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We offer a comprehensive assessment of non-Markovianity (DNM) within an XX
chain of interacting qubits linked to a reservoir. Our investigation incorporates di-
verse quantum state distance (QSD) measures and considers various non-Markovian
spectral densities, including the Lorentzian squared. This approach aims to pro-
vide a robust evaluation of DNM. By constructing the density matrix of the open
chain without relying on a master equation, we analyze the dynamics of QSD mea-
sures between Markovian and non-Markovian damping scenarios. Recognizing that
conventional QSD measures often presume trace-preserving density matrices, we
adapt them to accommodate damped traces in open systems. Our findings not only
demonstrate consistent outcomes across different QSD measures but also reveal in-
tricate interactions between qubit-qubit coupling, non-Markovian damping, and en-
tanglement dynamics, particularly notable when exploring the implications of the
Lorentzian squared spectral density.
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Chapter 1

Introduction

Spin chains represent models of physical systems of relevance to a broad class of
phenomena ranging from statistical mechanics to quantum information and com-
puting (Paganelli et al., 2013). Important aspects related to quantum information
pertain to perfect or faithful state transfer from one end to the other of a chain. Phys-
ical realizations of such chains can vary, depending on the particular application.
Examples, among others, are quantum dots, Josephson junctions, etc. Irrespective
of the particular application, the ends of the chain, if not the entire chain, will be
connected to an external environment which entails dissipation. In addition to loss,
inherent in dissipation, decoherence and loss of entanglement are issues of funda-
mental importance to quantum information. In that connection, the dynamics of
spin chains connected to external environments (reservoirs) represents a versatile
tool for the study of the effect of environment on the quantum system.

The above mentioned dynamics depends very strongly on a very impactful prop-
erty of the reservoir, namely its Markovianity or lack of it. Broadly speaking, a reser-
voir is Markovian if the memory of any excitation transferred from the system to
the reservoir is lost instantly. In general terms, this is the case of a reservoir, with
smooth and slowly varying density of states, coupled to the system weakly. A de-
parture from the above two conditions makes the reservoir non-Markovian, which
entails the possibility of excitation exchange between system and reservoir, at least
for some finite time. Since more often than not, in real physical implementations of
quantum systems involves connections to non-Markovian reservoirs, the resulting
effect has been of central importance in current studies. A basic question in such
studies is: How much is the dynamics affected by the departure of the reservoir
from Markovian.

A recent paper (Mouloudakis, Ilias, and Lambropoulos, 2022), presented the dy-
namics of an XX chain, driven by non-Markovian reservoirs at both ends. They have
reported results on the dynamics of the chain driven by reservoirs of Lorentzian as
well as Ohmic spectral densities, in the single excitation case. Examining the time
evolution of the initially excited spin (qubit), they pointed out that under Ohmic
driving, the time evolution of the population seemed to resemble the Markovian
more than that for Lorentzian. Since there are several measures of Markovianity in
the literature, that system offers the possibility of a quantitative assessment of the
Markovianity of different reservoirs.

The purpose of this thesis, is to evaluate the "degree of Markovianity" of dif-
ferent reservoirs coupled to an XX chain of various lengths. When studying non-
Markovian reservoirs, it is most common in the literature to use Lorentzian (Weiss,
2001, Mouloudakis and Lambropoulos, 2021) and Ohmic (Leggett et al., 1987, Leggett
et al., 1995, Zou et al., 2020) spectral densities. To that, we add the square of the
Lorentzian spectral density, an unsual reservoir that has not been examined in this
context but has some really surprising qualities. Our first task, is to calculate the
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time evolution of the system under each reservoir, one of which is Markovian. After
that, we work out the difference of the state of the system evolved under a given
non-Markovian reservoir from the state evolved under the Markovian one. That dif-
ference and its time evolution is what we refer to as "Degree of Markovianity" (DM)
of the given reservoir. The time evolution of the system has been calculated using
Schrödinger’s equations of motion within the single excitation subspace. The solu-
tions have been obtained numerically using Python and Mathematica scripts.With
the numerical solutions of the transformed amplitudes in hand, we calculate the
density matrix elements of the system, the diagonal matrix elements of which are
the probabilities of finding the chain in one of its states.

Our objective, as stated in the title, is to quantify the Markovianity of a given
reservoir. To that end, we need a tool that measures the difference or "distance" be-
tween states. A variety of measures appropriate as tools for our task have been pro-
posed over the years (Rivas, Huelga, and Plenio, 2014, Dajka, Łuczka, and Hänggi,
2011). In our calculations, we use three different Quantum State Distance (QSD)
measures, namely the Trace Distance (TD), Hellinger Distance (HD) and Bures Dis-
tance (BD). In view of such diversity of expressions for the QSD, we have added an
additional aspect to our project, which is a comparative analysis of the three stated
QSD measures. To the best of our knowledge, this seems to be the most extensive
comparative study of those measures, in the context of a realistic quantum system.

A large part of our results have already appeared in Mouloudakis, Stergou, and
Lambropoulos, 2023, with the exception of the time evolution of entanglement which
represents the content of chapter 3, section 3.3 of this thesis.

The outline of this thesis is as follows. In Chap. 2 we provide the theoretical de-
scription of our problem in terms of the time-dependent Schrödinger’s equation. We
also give a brief summary of the QSD measures that have been employed. In Chap.
3 we present results for a system of one qubit and a 5-qubit chain. We do in addi-
tion analyse the time evolution of qubit-qubit entanglement in a 6-qubit chain. In
Chap. 4 we study in further detail the unusual properties of the Lorentzian squared
reservoir. Finally, in Chap. 5 we provide some concluding remarks as well as future
directions related to our work.
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Chapter 2

Theory

2.1 The model

FIGURE 2.1: Schematic presentation of the system at study. A Heisen-
berg XX spin chain of arbitrary length is coupled to a reservoir at its

edge.

Our system consists of an N qubit chain interacting with an environment E through
its last qubit, with coupling strength g. The interaction between each pair of neigh-
boring qubits in the chain is denoted by J.Time is measured in units of 1/J. A schematic
presentation of our system is depicted in Fig. 2.1. The Hamiltonian of the system is
given by (h̄ = 1):

H = HS + HE + HI (2.1)

where HS = HS0 + H
′
S is the Hamiltonian of the spin chain:

HS0 = ωe

N

∑
i=1

|e⟩ i i ⟨e|+ ωg

N

∑
i=1

|g⟩ i i ⟨g|

H
′
S =

N−1

∑
i=1

J
2
(σ+

i σ−
i+1 + σ−

i σ+
i+1)

HE is the Hamiltonian of the environment:

HE = ∑
λ

ωλα†
λαλ (2.2)

and HI is the interaction of the spin chain with the reservoir:

HI = ∑
λ

gλ(αλσ+
N + α†

λσ−
N ) (2.3)
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where ωg and ωe are, respectively, the energies of the ground and excited state of
each spin, ωλ is the energy of the λ-mode photon of the environment, αλand α†

λ are
the annihilation and creation operators of the environment, and σ+

i = |e⟩ i i ⟨g| and
σ−

i = |g⟩ i i ⟨e|, i = 1, ...., N are the qubit raising and lowering operators, respectively.
As stated in the introduction, we will be studying the system in the single-

excitation space. The total wavefunction of the system is:

|Ψ(t)⟩ =
N

∑
i=1

ci(t) |ψi⟩+ ∑
λ

cE
λ(t)

∣∣∣ψE
λ

〉
(2.4)

where,

|ψi⟩ = |g⟩1 |g⟩2 ... |g⟩i−1 |e⟩i |g⟩i+1 ... |g⟩N |0⟩E∣∣∣ψE
λ

〉
= |g⟩1 |g⟩2 ... |g⟩N |00...01λ0...00⟩E

are, respectively, the state in which the ith site is excited and the state in which
the environment has an excitation in the λ mode.

For convenience purposes, we will be working in the interaction picture.To do
that, we rewrite the Hamiltonian of the system as H = H0 + H

′
, with H0 = HS0 +

HE and H
′
= H

′
S + HI , and apply the transformation U(t) = eiH0t to the states

of the system. The transformed amplitudes in the interaction picture are c̃i(t) =

ci(t)ei[ωe+(N−1)ωg]t for the qubits and c̃E
λ(t) = cE

λ(t)e
i[Nωg+ωλ]t for the environment.

Using Schrödinger’s equation in the interaction picture:

i
∂

∂t
∣∣Ψ̃(t)

〉
= H

′ ∣∣Ψ̃(t)
〉

(2.5)

we get the equations of motion for the transformed amplitudes:

i
∂c̃i

∂t
=

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S + HI |ψm⟩+ ∑

λ

ei(ωe−ωg−ωλ)t c̃E
λ(t) ⟨ψi| H

′
S + HI

∣∣∣ψE
λ

〉
(2.6)

i
∂c̃E

λ

∂t
=

N

∑
m=1

ei(ωλ+ωg−ωe)t ˜cm(t)
〈

ψE
λ

∣∣∣H
′
S + HI |ψm⟩+ ∑

λ
′

˜cE
λ
′ (t)

〈
ψE

λ

∣∣∣H
′
S + HI

∣∣∣ψE
λ
′

〉
(2.7)

which, after some tedious algebra, reduce to :

i
∂c̃i

∂t
=

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.8)

i
∂ ˜cN

∂t
=

N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩+ ∑

λ

g(ωλ)e−i∆λt c̃E
λ(t) (2.9)

i
∂c̃E

λ

∂t
= ei∆λt ˜cN(t)g(ωλ) (2.10)

where ∆λ ≡ ωλ − (ωe − ωg) ≡ ωλ − ωeg. Integrating equation (2.10), under the
assumption that c̃E

λ(0) = 0, and substituting back to equation (2.9), yields:
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∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ −

∫ t

0
∑
λ

e−i∆λ(t−t
′
)[g(ωλ)]

2 ˜cN(t
′
) dt′ (2.11)

In the limit of a continuous distribution, the summations convert into integrals ac-
cording to ∑λ[g(ωλ)]

2 →
∫

J(ωλ) dωλ, where J(ωλ) is the spectral density of the
environment. So far, we have not specified the environment in use and thus, the
resulting set of differential equations are correct for any possible spectral density:

∂c̃i

∂t
= −i

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.12)

∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ −

∫ t

0
R(t − t

′
) ˜cN(t

′
) dt′ (2.13)

where we define
R(t) ≡

∫ ∞

0
J(ωλ)e−i∆λt dωλ (2.14)

In the subsections that follow, we present the spectral densities of the reservoirs
that use for our calculations.

2.1.1 Markovian Reservoir

A simple way to emulate a markovian reservoir, is to replace the integral part of
equation (2.13) with an exponential decay. Making that change, the differential equa-
tions for the Markovian case take the form:

∂c̃i

∂t
= −i

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.15)

∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ −

Γ
2

˜cN(t) (2.16)

The reason for Γ
2 and not Γ, is that we want the populations to decay with rate Γ

and for that to happen the amplitudes have to decay with Γ
2 .

2.1.2 Lorentzian Reservoir

Our first Non-Markovian environment has a Lorentzian spectral density given by:

J(ωλ) =
g2

π

Γ
2

(ωλ − ωc)2 + ( Γ
2 )

2
(2.17)

where g is the coupling strength between the last qubit and the reservoir in units
of frequency and Γ, ωc are, respectively, the width and the peak frequency of the
distribution.

For analytical simplification of equation (2.14), we extend the lower limit of the
integration over frequency from 0 to -∞. For that to be justified, the distribution
must have negligible extension to negative frequencies. The necessary condition for
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this is Γ << ωc. If that condition is met, the frequency integral can be calculated
analytically, yielding:

R(t) =
g2

π

Γ
2

∫ +∞

−∞

e−i(ωλ−ωeg)t

(ωλ − ωc)2 + ( Γ
2 )

2
dωλ = g2e−i∆cte−

Γ
2 t (2.18)

where ∆c ≡ ωc − ωeg. In our calculations, we always assume that ∆c = 0 to make
things simpler.

Integro-differential equations are usually very hard for computers to solve nu-
merically. Depending on the initial conditions, it could take days for a typical com-
puter to solve a set of differential equations with integrals in it. It is therefore neces-
sary to eliminate the integrals whenever it is possible. Thankfully, we can eliminate
the integral in this situation by introducing a new variable x =

∫ t
0 R(t − t

′
) ˜cN(t

′
) dt′.

Substituting R(t − t
′
) with its value for the Lorentzian spectral density, while keep-

ing in mind that we have assumed ∆c = 0, yields:

x = e−
Γ
2 t
∫ t

0
g2e

Γ
2 t

′
˜cN(t

′
) dt

′
(2.19)

Now if we call the integral in equation (2.19) I and differentiate both parts we
get:

∂x
∂t

= −Γ
2

e−
−Γ
2 t I + g2 ˜cN(t) (2.20)

and solving (2.19) for I gives:
I = e−

Γ
2 tx (2.21)

By substituting I in equation (2.20) we get a new differential equation for x that is
coupled with the ones for the amplitudes. We can think of x as an assistant variable,
it’s solution does not interest us but it helps us solve for the amplitudes. The set of
differential equations for the Lorentzian case is:

∂c̃i

∂t
= −i

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.22)

∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ − x (2.23)

∂x
∂t

= −Γ
2

x + g2 ˜cN(t) (2.24)

2.1.3 Lorentzian squared

Our second pick for a Non-Markovian environment, is the square of the Lorentzian.
Though not widely known, Lorentzian squared spectral densities could have appli-
cations in Mössbauer spectroscopy (Whipple, 1981). The spectral density is given
by:

J(ωλ) =
2g2

π

( Γ
2 )

3

[(ωλ − ωc)2 + ( Γ
2 )

2]2
(2.25)

where g is the coupling strength between the last qubit and the reservoir in units
of frequency and Γ, ωc are, respectively, the width and the peak frequency of the
distribution. Now, following the same procedure as the Lorentzian, we can calculate
R(t):
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R(t) =
2g2

π

Γ3

8

∫ +∞

−∞

e−i(ωλ−ωeg)t

[(ωλ − ωc)2 + ( Γ
2 )

2]2
dωλ = g2e−i∆ct(

Γ
2

t + 1)e−
Γ
2 t (2.26)

then assume ∆c = 0, substitute into x, call the integral I1 and differentiate both sides
like we did in the previous subsection:

x = g2
∫ t

0

(
Γ
2

t − Γ
2

t
′
+ 1
)

e−
Γ
2 (t−t

′
) ˜cN(t

′
) dt

′
(2.27)

I1 =
x
g2 (2.28)

∂x
∂t

= g2
[

˜cN(t) +
Γ
2

∫ t

0
e−

Γ
2 (t−t

′
) ˜cN(t

′
) dt

′ − Γ
2

I1

]
(2.29)

Because of the integral in equation (2.29) we must repeat the procedure. Introducing
a new variable,

y =
∫ t

0
e−

Γ
2 (t−t

′
) ˜cN(t

′
) dt

′
(2.30)

equation (2.29) becomes:

∂x
∂t

= g2
(

˜cN(t) +
Γ
2

y − Γ
2

I1

)
(2.31)

Substituting (2.28) into (2.31) we get,

∂x
∂t

= g2
(

˜cN(t) +
Γ
2

y − x
g2

)
(2.32)

It is obvious that a differential equation for y is demanded for the system to have a
solution. We can get that by calling the integral part of y I2 and differentiating both
parts as we did with x:

y = e−
Γ
2 t
∫ t

0
e

Γ
2 t

′
˜cN(t

′
) dt

′
(2.33)

I2 = e
Γ
2 ty (2.34)

∂y
∂t

= −Γ
2

e−
Γ
2 t I2 + ˜cN(t) (2.35)

Finally, we substitute (2.34) into (2.35) and after some rearrangements of the terms
we get the final set of coupled differential equations for the squared Lorentzian spec-
tral density:

∂c̃i

∂t
= −i

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.36)

∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ − x (2.37)

∂x
∂t

= −Γ
2

x +
Γ
2

g2y + g2 ˜cN(t) (2.38)

∂y
∂t

= −Γ
2

y + ˜cN(t) (2.39)
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2.1.4 Ohmic Reservoir

Our last pick for a Non-Markovian reservoir, is described by an Ohmic spectral den-
sity according to the relation:

J(ωλ) = N g2ωc

(
ωλ

ωc

)S
e−

ωλ
ωc (2.40)

where g is the qubit-environment coupling constant in units of frequency, ωc is the
Ohmic cut-off frequency and S is the Ohmic parameter. Depending on the value
of the Ohmic parameter, the spectrum of the reservoir is sub-Ohmic S < 1, Ohmic
S = 1 or super-Ohmic S > 1. N is a normalization constant given by the relation
N = 1

(ωc)2Γ(1+S) , where Γ(z) is the gamma function. Using equation (2.40) in (2.14),
we can get an analytical expression for R(t):

R(t) = N g2ωc

∫ ∞

0

(
ωλ

ωc

)S
e−

ωλ
ωc e−i(ωλ−ωeg)t dωλ = g2eiωegt (iωct + 1)−1−S (2.41)

Sadly, the method used in the previous subsections to eliminate the integrals does
not apply here and therefore the set of differential equations for solution is the fol-
lowing:

∂c̃i

∂t
= −i

N

∑
m=1

˜cm(t) ⟨ψi| H
′
S |ψm⟩ i ̸= N (2.42)

∂ ˜cN(t)
∂t

= −i
N

∑
m=1

˜cm(t) ⟨ψN | H
′
S |ψm⟩ −

∫ t

0
g2eiωeg(t−t

′
)
(

iωc(t − t
′
) + 1

)−1−S
˜cN(t

′
) dt′

(2.43)

2.2 QSD Measures

Markovian processes tend to continuously reduce the distinguishability between
any two states, while the essential property of non-Markovian behavior is the growth
of this distinguishability. Knowing that, one can quantify the degree of non-Markovian
behaviour using quantum distance measures.

In quantum mechanics, a distance measure evaluates the extent to which two
quantum states are "close" to each other. In a broad sense, two states are close to
each other if their distance is small. Unfortunately, there is no single, ideal measure
of distinguishability of different states. There are no criteria that make a distance
measure better than another one.

One widely known distance measure, is the fidelity. It is notably used in quan-
tum information theory and it expresses the probability that one state will pass a test
to identify as the other. Given two density operators ρ and σ, the fidelity is gener-
ally defined by one of the three expressions that we list below (Jozsa, 1994,Uhlmann,
2000,Mendonça et al., 2008):

F1(ρ, σ) =

(
Tr
√√

ρσ
√

ρ

)2

(2.44)

F2(ρ, σ) = Tr
√√

ρσ
√

ρ =
√

F1(ρ, σ) (2.45)
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F3(ρ, σ) = Tr(ρ, σ) (2.46)

where, for a positive semidefinite matrix M,
√

M denotes its unique positive square
root. While there are subtle differences in the descriptions of the square root of
a matrix across various sources, we opt for the definition that is widely prevalent
in the literature on quantum information which is the positive one (Nielsen and
Chuang, 2000).

Before delving into the discussion of QSD measures, it is essential to provide a
significant clarification regarding our approach and treatment. As we demonstrated
in the previous section, the amplitudes of the wave-function of the system are ob-
tained from the time-dependent Schrödinger equation after having eliminated the
degrees of freedom of the reservoir. Using the time-dependent amplitudes, we con-
struct the reduced operator of the system which is needed in all expressions of QSD.
This approach offers the advantage of being applicable to any reservoir type, by-
passing the need for a master equation, which is generally unavailable, particularly
for non-Markovian reservoirs. However, there is a trade-off for this advantage. Dur-
ing the elimination of the reservoir continuum, the populations of ground states are
discarded resulting in the density operator describing only the excitation. This situ-
ation has implications for the system density operator. The scenario is analogous to
the treatment of the decay of a discrete state coupled to a continuum (Lambropoulos
and Petrosyan, 2007, Goldberger and Watson, 1964). However, in this context we are
dealing with the excitation of a chain. Therefore, the reduced density operator es-
sentially depicts the time evolution of the excitation, which, as expected, gradually
dissipates into the reservoir in the long-term.

Expressions for F or QSD are often assumed, either impicitly or explicitly to in-
volve density operators with trace equal to unity. However, given that our approach
results in the decay of the trace of the reduced density operator, the expression for
QSD needs to be appropriately adjusted. The concept of distance between two quan-
tum states can be introduced in a variety of ways. Below we present the three quan-
tum distance measures that we use for this project :

(1) Our first pick, the Trace distance, defined by:

DT(ρ, σ) =
1
2

Tr∥ρ − σ∥ =
1
2

Tr
√
(ρ − σ)†(ρ − σ) (2.47)

where for a positive semidefinite matrix A,
√

A denotes a positive semidefinite ma-
trix B such that B2 = A. Note that B is a unique matrix so defined. The trace dis-
tance DT represents a natural metric on the space of density matrices, satisfying
0 ≤ DT ≤ 1.

To get a grasp of its physical interpretation, suppose that Alice prepares a quan-
tum system in one of two states ρ1 and ρ2, each with probability 1

2 , and gives the
system to Bob who performs a measurement to decide whether the system was in
the state ρ1 or ρ2. One can show that the quantity 1

2 [1 + DT(ρ1, ρ2)] is then equal
to the probability that Bob can successfully identify the state of the system. Thus,
the trace distance can be interpreted as a measure for the distinguishability of two
quantum states.

The trace distance is likely the most important measure for distinguishing Marko-
vian from non-Markovian behaviour. Just by looking at the rate of change of the
trace distance,

σ(t, ρ1.2(0)) =
∂

∂t
DT(ρ1(t), ρ2(t)) (2.48)
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we can tell if a quantum process is Markovian or not as it has been shown that for all
Markovian processes σ ≤ 0 holds true. If there is a physical process, for which a pair
of initial states ρ1,2(0) and a certain time t such that σ(t, ρ1,2(0)) > 0 exists, it is said
to be non-Markovian. Physically speaking, this indicates that the distinguishability
of the pair of states increases at certain times for non-Markovian dynamics, which
can be interpeted as a back-flow of information from the environment to the system.

(2) Our second choice, the Bures distance is a metric defined using the fidelity.
The Bures QSD is usually defined as D2

B(ρ, σ) ≡ 2
[
1 −

√
F1(ρ, σ)

]
, which in view of

Eqn. (2.45) can be written as

D2
B(ρ, σ) = 2 [1 − F2(ρ, σ)] (2.49)

from which we obtain

DB(ρ, σ) =
√

2
[

1 − Tr
√√

ρσ
√

ρ

]1/2

(2.50)

As long as Tr ρ = Tr σ = 1 is satisfied for all times, this expression is valid because if
in any distance measure we set ρ = σ, we should obtain zero. In our case though as
stated before, we have a dissipation of the excitation over time which corresponds
to the traces decaying to zero which, for the case ρ = σ, yields the nonphysical value√

2. In order to move past that contradiction, we will use the following modified
version of the Bures QSD:

DB(ρ, σ) =
√

2
[

1
2
(Tr ρ + Tr σ)− Tr

√√
ρσ

√
ρ

]1/2

(2.51)

This is the expression we are using for the Bures QSD for our project. In the long
time limit and in the presence of dissipation, the modified Bures distance tends to
zero as it should.

(3) Lastly, among the plethora of distances between states there are measures
whose definition come from the statistical interpretation of quantum states. The so-
called Hellinger distance is one of them. It is defined as :

D2
H(ρ, σ) = Tr(

√
ρ −

√
σ)2 (2.52)

which upon expansion of the square reduces to

D2
H(ρ, σ) = Tr ρ + Tr σ − 2 Tr

(√
ρ
√

σ
)

(2.53)

Just like the Bures QSD, if the density operators are unity, Eqn.(2.53) reduces to D2
H =√

2
[
1 − Tr

(√
ρ
√

σ
)]

, which then leads to the expression

DH =
√

2
[
1 − Tr

(√
ρ
√

σ
)]1/2

(2.54)

This is the expression for the Hellinger distance measure that is typically used in the
bibliography. However, in order to account for the dissipation of the populations we
have :

DH =
[
Tr ρ + Tr σ − 2 Tr

(√
ρ
√

σ
)]1/2

(2.55)

We can see that Eqn.(2.54) leads to the value
√

2 as t → ∞. This is not physically
possible as it does not account for the decay of the traces of the density operators.
On the other hand, Eqn.(2.55) correctly yields zero for the distance between the two
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states in the limit of t → ∞. That is why for our purpose we use Eqn.(2.55) for the
Hellinger QSD.
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Chapter 3

Results

In this chapter, we present results for two different systems,a 1-qubit and a 5-qubit
chain. We divide this chapter into three sections.

In section 3.1, we show the time dynamics of the populations with each reservoir
at the edge of the chain. To get these results, we have written a python script (for
each reservoir) that constructs the differential equations of the amplitudes and solves
them numerically using the RK45 method. After that, it is easy to construct the
density matrix elements using the amplitude solutions. Due to computational dif-
ficulties when using integro-differential equations, any results regarding the Ohmic
spectral densities are calculated by Mouloudakis utilizing the Laplace transform just
like in one of his recent papers (Mouloudakis, Ilias, and Lambropoulos, 2022).

In section 3.2, we use all three QSD measures to calculate the distance of the
Markovian solution from each non-Markovian solution over time. The thought be-
hind this is simple, given two non-Markovian reservoirs we can tell which one is
"more non-Markovian" by comparing their distances with the Markovian one.

Knowing that our end goal is to compare each reservoir with the Markovian
one, we need to make that comparison as "fair" as possible. It is evident, that mak-
ing direct comparison between different scenarios, such as the evolution under a
Markovian reservoir with damping rate Γ and a Lorentzian reservoir with param-
eters g, ΓL, ∆c, would be futile. To ensure a meaningful comparison, we propose
adopting a common feature shared by all reservoirs involded in the comparison.
Specifically, given that for all reservoirs the excitation of all qubits will ultimately
decay to zero and without claim to uniqueness, we set the parameters of the various
reservoirs to achieve approximately the same half-life for the excitation of the first
qubit as it would have under a Markovian reservoir with a specified ΓM.

This choice allows some flexibility in selecting the parameter g, which expresses
the coupling strength between the last qubit of the chain and the non-Markovian
reservoir. In both single and 5-qubit scenarios, and for all considered non-Markovian
reservoirs, we set the parameter g to the value g = 1. Notably, the parameters
determining the lifetime of the excitation in the chain are chosen to ensure that the
period of population oscillations between the last qubit and the reservoir is shorter
than this lifetime.

Finally, in section 3.3 we study the qubit-qubit entanglement behaviour in a 6-
qubit chain.
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3.1 Populations

3.1.1 1-qubit theoritical backround

We start by looking at the simplest system first, which consists of one qubit coupled
to a reservoir. The reason for that is that the differential equation of motion for a
single qubit can be written with ease, and it is even possible to obtain analytical
expressions for the amplitudes and populations in some of the reservoirs.

(a) Starting with the Markovian case, using equation (2.16) for N=1 we get:

∂c̃1

∂t
= −Γ

2
c̃1(t) (3.1)

which upon solution, with initial condition c̃1(0) = 1, yields:

c̃1(t) = e−
Γ
2 t (3.2)

|c̃1(t)|2 = e−Γt (3.3)

As we see, a system of one qubit connected to a Markovian reservoir has an exact so-
lution which is a simple exponential decay with the population of the qubit decaying
to the environment with rate Γ.

(b) Moving on to the Lorentzian case, equations (2.23), (2.24) for N=1 become :

∂c̃1

∂t
= −x (3.4)

∂x
∂t

= −Γ
2

x + g2c̃1(t) (3.5)

which is a simple system of two coupled differential equations. Differentiating equa-
tion (3.4) and substituting into (3.5) we get the differential equation for the ampli-
tude:

∂2c̃1

∂t2 +
Γ
2

∂c̃1

∂t
+ g2c̃1 = 0 (3.6)

Equation (3.6) is known as the problem of a damped harmonic oscillator and is
solved using the exponential ansatz c̃1(t) eλt which results in :

λ2 +
Γ
2

λ + g2 = 0 (3.7)

Depending on the value of the discriminant δ =
( Γ

2

)2 − 4g2, we distinguish three
cases:
i) Overdamped case for δ > 0
ii) Critically damped case for δ = 0
iii) Underdamped case for δ < 0

In this project, we concentrate on g and Γ values that result in a negative discrim-
inant. Moving further with the calculations and assuming that the discriminant is
negative, it is simple to reach the following general solution:

c̃1(t) = e−
Γ
4 t
(

Aei δ
2 t + Be−i δ

2 t
)

(3.8)

We require two initial conditions in order to determine the values of A and B. The
first one is the obvious c̃1(0) = 1. The second one arrises from setting t=0 in the
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definition of x which results in x(0)=0. Now setting t=0 in equation (3.4), provides
us with a second initial condition which is ∂c̃1(0)

∂t = 0. After some trivial calculations
we arrive at the results:

c̃1(t) = e−
Γ
4 t
(

cos
δ

2
t +

Γ
2δ

sin
δ

2
t
)

(3.9)

|c̃1(t)|2 = e−
Γ
2 t

[((
1
2
− 1

8

(
Γ
δ

)2
)

cos δt +
Γ
2δ

sin δt +

(
1
2
+

1
8

(
Γ
δ

)2
))]

(3.10)

with δ = 4g2 −
( Γ

2

)2
.

(c) Following the same path, using equations (2.37), (2.38), (2.39) with N=1, we
get a system of three coupled differential equations for the Lorentzian squared:

∂c̃1

∂t
= −x (3.11)

∂x
∂t

= −Γ
2

x +
Γ
2

g2y + g2c̃1(t) (3.12)

∂y
∂t

= −Γ
2

y + c̃1(t) (3.13)

Solving for c̃1 we arrive at:

∂3c̃1

∂t3 + Γ
∂2c̃1

∂t2 +

[
g2 +

(
Γ
2

)2
]

∂c̃1

∂t
+ Γg2c̃1(t) = 0 (3.14)

Unfortunately, there is no analytical solution for this differential equation. How-
ever, we can easily get numerical results if we specify the initial conditions which,
applying the same reasoning as in the Lorentzian case, are as follows :

c̃1(0) = 1
∂c̃1(0)

∂t
= 0

∂2c̃1(0)
∂t2 = −g2

(d) Finally, setting N=1 in equation (2.43) , gives rise to the equation of motion
for the Ohmic case:

∂c̃1

∂t
= −

∫ t

0
g2eiωeg(t−t

′
)
(

iωc(t − t
′
) + 1

)−1−S
c̃1(t

′
) dt′ (3.15)

As said in the previous chapter, the integral here can not be eliminated hence there
is no analytical solution. Differential equations like these are known as integro-
differential equations and can be solved numerically.
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3.1.2 Numerical results and discussion

FIGURE 3.1: Dynamics of the populations of a qubit connected to a
Markovian reservoir for c1(0) = 1,Γ = 0.01, J = 1.

FIGURE 3.2: Dynamics of the populations of a qubit connected to a
Lorentzian reservoir for c1(0) = 1,Γ = 0.03, g = 1, J = 1.
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FIGURE 3.3: Dynamics of the populations of a qubit connected to a
square of Lorentzian reservoir for c1(0) = 1,Γ = 0.3, g = 1, J = 1.

FIGURE 3.4: Dynamics of the populations of a qubit connected to an
Ohmic reservoir for c1(0) = 1, S = 1.5, g = 1,ωc = 8,ωeg = 10, J = 1
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In Figures 3.1-3.4, we present the time dynamics of the survival probability of a
single qubit excitation across different types of reservoirs. Specifically, we investi-
gate the scenarios involving Markovian, Lorentzian, Lorentzian squared and Ohmic
reservoirs, with the parameters for each non-Markovian reservoir set according to
the previously described specifications. In Fig. 3.1 and 3.2, we can see that the
Markovian and Lorentzian for N=1 are in match with what we predict in equations
(3.3) and (3.10). The spectral densities associated with Lorentzian and Lorentzian
squared profiles generally induce rapid oscillations in the dynamics of the single-
qubit excitation survival, indicating the transfer of excitation between the qubit and
its environment within finite time intervals. These oscillations in Figures 3.2 and 3.3,
are also evidence of the non-Markovian character of the Lorentzian and Lorentzian
squared reservoirs and can be interpreted as a backflow of information from the
reservoir to the system. The heightened frequency of these oscillations is ascribed
to a substantial coupling strength g in relation to the widths Γ of the Lorentzian
and Lorentzian squared distributions. A reduction in g results in a corresponding
decrease in the oscillation frequency. It is noteworthy that the Markovian limit can
be approximated by increasing Γ, while simultaneously maintaining the ratio g2

Γ at
a constant value. On the other hand, the Ohmic spectral distribution typically ex-
hibits a broader profile compared to Lorentzian and Lorentzian squared distribu-
tions. This broader profile leads to a qubit excitation survival probability that more
closely resembles the survival probability observed in the Markovian case as shown
in Fig. 3.4. This is an expected result as it has been shown by Lambropoulos and
Mouloudakis that the effect of a super-Ohmic reservoir resembles an almost Marko-
vian reservoir.

FIGURE 3.5: Dynamics of the populations of the first qubit of a 5-qubit
chain connected to a Markovian reservoir for c1(0) = 1,Γ = 0.01, J =

1.
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FIGURE 3.6: Population dynamics of the first qubit of a 5-qubit chain
connected to a Lorentzian reservoir for c1(0) = 1,Γ = 0.03, g = 1, J =

1.

FIGURE 3.7: Population dynamics of the first qubit of a 5-qubit chain
connected to a Square of Lorentzian reservoir for c1(0) = 1,Γ =

0.3, g = 1, J = 1.
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FIGURE 3.8: Population dynamics of the first qubit of a 5-qubit chain
connected to an Ohmic reservoir for c1(0) = 1, S = 1.5, g = 1,ωc =

8,ωeg = 10, J = 1

The reason we started with the simplistic 1-qubit system, is for it to serve as a cal-
ibration for the measures of QSD in characterising non-Markovianity. In Figures 3.5-
3.8, we study the more realistic situation of a 5-qubit chain invlonving qubit-qubit
interaction. In a configuration of this nature, the pivotal parameter is J, as it controls
the inter-qubit communication which is typically a predominant factor in practical
applications. To adhere to a realistic scenario, we opt for a Markovian damping
rate Γ significantly smaller than J. The chosen parameters for the non-Markovian
reservoirs remain consistent with the ones for the 1-qubit system, ensuring that the
initial excitation for the first qubit decays on a timescale approximately equal for all
reservoirs.

Initially, we compute the time evolution of the excitation probability for the first
qubit across all considered reservoirs. A notable distinction between the single-qubit
dynamics and the dynamics of the first qubit excitation in the 5-qubit chain is the
emergence of oscillations in the latter’s dynamics, signifying the exchange of pop-
ulation among the qubits in the chain. In Figures 3.6, 3.7 we can see that for the
Lorentzian and Lorentzian squared reservoirs these oscillations overlay those occur-
ring between the last qubit and the reservoir.

For the Markovian scenario(Fig. 3.5), the oscillations stem exclusively from the
coupling between the qubits. Lastly, in the Ohmic damped case, the dynamics of
the first qubit population(Fig. 3.8) closely resembles that of the Markovian-damped
chain, with the noteworthy exception that the oscillations unexpectedly collapse af-
ter a finite time, a behavior also documented in prior studies involving qubits cou-
pled to Ohmic reservoirs (Mouloudakis, Ilias, and Lambropoulos, 2022, Abdi and
Plenio, 2018).
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3.2 QSD Results

In this section, we present numerical results of the time dynamics of the various
distance measures between Markovian and non-Markovian reservoirs. At the end
of the section we analyze the results and compare the three distance measures.

As stated before, we begin our analysis by examining the simplest scenario: a
single qubit interacting with various non-Markovian reservoirs. These findings pro-
vide a foundational reference. In our codes, we have solved the problem in its most
general form meaning that N is a modifiable parameter. After establishing the mea-
sures of QSD for characterizing non-Markovianity in this basic setup, we proceed
to investigate the role of non-Markovianity in a more complex and realistic context,
specifically a chain involving qubit-qubit interactions. For a detailed quantitative
analysis, we select a system of five qubits arranged in an XX chain with nearest-
neighbor coupling J. The central question is how the non-Markovianity of the reser-
voir influences the exchange of excitation between the qubits, as manifested by the
evolution of QSD between the Markovian and various non-Markovian reservoirs.

3.2.1 N=1 case

FIGURE 3.9: Trace Distance between the Markovian and the non-
Markovian system using three types of non-Markovian reservoirs in
the single-qubit case. The parameters used in each case are: Marko-
vian reservoir with ΓM = 0.01, Lorentzian reservoir with g=1, Γ =
0.03 and ∆c = 0, Lorentzian squared reservoir with g=1 , Γ = 0.3 and
∆c = 0, Ohmic reservoir with g=1, S=1.5, ωc = 8 and qubit frequency

ωeg = 10.

In Fig 3.9 we study the trace distance between a single qubit connected to a
Markovian reservoir and a single qubit connected to a non-Markovian reservoir. The
parameters used are the same we used for the study of the population dynamics in
subsection 3.1.2. The trace distance as we know assumes values between 0 and 1,
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0 meaning there is no distinguishability between the states. It is therefore expected
from the trace distance to be 0 at t=0 because the reservoirs have not yet started to
affect the qubit, meaning that we are essentially comparing between two identical
qubits. Adding to that, we also expect from the trace distance to be zero for t → ∞
as the population will eventually be lost to the reservoir meaning that we will be
comparing two qubits with no excitation in them.

The trace distance in the Markovian-Lorentzian case, shows rapid oscillations
between two bounds that vary over time. Initially, the upper bound is at its peak
and gradually decreases to zero, while the lower bound starts low, increases to a
peak, and then decreases, eventually merging with the upper bound and tending to
zero for t → ∞ . Similarly, the trace distance dynamics between the Markovian and
Lorentzian-squared display rapid oscillations following a comparable pattern to the
Markovian-Lorentzian case. However, the lower bound in this scenario can reach
zero at specific times, indicating moments when the Lorentzian-squared damped
system closely resembles the Markovian-damped system. These oscillations in both
the Lorentzian and Lorentzian squared cases, indicate a swift exchange of excitation
between the qubit and the non-Markovian reservoirs. Unlike the previous cases, the
trace distance in the Markovian-Ohmic case does not exhibit oscillations, reaches
a maximum at a finite time, and then decreases, with overall values significantly
lower than those in the Markovian-Lorentzian and Markovian-Lorentzian squared
cases. Consequently, it can be concluded that, under the given parameter condi-
tions, the Ohmic-damped single qubit system demonstrates the lowest degree of
non-Markovianity.

FIGURE 3.10: Bures Distance between the Markovian and the non-
Markovian system using three types of non-Markovian reservoirs in
the single-qubit case. The parameters used in each case are: Marko-
vian reservoir with ΓM = 0.01, Lorentzian reservoir with g=1, Γ =
0.03 and ∆c = 0, Lorentzian squared reservoir with g=1 , Γ = 0.3 and
∆c = 0, Ohmic reservoir with g=1, S=1.5, ωc = 8 and qubit frequency

ωeg = 10.
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FIGURE 3.11: Hellinger Distance between the Markovian and the
non-Markovian system using three types of non-Markovian reser-
voirs in the single-qubit case. The parameters used in each case are:
Markovian reservoir with ΓM = 0.01, Lorentzian reservoir with g=1,
Γ = 0.03 and ∆c = 0, Lorentzian squared reservoir with g=1 , Γ = 0.3
and ∆c = 0, Ohmic reservoir with g=1, S=1.5, ωc = 8 and qubit fre-

quency ωeg = 10.

In Fig 3.10 and 3.11 we present results using the Bures and the Hellinger metric
respectively. We can clearly see that both QSD measures display nearly identical
behaviour with the only difference being that the Bures and Hellinger measures ex-
hibit a generally slower decay of QSD compared to the Trace distance. Additionally,
the Lorentzian and Lorentzian squared oscillations in QSD obtained from these two
measures are attenuated more gradually than those in the Trace distance. The Ohmic
case follows a similar pattern, yielding higher QSD values and a significantly slower
progression toward the anticipated value of 0 for all reservoirs and measures. In
summary, for all three non-Markovian reservoirs in the single qubit scenario, the
Trace distance demonstrates a more rapid decline in non-Markovianity compared
to the Hellinger and Bures measures. It is noteworthy that despite the substantial
formal differences in the expressions for the Hellinger and Bures QSD, they result in
nearly identical dynamics, indicating the same degree of non-Markovianity.
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3.2.2 N=5 case

FIGURE 3.12: Trace Distance between the Markovian and the non-
Markovian system using three types of non-Markovian reservoirs for
a qubit chain of N=5 and qubit-qubit coupling J=1. The parame-
ters used in each case are: Markovian reservoir with ΓM = 0.01,
Lorentzian reservoir with g=1, Γ = 0.03 and ∆c = 0, Lorentzian
squared reservoir with g=1 , Γ = 0.3 and ∆c = 0, Ohmic reservoir

with g=1, S=1.5, ωc = 8 and qubit frequency ωeg = 10.

In Fig 3.12 we examine the Trace distance between a 5-qubit chain connected to
a Markovian reservoir and a 5-qubit chain connected to a non-Markovian reservoir.
The parameters used are again the same we used for the study of the population
dynamics in subsection 3.1.2.

First, we observe that all of the Trace distance measures have decay time scales
that are longer than the corresponding time scales in the single-qubit case. Given
that the excitation is now dispersed throughout the entire chain and that it takes
longer for populations to be lost in the reservoir, this behavior was expected. Si-
multaneously, the Trace distance values are generally higher than the single-qubit
corresponding values, suggesting that the number of qubits in the open system in-
fluences its degree of Non-Markovianity.Overall, it is observed that the behavior
of the Markovian-Lorentzian and Markovian-Lorentzian-squared Trace distance is
similar.When considering the Ohmic-damped chain, a phenomenon that is quite in-
triguing can be seen in the dynamic behavior of the Trace distance. The dynamics
of the Markovian-Ohmic measurements under consideration exhibit a complex phe-
nomenon, in contrast to the single-qubit case, due to the interplay between qubit-
qubit and qubit-Ohmic reservoir interactions. With the distance being zero at t = 0
and gradually increasing afterward, the dynamics are initially smooth. Occasionally,
though, they will abruptly alter and display rapid oscillations. Only within a time
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window that is consistent for all QSD measures, as we show in the graphs tha follow,
taken into consideration do these fast oscillations occur. The dynamics smooth out
after that time window, with the distance gradually decaying to zero.

FIGURE 3.13: Bures Distance between the Markovian and the non-
Markovian system using three types of non-Markovian reservoirs for
a qubit chain of N=5 and qubit-qubit coupling J=1. The parame-
ters used in each case are: Markovian reservoir with ΓM = 0.01,
Lorentzian reservoir with g=1, Γ = 0.03 and ∆c = 0, Lorentzian
squared reservoir with g=1 , Γ = 0.3 and ∆c = 0, Ohmic reservoir

with g=1, S=1.5, ωc = 8 and qubit frequency ωeg = 10.
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FIGURE 3.14: Hellinger Distance between the Markovian and the
non-Markovian system using three types of non-Markovian reser-
voirs for a qubit chain of N=5 and qubit-qubit coupling J=1. The pa-
rameters used in each case are: Markovian reservoir with ΓM = 0.01,
Lorentzian reservoir with g=1, Γ = 0.03 and ∆c = 0, Lorentzian
squared reservoir with g=1 , Γ = 0.3 and ∆c = 0, Ohmic reservoir

with g=1, S=1.5, ωc = 8 and qubit frequency ωeg = 10.

In Fig 3.13 and 3.14 we present results using the Bures and the Hellinger metric
respectively. As in the single-qubit case, both QSD measures display similar be-
haviour with the Trace distance with the difference being that the decay of the QSD
is slower. Adding to that, we can see that the time window, in which the Markovian-
Ohmic suddenly alter into rapid oscillations, is the same for all QSD measures.

In conclusion, it is found that the qubit-qubit interaction increases the degree of
Non-Markovianity found in all QSD measures. On the other hand, the reservoir’s
non-Markovian properties could be seen as improving the excitation storage in the
chain.
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3.3 Entanglement

In this section, we study the time evolution of the entanglement as affected by var-
ious reservoirs. For that purpose, we consider a 6-qubit chain, with the qubits la-
belled as 1,2,3,4,5 and 6. As an initial condition, we set qubits 1 and 2 maximally
entangled. Qubits 3 and 4 are taken coupled to two identical reservoirs. The ques-
tion then is the time evolution of the entanglement as it propagates to qubits 5
and 6, under various reservoirs coupled to qubits 3 and 4. As has been shown in
Mouloudakis and Lambropoulos, 2023, two interacting qubits coupled to identcal
reservoirs, are equivalent to an arbitrary number of qubits all of which are coupled
to the same reservoir, with proper scaling. Therefore, this arrangement is equiva-
lent to the propagation of the entanglement of two qubits to another pair of distant
qubits, via a chain of an arbitrary number of interacting qubits coupled to identical
environments (reservoirs). In different words, we study the propagation of entan-
glement through a lossy chain of qubits. The entanglement of two qubits is char-
acterized quantitatively by the concurrence. In order to explore quantitatively the
transfer of entanglement through the lossy chain, we calculate the time evolution
of the concurrence, under coupling of the intermediate qubits to various reservoirs.
The concurrence of two qubits is given by the expression:

C(t) = 2|c1(t)c∗2(t)|

with values ranging from 0 (lowest) and 1 (maximum entanglement). This metric
is frequently used to measure entanglement between edge qubits in qubit-chains,
especially when they begin as unentangled and result in a steady state entanglement
after some time. In that case we have what often referred to as the long distance
entanglement generation which is important for quantum computer applications.

In the graphs that follow, we present results for the time dynamics of the popu-
lations of the edge qubits and the time dynamics of their concurrence.

FIGURE 3.15: Population dynamics of the edge qubits of a 6 qubit-
chain with each of the middle qubits connected to an identical Marko-

vian reservoir for c1(0) = 1/
√

2, c2(0) = 1/
√

2, Γ = 0.01, J = 1.
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FIGURE 3.16: Time dynamics of the edge qubits concurrence in a 6
qubit-chain with each of the middle qubits connected to an identical
Markovian reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ = 0.01, J =

1.

FIGURE 3.17: Population dynamics of the edge qubits of a 6 qubit-
chain with each of the middle qubits connected to an identical
Lorentzian reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ = 0.03, g =

1, J = 1.

FIGURE 3.18: Time dynamics of the edge qubits concurrence in a 6
qubit-chain with each of the middle qubits connected to an identical
Lorentzian reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ = 0.03, g =

1, J = 1.
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FIGURE 3.19: Population dynamics of the edge qubits of a 6 qubit-
chain with each of the middle qubits connected to an identical
Lorentzian squared reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ =

0.3, g = 1, J = 1.

FIGURE 3.20: Time dynamics of the edge qubits concurrence in a 6
qubit-chain with each of the middle qubits connected to an identical
Lorentzian squared reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ =

0.3, g = 1, J = 1.

In Fig. 3.15, we present the population dynamics of the edge qubits in a 6-qubit
chain, with two Markovian reservoirs connected to each of the middle qubits. The
initial conditions are set for maximum entanglement between the first two qubits.
The results indicate that the populations do not preserve any entanglement, exhibit-
ing the typical Markovian behavior as demonstrated in previous sections. This is
further corroborated by Fig. 3.16, where the concurrence of the edge qubits gradu-
ally decays to zero.

In Figs. 3.17-3.20, we show the population dynamics and concurrence of the
edge qubits in a 6-qubit chain with two Lorentzian reservoirs (Figs. 3.17-3.18) and
two Lorentzian squared reservoirs (Figs. 3.19-3.20) connected to each of the middle
qubits. For both cases, the initial conditions are set to maximum entanglement be-
tween the first two qubits, with decay parameters Γ1 = 0.03 for the Lorentzian and
Γ2 = 0.3 for the Lorentzian squared. The populations of the edge qubits in both
scenarios exhibit the typical oscillatory behavior associated with Lorentzian and
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Lorentzian squared damped cases. However, the populations decay faster than pre-
viously observed, which is expected due to the introduction of two reservoirs in the
middle of the chain, reducing the space for population travel and resulting in faster
decay. Additionally, the Lorentzian squared decay occurs slightly faster than the
Lorentzian, consistent with it being a more pronounced version of the Lorentzian.
The concurrence of the edge qubits in both cases starts at maximum entanglement
and rapidly decays to zero, indicating no preservation of entanglement.

So far, our calculations have set the parameter Γ for all reservoirs to ensure that
the half-life of the excitation of the first qubit is approximately the same. While this
is a reasonable standard, it is also worth exploring what occurs if we set the pa-
rameters identically, particularly in the Lorentzian and Lorentzian squared cases. To
accurately compare the Lorentzian with the Lorentzian squared reservoir, we should
use the same input parameters to elucidate their differences.

FIGURE 3.21: Population dynamics of the edge qubits of a 6 qubit-
chain with each of the middle qubits connected to an identical
Lorentzian squared reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ =

0.03, g = 1, J = 1.
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FIGURE 3.22: Time dynamics of the edge qubits concurrence in a 6
qubit-chain with each of the middle qubits connected to an identical
Lorentzian squared reservoir for c1(0) = 1/

√
2, c2(0) = 1/

√
2, Γ =

0.03, g = 1, J = 1.

In Fig. 3.21, we have set the decay parameter for the Lorentzian squared case
to Γ = 0.03. The results are compelling, as there is practically no decay of the ex-
citations. The populations remain essentially frozen within the chain, oscillating
between the edge qubits.

In Fig. 3.22, we present the time dynamics of the concurrence of the edge qubits.
The concurrence oscillates between zero and one with negligible decay. When qubits
one and two exhibit maximum entanglement, indicated by a concurrence value of
one, qubits five and six show zero concurrence, and vice versa. This indicates the
establishment of a steady state of transfer of entanglement. Given the significance
of this finding, the next chapter will explore the dynamics of the Lorentzian squared
for lower values of Γ.
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Chapter 4

A more thorough examination of
the Lorentzian squared

4.1 Population dynamics for Γ = 0.03

The population dynamics of spin chains coupled to Lorentzian and Ohmic reservoirs
have been studied thoroughly by Mouloudakis and Labropoulos [reference]. The
Lorentzian squared on the other hand is a reservoir that, to our knowlegde, has
never been examined in a realistic model like ours. The purpose of this section, is to
study the reservoir’s behavior when changing the variables of the problem. We also
look at the sum of populations, in order to determine what conditions result in the
population trapping. Note that, in all our calculations, we adopt the value J=1 for
the strength of the interaction between neighboring qubits, as a reference value for
the comparison with the other couplings entering the formalism.

FIGURE 4.1: Population dynamics of the first qubit of a 5-qubit chain
connected to a Square of Lorentzian reservoir for c1(0) = 1, Γ = 0.03,

g=0.3, J=1 .
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FIGURE 4.2: Population dynamics of the channel qubits of a 5-qubit
chain connected to a Square of Lorentzian reservoir for c1(0) = 1,

Γ = 0.03, g=0.3, J=1 .

FIGURE 4.3: Population dynamics of the last qubit of a 5-qubit chain
connected to a Square of Lorentzian reservoir for c1(0) = 1, Γ = 0.03,

g=0.3, J=1 .
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FIGURE 4.4: Sum of populations of a 5-qubit chain connected to a
Square of Lorentzian reservoir for c1(0) = 1, Γ = 0.03, g=0.3, J=1 .

FIGURE 4.5: Sum of populations of a 5-qubit chain connected to a
Square of Lorentzian reservoir for c1(0) = 1, Γ = 0.03, g=0.6, J=1 .

In Fig 4.1-4.5 we study the dynamics of the population of the edge as well as the
intermediate qubits in the g < J case. For the intermediate qubits, we adopt the term
"channel qubits", which is frequently used in quantum information protocols and
represents the sum of populations of all except the 2 edge qubits. In Figures 4.1-4.3,
we observe oscillations in the edge and channel qubit populations corresponding to
the spreading of the initial excitation over the whole chain and the backflow from
the reservoir. The sum of populations of the chain for g=0.3 is depicted in Fig 4.4.
As we can see the population will eventually, though very slowly, be lost due to the
environmental dissipation. This is a finding that is characteristic of the square of
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Lorentzian reservoir, as none of the other reservoirs that we have studied produce
such slow dissipation to the environment. Moreover, when raising the value of g
while staying in the g < J regime, the total population of chain decays even slower as
shown in Fig 4.5. When raising the value of g, we also observe oscillations of higher
amplitude in the total population of the chain. This means that more population is
exchanged back and forth between the reservoir and the chain, suggesting a more
non-Markovian behaviour.

FIGURE 4.6: Population dynamics of the first and last qubit of a 5-
qubit chain connected to a Square of Lorentzian reservoir for c1(0) =

1, Γ = 0.03, g=1.5, J=1 .

FIGURE 4.7: Population dynamics of the channel and last qubit of a 5-
qubit chain connected to a Square of Lorentzian reservoir for c1(0) =

1, Γ = 0.03, g=1.5, J=1 .
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FIGURE 4.8: Sum of populations of a 5-qubit chain connected to a
Square of Lorentzian reservoir for c1(0) = 1, Γ = 0.03, J=1. Black line:

g=1.5, orange line: g=3 .

FIGURE 4.9: Sum of populations of a 11-qubit chain connected to a
Square of Lorentzian reservoir for c1(0) = 1,Γ = 0.03, J=1. Black line:

g=1.5, orange line: g=3 .

In Fig 4.6-4.7, we study the population dynamics in the g > J regime. It is
easily observed that, the oscillations of the first and the channel qubit are almost
complementary. In this case, the population is essentially trapped inside the first 4
qubits with a negligible amount leaking to the last qubit as shown in the blue line.
These findings suggest that the evolution of the last qubit freezes at high coupling
strengths, alluding to a phenomenon known as the quantum zeno effect, which ef-
fectively prevents the reservoir’s total decay through the final qubit. It must be
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noted that this freezing of the population was also observed by Mouloudakis and
Lambropoulos when studying qubit chains interacting with two Lorentzian reser-
voirs through the first and last qubits. More specifically, the conditions needed for
the freezing of the population inside the chain to happen were an initial excitation
in any but the edge spins and coupling strengths that satisfy g > J. However, when
the initial excitation was in either of the two edge spins, the population decayed
very fast to the environment. When the coupling strengths g of the reservoirs are
greater than the interaction J, the egde qubits behave like they are "cut-off" the chain
and stop communicating with the intermediate qubits. It is almost like, the reser-
voir "steals" the qubit that it interacts with from the chain. Since the square of the
Lorentzian is a more "exaggerated" version of the Lorentzian, one would expect sim-
ilar behaviors of the two reservoirs, and this is exactly what happens, with the only
difference being that our model has only one reservoir connected to the last qubit.
If the initial excitation is in any of the first 4 qubits and g > J is satisfied, then the
last qubit can not communicate with the rest of the chain and the population stays
trapped there.

In Fig 4.8, we study the total population of a 5 qubit chain for different values
of g. As we can see, the freezing effect that was previously explained is intensified
for higher values of g. Lastly, when increasing the length of the chain as depicted
in Fig 4.9, the decay does not seem to slow down as we would expect, however the
oscillations of the total population are now of smaller amplitude.

4.2 Revisiting the Lorentzian squared QSD

FIGURE 4.10: Trace Distance between Markovian and Lorentzian
squared for a 5-qubit chain and qubit-qubit coupling J=1. The pa-
rameters used in each case are: Markovian reservoir with ΓM = 0.01,

Lorentzian squared reservoir with g=1, Γ = 0.03 and ∆c = 0.



4.2. Revisiting the Lorentzian squared QSD 39

FIGURE 4.11: Bures Distance between Markovian and Lorentzian
squared for a 5-qubit chain and qubit-qubit coupling J=1. The pa-
rameters used in each case are: Markovian reservoir with ΓM = 0.01,

Lorentzian squared reservoir with g=1, Γ = 0.03 and ∆c = 0.

FIGURE 4.12: Hellinger Distance between Markovian and Lorentzian
squared for a 5-qubit chain and qubit-qubit coupling J=1. The pa-
rameters used in each case are: Markovian reservoir with ΓM = 0.01,

Lorentzian squared reservoir with g=1, Γ = 0.03 and ∆c = 0.

Now, we return again to the Trace distance for a 5-qubit chain with a Lorentzian
squared reservoir connected to the last qubit, but this time with Γ = 0.03. Figure
4.10 unveils intriguing insights into the non-Markovian dynamics induced by the
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Lorentzian squared reservoir. The decay observed in this distance metric is signif-
icantly slower compared to previous cases, indicating a much more prolonged in-
teraction between the quantum system and its environment. This markedly slower
decay underscores an exceptionally high degree of non-Markovianity, suggesting
that the system retains memory of its past states for an extended period.

Fig 4.11-4.12 depict the Bures and Hellinger metrics, respectively, offering com-
plementary perspectives on the non-Markovian dynamics induced by the Lorentzian
squared reservoir. These metrics exhibit similar oscillatory behavior to the Trace Dis-
tance, albeit with slightly slower decay rates as we showed in previous chapters.

One remarkable feature of the Lorentzian squared reservoir is its propensity to
sustain non-Markovian behavior over extended time periods. This sustained inter-
action fosters the emergence of steady states within the quantum system, wherein
quantum coherence and entanglement are preserved over time. The establishment
of steady states suggests the existence of robust reservoir-induced coherence, which
can have profound implications for quantum information processing tasks.The Lorentzian
squared reservoir emerges as a potent source of non-Markovian dynamics, capable
of sustaining steady states and preserving quantum coherence over extended time
scales.
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Summary

In this thesis we studied the degree of non-Markovianity of reservoirs with various
density of states. In order to provide a study pertainig to realistic systems, we ex-
plored the effect of the reservoirs on systems of interacting qubit chains connected
to reservoirs in suitably chosen arrangements. Our analysis included quantum state
measures as well as the time evolution of entanglement. In addition to typical reser-
voirs, such as Markovian, Lorentzian and Ohmic, we also conducted a detailed in-
vestigation of the Lorentzian squared reservoir, a rather unusual reservoir which
was found to exhibit surprising properties.

Using an XX chain of interacting qubits coupled to reservoirs as a practical model
for quantum information processing, the study employed the density matrix for-
malism through the solutions to the Schrödinger equation to compute QSD mea-
sures. The evaluation of DNM involved comparing system evolution under non-
Markovian and Markovian reservoirs. This comparison necessitated a judicious
selection of the parameters of the spectral densities of the reservoirs involved in
each QSD calculation. Beginning with a single-qubit coupled to a reservoir, we
proceeded to the exploration of the interplay between the qubit-qubit coupling and
qubit-reservoir interaction. Our analysis revealed slightly higher DNM values for all
three reservoirs when measured using the Hellinger and Bures metrics compared to
the trace distance measure. Our results revealed differences in DNM between single-
qubit and five-qubit chain analyses, with larger systems exhibiting higher DNM due
to excitation retention among interacting qubits.

Interestingly, the Ohmic reservoir exhibited significantly lower DNM across all
three measures, suggesting a Markovian-like behavior due to the absence of notice-
able back-flow of excitation from the reservoir to the qubit.

The Lorentzian and Lorentzian squared reservoirs, based on all three measures,
displayed a similar DNM. This might appear contrary to expectations, given that
the squared Lorentzian profile is more sharply peaked than the Lorentzian with the
same parameters, implying a higher DNM. However, in our comparative analyses
in Fig (3.9-3.14), the Lorentzian squared used was not the direct square of the ac-
companying Lorentzian, as adjustments in parameters were made as explained at
the beginning of the chapter. When we calculated the evolution of the qubit ex-
citation dynamics and DNM for the Lorentzian squared using the same Γ as the
Lorentzian the we found a significantly higher DNM for the Lorentzian squared.
Moreover, introducing Γ = 0.03 in the Lorentzian squared reservoir analysis shed
light on sustained entanglement dynamics over extended time periods, uncovering
intriguing insights into entanglement preservation.If it were possible to engineer a
squared Lorentzian reservoir coupled to an open system, dissipation would dimin-
ish significantly. Our exploration of the Lorentzian squared spectral density goes
beyond a theoretical exercise. It stems from the detection of non-Lorentzian line
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shapes (Whipple, 1981, Pellegrino and al., 2020), such as the Lorentzian squared,
although in different physical context.
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