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Abstract

Network intrusion prevention systems provide an important proactive defense capability against se-

curity threats by detecting and blocking network attacks. This task can be highly complex, and software-

based network intrusion prevention systems are currently not capable of handling high speed links.

This work focuses on the design and implementation of a high-performance, low-cost, flexible, and

scalable network intrusion prevention system that combines software-based network intrusion detection

engines and a network processor board. The network processor acts as a customized load balancer that

cooperates with a set of content-based network intrusion detection engines in processing network traffic.

We show that the components of such a system, if designed properly, can achieve high performance, by

eliminating redundant processing and communication.

We describe a system architecture and present a prototype built using low-cost, off-the-shelf technol-

ogy: an IXP1200 network processor evaluation board and commodity PCs. Our evaluation shows that

our enhancements reduce the processing load of the network intrusion detection engines by at least 45%.

The result is a system that can handle a fully-loaded Gigabit Ethernet link using at most four detection

engines.
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1
Introduction

The increasing importance of network infrastructure and services along with the high cost and difficulty

of designing and enforcing end-system security policies has resulted in growing interest in complemen-

tary, network-level security mechanisms, as provided by firewalls and network intrusion detection and

prevention systems.

High-performance firewalls are rather easy to scale up to current edge-network speeds because their

operation involves relatively simple operations, e.g., matching a set of Access Control List-type policy

rules against fixed-size packet headers. Unlike firewalls, network intrusion prevention systems (NIPSes)

are significantly more complex and, as a result, are lagging behind routers and firewalls in the technology

curve. The complexity stems mainly from the need to analyze not just packet headers but also packet

content and higher-level protocols. Moreover, the function of NIPSes needs to be updated with new

detection components and heuristics, considering the progress in detection technology as well as the

continuously evolving nature of network attacks.

1



2 CHAPTER 1. INTRODUCTION

Both complexity and the need for flexibility make it hard to design high-performance NIPSes. Application-

Specific Integrated Circuits (ASICs) lack the needed flexibility, while software-based systems are inher-

ently limited in terms of performance. One design that offers both flexibility and performance is the

use of multiple software-based systems behind a hardware-based load balancer. Although such a de-

sign can scale up to edge-network speeds, it still requires significant resources, in terms of the number

of software-based systems, the required rack-space, etc. It is therefore important to consider ways of

improving the performance of such systems.

This thesis explores the role that high-speed network processors (NPs) can play in scaling up network

intrusion prevention systems. We focus on ways of exploiting the performance and programmability of

NPs for boosting network intrusion prevention. We describe the architecture of a high-performance, low-

cost, flexible, and scalable NIPS that is composed of network processors and general purpose processors.

We present the allocation of operations to components and the trade-offs we faced during designing and

prototyping the system.

1.1 Design Challenges

We faced a number of design challenges in constructing our system with respect to performance,

flexibility, and scalability:

1.1.1 High-Performance

The primary metric of interest in the design of a NIPS is throughput. The goal here is to be able to

operate at network speeds of at least 1 Gbit/s without packet losses. We assume that we cannot tolerate

an undetected attack; therefore, the system must be capable of analyzing all the incoming traffic under

the most stringent conditions.

A second important performance goal is minimizing the latency induced by the NIPS. There is a

direct relationship between latency introduced by a networking device and the maximum throughput of

TCP connections 1. If the NIPS is to be used at the boundary between an enterprise network and the

Internet, latencies in the order of a few milliseconds may be tolerable. If the NIPS is deployed internally,

and the network needs to support high-bandwidth local services (such as file sharing, etc.) the latency

1 Recall that Throughput =
Window

RTT
where Window is the maximum TCP window size (default value is 64 Kbytes) and

RTT is the round trip time in the network.
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requirements are even more stringent.

Particularly, there is a critical value for the round trip time (RTT) of a packet in each network. If the

latency is below this critical value, TCP throughput is unaffected – it is the line speed of the underlying

network which becomes the bottleneck – above this critical value, however, TCP throughput is negatively

impacted. The critical value for RTT in a network supporting Gigabit speeds is 0.5 milliseconds. Thus,

if we want the throughput of TCP to be unaffected, we must ensure that the imported latency of our

NIPS is smaller than 0.5 milliseconds. However, Gigabit Ethernet links, rarely carry only a single TCP

connection. Rather, a Gigabit Ethernet link supports hundreds, if not thousands of TCP connections,

and this multiplexing mitigates the impact of latency on the overall throughput of the link [16]. In other

words, it is possible to import latency greater than 0.5 milliseconds without affecting the throughput of

a link due to the high number of TCP connections.

1.1.2 Flexibility and Scalablity

A NIPS needs to be flexible and scalable, both for scaling up to higher link speeds and more expensive

detection functions, as well as for updating the detection heuristics. If the protection of a faster link

or a more fine-grained detection is required, it would be desirable to reuse as much as possible of the

existing hardware. Clearly, this property does not hold for ASIC-based NIPSes. Besides, it is remarkable

that almost all NIPSes providers ignore this dimension [15, 28, 29, 43]. Furthermore, notice that a

prerequisite of flexibility is simplicity as extending a complex system may be hard and error-prone. It is

therefore desirable for the hard-to-program elements of our system to be as generic as possible.
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2
Background

In this Chapter we present a summary of the important concepts that this study is based on. We first

present the differences between NIPSes, NIDSes and firewalls. Then, we give an introduction to network

intrusion prevention systems and to possible implementations of a NIPS. Subsequently, follows a brief

description of the architectural characteristics of network processors. Finally, we briefly discuss load

balancing and present the requirements that load balancing for network intrusion prevention must satisfy.

2.1 Differences Between NIPSes, NIDSes and Firewalls

It is important not to confuse network intrusion detection (monitoring) with network intrusion pre-

vention. NIDSes detect attacks and provide information about the attacks so that an administrator can

perform an inspection and determine if something is not as it ought to be. Since intrusion detection is

a passive technology, it can tolerate detection techniques that are not perfect. The worst case scenario

is that you have false positives. Network intrusion detection is a passive detection technology, utilizing

5
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broad detection methods sufficient to understand and characterize the traffic that is present on a network.

Network intrusion prevention, on the other hand, is quite different. Its job is to proactively prevent at-

tacks from entering your network opposed to just detecting those attacks. A NIDS operates beside the

network, offline, and analyzes the traffic as it goes by. On the contrary, a NIPS operates inline, inspect-

ing all packets going inbound or outbound. With intrusion prevention, only precise detection/prevention

methods can be used to insure that there are little to no false positives and that legitimate traffic is not

mistakenly blocked. It is important to understand that both NIDSes and NIPSes have an important role

in a network infrastructure. NIPSes are meant to minimize the risk of known attacks and anomalies that

can only cause damage to your network. Where a NIDS gives you insight into your networks patterns

and behaviors and helps you to gather forensic data over time.

Finally, firewalls on the other hand, while operating inline, just like a NIPS, they do not inspect the

payload of the packets. They merely check the headers of the packets and block traffic not destined to a

list of permitted ports. Although this is useful in many cases, firewalls are not capable of blocking the

biggest part of the known attacks.

2.2 Introduction to Network Intrusion Prevention Systems

2.2.1 What is an Intrusion?

An intrusion is “the act of thrusting in, or of entering into a place or state without invitation, right, or

welcome”[45]. In the context of computer systems, intrusion is any unauthorized action in an attempt to

compromise a system. Figure 2.1 presents a typical intrusion scenario. For an attacker, the first step is to

select the system to attack, which is also known as outside reconnaisance. After selecting his victim, the

attacker proceeds with inside reconnaisance. Particularly, in this step the attacker gathers information

about the victim which will help him find possible vulnerabilities or the victim’s Achilles’ heel. Then,

the attacker takes advantage of these vulnerabilities using some exploits and compromises the system.

After that, the attacker may have a plethora of options that ranges from stealing confidential information

to render unusable the compromised system (e.g erasing hard disks).

2.2.2 What is a Network Intrusion Prevention System?

Network intrusion detection and prevention systems analyze information about the activities per-

formed in a network, looking for evidence of malicious behavior, and block the offending traffic auto-
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FIGURE 2.1: A Typical Intrusion Scenario.

matically before it does any damage. The information comes in the form of raw network traffic obtained

by monitoring a network link. The collected data are used by NIPSes in two different ways, according

to two different approaches: anomaly detection and misuse detection systems [20].

Anomaly detection systems collect historical data about the activity of a system. Then, given some

specifications of the normal behavior of the system, a profile representing the normal operation of the

system is constructed. The specifications, for example, may contain the state of the network’s traffic load,

breakdown, protocol, and typical packet size. During detection, the NIPS tries to identify patterns of

activity that deviates from the defined profile (anomalous activity). This approach is based on the notion

that attacks tend to look different in some fashion than legitimate computer use. Rather, misuse detection

systems take a complementary approach. They are equipped with a number of attack descriptions (or

signatures) that are matched against the stream of network data, looking for evidence that a known

attack is occurring. Essentially, a misuse detection system looks for a specific attack that has already

been documented.
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Each of these approaches has its pros and cons. Misuse detection systems can perform detailed anal-

ysis of the network data and they usually produce only a few false positives, but they can’t detect novel

attacks. On the other hand, anomaly detection systems have the advantage of being able to detect pre-

viously unknown attacks. This advantage is paid for, in terms of the large number of false positives and

the difficulty of training a system with respect to a very dynamic environment.

In this thesis, we concentrate on misuse detection NIPSes. We decided to use misuse detection NIPSes

because they are more mature than the anomaly detection NIPSes. In particular, as we have already

mentioned, they generate less false positives, and are well understood.

2.2.3 Basic Functions of a Network Intrusion Prevention System

The functionality of a common NIPS can be divided into three different phases: (1) the protocol

decoding phase, (2) the detection phase, and (3) the prevention phase. In the first phase, the raw packet

stream is seperated into connections representing end-to-end activity of hosts. A connection, in case of

IP traffic, can be identified by the source and destination IP addresses, transport protocol and UDP/TCP

ports. Then, a number of protocol-based operations are applied to these connections. The protocol

handling ranges from network layer to application layer protocols. Some of the operations applied

by the protocol-based handling are IP defragmentation, TCP stream reconstruction, identification of

the URI in HTTP requests etc. The second phase consists of the actual detection. Here, the packet

(or an equivalent higher-level protocol data unit) is checked against a database of detection heuristics

representing attack patterns. Then follows the prevention phase. The action of this phase depends on

the result of the previous one. If no attack is found, the packets are forwarded to their destination. If

malicious activity is observed, then the prevention engine blocks the suspicious traffic by not forwarding

the packets belonging to the offending connection(s). Other representative actions of the prevention

engine include the rejection of connections by the offending source host for a period of time, or the

logging of the offending connections.

2.2.4 Protecting the Network Infrastructure

The reason behind the existence of a NIPS is to protect the network infrastracture. However, as

networks evolve, the data volume that a NIPS must process increases. There are two approaches to
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analyze this amount of data in real-time: use powerful sensors, 1 or use multiple sensors at the network

periphery where the traffic volume is lower [20].

In the first approach (Figure 2.2), the whole traffic is captured at a single location by a muscular NIPS.

Obviously, the difficulty with this technique is how to implement such powerful NIPSes. The second

approach (Figure 2.3) incorporates the deployment of multiple sensors at the network periphery, close

to the hosts which the system must protect. This technique takes advantage of the fact that by moving

the inspection to the periphery of the network, a natural partitioning of traffic will occur. Unfortunately,

numerous problems stem from this approach. First of all, it is cumbersome to deploy and manage a

highly distributed set of sensors. Second, correct sensor positioning can be a challenging task due to

the dynamic nature of networks. Last but not least, this approach is unable to provide an integrated,

”big picture” view of the network security status. Particularly, attacks that might appear irrelevant in the

1In this thesis the terms NIPS and sensor are used interchangeably.
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context of a single host, might be extremely dangerous when are considered across the network. For all

these reasons, we decided to follow the first approach and try to tackle the performance problem that

this approach holds.

2.3 A Design Space for Network Intrusion Prevention Systems

Here, we are going to present all the possible network intrusion prevention system architectures and

discuss their advantages and disadvantages. To start with, we can categorize the architectures of a

NIPS regarding the type of hardware used. In particular four main categories exist: (1) software-based

NIPSes implemented on General Purpose Processors (GPPs), (2) software-based NIPSes implemented

on network processors, (3) hardware-based NIPSes, frequently implemented using Application Specific

Intergarted Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) 2 and (4) hybrid NIPSes that

consist of software- and hardware-based components. Before presenting the characteristics of these four

main categories we give a short definition of some keywords that we will use extensively.

2.3.1 Useful Definitions

Because high-performance, flexibility, and scalability are key elements of this thesis, they are defined

here.

High-Performance

A high-performance NIPS is one that is capable of analyzing all the traffic transfered by high-speed net-

work links. To accomplish this goal, a high-performace NIPS must use the available processing capacity

as efficiently as possible. It must minimize redundant processing and communication, effectively using

the available resources for analyzing the traffic in order to identify intrusion attempts.

Flexibility

A NIPS is flexible, if it permits the operator, where the ”operator” is someone other than the manufac-

turer, to put new functionality or upgrade the existing one with minimal effort and cost. For instance,

software-based NIPSes are flexible by their nature while hardware-based NIPSes require significant ef-

forts in order to add new functionality.

2A device that can be reprogrammed at the gate level.
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FIGURE 2.4: Possible Implementations of a NIPS.

Scalability

A NIPS is scalable, if it is capable of scaling up to higher link speeds. If the protection of a faster link

or a more fine-grained detection is required, it would be desirable to reuse as much as possible of the

existing infrastructure.

2.3.2 Possible Implementations of a NIPS

In Figure 2.4 we present the first three categories regarding performance and flexibility. As we ob-

serve, while GPPs provide the most flexible solution, they have relatively poor performance. On the

other hand, ASICs have impressive performance characteristics but provide limited flexibility. Some-

where in the middle are the NPs and the FPGAs. An NP is more flexible than an ASIC but is less

powerful. Lastly, FPGAs are slower and less flexible compared to NPs. Regarding the hybrid NIPSes,

many possible architectures exist and as a result their characteristics vary.

Table 2.1 presents all possible implementations of a NIPS and the characteristics of each implemen-

tation. As we observe, there are many possible combinations of the three basic categories. In the next

paragraphs we give a short description of each combination and present its advantages and disadvan-
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NIPS Impl. Flexibility Performance Cost per Part

ASIC • • •

FPGA • • •

NP • • •

GPP • • •

ASIC/GPP • • •

FPGA/GPP • • •

NP/GPP • • •

ASIC/NP • • •

FPGA/NP • • •

TABLE 2.1: Characteristis of Possible Implementations of a NIPS.

ASIC Application-Specific Integrated Circuit

FPGA Field Programmable Gate Array

NP Network Processor

GPP General Purpose Processor

• Lowest • Low • Medium • High • Highest

tages.

ASIC As we have mentioned before, an ASIC has the best possible performance but it is not flexible.

Moreover, the cost for the manufacturer to produce a unit if it has completed the implementation is

small. However, the cost to design hardware is high. On the other hand, the cost for the customer to buy

a hardware NIPS is very high and in many cases prohibitive. Thus, the conclusion is that it is expensive

both for a manufacturer to design a hardware NIPS and a customer to buy such a NIPS.

FPGA An FPGA, has low performance, medium flexibility, and exhibits a high cost both for the

manufacturer and the customer. Additionally, the cost to design a NIPS in hardware is high and as a

result this solution has not been adopted by any company. Currently, there is research in constructing

NIPSes using an FPGA-based approach [27, 24, 9].
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NP NPs are a hybrid approach between ASICs and GPPs. They provide good performance without

sacrifizing flexibility. They are especially tuned for network-based applications, such as a NIPS, and

for this reason they are an attractive solution. The cost to buy an NP is relatively high due to the fact

that is constructed in low volumes. However, if the NPs are adopted for general network applications

their cost will be almost the same as GPPs. Regarding the cost to develop an application on an NP, it

is much lower than in the ASIC case but is higher than in the GPP case desribed next. Moreover, note

that while NPs exhibit a good performance, this performance is related to operations that are common to

network applications such as packet forwarding, packet classification etc. However, NPs are not usualy

optimized for performing operations such as string searching in the payload of the packets and other

such processor-intensive operations that are present in most NIPSes. In other words, an NP is more

effective on performing data-intensive operations. Thus, NPs are commonly used in conjuction with

either an ASIC/FPGA or a GPP to implement a fully-functional NIPS.

GPP GPPs exhibit the highest possible flexibility and lowest performance. Note that, when we refer

that a GPP has low performance, we mean low performance regarding operations that are frequently

performed in a network application. In other operations, such as string searching, GPPs have better

performance than other solutions like NPs. Unfortunately, a software-based NIPS implemented on a

GPP is not capable of monitoring a Gigabit link. However, for lower speed links it is the ideal solution.

It is cheap to buy and cheap (and fast) to develop an application on a GPP due to the vast number of

existing tools.

ASIC/GPP-FPGA/GPP There are NIPSes that try to combine the performance of ASICs with the

flexibility of GPPs. These configurations are a good solution that provides high performance and relative

good flexibility. However, the presence of the ASIC, provide an upper bound on the flexibility of such

a system. In such configurations, probably, the ASIC is responsible for forwarding the packets while

the GPPs are executing the detection heuristics. The FPGA/GPP solution is similar with the ASIC/GPP

solution but it costs more money and has poorer performance. Thus, it is not adopted by anyone as far

as we know.

NP/GPP This solution combines the performance and flexibility of NPs with the flexibility of GPPs

to build a NIPS with the best tradeoff between performance and flexibility. Unlike the ASIC/GPP case,

the presence of the NP does not limit the flexibility of the system while the cost is acceptable, provided
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that a small number of NPs is used. In such a configuration, the NP is responsible for performing packet

forwarding while the GPPs perform the processor intensive task of packet inspection.

ASIC/NP-FPGA/NP The combination of ASICs or FPGAs with NPs provide high performance and

little flexibility. In such a configuration the processing intensive task of packet inspection can be ac-

complished in hardware, while the NP is busy forwarding packets or performing operations such as IP

defragmentation and TCP stream reconstruction.

2.4 Introduction to Network Processors

A network processor is a programmable silicon device that is tailored to efficiently process packets.

The goal of network processors is ambitious: combine the speed of custom hardware with the flexibility

and low development cost of software-based systems. A network processor represents a complex com-

bination of conventional processing, special-purpose hardware, and replicated units. In the next sections

we present four major aspects of network processor architectures: approaches to parallel processing,

elements of special purpose hardware, structure of memory architectures, and on-chip communication

mechanisms [30, 10].

2.4.1 Parallel Processing

In order network processors to be useful, they must be able to meet the increasing line speed re-

quirements of today’s networks. To accomplish this, network processors have taken advantage of the

inherent parallelism in various networking algorithms. Parallelism is exploited at three different levels:

processing element level, instruction level and word/bit level.

Processing Element Level

We define a processing element (PE) to be a processor that decodes its own instruction stream. Given the

data parallelism present in most packet processing systems, the majority of network processors employ

multiple PEs to take advantage of this parallelism. Those NPs can be categorized into two prevalent

configurations: pipelined and symmetric.

In the pipelined approach, each processor is designed for a particular packet processing task. Packets

flow through PEs – once a PE is finished processing a packet, it hands of the packet to the next PE. On

one hand, these architectures restrict the communication between programs on different PEs, and as a

consequence, are easier to program. On the other hand, there are strict timing requirements to be met by
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each program running on every PE.

In the symmetric approach, each PE is able to perform similar functionality. All PEs are usually pro-

grammed to perform similar functionality. These network processors are more flexible but are difficult

to program. The IXP1200 is an example of this type of architecture.

Instruction Level

Some network processors issue multiple instructions per cycle per PE. However, the benefits are not

warranted due to the observation that most networking applications do not have the required instruction

level parallelism.

Bit Level

This type of parallelism depends mainly on the application. The data types used by the application and

the operations performed on these data types play a central role in the applicability of this technique.

For example, many network processors have circuitry to efficiently compute the CRC field of a packet

header.

2.4.2 Special Purpose Hardware

Towards the goal of meeting increasing network processing demands, network processor architects

decided to implement commonly used functions in hardware instead of having a slower implementation

using an ordinary ALU. However, a trade-off exists between the applicability of the hardware and the

speedup obtained. The two categories of special-purpose hardware used are co-processors and special

functional units.

Co-Processors

A co-processor is characterized by the lack of an instruction decode unit. As a consequence, a co-

processor must be triggered by another PE. After the work is assigned by a PE to the co-processor,

the results are computed asynchronously. Operations ideally suited for co-processor implementation

are well defined, expensive and/or cumbersome to execute within an instruction set, and prohibitively

expensive to implement as an independent special functional unit. An example of a co-processor is the

hash engine of the IXP1200 network processor.



16 CHAPTER 2. BACKGROUND

Special Functional Units

A special functional unit, in contrast to a co-processor, computes a result within the pipeline stage of a

PE. Operations well suited for hardware implementation are cumbersome and error-prone to implement

in software, yet very easy to implement in hardware. For instance, NPs have special functional units for

common networking operations like pattern matching and bit manipulation.

2.4.3 Structure of Memory Architectures

Another feature of network processors is the structure of memory architectures. The major tactics that

NPs used are multi-threading, memory management and task-specific memories.

The majority of network processors do not require the use of an operating system (OS) running on

top of them. In reality, the overhead of an operating system is prohibitively expensive for a processor

designed for data-plane processing. To mitigate the lack of an OS, network processors include more

hardware support for common OS functions, like multi-threading and memory management.

In order to use a network processor efficiently, memory access latency must be hidden in some way.

The most broadly used approach to hide memory latency is multi-threading. Multi-threading allows the

PE to be used to process other streams while another thread waits for a memory access to be completed.

Due to the high cost of implementing multi-threading in software, many network processor designers

provide hardware support for multi-threading. Specifically, many NPs have separate register banks for

different threads, and hardware units to schedule and swap threads with zero overhead.

Concerning memory management, some network processors have hardware support for queues that

can be used as free lists, thus obviating the need for a separate OS service routine. Other NPs offer special

circuitry that handles the common I/O path. Finally, task-specific memories are blocks of memory

coupled with some logic for specific storage applications. Examples of such memories are the Content

Addressable Memories (CAMs) which are used mainly for classification.

2.4.4 On-Chip Communication Mechanisms

Generally, on-chip communication mechanisms depend on the processing element configuration. In

the pipelined approach discussed above, most communication architectures are point-to-point, between

PEs, memory, and co-processors. In the symmetric approach, PEs have full connectivity with multiple

buses.
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FIGURE 2.5: A Load Balancing System.

2.5 Introduction to Load Balancing

Load balancing (also known as load sharing) is a key technique for improving the performance and

scalability of a system [6]. A load balancing system typically comprises of a traffic splitter and multiple

outgoing links, as shown in Figure 2.5. In such a system, the traffic splitter receives an incoming packet

from a higher-speed link and forwards it to one of the lower-speed outgoing links. A good load balancing

system should be able to split the traffic to the multiple outgoing links evenly, or by some pre-defined

proportion.

In case of a NIPS, the load balancing splitter is usually used to distribute the traffic to multiple in-

trusion detection/prevention engines in order to tackle the performance problem that we have already

discussed. Subsequently, we describe the requirements of a load balancing algorithm in order to be used

by a NIPS.

2.5.1 Requirements

There is a number of basic requirements that traffic splitting schemes should meet for network intru-

sion prevention systems load balancing:

Low Overhead

Traffic splitting is executed for every packet in the packet forwarding path, thus the per-packet overhead

it introduces is of major concern. Traffic splitting algorithms should be very simple and preferably keep

no or little state regarding the mapping of packets to outgoing links.

High Efficiency

Poor traffic distribution will result in uneven utilization of the detection engines and possible dropping of

packets. Even if an attack is not missed, the latency imported on the packets will be increased resulting
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in possible TCP implications. Thus, a traffic splitter should try to distribute traffic as evenly as possible.

Flow Preserving

In order to understand this requirement, we first have to explain what is a flow. In principle, we define that

two or more packets belong to the same flow, when they share some common attributes. For example,

we may define that all the packets that have the same payload belong to the same flow (for example the

packets assembling an Internet worm), or all the packets with the same source IP address (all the packets

generated by the same host). In the context of our work, we define the flow as the maximum ”transport

unit” of an attack. In other words, an attack can not span multiple flows. Thus, by requiring from our

load balancing algorithm to be flow preserving, we mean that we want the packets belonging to the same

flow to be sent to the same detection engine, otherwise an attack could be missed. It is therefore an

essential requirement that the traffic splitting algorithms preserve the flows. In Chapter 3 we present our

flow definition.



3
Architecture

If we attempt to dissect the functionality of a NIPS, we will conclude that it is assembled by two primary

components: the component that is responsible for forwarding the packets from/to the network, and

the component that is responsible for the analysis of the traffic. These are two components with very

different characteristics. The first component is data-intensive, while the second is processor-intensive.

Particularly, the first component requires from a NIPS to have a data-path with high bandwidth and low

latency, while the second component requires a processor with high processing capacity.

Notice that there are two types of processors that match exactly these characteristics. On one hand we

have network processors that are designed for fast packet forwarding. On the other hand we have general

purpose processors that have a remarkable amount of processing power. To this effect, our NIPS, called

Digenis, tries to combine these two types of processors to build a NIPS that will take advantage of the

special capabilities of each processor.

As we have already mentioned, we want Digenis to be a high-performance, low-cost, flexible, and
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FIGURE 3.1: Digenis Architecture.

scalable NIPS. However, most of these goals are contradictory resulting in many tradeoffs. First, Digenis

should exhibit adequate performance. The processing power required by a NIPS necessitates the use of

multiple NPs and GPPs to support high data rates. However, we can not use as many processors as

we would like because this contrasts the low-cost goal. In particular, provided that the NPs are more

expensive than GPPs, this means that we have to use as few NPs as possible and try to move much of the

functionality of a NIPS to the GPPs keeping the NPs simple. But if we move a portion of the functionality

of a NIPS to the NP, we may be able to reduce the GPPs required considerably. Unfortunately, this is

neither a flexible nor a scalable solution, especially if the portion transfered to the IXP1200 changes

frequently. These tradeoffs guided our design of Digenis as described next.

3.1 Architecture of Digenis

Digenis (Figure 3.1) is composed of an NP board (DigenisNP) and a number of PCs (DigenisPCs)

connected with DigenisNP. DigenisNP is the entry and exit point of the traffic that runs through the

system. The basic task of DigenisNP is to evenly distribute the traffic across DigenisPCs and to trans-

mit the friendly packets back to their destination. DigenisPCs are responsible for the heavy task of

inspecting the traffic for intrusion attempts. They maintain the required information for recognizing all

the malicious traffic and deciding whether to forward or drop the packet. For every input packet, Di-

genisNP computes which of the DigenisPCs will be responsible to analyze this packet. Then it forwards

the packet to a DigenisPC for inspection. DigenisPC searches for known attack patterns contained in
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the packet. If a pattern is found, then the packet is blocked, otherwise the packet is forwarded back to

DigenisNP. DigenisNP receives the analyzed packet and transmits it to its destination.

Additionally, Digenis supports plug-ins that implement operations necessary to improve the perfor-

mance of the system. A plug-in has two parts, one running on DigenisNP and one running on Di-

genisPCs. These two parts cooperate in order to accomplish their task. In the context of this work we

design two plug-ins for Digenis. The first one attempts to minimize the cost of sending a packet from

a DigenisPC to DigenisNP, while the second one tries to minimize the cost of sending a packet from

DigenisNP to a DigenisPC and the cost for the DigenisPC to examine this packet for instrusion attempts.

3.1.1 Architecture of the NP-part of Digenis

The functionality of DigenisNP can be divided into the basic operations and the plug-ins that provide

adequate operations to boost performance. The basic part of DigenisNP intergrates the functionality

of a load balancer – it is responsible for distributing the incoming traffic across the output interfaces

(ports). However, it differs from a common load balancer in that it must be flow-preserving, that is, all

the packets belonging to the same flow must be forwarded to the same output interface.

3.1.2 Architecture of the PC-part of Digenis

A DigenisPC is a common PC that runs a modified popular NIDS and is connected with DigenisNP

(through an Ethernet connection). A DigenisPC receives traffic from DigenisNP and analyzes it for

possible known attacks. In case that an attack is found, it notifies DigenisNP to block the offending

packet(s), otherwise it informs DigenisNP that the packet(s) should be forwarded.

A DigenisPC maintains state about the traffic it analyzes in order to operate correctly. The maintained

state includes the active TCP connections it has captured in the near past, TCP connections tagged as

offending, fragmented packets and statistics about the connections per second to destination ports.

3.2 Description of the Basic Functionality of Digenis

3.2.1 Definition of a Flow

There are a couple of factors we must take into account when choosing the most appropriate definition

of a flow for our system. First, DigenisNP must be able to classify packets into flows at high speeds.

Moreover, the definition must neither be too broad nor too narrow, because, on one hand we may import
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unnecessary load on the system and one the other hand we may miss an attack. We will try to explain

what we mean with an example. Suppose that we define a flow as all the packets that originate from the

same IP address. This classification can be accomplished at high-speeds, however, if these packets orig-

inate from a corporate network that uses Network Address Translation (NAT) then the load distribution

might be uneven. In contrast, suppose that we define, in case of HTTP protocol, a flow to be all pack-

ets that have the same source/destination IP address, the same source/destination TCP ports, and they

contain different HTTP requests (e.g, a web browser that pipelines many HTTP requests using a single

TCP socket and we want to be able to recognize the different requests in order to route them to different

DigenisPCs for better load distribution). This classification may not be accomplished at high-speeds,

because in order to be able to recognize the different HTTP requests we must perform HTTP protocol

decoding on DigenisNP.

We decided to use the following flow definition in case of TCP or UDP transport protocol. A flow is

consisted of all the traffic originating from the same source IP address and TCP/UDP port and destined to

the same destination IP address and UDP/TCP port. In other words, we define a flow to be a TCP or UDP

connection. In case of traffic which is neither TCP nor UDP, a flow consists of all the traffic originating

from the same source IP address and destined to the same destination IP address. This becomes more

clear if we recall how a NIPS operates. A NIPS captures packets off the wire in order to determine what

is happening on the hosts it is protecting. A packet, by itself, is not as significant to the system as the

manner in which the host receiving that packet behaves after processing it. NIPSes work by predicting

the behavior of networked hosts based on the packets they exchange. However, the applications running

on the host and which might be vulnerable to attacks, do not communicate with other applications by

directly handling packets. In contrast, they use a higher-level protocol such as TCP that is responsible

for generating the packets and then assembling them back. Thus, the first thing that the NIPS does when

receiving packets is to try to reassemble them and emulate the data that the destination application will

receive. Thus, the NIPS predicts the befavior of the application running on the host with more accuracy

and is more robust to evasion attacks [32]. Consequently, this flow definition satisfies the requirement

that an attack can not span multiple flows, given that almost all the detection heuristics present in the

most popular NIDSes/NIPSes, detect only attacks in the same TCP/UDP connection. However, there is

one exception that we discuss later (Section 3.4).
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Moreover, there is another reason that dictates this decision about the flow definition. In particular,

it is highly desirable that packets belonging to the same TCP connection be processed by the same

detection engine. This is due to the fact that, if the packets belonging to the same TCP connection are

processed by different detection engines, then, with high probability there will be packet reordering.

Packet reordering within a TCP connection may result in undesirable packet retransmissions due to

the way that TCP works. Thus, if we have used another flow definition a mechanism to prevent flow

reordering must have been implemented on DigenisNP.

3.2.2 Load Balancing Algorithm Used by DigenisNP

Concerning load balancing, there are two popular approaches: stateful load balancing that requires

from DigenisNP to hold state about the mapping of flows to DigenisPCs and hash-based load balancing

[6, 35, 22] that experiences greater load imbalances. The algorithms more suitable for high-speed flow-

preserving load balancing are the hashing-based traffic splitting algorithms. These algorithms combine

all the requirements mentioned in Chapter 2 and offer the best tradeoff. For the purposes of this work,

we assume that load imbalances are tolerable and we use the simple hash-based method. The input of

the hash function is composed of the source and destination IP addresses of the packet and the source

and destination port addresses (in case of UDP or TCP). However, the TCP/UDP port information may

not be available if the packet is fragmented. In such a case, DigenisNP waits until all the fragments are

received, then reconstructs the original IP packet, reads the TCP/UDP ports, and decides the destination

DigenisPC. Then, DigenisNP forwards to a DigenisPC the fragments of the IP packet. We did not for-

ward to DigenisPCs the defragmented packets because we want our NIPS to be completely transparent.

Besides, we may hide useful information from DigenisPCs if we forward the defragmented packets.

Of course, there is a performance issue if the rate of the IP fragments is high. Studies [39] presented

that the percentage of the IP traffic that is fragmented is less than 5%. If this percentage grows above

acceptable thresholds, then DigenisNP can simply use only the IP address information for the load

balancing, which may increase load imbalance in the case of highly fragmented IP traffic 1.

1 In other words, in this case Digenis changes the flow definition.
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Hashing Algorithm

The hashing algorithm used by DigenisNP uses binary polynomial multiplication and division under

module-2 addition. The input of the algorithm is a 64-bit value and is considered to represent the coef-

ficients of an order 63 polynomial in x. The input polynomial A(x), is multiplied by a hash multiplier

M(x), using a modulo-2 addition. Since the multiplication is performed using modulo-2 addition, the

result polynomial has an order of 126 with coefficients that are 1 or 0. This product is divided by a fixed

generator polynomial G(x), and the result is an order 64 polynomial Q(x) and a remainder polynomial

R(x) of order 63. The above polynomials and the operations performed are shown in Equations 3.1, 3.2,

3.3, and 3.4.

A(x) = a63 ∗ x63 + a62 ∗ x62 + ... + a2 ∗ x2 + a1 ∗ x + a0 (3.1)

M(x) = m63 ∗ x63 + m62 ∗ x62 + ... + m2 ∗ x2 + m1 ∗ x + m0 (3.2)

G(x) = x64 + x63 + x35 + x17 + 1 (3.3)

A(x) ∗ M(x)

G(x)
= R(x) + Q(x) (3.4)

The polynomial G(x) is irreducible and as a result for a fixed M(x) there is a unique R(x) for every

input A(x). The polynomial Q(x) can then be discarded, since input A(x) can be derived from its

corresponding remainder R(x). The coefficients of R(x) is the hash result of the input data.

Limitations of Load Balancing

As we have mentioned, the load balancing algorithm that Digenis uses, is flow-preserving. To put it

differently, the granularity of the load balancing in Digenis is the flow. Although, this granularity is fine

under normal circumstances there is a possibility that an attacker could exploit this weakness of Digenis

and create huge flows that will overload some DigenisPCs. In this case, the overloaded DigenisPCs

would start loosing packets and might let an attack go undetected. While theoretically such an attack is

possible, in practice it is very difficult to create these types of attacks, because in order to generate so
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much traffic to overload DigenisPCs, you need thousand or even million of compromised machines to

use as traffic generators 2.

Additionally, it is important to note that the presented algortihm provides load balancing in case that

the traffic received by Digenis is uniformly distributed over the five-tuple object space. In contrast, the

loads due to the actual traffic received at Digenis may, by no means, be distributed uniformly over this

object space, but rather will exhibit certain locality patterns. That means that despite the load-balancing

property of the hash function used, the mapping between flows and DigenisPCs can potentially lead

to imbalanced load distributions. To overcome this problem, we can use an adaptive load balancing

technique such as the one presented in [21].

3.3 Description of the Plug-ins of Digenis

3.3.1 A Plug-In for Reducing Redundant Packet Transmission

In this Section we describe the first of the two plug-ins we designed as part of this work. This plug-in

is responsible for reducing redundant packet transmission on the system. The idea behind this plug-in

is the following: suppose that DigenisNP stores temporarily (for a few milliseconds) the packets that it

forwards to DigenisPCs for analysis. Then there is no need for DigenisPCs to send back to DigenisNP

the analyzed packet, but only a unique identifier of that packet. Because DigenisNP has previously stored

the packet with this unique identifier, it can infer the referenced packet and forward it to the appropriate

destination. The only extra work for DigenisNP is to tag each packet with a unique identifier, which is

a trivial task. Although the additional processing cost to DigenisNP from this plug-in is minimal, the

reduction to the load of the DigenisPC is surprising. However, this technique requires from DigenisNP to

be equipped with additional memory for the buffering of the packets. As we will present in Chapter 5 the

memory requirements are easily satisfied by modern NPs. Subsequently, we discuss how a DigenisPC

communicate the packet information back to DigenisNP.

Communication between DigenisNP-DigenisPC

DigenisNP communicates with DigenisPCs in order to decide the action that should be performed, that

is, forward or drop the packet. This is done with acknowledgments (ACKs) from DigenisPCs to Di-

genisNP. An ACK is an ordinary Ethernet packet. It consists of an Ethernet header, followed by two

2Although such an attack is difficult, is not impossible. Internet worms can easily perform such attacks.
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bytes denoting the number of packets acknowledged (ACK factor), followed by a set of four-bytes in-

tegers representing the PIDs (Figure 3.2). There are other possible formats requiring less bytes and

supporting higher ACK factors for this configuration. However, this approach is more scalable.

Dst MAC Src MAC Proto P-CACK Factor PID 1 PID 2 ... PID N

FIGURE 3.2: ACK Packet Format.

There are several options regarding the information that these packets should contain. DigenisPCs

may send back to DigenisNP the following responses:

1. Positive ACKs: an ACK for every packet not related to any intrusion attempt.

2. Positive cumulative ACKs: an ACK for a set of packets not related to any intrusion attempt.

3. Negative ACKs: an ACK for every packet that belongs to an offending session.

4. Negative cumulative ACKs: an ACK for a set of packets that belong to an attack session.

5. The packet received.

Each of these solutions has its pros and cons. The packet received (PR) scheme, although it has the

advantage that it does not require the NP to temporary hold the packet in memory, it suffers from low

performance. In Chapter 5, we evaluate some of these approaches, with regard to performance. Among

positive and negative cumulative ACKs (CACKs) we have chosen the former ones. Negative CACKs

have two major drawbacks: First, in order to be able to distinguish when a packet must be forwarded,

we have to use a timeout value. Recall that, our NIPS must not drop any packet or an attack might be

missed. As a result, we would be forced to choose a timeout for the worst case scenario. The side-effect

is that packets will experience a high latency. Second, it is impossible for the NP to differentiate the case

where the analyzed packet contained no intrusion from the case where the packet was dropeed due to an

error condition. We chose positive CACKs (P-CACKs) because they supersede positive ACKs. Table

3.1 shows the size of the ACK packets for a number of P-CACK factors.



3.3. DESCRIPTION OF THE PLUG-INS OF DIGENIS 27

P-CACK Factor Packet Size (without CRC) in Bytes

≤ 8 60

16 80

64 272

128 528

256 1040

TABLE 3.1: ACK Packet Size.

Dynamic Reconfiguration of Digenis

As we have already mentioned, one performance goal of Digenis is to keep the latency imported to

packets running through the system low. In Chapter 5 we evaluate the PR and P-CACK schemes with

regard to the imported latency. As we demonstrate, the latency increases as the P-CACK factor grows and

the PR scheme has lower latency than the P-CACK schemes. Similarly, the performance of the system

improves as the P-CACK factor increases and the PR scheme has the worst performance. Moreover,

as we present in Chapter 5, the difference in latency between the schemes increases as the load of the

system decreases. But when the load of the system decreases, it is possible to use a scheme that requires

more processing power but has lower latency.

Thus, the rule that drives the configuration of Digenis during runtime is that as the load of the system

increases, we move from the PR to the P-CACK scheme, or we increase the factor of the P-CACK

scheme. In a similar way, as the load of the system decreases we move from the P-CACK to the PR

scheme, or we decrease the factor of the P-CACK scheme. In this way, we have a rule for the dynamic

reconfiguration of the system, but there are possible alternative ways regarding how the system will be

reconfigured.

The decision on which ACK scheme to use can be taken either by DigenisNP or DigenisPCs. We

can nominate DigenisNP for deciding which ACK scheme to use. However, this approach has a number

of disadvantages: (1) DigenisNP may not have all the appropriate information for an optimal deci-

sion, (2) DigenisPCs will be forced to use the same ACK scheme (an approach that would differentiate

DigenisPCs is too complicated to be implemented on DigenisNP) and (3) we introduce unnecessary
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complication on DigenisNP. We determine that the best way is to have DigenisPCs decide when they

want to reconfigure its ACK scheme because this approach has a number of advantages: (1) DigenisPCs

know better than DigenisNP when they are overloaded, (2) each DigenisPC can use a different ACK

scheme and this is especially useful if DigenisPCs are heterogenous, and (3) complicated performance

metrics can be used.

There are a couple of metrics that can be used as a load indicator. One simple metric could be the

utilization of the processor of the DigenisPC. The DigenisPC could periodically check (for example

using the real time clock) the load of the processor and if the load increases above or below a threshold,

a reconfiguration takes place. A second metric is to monitor the size of the input packet queue and in

the case that a threshold is reached a reconfiguration occurs. Another metric is to measure the latency

exprerienced by the analyzed packets. If the average value crosses a threshold, then DigenisPC is re-

configured. For instance, the operator of the system can specify that he wants the average value of the

latency introduced by the system to be 10 milliseconds. Then DigenisPCs could monitor the average

latency experienced by packets and if this value is above the 10 milliseconds threshold, then lower the

P-CACK factor. However, notice that if the system is overloaded, such a decision may result in increas-

ing the average latency. The first metric presented is better if we want the best performance from our

system, while the other two are better when we want to bound the latency of the packets crossing our

system. Another solution would be the combination of the above metrics. For instance, we measure

the latency, and if a threshold is reached, we check the load of the processor. If the load is high, we

increment the P-CACK factor (it depends on the previous value, if it is already high we do nothing),

otherwise we decrement the P-CACK factor.

3.3.2 A Plug-In for Reducing Redundant Packet Inspection

In this Section we describe the second plug-in we designed as part of this work. This plug-in is

responsible for reducing redundant packet inspection in the system. The idea behind this plug-in is to

take advantage of the redundancy that exists at the packet level to improve the performance of Digenis.

Santos et al. [36] have studied the redundancy at the packet level and proposed a technique to increase

effective link bandwidth by suppressing replicated data. In constrast, we use the redundancy present in

the packet level to avoid inspecting again a packet that we have inspected in the near past.

For instance, suppose that we want to secure a network that consists of popular web and FTP servers.
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These machines serve many different clients with the same content repeatedly. To take advantage of

this locality, we propose a cache that will store the results of previous packet inspections and when the

system captures a packet that has been inspected before, it will use the cached result.

Replicated Traffic

Packets vs. Higher-Level Data Units In the above example the data unit to check for replication is the

packet. However, a NIPS that examines only network packets can be easily fooled [32]. For example,

an attacker could split the original IP packet that contained the intrusion into many IP fragments that

each of them contains a part of the instrusion. A NIPS that looks only the network packets for intrusions

will miss the attack. To overcome this obstacle, most of the NIPSes today search for detection heuristics

not in the network packets themselves, but in higher level data units. In particular, the popular NIDS

Snort creates a higher level data unit (HDU) that containts chunks of the reconstructed TCP stream.

In other words the DU contains the payload of many packets after the fragmented IP packets have

been reassembled, the retrasmitted TCP packets have been dropped, and the TCP packets have been

put in order. Moreover, the HDU contains information regarding the connection such as IP addresses

and UDP/TCP ports. In our system, in order to provide protection against evasion attacks like the one

mentioned, we also consider the caching of the HDUs. For the rest of this thesis we will refer to both

HDUs and packets as data units (DUs).

Definition of Replicated DUs We define a DU to be replicated when the contents of its payload match

exactly the contents of a previously observed payload and trigger the same detection heuristics as the

previously observed DU. Digenis uses the IP protocol and the source/destination TCP/UDP ports to find

out which detection heuristics to apply. Thus, to be more specific, we define a DU to be replicated

when the contents of its payload match exactly the contents of a previously observed payload and the IP

protocol and TCP/UDP ports match.

Finding Replicated DUs Our goal is to process a stream of DUs and, for each input DU, quickly

decide whether the DU has been observed previously. There are a couple of ways to do this. The obvious

solution is to hold the DUs in memory and for each DU received, to traverse the memory comparing the

received DU with the stored DUs. However, this approach is inefficient and will result is a system that

has worst performance than the system that just inspects every DU.

Another more efficient approach is to compute a fingerprint for each DU. Fingerprints are integers
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generated by an one-way hash function applied to a set of bytes. Good fingerprint algorithms generate

well-distributed fingerprints, thus each fingerprint is compact and also unique with high probability. In

other words, if two fingeprints are equal then, with high probability, the data from where these fingeprints

are derived, are the same. Thus, the cacheable unit is not the DU anymore, but the fingeprint of the DU.

To deduce, our relaxed definition of replicated traffic is the following: two DUs are replicated when the

fingerprints of their payloads are the same and the IP protocol and TCP/UDP ports match. Afterwards,

we present the way we use to compute the fingerprint of a DU.

Fingerprint Computation The fingerprint of a DU is generated by applying the Secure Hash Algo-

rithm (SHA-1)[1] on the payload of the DU. We chose SHA-1 because is considered to be the state-of-

the-art algortihm in generating collision resistance hashes. Besides, next generation network processors,

such as IXP2850 provide a SHA-1 unit for fast computations. With a message of any length (< 264

bits) as input, the SHA-1 produces a 160-bit output called a message digest. The SHA-1 is called secure

because it is computationally infeasible to find a message which corresponds to a given message digest,

or to find two different messages which produce the same message digest. Moreover, the probability of

two inputs to SHA-1 producing the same output is far lower than the probability of hardware bit errors.

Thus, we follow the widely-accepted practice of assuming no hash collisions.

Algorithm Our algorithm for reducing redundant packet inspection runs for every DU of a (possibly

infinite) input stream. A DU cache (DUCache) is used to store the most recent fingerprints of the DUs,

and this is the cache against which the input DU is checked for redundancy. The DUCache is indexed

by the fingerprints of the DUs that it holds. For every DU received, the algorithm first generates the

fingeprint. The fingerprint is checked against the index of the cache. If it is found, then a DU in the

DUCache has the same content as the input DU and the IP protocol and TCP/UDP ports are checked

for equality. If they are equal, then we have a DUCache hit, otherwise we have a miss. In case of a hit,

the cached result of the previous inspection of the DU is read, otherwise the DUCache is updated by

inserting the newly processed DU (fingerprint) after it has been analyzed by the detection engine3.

3 We use a direct-mapped cache.



3.4. LIMITATIONS OF DIGENIS 31

Incorporation of the Plug-in into Digenis

This plug-in can be applied either in DigenisNP or DigenisPCs. Both approaches have pros and cons.

Aftwerwards, we present both approaches. However, we describe only the case where the DU is a

packet. The case where the DU is a HDU is similar with the one where the DU is a packet.

NP-part of the Plug-in If the algorithm is applied on DigenisNP we have the following scenario.

For every packet received, the fingerprint of the packet is generated and checked for presence in the

DUCache. If the fingerprint is found, an action is performed based on the result of the previous in-

spection. If the action is to block the packet, the packet is dropped otherwise the packet is forwarded

to its destination without being inspected by a DigenisPC. If the fingerprint is not found, the packet is

forwarded to a DigenisPC for analysis. When, in a later point of time, DigenisNP finds out the result of

the analysis, it caches the result. The advantage in this case is that the load of DigenisPCs is decreased

considerably. Additionally, if the processing cost of fingerprint generation and cache lookup is small,

the load of DigenisNP may drop due to the reduction of the packets sent for analysis. However, the

disadvantage is that if we want to cache not packets but HDUs the implementation may be difficult.

PC-part of the Plug-in If the algorithm is applied on a DigenisPC, then the scenario is the following.

The fingeprint of every packet is generated and is looked up in the DUCache. If the fingeprint is present,

then an action is performed based on the result of the previous analysis. If the action is to forward the

packet, the packet is forwarded to DigenisNP without to pass through the detection engine, otherwise

the packet is dropped. If the fingeprint is absent, then the packet is analyzed by the detection engine,

the result is stored in the cache and an action based on the result is taken (forward or drop the packet).

The advantage in this approach is the ease of the implementation. The disadvantage is that the benefit

is less than in the case that the technique is applied on DigenisNP. This stems from the fact that we pay

the processing cost of receiving the packet although the (fingerprint of the) packet is in the cache4.

3.4 Limitations of Digenis

Although Digenis is capable of detecting a vast number of intrusion attempts, there are some types of

intrusions that might be undetected. The main reason is our definition of flows, which, do not permit at-

tacks that span multiple flows. We assume that there are no instrusions that can span multiple TCP/UDP

4Our experiments showed that the reception of packets in DigenisPC costs about the 20-30% of the total processing cost.
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connections. While this assumption holds for the majority of the detection heuristics, there are some

heuristcs that try to identify attacks spanning multiple TCP/UDP connections. The majority of these

heuristics, try to identify patterns of activity that deviates from a pre-defined normal activity. Thus,

we can say that these heuristics detect attacks more suitable for anomaly-based instrusion prevention

systems. One class of intrusions that span multiple flows are the ”portscans” that are described next.

3.4.1 Portscan Detection

Attackers perform portscans of IP addresses to find vulnerable machines to compromise. We would

try to present the problem with an example. Suppose that every DigenisPC has a detection heuristic that

states that if a specific IP address A initiates more than 100 connections per second to a limited number

of IP addresses, then the machine with the IP address A is performing a portscan. Assume that we have

configured Digenis to have four DigenisPCs and that a specified IP address B performs 100 connections

per second to 100 other IP addresses that are protected by Digenis. Then because DigenisNP load

balances the traffic, it will approximately hand to every DigenisPC the packets of 25 flows. Thus, every

DigenisPC will conceive that there is an IP address B that creates 25 connections per second (< 100)

and, in this way, every DigenisPC will suppose that everything is normal and no portscan activity takes

place.

A solution to this problem is to transfer the responsibility of detecting portscans from DigenisPCs

to DigenisNP. This is a viable solution because the processing cost of detecting portscans is low. That

happens because the portscan detection engine checks only packet headers and no payload.



4
Implementation

4.1 Implementation of the NP-part of Digenis on the IXP1200 Network Processor

We have implemented the NP-part of Digenis using an IXP1200 network processor. The IXP1200

chip contains six microengines with four hardware threads (contexts) each. Also, this chip has a gen-

eral purpose StrongARM processor core, an FBI unit, and buses for off-chip memories (SRAM and

SDRAM). The maximum addressable SRAM and SDRAM memory are 8 Mbytes and 256 Mbytes re-

spectively. The FBI unit interfaces the IXP1200 chip with the media access control (MAC) units through

the IX bus. The FBI also contains a hash unit that can take 48-bit or 64-bit data and produce a 48- or

64-bit hash index. In our evaluation board an IXF440 MAC unit (with eight Fast Ethernet interfaces)

and an IXF1002 MAC unit (with two Gigabit Ethernet interfaces) are connected to the IX bus.

We have developed the application using microengine assembly language. The assignment of threads

to tasks is done as follows: we assign eight threads for the receive part of the Gigabit Ethernet interface,
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one thread for the receive part of each of the eight Fast Ethernet interfaces, four threads for the transmit

part of the eight Fast Ethernet interfaces, and four threads for the transmit part of the Gigabit Ethernet

interface.

4.1.1 Implementation of the Hash-Based Load Balancing

For the implementation of the hash-based load balancing we use the hash unit of the IXP1200. The

algorithm that the hash unit implements is described on Chapter 3. Specifically, every input packet is

checked to verify that it is not an IP fragment. If it is not a fragment, the source and destination IP

addresses and UDP/TCP ports are send to the hash unit. Then the last 3 bits of the result specify the

output interface. If it is an IP fragment, then the packet is enqueued to the StrongARM. The StrongARM

drains this queue and assembles the IP fragments into a non fragmented IP packet. After the StrongARM

acquires the non fragmented IP packet, there are two possible approaches. The first approach is to

perform the hashing and enqueue the packet to an output queue for transmission (this queue is drained

by a microengine). The second approach is to enqueue this packet to the microengines which are then

responsible to perform the hashing. The first approach has the disadvantage that the hashing must be

performed in software because the StrongARM has not direct access to the hash unit. Thus, if the rate of

the IP fragments received is high, the StrongARM would become the bootleneck. However, in Chapter

3 we described a solution to this problem. The second approach has the advantage that the hashing is

performed more efficiently. In our prototype implementation, we use the second approach.

4.1.2 Implementation of the Plug-in for Reducing Redundant Packet Transmission

As we have mentioned in Chapter 3, this plug-in stores temporarily in DigenisNP the incoming packets

until they are acknowledged by DigenisPCs. Every packet in the IXP1200 is represented by a packet

descriptor and a packet buffer. The packet buffer is a memory region in SDRAM that holds the bytes

of the packet. The packet descriptor holds information regarding the size of the packet and the address

of the packet buffer in SDRAM and it resides in SRAM. The data structures used for holding packet

buffers and its assosiative packet descriptors are circular buffers (Figure 4.1). These circular buffers must

be large enough to prevent overwriting packets before their matching P-CACK is received. Concisely,

in our prototype implementation, every packet buffer has a fixed size of 2048 bytes and the associated

packet descriptor has a fixed size of 8 bytes. For every ACK received, the microengines read the PIDs

contained in the packet. Then, they use the PID as an index into the circular buffer of packet descriptors
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FIGURE 4.1: SRAM and SDRAM Circular Buffers for Fixed-Size Packet Buffers.

in SRAM memory to find out the SDRAM address of the packet buffer and the size of the packet.

Although we use a fixed size packet buffer of 2048 bytes leading to poor memory utilization, we

could easily modify our microcode to support variable size packet buffers. In order to support this

functionality, we need to know the size of the packet before requesting an unallocated packet descriptor

and consequently a packet buffer. However, the IXP1200 does not provide a way to know the actual

packet size before the microengines receive even the last part of the packet. To bypass this obstacle,

we can use the IP header to compute the size of the packet. Thus, every packet received from the input

Gigabit Ethernet interface is stored in a packet buffer, after the size of the packet is resolved. Then, the

pointer that points to the next free packet buffer is advanced by the size of the packet 1. Although the

modifications required in order to have variable size packet buffers are minor, we have not implemented

them, as explained next.

Limitations

We have implemented our prototype using the Intel IXP1200 Ethernet Evaluation Board (IXP1200EEB).

The problem is that the IXP1200EEB has only 1024 free packet descriptors while there are 16 Mbytes of

free SDRAM2. Thus, the restriction to our capability to store packets is the SRAM and not the SDRAM.

1The SDRAM on the IXP1200 is not byte addressable but quad-word (8 bytes) addressable, so, the pointer is advanced

by the size of the packet plus some bytes for quad-word alignment.
216 Mbytes are also used by the monitor running on the StrongARM.
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However, in other evaluation boards such as the one provided by Radisys [33] there are no such restric-

tion.

Also, in our prototype implementation we use only one circular buffer for the packet buffer allocation.

This works if all the DigenisPCs have the same processing capabilities and the load balancing function

does not create immense load imbalance. However, if DigenisPCs has different processing capabilities,

then DigenisPC which have more processing power will eventualy start overwritting packet buffers in

memory that belong to a less powerful DigenisPC. This will result in some packets to be duplicated and

some packets to disappear. The obvious solution is to use one circular buffer for each DigenisPC. The

microengines would first decide the destination DigenisPC and then would allocate a packet buffer to

store temporarily the packet 3. Thus, the circular buffer of a DigenisPC would not interfere with the

circular buffer of a less powerful DigenisPC.

4.1.3 Implementation of the Plug-in for Reducing Redundant Packet Inspection

In our prototype system we have implemented this plug-in only for packets and not for higher level

data units. Moreover, we cache the result only in the case that the packet does not contain an intrusion.

So, the prototype implementation works as follows. For each input packet we first compute its finger-

print4 by using the hash unit of the IXP1200. Then, we use this fingerprint as an index into the cache.

If the fingerprint is contained in the cache, the packet is enqueued to the Gigabit Ethernet output port

for transmission. If, in contrast, the fingerprint is not contained in the cache, the packet is sent to a Di-

genisPC for inspection. When, afterwards, DigenisNP receives back the ACK, it inserts the result in the

cache. As you may observe, we do an insertion irrespective of the fact that the fingerprint may already

be in the cache. Although someone may find it unecessary, it is much quicker to insert a fingerprint into

the cache than to check first for presence and insert it in case it is absent. In this case the ACK packet

must be augmented with information about the fingerprints of the packets. However, this increase on the

size of the packet does not seriously affect the performance of the IXP1200. Moreover, if the packet of

the ACK is an issue (if for example we want to support P-CACK factors greater than 128), we can force

ACK packets to contain only PIDs and use a table in SRAM memory that will map PIDs to fingerprints.

Regarding the placement of the cache, we can use both the SRAM and SDRAM memories. If the

3It is possible for the IXP1200 to read the packet data although the packet is not in SDRAM memory.
4The fingerprint is 64 bits long.
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cache is small enough to fit into SRAM then the SRAM is used, otherwise the SDRAM memory is used.

SRAM has less access latency than SDRAM and thus, a cache placed on SRAM may improve the overall

performance of Digenis.

4.1.4 Pseudo-code Description of DigenisNP

The IXP1200 receives data from a MAC through the IX bus. Since the IX bus is capable of transfering

fixed size units of 64 bytes long, the MAC breaks each packet received into 64 byte quantities, called

mpackets. Each mpacket is flagged as being the first (SOP) or the last (EOP) mpacket of the packet.

If none of these flags are set, this is a middle mpacket (MOP), and if both flags are set then this is the

only mpacket of the packet. Similarly, during transmission, the MAC device must compose of the whole

packet from the mpackets that it receives from the IX bus.

During the reception, after the packet has been received from the IX bus, the IXP1200 stores it in a

slot of the receive FIFO (RFIFO)5. Since the number of RFIFO slots is only sixteen, the allocation of

slots is done at design time and is the responsibility of the code running on the microengines to drain

these slots at a rate that keeps pace with the line speed of each port. Similarly, during transmission, the

IXP1200 mangles the packets into mpackets and stores the resulting mpackets in a slot on the transmit

FIFO (TFIFO)6. Likewise, it is the responsibility of the code running on the microengines to fill the

transmit slot at a rate that keeps pace with the line speed of each port.

After a packet has been stored on the RFIFO, it is transfered into SDRAM and a descriptor of the

packet is placed into a queue in SRAM. This queue is served asynchronously from a different micro-

engine. Using different microengines for enqueuing and dequeuing prevents microengines from being

idle during the time a packet is queued [40]. After dequeuing, the packet is broken down into mpackets

and stored in TFIFO slots for transmission. Figure 4.2 shows the forwarding pipeline from the Gigabit

Ethernet input port to the Fast Ethernet output ports, while Figure 4.3 shows the reverse path followed

during P-CACK reception. Subsequently, we present a pseudocode description of the work done by the

microengines. However, in order not to confuse the reader that has not previous experiences with the

IXP1200, we do not include the pseudo-code for the packet caching plug-in.

5In reality RFIFO is not a FIFO but a buffer. Intel has corrected this flaw and in the IXP2400 network processor hardware

reference manual is called RBUF.
6In reality TFIFO is not a FIFO but a buffer. Intel has corrected this flaw and in the IXP2400 network processor hardware

reference manual is called TBUF.
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FIGURE 4.2: The Forwarding Pipeline from the Gigabit Ethernet Port to the Fast Ethernet Ports.
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FIGURE 4.3: The Forwarding Pipeline from the Fast Ethernet Ports to the Gigabit Ethernet Port.

Gigabit Ethernet Input Processing Figure 4.4 shows our pseudo-code for the loop executed once

for each mpacket received: p denotes the port number on which the mpacket arrived, c is an index

in the receive FIFO, mp addr is the address in memory where the contents of the mpacket are stored,

reg mp data denotes the microengine registers that hold the mpacket, state is a data structure containing

information about how the mpacket should be processed, and out port is the Fast Ethernet port to which

the packet will be sent.

The first set of operations (lines 1-6) determine whether port p has a new mpacket available. If so,

the load operation instructs the receive state machine (RSM) to copy the mpacket from the off-chip

port memory into the on-chip receive FIFO. Also, the characteristics of the mpacket are read from

the RSM (SOP, MOP, EOP, number of bytes etc) and stored into state variable. There is only one
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INPUT_LOOP:

1 crit_sect_enter();

2 send_rcv_request(p);

3 if(get_rcv_status() != PORT_HAS_DATA){

4 crit_sect_exit();

5 goto INPUT_LOOP;

6 }

7 load RFIFO[c];

8 state = get_state();

9 crit_sect_exit();

10 mp_addr = calc_mp_addr();

11 if(at_start_of_packet(state)){

12 reg_mp_data = RFIFO[c];

13 out_port = load_balance(reg_mp_data);

14 SDRAM[mp_addr] = reg_mp_data;

15 }

16 else{

17 SDRAM[mp_addr] = RFIFO[c];

18 }

19 if(at_end_of_packet(state)){

20 enqueue(p,out_port);

21 }

22 goto INPUT_LOOP;

FIGURE 4.4: Pseudo-code Running in Each Context Assigned to Gigabit Ethernet Input Processing.

receive state machine on the IXP1200 and requests concerning it are not hardware-serialized. Thus, the

critical Section operations are needed to allow multiple microengine contexts to safely execute input

loops in parallel. In case this is the first mpacket, the microengine copies a portion of the mpacket

into its registers for further processing. Then, the load balancing code is called which specifies the

port on which the packet will be forwarded. Additionally, the mpacket (with possible modifications) is

transfered to the SDRAM. If the packet is not a SOP mpacket, it is transfered directly from the RFIFO

to the SDRAM without the intervention of the microengine. The last step is to enqueue the packet and

some identification information in the appropriate output queue in case of an EOP mpacket.

Fast Ethernet Input Processing Figure 4.5 gives pseudo-code for the loop executed once for each

mpacket received. In the figure, p addr is the address in memory where the contents of the packet is
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INPUT_LOOP:

1 crit_sect_enter();

2 if(port_rdy(p) != PORT_HAS_DATA){

3 crit_sect_exit();

4 goto INPUT_LOOP;

5 }

6 load RFIFO[c];

7 state = get_state();

8 crit_sect_exit();

9 mp_addr = calc_mp_addr();

10 SDRAM[mp_addr] = RFIFO[c];

11 if(at_end_of_packet(state)){

12 p_addr = calc_p_addr();

13 reg_p_data = SDRAM[p_addr];

14 process_ack(reg_p_data);

15 }

16 goto INPUT_LOOP;

FIGURE 4.5: Pseudo-code Running in Each Context Assigned to Fast Ethernet Input Processing.

stored and reg p data denotes the microengine registers that hold the packet.

The first set of operations (lines 1-5) determine whether port p has a new mpacket available. If so, the

load operation instructs the RSM to copy the mpacket from the off-chip port memory into the on-chip

RFIFO. Once the mpacket is in the RFIFO, the microengine instructs SDRAM to transfer the mpacket

into SDRAM and waits for the completion signal. After receiving the completion signal, if the mpacket

is the EOP mpacket, the whole packet is read to microengine registers and parsed. For every number

read, the stored packet with this number as identidier is sent to the Gigabit Ethernet port.

Gigabit Ethernet Output Processing Digenis uses one microengine to transmit packets to the Gigabit

Ethernet port. The microengine uses one thread as a scheduler to determine if there are packets on the

transmit queue, and three threads, referred as fill threads, to transmit the packet data. The fill threads

transfer data from SDRAM to the TFIFO and write TFIFO control data for each mpacket.

Figure 4.6 gives pseudo-code for the scheduler thread. In the figure, mp counter addr is the address in

memory where the number of mpackets received is stored, mp counter is the value stored in that address,

assigned mp counter is a counter shared by all threads in the microengine that counts the number of
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1 void tx_gig_assign(sem_tid, assign){

2 if(mp_counter == assigned_mp_counter){

3 tmp = SKIP;

4 }

5 else{

6 assigned_mp_counter = assigned_mp_counter + 1;

7 tmp = PROCESS;

8 }

9 semaphore_wait(sem_tid);

10 assign = tmp;

11 }

12

13 SCHEDULER_LOOP:

14

15 mp_counter = SCRATCH[mp_counter_addr];

16 tx_gig_assign(sem1, assign1);

17 tx_gig_assign(sem2, assign2);

18 tx_gig_assign(sem3, assign3);

19

20 goto SCHEDULER_LOOP;

FIGURE 4.6: Pseudo-code of the Scheduler Thread for Gigabit Ethernet Output Processing.

mpackets processed by the scheduler thread, assign[1-3] are registers used for communication between

the scheduler thread and the fill threads where information about the packet to be transmitted are stored,

and sem[1-3] are semaphores used to protect access to assign[1-3] registers.

The transmit queue of the Gigabit Ethernet port has associated with it a counter that resides in scratch-

pad memory. When this counter (mp counter) is greater than the assigned mp counter, this implies that

there is a new packet on the queue, or a packet with mpackets still to be transmitted. The scheduler sends

an assignment to a fill thread, which transmits at most one mpacket at a time. The scheduler continues

to assign fill threads to the packet until all of the mpacket that make up the packet are transmitted to the

outbound Gigabit Ethernet port. If the two counters are equal, then the scheduler determines that there

are no mpackets that require transmission and issues an assignment to the fill thread with a skip com-

mand. Without deeping into too much details, the skip command ensures that the transmit state machine

advances to the next TFIFO element which may contain data from another transmit microengine, for

example the microengine that transmits packets to the eight Fast Ethernet ports.
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1 void wait_for_assign(assign){

2 WAIT_LOOP:

3 if(assign != SKIP && assign != PROCESS)

4 goto WAIT_LOOP;

5 }

6

7 FILL_THREAD_LOOP:

8 wait_for_assign(assign1);

9 skip = check_skip(assign1);

10 sem_wakeup(sem1);

11 if(skip == TRUE)

12 process_skip();

13 else

14 process_assign();

15 goto FILL_THREAD_LOOP;

FIGURE 4.7: Pseudo-code of the First Fill Thread for Gigabit Ethernet Output Processing.

Figure 4.7 gives pseudo-code for the first fill thread. In the figure, skip denotes whether the assign-

ment is a skip assignment or not. The fill threads read assignments from the assign[1-3] registers and

determines whether the assignment is to transmit an mpacket or to process a skip assignment. If, the

fill thread has an mpacket to process, the process assign function is called that transfers the mpacket

from the SDRAM to the TFIFO. Otherwise, the process skip function is called that advances to the next

TFIFO element.

Fast Ethernet Output Processing The transmit code for the Fast Ethernet ports is similar with that

of the Gigabit Ethernet port. The only difference is that the counter that keeps track of the number of

mpackets received is replaced with a bit vector. If the bit is set, then the transmit queue (and consequently

port) that this bit represents has available packets for transmission, otherwise it has not queued packets.

4.2 Implementation of the PC-part of Digenis

The functionality of DigenisPCs is implemented by modifying the popular NIDS Snort [34]. We mod-

ify Snort so that in case that the inspected packet is friendly, the packet is send back to the DigenisNP7.

The implementation of the two plugins are described next.

7For the transmission of packets from the PC to the NP we use libnet [37].
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4.2.1 Implementation of the Plug-in for Reducing Redundant Packet Transmission

For this plug-in to work, we modify Snort to send a P-CACK packet back to the DigenisNP if no

attack is identified. Snort accumulates the PIDs of the friendly packets into a buffer (which has the

format of an Ethernet packet) and when the specified number of packets are inspected and do not relate

to an attack, the buffer is forwarded to DigenisNP.

4.2.2 Implementation of the Plug-in for Reducing Redundant Packet Inspection

This plug-in has been implemented as a Snort preprocessor. In contrast to the DigenisNP version of

the plug-in, this plugin is able to cache both packets and HDUs. Moreover, someone can choose to cache

only traffic originated from or destined to servers. Given that the traffic originating from servers has more

redundancy than the traffic originating from clients, this option can be used to improve performance.

4.3 Implementation of Additional Configurations

In addition to Digenis configuration, for comparison pusposes, we have implemented the following

three configurations. A forwarder (FWD) that transmits the traffic arriving at an input Gigabit Ethernet

interface to an output Gigabit Ethernet interface. A load balancer (LB) that implements a flow-preserving

load balancer with the same load-balancing characteristics as Digenis. The IXP1200 receives traffic

from a Gigabit Ethernet interface and transmits the traffic to eight Fast Ethernet interfaces. The last

configuration (LB + FWD) implements the basic functionality of Digenis (without optimizations).
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5
Evaluation

In this Chapter we examine the performance of our architecture. First, we examine the impact of our

enhancements to DigenisPC-DigenisNP communication by offloading DigenisPCs with reducing redun-

dant packet transmission. Second, we examine the performance improvement we achieve by reducing

redundant packet inspection.

5.1 Evaluation of the Plug-in for Reducing Redundant Packet Transmission

In this Section we focus on DigenisPC-DigenisNP coordination. In particular, we compare the perfor-

mance of P-CACK vs. the PR scheme. We also show that such techniques can be efficiently supported

by current NPs 1 and that they do not significantly impair forwarding latency.

1In fact, the IXP1200 should be considered as a cheap, low-end device.
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5.1.1 Experimental Environment

Experimental Environment for DigenisNP

The performance of the configurations running on the IXP1200 is measured using the Developer Work-

bench (version 2.01a). Specifically, we use the transactor provided by Intel. The transactor is a cycle-

accurate architectural model of the IXP1200 hardware. We simulate the configurations as they would

run on a real IXP1200 chip. We assume a clock frequency of 232 MHz and a 64-bit IX bus with a clock

frequency of 104 MHz.

Experimental Environment for DigenisPCs

We use a 2.66 GHz Pentium IV Xeon processor with hyper-threading disabled. The PC has 512 Mbytes

of SDRAM memory at 133 MHz. The PCI bus is 64-bit wide clocked at 66 MHz. The host operating

system is Linux (kernel version 2.4.22, Red-Hat 9.0). The Gigabit Ethernet card is an Intel PRO/1000

MT Dual Port Server Adapter [14]. We increase the buffers allocated by the driver to the maximum to

achieve the best possible performance.

The software running on the PCs is a modified Snort version 2.0.2, compiled with gcc version 3.2.2.

We turn off all preprocessing in Snort. Unless noted otherwise, Snort is configured with the default

rule-set.

Packet Traces

For the evaluation of Digenis we use three packet traces. The FORTH.WEB trace was captured at ICS-

FORTH and contains only HTTP traffic. The FORTH.LAN trace was also captured at ICS-FORTH

and contains traffic from an internal Local Area Network (LAN). Both traces contain the real payload

of the packets2. The IDEVAL traces are taken from MIT Lincoln Laboratory and were used in 1998

DARPA Intrusion Detection Evaluation [25].

Limitations

Before presenting the results from the evaluation of our system, we want to deal with some limitations

of our experimental methodolgy. The first issue we want to discuss is the assumption made. That traffic

characteristics present in our links ressembles traffic characteristics of faster links. In particular, traces

2 We used tcpdump to capture the traces.
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Trace Total Packets Total MBytes Average Packet Size (bytes)

FORTH.WEB 2678445 2104 785

FORTH.LAN 1597396 974 610

IDEVAL 1492331 317 212

TABLE 5.1: Characteristics of the Packet Traces.

Packet Size Percentage (%)

size ≤ 64 40

64 < size ≤ 128 3

128 < size ≤ 256 1

256 < size ≤ 512 2

512 < size ≤ 1024 3

1024 < size ≤ 1518 51

TABLE 5.2: Packet Size Distribution for FORTH.WEB

Trace.

Packet Size Percentage (%)

size ≤ 64 25

64 < size ≤ 128 14

128 < size ≤ 256 20

256 < size ≤ 512 1

512 < size ≤ 1024 1

1024 < size ≤ 1518 37

TABLE 5.3: Packet Size Distribution for FORTH.LAN

Trace.

Packet Size Percentage (%)

size ≤ 64 69

64 < size ≤ 128 12

128 < size ≤ 256 5

256 < size ≤ 512 3

512 < size ≤ 1024 1

1024 < size ≤ 1518 9

TABLE 5.4: Packet Size Distribution for IDEVAL Trace.

captured at ICS-FORTH are from a 10 Mbit/s LAN. However, during the evaluation we generate the

same traffic as these traces but in rates that are up to 30 times higher. However, while we emulate certain

conditions present in faster links, such as the content of the packet, we also miss critical information

such as the order of packets and packet inter-arrival times. In particular, if the same traffic captured at
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a 10 Mbps link were to be transfered across a Gigabit link, then the packets would be multiplexed with

packets from other network sources. Suppose that you have the traces captured at ten 100 Mbps Ethernet

links and the trace from a Gigabit Ethernet link that was transfering exactly the same information (e.g

with port mirroring) as the ten 100 Mbps links. Suppose also, that you concatenate the ten traces into a

bigger one and you run Snort on top of these two traces (the concatenated one and the one captured at

the Gigabit Ethernet link). Would the maximum loss free rate of Snort be the same in each trace? The

answer is that the rates would be different.

To understand this, assume that half of the 100 Mbit links were transfering 1518-byte packets and half

of them 64-byte packets. While the concatenated trace would contain chains of 1518-byte and 64-byte

packets the Gigabit trace would contain 64-byte and 1518-byte packets interleaved. Remember that the

1518-byte packets require much more processing power to be analyzed than 64-byte packets because

Snort analyzes not only the headers of the packets but also the payload. Thus, while in the first case

Snort would have periods with peaks in loads and periods that is almost idle, in the second case it would

experience an almost uniform distribution of the load over time.

Notice that systems like IP routers and firewalls are not so sensitive because they require almost the

same amount of work for each packet irrespective of its size 3. The lesson is that evaluation of a NIPS is

not a straightforward process and that a number of parameters must be considered to avoid inaccuracies.

5.1.2 Performance of DigenisNP

In this Section we try to look into all the possible bottlenecks of the DigenisNP. For this reason we

examine extensively the utilization of all the major components of the IXP1200. Specifically, we check

the microengines, the SRAM and SDRAM memories, the FBI unit and the hash unit.

Utilization of the Microengines, SRAM and SDRAM

Consider that all the configurations described in Chapter 4 handle at most the IP and UDP/TCP header of

the incoming packets. We argue that the most demanding traffic for the IXP1200 is the traffic consisting

of a big fraction of small packets, namely 64-byte packets 4. We simulate the above configurations and

the results signified that all the configurations were capable of sustaining line speed even with traffic

3They analyze only headers of the packets, not payload.
4This is the smallest possible packet in an Ethernet link including the 4-byte Ethernet CRC.
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Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

FWD 41.5 41.2 - - - 67 16 20.6

LB 52.6 52 - - 72.2 - 18.3 24.5

Digenis (P-CACK 8) 52.2 50.9 66.9 66.8 71.5 67.7 28.4 33.5

LB+FWD 51.9 50.7 57.7 57.7 71.4 70 35.1 34.7

TABLE 5.5: Utilization(%) of the Microengines, SDRAM and SRAM for 64-byte Packets.

Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

FWD 35.4 35.2 - - - 64.8 20.5 9.2

LB 38.6 38.3 - - 73.8 - 21.3 10.9

Digenis (P-CACK 8) 37.9 37.3 68.1 68 71.8 64.8 34.5 18.3

LB+FWD 37.4 37.5 57 57 72.4 65.4 43.4 12.4

TABLE 5.6: Utilization(%) of the Microengines, SDRAM and SRAM for 512-byte Packets.

Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

FWD 34.5 34.5 - - - 64.5 21 8.4

LB 36.4 36.3 - - 73.8 - 21.6 9.4

Digenis (P-CACK 8) 35.5 35.5 68.2 68.2 72 64.6 35.1 16.6

LB+FWD 36.3 36 56.3 56.9 72.1 64.8 44.2 12.5

TABLE 5.7: Utilization(%) of the Microengines, SDRAM and SRAM for 1024-byte Packets.

Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

FWD 34.3 34.3 - - - 64.6 21.1 8.2

LB 35.8 35.8 - - 73.8 - 21.8 9

Digenis (P-CACK 8) 35.1 35 68.2 68.2 72.2 64.6 35.4 16

LB+FWD 35.4 35.3 57.6 57.6 73.0 67.2 44.6 9.2

TABLE 5.8: Utilization(%) of the Microengines, SDRAM and SRAM for 1518-byte Packets.
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Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

FWD 35.3 35.2 - - - 65.2 20.6 9.2

LB 39.4 40.4 - - 74.3 - 19.7 17.5

Digenis (P-CACK 8) 37.8 37.4 66.8 66.7 72.5 65.5 29.9 12.7

LB+FWD 40.2 39 53.9 54.0 74.2 67.1 30.3 22

TABLE 5.9: Utilization(%) of the Microengines, SDRAM and SRAM for Variable Size Packets.

consisting of only 64-byte packets 5. This is expected as the theoretical forwarding capacity of the

IXP1200 chip is greater than 1600 Mbit/s.

Whereas the configurations sustain line speeds, we use as a metric for comparison the utilization of

the microengines and the utilization of SRAM and SDRAM memories6. These are some of the resources

that may become the bottleneck, considering that the IXP1200 specification states that the maximum IX

bus throughput is 6 Gbit/s. In Tables 5.5, 5.6, 5.7 and 5.8 we present the utilization of the microengines7

and the utilization of the SRAM and SDRAM memories for our configurations. We observe that our

approach is efficient and does not consume all the resources of the IXP1200, leaving headroom for even

more offloading of DigenisPCs. Particularly, our results suggest that the extra cost of Digenis compared

to the load balancer is affordable.

To further understand these results, we have to know what task each microengine executes. The

first two microengines execute the microcode responsible for receiving traffic from the first Gigabit

Ethernet interface and enqueuing the packets to the appropriate queue. This queue depends on the

configuration used. In case of the FWD configuration, the packets are enqueued in the queue that holds

the packets to be transmitted on the second Gigabit Ethernet interface. In the other configurations, the

queue depends on the result of the load balancing algorithm. Microengines 2 and 3, in case of Digenis are

responsible for receiving the P-CACKs, parsing them and scheduling the right packet for transmission on

the second Gigabit Ethernet interface. The same microengines, in case of the LB+FWD configuration,

are responsible for enqueuing the packets received from the Fast Ethernet interfaces to the queue that

5Digenis used P-CACK scheme with a factor of eight.
6In reality, we measure the utilization of the buses of SRAM and SDRAM memories.
7 The microengines that have not a value were not used in the specified configuration.
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holds the packets to be transmitted on the second Gigabit Ethernet interface. Microengine 4 is used for

transmitting packets on the eight Fast Ethernet interfaces, while microengine 5 transmits packets towards

the Gigabit Ethernet interface.

With the mapping of the tasks to microengines kept in mind, we can safely explain the above results.

As we observe, as the packet size grows, the utilization of microengines 0 and 1 reduces. This results

from the fact that as the packet size grows, the rate of the received packets slows down. Considering

that these microengines handle only the IP header of the packets, fewer packets per time unit mean less

work to do. Similarly, this observation holds and for the microengines 2 and 3 for all configurations

except Digenis. In case of Digenis, the utilization of microengines 2 and 3 is almost the same8. This

is due to the fact that the rate of the incoming P-CACK packets is the same, regardless of the size of

the received packet. Moreover, we observe that the utilization of microengines 4 and 5 is practically

the same no matter what the size of the packet is. This is an artifact of the way that the microcode on

these microengines operate. Generally, these two microengines use polling to test whether there is data

to send to the output ports and in case that no data exists, they just insert a skip value in the TFIFO of

the IXP1200. As a result, these microengines do approximately the same amount of work irrespective

of the size of the packet. Finally, we have to mention that the increased utilization of microengines 2

and 3 in the case of Digenis is caused by the instrumentation code we add to measure the performance

of DigenisNP. While in the other configurations we do not add code for evaluation purposes, we are

obliged to do so in the case of Digenis. Specifically, we add a polling loop to control the rate that the

IXP1200 received P-CACK packets because there is no way to instruct the simulator to do this with high

accuracy. Additionaly, this code results in an increased SRAM utilization because it uses the SRAM bus

to read a value from memory.

Moreover, someone can naively believe that the most demanding traffic for the SRAM and SDRAM

memories of the IXP1200 is the traffic consisting of a big fraction of large packets, namely 1518-byte

packets. This is not true for SRAM because microengines make a transaction to SRAM only once for

each packet received and this transaction is irrespective of the packet size. However, for SDRAM, the

simulation with traffic consisting of only 1518-byte packets reveals that the load of SDRAM memory is

about 30% higher compared to the 64-byte traffic. The reason is that while 64-byte packets are much

8Small variations exist because microengines are not completely independent. They share the same buses and as a conse-

quence changes on the utilization of one microengine is possible to affect the utilization of another one.
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smaller compared to the 1518-byte packets, transactions on the SRAM and SDRAM buses due to 64-

byte traffic are increased compared to 1518-byte traffic. In particular, the rate that the IXP1200 receives

64-byte traffic and 1518-byte traffic is 1190 Kpps and 65 Kpps respectively. Consequently, while the

1518-byte packets are approximately 23 times larger than the 64-byte packets, they cause approximately

18 times less bus transactions.

Furthermore, we simulate the above configurations with real network traffic. We instruct the IX bus

simulator of the Developer Workbench to load the packets from a file that contains the traffic of the

FORTH.LAN trace and measure the utilization of the microengines and memories (Table 5.9).

Configuration ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

Digenis (P-CACK 1) 52.6 50.7 67.1 67.1 69.9 65.7 36 35.6

Digenis (P-CACK 2) 52.9 50.6 67.3 67.3 70.3 66.3 30.7 34.4

Digenis (P-CACK 4) 52.4 51.2 67 67 70.4 66.3 28.7 33.7

Digenis (P-CACK 8) 52.2 50.9 66.9 66.8 71.5 67.7 28.4 33.5

Digenis (P-CACK 16) 51.2 51.7 66.6 66.2 70.6 66.2 28.2 33.7

Digenis (P-CACK 32) 53.5 49.3 65.6 66.3 70.5 66.1 28.9 33.4

Digenis (P-CACK 64) 53 49.5 64.8 64.4 70 65.8 28.7 33.1

TABLE 5.10: Utilization(%) of the Microengines, SDRAM and SRAM for 64-byte Packets.

Additionally, we measure the utilization of the microengines and the memories of the IXP1200 for a

varying number of P-CACK factors ranging from 1 to 64. The results are shown in Table 5.10. As we

observe, as the P-CACK factor increases, the microengines and memories utilization stays almost the

same or slightly decreases.

Utilization of the FBI Unit

Another possible bottleneck of the IXP1200 in general and DigenisNP specifically is the FBI unit. The

FBI unit consists of the IX bus, the hash unit, and the scratchpad memory. The FBI unit has two queues

named push and pull where the microengines can enqueue commands for execution and dequeue the

results. We use as an indication of the utilization of the FBI unit the size of this queue (max queue size

is 8 entries). Tables 5.11 and 5.12 show the number of entries of the queues for Digenis and 64-byte
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Queue Entries Percent Cumulative Percent

0 47.8 47.8

1 21.6 69.5

2 13.4 82.9

3 8.5 91.4

4 4.9 96.3

5 2.7 99

6 0.9 99.9

7 0.1 100

TABLE 5.11: FBI Pull Queue Fullness Statistics.

Queue Entries Percent Cumulative Percent

0 68.3 68.3

1 18.4 86.6

2 6.8 93.4

3 3.2 96.6

4 1.3 98

5 1.1 99

6 0.8 99.8

7 0.2 100

TABLE 5.12: FBI Push Queue Fullness Statistics.

packets (P-CACK factor is 8). The results show that 91.4% of the time the size of the pull queue is less

than 50%, while 96.6% of the time the size of the push queue is less than 50% (compared to the max

queue sizes).

Utilization of the Hash Unit

Although, the hash unit is contained inside the FBI unit, we examine it seperately due to its significance

to the DigenisNP performance. To check the utilization of the hash unit we perform the following exper-
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Queue Entries Percent Cumulative Percent

0 98.5 98.5

1 1.5 100

TABLE 5.13: Hash Queue Fullness Statistics.
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FIGURE 5.1: Processing Cost of the DigenisPC (FORTH.WEB Trace).

iment. The hash unit of the IXP1200 has a 8-entry queue where microengines can put work assignments.

The hash unit drains this queue and notifies the microengines when the assigned work is completed. We

use as an indication of the utilization of the hash unit the size of the queue. Table 5.13 shows the number

of entries of the queue for Digenis and 64-byte packets (the P-CACK factor does not affect the result).

The results show that 98.5% of the time the queue of the hash unit has no pending requests while only

1.5% of the time the hash unit has one pending request.
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FIGURE 5.2: Processing Cost of the DigenisPC (FORTH.LAN Trace).

5.1.3 Performance of DigenisPCs

We first measure the processing cost of a DigenisPC for different coordination schemes using the

default rule-set. In this experiment Snort simply reads traffic from a packet trace 9, performs all the

necessary NIPS functionality, and then transmits the coordination messages to a hypothetical DigenisNP

through a Gigabit Ethernet interface. Figures 5.1, 5.2 and 5.3 show the time that Snort spents to process

all the packets for three different traces including user and system time breakdown. The results show that

the bigger the P-CACK factor, the less the total running time for Snort. The running time is practically

the same with the unmodified Snort for P-CACK factor equal to 128. Also, for the FORTH.WEB trace

Snort finished 45% faster for P-CACK factor equal to 128 compared to PR scheme. Specifically,we

observe that for the first two traces, the system time is lower than the user time. This confirms the fact

that Snort spents most of its processing time in header and content matching which is counted in user

time. This is not true in the IDEVAL trace because the majority of the packets of this trace are 64-byte

packets. As a consequence, these packets do not require content matching, which is the single most

expensive operation of a NIPS and all the user time is spent on header matching and the copying of

9 We confirm that the hard disk is not the bottleneck by measuring the throughput of the hard disk and the transmit rate of

Snort. As expected, the transmit rate of Snort is smaller than the throughput of the disk.
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FIGURE 5.3: Processing Cost of the DigenisPC (IDEVAL Trace).

packets from user space to kernel space and vice versa. In this way, the processing cost of sending 64-

byte is greater than the cost of header matching and packet copying for this trace. Additionally, notice

that in the case of IDEVAL, the user time for the schemes PR and P-CACK with factor 1 is greater than

in schemes with P-CACK factor bigger than 1. This may seem wrong but it is due to the copying of the

packet from user space to kernel space memory. This phenomenon exists also in the other two traces, but

due to the fact that the cost of copying is minor compared to the user time spent on header and content

matching, it is more difficult to notice.

We also observe that the improvement of the P-CACK scheme compared to the PR scheme depends

very much on the trace used: the P-CACK scheme was from 45% to 3 times more efficient than the PR

scheme. The reason is that the improvement depends on the detection load of the DigenisPC. The smaller

the detection load, the bigger the relative improvement. This becomes more clear if we determine where

the improvement is coming from. The improvement is that it reduces the overhead required for sending

a packet to network (system time in Figure 5.1). If the detection engine of a DigenisPC is overloaded,

then this overhead is a small fraction of the total workload of DigenisPC and reducing it does not lead

to much improvement. In contrast, if the the detection engine of a DigenisPC is lightly loaded, this

overhead consumes a big fraction of the total workload of the DigenisPC and reducing it results in a
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FIGURE 5.4: Performance of a DigenisPC using Incremental Number of Synthetic Rules.

more notable improvement. For example, if the traffic is ruleset-intensive, then the detection load of the

DigenisNP increases and the relative improvement is small. On the other hand, for traffic that requires

less rules to be checked for every packet, the detection load of the DigenisNP will be minimal and the

improvement will be greater.

We also repeat the experiment on a PC with a slower Pentium III processor at 1.13 GHz and the

same PCI bus characteristics and Ethernet cards. The results (Figure 5.6) show that the improvement is

smaller compared to the faster machine. When we examine more carefully the results, we observe that

while user time doubles, the system time increases only by 30%. This is because user time is mainly the

time spent for content search and header matching, which are processor intensive tasks. On the contrary,

system time is dominated by the time spent for copying the packet from main memory, over the PCI bus,

to the output network interface, handling interrupts and control registers of the Ethernet device. As the

speed of processors increases faster than the speed of PCI buses and SDRAM memories, we can argue

that, as technology evolves, the effect of our enhancements will be even more pronounced – processors

are already running at 3.4 GHz, so the previously reported improvement is in fact a conservative result.

All the above experiments are performed using the default rule-set of Snort. To further understand the

correlation between the load of a DigenisPC and the P-CACK scheme improvement we also experiment
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FIGURE 5.5: Maximum Loss Free Rate (MLFR) of a DigenisPC using Default Rule-Set.

alert tcp any any - any any (flags: S ; seq:47937 ; ID:48946 ; ttl:30280 ; fragbits: M ;

content:”RPC overflow” ;)

TABLE 5.14: Synthetic Rule Example.

with variable, synthetic rule-sets. An example rule is shown in Table 5.14. The example rule instructs

Snort to analyze all TCP packets searching for the string ”RPC overflow” in the payload. Additionally,

it checks whether the TCP SYN flag is set, the TCP sequence number is 47937, the IP ID is equal to

48946, the IP TTL equals 30280 and it is an IP fragment. If all these tests are true then the packet

contains an attack. Similarly to the previous experiment, Snort reads traffic from a packet trace and send

packets over a Gigabit Ethernet interface. The results are shown in Figure 5.4. We observe that as the

number of rules increases the improvement of P-CACK scheme versus PR scheme decreases. In other

words, as detection load increases, improvement decreases.

Another interesting point is that the maximum relative improvement of P-CACK over PR is for small

packets of 64 bytes. Small packets require less time for content matching (user time) and communication

(system time) is the dominant cost factor. In addition, in the case of 64-byte packets, the bootleneck is not

the processor, as in the case of larger packets, but the PCI bus. This is clearly shown in the experiments
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FIGURE 5.6: Processing Cost of the DigenisPC, with a Slower PC (FORTH.WEB Trace).

involving the IDEVAL traces, which contain many small packets for emulating certain types of attacks

such as SYN flooding. For this trace, the P-CACK scheme is 3 times more efficient compared to the PR

scheme. This is also a nice side effect of the P-CACK scheme, in that it makes the NIPS more robust

against SYN flood attacks, given that such attacks consist of a big fraction of small packets.

5.1.4 Forwarding Latency of a DigenisPC

The highest portion of the latency imported by our NIPS is due to content matching on the DigenisPCs.

This happens due to the fact that content matching is the single most expensive operation in every NIPS.

To measure forwarding latency we use two hosts A and B with two Gigabit Ethernet interfaces each,

eth0 and eth1. We connect, the two interfaces of host A with the two interfaces of host B back-to-back.

Everything that host A sends to network interface eth0/eth1 is received by host B on network interface

eth0/eth1 and vice versa. Host A reads a trace from a file and sends traffic to host B (using tcpreplay[2]).

Host B runs Snort, which receives packets from interface eth0 and sends replies to interface eth1. Host

A matches the packet sent time with the arrival of the reply and computes the latency.

Initially, we estimate the maximum loss free rate (MLFR) of a DigenisPC by replaying a packet trace

and measuring the rate at which the DigenisPC started dropping packets (Figure 5.5). In this experiment
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we set the input packet buffer size to 16 Mbytes. We use MLFR to compute the latency that a DigenisPC

imposes to analyzed packets when reaching its processing capacity.

In this experiment host A replays FORTH.WEB and FORTH.LAN traces at the maximum loss

free rate of each communication scheme. We observe that there are packets that experience very

high latency. To clarify this phenomenon we measure the time that Snort spends in content and header

matching using the rdtsc [42] instruction of the Pentium IV. The results show that the peaks in time

spent for content and header matching overlap with the peaks in latency. This means that, when the

required per packet operations increase, so does the latency. A consequence of this property is that

packets that require a significant amount of processing slow down other packets that do not. This is a

form of head of line (HOL) blocking.

Figures 5.7, 5.9, 5.8, and 5.10 show the cumulative distribution function (CDF) for all ACK schemes

when a DigenisPC receives traffic at the MLFR of FORTH.WEB and FORTH.LAN traces. We notice

that, latency increases with the P-CACK factor. An interesting observation is that the graph is heavy

tailed, meaning that while most of the packets experience low latency, 5% of the packets exhibit very

high latency. These are packets that were received from DigenisPCs while it had a temporary excess

load. This may happen because, for example, some packets require too many rules to be checked. If

too many such packets are received back-to-back, the system reaches (or exceeds) its capacity and the

latency increases considerably.

We repeat the previous experiment for traffic rates of 20%, 40% , 60%, and 80% of the MLFR

(FORTH.WEB trace). The results are presented on Figures 5.11, 5.12, 5.13, and 5.14. Figure 5.11

shows that for the case of PR and P-CACK 1 schemes, the latency is below 2 milliseconds. For the case

of P-CACK 16 the latency is below 2 milliseconds for 95% of the packets and only 5% of the pack-

ets experiences latency greater that 17 milliseconds. Regarding the P-CACK 128 scheme, we observe

that the 65% of the packets experience latency less than 3 milliseconds, while the rest 35% experience

latency above 17 milliseconds. Similarly, for the case of P-CACK 256 scheme we see that only 35%

of the packets experience latency less that 3 milliseconds. We conclude that for the case of a P-CACK

factor greater than 128, while there are packets that experience very low latency, there are also packets

that experience unacceptably high latency for such a low traffic rate. This is a natural outcome of the

way ACKs function. For instance, suppose that a packet reaches a DigenisPC while the DigenisPC has
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just send to DigenisNP an ACK and is configured to use a P-CACK factor of 256. Then this ”unlucky”

packet has to wait for other 255 packets to be analyzed in order to be forwarded from DigenisNP, and as

a consequence, it will experience very high latency. On the contrary, if a packet arrives on a DigenisPC

just before an ACK is send to DigenisNP, this packet will experience very low latency. Conclusively, as

the P-CACK factor increases, so does the probability that a packet will be unlucky and will suffer a high

latency if the DigenisPC is receiving traffic at low rates.

Next, we notice that the difference in latency between the different ACK schemes fades away as the

traffic rates increase. The reason is that the number of packets received per second increases and so the
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FIGURE 5.11: CDF for Latency at 20% of MLFR.
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FIGURE 5.12: CDF for Latency at 40% of MLFR.
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FIGURE 5.13: CDF for Latency at 60% of MLFR.
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FIGURE 5.14: CDF for Latency at 80% of MLFR.

”big” P-CACK packet fills faster, resulting in lower latency. Thus, the P-CACK schemes with factors

greater than 16 is better suited for DigenisPCs working at their processing capacity.

Finally, we measure the latency of the PR and the P-CACK schemes when the DigenisPC receives

traffic at the MLFR of the PR scheme. The results are shown in Figure 5.15. We see that the latency

of the PR scheme is worst than the latency of the P-CACK 1 and P-CACK 16 schemes. Thus, the

reduction of the load that the P-CACK schemes achieve for these two P-CACK factors decreases the

latency imported on the packets.

5.1.5 Forwarding Latency of DigenisNP

We argue that the overall latency that a packet experiences by our NIPS is due to the processing of

DigenisPCs and not the forwarding of DigenisNP. Also, the cycles spent from DigenisNP to forward a
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FIGURE 5.15: CDF for Latency for all ACK Schemes at the MLFR of the PR Scheme.

packet from the input port to an output port depend only on the packet length. This means that practically

all packets experience almost the same latency.

5.1.6 Memory Requirements

There is a direct relationship between the latency imported by DigenisPCs and the required memory

on DigenisNP. DigenisNP needs memory to save incoming packets until they are acknowledged by

DigenisPCs. The amount of memory DigenisNP needs depends on the highest possible latency that

our NIPS will tolerate. If we set this value in a reasonable value, for example, 200 milliseconds, then

according to the fact that our NIPS analyzes traffic at 800 Mbit/s, the required memory is approximately

20 Mbytes. This means that the circular buffer of the IXP1200 must be at least 20 Mbytes.

5.2 Evaluation of the Plug-in for Reducing Redundant Packet Inspection

In this Section we focus on the specific enhancement of packet caching. In particular, we compare the

performance of DigenisPC with and without the packet caching optimization technique.

5.2.1 Experimental Environment

Experimental Environment for the DigenisNP

The performance of the configurations running on the IXP1200 is measured using the Developer Work-

bench with the same configuration as in the previous plug-in. Moreover, we configure DigenisNP to
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store the fingerprints of the packet in the SDRAM. We also examine the performance of Digenis using

SRAM as the storage area for fingerprints. In both cases, Digenis has the same performance. Moreover,

we must mention that this is not a complete implementation of a packet cache. In particular, the finger-

print generation procedure we use, is in fact a lightweight fingerprint generation that probably produces

hash collisions. A more serious approach would require a more demanding fingerprint computation

procedure.

Experimental Environment for the DigenisPCs

We use a 2.4 GHz Pentium IV Xeon processor with hyper-threading disabled. The PC is equipped with

512 Mbytes of SDRAM memory at 133 MHz. The PCI bus was 64-bit wide clocked at 66 MHz. The

host operating system is Linux (kernel version 2.4.20, Red-Hat 9.0). The Gigabit Ethernet card we use

is Intel PRO/1000 MT Dual Port Server Adapter [14].

The software running on the PCs is a modified Snort version 2.2.0 compiled with gcc version 3.2.2.

We turn off all the preprocessors of Snort. Unless noted otherwise, Snort is configured with the default

rule-set. Furthermore, during the measurements we do not use the SHA-1 algorithm a more lightweight.

Although, this algorithm is not as secure as the SHA-1, it did not generate collisions during the evalua-

tion.

Packet Traces

During the evaluation of Digenis we use an IDEVAL trace different than the one used in the previous

plug-in. Additionally, we use the NASA.SYNTHETIC packet trace which is a synthetic trace created

with the following procedure. We download a log from a web server that was operating at NASA

Kennedy Space Center in Florida and replay it in an Apache web server that we set up at ICS-FORTH.

We use a client PC to send all the requests contained in the log to a PC running an Apache web server.

We monitor the link with the HTTP requests to and responses from the web server and create a packet

trace. Although this is not the same as real packet traces captured at links close to a real web server,

it is the only approach we can use, given that privacy issues do not permit us to have access to traces

with real packet payload. The characteristics of NASA.SYNTHETIC and IDEVAL traces are shown in

Tables 5.15, 5.17, and 5.16.
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Trace Total Packets Total MBytes Average Packet Size (bytes)

NASA.SYNTHETIC 2853238 2101 736

IDEVAL 2855200 619 216

TABLE 5.15: Characteristics of the Packet Traces.

Packet Size Percentage (%)

size ≤ 64 70

64 < size ≤ 128 11

128 < size ≤ 256 5

256 < size ≤ 512 3

512 < size ≤ 1024 1

1024 < size ≤ 1518 9

TABLE 5.16: Packet Size Distribution for IDEVAL Trace.

Packet Size Percentage (%)

size ≤ 64 0

64 < size ≤ 128 50

128 < size ≤ 256 3

256 < size ≤ 512 0

512 < size ≤ 1024 1

1024 < size ≤ 1518 46

TABLE 5.17: Packet Size Distribution for NASA.SYNTHETIC Trace.

5.2.2 DUCache Hit Ratio

DUCache Stores Packets

With this experiment we aim to find the correlation between the size of the DUCache (in packets) and the

hit ratio of the DUCache. To figure out this tradeoff we instruct Snort to process traffic from a trace for a

varying number of DUCache sizes. We measure both the packet hit ratio and byte hit ratio. Besides, we
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Cache Size Packet Hit Ratio Byte Hit Ratio Packet Hit Ratio Payload Byte Hit Ratio

(w/o zero payload packets)

1 K 35.1 67.9 69.5 71.2

10 K 44.3 84.1 87.5 88.1

100 K 47.7 90.4 94.3 94.6

1 M 48.3 91.4 95.5 95.7

10 M 48.4 91.5 95.6 95.8

TABLE 5.18: DUCache Hit Ratio for NASA.SYNTHETIC Trace (DU is Packet).

Cache Size Packet Hit Ratio Byte Hit Ratio Packet Hit Ratio Payload Byte Hit Ratio

(w/o zero payload packets)

1 K 5.7 7.7 10.6 8.6

10 K 9 16.8 16.8 19.8

100 K 12.2 27 22.8 32.6

1 M 19.9 48.4 37 59

10 M 22.1 54.5 41.2 66.5

TABLE 5.19: DUCache Hit Ratio for IDEVAL Trace (DU is Packet).

measure the packet hit ratio in the case that we exclude from the measurement the packets that have no

payload and as a result can not be cached. Finally, we measure the byte hit ratio only when considering

the payload of the packets. In other words, we do not count the size of the packet header. The results are

shown in Tables 5.18 and 5.19. As expected, the hit ratio increases as the DUCache size increases.

In particular, in the case of NASA.SYNTHETIC trace that simulates a popular web server, the

DUCache packet hit ratio without zero payload packets reaches 95.6%. This means that from the packets

that have payload, only 4.4% are not in the DUCache. Finally, the packet hit ratio without zero payload

packets in the case of IDEVAL trace is 41.2%. This hit rate is an artifact of the trace that is consisted of

traffic that simulates intrusion attempts. A general observation is that the byte hit ratio is a little smaller

than the payload byte hit ratio. This makes sense because the packets without payload are small packets

and do not contribute much to the total traffic size.
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Cache Size HDU Hit Ratio Byte Hit Ratio

1 K 61.5 60

10 K 82.3 82.6

100 K 90.3 91.5

1 M 91.7 92.9

TABLE 5.20: DUCache Hit Ratio for NASA.SYNTHETIC Trace (DU is HDU).

Cache Size HDU Hit Ratio Byte Hit Ratio

1 K 40.3 7.4

10 K 56.3 16.1

100 K 69.6 36.3

1 M 79.6 57.9

TABLE 5.21: DUCache Hit Ratio for IDEVAL Trace (DU is HDU).

DUCache Stores HDUs

We repeat the previous experiment but we cache HDUs10 instead of packets11. As we observe the byte

hit ratio is lower than the previous experiment. This makes sense because the bigger the DU the less

probable it is to find two DUs that are the same.

5.2.3 Performance of DigenisNP

When Digenis is configured to run the packet caching technique on DigenisNP, DigenisNP ceases to

handle only the headers of the packets and treat also the payload of the packets. As a consequence, it

is not clear which is most demanding: traffic that contains small packets or traffic that contains large

packets. To examine the utilization of the IXP1200 we run Digenis with P-CACK factor equal to eight

and with the packet caching plug-in enabled, for a varying number of packet sizes. Whereas Digenis

sustains line speeds, we use as a metric for comparison the utilization of the microengines and the

utilization of SRAM and SDRAM memories 12. We run Digenis for two different DUCache hit ratios,

10HDU size ranges from 1 to 65535 bytes.
11We run Snort with the stream4 preprocessor enabled.
12In particular, the utilization of the buses that drive to the SRAM and SDRAM memories.
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Design ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

Digenis (Hit Ratio 100%) 57 56.1 65.4 65.4 60.8 66.3 21.6 15.8

Digenis (Hit Ratio 0%) 58.2 56.4 69.2 69.3 69.6 65.5 41 32.5

TABLE 5.22: Utilization(%) of the Microengines, SDRAM and SRAM for 64-byte Packets.

Design ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

Digenis (Hit Ratio 100%) 52.7 52.7 66.5 66.5 61.6 64.8 22.5 6.9

Digenis (Hit Ratio 0%) 51.1 51.0 70.7 70.7 71.5 64.4 45.9 15.5

TABLE 5.23: Utilization(%) of the Microengines, SDRAM and SRAM for 512-byte Packets.

Design ME0 ME1 ME2 ME3 ME4 ME5 SDRAM SRAM

Digenis (Hit Ratio 100%) 52.3 52.4 66.6 66.6 61.6 61.6 22.8 5.9

Digenis (Hit Ratio 0%) 51.2 51.4 71 71 71.5 64.4 46.6 14

TABLE 5.24: Utilization(%) of the Microengines, SDRAM and SRAM for 1518-byte Packets.

100% and 0%. Obviously, the second case is the most demanding. In Tables 5.22, 5.23, and 5.24 we

present the utilization of the microengines and the utilization of the SRAM and SDRAM memories.

First, in the case of 64-byte packets, we observe that the utilization of the first two microengines has

increased compared to the no packet caching case. This is because the code that is responsible for the

generation of the fingerprints runs on these two microengines. Moreover, as we observe, in the case that

the DUCache hit ratio is 100% the SDRAM and SRAM utilization has decreased. This makes sense,

because if a packet is in the DUCache, DigenisNP neither forwards it to the DigenisPCs nor receives an

ACK back, saving this way a significant number of memory transactions. In contrast, when the DUCache

hit ratio is 0%, SDRAM utilization increases compared to the no packet caching case. In this case, all

packets cause a DUCache miss and thus, we generate fingerprints and perform DUCache operations for

no reason 13. The same observation holds also for the measurements with 512- and 1518-byte packets.
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Queue Entries Percent Cumulative

Percent

0 59.5/39.8 59.5/39.8

1 16.2/19.5 75.8/59.3

2 10.8/14.3 86.6/73.7

3 6.6/10.6 93.2/84.3

4 3.8/7.6 96.9/91.9

5 2.1/5.3 99.1/97.2

6 0.8/2.2 99.8/99.5

7 0.2/0.5 100/100

TABLE 5.25: FBI Pull Queue Fullness Statistics

(64-byte Packets).

a

aThe results are shown as – 100% hit ratio case / 0% hit

ratio case.

Queue Entries Percent Cumulative

Percent

0 67.7/65.7 67.7/65.7

1 18.2/19 85.8/84.7

2 7/7.7 92.9/92.4

3 3.6/3.6 96.4/96.1

4 1.4/1.7 97.8/97.7

5 1.1/1.3 99/99

6 0.8/0.8 99.8/99.8

7 0.2/0.2 100/100

TABLE 5.26: FBI Push Queue Fullness Statistics

(64-byte Packets).

Queue Entries Percent Cumulative

Percent

0 73.9/50.9 73.9/50.9

1 19.4/23.9 93.2/74.7

2 4.4/11.9 97.6/86.6

3 1.3/6.3 99/92.9

4 0.7/3.7 99.6/96.6

5 0.3/2.2 99.9/98.8

6 0.1/1.0 100/99.8

7 0/0.2 100/100

TABLE 5.27: FBI Pull Queue Fullness Statistics

(1518-byte Packets).

Queue Entries Percent Cumulative

Percent

0 58.9/53.6 58.9/53.6

1 26.2/25.3 85.1/78.9

2 10.1/12.1 95.2/91

3 3.6/5.6 98.7/96.6

4 0.9/2.3 99.7/99

5 0.2/0.8 99.9/99.8

6 0.1/0.2 100/100

TABLE 5.28: FBI Push Queue Fullness Statistics

(1518-byte Packets).
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Queue Entries Percent Cumulative

Percent

0 94.1/93.5 94.1/93.4

1 5.8/6.4 99.9/99.9

2 0.1/0.1 100/100

TABLE 5.29: Hash Queue Fullness Statistics (64-byte

Packets).

a

aThe results are shown as – 100% hit ratio case / 0% hit

ratio case.

Queue Entries Percent Cumulative

Percent

0 69/65.3 69/65.3

1 23.1/23.1 92.1/88.4

2 6.4/8.2 98.5/96.6

3 1.3/2.6 99.8/99.3

4 0.2/0.6 100/99.9

5 0/0.1 100/100

TABLE 5.30: Hash Queue Fullness Statistics (1518-byte

Packets).

Utilization of the FBI Unit

As we have already mentioned, another possible bottleneck of the IXP1200 is the FBI unit. Tables 5.25,

5.26, 5.27, and 5.28 show the number of entries of the FBI push/pull queues for Digenis and for 64-

and 1518-byte packets (P-CACK factor is eight and cache hit ratio is 100% and 0%). When we use

64-byte packets, we observe that the FBI pull queue has more entries than in the case that we do not use

packet caching, while the push queue has almost the same number of entries as in the case that we do

not use packet caching. Also, we see that the FBI pull queue has increased utilization in the case that the

DUCache hit ratio is 0%.

Regarding the 1518-byte packets, the results show that in the 0% DUCache hit ratio case, 92.9% of

the time, the size of the pull queue is less than 50%, while 96.6% of the time, the size of the push queue

is less than 50%. In addition, the utilization of the FBI pull queue increases as the packet size decreases,

while the utilization of the push queue increases as the packet size increases.
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Utilization of the Hash Unit

Tables 5.29 and 5.30 show the number of entries of the queue using 64- and 1518-byte packets (the

P-CACK factor does not affect the result) and for 0 and 100% DUCache hit ratio. We observe that,

when 64-byte packets are used the hash unit is less loaded compared to the case that 1518-byte packets

are used. Also, with 64-byte packets, we observe that the utilization of the hash unit increases compared

to the case that we do not use the packet caching technique. Regarding 1518-byte packets, the results

show that in the worst case (0% hit ratio), 65.3% of the time the queue of the hash unit has no pending

requests, 88.4% of the time the hash unit has one pending request, and only 11.6% of the time it has

more than two pending requests. Thus, the utilization of the hash unit slightly increases compared to the

case that the packet caching plug-in is disabled.

5.2.4 Performance of DigenisPCs

When the packet caching is applied to DigenisNP, the performance boost that DigenisPCs experience

is greater than the case where packet caching is applied on DigenisPCs themselves. This is due to the

fact that, when packet caching is applied on a DigenisPC, we have to take into account the processing

cost of fingerprint generation, the lookup of this fingerprint, and the insertion in case of a DUCache

miss.

DUCache Stores Packets

In this experiment we instruct Snort to process traffic from a trace with and without the packet caching

technique and we measure the total processing time. The results for a varying DUCache size are shown

in Tables 5.31 and 5.32. As we observe for the case of the NASA.SYNTHETIC trace, Snort with

a DUCache size of 10 million packets run almost 4 times faster than unmodified Snort. Also, the

processing time of Snort with DUCache is about 38% less than the processing cost of the unmodified

Snort for the IDEVAL trace.

Additionally, in order to figure out the overhead that fingerprint generation and DUCache lookup/insertion

induces, we perform the following experiment. We run Snort with the DUCache disabled, then with the

fingerprint generation enabled and then with the fingerprint generation and the lookup/insertion enabled.

13Remember that the DUCache resides on the SDRAM. Additionally, we use SDRAM as a temproray storage area for

fingerprint generation.
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Snort Total Processing Time (Seconds)

No DUCache 55.4

DUCache (1 K) 20.5

DUCache (1 M) 14.5

DUCache (10 M) 14.5

TABLE 5.31: Total Processing Time of Snort for NASA.SYNTHETIC Trace (DU is Packet).

Snort Total Processing Time (Seconds)

No DUCache 16.8

DUCache (1 K) 17.2

DUCache (1 M) 12.7

DUCache (10 M) 12.1

TABLE 5.32: Total Processing Time of Snort for IDEVAL Trace (DU is Packet).

Trace No DUCache Fingerprints Enabled Fingerprints and DUCache

Operations Enabled (1M)

NASA.SYNTHETIC 55.4 61.2 61.6

IDEVAL 16.8 18.3 18.7

TABLE 5.33: Processing Cost (Seconds) of Fingerprint Generation and Cache Operations (DU is Packet).

In all these cases the packets are handed to the detection engine for further analysis. The results are

presented on Table 5.33. We observe that the overhead of fingerprint generation and the DUCache

operations is approximately 11%.

Next, we perform the following experiment. We modify Snort to dump every packet that is not found

in the DUCache into a packet trace. We run Snort with a DUCache of 10 million packets using the

IDEVAL and NASA.SYNTHETIC traces as inputs and, thus, generate the traces IDEVAL.uniq and

NASA.SYNTHETIC.uniq. These new traces, contain packets of the old traces without the duplicated

ones. Then, we instruct an unmodified Snort to process these newly created traces and measure the
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Trace Total Processing Time Improvement

NASA.SYNTHETIC.uniq 5.4 10 times faster

IDEVAL.uniq 9.2 82% faster

TABLE 5.34: Processing Cost (Seconds) to Analyze All Packets in the Traces Containing Unique Packets.

Snort Total Processing Time

No DUCache 108.3

DUCache (1 K) 86.3

DUCache (100 K) 71.5

DUCache (1 M) 70.7

TABLE 5.35: Total Processing Time of Snort for NASA.SYNTHETIC Trace (DU is HDU).

Snort Total Processing Time

No DUCache 30.2

DUCache (1 K) 30.4

DUCache (100 K) 27.7

DUCache (1 M) 26.2

TABLE 5.36: Total Processing Time of Snort for IDEVAL Trace (DU is HDU).

processing time of Snort14. The results are shown in Table 5.34. The results are similar to the case

where DigenisNP runs the packet caching technique. Thus, we observe that Snort runs from 82% to 10

times faster compared to the processing time required when we use the original traces.

DUCache Stores HDUs

We repeat the experiment regarding the total processing time of Snort but we cache HDUs instead of

packets. The first observation is that the total processing time is higher than the previous experiment.

This extra processing time is the cost of reconstructing the TCP connections into HDUs. This time,

in the case of NASA.SYNTHETIC trace the improvement is much lower, only 53%. This is caused

14Snort didn’t had the stream4 preprocessor activated.
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Trace No DUCache Fingerprints Enabled Fingerprints and DUCache

Operations Enabled (1M)

NASA.SYNTHETIC 108.3 113.8 114.4

IDEVAL 30.2 31.6 32.6

TABLE 5.37: Processing Cost (Seconds) of Fingerprint Generation and Cache Operations (DU is HDU).

by the fact that the TCP connection reconstruction procedure that takes place irrespective of the packet

caching technique, consumes a big portion of the total processing time of Snort. Thus, packet caching

has a smaller effect. The same observations holds for the IDEVAL as well trace where improvement

decreases from 38% to 15.2%.

Finally, in order to figure out the overhead that fingerprint generation and DUCache lookup/insertion

induces, we perform the following experiment. We run Snort with the DUCache disabled, then with

fingerprint generation enabled, and finally with fingerprint generation and lookup/insertion enabled. In

all cases HDUs are handed to the detection engine for further analysis. The results are presented on

Table 5.37. We observe that the overhead of fingerprints generation and the DUCache operations varies

between 6-8%.



6
Related work

Using load-balancing for scaling network intrusion detection has been studied in [23]. The authors

propose a three-tier architecture for scaling stateful intrusion detection. They describe a partioning

approach that supports in-depth, stateful intrusion detection on high-speed links. The traffic is captured

by a traffic scatterer, which equally distributes packets to a set of traffic slicers, in a round-robin fashion.

Subsequently, the traffic slicers are connected through a switch with a set of intrusion detection engines.

The slicers examine packets for determining a suitable set of detection engines for final processing.

The decision about which detection engine will analyze the packet, is based on rules describing the

attack contexts to which a packet may belong. Another way to look into this architecture, is that the

definition of a flow is not fixed, as in our architecture, but it is shaped by the rules running on the slicers.

The main focus of the work is, therefore, in preserving detection semantics in a generalized model of

intrusion detection, assuming different types of detection such as statistical methods, anomaly detection,

and misuse detection. On the other hand, we focus only on misuse detection methods. This enables us to

75
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use a fixed definition of flows, as decribed in Chapter 2, after we verify that there are no attack patterns

that split over multiple flows (with the exception discussed in Chapter 3). This way, we can replace the

complex rules that slicers run with a flow-preserving load balancer. Thus, we can state that DigenisNP,

in reality, combines the functionality of the scatterer, the slicers, and the switch, in the case that these

components were to be used in misuse detection systems. This approach allow us to lower considerably

the cost of the whole system1. In addition, we investigate ways on how to offload the detection engines

by rethinking the mapping of operations to the various components of the system.

Charitakis et al. [7] implement a system with a splitter distributing traffic to a number of NIDSes2.

The splitter is an IXP1200 network processor board3 that implements operations on the traffic stream

with the goal of reducing the traffic on the NIDSes. They propose early filtering and locality buffering

as two techniques to improve the performance of the NIDSes. The early filtering technique, moves part

of the functionality of the NIDSes to the IXP1200. In particular, they move the detection heuristics of

the NIDSes that do only packet header analysis, and therefore, are cheap to perform, to the IXP1200.

Moreover, the IXP1200 is responsible for reordering the packets passing through, in order to improve

memory access locality on the NIDSes. The architecture we propose is similar to the one proposed

in [7], but important differences exist. First of all both techniques proposed in [7] are not applicable

to our system. In the first technique, the IXP1200 drops all the packets that contain no payload after

it has inspected them for attacks. However, doing so in the case of Digenis is not possible due to the

fact that many TCP acknowledgments are encapsulated into packets with no payload. These packets are

required by DigenisPCs in order to reconstruct the original TCP connection before applying the detection

heuristics. Similarly, the locality buffering technique, while it can be used in a NIDS, it can not be used

in a NIPS because it introduces unacceptable latency. Moreover, recall that a NIPS is operating in-line

and, as a consequence, any reordering of the packets is noticed by the end-host and may affect negatively

the retransmission mechanism of the TCP, the most frequently used transport protocol on the Internet.

Consequently, in contrast to [7], we have to take into account parameters that do not exist in a NIDS, but

are very important when we consider a NIPS. Finally, the packet caching technique we propose can also

be used in [7] without any modification.

1The IXP1200EEB costs even less than the switch used in [23]
2They use Snort as a NIDS.
3Manufactured by Radisys [33].
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Other research efforts recognize the issue of flexibility and implement NIDSes in reconfigurable hard-

ware. However, programming hardware is much more difficult than programming NPs. Schuehler et al.

[38] describe an architecture for a hardware based, TCP/IP content scaning system, capable of perform-

ing complete, stateful, payload inspections on eight million TCP flows at 2.5 Gbit/s. They use a hardware

circuit that combined a TCP processing engine, a per flow state store and a payload scanning engine.

Necker et al. [27] implement portions of the functionality of a state-of-the-art NIDS in reconfigurable

hardware. Specifically, they implement TCP stream reconstruction and state tracking in a reconfigurable

network interface based on Xilinx Virtex technology. Li et al. [24] use FPGA-based reconfigurable

hardware to implement the detection engine of Snort v1.8.7. Their architecture should be able to moni-

tor networks with a speed up to 2.68 Gbit/s. Clark et al. [9] present a distributed architecture where the

intrusion detection and prevention is accomplished on the end-hosts. The stateful inspection is acceler-

ated using the IXP1200 network processor and the Xilinx Virtex FPGA. They describe how they map

the operations of Snort in their hardware and they demonstrate that their hardware is capable of working

at 100 Mbit/s. Dharmapurikar et al. [12] present a technique based on Bloom filters [4] for detecting

predefined signatures in the packet payload. They implement the Bloom filters in hardware and use an

ordinary string search algorithm for eliminating false positives produced by the filters. They state that

their system is capable of scanning 10000 strings at 2.4 Gbit/s.

A number of vendors have used NPs to accelerate intrusion detection. Cisco uses IXP1200 on Cisco

Catalyst 6500 Series IDS Module (IDSM-2) [8] which is a platform capable of performing intrusion

detection at 600 Mbit/s with 450-byte packets. This system supports up to 4000 TCP connections per

second (new arrivals) and up to 500.000 concurrent connections. Consystant [11] claims that has imple-

mented Snort on the IXP2400 network processor but details on the performance of this design are not

available.

A number of vendors claim to have NIPSes that can operate at high speed links. For example, ISS

offers Proventia G200 [15], a system designed for 200 Mbit/s networks. This device uses a software-

based detection engine on an Intel platform. NetScreen provides IDP 500 [28] designed for 500 Mbit/s

networks. This sensor is a hardware appliance that runs the Linux-based IDP Sensor software, it is

based on the Dell PowerEdge 1750 hardware platform with dual-Pentium IV processors and 4GB RAM.

McAffe demonstrates IntruShield 4000 Sensor (I-4000) [29] and claims real-time prevention at speeds
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up to 2 Gbit/s. In order to be able to reach that speed, I-4000 uses custom hardware for capturing

packets and effectively detecting and blocking intrusions. TippingPoint uses custom-designed high-

speed security processors on UnityOne 2400 [43] and claims aggregate throughput of 2 Gbit/s. Top

Layer presents Attack Mitigator IPS 2400 [44], a combination of multiple Attack Mitigator IPS 1000

and load balancer units capable of analyzing 1 Gbit/s networks. Incoming traffic in evenly spread by a

load balancer to four Attack Mitigator IPS 1000 devices and from there to a second load balancer which

forwards the traffic to its destination.

Finally, with respect to packet caching, Santos et al. [36] investigat whether there is redundancy in

the packets flowing through a link and propose a technique for increasing effective link bandwidth by

suppresing replicated packets. In particular, they find significant replication (24%) of the packets in the

case of HTTP traffic. The traffic they investigate is captured at the exchange point between MIT and the

Internet and consists of a couple of laboratories. Spring et al. [41] present a technique for identifying

replicated data but use a smaller granularity than Santos et al. In particular, they propose a technique for

identifying repeated byte ranges between packets to avoid retransmitting the redundant data. They find

about 30% redundancy in the case of HTTP protocol traffic.



7
Conclusions

This thesis demonstrates that a high-performance, low-cost, flexible and scalable NIPS can be build

using network processors and PCs. We show this by presenting a novel architecture, key implementation

methods and performance evaluations.

The main contribution of this thesis is to demonstrate that it is feasible to build a high-performance,

low-cost, flexible and scalable NIPS using commercially available network processors and PCs. To

show this, we (1) describe an achitecture, called Digenis, that is flexible, scalable, cheap, and handles

high-speed links; (2) present implementation techniques to realize this architecture; and (3) present the

allocation of operations to components and the trade-offs faced during the design and prototyping of

such systems (Figure 7.1).
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FIGURE 7.1: Mapping of Functions to Processing Units.

7.1 Future Work

There are several directions we can extend the work presented in this thesis. We present these direc-

tions in the sections that follow.

7.1.1 More Sophisticated Reduction of Redundant Inspection

We would like to investigate the possibility of further reducing redundant inspection by trying to

find redundancy not in the packet or HDU level but in a smaller scale. In particular, we would like to

examine if it is possible to find redundancy in parts of the DUs. For instance, if two DUs differ only in

10 contiguous bytes of their payloads, we could take advantage of this similarity and avoid redundant

inspection of the portion of the DUs that is the same.

The challenge here is to cache portions of the packets in order to be able to identify commonality and

keep the cache a reasonable size. As an example, one could cache the hashes of all aligned 256 bytes

substrings of the packets. To check for similarity, the algorithm would compute only the fingerprints of

the aligned 256 substrings and would check for membership. Unfortunately, two packets that are almost

the same but one of them has an extra byte at the start of the payload would shift all substring boundaries,

change the fingerprints of all substrings and prevent any potential exploitation of the redundancy. An

alternative solution is to cache the fingerprints of all overlapping 256 bytes substrings at all offsets.

Such an algorithm would require a cache with enormous size (almost one cache entry for per byte of

packet payload). Even if the size is tolerable, the lookup operations in such a huge cache will degradate
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performance.

We have implemented a technique that is used in the LBFS filesystem [26]. This technique considers

only non-overlapping substrings and is resilient to shifted substring by setting substring boundaries

based on substring contents, rather than on position within a packet. To divide a packet into substrings

we examine every overlapping N1-byte window of the packet and with probability 2−N2 over the contents

of each window we consider it to be the end of a substring. In order to select these boundary regions

(breakpoints) we use Rabin fingeprints [5]. Rabin fingeprints are efficient to compute on a sliding

window on a packet. When the low-order N2 bits of the fingeprint of a window equal a predefined

value, the window constitutes a breakpoint.

We would like to experiment with the values N1 and N2 for traces containing real packet payloads.

Moreover, we would like to investigate ways to take advantage of the possibly increased redundancy in

a way that prevents evasion attacks. Preliminary results demonstrate that the benefit from this technique

is greater than the less fine-grained packet caching technique.

7.1.2 Structure of the NIDS

During the design and implementation of Digenis it became clear that the structure of Snort does

not map easily to a multilevel processing hierarchy such as Digenis. While Snort is the state-of-the-art

NIDS, used by many security experts and the scientific community, we believe it has been designed with

the architecture of a PC in mind. Specifically, it is very difficult (if not impossible) to split Snort into

independent parts that could be easily implemented on different processors. This is the reason that, both

plug-ins we have designed, perform only system level optiomizations. For these reasons, we would like

to investigate the possibility to use more fine-grained NIDSes, such as Bro.

Bro is a protocol-based network intrusion detection system. The detection engine of Bro instead of

performing string searching for every analyzed packet, like Snort does, it creates events based on the

monitored traffic. After an event is generated, Bro runs any event handler that is associated with this

event. The event handler is written is the Bro language and is interpreted by the Bro interpreter. The

”programs” or ”scripts” written in the Bro, in contrast to Snort, identify attacks by looking for operations

not supported by the network or higher-level protocol or deviate from the administrator’s policy.

We observe that, as Snort evolves, it is moving towards an architecture similar to Bro. If someone

examines the number of detection heuristics added to Snort in the form of signatures and in the form
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of preprocessors (which is a form of Bro-like programs) then he will notice that the number of lines of

C code for the preprocessors are significantly more than the signatures added. Moreover, many of the

signatures added do not perform string searching but protocol decoding. This is better understood with

an example. Figure 7.2 shows some of the signatures of Snort for RPC traffic.

The first of these signatures instructs Snort to apply this detection heuristic for every UDP packet.

The detection heuristic searches for content ”—00 01 86 A0—” starting at the 12th byte of the payload

of the packet until the 16th byte. However, notice that the content that we search for, is 4 bytes. Thus,

in reality we do not perform a string searching but a string comparison. The same observation holds for

other signatures as well.

7.1.3 HTTP Protocol Decoding on DigenisNP

Suppose that we are an ISP that hosts a popular web site and we want to protect our web servers from

possible compromises. Because we do not want to protect the web clients, we do not care if the web

servers distribute malicious content. It is the responsibility of the clients to secure themselves. Thus, it is

possible to inspect for intrusions only the part of the TCP stream that contains the HTTP requests of the

clients and the HTTP response of the server. We can safely discard the portion of the stream that carries

the actual HTTP content (e.g HTML files). Although, someone may naively believe that we could also

skip the check of the HTTP response, this is not the case. This occurs because there are situations where,

while Digenis has missed an attack in the first place, it can infer that a machine is compromised by the

responses that a machine generates.

This optimization is already present in Snort. However, the benefits from performing this optimization

on DigenisNP, would be more pronounced. In this case, DigenisNP would forward immediately the

packets that are part of HTTP content. Consider that 95% of the HTTP traffic is server-side traffic and

95% of the server traffic is HTTP content. This means that DigenisNP would immediately forward 90%

of the HTTP traffic. The first benefit would be that the latency experienced by the packets would be very

low. The second benefit is that we could save the 90% of the processing time that Snort spents on packet

reception (we have already minimized packet transmission). Previous research states that the receive

processing on Snort accounts for 30% of total CPU time [13].

7.1.4 Separating Server-Side and Client-Side Traffic

Snort classifies the detection heuristics into server-side and client-side. The server-side heuristics
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are applied only to traffic originating from servers and the client-side heuristics are applied only to

traffic originating from clients (and destined to servers). However, there are more client-side heuristics

than server-side heuristics. For example, in Snort version 2.2.0, there are 2040 detection heuristics and

only 98 of them are server-side heuristics. Additionally, as we mentioned above, the server-side traffic

occupies the highest portion of the links. We believe that if we could create a small detection engine

that will execute on DigenisNP, we would have signifant benefits. However, this solution requires from

DigenisNP to perform IP fragment reassembly and TCP stream reconstruction in order to prevent evasion

attacks.

As we have mentioned in Chapter 4, in the case of the IXP1200, the IP fragment reassembly task

can be done on the StrongARM because in general a small percentage of the total traffic is fragmented.

However, a respectable portion of TCP stream reconstruction functionallity must be performed by the

microengines. A fact that helps us a lot is that previous research [3, 31] states that 85% of the total TCP

traffic is in order. Thus, we could program microengines to check if the input packet is in order, and in

case it is not, to enqueue it in the StrongARM for further processing. Then, the StongARM takes the

responsibility to put the packet in the right place into the reconstructed stream.
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alert udp $EXTERNAL_NET any -> $HOME_NET 111 \

(content:"|00 01 86 A0|"; depth:4; offset:12; \

content:"|00 00 00 05|"; within:4; distance:4; \

content:"|00 00 00 00|"; depth:4; offset:4; \

)

alert udp $EXTERNAL_NET any -> $HOME_NET 111 \

(content:"|00 01 86 A0|"; depth:4; offset:12; \

content:"|00 00 00 04|"; within:4; distance:4; \

content:"|00 00 00 00|"; depth:4; offset:4; \

)

alert tcp $EXTERNAL_NET any -> $HOME_NET 111 \

(flow:to_server,established; \

content:"|00 01 86 A0|"; depth:4; offset:16; \

content:"|00 00 00 04|"; within:4; distance:4; \

content:"|00 00 00 00|"; depth:4; offset:8; \

)

alert tcp $EXTERNAL_NET any -> $HOME_NET 111 \

(flow:to_server,established; \

content:"|00 01 86 A0|"; depth:4; offset:16; \

content:"|00 00 00 01|"; within:4; distance:4; \

content:"|00 00 00 00|"; depth:4; offset:8; \

)

alert udp $EXTERNAL_NET any -> $HOME_NET 111 \

(content:"|00 01 86 A0|"; depth:4; offset:12; \

content:"|00 00 00 01|"; within:4; distance:4; \

content:"|00 00 00 00|"; depth:4; offset:4; \

)

FIGURE 7.2: Signatures of Snort for RPC Traffic.
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Appendix A

8.1 The IXP1200 Network Processor Overview

The IXP1200 is a device that is ideally suited for network elements. It intergrates seven microproces-

sor cores, with twenty four independent threads of execution on a single chip (Figure 8.1). The IXP1200

consists of a StrongARM general purpose processor and six microengines. The microengines are RISC

processors with an entirely new instruction set, well suited to high-speed data manipulation and move-

ment. Each microengine intergrates four independent hardware threads with accompanying logic to

manage them and a large register set. The IXP1200 is able to interface with PCI, SRAM, SDRAM and

IX buses. The IX bus is the high speed data flow interface to the IXP1200 and is used for interconnect-

ing IXP1200 chips and for packet I/O. There are also 4 Kbytes of on-chip RAM, called scratchpad, I/O

buffers and on-chip queues for optimizing external memory accesses (Figure 8.2).
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FIGURE 8.1: The IXP1200 chip (Taken from Microprocessor Report, Volume 13, Number 12).

8.1.1 Microengines

These compact RISC cores, are fully programmable 32-bit engines with a five stage execution pipeline,

a large register set and hardware multithreading. Hardware multithread support allows four seperate pro-

grams to share execution time on a microengine. The overhead associated with switching contexts is a

maximum of one cycle (however this overhead can be eliminated with a deferred instruction).

8.1.2 An Immense Amount of Registers

Each microengine has 128 general purpose registers (GPRs) and 128 transfer registers and a set of

control and status registers (CSRs). All are 32-bits wide and are single-ported to reduce circuit com-

plexity. From the 128 transfer registers, half of them are SDRAM transfer registers and the other half of

them are SRAM transfer registers. These transfer registers are further divided into 32 read and 32 write

transfer registers.

All accesses to SRAM and SDRAM use the transfer registers. ALU operations use the GPRs but in

contrast to other architectures, transfer registers can also be used as source or destination operands. Thus,

it is not required to copy values from transfer registers to GPRs to perform common ALU operations
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FIGURE 8.2: The IXP1200 Intergrates Seven Microprocessor Cores on One Chip (Taken from Microprocessor

Report, Volume 13, Number 12).

making the programming task easier.

As you may have observed there are no transfer registers for the scratchpad memory. That is because

the IXP1200 uses the SRAM instruction (and consequently SRAM registers) not only for accessing

SRAM but also to access the scratchpad memory, the CSRs and the receive/transmit buffers for packet

I/O.

8.1.3 Hardware Multithreading

One of the most fascinating feautures of the IXP1200 is the hardware multithreading. Hardware

multithreading gives the processor the opportunity to hide the long latencies of memory accesses by

switching contexts with other threads. This context switching is performed by special hardware logic

and requires minimal programming effort.

For better understanding of this feature, we give a simple example. The microengine instruction set

has an instruction for reading from off-chip SDRAM. The hardware multithreading feauture can be

invoked by appending an optional token to the instruction:

SDRAM [read, xfer2, addr_sdram, 2], ctx_swap
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In a nutshell, this tells a microengine to read two quad-words (four 32-bit words) from the SDRAM

address addr sdram and store the values in four contiguous registers starting at register $$xfer2. The

final token, ctx swap, permits the thread arbitrer to pass control to another thread in this microengine

until the data from memory are transfered to the destination registers. In effect, this thread will block in

this line until the memory operation is complete.

The inquiring reader will observe that this is event-driven programming with the events managed

automatically in hardware. The thread arbitrer of each microengine is able to suspend execution of any

thread, if instructed so by an optional token, until an event occurs that signifies the completion of the

operation. The instruction set of the microengines has similar instructions for accessing and the other

types of internal or external memories and buffers. Such memories are the SRAM and the scratchpad

memory as well as the receive and transmit buffers for packet I/O (RFIFO and TFIFO).

A common operational scenario of a network element is to store temporarily the analyzed packet into

SDRAM memory while analyzing the headers or another part of the packet. This scenario is particularly

suited for context swapping and the reason is explained with an example. Suppose that you implement

a NIPS using the IXP1200 chip. A common task of a NIPS is to examine the nested headers of the

packet that is accomplished by reading several bytes of the data in sequence. The network processor

programmer can stack several read operations like the one described previously and append the ctx swap

token only in the last instruction. The thread arbitrer of the microengine will wake up the thread and

resume execution only after the last memory transfer is complete. Meanwhile, while the thread is waiting

for the memory accesses to complete, the other threads of the microengine can take control and perform

useful work.

Similarly to the ctx swap token, there are other tokens that provide additional efficiencies. For in-

stance, the SDRAM instruction has an optimize mem token that instructs the microengine to append

these requests not in the default queue for the SDRAM memory accesses but to a pair of queues that

distinguish between even and odd memory banks. Without deeping into details, this feature saves a few

clock cycles and is near transparent to the programmer (other than appending the optimize mem token).

8.1.4 Hash Unit

The IXP1200 chip intergrates circuitry that implements a polynomial hash engine. The microengine

instruction set contains instructions for hashing one to three values at once, and the values can be 48-



8.2. TYPICAL PACKET DATA FLOW IN THE IXP1200 89

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine 1

Microengine 0

StrongARM Core
SRAM
Unit

SDRAM
Unit

Rx FIFO Tx FIFO

Scratchpad RAM

Hash Unit

FBI Unit

IXP1200 Network Processor

2 x 1 GB

Ethernet MAC

8 x 100 MB

Ethernet MAC

IX Bus

FIGURE 8.3: Typical packet data flow in the IXP1200.

or 64-bits long. A microengine initiates a hash operation by writing a contiguous set of SRAM transfer

registers with the data to be used to generate the hash index and then executing the hash instruction.

8.1.5 Internal Buses

The connection of the functional units of the IXP1200 is made by high-speed, non-blocking internal

buses. Buses interconnect the microengines, the scratchpad memory, the hash engine, and other internal

structures. In many cases there are seperate read and write buses allowing simultaneous transfers across

them. Furthermore, several functional units of the IXP1200 have their own DMA engines, that are

transparent to the programmer, but serve as hardware DMA controlers to move blocks of data between

the functional units. The combination of the multiple independent buses and DMA engines ensure that

external memory, not internal bus bandwidth, is the bottleneck for data throughput.

8.2 Typical Packet Data Flow in the IXP1200

Here, we give a simplified description of how a packet would be processed in a ’typical’ application.

Figure 8.3 shows the functional units of the IXP1200. The following steps covers the packet data flow

through the hardware:
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1. The Media Access Control (MAC) device receives the data. A MAC is a piece of hardware external

to the IXP1200 that converts some physical media type to chunks of 64 bytes, called mpackets.

2. The ready bus sequencer, which is a programmable state machine on the IXP1200, periodically

captures the ”ready flags” (MAC FIFO status indication) from each of the MAC devices. When

one MAC device has at least one mpacket’s worth of data, the ready bus sequencer updates the

receive ready flags. These flags serve to indicate to the microengines that one of the ports requires

attention.

3. A microengine instructs the IX bus unit to transfer the mpacket from the MAC with the receive

ready flag set, and store it in the receive FIFO (RFIFO). The IX bus unit takes care of the transfer

and once the transfer is complete the microengine is notified.

4. The microengine instructs the SDRAM unit to move the packet from the RFIFO to SDRAM.

5. This procedure is repeated until all mpackets of the actual packet are processed.

6. After the packet has been reassembled into SDRAM memory, a microengine transfers a portion of

the packet (usually the first few bytes) into its transfer registers. Then, some sort of classification

is accomplished and the packet is probably modified. Next, if necessary, the microengine writes

the modified bytes of the packet to SDRAM.

7. Finally the packet must be transmitted out of the IXP1200. A microengine checks the trans-

mit ready flags of the destination MAC device. When the destination device is able to receive

data from the IXP1200, the microengine requests from SDRAM to transfer a chunk of data from

SDRAM to the transmit FIFO (TFIFO). When the transfer is complete, the SDRAM unit notifies

the microengine.

8. The microengine instructs the IX bus unit to move the data from the TFIFO to the appropri-

ate MAC device. Like the receive process, the transmission process must repeat itself for each

mpacket in the outgoing packet.
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1 .local addr $sram_data $$sdram_data

2 immed[addr, SRAM_ADDR]

3 sram[read, $sram_data, addr, 0, 1], ctx_swap

4 alu[$$sdram_data, $sram_data, -, 10]

5 immed[addr, SDRAM_ADDR]

6 sdram[write, $$sdram_data, 0, 1], ctx_swap

7 .endlocal

FIGURE 8.4: Microcode Example.

8.3 Programming Languages

There are two possible ways of programming the IXP1200, microcode and microengine C [17]. Mi-

crocode is analogous to the assembly language of a general-purpose processor, and microengine C is

analogous to a third generation language like C.

By definition, assembly language is designed to match the underlying hardware – each assembly

language statement corresponds directly to a machine instruction. Unfortunately, because microengines

are low-level devices, the instruction set is designed to be convenient for hardware designers, not to be

convenient for programmers. As a consequence, programming in assembly language can be tedious, and

is prone to errors.

On the contrary, microengine C is very similar to the classic C language. It offers type safety, pointers

to memory, and functions but it is less efficient than assembly. Because we wanted to implement our

system as efficiently as possible we decided to follow the ”hard-way” – assembly language.

To illustrate some of the differences in complexity between programming in microcode and micro-

engine C, we present two versions of the same program. Figure 8.4 presents the microcode version while

Figure 8.5 presents the corresponding microengine C version. In this example, we read the contents of

SRAM address SRAM ADDR , we substract 10 from the value, and then we store this new value on

SDRAM address SDRAM ADDR.

8.4 Execution and Development Environment

Digenis executes in either simulation mode, under the control of the transactor, or in hardware mode,

on the IXP1200 Ethernet Evaluation Board (IXP1200EEB). In simulation mode, the Developer Work-
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1 __declspec(sram) long *sram_data = (long *)SRAM_ADDR;

2 __declspec(sdram) long long *sdram_data = (long long *)SDRAM_ADDR;

3 *sdram_data = (long long)(*sram_data - 10);

FIGURE 8.5: Microengine C Example.

bench is used as the graphical user interface to control development, execution, debugging, and statistics

gathering. On the contrary, in hardware mode, the VERA development and runtime environment is used

[19, 18].

8.4.1 Simulation Mode

A way to evaluate Digenis is with the use of the transactor. The transactor is a cycle and data

accurate software model of the IXP1200 microengines, memory, buses and peripherals. The transactor

runs under control of the Developer Workbench which also provides an IX Bus device simulation tool

that generates network traffic streams onto the IX Bus interface of the transactor.

We used the Intel-supplied development environment on a PC running the Windows OS. This is the

first step towards developing an application to run on the IXP1200. First, you verify that your application

does not have obvious flaws using the Developer Workbench and after that, you take the next step that

is to try to run the application on real hardware.

Figures 8.6 and 8.7 show the configuration of the Gigabit Ethernet and Fast Ethernet ports of the

IXP1200EEB used during debugging and evaluation of the DigenisNP. As you observe, we have set a

huge value to the receive buffer size. We have done this, because, due to a bug in the simulator, if this

buffer overflows, the simulation fails.

8.4.2 Hardware Mode

As mentioned before, in this mode Digenis executes on the the IXP1200EEB. This board consists of an

Intel IXF440 Multiport 10/100 Mbps Ethernet Controller, an Intel IXF1002 Dual Port Gigabit Ethernet

Controller, 32 Mbytes of SDRAM, 2 Mbytes of SRAM and a serial port. As shipped from the factory,

the IXP1200EEB is configured to operate as a stand-alone system in a supplied passive PCI backplane

connected to a simple 100 Mbps Ethernet line card. Due to bugs contained in the software provided by

Intel we decided to use an open source software called VERA.
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FIGURE 8.6: Configuration of Gigabit Ethernet Port.

FIGURE 8.7: Configuration of Fast Ethernet Port.

VERA requires an active PCI backplane, so, we had to reconfigure the board. Specifically, we changed

the board jumpers so that it neither generated the global PCI reset signal at power-up nor acted as the PCI

arbitrer – both of these functions are performed by motherboards. We also used the firmware supplied by

VERA (and programmed it into the on-board Flash EEPROM) which assumes that the board is installed
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gcc
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FIGURE 8.8: VERA’s IXP1200 Toolchain.

on a PC – on power-up it requests a region of the PCI bus address space from the BIOS, opens a window

from the PCI bus to the SDRAM so that the Pentium can download code directly onto the board. The

firmware jumps to an entry point in this downloaded code when it receives a signal from the Pentium.

For our prototype, we used the Linux OS for the development environment. We used the GNU C tools

for the Pentium and StrongARM processors. The Pentium compiler is native, while the StrongARM

compiler is a cross-compiler supplied by the VERA project. We used the Intel-supplied microcode

assembler to assemble the IXP1200 microcode. We ran the microcode assembler on the WINE Windows

emulation environment on Linux. The toolchain to create an executable image for the IXP1200 is shown

in Figure 8.8.

We have used a device driver for the IXP1200EEB implemented in the VERA project in the form of

a Linux kernel module. The driver exports a /dev/vera character device. Through its ioctl interface, this

device is used to download code from the user space to the IXP1200EEB and give access to the memory

and registers of the board during debugging. Figure 8.9 illustrates how the sgo tool loads and runs an

executable image on the IXP1200.
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FIGURE 8.9: Running an Executable Image on the IXP1200EEB.
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9
Appendix B

9.1 Ethernet Data Rates

Because there is a general misunderstaing concerning the packet (frame) and bit rates that Ethernet

supports, we believe it is a good idea to list them here. So, for example the expression ”IXP1200 is

capable of receiving traffic at 1 Gbps” is translated into ”IXP1200 is capable of receiving traffic at 760

Mbps”.

97
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100 Mbps Ethernet 1 Gbps Ethernet

Bit Time 10 ns 1 ns

Byte Time 80 ns 8 ns

Interframe Gap 960 ns 96 ns

TABLE 9.1: Timing for Ethernet Packets.

100 Mbps Ethernet 1 Gbps Ethernet

64-bytes Packets 148.8 Kpps 1.48 Mpps

1518-bytes Packets 8127 pps 81.2 Kpps

TABLE 9.2: Maximum Packet Rates for Ethernet.

100 Mbps Ethernet 1 Gbps Ethernet

64-bytes Packets 76.1 Mbps 760 Mbps

1518-bytes Packets 98.6 Mbps 986 Mbps

TABLE 9.3: Maximum Bit Rates for Ethernet.
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