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Abstract

In recent years network measurements have been recognized as an area of ma-
jor interest.There are various software implementations for network measurements,
which employ the technique of packet generation. Despite the simplicity and low
cost of the software solutions, there are some major drawbacks, like the lack of ac-
curacy, especially at high rates, and the high computational resources requirement
leading to the high energy consumption. Therefore in order to have trustworthy
results the use of high cost hardware is essential.

An alternative solution is to use specialized hardware that incorporates FPGAs
that combine high computational capabilities with low energy consumption. One
reasonably priced and academic community driven platform is the NetFPGA PCI
card. It provides 4 Gigabit Ethernet ports and a powerful FPGA that may be
exploited for the development of any network application.

Using the NetFPGA platform we developed an affordable, high precision and
accuracy multi-gigabit network measurements system, that outperforms any soft-
ware solution, requires minimum computational capabilities by the host computer
and it consumes very low energy. Moreover we have shown the lack of accuracy in
the measurements of the popular software solutions, even in low rates, establishing
the need of a hardware based solution for reliable results.





Περίληψη

Οι μετρήσεις δικτύων έχουν αναγνωριστεί ως ένας τομέας υψηλού ενδιαφέρον-

τος τα τελευταία χρόνια. Υπάρχουν ποικίλες εφαρμογές σε λογισμικό για μετρήσεις

δικτύων, οι οποίες εφαρμόζουν την τεχνική της γέννησης πακέτων. Το λογισμικό

παρόλο που είναι απλό και χαμηλού κόστους έχει σημαντικά μειονεκτήματα όπως η

έλλειψη ακρίβειας, κυρίως σε υψηλούς ρυθμούς μετάδοσης δεδομένων, και οι υψηλές

απαιτήσεις σε υπολογιστικούς πόρους που συνεπάγονται την υψηλή κατανάλωση ε-

νέργειας. Για τους λόγους αυτούς η χρήση ακριβού υλικού είναι απαραίτητη ώστε να

επιτυγχάνονται αξιόπιστα αποτελέσματα.

Μια εναλλακτική λύση είναι η χρήση εξειδικευμένου υλικού με FPGAs που συν-
δυάζουν υψηλές υπολογιστικές δυνατότητες με χαμηλή κατανάλωση ενέργειας. Μια

χαμηλού κόστους πλατφόρμα, αναπτυγμένη από την ακαδημαϊκή κοινότητα είναι η PCI
κάρτα NetFPGA. Παρέχει 4 Gigabit Ethernet πόρτες και φέρει μία ισχυρή FPGA
που μπορεί να αξιοποιηθεί για την δημιουργία δικτυακών εφαρμογών.

Χρησιμοποιώντας την πλατφόρμα της NetFPGA, αναπτύξαμε ένα φτηνό και υψη-
λής ακρίβειας, multi-gigabit σύστημα δικτυακών μετρήσεων, το οποίο υπερτερεί έναν-
τι οποιασδήποτε λύσης σε λογισμικό, απαιτεί ελάχιστες υπολογιστικές δυνατότητες

από τον υπολογιστή και καταναλώνει πολύ λίγη ενέργεια. Επίσης δείξαμε την έλλειψη

ακρίβειας των μετρήσεων από λογισμικό, ακόμα και σε χαμηλούς ρυθμούς μετάδοσης

δεδομένων, αποδεικνύοντας ότι για αδιαμφισβήτητα αποτελέσματα είναι αναγκαία μια

λύση βασισμένη σε υλικό.
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Chapter 1

Introduction

Nowadays, a growing number of users are connected to the Internet, wired networks
are expanded, new backbone networks are being installed, and the existing back-
bones are further developed, thus making network measuring imperative. Wired
networks exist -at a small scale- in companies, in laboratories or at homes while, at
a large scale, between countries and continents, and serve file transfers or telephony
over IP. Most of the times, performance is the major criterion with which we set
the cost of the service between a client and a company.

As a result, the packet processing like packet classification, manipulation, and
forwarding has to be done at very high rates. The only way to guarantee that
wired networks work properly is to test them under worst-case conditions i.e., with
maximum traffic load. In particular, traffic generators are needed for generating
traffic and fully utilizing links in order to evaluate a packet processing performance
under these conditions.

There are a lot of implementations of packet generators in software that provide
high configurability although they have a lot disadvantages. First of all, the soft-
ware implementations are not 100% accurate in generating packets at high rates as
the software performance depends on the hardware of the computer. What is more,
generating high rates demands a lot of computer resources. The more computer
resources are used the more energy is demanded, so the power consumption is an
important issue. Last but not least, it is the cost for reliable measurement that
requires a very powerful processor and generally a very fast computer that makes
the cost really high.

With the use of NetFPGA hardware we expect that all these issues will be
resolved. The NetFPGA projects are independent of computer’s capabilities and
are able to process packets at very high rates, so it could guarantee the high quality
of network measurements. In addition, we suppose that the power consumption of
the card would be always the same, at low level comparing to the computer power
consumption. This is because the execution code on the FPGA always consumes
the same energy.

This thesis has been inspired by the need for an affordable multi-gigabit high

3



4 CHAPTER 1. INTRODUCTION

precision network measurements program. This can be achieved by implementing a
configurable traffic generator which offers full Gigabit Ethernet link utilization. In
addition, as high precision measurements are needed, both the part of the packets
generation and the part of the receiving and analysing packets should be imple-
mented in advance; thus, enabling it to work at rates of gigabit at high-performance.

To date, there has been a wide variety of tools generating traffic—both com-
mercial and open-source solutions. One example of open source software solution
is iPerf [1]. What we expect to reveal after conducting the research is a striking
disadvantage of this tool is its performance at high-speed measurements. As it does
not achieve higher link utilization rates because of its dependence on the hardware
it leads to inaccurate measurements results.

On the other hand, commercial products like the IxChariot of IXIA [2] have
better results than the open-source free-ware programs on testing packet processing
with high loads. Unfortunately they are depended on the traffic patterns sent and
they have the disadvantage of the high cost.

To conclude, all these disadvantages of inaccurate measurements and high
power consumption that the software implementations have, as well as the high
cost of the commercial products can be solved with this implementation of Multi-
gigabit high precision network measurement project on the NetFPGA 1G plat-
form. The goal of this project is to implement a Packet Generator that provides
reliable flow generation without the pre knowledge of other flows. Because of the
technology of the FPGA the power consumption is dramatically less than similar
implementations in software.

1.1 Background

1.1.1 Measuring techniques

There are several methods of measuring the performance of a network either wired
or wireless [3], [4],[5]. The packet generation used involves the injection of probe
packets into the network for measuring the statistics results. Specifically, there is
a system (for example a network interface of a computer) that is generating a flow
of packets of the same header and payload size, on the one end, while on the other
we have a system that receives this flow of packets. The metrics are calculated by
observing the size, the amount and the arrival time of the packets. The metrics
could be throughput, packets per second jitter and packet lost.

In a packet network, the term throughput characterizes the amount of data
that the network can transfer per unit of time and is measured in bits per seconds
(bps). Jitter or Packet Delay Variation (PDV) is the difference in end-to-end one-
way delay between selected packets in a flow with any lost packets being ignored [6].
Due to the devices’ performance and the actual state of the network, the statistics
can be variable and might not achieve the theoretical limits.
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1.1.2 The NetFPGA board

For the implementation of the packet generator the NetFPGA board is used. NetF-
PGA (network Field-Programmable Gate Array) is the low-cost reconfigurable
hardware platform optimized for high-speed networking. It includes all the logic
resources, memory, and Gigabit Ethernet interfaces necessary to build a complete
switch, router or a security device. Because the entire data path is implemented in
hardware, the system can support back-to-back packets at full Gigabit line rates
and has a processing latency measured in only a few clock cycles. [7]

For this thesis the first version of NetFPGA is used, NetFPGA-1G, which
features a FPGA Xilinx Virtex-II Pro 50 at 125MHz frequency clock with 53,136
logic cells and 4 external RJ45 plugs for gigabit Ethernet connections. The wire-
speed processing on all ports at all time using FPGA is 8Gbps throughput

[1Gbits ∗ 2(bi− directional) ∗ 4(ports) = 8Gbps throughput]

Moreover, it has 4.5 MB of Static Random Access Memory (SRAM), 64 MB of
Double-Date Rate Random Access Memory (DDR2 DRAM) at 400MHz with asyn-
chronous clock, suitable for packet buffering. In addition, its PCI (Peripheral Com-
ponent Interconnect) interface provides a fast reconfiguration of the FPGA, with-
out using JTAG cable, and CPU access to memory-mapped registers and memory
on the NetFPGA hardware. Finally, two SATA-style connectors to Multi-Gigabit
I/O (MGIO) on right-side of PCB allows multiple NetFPGAs within a PC to be
chained together. All these components are showed at figure 1.1. In the following
chapters it is explained how these components are used for this project.

1.2 Motivation

Up to date, there have been several implementations of packet generation either on
software or hardware platforms[8],[2], all of which have very serious shortcomings.

On the one hand, compared to hardware, software programs are much easier
to develop and as a result, there are plenty of software implementations for the
user to choose and they can all be executed without applying any changes on the
computer. On the other hand, the software implementations depend on the features
of the computers (CPU performance, memory, operating system etc.) that they are
running on, which necessitates a more powerful computer, which, in turn, affects
cost. There are free implementations but there is risk of low performance with
unclear statistics. On the other hands, commercial products have better statistical
results but the cost of software licences is high. Nowadays, low-power consumption
is a major issue not covered by software implementation as the production of high-
rate flows demands the full utilization of a CPU and results in high consumption
either way.

Hardware implementation always yields high performance. The speed-up of the
hardware implementations compared to the software implementations is substan-
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Figure 1.1: The components of the NetFPGA 1G board

tial as the low-level programming better exploits the hardware. For applications
that need high performance and precision, for example, producing packet flows and
measuring flows at high rates, hardware implementations are the most appropriate.
In addition, the power consumption is lower compared to their equivalent software
implementations. However, the most serious drawbacks of the hardware implemen-
tations are that it needs more time to implement a project in hardware than in
software, and that the cost is pretty high depending on how powerful the hardware
used is. That is to say, there is a trade-off between high hardware performance and
low software cost.

A possible solution could be an implementation in NetFPGA, that combines
high performance, low consumption of energy and low cost. The performance of
NetFPGA is the same whichever computer is used, so the advantage is that it can be
used with low performance computer and as a result with low cost computer, with
the same precise results. Also, using the FPGA technology, the power consumption
remains the same whether we are measuring the network or not. By implementing
a packet generation system in hardware and an easy-to-use GUI(Graphical User
Interface) in Java, we combine the performance of the hardware with the high con-
figurability of the software. This implementation is as effective as any commercial
product out in the market right now.
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1.3 Objective

The aim of this work is to build a packet generator of multiple simultaneous flows by
fully utilize the capabilities of NetFPGA-1G. One of the goals is to build a reliable
system that will be able to construct gigabit Ethernet flows with high precision
and will be able to measure the receiving packets at the same time. It is important
the generated flows to have constant throughput and jitter, so the high precision
of packet generation is needed. It is of equal importance that the processing of the
receiving packets is expedited quickly enough so that no packets are lost and no
results get distorted.

Up to date, there have been similar implementations [9] that are based on pre-
captured flow from a network. In order to generate a flow, it is needed to have
been pre-stored. Therefore, a large database of stored net-flows is mandatory. This
is important limitation that does not allow us to easy generate whatever flow we
want. Aim of this implementation is not to have this limitation, by generating and
the sending of the flow without need of a prefabricated filing base. The goal is, the
generated packets to be produced only from the preferences of the user without
the pre-capture of any traffic flow.

For the facilitation of the user, we want to built a GUI that provides all the
necessary choices for configuration of the generated flows and of course a visualiza-
tion of the results of the flows. As we want the system of the NetFPGA and the
GUI to be more independent and to executed in different computers, we plan this
two components to communicate through network.

Considering the GUI, the user will have the possibility to simulate UDP flows
and flows of audio and video over IP networks. By changing the size of the payload
and consequently the size of the packet, the user could receive measurements of
maximum throughput (maximum payload size) and maximum packets per second
(minimum payload size).

1.4 Thesis Organization

The rest of the thesis is organized as follows; Chapter 2 presents some background
on networks protocols and headers that are used in this project and on NetFPGA
reference design. The design and architecture of the hardware implementation are
discussed in Chapter 3. The results of the implementation are presented in Chapter
4. Chapter 5 summarizes and concludes this thesis by listing future enhancements
that can be implemented.
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Chapter 2

Development Platform and
Networks Layers

2.1 NetFPGA and Reference Switch project

The goal is to built a traffic generator using the NetFPGA 1G. In order to achieve
this goal, the first step is to understand how the reference project of the Reference
Switch works and how it is programmed and compiled.

All the functionality of the Reference Switch project is written in the User
Data Path (UDP) module. It has sixteen interfaces in total, four input interfaces
for the Peripheral Component Interconnect (PCI) and four input interfaces for the
network, four output interfaces for the PCI and another four output interfaces
for the network. In addition, it has interfaces for Static Random-Access Memory
SRAM and Dynamic Random-Access Memory (DRAM) memories. The User Data
Path is 64 bits wide running at 125MHz which is enough to serve a 8 Gbps flow

4ports ∗ 2bi− directional ∗ 1Gbps = 8Gbps .

UserDataWidth

Clock Period
= 8Gbps .

The modules of the UDP work according to the reference pipelining as described
below. Packets pass between modules using First Input First Output (FIFO), just
like a simple push interface with four signals: WR, RDY, DATA, and CTRL. When
a module wants to send a packet to the next module it checks if the one bit wire
RDY is on. When it is on, the one bit wire WR indicates that the sent data is valid.
The 8 bit wire CTRL indicates the type of the data. The accepted values of CTRL
are three; 0xFF, which indicates the module header at DATA wire; 0x00, which
indicates the data of packet at the DATA wire; and 0x(number), which indicates
the end of the packet’s DATA and the number of the valid byte of the data using
one bit right-shifted as many places as the valid data are as the table 2.1 shows.

9
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Ctrl = 0x80, 8 valid bytes
Ctrl = 0x40, 7 valid bytes
Ctrl = 0x20, 6 valid bytes
Ctrl = 0x10, 5 valid bytes
Ctrl = 0x08, 4 valid bytes
Ctrl = 0x04, 3 valid bytes
Ctrl = 0x04, 3 valid bytes
Ctrl = 0x02, 2 valid bytes
Ctrl = 0x01, 1 valid bytes
Ctrl = 0x00, 0 valid bytes

Table 2.1: Ctrl’s example values

Figure 2.1: Reference pipeline of Reference Switch project

The UDP of the Reference Switch consists of 3 modules, the "Input Arbiter",
"Output Port Lookup" and "Output Queues" as the figure 2.1 shows. When pack-
ets come from the network, they are stored in the input MAC RxQ queues. When
packets come from the PCI interface, they are stored in the input CPU RxQ queues.
Afterwards the packets enter the UDP. The packets that enter the UDP have a mod-
ule header in the beginning as the figure 2.2 shows.This header stores the length of
the packet in bytes in the 48–63 bits bits of the module header, the source port as a
binary one-hot-encoded number in 32–47 bits for example port 0 is MAC port 0 and
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port 1 is CPU port 0, and the 64-bit word packet length in 16–31 bits. When the
packet enters the UDP, Input Arbiter is responsible for pushing it to the Output
Port Lookup by selecting sequentially an Rx queue to service. The Output Port
Lookup module decides which output port(s) a packet goes out of and writes the
output ports selection as an one-hot-encoded number into 0–15 bits of the module
header.When the Output Queue module receives the packet, it looks at the module
header to decide in which output queue to store the packet in order to push it into
its destination Tx Queue. [10]

Figure 2.2: Module header fields:

2.2 Headers in detail

2.2.1 ARP Link Layer

Address Resolution Protocol (ARP) is a request and reply telecommunication pro-
tocol that converts Protocol Addresses (e.g., IP addresses) to Local Network Ad-
dresses (e.g., Ethernet addresses). It is communicated within the boundaries of a
single network and never routed across internetwork nodes. ARP header is placed
into the Link Layer of the Internet Protocol Suite.

The ARP protocol is used when a network device does not have the mapping of
the IP to media access control address (MAC address). ARP broadcasts a request
packet in a special format to all the machines on the Local Area Network (LAN) to
see if one machine knows that it has that IP address associated with it. A machine
that recognizes the IP address as its own returns a reply so indicating.[11]

ARP may also be used as a simple announcement protocol. This is useful for
updating other hosts’ mapping of a hardware address when the sender’s IP address
or MAC address has changed. Such an announcement, also called a gratuitous
ARP message. A gratuitous ARP request is an ARP request packet where the
source and destination IP are both set to the IP of the machine issuing the packet
and the destination MAC is the broadcast address. Ordinarily, no reply packet will
occur. An alternative is to broadcast an ARP reply with the sender’s hardware
and protocol addresses (SHA and SPA) duplicated in the target fields (TPA=SPA,
THA=SHA) [12].

The principal packet structure of ARP packets is shown in the 2.3 figure which
illustrates the case of IPv4 networks running on Ethernet. In this scenario, the
packet has 48-bit fields for the sender hardware address (SHA) and target hardware
address (THA), and 32-bit fields for the corresponding sender and target protocol
addresses (SPA and TPA). Thus, the ARP packet size in this case is 28 bytes.
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• Hardware type (HTYPE): 16 bits. This field specifies the network pro-
tocol type. Ethernet is 1.

• Protocol type (PTYPE) 16 bits.This field specifies the internetwork pro-
tocol for which the ARP request is intended. For IPv4, this has the value
0x0800.

• Hardware length (HLEN): 8 bits. Length (in octets) of a hardware ad-
dress. Ethernet addresses size is 6.

• Protocol length (PLEN): 8 bits. Length (in octets) of addresses used in
the upper layer protocol. IPv4 address size is 4.

• Operation (OPER): 16 bits. Specifies the operation that the sender is
performing: 1 for request, 2 for reply.

• Sender hardware address (SHA): 48 bits. Media address of the sender.

• Sender protocol address (SPA): 32 bits. Internetwork address of the
sender.

• Target hardware address (THA): 48 bits. Media address of the intended
receiver. This field is ignored in requests.

• Target protocol address (TPA): 32 bits. Internetwork address of the
intended receiver.

Figure 2.3: ARP header’s fields

2.2.2 IEEE 802.3 Ethernet frame

Ethernet is the most common local area networking technology, and, with gigabit
and 10 gigabit Ethernet, is also being used for metropolitan-area and wide-area
networking. Ethernet refers to the family of LAN products covered by the IEEE
802.3 standard that defines the carrier sense multiple access collision detect (CS-
MA/CD) protocol. 802.3 specifies the physical media and the working character-
istics of Ethernet. Four data rates are currently defined for operation over optical
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fiber and twisted-pair cables: 10Base-T Ethernet (10 Mb/s), Fast Ethernet (100
Mb/s), Gigabit Ethernet (1000 Mb/s) and 10-Gigabit Ethernet (10 Gb/s).

The IEEE 802.3 standard provides MAC (Layer 2) addressing, duplexing, dif-
ferential services, and flow control attributes, and various physical (Layer 1) defi-
nitions, with media, clocking, and speed attributes.

The figure 2.4 shows the complete Ethernet frame, as transmitted, for the pay-
load size up to the Maximum transmission unit (MTU) of 1500 octets. Some im-
plementations of Gigabit Ethernet support larger frames, known as jumbo frames.

• Preamble: 64bits. It consists of seven bytes all of the form 10101010. It is
used by the receiver to allow it to establish bit synchronization

• Destination MAC address: 48 bits. This field specifies the receiver MAC
address of the packet. A destination MAC address of ff:ff:ff:ff:ff:ff indicates
a Broadcast, meaning the packet is sent from one host to any other on that
network.

• Source MAC address: 48 bits. This field specifies the sender MAC address
of the packet.

• Type / Length field: 16bits. It can be used for two different purposes. If
the type/length field has a value 1500 or lower, it’s a length field, otherwise
it’s a type field and is followed by the data for the upper layer protocol. When
the length/type field is used as a length field the length value specified does
not include the length of any padding bytes.

• User Data: 46 octets - 1500 octets. Non-standard jumbo frames allow for
larger maximum payload size.

• Frame check sequence (FCS): 32bits. It is a 4-octet cyclic redundancy
check which allows detection of corrupted data within the entire frame.

• Interpacket gap: 96bits. Idle time between packets. After a packet has
been sent, transmitters are required to transmit a minimum of 96 bits (12
octets) of idle line state before transmitting the next packet.

Figure 2.4: 802.3 Ethernet packet
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2.2.3 IEEE 802.1Q Ethernet frame

IEEE 802.1Q, or VLAN Tagging, is an IEEE standard allowing multiple bridged
networks to transparently share the same physical network link without leakage.
IEEE 802.1Q is used to refer to the encapsulation protocol used to implement this
mechanism over Ethernet networks.

802.1Q adds a 32-bit field between the source MAC address and the Ether-
Type/length fields of the original Ethernet frame, leaving the minimum frame size
unchanged at 64 bytes (octets) and extending the maximum frame size from 1,518
bytes to 1,522 bytes. The minimum payload size is 42-octets. Two bytes are used
for the tag protocol identifier (TPID), the other two bytes for tag control informa-
tion (TCI). The TCI field is further divided into PCP, DEI, and VID. The figure
2.5 shows the complete Ethernet frame with VLAN tagging enabled.

• Tag protocol identifier (TPID): 16 bits. It set to a value of 0x8100
in order to identify the frame as an IEEE 802.1Q-tagged frame. This field
is located at the same position as the EtherType/length field in untagged
frames, and is thus used to distinguish the frame from untagged frames.

• Tag protocol identifier (TPID): 16bits.

– Priority code point (PCP): 3 bits. This field refers to the IEEE
802.1p priority. It indicates the frame priority level. Values are from
0 (best effort) to 7 (highest); 1 represents the lowest priority. These
values can be used to prioritize different classes of traffic (voice, video,
data, etc.).

– Drop eligible indicator (DEI): 1 bit. May be used separately or in
conjunction with PCP to indicate frames eligible to be dropped in the
presence of congestion.

– VLAN identifier (VID): 12 bit. It specifies the VLAN to which
the frame belongs. The hexadecimal values of 0x000 and 0xFFF are
reserved.

Figure 2.5: 802.1Q Ethernet packet
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2.2.4 IPv4 Network Layer

IPv4 is a protocol that is used for routing the data packets between different auto-
organized networks. It operates on a best effort delivery model, in that it does not
guarantee delivery, nor does it assure proper sequencing or avoidance of duplicate
delivery. The internet protocol uses five key fields/values in the header in providing
its service:IP address, Type of Service, Time to Live, and Header Checksum.

Each device that participate in a computer network should have an IP address.
With this way the hosts and the network interfaces are identified. An address
indicates where the device is.

The Type of Service mechanism is used to indicate the quality of the service
desired by changing the priority of the packet queuing and routing on the routers.

Time to Live is an indication of an upper bound on the lifetime of an internet
datagram. It is set by the sender of the datagram and reduced at the points along
the route where it is processed. If the time to live reaches zero before the internet
datagram reaches its destination, the internet datagram is destroyed. The time to
live mechanism can be thought of as a self destruct time limit.

The Header Checksum provides a verification that the information used in
processing internet datagram has been transmitted correctly. The data may contain
errors. If the header checksum fails, the internet datagram is discarded at once by
the entity which detects the error.

The internet protocol does not provide a reliable communication functionality.
There are no acknowledgements either end-to-end or hop-by-hop. There is no error
control for data, no retransmissions and no flow control. [13]

The header of the IPv4 is consist of 20 bytes and 13 fields as it is shown at the
figure 2.6.[14]

• Version: 4 bits. Indicates the version of the IP. Always assigned to 4.

• Internet Header Length (IHL): 4 bits. Size of IP header in 32-bit words.
The minimum value is 5, which is a length of 5×32 = 160 bits = 20 bytes.
The maximum value is 15 words, 15×32 =480 bits = 60 bytes.

• Differentiated Services Code Point (DSCP): 6 bits. Originally defined
as the Type of service field.

• Explicit Congestion Notification (ECN): 2 bits. ECN is an optional
feature that allows end-to-end notification of network congestion without
dropping packets.

• Total Length: 16 bits.It defines the entire packet (fragment) size, including
header and data, in bytes. The minimum-length packet is 20 bytes (20-
byte header + 0 bytes data) and the maximum is 65,535 bytes. The largest
datagram that any host is required to be able to reassemble is 576 bytes, but
most modern hosts handle much larger packets.
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• Identification: 16 bits. An identifying value assigned by the sender to aid
in assembling the fragments of a datagram.

• Various Control Flags: 3 bits. Bit 0: reserved, must be zero Bit 1: 0 =
May Fragment, 1 = Don’t Fragment. Bit 2: 0 = Last Fragment, 1 = More
Fragments.

• Fragment Offset: 13 bits. This field indicates where in the datagram this
fragment belongs. The fragment offset is measured in units of 8 octets (64
bits). The first fragment has offset zero.

• Time to Live: 8 bits. This field indicates the maximum time the datagram
is allowed to remain in the internet system. If this field contains the value
zero, then the datagram must be destroyed. This field is modified in internet
header processing.The intention is to cause undeliverable datagrams to be
discarded, and to bound the maximum datagram lifetime.

• Protocol: 8 bits. This field indicates the next level protocol used in the
data portion of the internet datagram.

• Header Checksum: 16 bits. A checksum on the header only. Since some
header fields change (e.g., time to live), this is recomputed and verified at
each point that the internet header is processed.

• Source Address: 32 bits. This field is the IPv4 address of the sender of the
packet.

• Destination Address: 32 bits. This field is the IPv4 address of the receiver
of the packet.

Figure 2.6: IP header’s fields

2.2.5 UDP Transport Layer

User Datagram Protocol(UDP) together with Transmission Control Protocol(TCP)
are the two types of Internet Protocol. UDP is not a connection oriented protocol
as TCP. Data can be sent bidirectionally with no more effort. Multiple messages are
sent as packets in chunks using UDP. UDP protocol is used in DNS, TFTP, SNMP,
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RIP, VOIP packets and it is very simple because it does not have an inherent order
as all of its packets are independent from each other. Moreover, it does not use
acknowledgements to check the missing packets; it does not have flow control and,
lastly, it does not need handshake for establishing the connection. If ordering or
reliability is required, it has to be managed by the application layer. [15]

The header of UDP is 8 byte length and consists of 4 fields of 16 bits, Source
port, Destination port, length and checksum as it shows the figure 2.7.

• Source Port: 16bits. It indicates the port of the sending process, and may
be assumed to be the port to which a reply should be addressed in the absence
of any other information. If not used, a value of zero is inserted.

• Destination Port: 16bits. This field identifies the receiver’s port and is
required. Similar to source port number, if the client is the destination host
then the port number will likely be an ephemeral port number and if the
destination host is the server then the port number will likely be a well-
known port number.

• Length: 16bits. Length is the length in octets of this user datagram includ-
ing this header and the data.The minimum value of the length is eight.

• Checksum: 16bits. The checksum field is used for error-checking of the
header and data. It is computed from the IP header, UDP header and the
data. If the checksum is cleared to zero, then check summing is disabled. If
the computed checksum is zero, then this field must be set to 0xFFFF.

Figure 2.7: UDP header’s fields

2.2.6 RTP Application layer

RTP is designed to support end-to-end real-time, transfer of stream data. It is
used in video and audio application transferring over multicast or unicast network
services that require timely delivery of information and can tolerate some packet
loss to achieve this goal. RTP is independent of the underlying transport and
network layers. As a result, TCP communication supports the RTP protocol,
although the majority of the RTP implementations are built on the UDP. The
protocol provides facilities for jitter compensation and detection of packet loss and
out of sequence arrival in data, which are common during transmissions on an IP
network. RTP allows data transfer to multiple destinations through IP multicast.
RTP is regarded as the primary standard for audio/video transport in IP networks
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and is used with an associated profile and payload format [16]. The RTP header
has a minimum size of 12 bytes. After the header, optional header extensions may
be present. This is followed by the RTP payload, the format of which is determined
by the particular class of application. The fields in the header are as as it shows
the figure 2.8[17]:

• Version: 2 bits. RTP version number. Always set to 2.

• P, Padding: 1 bit. If set, this packet contains one or more additional
padding bytes at the end which are not part of the payload. The last byte of
the padding contains a count of how many padding bytes should be ignored.
Padding may be needed by some encryption algorithms with fixed block sizes
or for carrying several RTP packets in a lower-layer protocol data unit.

• X, Extension: 1 bit. If set, the fixed header is followed by exactly one
header extension.

• CC, CSRC count: 4 bits. The number of CSRC identifiers that follow the
fixed header.

• M,Marker: 1 bit. The interpretation of the marker is defined by a profile. It
is intended to allow significant events such as frame boundaries to be marked
in the packet stream. A profile may define additional marker bits or specify
that there is no marker bit by changing the number of bits in the payload
type field.

• PT, Payload Type: 7 bits. Identifies the format of the RTP payload and
determines its interpretation by the application. A profile specifies a default
static mapping of payload type codes to payload formats. Additional payload
type codes may be defined dynamically through non-RTP means. An RTP
sender emits a single RTP payload type at any given time; this field is not
intended for multiplexing separate media streams.

• Sequence Number: 16 bits. The sequence number increments by one for
each RTP data packet sent, and may be used by the receiver to detect packet
loss and to restore packet sequence. The initial value of the sequence number
is random (unpredictable) to make known-plaintext attacks on encryption
more difficult, even if the source itself does not encrypt, because the packets
may flow through a translator that does.

• Timestamp: 32 bits. The timestamp reflects the sampling instant of the
first octet in the RTP data packet. The sampling instant must be derived
from a clock that increments monotonically and linearly in time to allow
synchronization and jitter calculations. The resolution of the clock must be
sufficient for the desired synchronization accuracy and for measuring packet
arrival jitter (one tick per video frame is typically not sufficient). The clock
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frequency is dependent on the format of data carried as payload and is spec-
ified statically in the profile or payload format specification that defines the
format, or may be specified dynamically for payload formats defined through
non-RTP means. If RTP packets are generated periodically, the nominal
sampling instant as determined from the sampling clock is to be used, not a
reading of the system clock. As an example, for fixed-rate audio the times-
tamp clock would likely increment by one for each sampling period. If an
audio application reads blocks covering 160 sampling periods from the input
device, the timestamp would be increased by 160 for each such block, regard-
less of whether the block is transmitted in a packet or dropped as silent.

• SSRC, Synchronization source: 32 bits. Identifies the synchronization
source. The value is chosen randomly, with the intent that no two syn-
chronization sources within the same RTP session will have the same SSRC.
Although the probability of multiple sources choosing the same identifier is
low, all RTP implementations must be prepared to detect and resolve colli-
sions. If a source changes its source transport address, it must also choose a
new SSRC to avoid being interpreted as a looped source.

• CSRC, Contributing source: 32 bits. An array of 0 to 15 CSRC elements
identifying the contributing sources for the payload contained in this packet.
The number of identifiers is given by the CC field. If there are more than 15
contributing sources, only 15 may be identified. CSRC identifiers are inserted
by mixers, using the SSRC identifiers of contributing sources. For example,
for audio packets the SSRC identifiers of all sources that were mixed together
to create a packet are listed, allowing correct talker indication at the receiver.

• Extension header: (optional) The first 32-bit word contains a profile-
specific identifier (16 bits) and a length specifier (16 bits) that indicates
the length of the extension (EHL=extension header length) in 32-bit units,
excluding the 32 bits of the extension header.

Figure 2.8: RTP header’s fields
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Chapter 3

Implementation

The system’s implementation is described in this chapter. The first step is to define
the modules and their functionality. Next, comes the definition of the names and
the size of the register that the end user can use in order to communicate with the
card and to modify the generated flow. Last but not least is the description of the
GUI, which is the most important element for the end user.

3.1 Packet Generator User Data Path

The User Data Path of the Reference Switch is used as reference project in order
to implement our system. Our design, as shown in figure 3.1, is divided into two
subsystems, the subsystems of the receiver and the subsystems of the transmitter.

The part of the receiver consists of the Input Arbiter module, the Statistics
modules and the Packet Parser. All input packets are temporarily stored into the
appropriate MAC Input Queue depending on the physical Input MAC Port that
the packets entered (packet MAC1 stored into MAC Input Queue 1, etc). Each of
the four MAC Input Queues is connected with one instance of Statistics module
for having its own statistics results. All the flows that are captured from the Input
Queues are aggregated into one flow through the Input_Arbiter module and this
aggregated flow is fed to a Statistic module for generating aggregated statistics.
The Statistics module announces statistics of the average Throughput per second,
Bit per second and Jitter, to the user through the register system. An essential
functionality of the system is to reply to ARP requests. When a packet is received,
it is analyzed by the Packet Parser module. If it is identified as an ARP request,
the module of Packet Parser sends a signal of 1 bit ( ARP_request) directly to
Packet Generator module for producing an ARP reply packet. The packet that is
produced is an ARP Gratuitous reply.

The part of transmitter consists of the modules Rater, Packet_Generator, Send
and My_Output_Queues. The packet rate is set by the value of a register in Rater
module. This defines the period of the signal_generation signal that later in con-
nected with the Packet_Generator module which indicates the preparation and
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sent of the packet. The type and the fields of the headers are filled with the regis-
ters’ values of the Register System at the Packet_Generator module. The prepared
headers with the packet payload are forwarded to the My_Output_Queue mod-
ule in chunks of 64 bits by the the Send module. My_Output_Queue module stores
temporarily the packets chunks of 64 bits into the appropriate MAC_Output_Queues
according to the physical port that should be sent. The destination information of
each packet is stored in the module header at the respective preamble

In order to extend the capabilities of the system a mechanism is implemented
for generating four independent and fully parametrized flows. This is achived
with the use of time slots. In each instance of time, a packet of only one flow is
generated. The indication of the flow is done with a round robin register which
is called current_flow. It changes whenever a flow finishes the transmission of a
packet or whenever it is on standby as there is no running request for generating
new packets. The duration of the preparation and transmission of each flow varies
depending on the packet’s size. The duration is proportional to the packet size.
The minimum transmission time of the smaller packet (60 bytes) is 8 cycles as in
each cycle 8 bytes are sent,

(4 + 60)bytes

8bytes/cycle
= 8cycles

8 ∗ 8ns = 64ns

The maximum transmission time of the biggest packet (1514 bytes) is 190 cycles,

(4 + 1514)bytes

8bytes/cycle
= 190cycles

190 ∗ 8ns = 1520ns

The information of the source, destination physical port and the size of the packet,
is stored in the 32 bits module header of the NetFPGA, that adds the overhead of
the 4 extra bytes in the calculation of the useful data transfer.

Initially, the aim was to implement four instances from the Rater and Packet_Generator
modules. This approach was aborted, however, because of the tremendous size of
the design. Eventually, however, the time slotted design yields the same quality
of generation of packets and the same statistics result with a smaller design, as it
doesn’t instantiate four times the modules of the Rater and Packet_Generator but
extends the functionality of the existing modules.

Ultimately, the My_Output_Queue module is responsible for storing the pack-
ets to the Tx Queues depending on its module header. Whenever a packet enters
into the My_Output_Queue module, its module header is identified and then
allocated to a Tx Queue.
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Figure 3.1: Project’s User Data Path pipeline
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3.2 Modules in Details

3.2.1 Statistics Module

The goal of the Statistics module is to calculate and send to the host computer,
through the register system, all the statistics information i.e. Packets per second
(pps), Bits per second (bps), and Jitter(ns/sec) that it calculates for each receiving
flow. The statistics results are derived from the incoming packets size, the arrival
time and the arrival frequency.

State Machine
The module has one state machine that keeps the states of the incoming packet.

As shown in the figure 3.2, the states are WAIT, CTRL_FF, CTRL_00, CTRL_XX.
The WAIT state is the initial state of the FSM. The CTRL_FF indicates the arrival
of the module header and lasts one cycle. The CTRL_00 is the state where the
useful data are received and finally, CTRL_XX is the state that indicates the end
of the packet. The state machine is initialized at WAIT and is on standby for new
packets. The advent of a new packet is indicated by the signal of in_wr which
indicates input valid data, so the state machine changes its state at CTRL_FF.
At this state the arrival time and the size of the packet are stored by reading the
module header. When the value of CTRL is 0x00 the state is changed to CTRL_00

which indicates the packet useful data. When the last chunk of the packet enters
the module the state changes to CTRL_XX. This is indicated by the CTRL value,
being different from 0x00. The CTRL value indicates the valid bytes of the packet.
At this state the number of the received packets is increased by one. When it
finishes receiving the packet, the state machine reverts to WAIT.

For the metrics of Packets per second (pps), Bits per second (bps), and Jitter,
the timing of each second is crucial. To calculate the time a 32 bit register called
counter is used which increases by +one value for each positive edge of the clock.
When this register is 125000000, the counter resets to zero and it marks the end
of a second (125MHz Clock frequency, 8ns clock period).

Figure 3.2: Statistic module’s FSM

Module Functionality
When a packet is received (state == CTRL_FF), the value of the signal data in
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this state contains the information of source and destination port, and the size of
the packet in bytes. The packet size is added into a 32-bit register

total_bits = total_bits+ pack_size ∗ 8

in order to accumulate the total amount of bits that passed into the module. When
the counter has counted a period of a second (value 125000000) it is reset to zero,
and the value of total_bits equals the bps (bits per second). Next, the value of the
total_bits is copied to the register system for access by the user interface.

The calculation of the pps(packet per second) takes place at the CTRL_XX state
when the whole packet has been received. The 32-bit packets register that stores
the amount of packets that are received by the module, is increased by one. Like in
the bps calculation, when the counter indicates the end of the second, the packets’
value equals the pps and it is written into the register system of the NetFPGA.
After that the packet register is reset to zero.

Last, the calculation of the jitter demands the knowledge of the arrival time of
the last two packets. So, it uses three registers, a 32-bit register ( packet1 ) that
stores the arrival time of the first packet, a 32-bit register ( packet2 ) that stores
the arrival time of the second packet and a third 32 bit register ( absolute_value)
that stores the absolute value of the arrivals’ difference of the packets. In the
period of one second all the absolute differences are summed into a 32-bit register
( sum_jitter) and then their average is calculated. For the calculation of the
average a separate Division module calculates in 41 cycles the division of two 41-
bit numbers. The quotient is written to the register system for user access. Arrival
time is related to the counter; therefore, it considers wraparound issues. Finally, a
minimum of three packets is needed so as to calculate the jitter, as it is necessary
for the packet per second to be greater than three, otherwise the jitter is equal
with zero.

3.2.2 Division Module

This module performs a serial division operation, producing one bit of the answer
per clock cycle. The dividend’s and the divisor’s values are unsigned quantities.
The division module calculates the division between two 41-bit numbers. The
input of the module is two wires of the 41-bits in_dividend and in_divider
that represent the numbers that will be divided. The divide operation begins by
providing a pulse on the in_start input. The quotient is then provided with 41-bit
divider clock cycles as this is the size of the input wires of dividend and divisor. The
in_start pulse stores the input parameters in registers, so they do not need to be
maintained at the inputs throughout the operation of the module. If an in_start
pulse is given to the Division module during the time when it is already working
on a previous divide operation, it will abort the operation it was performing and
begin working on the new one. Attempting to divide by zero will simply produce
a result of all ones. This core is so simple that no checking for this condition is
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provided. A possible divide by zero condition should be concerned by the user, by
comparing the divisor to zero and flagging it. The ready pulse indicates the ending
of the division process and the correct outputs are written at the 41-bit output
wires quotient and remainder.

3.2.3 Packet Parser Module

The packet’s header parsing is performed at the Packet Parser module. This module
receives the chunks of the packets and identifies the type and the packet headers.

The generated measurements packets can be UDP and ARP packets, so as a
result, the expected received packets are one of the these two packet versions. If
the following header after the MAC header is not type of IPv4 datagram (Ether-
Type=0x0800) of ARP (EtherType=0x8100 ) and if the following header after the
IP header is not a UDP header (Protocol=17), the packet is dropped and is not
further analyzed.

The kind of the packet is important as whenever there is an ARP request, an
ARP reply packet should be sent in order to inform the network devices that an
IP is assigned with a MAC address. An ARP reply from the NetFPGA interface
is important in order to the network devices (routers) forward the NetFPGA gen-
erated packets to the destination. Whenever a packet is fully received and marked
as an ARP request packet, a pulse is sent to packet generator through the one-bit
wire arp_request. The module of the Packet Generator receives this signal and
produces a Gratuitous ARP reply for informing the network devices with the MAC
address of the NetFPGA interface, so that the network devices knows that they
should transmit packets sent to that MAC address on that port[12]. The FSM of
the model is working as follows:

Figure 3.3: Packet Parser module FSM
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State Machine
The incoming packets travels from module to module in 64-bit chunks. As a

results the Packet Parser Module expects to receive a specific sequence of data
value each time. Depending on the state and the received data values the registers
of the headers are reconstructed and the packet type is defined. The state machine
consists of four states as the figure 3.3 illustrates: WAIT, ETHERNET_HEADER,
IP_ARP_HEADER, UDP_HEADER, PAYLOAD. The WAIT state is the initial state of the
FSM. Because of buffering all the packets are temporarily stored in a FIFO. When
the FIFO buffer is not empty, which means that data are received from the ethernet
and the CTRL value of the data is 0xFF, the state changes to ETHERNET_HEADER.
At this state it is expected to receive the Ethernet header data with the first 16
bits of the next header. This state lasts two period clocks. In the first period
the bits from 0 to 63 of the mac header are received and in the second period the
remaining bits of mac header (bits 64-111) are received. In addition, the first 16
bits of the next header are received which depends on the value of the mac_type.
If the value of mac_type (mac_header[96:111]) is 0x0800, the next header is an
IP header; if it is 0x8100, the packet is an ARP packet. The process of the packet
continues at the state of IP_ARP_HEADER. At the state of IP_ARP_HEADER,
depending on the mac_type value, the rest of the part is either filled with the IP
header or the ARP. If the incoming packet has an IP header after 3 clock periods,
which is needed to receive all the IP header, the state changes to the UDP_HEADER

state. If it is an ARP packet, upon receiving the ARP header (4 clock periods), the
process of the packet ends and the next state is the WAIT. At the UDP_HEADER

state, the rest of the part of the udp_header (bits 48-63) is received and the next
state is the PAYLOAD. At this state the 64 bits of the chunk is stored as payload
and at the next period the state changes back to WAIT.

3.2.4 Rater Module

The Rater Module is responsible for the frequency of producing packets.The rate of
the packet productions is chosen through the register system. Two 32 bit registers,
counter and limit, are responsible for the timing of the module. With every positive
edge of the clock, counter is increased by +one until it reaches the value that the
user has set at limit register. As the figure 3.4, when the counter reaches the limit
value, the counter is reset and the signal_out signal is turned to high for one
period of the clock and indicates the generation of a new packet.

This module does not use the ready signal for checking if the next module is
ready for receiving data or not. The reason is that the packet generation period time
should always be constant and independence of the other modules’ state. Whenever
it is time to send a packet, the Rater indicates this by raising the signal_out signal.
In the Packet Generator Module implementation section 3.2.5, there is a description
of the mechanism of receiving this signal, and how notifications are not lost even
when the module is busy.

As mentioned earlier, for generating four independent and fully parameterized
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Figure 3.4: Rater module FSM

flows, four different functionalities of Rater module are needed. This is achieved
by four duplicates of all the registers and the wires of this module, resulting in
four different Rater’s signals that will produce four different flows of packets (
signal_out[0], signal_out[1], signal_out[2], signal_out[3] ). Specifically, there are
four Rater modules that work in parallel. The reason that they are implemented,
instead of duplicating the whole module, is because of the size of the final project.
To duplicate only the registers and the functionality of a module occupies less space
than to duplicate the whole module.

3.2.5 Packet Generator Module

The Packet Generator module purpose is to construct the UDP packets that will
be sent to the network. The packet’s format is defined through the register system
as it is described in the paragraph 3.3) by giving the parameters for each flow. The
fields of the header are filled according to user selections and IEEE standards as
are presented in the tables 3.2, 3.3, 3.4, 3.5, 3.6.

State Machine
The Packet Generator Module consists of two FSMs. The first FSM is responsi-

ble for the packet generation and the second is responsible for dividing and sending
the packet into 64-bits chunks to the next module. The main state machine con-
sists of four states: WAIT, GENERATE_PACKATE, ALL_TO_ONE, SEND. The states
of the second FSM, which are implemented in a different module (Send module),
are WAIT, FPGA_HEADER, HEADER, HEADER_PAYLOAD, PAYLOAD, END.

Both state machines are initialized into WAIT state. When a new packet is
sent, the main FSM changes its state to GENERATE_PACKETS.

In GENERATE_PACKETS state, the registers of the table3.1 that represent the
headers of data link, network and transport layers are defined by the user’s op-
tions. The user’s choices are assigned to the registers though the register system.
Depending on the choices, different types of packet format are constructed. This
state lasts one clock.

ALL_TO_ONE is the next state, in which the total header size is calculated, and
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also all the header registers are aggregated into one register (all_together[0:463])
in order to be ready for cutting into pieces of 64 bits. Like the previous state,
ALL_TO_ONE state lasts only one cycle.

The last state ( SEND) of the state machine sends the header data to the next
module (Send module) that is responsible for cutting the headers and payload into
chunks of 64 bits and sends them to the next module (Output queue). The state
machine is initialized to WAIT state when Send module finishes its work. The
second FSM is described in the 3.2.6 subsection of the implementation of Send
module.

Figure 3.5: Packet Generator module FMS

Module Functionality
As mentioned in paragraph 3.2.4 of the Rater module description, Packet Gen-

erator module has a mechanism that even when the module is busy by constructing
and sending a packet, it does not lose track of the requests for generating further
packets. This is achieved by using a 10-bits register for each four flows which is
called signal_in. This means that 1024 requests can be on standby for generation.
Every time a request comes from the Rater module for generating a packet by the
generate_signal wire this register is augmented by +one. Whenever a generation
request is served, by sending a new packet of this flow, the register is decreased by
-one. As long as the flow’s value of each signal_in is bigger than zero, it means
that there are new packets that are waiting to be sent. Because of this mechanism
the Rater module and the generation module are not interdependent.

In order to fully utilize the card’s capabilities and to extend the project’s abil-
ities, four multiple flows are implemented with the use of the time division. In
each time slot, a packet of a flow is generated and sent. There is a round robin
register, which is called current_flow that indicates which distinct flow will be
generated. The policy of the time shifting is very simple and maximises the time
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slots. Whenever there are requests for generating packets of a flow and the reg-
ister current_flow is equal with this flow, a new packet of the current_flow is
generated and sent. If there is no flow with generation requests, then the cur-
rent_flow register changes its value in the next flow. After sending a packet, the
current_flow always changes value. So the duration of the time slots are dependent
on the packet’s size. The larger the packet is, the longer it takes.

Table 3.1: Size of each header register
reg/wire Size in bytes Name

reg 28 arp_header
reg 4 payload
reg 14 or 18 mac_header
reg 20 ip_header
reg 8 udp_header
reg 12 rtp_header
reg 8 module_header

As shown in table 3.1, each header has a register which should be filled. The
size of each register is depended on the header size that it represents. There are
header fields that always have the same value; there are fields that are filled by
the user’s parameters, and then there are some fields that should be calculated in
order to be assigned to the header registers. The tables 3.2, 3.3, 3.4, 3.5, 3.6 show
the values that are assigned to each header depending on the user configurations
and the IEEE standards.

Table 3.2: Fields and values of MAC header
MAC Header Values

802.3 mac_destination User choice
mac_source User choice

802.1Q QoS type 0x8100
CoS value User choice

CFI 0
802.3 VID 0

MAC TYPE 0x800 or 0x0806
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Table 3.3: Fields and values of IP header
IP Header Values

Version 4
IHL 5

Differentiated Services User choice
Tolat length Calcuated value
Identification 0

flags 0
Fragment Offset 0

TTL 255
Protocol 17

Header Checksum Calculated value
Source IP address User choice

Destination IP address User choice

Table 3.4: Fields and values of UDP header
UDP Header Values

Sourch UDP address User choice
Destination UDP address User choice

Length Calculated value
Checksum 0

Table 3.5: Fields and values of RTP header
RTP Header Value

Version 2
Padding 0
Extension 0

CSRC count 0
Marker 0

Payload Type 0 or 4 or 15 or 18
Sequence Number Calculated value

Timestamp Calculated value
SSRC 0xAD0F01AD
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Table 3.6: Fields and values of ARP header
ARP Header Values
Htype 1
Ptype 0x800
Hlen 6
Plen 4

Operation User choice
SPA User choice
THA User choice
TPA User choice

As shown in the above tables, there are some fields that are filled with the user’s
choices which comes from the register system and other fields that are always filled
with the same value and should not be changed because of the IEEE standards.
There are fields in the headers IP, UDP and RTP that should be calculated from
the hardware in order to be assigned to the header, as well. At the IP header the
fields that the NetFPGA should calculate are length and checksum. The length
field contains the length of the IP, UDP header, plus the payload size in bytes.
Finally, as the size of the headers is standard the length calculation is :

length = 28 + payload_size_bytes[cur_queue_stored] (3.1)

The calculation of the checksum demands two cycles of calculations. At the
beginning, the checksum field is initialised a zero.In the first cycle the header of the
IP is cut in chunks of 16 bits and they are summed into the 19-bits temp register.

temp[0 : 18] = ((ip_header[0 : 15] + ip_header[16 : 31])+

(ip_header[32 : 47] + ip_header[48 : 63]))+

((ip_header[49 : 79] + ip_header[80 : 95])+

(ip_header[96 : 111] + ip_header[112 : 127]))+

(ip_header[128 : 143] + ip_header[144 : 159])

(3.2)

In the second cycle, if the temp register produced a number bigger than 16
bits, the extra bits are summed up to a 16-bits result (sum register) which is then
subtracted out of 0xFFFF.

sum[0 : 15] = temp[3 : 18] + temp[0 : 2] (3.3)

ip_header[80 : 95] = 0xFFFF − sum[0 : 15] (3.4)

In the UDP header the field that the hardware should calculate is the length.
The length field contains the UDP header’s length plus the payload size in bytes.
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Finally, as the size of the headers is standard the length calculation is :

length = 8 + payload_size_bytes[cur_queue_stored] (3.5)

The Sequence Number and Timestamp values of the RTP header are calculated
in the hardware. The Sequence Number of the RTP is initialized at zero. Every
time a new packet is sent, the Sequence Number value is increased by +one. For
the calculation of the timestamp a 16-bit counter (time_stamp) is used that is
increased by +one in each clock. Whenever it is time to fill the header field, the
current value is marked. The the time stamp precision is equal to the NetFPGA’s
clock period, which is 8ns.

Figure 3.6: Packet generator module structure

During the Packet Generator FSM execution, the headers are filled as described
above. Depending on the preferences of the user, the packet value of the header and
the size change. The signals that can change the final header size are: cos_val,
rtp_enable, arp_enable. If the cos_val is different to zero, the 802.1Q header
is added above the MAC header. Also, when the rtp_enable is one, the RTP
header is added above the UDP header. Finally, the arp_enable signal produces a
packet with MAC and ARP header only. Whenever the packet is ready to be sent
the signal new_send sends a pulse to the Send module. The valid registers data:
alltogether[0:463], bitsofheader[20:0], payload_size[31:0] and module_header[0:63]
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are passed to the Send module. The Send module receives this information and
sends the packet into 64-bits chunks to the next module. The figure 3.6 presents
the Packet Generator module’s wires and connection.

3.2.6 Send Module

After the construction of the packet’s header, it is the turn of the packet to be
divided into 64-bits chunks in order to be sent to the next module (My Output
Queues). This work is achieved by the SEND module.

Figure 3.7: Send module’s FSM

State Machine
The Send module’s FSM has six states: WAIT, FPGA_HEADER, HEADER,

HEADER_PAYLOAD, PAYLOAD, END. Upon reset the FSM is at WAIT state. At this
state, the state machine awaits for the input wires of the module, in_alltogether,
in_bitsofheader, in_payload_size, in_module_header to take a valid value. These
wires have all the necessary information for sending the packet into chunks to the
next module. As the names of the wires indicate, in_alltogether contains all the
packet headers, in_bitsofheader contains the header size in bits, payload_size
indicates the payload size in bits, and ultimately in_module_header contains the
packet module header. When the wires values are valid ( in_new_send = 1), the
state machine changes the state to FPGA_HEADER. At this state the module header
(64 bits) is stored at a FIFO before being sent to the next module where it can
receive the data. FPGA_HEADER lasts only one clock cycle.

The next state is HEADER. At this state the wire in_alltogether that contains
the packets’ headers is cut in 64-bits chunks. Each piece is stored at the FIFO for
forwarding to the next module when it will be available. The duration of this state
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depends on the size of the headers. The next state is HEADER_PAYLOAD.
At HEADER_PAYLOAD state the chunk that is stored into FIFO contains as

much header information and payload information as needed for the compilation
of 64 bits. This state lasts only 1 cycle. Because the header is cut in 64 bits, and
there is a possibility the header may not be a multiple of 64 there may not be
adequate bits for completing a 64-bits chunk. Based on this assumption the next
state can either be PAYLOAD or END.

At the PAYLOAD state the chunk that will be stored into FIFO contains data
only from payload. The payload value is a 32-bit register with a sequence number
that is repeated as many times as necessary. If the payload is not a multiple of 64,
it uses part of the register to fill the packet. Payload size should be greater than
18 Bytes (minimum packet size) and smaller than 1472 Bytes (depending on the
packet type) for a UDP packet. Depending on the user’s choices, different packet
types and flows are generated.

The figure 3.8 shows the data value and the control value of an RTP packet
with zero payload size transition.

Figure 3.8: CTRL and DATA registers’ Values during the RTP packet sent

3.2.7 My_output_queue Module

The Output_Queue module of the NetFPGA’s Verilog library has the same func-
tionality as this new my_output_queue module. It reads the module headers of
the packets and it decides to which output queue the packets will be stored and
forwarded. The library module has more functionalities like checking the size of
the packets, storing the packets temporarily into sRAM and reading from it; pro-
cesses that require a lot of cycles in order to be executed. Simulations reveal that
the library module demands more time for processing a packet than the theoreti-
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cal limits and as a result, we cannot fully utilize the card as it was impossible to
generate 4 Gbps flows (four 1 Gbps flows). For example, for the minimum packet
size of a 60-bit UDP packet the theoretical limit for processing and forwarding is
21 cycles for each packet.

(125.000.000/4)/1.488.095 = 21cycles

As the propagation delay is 9 cycles, it leaves only 12 cycles for packet process-
ing. The library module needs 15 cycles for packet storing and processing. This
means it is impossible to generate four flows with a full speed of 1Gbps. Because
of these limitations, the module had to be redesigned and reimplemented.

Since this module implementation is more simplified than the library module’s
implementation, it needs less time to decide which output port to send the packets.
The buffering process of reading and writing on the sRAM demands a lot of cycles.
However,the buffering process was replaced with FIFO implemented in the FPGA,
which is faster but smaller in size. It is not important to check for TTL fields or
packet size as the packets are generated identically. Finally, the module’s decision
of the output port is done in 1 cycle.

State Machine
As the figure 3.9 shows, the state machine of my_output_queues module con-

sists of the following states: WAIT, DST_PORT_CALC and SEND. The state machine
is initialized into WAIT state. When the first part of the packet comes, it is stored
temporarily into a FIFO. When the FIFO has stored packets, the state changes
from WAIT to DST_PORT_CALC. At DST_PORT_CALC state the destination(s) out-
put queues determine where the packet should be written. The packet will then be
stored temporarily into that FIFO, but only if the FIFO of the output queues are
not full. This state lasts only 1 cycle.

Figure 3.9: My Output Queues module FSM

After that, the state machine changes its state to SEND. At this state, all the
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packet chunks are written in the temporary FIFO as long as FIFO is not full. The
state changes back to WAIT when all the packet chunks are forwarded and stored
at the respective output(s) FIFO(s). This is indicated by the input_fifo_ctrl_out
wire. When its value is different than 0x00 or 0xFF, the packet’s end is indicated.
As long as the output FIFOs have packets and the Output_Queue modules are
available the packets are forwarded to them.

3.3 Packet Format

The Packet generator module can generate two different packet formats: UDP
and ARP. Data Link layer header can be two different types, either 802.3 (TYPE
0x0800), or Quality of Service (QoS, 802.1p, TYPE 0x8100) by choosing values
of Priority Code Point from 0 (best effort) to 7 (highest); 0 represents the lowest
priority. These values can be used to prioritize different classes of traffic (voice,
video, data, etc.) [18].

In addition, at Network layer, besides the source and destination IP, the user
may also define the Differentiated Services Code Point (DSCP), originally defined
as the Type of service field - ToS. The ToS field specifies a datagram’s priority
and requests from a router a low-delay, high-throughput, or highly-reliable service.
Based on these ToS values, a packet would be placed in a prioritized outgoing
queue, or take a route with appropriate latency, throughput, or reliability.

VoIP calls can be simulated as well, by adding a Real Time Protocol (RTP)
header at the higher layer of the UDP. RTP is used to carry data that has real-time
properties. The field of payload type identifies the format (G.711, G.723.1, G.728,
etc) of the RTP payload and determines its interpretation by the application.

The generation of ARP packets is important for this project as it is needed to
inform the network devices (router, etc) about the existence of a virtual interface,
in order to be able to route the packets. The ARP packets that are produced are in
reply to ARP requests and indicate the assignment between the IP and the source
mac address of the port of the card.

The packet format is defined by the user by choosing and writing the registers
through the register system. User defines the parameters of the Data Link layer,
Network layer and Transport layer. The parameters that should be defined are
presented in details at subsection 3.2.5.

3.4 Register System

The register system collates and generates addresses for all the registers and mem-
ories in an NetFPGA project. It is the way for the NetFPGA card to communicate
with the host computer. Each module of the project has an xml file which declares
the name and size of each module register. Some registers are for input, which
should be written by the user in order to parameterize the generated flow and oth-
ers are for output which gives the calculated data of the card back to user. The
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register are accessed through the GUI system by the user. The tables 3.7, 3.8, 3.9
specifies the functionality of each modules’ registers.

Table 3.7: Packet Generator Module’s registers
Packet Geretor Module

Register Name Description Size in bits
payload_size_bytes Payload size in bytes. 32

dstip Destination IP address by decadal representation. 32
srcip Source IP address by decadal representation. 32

dstport Destination port (field of transport layer). 32
srcport Source port (field of transport layer). 32

dstmac_high High 16 bits of destination MAC address. 32
dstmac_low Low 32 bits of destination MAC address. 32
srcmac_high High 16 bits of source MAC address. 32
srcmac_low Low 32 bits of sourch MAC address. 32
arp_enable If equal to 1, activates the ARP packet generation. 32
arp_opcode If equal to 1, specifies the ARP packet’s type 32
rtp_enable If equal to 1, enables RTP packet generation . 32

pt If equal to 1, specifies the RTP flow’s type 32
cos_value Cos value. 32

tos If different to 0, quality of service is enabled. 32
It defines the TOS field’s value.

fpga_dst_port Packet’s NetFPGA Destination port. 32
send_enable If equal to 1 packets are generated 32

num_packets_generated Generated packets number. 32
(output)
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Table 3.8: Rater Module’s registers
Rater Module

Register Name Description Size in bits
clk_limit_3 Packet generator rate limit of flow 3. 32
clk_limit_2 Packet generator rate limit of flow 2. 32
clk_limit_1 Packet generator rate limit of flow 1. 32
clk_limit_0 Packet generator rate limit of flow 0. 32

packets_generated_3 Number of generated packets of flow 3 32
(output) of the Rater module.

packets_generated_2 Number of generated packets of flow 2 32
(output) of the Rater module.

packets_generated_1 Number of generated packets of flow 1 32
(output) of the Rater module.

packets_generated_0 Number of generated packets of flow 0 32
(output) of the Rater module.

Table 3.9: Statistic Module’s registers
Statistic Module

Register Name Description Size in bits
bps (output) Throughput in Bits per Second 32
pps (output) Throughput in packets per Second 32
jitter (output) Gives the jitter per Second 32

3.5 Packet Generator Graphical User Interface

GUI declares the generated flow by writing the aforementioned registers, as well
as allows to read them and ultimately, receive the statistics that the card has
calculated. The software is responsible for providing correct parameters to the
hardware through the register system. Two software components have been imple-
mented; one responsible for the read and write operation of the card’s registers,
and one responsible for the results’ graphical representation.

The first is implemented in C. This program reads the auto-generated register.h
file generated from the hardware compilation which, in turn, contains the card’s
register addresses. The registers are written, along with the records of the user’s
values, and read in order for the GUI to display the statistics results. The program
input is the user’s register declarations specified above and the output is the results
of the statistics calculation. The program is responsible for writing and reading
the appropriate registers.

The second program is implemented in Java. As shown in figure 3.11 a GUI
is also implemented that simplifies the process of registers’ definition. The user
has unfilled text boxes and drop menus with the parameters that he should fill.
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For being more ergonomic, functions such as store/load of previous parameters,
calculation median, minimum and maximum value are implemented. Also, the GUI
program is used for the graphical representation of the statistics results as well as
the calculation of the the average, standard deviation, minimum and maximum of
metrics. The possibility to store the results at a text file for further processing is
provided.

The communication between the client program and the server is accomplished
through TCP sockets. This way, it is not necessary for the end user to use a
computer that has a NetFPGA card installed, but to know the IP address of a
computer with a NetFPGA card. The figure 3.10 shows the connection between
the computers of GUI and NetFPGA.

Figure 3.10: Connection between GUI client and NetFPGA server

3.5.1 Interface description

The user graphical interface is divided into two parts, the representation results
part at the upper part of the window and the generated flows’ set part which is at
the lower part of the window.

The upper part illustrates the run-time calculated results of the four NetFPGA
interfaces. While the card receives the generated packets, the Packets per second,
Bits per second and Jitter per second graphs are constructed. Each NetFPGA
Ethernet port is represented with different color. The statistics of Average, Stan-
dard deviation, Minimum and Maximum that are placed under each graph are
calculated and represented with different color, as well. From the View menu, the
wanted received flows can be represented. The received statistics can be saved for
further future processing through the File menu.

At the lower part of the window, the generated flows are parameterized. The
flow type (UDP, RTP, etc.) with their parameters (source / destination IP, MAC
and port, etc.) is chosen. The choice of Activated Flows supports multiple gener-
ated flows simultaneously. From the Load button on the System menu pre-saved
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parameters are loaded. The Start and the Stop buttons activate and deactivate
the generated flows.

From the Initialization button on the System menu, the four NetFPGA inter-
faces are set with their IP. The Load button loads these values, as well.

Figure 3.11: GUI screen-shot
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Chapter 4

Evaluation

The Evaluation section contains the experiments performed in order to test the
NetFPGA 1G system’s performance, the power consumption, the flow’s produc-
tion accuracy and the network devices performance such as routers, switches and
wireless access points. In addition, there is a comparison of the performance and
the accuracy between commercial (Ix Chariot) and open source (iPerf, TTCP)
software applications/solutions.

At section 4.1 the theoretical limits presented, then the experiments are de-
scribed(4.2) in detail and finally the experiment results and conclusions follow(4.3).

4.1 Theoretical limits

Maximum theoretical throughput of 802.03 and 802.11g standards are calculated in
order to be used as reference values for the experiments’ execution over Ethernet.
The payload limit size is between 18 and 1472 bytes as the MAC layer segment
defines[19].

The maximum theoretical limits of a 1 Gbps throughput connection for 802.03
are calculated with the following formula:

pps =
Throughput

Packet Size
=

Throughput

MAC header + IP header + UDP header + payload
(4.1)

Throughput = (Frame size− 24) ∗ pps (4.2)

For the measurements the packet size used is outlined in the table 4.1:

43
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Table 4.1: Pps and Throughput theoretical limits vs Payload Size
Ethernet Frame Size Packet Useful data Payload Size Max pps Max Throughput

Bytes Bytes Bytes Bits per second
84 60 18 1.488.095 714.285.600
300 276 234 41.667 920.000.736
1000 976 934 125.000 976.000.000
1538 1514 1472 81.274 984.390.688

The bigger the payload size, the better the network’s sources are utilised. How-
ever, the theoretical total throughput is not achieved because of the packet’s over-
head, preamble, start of frame delimiter, inter-frame gap and frame check sequence
with total size 24 bytes. On the other hand, with smaller payload size, smaller
throughput is achieved because of the useful information’s fraction and the extra
payload overhead. Fig. 4.2 shows the 802.03 link’s theoretical throughput and the
fig. 4.1 shows the theoretical 802.03 link’s pps.

Figure 4.1: 802.03 flows’ theoretical packets per second limits



4.1. THEORETICAL LIMITS 45

Figure 4.2: 802.03 flows’ theoretical throughput limits
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The IEEE 802.11g throughput limits are defined from the following formula
using the time-values of the table 4.2. [20]:

U =
td

DIFS + tpr + ttr + SIFS + tpr + tack
(4.3)

The figure 4.3 shows the successful transmission of a single frame under 802.11g.

Figure 4.3: Timings of a single frame successful transmission under 802.11g

Table 4.2: Time-value of the parameters of the 802.11g
CW 0 µs
Slot 9 µs
DIFS 28 µs
SIFS 10 µs
tpr 16 µs

In figure 4.4 is represented the maximum throughput limits of IEEE 802.11g
at different rates for different payload sizes, in the case of a perfect transmission
without packet losses and packets retransmission.
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Figure 4.4: IEEE 802.11g maximum throughput limits

4.2 Experiments

4.2.1 Experiment 1: Theoretical limit of four NetFPGA flows

The experiment’s goal is to check whether the card can produce 1 Gbps four inde-
pendent flows, either with small payload size (maximum packets per seconds) or
large payload size (fully utilization of Gigabit ethernet link) and whether it can
process the flows simultaneously without packet losses or high jitter. The four in-
terfaces of the card are connected directly ,without the use of any network device
- switch or router-, in pairs of two, so each interface generates packets and re-
ceives flows for analysis, as shown in the above figure. Firstly, all the interfaces are
parametrized to send the same flow (same packet/payload size) starting from the
smallest packet size to the biggest packet size. The goal is to verify that the card
can precisely generate from maximum packet per second to maximum throughput.

In the second version of this experiment the same goals are tested like at the
first version. The difference is that the generated flows have different packet size.
So each interface is set to send different flows and, as a result ,different flows are
calculated for statistical analysis. Therefore, each of the four independent flows is
put under test in order to verify its theoretical limits.
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Figure 4.5: Experiment’s 1 topology

4.2.2 Experiment 2: Cisco Switch SLM2008

The goal of the experiment is to test the performance of the Cisco Switch SLM2008.
It is tested the capability of the switch to support multiple flows at the speed of
1Gbps. NetFPGA operates only at 1Gbps and it can not be connected with network
devices of 100Mbps and 10Mbps interfaces [21]. In this case, aforementioned the
switch is used as a converter from 1Gbps network connections to 100/10Mbps
network connections and vice versa.

The switch’s interfaces are configured in pairs in a different vlan(port 1 and 2
vlan 1, port 3 and 4 vlan 2). Then the switch receives the packets and forwards
them to the next vlan depending of the destination MAC address of the packet.
The flow that is sent is a normal UDP flow without extra headers. The payload of
the experiment then changes from 18 bytes to 1472 bytes. The average throughput,
pps and jitter are the performance values used to decide if the device is appropriate
to use as a converter.

Figure 4.6: Experiment’s 2 topology

4.2.3 Experiment 3: Switch vs Router mode

The experiment’s aim is to check the potencial of the Linksys Wi-Fi Router WRT54GL,
a low cost device, as a switch and as a router. For the first part of this experiment
the device is parameterised as a switch. The four ethernet ports of the Linksys
device work at 100Mbps speed so for connecting the NetFPGA with it the Cisco
switch should interpolate between them. The Cisco SLM 2008 switch in this case
is used as a converter from 1Gbps flows to 100Mbps flows and vice versa.
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In the second part of the experiment, the Linksys WRT54GL is set to router
mode. The device examines the incoming packets up to the level of the network
layer(routing tables, TTL, checksum, etch) in order to route them. This process
demands more calculations than the process of the packets in switch mode. In
both cases the Cisco is set up according to experiment 2. As the experiment result
will show at the section 4.3.2, Cisco switch can manage 1Gbps flows with perfect
precision and as a result the use of the switch will not weather the final results.

Using different payload sizes will reveal if the device is able to manipulate
packets with big payload size or flows of high packets per second rate. We further
observe whether the extra network layer process of packet (router mode) affects
the jitter and the ability of the device to achieve the theoretical limits. The figure
4.7 shows the connection between the experiment devices.

Figure 4.7: Experiment’s 3 topology

4.2.4 Experiment 4: Cisco Catalyst Router 7606

Similarly to the previous experiment, the limits of the high cost router Cisco Cat-
alyst 7606 are tested. The experiment results are compared with the results of the
experiment 3 in order to find result differences between low and high cost devices.
The experiment takes place in a simulated environment at FORTH Institute[22]
where other flows pass simultaneously. In addition, during the runtime of the ex-
periments, the CPU load is checked through the web interface of the router in order
to identify if the generated flow needs more process power and makes the router
reach its limits.

Two router interfaces are set in two different subnets. Each interface is then
paired with a NetFPGA interface as the fig. 4.8 shows. The router receives the
packets that the NetFPGA sends, analyzes them by reading the packet up to the
level of the network layer in order to find the route path and routes the packets to
the correct interface. When the packet is routed, it is received from the NetFPGA
interface in order to be calculated and analyzed. The generated flow is a 1Gbps
UDP flow with different payload size that changes from 18 bytes to 1472 bytes.
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Figure 4.8: Experiment’s 4 topology

4.2.5 Experiment 5: Wireless Access points

Similarly to experiment 3 - Switch vs Router mode, the same Linksys Wi-Fi Router
WRT54GL is used. The experiment’s aim is to check the wireless connection limits
of two devices. Two Linksys devices are used, one as wireless access point and
the other as wireless card. One NetFPGA port (send Ethernet port) is connected
through the Cisco switch to one Ethernet interface of the first Linksys device (access
point) and a second port of the NetFPGA (receive Ethernet port) is connected
through Cisco switch to one Ethernet interface of the other Linksys device (wireless
card) as the following figure shows. As the two devices are wirelessly associated, the
packets of the first NetFPGA port go back to the other port through the wireless
connection.

The devices can work at the stand of IEEE 802.11g ,which permits speeds of
54 Mbps, 48 Mbps, 36 Mbps, 24 Mbps, 9 Mbps and 6 Mbps. In order to achieve
the maximum throughput, the flows of the NetFPGA is set as high priority flows
which means that wait time of the queues is reduced. In addition, instead of using
antennas we employ a proper coax cable with attenuators to directly connect the
antenna outputs, in order to avoid the possible interference which produces packet
losses, retransmissions and as a result lower bandwidth.

The experiments uses different payload sizes at all the available IEEE 802.11g
speeds.
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Figure 4.9: Experiment’s 5 topology

4.2.6 Experiment 6: IPERF vs IxChariot

The experiment’s goal is to compare the performance of a free open source software
packet generator versus a commercial software packet generator. In this case, the
performances of iPerf v.2.0.4 pthreads and the IxChariot 7.30 EA Build Number:
7.30.43.35 are tested.

IxChariote is a commercial close source packet generator that is used to mea-
sure network performance. IxChariot provides the ability to confidently assess the
performance characteristics of any application running on wired and wireless net-
works [2]. On the other hand iPerf is a commonly open source network testing
tool that can create TCP and UDP data streams and measure the throughput of a
network that is carrying them. The network set and the experiment variables are
the same as in experiment 5: Wireless Access points, but with a computer network
interface instead of the NetFPGA. Because all the wired devices’ interfaces work
at 100Mbps there are no issues of incompatibility so the CISCO switch is not used
as shown in the following figure. The computer used is an Intel Core i3-3225 @
3.30 GHz and a Xeon E5-1620 (Quad Core, 3.60GHz Turbo, 10MB Cache). The
Intel is used as a server and the Xeon ,which is a more powerful machine, is used
as a client for both softwares.

Apart from the throughput statistics that the two different programs achieve,
we also observe the CPU usage. All the unrelated kernel services are switched off
and only the client and the server CPU usage of the programs is observed.
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Figure 4.10: Experiment’s 6 topology

4.2.7 Experiment 7: Power consumption

The experiment ’s aim is to calculate the power consumption and the CPU load
of the the computers that send and receive packets when network experiments are
executed with NetFPGA and with software programs. In this case, the network
structure doesn’t matter as the power that the computer demands to generate the
flow and to receive and calculate the received flows depends only on the imple-
mentation of the software. In addition, the power consumption of the CPU load
is dependent only on the software implementation and not on the structure of
the network experiment. To simplify the network topology the two computers are
directly connected.

In this final experiment the NetFPGA and two free open source software pro-
grams, the iPerf and the TTCP, are used. In both cases, UDP flows are generated
with the same packet size at maximum throughput. As regards the software pro-
grams ,the flows are set at 100Mbps because of the 100Mbps network cards of the
computers. As regards the NetFPGA flows, they are set at 1 Gbps.

The power is calculated in both computers, both when generating the pack-
ets(client), and receiving and analysing the packets (server).During the measure-
ments, all other processes of the computer are closed so that hardware resources
would not be occupied and results would not be corrupted either. The reference
power when the computer is idle is 80 Watts.
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4.3 Results

4.3.1 Experiment 1: Theoretical limit of four NetFPGA flows

Figure 4.11: Experiment’s 1 results. Throughput vs Ethernet Frame size

Figure 4.12: Experiment’s 1 results. Pps vs Ethernet Frame size
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This experiment is the most important as it proves the capability of the system
to generate packets with high precision at zero jitter. In the first version of the
experiment, the figures 4.11 and 4.12 show that the card can generate and calculate
the data of four flows simultaneously at 1Gbps with high precision. The results of
the packets per seconds match the theoretical calculation, and the jitter is always
zero. This proves that the payload size affects neither the generation rate of the
packets nor the process of the received packets.The results are collected either from
the statistics of each receiving port or from the total data that is received from the
module implemented after the Input Arbiter module.

The second part of the experiment shows that each flow can achieve its the-
oretical limits with jitter zero. These observations are identified in each statistic
module of each corresponding receiving port.

In conclusion, the Packet Generator is capable to generate and receive four
flows of 1 Gbps with high precision and zero jitter.

4.3.2 Experiment 2: Cisco Switch SLM2008

Figure 4.13: Experiment’s 2 results. Throughput vs Ethernet Frame size
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Figure 4.14: Experiment’s 2 results. Pps vs Ethernet Frame size

The figure’s results 4.13 and 4.14 show that the Cisco Switch SLM 2008 is capable
of managing 1 Gbps flows. All the pps and throughput theoretical limits are
achieved. The only anomaly observed is when the packet size is the smallest due
to the 8-cycle NetFPGA jitter(8 * 8ns = 64 ns). This may be due to the large
packet rate (1.488.095 )and the packet buffering. However, jitter time is so small
that is negligible . The experiment shows that this switch can be used as a network
converter from 100Mbps flows to 1Gbps flows.
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4.3.3 Experiment 3: Switch vs Router mode

Figure 4.15: Experiment’s 3 results. Throughput vs Ethernet Frame size

Figure 4.16: Experiment’s 3 results. Pps vs Ethernet Frame size
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Table 4.3: Experiment’s 3 results. Jitter vs Ethernet Frame size
Ethernet Frame size Switch Router

(Bytes) (ns) (ns)
84 72.00 4299.35
300 80.00 8112.00
1000 48.00 8498.35
1538 24.00 8988.42

This experiment shows the different performances of the Router WRT54GL
when is set as router ,and as switch. In the case of the switch, the experiments
revealed that the device can achieve the theoretical limits of throughput and pps
(figures 4.15 and 4.16). The table 4.3 demonstrates that the jitter is low, between
24ns and 80ns. When comparing the results of the device as a router to the
theoretical limits, we see that the throughput and the pps are pretty lower (from
-79% to -98%)(figures 4.15 and 4.16). This is because the device checks more fields
than when in switch mode. The TTL, the route table search, the checksum, the
queuing and the forwarding of the packet demand a lot of process time. Because of
these reasons the jitter rises to ms compared with the switch mode where it stays
in the ns scale as the table 4.3 illustrates.

In conclusion, switches from experiments 2 and 3 work perfectly and can achieve
the theoreticals limits because of the low process that the packets demand. On
the other hand, the router that demands more process power has worst results.
This means that average cost routers are not capable of achieving rates that more
expensive and powerful routers can.
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4.3.4 Experiment 4: Cisco Catalyst Router 7606

Figure 4.17: Experiment’s 4 results. Throughput vs Ethernet Frame size

Figure 4.18: Experiment’s 4 results. Pps vs Ethernet Frame size
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Figure 4.19: Experiment’s 4 results. Jitter vs Ethernet Frame size

The Cisco Catalyst 7606 can manipulate flows of 1 Gbps without a problem. The
results figures 4.17 and 4.18 show that the pps and the throughput of the router is
really close to the theoretical calculations (-0.00243%). Also it is observed that the
CPU load of the router didn’t increase during the experiment. This means that a
flow of 1Gbps is not enough to slow down the process of the packets or lose the
packets altogether . The figure 4.19shows that the jitter for small packets is 0ns and
for big packets is 2,4ns, which is minimum. Finally, the router is capable of routing
packets at 1Gbps with high performance. Compared to the previous experiment,
we may conclude that the more expensive the router is, the more capable and
better results it yields.

4.3.5 Experiment 5: Wireless Access points

This experiment shows the performance of the Wireless Router WRT54GL at the
available rates of the 802.11g. The results at the figures 4.20, 4.21, 4.22, 4.23,
4.24, 4.25, 4.26 and 4.27 with columns blue and red illustrate that at all rates the
difference between the Theoretical throughput and the measurement throughput
with the NetFPGA fluctuates. For small packet sizes the difference is higher than
that of bigger packets. In table 4.4 is represented the percentile difference in the
theoretical maximum throughput (TMT) and the NetFPGA throughput at the
rate of 54Mbps.
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Table 4.4: Percentile difference of TMT and NetFPGA throughput at 54Mbps
Ethernet Frame size Percentile difference

(Bytes)
84 -55.42%
96 -43.82%
312 -12.02%
1012 -9.47%
1538 -1.52%

The rest of the rates have similar patterns, wide difference of throughput for
smaller packet size and narrow difference of throughput for bigger packet size. It
is also observed that for smaller rates the difference in throughput of small packet
size is smaller too. In table 4.5 is represented the percentile difference of TMT and
NetFPGA throughput for packets of 84 byte size.

Table 4.5: Percentile difference of TMT and NetFPGA throughput of 84 byte
packet.

Rate Percentile difference
(Mbps)

54 -55.42%
48 -48.51%
36 -46.63%
24 -28.53%
18 -27.74%
12 -22.21%
9 -22.91%
6 -23.00%

The figure 4.28 shows that the jitter for all the rates with small packet sizes
is smaller ( 0,02ms) than that of bigger packet sizes (maximum 0,06ms). Another
interesting point is that the jitter seems to be independent of the rate as at the
6Mbps rate we observed higher jitter than that of 54 Mbps and,similarly,at the
48Mbps we observed smaller jitter than that of 18Mbps packet sizes .

Lastly, the NetFPGA is able to measure the performance of the wireless connec-
tion with high precision. This wireless link can not achieve the TMT even though
for big packet sizes the theoretical and the measured throughput are really close.
This jitter is estimated at the scale of ms (0,02 - 0,06 ms). The same wireless link
is measured with the iPerf and IxChariot software in experiment 6 in order to show
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the difference in precision of the measurements that the software packet generators
offer with the NetFPGA hardware implementations.

Figure 4.20: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
54Mbps set

Figure 4.21: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
48Mbps set
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Figure 4.22: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
36Mbps set

Figure 4.23: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
24Mbps set
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Figure 4.24: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
18Mbps set

Figure 4.25: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
12Mbps set
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Figure 4.26: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
9Mbps set

Figure 4.27: Experiments’ 5 and 6 results: Throughput vs Ethernet Frame size at
6Mbps set
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Figure 4.28: Experiment’s 5 results: NetFPGA jitter vs Ethernet Frame size at
the speeds of 802.11g

Figure 4.29: Experiment’s 6 results: Iperf jitter vs Ethernet Frame size at the
speeds of 802.11g
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4.3.6 Experiment 6: IPERF vs IxChariot

The figures 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27 with columns green
and purple outlining the 802.11g throughput show that the two software have
completely different performances. For Ethernet Frame sizes greater than 312
bytes the throughput of iPerf is greater ( 3.5%). For Ethernet Frame sizes less
than 312 bytes (84 and 96 bytes) the throughput of IxChariot is sometimes greater
and other times smaller than iPerf. It is observed that there are no fixed behavioral
patterns. The software performance seems to be completely erratic. The results of
experiment 6 are completely different than the results of experiment 5. For small
payloads iPerf has an -84.64% difference of throughput than the NetFPGA. For
bigger Ethernet Frame size the difference is smaller (-16.45% at 54Mbps).

The chart that depicts the CPU load of the client and server of the two softwares
for 54Mbps reveals that CPU load is different for the two softwares. Iperf consumes
less CPU than the IxChariot server for all the packet size. ( -73%). For both iPerf
and IxChariot the CPU load is independent and standard of the payload size.

On the other hand the CPU load of the client changes with the size of the
packet. The smaller packet, the higher CPU load is needed. For small packet sizes
IxChariot needs more CPU load (-8%) ,but for bigger packet sizes iPerf consumes
more CPU load (from 186.27% to 82% ) than IxChariot.

The figure 4.29 of the jitter of Iperf is at the scale of ms. The jitter doesn’t
follow a pattern of packet size or connection rate. The jitter varies from 1ms
to 15 ms which is much higher than the NetFPGA jitter( ns scale). Because
IxChariot doesn’t give the information of the jitter at his measurements, it can not
be commented.

Concluding, each software yields different results. Some tools yield better re-
sults for smaller packet sizes while others at bigger packet sizes, but both of them
yield smaller results than the NetFPGA experiments. The calculations are not
very precise as the jitter of the iPerf is high and behaves randomly. The CPU load
depends on the implementation of the CPU and varies according to the packet size.
The server CPU load is always lower than the client CPU load and this is because
generation of the packets costs more than receiving and analysing them.
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4.3.7 Experiment 7: Power consumption

Figure 4.30: Experiment’s 7 results. Power consumption vs Ethernet Frame size

Figure 4.31: Experiment’s 7 results. CPU vs Ethernet Frame size

For both software implementations,iPerf and TTCP, the computer that generates
the flow (client) demands more processing and consequently more CPU load and
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more power consumption than when the computer receives and calculates the statis-
tics (server) as the figures 4.31 and 4.30. Comparing the client CPU load of the two
software implementations proves that the iPerf has dramatically more CPU load
that the TTCP(the biggest difference is 40.84% for 1538 Ethernet Frame size).
While the packet size increases, the client and the server CPU load reduces in the
case of the TTCP, but not in the case of the iPerf where the CPU load remains
the same. On the other hand, the NetFPGA CPU load is always 1% while the
only process that is executed at the host computer is the driver that writes and
reads the values from the card. This process does not require CPU load and ,as a
result, does not require a powerful computer in order to generate precise statistical
results.

The graph of the power consumption has the same shape as the graph of the
CPU load. The more CPU is loaded, the more energy is consumed. The iPerf
power consumption is between 129 and 136 Watts and for TTCP between 82 and
136 Watts. The power consumption of the NetFPGA is 80 Watts, which means that
the program of the NetFPGA doesn’t consume extra power on execution whereas
when the computer is at idle state it consumes 80 Watts.

The power consumption of the iPerf is higher than the TTCP in all cases. The
worst case of iPerf power consumption is noted at 51 Watts ;more than the ,TTCP
which is double of the TTCP power consumption.

Concluding, the software implementations seem to depend a lot on the hardware
that is executed. The high use of the CPU reveals that powerful computers should
be used for more precise measurements. In addition, the software implementations
consume exponentially more energy that the NetFPGA system.
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Conclusion

Packet injection into a network at high rate demands a lot a process power and
high precision. Packet injection technique is used for network measurement and
network devices under test. Traffic generators are implemented over both hard-
ware and software platforms. Software platforms exist both as open-source and
free-ware, and as closed source commercial products. Software platforms are more
widely used because of their flexibility (easy deployability of multiple nodes, ability
to rapidly modify and extend, possibility to perform more realistic experiments).
Unfortunately, the experiments with different software on the same networks yields
different results. This means that the software implementations are highly unreli-
able as they are dependent on the commercial off-the-shelf (COTS) hardware used,
the operating system adopted, and the status of the host used for traffic gener-
ation. Moreover, hardware platforms are typically more precise and reach better
performance as they are completely independent of the host computer features and
they sometimes run without a computer. The hardware solution that incorporates
FPGAs combines high computational capabilities with low energy consumption.

This thesis has focused on the implementation of a multi-gigabit high perfor-
mance network measuring system based on FPGA. A UDP packet generator on
NetFPGA 1G was successfully implemented and achieved four independence UDP
flows with zero jitter at 1 Gbps. In addition, a high precision receptor is imple-
mented for the statistics calculations. The ability our system to generate packets
without the pre-capture of any traffic flows, makes it more flexible than other sim-
ilar commercial implementations. The friendly user graphical interface, that is
successfully implemented, gives the the same usability as other software products.

As the experiments showed, our implementation has higher network measure-
ment results, lower generated packets jitter, the lowest power consumption and
lowest CPU load than all other equivalent software programs that have been pre-
viously examined. Even in low measurement rates the software implementations’
results are varied that makes them unreliable. As a result, in cases that high pre-
cision network measurements is needed our system is the best affordable solution.
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