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Decentralized online network performance monitoring
for Wireless Sensor/Actuator Networks

Abstract

Wireless Sensor Networks (WSNs) have been introduced to our daily lives in
several application domains such as Smart Water, Smart Grids, Smart Homes and
Health Monitoring. All these applications require the production of robust and
reliable applications which are based on the WSN’s optimal performance. Various
factors can affect the operation of a WSN ranging from the operational space, the
adopted communication protocol, the intra-network dynamics and the status of
each individual node.

The main goal is the unattended and the continuous operation of the network
in real-life deployments. As such, characterization of the network’s high-level per-
formance when it is based exclusively on link-quality estimation can yield episodic
snapshots of the performance specific point-to-point links.

The objective of this thesis is to characterize network performance beyond the
constraints of 1st hop neighbors and across different layers of a fully functional
protocol stack, ranging from the Physical to the Transport and Application layers.
Heterogeneous metrics are fused and machine learning methods provide the re-
quired means to discover patterns in the data and provide the features that are the
most dominant ones by employing feature selection techniques in an unsupervised
fashion. Thus, systematic study of end-to-end links’ performance could provide the
means for understanding the multi-dimensional behavior of an entire network.

Keywords— Wireless sensor networks, Unsupervised learning, Network measurement
and analysis, Testbeds and experimental Evaluation





Αποκεντρωμένη επιγραμμική παρακολούθηση

επιδόσεων δικτύου για ασύρματα δίκτυα

αισθητήρων / επενεργητών

Περίληψη

Τα ασύρματα δίκτυα αισθητήρων έχουν εισέλθει στην καθημερινότητά μας σε ποι-

κίλους τομείς εφαρμογής όπως έξυπνα δίκτυα ύδρευσης, ηλεκτρισμού, σπιτιών όπως

και σε συστήματα παρακολούθησης της υγείας. Η παραγωγή ισχυρών και αξιόπι-

στων εφαρμογών απαιτεί βέλτιστη απόδοση από την πλευρά ενός ασύρματου δίκτυου

αισθητήρων. Διάφοροι παράγοντες μπορούν να επηρεάσουν τη λειτουργία ενός α-

σύρματου δικτύου αισθητήρων και αυτοί κυμαίνοται από τον επιχειρησιακό χώρο, το

υιοθετημένο πρωτόκολλο επικοινωνίας μέχρι και τη δυναμική εντός δικτύου και την

κατάσταση κάθε μεμονωμένου κόμβου.

Ο κύριος στόχος είναι η μη επιτηρούμενη και η συνεχής λειτουργία του δικτύου

σε πραγματικές εφαρμογές. Ως εκ τούτου, ο χαρακτηρισμός των επιδόσεων υψηλού

επιπέδου των δικτύων όταν βασίζεται αποκλειστικά στην εκτίμηση ποιότητας συν-

δέσμου μπορεί να αποδώσει επεισοδιακά στιγμιότυπα των συνδέσμων συγκεκριμένα,

από σημείο σε σημείο.

Σκοπός της παρούσας εργασίας είναι να χαρακτηρίσει την απόδοση του δικτύου

πέρα από τους περιορισμούς των γειτόνων του πρώτου άλματος και σε διαφορετικά

στρώματα μιας πλήρους λειτουργικής στοίβας πρωτοκόλλων, η οποία κυμαίνεται από

το επίπεδο συνδέσμου μέχρι και το επίπεδο Εφαρμογής. Οι ετερογενείς μετρήσεις που

προέρχονται απο αυτά τα επίπεδα συγχωνεύονται και μέσω των μεθόδων μηχανικής

μάθησης ανακαλύπτονται τα μοντέλα μέσα στα δεδομένα αυτά και επιστρέφονται τα

χαρακτηριστικά εκείνα που είναι τα πιο κυρίαρχα, χρησιμοποιώντας τεχνικές επιλογής

χαρακτηριστικών με μη επιτηρούμενο τρόπο. Επομένως, η συστηματική μελέτη της

απόδοσης από το ένα άκρο στο άλλο θα μπορούσε να προσφέρει τα μέσα για την

κατανόηση της πολυδιάστατης συμπεριφοράς ολόκληρου του δικτύου.

Λέξεις Κλειδιά— Ασύρματα δίκτυα αισθητήρων, μη εποπτευόμενη μάθηση,

μέτρηση και ανάλυση δικτύων, δοκιμαστικές μονάδες και πειραματική αξιολόγηση
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Chapter 1

Introduction

This chapter is dedicated to introduce some concepts in wireless sensor network
(WSN) and some of its applications. The main focus of this Chapter is performance
characterization of WSNs and how the scientific community has addressed this issue
by introducing various solutions.

1.1 Introduction

Wireless sensor networks (WSNs) have sparked the interest of the scientific com-
munity on a variety of issues. Current trends are focusing on automated systems
which improve quality of life and can be autonomous and adaptive when prob-
lematic scenarios are happening. As a result, WSNs have entered our daily lives
via several applications such as Smart Water [4, 5], Smart Grids [6, 7, 8], health
monitoring [9, 10] and other smart applications (i.e Smart Homes and others).

Since the backbone of a WSN is the communication between nodes (links) there
are several challenges that affect the performance of the network in various ways,
such as the adopted communication protocol (i.e IEEE 802.15.4, LoRA) and various
environmental factors (i.e humidity, temperature variations). In order to address
challenges regarding the quality of service in WSNs, performance characterization
is vital for the unattended and continuous operation of the network.

Trends that have occupied the scientific community were focused on characteriz-
ing the performance of the network via link quality aspects on point-to-point links.
Empirical studies have emerged [1, 11, 12] and tools which analyzes the behavior of
the network with the adoption of machine learning techniques [13, 14, 15, 16, 17].
The layout of the bibliography is presented in Table 1.1.

1



2 CHAPTER 1. INTRODUCTION

Characterization of network performance
Point-to-point links

Empirical Studies [1] [11] [12]
Testbeds [18] [19] [20]

Learning Techniques
Supervised Learning [13] [17]
Other Learning Methods [14] [16] [15]

End-to-end links
Feature Selection [3]

Table 1.1: Bibliography Categorization on WSN performance characterization

Beginning from the empirical studies the authors in [1] conducted experiments
with WSNs in controlled environments displayed the implications of common as-
sumptions on the packet delivery performance of WSN with using as means com-
mercial transceivers. The emphasis of the authors was on how observed quantities,
such as the Received Signal Strength Indicator (RSSI), the Link Quality Indicator
(LQI), the Signal-to-Noise Ratio (SNR), and the Acknowledgment Reception Ratio
(ARR) can interpret the observed link behavior. The key finding of this analysis
was that the most dominant qualitative characteristics of point-to-point links are
the spatial and temporal correlation along with the link asymmetries. Their anal-
ysis also showed that the statistical attributes of LQI per packet offer a better
correlation with Packet Reception Ratio per link, than one provided by the RSSI.
All of their findings are presented on Table 1.2.

Similar logic was adopted in [11] were the authors did experimental studies for
link quality estimation in controlled environments. The main fact on this work was
that different experimental conditions lead to different extracted results. The two
main reasons justifying this fact were:

• the lack of standardization in terms of evaluation metrics, assumptions, and
approach

• the asymmetry of the hardware

The hardware played an important factor because it introduced antennae irregu-
larities, dependency of radio transceivers on temperature and humidity and finally
radio hardware inaccuracy. As a result, there is a inconsistency when link quality
is computed by the means of LQI or SNR.

To address this problem the authors in [12] introduced another metric for char-
acterizing link quality which is the triangle metric. This metric combined geo-
metrically the information of PRR, LQI, and SNR into a robust estimator that
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Observation Implication to the Conceptual Model
Over short periods, links exhibit
either 0% or 100% packet reception ratio
need not be applicable to frequent
(PRR). Short periods have few links
with PRR between 10% and 90%
i.e. intermediate links.
The portion of intermediate links
increases with time.

Estimates from infrequent beacons
need not be applicable to frequent
data transmissions.

The reception ratio a link observes
depends on the channel

Protocol performance can vary over
different channels.

Links have temporally correlated
reception.

Assuming independent reception over
time is not always valid.

External interference from 802.11
can cause losses at multiple nodes.

Assuming that forward and reverse
links have different PRRs
(direct link) is valid.

Acknowledgement reception ratio (ARR)

is usually greater than the packet

reception ratio (PRR)

Using PRR in the place of ARR is not valid
and can lead to inaccurate link quality estimates

Table 1.2: Key Observations from work [1]

guaranteed a fast and reliable assessment of the point-to-point link quality. The
formal description of this metric first denotes a set of n packets are used to sample
the channel and m of those packets have been successfully received (0 < m ≤ n).
The LQI and SNR of each succesfully received packet i are denoted by lqii and
snri. Upon reception of the sampling packets, the receiver calculates the window
mean SNR and LQI in the following way:

SNRw =

∑m
k=1 snrk
n

(1.1)

LQIw =

∑m
k=1 lqik
n

(1.2)

Then, the receiver calculates the distance to the origin(length of hypotenuse):

d4 =

√
SNRw

2
+ LQIw

2 (1.3)

Based on the computed distance, the receiver estimates the quality of the send-
receiver link according to the rule in which the larger the distance, the higher the
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quality. Finally the authors have assigned empirical-based thresholds to differenti-
ate the quality of links.

Therefore the problem of link quality performance could be addressed as a pre-
diction problem. A way to resolve it is by using machine learning (ML) to perform
the prediction task effectively, without using explicit instructions and by relying on
patterns and inference instead. ML is considered to be a subset of artificial intelli-
gence. Therefore ML provides the necessary means for better prediction regarding
link-to-link performance.

Shifting to this direction the study in [21] have exploited learning techniques
for performance estimation. The efficacy of supervised learning involving two pri-
mary phases, namely offline training and online classification was evaluated in [13]
again for point-to-point links. The reason behind the supervised learning that they
used was the ability to automatically discover relations between readily-available
features and the quantity of interest. The general goal was to improve situation-
awareness in order to optimize the network communication. Their approach, cast
the problem of link quality estimation to a classification problem. Several classi-
fication algorithms were tested. The main focus although, was given on decision
tree learners [22] and rule learners [23]. As a result their approach lead to similar
accuracy compared with traditional batch learners, but with less computational
and resource complexity.

A distributed protocol which adopted supervised incremental learning was intro-
duced in [17]. The goal was to estimate wireless link quality based on supervised
incremental learning methods. In order to accomplish that they combined Locally
Weighted Projection [24] and locally available measures of direct links, such as
SNR and traffic rate towards building regression maps between the local network
configuration and the expected link quality.

Authors in [14] have adopted a data driven approach which combined the values
of PRR and the levels of RSSI, LQI and SNR with logistic regression classifiers.
The produced output was the success probability of delivering the next packet.
The proposed approach was consisted from three steps:

• data collection

• offline modeling

• online prediction

The link quality prediction that they conducted, used several machine learning
methods such as naive Bayes classifier [23], logistic regression [25], and artificial
neural networks [26]. Their key finding was that logistic regression works well
among the models and it introduced a small computational cost.
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Extending the work of [14] the work in [16] employed Stochastic Gradient Descent
to address aspects related to the estimation of links with moderate performance.
The on-line and unsupervised schemes were able to adapt the wireless dynamics
without the need for data collection and model retraining.

Similarly the work in [15] employed machine learning methods to estimate the
short evolution of link quality, in order to switch data transmission on a better
quality link. LQI metric is predicted by a decision maker called forecaster that can
adapt its strategy to predict this metric as close as possible to the real value. The
proposed learning and prediction model had great flexibility and could be adapted
to different link quality metrics or prediction methods.

As this far, studies have used machine learning for better link quality estimation.
Opposed to this fact the work on [27] have used machine learning as a way to
increase the efficiency of link sampling. They presented a strategy for link quality
monitoring applicable on the Rouging Protocol for Low Power and Lossy Networks
(RPL) with minimal overhead and energy waste. To achieve this goal, their system
leverages both synchronous and asynchronous monitoring schemes to maintain up-
to-date information on link quality and to promptly react to sudden topology
changes which can be caused from node mobility.

The characteristic that connects all the above studies is the point-to-point non
competitive link analysis that justifies the network behavior. However, there is
clear that the literature is lacking on studies that extend the network performance
well beyond link quality estimation.

This literature gap was filled in [3]. This work extended the problem of network
performance characterization to multi-hop network topologies and introduced a
wider range of network parameters that span across all layers of protocol stack
(besides SNR, LQI, RSSI). Their focus was the reduction of dimensionality of
data by the means of feature selection and thus improve the overall quality of
classification. Furthermore dominant factors that impact the behavior of multi-
hop links were extracted.

This thesis exploits the framework of [3] and extends the problem of dominant
factors that affect the end-to-end links by focusing the problem of feature selection.
In this thesis two approaches have been adopted. The first approach (figure 1.1)
describes the network dynamics over the network as a graph-based feature selection
problem (features: �). The calculation of dominant features (colored �) is going
to exploited for extracting network-wide behavioral patterns (colored 5).

The second approach adopts the feature selection algorithm introduced in [3]
were features are described a vector and the feature selection process selects the
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most dominant ones, based on the representation entropy HA which is metric that
calculates the redundancy of information in the feature matrix A. Both approaches
are categorized as unsupervised methods in the machine learning categorization.

Figure 1.1: First approach in this thesis. Network dynamics formulate a graph
feature selection problem.

1.2 Motivation

The motivation of this work is based on the fact that performance characteriza-
tion for WSNs is mainly focused between 1st hop links. This information is not
sufficient to characterize the network’s high level performance. As a result there
is a gap of studies that focus well beyond those links and try to characterize the
performance of a multi-hop WSN based on information that goes beyond the Phys-
ical Layer (RSSI, LQI). Furthermore, there is a need for studies that explore the
performance of a WSN from real-life deployments.

1.3 Contribution

In a nutshell the contributions of this thesis are summarized as follows:
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• The combination of network metrics collected from different sides of the net-
work, and corresponding to different layers of the protocol stack to a feature-
level fusion mechanism for delivering high-level inference on the dominant
network features.

• A design of a framework that is consisted from various unsupervised learning
methods and has the ability to analyze different data formats as long as the
form is passed as input to it.

• The application of the proposed framework on real-life deployments and the
explanation of the findings within the WSN context.

• The designed framework does not introduce computational overhead to the
WSN (sensor nodes) and it can be implemented from a low budget single
board computer such as the odroid [28].

The rest of this thesis is organized as follows: in Chapter 2 the problem of fea-
ture selection is described alongside the categorization of feature selection methods
and the algorithms that were used in this thesis. Chapter 3 is focused on the
problem formulation and the system displayed in a formal way accompanied with
the proposed system architecture. Evaluation studies for the introduced system is
presented in Chapter 4. Finally, the conclusions and future work of this thesis are
drawn in Chapter 5.
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Chapter 2

Background

This Chapter offers information regarding the feature selection background.
Classification information is also provided regarding the classifier that was used
in this thesis. In particular the basic concept of feature selection is introduced
alongside with the categorization of feature selection methods and finally the fea-
ture selection methods that were used in this thesis.

2.1 Feature Selection

2.1.1 Problem Formulation And Notation

Patter recognition which works through machine learning is highly affected by
the length of data. Nowadays there is a high producing rate of digital data and that
leads to a bottleneck when their analysis is held. In order to address the problem of
high dimensionality, reduction techniques can be applied. Feature Extraction (FE)
and Feature Selection (FS) can reduce the volume of available data and improve
the performance of machine learning algorithms.

Figure 2.1: Feature Selection Procedure

9
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Feature selection is the process which produces a subset of the initial data that is
given to it. Figure 2.1 displays that process. Let us consider the initial variable set
X of sizeM , containing feature vectors xi, where i = {1...M}. A Feature Selection
Algorithm is a function g that extracts a reduced variable set F of R examples fi,
where i = 1...R and R << M , from the initial variable set.

2.1.2 Categorization of Feature Selection

Feature selection process can be divided into two main categories. In terms of
availability of label information feature selection techniques are classified into 3
categories. Supervised methods [29, 30, 31, 32], semi-supervised [33, 34, 35] and
unsupervised methods [36, 37, 38]. The availability of label information offers
effective discrimination of features from different classes consisted from samples.

Semi-supervised algorithms are employed when a small portion of data is labeled.
As a result these algorithms are exploiting both labeled an unlabeled data. When
search criteria for discriminate features is missing, unsupervised learning is the way
to do feature selection, but it is a harder problem than the rest methods. Several
criteria have been proposed to evaluate feature relevance.

Classification of feature selection can also based on the different strategies of
searching. Three methods methods is the result of this classification, i.e filter
methods, wrapper methods and embedded methods. In filter methods discrimi-
nation of data is done through their character. In general, those methods have
as first priority the feature selection process and then perform classification and
clustering tasks. As a result, filter methods usually fall into a two-step strategy.
First, the whole set of features is ranked according to certain criteria. Afterwards,
the features with the highest ranking is selected [39, 40, 41, 42].

Wrapper methods tend to use the learning algorithm itself to evaluate the fea-
tures. For example the work in [43] has adopted Support Vector Machine methods
based on Recursive Feature Elimination (RFE) to select the most relevant gene
to cancers. Embedded models perform feature selection in the process of model
construction. Overall the categorization of feature selection methods is presented
in Figure 2.2.

In this work, the exploitation of unsupervised learning via two methods is con-
ducted. In the following section a brief overview will be presented regarding the
state of the art in unsupervised feature selection algorithms.
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Figure 2.2: Feature Selection Categorization in [2]

2.1.3 Feature Selection Algorithms used in this thesis

2.1.3.1 Graph Clustering with Node Centrality (GCNC)

Morandi and Rostami proposed an unsupervised filter-based approach algorithm
which is called Graph Clustering with Node Centrality [44] and it works in three
steps:

1. The problem space is represented by a graph G = (X,E,wX) in which
X = x1, x2, ...., FM denotes an original feature set, E = (xi, xj) : xi, xj ∈ F
denotes the edges of graph and wij indicates the similarity between two fea-
tures xi and xj connected by the edge (xi, xj). In this thesis the Pearson
product-moment correlation coefficient [45] it is used as a similarity measure.

2. The graph is divided into several clusters using an efficient community de-
tection algorithm. By exploiting Louvain Community detection algorithm
proposed by Blondel et al. [46] detection of communities/clusters is applied
to the graph.

3. Selection of the most relevant and influential feature from each cluster is done
through a novel iterative search strategy. In particular for each feature xi in
each of the k clusters Ck, an influence value is calculated where

Influence(xi) = TV × LC

TV indicates the normalized term variance of feature xi and is defined as

TV (S, xi) =
1

|S|

|S|∑
j=1

(Aij −A)2

where Aij indicates the value of feature xi for the pattern j, and |S| is the
total number of patterns. LC indicates the Laplacian Centrality of vertex ui
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and is defined as

LC(ui, G) =
∆Ei

LE(G)
=
LE(G− LE(Gi)

LE(G)
,

where Gi is the graph obtained by deleting ui from G, and LE is the Laplacian
Energy of G. As the computation of influence value for each feature is com-
pleted, a comparison is performed with a threshold value δ. If the influence
value of the feature is smaller than δ the feature is added into a candidate
list for removal. Finally, the features of the candidate list are removed if the
difference between its size and the size of cluster is larger than a value ω.

2.1.3.2 Representation Entropy Clustering Feature Selection Algorithm
(REC-FSA)

An unsupervised learning technique which combined ranking and clustering tech-
niques was introduced by Panosopoulou et al. in [3]. The algorithm that was
introduced relied on the calculation of representation entropy, which is a typical
evaluation metric for measuring the amount of redundancy in the feature matrix.
The proposed technique relies on a backward search in the feature space and is
divided in three main steps:

1. rank the features with respect to the volume uncertainty

2. cluster features that exhibit high redundancy with a top-ranking feature,
which is appointed as the head of cluster

3. eliminate all members of the cluster from the feature space as redundant,
except from the cluster head

For the first step the procedure that was described in [47] was adopted and the
redundancy that each feature contributes to the data set A is calculated as follows:

dHm = HA\Am
−HA,

where Am is the set of samples corresponding to the mth feature and HA\Am
is the

representation entropy of A when the Am set of samples are not taken into account.
Value of dHm represents the difference in the uncertainty when the mth feature is
omited. On the other hand if the mth feature describes information with limited
variance or predictable behavior, then the value of HA\Am

will remain similar to
the one of HA. Therefore, the value of dHm → 0. Ranking of the feature vector is
the result of this procedure and the top-ranked feature vector m∗ is the one that
maximizes the value of dHm,m = {1, 2, ....,M}.

While performing the second step of the algorithm the search space is centered
around m∗. A k-nearest neighbor technique is employed and the goal is to cluster
the features that exhibit the higher value of redundancy with the feature m∗.
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Calculation of the pairwise representation entropy HAm∗,m between feature m∗

and the remaining features m is done, where m∗ 6= m,m ∈ fij and HAm∗,m =
[A∗m, Am] ∈ [0, 1]D×2. Values that come as a result from this process are sorted in
a descending order. The first k features, along with m∗, form a cluster of features
cm∗ :

cm∗ = m∗
⋃
{m|HAm∗,m ≤ hm∗(κ)}

where hm∗(κ) is the value of the pairwise entropy between the feature m∗ and
its κth neighbor.

Features that exhibit high redundancy with m∗ are accommodated in cluster
cm∗ . The latter is considered the dominating feature and, therefore appointed as
the cluster head. Subsequently, during the third step of the algorithm, the cluster
head m∗ remains in the search space as the representative feature of cluster cm∗ ,
while all remaining features in cm∗ are considered redundant and thus eliminated
[48]. The process is repeated until either all features are clustered and discarded,
or selected as dominating.

2.2 Classification

The κNN is a a simple but effective method for classification. For a data
record t to be classified its κ nearest neighbors are retrieved, and this forms a
neighbourhood of t. Majority voting among the data records in the neighbour-
hood is usually used to decide the classification for t with or without consideration
of distance-based weighting. However, to apply κNN successfully is very crucial to
choose carefully the value for κ.

Suppose P1 is the point, for which label needs to be predicted and κ equals to 1.
First, the nearest point to P1 is calculated and then the label of the nearest point
is assigned to P1. This paradigm is explained in Figure 2.3.

If the κ is equal to some other value and P1 label needs to predicted, the first
step is the calculation of κ close points to P1 and then classify points by majority
vote of its neighbors. Each object votes for their class and the class with the most
votes is taken as the prediction. In order to estimate the closest similar points,
calculation of the distance between points using Euclidean distance is required.
The concept of κNN is summarized in three steps:

1. Calculate distance

2. Find closest neighbors

3. Vote for labels
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Figure 2.3: Problem statement κNN

Figure 2.4: Steps of κNN



Chapter 3

Problem Statement, System
Architecture

In this Chapter formulation of the problem at hand is presented in a formal
way. Afterwards there is a brief introduction of network metrics used in this thesis
and the meaning of each one of them. Since this work exploits dominant features
extracted from feature selection, an evaluation is necessary through the evaluation
metrics. Finally, this Chapter concludes with the implemented system architecture.

3.1 Problem Statement

To state the problem at hand a WSN comprised of energy autonomous, power
constrained and IEEE 802.15.4 compliant sensor nodes is needed. The total number
of nodes is set N and the main characteristic is that their operation over long periods
of time is happening in an unattended fashion. Aspects of network monitoring are
implemented via a full protocol stack in each node that extends from the Physical
layer to the Application layer. Lifetime of each sensor node is described through
the adopted network policy, the hardware characteristics of the transceiver chip,
and the input voltage supply.

The in-network operation is characterized by the establishment of end-to-end
links which expresses the unicast connections between different sensor nodes at the
Application Layer. An end-to-end link between a sensor node i and a node j is
described as i → j and it is constructed over a network path Pij = {i..., k, ...j}
and k node in a relay node between the to end-to-end nodes i and j (Figure 3.1).

During network operation each node k ∈ Pij can monitor network metrics which
are relevant to the functionality of the node and the quality of the link i → j.
Those metrics span across the protocol stack and furthermore remain independent
of the specific solution that is adopted by each layer. Parameters that are being
monitored and represent the network functionality are the RSSI, LQI per received

15
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Figure 3.1: An example of an end-to-end link i → j and the corresponding path
Pij (dashed line), established over a multi-hop network topology (solid line) [3]

packet, the Noise Floor (NF), the unicast network activity at the MAC layer, the
battery level and the on-board temperature, humidity. Packets received by the
jth node and the packets transmitted by the ith node define the PRRij which
define the performance of the link. PRR set of values are set between 0 and 1
(PRR ∈ [0, 1]). Those values can be classified into discrete, user-defined labels lij .

The automated calculation of the network factors that are relevant and have
an impact on the classification of performance for the link i → j is the problem
at hand to different values of lij . As the deployments of a WSN shift towards
more complex non single-hop links, PRRij can be affected by different factors that
vary with respect to the operation space, the ambient conditions and intra-network
behavior. All related metrics are summarized in Table 3.1.

The result is a feature vector f ij of size M , which is consisted from different
network metrics available at different layers and different sides of Pij . The ques-
tion raised is whether the resulting vector conveys the dominating attributes can
characterize the network performance of the i → j link expressed in terms of a
class labels lij . Characterization of attributes as dominant implies that they have
sufficient information to predict value of class lij . The redundant information is
eliminated and thus the objective is to exploit the contents of f ij to automatically
calculate the subset of R features (R ≤ M) f∗ij ⊆ f ij that are most relevant to
define the performance of each link i→ j.

f ij → (PRX∗ij , LQI
∗
ij , NFij , |Pij |, Ti, Hi, Vi)
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Network Metric Description
PRX∗ij Receive Power over path Pij (dBm)
LQI∗ij Link Quality Indicator over path Pij

NF ∗ij Noise Floor Quality Indicator over path Pij

|Pij | Length of path Pij

Ti On-board temperature of the inth node (oC)
Hi On-board humidity of the inth node (%)
Vi Input power level for the ith node (Volt)

Table 3.1: The network metrics employed for forming the feature vector f ij

3.2 Metrics

As mentioned before metrics that were used in this work are Received Signal
Strength Indicator (RSSI), Link Quality Indicator (LQI),Noise Floor (NF),
Path length ,Temperature, Humidity, Battery voltage. Each one of them
denotes something different about the WSN and it’s operation. The following
paragraphs are dedicated to present each metric and what it represents.

RSSI is a measurement in telecommunications that presents the power of a
received signal strength. It is implemented and widely-used in 802.11 standards
[49]. LQI stands for Link Quality Indicator. LQI estimates how easily the received
signal can be modulated when considering noise in the channel [49]. Some practical
examples are presented in Figure 3.2.

Noise floor signal theory is the measure of the signal created from the sum of all
the noise sources and unwanted signals within a measurement system, where noise is
defined as any signal other than the one being monitored. In radio communication
and electronics, this may include thermal noise, black body, cosmic noise as well as
atmospheric noise from distant thunderstorms and similar and any other unwanted
man-made signals, sometimes referred to as incidental noise. If the dominant noise
is generated within the measuring equipment (for example by a receiver with a
poor noise figure) then this is an example of an instrumentation noise floor, as
opposed to a physical noise floor. These terms are not always clearly defined, and
are sometimes confused [50].

Path length denotes how many sensor nodes a packet needed to go through in
order to arrive to it’s final destination; the sink node. Overall, path length express
the end-to-end hop count from a source to a destination over the network. Routing
path performance can be evaluated as well as the reliability of the system.

Temperature in the proposed system is measured in degree Celsius. Each
sensor measures the temperature of the environment in which is deployed. As a



18 CHAPTER 3. PROBLEM STATEMENT, SYSTEM ARCHITECTURE

Figure 3.2: Examples of RSSI and LQI

metric is very useful because it provides information about the environment and if
it is combined with other metrics such as LQI and RSSI can deliver useful insights
about the WSN operation.

Humidity in the proposed system is measured by a percentage. Its value denotes
the amount of water vapour present in the air. It ranges from 0% to 100%.

Battery voltage is measured in volts and it defines the operation of wireless
sensors. As the WSN operates the battery voltage in each mote fades up to the
point that the mote cannot operate anymore. It’s important to keep that informa-
tion and notice how it affects the network operation throughout it’s lifetime.

Packet loss rate (PLR) is a crucial and popular link quality metric for wireless
sensor networks (WSNs) [51]. A proposed model was introduced that connects PLR
to link quality indicator (LQI). Specifically the proposed PLR model for 802.15.4
links, is a function of LQI and packet payload size.



3.3. SYSTEM ARCHITECTURE 19

PLR =
1

1 + (α/L) ∗ exp(β ∗ LQI)

LQI denotes the value of LQI, L is the packet payload size in bytes, and α and
β are two model parameters.

3.3 System Architecture

In this section the proposed system architecture is going to by analyzed thoroughly.
The proposed system operates in two modes. Either data are parsed through a file,
either the system operates as a unit with a real time operating wireless sensor
network and performs analysis on the fly. Figure 3.3 presents flow of data inside
the system’s implementation.

First step is the data segmentation. Data is divided into time segments S1, S2, ..Si
and its size can be defined as Ssize. The computation of each segment is based on
the timestamp that data had been collected. Next step includes the division of
each segment Si into observation windows W1,W2, ...Wj with size Wsize. For ex-
ample if segmentation size is set to x hours the observation window will be set in y
minutes. For every observation window there is an overlapping value set to it inten-
tionally to improve the efficiency of the next steps (i.e feature extraction). As the
computation of observation windows is completed, the feature extraction process
begins. For each metric that can be found in the data for each observation window,
its feature is computed (for example for RSSI measurements the possible features
would be the mean value, the standard deviation etc). Features which have been
extracted from each observation window are then fused into a feature matrix where
the columns represent each metric’s feature. This feature matrix is then parsed to
the Bucket of Feature Selection Algorithms (BFSA) which outputs reduced feature
matrices that are equal to the number of feature selection algorithms that are being
used.

Once the information from the BFSA is extracted, the evaluation process of
this output is initiated. The employed mechanism is presented in Figure 3.4.
Reduced feature matrix alongside the initial feature matrix is passed through this
evaluation process in order to compute the representation entropy of the reduced
matrix, and the compressing ratio. For the classification accuracy process there
is an additional step where the computation of labels for Packet Reception Ratio
is needed. For a specific segment for each observation window that constitutes it
the computation of Packet Reception Ratio is held in order to form a matrix with
the segment’s packet ratio values. These values are then labeled and parsed to the
classification accuracy process along with the dominant features in order for the
classifier to predict some randomly chosen missing values. Results of this process
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are then stored for post-processing. The process of evaluation is repeated for each
segment Si.

3.3.1 Offline Analysis

Offline analysis uses as input data that came from a file. It’s form needs to be
defined in order for the system to understand the data that is being given to it.
Computation of each segment timestamp and each observation window with the
overlapping is essential. The first (or starting) timestamp comes from the first line
of file. All segment timestamps are being computed till the last line of the file.
Data for each observation window are imported and the computation of features
begins. After features are computed for each observation window are then imported
into a matrix for a corresponding segment. This process is repeated until the last
segment. Finally data are parsed to BFSA and as a result reduced feature matrices
are extracted.

Next step is the evaluation of dominant attributes that were extracted from the
feature selection process. Compression ratio,representation entropy and execution
times is the three evaluation steps. The final and fourth step is to evaluate the
extracted information (dominant features) via classification accuracy process. As
the evaluation step is completed the results are written to a file for post processing.

3.3.2 Online Analysis

Online analysis operates differently than offline. Specifically, the main difference
is the way that analysis is being held. It is done for the data that have been
collected for a segment length from a real time operating WSN. For example if
data collection starts at 17:00 and the segment size is set to 2 hours, the first
analysis will be conducted at 19:00 for the data that have been collected from
17:00-19:00. The next analysis will happen at 21:00 and the data window will be
from 19:00 to 21:00.

As data are gathered for the feature selection process the data collection process
is still operating without intervention. Data are divided into observation windows
with the user-defined overlapping pattern. For each observation window matrix,
computation of features is conducted. The features from each observation window
are then concatenated into one matrix which represents the features for a whole seg-
ment. The feature selection process is called in order to extract the most dominant
ones. Finally the last step is the evaluation of this information via classification,
representation entropy, compression ratio and execution times.

This process will be repeated every segmentation size hours which is defined
by the user. As long as the WSN provide the system with sufficient data, it will
continue to analyze and evaluate them. The analysis is called online because the
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data analyzed have gathered at a similar close time to the operating WSN. The
focus of online analysis is the central processing unit. The offline analysis was
held by a Personal Computer equipped with an Intel Core i7-6700 at 3.4 GHz and
RAM size of 16 GB RAM. On the other hand, online analysis (data collection,
feature computation, evaluation) was conducted by an Odroid U3+ single board
computer. This computer has computational limitations due to its 1.7 GHz quad
core processor and 2 GB LPDDR2 RAM. Overall, the proposed system is efficient
enough to run on those constraints.
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Figure 3.3: System Architecture Flow of Information
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Figure 3.4: System Architecture For Evaluation on Extracted Information
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Chapter 4

Evaluation Studies

This Chapter provides information regarding the evaluation metrics for better
comprehension of the results. Furthermore experimental setup information for the
system’s supported modes is provided (offline/online). Data used in offline analysis
was gathered from a WSN that operated in a desalination plant in the framework
of Hydrobionets project. In online analysis data was gathered from a real-time
working WSN deployed inside the University of Crete specifically in the classrooms
of Computer Science’s Department. The extracted information was evaluated on
various perspectives.

4.1 Evaluation Metrics

In the following sections some concepts regarding the evaluation of the feature
selection process are presented. This subsection is dedicated to present those con-
cepts for better coherence. Specifically, concepts such as compression ratio,
representation entropy and classification accuracy. Since the system has
two feature selection algorithms, provided information is going to be compressed.
Compression ratio denotes the rate of information after the feature selection pro-
cess. For example if a total number of 100 features are given to feature selection
process and 50 were returned, the compression ratio is 50%.

Compressed information could contain sufficient data that could represent the
initial ones. In order to define how good the reduced information, representation
entropy computation is needed. As a typical evaluation metric, it defines the
amount of redundancy in a matrix [48]. In order to interpret this information better
it’s value is normalized between 0 to 1. The closer the value it is to 1, the better
quantity of information is provided in contrast to the initial data. Representation
entropy is computed through the following formula:

H(X) = −
n∑

i=1

p(xi) log p(xi)

25
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In order to produce more understanding results, representation entropy values are
being normalized from 0 to 1 where 0 denotes that the reduced information cannot
represent the initial data well and 1 denotes that the information can represent
well the initial data.

Classification accuracy is a metric which evaluates classification models [52].
Labels are an essential part for the data representation that are going to be pre-
dicted. Next step of the process, is the separation of data between training and
testing. Testing data are then copied and labels are being subtracted from the data.
When training process is completed, the data are being used to predict the miss-
ing labels from the testing data. A comparison is being done after the prediction
of the labels with the actual data before the subtraction. Formally, classification
accuracy has the following definition:

classification accuracy =
Number of correct predictions

Total Predictions

4.2 Offline Experimental Setup

As mentioned in previous section the proposed system has two modes; offline and
online. For the offline mode data comes from a dataset that was developed under
Hydrobionets project. The WSN was deployed at an industrial environment during
the period 05-06/06/2014. Sensor nodes that were employed were AdvanticSyS
XM1000 and CM5000-SMA which are IEEE 802.15.4-compliant devices. The sink
node that was used was a pandaboard. All described devices are presented on
Figure 4.1

The WSN, comprised N = 10 nodes was part of an industrial smart water net-
work which was deployed at a fully functional pilot desalination plant ( 40 x 12 s.m).
Its purpose was to monitor and control the phenomenon of fouling process. This
is related to the concentration of unwanted bacterial matter on the surface of the
reverse osmosis membranes.

The sensors were deployed on key factor locations. Namely the sea water intake,
the pre-treatment, the security filters and the reverse osmosis. The deployment as
a result was a challenging one since various factors affected the communication.
For example the metallic environment, bulky water tanks, heavy machinery and
operating devices such as pumps and valves and finally the human presence of
technical stuff.
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Sensors operated with non-rechargeable batteries. Information regarding the
network metrics and other data (such as temperature, humidity etc) were imple-
mented through a customized protocol stack. The transmission period was set to
6 seconds. Deployment is presented on Figure 4.2.

Figure 4.1: Hardware Used in Hydrobionets project

In order for this analysis to take place data is parsed from the Hydrobionets
project which took place in an industrial environment with 10 IEEE 802.15.4 com-
pliant sensor nodes and sampling rate set to 6 seconds. Data has been analyzed
entirely and divided into various observation window and segment sizes. Various
parameters were examined. Behavior of representation entropy, compression ratio,
classification accuracy, dominant statistics, dominant metrics and execution times
are presented in the follow sections.
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Figure 4.2: Industrial Deployment of [3]

As a first step there was an analysis of data for the κ parameter of the REC-FSA
feature selection algorithm. There was a formulation of experiments which could
display the results as far the representation entropy values. The main goal was
to achieve high results from REC-FSA regarding the representation entropy. The
value of κ was expressed as a percentage of rows of the initial feature matrix. Those
results are presented in Figures 4.3, 4.4, 4.5, 4.6.

Figure 4.3: Representation Entropy of REC-FSA in various κ sizes 2 hour segments
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Figure 4.4: Representation Entropy of REC-FSA in various κ sizes 4 hour segments

Figure 4.5: Representation Entropy of REC-FSA in various κ sizes 8 hour segments

As the size of κ is increases the extracted results from REC-FSA provide higher
Representation Entropy results. This due to the increased size of dominant/reduced
attributes that the feature selection algorithm outputs. Driven by these results the
κ value for the experiments was set 80%× size Of Rows Of Feature Matrix.
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Figure 4.6: Representation Entropy of REC-FSA in various κ sizes 12 hour seg-
ments

4.3 Representation Entropy

Figures 4.7, 4.8, 4.9, 4.10 shows the results for representation entropy in dif-
ferent segmentation and observation sizes. For segmentation size set to 2 hours is
noticeable that REC-FSA algorithm has a more dense distribution of values than
GCNC through various observation window sizes. Mean value of representation
entropy for observation window size of 2 and 10 minutes is the same in both algo-
rithms. The minimum value of representation entropy for the REC-FSA algorithm
is lower than GCNC for observation window sizes of 2 and 5 minutes. Another
observation in 2,4,8,12 hour segmentation plot is that the increased size of observa-
tion windows do not necessary lead to better representation results. For example
2 minute observation window for GCNC has the best representation entropy dis-
tribution than other observation window sizes for the same algorithm. Finally
the GCNC representation entropy value distribution become more dense as the
observation window size increases.

Similar observations can be made also in 4 hour segmentation size figure. Again,
REC-FSA has a more dense distribution between the various observation window
sizes than GCNC. For segmentation sizes set to 8 and 12 hour respectively, a
different behavior can be detected. Bigger segmentation in the data lead to smaller
density of values. Comparatively, smaller segmentation sizes imply a bigger density
in representation entropy values. An advantage of those values for GCNC algorithm
is becoming more intense for segment size of 12 hours.
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Observation window size is an important factor that affects representation en-
tropy. If it is increased, fewer data consist the feature matrix in each segment. As
a result, low observation window sizes such as 2,5 minutes perform better than the
larger ones. Bigger segmentation sizes (more data in each segment) do not guar-
antee better results. Although there is a lower distribution of values in 12 hour
segmentation than in 4 hour segmentation.
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Figure 4.7: Representation Entropy of system from Hydrobionets dataset for 2
hour segments and various observation window sizes

4.4 Compression Ratio

In Figures 4.11, 4.12, 4.13, 4.14 compression ratio values for each feature
selection algorithm is presented in box plots for each segment and observation
window sizes. It is distinct, that GCNC outperforms REC-FSA in any segment
size and observation window with better compression ratio which exceeds 94%. On
the other hand, there are cases that this compressed information cannot represent
the initial data as good as the REC-FSA, so vital information is being lost. For
example this behavior is encountered for segment size of 4, 8 hours and observation
window size of 10, 5 minutes respectively. Overall though, GCNC has performed
better for both representation entropy values and compression ratio.
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Figure 4.8: Representation Entropy of system from Hydrobionets dataset for 4
hour segments and various observation window sizes

Compression ratio of both algorithms is very high, but the important observation
is that even though the returned information is less than 30% of the initial one, it
can still represent it pretty accurate. This conclusion can be extracted if informa-
tion from figures (4.7, 4.8, 4.9, 4.10 and 4.11, 4.12, 4.13, 4.14) is combined.
As a behavior seems to be common for every segmentation and observation window
size.

4.5 Classification Accuracy

In order to test how well the compressed information can reconstruct the initial
one, the system uses k-nearest neighbors classification algorithm (KNN). By pre-
dicting the packet reception ratio labels and compare them with the actual ones,
a percentage of accuracy is produced. Figures 4.15, 4.16, 4.17, 4.18 shows
those results for various segment and observation window sizes. Occasionally both
unsupervised feature selection algorithms can achieve 100% accuracy. As a result,
compressed information is enough to represent missing values accurate. Gener-
ally, both algorithms produce very accurate results which exceed 92% for every
segmentation and observation window sizes. Nevertheless, for segmentation size of
2 hours and observation window of 5 and 10 minutes the classification accuracy
results approached 100%.
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Figure 4.9: Representation Entropy of system from Hydrobionets dataset for 8
hour segments and various observation window sizes

4.6 Execution Time

Evaluation of both feature selection algorithms can be done though measurement
of execution times for each one of them. Clearly in figure 4.19, 4.20, 4.21, 4.22,
GCNC outperforms REC-FSA. For both algorithms execution times are below 5
seconds which is fast, although GCNC most of the times runs below 0.5 seconds.
Behavior of REC-FSA has a lower performance especially in the 2 minute observa-
tion window size. Data size towards the feature selection algorithms increases, as
observation window size shrinks. Due to that increased number of data REC-FSA
operates slower than GCNC. The reason behind this number is the implementation
of GCNC though graphs which are faster than the linked lists that are used for the
implementation of REC-FSA.

As segmentation window size increases, GCNC algorithm execution times re-
mains intact and below 0.5 seconds. On the other hand REC-FSA does not have
the same behavior. Clearly, as segmentation size increases the execution time of
REC-FSA increases as well. For example in the minute observation window the
max execution for 2 hour segments was 1 second and for 8 hours segments was 3
seconds. This means that as the data are increased due to larger segmentation sizes
so does the execution time of the algorithm. In addition, observation window sizes
are also an important factor that affect the performance of REC-FSA. For example
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Figure 4.10: Representation Entropy of system from Hydrobionets dataset for 12
hour segments and various observation window sizes

in 8 hour segmentation size execution times of REC-FSA are lower as observation
window size increases. This phenomenon is logical because as observation window
size increases fewer attributes are inserted in the dominant feature matrix of this
segment.

In the following section an temporal aspect analysis was conducted as far the
dominant attributes produced by both algorithms in various segment and observa-
tion window sizes.

4.7 Temporal Aspect Analysis

First the behavior of both FSAs was evaluated through a fixed set of segment
size (i.e 2 hours). Figure 4.23 displays the number of dominant attributes per ob-
servation window size of 2, 5 and 10 minutes. As the observation window increases
the sum of extracted dominant features either decreases (in 5 minutes) or increases
(between 5 minute and 10 minute observation windows). Since the algorithms does
not display a standard behavior for the various window sizes, the observation of
the algorithm behavior in small observation window size (2 minutes) was selected.
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Figure 4.11: Compression Ratio of system from Hydrobionets dataset for 2 hours
segment and various observation window sizes

An analysis was held for observation window size of 2 minutes and various seg-
ment sizes (2,4,8,12 hours) regarding the behavior of dominant attributes that the
Feature Selection Algorithms (FSAs) produced.

At first the goal was to observe the number of dominant attributes that each
algorithm outputs when the segment size is increasing. Figure 4.24 displays the
aforementioned behavior. Clearly, the number of total produced dominant features
is declining as the segment size increases because the division of the dataset is
different. The duration of the network in the collected data is 48 hours and the
division of that value by 2 returns a number of 24 segments. However, if the division
is done with a value of 12 (hours) the segments are only 2.

Driven by the aforementioned results the analysis was extended to the perspec-
tive of the most dominant attribute that each algorithm produced for a segment
size of 2 minutes and various segment sizes. Starting from the GCNC FSA the
figures 4.25 4.26, 4.27, 4.28 present the number of appearances of dominant
attributes for different segment sizes (2,4,8,12 hours).
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Figure 4.12: Compression Ratio of system from Hydrobionets dataset for 4 hours
segment and various observation window sizes
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Figure 4.13: Compression Ratio of system from Hydrobionets dataset for 8 hours
segment and various observation window sizes



38 CHAPTER 4. EVALUATION STUDIES

2min

GCNC

   2min

REC-FSA

5min

GCNC

  5min

REC-FSA

 10min

 GCNC

  10min

REC-FSA

Observation Window & Algorithm Used

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

 %

Compression Ratio: 12 Hour Segmentation

Figure 4.14: Compression Ratio of system from Hydrobionets dataset for 12 hours
segment and various observation window sizes
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Figure 4.15: Classification Accuracy of system from Hydrobionets dataset for 2
hour segment and various observation window sizes
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Figure 4.16: Classification Accuracy of system from Hydrobionets dataset for 4
hour segment and various observation window sizes
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Figure 4.17: Classification Accuracy of system from Hydrobionets dataset for 8
hour segment and various observation window sizes
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Figure 4.18: Classification Accuracy of system from Hydrobionets dataset for 12
hour segment and various observation window sizes
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Figure 4.19: Execution Time of each feature selection algorithm for 2 hour segment
and various observation window sizes
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Figure 4.20: Execution Time of each feature selection algorithm for 4 hour segment
and various observation window sizes
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Figure 4.21: Execution Time of each feature selection algorithm for 8 hour segment
and various observation window sizes
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Figure 4.22: Execution Time of each feature selection algorithm for 12 hour segment
and various observation window sizes

Figure 4.23: Number of Attributes for segment size of 2 hours and various obser-
vation window sizes
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Figure 4.24: Number of Attributes for observation window size set to 2 minutes
and various segment sizes
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Analyzing the figures, it is clear that the most dominant feature was the Root
Mean Square (RMS) of Noise Floor for the sink node. This observation is logical
since the WSN that was in operation was deployed near heavy industrial machinery
so the Noise was present in the environment. The second most common feature
varied as the segment size changes. For example in figures 4.25, 4.26, the skew-
ness for LQI of sink node appeared as the second most dominant attribute. In
figure 4.27 GCNC ranked second the interquartile range of LQI for sink node.
Figure 4.28 displays that several attributes ranked second as the most dominant.
Humidity measurements described by mode, skewness of LQI for sink node and
interquartile range of LQI for sink node were all ranked second. The same type of
analysis was also conducted for REC-FSA feature selection algorithm.

Figures 4.29, 4.30, 4.31, 4.32 display the dominant attributes along with the
number of total appearances. The first ranked feature in figures 4.29, 4.30, was
the RMS of LQI for sink node. In figures 4.31 4.32 there isn’t a feature that
outranked the others. In 8 hour segment size the most dominant features with
three appearances were the spectral entropy of Noise Floor for the source node and
the skewness of LQI for a link in the WSN. In 12 hour segments various features
appeared as most dominant. This behavior led to the observation that for REC-
FSA algorithm as the segment size is increasing the most dominant attributes are
increasing as well.
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4.8 Conclusions for Offline Analysis

Overall, offline analysis produced very high results regarding the representation
entropy and classification accuracy. As a result, the information that was produced
from the feature selection algorithms was enough and capable of representing the
initial one. This behavior of good results could come from the distribution of
packets in observation windows. Figure 4.33 presents the time difference between
two packets for each sensor node (1-10). From the figure it could be implied that
there is a significant distribution of packets below 6 seconds that was the initial
information of the Hydrobionets dataset.

Figure 4.33: Time difference of packets for each sensor from Hydrobionets Dataset

The temporal aspect analysis displayed several behaviors regarding the FSAs.
First an increase of observation window does not necessarily lead to an increase to
dominant features. There is either an increase or decrease. GCNC algorithm could
denote a most dominant feature as the segment size increases. On the other hand
REC-FSA had several most dominant features especially in 12 hour segments.
Driven by the aforementioned results, a choice was made regarding the real-life
WSN deployment. Segment size would be set to 2 hours and the observation
window size will be equal to 2 minutes. Furthermore, another aspect should be
considered and it involves the sampling rate of sensors. As a result, two sampling
rates were chosen. First was 6 seconds (same as the dataset) and the other was 18
seconds. The following sections describe the analysis that was conducted.
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4.9 Online Experimental Setup

Online experimental deployment is presented in figure 4.35. Experiments were
conducted inside Computer Science Department (CSD) at University of Crete.
Two classrooms hosted the deployment of sensor nodes. Motes compliant with
IEEE 802.15.4 were used and specifically Zolertia’s Z1 devices[53]. The device is
presented in figure 4.34. As sink node the same type of mote was used in order to
pass information to Odroid single board computer [28] which stores the information
and performs the feature selection process.

Figure 4.34: Zolertia’s Z1 sensor mote

Actual deployment of nodes is also displayed in the following figure 4.36. Sensor
nodes were deployed at an indoor environment with various factors to interfere
with their communication. Some of them were operating personal computers, ob-
stacles such as walls, doors and interference from the University’s Wi-Fi and other
electronic devices.

Results from online system are presented below. Analysis is divided into two
parts. Packets were sampled and sent every 6 seconds for one set of experiments and
18 seconds for another set. The set of experiments includes feature selection process
being called every 2 hours (segment size) with 2 minute observation windows. Data
are collected at real time from a WSN gathered at sink node and then parsed for
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Figure 4.35: Deployment of sensor nodes inside CSD rooms

computation. Data are divided to the defined size of observation window size,
features are computed and the feature matrix of a segment is completed. Then
this matrix is parsed to the BFSA for feature selection and the reduced feature
matrix is extracted. In order to evaluate the produced result a focus has been
made on representation entropy, compression ratio, classification accuracy, packet
reception ratio, metric and statistic with the greatest appearance.

nd every 6 hours for 6 minute observation windows.

4.10 6 Second Sampling Rate Analysis

4.10.1 Representation Entropy

Representation entropy values for online system when sampling rate is set to 6
seconds has a big distribution. Figure 4.37 displays that distribution for both
feature selection algorithms. Max value of GCNC is below 1 and for REC-FSA is
1. Representation entropy values range between 0.05 and 0.6 for GCNC and 0.15 to
0.85. Mean value of representation entropy of REC-FSA algorithm is better than
GCNC’s so overall, from representation entropy’s perspective REC-FSA performs
better.

4.10.2 Classification Accuracy

Figure 4.38 present the performance of each algorithm extracted information
for prediction of packet reception ratio labels. At fist glance, both feature selec-
tion algorithms seems to have similar performance. Although, minimum value of
classification accuracy is spotted for the second features selection algorithm. Mean
value of REC-FSA is higher than GCNC and the distribution of values are higher
in REC-FSA than GCNC. On the other hand GCNC has achieved classification
accuracy of 100% than REC-FSA which is a little lower than that. Considered
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that REC-FSA performed also better in representation entropy value is logical
that better information can lead to better label prediction by the KNN algorithm.

4.10.3 Compression Ratio

Compression ratio performance is showed in figure 4.39. GCNC outperforms
REC-FSA with compression ratio values range from 93 to 96%. Mean values for
both feature selection algorithms have a difference of 16% which has an impact in
the extracted information. GCNC returns more reduced information than REC-
FSA so it affects both representation entropy values and classification accuracy.
Previous conclusions can be verified, by the behavior of compression ratio for both
feature selection algorithms.

4.10.4 Classification Accuracy And Packet Reception Ratio

Classification accuracy in respect to packet reception ratio values is showed in
figure 4.40, 4.41. In figure 4.40 values of classification accuracy varies in different
packet reception ratios. There isn’t a certain behavior between day and night
time. High packet reception ratios do not guarantee high classification accuracy
values. For example during time interval of 18:04-20:04 even though there is packer
reception ratio of 90% packet reception ratio is 50%. Another example is at the
end of the experiment where classification accuracy for GCNC is 100% even though
the packet reception ratio is 55%. This can only mean that the packet reception
ratio labels for that particular segment is similar.

For REC-FSA behavior of classification accuracy and packet reception ratio
seems to be the same as GCNC. Both algorithms seems to be very close to the
classification accuracy results with small differences such as in time interval of
4:04-6:04 where classification accuracy of REC-FSA exceeds GCNC by 12%.

4.10.5 Dominant Statistical Aspect

Statistical with most appearance for experiment of sampling 6 seconds is pre-
sented in figures 4.42, 4.43. Mean and median statistical have the most ap-
pearances in segments for GCNC algorithm (figure 4.42) of 4 times each. On the
other hand REC-FSA algorithm gave mean statistical in 5 segments and kurtosis
appeared in 3 segments.

4.10.6 Dominant Metric Aspect

Display of the most common metric inside each segment is presented in figures
4.44, 4.45 for each feature selection algorithm. For both feature selection algo-
rithms was the most common metric that appeared as dominant for most of the
segments. Although packet loss rate, path length,RSSI also appeared as dominant
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in some segments but Noise Floor surpassed them in times of occurrence. REC-
FSA algorithm denotes in segment time of 2:04 - 22:04 different dominant metric
than GCNC. Those metrics that appear is RSSI, LQI, path length and battery.
RSSI and LQI as dominant attribute means that there are value fluctuations for
these metrics which leads to the conclusion that noise interfered to the received
signal and distorts it. Path length as dominant feature explains that packets either
travels through a short path or a long path inside the WSN. Certainly there is
an important variation of values for path length in order to appear as dominant
feature.

4.10.7 Conclusions for 6 second Sampling Rate

Analysis of 6 second sampling rate produced moderate results regarding the
representation entropy and classification accuracy. For the particular experiment
Packet Reception Ratio values varied throughout the operation of WSN and so
did the classification accuracy. The implemented feature selection algorithms per-
formed similar with small value differences. An exception though still existed
regarding the compression ratio where GCNC achieved higher values.

Figure 4.46 displays the distribution of packets throughout time. Packets for
each node are gathered round 6 seconds.

4.11 18 Second Sampling Rate Analysis

4.11.1 Representation Entropy

Representation entropy values inside segments is presented in figure 4.47. REC-
FSA excels over GCNC in value distribution. Mean value of REC-FSA is below
0.25 and GCNC is 0.1. Max value for each feature selection algorithm is above
0.35 for REC-FSA and below 0.2 for GCNC. For both algorithms value of repre-
sentation entropy is low, so the returned information cannot reconstruct the initial
information so well.

4.11.2 Classification Accuracy

Classification accuracy distribution values is presented in figure 4.48. Mean
value for REC-FSA is approximately 55% and for GCNC is above 50%. Overall,
GCNC algorithm performed worse than REC-FSA with larger distribution values.
Minimum value of GCNC is lower than REC-FSA, so it is clear that REC-FSA
outperformed GCNC and as a conclusion the returned information from that al-
gorithm gave enough information for better prediction of packet reception ratio
values.
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4.11.3 Compression Ratio

Compression ratio performance is showed in figure 4.49. GCNC outperforms
REC-FSA with compression ratio values range from 93 to 96%. Mean values for
both feature selection algorithms have a difference of 16% which has an impact in
the extracted information. GCNC returns more reduced information than REC-
FSA so it affects both representation entropy values and classification accuracy.
Previous conclusions can be verified, by the behavior of compression ratio for both
feature selection algorithms.

4.11.4 Classification Accuracy And Packet Reception Ratio

Classification accuracy in respect to packet reception ratio is displayed in figures
4.50,4.51. For segments of time 17:41 - 11:41 is obvious that even though packet
reception ratio values are between 95-100% classification accuracy does not reach
the same values. As mentioned before representation entropy values from the
returned information is low so this has an impact on the prediction of packet
reception labels. During date time classification accuracy values seem to perform
better than night time. Both feature selection algorithms perform similarly when
it comes to classification accuracy with small value differences (1-13%).

4.11.5 Dominant Statistical Aspect

Statistical with most appearance for experiment of sampling 18 seconds is pre-
sented in figures 4.52, 4.53. Mean and kurtosis statisticals have the most ap-
pearances in segments for GCNC algorithm (figure 4.42) with 6 and 5 segments
each. On the other hand, REC-FSA algorithm gave mean and spectral entropy
statistical in 5 segments.

4.11.6 Dominant Metric Aspect

Metrics that appeared most as dominant attributes are presented in figures
4.54, 4.55 for each feature selection algorithm. Metric that appeared most for
several segments was packet loss rate (figure 4.54. Computation of this metric is
depended from LQI. Packet loss rate formula also depends from parameters a,b
and payload size which are constant. As a conclusion this metric was affected
by distortions of the LQI value and as a result GCNC algorithm. Even though
it appears as dominant metric packet reception ratio for those segments is very
high except in the segment 7:41 - 9:41 (figure 4.50) where packet reception ratio is
between 85% - 90%.

REC-FSA algorithm showed different behavior regarding the metric with the
most appearance. Figure 4.55 displays that the most common metric in segments
was Noise Floor. Interference of noise affected the network and it’s value in a way
that the feature selection algorithm extract it as dominant for each segment. In
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the meantime where noise floor weren’t the most dominant feature, LQI and RSSI
appeared two times. As a conclusion variation in these metric values has happened
in order for REC-FSA algorithm to choose it as dominant. Noise interference is
the reason behind this variation.

4.11.7 Conclusions for 18 second Sampling Rate

Analysis of 18 second sampling rate produced moderate results regarding the rep-
resentation entropy and classification accuracy. Even though the packet reception
ratio was above 70% the information extracted from the feature selection process
couldn’t represent the initial one that well.

4.12 Conclusions Between the different Sampling Rate
Results

Various conclusions were implied above from the displayed results. Different
sampling rate lead to different system behavior. For example representation en-
tropy values are better when sampling rate is set to 6 seconds rather than 18
seconds. Even though the extracted information represents better the initial one
when sampling rate is set to 6 seconds, classification accuracy values seems to be
similar.

Compression ratio also has the same behavior with similar results for GCNC
algorithm, although for REC-FSA the values of compression ratio have a bigger
distribution in 6 seconds rather than 8 seconds sampling. Reason behind this
behavior is data size that the feature selection algorithm receives. Maybe for
REC-FSA as data size decreases the distribution of compression ratio increases.

GCNC algorithm from the statistical perspective gave different statistics as dom-
inant for each sampling rate. In 6 second sampling the greatest appearance of a
statistic was mean and median in 4 segments each and in 18 second sampling
median and kurtosis appeared in 6 and 5 segments respectively. REC-FSA on the
other hand had mean statistic as the most common statistic in both sampling rates.
The second greatest statistic for this feature selection algorithm was kurtosis in 6
second sampling and spectral entropy in 18 second sampling.
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Figure 4.36: Experimental Setup Display. Node positions inside the classroom on
top 3 pictures, sink and odroid in the bottom one
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Figure 4.37: Representation Entropy box plot for each Feature Selection Algorithm
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Figure 4.38: Classification Accuracy box plot for each Feature Selection Algorithm
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Figure 4.39: Compression Ratio for each Feature Selection Algorithm
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Figure 4.40: Classification Accuracy and Packet Reception Ratio in each segment
for GCNC feature selection algorithm
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Figure 4.41: Classification Accuracy and Packet Reception Ratio in each segment
for REC-FSA feature selection algorithm
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Figure 4.42: Statistical with the highest appearance for GCNC feature selection
algorithm
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Figure 4.43: Statistical with the highest appearance for REC-FSA feature selection
algorithm
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Figure 4.44: Metric with the highest appearance for each feature selection algorithm

18:4 20:4 22:4 0:4 2:4 4:4 6:4 8:4 10:4 12:4 14:4 16:4 18:4 20:4 22:4 0:4 2:4 4:4

Segment Time

RSSI

LQI

NF

Temperature

Humidity

Path Length

Plr

Battery

M
e

tr
ic

Metric with the Greatest Appearance REC-FSA->2h:120sec

Figure 4.45: Metric with the highest appearance for each feature selection algorithm
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Figure 4.46: Time difference of packets for each sensor from University’s Experi-
ment
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Figure 4.47: Representation Entropy box plot for each feature selection algorithm
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Figure 4.48: Classification Accuracy box plot for each feature selection algorithm
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Figure 4.49: Compression Ratio for each feature selection algorithm
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Figure 4.50: Classification Accuracy and Packet Reception Ratio in each segment
for GCNC feature selection algorithm
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Figure 4.51: Classification Accuracy and Packet Reception Ratio in each segment
for REC-FSA feature selection algorithm
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Figure 4.52: Statistical with the highest appearance for GCNC feature selection
algorithm
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Figure 4.53: Statistical with the highest appearance for REC-FSA feature selection
algorithm
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Figure 4.54: Metric with the highest appearance for each feature selection algorithm
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Figure 4.55: Metric with the highest appearance for each feature selection algorithm



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis focused on the problem of unsupervised feature selection for perfor-
mance characterization of a WSN without human intervention. Previous works
have tried different approaches which were based exclusively on information of
point-to-point links. Those studies can provide only partial representation of the
network’s performance. Machine learning approaches that were adopted by those
studies demand the training of a classifier in order to predict link-quality perfor-
mance which leads to network overhead. Our proposed system adopted an unsu-
pervised approach where performance characterization is done via robust and low
complexity learning methods which don’t require a classifier to be trained. As a
result, an efficient mechanism was developed which can run on an Odroid U3+
single board computer [28]. Our objective was to demonstrate the performance of
end-to-end links over a multi-hop network via unsupervised selection of dominant
features that have crucial impact. The system was tested on data gathered from a
WSN that operated in a desalination plant in the framework of the Hydrobionets
Project (dataset) for the offline mode. In online mode data was parsed to the sys-
tem from a real-time operating WSN that was deployed inside the University’s of
Crete classrooms. Both experiments lead to several important observations. The
deployment of our real-time WSN has shown that sampling rate of sensors is a
factor that affects the performance of dominant feature selection. Specifically per-
formance was increased when the sampling rate was set to 6 seconds instead of 18.
In offline mode the extracted information had better quality in terms of represen-
tation entropy than the online, however the deployments can’t be compared due
to different hardware and environmental setup.

5.2 Future Work

The extensions of this work are numerous. Deployments of the WSN in this work
could be done in various environments (indoor or outdoor) to check the performance
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characterization for various conditions. Since an analysis was held to the dominant
characteristics of a mutli-hop sensor network there could be actions that lead to
better network performance. Therefore a decision making component could provide
the mean to change the network characteristics by adapting the WSN routing
protocol and communication.

The system is based on unsupervised feature selection methods. A way to im-
prove the network’s dominant feature extraction is based on the increment of unsu-
pervised feature selection methods by 1 or 2. The results for each feature selection
algorithm will be compared for each segment and the best ones are parsed to the
decision making component in order to adjust the network accordingly.

This work has focused on a low cost and extendable implementation. Certainly,
since there is a growth of technology in various parts of human life, from Inter-
net of Things to Smart Cities and Smart Water implementations, it could be a
part of those applications. It could constitute a Smart Water implementation and
monitor the network operation and how it is affected though several conditions (i.e
soil, temperature and humidity parameters) especially in remote places where the
electricity infrastructure is incomplete and only battery operated network could be
deployed.
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