

For a Gaussian beam, the complex electric field amplitude in homogenous 

medium is described by the function
6
: 

 

[ ] 2 20
0 2

1
( ', ', ') exp ' ( ') ( ' ' )

( ') ( ') 2 ( ')

w i k
E x y z E i kz z x y

w z w z R z
η

  ⋅
= ⋅ ⋅ − ⋅ − − + ⋅ +  ⋅    

  (27)

 

where the waist, the radius of curvature, the phase term and the diffraction length, 

respectively, are given by: 

 

2 2

2 2 2

0 02

0

' '
( ') 1 1

R

z z
w z w w

w z

λ
π

      ⋅
= ⋅ + = ⋅ +      ⋅          (28)

 

 

2 22

0( ') ' 1 ' 1
' '

R
w z

R z z z
z z

π
λ

    ⋅  = ⋅ + = ⋅ +     ⋅          (29)

 

 

1 1

2

0

' '
( ') tan tan

R

z z
z

w z

λ
η

π
− −   ⋅

= =   ⋅     (30)

 

 

2

0
R

w
z

π
λ
⋅

=
 (31). 

The relationship between all these characteristics of a Gaussian beam is shown 

in Figure 2.  
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Figure 2: Representation of Gaussian Beam

 

The irradiance distribution of the Gaussian beam is given by: 

 

( ', ', ') ( ', ', ') expI x y z E x y z I

 

where 0I is the irradiance in the center of the beam

at some diameter either by the internal dimensions of the laser beam or by some 

limiting aperture at the optical train. In order to discuss 

of a laser beam, it is necessary to define i

its diameter, the first one is the diameter at which the beam irradiance (intensity) has 

fallen to 21 e (13, 5%) of 

intensity of the beam has fallen to 50% of its peak. The second one is called Full 

Width at Half Maximum (FWHM). This is shown schematically at Figure 3.

Figure 
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: Representation of Gaussian Beam 

The irradiance distribution of the Gaussian beam is given by:  

2 2
2

0 2

2 ( ' ' )
( ', ', ') ( ', ', ') exp

( ')

x y
I x y z E x y z I

w z

 ⋅ +
= = ⋅ − 

   

 

is the irradiance in the center of the beam. The Gaussian shape is truncated 

at some diameter either by the internal dimensions of the laser beam or by some 

limiting aperture at the optical train. In order to discuss the propagation characteristics 

of a laser beam, it is necessary to define its diameter. There are two ways of defining 

its diameter, the first one is the diameter at which the beam irradiance (intensity) has 

of its peak (waist) and the second one is the one at which the 

intensity of the beam has fallen to 50% of its peak. The second one is called Full 

Width at Half Maximum (FWHM). This is shown schematically at Figure 3.

 

Figure 3: Diameter of a Gaussian beam 

                         - 15 - 

 

 
 
   

(27)

 

Gaussian shape is truncated 

at some diameter either by the internal dimensions of the laser beam or by some 

the propagation characteristics 

s diameter. There are two ways of defining 

its diameter, the first one is the diameter at which the beam irradiance (intensity) has 

and the second one is the one at which the 

intensity of the beam has fallen to 50% of its peak. The second one is called Full 

Width at Half Maximum (FWHM). This is shown schematically at Figure 3. 
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3.2 Non-diffracting and accelerating beams  

The phenomenon of diffraction is a characteristic of the wave nature of light 

and it occurs when any wavefront is obstructed in some way. The wavefront may be 

corrupted in amplitude or phase because of diffraction. It has the possibility of 

happening anytime when a beam of light passes through an opening or aperture that is 

large with respect to its wavelength. According to the Huygens-Fresnel Principle7, 

every point of the wavefront that is unobstructed by the hindrance serves as a source 

of spherical wavelets that constructively and destructively interfere with each other 

depending on their optical path length. This creates what is called a diffraction 

pattern. Diffraction causes the intensity profile of the laser (Gaussian) beam to spread 

out as it propagates through free space. Durnin
8,9

 was the first one that pointed out 

that a set of solutions for the free-space scalar wave equation were “non-diffracting”. 

Durnin entered 2D diffraction-free optical wave packets, Bessel beams, and his work 

gained theoretical and experimental interest and resulted to the discovery of other 

interesting non-diffracting solutions, Airy beams. Both types of nonspreading beams 

are generated from appropriate superposition of plane waves and they are beams 

conveying finite power (this outcome from their nondiffracting nature). This type of 

beams are also self-healing, which means that they can be partially obstructed at one 

point, but will re-form at a point further down the beam axis. In experiments of 

course, all nondiffracting beams are truncated by apertures, because of the extremely 

high energy and the space they need. As a result they seem to diffract during 

propagation. Nevertheless, if the geometrical size of the limiting aperture greatly 

exceeds the spatial features of the ideal propagation of the invariant fields, the 

diffraction process is decelerated over the designed propagation distance and therefore 

for all these reasons they are called “diffraction-free”. 

 

3.2.1 Airy Beams 

The normalized paraxial equation can describe, except for Gaussian beams, a 

nonspreading Airy wave packet solution. The basic feature of this Airy packet is the 

capability to freely accelerate without including any external potential. Apart from 

plane waves, Airy wave packets are the only nontrivial solution of the paraxial 

equation that remains invariant with time. Experiments show that after Airys’ beams 
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propagation, they retain their features, even though their truncation is exponential. 

Airy beams are consisting of one main lobe with maximum intensity and other 

smaller lobes, their propagation path is parabolic. Smaller lobes seem to supply the 

main lobe constantly with energy, and Airy beams accelerate throughout their 

propagation trajectory. This type of propagation retains over long distances despite 

the fact that the centroid stays constant and the phenomenon of diffraction ultimately 

occurs
10,11

.  

The initial condition for the paraxial solution (Eq.23) of Airy beam for 1+1D 

is: 

 
( )( , 0) ( ) expf s Ai s a sξ = = ⋅ ⋅

 (32)

  

where 0a > is the dissipation rate. Ai is the airy function and it is defined i.e. for real 

values of x by the integral: 

 

3

0

1 1
( ) cos

3
Ai x t x t dt

π

∞
 = ⋅ ⋅ + ⋅ 
 ∫

 (33)

  

The initial condition for the paraxial solution (Eq.25) of Airy beam for 2+1D 

is: 

 
( ) ( )0 0

1 2

''( ', ', ' 0) ( '/ ) ( '/ ) exp exp
a ya xf x y z Ai x x Ai y y

w w
⋅⋅= = ⋅ ⋅ ⋅

 (34)

 

whereϕ is the electric field envelope, 0x and 0y are arbitrary transverse scales and 

finally, 1w and 2w are the waists of the corresponding transverse scales. 

For an (1+1D) Airy beam, the solution of equation (23) with initial condition 

equation (26) in homogenous medium (the third term of equation 23 is neglected) is 

described by the function: 

 

2 3

( , ) exp
2 2 12

s
f s Ai s i i

ξ ξ ξ
ξ

    ⋅   = − ⋅ − ⋅        
          (35)

 

This mathematical relationship was stated by Berry at 1979
12

. 
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3.2.2 Bessel Beams 

The other type of non-diffracting beams is Bessel beams. Bessel beams, unlike 

Airy beams, are non-unique and like plane waves, they have finite energy and density 

but not infinite power. The ideal Bessel beam solution is given when the electric field 

is proportional to the zero-order Bessel function. Bessel functions of first kind ( )mJ x

are solutions of the Bessel differential equation: 

 

2
2 2 2

2
( ) 0

d y dy
x x x m y

dx dx
⋅ + ⋅ + − ⋅ =

 (36)

 

The zero-order Bessel function 0( )J x  can be represented by the infinite power series: 

 ( )

2

0 2

0

1

4
( ) ( 1)

!

i

i

i

x

J x
i

∞

=

 ⋅ 
 = −∑

 (37)

 

Or an integral form: 

 
0

0

1
( ) exp( cos )J x i x d

π

ϑ ϑ
π

= ⋅ ⋅ ⋅∫
 (38)

 

Consequently, zero-order Bessel function 0( )J x is the initial condition for solving the 

paraxial equation (Eq. 25). 

 Bessel beams are interesting, because they have a central region that appears 

to overcome the effects of diffraction. When the central maximum of a zero-order 

Bessel beam is compared to a Gaussian beam of same size, the central maximum of 

the Bessel beam does not exhibit diffractive spreading. 

 

3.3 Airy Ring Beams 

Airy Ring Beams are a recently introduced type of abruptly autofocusing 

waves [N. K. Efremidis and D. N. Christodoulides, "Abruptly autofocusing waves," 

Opt. Lett. 35, 4045-4047 (2010)., D. G. Papazoglou, N. K. Efremidis, D. N. 

Christodoulides, and S. Tzortzakis, "Observation of abruptly autofocusing waves," 

Opt. Lett. 36, 1842-1844 (2011).]. Generally speaking, any beam with proper 

manipulation of the initial phase or amplitude focuses or defocuses. In some cases, for 
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example in medical use, it’s extremely necessary for a beam to focus in a particular 

target, preserving low intensity before the focus. For this reason it important for 

medical applications to use a new category of optical beams in which the energy 

flows constantly and with an accelerating way accumulates at the focus point. Airy 

ring beams are radially symmetric waves, whose peak intensity remains constant 

during propagation, although, near the focal point, they autofocus and as a result their 

maximum intensity can abruptly increase by orders of magnitude just at the focus. In 

this thesis, for the 1+1D propagation, in order to present these types of beams, two 

Airy beams that collapse will be used. Additionally for the 2+1D propagation a radial 

Airy profile will be used
13,14

. 

The initial beam for the 1+1D will be: 

 

( )0 0
0 ( ) exp

r s r s
f s Ai Ai a s

w w

 + −    = + ⋅ − ⋅    
      (39)

 

where Ai is the airy function (Eq.33), s is the transverse coordinate, 0r is the radius of 

the beam and w is a scaling factor. 

The radially symmetric Airy distribution for 2+1D is represented by: 

 

0 0
0( ) exp

r s r s
f s Ai a

w w

− −    = ⋅ ⋅          (40)

 

where Ai is the airy function (Eq.33), 0r is the radius of the primary ring,
 
w is a scaling 

factor and a is the exponential decaying factor. 

Typical intensity profiles of all types of beams that were used are shown in Figures 4 

and 5. 
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Figure 4: Types of 1D beams compared in the simulations 

 

  

Figure 5: Types of 2D beams compared in the simulations 

 

 

 

1D Gaussian Beam Airy Beam 2 Airy Beams 

that collapse

2D Gaussian Beam Airy Beam Bessel Beam Airy Ring Beam
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4 Propagation in turbulent media 

4.1 Introduction 

 

Propagation of optical waves through the atmosphere is affected by 

atmospheric turbulence, scattering off aerosols, and atmospheric absorption. In this 

thesis will be examined the basic cause of distortion, atmospheric turbulence. 

Atmospheric turbulence is a result of localized variations of temperature, humidity, 

and pressure in the atmosphere. These variations result in localized refractive index 

fluctuations, where each localized area of lower or higher refractive index is known as 

a turbulent eddy. The refractive index of each individual eddy is not much greater 

than unity, but the cumulative effect of eddies over 1 km path is great. 

The refractive index of air at optical frequencies is, 

 

3
6

2

7.52 10
1 77.6 1 10

P
n

Tλ

−
− ⋅  − = ⋅ + ⋅ ⋅  

    (41)

 

where n is the total refractive index,
 
λ  is the wavelength in mµ , P  is the pressure in 

mbar andT is the temperature in K . At sea level,
 

1n −  is typically
4

3 10⋅ . Humidity 

effects are typically neglected over land, since humidity affects the value of the 

refractive index by less than1% . 

In addition to energy loses associated with absorption and scattering effects 

and refraction-included variations of the trajectory, a beam propagating in the 

atmosphere also experiences amplitude and plane fluctuations due to the random 

space-time distribution of the refractive index are caused by disordered turbulent air 

mixing and, accordingly, temperature variations.  

Estimates show that 1 C° variation of the air temperature is accompanied by an 

order of 
6

10
−

 variation of the refractive index. The amplitude of the observed air-

temperature fluctuations at a given point attains tenths of a degree Celsius. The period 

of the fluctuations varies from a few milliseconds to several seconds. The amplitude 

of the temperature fluctuations along horizontal paths in the atmosphere can attain 

several degrees for points situated at distances of the order of 
2

10 to 
3

10 m. 

Inasmuch as the atmosphere is always turbulent, it is particularly important to 

study the laws by which turbulence affects the parameters of radiation, specifically in 

connection with the extraordinary possibilities afforded by the application of radiation 
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in communications systems, data transmission systems, linear and angular distance 

facilities, etc. 

The turbulent state of the atmosphere disrupts the coherence of radiation and 

can, therefore, limit the capabilities of beams in devices that utilize the coherence 

property. Wavefront distortions induced by turbulent fluctuations of the refractive 

index elicit broadening of beams, random variations of the position of the beam 

“centroid”, redistribution of the beam energy within the cross section, and related 

intensity fluctuations.
15

  

 

4.2 Refractive Index fluctuations 

Air movements are characterized by disordered variations of both the 

magnitude and the direction of velocity at any point. The result is vigorous mixing. 

Such motion is called turbulent, as distinct from laminar motion in which mixing does 

not occur and the velocity at a given point is either constant or varies in a regular 

fashion. The transition from laminar to turbulent motion takes place at a definite 

critical value of the Reynolds number: 

 Re mL vυ= ⋅  (42) 

where υ is a characteristic flow velocity, L  is the characteristic space scale of the 

flow process and
m

v is the kinematic viscosity of the fluid. 

In the ground layer of the atmosphere, for a height 2L m= characteristic 

velocities 1 5m
s

υ = − and
2

0.15
m

cmv
s

= . The Reynolds numbers have values

5Re (2.5 7) 10= − ⋅  i.e., are very large, and so the motion is highly turbulent. 

Richardson [Reference] first developed a picture of the turbulent energy 

redistribution in the atmosphere. The process is shown pictorially in Figure 6, with an 

energy input region, inertial subrange, and energy dissipation region. The dissipation 

rate Ε is related to the velocity lU of an eddy with characteristic length l by

1
3( )

l
U l≈ Ε ⋅ . At large characteristic lengths l a portion of kinetic energy in the 

atmosphere is converted into turbulent energy. When the characteristic length reaches 

a specified outer scale length, 0L , energy begins to cascade. The energy of one eddy is 
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progressively redistributed into eddies of smaller scales, until eddies reach a size 

equal to the inner scale length,

is defined by:
3

0 7.4 ( )l υ= ⋅

4mm andυ is typically0.148

where 0 0L l l> > , turbulence is isotropic and may be transferred from eddy to eddy 

without loss. When the diameter of a decaying eddy reaches

eddy is dissipated at heat energy through viscosity process.

 

Figure 6: Depiction of the process of turbulent decay, showing the energy 

cascade and subsequent division of turbulent eddies in the atmosphere

[Reference]

Turbulent air motion represents a set of vortices of various diameters, from 

extremely large with a characteristic scale

value of 0L is determined by the space

outer turbulence scale. Under the influence of inertial forces, large vortices break up 

into smaller ones. This cascade process of the breakup of vortices continuous until the 

Reynolds numbers attain values

decisive role in comparison with the inertial forces. The scale
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progressively redistributed into eddies of smaller scales, until eddies reach a size 

equal to the inner scale length, 0l . The inner scale length, or Kolmogorov microscale, 

13
47.4 ( )

E
υ= ⋅ . At the surface of Earth, 0l is typically in the order of

2

0.148cm
s

. Kolmogorov proposed that the inertial subrange, 

, turbulence is isotropic and may be transferred from eddy to eddy 

without loss. When the diameter of a decaying eddy reaches 0l , the energy of the 

dissipated at heat energy through viscosity process. 

: Depiction of the process of turbulent decay, showing the energy 

cascade and subsequent division of turbulent eddies in the atmosphere

[Reference] 

motion represents a set of vortices of various diameters, from 

extremely large with a characteristic scale 0L  to extremely small with a scale

is determined by the space scale of the flow on the whole and is called the 

outer turbulence scale. Under the influence of inertial forces, large vortices break up 

into smaller ones. This cascade process of the breakup of vortices continuous until the 

Reynolds numbers attain values of unit order and viscous forces begin to play a 

decisive role in comparison with the inertial forces. The scale 0l is customarily referred 
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length, or Kolmogorov microscale, 

is typically in the order of

gorov proposed that the inertial subrange, 

, turbulence is isotropic and may be transferred from eddy to eddy 

, the energy of the 

 

: Depiction of the process of turbulent decay, showing the energy 

cascade and subsequent division of turbulent eddies in the atmosphere 

motion represents a set of vortices of various diameters, from 

to extremely small with a scale 0l   The 

scale of the flow on the whole and is called the 

outer turbulence scale. Under the influence of inertial forces, large vortices break up 

into smaller ones. This cascade process of the breakup of vortices continuous until the 

of unit order and viscous forces begin to play a 

is customarily referred 
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to as the inner turbulence scale. The internal of scales between 0L and 0l is called 

inertial in connection with the fact that vortices falling within this interval of scales 

behave mainly in accordance with the action of the inertial forces. Vortices with scale

0r l≤ belong to the viscous dissipation interval. 

The cascade mechanism of transfer of kinetic energy from larger vortices to 

smaller ones is constantly maintained in the atmosphere through external sources of 

energy, which feed the overall flow of moving air. The dissipation of kinetic energy is 

realized in the smallest vortices. Therefore the turbulence characteristics are divided 

according to the size of the eddy or blob into three regions: 

 a) Input range (eddy size> 0L ). The energy is introduced into the turbulence in 

this range of eddy sizes due to wind shear and temperature gradient. In general, the 

turbulence is anisotropic in this range. The spectrum in this range depends on how the 

turbulence is created for the particular case, and thus there is no general formula 

describing the turbulence characteristics in this range. The referred spectrum in this 

section is described analytically below. 

b) Inertial subrange ( 0L >eddy size> 0l ). In this range, the kinetic energy of the 

eddies dominates over the dissipation due to the viscosity, and the turbulence is 

essentially isotropic. The spectrum is proportional to
11 3κ −

, where

2
( )eddy size

πκ ⋅= . 

c) Dissipation range ( 0l >eddy size). In this range, the dissipation of energy due 

to viscosity dominates over the kinetic energy, and therefore, the spectrum is 

extremely small. 

The scale 0L , as mentioned, is determined by the total flux. Thus, the value of 0L in 

the ground layer is of the order of the height of the point of observation, and even 

though larger vortices may be present in the flow, they are perceived in the case 

merely as variations of the total flux. The scale 0l is of the order of1 10mm− near the 

earth’s surface (Figure 7, Figure 8). 
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Figure 7: Turbulent eddies showing inner and outer scales  

(http://www.handprint.com/ASTRO/seeing1.html) 

 

 

Figure 8: Turbulent eddies showing inner and outer scales 

The refractive index ( )n r  in a turbulent medium is a random function 

depending on the position r and time. The spatial structure of the refractive index can 

be described by the correlation function ɶ ɶ( , ') ( ) ( ')nB r r n r n r= . The subscript n  

denotes that the correlation function describes the refractive index fluctuations. Here, 

ɶn n n= −
 
is the deviation of the mean value. In turbulence theory the structure 

function ( , ')nD r r is usually used as ɶ ɶ 2( , ') ( ')nD r r n n= − . These two functions are 

related by the formula: 
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( , ') ( , ) ( ', ') 2 ( , ')n n n nD r r B r r B r r B r r= + − ⋅ . (43). 

In case of statistical homogeneity all the statistical characteristics do not 

depend on the position, but only on the relative position. In this case

( ') 2 (0) ( ')n n nD r r B B r r − = ⋅ − −  , where ( ') ( , '), ( ') ( , ')n n n nD r r D r r B r r B r r− = − = . 

The function ( , ')nD r r  can be considered as isotropic for small enough values of the 

vector 'r r− . This means that nD does not depend on the direction of 'r r− but only on 

its value | ' |r rρ = − (Figure 9). 

The function ( )nD ρ is quadratic for 0lρ << . The inner scale 0l shows the scale 

of smallest inhomogeneities. For 0lρ << , ( )n r is a random linear function. For very 

large Reynolds numbers the structure function ( )nD ρ has, in the range 0 0l Lρ<< << , 

the form: 

 

2
2 3

0 0( ) ,
n n

D C l Lρ ρ ρ= << <<
 (44)

 

where 0l is the inner scale of turbulence, 0L is the outer scale of turbulence and
2

nC is 

the refractive-index constant. For 0Lρ >> the structure function ( ) 0nB ρ ≅ and the 

structure function
2

( ) 2 .n nD constρ σ≅ ⋅ = . Here, ɶ
2

2

n nσ =
 
is the variance of the 

refractive index. The inhomogeneities with the scale 0Lρ >>
 

are statistically 

independent.  

Near the Earth’s surface, the random medium may be treated as isotropic and 

it can be considered that ( ) ( )n nB Bρ ρ→ . In spherical coordinates the three 

dimensional Fourier transform for the spatial covariance is: 

 

( )

( )

3

2

2

0 0

2

0

( ) exp ( )

sin( ) exp ( )

sin( )
4 ( )

n n

n

n

B d i

d d d i

d

π π

ρ κ κ ρ κ

κ κ θ θ ϕ κ κ ρ κ

κ ρ
π κ κ κ

κ ρ

∞ ⋅

−∞

∞

= ⋅ ⋅ ⋅ ⋅Φ =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅Φ =

⋅
⋅ ⋅ ⋅ ⋅Φ ⋅

⋅

∫

∫ ∫ ∫

∫

 (45) 
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where ( )
n
κΦ  is the isotropic and homogenous spectrum of turbulence andκ is the 

transverse wavenumber. A Fourier integral can also be derived from the description of 

the spatial covariance of the Fourier transform for the structure function related to an 

isotropic and homogenous turbulence spectrum: 

2

0

sin( )
( ) 8 ( ) 1

n n
D d

κ ρ
ρ π κ κ κ

κ ρ

∞  ⋅
= ⋅ ⋅ ⋅ ⋅Φ ⋅ − ⋅ 

∫  (46) 

Equations (44) and (46) describe the refractive index structure function and the can be 

compared in order to determine the wavenumber power spectrum. 

2
2 23

0

sin( )
8 ( ) 1

n n
C d

κ ρ
ρ π κ κ κ

κ ρ

∞  ⋅
⋅ = ⋅ ⋅ ⋅ ⋅Φ ⋅ − ⋅ 

∫  (47) 

( )n κΦ
 
is an equivalent representation of ( )nD ρ in the inverse space.

16
 

In stratified media (atmosphere, ocean) 0L may depend on the direction. The 

function can be matched in the points 0lρ = and 0Lρ = . If
2

( )nD Mρ ρ= ⋅ for 0lρ <

and
2

2 3( )
n n

D Cρ ρ= ⋅ for 0lρ > , matching in the point 0lρ =
 

leads to the formula

4
2 3

0n
M C l

−
= ⋅ . In the same way for the point 0Lρ = , it is obtained that

2
2 23 2

n n n
C L σ⋅ = ⋅ . Thus the representation of ( )nD ρ  in different ranges has the form: 

4
2 23

0 0

2
2 3

0 0

2
2 3

0 0

,

( ) ,

.

n

n n

n

C l for l

D C for l L

C L for L

ρ ρ

ρ ρ ρ

ρ

− ⋅ ⋅ <<



= ⋅ << <<


⋅ >>  (48)
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Figure 9: Typical behavior of the correlation

functions of the refractive index in a turbulent medium

The typical value o

atmosphere depends on the elevation. For the boundary layer of the atmosphere

0 0.4L z= ⋅ , z being the height. For the free atmosphere

vertical direction and several kilometers in the horizontal direction. In the ionosphere 

is the order of several tens in centimeters.

Physically, the refractive index structure constant

strength of fluctuations in the refractive index. Values of

17 2 3
10 m

− −
or less for conditions of 

when turbulence is “strong”

18 2 3
10 m

− −
 and strong turbulence for

refractive index fluctuations and potential temperature fluctuations is:

 

where
2

Cθ is the structure constant parameter of the potential temperature fluctuations.

In this thesis turbulence near surface,

examined. Although in astronomical seeing, it is necessary to examine differe

of atmosphere, figure 10
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Typical behavior of the correlation Bn (ρ) and the structur

unctions of the refractive index in a turbulent medium [Reference]

value of 0l  in the atmosphere is1cm . The value of

atmosphere depends on the elevation. For the boundary layer of the atmosphere

being the height. For the free atmosphere 0L is about

vertical direction and several kilometers in the horizontal direction. In the ionosphere 

is the order of several tens in centimeters. 

y, the refractive index structure constant
2

nC
 
is a measurement of the 

strength of fluctuations in the refractive index. Values of 
2

nC
 
typically range from

or less for conditions of “weak” turbulence and up to
13 2 3

10
− −

when turbulence is “strong”
17

 In this thesis weak turbulence is considered for

and strong turbulence for 
15 2 3

10 m
− −

. The direct relationship between 

active index fluctuations and potential temperature fluctuations is: 

2 2 6

2
79.06 10n

P
C C

T
θ

− = ⋅ ⋅ 
   

is the structure constant parameter of the potential temperature fluctuations.

In this thesis turbulence near surface, from ground to several tens of meters, is 

examined. Although in astronomical seeing, it is necessary to examine differe

10 describes how turbulence is affected in higher layers of 
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and the structure Dn (ρ) 

[Reference] 

. The value of 0L in the 

atmosphere depends on the elevation. For the boundary layer of the atmosphere

is about100m  in the 

vertical direction and several kilometers in the horizontal direction. In the ionosphere 

is a measurement of the 

typically range from

13 2 3
10 m

− −
 or more 

In this thesis weak turbulence is considered for

he direct relationship between 

(49)

 

is the structure constant parameter of the potential temperature fluctuations. 

ground to several tens of meters, is 

examined. Although in astronomical seeing, it is necessary to examine different layers 

describes how turbulence is affected in higher layers of 
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atmosphere in relation to

astronomical seeing, figure 

Palmas as provided by the weather forecast

Figure 10

Figure 11: Evolution of optical turbulence

higher values of turbulence are denoted with red color and lower values with blue
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relation to
2

nC . Meteorological studies and predictions are vital for 

figure 11 depicts the evolution of optical turbulence in La

as provided by the weather forecast.
18,19

 

 

10: Strength of turbulence in relation to altitude [Reference]

: Evolution of optical turbulence-strength Cn
2
 profiles as a function of 

higher values of turbulence are denoted with red color and lower values with blue
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. Meteorological studies and predictions are vital for 

turbulence in La 

[Reference] 

 

profiles as a function of altitude. The 

higher values of turbulence are denoted with red color and lower values with blue [Reference] 



Anastasia Giannakopoulou – Optics Vision 2010-2011                           - 30 - 

 

4.3 Power spectrum models 

4.3.1 Kolmogorov spectrum 

For optical wave propagation, refractive index fluctuations are caused almost 

exclusively by small fluctuations in temperature. That is, variations in humidity and 

pressure can usually be neglected. It is generally accepted, therefore, that the 

functional form of the spatial spectrum of refractive-index fluctuations is the same as 

that for temperature and, further that temperature fluctuations obey the same spectral 

laws as velocity fluctuations. The power spectral density for refractive-index 

fluctuations over the subrange is defined by: 

 

11
2 3

0 0

( ) 0.033 ,

1 1

n nC

L l

κ κ

κ

−
Φ = ⋅ ⋅

<< <<  (50)
 

This equation is the Kolmogorov power-law spectrum. This spectrum model is 

theoretically valid only over the inertial sub-range 
0 0

1 1

L l
κ<< << . To justify its use in 

certain calculations over all wave numbers, it ordinary assumed that the outer scale is 

infinite 0( )L = ∞ and the inner scale is negligibly small 0( 0)l = . However, extending 

the validity of the equation to all wave numbers may lead to divergent integrals in 

some cases. Some care must therefore be exercised in the use of this spectrum 

model.
20

  

4.3.2 Karman spectrum  

Other spectrum models have been proposed for making calculations when 

inner scale and (or) outer scale effects cannot be ignored. The extension of the power 

law spectrum into the dissipation range 01 lκ > requires the introduction of a function 

that essentially truncates the spectrum at high wave numbers. A Gaussian function 

was suggested for this reason and as a result the von Karman spectrum was taken and 

it is the following: 

 

11
2 62

2 20

0

1
( ) 0.033 exp

5.92
n n

l
C

L

κ
κ κ

−
    ⋅   Φ = ⋅ ⋅ − ⋅ +               (51)
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In the inertial range, it is reduced to the Kolmogorov power-law spectrum defined 

above. In Figure 12, the two spectrums of turbulence are plotted for comparison.
21

 

 

Figure 12: Kolmogorov and von Karman spectrums for turbulence 
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5 Numerical approaches for 1+1D propagation 

5.1 Numerical solution of paraxial equation (Initial and Boundary conditions)  

 

In order to calculate numerically propagation of the different types of beams, 

the paraxial equation (Eq.23 and Eq.25) can be solved numerically (Appendix B). 

This matter can easily be done in 1+1D simulations (Eq.23), but in 2+1D simulations, 

it is not so efficient, because it is computationally intensive.  

The differential equation of the propagation in 1+1D is: 

 

2

2

1
0

2

f f
i V f

s ξ
∂ ∂
⋅ + ⋅ + ⋅ =
∂ ∂  (52)

 

where: 

 

0

2

0 0 0

2 2

0 0 0

x
s

w

z

w n k

V w k n n

ξ

=

=
⋅ ⋅

= ⋅ ⋅ ⋅ ∆
 (53)

 

ξ  is the direction of propagation and s is the transverse coordinate of the beam. The 

propagation distance for all the simulations is10km and s ranges from 20cm− to 20cm . 

Three types of beams are manipulated for 1+1D propagation in this thesis. Periodic 

boundary conditions are used in all simulations. The initial conditions for Gaussian, 

Airy and two Airy Beams that collapse are successively: 

 

2

0( , 0) exp( )f s sξ = = −
 (54)

 

where 0 5w cm= and
2

0 10
R

w
z km

π
λ
⋅

= = . For Airy Beams: 

 
( ) ( )0( , 0) 2 log2 (2.28 / 2) expf s Ai s a sξ = = ⋅ ⋅ ⋅ ⋅ ⋅

 (55)

 

where 0.1a =  and for the two Airy Beams that collapse: 

 

( )0 0
0 exp

r s r s
f Ai Ai a s

w w

+ −    = + ⋅ − ⋅          (56)

 



Anastasia Giannakopoulou – Optics Vision 2010-2011                           - 33 - 

 

where 0.1a = , 0 2r = and 0,466w m= . The number of the sampling points that was 

used was 400 for the transverse coordinate and 100 for the direction of propagation. 

Gaussian Beams have the same waist as the main lobe of the compared Airy Beams. 

The irradiance of Beams propagating without turbulence is depicted in Figure 13. 

 

Figure 13: Irradiance of Beams in 1+1D propagation in vacuum 

The third term of Equation 52 refers to the disorder. Different values of n∆ can 

describe low and high turbulence. Regarding to the construction of the turbulent 

medium of propagation, it is based on the Karman spectrum (mentioned before). All 

parameters of Karman model are set as the 2+1D propagation that is defined below. 

The final values of the turbulent medium are normalized with range from -1 to +1 and 

after that they are multiplied with different values of n∆ proportionally to the disorder 

that is wished. The values of n∆ range from
5

5 10
−⋅ to

7
10

−
. And the desired optical 

potential V is estimated from the equation: 

 

2 2

0 0 0V w k n n= ⋅ ⋅ ⋅ ∆
 (57)

 

where
0

R
z

w
λ
π
⋅

= , 10
R

z km= , 0

2
k

π
λ
⋅

= , 60,8 10 mλ −= ⋅ and
0

1n ≅ . The maximum 

value of the potential V for each value of n∆ is shown in Table 1. The medium of 

propagation consists of independent random distributions, generated using the 

Karman spectrum, placed every100m of propagation. A schematically representation 

is shown in Figure 14. The code for the generation of the turbulent optical medium 

(distribution of refractive index respective optical potential) is given in Appendix A. 
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Table 1: Correlation of ∆n values to the optical potential V in our 1+1D 

 

Figure 14: False color representation of a typical optical potential used in the s 1+1D 

simulations. The insets are the respective line profiles at various propagation distances. 

Higher values are denoted with red color and lower values with blue. 

Some typical false colored intensity profiles of beams propagating in 

turbulence are shown in Figure 15. As the beam propagates from lower potential (

785 ) to higher potential (1.57 ) its structure is different from the one in vacuum. The 

characteristics can recognized less in higher turbulence, than in lower. More 

specifically for
7

5 10n
−∆ = ⋅ , characteristics of the beams are almost invariant 

compared with vacuum, but for
5

5 10n
−∆ = ⋅ characteristics cannot being recognized so 

easily. 

Δn

V

55 10−⋅ 510− 65 10−⋅ 610− 75 10−⋅ 710−

1.577.8515.778.5157785
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Figure 15: False colored intensity profiles for Gaussian, Airy and colliding Airy beams 

for various turbulence strengths (1+1D Beams propagation in atmospheric turbulence) 

 

5.2 Scintillation Index 

 

In order to characterize the irradiance fluctuations of a beam that propagates in 

a turbulent medium, scintillation index
2

( )Iσ is used. It is given from the equation
22,23

: 

 

22

2

2I

I I

I
σ

−
=

 (58)
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where I is the average intensity over an area of the beam and the angle brackets ∗

denote averaging over the ensemble of turbulent media. The values of scintillation 

index represent the degree of coherence of the beam as it propagates through 

atmospheric turbulence. As the propagation distance is increased, scintillation index 

also increases, until it reaches the saturation level, where the scattering effect 

gradually weakens the focusing effect. The scattering affect is the reason that a beam 

loses its coherence. Lower values of scintillation index shows that beam coherence 

can be kept, a feature that is important in communications. The scintillation index is a 

quantitative measure of the signal variation due to turbulence on the detector in a 

typical communication link. Effectively turbulence can lead to a spreading and 

wobbling of the beam as a function of the time and this leads to a temporal variation 

of the signal strength in a finitely sized detector.  Thus the scintillation index depends 

on the detector size (i.e. the area over which we average in eq. 58) and should 

decrease as the detector becomes large enough to collect the whole 

wobbling/scattered beam. Figure 16, shows the decrease in value of
2

Iσ as the 

diameter of the detector (area over which we average the intensity in eq. 58) increases 

(for
6

10n
−∆ = ). It is clear that the effect is shadowed for detector sizes higher than. 

0.1cm. Thus we choose to a receiver diameter of 2.1cm , in our simulations. The 

number of realizations that is necessary for stabilization of the value of
2

Iσ is 

approximately 300, but in order our simulations of propagation to be more accurate 

500 realizations were done for every different value of n∆  (Figure 17). In Figure 17 

are shown the scintillation index values for strong turbulence (
5

5 10n
−∆ = ⋅ ) as a 

function of the number of realizations  
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Figure 16: Scintillation Index as a function of the detector diameter. (∆n =5·10
-5

 and 

number of realizations is 500) 
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Figure 17: Scintillation Index as a function of the number of realizations 

5.3 Results 

 

To compare the effect of turbulence in different beam types we simulated the 

in 1+1D propagation, and calculated the respective scintillation index for the same 

media (optical potential). Figure 18 shows the scintillation index for 3 types of beams.  
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Figure 18: Comparative values of the scintillation index after propagation 

 in 1 km of turbulent atmosphere. 

In Fig. 18, it is shown that values of scintillation index for Gaussian beams are 

comparable, but bigger from Airy beams and from 2 Airy beams that collide. As 

turbulence is higher the colliding Airy Beams seem to be less affected by turbulence 

compared to the Gaussian beam. Airy beams exhibit a similar, but less efficient 

behavior. So from these first results one concludes that in optical link communication 

systems colliding Airy and Airy Beams should be better from Gaussian Beams in high 

turbulence. On the other hand, we should point out that for such strong turbulence all 

types of beams are severely deformed (Figure 15). 
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6.Numerical Modeling approach for 2+1D propagation 

6.1 Phase screen model 

 

The random spatio-temporal variation of the refractive index of atmospheric 

air leads to irradiance fluctuations in a propagating beam. In order to analyze these 

fluctuations in 2+1 dimensions, the method of random phase screens can be used. A 

random medium that extends between transmitter (source) and receiver (detector) can 

be well approximated by a system of thin phase screens that are equally placed along 

the propagation distance [References] (Figure 19). 

 

Figure 19: Schematic representation of the random phase screen model for propagation 

of two dimensional beams 

In this thesis for the 2D propagation the random phase screen method initially 

proposed by Martin and Flatte is applied
24,25

. More specifically, the electric field of an 

optical wave that propagates along z  direction is described by: 

, ) ( , , ) i k z
t f x y z e

− ⋅ ⋅⋅rE( = , where f is the wave amplitude, satisfying the parabolic 

approximation to the wave equation (Eq. 25):  

 
2

2 0
f

i k f V f
z

⊥
∂

⋅ ⋅ +∇ + ⋅ =
∂

 (58) 

where k  is the wavenumber and V the optical potential. The split step solution of f at

z
z δ+ is given by:  
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2
, , 1( , , ) ( , ) /(2 )

i Ki x y z

z z
f x y z e f z K e kδ δ⊥⋅⋅ −

⊥
 + = ⋅ ⋅ ⋅ ⋅ 

f( )
F

 (59) 

where 1−
F  is the 2D inverse Fourier transform in the perpendicular plane to the 

propagation direction (transverse plane), ( , )f z K⊥  is the Fourier transform of f at z ,

2 2

x y
K κ κ⊥ = +  is the wavenumber in the transverse plane, and ( , , )x y zf  is a 

function representing the accumulated spatial phase along the propagation from z to 

z
z δ+ . 

The relationship between the phase ( , , )x y zf
 and the refractive index 

fluctuations of the medium is given by:  

 ( , , ) ( , , )
zz

z

x y z n x y z dz

δ

κ
+

= ⋅ ∆∫f  (60) 

The lack of complete knowledge of the spatial distribution of the refractive 

index along with the high computational cost renders the efficiency of this approach 

in simulations. The phase screen method bypasses this problem by using Markov’s 

approximation to generate phase distributions ( , , )x y zf , taking into account the 

power spectrum of the refractive index variations,  at discrete positions along the 

propagation axis. According to this method a continuous random medium can be 

decomposed into a series of statistically independent phase screens, the 2D phase 

screen spectrum is given by:  

 
2ˆ ( , ) 2 ( , , 0)

x y z n x y z
κ κ π κ δ κ κ κ= ⋅ ⋅ ⋅ ⋅Φ =f  (61) 

It is based on the assumption that the correlation length of the irregularities in the 

medium is less than the separation between screens, but it permits to be characterized 

in the regime of weak fluctuations. This matter is important because these screens are 

statistically uncorrelated to each other so large separations 
z

δ  can be used. 

Each random phase screen is generated by properly filtering white Gaussian 

noise in order to obtain a random field with the desired second-order statistics. To 

implement this numerically a pseudo random complex numbers array A i B+ ⋅ is firstly 

generated (appendix C). A and B are independent and random variation conforms to a 

particular probability distribution known as the normal distribution ( )0,1N  with 

mean value zero and standard deviation 1. The dimensions of this array are N N×  (
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N is the number of sampling points, in this thesis N = 512). This array is then 

multiplied by ( )1

κ θ κ−∆ ⋅ Φ , where 
1 2

Nκ
π− ⋅∆ = ⋅∆ (∆  is the spatial sampling 

interval) and ( )θ κΦ
 

is the phase power spectrum given by

2
( ) 2 (2 )z nkθ κ π δ π κΦ = ⋅ ⋅ ⋅ ⋅Φ ⋅ ⋅ , where nΦ  is the refractive index power density  

described by the von-Karman distribution (Eq. 51), k is the wavenumber (
2

k
π
λ
⋅

= , 

with
6

0.8 10 mλ −= ⋅ ) and zδ is the propagation distance between two consecutive 

screens and it is equal to the total propagation distance divided by the number of 

screens that are used for propagation ( 10 100z Z mδ = = ). According to the von 

Karman spectrum values of κ range from 0 to 01 L . By inverse Fourier transforming 

the properly shaped random spectral phase distribution ( )1( )A i B κ θ κ−+ ⋅ ⋅∆ ⋅ Φ we 

retrieve the desired random phase field 1 2iφ φ+ ⋅ . Since absorption effects are not taken 

into account in this thesis, only the real part is in the simulations. The parameters used 

in the estimation of the von Karman spectrum, are for the outer scale 5 m and for the 

inner scale 1 cm. 

 

Figure 20: Typical example of a 512×512 synthesized random phase 

screen. 

A typical example of a phase screen numerically synthesized using this 

approach way is shown in Figure 20. By using different values of inner and outer 

0.75(m)

0
.7

5
(m

)
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scale, a variety of turbulence conditions can be simulated. As shown in Fig. 21 the 

scaling of the inner and out scale parameters has a profound effect on the simulated 

phase screens. The numerical algorithm used for the generation of the phase screens 

(in Matlab code) is shown in detail in Appendix C. 

 

Figure 21: Typical phase screens (in false color) representing turbulence, 

 for various values of the outer scale (Lo) and inner scale (lo). The window size is 

75cm×75cm 

 

6.2 Simulation Method and parameters 

 

The simulation of the propagation of optical beams in turbulent media is 

completed by combining the effect of turbulence, as described by the phase screens 

described in the previous section, with well know angular spectrum 
26

 propagation 

methods. The angular spectrum propagation method relies on the fact that the various 

spatial components of the Fourier spectrum of any complex field distribution can be 

identified as plane waves travelling in different directions away from the plane. The 

field amplitude at any other point (or across any other parallel plane) can be evaluated 

by adding the contributions of the plane waves, taking into account any phase shifts 

that took place during propagation. The Martin-Flatte model describes the 

propagation of an optical beam in a non-homogeneous medium as a two step process. 

The first step involves the effect of medium disorder, as a phase distribution added to 
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the phase of the initial beam, while the second step involves the propagation of this 

perturbed beam using the angular spectrum method. In this way the beam is 

numerically propagated from plane z to z+δz. This process is iteratively repeated from 

one plane to the other until the desired propagation distance. Since no solution of a 

PDA is involved the method is not computationally intense and is well suited for 

propagation along large distances.  

 

Figure 22: Discretization of the problem in the real (x, y) and the inverse (Kx, Ky) 

space. For window size W×Z (N×M points) in real space, the corresponding inverse 

space dimensions are 
�

�
 ×  

	 



 (Kx× Ky) 

The discretization of the propagation problem in the real (x, y) and the inverse 

spatial frequency space (Kx, Ky) is depicted in Fig 22. The physical width W and the 

height H of the simulation window are related to the lowest spatial frequency that can 

be resolved 
min

1xK W=  and 
min

1yK H= respectively. On the other hand the highest 

spatial frequency is also correlated to the number of sampling points so 
max

xK M W=  

and 
max

yK N H= . 

In all our simulations the transverse coordinates ( ,x y ) are discretized to 

512x512 sampling points while 10 steps, and thus 10 phase screens, are used for the 

propagation along z direction. The wavelength used is
6

0.8 10 mλ −= ⋅ and the 

wavenumber is 2k π
λ

⋅= . The physical size of our simulation window is 

0.75 0.75m× , while the total propagation distance is 1 km thus the inter-screen 

distance is 100m. In our simulations we studied the propagation of Gaussian, Airy, 

Bessel and Airy Ring beams (eq. 26) under the action of weak and strong turbulence . 
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The simulated beam parameters are: the Gaussian beam waist is 0 5w cm= , Airy Beam 

width is 0 5
x y

w w w cm= = = and 0.05a = , Bessel beam width is 5w cm= and for the 

Airy Ring Beams the radius 0 5r cm= and the corresponding constants are

3
4.85 10w

−= ⋅ and 0.05a = .  

The initial beam, after proper manipulation of required values of parameters, 

is spatially Fourier transformed. The effect of propagation of each plane wave 

component of the angular spectrum is evaluated by a multiplication by the paraxial 

transfer function:  

 ( )2 2exp
4

z x y

i
T

λ
δ κ κ

π
⋅ = − ⋅ ⋅ + ⋅ 

 (62) 

where ,
x y

κ κ are the transverse spatial frequency components and δz denotes the 

propagation distance. The new field is the evaluated by inverse Fourier transforming 

in space domain. 

The 2D+1 propagation algorithm (in Matlab code) used in our simulations is 

described in detail in appendix D. The results of numerical simulation of the 

propagation of various beams in homogeneous atmosphere (∆n = 0) is represented in 

Figure 23. Gaussian, Airy and Bessel Beams stay almost unalterable at the simulated 

propagation distances, whereas Airy Ring Beams focus in ~1km.  



Anastasia Giannakopoulou – Optics Vision 2010-2011                           - 45 - 

 

 

Figure 23: Simulated intensity profiles (normalized) as a function of the propagation 

distance in homogeneous atmosphere (∆n = 0) for various beam types. The window size is 

75cm×75cm. 

In order to check the numerical accuracy of the propagation algorithm we 

compared the simulation results with the analytical solution of the propagation of a a 

Gaussian Beam. The normalized intensity, retrieved from analytic calculations and the 

numerical simulation, for a Gaussian beam with waist 0 7w mm=  is shown in Fig. 24 

for a propagation distance of 2km . The small discrepancy between the simulation 

results and the analytic solution is well below 1.5 % in all cases is related to the 

discretization points (N=512) and can reduced as this number is increased. On the 

other hand the attained accuracy is adequate for the specific application. 

Gaussian Beam Airy Beam Bessel Beam Airy Ring Beam

Propagation Distance=100m

Propagation Distance=400m

Propagation Distance=700m

Propagation Distance=1000m
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Figure 24: Comparison of numerical results retrieved using the propagation 

code, to analytic prediction for a Gaussian beam with waist w0=7cm. 

In the study of propagation of non-diffracting beams in turbulent media one 

cannot ignore the simple plane wave. Plane waves a trivial non-diffracting, infinite 

energy, solution of the wave propagation equation. They simplicity makes them a 

very good reference for the propagation of more complex waves such as the Airy 

beams. The propagation of plane waves in turbulent media has been extensively 

studied [References 12, 13, 14, 18, 19, 21, 22, 24] mainly in the field of astronomy.  

We preformed simulations for plane waves propagating in turbulent media 

using the phase screen model. Figure 25 depicts typical results of intensity profiles of 

plane waves after 1 km of propagation through various strengths of turbulence. The 

parameters used in the simulations are Lo= 5 m, lo= 1 cm, W=H=75cm. For weak 

turbulence 
2 18

10
n

C
−= hot spots in the form of speckles start to form, but in general 

their maximum intensity varies only by 5%. For stronger turbulence and
2 17

10
n

C
−= , 

the speckles start to coalesce forming hot spots that stand out from the background. 

For even stronger turbulence (
2 16

10
n

C
−= ) the speckle size has dramatically 

decreased, while the speckle density has increased leading to a typical scattering 

signature with some large scale average intensity variations, indicative of a dissipative 

regime. This behavior is further enhanced for very strong turbulence (
2 15

10
n

C
−= ) 

where the scattering is so strong that the average intensity is spatial homogeneous and 
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the signal has dramatically dropped since energy is strongly dissipated by small scale 

refractive index variations (smaller than lo). 

 

Figure 25: Typical simulated intensity profiles (in false color) after propagation 

of plane waves in turbulent air (propagation distance =1 km, Lo = 5m, lo=1cm, 

window size is 75cm×75cm) 

The next step is to study the propagation of Gaussian Beams in turbulent 

media. Gaussian beams are not non-diffracting but they stand as a good reference to 

compare with the non-diffracting beams (Airy and Bessel) we are interested in as well 

as with the also “diffracting” Airy Ring Beams. Figure 26 depicts comparative 

simulation results after 1 km of propagation of all the above mentioned types of 

beams in the same turbulent media as a function of the turbulence strength. Plane 

wave propagation is also depicted here to help identify the different propagation 

regimes. The propagation distance of 1 km is well within the Rayleigh zone of the 

Gaussian Beam used as typical for an optical communication link. Furthermore, the 

primary lobe sizes for the Airy and Bessel beams, and the primary radius of the Airy 

Ring beam, are set equal to the FWHM of the Gaussian beam. Finally, the focus of 

the Airy Ring beam is set, by tuning the width of the primary lobe, to 5cm. 

Plane waves

2 1 81 0C n
−=

2 1 61 0C n −= 2 1 51 0C n −=

2 1 71 0C n
−=

75cm

75cm
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As it is shown in Fig. 26 at low turbulence values (
2 18

10
n

C
−= ) the Gaussian 

beams are weakly affected. At moderate turbulence (
2 17

10
n

C
−= ) the Gaussian Beam 

profile starts to degrade while for strong and very strong turbulence (
2 16

10
n

C
−≥ ) the 

beam profile is severely damaged with speckles, hot spots, and finally with strong 

scattering indicative of a strongly dissipative regime. 

 

Figure 26: Simulated intensity profiles as a function of the turbulence strength (Cn
2
) for 

various beams after propagation in 1 km of turbulent atmosphere. (window size is 

75cm×75cm). 

In the case of Airy Beams, as shown in Fig, 26 low turbulence (
2 18

10
n

C
−= ) 

has a minor effect on the intensity distribution, mainly of the primary lobe. At 

moderate turbulence for (
2 17

10
n

C
−= ) hot spots and speckles start to form on the 

intensity lobes while the lobe structure remains unaffected. For strong and very strong 

turbulence (
2 16

10
n

C
−≥ ) we enter the scattering and energy dissipation regime. The 

lobe structure is practically lost while some hints of the beam symmetry still remain. 
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Bessel Beams exhibit a similar behavior. In low turbulence (
2 18

10
n

C
−= ) the 

intensity distribution is weakly affected mainly in the primary lobe accompanied with 

some speckling in the rings. For moderate turbulence (
2 17

10
n

C
−= ) hot spots start to 

form on the primary lobe while speckles are clearly visible on the rings. As in the 

Airy beams the lobe structure remains unaffected. In strong and very strong 

turbulence (
2 16

10
n

C
−≥ ) scattering and energy dissipation are profound. The lobe 

structure, as in the Airy beams, is also lost while only hints of the beam symmetry still 

remain. 

Finally, as shown in Fig, 26 Airy Ring Beams exhibit and interesting behavior. 

We have although to keep in mind that in contrast to the previous beams they are not 

non-diffracting, although the exhibit some “self-healing” capability. Furthermore, 

they are self-focused very close to the observation plane so energy is concentrated in a 

very small area. As with the rest of the beams we hardy observe any effect in the 

beam profile when turbulence is low (
2 18

10
n

C
−= ). At moderate and strong turbulence 

(
17 2 16

10 10
n

C
− −≤ ≤ ) the focus is still preserved with some peripheral ray structured 

scattering. Finally for very strong turbulence (
2 15

10
n

C
−= ) we enter the scattering and 

energy dissipation regime with complete loss of the beam structure. We have to note 

though that energy is spread to an area similar to that of the Gaussian beam. 

Summarizing these results we can distinguish three regimes the weak, 

moderate and strong turbulence. For all beams the weak turbulence (
2 17

10
n

C
−< ) had 

minor effect in the intensity profiles. In the case of moderate turbulence (

17 2 16
10 10

n
C

− −< < ) hot spots and speckles started to appear, affecting the beam 

profile, in all beams except the Airy ring beams. For strong turbulence (
2 16

10
n

C
−≥ ) , 

severe scattering leads to energy dissipation in all beams with the Airy ring 

distribution exhibiting the weakest deteriorating effect.. 
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6.3 Scintillation Index 

 

As was mentioned in section 5.3 Scintillation Index that characterizes intensity 

fluctuations is given by the equation
27

: 

 

22

2

2I

I I

I
σ

−
=  (63) 

where I is the irradiance of the beam and the angle brackets ∗ denotes the average. In 

the bibliography this average can be calculated using two different approaches which 

are be analyzed in detail in Appendix E. 

Using the results of Fig, 37 (Appendix E) we choose a detector of 0.45cm . In 

Fig. 27 the scintillation index as a function of the number of independent realizations 

is shown. The minimum number of realizations that is necessary for the stabilization 

of the 
2

I
σ value is ~50, in contrast to the 1+1D model, where 300 realizations were 

needed. Taking into account these results, we used at least 150 realizations in all our 

propagation simulations. 
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Figure 27: Scintillation index (σΙ
2 

) as a function of the number of simulated 

realizations (Cn
2
=10

-18
) 
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6.4 Results 

 

The scintillation index is proper single valued quantitative measure of the 

effect of turbulence in a communication link. Fig. 28 depicts comparative results of 

the scintillation index 
2

I
σ

 
as a function of the propagation distance for Gaussian, 

Airy and Bessel beams and for various amounts of turbulence. 

 

Figure 28: Scintillation index (σΙ
2 

) as a function of the propagation distance. The 

simulations are preformed for Gaussian, Airy and Bessel Beams for varying turbulence 

strength (Cn
2
) 

At low turbulence (
2 18

10
n

C
−= ), Gaussian Beams exhibit minimal 

scintillation. The difference between Bessel Beams and Airy Beams starts after 300m

of propagation, until then they have almost the same values. The next higher 

turbulence is for
2 17

10
n

C
−= . It is observed that Gaussian and Bessel Beams have the 

same response and their values of
2

I
σ are proportional, with values of Gaussian Beams 

2 1810nC
−= 2 1710nC

−=

2 1610
n

C
−= 2 1510

n
C

−=

0 200 400 600 800 1000

0,000

0,001

0,002

0,003

0,004

0,005

0,006
Scintillation Index for Cn2=10-18

σ
Ι

2

Propagation Distance

 Airy Beam

 Bessel Beam

 Gaussian Beam

0 200 400 600 800 1000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14 Scintillation Index for Cn2=10-17

 Airy Beam

 Bessel Beam

 Gaussian Beam
σ
Ι

2

Propagation Distance

0 200 400 600 800 1000

0,0

0,2

0,4

0,6

0,8

1,0

Scintillation Index for Cn2=10-16

 Airy Beam

 Bessel Beam

 Gaussian Beam

σ
Ι

2

Propagation Distance

0 200 400 600 800 1000
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

 Airy Beam

 Bessel Beam

 Gaussian Beam

σ
Ι

2

Propagation Distance

Scintillation Index for Cn2=10-15



Anastasia Giannakopoulou – Optics Vision 2010-2011                           - 52 - 

 

being smaller. Their values start to have bigger difference after 600m of propagation in 

the medium. Airy Beams at this turbulence response different from the other beams. 

Until 600m of propagation, they have the same behavior (or a little better) as Gaussian 

Beams, but after this distance their values start to size compared to the other beams. 

In row comes higher turbulence, for values of
2 16

10
n

C
−= , the values of

2

I
σ  are 

almost same and beams seem to have the same response to the turbulence. Gaussian 

Beams are a little better and Airy Beams are a little worse. The beams haven’t 

collapsed for this turbulence and values of
2

I
σ over propagation distance increase at 

each step of propagation. The last medium of propagation and with the highest 

turbulence is given for
2 15

10
n

C
−= . Gaussian and Bessel Beams’ values of

2

I
σ have the 

same response to this medium, but Bessel Beams have lower values. Their
2

I
σ values 

until500m increase, they have peak value at this propagation distance and after that 

they start to decrease. However, Airy Beams have a different response to the medium 

and their value of
2

I
σ at1km propagation distance is lower compared to the other types. 

All beams seem to crush for this medium and this explains the peak value of
2

I
σ .  
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1

Scintillation Index for 2+1D propagation

σ
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Figure 29 Scintillation index (σΙ
2
) as a function of the turbulence strength 

(Cn
2
). The (2D +1) simulations are preformed for various beams. 

In Fig. 29, are shown the comparative results of the scintillation index
2

I
σ , as 

a function of the turbulence strength, for the propagation though 1 km of turbulent 

atmosphere for Gaussian, Airy, Bessel and Airy Ring beams. The behavior is not 
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monotonic and strongly depends on the beam type. Interestingly, at higher values of 

turbulence (
2 16

10
n

C
−> ) Airy Ring Beams exhibit considerably lower scintillation, 

compared to the Gaussian, Airy and Bessel beams.  

At following graphs (Fig. 30, 31) we present the way that beams propagate for 

longer distance. The propagation was done for 10km and the number of screens used 

was 20 screens. These simulations were preformed to test the self healing properties 

of non-diffracting beams. Only propagation at low (
2 18

10
n

C
−= ) and moderate (

2 17
10

n
C

−= ) turbulence were studied since for strong and very strong turbulence (

2 16
10

n
C

−> ) scattering and energy dissipation take place already from 1 km in all 

beam types (Fig. 26). At first for low turbulence (
2 18

10
n

C
−= ) Gaussian Beams even 

from 3km start to focus and after this distance they scatter and deform. Airy Beams 

seem to have same effect on their intensity distribution, mainly on the primary lobe 

for propagation until 3km, but on the other intensity lobes, apart from main lobe, hot 

spots and speckles start to form on. Bessel Beams exhibit a similar behavior until 

3km, but for larger distance they deform and speckles are clearly visible on the rings. 

In moderate turbulence (
2 17

10
n

C
−= ) all beams at 3km are almost unrecognizable, hot 

spots start to form. In order to compare them for communications links their 

scintillation index will be examined. 
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Figure 30: Propagation of Gaussian and non-diffracting beams for propagation distance 

10km, turbulence strength Cn
2
=10

-18
 and window size 75cm×75cm. 
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Figure 31: Propagation of Gaussian and non-diffracting beams for propagation distance 

10km, turbulence strength Cn
2
=10

-17
 and window size 75cm×75cm. 

Fig. 32 depicts the scintillation index as a function of the propagation distance, 

for low and moderate turbulence. Interestingly, for low turbulence Airy beams 

between for 4 and 7km exhibit slightly lower scintillation compared to Gaussian and 

Bessel beams possibly due to their self healing properties. Even for moderate 

turbulence they seem to have better response. Although, in this case the values of
2

I
σ  

so we are already in a regime that is improbable for a communication link. 
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Figure 32: Scintillation index of Gaussian Beams and non-diffracting Beams for low  

(Cn
2
=10

-18
) and moderate (Cn

2
=10

-17
) turbulence for propagation distance 10km. Detector 

diameter used was 0.45cm. 

6.5 The effect of beam size  

 

In previous simulations the primary lobe width of the Airy Beams was chosen 

be equal to the FWHM of the Gaussian beam. This lead to an Airy beam with total 

extent which was considerably larger than the extent of the reference Gaussian beam 

and can lead to biased results in the case of turbulent media. In order to study the 

effect of beam size in the propagation through turbulent media we preformed 

numerical simulations for Airy beams with different widths (wo= 0.63, 1.25 and 5 cm) 

keeping all the rest simulation parameters the same as at previous 2+1D simulations. 

Figure 33 depicts our simulation results after propagation though 1 km of turbulent 

atmosphere as a function for various turbulence strengths. It is clear that as the beam 

size gets smaller the deteriorating effect of turbulence weakens. Even for strong 

turbulence (
2 16

10
n

C
−= ) the smallest Airy Beams (wo= 0.63 cm) still maintain their 

primary lobe although severe scattering is also present. The same behavior is 

exhibited by intermediately sized Airy Beams (wo= 1.25 cm) which also preserve, 

although not that efficiently, their primary intensity lobe. For very strong turbulence (

2 15
10

n
C

−≥ ) strong scattering takes place and energy dissipation and beam diffusion 

are prominent for all cases. 
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Figure 33: Simulated intensity profiles as a function of the turbulence strength (Cn
2
) for 

differently sized Airy beams after propagation in 1 km of turbulent atmosphere 

Fig. 34 depicts the respective scintillation index 
2

I
σ  for all the simulated Airy 

beams in comparison to the reference Gaussian beam. The diameter of the detector for 

computing
2

I
σ is again 0.45 cm. It is evident that the size of a beam has a dramatic 

effect on the scintillation values. In all cases the smallest Airy beams exhibit the 

lowest 
2

I
σ values. The scintillation index depends in a non-monotonic fashion to the 

turbulence strength in all cases. For very strong turbulence the 
2

I
σ  values tend to 

stabilize around
2

1
I

σ ∼ .  
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Figure 34: Scintillation index (σΙ
2 

) as a function of the turbulence 

strength (Cn
2
) for Airy Beams (with different values of w0) simulated for 

2+1D propagation and compared with Gaussian Beam (w0=5cm) 

 

6.6 Model for 1+1D propagation through phase screen model 

 

Until now, two methods for the numerical simulation of the propagation of 

optical beams in turbulent media beams were presented. The first one was the direct 

numerical solution of the paraxial propagation PDE for 1+1D and the second one was 

use of a split step approach utilizing phase screens and the angular spectrum model 

(Martin-Flatte model) for 2+1D propagation. To directly compare the efficiency of 

each model in the same regime we also preformed 1+1D propagation simulations 

using Martin-Flatte model.  

In this case we simulated 1D Gaussian and Airy Beams, with width (primary 

lobe for the Airy) w= 5 cm. The beams were numerically propagated though 1 km of 

turbulent atmosphere and the physical window size was set to 0.75 m as in the 

previous simulations. Fig. 35 depicts intensity profiles of the propagated beams for 

different values of turbulence (
2

n
C ). It is shown that for lower values of

2

n
C , which 

correspond to low turbulence Gaussian Beams are more coherent, whereas for high 

turbulence (
2 16

10
n

C
−> ) Airy Beams are more coherent. 
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Figure 35: 1+1D simulated intensity profiles using phase screen model as a function of 

the turbulence strength (Cn
2
) for Gaussian and Airy Beams after propagation in 1 km of 

turbulent atmosphere. 

The same results also came from computation of
2

I
σ for the compared beams. 

As it is shown in Figure 36, values of scintillation index of the beams are close to 

each other. As turbulence gets higher values, Airy Beams have better response.  
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Figure 36: Scintillation index for 1+1D propagation of Gaussian and Airy 

Beams with phase screen method 
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7 Conclusions and Discussions 

 

As a conclusion, our simulations show that in general turbulence can have a 

serious deteriorating action in non diffracting beams. The self healing action is 

obviously not enough to overcome turbulence. By continuously scrambling the 

wavefront along their propagation turbulence effectively cancels the continuous 

energy flow from peripheral structures to their primary intensity lobe and thus 

eliminates the self healing.  

On the other hand, by properly tuning their size Airy beams can be tuned to 

withstand turbulence quite better that the commonly used Gaussian Beams. 

Interestingly, Bessel Beams, most probably due to their high symmetry are, although 

also non-diffractive, very sensitive to turbulence. Furthermore, Airy Ring Beams, a 

new type of accelerating self focusing beams, exhibits robustness even at strong 

turbulence. Our results agree with the theoretical work of Chu and Gu [References 2, 

3, 4] who studied the propagation of various beams including Airy Beams in 

turbulence. 

Future work involves the detailed study of the propagation of self-accelerating 

beams, such as Airy Ring Beams in the presence of turbulence. Furthermore, another 

propagation regime in absorptive scattering media will be studied. 
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Appendix A 

Code of Matlab for turbulent medium for 1D propagation: 

 

%N=number of sampling points at s  
N=400; 
%M=number of sampling points at propagation distance ksi 
M=100; 

  
smax=20; 
ksimax=1; 

  
%values of the constants 
%Cn=refractive index structure 
%l0=inner scale 
%L0=outer scale 
Cn2=10^-18; 
l0=10^-2; 
L0=3; 

  
%generation of pseudorandom complex number 
A1=randn(1,N); 
B1=randn(1,N); 
A=(A1+B1*1i); 

  
%D=spatial sampling interval 
D=2*smax/N; %0.1; 

  
%Dk^-1=wave number increment 
Dk=(2*pi)/(N*D); 

  
K=linspace(0,10*pi/l0,N); 

  
%karman type index power spectrum for the atmosphere turbulence 

Fn=0.033*Cn2*exp((-

(K*l0)/(5.92*2*pi)).^2).*(((K/(2*pi)).^2+(1/(L0.^2))).^(-11/6)); 

%multipication with the random complex numbers 
B=A.*Dk.*sqrt(Fn); 

  
%B3=inverse fourier transform of B 
B3=ifft(B); 
B4=fftshift(B3,2); 

  
%B5=the real part of the complex random phase field 
B5=real(B4); 
B1=max(max(B5)); 
B2=min(min(B5)); 

  
% normalized field 
B5=((B5-B2)/(B1-B2))*2-1; 

  
l=0.8*10^-6; 
Dn=10^-4; 
V=(4*pi/l)*Dn*B5;  
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Appendix B 

Code of Matlab for 1+1D propagation of the Beam: 

 

function [fi]=beams 

 

%N=number of sampling points at s  

N=400; 

%M=number of sampling points at propagation distance ksi 

M=100; 

  

ksimax=0.1; 

smax=20; 

  

m = 0; 

s = linspace(-smax,smax,N); 

ksi = linspace(0,ksimax,M); 

  

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,s,ksi); 

% extract the first solution component as fi 

fi = sol(:,:,1); 

 

function [c,f,s] = pdex1pde(s0,ksi0,fi,DfiDs) 

c = -2*1i; 

f = DfiDs; 

% At s the disorder is introduced, for s=0, propagation is in vacuum 

s = Dn.*fi; 

  

% function pdex1ic is for the initial conditions 

function u0 = pdex1ic(s) 

%gaussian 

u0 = exp(-(s)^2); 

 

% %airy function 

% a=0.1; 

% u0 =airy(sqrt(2*log(2))*(2.28/2)*s)*exp(a*s); 

 

% %airy ring function 

% a=0.1; 

% r0=2; 

% w=0.466; 
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% %u0 =1/airy(-1)*airy(2.28*s)*exp(2.28*a*s); 

% u0 =(airy((s+r0)/w)+airy((r0-s)/w))*exp(-a*abs(s)); 

 

% function pdex1bc is for periodical boundary conditions 

function [pl,ql,pr,qr] = pdex1bc(sl,fil,sr,fir,ksi) 

pl = fil; 

ql = 0; 

pr = fil; 

qr = 0; 
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Appendix C 

Code of Matlab for turbulent medium for 2D propagation: 

 

%N=number of sampling points at s  

N=512; 

%M=number of sampling points at propagation distance ksi 

M=10; 

 

smax=0.325; 

 

%D=spatial sampling interval 

D=2*smax/N; 

 

%l=wavelength 

lamda=0.8*10^-6; 

%k0=wavenumber 

k0=(2*pi)/lamda; 

 

%values of the constants 

%Cn=refractive index structure 

%l0=inner scale 

%L0=outer scale 

Cn2=10^-18; 

l0=10^-2; 

L0=5; 

 

%generation of pseudorandom complex number 

A1=2*((rand(N,N))-0.5); 

B1=2*((rand(N,N))-0.5); 

A=(A1+B1*1i); 

 

chess=zeros(N,N); 

for i=1:N 

    for j=1:N 

chess(i,j)=(-1)^(i+j); 

    end 

end 

 

%Dk^-1=wave number increment 

Dk=(2*pi)/(N*D); 
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k1=linspace(-pi/D,pi/D,N); 

k2=-linspace(-pi/D,pi/D,N); 

 

[K1,K2] = meshgrid(k1,k2); 

[~,r]=cart2pol(K1,K2); 

K=r; 

 

 

 

%karman type index power spectrum for the atmosphere turbulence 

Fn=0.033*Cn2*exp((-

(K*l0)/(5.92*2*pi)).^2).*(((K/(2*pi)).^2+(1/(L0.^2))).^(-11/6)); 

 

%Z=propagation dinstance 

%dz=screen seperation for M random screens 

Z=10^3; 

dz=Z/M; 

 

%Ftheta=random phase power spectrum 

Ftheta=2*pi*(k0.^2).*dz.*Fn; 

  

%multipication with the random complex numbers 

B=A.*Dk.*sqrt(Ftheta); 

  

%B3=inverse fourier transform of B 

B3=ifft2(B,N,N)*(N^2); 

 

%B4=the real part of the complex random phase field 

B4=real(B3).*chess; 
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Appendix D 

Code of Matlab for 2+1D propagation in turbulence: 

 

%N1=number of sampling points at s  

N1=512; 

%N2=number of sampling points at h 

N2=512; 

%M=number of sampling points at propagation distance ksi 

M=10; 

 

%l=wavelength 

lamda=0.8*10^-6; 

%k0=wavenumber 

k0=(2*pi)/lamda; 

 

smax=0.325; 

hmax=0.325; 

ksimax=1; 

 

%ds=step size of s 

ds=2*smax/N1; 

%dh=step size of h 

dh=2*hmax/N2; 

%Z=total distance of z 

Z=10^3; 

%dz=step size of z 

dz=Z/M; 

s=linspace(-smax,smax,N1); 

h=linspace(-hmax,hmax,N2); 

Ks=linspace(-(pi*N1)/(2*smax),(pi*N1)/(2*smax),N1); 

Kh=linspace(-(pi*N2)/(2*hmax),(pi*N2)/(2*hmax),N2); 

 

%initial gaussian beam 

%w0=waist of the beam 

w0=50*10^-3; 

[S H]=meshgrid(s,h); 

[KS KH]=meshgrid(Ks,Kh); 

beam_in=exp((-((S).^2)-((H).^2))/w0^2); 

 

% %initial airy beam 
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% %w0=waist of the beam 

% w0=50*10^-3; 

% t=0.128; 

% [S H]=meshgrid(s-t,h-t); 

% [KS KH]=meshgrid(Ks,Kh); 

% a=0.05; 

%beam_in=airy((S)/w0).*exp(a*(S)/w0).*airy((H)/w0).*exp(a*(H)/w0); 

 

% %initial bessel beam 

% [S,H] = meshgrid(s,h); 

% [KS KH]=meshgrid(Ks,Kh); 

% [~,r]=cart2pol(S,H); 

% width=50*10^-3; 

% P=r; 

% beam_in=besselj(0,1.52114*(P/width)); 

 

% %initial beam airy ring 

% [S,H] = meshgrid(s,h); 

% [KS KH]=meshgrid(Ks,Kh); 

% [~,r]=cart2pol(S,H); 

% P=r; 

% a=0.05; 

% r0=50*10^-3; 

% w=4.85*10^-3; 

% beam_in =airy((r0-P)/w).*exp(a*((r0-P)/w)); 

 

 

% % plane wave 

% [S H]=meshgrid(s,h); 

% [KS KH]=meshgrid(Ks,Kh); 

% beam_in=1; 

 

%normalization of the beam 

beam_in=beam_in/max(max(beam_in)); 

 

%free space transfer function of propagation 

T=exp(-(1i*lamda/(4*pi))*dz*(KS.^2+KH.^2)); 

 

for z=0:dz:Z 

% load the random phase screen  

% Convert from k space to real space (generate theta) 
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head='othoni'; 

Index=floor(z/dz)+1+100*i; 

load ([head num2str(Index) '.mat']); 

  

% Multiply current field with .*exp(1i*theta)  

beam_in=beam_in.*exp(1i*V); 

  

%gaussian beam in frequency domain 

Fbeam=fft2(beam_in); 

 

%propagated gaussian beam in frequency domain 

Fbeam2=fftshift(Fbeam).*T; 

 

%propagated gaussian in space domain 

Beam=ifft2(fftshift(Fbeam2)); 

 

beam_in=Beam; 

beam_in=beam_in/max(max(beam_in));  

end 
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Appendix E 

There are two different ways for computing scintillation index: 

The first one will be mentioned as Scintillation Index over Space [Reference] and the 

second one as Scintillation Index over Time [Reference]. The Scintillation Index over 

Time refers to the variation of the signal intensity as a function of time and is directly 

correlated to the value one would measure in an experiment or application. The 

numerical estimation of this value is rather computationally intensive since it requires 

the repetition of the numerical propagation for several sets (typically more than 50) of 

random media. The intensity variation over time actually originates from the amount 

of “deformation” of the intensity profile caused by the turbulent medium. Taking this 

into account an alternative, less computationally intensive, scintillation index (over 

space) has been used [reference] to analyze simulation experiments. To estimate the 

Scintillation Index over Space one needs only one propagation simulation trough the 

turbulent medium. A similar to eq.63 is still used with the difference that averaging is 

preformed over space and not over time. So Scintillation over space actually 

“measures” the amount of beam deformation and can provide a much simpler measure 

of the effect of turbulence. Since the results in this case strongly depend on the 

intensity distribution of the unperturbed beam this index it can be safely used in tha 

case of plane waves and in small areas where the intensity is practically constant for 

more complex intensity profiles. 

In Fig. 37 we compare the results from the simulation using two methods of 

Scintillation index evaluation 
2

I
σ as function of the diameter of the detector for weak 

turbulence (for
2 18

10
n

C
−= ) for a Gaussian beam (

0
5w cm= ). The values of

2

I
σ are 

divided by their maximum value in order to be compared. As the diameter of the 

detector increases, Scintillation Index over space increases since it is affected by the 

intensity distribution of the Gaussian beam. In contrast, the Scintillation index 
2

I
σ

 

evaluated over time, decreases, as expected, as the detector diameter increases. These 

results clearly show that for the case of beams used in this work the scintillation over 

time is more accurate to use, while the scintillation over space is safe to use only with 

small detector diameters. 
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Figure 37: Comparison of 2 methods for computing SI (Scintillation Index), 

values of SI are normalized and computed as a function of the detector size 

(0.45cm). 

The method of Scintillation Index over Time was used through all simulations. 

Experimental values of scintillation index can be calculated with 2 ways 

[Reference]. The first one by using an aperture averaging setup and the second one by 

using a scintillometer setup (Figure 38). The two signals pass from an amplifier and 

the received signals are show in Figure 39. The first signal is detected by a 

scintillometer setup and the second signal by an aperture averaging receiver. It is 

shown that the second signal has smaller intensity fluctuations. 

 

Figure 38: Diagram of the aperture averaging receiver setup and scintillometer setup 
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Figure 39: Channel 1: Optically chopped signal detected by the scintillometer. 

Channel 2: Optically chopped signal detected by the aperture averaged receiver 
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