
A Massively Parallel Regular Expression and String
Matching Engine for Commodity Hardware

Dimitris Deyannis

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Advisors: Prof. Evangelos Markatos, Dr. Sotiris Ioannidis

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

Abstract

String pattern matching is one of the most studied fields in the research community,
mainly due to the fact that it can be used and applied in various and diverse fields, such as
computer science, computational biology, chemistry and others. Since 1970, researchers
aim to develop algorithms for efficient string searching and until today, the problem of
pattern matching remains a popular area for studying.

Recently, in order to cope with the ever advancing technology, parallel computing
platforms –such as CUDA and OpenCL– offer general purpose programming using tradi-
tional CPUs, hardware accelerators and GPUs.

In this work, we propose a framework for string pattern matching on parallel hardware
architectures. Using CUDA and OpenCL, our framework offers uniform execution on
any processor available in a system. The framework provides an abstraction layer to the
user –without penalizing the performance– and it is provided as either a C- or Java-like
API. Except for simple string matching, our engine supports the use of multiple regular
expressions that comply with the POSIX ERE standard. Specifically, we achieve the
simultaneous matching of multiple simple strings and binary patterns against multiple
data streams as input. Finally, our framework manages to simultaneously match large sets
of regular expressions against multiple data streams.

The performance evaluation shows that our massively parallel engine can achieve up
to 21 times performance increase when processing simple strings and up to 15 times
when processing regular expressions, compared to the CPU versions of both matching al-
gorithms. Specifically, the engine can sustain string matching throughput up to 65Gbits/s
and regular expression matching throughput up to 50Gbits/s.

Περίληψη

Το ταίριασμα αλφαριθμητικών προτύπων (string pattern matching) είναι ένα πεδίο

έρευνας στο οποίο έχει αφιερώσει σημαντικό ποσοστό έρευνας η επιστημονική κοι-

νότητα ανά τα χρόνια. ΄Ηδη, από το 1970, επιστήμονες από διάφορους φορείς και

ερευνητικά πεδία, προσπαθούν συνεχώς να αναπτύξουν αλγορίθμους, τόσο έξυπνους

όσο και αποδοτικούς. Ακόμα όμως, το πρόβλημα της αντιστοίχισης αλφαριθμητικών

προτύπων αποτελεί ανοιχτό πεδίο σκέψης και μελέτης. Ο λόγος της ραγδαίας αυτής

δημοτικότητας της αντιστοίχισης αλφαριθμητικών προτύπων στην επιστημονική κοι-

νότητα, είναι η ευρεία χρήση και εφαρμογή της σε πολλές και ποικίλες περιοχές, όπως

για παράδειγμα στην πληροφορική, στη βιοπληροφορική, στην υπολογιστική βιοϊατρική

και άλλες.

Πρόσφατα, καθώς η τεχνολογία συνεχώς εξελίσσεται, η χρήση των παράλληλων

επεξεργαστών έχει αποτελέσει σημαντικό παράγοντα για την ανάπτυξη όλο και πιο

γρήγορων και αποδοτικών συστημάτων. Ο προγραμματισμός αυτών των παράλληλων

επεξεργαστών –είτε αυτοί είναι πολυπύρηνοι επεξεργαστές (CPUs) είτε είναι επεξεργα-

στές γραφικών γενικού σκοπού (GPGPUs)– βασίζεται σε πλατφόρμες που επιτρέπουν

στο χρήστη την εποπτεία και τον προγραμματισμό τους. Σε αυτή τη δουλειά, οι

πλατφόρμες που χρησιμοποιούνται ονομάζονται CUDA και OpenCL. Συγκεκριμένα, η

CUDA απευθύνεται σε επεξεργαστές γραφικών γενικού σκοπού της εταιρίας NVIDIA,
σε αντίθεση με την OpenCL, η οποία επιτρέπει τον προγραμματισμό οποιουδήποτε

είδους επεξεργαστή.

Σε αυτή τη δουλειά, παρουσιάζουμε μία βιβλιοθήκη για αντιστοίχιση αλφαριθμη-

τικών προτύπων που μέσω μιας αφηρημένης προγραμματιστικής διεπαφής, επιτρέπει

την χρήση της σε κάθε είδους πολυπύρηνο επεξεργαστή. Πέρα από την αντιστοίχιση

απλών αλφαριθμητικών προτύπων, η βιβλιοθήκη αυτή επιτρέπει τον εντοπισμό και το

ταίριασμα προτύπων που προκύπτουν από κανονικές γραμματικές. Για αυτόν το σκο-

πό, αναπτύξαμε μία μηχανή παράλληλης αναζήτησης αλφαριθμητικών και κανονικών

εκφράσεων με την χρήση πολυπύρηνων επεξεργαστών και καρτών γραφικών. Επι-

πλέον, η μηχανή μπορεί να πετύχει ταυτόχρονη αναζήτηση πολλών αλφαριθμητικών

και κανονικών εκφράσεων σε είσοδο πολλαπλών δεδομένων με μία μόνο προσπέλαση

αυτών.

Τέλος, η αξιολόγηση της απόδοσης του συστήματος αυτού, μέσω της βιβλιοθήκης

που παρέχουμε, έδειξε ότι μπορεί να επιτύχει μέχρι και 21 φορές μεγαλύτερη απόδοση

στην αναζήτηση απλών αλφαριθμητικών, καθώς και μέχρι 15 φορές μεγαλύτερη α-

πόδοση στην αναζήτηση κανονικών εκφράσεων, σε σχέση με τις αντίστοιχες εκδόσεις

των αλγορίθμων για κεντρικούς επεξεργαστές. Συγκεκριμένα, το σύστημά μας μπο-

ρεί να επιτύχει απόδοση έως και 65Gbits/s στην αναζήτηση αλφαριθμητικών και έως

50Gbits/s στην αναζήτηση κανονικών εκφράσεων.

Acknowledgments

First of all, I would like to thank my supervisor, Professor Evangelos Markatos, for
his valuable guidance and all the constructive conversations we had. I also want to express
my deepest gratitude to my advisor, Dr. Sotiris Ioannidis, for giving me the opportunity
to work on so many different, challenging and interesting projects, over the past three
years. His support and advice greatly contributed to my academic and technical growth.
Moreover, I feel thankful to Dr. Giorgos Vasiliadis, for his guidance during my first steps
of this academic journey and for setting the foundations of this work. Also, to Lazaros
Koromilas for everything I learned from him throughout our collaboration.

My warmest regards to Evangelos Ladakis, Elias P. Papadopoulos, Giorgos Christou,
Giorgos Tsirantonakis, Michalis Diamantaris, Konstantinos Kleftogiorgos, Eirini Degk-
leri, Kostas Solomos, Nick Christoulakis and all the other present and past members of the
Distributed Computing System Laboratory, for their friendship, advice and commitment.

I am also indebted to Christos Papachistos for his technical support and Eva Papado-
gianaki, for bearing with me during the development of this work...

Finally, I want to thank my family and friends, back in my home-town, as well as
Katerina Karagiannaki, for all their invaluable support and caring.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Publications . 3
1.4 Outline . 3

2 String Matching Algorithms 5
2.1 Classification Based on Pattern Number 5

2.1.1 Single Pattern . 5
2.1.2 Finite Number of Patterns . 6
2.1.3 Infinite Number of Patterns . 6

2.2 Other Classifications . 6
2.2.1 Naive String Search . 7
2.2.2 Finite State Automaton Based Search 7
2.2.3 Index Based Search . 7
2.2.4 Exact String Search . 8
2.2.5 Approximate String Search . 8

2.3 The Aho-Corasick Algorithm . 8

3 Regular Expressions 11
3.1 Formal Definition . 11
3.2 Syntax . 12

3.2.1 Delimiters . 12
3.2.2 Metacharacters . 13
3.2.3 Character Classes . 14
3.2.4 Standards . 14

3.2.4.1 POSIX Basic (BRE) 15
3.2.4.2 POSIX Extended (ERE) 16

3.2.5 Lazy Quantifiers . 16
3.2.6 Backreferences . 16

3.3 Regular Expression Engine Internals . 17
3.3.1 Regex-directed Engines . 17
3.3.2 Text-directed Engines . 17

I

4 Architectures and Parallel Computing 19
4.1 Levels of Parallelism . 19

4.1.1 Bit-level . 19
4.1.2 Instruction-level . 19
4.1.3 Task-level . 20
4.1.4 Data Parallelism . 20

4.2 Flynn’s Taxonomy . 21
4.2.1 SISD . 22
4.2.2 SIMD . 22
4.2.3 MISD . 22
4.2.4 MIMD . 22
4.2.5 Other Classifications . 22

4.2.5.1 SIMT . 22
4.2.5.2 SPMD . 23
4.2.5.3 MPMD . 23

4.3 Commodity Hardware . 23
4.3.1 CPUs . 23
4.3.2 Graphics Processing Units . 24
4.3.3 Other Accelerators . 25

4.4 Parallel Computing Platforms . 25
4.4.1 CUDA . 25
4.4.2 OpenCL . 26

4.5 Programming Considerations . 26

5 Implementation 27
5.1 Design Overview . 27
5.2 Data Gathering and Transferring . 28
5.3 String Matching . 31

5.3.1 Readable Binary Signature Support 31
5.3.2 DFA Representation . 32
5.3.3 Input Processing . 33

5.4 Regular Expression Matching . 34
5.4.1 DFA Construction . 34
5.4.2 Data Processing and Backtracking 34

5.5 String Assisted Regular Expressions . 34
5.5.1 Searching Rules . 35

5.5.1.1 Reporting and Events 36
5.6 API . 36

6 Evaluation 39
6.1 Experimental Testbed . 39
6.2 Workloads . 39

6.2.1 Synthetic ASCII Workload . 40
6.2.2 Huge Regular Expressions Workload 40

II

6.3 DFA Properties . 41
6.3.1 Simple String DFAs . 41
6.3.2 Regular Expression DFAs . 42

6.4 Baseline . 44
6.5 Graphics Accelerators . 46

6.5.1 CUDA . 46
6.5.2 OpenCL . 49

6.6 OpenCL with Intel Processors . 51

7 Related Work 55
7.1 Pattern matching applications . 55
7.2 String searching tools . 57

8 Conclusions and Future Work 59
8.1 Summary of Contributions . 59
8.2 Future Work . 59
8.3 Conclusion . 60

III

IV

List of Figures

2.1 Goto function . 9

4.1 The four basic computer architectures, proposed by Flynn [41]. The first
two figures (Figures 4.1(a) and 4.1(b)) present the architectures with a
single data stream, while the remaining two (Figures 4.1(c) and 4.1(d))
demonstrate the architectures with multiple data streams. 21

4.2 The NVIDIA CUDA architecture comprised of multiprocessors, each one
containing multiple stream processors and a set of various memory spaces. 24

5.1 The overall architecture of our system. The interaction between the four
components (modules) is performed as follows: data chunks arrive from
various input data streams to the data transfer module (1) that batches
them and hands those batches to the two processing modules, named
string matching and regex matching modules, respectively (2); when the
processing is finished (3) the data transfer module returns the results to
the events module, responsible for the match reporting (4). In addition,
we present the runtimes and the underlying hardware. 28

5.2 Ring buffer overview. Data chunks arriving from various input streams are
batched into ring buffer buckets. Once a bucket is complete, it is trans-
ferred to the discrete GPU via the PCIe bus. If the buckets are processed
by the CPU, or an integrated GPU, the bucket transferring process is omit-
ted since the integrated GPU shares the same physical address space with
the CPU; thus, there is no need for transferring data to a dedicated DRAM. 29

5.3 Overview of a ring buffer bucket. The bucket contains the batch of data,
concatenated into a single-dimensional character array. Padding is used
to keep the offsets of each data chunk in memory aligned positions. The
offsets array holds the offsets of the individual data chunks while the sizes
array stores their sizes (excluding the padding). 30

5.4 The state table produced by the serialization of the Aho-Corasick DFA as
a two-dimensional integer array. Negative values indicate final states. . . 32

V

5.5 Overview of the tree matching phases. When the task of the first matching
phase encounters a negative state, a match has been successfully found.
In the second phase, we use the absolute value of this state in order to
index the table that pairs the simple strings with their regular expressions.
We use those IDs so as to index the array housing the regex automata. If
a match using these automata is found, we use again this ID in order to
index the array housing the rule messages. 38

6.1 Characteristics of the four DFAs produced by the four pattern sets found
in the Synthetic ASCII workload. The x-axis of both plots indicates the
number of regular expressions combined into a singe DFA. Figure 6.1(a)
displays the size of the produced DFAs, while Figure 6.1(b) displays the
time needed for their creation. We notice that the automaton size and
its creation time are proportional to the number of regular expressions
combined. 42

6.2 Characteristics of the one hundred DFAs produced by the regular expres-
sions of the Huge Regular Expressions workload. The x-axis in both
plots indicates the size of the various regular expressions. Figure 6.2(a)
displays the size of the DFA produced by each regular expression, while
Figure 6.2(b) displays the time needed for its creation. We notice that the
size of the DFA as well as its creation time are not always proportional to
the size of the regular expression. Complex regular expressions produce
larger DFAs or require more time to be compiled. 43

6.3 Characteristics of the DFAs produced by combining 25 and 50 random
regular expressions found in the Huge Regular Expressions workload.
The x-axis in both plots indicates the number of regular expressions com-
bined in a singe DFA. Figure 6.3(a) represents the size of the produced
DFAs, while Figure 6.3(b) displays the time needed for their creation. We
notice that the automaton size and its creation time are not linear to the
number of regular expressions combined. 44

6.4 Sustained throughput achieved by our single-threaded CPU implementa-
tion of the string matching module using the automata produced by the
four pattern sets found in the Synthetic ASCII workload. As the num-
ber of signatures increases, the size of the automaton grows. Bigger au-
tomata result to an increased number of cache references, imposing a per-
formance penalization. Note that the x-axis is in log-scale. 45

6.5 Sustained throughput achieved by our single-threaded CPU implementa-
tion of the regex matching module. Figure 6.5(a) displays the processing
throughput using one hundred DFAs produced by the regular expressions
of the Huge Regular Expressions workload, while Figure 6.5(b) displays
the performance achieved using DFAs combining 25 and 50 random reg-
ular expressions of the same workload respectively. 46

VI

6.6 Sustained throughput achieved by the CUDA flavor of the string matching
module using the automata produced by the four pattern sets found in the
Synthetic ASCII workload. The x-axis in both plots represents the size
of the DFAs produced by combining 10, 100, 1000 and 10000 patterns
respectively. Figure 6.6(a) displays the throughput achieved by the GPU,
while Figure 6.6(b) displays the end-to-end throughput, including the data
transfers to and from the device. We notice that when the size of the
automaton grows larger than the size of the cache, the performance is
substantially decreased and remains consistent regardless of the size of
the DFA. 47

6.7 Sustained throughput achieved by the CUDA flavor of the regex matching
module using one hundred DFAs produced by the regular expressions of
the Huge Regular Expressions workload. The x-axis in both plots rep-
resents the size of the various regular expression DFAs. Figure 6.7(a) dis-
plays the throughput achieved by the GPU, while Figure 6.7(b) displays
the end-to-end throughput, including the data transfers to and from the
device. We notice that in most cases the size DFA does not directly affect
the performance. The sustained throughput is function of the complexity
of the regular expression and the amount of backtracking performed on
the input. 48

6.8 DFA sizes and sustained throughput achieved by the CUDA flavor of the
regex matching module using combinations of 25 and 50 random regu-
lar expressions. Figure 6.8(b) displays the size of the DFAs, while Fig-
ure 6.8(a) displays the sustained throughput. We notice that the size dif-
ference of the DFAs is irrelevant to the number of regular expressions
combined and does not affect the performance of the system 48

6.9 Sustained throughput achieved by the OpenCL flavor of the string match-
ing module, using the pattern sets described in section § 6.2.1. The x-axis
in both plots represents the size of the DFAs produced by combining 10,
100, 1000 and 10000 patterns respectively. Figure 6.9(a) displays the "in-
core" throughput, while Figure 6.9(b) displays the end-to-end throughput,
including the data transfers to and from the device. 49

6.10 Comparison of the sustained throughput achieved by the OpenCL flavor of
the regex matching module versus the CUDA implementation, using one
hundred DFAs produced by the regular expressions of the Huge Regular
Expressions workload. Figure 6.10(a) displays the "in-core" throughput
achieved by the OpenCL flavor, while Figure 6.10(b) presents the results
of the same experiment conducted using the CUDA version of the module.
We notice that the difference between the throughput of the two imple-
mentations is insignificant, since the performance gained by the hardware
optimized CUDA version is hidden due to backtracking. 50

VII

6.11 Comparison of the sustained throughput achieved by the OpenCL flavor
of the regex matching module, versus the CUDA flavor using combina-
tions of 25 and 50 random regular expressions found in the Huge Regu-
lar Expressions workload. Figure 6.11(a) displays the performance of the
OpenCL flavor, while Figure 6.11(b) displays the throughput achieved by
the CUDA flavor. We notice that the CUDA version slightly outperforms
the OpenCL version since it is optimized for the NVIDIA hardware. . . . 51

6.12 Sustained throughput achieved by the OpenCL flavor of the string match-
ing module, executed on the Intel Xeon E5-2697 CPU, using the automata
produced by the four pattern sets found in the Synthetic ASCII workload.
The x-axis represents the size of the DFAs produced by combining 10,
100, 1000 and 10000 patterns respectively. Each pattern set is processed
using 6, 12, 18 and 24 CPU cores. Bigger automata result to increased
number of cache references, thus imposing a performance penalization.
The processing throughput is increased as more cores are available to the
engine. However, the performance gained by each extra CPU core is not
fixed, since more cores compete for the same memory space. 52

6.13 Sustained throughput achieved by the OpenCL flavor of the regex match-
ing module, executed on the Intel Xeon E5-2697 CPU, using one hundred
DFAs produced by the regular expressions of the Huge Regular Expres-
sions workload. Each regular expression is processed using 6, 12, 18 and
24 CPU cores. The x-axis in all plots represents the size of the various
regular expression DFAs. The processing throughput is increased as more
cores are available to the engine. We notice that the performance gained
by each extra CPU core is not fixed, since more cores compete for the
same memory space. 53

6.14 Sustained throughput achieved by the OpenCL flavor of the regex match-
ing module, executed on the Intel Xeon E5-2697 CPU, using combina-
tions of 25 and 50 random regular expressions found in the Huge Regu-
lar Expressions workload. Each pattern set is processed using 6, 12, 18
and 24 CPU cores. The x-axis indicates the number of regular expres-
sions combined in a singe DFA. The processing throughput is increased
as more cores are available to the engine. We notice that the performance
gained by each extra CPU core is not fixed, since more cores compete for
the same memory space. 54

VIII

List of Tables

2.1 Output function . 9
2.2 Failure function . 9

3.3 Regular expression metacharacters and their functionality. 13
3.4 Regular expression character classes and their functionality. 15

IX

X

Chapter 1

Introduction

String pattern matching is one of the most common operations in various applications.
Searching for a certain string pattern in a text file may seem trivial for the everyday user.
However, pattern matching is the core operation of many applications, ranging from text
editors, intrusion detection systems and databases, to the analysis of biological sequences
and classification of music signals [1]. Thus, there is a demand for efficient pattern match-
ing algorithms, that each time suit to the nature or the specified application.

To begin with, network monitoring applications, such as network intrusion detection
systems and spam filters, are dedicated to inspecting the contents of a huge amount of
network traffic against an increasing number of suspicious signatures. These signatures
are usually being preprocessed in a finite automaton that will be used later in order to
match any suspicious incoming packets from the network. In addition, the efficiency of
spell checking (i.e. text retrieval, databases, etc.) strictly depends on the efficiency of the
pattern matching algorithm that is being utilized. Likewise, the performance of an approx-
imate pattern matching algorithm can highly affect the duration of various experimental
results in the area of biology and other relevant fields.

Consequently, it is obvious that the improvement of a pattern matching algorithm can
drastically affect the performance of any application. This is the reason that a wide re-
search community has dedicated many years on developing new algorithms and improving
the already existing ones. Some approaches focus on matching multiple patterns –either
simple strings or binaries– in a given input text simultaneously [2, 3, 4, 5, 6, 7]. Further-
more, other approaches propose algorithms for single-pattern searching [8, 9, 10, 11, 12].
Either way, taking advantage of the computational power and capabilities of modern pro-
cessors has led to a new burst of algorithms, tailored for highly parallel environments.
Previous works rely on the parallel hardware architecture of accelerators and GPGPUs
[13, 14]. In this work we extend the already known functionality for string pattern match-
ing. Utilizing any underlying commodity system setup, we propose a pattern searching
framework, supporting simultaneous matching of multiple simple strings and regular ex-
pressions with a single pass. Our technique exhibits performance gain and high efficiency,
regarding the throughput and power consumption. In the following section we explicitly
present the main contributions of this work.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Current string matching tools and libraries, offered as state-of-the-art, are mostly target-
ing a single group of applications (e.g. network packet processing applications) and are
tailored for the needs of this particular group. For example, the hyperscan library –
Intel’s multiple regular expression matching library– is constructed to be used in a typical
deep packet inspection (DPI) library stack [15, 16]. This means that any optimization that
has been applied in order to boost the performance of this library, is basically best-fit for
network processing applications. Likewise, a protein similarity search tool (e.g. FASTA
[17]) is dedicated to a single application –the successful utilization of this tool for a dif-
ferent purpose is not guaranteed, since using a different and larger alphabet set A might
not scale well. Therefore, the literature lacks of efficient general purpose string matching
libraries or tools. To fill this gap, we propose a string pattern matching framework that
can be used for diverse applications, exploiting the computational capabilities of accel-
erators and any commodity processor in a system. In addition, our framework provides
multiple regular expression matching, something that – to the best of our knowledge– is
rarely provided as a functionality from popular string searching tools1.

1.2 Contributions

The contributions of this work are:

• Our implementation performs simultaneous matching of multiple fixed strings and
binary patterns against multiple input data streams, with a single pass over the input
bytes (Chapter 5 § 5.3).

• The engine is able to achieve simultaneous matching of multiple POSIX Extended
Regular Expressions against multiple input data streams (Chapter 5 § 5.4).

• Our massively data parallel engine is implemented as a portable framework, expos-
ing C and Java APIs. Thus it can be embedded and utilized by various applications
(such as Search Engines, NIDS, Firewalls, Antivirus etc.) (Chapter 5 § 5.6).

• The engine exposes input data buffers easily handled by the API, able to receive
input from various data streams (storage, NICs, etc) (Chapter 5 § 5.2 and § 5.6).

• Since the engine is implemented using both CUDA and OpenCL, it is easily ex-
ecuted on the vast majority of data parallel platforms such as CPUs and high-end
discrete or integrated GPUs (Chapter 5).

• The API hides the specifics of the data parallel implementation while our initializa-
tion task is responsible to identify the appropriate devices, present to the system,
and properly set the various parameters (Chapter 5 § 5.6).

1We exclude the hyperscan string matching library from this statement, since we refer only to works
built upon accelerators.

1.3. PUBLICATIONS 3

• We extend the syntax of common string matching in order to support readable bi-
nary signatures and their combinations with clear-text (Chapter 5 § 5.3).

• We offer a syntax for matching-rules that allows events to be triggered when a
match is achieved (Chapter 5 § 5.5).

1.3 Publications

Parts of the work for this thesis have been used and published in three European projects;
the NECOMA project under grant agreement No.608533 [18], the RAPID project un-
der grant agreement No.644312 [19] and the SHARCS project under grand agreement
No.644571 [20]. Specifically, parts of this work are included in the following:

• NECOMA Project. Deliverable D3.5: Countermeasure Application - Results, 2015 [21].

• RAPID Project. Deliverable D2.4: Antivirus Ported on RAPID, 2016 [22].

• SHARCS Project. Deliverable D4.2: Design specification of the SHARCS runtime
system, software tools and reporting, 2016

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 presents a brief background
on various string matching algorithms and their classification. In this chapter, we also
describe in detail the properties and the functionality of the Aho-Corasick string matching
algorithm. In Chapter 3, we provide the formal definition of regular expressions and a
thorough description of their syntax and properties. Moreover, we present how a regular
expression engine works according to POSIX standards. In Chapter 4, we enumerate and
present the various parallel architectures available, as well as their classification according
to the popular Flynn’s Taxonomy. We also provide information about the most popular
parallel hardware platforms, the way they achieve parallelism and a break-down of the
popular NVIDIA GPU architecture.

Chapter 5 describes in detail the development and functionality of our massively par-
allel regular expression and string matching engine. This chapter expands on the two
major components used in this work and the way parallelism is achieved using the tech-
niques and architectures shown in Chapter 4. The first component performs the string
matching and it is based on a variation of the Aho-Corasick algorithm, described in Chap-
ter 2. The second component is a parallel regular expression engine, operating according
to the specifications provided in Chapter 3. A thorough evaluation of our engine, devel-
oped using three different programming languages on two different parallel architectures,
is provided in Chapter 6.

Chapter 7 surveys prior work and finally Chapter 8 summarizes this dissertation and
points out future research directions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

String Matching Algorithms

String matching algorithms, also called string searching algorithms, are an important sub-
set of string algorithms that try to locate the occurrence of one or more strings (also called
patterns or signatures) within a larger string (e.g. plain-text). String pattern matching,
using finite alphabets is a very common technique in order to locate any occurrence of a
string pattern into a text. For example, when searching for a string pattern P = p1p2...pn
inside a text T = t1t2...tm (with lengths n andm accordingly), both characters sequences
form a finite alphabet set A.

2.1 Classification Based on Pattern Number

The approach that each pattern matching algorithm follows, contributes to a manner of
classification. In regard to the number of patterns each algorithm uses, we define the fol-
lowing three categories: a) single-pattern, b) multi-pattern (using a finite set of patterns),
and c) regular expression (using an infinite set of patterns) algorithms.

2.1.1 Single Pattern

Single-pattern matching algorithms are used in order to individually search one pattern
P against a given text T . First of all, there is the naive string search algorithm, which
does not require any preprocessing – however, it is extremely inefficient. Karp-Rabin
algorithm [4] uses hashing to find any single pattern in a set of strings in a text. The
Knuth-Pratt-Morris [8] and Boyer-Moore algorithms [9] have been proposed in order to
locate string patterns into a given text with errors or mismatches. More specifically, the
Knuth-Pratt-Morris algorithm exploits the properties of the target pattern in order to de-
crease the comparisons needed, by using a partial-match table for each pattern. The table
is built by preprocessing each pattern separately and indicates how many positions the pat-
tern should be shifted to the right, based on the position in the pattern where a mismatch
occurs. The Boyer-Moore algorithm skips as many characters as possible without missing
a possible instance of the string it is searching for. The algorithm begins matching from
the last character of the pattern and in case of a mismatch, skips a part of the input. The

5

6 CHAPTER 2. STRING MATCHING ALGORITHMS

execution time of the algorithm can be sub-linear when the suffix of the pattern does not
appear frequently in the input text. In addition, a modified version of the Boyer-Moore al-
gorithm, called Boyer-Moore-Horspool [23] requires less memory without penalizing the
performance in terms of latency. Furthermore, there is the Baeza-Yates-Gonnet algorithm
[24] – also known as the bitap algorithm – that efficiently utilizes bit-wise operations,
in order to allow approximate string matching. This algorithm reports whether a given
input text contains a sub-string that is approximately equal to a pattern. This “equality” is
defined through the Levenshtein distance –if the sub-string and pattern are within a given
distance k of each other, then they are considered equal [25]. The algorithm starts by pre-
processing a set of bit-masks that contain one bit for each element of the pattern. Then,
most of the remaining work is accomplished with bit-wise operations, something that can
significantly boost the performance.

2.1.2 Finite Number of Patterns

The algorithms described in the previous section have been developed in order to look
up a single pattern with minimal latency. However, it is obvious that in order to search
a set of k (k > 1) string patterns into a given text, we must execute the algorithms k
times –something that is far from efficient. Consequently, when there is a necessity for
locating multiple patterns into a text, these algorithms lack effectiveness. The algorithms
that correspond to this category are mainly called multi-pattern matching algorithms and
scale much better than searching each pattern individually. Karp and Rabin proposed such
a multi-pattern algorithm [4]. For text T of lengthm and p patterns of length n, the worst-
case time achieved by the Karp-Rabin algorithm is O(nm) in space O(p). In contrast, the
Aho-Corasick string matching algorithm has asymptotic worst-time complexity O(n+m)
in space O(m) [2]. The algorithm matches all strings simultaneously. We thoroughly
discuss the Aho-Corasick algorithm in the following section (§ 2.3). Furthermore, there
is the Commentz-Walter algorithm [3], which combines the basic from the Aho–Corasick
algorithm with the fast matching of the Boyer-Moore string search algorithm. Finally,
Wu and Manber proposed an algorithm for multi-pattern searching [5]. This algorithm is
being used and implemented as part of the agrep tool [26].

2.1.3 Infinite Number of Patterns

A regular expression is a sequence of symbols that defines a pattern. Concerning string
matching, regular expressions are used in order to define the pattern to search in a text.
Regular expressions describe the form of a pattern. For example, (a|b)* denotes the
infinite set {ε, "a", "b", "AA", "ab", "BA", "BB", "AAA", ...}. In the following chapter
(Chapter 3) we dive into more details regarding regular expressions and regular grammars.

2.2 Other Classifications

Except for the aforementioned classification, string pattern matching algorithms can be
further categorized, regarding other aspects of design and implementation. For instance,

2.2. OTHER CLASSIFICATIONS 7

one of the most common approaches for the classification of string matching algorithms is
referring to the preprocessing phase as criterion. The preprocessing is conducted in order
to achieve faster searching, preparing either the pattern or the input text (sometimes even
both). There are four categories regarding preprocessing, where: a) neither the pattern nor
the input text is preprocessed –these algorithms are called naive or elementary–, b) only
the pattern is preprocessed –these string pattern matching algorithms are based on finite
state automata–, c) only the input text is preprocessed –these algorithms follow index-
ing approaches–, d) both the pattern and the input text is preprocessed –this algorithm
category contains approaches based on finite state automata and indexing.

Furthermore, taking into consideration the matching strategy, another classification
approach appears. The algorithms are also clustered as: a) prefix-matching (e.g. Aho–
Corasick), b) suffix-matching (e.g. Boyer-Moore), c) best-factor-matching, and d) others
(e.g. Karp-Rabin, naive pattern matching).

In the following subsections, the aforementioned pattern matching approaches (i.e.
naive string, finite state automaton based and index based search) are briefly explained.
Then, the definitions of exact and approximate (fuzzy) string matching are discussed.

2.2.1 Naive String Search

In the naive string search, the procedure to locate an instance of a string –needle– inside
another one –haystack– is extremely simple and straightforward. We simply look for the
needle, starting from the first character of the whole haystack; if the needle is not there, we
proceed to the second character of the haystack; if the needle is not matched there neither,
we proceed to the third character of the haystack, and so on. This procedure is continued
until the needle is found somewhere inside the haystack. As expected, this approach is
the most inefficient and resource consuming. The complexity of the naive string search is
O(νµ), where µ is the length of the haystack and ν the length of the needle. In average,
it requires O(ν + µ) steps.

2.2.2 Finite State Automaton Based Search

To avoid backtracking, a deterministic finite automaton (DFA) is constructed. Construct-
ing a DFA is ,in some cases, an expensive procedure, since it utilizes the powerset con-
struction –a standard method for converting a non-deterministic finite automaton (NFA)
into a deterministic finite automaton (DFA). Therefore, this approach is commonly used
in cases, where the DFA needs to be rarely generated.

2.2.3 Index Based Search

This kind of search requires that the input text is being preprocessed. In this approach,
a sub-string index (structures like a suffix tree, a suffix array, a compressed suffix array,
etc.) is built in order to allow the fast discovery of the occurrences of a string pattern. For
instance, building a suffix tree requires Θ(µ) time, while locating all x occurrences of a

8 CHAPTER 2. STRING MATCHING ALGORITHMS

string pattern takes O(ν) time –assuming a constant size for the alphabet A and that all
inner nodes in the tree know their child leafs.

2.2.4 Exact String Search

Exact string matching is the approach of locating the occurrence of a simple string pattern
into another string. The exact string matching problem is to find all sub-strings in the input
text that are exactly the same as the pattern. For example, the pattern exact matches the
string exactly inside an input text.

2.2.5 Approximate String Search

Approximate string matching –also called fuzzy string matching– is the process of ap-
proximately locating a pattern into a string. The approximate string matching problem is
to find all sub-strings in the input text, that are as close to the string pattern as possible,
under some metric of closeness (e.g. using the Hamming distance [27]). In approximate
string search, the pattern is matched under some error tolerance. For instance, the pattern
fuzzy matches the string furry inside an input text –given an error tolerance of 40%.

2.3 The Aho-Corasick Algorithm

This section is dedicated to the Aho-Corasick algorithm – the most efficient algorithm that
suits best to the SIMD (§ 4.2.2) and SIMT (§ 4.2.5.1) model of this work. In general, it is
one of the most widely used algorithms for simple string pattern matching [2]. The Aho-
Corasick algorithm is considered as the best option for multiple pattern searching, since it
matches all signatures simultaneously. This simultaneous matching can be achieved when
the set of patterns is being preprocessed. In the preprocessing phase, an automaton is built,
which will be eventually used in the matching phase. Also, each character of the text will
be processed only one time during the matching phase. The Aho-Corasick algorithm
has the property that, theoretically, the processing time does not explicitly depend on
the number of patterns. Let P = p1p2...pn be the patterns to be searched inside a text
T = t1t2...tm (with lengths n and m accordingly), both sequences of characters form a
finite character set Σ. The complexity of the algorithm is linear in the pattern length ν,
plus the length of the given text µ, plus the number of output matches.

Given a set of patterns, the algorithm constructs a pattern matching machine, that
matches all patterns in the text at once, one byte at a time. Each processing action of
the automaton, accepts an input event. The very first action starts with the initial state,
represented with zero. Each action that accepts an input event moves the current state to
the next state, based exclusively on that input. There are three distinct functions: a) a
goto function, b) a failure function, and c) an output function. According to the
input event, one function is being triggered. Figure 2.1 and Tables 2.2 and 2.1 1, present
an example of these functions for the set of patterns {he, she, his, hers}.

1The figure and tables are adapted from [2]

2.3. THE AHO-CORASICK ALGORITHM 9

The goto function (Figure 2.1) determines if a state transition can be performed,
based on the current state and the ASCII value of the input character. If the input char-
acter matches one of the transitions starting from the current state, then the state pointed
to by this transition becomes the next state. Otherwise, the next state is resolved by
the failure function f(i = current state). For example (based on Figure 2.1), the
edge labeled h from 0 to 1 indicates that goto(0, h) = 1, while the absence of an ar-
row for a indicates failure. The failure function either drives a transition to one or
more intermediate states, or to the initial state (the one that is represented with 0 in the
goto graph). After each state transition, the algorithm checks the output function
output(i = current state) in order to determine if the pattern matches a sub-string of
the text T . This procedure continues and terminates with the end of the input text T .

Since failed transitions may not consume any input –the so-called ε-transitions– the
produced automaton is non-deterministic (NFA). Also, the failure function can result
to numerous state transitions for a single input character. In this way, the matching oper-
ation might require the exploration of multiple paths before the actual match of a pattern.

A revised version of the traditional Aho-Corasick exists and replaces all failure tran-
sitions in order to avoid the performance loss, when the patterns’ sizes are large. The new
automaton that is produced is called “deterministic finite automaton” (DFA) and provides
one transition per state and input character. Despite this approach requiring more memory
than the previous one, it is more efficient in terms of processing throughput. The achieved
complexity of this approach is O(n).

0 1 2 3 4

5 6

7 8 9

s

h e

i

h e r s

s

^{h, s}

Figure 2.1: Goto function

Table 2.1: Output function

i output(i)

2 {he}
5 {she, he}
7 {his}
9 {hers}

Table 2.2: Failure function

i 1 2 3 4 5 6 7 8 9
f(i) 0 0 0 1 2 0 3 0 3

10 CHAPTER 2. STRING MATCHING ALGORITHMS

Chapter 3

Regular Expressions

A regular expression [28], also called regex, regexp or rational expression, is a pattern
describing a certain amount of text. The concept of regular expressions originated by the
mathematician Stephen Cole Kleene [29] in 1956. Kleene described regular languages
using his mathematical notation, called regular sets. Regular expressions are used as
search patterns by searching algorithms in order to locate sub-strings into a large input
string. Regexes can be found in search engines, word processors (search and replace
functionality), lexical analyzers, text processing utilities (sed [30], AWK [31], etc.) as
well as Network Intrusion Detection systems (NIDS), such as snort [32], or Antivirus,
like ClamAV [33].

3.1 Formal Definition

Regular expressions have the same expressive power as regular grammars and describe
regular languages. They consist of constants and operators, defined as symbols. In this
way, they define string sets and the operations on these sets.

Given a finite alphabet Σ, the following constants are defined as regular expressions:

∅ (empty set) Represents the empty set ∅.

ε (empty string) Represents the set containing the "empty" string, containing no
characters at all.

Literal character Let α be a character and α ∈ Σ, then α represents the set containing
only the character α.

Given the regular expressions R and E, the following operations over them are defined to
produce regular expressions:

11

12 CHAPTER 3. REGULAR EXPRESSIONS

RE (concatenation) Defines the set of strings obtained after concatenating the
strings in R and the strings in E. For example, let R be
{"ra","b"} and E be {"s","t"}. Then RE = {"ra","b"}{"s","t"}
= {"ras","rat","bs","bt"}.

R|E (alternation) Defines the union of the sets described by R and E. For exam-
ple, let R be {"ra","w"} and E be {"s","ra","q"}. Then R|E =
{"ra","w"}|{"s","ra","q"} = {"ra","w","s","q"}.

R* (Kleene star) Defines the smallest super-set of the set described by R that
contains the empty string ε and is closed under string con-
catenation. This set contains all strings that can be made by
concatenating zero or any finite number of strings found in R.
For example if R is the set {"ra","s"}*, this it is equivalent to
{"ε","ra","s","rara","ras","ss","rasras","rasra", etc.}.

The Kleene star has the highest priority. Then, follows concatenation and then alter-
nation. This assumption is made in order to avoid the use of parenthesis, if there is no
ambiguity. For example (ra)s is equivalent to ras and r|(a(s*)) is equivalent to
r|as*. The formal definition does not define the quantifiers + and ? as they can be
expressed using the Kleene star. For example r+ = rr* and r? = r|ε.

3.2 Syntax

The regular expressions are patterns used to match a target string. In contrast to sim-
ple string matching, regular expressions use character literals as well as meta-characters,
which define special operations. Formally, each regular expression is composed as a se-
quence of tokens. A token is a single point within the regular expression, which tries to
match with the target string. The concept is to compose a small set of characters, the to-
kens of the regular expression, in order to match a (very) large number of possible target
strings, rather than compose a list of all the literal possibilities (target string permuta-
tions). For this reason, a match is achieved when all the regex tokens match the target
string and not when all the string characters are matched. The meta-characters provide
extra functionality rather than matching as literal characters in the target string. Most tools
and regular expression engine implementations use delimiters, so as to receive the regular
expressions as input.

3.2.1 Delimiters

Programming languages and string matching tools use delimiters in order to receive the
regular expression as input. A common case is to enter the regex as a quoted string literal.
For example in Python, C and Java the input regular expression would be "[0-9A-Z]".
An other set of delimiters used is the starting and ending slashes. This originated by
the ed [34] text editor. The UNIX [35] grep [36] utility got its name by the famous
g/re/p (globally search a regular expression and print) command used in ed, following

3.2. SYNTAX 13

this delimiter convention. An other famous utility using this convention is sed (streaming
editor) where replace functionality is provided by the command s/re/replacement.
However, this notation became popular due to its use in Perl. Sometimes, alternative
delimiters, such as comma, are used by some tools in order to avoid escaping occurrences
of the delimiter character or content collision. For example the command s,/,A in sed
will replace the "/" with "a".

3.2.2 Metacharacters

In the need of searching more than literal pieces of text, a set of characters is reserved
for special use. This set of characters, known as metacharacters or special characters,
provide functionality such as grouping, negation, logical OR, logical NOT, quantification
and backreferencing. Most metacharacters produce an error when used alone or without
proper syntax but can be escaped if needed to be matched as literals. A list of metachar-
acters found in most regular expression engines, along with their syntax and description,
can be found in Table 3.3.

Table 3.3: Regular expression metacharacters and their functionality.

Metacharacter Description

[]

The square brackets define a character class, also called character
set. The character class will match a single character contained
within the brackets. For example, [ab] matches "a" or "b" but does
not match "eabc". Ranges can be specified using the - character. For
example [a-z]matches any single lowercase letter from "a" to "z".
The two forms can be mixed. For example [ab0-3] matches "a",
"b", "0", "1", "2" or "3".

[ˆ]
The ˆ character, after the opening square bracket, negates the char-
acter class. The negated character class matches any character that
is not in the character class.

()

Parentheses define a marked sub-expression as well as create a num-
bered capturing group. This group stores the part of the input
matched by the part of the regular expression inside the parenthe-
ses.

{min,max}

A range between curly brackets, specified with a comma, defines
how many times a token can be repeated. The min value can be an
integer greater or equal to zero and indicates the minimum number
of matches while max can be an integer equal to or greater than min
indicating the maximum number of matches. For example r{2,4}
matches only "rr", "rrr" or "rrrr". The infinite maximum number of
matches can be specified if the comma is present but max is omitted.
For example a{5,}. Omitting both the comma and max repeats the
token exactly min times. For example s{3} only matches "sss".

14 CHAPTER 3. REGULAR EXPRESSIONS

.

The dot matches (almost) any single character. For example r.s
matches both "ras", "rbs", etc.. The dot character included in square
brackets matches the literal dot. For example [r.s] matches only
"r", "." or "s".

? The question mark indicates zero or one occurrence of the preceding
token. For example rege?x matches "regx" or "regex".

*
The asterisk indicates zero or more occurrences of the preceding
token. For example rege*x matches "regx", "regex", "regeex",
"regeeex", etc..

+
The plus sign indicates one or more occurrences of the token. For
example rege+x matches "regex", "regeex", "regeeex", etc. but
not "regx".

|

The pipe character, called alternation or set union, matches ei-
ther the expression before or the expression after it. For exam-
ple regular|expression matches either "regular" or "expres-
sion".

ˆ

The caret character, when not included in square bracket, is called
start of string anchor, and does not match any character. It is used to
"anchor" the match at the starting position of the input. For example
the regex ˆa when used on the input "abcd" matches "a" but the
regex ˆb when used on the same input will not match "b" because
it is not the first character of the input.

$
The stand-alone $ character, called end of string anchor behaves
similar to the stand-alone ˆ but "anchors" the match at the end of
the input.

3.2.3 Character Classes

The character classes allow a small sequence of characters to define, and thus match, a
larger set of characters. This is the most basic concept after the literal match. Character
classes can be defined using square brackets. For example the character class [0-A]
specifies all the numbers and symbols found in the ASCII range from the character "0" up
to character "A". The POSIX [37] standard defines various character classes which will
be known by the regex processor. The "default" character classes used by the POSIX and
Perl implementations can be found in Table 3.4.

3.2.4 Standards

POSIX is a collection of standards that define some of the functionality that a UNIX
operating system should support and stands for "Portable Operating System Interface for
uniX". One of the standards in this collection defines three regular expression flavors,
named POSIX BRE (Basic Regular Expressions) [38], POSIX ERE (Extended Regular

3.2. SYNTAX 15

Table 3.4: Regular expression character classes and their functionality.

POSIX Perl ASCII Description
[:lower:] [a-z] Lowercase letters
[:upper:] [A-Z] Uppercase letters
[:digit:] \d [0-9] Digits

\D [ˆ0-9] Non-digits
[:xdigit:] [A-Fa-f0-9] Hexadecimal digits
[:alpha:] [A-Za-z] Alphabetic characters
[:alnum:] [A-Za-z0-9] Alphanumeric characters

\W [ˆA-Za-z0-9_] Non-word characters
[:punct:] []!"#$%&’()*+,./:;<>̄?@\ˆ_‘| - Punctuation characters
[:blank:] [\t] Space and tab
[:space:] \s [\t\r\n\v\f] Whitespace characters

\S [ˆ \t\r\n\v\f] Non-whitespace characters
[:graph:] [\x21-\x7E] Visible characters
[:print:] [\x20-\x7E] Visible characters and the space

[\x00-\x7F] ASCII characters
\b (?<=\W)(?=\w)|(?<=\w)(?=\W) Word boundaries

[:cntrl:] [\x00-\x1F\x7F] Control characters

Expressions) [39] and POSIX SRE (Simple Regular Expressions) [40]. The POSIX SRE
flavor is deprecated in favor of POSIX BRE since it provides backward compatibility.

3.2.4.1 POSIX Basic (BRE)

The Basic Regular Expressions (BRE) set of compliance is the oldest regular expression
flavor still in use and it is supported by the UNIX grep utility. The distinctive charac-
teristic of BRE is that some metacharacters require a backslash to give a metacharacter
the special meaning. Specifically, BRE requires that the metacharacters () and { } are
designated as \(\) and \{ \}. The reason behind this convention is that the oldest
versions of UNIX grep, did not support these metacharacters and the developers wanted
to keep grep compatible with existing regular expression syntax, which may use these
characters as literal characters. For example the BRE r{2,4} matches "r{2,4}" literally
while the BRE r\{2,4\} matches "rr, "rrr" or "rrrr". This means that using a backslash
to escape a character that is never a metacharacter is an error, while other regex flavors,
such as POSIX ERE, use the backslash to suppress the meaning of metacharacters.

The BRE also supports POSIX bracket expressions, a feature similar to character
classes, with the exception that shorthands are not supported. The dot metacharacter is
used to match any character, excluding the line brake, and the star is used to match a
token zero or more times. Anchors are also supported using the caret and dollar signs.
All these characters can be matched literally by escaping them with the \ symbol. No
other features are supported by POSIX BRE, such as alternation.

16 CHAPTER 3. REGULAR EXPRESSIONS

3.2.4.2 POSIX Extended (ERE)

The POSIX Extended Regular Expressions flavor supports all the features of the BRE
flavor but introduces many new ones. The "Extended" keyword is relative to the original
UNIX grep, which only supported brackets, the dot, the star and the anchor metachar-
acters. The ERE flavor is used by the UNIX egrep utility. However, the developers
of egrep did not try to maintain compatibility with grep but opted for a separate tool
instead. For this reason POSIX ERE, and the egrep tool respectively, support additional
metacharacters and do not require backslashes. Backslashes can be used in order to sup-
press the meaning of metacharacters. Escaping a character that is not a metacharacter
always produces an error.

One of the most important features introduced in POSIX ERE is alternation. Using
the vertical bar | as a metacharacter, the regular expression can match either the expres-
sion before or the expression after it. ERE also introduces the quantifiers ?, +, {n},
{min,max} and {min,} which repeat the preceding token zero or once, once or more,
n times, between min and max times, and min or more times, respectively. The POSIX
standard, however, does not define backreferences. Based on the standard’s definition,
ERE is an extension of the old UNIX grep as egrep and not an extension of POSIX
BRE.

3.2.5 Lazy Quantifiers

Certain implementations allow for lazy or possessive matching. For example, in Python
and Java regular expression engines, the quantifiers ?, + and * are greedy by default,
trying to match as many characters as possible. However, those quantifiers can be made
lazy –also called ungreedy or reluctant– by appending the question mark ?. For instance,
given the input string "Regular Expression Engine", the regex <.*> will match
"Regular Expression Engine" while the regex <.*?> will only match "" and
"".

3.2.6 Backreferences

Backreferences provide the functionality of matching again the same input text, as previ-
ously matched by a capturing group enclosed in parentheses. The backreference \n refers
to the n-th capturing group and most implementations allow up to 99 capturing groups.
For example, the regular expression <[a-zA-Z0-9]>.*?</[a-zA-Z0-9]> can be
used in order to match HTML tags (the parts of the expression starting and ending with
angle brackets) and the enclosed text (.*?). The same regular expression can be de-
clared as <([a-zA-Z0-9])>.*?</\1> using backreferences. In this case, \1 refers
to the first and only capturing group ([a-zA-Z0-9]).

3.3. REGULAR EXPRESSION ENGINE INTERNALS 17

3.3 Regular Expression Engine Internals

The various regular expression engine implementations, found in many tools and applica-
tions, differ in terms of syntax and behavior. However, there are only two kinds of designs:
(i) regex-directed engines and (ii) text-directed engines. Nearly all modern regex flavors
are based on regex-directed engines. The reason behind this, is that they provide certain
functionality, such as lazy quantifiers and backreferences, that can not be implemented in
text-directed engines.

3.3.1 Regex-directed Engines

Regex-directed engines walk through the regular expression trying to match each token
against the characters of the input string. Each time a match is achieved the engine ad-
vances through the regex and the target string. Upon a token mismatch, the engine back-
tracks to a previous regex token and string character. From this position, a different path
is followed through the regular expression. Backtracking can be controlled in most regex
flavors via possessive quantifiers and atomic grouping.

3.3.2 Text-directed Engines

In contrast to regex-directed engines, text-directed engines walk though the target input
string attempting to match all regular expression permutations before continuing to the
next string character. For this reason, a text-directed engine never backtracks. Although
text-directed engines find the same matches as regex-directed engines (in most cases)
and seem to be more efficient due to their lack of backtracking, they are not used by the
modern regex engines. Such engines are not able to implement various features found in
regex-directed engines and finding all regex permutations when attempting to match each
string character is not efficient. Matches different than those found by regex-directed
engines occur when the regular expressions use alternation with two possible alternatives
that can match at the same target string position.

18 CHAPTER 3. REGULAR EXPRESSIONS

Chapter 4

Architectures and Parallel
Computing

In many cases, large computational problems can be divided into smaller ones, which can
be solved at the same time. This approach, where many executions or calculations are car-
ried out simultaneously, is called parallel computation. This design concept is employed
for many years in the field of high-performance computing. Interest in parallel computing
has also grown lately due to the physical constraints preventing frequency scaling. Par-
allelism is divided into three major categories. The existing hardware architectures can
be classified according to Flynn’s Taxonomy [41], based upon the number of concurrent
instruction and data streams available by the architecture.

4.1 Levels of Parallelism

Parallel computation can be divided in several different levels such as bit, instruction and
task level parallelism. An other classification in existence is data parallelism.

4.1.1 Bit-level

The basic concept behind bit-level parallelism is increasing the processor word size. In
this way, the number of instructions needed to be executed by the processor in order to
perform an operation on variables whose sizes are greater than the length of the word,
reduces. For example, if a 16-bit processor has to add two 32-bit integers, it must first add
the 16 low bits from each integer and then proceed with the rest 16 high bits. This process
requires two instructions to complete, while a 32-bit processor is able to perform it with a
singe instruction.

4.1.2 Instruction-level

It is common for processors to be able to execute many instructions simultaneously.
Instruction-level parallelism (ILP) is a measure of how many instructions in a process

19

20 CHAPTER 4. ARCHITECTURES AND PARALLEL COMPUTING

can be executed simultaneously. The achievable level of ILP is application and workload
specific. For example, if a process contains the following operations:

0. a = b + c;

1. d = e - f;

2. g = a / d;

then, the operations 0. and 1. can be executed in parallel, since they do not have any
dependencies. However, the operation 2. can not be executed before 0. and 1. are
completed.

This simultaneous instruction execution can be achieved either via hardware support
or via software support. In the first case, also called dynamic parallelism, the processor
decides at run time which instructions to execute in parallel. In the second case, also called
static parallelism, the compiler, decides a-priori the set of instructions that are going to be
simultaneously executed. Some common techniques used for exploiting instruction level
parallelism are instruction pipelining, superscalar execution, out-of-order execution and
branch prediction.

4.1.3 Task-level

Multiprocessor systems are able to execute different processes (threads) by assigning them
on the various processors. Each process can execute on different or the same data-sets as
the others. This level of parallelism is called task-level parallelism (TLP). For example, if
an application composed by two threads (T0 and T1) is executed on a multiprocessor with
two cores (C0 and C1), then it can dictate the thread execution and assign T0 to C0 and T1
to C1. In this way, the two threads will be executed in parallel instead of being serialized
and context-switched on a single core.

The concept of thread level parallelism became particularly popular into the commer-
cial market with the advent of multi-core microprocessors. The main reason commercial
desktop processors began to follow the multi-core trend, is that increasing the clock speed
or instructions per clock is no longer practical or efficient. By increasing the number
of processors, the applications able to utilize the hardware, are capable to overcome the
clock-speed problem and benefit from the increase in computing power.

4.1.4 Data Parallelism

The concept of data parallelism is fundamentally different from the levels of parallelism
described above. Data parallelism is achieved when the same function is simultaneously
executed on multiple cores across different data. On the other hand, task-level parallelism
is the simultaneous execution of different functions on multiple cores across the same
or different data. In most cases, when data parallelism is applied, the different threads
control the operations on all data elements, while in other cases a single execution thread
controls the operations. However, in both designs all threads execute the same code.

4.2. FLYNN’S TAXONOMY 21

4.2 Flynn’s Taxonomy

Michael J. Flynn proposed in 1972 four broad classifications of computer architectures,
based on (i) the interaction of their instruction set with the data streams, (ii) the number
of concurrent instructions and (iii) data streams present in the architecture. Those four
categories are named SISD, MISD, SIMD and MIMD. The first two categories include
architectures with a single data stream, while the other two include architectures with
multiple data streams. This classification system is adopted by the community and named
Flynn’s Taxonomy. A graphical representation of the four categories, displaying how the
instruction streams interact with the data streams, is displayed in Figure 4.1

PU

Instruction Pool

D
at

a
P

o
o

l

(a) SISD

Instruction Pool

D
at

a
P

o
o

l

PU PU

(b) MISD

PU

Instruction Pool

D
at

a
P

o
o

l

PU

PU

PU

(c) SIMD

PU PU

Instruction Pool

PU

PU

PU

PU

PU

PU

D
at

a
P

o
o

l

(d) MIMD

Figure 4.1: The four basic computer architectures, proposed by Flynn [41]. The first
two figures (Figures 4.1(a) and 4.1(b)) present the architectures with a single data stream,
while the remaining two (Figures 4.1(c) and 4.1(d)) demonstrate the architectures with
multiple data streams.

22 CHAPTER 4. ARCHITECTURES AND PARALLEL COMPUTING

4.2.1 SISD

The SISD (Single Instruction stream, Single Data stream) classification, describes the
type of architecture in which a single (uni-core) processor executes a single instruction
stream, to operate on a single data stream.

4.2.2 SIMD

The SIMD (Single Instruction stream, Multiple Data streams) category describes an ar-
chitecture with multiple processing elements that perform the same operation on multiple
data streams. Flynn divides the SIMD processors in three categories:

1. Array processors, where a single control unit connected with n independent pro-
cessing elements operating on multiple data streams, upon command of the control
unit.

2. Pipelined processors, a time-multiplexed version of the array processors.

3. Associative processors, a variation of the array processors, where the processing
elements are not directly addressed.

4.2.3 MISD

The third class, according to Flynn, is called MISD (Multiple Instruction streams, Single
Data stream) and describes the computer architecture where multiple processing elements
operate on a single data stream. This architecture is rather uncommon and generally used
for fault tolerance. For example, in some heterogeneous systems, operating on the same
data streams, where the various processing units must agree on the result.

4.2.4 MIMD

MIMD (Multiple Instruction streams, Multiple Data streams) is the last classification in
Flynn’s Taxonomy and describes the architecture where multiple autonomous processing
elements execute different instructions on multiple data streams.

4.2.5 Other Classifications

With the rise of the multiprocessing CPUs and GPGPU (General-Purpose computing on
Graphics Processing Units), the concept of Flynn’s Taxonomy has been evolved and new
classifications have been defined in order to cover the available architectures. The three
most prominent ones are described in the following sections.

4.2.5.1 SIMT

The SIMT (Single Instruction stream, Multiple Threads) classification was introduced by
NVIDIA’s Fermi microarchitecture [42]. This classification, describes the architecture
that combines SIMD with multithreading. Processors designed with this architecture are

4.3. COMMODITY HARDWARE 23

equipped with multiple processing units but are able to execute more tasks than the avail-
able units. This is achieved by each processing unit having multiple threads, also called
work-items, which execute in lock-step. Each thread is a sequence of SIMD Lane oper-
ations and all threads are able to execute concurrently using a single instruction. Their
properties vary from those of POSIX threads.

4.2.5.2 SPMD

One of the most popular classifications is SPMD (Single Program, Multiple Data streams),
which describes the architecture where multiple autonomous processing elements simul-
taneously execute the same program as independent points on multiple data streams. It
differs from SIMD in that no lock-step is imposed.

4.2.5.3 MPMD

The final architecture classification is called MPMP (Multiple Programs, Multiple Data
streams) and describes systems where multiple autonomous processing units execute si-
multaneously at least two independent processes on multiple data. Typically, one process-
ing unit is assigned to execute a manager which runs one program that farms out data to
all the other processing units, all running the second process.

4.3 Commodity Hardware

In the following sections we will introduce definitions and we will provide some insight
regarding the most common off-the-shelf hardware components that constitute modern
commodity systems.

4.3.1 CPUs

The CPU (Central Processing Unit) is considered as the vital part of a system, responsible
for executing the various processes. With the rise of multi-core CPUs, their capabili-
ties have been extended in order to support parallel computing models. Processors, pro-
vided by the majority of vendors, offer extended instruction sets with support for hyper-
threading and vector operations. Multi-core CPUs can be utilized in order to concurrently
execute various independent, or co-operating, processes with high execution bandwidth.
In the recent years, many CPUs also provide SIMD functionality which can be exploited
either via dedicated intrinsics or by a parallel computing platform, such as OpenCL.

Due to the fact that modern CPUs allow parallelism in both instruction and task levels,
as well as some level data parallelism, they are ideal for a vast variety of workloads. In
comparison to GPUs, CPUs are regarded as more efficient for branch intensive workloads
since they do not follow lock-step model.

24 CHAPTER 4. ARCHITECTURES AND PARALLEL COMPUTING

4.3.2 Graphics Processing Units

Traditionally, GPUs are dedicated to graphics rendering. Nowadays, GPUs are also ca-
pable of handling massively parallel computations. GPGPU architectures consist of a set
of multiprocessors, each containing a set of streaming processors, operating according to
the SIMT model, as shown in Figure 4.2, thus being able to execute thousands of threads
simultaneously. As described in section § 4.2.5.1, SIMT is similar to SIMD but provides
multithreading. The SIMT instructions specify the execution and branching of a single
thread while the SIMD vector organization exposes the SIMD width to the software. This
architecture enables GPUs to be ideal for compute-intensive parallel applications that re-
quire high memory access bandwidth.

Multiprocessor N

Multiprocessor 1

 ...Processor 0 Processor 1 Processor M

Instruction
Unit

 Shared Memory / L1 Cache

Registers Registers Registers

 Constant Cache

 Texture Cache

Multiprocessor 0

Constant Memory

Texture Memory

Global Memory

Figure 4.2: The NVIDIA CUDA architecture comprised of multiprocessors, each one
containing multiple stream processors and a set of various memory spaces.

Tasks issued by the host computer to its connected GPU are called kernels. Each
kernel is launched on the GPU device as a set of hundreds or thousands of threads, or-
ganized in thread blocks. Those thread blocks are executed by the multiprocessors, in a
SIMT fashion, organized into same-sized groups called wraps. A typical kernel execution
follows four steps:

4.4. PARALLEL COMPUTING PLATFORMS 25

1. A DMA controller transfers the required data from the host memory to the GPU
memory.

2. The host program issues the kernel launch on the GPU.

3. The GPU executes the threads in parallel.

4. The DMA controller transfers the resulting data from the GPU memory back to the
host memory.

A typical GPU memory organization consists of various memory spaces. Each thread
block has a shared memory space visible to all threads of the block and has the same
lifetime as the block, while each thread in a block has its own local memory. Moreover,
there are three additional memory spaces named global, constant and texture respectively.
All threads have access to those memory spaces and they are persistent across kernel
launches by the same process.

Besides the discrete high-end GPUs, there are also integrated GPUs –packed on the
same die with the CPU. An integrated GPU does not have a dedicated memory; it shares
the same physical address space with the CPU. In comparison to the discrete GPU, the
integrated GPU performs better with workloads bound to the I/O interface. However, the
computational capacity of an integrated GPU is capped by the internal power control unit,
in order not to exceed the thermal constraints (TDP) of the processor die [43, 44].

4.3.3 Other Accelerators

Except for GPUs, other hardware accelerators exist. Examples of such accelerators are (i)
FPGAs, (ii) cryptographic accelerators, (iii) AI accelerators, (iv) physics processing units
and (v) coprocessors –like the Intel Xeon Phi coprocessor [45].

4.4 Parallel Computing Platforms

Over the years, general-purpose computing is moving towards parallel designs and archi-
tectures. Recently, developers have taken advantage of the powerful multi-core processors
in order to build highly parallel and efficient applications and systems. Vendors like Intel,
NVIDIA and AMD offer convenient programming libraries that allow the parallelism for
general purpose computing. The following two sections introduce the two main frame-
works for parallel programming, used in this work; CUDA (§ 4.4.1) and OpenCL (§ 4.4.2).

4.4.1 CUDA

CUDA was proposed by NVIDIA and is a parallel computing platform and application
programming interface [46]. Over the last years, CUDA has enabled developers to pro-
gram NVIDIA GPUs for general purpose processing –not only for the traditional graphics
rendering. The CUDA platform is a software layer that gives direct access to the GPU’s
virtual instruction set and various parallel computational elements. This access allows the
execution of the compute kernels –units of work issued by the host computer to the GPU.

26 CHAPTER 4. ARCHITECTURES AND PARALLEL COMPUTING

4.4.2 OpenCL

OpenCL is a framework that allows the uniform programming of heterogeneous plat-
forms. Heterogeneous platforms mainly consist of CPUs, GPGPUs, DSPs, FPGAs and
other type of processors and hardware accelerators (e.g. Intel Xeon Phi-coprocessor)
[47]. OpenCL provides a standard interface for parallel computing allowing task-based
and data-based parallelism through the execution of the compute kernels.

4.5 Programming Considerations

While the benefits of employing a parallel computing model seem to be appealing, one
should first consider the following aspects. Transitioning from a serialized execution
model to a task and/or data parallel model is not an automated process. In most cases it
requires a lot of engineering effort. Deciding which parts to parallelize on a multicore
CPU or offload to a highly parallel GPU relies on experience and understanding of the
algorithms in use. For example, GPUs are suitable for offloading tasks with high data
to instruction ratio (i.e. tasks performing the same operations on different input data),
while multicore CPUs are more suitable for tasks with high I/O demands or processes
where different tasks can be executed simultaneously. Moreover, the chosen architecture
or programming platform may impose various limitations. For example, a SIMT model
can suffer significant performance overheads due to the control flow divergence as threads
executing with lock-step can follow different code paths. Thus, implementing efficient
parallel programs also requires a deep understanding of the underlying hardware.

Chapter 5

Implementation

This chapter describes the implementation of our massively parallel regular expression
and string matching engine. The engine is able to simultaneously match a very large
number of different input data against large sets of fixed strings and binary patterns, as
well as regular expressions. We present the design of our engine, using the CUDA plat-
form in order to utilize the high processing power of NVIDIA’s GPUs. To expand our
implementation, we also use the OpenCL framework, exploiting the SIMT capabilities of
any modern processor and accelerator. These two implementation flavors are designed
as libraries, sharing a common simple API developed in C and Java –via the use of Java
Native Interface (JNI). The API offers a layer of abstraction to the developer, who does
not need to be aware of the underlying hardware platforms. Our system is able to detect
the present hardware and utilize it to the maximum extent. The libraries can be used in
order to embed our engine in various scenarios, such as Network Intrusion Detection Sys-
tems (NIDS), Antivirus and search engines, in order to benefit from the high processing
throughput. Moreover, the functions exposed by the API can be used for the development
of command-line utilities, operating with the same principles as sed or grep.

5.1 Design Overview

Our matching engine is designed as a composition of four different modules, each one
developed using both CUDA and OpenCL. The modules are then compiled as a single
library, exposing a unified API. Upon the bootstrap of our engine, an initialization task
scans the system in order to identify the available hardware and the supported platforms.
After this procedure is complete, the four modules are properly set in order to execute
on the underlying hardware, using the suitable flavor. The overall architecture is shown
in Figure 5.1. One component is responsible for transferring the data to and from the
selected processing units and an other one for handling events when a match is found in
the input. The other two components are responsible for performing the fixed string and
regular expression matching respectively.

27

28 CHAPTER 5. IMPLEMENTATION

CPU
Integrated GPU

Discrete GPU

CUDA

OpenCL

Device DRAM Host DRAM

Regex Matching
Module

String Matching
Module

Events
Module

Data Transfer
Module

API

2

3

4

1

Runtimes

Figure 5.1: The overall architecture of our system. The interaction between the four com-
ponents (modules) is performed as follows: data chunks arrive from various input data
streams to the data transfer module (1) that batches them and hands those batches to the
two processing modules, named string matching and regex matching modules, respec-
tively (2); when the processing is finished (3) the data transfer module returns the results
to the events module, responsible for the match reporting (4). In addition, we present the
runtimes and the underlying hardware.

5.2 Data Gathering and Transferring

The input data that must be scanned for matches are handled by the data transfer module,
which is responsible for gathering them in batches and transferring those batches and the
results to and from the selected processing unit.

The data transfer module exposes an input buffer via the API. This buffer can be
used in order to receive input from various sources, such as input files or network sockets.
The simplest approach would be to transfer each chunk of input data, upon its arrival
on the buffer, to the processing unit. However, this technique is rather inefficient for
two reasons. Firstly, if a discrete GPU is chosen as processing unit by our engine, the
data are transferred via the PCIe bus. Batching many small transfers into larger ones
performs much better, since the initialization of the bus is not performed every time each
individual data chunk is transferred. Secondly, the main concept behind SIMT and SIMD
respectively, is that the same task –in our case, pattern matching– will be simultaneously

5.2. DATA GATHERING AND TRANSFERRING 29

performed on multiple input data. When the data is batched and transferred as a set, a
processing task is able to start on the batch. The main process, the one that launched
the processing task, can construct the next batch in the meantime, achieving a pipeline
between the I/O and the processing.

We design the data buffer as a ring buffer holding multiple buckets. The implemen-
tation of the ring buffer is particularly useful in our engine, since it allows three major
operations to be performed on different buckets, achieving a pipeline between data gath-
ering, data transferring and data processing. In its simplest form, the ring buffer contains
three buckets. If we observe a snapshot of the ring buffer at a random time trand we will
notice the following: (i) one of the three buckets is being constructed using data from the
input stream, (ii) the second bucket, which is already constructed, is being transferred to
the appropriate processing unit, and (iii) the transferring of the third bucket is complete
and its contents are being processed. Since these three operations are performed in paral-
lel, on different buckets, a pipeline is achieved. In practice, our ring buffer can hold more
than three buckets and dynamically increase their number, up to a certain extend, in order
to accommodate the needs of host processes with high I/O bandwidth. Such applications
can be network facing processes that use the data buffer in order to scan incoming packet
traffic. An overview of the ring buffer is shown in Figure 5.2.

GPURAM

storageNIC

other data
streams

Global MemoryPCIe

Figure 5.2: Ring buffer overview. Data chunks arriving from various input streams are
batched into ring buffer buckets. Once a bucket is complete, it is transferred to the discrete
GPU via the PCIe bus. If the buckets are processed by the CPU, or an integrated GPU, the
bucket transferring process is omitted since the integrated GPU shares the same physical
address space with the CPU; thus, there is no need for transferring data to a dedicated
DRAM.

Each ring buffer bucket is a batch of various input data chunks and it is constructed as
a set of arrays, using one to contain the actual data and the remaining to hold the metadata
needed for the processing. The structure of a data bucket is presented in Figure 5.3. In
order to utilize the SIMD capabilities of the available SIMT architectures, we choose to
utilize the vector data types offered by the two parallel computing platforms selected for
the implementation of our engine. The use of vector data types can increase the overall
performance via vectorized memory accesses. The architectures provide hardware sup-

30 CHAPTER 5. IMPLEMENTATION

port for these vector data types via special 128- and 256-bit registers, as well as dedicated
SIMD-capable ISA extensions. For example the int4 data type can hold four 32-bit
signed integers using a 128-bit register. Since we handle the input data as single-byte
characters, we can exploit vector types, like int4, in order to simultaneously fetch 16
input characters and store them on the available 128-bit or 256-bit registers. However, the
appropriate use of these features requires special handling. The allocation of the arrays
inside the data bucket, as well as all accesses to them, should be memory aligned.

c1

data0 padding data1 padding

... ... cMc0 c1 cN c0 c0 c1 ... cX

dataN

offset0 offset1 ... offsetN

size0 size1 ... sizeN

Ring Buffer Bucket

data
array

offsets
array

sizes
array

Figure 5.3: Overview of a ring buffer bucket. The bucket contains the batch of data,
concatenated into a single-dimensional character array. Padding is used to keep the offsets
of each data chunk in memory aligned positions. The offsets array holds the offsets of the
individual data chunks while the sizes array stores their sizes (excluding the padding).

As we will describe in the following section (§ 5.3), we choose not to handle the
input data as single-byte characters but fetch and store them in int4 vectors in order to
exploit the vectorization of the memory accesses. The batching of the input data into the
buffer bucket is done as following. Once a chunk of data is issued for processing, the
data transfer module saves the data bytes into the data array of the bucket. Since we use
the int4 vector type for data handling, the size of each data chunk should be aligned
to 16 bytes (the number of characters each int4 type can hold). If the size of the input
data is not 16-bytes aligned, an appropriate padding is used. After the data is successfully
stored, the module saves its actual size, without the padding, to the sizes array, as well
as the offset of its first byte inside the offsets array. When other data chunks arrive to the
buffer, the same process is followed and the data is stored in the data array, starting from
the byte following the last padding byte. In this way, all data chunks inside the data array
start from a 16-byte aligned position, making their memory access vectorization possible,
while they are fetched and processed.

5.3. STRING MATCHING 31

When a batch is complete, it is transferred to the selected processing unit in order to
be scanned for matches. A batch is complete when as many data chunks as the available
SIMT threads are successfully stored. If a discrete GPU is chosen as processing unit, the
data transfer module sets a DMA with the graphics card. An appropriate memory space
is preallocated in the GPU in order to house the copy of the buffer bucket. The full bucket
is transferred via the PCIe bus to the graphics card’s DRAM. If the execution is performed
on a CPU, using OpenCL, the data transfer module does not create a DMA channel but
rather utilizes the structures provided by the OpenCL platform for fast data processing.
In this case, the ring buffer solely resides in the host system’s DRAM and the bytes are
fetched by the CPU using the appropriate SIMD instructions (integrated GPUs share the
same physical address space with the CPU and they are not equipped with a dedicated
DRAM).

When the processing of a buffer bucket is complete, a buffer containing all the appro-
priate results is returned back to the host process. The data chunks are never transferred
back to the host process since no transformation is performed on them and their initial
copy already exists in the memory space of the caller process.

5.3 String Matching

One of the key functionalities of our engine is the fixed string and binary signature match-
ing. The hardware architectures and computing platforms selected for the development of
our engine allow the simultaneous processing of multiple input streams. Each data stream
is matched against large sets of strings with a single pass over the input bytes. This is
achieved by utilizing the Aho-Corasick string matching algorithm described in Chapter 2.
The main principle of the Aho-Corasick algorithm is that all patterns, fixed strings and
binary signatures, are compiled into a single DFA. Each byte of the input data stream
moves the current DFA state to the next correct state. A match is achieved when a state,
marked as final during the construction of the DFA, is encountered as the current state.
The process of advancing through the state machine using one byte of the input stream at
a time continues until the whole input is consumed. The Aho-Corasick algorithm seems
to be a perfect fit for the data parallel execution of our engine, since no backtracking on
the input data is required and the process of acquiring the next DFA state lacks control
flow instructions that could lead to thread divergence.

5.3.1 Readable Binary Signature Support

The definition of the Aho-Corasick algorithm treats each pattern character as a literal
upon the construction of the DFA. In order to provide support for human readable binary
signatures and patterns where clear-text is mixed with unprintable characters, such as
command characters, we define the following syntax. The user is able to represent binary
patterns by declaring each byte with its hexadecimal value, following the commonly used
0x notation, surrounded by pipes. For example, the pattern "hers\n", where \n represents
the new line feed, can be declared as "hers|0x09|", with 0x09 representing hexadecimal

32 CHAPTER 5. IMPLEMENTATION

value of the ASCII new line character. This syntax can be particularly useful when our
engine is used in order to perform deep packet inspection (DPI), where the various packet
rules contain a mixture of text and unprintable bytes. Very large binary patterns, such as
virus signatures that do not need to be in a human readable format, can be given as an
input to the engine "as-is".

5.3.2 DFA Representation

In order to achieve data parallelism, we develop a variation of the standard Aho-Corasick
implementation, found in many searching tools such as grep. In most implementations,
the state machine (DFA) is constructed as a tree with each node containing information
about the state it represents, as well as various metadata. Since complex data structures
using pointers are not an appropriate fit for data parallel platforms, we choose to represent
the DFA as a serialization of the state machine tree to a single-dimensional integer array.
In order to make the process of constructing this array easy to follow, we will describe the
procedure using a two-dimensional array as the DFA representation. We will use the tree
of Figure 2.1, produced by the patterns {he,she, his, hers}, as example.

During the bootstrap phase of our engine, the various signatures are processed by a
simple parser. The purpose of the parser is to identify the signatures and process the
binary notations described in § 5.3.1, if any. When all the available patterns are gathered
and processed, they are compiled into a single Aho-Corasick DFA, constructed as a tree.
The next step is to serialize the produced tree as a two-dimensional integer array. This
array will have 256 columns, which represent the size of the ASCII set, and N rows, where
N is the number of the states in the DFA. Each row represents a DFA state and each cell
contains the number of the next valid transition, corresponding to the ASCII character that
the cell represents. An example of this array can be found in Figure 5.4.

0 …
e

101 …
h

104
i

105 …
r

114
s

115 …
255

0 0 0 0 0 1 0 0 0 7 0 0

1 0 0 -2 0 1 5 0 0 7 0 0

2 0 0 0 0 1 0 0 3 7 0 0

3 0 0 0 0 1 0 0 0 -4 0 0

4 0 0 0 0 8 0 0 0 7 0 0

5 0 0 0 0 1 0 0 0 -6 0 0

6 0 0 0 0 8 0 0 0 7 0 0

7 0 0 0 0 8 0 0 0 7 0 0

8 0 0 -9 0 1 5 0 0 7 0 0

9 0 0 0 0 1 0 0 3 7 0 0

ASCII set

St
at

e
s

Figure 5.4: The state table produced by the serialization of the Aho-Corasick DFA as a
two-dimensional integer array. Negative values indicate final states.

5.3. STRING MATCHING 33

5.3.3 Input Processing

In order to traverse the serialized DFA tree, the string matching task starts from state
0 (row 0) and selects the appropriate column, according to the ASCII value of the first
character of the input. In this cell, it finds the next valid state, which is located in another
row of the array. Then, it fetches the next character from the input and moves to the cell
pointed to by the row given in the previous step and the column given by the ASCII value
of the current character. The final states in the array are annotated with a negative sign.
When the task hits a negative state, we know that a match has been successfully found.
Then, the search is continued using its absolute value for the next step. The fail states
either point the matcher to a previous valid state or to the initial state 0.

In practice, this array is single-dimensional and all the rows that we mentioned earlier
are concatenated. Since the size of every row is 256 integers, the goto function traverses
the array as follows: state = dfa[state * 256 + char_ASCII_value]

Once the DFA is constructed and serialized as a single dimensional integer array, it is
transferred to the external GPU or pined in the appropriate memory spaces, if a CPU or an
integrated GPU is used as the processing unit of our engine. The process of constructing,
serializing and pinning the DFA is executed during the initialization phase of the engine.
The data processing is performed on a thread-per-data-chunk fashion. Each thread is
assigned a data chunk from the data buffer, described in § 5.2.

The process of assigning the various data chunks in the batch (buffer bucket) to each
thread is done as follows. Every thread has its own unique ID, starting from zero up to
the number of available threads. During the batching process, the data transfer module
stores exactly as many data chunks as the available SIMT threads, so every thread can be
assigned with a different data chunk. Each thread, using its unique ID as index, fetches
the size of the data it is going to process from the bucket’s sizes array as well as its
starting offset from the offsets array. Using the offset as index for the data array, it starts
fetching and processing the input. Each thread fetches the data using the int4 vector
data type. This vector type is designed to hold four 32-bit signed integers; however,
via appropriate casting we can exploit it to store 16 single-byte string characters. An
external loop prefetches the appropriate data using the int4 vector, thus storing 16 bytes
per loop to a 128-bit register, used by the architecture to support the vector type. This
process is repeated for size[thread_id] / sizeof(int4) times. An internal
loop unpacks the vector and processes each one of the 16 characters individually. Data
prefetching using vectorized memory accesses can significantly improve the performance
of our string matching module, by exploiting the SIMD characteristics of the underling
SIMT architecture. The nested loops are used for data prefetching and vector unpacking,
thus, the complexity of the string matching algorithm is not increased to O(n2).

Every time a thread discovers a match, it saves the required information (data chunk
ID, matched pattern, matching offsets, etc.) to another buffer. When the processing of a
batch is complete, the data transfer module returns the (batched) results to the host pro-
cess. By utilizing the properties of the Aho-Corasick DFA, along with the data parallel
execution that SIMT architectures offer, our string matching module is able to simultane-
ously match a large set of patterns against a large set of input data streams.

34 CHAPTER 5. IMPLEMENTATION

5.4 Regular Expression Matching

The second basic functionality provided by our engine is the one of regular expression
matching. The regex matching module, responsible for this process, operates similarly
to the string matching module described in § 5.3. The various threads process the data
buffer in by advancing through the states of a serialized DFA, consuming a single byte
of the input in each transition. The results are also reported to the host process in the
same manner. However, the operation of matching regular expressions differs during the
construction of the DFA and the consumption of the input bytes during processing.

5.4.1 DFA Construction

Parsing the regular expressions requires a sophisticated parser, able to understand and
interpret their syntax. Our parser supports POSIX regular expressions, as well as various
escape characters and character classes, borrowed by other implementations such as Perl.
After the parsing is complete, our engine compiles the various regular expressions into a
singe NFA. The NFA is then transformed to a fully expanded DFA and serialized in the
same fashion as the Aho-Corasick DFA, described in § 5.3.2.

5.4.2 Data Processing and Backtracking

The processing of the input data is performed by advancing through the DFA in the same
manner as during simple string matching. The major difference between the two modules
is that the regex matching module backtracks on the input data, if required. The algorithm
keeps track of the position of the character that caused a successful transition through the
DFA. When a thread encounters a fail state, after a sequence of successful transitions, it
backtracks on the input data and re-attempts the match starting from the character after
the one that caused the first successful transition. We choose to implement a backtracking
regex-directed engine (described in Chapter 3 § 3.3.1) in order to support various im-
portant features, such as backreferences and lazy quantifiers. Even though backtracking
diverges from the optimal execution path, that being processing the whole input data with
one pass over each byte, it can be controlled via possessive quantifiers and atomic group-
ing. Possessive quantifiers prevent the engine from trying all the permutations in order to
match the input data streams. However, the task of minimizing the backtracking events
lays upon the author of the regular expressions and it is not an automated process carried
out by the engine.

5.5 String Assisted Regular Expressions

Compiling together multiple complex and large regular expressions into a singe DFA may
produce a very dense automaton that drives the regular expression module into more fre-
quent backtracking, causing significant performance degradation. In order to mitigate
this problem, we introduce the concept of string assisted regular expressions via cus-
tom searching rules. The basic idea behind string assisted regular expressions is that we

5.5. STRING ASSISTED REGULAR EXPRESSIONS 35

pair each regular expression with a fixed string, deriving from the regular expression, and
a unique identifier. Then, we compile all the fixed strings into a single Aho-Corasick
DFA and each regular expression into its own DFA. We process the input using the string
matching module and the strings found in the various rules. The regular expression match-
ing is performed only when the simple string, paired with the regular expression in the
same rule, matches the input. In this way, we can filter out most of the data chunks and
perform the regular expression matching only to those that triggered their paired simple
strings or binary signatures.

5.5.1 Searching Rules

In order to support the concept of string assisted regular expressions, we define the syntax
of custom searching rules. Each rule is assigned with a unique ID and consists of a set of
fixed string and binary patterns, a regular expression and a message. A valid rule should
contain at least one fixed string or regular expression, while the message field can be
omitted. The message field can be occupied by a text message, reported by the engine
upon the successful match, or be replaced with an event handler. The matching process is
performed in two phases and when a rule is successfully triggered the corresponding text
message or event are triggered as well. Our engine is capable of processing standalone
patterns (strings or regular expressions) along with a set consisted of different rules.

The various fields of a rule are distinctive via their tags. An example of a search-
ing rule is the following: str:"her", re:"[0-9]her[0-9]4", msg:"Rule
4 triggered". The rule indicates that the fixed string "her" should be searched us-
ing the string matching module and if it is found in a data chunk, this data chunk should
be matched against the regular expression [0-9]her[0-9]4 by the regex matching
module. Upon a successful match of both the fixed string and the regular expression, the
engine must forward the message "Rule 4 triggered" to the user. In order to generate the
automata needed for the execution of the two scanning phases, a rule-set preprocessor
parses the rule files and separates the patterns according to their tags.

In the first phase of the matching process, we compile every single string and binary
signature found in our rule-set into a single Aho-Corasick DFA. The processing of the
input data is performed as described in § 5.3. In the second matching phase, we use the
regular expressions paired with the patterns of the previous phase, if present, in order to
perform a more thorough matching. The regex matching module compiles each regular
expression found in the rule set, individually, in separate DFAs.

The paring of the simple string patterns with the regular expressions is done as fol-
lows. A NxM regex ID array is kept, where N is the number of states of the Aho-Corasick
DFA and M is the maximum number of patterns found ending in a single state of this
DFA. We also keep an array that contains all the regular expression automata, ordered by
rows, according to the ID of the rule they belong to. Using the number of a final state,
extracted upon a match in the first matching phase, we are able to index the corresponding
row of the regex ID array. In each column we can find the IDs of the regular expressions
that correspond to the patterns matched in the first phase. If the simple string pattern that
triggered the second matching phase does not have a corresponding regular expression,

36 CHAPTER 5. IMPLEMENTATION

the IDs in the table are marked with the value −1 and the second phase is terminated.
Then, we return to the first phase again. Using those IDs we can fetch the appropriate
regular expression state table using them as direct indices for the regular expression DFA
array. The second phase of the matching is performed using these state tables on the entire
data chunk. Once the process is completed, we return to the first matching phase in order
to complete the matching to the rest of the data. This procedure stops when all the bytes
of the data chunk are processed.

5.5.1.1 Reporting and Events

Reporting is performed using the messages provided in the rule-set. These messages are
stored in an array, sorted according to the ID of the rule they belong to. Upon a successful
match, either in the first or the second matching phase, the processing of the corresponding
rule is considered complete and the appropriate message is selected from the messages
array by indexing it with the rule’s ID. Those messages, handled by the event module, can
either be strings or simple error codes and are forwarded back to the user along with the
ID of the data chunk that triggered them. Optionally, the messages can be interchanged
with events. In this case, a function dispatcher table is used –responsible to dispatch tasks
upon a successful match of a rule. The indexing of this table can be achieved using the
error codes. An overview of the three phases described can be found in Figure 5.5.

5.6 API

The functionality of our engine is exposed via a C API. The API hides the specifics of
the platforms deployed for the development of the engine, making its use and integration
in other applications very simple. In order to extend the use cases of our engine, we also
provide a Java API –developed using JNI wrappers for the original C version– targeting
the vast majority of desktop, server and mobile developers. The process hosting the engine
needs to initialize it, provide the various rules and patterns as input and then start feeding
the data buffer.

The initialization can be performed using the functions provided by the API in two
ways. The first option is to call the default initializer. This will spawn a task that searches
for the available hardware and programming platforms, pick a processing unit and set
default properties to the various modules. The task opts to find the hardware with the
maximum performance capabilities. For this reason, the hardware will be initialized using
the maximum number of available threads and the number of data chunks per bucket will
be set to this number. The second option is to initialize the engine using a configuration
file. This option is tailored for users experienced with parallel programming and aware of
the properties of the hardware in use. The configuration file can be used to change many
parameters affecting the behavior of the engine. For example, a specific processing unit
can be selected, as well as the number of threads. The properties of the ring buffer can
also be altered in this phase. For example, the size of the data chunks can be customized
properly in order to achieve maximum matching throughput or minimum latency.

5.6. API 37

The API also offers various ways, to the user, in order to provide the patterns to the
engine. The patterns can be stored and retrieved "as-is" from one or multiple files. There
is also the option to provide the rule-set described in § 5.5.1 in the same manner. Finally,
the patterns or the rule-set can be retrieved from memory (e.g. character arrays), targeting
applications that construct custom patterns at runtime or receive them via data channels
(e.g. network sockets).

The data chunks are handled as character arrays and they are stored to the ring buffer
using the available API functions. The batching of the data and the handling of their
metadata is performed by the engine, thus being completely transparent to the developer.
The API also mitigates the need to explicitly launch the processing tasks once a bucket is
full, since this process is automated by the ring buffer. However, the option of triggering
a matching process on a bucket –whether it is complete or not– is also provided, target-
ing latency intolerant applications that need to deploy watchdog functionalities upon the
handling of their input data.

38 CHAPTER 5. IMPLEMENTATION

0
h

e

1
sh

e

2
h

is

3
h

ers

0
…

e
1

0
1

…
h1
0

4
i

1
0

5
…

r
1

1
4

s
1

1
5

…
2

5
5

0
0

0
0

0
1

0
0

0
7

0
0

1
0

0
-2

0
1

5
0

0
7

0
0

2
0

0
0

0
1

0
0

3
7

0
0

3
0

0
0

0
1

0
0

0
-4

0
0

4
0

0
0

0
8

0
0

0
7

0
0

5
0

0
0

0
1

0
0

0
-6

0
0

6
0

0
0

0
8

0
0

0
7

0
0

7
0

0
0

0
8

0
0

0
7

0
0

8
0

0
-9

0
1

5
0

0
7

0
0

9
0

0
0

0
1

0
0

3
7

0
0

0
-1

-1

1
-1

-1

2
0

-1

3
-1

-1

4
3

-1

5
-1

-1

6
2

-1

7
-1

-1

8
-1

-1

9
1

0

0
au

to
0

1
au

to
1

2
au

to
2

3
au

to
3

0
m

sg0

1
m

sg1

2
m

sg2

3
m

sg3

Rule IDs

Strin
gs

States

A
SC

II se
t

States

R
u

le
 ID

s

Rule IDs

R
e

gEx
au

to
m

ata

Rule IDs

M
e

ssage
s

P
h

ase 2
P

h
ase 3

P
h

ase 1

Figure
5.5:

O
verview

of
the

tree
m

atching
phases.

W
hen

the
task

of
the

firstm
atching

phase
encounters

a
negative

state,a
m

atch
has

been
successfully

found.
In

the
second

phase,w
e

use
the

absolute
value

of
this

state
in

order
to

index
the

table
thatpairs

the
sim

ple
strings

w
ith

their
regular

expressions.
W

e
use

those
ID

s
so

as
to

index
the

array
housing

the
regex

autom
ata.

If
a

m
atch

using
these

autom
ata

is
found,w

e
use

again
this

ID
in

orderto
index

the
array

housing
the

rule
m

essages.

Chapter 6

Evaluation

In this chapter, we present the evaluation of the string pattern matching framework that
we develop for this work, using various workloads as described in the following sections
(§ 6.2). Firstly, we present the properties of the produced DFA (§ 6.3). Then, we conduct
a number of benchmarks using a single-threaded implementation of our engine in order
to draw a base line for the evaluation of our parallel engine (§ 6.4). In section § 6.5,
we present the evaluation of our system when executed on the NVIDIA GTX 980 GPU.
Finally, in section § 6.6, we describe the performance characteristics of our engine when
executed on the Intel Xeon E5-2697 processor.

6.1 Experimental Testbed

In this section, we describe the underlying hardware setup. Our base system is equipped
with one Intel Xeon E5-2697 v2 processor and one NVIDIA GeForce GTX 980 graph-
ics card. The processor contains twelve CPU cores operating at 2.7GHz, with hyper-
threading support, that provides twenty-four hardware threads. The processor’s Thermal
Design Power (TDP) is 130 Watt. The system is equipped with 32GB of quad-channel
DDR3 DRAM at 1866MHz. The GTX 980 has 2048 CUDA cores and 4GB of GDDR5
memory. The GPU is rated at 5040 GFlops and its TDP is 200 Watt. The system is run-
ning Arch Linux with stock kernel (version 4.9.7) and no modifications are performed to
the operating system’s kernel or the clock ratings of the various components. Our engine
is developed using gcc version 6.3.1, CUDA toolkit version 8.0 (using the proprietary
NVIDIA driver version 375.26) and OpenCL version 1.2.

6.2 Workloads

The key components of the two processing modules, the string matching and regex match-
ing modules, are the DFAs they use in order to scan the input data streams. The number
of signatures compiled in the same DFA, the range of the ASCII set they cover, as well
as the complexity of the regular expressions, play a significant role in the characteristics
of the DFAs, which directly impact the performance of our system. In order to examine

39

40 CHAPTER 6. EVALUATION

how the various signatures affect the characteristics of the automata and the performance
of our system, we design two different workloads, as described below.

6.2.1 Synthetic ASCII Workload

This workload, contains four sets of 10, 100, 1000, and 10000 patterns respectively. Those
patterns randomly vary in size from 5 to 20 bytes each. Every one of these signatures
contains random characters covering the entire ASCII set. The purpose of this workload
is to examine how the increasing number of signatures affects the size of the produced
DFA and how this impacts the overall performance of our system. In order to put the sets
of this workload to the test, we craft four synthetic data traces containing data chunks of
random ASCII characters, again covering the entire ASCII set, one for each pattern set.

We choose to generate this workload using random ASCII characters for two rea-
sons. Firstly, pattern sets containing signatures with random characters, covering the
entire ASCII set, minimize the probability of including various signatures that share com-
mon suffixes or prefixes. This might happen with pattern sets containing natural language
signatures (i.e. English words). In a DFA perspective, this means that no common sub-
trees will be constructed, thus the DFA will have bigger density, that is every state will
have as many valid transitions as possible. Secondly, data chunks containing random
ASCII characters ensure that during the evaluation, the processing task threads will per-
form the worst case random accesses to the DFA memory since no common sub-trees
(paths in the DFA) exist in order to be cached. Moreover, we randomly inject the various
signatures to various data chunks in order to be sure that all states of the DFA will be
visited during the processing of the input. This eliminates the probability of an input trace
containing data chunks that fail after very few transitions, allowing the first n states of the
DFA to be cached.

Using this workload, we stress the engine to the maximum extent since we cover the
worst possible scenario, something that it is unlikely to happen in a real use case.

6.2.2 Huge Regular Expressions Workload

In order to evaluate the performance of our regex matching module, we develop a work-
load containing 100 huge regular expressions, varying in size from 488 bytes up to 1
Mega bytes (considering the number of characters they consist of). Since the process of
generating random regular expressions is not straightforward, we manually construct the
patterns using regular expression generators. These regular expressions are grouped in
four different categories, paired with an appropriate input trace file.

The first set consists of regular expressions containing many character sets and ranges,
while the trace file paired with this set contains very few data chunks that match the
expressions. The purpose of this set is to emulate a use case where simple regular ex-
pressions are used to extract alphanumerics from the data stream while in most cases no
matches exist and minimal backtracking takes place.

The second set contains regular expressions that aim to extract various fields from
public records such as names, addresses, bank account numbers and social security num-

6.3. DFA PROPERTIES 41

bers. This regular expression set is paired with a data input of various fake records con-
taining multiple matches. The purpose of this set is to impose greater stress on the engine,
opposed to the first set, and emulate cases where multiple matches occur in every single
data chunk.

The third set contains regular expressions similar to those of the second set, enhanced
with fuzzy matching functionality. Fuzziness can be achieved by extending the regular
expressions in order to contain multiple permutations of the various patterns they try to
extract using the dot, star, question mark and plus sign metacharacters. The data input
of this set contains records similar to those of the previous set, where multiple fields
are misspelled and matched by one of the permutations found in the regular expressions.
This workload aims to emulate the use case of the second workload when more severe
backtracking needs to take place.

The fourth set contains a few very complex regular expressions, containing multiple
metacharacters and very big ranges. The input data used for the evaluation of this set
contain matches found after severe backtracking. The combination of regular expressions
of this set along with their paired data input dive the regex matching module to severe and
constant backtracking. The purpose of this workload is to evaluate our engine under the
worst possible scenario.

We construct the regular expressions described in this section by combining multi-
ple sub expressions in each one, thus making them grow dramatically in size. The DFA
compiler handles multiple regular expressions compiled together in the same way it han-
dles multiple sub expressions found in a single regular expression. For this reason, the
DFA produced by each expression has the same properties as an automaton constructed
by multiple smaller regular expressions with the same characteristics.

In order to stress the performance of the regex matching module even further, we
construct two DFAs by randomly combining 25 and 50 regular expressions found in the
sets described above. We also evaluate the performance using these two DFAs with data
streams containing data chunks found in the data traces of all four sets. In this way we can
measure the performance of our engine when multiple regular expressions with different
characteristics are combined in a single automaton, used to process data streams with
different characteristics.

6.3 DFA Properties

In this section, we describe the properties of the DFAs produced by compiling the various
pattern sets found in the two workloads described sections § 6.2.1 and § 6.2.2.

6.3.1 Simple String DFAs

Firstly, we compile the four pattern sets found in the Synthetic ASCII workload described
in section § 6.2.1. Each set contains 10, 100, 1000 and 10000 signatures, constructed by
random characters covering the entire ASCII set. Figure 6.1 displays the characteristics of
the four DFAs. In Figure 6.1(a) we can see that the size of each DFA is proportional to the

42 CHAPTER 6. EVALUATION

number of patterns it contains. Figure 6.1(b) shows the time needed for the construction of
the four automata. The compilation of the biggest DFA, containing ten thousand patterns,
is under one second, indicating that the recompilation of the automata is feasible during
the execution of the engine. This property can be particularly useful in use cases where
patterns need to be added to or removed by the system at runtime.

 0

 20

 40

 60

 80

 100

 120

10 100 1000 10000

A
u
to

m
a
to

n
 S

iz
e
 (

M
B

)

Patterns Combined

(a) DFA sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1000 10000

A
u
to

m
a
to

n
 C

re
a
tio

n
 T

im
e
 (

s
e
c
o
n
d
s
)

Patterns Combined

(b) DFA creation time

Figure 6.1: Characteristics of the four DFAs produced by the four pattern sets found in
the Synthetic ASCII workload. The x-axis of both plots indicates the number of regular
expressions combined into a singe DFA. Figure 6.1(a) displays the size of the produced
DFAs, while Figure 6.1(b) displays the time needed for their creation. We notice that the
automaton size and its creation time are proportional to the number of regular expressions
combined.

6.3.2 Regular Expression DFAs

In order to examine the properties of the DFAs produced by compiling regular expres-
sions, we construct one DFA for each one of the 100 regular expressions found in the
Huge Regular Expressions workload, described in section § 6.2.2. Figure 6.2 displays
the sizes of the DFAs and the time needed for their construction with respect to the size of
the regular expression. As we can see in Figure 6.2(a), the size of the produced automaton
is not always proportional to the size of the regular expression. This happens due to the
fact that the expressive power of metacharacters and character classes leads to the con-
struction of multiple states. We can also observe that some regular expressions produce
automata in the order of 250 and 300 MBytes. These regular expressions have high com-
plexity and contain multiple permutations of their sub-expressions as well as huge ranges,
resulting to a significant growth of the DFA size when all possible states are constructed.
In most cases, the size of each automaton is less than 1Byte’s.

The time required for the construction of the various DFAs is displayed in Figure 6.2(b).

6.3. DFA PROPERTIES 43

We notice that, in most cases, the distribution of the required time follows the distribution
of the automaton size. The compilation time remains well under one second for 74 out of
100 regular expressions, with a maximum value of 480 seconds for the biggest and most
complex regular expression. After taking into consideration that the regular expressions
in this workload are considerably bigger than those found in most applications (such as
NIDS, Antivirus,etc.), we conclude that it is feasible to recompile the regular expressions
during runtime, if required by the application using our engine.

 0

 50

 100

 150

 200

 250

 300

 350

 0.1 1 10 100 1000

A
u
to

m
a
to

n
 S

iz
e
 (

M
B

)

Regular Expression Size (KB)

(a) DFA sizes

 0

 100

 200

 300

 400

 500

 0.1 1 10 100 1000

A
u
to

m
a
to

n
 C

re
a
tio

n
 T

im
e
 (

se
c
o
n
d
s
)

Regular Expression Size (KB)

(b) DFA creation time

Figure 6.2: Characteristics of the one hundred DFAs produced by the regular expressions
of the Huge Regular Expressions workload. The x-axis in both plots indicates the size
of the various regular expressions. Figure 6.2(a) displays the size of the DFA produced
by each regular expression, while Figure 6.2(b) displays the time needed for its creation.
We notice that the size of the DFA as well as its creation time are not always proportional
to the size of the regular expression. Complex regular expressions produce larger DFAs
or require more time to be compiled.

We conclude the analysis of the various DFAs by compiling together 25 and 50 ran-
dom regular expressions, picked up by all four regular expression categories described
in section § 6.2.2. Figure 6.3 displays their properties. As we can see in Figure 6.3(a)
the sizes of the produced DFAs are not linear to the number of regular expressions com-
bined together. The same property also applies to the required creation time, shown in
Figure 6.3(b). The compilation time as well as the size of the automaton can not be
approximated a-priori, since they are a function of the complexity of the individual reg-
ular expressions and the way their states are distributed inside the DFA. In our case, the
sizes vary from 20 Byte’s up to almost 1 Byte and the creation time reaches up to over
two hours. Construction of such complex DFAs is most likely unreal for the majority
of applications. However, in our case, they are particularly useful in order to stress the
performance of the regex matching module to the maximum extent.

44 CHAPTER 6. EVALUATION

 0

 200

 400

 600

 800

 1000

25 50

A
u
to

m
a
to

n
 S

iz
e
 (

M
B

)

Regular Expressions Combined

(a) DFA sizes

 0

 0.5

 1

 1.5

 2

 2.5

25 50
A

u
to

m
a
to

n
 C

re
a
tio

n
 T

im
e
 (

h
o
u
rs

)

Regular Expressions Combined

(b) DFA creation time

Figure 6.3: Characteristics of the DFAs produced by combining 25 and 50 random reg-
ular expressions found in the Huge Regular Expressions workload. The x-axis in both
plots indicates the number of regular expressions combined in a singe DFA. Figure 6.3(a)
represents the size of the produced DFAs, while Figure 6.3(b) displays the time needed
for their creation. We notice that the automaton size and its creation time are not linear to
the number of regular expressions combined.

6.4 Baseline

In order to draw a baseline for the evaluation of our massively parallel matching engine,
we also develop a single-threaded CPU version of the framework, implemented using
C. We first evaluate the performance of the single-threaded CPU version of the string
matching module. It is also essential to examine how the size of the DFA used for the data
processing affects the performance of our system.

We evaluate the throughput of our system using the four compiled automata produced
by the pattern sets, found in the Synthetic ASCII workload, against their matching syn-
thetic data traces. We observe that the linear increase in the size of the automaton results
in a logarithmic decrease of the system’s sustained throughput, as shown in the first plot
of Figure 6.4. However, this throughput degradation contradicts with the theoretical char-
acteristics of the Aho-Corasick algorithm. In order to understand this behavior, we plot
the number of cache references required for the processing of the four automata. We ob-
serve that the linear increase of the automaton size results in a logarithmic increase of the
cache references required to process the automaton. This increase is the exact reverse of
the throughput decrease.

We also conduct the evaluation of the single-threaded version of the regex matching
module using the various regular expression sets and trace files found in the Huge Regu-
lar Expressions workload. Figure 6.5 shows the results of the evaluation. Figure 6.5(a)
depicts the sustained throughput achieved by the engine when processing each individ-

6.4. BASELINE 45

 0

 1

 2

 3

 4

 5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Throughput

 0

 200

 400

 600

 800

 1000

10 100 1000 10000
 0

 20

 40

 60

 80

 100

 120

C
a
c
h
e
 R

e
fe

re
n
c
e
s
 (

1
0

6
)

A
u
to

m
a
to

n
 S

iz
e
 (

M
B

)

Number of signatures

Cache References
Automaton Size

Figure 6.4: Sustained throughput achieved by our single-threaded CPU implementation
of the string matching module using the automata produced by the four pattern sets found
in the Synthetic ASCII workload. As the number of signatures increases, the size of the
automaton grows. Bigger automata result to an increased number of cache references,
imposing a performance penalization. Note that the x-axis is in log-scale.

ual DFA separately. All the regular expressions of the same set are evaluated using the
corresponding input trace file. We notice that the expressions of each set tend to have sim-
ilar performance characteristics. Specifically, we observe that regular sets requiring more
backtracking over the input data in order to locate the various matches tend to have lower
throughput. Moreover, the regular expressions of the fourth set, which lead the regex
matching module to constant and severe backtracking, achieve very low throughput. On
the contrary, the maximum performance is achieved by the regular expressions of the first
set, which require minimum or no backtracking on the data. Finally, in Figure 6.5(b)
we can see the sustained throughput achieved by our engine when processing input data
found on all the data traces used to evaluate the four regular expression categories. We
notice that the overall performance is severely penalized since both DFAs contain regular
expressions of the fourth regular expression set and the data input contains data chunks
that trigger the constant backtracking. We can also see that the difference between the per-
formance achieved using the two DFAs is not significant, considering that (i) the second
automaton contains twice as much regular expressions from all four categories and (ii) its
size is almost 45 times bigger that the size of the DFA containing 25 regular expressions.

46 CHAPTER 6. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.01 0.1 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(a) One regular expression per DFA

 0

 20

 40

 60

 80

 100

 120

25 50
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Regular Expressions Combined

(b) Multiple regular expressions per DFA

Figure 6.5: Sustained throughput achieved by our single-threaded CPU implementation
of the regex matching module. Figure 6.5(a) displays the processing throughput using one
hundred DFAs produced by the regular expressions of the Huge Regular Expressions
workload, while Figure 6.5(b) displays the performance achieved using DFAs combining
25 and 50 random regular expressions of the same workload respectively.

6.5 Graphics Accelerators

In this section we evaluate the performance of our parallel engine using graphics acceler-
ators. In section § 6.5.1 we describe the performance characteristics of the CUDA flavors
of the string matching and regex matching modules, executed on the NVIDIA GTX 980
GPU. In section § 6.5.2 we conduct the same experiments, as in section § 6.5.1, using
the OpenCL version of both modules, executed on the same graphics accelerator for fair
comparison.

6.5.1 CUDA

We start the evaluation of our system with the CUDA flavor of the string matching module,
using the DFAs produced by the pattern sets described in section § 6.2.1. The results of
this experiment are presented in Figure 6.6. Figure 6.6(a) depicts the sustained processing
throughput achieved by the string matching module. Figure 6.6(b) shows the end-to-end
throughput of our engine, including the data transfers from and to the GPU DRAM. We
notice that the performance is decreased as the automaton grows in size from 0.1 MBytes
to 1.26 MBytes due to the increasing number of cache references. We also observe that
the sustained throughput stabilizes to 50Gbits/s for DFAs that do not entirely fit the size
of the cache. Overall, the CUDA flavor of the string matching module can achieve end-
to-end performance in the order of 60Gbits/s, for automata entirely fitting the cache, and
over 35Gbits/s for larger automata. By comparing the maximum performance achieved by

6.5. GRAPHICS ACCELERATORS 47

the CUDA version against the one achieved by the single-threaded CPU implementation
of the module, we can see that our parallel engine can achieve up to 21 times higher
performance.

 0

 50

 100

 150

 200

 250

 300

0.1 1.2 11.4 112

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

(a) Processing only

 0

 20

 40

 60

 80

 100

0.1 1.2 11.4 112

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

(b) Processing and data transfers

Figure 6.6: Sustained throughput achieved by the CUDA flavor of the string matching
module using the automata produced by the four pattern sets found in the Synthetic
ASCII workload. The x-axis in both plots represents the size of the DFAs produced
by combining 10, 100, 1000 and 10000 patterns respectively. Figure 6.6(a) displays the
throughput achieved by the GPU, while Figure 6.6(b) displays the end-to-end through-
put, including the data transfers to and from the device. We notice that when the size of
the automaton grows larger than the size of the cache, the performance is substantially
decreased and remains consistent regardless of the size of the DFA.

We proceed with the evaluation of the CUDA version of our engine by analyzing the
performance of the regex matching module, using the various pattern and data sets found
in the Huge Regular Expressions workload. In Figure 6.7, we present the performance
results of the evaluation, using the 100 DFAs produced by the regular expressions of this
workload. Figure 6.7(a) displays the processing throughput, while Figure 6.7(b) shows
the end-to-end performance, including the data transfers via the PCIe to and from the
GPU memory. As we can see, the performance characteristics of regular expressions
belonging to the same sets tend to cluster around similar throughput values, with the
first set achieving an average end-to-end throughput of almost 50Gbit/s. The throughput
decreases as we move forward to the rest of the sets with the fourth and final set achieving
an average of 4Gbps, due to the severe backtracking. In comparison to the single-threaded
CPU implementation of the regex matching module, the highly parallel CUDA version can
achieve a performance increase in the order of 16 times.

48 CHAPTER 6. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.01 0.1 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(a) Processing only

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.01 0.1 1 10 100 1000
T

h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(b) Processing and data transfers

Figure 6.7: Sustained throughput achieved by the CUDA flavor of the regex matching
module using one hundred DFAs produced by the regular expressions of the Huge Reg-
ular Expressions workload. The x-axis in both plots represents the size of the various
regular expression DFAs. Figure 6.7(a) displays the throughput achieved by the GPU,
while Figure 6.7(b) displays the end-to-end throughput, including the data transfers to
and from the device. We notice that in most cases the size DFA does not directly affect
the performance. The sustained throughput is function of the complexity of the regular
expression and the amount of backtracking performed on the input.

 0

 1

 2

 3

 4

25 50

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Regular Expressions Combined

(a) Processing throughput

 0

 200

 400

 600

 800

 1000

25 50

A
u
to

m
a
to

n
 S

iz
e
 (

M
B

)

Regular Expressions Combined

(b) DFA sizes

Figure 6.8: DFA sizes and sustained throughput achieved by the CUDA flavor of the
regex matching module using combinations of 25 and 50 random regular expressions.
Figure 6.8(b) displays the size of the DFAs, while Figure 6.8(a) displays the sustained
throughput. We notice that the size difference of the DFAs is irrelevant to the number of
regular expressions combined and does not affect the performance of the system

6.5. GRAPHICS ACCELERATORS 49

We conclude the evaluation of the CUDA flavor of the regex matching module by
measuring the sustained throughput achieved when processing the workload containing
the two DFAs combining 25 and 50 regular expressions respectively, with their paired
input trace. As we can see in Figure 6.8(a), the average end-to-end throughput lies around
3.3Gbits/s and is not affected by the size of the two DFAs, displayed in Figure 6.7(b). The
main reason of this performance degradation is the severe backtracking over the input,
produced by the regular expressions of the fourth regular expression set compiled along
the expressions of the other sets.

6.5.2 OpenCL

In this section, we present the performance assessment of the OpenCL flavor of our en-
gine, executed on the NVIDIA GTX 980 Graphics Processing Unit, starting with the
evaluation of the string matching module. Figure 6.9 presents the sustained throughput
achieved by the module, using the four automata produced by the combination of 10, 100,
1000 and 10000 random ASCII patterns, found in the Synthetic ASCII workload. As we
can see in Figure 6.9(a), the OpenCL flavor achieves a maximum throughput of 220Gbps,
excluding the data transfers. By comparing the results of Figure 6.9(a) against those of
Figure 6.6(a), we can see that the maximum performance of the CUDA flavor is almost
14% higher. The main reason behind this discrepancy is that CUDA code is optimized
for the NVIDIA hardware, while OpenCL serves as a general purpose parallel computing
platform. We can also observe that the "in-core" performance of both flavors stabilizes to
50Gbps, for DFAs that do not entirely fit in the cache.

 0

 50

 100

 150

 200

 250

 300

0.1 1.2 11.4 112

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

(a) Processing only

 0

 20

 40

 60

 80

 100

0.1 1.2 11.4 112

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

(b) Processing and data transfers

Figure 6.9: Sustained throughput achieved by the OpenCL flavor of the string matching
module, using the pattern sets described in section § 6.2.1. The x-axis in both plots rep-
resents the size of the DFAs produced by combining 10, 100, 1000 and 10000 patterns
respectively. Figure 6.9(a) displays the "in-core" throughput, while Figure 6.9(b) displays
the end-to-end throughput, including the data transfers to and from the device.

50 CHAPTER 6. EVALUATION

Figure 6.9(b) displays the end-to-end string matching throughput achieved by the
OpenCL implementation of our engine. The comparison of the results, presented in the
figures 6.6(b) and 6.9(b), indicate that the difference between the performance of the two
flavors is negligible, since the end-to-end throughput is normalized due to the overhead of
the data transfers via the PCIe bus.

In the remaining of this section we compare the matching throughput achieved by the
OpenCL version of the regex matching module versus the CUDA flavor, when processing
the various regular expression sets described in section § 6.2.2.

Figures 6.10(a) and 6.10(b) present the "in-core" throughput achieved by the two im-
plementations respectively. As we can see, the performance difference is less than 5%.
This results comes in contrast to the 14% difference observed between the results of the
two flavors of the string matching module. The main reason behind this behavior is that
the performance gained by the optimizations performed by the NVIDIA compiler to the
CUDA executable is hidden by the constant backtracking.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.01 0.1 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(G

b
p
s)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(a) OpenCL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.01 0.1 1 10 100 1000

T
h
ro

u
g
h
p
u
t
(G

b
p
s)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(b) CUDA

Figure 6.10: Comparison of the sustained throughput achieved by the OpenCL flavor of
the regex matching module versus the CUDA implementation, using one hundred DFAs
produced by the regular expressions of the Huge Regular Expressions workload. Fig-
ure 6.10(a) displays the "in-core" throughput achieved by the OpenCL flavor, while Fig-
ure 6.10(b) presents the results of the same experiment conducted using the CUDA version
of the module. We notice that the difference between the throughput of the two implemen-
tations is insignificant, since the performance gained by the hardware optimized CUDA
version is hidden due to backtracking.

We conclude the performance assessment of our system on Graphics Processing Units
by evaluating the sustained throughput achieved by the OpenCL implementation of the
regex matching module, using the two DFAs containing combinations of 25 and 50 ran-
dom regular expressions found in the Huge Regular Expressions workload. Moreover,
we compare these results to the ones obtained by the CUDA flavor of the module during

6.6. OPENCL WITH INTEL PROCESSORS 51

the same experiment. Figure 6.11(a) presents the results of the OpenCL implementation,
while Figure 6.11(b) shows the performance achieved by the CUDA version. As we can
see, the CUDA flavor is able to achieve slightly better throughput, due to the optimizations
performed by the NVIDIA compiler.

 0

 1

 2

 3

 4

25 50

T
h
ro

u
g
h
p
u
t
(G

b
p
s)

Regular Expressions Combined

(a) OpenCL

 0

 1

 2

 3

 4

25 50

T
h
ro

u
g
h
p
u
t
(G

b
p
s)

Regular Expressions Combined

(b) CUDA

Figure 6.11: Comparison of the sustained throughput achieved by the OpenCL flavor
of the regex matching module, versus the CUDA flavor using combinations of 25 and
50 random regular expressions found in the Huge Regular Expressions workload. Fig-
ure 6.11(a) displays the performance of the OpenCL flavor, while Figure 6.11(b) displays
the throughput achieved by the CUDA flavor. We notice that the CUDA version slightly
outperforms the OpenCL version since it is optimized for the NVIDIA hardware.

6.6 OpenCL with Intel Processors

One of the main advantages of employing the OpenCL framework in the development
of our engine is that, with slight modifications during the module compilation, we can
exploit the SIMD characteristics of modern CPUs. The code is executed using multiple
threads, handled by the OpenCL runtime. Each one uses the special SIMD registers and
instructions provided by the hardware, in a manner similar to the execution model on
SIMT devices, such as GPUs. In this section we evaluate the performance characteristics
of our engine by executing the OpenCL version of our engine on the Intel Xeon E5-
2697 CPU. The OpenCL framework tries to allocate all the available processing resources
offered by the selected device during the task execution. For this reason, we conduct all
the experiments described in this section imposing restrictions to the cores available to the
framework. Specifically, we measure the performance of our engine using 6, 12, 18 and
all 24 cores of the Xeon processor. The purpose of these configurations is to demonstrate
the sustained performance of our engine when portions of the CPU capacity need to be
reserved for other tasks running on the CPU.

52 CHAPTER 6. EVALUATION

We begin the evaluation by measuring the performance sustained by the string match-
ing module, using the four random ASCII pattern sets found in the Synthetic ASCII
workload. We conduct the same experiment four times, each time allowing the engine
to execute on more CPU cores, as described in the beginning of this section. The sus-
tained throughput of the string matching module, for all configurations, is displayed in
Figure 6.12. As we can see, the OpenCL flavor of the module, when executed using
all the available cores of the Intel Xeon processor, is capable of achieving a maximum
performance similar to the ones achieved when running on the NVIDIA GTX 980 GPU.
However, there are some major differences. First of all, executing the OpenCL code using
the entire processing capacity of the processor means that the CPU will be on maximum
load on all of the 24 cores, leaving no processing power for other tasks running on the
host system. Moreover, since the CPU does not have all the hardware characteristics of
a dedicated SIMT device, it is not able to sustain a minimum throughput. As shown in
Figure 6.12, the throughput achieved by the string matching module decreases as the size
of the DFA increases, due to the increasing number of cache misses. Moreover, the per-
formance gained by each extra CPU core is not fixed, since more cores compete for the
same memory space.

 0

 10

 20

 30

 40

 50

 60

 70

0.1 1.2 11.4 112

T
h
ro

u
g
h
p
u
t
(G

b
p
s)

Automaton Size (MB)

 6 Cores
12 Cores
18 Cores
24 Cores

Figure 6.12: Sustained throughput achieved by the OpenCL flavor of the string matching
module, executed on the Intel Xeon E5-2697 CPU, using the automata produced by the
four pattern sets found in the Synthetic ASCII workload. The x-axis represents the size
of the DFAs produced by combining 10, 100, 1000 and 10000 patterns respectively. Each
pattern set is processed using 6, 12, 18 and 24 CPU cores. Bigger automata result to
increased number of cache references, thus imposing a performance penalization. The
processing throughput is increased as more cores are available to the engine. However,
the performance gained by each extra CPU core is not fixed, since more cores compete
for the same memory space.

6.6. OPENCL WITH INTEL PROCESSORS 53

In the next step of our evaluation, we measure the sustained throughput achieved by
the OpenCL implementation of the regex matching module, executed on the Intel Xeon
processor, using the automata produced by the regular expressions described in section
§ 6.2.2. Figure 6.13 displays the results of this experiment using 6, 12, 18 and all 24
cores of the Intel CPU. We notice that increasing the processing capacity from 1/4 to 3/4
of its maximum size, doubles the throughput. However, increasing the number of cores
available to the engine from 18 to 24 does not significantly improve the performance.
Moreover, even though the engine is capable of achieving throughput up to 30Gbits/s,
it is not able to outperform the OpenCL and CUDA flavors executed on the Graphics
Processing Unit.

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(a) 6 Cores

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(b) 12 Cores

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(c) 18 Cores

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Automaton Size (MB)

Set 1
Set 2
Set 3
Set 4

(d) 24 Cores

Figure 6.13: Sustained throughput achieved by the OpenCL flavor of the regex matching
module, executed on the Intel Xeon E5-2697 CPU, using one hundred DFAs produced
by the regular expressions of the Huge Regular Expressions workload. Each regular ex-
pression is processed using 6, 12, 18 and 24 CPU cores. The x-axis in all plots represents
the size of the various regular expression DFAs. The processing throughput is increased
as more cores are available to the engine. We notice that the performance gained by each
extra CPU core is not fixed, since more cores compete for the same memory space.

54 CHAPTER 6. EVALUATION

We conclude the evaluation of our system by measuring the performance of the regex
matching module, using the automata produced by combining together 25 and 50 random
regular expressions found in the Huge Regular Expressions workload. The experiment
is repeated four times using the different core configurations described previously. As we
can see in Figure 6.14, the OpenCL flavor of the module is able to achieve regular ex-
pression matching throughput in the order of almost 1.5Gbits/s, when all available cores
are utilized. We notice that the performance gained by the OpenCL version of the mod-
ule executed on the CPU is by far greater than the baseline, displayed in Figure 6.5(b).
However, the engine executed on the CPU is not able to outperform the execution on the
NVIDIA GTX 980 GPU, displayed in Figure 6.11.

 0

 0.5

 1

 1.5

 2

25 50

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Automaton Size (MB)

 6 Cores
12 Cores
18 Cores
24 Cores

Figure 6.14: Sustained throughput achieved by the OpenCL flavor of the regex matching
module, executed on the Intel Xeon E5-2697 CPU, using combinations of 25 and 50
random regular expressions found in the Huge Regular Expressions workload. Each
pattern set is processed using 6, 12, 18 and 24 CPU cores. The x-axis indicates the number
of regular expressions combined in a singe DFA. The processing throughput is increased
as more cores are available to the engine. We notice that the performance gained by each
extra CPU core is not fixed, since more cores compete for the same memory space.

Chapter 7

Related Work

Pattern matching algorithms are highly used in various applications, not only in computer
science (e.g. intrusion detection, spam filtering, digital forensics, L7 traffic classification,
named data networking, text mining) but also in other relevant fields, such as computa-
tional biology, chemistry and nanotechnology. A wide portion of the research community
has focused over the years on either developing new efficient algorithms or even improv-
ing the performance of already existing ones. A significant amount of information regard-
ing the evolution of the string searching field can be found in surveys, such as [48, 49].

Researchers tend to tailor and adjust the traditional string pattern searching algorithms
(algorithms like those that are already discussed in § 2) to the current trends, such as
parallel programming. What is more, string searching is a field that is extensively studied
over the years, mostly due to the diverse areas that it can be applied as core operation.
The following sections contain only some of the works that are based on string searching,
since enumerating every single work in the field is not feasible. Firstly, we discuss about
the various applications where string matching can be applied (such as digital forensics).
In parallel, we present the related work on each specific topic, and when reasonable, we
compare our work against the presented one.

7.1 Pattern matching applications

The core of intrusion detection systems lies on signature matching. Currently, researchers
have assisted in favor of improving the IDS performance, by developing efficient software
approaches like [50, 51, 52] in terms of memory, throughput, latency and other metrics.
In addition, works like Gnort and MIDeA, focus on improving the performance of in-
trusion detection systems by exploiting the advantages of accelerators. Specifically, they
use GPUs appropriately in order to handle the variable network traffic and to parallelize
the workloads [53, 13, 14]. Moreover, GASSP is a GPU-accelerated stateful packet pro-
cessing framework that can be used for building network packet processing applications,
such as network intrusion detection systems [54, 55]. These works take advantage of the
processing capabilities of NVIDIA graphics processors, unlike our framework that also
targets multi-core CPUs and other many-core accelerators. What is more, our framework

55

56 CHAPTER 7. RELATED WORK

can be used for a diverse set of applications, in comparison to the works discussed above,
that are mainly tailored to network packet processing applications, such as intrusion de-
tection systems.

Hyperscan is a high-performance multiple regular expression matching library, de-
veloped by Intel’s open source project [15, 16]. Unlike this work, we mainly target accel-
erators using the CUDA and OpenCL frameworks, or multi-core CPUs using the OpenCL
implementation.

In the field of digital forensics, there is a wide variety of research activity. String
matching in digital forensics, for instance, is used in order to identify similarities among
digital artifacts. Several approaches have been used due to their adequate performance
and various tools are widely utilized for reasons of digital forensic investigations. For
example, the sdhash tool [56, 57] produces a variable-length similarity digest of files,
based on statistically-identified features, packed into Bloom filters [58, 59]. The saHash
tool is used as a similarity hashing approach that operates in linear time [60].

String pattern matching is also being used in order to filter spam e-mails. However,
exact string matching is not enough, since malicious users distributing spam e-mails have
found many ways in order to bypass these filters. For instance, they use methods that
include character level substitutions, repetitions, and insertions, for obfuscation of words
that normally would be blacklisted [61, 62]. Moreover, approximate string pattern match-
ing is used for text classification in favor of SMS spam filtering [63, 64], real-time filtering
systems for detecting spam messages on social networks [65] or compromised accounts
[66]. These works offer dedicated solutions, tailored for specific applications, in compar-
ison to our framework that can be used for heterogeneous operations.

In addition, in [67], the authors implement a memory-efficient algorithm –called “leaf-
attaching”– tailored for large-scale string pattern matching on ASIC and FPGA for net-
work intrusion detection systems. This procedure not only contributes to high perfor-
mance, but also targets the optimization of NIDSs in terms of memory efficiency. This
algorithm scales well to support larger dictionaries.

Another interesting work studies the name lookup issue for fast packet forwarding
using the longest prefix matching technique. Also, they exploit the processing power of
accelerators, in order to build a GPU-based name lookup engine for high throughput and
large-scale name tables [68].

In addition, techniques have been proposed in order to search multiple key patterns
over encrypted data outsourced to the cloud, without increasing the search complexity, by
exploiting the locality-sensitive hashing technique [69]. This kind of application is very
specific and enables efficient pattern matching over encrypted data. In our work, we have
not address this kind of applications, however, with minimum extensions we can expand
our functionality in order to be able to include it.

Other works propose solutions that expand the already existing functionality and algo-
rithms, in order to outperform the current techniques. A great example is the Cuckoo Fil-
ter [70] that demonstrates better performance than the traditional and widely used Bloom
Filter [70].

Furthermore, pattern matching is the core operation in image recognition and image
understanding systems. This kind of systems can be applied in many applications that de-

7.2. STRING SEARCHING TOOLS 57

mand high speed, flexibility, error tolerance, low complexity and low cost. Thus, the field
of nanotechnology can significantly benefit from those systems, since it strictly requires
high speed, small footprint and low-power consumption. Specifically, in [71] and [72], the
authors use approximate string matching in order to understand real-world sensor errors.

Finally, string pattern matching is a significant factor for string analysis and compar-
ison, which are widely used in the analysis of biological sequences. DNA and protein
sequences are often handled as long texts with a specific alphabet (e.g. the alphabet of
RNA sequences is the {A, C, G, U}). Searching for specific sequences that are included
in these big amounts of text is an elemental operation. Many works provide this function-
ality and focus on optimizing it further. In [73], the authors present efficient algorithms
for exact and approximate matching between two RNA sequences and a method to opti-
mally align a given RNA sequence with an unknown secondary structure to another, with
known sequence and structure. The [74] introduces a structural suffix array and struc-
tural longest common prefix array for the purposes of addressing key pattern matching
problems in RNA secondary structures, using the notion of structural strings. In [75] the
authors present some applications of affix trees to exact and approximate pattern match-
ing and thus, to the discovery in RNA sequences. Specifically, by allowing bidirectional
search for symmetric patterns in sequences, affix trees permit to discover and locate in the
sequences patterns, describing not only sequence regions, but also containing informa-
tion about the secondary structure that a given region could form, something that offers
significant optimizations.

7.2 String searching tools

There is a variety of state-of-the-art string searching tools. These tools are mainly based
on a single or even multiple algorithms taking advantage of their diverse nature, in order
to be applied in a more optimal manner. grep [76] and other sibling tools (e.g. egrep,
fgrep and pgrep) are the most commonly used string searching tools in UNIX and
UNIX-like systems. Their core operations vary from version to version and that is the
reason that each different variant normally corresponds to a sub-category of applications.
The GNU grep searches input files for lines containing a match to a given pattern list.
When it finds a match in a line, it copies the line to standard output (by default), or
produces whatever other sort of output the user requested via the options. Though grep
expects to do the matching on text, it has no limits on input line length other than available
memory, and it can match arbitrary characters within a line. If the final byte of an input
file is not a newline, grep silently supplies one. Since newline is also a separator for the
list of patterns, there is no way to match newline characters in a text [77]. The egrep
tool scans a specified file line by line, returning the lines that contain a pattern that match
a given regular expression [78]. The fgrep tool searches for simple strings in a file
(or files) [79]. pgrep is used to look up processes, based on name and other attributes
[80]. Other tools, such as PowerGREP [81], are offered with similar functionalities for
Windows operating systems.

Furthermore, there is a number of tools and libraries tailored for approximate pat-

58 CHAPTER 7. RELATED WORK

tern matching. agrep is a widely distributed tool [10, 26, 5, 82] and TRE is a POSIX
compliant regex matching library, with features that include but are not limited to approx-
imate matching [83]. Regular expression tools, such as testers and debuggers, are also
widely available online [84, 85, 86, 87]. SMART is a string matching algorithms research
tool [88]. Although the tools and techniques discussed above can be applied to most
applications, when used in demanding environments, such as high performance network
intrusion detection systems, the performance is significantly deficient, in comparison to
our framework.

Moreover, pattern searching is extensively used in computational biology and chem-
istry. Known sequence analysis tools and search engines are BLAST [89] –a basic lo-
cal alignment search tool– and FASTA [17] –a protein similarity search tool. Finally,
StemSearch is a RNA search tool based on stem identification and indexing [90].

Chapter 8

Conclusions and Future Work

In this section we present a summary of the contributions of this work (§ 8.1) and some
thoughts on future work (§ 8.2).

8.1 Summary of Contributions

In this work, we develop a string pattern matching framework that performs simultaneous
matching of multiple fixed strings and binary patterns against multiple input data streams
with a single pass over the input bytes. More specifically, the engine is able to achieve si-
multaneous matching of multiple POSIX Extended Regular Expressions against multiple
input data streams. In addition, our framework can be executed on the vast majority of data
parallel platforms, such as OpenCL enabled CPUs as well AMD and NVIDIA integrated
and discrete GPUs. Furthermore, we extend the syntax of common string matching in
order to support readable binary signatures and their combination with clear-text. More-
over, we offer a syntax for matching rules that allows events to be triggered when a match
is achieved.

8.2 Future Work

As future work, we plan on exploring new techniques in order to generate more compact
DFAs. In this way, the memory footprint of the DFAs would decrease and our approach
would become more memory efficient. In addition, as shown in the evaluation (Chapter 6),
the size and the creation time of a single automaton depends on the nature of the regular
expressions being preprocessed. We want to study further approaches for faster DFA
compilation. Also, identifying cases of catastrophic backtracking is very important. By
discovering such cases, we will be able to notify the user or even exclude the fatal regular
expressions from the pattern set. Finally, we plan on utilizing multiple GPUs –or even a
combination of CPUs-GPUs– instead of a single one. Scaling our system this way, would
offer further performance gain.

59

60 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.3 Conclusion

Having numerous applications in diverse areas, string pattern matching is a very popular
field of study. Many approaches have been proposed over the years in order to provide the
optimal results for each application. To cope with the current trends on parallel program-
ming, we propose a string matching framework, provided either as a C- or Java-like API,
able to be executed on commodity parallel hardware architectures, such as GPGPUs. Our
framework is capable of simple string matching along with regular expressions. In addi-
tion, we achieve the simultaneous matching of multiple simple strings and binary patterns
against multiple data streams as input. The framework, also, manages to simultaneously
match large sets of regular expressions against multiple data streams.

The evaluation of our system shows significant performance capabilities. The sus-
tained throughput of our massively parallel engine can achieve x15 more throughput,
while processing regular expressions, and x21 more throughput, while processing simple
strings – in comparison to the single-threaded CPU implementations of the algorithms
used by the engine.

Bibliography

[1] A. Klapuri, “Pattern induction and matching in music signals,” in Exploring Music
Contents. Springer, 2010, pp. 188–204.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975.

[3] B. Commentz-Walter, A string matching algorithm fast on the average. Springer,
1979.

[4] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260, 1987.

[5] S. Wu, U. Manber et al., “A fast algorithm for multi-pattern searching,” 1994.

[6] S. Wu, U. Manber, and E. Myers, “A subquadratic algorithm for approximate regular
expression matching,” Journal of algorithms, vol. 19, no. 3, pp. 346–360, 1995.

[7] R. Baeza-Yates and G. Navarro, “New and faster filters for multiple approximate
string matching,” Random Structures & Algorithms, vol. 20, no. 1, pp. 23–49, 2002.

[8] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in strings,”
SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[9] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications
of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[10] S. Wu and U. Manber, “Fast text searching: allowing errors,” Communications of
the ACM, vol. 35, no. 10, pp. 83–91, 1992.

[11] E. W. Myers, “A sublinear algorithm for approximate keyword searching,” Algorith-
mica, vol. 12, no. 4-5, pp. 345–374, 1994.

[12] G. Myers, “A fast bit-vector algorithm for approximate string matching based on
dynamic programming,” Journal of the ACM (JACM), vol. 46, no. 3, pp. 395–415,
1999.

[13] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. Ioannidis,
“Regular expression matching on graphics hardware for intrusion detection,” in Re-
cent Advances in Intrusion Detection. Springer, 2009, pp. 265–283.

61

62 BIBLIOGRAPHY

[14] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Parallelization and characteriza-
tion of pattern matching using gpus,” in Workload Characterization (IISWC), 2011
IEEE International Symposium on. IEEE, 2011, pp. 216–225.

[15] “Hyperscan: a high-performance multiple regex matching library,” [Accessed:
31-Jan-2017]. [Online]. Available: https://01.org/hyperscan

[16] “Hyperscan on github,” [Accessed: 31-Jan-2017]. [Online]. Available: https:
//github.com/01org/hyperscan

[17] “Protein similarity search,” [Accessed: 31-Jan-2017]. [Online]. Available:
http://www.ebi.ac.uk/Tools/sss/fasta/

[18] “NECOMA: Nippon-european cyberdefense-oriented multilayer threat analysis,”
[Accessed: 31-Jan-2017]. [Online]. Available: http://www.necoma-project.eu/

[19] “RAPID: Heterogeneous secure multi-level remote acceleration service for low-
power integrated systems and devices,” [Accessed: 31-Jan-2017]. [Online].
Available: http://www.rapid-project.eu/

[20] “SHARCS: Secure hardware-software architectures for robust computing systems,”
[Accessed: 31-Jan-2017]. [Online]. Available: http://http://www.sharcs-project.eu

[21] “Delivarable D3.5: Countermeasure Application - Re-
sults,” NECOMA Project, 2015, [Accessed: 19-Jan-2017].
[Online]. Available: http://www.necoma-project.eu/m/filer_public/70/fd/
70fd1052-cf95-4b58-bc47-61a75be64d19/necoma-d35r2577.pdf

[22] “Delivarable D2.4: Antivirus Ported on RAPID,” RAPID Project, 2016, [Accessed:
19-Jan-2017]. [Online]. Available: http://rapid-project.eu/_docs/RAPID_D2.4.pdf

[23] R. N. Horspool, “Practical fast searching in strings,” Software: Practice and Expe-
rience, vol. 10, no. 6, pp. 501–506, 1980.

[24] R. A. Baezayates and G. H. Gonnet, “Fast string matching with mismatches,” Infor-
mation and Computation, vol. 108, no. 2, pp. 187–199, 1994.

[25] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710.

[26] S. Wu and U. Manber, “Agrep–a fast approximate pattern-matching tool,” Usenix
Winter 1992, pp. 153–162, 1992.

[27] R. W. Hamming, “Error detecting and error correcting codes,” Bell System technical
journal, vol. 29, no. 2, pp. 147–160, 1950.

[28] “What Regular Expressions Are Exactly - Terminology,” [Accessed: 19-Jan-2017].
[Online]. Available: http://www.regular-expressions.info/tutorial.html

https://01.org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
http://www.ebi.ac.uk/Tools/sss/fasta/
http://www.necoma-project.eu/
http://www.rapid-project.eu/
http://http://www.sharcs-project.eu
http://www.necoma-project.eu/m/filer_public/70/fd/70fd1052-cf95-4b58-bc47-61a75be64d19/necoma-d35r2577.pdf
http://www.necoma-project.eu/m/filer_public/70/fd/70fd1052-cf95-4b58-bc47-61a75be64d19/necoma-d35r2577.pdf
http://rapid-project.eu/_docs/RAPID_D2.4.pdf
http://www.regular-expressions.info/tutorial.html

BIBLIOGRAPHY 63

[29] Wikipedia, “Stephen Cole Kleene — Wikipedia, The Free Encyclopedia,”
2017, [Accessed: 19-Jan-2017]. [Online]. Available: https://en.wikipedia.org/wiki/
Stephen_Cole_Kleene

[30] “sed, a stream editor,” [Accessed: 19-Jan-2017]. [Online]. Available: https:
//www.gnu.org/software/sed/manual/sed.html

[31] “The GNU Awk User’s Guide,” [Accessed: 19-Jan-2017]. [Online]. Available:
https://www.gnu.org/software/gawk/manual/gawk.html

[32] “Snort - Network Intrusion Detection & Prevention System,” [Accessed:
19-Jan-2017]. [Online]. Available: https://www.snort.org/

[33] “ClamAV,” [Accessed: 19-Jan-2017]. [Online]. Available: https://www.clamav.net/

[34] “ed, A line-oriented text editor,” [Accessed: 19-Jan-2017]. [Online]. Available:
https://www.gnu.org/software/ed/

[35] “Unix, — An Open Group Standard,” [Accessed: 19-Jan-2017]. [Online].
Available: http://www.unix.org/

[36] Wikipedia, “Grep — Wikipedia, The Free Encyclopedia,” 2017, [Accessed:
19-Jan-2017]. [Online]. Available: https://en.wikipedia.org/wiki/Grep

[37] “POSIX — IEEE Standards Association,” [Accessed: 19-Jan-2017]. [Online].
Available: https://standards.ieee.org/develop/wg/POSIX.html

[38] “Basic Regular Expressions,” [Accessed: 19-Jan-2017]. [Online]. Available: http://
pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_03

[39] “Extended Regular Expressions,” [Accessed: 19-Jan-2017]. [Online].
Available: http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.
html#tag_09_04

[40] “The Single UNIX R© Specification, Version 2 — Regular Expressions,” [Accessed:
19-Jan-2017]. [Online]. Available: http://pubs.opengroup.org/onlinepubs/7908799/
xbd/re.html

[41] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE transac-
tions on computers, vol. 100, no. 9, pp. 948–960, 1972.

[42] “NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM,”
[Accessed: 24-Jan-2017]. [Online]. Available: http://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

[43] L. Koromilas, G. Vasiliadis, I. Manousakis, and S. Ioannidis, “Efficient software
packet processing on heterogeneous and asymmetric hardware architectures,” in
Proceedings of the tenth ACM/IEEE symposium on Architectures for networking
and communications systems. ACM, 2014, pp. 207–218.

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.snort.org/
https://www.clamav.net/
https://www.gnu.org/software/ed/
http://www.unix.org/
https://en.wikipedia.org/wiki/Grep
https://standards.ieee.org/develop/wg/POSIX.html
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html#tag_09_04
http://pubs.opengroup.org/onlinepubs/009696899/basedefs/xbd_chap09.html#tag_09_04
http://pubs.opengroup.org/onlinepubs/7908799/xbd/re.html
http://pubs.opengroup.org/onlinepubs/7908799/xbd/re.html
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

64 BIBLIOGRAPHY

[44] E. Papadogiannaki, L. Koromilas, G. Vasiliadis, and S. Ioannidis, “Efficient soft-
ware packet processing on heterogeneous and asymmetric hardware architectures,”
IEEE/ACM Transactions on Networking, 2017.

[45] “Intel xeon phi coprocessors,” [Accessed: 24-Jan-2017]. [On-
line]. Available: http://www.intel.com/content/www/us/en/processors/xeon/
xeon-phi-coprocessor-overview.html

[46] “Cuda parallel computing platform,” [Accessed: 24-Jan-2017]. [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html

[47] “The opencl framework,” [Accessed: 24-Jan-2017]. [Online]. Available: http:
//www.khronos.org/opencl/

[48] G. Navarro, “A guided tour to approximate string matching,” ACM computing sur-
veys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[49] V. Saikrishna, A. Rasool, and N. Khare, “String matching and its applications in
diversified fields,” International Journal of Computer Science Issues, vol. 9, no. 1,
pp. 219–226, 2012.

[50] S. Vakili, J. P. Langlois, B. Boughzala, and Y. Savaria, “Memory-efficient string
matching for intrusion detection systems using a high-precision pattern grouping
algorithm,” in Proceedings of the 2016 Symposium on Architectures for Networking
and Communications Systems, ser. ANCS ’16. New York, NY, USA: ACM, 2016,
pp. 37–42. [Online]. Available: http://doi.acm.org/10.1145/2881025.2881031

[51] “Dfc: Accelerating string pattern matching for network applications,” in 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, Mar. 2016. [Online]. Available:
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/choi

[52] A. Tumeo, O. Villa, and D. G. Chavarría-Miranda, “Aho-corasick string matching
on shared and distributed-memory parallel architectures,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 23, no. 3, pp. 436–443, 2012.

[53] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis,
“Gnort: High performance network intrusion detection using graphics processors,”
in Recent Advances in Intrusion Detection. Springer, 2008, pp. 116–134.

[54] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “Gaspp: A gpu-
accelerated stateful packet processing framework.” in USENIX Annual Technical
Conference, 2014, pp. 321–332.

[55] ——, “Design and implementation of a stateful network packet processing frame-
work for gpus,” IEEE/ACM Transactions on Networking, vol. PP, no. 99, pp. 1–14,
2016.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-overview.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-overview.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://doi.acm.org/10.1145/2881025.2881031
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/choi

BIBLIOGRAPHY 65

[56] “sdhash tool,” http://roussev.net/sdhash/sdhash.html.

[57] “sdhash on GitHub,” https://github.com/sdhash/sdhash.

[58] V. Roussev, “Data fingerprinting with similarity digests,” in Advances in digital
forensics vi. Springer, 2010, pp. 207–226.

[59] ——, “An evaluation of forensic similarity hashes,” digital investigation, vol. 8, pp.
S34–S41, 2011.

[60] F. Breitinger and H. Baier, “Similarity preserving hashing: Eligible properties and a
new algorithm mrsh-v2,” in Digital forensics and cyber crime. Springer, 2012, pp.
167–182.

[61] D. Sculley, G. Wachman, and C. E. Brodley, “Spam filtering using inexact string
matching in explicit feature space with on-line linear classifiers.” in TREC, 2006.

[62] R. Verma and J. Dhar, “Online spam filter for duplicate or near duplicate message
content detection scheme,” Journal of Convergence Information Technology, vol. 9,
no. 4, p. 23, 2014.

[63] S. J. Delany, M. Buckley, and D. Greene, “Sms spam filtering: methods and data,”
Expert Systems with Applications, vol. 39, no. 10, pp. 9899–9908, 2012.

[64] T. Almeida, J. M. G. Hidalgo, and T. P. Silva, “Towards sms spam filtering: Results
under a new dataset,” International Journal of Information Security Science, vol. 2,
no. 1, pp. 1–18, 2013.

[65] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. N. Choudhary, “Towards online spam
filtering in social networks.” in NDSS, 2012.

[66] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “Compa: Detecting compro-
mised accounts on social networks.” in NDSS, 2013.

[67] H. Le and V. K. Prasanna, “A memory-efficient and modular approach for large-
scale string pattern matching,” Computers, IEEE Transactions on, vol. 62, no. 5, pp.
844–857, 2013.

[68] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai, X. Tian,
Z. Xu et al., “Wire speed name lookup: A gpu-based approach,” in Presented as part
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 199–212.

[69] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud,” in INFOCOM, 2014 Proceedings IEEE.
IEEE, 2014, pp. 2112–2120.

[70] V. Gupta and F. Breitinger, “How cuckoo filter can improve existing approximate
matching techniques,” in Digital Forensics and Cyber Crime. Springer, 2015, pp.
39–52.

http://roussev.net/sdhash/sdhash.html
https://github.com/sdhash/sdhash

66 BIBLIOGRAPHY

[71] V. Annampedu and M. D. Wagh, “Reconfigurable approximate pattern matching
architectures for nanotechnology,” Microelectronics Journal, vol. 38, no. 3, pp. 430–
438, 2007.

[72] ——, “Approximate pattern matching in nanotechnology,” Proc. of Nanotech 2006,
vol. 3, pp. 316–319, 2006.

[73] V. Bafna, S. Muthukrishnan, and R. Ravi, “Computing similarity between rna
strings,” in Combinatorial Pattern Matching. Springer, 1995, pp. 1–16.

[74] R. Beal and D. Adjeroh, “Efficient pattern matching for rna secondary structures,”
Theoretical Computer Science, vol. 592, pp. 59–71, 2015.

[75] G. Mauri and G. Pavesi, “Algorithms for pattern matching and discovery in rna sec-
ondary structure,” Theoretical Computer Science, vol. 335, no. 1, pp. 29–51, 2005.

[76] grep - Linux man page, [Accessed: 31-Jan-2017]. [Online]. Available:
https://linux.die.net/man/1/grep

[77] “The gnu grep 3.0 manual,” [Accessed: 19-Jan-2017]. [Online]. Available:
https://www.gnu.org/software/grep/manual/grep.html

[78] egrep - Linux man page, [Accessed: 31-Jan-2017]. [Online]. Available:
https://linux.die.net/man/1/egrep

[79] fgrep - Linux man page, [Accessed: 31-Jan-2017]. [Online]. Available:
https://linux.die.net/man/1/fgrep

[80] pgrep - Linux man page, [Accessed: 31-Jan-2017]. [Online]. Available:
https://linux.die.net/man/1/pgrep

[81] “Powergrep,” [Accessed: 31-Jan-2017]. [Online]. Available: http://www.powergrep.
com/

[82] “agrep GitHub,” https://github.com/Wikinaut/agrep.

[83] “TRE regexp matching library,” http://laurikari.net/tre/.

[84] “Regular expressions 101,” [Accessed: 31-Jan-2017]. [Online]. Available:
https://regex101.com/

[85] “Regexr,” [Accessed: 31-Jan-2017]. [Online]. Available: http://regexr.com/

[86] “Online regex tester,” [Accessed: 31-Jan-2017]. [Online]. Available: http:
//www.regextester.com/

[87] “Debuggexbeta,” [Accessed: 31-Jan-2017]. [Online]. Available: https://www.
debuggex.com

https://linux.die.net/man/1/grep
https://www.gnu.org/software/grep/manual/grep.html
https://linux.die.net/man/1/egrep
https://linux.die.net/man/1/fgrep
https://linux.die.net/man/1/pgrep
http://www.powergrep.com/
http://www.powergrep.com/
https://github.com/Wikinaut/agrep
http://laurikari.net/tre/
https://regex101.com/
http://regexr.com/
http://www.regextester.com/
http://www.regextester.com/
https://www.debuggex.com
https://www.debuggex.com

BIBLIOGRAPHY 67

[88] “Smart: String matching algorithms research tools,” [Accessed: 31-Jan-2017].
[Online]. Available: https://www.dmi.unict.it/~faro/smart/index.php

[89] “Blast: Basic local alignment search tool,” [Accessed: 31-Jan-2017]. [Online].
Available: https://blast.ncbi.nlm.nih.gov/Blast.cgi

[90] N. Milo, S. Yogev, and M. Ziv-Ukelson, “Stemsearch: Rna search tool based on
stem identification and indexing,” Methods, vol. 69, no. 3, pp. 326–334, 2014.

https://www.dmi.unict.it/~faro/smart/index.php
https://blast.ncbi.nlm.nih.gov/Blast.cgi

