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Abstract

This thesis explores the application of Effective Field Theory (EFT) as an extension of
General Relativity (GR), focusing on the Near-Horizon Extreme Kerr (NHEK) geometry.
This study begins by introducing the essential concepts of Kerr spacetime in Chapter 1,
such as symmetries, Killing Fields and singularities. Then, it proceeds in a brief presen-
tation on some exotic features associated with the rotating nature of Kerr. Chapter 2 is
focused on deriving the NHEK metric and studying its key aspects concluding with the
demonstration of the wave equation in that background. Finally, in Chapter 3 lies the
motivation for utilizing purely gravitational EFT in GR. This work formulates an EFT
which incorporates higher order corrections in the Einstein-Hilbert Lagrangian based on
the work of [1]. Further on, it investigates the EFT-corrected NHEK geometry along with
the impact of these corrections in the wave equation. It concludes with the derivation of
the EFT-corrected radial and angular wave equations. The solution of these equations
appears to be non-trivial and therefore further work on them is in order.
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Chapter 1

Chapter 1

1 Kerr spacetime
In this first section of this work we make an attempt to present briefly a well-known spacetime,
the Kerr spacetime. We shall exhibit features of this spacetime such as symmetries, Killing
Fields, event horizons and singularities. Moreover, there exists a compact introduction to the
Frame Dragging Effect and Penrose Process.

1.1 Physical significance of the Kerr geometry

Before we proceed to presenting any piece of information considering this spacetime, it would
be a interesting idea to take a moment and explain its significance and the physical structure
it represents. Let’s start off by reviewing its physical meaning.

Nowadays, we know the existence of black holes as a physical system in the universe. This
piece of knowledge has risen from both mathematics (Einstein’s Theory of General Relativity
predicted them) and physical observations. Perhaps, the most well-known feature that they
possess is that near black holes the gravitational force is extremely powerful so that not even
photons can escape it. Despite their mysterious and enigmatic nature, we know that they play
a crucial role in the cosmos as they influence the motion of stars and galaxies and that they are
characterized by their mass and angular momentum. Naturally, that means that black holes
have rotational energy and thus that they are rotating around one of their axis. For many
years, the metric that described such a physical system remained unknown until 1963 Roy
Kerr found the solution to this mystery; The Kerr spacetime. Below we shall begin exploring
some intriguing features that this spacetime illustrates.

1.2 Kerr metric

We kick off by writing the Kerr metric in the establised Boyer-Lindquist coordinates following
the form used by [2] so as to denote the components of the gµν more clearly:

ds2 = −
(
1− 2GMr

ρ2

)
dt2 − 2GMar sin2 θ

ρ2
(dtdφ+ dφdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2
− a2∆sin2 θ

]
dφ2 (1.1)

where:
∆(r) = r2 − 2GMr + a2, ρ2(r, θ) = r2 + a2 cos2 θ, c ≡ 1 (1.2)

The coordinates r, θ, φ are called Ellipsoidal coordinates and their relation to the Cartesian is
the latter:

x =
√
r2 + a2 sin θ cosφ

y =
√
r2 + a2 sin θ sinφ (1.3)

z = r cos θ

The first thing that one observes is the existence of two constants: M, a which parameterise
the metric. G is Newton’s constant considering gravity, M is the mass of the black hole and
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Chapter 1 1.3 Basic features of Kerr spacetime

a is the angular momentum per unit mass: a ≡ J/M with the constraint a ≤ GM . The Kerr
metric is, of course, a solution to the vacuum Einstein Field Equations Rµν = 0 and describes
an uncharged rotating axisymmetric black hole with mass M and angular momentum J .

Let us now consider the case of a = 0 and see the Kerr metric’s behaviour near that limit.
We begin by taking the limit of the functions of eq.(1.2) which transform to:

∆(r; a = 0) = r2 − 2GMr, ρ2(r, θ; a = 0) = r2 (1.4)

Substituting eq.(1.4) and the restriction a = 0 into the metric eq.(1.1), one can straight-forward
obtain:

(1.1)
a=0−−→ ds2 = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θ dφ2 (1.5)

which is the renowned Schwarzschild metric that describes a non-rotating, uncharged spheri-
cally symmetric black hole. The fact that the Kerr metric reduces to the Schwarzschild one
when a = 0 indicates that Kerr metric is a generalization of Schwarzschild.

Before concluding this subsection we would rather investigate one more limit, that of r →
∞. Basically, this limit will reveal the behaviour of the spacetime at very large distances. For
instance, we know that the Schwarzschild geometry is asymptotically flat (i.e. it reduces to the
Minkowski spacetime). Let’s derive this limit:

(1.1)
r→∞−−−→ ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dφ2 (1.6)

Which, of course, is the Minkowski spacetime, thus we determine that Kerr is asymptotically
flat. This result was expected as Kerr is a generalization of Schwarzschild, which is asymptot-
ically flat.

1.3 Basic features of Kerr spacetime

At this moment, it is time to start discussing some of the basic concepts of the Kerr spacetime
that seem to be of interest. Symmetries in physics are of utmost importance, so when studying
a new metric one of the first concepts that one attempts to figure out is which symmetries (i.e.
Killing fields) hold true for it.

1.3.1 Symmetries and Killing Fields

Let’s kick off exploring the symmetries obeyed by the Kerr spacetime. Due to its rotation Kerr
spacetime has given up the spherical symmetry thus making the spacetime highly non-trivial
to derive from the vacuum Einstein Field Equations. In this subsection we will present the
symmetries and the Killing vectors of the spacetime in a more intuitive way as they are straight-
forward enough to be observed. However, in §2.3 there exists a more complete discussion
considering symmetries, Killing Fields and conserved quantities.

We begin to observe eq.(1.1), almost immediately one can notice that none of the metric’s
components are explicitly dependent of neither of t nor of φ. The latter statement indicates the
existence of the two following Killing vectors, Kµ = ∂t and Rµ = ∂φ. Similarly to Schwarzschild
geometry, the Killing field Kµ is connected with the conservation of energy, while Rµ is as-
sociated with the conservation of angular momentum. For now, we shall just state that for
massive particles the conserved quantities are: Kµu

µ and Rµu
µ. Let’s compute the norms of
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Chapter 1 1.3 Basic features of Kerr spacetime

the Killing Fields Kµ and Rµ:

KµKµ = gµνK
µKν = g00(K

0)2 = −
(
1− 2GMr

ρ2

)
= − 1

ρ2

(
∆− a2 sin2 θ

)
(1.7)

RµRµ = gµνR
µRν = g33(R

3)2 =
sin2 θ

ρ2

[(
r2 + a2

)2
− a2∆sin2 θ

]
(1.8)

The last equations shall come in handy later on when discussing the singularities of the Kerr
spacetime. At this point we move to the symmetries of Kerr. Once more, we will see that these
symmetries are direct. It is quite trivial to confirm that time and φ-translations:

t → t+ const, φ → φ+ const (1.9)

are symmetries obeyed by the spacetime. Naturally, this does not come as a surprise as the
only dependence of the metric with respect to t, φ lies in their differentials, dt and dφ, which
are invariant under such translations. Finally, there exists one discrete symmetry that is fairly
simple to be observed in eq.(1.1), that is:

(t, φ) → −(t, φ) (1.10)

Which is only valid, due to the fact that dt2, dtdφ, dφ2 remain invariant under the above
transformation. This concludes the subsection concerning symmetries and Killing Fields in
Kerr spacetime.

1.3.2 Event Horizons and Singularities

Having clarified the concept of coordinates in the Kerr spacetime, it is time to start exploring
some of the more interesting features that it exhibits. Upon inspecting the metric one notable
question that might arise is what happens when the metric diverges. First let’s identify in
which cases eq.(1.1) diverges; this occurs when: ∆ = 0 or/and ρ = 0. That implies that
singularities can emerge in these occasions. Solving these equations we obtain the following
results:

∆ = 0 ⇒ r2 − 2GMr + a2 = 0 ⇒ r± = GM ±
√
G2M2 − a2 (1.11)

ρ = 0 ⇒ ρ2 = 0 ⇒ r2 + a2 cos2 θ = 0 ⇒ r = 0 and θ = π/2 (1.12)

Naturally, the next step would be to consider a way to determine whether some of the above
singularities are coordinate singularities, not physical ones. In that case a proper coordinate
transformation can be found that eliminates these singularities. Of course, there exists such
a way and is by examining the Kretschmann (see p. 351 of [3]) scalar of the spacetime. The
result follows:

K = RµνρσRµνρσ =
48M2

(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
(
r2 + a2 cos2 θ

)6 , G ≡ 1 (1.13)

Clearly, this astonishingly simple result (given the complexity of its calculation) states that
the singularities at r± are likely coordinate singularities, to know for sure one has to find regular
coordinates near r±, while there exists a physical one at ρ = 0. However, the solution of ρ = 0
is not a point in spacetime, let’s proceed to explore its geometry. To do so, we shall substitute
eq.(1.12) into eq.(1.3):

x2 + y2 = a2 cos2 φ+ a2 sin2 φ = a2 and z = 0 (1.14)
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Chapter 1 1.3 Basic features of Kerr spacetime

Therefore, the ρ = 0 singularity is a ring of radius a on the equatorial plane. From a physical
perspective, one could argue that the angular momentum that Kerr contains has softened the
Schwarzschild singularity, reshaping it into a ring of radius a. That completes our discussion
considering the black holes singularity.

Let’s embark on exploring a new topic; the event horizon. It turns out that, similarly to
the Schwarzschild spacetime, the event horizon occur when grr = 0. Since grr = ∆/ρ2 this
reduces ∆ = 0. The solutions to this equation are given in eq.(1.11) which proved to be of
much more importance than one may have thought initially. The fact that the equation ∆ = 0
has two solutions indicates that in Kerr geometry there exist two separate horizons r+ and
r− with r+ > r−. Sometimes these horizons are called outer and inner horizon respectively.
Notice that in the case of the Extreme Kerr, where a = GM , the two horizons emerge into a
single one at r = GM . Now, we would like to calculate the norm of the Killing Field Kµ on
the horizon r = r+. By substitution in eq.(1.7) we get:

KµKµ =
a2

ρ2
sin2 θ ≥ 0 (1.15)

The latter equation shows that the Killing vector Kµ is not null at the horizon r = r+, but
spacelike; with the exception at the north and south pole (i.e. at θ = 0 and θ = π). The set of
points that satisfy the equation KµKµ = 0 is called the stationary limit surface and is given
by:

r2 − 2GMr + a2 cos2 θ = 0 (1.16)

We explained that the last equation is also valid for the outer horizon at r = r+ at θ = 0, π, so
by substituting these conditions in the latter equation we acquire:

r2+ − 2GMr+ + a2 = 0 (1.17)

Finally, one can rewrite the last equations in the form:

(r −GM)2 = G2M2 − a2 cos2 θ, (r+ −GM)2 = G2M2 − a2 (1.18)

in order to see that r > r+. Which implies that this new surface called stationary limit surface
is on the outside of the outer event horizon. The region between these two surfaces is an
intriguing and well-known one and it’s called ergosphere. Since it lies outside the horizon an
observer can move toward or away from it without any problem. These features are shown in
fig.(2a)

1.3.3 Dragging of inertial frames

After this brief discussion on event horizons and singularities, it is time to commence into
exhibiting another interesting feature of the Kerr spacetime which is present due to the non-
diagonal form of the metric (i.e. the dt dφ component).

The easiest way to demonstrate this effect is through the subsequent scenario. Let’s consider
a photon on the equatorial plane (i.e. θ = π/2) at some constant radius which is emitted along
±φ̂-direction. We want to understand what its initial trajectory would be. Because of its
initially constant radius and θ it holds true: dr = dθ = 0 and because of its nature it follows a
null trajectory and therefore: ds2 = 0, so we have:

gtt dt
2 + 2gtφ dt dφ+ gφφ dφ

2 = 0 (1.19)

By dividing with dt2 we obtain:

gφφ

(
dφ

dt

)2

+ 2gtφ
dφ

dt
+ gtt = 0 (1.20)
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Chapter 1 1.3 Basic features of Kerr spacetime

Now keep in mind that the last equations are only valid at the initial instant (say t = t0) and
do not represent the full solution to the photon’s trajectory. Since the dφ/dt is just a value we
can solve eq.(1.20) as follows:

dφ

dt

∣∣∣∣
t=t0

= − gtφ
gφφ

±

√(
gtφ
gφφ

)2

− gtt
gφφ

(1.21)

Finally, for the sake of the argument, we assume that photon is emitted in a radius such that
it lies right upon the stationary limit surface, where gtt = 0, then:

dφ

dt

∣∣∣∣
t=t0

= 0,
dφ

dt

∣∣∣∣
t=t0

=
a

2G2M2 + a2
(1.22)

We should think about the result that we obtained. We begin from the non-zero solution,
clearly this solution has the same sign with the parameter a and therefore can be interpreted
as the photon emitted along the φ̂-direction. Then the vanishing solution must be taken as
the photon emitted in the opposite way. It turned out that its instantaneous velocity is zero,
meaning that the photon cannot move at all at the direction opposite to the rotation of the black
hole. This effect is thus called dragging frame effect and is illustrated in fig.(2b). Naturally,
any massive particle which moves slower than a photon has no other option but to move to the
direction of the rotation.

There are also other ways to demonstrate this effect of the Kerr spacetime. In [4] it is
presented in a more arbitrary scenario which considers a massive particle with zero angular
momentum and shows that this particle has an angular velocity ω(r, θ) ̸= 0 (see eq.(11.90) of
[4]) due to the rotation of the black hole. Moreover, from this equation we understand that
is effect scales off with the radius r as ∼ 1/r3 and, in principle, can be used to determine the
angular momentum of the source.

Let’s present a brief synopsis of how this works. We know that the Kerr geometry has the
Killing Field Rµ = ∂φ and therefore the conserved quantity is the following:

L ≡ Rµpµ = const ⇒ pφ = const (1.23)

where pµ = mdxµ/dτ is the four-momentum. By the last definition it follows:

dφ

dt
=

pφ

pt
=

gφφ pφ + gφt pt
gtt pt + gtφ pφ

(1.24)

the last equation stands true for the trajectory of a arbitrary particle. Now, we assume the
existence of a zero angular-momemtum massive particle, with L = pφ = 0. Demanding this
into eq.(1.24) we obtain:

dφ

dt
=

gφt

gtt
≡ ω(r, θ) (1.25)

This scenario states the exact same result as before. We drop a massive particle straight into
the black hole with zero angular-momentum and somehow its trajectory ends up with non-zero
angular velocity (i.e. ω(r, θ) ̸= 0), which is due to the rotation of the spacetime. One final
comment on the dragging frame effect is that the last scenario makes even clearer the fact that
this effect is a result to the non-vanishing gφt component, otherwise eq.(1.25) would be zero.

1.3.4 Penrose Process

Before concluding this chapter, there is another intriguing aspect of the Kerr spacetime that
we would like to illustrate in a simplified manner; the Penrose Process. In 1969, Roger Penrose
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Chapter 1 1.3 Basic features of Kerr spacetime

proposed a way to extract energy from a rotating black hole under some specific conditions.
From eq.(1.7) it becomes apparent that at infinity r → ∞ the Killing vector Kµ = ∂t is
timelike. Let’s consider a massive particle, with four-momentum pµ, which is also timelike, and
concentrate on its conserved energy. Typically one would suggest that its energy is:

E = Kµpµ (1.26)

However, it can be proved that the inner product of two timelike vectors for any metric gµν with
signature (−,+,+,+) is negative and thus Kµpµ < 0 but we want the energy to be positive,
so we redefine it as:

E = −Kµpµ > 0 (1.27)

In order to understand the Penrose Process we consider the following scenario: The system of
you and your brother are leaping towards the black hole. We denote the initial four-momentum
of the system (yourself + your brother) as pµ0 and your energy as E0 > 0. After you have
crossed the stationary limit surface and have entered the ergosphere you decide to get rid of
your brother, as he’s getting on your nerves, so the conservation of momentum implies:

pµ0 = pµ1 + pµ2 (1.28)

where p1, p2 is your and your brother’s four-momentum respectively. By contracting eq.(1.28)
is the Killing Field Kµ we get:

E0 = E1 + E2 (1.29)

Figure 1: The Penrose Process: A part of a sys-
tem falls into the horizon with negative energy,
thus the other is able to escape the ergosphere.
Credits to [5].

You are in the advantageous position to
have a basic understanding of the Kerr space-
time and therefore you know that the Killing
Field Kµ is spacelike inside the ergosphere,
leading to the fact that inside the ergosphere
there is a way such that E = −Kµpµ < 0.
Given the latter argument and assuming that
you are accurate enough you can throw your
brother in a way such that E2 < 0, then from
eq.(1.29) it follows that E1 > E0, meaning
that you extracted energy from the black hole.
In fact, Penrose showed that there is a way to
arrange the throw such that afterwards you
follow a geodesic out of the ergosphere into
the universe. Finally, it can be proved that in
order for this process to work the angular mo-
mentum of the object with energy E2 has to
be thrown against the black hole’s rotation as
the energy is extracted by decreasing the ro-
tational energy of the black hole. This whole
process described is illustrated in the figure beside.
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Chapter 1 1.3 Basic features of Kerr spacetime

(a) This is a demonstration of the fea-
tures illustrated in §1.3.2 that character-
ize the Kerr geometry. It depicts the
black hole in the yz-plane, the vertical
dashed line represents the rotation axis
and the horizontal line in the center ex-
hibits the ring-shaped singularity. Cred-
its to Quora.

(b) This is a demonstration of the frame
dragging effect in the Kerr spacetime
when working in M -units (G = c =
M = 1). The dashed line represents
a null-geodesic initially emitted towards
the −φ̂-direction. The moment it crosses
the ergosphere limit its trajectory has
been reversed. Credits to EinsteinPy.
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Chapter 2

2 Near Horizon Extreme Kerr spacetime in GR
In this section we shall rewrite the Kerr metric in a slightly different form and use it to derive the
Near Horizon Extreme Kerr (NHEK) metric. Afterwards, we will press on to demonstrating
the fundamental aspects of this spacetime, such as Killing Fields and Symmetries. Further
on, we shall explore the existence or not of a conical singularity in that geometry and finally
attempt to address the wave equation in this background.

2.1 Extreme Kerr metric

The Kerr metric (eq.(1.1)) in hatted coordinates, assuming GN = c = 1, is:

ds2 = −∆

ρ̂2

(
dt̂2 − a sin2 θdφ̂

)2
+

sin2 θ

ρ̂2

(
(r̂2 + a2)dφ̂− adt̂

)2
+

ρ̂2

∆
dr̂2 + ρ̂2dθ2 (2.1)

where:
∆ = r̂2 − 2Mr̂ + a2, ρ̂2 = r̂2 + a2 cos2 θ

The above is parameterised by two constants, M which is the mass of the Kerr black hole and
J = Ma which is the angular momentum. In this section we consider the extreme Kerr limit
in which:

a = M ⇒ J = M2

Therefore the Kerr metric now becomes:

ds2 = −∆

ρ̂2

(
dt̂2 −M sin2 θdφ̂

)2
+

sin2 θ

ρ̂2

(
(r̂2 +M2)dφ̂−Mdt̂

)2
+

ρ̂2

∆
dr̂2 + ρ̂2dθ2 (2.2)

where:
∆ = (r̂ −M)2, ρ̂2 = r̂2 +M2 cos2 θ

Eq.(2.2) is often called the "Extreme Kerr" metric and we shall adopt it in this work. The
horizon of the extreme Kerr is at r̂⋆ = M . The reason for demanding a ≤ M is to ensure
that the horizon r⋆ ∈ R and that it shields the singularity (following the cosmic censorship
conjecture). This will be of assistance when it comes to choosing a set of transformations,
whose small r limit will zoom into the near horizon area of the extreme Kerr geometry.

2.2 Derivation of Near Horizon Extreme Kerr (NHEK) metric

In this subsection we would like to roughly present the derivation of the NHEK. We shall start
with eq.(2.2) and then impose the following transformations:

t =
t̂

2M
, r =

r̂ −M

M
, φ = φ̂− t̂

2M
(2.3)

and then obtain the small r limit. Based on the comment of the previous subsection it is
clear why the transformations (2.3) are the proper ones for the near horizon area. The last
transformations give:

dt =
dt̂

2M
, dr =

dr̂

M
, dφ = dφ̂− dt̂

2M
(2.4)
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Chapter 2 2.2 Derivation of Near Horizon Extreme Kerr (NHEK) metric

Now substituting the eq.(2.3), eq.(2.4) into eq.(2.2) one can obtain:

(2.5)

ds2 = − r2M2

(r + 1)2 + cos2 θ

[
(1 + cos2 θ)dt− sin2 θdφ

]2
+

M2 sin2 θ

(r + 1)2 + cos2 θ

[
r(r + 2)dt+ ((r + 1)2 + 1)dφ

]2
+

M2

r2

[
(r + 1)2 + cos2 θ

]
dr2 +M2

[
(r + 1)2 + cos2 θ

]
dθ2

Let’s keep in mind that the above equation is the Extreme Kerr metric in the new trans-
formed coordinates (t, r, θ, φ). In order to obtain the NHEK metric we must impose the small
r limit in eq.(2.5), that is:

r ≪ 1 ⇒ 1 + r ≃ 1

This limit is equivalent to r̂ → M (see eq.(2.3)) and thus it allows us to zoom into the near
horizon area of the spacetime.

Small r limit
By applying this limit to eq.(2.5) one acquires:

(2.6)
ds2 = − r2M2

1 + cos2 θ

[
(1 + cos2 θ)dt− sin2 θdφ

]2
+

M2 sin2 θ

1 + cos2 θ

[
2rdt+ 2dφ

]2
+

M2

r2

[
1 + cos2 θ

]
dr2 +M2

[
1 + cos2 θ

]
dθ2

This equation is clearly in an unrefined and impractical form. For example, the variables
dφ and dt are interconnected, making them more challenging to manipulate independently.
This statement lead us to start rearranging terms in order to bring the NHEK metric in a more
practical form. So:

(2.7)ds2 =
2M2(1 + cos2 θ)

2

{
dr2

r2
+ dθ2 +

4 sin2 θ

(1 + cos2 θ)2
(dφ+ rdt)2 −

[
rdt− r sin2 θ

1 + cos2 θ
dφ
]2}

We find it convenient to define the following functions:

F(θ) ≡ 1 + cos2 θ

2
, Λ(θ) ≡ 2 sin θ

1 + cos2 θ

Let’s rewrite eq.(2.7) and expand it:

(2.8)
ds2 = 2M2F(θ)

{
dr2

r2
+ dθ2 +

4 sin2 θ

(1 + cos2 θ)2
(dφ2 + 2rdφdt+ r2dt2)− r2dt2

+ 2r2
sin2 θ

1 + cos2 θ
dφdt− r2 sin4 θ

(1 + cos2 θ)2
dφ2

}
We can see that now we have distinguished a part of the g00 term of the NHEK metric.

Now we would like to substitute the Λ(θ) function in order to simplify our expression:

(2.9)
ds2 = 2M2F(θ)

{
−r2dt2 +

dr2

r2
+ dθ2 + Λ2(θ)(dφ2 + 2rdφdt+ r2dt2)

+
1

2
r2(1 + cos2 θ)Λ2(θ)dφdt− 1

4
r2 sin2 θΛ2(θ)dφ2

}
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Chapter 2 2.3 Symmetries and Killing Vectors of NHEK

In eq.(2.9) one could think to group together the dφ2 and dφdt terms and then proceed
to examine whether there are any other simplifications to be done under the small r limit.
We proceed to do so and in order to avoid extra computations we will examine these terms
separately.

We begin by writing these terms as groups:[
2r +

1

2
r2(1 + cos2 θ)

]
Λ2(θ)dφdt =

[
2 +

1

2
r(1 + cos2 θ)

]
rΛ2(θ)dφdt ≃ 2rΛ2(θ)dφdt+O(r2)

[
1− 1

4
r2 sin2 θ

]
Λ2(θ)dφ2 ≃ Λ2(θ)dφ2 +O(r2)

The last two equations show that the last two terms of eq.(2.9) are negligible when interested
in the near horizon geometry of Kerr spacetime. Thus now we have derived the final form for
the NHEK metric which is:

ds2 = 2M2F(θ)

{
−r2dt2 +

dr2

r2
+ dθ2 + Λ2(θ)

(
rdt+ dφ

)2}
, r ≪ 1 (2.10)

first introduced by [6]. Another useful form of eq.(2.10), which we shall also use, is given if we
define:

2M2 ≡ 1, A(θ) ≡ 1 + cos2 θ

2
= F(θ), B(θ) ≡ 2 sin2 θ

1 + cos2 θ
= F(θ)Λ2(θ)

Then the NHEK metric is given by:

ds2 = A(θ)

[
−r2dt2 +

dr2

r2
+ dθ2

]
+ B(θ)

(
dφ+ rdt

)2

(2.11)

which is adopted in [6]. The reason why we are presenting both formats of the NHEK metric is
because both of them are going to be of use to this particular work. Naturally, one might ask
how are we sure that NHEK metric is indeed a vacuum solution? The answer to this question
can be expressed in two parts. One way to convince ourselves is, of course, to show that it
satisfies Rµν = 0 via calculations. However, there is another way to derive the NHEK metric
- as it was originally derived by [6]; by applying the transformations given in Eq. 2.5 of [6] in
the extreme Kerr metric and then take the limit λ → 0. The advantage of this approach is
that it clearly results in a vacuum solution. Since the extreme Kerr metric is already a vacuum
solution, a coordinate transformation with an arbitrary parameter λ will also yield another
solution. Finally, demanding λ → 0 selects one specific member of this family of coordinate
transformations and hence it is expected to acquire a vacuum solution as well.

2.3 Symmetries and Killing Vectors of NHEK

Now we would like to discuss the symmetries that NHEK obeys and how these symmetries are
correlated to Killing vectors. We present both the Killing vectors and some symmetries of the
NHEK metric.

2.3.1 Killing Vectors

Let’s start off by recalling the definition for a Killing vector.

Definition 1 A vector field ξµ is a Killing field if the Lie derivative with respect to ξµ of the
metric gµν vanishes:

Lξgµν = 0 (2.12)
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Chapter 2 2.3 Symmetries and Killing Vectors of NHEK

Every Killing vector is implying the existence of a conserved quantity, that is because the
metric gµν remains unchanged along the direction of ξµ, as eq.(2.12) indicates1. As a matter
of fact, if one would like to find all the symmetries of a metric gµν , one would have to find all
the solutions to eq.(2.12).

A quantity that is conserved along the direction of a Killing vector is the:

ξµuµ = const (2.13)

where uµ = dxµ/dλ is the tangent vector to a geodesic xµ(λ), with λ an affine parameter. The
next topic that we would rather discuss is the notation used in Killing vectors. In general
relativity it is very common to see Killing vectors like these: ∂t, ∂φ, which correspond to
ξµ1 = (1, 0, 0, 0), ξµ2 = (0, 0, 0, 1) respectively. The general format of this notation is this:

ξµ = ξt∂t + ξr∂r + ξθ∂θ + ξφ∂φ

where the ∂σ can be thought as the basis vectors. We shall present the Killing vectors in the
same notation.

2.3.2 Symmetries

At this point we would like to continue the discussion with the symmetries of NHEK. First of
all, we should at least explain what one means when referring to a "symmetry" of the metric.

We shall begin from a random infinitesimal coordinate transformation of the form:

xµ → xµ + εV µ (2.14)

where ε a small book-keeping parameter. When the above transformation is applied on the
metric gµν , the new metric will be correlated to the old one in the following way:

gµν → gµν − LV gµν (2.15)

at an infinitesimal level. Upon encountering equation (2.15), one may find oneself asking the
following: Are there any vectors V µ such that LV gµν = 0?

Because if there are such vectors then LHS and the RHS of eq.(2.15) would be equal and
thus the metric would remain invariant under the transformation eq.(2.14) for these particular
vectors. Certainly, the answer is affirmative, and vectors capable of achieving this are called
Killing vectors, as the definition of the previous subsection demands. We hope that now, the
proceeding statements are clear:

1. Symmetry of a metric is a coordinate transformation that leaves the metric invariant.

2. The presence of a Killing vector implies both the existence of a conserved quantity and a
symmetry.

The last statement, of course, does not surprise us as it is a well known one, particularly in
physics (remember Noether’s theorem).

1Intuitively it is quite clear that if the derivative of a quantity along a direction (i.e. ξµ in our case) is
vanishing then there should exist an conserved quantity along that direction.
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Chapter 2 2.3 Symmetries and Killing Vectors of NHEK

2.3.3 Killing Fields and Symmetries of NHEK

Having presented the Killing vectors and symmetries in general we would rather proceed to
presenting them in the NHEK geometry. We start off with the Killing vectors of NHEK. If we
solve eq.(2.12) for the NHEK metric we will find the following solutions (see eq. 2.7 of [7]):

H−1 = ∂t, H0 = t∂t − r∂r, H1 =

(
1

2r2
+

t2

2

)
∂t − tr∂r −

1

r
∂φ, Q0 = ∂φ (2.16)

Having concluded with the Killing Fields in NHEK, we would like to carry on and ob-
serve some of its symmetries. When observing eq.(2.10), eq.(2.11) it is clear that none of
the coefficients are dependent of the t and φ coordinate, hence if one applies the following
transformations on the NHEK metric:

t → t+ const, φ → φ+ const (2.17)

the metric to remains invariant. Therefore, they comprise two separate symmetries of NHEK
that are often called translations. Another thing that we observe with a small amount of effort
is the fact that eq.(2.10), eq.(2.11) consist only of terms rdt, r2dt2, dr2/r2 with respect to t
and r coordinates (i.e. the metric is comprised solely by products of rdt, dr/r to some power).
Hence the following re-scale as a transformation:

t → ct, r → r

c
(2.18)

is also a symmetry, just because the products that we listed above will remain unchanged.
Notable is that, in contrast to eq.(2.17), the transformations of eq.(2.18) must be imposed
simultaneously, and thus they embody a single symmetry.

So far we have presented 3 different symmetries and 4 Killing vectors, but we established
that for each Killing there is a different symmetry. Indeed, there is one more symmetry which is
fairly non-trivial to observe in the NHEK metric and we shall present it only for reasons regard-
ing completeness. The fourth and final symmetry is the subsequent (for the t, r components
see p. 5 Eq. 11 of [8]):

t → t− c(t2 − 1/r2)

1− 2ct+ c2(t2 − 1/r2)
, r → r

[
1−2ct+c2(t2−1/r2)

]
, φ → φ+ln

c− r + crt

−c− r + crt
(2.19)

That should conclude the discussion concerning symmetries of NHEK spacetime.

2.3.4 Relationship between symmetries and Killing vectors

At this moment we have explained both Killing vectors and symmetries of a metric and that a
Killing vector implies the existence of a symmetry and vice versa. When addressing the Killing
vectors we said that if one wishes to find all the symmetries of a metric one should find all
solutions of eq.(2.12). That is correct; however, eq.(2.12) is a system of differential equations
and therefore it can be rather challenging to solve. It would be quite efficient to put to use
the fact that if we observe a symmetry then immediately we know the existence of a Killing
vector. Hence, we would like to seize this opportunity to review the process of determining the
Killing vector when its corresponding symmetry is known2, through the example of NHEK.

Let ξµ be the Killing vector that we want to identify. We assume that we make the following
infinitesimal transformation:

xµ → xµ + εξµ (2.20)
2The reverse process (i.e. determining the symmetry when its Killing vector is known) is significantly

challenging at the non-linear level and we shall not present it. At the linear level eq.(2.14)-eq.(2.15) are the
answer.
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Chapter 2 2.3 Symmetries and Killing Vectors of NHEK

where ε is a small book-keeping parameter. The main idea is to expand our known transfor-
mation (the symmetry) and bring it in the form of eq.(2.20) from which the identification of
the Killing vector can be done effortlessly. Let’s start off with the symmetry:

t → t+ const

which is in the desired form if we assume that const is small and ξ0 = 1, resulting in the
H−1 = ∂t Killing vector. Similarly one can show that the Killing vector corresponding to
φ → φ + const is the Q0 = ∂φ. The next symmetry that we are interested in is that of
eq.(2.18). We have to bring this transformation into the form of eq.(2.20) so one would propose
to set c = 1 + ε, ε ≪ 1, then eq.(2.18) becomes:

t → t+ εt, r → r

1 + ε
≃ r(1− ε) = r − εr (2.21)

Comparing eq.(2.20) with eq.(2.21) it is clear that the Killing vector associated with this
symmetry is the H0 = t∂t−r∂r. Finally, we shall proceed to derive the Killing vector H1 based
on the symmetry given by eq.(2.19), in this case we assume that c ≪ 1 and expand eq.(2.19)
to first order with respect to c:

t → t− c(t2 − 1/r2)

1− 2ct+ c2(t2 − 1/r2)
≃ t+

(
1

r2
+ t2

)
c,

r → r
[
1− 2ct+ c2(t2 − 1/r2)

]
≃ r − (2rt)c, (2.22)

φ → φ+ ln
c− r + crt

−c− r + crt
≃ φ− 2

r
c

From the above equation it becomes apparent that the Killing vector associated with these
symmetries is the H1 that we mentioned before.

2.3.5 sl(2)× u(1) Lie Algebra

After having demonstrated the connection between Killing vectors and symmetries it is time
to push through to another interesting matter. We would like to show that the Killing vectors
of NHEK do form a Lie Algebra called sl(2) × u(1), we would rather not proceed to discuss
as to why the Killing vectors form this particular Algebra; one only has to remember that the
structure coefficients are those that determine the specific Algebra. Moreover, we shall not
advance to discussing the connection between the Lie group and its respective Lie Algebra. We
will consider as a fact that the Killing vectors of NHEK are the generators of the SL(2)×U(1)
group. Let us begin by giving the definition of a Lie Algebra:

Definition 2 A Lie Algebra is a vector space g over a field F together with a binary operation
[·, ·] : g× g → g which we call a Lie Bracket, such that the following axioms are satisfied:

1. Bilinearity:
[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

for all scalars a, b ∈ F and all elements x, y, z ∈ g.
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2. The Alternating property:
[x, x] = 0

for all x ∈ g

3. The Jacobi identity:
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g

To begin with, we would like to define the Lie Bracket binary operation that is stated in the
above definition. In our case we choose the following operation as our Lie Bracket:

[A,B]µ ≡ LAB
µ = Aν∂νB

µ −Bν∂νA
µ (2.23)

where LA denotes the Lie derivative along the vector A. Also we have added a µ superscript
on the bracket that indicates that the result of the commutator is another vector. The linear
character of the Lie derivative -and the derivative in general- ensures that the first axiom is
satisfied. Obviously, by definition, eq.(2.23) satisfies Alternating property of the Lie Algebra.

Let’s consider the Killing vectors given by eq.(2.16). We find it convenient to rename the
following two Killing vectors H−1 → H− and H+1 → H+. In order to show that they form
an Algebra we should begin to calculate the commutators of the Killing vectors and hopefully
we anticipate that the commutator of two vectors yields the third one with some structure
constant. We start off by computing the [H+, H−]

µ:

[H+, H−]
µ = Hν

+∂νH
µ
− −Hν

−∂νH
µ
+ (2.24)

=

{(
1

2r2
+

t2

2

)
∂t − tr∂r −

1

r
∂φ

}
Hµ

− − ∂tH
µ
+ (2.25)

Now one has to substitute µ = 0, . . . , 3 to the previous equation in order to obtain that

[H+, H−] = −H0

We proceed to the following one:

[H0, H+]
µ = Hν

0 ∂νH
µ
+ −Hν

+∂νH
µ
0 (2.26)

=

(
t∂t − r∂r

)
Hµ

+ −
{(

1

2r2
+

t2

2

)
∂t − tr∂r −

1

r
∂φ

}
Hµ

0 (2.27)

Once again when substituting all the values for µ the latter equation yields:

[H0, H+] = H+

Finally:

[H0, H−]
µ = Hν

0 ∂νH
µ
− −Hν

−∂νH
µ
0 (2.28)

=

(
t∂t − r∂r

)
Hµ

− − ∂tH
µ
0 (2.29)

Once more, upon substituting all the values for µ, the latter equation produces:

[H0, H−] = −H−
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Chapter 2 2.4 NHEK metric at θ → 0, π

Next, we will turn our attention to verifying that the Killing vectors H0, H± satisfy the
Jacobi identity:

[H0, [H+, H−]] + [H+, [H−, H0]] + [H−, [H0, H+]] = [H0,−H0] + [H+, H−] + [H−, H+] (2.30)
= −[H0, H0] + [H+, H−]− [H+, H−] (2.31)
= 0 (2.32)

where in the second line we used that [A,B] = −[B,A]3. This concludes the argument that
the H0, H± form the sl(2) Lie Algebra. Now, we have to show that all the Killing vectors
Q0, H0, H± form the sl(2) × u(1) Lie Algebra and in order to do so one would have to prove
that the generator of the U(1) group (i.e. Q0) complies with the successive relations:

[Q0, H0] = [Q0, H±] = 0 (2.33)

Indeed the preceding relations are valid and demonstrating their validity is fairly straightfor-
ward, so we will refrain from providing the proof. Lastly, before we complete this subsection,
we will gather the commutative relations that hold true for the sl(2)× u(1) Lie Algebra:

[H+, H−] = −H0, [H0, H±] = ±H±, [Q0, H0] = [Q0, H±] = 0 (2.34)

2.4 NHEK metric at θ → 0, π

Moving forward, we will examine the behaviour of the NHEK metric in the limit of θ ≪ 1.
But we before we proceed to this task let us explain the reason why we are interested in
this particular behaviour. The main cause as to why we are discussing this specific limit is
to determine whether there exists a conical singularity near θ = 0. The existence of such a
singularity would mean that there the Ricci scalar diverges at that point. Similarly at θ = π.

2.4.1 Conical Singularity

Let us begin by presenting what is a conical singularity. Imagine the xy-plane in polar coordi-
nates (r, φ) with metric ds2 = dr2 + r2dφ2, it is established that φ = φ + 2π, indicating that
the azimuth angle φ remains unchanged when completing a full circle. Now let us remove a
slice of the xy-plane from φ0 to φ1, as depicted in the following image.

Figure 3: Demonstration of a Conical Singularity. Credits to StackExchange Physics.

Then what happens if we identify the two sides of the missing piece is what is called a
conical singularity. The name is given, of course, due to the fact that the plane now transforms
into a cone.

3This can be shown trivially from the definition of the Lie Bracket.
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Chapter 2 2.5 The wave equation on the NHEK background

2.4.2 The NHEK limit

At this point, we are interested in exploring how to determine if the NHEK background presents
a conical singularity. We focus near θ = 0, π because there is something funny there: dφ drops
out, leading to either a coordinate singularity or a physical one. The way to extract this piece
of information comes naturally as all we need to do is check whether, when θ ≪ 1, the NHEK
metric reduces to the same limit as the S2 metric does. We know that the S2 metric is regular
at all points except for θ = 0, π. However, we know that this divergent behaviour is only a
result of coordinates and that these points are regular hence, if the NHEK background reduces
to the same limit as S2, the absence of such a singularity is indicated. Let’s begin by writing
the S2 metric and deriving its small θ limit:

ds2 = dθ2 + sin2 θdφ2 −−→
θ≪1

ds2 = dθ2 + θ2dφ2 (2.35)

so with φ = φ + 2π the S2 metric is locally like the plane near θ = 0 and thus it is regular.
Now we have to derive the respective limit for the NHEK metric, we find it more convenient
to use eq.(2.10) as the desired form of the metric. We start by isolating the dθ2 and dφ2 terms
of the metric:

ds2 = 2M2

[
F(θ)

{
−r2dt2 +

dr2

r2

}
+ F(θ)dθ2 + F(θ)Λ2(θ)

(
rdt+ dφ

)2]
(2.36)

We expand the F(θ) and F(θ)Λ2(θ) functions around θ = 0 and keep only the dominant term
of their behaviour near θ ≪ 1 (i.e. first term of their Taylor expansion):

F(θ) ≃ 1 +O(θ2)

F(θ)Λ2(θ) ≃ θ2 +O(θ4)

Substituting the last two equations into eq.(2.36) we acquire:

ds2 = 2M2

[
−r2dt2 +

dr2

r2
+ dθ2 + θ2

(
rdt+ dφ

)2]
= 2M2

[
−r2dt2 +

dr2

r2
+ θ2r2dt2 + 2rθ2dtdφ+ dθ2 + θ2dφ2

]
= 2M2

[
−r2dt2 +

dr2

r2
+ θ2r2dt2 + 2rθ2dtdφ

]
+ 2M2

[
dθ2 + θ2dφ2

]
Clearly from the last equation the θ and φ dimensions of the NHEK metric reduce to the
proper limit when θ ≪ 1, which is the limit denoted from eq.(2.35). Meaning that the NHEK
background does not exhibit a conical singularity around θ = 0.

2.5 The wave equation on the NHEK background

Having discussed a few things about the NHEK background we shall proceed to the wave
equation in that background. In general relativity it is rather common to deal with wave
equations, i.e. equations that involve the d’ Alembertian operator □ = ∇ν∇ν which reduces
to □ = −∂2

t + ∇⃗2 in the Minkowski spacetime. The most simple case of a wave equation that
one can imagine is the subsequent:

□ϕ = 0 (2.37)

and thus it serves as a toy model for studying these types of equations. Naturally, this is a
partial differential equation, our best chance of tackling it is by separating variables, which
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result in two ordinary differential equations. In our case ϕ is a scalar field of the form ϕ(xµ).
Before we begin solving eq.(2.37) we should clarify what is our objective. Our aim is to try and
write an ansatz for our scalar field ϕ(xµ) so that eq.(2.37) adoptes a separable form. We shall
consider the NHEK metric given by the eq.(2.11) and for simplicity we shall not substitute
A(θ), B(θ) with their respective values until it is necessary. The ansatz for our scalar field
ϕ(xµ) is:

ϕ = e−iωt+imφ R(r)S(θ) (2.38)

where m ∈ Z. Of course, every superposition of eq.(2.38) will be a solution of eq.(2.37) due to
its linearity. Now, we progress to start tackling the wave equation of eq.(2.37). We start off by
rewritting it in the form:

gµν∇µ∇νϕ = 0 (2.39)

As already stated ϕ is a scalar field and therefore ∇µϕ = ∂µϕ and thus we find it convenient
to define a covariant vector4 ων ≡ ∇νϕ with the following components:

ων =

(
−iωe−iωt+imφ R(r)S(θ), e−iωt+imφ dR(r)

dr
S(θ), e−iωt+imφR(r)

dS(θ)

dθ
, ime−iωt+imφ R(r)S(θ)

)
(2.40)

By rewritting eq.(2.39) one obtains:
gµν∇µων = 0 (2.41)

The only non-vanishing metric components yield:

g00∇0ω0 + g11∇1ω1 + g22∇2ω2 + g33∇3ω3 + g30∇3ω0 + g03∇0ω3 = 0 (2.42)

By expanding the covariant derivative and keeping only the non-vanishing Christoffels one
obtains:

g00
(
∂0ω0 − Γ1

00 ω1 − Γ2
00 ω2

)
+ g11

(
∂1ω1 − Γ1

11 ω1 − Γ2
11 ω2

)
+ g22

(
∂2ω2 − Γ2

22 ω2

)
+ g33

(
∂3ω3 − Γ2

33 ω2

)
+ 2g30

(
∂0ω3 − Γ2

30 ω2 − Γ1
30 ω1

)
= 0 (2.43)

We compactified the last two terms of eq.(2.42) due to the definition of the covariant vector ων

and the symmetric nature of the Christoffel symbols under permutation of their lower indices.
Moreover, we detect that all the terms of eq.(2.43) contain the term exp(−iωt+ imφ) and thus
we eliminate them at this moment:

ω2RS

Ar2
+

A− B
A2

rS
dR

dr
+

1

2A2

[
dA
dθ

− dB
dθ

]
R
dS

dθ
+

r2

A
S
d2R

dr2
+

r

A
S
dR

dr
+

1

A
R
d2S

dθ2

− A− B
AB

m2RS +
A− B
2BA2

dB
dθ

R
dS

dθ
+

2mω

rA
RS +

1

A2

dB
dθ

R
dS

dθ
+

Br
A2

S
dR

dr
= 0 (2.44)

By rearranging the terms with respect to R, S and multiplying by ×A we derive:

r2
d2R

dr2
S +R

d2S

dθ2
+ 2rS

dR

dr
+

1

2

[
1

A
dA
dθ

+
1

B
dB
dθ

]
R
dS

dθ
+

[
ω2

r2
+

(
1− A

B

)
m2 +

2mω

r

]
RS = 0

(2.45)

Let’s pause for a moment to discuss the pattern that we observe in the above equation. In
each term it is apparent that the coefficient is either dependent on r or it is dependent on θ,
but not on both of them. That is encouraging as it suggests that our equation is obtaining a

4we know that the partial derivatives of a scalar field are a well-defined covariant vector.
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Chapter 2 2.5 The wave equation on the NHEK background

separable form. The next step would be, of course, to multiply ×1/RS hoping that eq.(2.45)
will separate, from now on we shall denote with prime and dot the derivative with respect to
r and θ respectively:

(2.46)r2
R′′

R
+

S̈

S
+ 2r

R′

R
+

1

2

[
1

A
dA
dθ

+
1

B
dB
dθ

]
Ṡ

S
+

ω2

r2
+

(
1− A

B

)
m2 +

2mω

r
= 0

Separating the r-dependent components in the LHS and the θ-dependent components in the
RHS, and then setting it equal to a separation constant λ ∈ C:

r2
R′′

R
+ 2r

R′

R
+

ω2

r2
+

2mω

r
= − S̈

S
− 1

2

[
1

A
dA
dθ

+
1

B
dB
dθ

]
Ṡ

S
+

(
A
B

− 1

)
m2 ≡ −λ (2.47)

So the two ordinary differential equations for the radial and angular part of the scalar are
the proceeding:

r2R′′ + 2rR′ +

(
ω2

r2
+

2mω

r
+ λ

)
R = 0 (2.48)

S̈ +
1

2

[
1

A
dA
dθ

+
1

B
dB
dθ

]
Ṡ −

[(
A
B

− 1

)
m2 + λ

]
S = 0 (2.49)

Note that the equation (2.49) involving angular quantities is not yet in its final form. In order
to proceed with its solution, we need to substitute the expressions for A(θ) and B(θ) into it.
This is pretty straight forward and should one do it one deduces:

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

[
K − m2

sin2 θ
− 1

4
m2 sin2 θ

]
S = 0 (2.50)

where now we redefined K ≡ 2m2 − λ. The last equation was written in this particular form
due to its convenience and is in agreement with eq.(3.5) by [6]. Finally, we have obtained
the ordinary differential equations satisfied by the radial and angular part of the scalar field
ϕ. Clearly the eq.(2.48) and eq.(2.50) represent a Sturm-Liouville problem, and in order to
tackle it we should specify boundary conditions, find the spectrum (discrete or continuous) of
eigenvalues and eigenfunctions.

Notable is the fact that for m = 0 the eq.(2.50) reduces to the usual Legendre equation
with K = ℓ(ℓ+ 1) and general solution of the form: c1Pℓ(cos θ) + c2Qℓ(cos θ)

2.5.1 The Angular Equation

We should now turn our attention to exploring the solution of the angular equation eq.(2.50).
This equation presents a generalization of the Legendre equation, implying that identifying
regular solutions is not a straightforward task. But before we start discussing its solutions let
us take a moment to set up the problem properly, i.e. specify the boundary conditions needed
to tackle this Sturm-Liouville problem. Notable is the fact that this equation has singular
points at θ = 0 and θ = π and as there is no physical reason for the solution to diverge at any
point of the interval θ ∈ [0, π] we set the following boundary conditions:

S(0) = finite, S(π) = finite (2.51)

Having presented that we have set up the whole Sturm-Liouville problem. The fact that
eq.(2.50) has singular points complicates the problem dearly. However luckily for us this is a
well-studied equation named "angular spheroidal harmonic equation" with well-defined regular
solutions (at least one of the two kinds of solutions). The extraction of the solution of this
equation demands the usage of three-term recurrence relation theory ([9], [10]) and therefore
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we shall not engage in this process. However the calculation of the eigenvalues can be done via
numerical methods. Below we present some of them given by [6]:

m ℓ = m ℓ = m+ 1 ℓ = m+ 2

1 2.200 6.143 12.133

2 6.855 12.664 20.597

3 13.995 21.629 31.459

Table 1: Eigenvalues K of eq.(2.50).

Let us transform the eq.(2.50) by setting a new independent variable ξ = cos θ. Then the
transformed form of eq.(2.50) will be:

d

dξ

[
(1− ξ2)

dS

dξ

]
+

[
K − m2

1− ξ2
− 1

4
m2(1− ξ2)

]
S = 0, S(±1) = finite (2.52)

By absorbing the term −m2/4 into the separation constant K, i.e. K̃ ≡ K −m2/4, eq.(2.52)
can be rewritten into:

d

dξ

[
(1− ξ2)

dS

dξ

]
+

[
K̃ − m2

1− ξ2
+

1

4
m2ξ2

]
S = 0, S(±1) = finite (2.53)

The latter equation is of a specific form, it represents eq.(A8) with c = im/2 and therefore its
solution and eigenvalues are Smn(ξ; im/2), λmn(im/2).

2.5.2 The Radial Equation

In the upcoming part, we will examine the radial equation eq.(2.48). The first thing that one
would observe in this equation would probably evolve around its irregular singular point at
r = 0. This singularity is termed as "irregular"5 due to the fact that around r = 0 the R
coefficient diverges as ∼ 1/r4. Based on the latter observations, once again, this equation does
not seem to have a straightforward solution and thus needs further examination.

One reasonable next step would be to attempt to use Fuchsian Theory, express the two linear
independent solutions as series and determine whether these solutions converge ∀r ∈ [0,+∞).
Naturally, we expect that these series will converge ∀r ∈ (0,+∞) as the differential equation is
perfectly regular in that interval. However, before we proceed to this complicated calculation
let us explore a different path. One of the most effective ways to deal with an ODE is to find
a transformation -either of independent or dependent variable- to apply on it that will modify
it into a known or easier ODE. We shall attempt to follow that strategy.

We start off by making the leading observations:

1. the r2R′′ + 2rR′ terms will transform to u2R̈ when u = 1/r.

2. the R coefficient will be simplified under the same transformation.

So we start off by using the u = 1/r transformation to eq.(2.48). The relations that govern the
derivatives of this transformation are the following:

d

dr
= −u2 d

du
,

d2

dr2
= u4 d2

du2
+ 2u3 d

du
(2.54)

5The terminology is based on Fuchs’ Theorem considering the series convergence around a singularity.

University of Crete 22 Department of Physics



Chapter 2 2.5 The wave equation on the NHEK background

Now by substituting eq.(2.54) and u = 1/r into eq.(2.48) we obtain the transformed radial
differential equation:

R̈ +

(
ω2 +

2mω

u
+

λ

u2

)
R = 0 (2.55)

We should take a moment to discuss tha last equation. Using the u = 1/r transformation
we have achieved two very important objectives. The first one is that, despite the fact that
our equation continues to present a singular point at u = 0, the singularity is currently regular
(scales as ∼ 1/u2) which allows to be certain that at least one of the two solutions can be
expressed as a convergent series around u = 0. The second -and most important- one is that
the form of eq.(2.55) is similar to the Whittaker6 differential equation with regular solutions
Mκ,µ(z),Wκ,µ(z).

Given the fact that we have not yet transformed our radial equation into a Whittaker one
we have to make a reparametrization of the u = 1/r transformation so that the ω2 term can
be reduced to −1/4. This procedure is mostly a trial and error one, however in this particular
case it is fairly plain to see that the proper transformation is u = −2iω/r. We move forward
to apply u = −2iω/r into eq.(2.48). The relations that govern this transformation are the
successive:

d

dr
=

u2

2iω

d

du
,

d2

dr2
= − 1

4ω2

(
u4 d2

du2
+ 2u3 d

du

)
(2.56)

By substituting eq.(2.56) into eq.(2.48) we derive:

R̈ +

(
−1

4
+

im

u
+

λ

u2

)
R = 0 (2.57)

Finally the last equation has the Whittaker equation form. The general solution of eq.(2.57)
is:

R = c1Mim,
√

1/4−λ
(u) + c2Wim,

√
1/4−λ

(u), u = −2iω

r
(2.58)

one more thing that could be done in the above equation is an arbitrary choice of either c1 or
c2. This statement holds true due to the nature of the equation that we attempt to tackle;
□ϕ = 0 is a linear equation and thus the amplitude of the wave is not important.

Naturally, in order to determine the constants c1, c2 we have to impose boundary conditions.
There is a variety of physically interesting boundary conditions that can be imposed. However,
we choose to proceed with the following ones:

Boundary Condition: ingoing wave at r = 0 (horizon) ⇒ ingoing + outgoing wave at r = ∞

Which can be thought as the following scattering problem. We send radially a wave from
infinity (i.e. ingoing at r = ∞) that travels towards the horizon (i.e. ingoing at r = 0), then
a part of it gets scattered and returns to infinity (i.e. the outgoing part at r = 0). Due to
the fact that our boundary conditions refer to R(r → 0) and R(r → +∞) one would have to
study the asymptotic behaviours of the Whittaker functions Mκ,µ(z),Wκ,µ(z). The asymptotic
behaviours (see [11]) with respect to z are the following:

Mκ,µ(z)
z→0∼ zµ+1/2,

z→∞∼ Γ(1 + 2µ)

Γ
(
1
2
+ µ− κ

) ez/2 z−κ +
Γ(1 + 2µ)

Γ
(
1
2
+ µ− κ

) e−z/2±(1/2+µ−κ)πi zκ

6More information consider this ODE are presented in Appendix B
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and for Wκ,µ(z) :

Wκ,µ(z)
z→0∼ Γ(2µ)

Γ
(
1
2
+ µ− κ

)z1/2−µ +
Γ(−2µ)

Γ
(
1
2
− µ− κ

)z1/2+µ,

z→∞∼ e−z/2 zκ

The above asymptotic behaviours are valid with respect to z and by extension for our u =
−2iω/r variable. Naturally, in order to solve the radial problem one should convert the asymp-
totic behaviours with respect to r and then impose the boundary conditions described above.
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Chapter 3

3 Effective Field Theory in the NHEK background
In this section we would like to introduce the concept of the Effective Field Theory (EFT)
both in a general sense and within its application in General Relativity. Afterwards, we shall
probe into discussing the EFT-corrected NHEK in that particular regime and push through to
exploring more aspects of it. Once more, we shall investigate the existence of conical singularity
and afterwards the wave equation in this background.

3.1 Effective Field Theory

When physicists refer to the term of "Effective Field Theory" they refer to a type of approxi-
mation corresponding to a intrinsic complete physical theory. Typically EFTs are of apparent
use in situations where all the interactions of a dynamical system are not understood, known
or feasible. Instead of taking into consideration all the microscopic degrees of freedom and
interactions an EFT focuses on the most relevant ones.

All the physical theories have a certain region of validity, after which they break down and
thus require a new theory to replace them; a great example, of course, would be Newtonian
Gravity and General Relativity or even General Relativity and Quantum Gravity. It is well
established that these theories are applied in different regimes (or scales) and therefore depend-
ing on the dynamical system studied one has to choose which theory to employ. However, in
a wide number of cases there are scales where it is not perfectly clear which theory is a proper
to utilize. In such cases an EFT could be used to "extent" the regime of validity of a theory
in order to avoid taking into consideration all the interactions of the system (i.e. using the
complete theory) but only those of utmost importance. Naturally, EFTs are expected to be
valid in a certain regime (or scale) as they attempt to stretch one theory towards the other.

3.2 Motivation for an EFT-corrected GR

In this context, let’s discuss what is the drive to consider Effective Field Theories in General
Relativity. Today, it is established that there are some regimes where Einstein’s General
Relativity breaks down, a well-known example is, of course, the case of Black Holes. Near
the singularity the curvature diverges indicating that in this particular regime our theory is
inadequate to describe the physical interactions of the system. As a result, alternative theories
are proposed by scientists that take into consideration additional features of the dynamical
system.

Within this specific context, General Relativity is expected to be an low-energy limit of
a more complete theory (such as String Theory). However, in some cases where we aim to
address problems near the borders of GR’s validity it could be advantageous to incorporate
some small terms in the Lagrangian in order to extend the theory. The reason why adding
these terms is an insightful concept due to our expectation of existence of higher order terms
in the Lagrangian in the completed theory.
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3.3 A purely Gravitational Effective Field Theory

3.3.1 Formulating the Effective Field Theory

The Effective Field Theory that we are interested in utilizing is a purely gravitational one (i.e.
we are interested in vacuum solutions). In such cases the Lagrangian can be formulated in
terms of the Riemann tensor alone. The Gravitational Effective Field Theory that we would
like to employ is the following (see p. 1 Eq. 1 of [1]):

L =
1

2κ2

(
R + η κ4R3 + λκ6 C2 + λ̃ κ6 C̃2

)
(3.1)

where κ2 ≡ 8πG, R3 ≡ R cd
ab R ef

cd R ab
ef and C ≡ RabcdR

abcd, C̃ ≡ R̃abcd R
abcd = ε pq

ab RpqcdR
abcd.

In eq.(3.1) the η, λ, λ̃ are considered to be small dimensionless constants that multiply the
higher order terms. These corrections are considered to be independent and of O(ε). The form
of the eq.(3.1) clearly states that this is an EFT as the first term is the classical GR Lagrangian
that leads to the Einstein-Hilbert action; plus some higher order corrections that are expected
to be non-negligible.

In this work we shall not explore why this particular corrections are the proper ones that
should be added, we will simply state that when attempting to write such a theory the terms
added should respect a number of conditions and symmetries. The equations of motion that
follow from the above Lagrangian -which can be obtained using the stationary action principle-
are (see p. 1 Eq. 2, 3 of [1]):

Rab −
1

2
Rgab = T cubic

ab + T quartic
ab (3.2)

with

T cubic
ab = η κ4

[
3R cde

a R gh
de Rghcb +

1

2
gabR

cd
gh R ef

cd R gh
ef − 6∇c∇d

(
RacghR

gh
bd

)]
(3.3)

T quartic
ab = −λκ6

(
8Racbd∇c∇dC +

1

2
gabC2

)
− λ̃ κ6

(
8R̃acbd∇c∇dC̃ +

1

2
gabC̃2

)
(3.4)

Naturally, as we are discussing perturbations in our Lagrangian, background solutions satisfy
the vacuum Einstein equations Rab = 0. The notion itself of a metric gµν that contains EFT
corrections with respect to η, λ, λ̃ leads to formulating it in the following form:

gEFT
µν = g(0)µν + η h(6)

µν + λh(8)
µν + λ̃ h̃(8)

µν (3.5)

where the corrections solve eq.(3.2)-(3.4) to linear order.

3.3.2 EFT-corrected NHEK

Given the above context, [1] attempted to correct the NHEK geometry within this particular
Effective Field Theory. To begin with, they proposed the most general metric which respects
the symmetries satisfied by the NHEK metric (see §2.3). Imposing the SL(2)×U(1) symmetry
they wrote down the following ansatz for the EFT-corrected line element of NHEK:

ds2EFT = 2JΩ2
NH(θ)

[
−r2dt2 +

dr2

r2
+ Γ2

NHdθ
2 +B2

NH(θ)
(
dφ+ rωNHdt

)2]
(3.6)

University of Crete 26 Department of Physics



Chapter 3 3.4 Verification of the EFT-corrections

where J is the Kerr angular momentum and as eq.(3.6) is an ansatz for EFT-corrected NHEK
reduces to J = M2. The functions Ω2

NH(θ), B
2
NH(θ) are anticipated to arise due to the struc-

ture of the background metric (see eq.(2.10)). However, the restriction of the SL(2)×U(1)
symmetry permits the existence of two more constants ΓNH, ωNH. By observing both eq.(3.5)
and eq.(3.6) it becomes apparent that EFT corrections should exist within the quantities
Ω2

NH(θ), B
2
NH(θ), Γ

2
NH, ωNH. The previous statement leads to the following expansions (see p.

2 Eq. 7 of [1]):

ΩNH(θ) = Ω(0)(θ)
[
1 + ηΩ(6)(θ) + λΩ(8)(θ) + λ̃ Ω̃(8)(θ)

]
(3.7)

BNH(θ) = B(0)(θ)
[
1 + η B(6)(θ) + λB(8)(θ) + λ̃ B̃(8)(θ)

]
(3.8)

ΓNH = Γ(0)
[
1 + η Γ(6) + λΓ(8) + λ̃ Γ̃(8)

]
(3.9)

ωNH = ω(0)
[
1 + η ω(6) + λω(8) + λ̃ ω̃(8)

]
(3.10)

Let us take a brief moment to appreciate the form of the leading expansions; by a quick look
at the Lagrangian that defines the Effective Field Theory it is straightforward to see that if
η = λ = λ̃ = 0 then the EFT reduces to classical General Relativity. That very property
should extend to both the EFT-corrected Einstein equations -and it does- and the expansions
provided above. The latter condition leads to the consecutive remark:

Ω(0)(θ) =

√
1 + cos2 θ

2
, B(0)(θ) =

2 sin θ

1 + cos2 θ
, Γ(0) = ω(0) = 1 (3.11)

which now ensures that when η = λ = λ̃ = 0 eq.(3.6) reduces to the NHEK metric in classical
GR. The next step, of course, would be to determine the higher order corrections that come
up in equations eq.(3.7)-(3.10). This calculation was performed by [1] and some of their results
are provided below:

Γ(6) = − 15κ4

32
√
2J2

, Γ(8) = −366435κ6

256
√
2J3

, Γ̃(8) = −368829κ6

64
√
2J3

(3.12)

ω(6) =
κ4

7J2
, ω(8) =

(4864 + 1575π)κ6

20J3
, ω̃(8) =

(4736 + 1575π)κ6

5J3
(3.13)

The explicit expressions for the EFT corrections concerning the ΩNH(θ) and BNH(θ) are
displayed in Appendix C (see §Sec 6). Taking into account eq.(3.7)-eq.(3.13) plus the expres-
sions given in Appendix C one has formulated the complete EFT-corrected NHEK spacetime.
Let’s us start exploring some of its concepts.

3.4 Verification of the EFT-corrections

We would like to press on to our next topic of interest. In this subsection we direct our
concentration in the EFT-corrections themselves (§Appendix C), provided by [1]. Our next
goal, of course, would be to verify that these corrections do indeed satisfy the Einstein EFT-
corrected equation (i.e. eq.(3.2)-eq.(3.4)). The form of these equations indicates that this task
is not trivial and thus we would like to explain the way that we intent to tackle this task.

We begin by trying to find the optimal way to simplify our problem, because both our
equations and the corrections are too complicated. First thing that comes to mind is that
our Effective Field Theory Lagrangian contains three independent perturbations with book-
keeping parameters η, λ, λ̃ and attempting to verify all of them at once (i.e. substitute all EFT-
corrections in eq.(3.7)-eq.(3.10) and then substitute in the EFT-corrected Einstein equation)
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would be extremely computationally expensive and unwise; it only makes sense to attempt
the verification separately for each set of perturbations. One thing that needs caution in this
strategy is that when dealing with a particular set of perturbations we should write the Einstein
equation with its corresponding stress-energy tensor (or part of it).

The piece of software utilized in this particular task is Mathematica and more specifi-
cally Mathematica’s RGTC [12] package which due to its built-in functions makes the tensorial
calculations quite straight-forward. Let’s proceed to present the optimal way to verify the
EFT-corrections.

The plan of attack is as follows: Firstly, we introduce the EFT-corrected metric as gEFT
µν =

gEFT
µν (ΩNH, BNH,ΓNH, ωNH) (similar to Eq.(6) of [1]). Then, we compute all the necessary quan-

tities for the EFT-corrected Einstein equations (Rµν , R, T cubic
µν , T quartic

µν ) as a function of the
"NH" quantities. Putting together all the previous components yields the Einstein equations.
Next, we decide which perturbations we would like to verify, say η-corrections, and thus we
make the expansion of all the "NH" quantities with respect to the corrections chosen (just
like we did in eq.(3.14) but now we include ωNH as well). At this point, Mathematica cannot
distinguish whether the expansion that we made is a perturbative one or not and hence it will
store all the terms of all the orders with respect to η that appear. Following that argument, we
expand all the Einstein’s equations up to O(η), leading to linear equations with respect to η.
Finally, we substitute the values of the corrections, as denoted in §Appendix C, and hopefully
verify that the Einstein’s equations are satisfied (see §Appendix D).

After repeating the above process for each perturbation -η, λ, λ̃- we obtain our results.
Indeed, we were able to verify that the η and λ-corrections provided by [1] do satisfy the
EFT-corrected Einstein equations. However, we believe that we have found a typo in the λ̃-
corrections in the Supplementary material VA of [1]. More specifically, the typo is located on
the Ω̃(8)(x) function; term multiplied by K(x) should have a (+) sign, not a (−), this correction
can also be seen in §Appendix C.

3.5 Absence of conical singularity in the EFT-corrected NHEK

The next notion that we are interested in the EFT-corrected NHEK spacetime is its behaviour
near the poles θ = 0, π. As explained in §2.4, from the investigation of this limit will emerge
whether there exists a conical singularity (see §2.4.1) in the spacetime itself which could lead
to curvature divergence. We presented that the proper way to answering this question is to
examine if our metric reduces to the same limit as S2 does when θ ≪ 1 (see eq.(2.35)).

Before we engage in this calculation we remind ourselves that in §2.4.2 we showed that the
NHEK spacetime in GR does not present with a conical singularity and thus we expect that
the background metric g

(0)
µν will not illustrate such a singularity. Therefore, our main aim is to

determine whether the EFT-corrections introduce one in the overall spacetime. We shall treat
each perturbation (i.e. η, λ, λ̃) separately, we begin from the η perturbations.

3.5.1 EFT η-corrections

We write our perturbations with respect to η as:

ΩNH(θ) = Ω(0)(θ)
[
1 + ηΩ(6)(θ)

]
, BNH(θ) = B(0)(θ)

[
1 + η B(6)(θ)

]
, ΓNH = Γ(0)

[
1 + η Γ(6)

]
(3.14)

However, we do not need worry about the corrections on ωNH because they are not engaged
in the θ or φ components of the metric. We kick off by writing the EFT-corrected metric as
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displayed in eq.(3.6) and then substitute eq.(3.14) in it:

ds2EFT = 2J
(
Ω(0) + ηΩ(0)Ω(6)

)2[
−r2dt2 +

dr2

r2
+
(
Γ(0) + ηΓ(0)Γ(6)

)2
dθ2

+
(
B(0) + ηB(0)B(6)

)2(
dφ+ ωNHrdt

)2] (3.15)

Now, we linearize the corrections up to O(η) as we remind ourselves that these are perturbations
and we are interested in keep up to linear order:

ds2EFT = 2J
(
Ω(0) 2 + 2ηΩ(0) 2Ω(6)

)[
−r2dt2 +

dr2

r2
+
(
Γ(0) 2 + 2ηΓ(0) 2Γ(6)

)
dθ2

+
(
B(0) 2 + 2ηB(0) 2B(6)

)(
dφ+ ωNHrdt

)2] (3.16)

The next step is to massage eq.(3.16) in order to bring it in a more convenient form:

ds2EFT = 2JΩ(0) 2
[
−r2dt2 +

dr2

r2
+
(
Γ(0) 2 + 2ηΓ(0) 2Γ(6)

)
dθ2

+
(
B(0) 2 + 2ηB(0) 2B(6)

)(
dφ+ ωNHrdt

)2]
+ 4JηΩ(0) 2Ω(6)

[
−r2dt2 +

dr2

r2
+
(
Γ(0) 2 +�������:0

2ηΓ(0) 2Γ(6)
)
dθ2

+
(
B(0) 2 +�������:0

2ηB(0) 2B(6)
)(

dφ+ ωNHrdt
)2]

(3.17)

where the two terms are canceled because they will be of order O(η2) when multiplied by the
exterior product. Following we would like to separate the term of zeroth-order and of order η.

ds2EFT = 2JΩ(0) 2
[
−r2dt2 +

dr2

r2
+ Γ(0) 2dθ2 +B(0) 2

(
dφ+ ωNHrdt

)2]
+ 4Jη

{
Ω(0) 2 Γ(0) 2 Γ(6)dθ2 + Ω(0) 2 B(0) 2 B(6)

(
dφ+ ωNHrdt

)2
+ Ω(0) 2 Ω(6)

[
−r2dt2 +

dr2

r2
+ Γ(0) 2dθ2 +B(0) 2

(
dφ+ ωNHrdt

)2]}
(3.18)

There is one more step to take, to gather all the terms of order O(η) that correspond to dθ2 and
(dφ + ωNHrdt)

2. But before we proceed to it, let’s observe the first term of eq.(3.18); clearly
this term is -almost- of zeroth order. Its angular components (i.e. dφ, dθ) are multiplied by
the Γ(0), B(0) functions of the background NHEK metric and thus implying that when taking
the limit θ ≪ 1 no conical singularity will be raised by this term. This argument leads us to
channel our focus to the second term of eq.(3.18). Taking the final step we obtain:

ds2EFT = 2JΩ(0) 2
[
−r2dt2 +

dr2

r2
+ Γ(0) 2dθ2 +B(0) 2

(
dφ+ ωNHrdt

)2]
+ 4Jη

{(
Ω(0) 2 Γ(0) 2 Γ(6) + Ω(0) 2 Ω(6)Γ(0) 2

)
dθ2 + Ω(0) 2 Ω(6)

[
−r2dt2 +

dr2

r2

]
+
(
Ω(0) 2 B(0) 2 B(6) + Ω(0) 2 Ω(6)B(0) 2

)(
dφ+ ωNHrdt

)2}
(3.19)

From the last equation it becomes apparent that the question of whether these perturbations
introduce a conical singularity in the spacetime comes down to how the following two terms
behave near θ ≪ 1:(

Ω(0) 2 Γ(0) 2 Γ(6) + Ω(0) 2 Ω(6)Γ(0) 2
)
dθ2 +

(
Ω(0) 2 B(0) 2 B(6) + Ω(0) 2 Ω(6)B(0) 2

)
dφ2 (3.20)
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Finally, we can expand the above expressions to their dominant behaviour with respect to
θ and determine whether they reduce to the same limit as S2 metric does when θ ≪ 1 (see
§Appendix C). Using Wolfram Mathematica we expand them and achieve the following result:

(3.20)
dominant term−−−−−−−−−−→

θ≪1
c1dθ

2 + c1θ
2dφ2 = c1(dθ

2 + θ2dφ2) (3.21)

where:

c1 = −(−214 + 105
√
2− 448C(6))κ4

112J
(3.22)

Clearly, from eq.(3.21) one can see that the η-corrections introduced by the EFT converge to
the same limit as S2 multiplied by a constant c1, thus these corrections do not raise any conical
singularity.

3.5.2 EFT λ-corrections

We move on to the next EFT corrections, those of λ. We want once more to check if these
corrections give rise to a conical singularity. In order to do so we shall repeat the process
presented in §3.4.1. We write down the corrections with respect to λ:

ΩNH(θ) = Ω(0)(θ)
[
1 + λΩ(8)(θ)

]
, BNH(θ) = B(0)(θ)

[
1 + λB(8)(θ)

]
, ΓNH = Γ(0)

[
1 + λΓ(8)

]
(3.23)

As before the coming step is to substitute eq.(3.23) into eq.(3.6) and then linearize. However,
one can easily observe that the perturbations displayed in eq.(3.23) are of the same form as those
of eq.(3.14) suggesting that the final result will be identical to eq.(3.19) with the substitutions
η → λ and the superscript (6) → (8) on the corresponding functions. We write down the final
result:

ds2EFT = 2JΩ(0) 2
[
−r2dt2 +

dr2

r2
+ Γ(0) 2dθ2 +B(0) 2

(
dφ+ ωNHrdt

)2]
+ 4Jλ

{(
Ω(0) 2 Γ(0) 2 Γ(8) + Ω(0) 2 Ω(8)Γ(0) 2

)
dθ2 + Ω(0) 2 Ω(8)

[
−r2dt2 +

dr2

r2

]
+
(
Ω(0) 2 B(0) 2 B(8) + Ω(0) 2 Ω(8)B(0) 2

)(
dφ+ ωNHrdt

)2}
(3.24)

Once more, the question to whether these corrections result in the emergence of a conical
singularity boils down to the behaviour of the two following terms:(

Ω(0) 2 Γ(0) 2 Γ(8) + Ω(0) 2 Ω(8)Γ(0) 2
)
dθ2 +

(
Ω(0) 2 B(0) 2 B(8) + Ω(0) 2 Ω(8)B(0) 2

)
dφ2 (3.25)

Now, we take the Taylor expansion these terms with respect to θ up to dominant term (see
§Appendix C). Below we present the limit θ ≪ 1 of eq.(3.25):

(3.25)
dominant term−−−−−−−−−−→

θ≪1
c2dθ

2 + c2θ
2dφ2 = c2(dθ

2 + θ2dφ2) (3.26)

where:

c2 = −κ6(−2560C(8) + 3(−655678 + 610725
√
2 + 33600π))

640J2
(3.27)

Evidently from eq.(3.26), the λ-corrections introduced by the Effective Field Theory converge
to the identical limit as S2 metric, multiplied by a constant which we denote as c2. Therefore,
these corrections do not give rise to a conical singularity in the EFT-corrected spacetime.
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3.5.3 EFT λ̃-corrections

So far we have studied the effect of the EFT-corrections with respect to η and λ. At this point,
we would like to move on to exploring the effect of the last EFT-introduced corrections; those
of λ̃. One more time, we progress to writing these perturbations:

ΩNH(θ) = Ω(0)(θ)
[
1 + λ̃ Ω̃(8)(θ)

]
, BNH(θ) = B(0)(θ)

[
1 + λ̃ B̃(8)(θ)

]
, ΓNH = Γ(0)

[
1 + λ̃ Γ̃(8)

]
(3.28)

The procedure that should be followed in order to determine if the λ̃-corrections lead to a
conical singularity is the exact one as demonstrated in §3.4.1 and §3.4.2. Fortunately for us,
eq.(3.28) suggests that, once again, these perturbations acquire the same form as those of η and
λ, hence we are able to pull off the same trick we used before. That is, claim that λ̃-corrected
NHEK metric will acquire the form of eq.(3.19) with the substitutions η → λ̃, the superscript
(6) → (8) along with the bearing of a tilde in the corresponding functions. We present our
final result:

ds2EFT = 2JΩ(0) 2
[
−r2dt2 +

dr2

r2
+ Γ(0) 2dθ2 +B(0) 2

(
dφ+ ωNHrdt

)2]
+ 4Jλ̃

{(
Ω(0) 2 Γ(0) 2 Γ̃(8) + Ω(0) 2 Ω̃(8)Γ(0) 2

)
dθ2 + Ω(0) 2 Ω̃(8)

[
−r2dt2 +

dr2

r2

]
+
(
Ω(0) 2 B(0) 2 B̃(8) + Ω(0) 2 Ω̃(8)B(0) 2

)(
dφ+ ωNHrdt

)2}
(3.29)

Again, as we expected, the question that we have asked considering the conical singularity
simplifies to which behaviour that the following terms adopt near θ ≪ 1:(

Ω(0) 2 Γ(0) 2 Γ̃(8) + Ω(0) 2 Ω̃(8)Γ(0) 2
)
dθ2 +

(
Ω(0) 2 B(0) 2 B̃(8) + Ω(0) 2 Ω̃(8)B(0) 2

)
dφ2 (3.30)

Finally, we take the Taylor expansion, with respect to θ, of the previous terms (see §Appendix
C) and retrieve the subsequent result:

(3.30)
dominant term−−−−−−−−−−→

θ≪1
c3dθ

2 + c3θ
2dφ2 = c3(dθ

2 + θ2dφ2) (3.31)

where:

c3 = −κ6(−640C̃(8) + 3(−663554 + 614715
√
2 + 33600π))

160J2
(3.32)

Surely, the form of eq.(3.31) assures that the λ̃-corrections do not lead to introducing a conical
singularity as well. We have showed that neither of the EFT introduced corrections nor the
NHEK bakground (see §2.4.2) give rise to such a singularity. Therefore, we can be certain that
the EFT-corrected NHEK spacetime does not present any conical singularity.

It’s worth making a note considering the number of arbitrary constants in the solutions
presented in §Appendix C. The differential equations yielded from the EFT-corrected Einstein
equations with respect to the perturbations of Ω(i)(θ), B(i)(θ) are second order ones, thus one
would expect that the general solutions would contain two arbitrary constants. However, in
§Appendix C the solutions contain only one (C(6), C(8), C̃(8)), the reason for this is that in the
work of [1] they demanded the absence of a conical singularity giving up one of their arbitrary
constants in order to ensure that.
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3.6 The wave equation on the EFT-corrected NHEK background

At this stage, we would like to press on and explore how the wave equation eq.(2.37) behaves on
the EFT-corrected NHEK background. The procedure followed in this subsection is identical
to the one presented in §2.5, where we studied how this partial differential equation is solved
in General Relativity for the NHEK background. Once more, our ansatz is, the same as §2.5:

ϕ = e−iωt+imφ R(r)S(θ) (3.33)

where m ∈ Z. The main difference is that now our background is changed and therefore we
shall use EFT-corrected NHEK metric of eq.(3.6) with J = M2. Before we start tackling our
equation of interest we find convenient to define a covariant vector ξν ≡ ∇νϕ with components:

ξν =

(
−iωe−iωt+imφR(r)S(θ), e−iωt+imφ dR(r)

dr
S(θ), e−iωt+imφ R(r)

dS(θ)

dθ
, ime−iωt+imφR(r)S(θ)

)
(3.34)

By rewritting the wave equation one obtains:

gµν∇µξν = 0 (3.35)

The only non-vanishing metric components yield:

g00∇0ξ0 + g11∇1ξ1 + g22∇2ξ2 + g33∇3ξ3 + 2g30∇3ξ0 = 0 (3.36)

We expand the covariant derivatives of the last equation and keep only the non-vanishing
Christoffel symbols:

g00
(
∂0ξ0 − Γ1

00 ξ1 − Γ2
00 ξ2

)
+ g11

(
∂1ξ1 − Γ1

11 ξ1 − Γ2
11 ξ2

)
+ g22

(
∂2ξ2 − Γ2

22 ξ2

)
+ g33

(
∂3ξ3 − Γ2

33 ξ2

)
+ 2g30

(
∂0ξ3 − Γ2

30 ξ2 − Γ1
30 ξ1

)
= 0 (3.37)

We observe that all the terms of this equation are multiplied by exp(−iωt + imφ) and there-
fore we can eliminate it. By expanding the Christoffels, the metric and the covariant vector
components one acquires the following equation:

r2

Ω2
NH

R′′S +
1

Γ2
NHΩ

2
NH

RS̈ +
2r

Ω2
NH

R′S +

[
2Ω̇NH +

ḂNH

BNH
ΩNH

]
RṠ

Γ2
NHΩ

3
NH

+

[
ω2

r2
+

m2(ω2
NHB

2
NH − 1)

B2
NH

+
2mω ωNH

r

]
RS

Ω2
NH

= 0 (3.38)

where the prime and dot denote the derivatives with respect to r and θ respectively. Now, we
multiply eq.(3.38) by ×Ω2

NH/RS and obtain the upcoming equation:

r2
R′′

R
+

1

Γ2
NH

S̈

S
+ 2r

R′

R
+

[
2Ω̇NH +

ḂNH

BNH
ΩNH

]
Ṡ

Γ2
NHΩNHS

+
ω2

r2
+

m2(ω2
NHB

2
NH − 1)

B2
NH

+
2mω ωNH

r
= 0 (3.39)

Clearly, the above equation has adopted a form that implies that our partial differential equa-
tion is separable. Observe that each term of this equation is either dependent of r or of θ.
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Separating the r-dependent components in the LHS and the θ-dependent components in the
RHS, and then setting it equal to a separation constant KNH ∈ C:

r2
R′′

R
+2r

R′

R
+
ω2

r2
+
2mω ωNH

r
= − 1

Γ2
NH

S̈

S
−

[
2
Ω̇NH

ΩNH
+

ḂNH

BNH

]
Ṡ

Γ2
NHS

−m2(ω2
NHB

2
NH − 1)

B2
NH

≡ −KNH

(3.40)
So the two ordinary differential equations for the radial and angular part of the scalar are the
proceeding:

r2R′′ + 2rR′ +

(
ω2

r2
+

2mω ωNH

r
+KNH

)
R = 0 (3.41)

S̈ +

[
2
Ω̇NH

ΩNH
+

ḂNH

BNH

]
Ṡ +

[
m2(ω2

NHB
2
NH − 1)

B2
NH

−KNH

]
Γ2

NHS = 0 (3.42)

Obviously, the last two equations are somewhat similar to these of the NHEK background. This
is to be expected as the EFT-corrected NHEK spacetime consists of the NHEK spacetime with
some perturbations. However, the similarity of these equations with respect to those of NHEK
does not guarantee that they are solvable. Before we commence into discussing them in more
detail we would like to make the following assumption. Due to the fact that these equations
contain corrections with respect to η, λ, λ̃ one would expect that the functions R(r), S(θ)
would also be expansions to the corrections; for convenience we denoted them with subscript
"NH". Therefore we make the subsequent ansatz:

RNH(r) = R(0)[1 + η R(6) + λR(8) + λ̃ R̃(8)] (3.43)

SNH(θ) = S(0)[1 + η S(6) + λS(8) + λ̃ S̃(8)] (3.44)

KNH = K(0)[1 + η K(6) + λK(8) + λ̃ K̃(8)] (3.45)

The above ansatz means that we expect that the perturbations introduced in the Lagrangian
to result to perturbed solutions in both the angular and the radial Sturm-Liouville problem.

3.6.1 The Angular Equation

Let’s press on to review the EFT-corrected angular equation eq.(3.42). To determine the
complexity of this ODE, one needs to apply perturbations theory. However, once again the
idea of substituting all the perturbations (i.e. with respect to η, λ, λ̃) in it would lead to a
very complicated problem. The trick for simplifying our problem is to recall that all of our
perturbations are independent and of order O(ε) and therefore all the mixed terms (i.e. η λ, λ λ̃
etc are considered to be of order O(ε2) and hence neglected). The latter argument leads to the
fact that it suffices to substitute only one perturbation into the angular equation and find the
correction of the ODE to first order. The other perturbations will have the exact same form
with the respective substitutions (for instance η → λ, S(6) → S(8) etc).

Before we proceed the perturbation theory, let’s take a step back to set up the Sturm-
Liouville problem properly. We have to specify the boundary conditions of it. For simplicity
we choose to adopt the same boundary conditions as in the background (§2.5.1) which are:

SNH(0) = finite, SNH(π) = finite (3.46)

Now, we proceed to applying the perturbation theory in eq.(3.42) with respect to the η-
corrections; meaning that we expand all the quantities (ΩNH, BNH, ΓNH, ωNH, KNH, SNH) up
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to that correction. Due to the considerable number of corrected quantities the perturbation
theory is a bit involved and therefore we shall just present the result:

S̈(0) +

[
Ḃ(0)

B(0)
+ 2

Ω̇(0)

Ω(0)

]
Ṡ(0) +

[
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

]
Γ(0) 2S(0)

+

{
Γ(0) 2S(0)

[
−K(0)K(6) + 2Γ(6)

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
+

2m2(ω(0) 2ω(6)B(0) 2 +B(6))

B(0) 2

+

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
S(6)

]
+ 2Ṡ(0)Ṡ(6) + (S(6)Ṡ(0) + S(0)Ṡ(6))

[
Ḃ(0)

B(0)
+ 2

Ω̇(0)

Ω(0)

]

+ Ṡ(0)(Ḃ(6) + 2Ω̇(6)) + S(6)S̈(0) + S(0)S̈(6)

}
η +O(η2) = 0 (3.47)

Based on the same method, one can obtain the ODE corrections with respect to λ and λ̃. The
correction with respect to λ is:{

Γ(0) 2S(0)

[
−K(0)K(8) + 2Γ(8)

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
+

2m2(ω(0) 2ω(8)B(0) 2 +B(8))

B(0) 2

+

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
S(8)

]
+ 2Ṡ(0)Ṡ(8) + (S(8)Ṡ(0) + S(0)Ṡ(8))

[
Ḃ(0)

B(0)
+ 2

Ω̇(0)

Ω(0)

]

+ Ṡ(0)(Ḃ(8) + 2Ω̇(8)) + S(8)S̈(0) + S(0)S̈(8)

}
λ+O(λ2) = 0 (3.48)

While the λ̃-correction of the ODE is:{
Γ(0) 2S(0)

[
−K(0)K̃(8) + 2Γ̃(8)

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
+

2m2(ω(0) 2ω̃(8)B(0) 2 + B̃(8))

B(0) 2

+

(
m2(ω(0) 2B(0) 2 − 1)

B(0) 2
−K(0)

)
S̃(8)

]
+ 2Ṡ(0) ˙̃S(8) + (S̃(8)Ṡ(0) + S(0) ˙̃S(8))

[
Ḃ(0)

B(0)
+ 2

Ω̇(0)

Ω(0)

]

+ Ṡ(0)( ˙̃B(8) + 2 ˙̃Ω(8)) + S̃(8)S̈(0) + S(0) ¨̃S(8)

}
λ̃+O(λ̃2) = 0 (3.49)

At this instant, it becomes apparent that the ODEs yielded from the EFT-corrections are
highly non-trivial to be solved. Naturally, the fact that we know the solution of the zeroth
order ODE (i.e. that of the background) is helpful. However, the sole existence of the B, Ω
corrections complicates these ODEs dearly. Moreover these equations are inhomogeneous. At
this point, we reckon that the most promising method of tackling these equations would be
numerically.

3.6.2 The Radial Equation

Let’s push through to analyze the EFT-corrected radial equation eq.(3.41). A mere inspection
of this equation reveals that it contains a relatively small number of corrected components.
Only the solution RNH(r), the constant ωNH and the eigenvalues KNH produce corrections and
therefore one would anticipate that the ODEs yielded to first order will adopt a more straight-
forward form. Once again, we are going to apply perturbation theory and exploit the same
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trick as in the angular equation. We shall acquire the correction with respect to η and expect
those of λ, λ̃ to obtain the same form.

Moreover, for completeness let’s consider the same boundary conditions as before. We con-
sider the scattering problem described in §2.5.2; that is:

Boundary Condition: ingoing wave at r = 0 (horizon) ⇒ ingoing + outgoing wave at r = ∞

Now, let’s move on to apply the perturbation theory on the EFT-corrected radial equation.
In the same context as before, we shall not demonstrate the whole process but only the desired
outcome.

r2R(0) ′′ + 2rR(0) ′ +

(
ω2

r2
+K(0) +

2mω ω(0)

r

)
R(0) +

{
R(0)

[
K(0)K(6) +

2mω ω(0)ω(6)

r

+

(
ω2

r2
+K(0) +

2mω ω(0)

r

)
R(6)

]
+ 2r(R(6)R(0) ′ +R(0)R(6) ′)

+ r2(2R(0) ′R(6) ′ +R(6)R(0) ′′ +R(0)R(6) ′′)

}
η +O(η2) = 0 (3.50)

Based on the same method, one can obtain the ODE corrections with respect to λ and λ̃. The
correction with respect to λ is:{

R(0)

[
K(0)K(8) +

2mω ω(0)ω(8)

r
+

(
ω2

r2
+K(0) +

2mω ω(0)

r

)
R(8)

]
+ 2r(R(8)R(0) ′ +R(0)R(8) ′)

+ r2(2R(0) ′R(8) ′ +R(8)R(0) ′′ +R(0)R(8) ′′)

}
λ+O(λ2) = 0 (3.51)

While the λ̃-correction of the ODE is:{
R(0)

[
K(0)K̃(8) +

2mω ω(0)ω̃(8)

r
+

(
ω2

r2
+K(0) +

2mω ω(0)

r

)
R̃(8)

]
+ 2r(R̃(8)R(0) ′ +R(0)R̃(8) ′)

+ r2(2R(0) ′R̃(8) ′ + R̃(8)R(0) ′′ +R(0)R̃(8) ′′)

}
λ̃+O(λ̃2) = 0 (3.52)

In comparison to eq.(3.47)-eq.(3.49) the ODEs generated from the EFT-corrections seem to
have obtained a simplified form as they are not dependent on the corrections of Ω, B. However,
that does not imply that they are solvable since they involve R(0), which is a superposition
of the Whittaker functions, and its first and second derivatives. Also, notable is the fact that
these ODEs are inhomogeneous as well, which complicates their solution even more. Following
these arguments, it becomes clear that the solutions of these equations are highly complicated.
One promising way to tackle them would demand the utilization of numerical methods.
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Conclusions

This section will be focused on gathering the results discussed in the EFT-corrected NHEK
spacetime. Based on the work of [1] we were able to verify each set of independent corrections
(η, λ, λ̃) with respect to all the perturbed quantities (ΩNH(θ), BNH(θ), ΓNH, ωNH) using Math-
ematica’s RGTC package [12] (see §Appendix D). Then, we proceeded into verifying the absence
of a conical singularity in that spacetime indicating the regularity of the EFT-corrected space-
time. Finally, we were interested in studying the wave equation □ϕ = 0 under the ansatz of
eq.(2.38). We demonstrated the separable character of this partial differential equation and de-
rived the angular and radial equation. Afterwards, we employed perturbation theory on these
ordinary differential equations and derived their first order corrections due to the perturbed
spacetime. Given their highly non-trivial character we concluded that these equations need
further investigation and possibly numerical approaches in order to be tackled.
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Appendix A

A Angular Prolate Spheroidal Wave Functions
In this appendix we would like to introduce the prolate spheroidal coordinates (ξ, η, φ). Prolate
spheroidal coordinates is a 3-dimensional coordinate system that is orthogonal and results from
the rotation of the 2-dimensional elliptic coordinate system about the focal axis. The relation
to the Cartesian coordinates (x, y, z) is:

x = fξη, y = f
√

(ξ2 − 1)(1− η2) cosφ, z = f
√

(ξ2 − 1)(1− η2) sinφ (A1)

The Laplacian operator in prolate spheroidal coordinates is:

∇⃗2 =
1

hξhηhφ

[
∂

∂ξ

(
hηhφ

hξ

∂

∂ξ

)
+

∂

∂η

(
hξhφ

hη

∂

∂η

)
+

∂

∂φ

(
hηhξ

hφ

∂

∂φ

)]
(A2)

where:

hξ = f

√
ξ2 − η2

ξ2 − 1
, hη = f

√
ξ2 − η2

1− η2
, hφ = f

√
(ξ2 − 1)(1− η2) (A3)

Here we have presented the definitions given by [11]. Let us push through to start discussing
the Helmholtz equation:

(∇⃗2 + k2)Φ = 0 (A4)

which is the equation for determining the eigenvalues of the Laplacian operator. Substituting
eq.(A2) into eq.(A4) we get:

∂

∂ξ

(
(ξ2 − 1)

∂Φ

∂ξ

)
+

∂

∂η

(
(1− η2)

∂Φ

∂η

)
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2Φ

∂φ2
+ c2(ξ2 − η2)Φ = 0 (A5)

with c ≡ fk/2. The final equation is a partial differential equation and hence our most effective
method of solving it is by separation of variables. Therefore we proceed to the following ansatz
for the Φ(ξ, η, φ) function:

Φ = Rmn(ξ; c)Smn(η; c) e
imφ, m ∈ Z (A6)

Substituting our ansatz into eq.(A5) one can obtain the succeeding ordinary differential equa-
tions:

d

dξ

[
(ξ2 − 1)

dRmn

dξ

]
−
(
λmn − c2ξ2 +

m2

ξ2 − 1

)
Rmn = 0 (A7)

d

dη

[
(1− η2)

dSmn

dη

]
+

(
λmn − c2η2 − m2

1− η2

)
Smn = 0 (A8)

where the eigenvalues λmn can be determined so that both Rmn(ξ; c) and Smn(η; c) are regular
(i.e. finite) at ξ = ±1 and η = ±1 respectively. Another intriguing thing that can be observed
is that eq.(A7) and eq.(A8) are identical.

The solution of these ordinary differential equations is highly non-trivial and thus we shall
not dive into presenting it in this particular work. However, we would like to demonstrate the
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Taylor expansions around c = 0 up to O(c3) in order to give an idea of its behavior at small η.
We will denote with a superscript the first and second kind of the Smn(η; c).

S(1)
mn(η; c) = Pm

n (η)+

[
(−m+ n+ 1)(−m+ n+ 2)Pm

n+2(η)

2(2n+ 1)(2n+ 3)2
−

(m+ n− 1)(m+ n)Pm
n−2(η)

2(2n− 1)2(2n+ 1)

]
c2+O(c3)

(A9)

S(2)
mn(η; c) = Qm

n (η)+

[
(−m+ n+ 1)(−m+ n+ 2)Qm

n+2(η)

2(2n+ 1)(2n+ 3)2
−

(m+ n− 1)(m+ n)Qm
n−2(η)

2(2n− 1)2(2n+ 1)

]
c2+O(c3)

(A10)
where Pm

ℓ (η), Qm
ℓ (η) are the associated Legendre functions of the first and second kind respec-

tively.
Surely, there is an abundance of information considering these equations and their solu-

tions, such as relations with other functions of mathematical physics (Bessel, Hermite, etc),
asymptotic behaviors or even recurrence relations, that are explored in [11]. It is sufficient in
this work to remember that eq.(A7) and eq.(A8) are Sturm-Liouville problems with regular
solutions and eigenvalues.
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B Whittaker Functions

B.1 Definition

In this appendix we would like to briefly provide some further insight on these special functions
called Whittaker Functions. The main source of this information is [11]. Let us begin by writing
the respective differential equation:

d2W

dz2
+

(
−1

4
+

κ

z
+

1/4− µ2

z2

)
W = 0 (B1)

which has a regular singularity at z = 0 with starting powers 1/2±µ and an irregular singularity
at z = ∞. The above equation is often referred as "Whittaker’s Equation" and it can be
obtained by Kummer’s (or confluent hypergeometric) equation:

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0 (B2)

via the following substitutions:

W = e−z/2z1/2+µw, κ =
b

2
− a, µ =

b

2
− 1

2
(B3)

The last substitutions indicate that the solutions of eq.(B1) are related to the those of eq.(B2).
Luckily for us the solutions of eq.(B2) are well-known and regular (at least one of them);
they are the confluent hypergeometric functions M(a; b; z), U(a; b; z) of first and second kind
respectively. The two independent solution of eq.(B1) are the subsequent:

Mκ,µ(z) = e−z/2z1/2+µM

(
1

2
+ µ− κ; 1 + 2µ; z

)
(B4)

Wκ,µ(z) = e−z/2z1/2+µU

(
1

2
+ µ− κ; 1 + 2µ; z

)
(B5)

In case that 2µ ̸= −1,−2,−3, . . . the Whittaker function of first kind Mκ,µ(z) does not exist7

but beside that restriction it is a well-behaved function ∀z ∈ C. Considering the fact that we
discuss this ODE in the complex plane a quite perceptive question: what is the nature of these
complex functions in it? The answer to this can be obtained fairly straightforward from their
very definition. Both of the Whittaker functions are multi-valued functions with branch points
at z = 0, z = ∞ and their principal branches are consistent with those of the z1/2+µ and e−z/2.

Naturally these functions are highly non-trivial and therefore there exists a vast majority
of information considering them, such as asymptotic behaviours (see §2.5.2), integral represen-
tations, recurrence relations, connection with other functions, etc. We shall not present all of
this information as we find it to be purposeless and can be easily found in [11]. However, we
intent to demonstrate some relations with other functions of mathematical physics.

7However there are some formulas that, even in this case, are valid in their limiting form.
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B.2 Relation to other functions

At this instance we proceed to briefly illustrate some relations to elementary functions. Let us
consider the case of M0, 1

2
(2z):

M0, 1
2
(2z) = e−2z/2(2z)1/2+1/2M

(
1

2
+

1

2
; 1 + 2

1

2
; 2z

)
= 2z e−zM(1; 2; 2z)

= 2z e−z

(
1 + z +

2z2

3
+

z3

3
+

2z4

15
+ . . .

)
= 2z e−z e

z

z
sinh z

= 2 sinh z

Now, we move on to the case of Mκ,κ− 1
2
(z) which also consists an interesting case:

Mκ,κ− 1
2
(z) = e−z/2z1/2+κ−1/2M

(
1

2
+ κ− 1

2
− κ; 2κ; z

)
= e−z/2zκM(0; 2κ; z)

= e−z/2zκ

where in the last we have used the identity M(0; b; z) = U(0; b; z) = 1 obeyed by the confluent
hypergeometric functions of the first and second kind. Furthermore, from the above identity
and the definitions eq.(B4), eq.(B5) it is evident that Wκ,κ− 1

2
(z) = Mκ,κ− 1

2
(z) = e−z/2zκ.

Finally, in order to conclude this appendix we would like to present their relation with
respect to some of the most common functions that come up in mathematical physics. We are
referring to the Bessel functions and in particular to the modified Bessel functions Iν(z), Kν(z).
We begin with M0,ν(2z):

M0,ν(2z) = e−z(2z)ν+1/2M

(
ν +

1

2
; 1 + 2ν; 2z

)
= e−z(2z)ν+1/2 Γ(1 + ν) ez

(z
2

)−ν

Iν(z)

= 22ν+1/2 Γ(1 + ν)
√
z Iν(z)

We proceed to W0,ν(2z):

W0,ν(2z) = e−z(2z)ν+1/2U

(
ν +

1

2
; 1 + 2ν; 2z

)
= e−z(2z)ν+1/2 ez√

π
(2z)−νKν(z)

=

√
2z

π
Kν(z)

We conclude based on the above calculations that when κ = 0 both Whittaker functions of
the first and second kind behave as elementary function multiplied by the respective modified
Bessel function. Naturally, there are much more information considering relations with other
special functions such as Hermite, Laguerre and Airy Polynomials which can be obtained from
the literature.
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C Supplementary corrections of the EFT-corrected NHEK
In this section we would like to present the rest of the EFT corrections established by [1]
concerning the ΩNH(θ) and BNH(θ). They begin by defining:

K(θ) ≡ arcsin

( √
2 cos θ√

1 + cos2 θ

)
− arcsin cos θ (C1)

We proceed to exhibit the sixth-order derivative corrections indicated by (6) superscript.

B(6)(θ) =
κ4

J2

[
2656− 42885 cos2 θ + 45895 cos4 θ − 8130 cos6 θ − 1218 cos8 θ + 183 cos10 θ + 139 cos12 θ

224(1 + cos2 θ)6

− 15
√
2 cos θ(3− cos2 θ)

64(1 + cos2 θ) sin θ
K(θ)

]
(C2)

and

Ω(6)(θ) =
κ4

J2

[
C(6) − 3285− 55449 cos2 θ + 54210 cos4 θ − 7058 cos6 θ − 1527 cos8 θ − 309 cos10 θ

224(1 + cos2 θ)6

+
15 cos θ

√
2 sin θ

64(1 + cos2 θ)
K(θ)

]
(C3)

Further on, we display the eighth-derivative corrections denoted with a superscript (8):

B(8)(θ) =
κ6

J3

[
832989

1280
− 315π

4
− 407005 + 32887800 cos2 θ + 38302380 cos4 θ + 227158536 cos6 θ

1280(1 + cos2 θ)9

− 244951182 cos8 θ + 207667400 cos10 θ + 108083820 cos12 θ + 31954360 cos14 θ + 4114685 cos16 θ

1280(1 + cos2 θ)9

+
630 cos θ

1 + cos2 θ
arctan cos θ − 366435 cos θ(3− cos2 θ)

256
√
2 sin θ(1 + cos2 θ)

K(θ)

]
(C4)

and

Ω(8)(θ) =
κ6

J3

[
C(8) +

783837 + 16684758 cos2 θ + 33602022 cos4 θ + 119986542 cos6 θ

1280(1 + cos2 θ)9

+
27639936 cos8 θ + 23049562 cos10 θ + 11880370 cos12 θ + 3484978 cos14 θ + 445863 cos16 θ

256(1 + cos2 θ)9

− 315 cos θ

1 + cos2 θ
arctan cos θ +

366435 cos θ sin θ

256
√
2(1 + cos2 θ)

K(θ)

]
(C5)
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Finally, there is the other family of solutions corresponding to eighth-derivative corrections
denoted by the same superscript (8) but with the difference that the quantities bear a tilde:

B̃(8)(θ) =
κ6

J3

[
846339

320
− 315π − 1149443 + 5618952 cos2 θ + 136013268 cos4 θ + 154320120 cos6 θ

320(1 + cos2 θ)9

− 254641842 cos8 θ + 208733752 cos10 θ + 108674580 cos12 θ + 32136008 cos14 θ + 4138723 cos16 θ

320(1 + cos2 θ)9

+
2520 cos θ

1 + cos2 θ
arctan cos θ − 368829 cos θ(3− cos2 θ)

64
√
2 sin θ(1 + cos2 θ)

K(θ)

]
(C6)

and

Ω̃(8)(θ) =
κ6

J3

[
C̃(8) +

1018371 + 7724394 cos2 θ + 67516506 cos4 θ + 96062418 cos6 θ + 141833088 cos8 θ

320(1 + cos2 θ)9

+
115923454 cos10 θ + 59757382 cos12 θ + 17530822 cos14 θ + 2243037 cos16 θ

320(1 + cos2 θ)9

− 1260 cos θ

1 + cos2 θ
arctan cos θ +

368829 cos θ sin θ

64
√
2(1 + cos2 θ)

K(θ)

]
(C7)

One more detail that should be added is that C(6), C(8) and C̃(8) are arbitrary integration
constants.
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D Supplementary material on verification of EFT-corrected
equations

In this appendix we would like to present additional information considering the verification
of the EFT-corrections. In §3.4 we described the process that we followed in order to verify
the EFT-corrections introduced by [1]. However, we shall present one of the Mathematica
notebooks used for the verification. In the next pages, we have included the notebook that
verifies the λ̃-corrections. Naturally, the process followed for the other EFT-corrections (η, λ)
is analogous to the one followed below and therefore there is no need to illustrate them as well.

We believe that it’s worth clarifying some aspects of the leading notebook. Let’s begin
with the RGtensors[Metric, Coordinates] command. RGtensors[] is a built-in function
that receives two arguments, the metric and the coordinates of the spacetime, as lists. Then it
progresses into calculating the majority of the spacetime’s crucial quantities, such as Christoffel
symbols, Riemann, Ricci, Weyl tensors and the Ricci scalar. We move on to the simpRules
= TrigRules; command. simpRules is a built-in variable that stores a list with identities
utilized for simplifications within the reach of the package. TrigRules is also a built-in variable
containing a list with trigonometric identities. Therefore this command is used in order for
the package to be able to simplify mathematical expressions using trigonometric identities.
Moreover, the tensor eta[3, 4] needs a small clarification; eta[] is a built-in tensor that
denotes the fully covariant Levi-Civita tensor εαβγδ... (with the convention ε0123... =

√
|g|)

while the eta[3, 4] denotes the ε γδ
αβ . Finally, there exists one more command that we would

like to explain; the FacSimp[]. Once again, this represents a built-in function that simplifies
the components of tensors within this package. It is really useful for optimization.

Naturally, there exists an extended variety of information considering the documentation
of the functions that utilizes the RGTC package. This piece of information can be found in a
notebook within the zip file of the package.
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EFT-corrected Einstein Equations Λ-
expansion. 

To begin with, we like to use a notation close to the paper. This notebook attempts to verify the λ


 
corrections. However, here we denote it as Λ for convenience.

I n [ ] : = ClearAll["Global`"]

I n [ ] : = << RGTC`EDCRGTCcode` (*including the package*)

SetDelayed: Tag Classify in Classify[x_] is Protected.

I n [ ] : = Coordinates = {t, r, θ, ϕ};(*introduce the coordinates*)

Metric = 2 M2 r2 ΩNH[θ]
2
ωNH

2 BNH[θ]
2
- 1, 0, 0, 2 M2 ωNH r BNH[θ]

2 ΩNH[θ]
2
,

0, 2 M2
ΩNH[θ]

2

r2
, 0, 0, 0, 0, 2 ΓNH

2 M2 ΩNH[θ]
2, 0,

2 M2 ωNH r BNH[θ]
2 ΩNH[θ]

2, 0, 0, 2 M2 BNH[θ]
2 ΩNH[θ]

2
; (*The NHEK metric*)

I n [ ] : = RGtensors[Metric, Coordinates];

gdd =

2 M2 r2 -1 + ωNH
2 BNH[θ]

2 ΩNH[θ]
2 0 0 2 M2 r ωNH BNH[θ]

2 ΩNH[θ]
2

0
2 M2 ΩNHθ

2

r2
0 0

0 0 2 M2 ΓNH
2 ΩNH[θ]

2 0

2 M2 r ωNH BNH[θ]
2 ΩNH[θ]

2 0 0 2 M2 BNH[θ]
2 ΩNH[θ]

2

LineElement =
2 M2 d[r]2 ΩNH[θ]

2

r2
+ 2 M2 d[θ]2 ΓNH

2 ΩNH[θ]
2
+ 2 M2 d[ϕ]2 BNH[θ]

2 ΩNH[θ]
2
+

4 M2 r d[t]×d[ϕ] ωNH BNH[θ]
2 ΩNH[θ]

2
+ 2 M2 r2 d[t]2 (-1 + ωNH BNH[θ]) (1 + ωNH BNH[θ]) ΩNH[θ]

2

gUU =

-
1

2 M2 r2 ΩNHθ
2

0 0
ωNH

2 M2 r ΩNHθ
2

0
r2

2 M2 ΩNHθ
2

0 0

0 0
1

2 M2 ΓNH
2 ΩNHθ

2
0

ωNH

2 M2 r ΩNHθ
2

0 0 -
-1+ωNH BNHθ 1+ωNH BNHθ

2 M2 BNHθ
2
ΩNHθ

2

gUU computed in 0. sec

Gamma computed in 0.016 sec

Riemann(dddd) computed in 0.016 sec

Riemann(Uddd) computed in 0.031 sec

Ricci computed in 0.016 sec

Weyl computed in 0.015 sec

Einstein computed in 0.016 sec

All tasks completed in 0.109375 seconds

I n [ ] : =

I n [ ] : = simpRules = TrigRules;



I n [ ] : = RUUUU = Raise[RUddd, 2, 3, 4];

RddUU = Raise[Rdddd, 3, 4];

RdUUU = Raise[Rdddd, 2, 3, 4];

RddddTilde = multiDot[eta[3, 4], Rdddd, {3, 1}, {4, 2}];

RdUdUTilde = Raise[RddddTilde, 2, 4];

Kretschmann = Simplify[multiDot[Rdddd, RUUUU, {1, 1}, {2, 2}, {3, 3}, {4, 4}]];

thirdorderscalar = Simplify[multiDot[

multiDot[RddUU, RddUU, {3, 1}, {4, 2}], RddUU, {1, 3}, {2, 4}, {3, 1}, {4, 2}]];

KretschmannTilde = Simplify[multiDot[RddddTilde, RUUUU, {1, 1}, {2, 2}, {3, 3}, {4, 4}]]

Ou t [ ] =

-

4 ωNH BNH
′[θ] ΓNH

2 BNH[θ] -1 + ωNH
2 BNH[θ]

2 - BNH
′′[θ]

M4 ΓNH
3 BNH[θ] ΩNH[θ]

4

I n [ ] : =

I n [ ] : = Tquarticdd =

FacSimp -Λ k6 8 multiDot[RdUdUTilde, covD[covD[KretschmannTilde]], {2, 2}, {4, 1}] +

1

2
gdd KretschmannTilde2 ;

I n [ ] : =

I n [ ] : = EinsteinEqn = FacSimpRdd -
1

2
gdd R - Tquarticdd;

I n [ ] : = ΓNH = Γ0 (1 + Λ ΓT8);

ωNH = ω0 (1 + Λ ωT8);

BNH[θ_] := B0[θ] (1 + Λ BT8[θ]);

ΩNH[θ_] := Ω0[θ] (1 + Λ ΩT8[θ]);

I n [ ] : =

First order of Λ-expansion of Rμν - 1
2  gμν R- Tμν = 0

I n [ ] : = EinsteinEqnExpanded = MatrixForm@Map[Normal@Series[#, {Λ, 0, 1}] &, EinsteinEqn, {2}];
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I n [ ] : = K[θ_] := Simplify

ArcSin
√
2 Cos[θ]  

√
1 + Cos[θ]2 - ArcSin[Cos[θ]], Assumptions  0 ≤ θ ≤ π;

Γ0 = 1;

ΓT8 = -368 829 k6  64 ×
√
2 J3;

ω0 = 1;

ωT8 = (4736 + 1575 π) k6  5 J3;

Ω0[θ_] :=
1 + Cos[θ]2

2
;

ΩT8[θ_] := Simplify

1

J3
k6

368 829 Cos[θ] 1 - Cos[θ]2  K[θ]

64 2 Cos[θ]2 + 1
+ C8T +

1

320 Cos[θ]2 + 1
9
141 833 088 Cos[θ]8 +

96 062 418 Cos[θ]6 + 67 516 506 Cos[θ]4 + 7 724 394 Cos[θ]2 + 1 018 371 +

1

320 Cos[θ]2 + 1
9
2 243 037 Cos[θ]16 + 17 530 822 Cos[θ]14 + 59 757 382 Cos[θ]12 +

115 923 454 Cos[θ]10 -
(1260 Cos[θ]) ArcTan[Cos[θ]]

Cos[θ]2 + 1
,

Assumptions  {0 ≤ θ ≤ π, J ≠ 0, k ≠ 0};(*With the first

sign as + and not -*)

B0[θ_] :=
2 Sin[θ]

1 + Cos[θ]2
;

BT8[θ_] := Simplify

1

J3
k6 -

368 829 Cos[θ] 3 - Cos[θ]2 K[θ]

64 2 1 - Cos[θ]2 Cos[θ]2 + 1

-
1

320 Cos[θ]2 + 1
9
254 641 842 Cos[θ]8 +

154 320 120 Cos[θ]6 + 136 013 268 Cos[θ]4 + 5 618 952 Cos[θ]2 + 1 149 443 -

1

320 Cos[θ]2 + 1
9
4 138 723 Cos[θ]16 + 32 136 008 Cos[θ]14 + 108 674 580 Cos[θ]12 +

208 733 752 Cos[θ]10 +
(2520 Cos[θ]) ArcTan[Cos[θ]]

Cos[θ]2 + 1
+

846 339

320
- 315 π , Assumptions  {0 ≤ θ ≤ π, J ≠ 0, k ≠ 0};
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I n [ ] : = AbsoluteTimingres = FullSimplifyEinsteinEqnExpanded,

TimeConstraint  600, Assumptions  k ≠ 0, J = M2, 0 ≤ θ ≤ π

Ou t [ ] =

456.814,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



The corrections with respect to Λ do indeed satisfy the EFT-corrected Einstein equations.
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