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Abstract

Although most astrophysical objects rotate, whether the universe itself rotates or
not is as yet unknown. Is is conceivable that some observational data, such as the
large-scale asymmetry observed in the CMB as well as several anomalies detected
on large angular scales, could be attributed to rotation. Nevertheless, the issue
is still open to discussion. In this thesis, we examine the effect the presence of a
magnetic field has on vorticity in a Friedman universe during the radiation period.
We select a Friedman background with a weak random B-field and perturbe it. We
derive the linear form of the vorticity evolution equation and analyze what effect the
matter and magnetic energy densities, as well the magnetic tension have on vorticity
production and survival. We find that both the matter and the magnetic pressure
help vorticity to survive, acting against its reduction caused by the expansion of the
universe. We then find a linear analytical solution for the evolution of the vorticity
vector during the radiation era. The solution shows that the presence of a magnetic
field reduces the standard decay rate of the vorticity and in the long term tends to
keep it constant. Finally, we examine the effect of magnetic perturbations on vortex-
like distortions in the density distribution of the radiative matter and conclude again
that the B-field does help the latter to survive.
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1 Introduction

Rotation is an ubiquitous phenomenon in the physical world. From the microscopical scale
and the atom to the macroscopical scale and the whole universe, various different objects
spin. Electrons orbit around the nucleus, satellites orbit planets, planets revolve around a
star, planetary systems orbit the central nucleus of a galaxy. Satellite galaxies, rotating clus-
ters of stars and galaxies, e.t.c are also good paradigms. Although the question of a rotating
universe emerges then effortlessly, the research that has been done to answer the global rota-
tion subject is very little and rare. However, over the years, new experimental data, mainly
from the detailed study of the cosmic microwave background radiation (CMB), gave rise to
new approaches to the cosmic rotation unanswered question.

The first idea of a rotating universe should be attributed to G.Gamow, who claimed that the
rotation of galaxies is due to the turbulent motion of masses in the Universe. Since a rotating
universe is physically allowed as a solution to the Einstein field equations, Goedel proposed a
homogeneous rotating universe. The first observational evidence of global rotation was pre-
sented by Birch. He studied the position angles and polarisation of classical high-luminosity
double radio-sources and found that the difference between the position angle of the source
elongation and of the polarisation are correlated with the source position in the sky. It was
argued that such an assymetry can also be explained by the existence of a universal vorticity.
However, Barrow, Juszkiewicz and Sonoda found two years later that the asymmetries in
radio-source orientations measured by Birch cannot be due to universal rotation as a uni-
versal vorticity at the level claimed by Birch is incompatible with the existing observations
of the microwave background radiation. They assumed spatially homogeneous vorticity and
constraint it based on the current observations of the CMB dipole and quadrupole moments.
Some years later, Nodland and Ralston investigated the correlation between the direction
and distance to a galaxy and the angle between the polarisation direction and the major
galaxy axis. They found an effect of a systematic rotation of the plane of polarisation of elec-
tromagnetic radiation. A different explanation to these data was then proposed by Obukhov,
Korotky and Hehl and was that of a global cosmic rotation. This explanation was within
conventional general relativity and was not in conflict with other observational data. The ro-
tation of the polarisation of an electromagnetic wave is a typical effect of the cosmic rotation
and these new data by Nodland and Ralston provided a substantially improved estimate of
the magnitude and direction of cosmic vorticity.

The basic method to estimate the amount of cosmic vorticity and test the various rotat-
ing models of the Universe is based on the experimental data for the CMB. Observations of
the dipole and quadrupole fluctuations in the microwave background radiation are compati-
ble with a global rotation. These include low quadrupole amplitude (Efstathiou), anomalies
on large angular scales, curious planarity and alignment of the quadrupole and octopole (De
Oliveira-Costa) and a localised source of non-Gaussianity in the form of a very cold spot
on the sky (Vielva,Cruz, et al.). Of particular interest also was a remarkable asymmetry in
large-scale power measured in the two hemispheres of a specific reference frame (Eriksen, et
al., Hansen et al.). Recent analyses of the first-year WMAP data claim large-scale asymme-
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try and anisotropy of the CMB fluctuations consistent with an angular momentum of the
Universe. Even more recent studies of Kashlinsky, et al, on the fluctuations in the cosmic
microwave background have revealed a coherent bulk flow of clusters of galaxies on a large
cosmic scale. Invoking a primordial rotation in models of the Universe can account for the
observed peculiar velocities. Furthermore, models with global rotation exhibit a spiral pat-
tern of temperature anisotropy due to handedness of the geodesics propagating through an
anisotropic spacetime. Open models can account for the hot spots of the CMB while closed
models exhibit a pure quadrupole pattern.

Apart from the experimental data for the CMB radiation, a primordial rotation is also
supported by the close relation between the latter and the angular momentum of a wide
range of celestial objects. Specifically, cosmological models which also contain a term involv-
ing the primordial spin of the universe can possibly impart rotation to galaxies, clusters,
stellar systems, etc. and give rise to the observed rotation angular momenta of the latter.
Recent cosmological models of a rotating homogeneous and isotropic Universe (Godlowski,
Szydlowski, Flin, et al.) predict the presence of a minimum in the relation between the mass
of an astronomical object and its angular momentum. Testing the agreement comparing it
with empirical relations between masses of structures and minimal angular momenta pro-
vides another way of estimating the amount of cosmic rotation. It is worth mentioning here
that closely related to cosmic vorticity is according to Biermann the generation of primordial
magnetic fields.

The next question that arises regarding a rotating Universe is what could source this cosmic
rotation. Since the experimental data on the CMB support an isotropic and homogeneous
Universe, vorticity generation could be obtained applying perturbation theory around a
Friedmann-Robertson-Walker background. There are different types of perturbations, classi-
fied as scalar, vector and tensor perturbations, depending on the way they transform on three
dimensional hypersurfaces. At linear order, vorticity cannot be constructed from scalar quan-
tities and the vorticity tensor constructed from vector perturbations is sourced by anisotropic
stress and decays in its absence due to the expansion of the Universe. Consequently, vorticity
can be generated at second order by first order scalar and vector perturbations. While at lin-
ear order the different types of perturbations decouple, at second order it is this coupling that
exists that can source vorticity generation. In fluid dynamics, vorticity is sourced by entropy
gradients. Christopherson, et al. showed that at second order gradients in the non-adiabatic
pressure perturbation coupled to gradients in the density can source vorticity. These entropy
perturbations arise in the case of a single fluid with non-zero intrinsic entropy or in the case
of multiple fluids stemming from the mixing of the fluids even if there exists no energy and
momentum transfer between them (this could source vorticity as well). A possible observa-
tional signature of vorticity in the early universe is that of the B-mode polarisation of the
CMB radiation. At linear order, only tensor perturbations can produce B-mode polarisation
since scalar perturbations will produce only E-modes and vector perturbations will become
subdominant during inflation and will decay with the expansion of the Universe. However,
based on what was mentioned above, at second order even density perturbations could gen-
erate vorticity and thus lead to B-mode polarisation large enough to be observed by future
CMB experiments such as Planck. In interstellar medium, vorticity production in a poten-
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tial velocity field (spherical expansion wave) could be generated from shear (not significant
amount) or the baroclinic term (non-parallel gradients of pressure and density) which is more
effective. In addition, spatial gradients of geometry and electromagnetic sources could source
large-scale vorticity. As an example, in a strongly coupled electromagnetic plasma, angular
momentum exchange between ions, electrons and photons in an expanding spacetime geom-
etry could lead to the formation of large scale vortices. Thus, inhomogeneous geometry and
electromagnetic sources could generate vorticity through both divergence-free (solenoidal)
and compressive (curl-free) forcing. The former is more efficient due to the stronger tangling
of the magnetic field.

The presence of a magnetic field is closely related to vorticity generation. Even in the absence
of an initial rotation, inhomogeneities in the magnetic field or non-zero spatial derivative of
the curvature of the magnetic field lines could source rotation. The effect of magnetic fields
on vorticity generation and survival consists the basic subject of this thesis.

We begin with a general introduction in relativistic cosmological media and their descrip-
tion within the 1 + 3 covariant formalism. This includes how the gravitational field, matter
kinematics and conservation laws are described in this formalism. Since the basic subject
in this thesis is the magnetic field, in the next section we provide the general formalism
for describing the electromagnetic field, namely Maxwell’s equations. In the fourth section,
we describe non-linear ideal magnetohydrodynamics while in the fifth section we provide a
brief introduction to Friedman models. As stated above, rotation could be generated using
perturbation theory around a Friedman model background. This is why, in the sixth section,
we give the basic characteristics and equations of perturbed Friedman models.

The final section includes all the new work that has been done in this thesis.
We discuss the effect of the presence of a magnetic field in a Friedman Universe during
the radiation period. We choose as a background a Friedman model with a weak random
magnetic field (< B2 >6= 0, < Ba >= 0, B2 << ρ). We perturb this model by adding a
perturbation in the magnetic field (< Ba >6= 0). We examine how this affects vorticity
production and survival. Firstly, we derive the linear vorticity evolution equation. This is
our basic equation from which we can get information about what could or could not source
cosmic rotation. We analyze the various terms of this equation, which have to do with matter
and magnetic energy densities as well as the magnetic tension of the field. What we find is
that both matter and magnetic pressure could generate vorticity. They both contribute to
the survival of the vorticity, acting against its decay, due to the expansion of the Universe
in the non-magnetized case. We then find a linear analytical solution for the vorticity vector
during the radiation period. This solution indicates that the presence of a magnetic field
reduces the decay rate of the vorticity that is otherwise expected and in the long term tends
to keep it constant. In the last paragraph of this section, we examine the effect of magnetic
perturbations on vortex-like distortions in the density distribution of the radiative matter.
Our main goal is to see if the magnetic field will help them to survive or not. The answer
turns out to be affirmative.
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2 Relativistic cosmological media

2.1 The 1 + 3 covariant description

The covariant formalism is an approach to general relativity, which uses the kinematic quan-
tities of the fluid, its energy-momentum tensor and the gravito-electromagnetic parts of
the Weyl tensor, instead of the metric. In this approach, we employ the Ricci and Bianchi
identities, applied to the 4-velocity vector.

2.2 Local spacetime splitting

We consider a general spacetime with a Lorentzian metric gab of signature (−,+,+,+) and
introduce a family of fundamental observers living along a time-like congruence of worldlines
tangent to the 4-velocity vector 1

ua =
dxa

dτ
, (2.2.1)

where τ is the observer’s proper time and uaua = −1. This fundamental velocity field in-
troduces a local 1 + 3 ”threading” of the spacetime into time and space. The vector ua
determines the time direction, while the tensor hab = gab + uaub projects orthogonal to the
4-velocity field into what is known as the observer’s instantaneous rest space at each event.
In the absence of rotation, the 4-velocity vector ua is hyperface-orthogonal and hab is the
metric of the 3-dimensional spatial sections orthogonal to ua.

The vector field ua and its tensor counterpart hab allow for a unique decomposition of every
spacetime quantity into it’s irreducible timelike and spacelike parts. By employing ua and
hab, we define the covariant time derivative and the orthogonally projected spatial derivative
of any given tensor field Sab···

cd··· according to

Ṡab···
cd··· = ue∇eSab···

cd··· , (2.2.2)

and

DeSab···
cd··· = he

sha
fhb

phq
chr

d · · · ∇sSfp···
qr··· . (2.2.3)

1 Latin indices vary between 0 and 3 and refer to arbitrary coordinate frame and Greek indices
vary from 1 to 3. We use geometrized units with c = 1 = 8πG, which means that all geometrical
variables have physical dimensions that are integer powers of length.
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2.3 The Levi-Civita tensor

In three dimensions, the Levi-Civita symbol is a totally antisymmetric pseudotensor and is
defined as follows :

εabc =


1 if (i,j,k) is an even permutation

−1 if (i,j,k) is an odd permutation

0 if any index repeated

where i, j, k = 1, 2, 3.

The effective volume element in the observer’s instantaneous rest space is given by the
3-dimensional Levi-Civita symbol defined above. The latter can be derived by contracting
the spacetime volume element, which is given by the 4-dimensional Levi-Civita tensor ηabcd,
along the time direction :

εabc = ηabcdu
d . (2.3.1)

The totally antisymmetric pseudotensor ηabcd has η0123 = [−det(gab)]−1/2, it is covariantly
constant and satisfies the identities

ηabcdη
efpq = −4!δ[a

eδb
fδc

pδd]
q , (2.3.2)

where δa
b is the Kronecker symbol.

It can be easily proved that for the also totally antisymmetric tensor εabc we have the iden-
tities

εabcu
a = 0 , (2.3.3)

and

εabcε
def = 3!h[a

dhb
ehc]

f . (2.3.4)

It also holds that Dchab = Ddεabc = 0, while

ε̇abc = 3u[aεbc]dA
d , (2.3.5)
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where Aa = u̇a is the 4-acceleration vector (see §2.6).

2.4 The gravitational field

In general theory of relativity, gravity is an expression of the geometry of the spacetime.
Matter determines the spacetime curvature while the latter controls the motion of the matter.
This interpretation is given clearly through the Einstein field equations :

Gab = Rab −
1

2
Rgab = Tab − Λgab, (2.4.1)

where Gab is the Einstein tensor, Rab = Rc
acb is the spacetime Ricci tensor (with trace R), Tab

is the total energy-momentum tensor of the matter fields and Λ is the cosmological constant.

The Ricci tensor Rab describes the local gravitational field that is produced by the pres-
ence of matter there. The non-local, long-range gravitational field, conveyed via gravitational
waves and tidal forces, is decribed by the Weyl curvature tensor Cabcd. This splitting of the
gravitational field in local and non-local components is given by the decomposition of the
Riemann tensor

Rabcd = Cabcd +
1

2
(gacRbd + gbdRac − gbcRad − gadRbc)−

1

6
Rgacgbd − gadgbc , (2.4.2)

where Cabcd is the Weyl curvature tensor which shares all the symmetries of the Riemann
tensor and is also trace-free, Cc

acb = 0. Relative to the fundamental observers, the conformal
curvature tensor decomposes further into it’s irreducible electric

Eab = Cabcdu
cud , (2.4.3)

and magnetic

Hab =
1

2
εa
cdCcdbeu

e , (2.4.4)

parts. Then, we have the decomposition

Cabcd = (gabqpgcdsr − ηabqpηcdsr)uqusEpr − (ηabqpgcdsr + gabqpηcdsr)u
qusHpr, (2.4.5)

where gabcd is defined as follows :
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gabcd = gacgbd − gadgbc. (2.4.6)

The spatial, symmetric and trace-free tensors Eab and Hab are known as the electric and
magnetic Weyl components. The electric part generalizes the tidal tensor of the Newtonian
gravitational potential while the magnetic part has no Newtonian analogue. However, both
tensors must be present for the propagation of gravitational waves.

The once-contacted Bianchi identities act as the field equations for the Weyl tensor and
give

∇dCabcd = ∇[bRa]c +
1

6
gc[b∇a]R. (2.4.7)

2.5 Matter fields

With respect to the fundamental observers, the energy-momentum tensor of a general im-
perfect fluid decomposes into it’s irreducible parts as

Tab = ρuaub + phab + 2q〈aub〉 + πab , (2.5.1)

where ρ = Tabu
aub is the matter energy density, p = Tabh

ab/3 is the effective isotropic
pressure of the fluid (the sum between the equilibrium pressure and the associated bulk
viscosity), qa = −habTbcuc is the total energy-flux vector relative to ua and πab = h〈a

chb〉
dTcd

is the symmetric and trace-free tensor that describes the anisotropic pressure of the fluid. 2

It follows that qau
a = πabu

a = 0.

When the fluid is perfect, there is a unique hydrodynamic 4-velocity, relative to which qa, πab
are identically zero and the effective pressure reduces to the equilibrium one. As a result,

Tab = ρuaub + phab . (2.5.4)

2 Angled brackets denote the symmetric and trace-free part of spatially projected second-rank
tensors and the projected part of vectors according to

S〈ab〉 = h〈a
chb〉

dScd = h(a
chb)

dScd −
1

3
hcdScdhab , (2.5.2)

and

v〈a〉 = ha
bvb , (2.5.3)

respectively (with S〈ab〉h
ab = 0).
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If we additionally assume that p = 0, we have the simplest case of pressure-free matter,
namely ’dust’. In cosmology, dust also includes baryonic matter (after decoupling) and cold
dark matter. Otherwise, we need to determine p as a function of ρ and potentially of other
thermodynamic variables. In general, the equation of state takes the form p = p(ρ, s), where
s is the specific entropy. Finally, for a barotropic medium we have p = p(ρ) = wρ, with
w = constant being the barotropic index of the fluid and c2

s = (∂ρ/∂p)s giving the square of
the associated adiabatic sound speed.

Note that, when dealing with a multi-component fluid, or when allowing for peculiar ve-
locities, one needs to account for the velocity ’tilt’ between the matter components and the
fundamental observers. Here, we will consider a single-component fluid and we will assume
that the fundamental observers move along with it.

Taking the trace of equation (2.4.1), one is led to the relation R = 4Λ − T , with T = T aa .
Then, Einstein equations cab be written as

Rabu
aub =

1

2
(ρ+ 3p)− Λ (2.5.5)

hbaRbcu
c = −qa (2.5.6)

hcah
d
bRcd =

1

2
(ρ− p)hab + Λhab + πab. (2.5.7)

It worths noting that the term ρ + 3p is the right hand side of equation (2.5.5) determines
the total gravitational energy density of the matter. Matter with ρ + 3p > 0 is conven-
tional matter and attracts gravitationally. On the other hand, matter with ρ + 3p > 0 is
non-conventional (including dark energy) and repulses gravitationally. We will meet again
the total gravitational energy of the matter in Raychaudhuri’s formula (2.6.3) described in
paragraph 2.6 below.

2.6 Covariant kinematics

The observer’s motion is characterized by the irreducible kinematical quantities of the ua-
congruence, which emerge from the covariant decomposition of the 4-velocity gradient

∇bua = σab + ωab +
1

3
Θhab − Aaub, (2.6.1)

where σab = D〈bua〉, ωab = D[bua], Θ = ∇aua = Daua and Aa = u̇a = ub∇bua are, respec-
tively, the shear and vorticity tensors, the volume expansion (or contraction) scalar and the
4-acceleration vector. By construction we have σabu

a = ωabu
a = Aau

a = 0. The 4-acceleration
vector Aa represents non-gravitational forces and vanishes when matter moves under gravity
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alone. We can define using the volume scalar Θ a characteristic scale factor a by the relation
Θ = ȧ/a. Then, positive Θ > 0 means expansion of the fluid, while negative Θ < 0 denotes
a contracting fluid. Also, on using the orthogonally projected alternating tensor εabc (with
ε̇abc = 3u[aεbc]dA

d), one defines the vorticity vector ωa = εabcω
bc/2 (with ωab = εabcω

c). The
latter actually defines the rotational axis of the fluid.

We note here that volume scalar represents changes in the volume of the fluid, namely
expansions or contractions, while the effect of the vorticity is to change the orientation of a
given fluid element without modifying its volume or shape. The shear, on the other hand,
changes the shape but leaves the volume unaffected.

The non-linear covariant kinematics are determined by a set of propagation and constraint
equations, which are purely geometrical in origin. Both sets emerge after applying the Ricci
identities

2∇[a∇b]uc = Rabcdu
d , (2.6.2)

to the fundamental 4-velocity vector defined in (2.2.1).

Substituting into (2.6.2) the relation (2.6.1), using decompositions (2.4.2) and (2.4.5), as
well as the auxiliary relations (2.5.5)-(2.5.7), the timelike and spacelike part of the resulting
expression leads to three propagation and three constraint equations.

The first propagation equation is Raychaudhuri’s formula

Θ̇ = −1

3
Θ2 − 1

2
(ρ+ 3p)− 2(σ2 − ω2) +DaAa + AaA

a + Λ, (2.6.3)

which gives the time evolution of the volume scalar Θ. We note here that terms with a neg-
ative sign in the righthand side of equation (2.6.3) like square magnitudes of volume scalar
and shear Θ2, σ2 as well as matter with total gravitational energy ρ + 3p > 0 leads to a
reduction in the expansion rate of the fluid or in an acceleration of the fluid contraction.
On the other hand, terms with a positive sign like the square magnitudes of vorticity and
acceleration ω2, AaA

a as well as non-conventional matter with ρ + 3p < 0 accelerate the
fluid’s expansion or decelerate its contraction. Finally, the term DaAa has not a definite sign
so its result is not explicit.

The second propagation equation is the shear propagation equation

σ̇<ab> = −2

3
Θσab − σc<aσcb> − ω<aωb> +D<aAb> − Eab +

1

2
πab, (2.6.4)

which actually describes kinematical anisotropies. It is clear that equation (2.6.4) is a rather
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complicated evolution equation. They only term that has a distinct result on shear is the term
including the volume scalar Θ which states that expansion of the fluid Θ > 0 acts against
the increase of the shear, while fluid’s contraction Θ < 0 supports kinematical anisotropies.

Finally, we have the vorticity propagation equation, which will be our basic equation under
consideration in the following sections,

ω̇〈a〉 = −2

3
Θωa −

1

2
curlAa + σabω

b . (2.6.5)

We note that curlva = εabcD
bvc for any orthogonally projected vector va, which means that

Dbωab = curlωa.

The first term in the righthand side of equation (2.6.5) states that the expansion of a fluid
(Θ > 0) acts against the vorticity and increases its decay rate while a contracting fluid
(Θ < 0) supports its enhancement.

In addition, the terms −2Θωa/3, σabω
b on the righthand side of equation (2.6.5) include

only the kinematical quantities Θ, σab. As a result, they represent inertial Coriolis forces
driven by changes in the relative motion between two neighbouring fundamental observers.
On the other hand, the term with the curl of the 4-acceleration vector Aa includes external
forces that act on the fluid.

Finally, from the form of equation (2.6.5) we can see that in the absence of an initial vorticity
vector ωa the terms −2Θωa/3 and σabω

b could not generate vorticity. Nevertheless, once an
initial rotation of the fluid is created, these terms have an effect on the vorticity vector. For
example, we have stated before that in the absence of shear stresses of the fluid and with
a zero 4-acceleration vector the term −2Θωa/3 denotes that an expansion of the fluid does
not enhance vorticity but acts against it. On the other hand, only the term −curlAa/2 could
act as a possible source of rotation.

Equation (2.6.5) is going to be the focal point of this thesis. We will examine to linear
order the form of the term −curlAa/2 in the presence of a magnetic field in the fluid, where
we have the act of Lorentz force on the fluid.

The spacelike component of (2.6.2) results to a set of three additional constraints. These
include the shear constraint

Dbσab =
2

3
DaΘ + curlωa + 2εabcA

bωc − qa, (2.6.6)

the vorticity-divergence identity
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Daωa = Aaω
a, (2.6.7)

and the magnetic Weyl equation

Hab = curlσab +D<aωb> + 2A<aωb>. (2.6.8)

2.7 Conservation laws

The twice contacted Bianchi identities guarantee the conservation of the total energy mo-
mentum tensor, namely that ∇bTab = 0. This condition splits into a timelike and spacelike
part, which respectively lead, when dealing with an general imperfect fluid, to the energy
density conservation law

ρ̇ = −Θ(ρ+ p)−Daqa − 2Aaqa − σabπab, (2.7.1)

and the momentum energy conservation law

(ρ+ p)Aa = −Dap− q̇<a> −
4

3
Θqa − (σab + ωab)q

b −Dbπab − πabAb. (2.7.2)

We note here that ρ + p describes the relativistic total inertial mass of the medium. The
latter indicates that in general relativity the pressure of the matter contributes to the total
inertial mass in the same manner as the matter density does.

3 Electromagnetic fields

The covariant description of electromagnetic fields in addition to its inherent mathematical
compactness and clarity, provides a physically intuitive fluid description for the Maxwell
field. This is represented as an imperfect fluid, with properties specified by its electric and
magnetic components.

3.1 Electric and magnetic components

The Maxwell field is covariantly determined by the antisymmetric electromagnetic (Faraday)
tensor Fab, which relative to a fundamental observer decomposes into an electric and magnetic
component as
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Fab = 2ua[Eb] + εabcB
c , (3.1.1)

where Ea, Ba are respectively the electric and magnetic field experienced by the fundamental
observer and are defined by

Ea = Fabu
b , (3.1.2)

Ba =
εabcF

bc

2
. (3.1.3)

It follows that Eau
a = Bau

a = 0, which ensures that both Ea and Ba are space-like vectors.

The Faraday tensor also determines the energy-momentum tensor of the Maxwell field by
means of

T
(em)
ab = −FacF c

b −
1

4
FcdF

cdgab . (3.1.4)

If we combine the above expression with (3.1.1), we take the irreducible decomposition for

T
(em)
ab relative to the ua-frame

T
(em)
ab =

1

2
(E2 +B2)uaub +

1

6
(E2 +B2)hab + 2L(aub) + Pab , (3.1.5)

where E2 = EaE
a and B2 = BaB

a are the square magnitudes of the two fields, La = εabcE
bBc

is the electromagnetic Poynting vector and Pab is a symmetric, trace-free tensor given by

Pab = P〈ab〉 =
1

3
(E2 +B2)hab − EaEb −BaBb . (3.1.6)

Expression (3.1.5) provides a fluid description of the electromagnetic field and manifests
it’s general anisotropic nature. In particular, the Maxwell field corresponds to an imperfect
fluid with energy density (E2 + B2)/2, isotropic pressure (E2 + B2)/6, anisotropic stresses
given by Pab and an energy-flux vector represented by La. Equation (3.1.5) also ensures that
T (em)
a

a = 0, in agreement with the trace-free nature of the radiation stress-energy tensor.

Finally, we note that putting the isotropic and anisotropic pressure together one arrives
at the familiar Maxwell tensor, which assumes the covariant form

Mab =
1

2
(E2 +B2)hab − EaEb −BaBb . (3.1.7)
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3.2 Maxwell’s equations

We follow the evolution of the electromagnetic field by means of Maxwell’s equations. In
their standard tensor form these are

∇[cFab] = 0 , (3.2.1)

and

∇bFab = Ja , (3.2.2)

where (3.2.1) reflects the existence of a 4-potential and Ja is the 4-current that sources
the electromagnetic field. With respect to the ua-congruence, the 4-current splits into it’s
irreducible parts according to

Ja = µua + Ja , (3.2.3)

with µ = −Jaua representing the charge density and Ja = ha
bJb the spatial current, for

which Jaua = 0.

Relative to a fundamental observer, each one of the Maxwell‘ equations decomposes into
a timelike and a spacelike component. Projecting (3.2.1) and (3.2.2) along to the 4-velocity
vector ua one takes the timelike parts, namely the two propagation equations

Ė〈a〉 = −2

3
ΘEa + (σab + εabcω

c)Eb + εabcA
bBc + curlBa − Ja , (3.2.4)

and

Ḃ〈a〉 = −2

3
ΘBa + (σab + εabcω

c)Bb − εabcAbEc − curlEa , (3.2.5)

while by projecting (3.2.1) and (3.2.2) orthogonal to the 4-velocity vector ua one takes the
spacelike parts, namely the pair of constraints

DaEa + 2ωaBa = µ , (3.2.6)

and
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DaBa − 2ωaEa = 0 . (3.2.7)

Equations (3.2.4)-(3.2.7) represent the 1 + 3 covariant versions of Ampere’s law, Faraday’s
law, Coulomb’s law and Gauss’s law respectively. We note that in addition to the usual ’curl’
and ’divergence’ terms, the expressions (3.2.4 )-(3.2.5) also contain terms generated by the
relative motion of neighbouring observers (with the same 4-velocity) carried by the kinematic
terms in the right-hand side of them. Thus, expression (3.2.6) shows that ρe = −2ωaB

a is
an effective electric charge caused by the relative motion of the magnetic field, while 2ωaE

a

acts as an effective magnetic charge triggered by the relatively moving E-field (see (3.2.7)).
The acceleration terms in (3.2.4) and (3.2.5) , on the other hand, reflect the fact that the
spacetime is treated as a single entity. Finally, according to (3.2.7) the magnetic vector is
not solenoidal unless ωaEa = 0.

3.3 Ohm’s law

The relation between the 4-current and the electric field, as measured by the fundamental
observers, is determined by Ohm’s law. Its simplest from satisfies the covariant form

Ja = µua + ςEa , (3.3.1)

where ς is the scalar conductivity of the medium. As a result, Ohm’s law splits the 4-current
into a time-like convective component and a conducting space-like counterpart. Projecting
(3.3.1) into the observer’s rest space gives

Ja = ςEa . (3.3.2)

This form of Ohm’s law covariantly describes the resistive magnetohydrodynamic (MHD)
approximation in the single-fluid approach. Note that the absence of the induced electric
field from the above reflects the fact that the covariant form of Maxwell’s equations (3.2.4)-
(3.2.7) already incorporates the effects of relative motion. According to (3.3.2), non-zero
spatial currents are compatible with a vanishing electric field as long as the conductivity
of the medium is infinite (for ς → ∞). Thus, at the limit of ideal magnetohydrodynamics
(ideal MHD), the electric field vanishes in the frame of the fluid. On the other hand, zero
electrical conductivity implies that the spatial currents vanish, even when the electric field
is non-zero.
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3.4 Conservation laws

The energy momentum tensor of the electromagnetic field obeys the condition ∇bT emab =
−FabJ b, where Fab is the Faraday tensor defined before in equation (3.1.1) and the quantity
in the right-hand side represents the Lorentz 4-force. Therefore, for charged matter the
conservation of the total energy momentum tensor Tab = Tmab + T emab leads to the relation

ρ̇ = −Θ(ρ+ p)−Daqa − 2Aaqa − σabπab + EaJ a (3.4.1)

giving the energy density conservation law and

(ρ+ p)Aa = −Dap− q̇<a>−
4

3
Θqa− (σab +ωab)q

b−Dbπab−πabAb +µEa + εabcJ bBc (3.4.2)

representing the momentum density conservation law. The last two terms in the right-hand
side of equation represent, in particular, one familiar form of the Lorent force.

The antisymmetry of the Faraday tensor as well as the second of the Maxwell equations
(equation (3.2.2)) guarantee the condition ∇aJa = 0 and thus the conservation law of the
4-current. Then, using the decomposition (3.3.1) one is led to the covariant charge-density
conservation law

µ̇ = −Θµ−DaJa − AaJa. (3.4.3)

This form of charge density conservation indicates that in the absence of spatial currents,
the charge density evolution law depends entirely on the expansion (or contraction) of the
fluid.

4 Non-linear ideal magnetohydrodynamics

4.1 The ideal MHD approximation

We are dealing now with the ideal MHD approximation, which will be under consideration
from now on. For this reason, we describe in the section below its basic characteristics that
will prove very useful in the following sections.
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4.1.1 The energy-momentum tensor of the magnetic field

We consider a general spacetime filled with a magnetized single barotropic fluid of very
high conductivity. As we have already mentioned, Ohm’s law (3.3.2) guarantees that in the
frame of the fundamental observer the electric field vanishes despite the presence of non-zero
currents. Therefore, in the ideal MHD limit the energy momentum tensor of the residual
magnetic field simplifies to

T
(B)
ab =

1

2
B2uaub +

1

6
B2hab + Πab , (4.1.1)

with

Πab =
1

3
B2hab −BaBb . (4.1.2)

Accordingly, the B-field corresponds to an imperfect fluid with energy density ρB = B2/2,
isotropic pressure pB = B2/6 and anisotropic stresses represented by the symmetric and
trace-free tensor Πab.

If we project equation (4.1.2) parallel to the magnetic force-lines (by contracting it with
Bb) we take

ΠabB
b = −2

3
B2Ba . (4.1.3)

Equation (4.1.3) shows that the magnetic field Ba is an eigenvector of the anisotropic stress
tensor Πab, with an eigenvalue −2B2/3. The negative sign shows that the magnetic pressure
along the field lines is negative and this reflects the tension properties of the latter. This
magnetic tension is the reason for the elasticity of the field lines and of their tendency to
remain as“straight” as possible and also to react to any effect that distorts them from equi-
librium.

On the other hand, if we project equation (4.1.2) orthogonal to the magnetic-force lines
(Πabv

b = B2vb/3, where vbBb = 0) we find a positive eigenvalue B2/3, which shows that the
magnetic field exerts a positive pressure orthogonal to its own direction. Thus, neighbouring
magnetic field lines tend to push each other apart.

We will see in the following paragraph 4.3 that Lorentz force splits into two components.
One them is related to the pressure of the B-field mentioned before and the other with the
magnetic tension of the field lines. The latter worths noting since we will see that all the
effects of the magnetic field emerge from one or the other component or from both of them.
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4.1.2 Maxwell’s equations

In the absence of an electric field, Maxwell’s equations reduce to a single propagation formula,
namely the covariant magnetic induction equation

Ḃ〈a〉 = (σab + εabcω
c − 2

3
Θhab)B

b , (4.1.4)

and the following three constraints:

curlBa = Ja − εabcAbBc , (4.1.5)

ωaBa =
1

2
µ , (4.1.6)

DaBa = 0 . (4.1.7)

The right-hand side of (6.4.2) is due to the relative motion of the neighbouring observers and
guarantees that the magnetic field lines always connect the same matter particles. This means
that the field remains frozen-in with the highly conducting fluid. Expression (4.1.5) provides
a direct relation between the spatial currents, which are responsible for keeping the field
lines frozen-in with the matter, and the magnetic field itself. Equation (4.1.6) shows that the
rotating observers will measure a non-zero charge density, triggered by their relative motion,
unless ωaBa = 0. Finally, (4.1.7) demonstrates that in the absence of magnetic monopoles
the field lines remain closed and Ba is a solenoidal vector.

4.2 Magnetic evolution

The magnetic induction equation also provides the evolution law for the energy density of
the field. In particular, contracting (6.4.2) with Ba and then using (4.1.2), we arrive at

(B2). = −4

3
ΘB2 − 2σabΠ

ab . (4.2.1)

For a nearly isotropic fluid the first term in the right-hand side of equation (4.1.2) denotes
that an expanding fluid tends to reduce the energy density of the magnetic field. For example,
in cosmology, this terms reflects that an expanding universe reduces the energy density of
the B-field. The latter shows how difficult is to generate considerable cosmological magnetic
fields, for example magnetic fields that could source the galactic dynamo. The non-linear
evolution of the anisotropic magnetic stresses comes from the time derivative of (4.1.2),
which by means of (6.4.2) and (6.4.3) leads to

21



Π̇ab = −4

3
ΘΠab −

2

3
B2σab + 2σc〈aΠ

c
b〉 − 2ωc〈aΠ

c
b〉 . (4.2.2)

4.3 Conservation laws

In the case of a perfect fluid, the energy momentum tensor is given by

Tab = ρuaub + phab (4.3.1)

and the conservations laws (2.7.1),(2.7.2) reduce to

ρ̇ = −Θ(ρ+ p) (4.3.2)

(ρ+ p)Aa = −Dap. (4.3.3)

Similarly, the magnetic energy momentum tensor (3.1.5) for a single magnetized perfect fluid
of infinite conductivity reduces to

T
(em)
ab =

1

2
B2uaub +

1

6
B2hab. (4.3.4)

Thus, for a single magnetized perfect fluid of infinite conductivity the total energy-momentum
tensor is given by

Tab = (ρ+
1

2
B2)uaub + (p+

1

6
B2)hab + Πab . (4.3.5)

Accordingly, the medium corresponds to an imperfect fluid with effective density equal to
ρ+B2/2, isotropic pressure given by p+B2/6, zero heat flux and solely magnetic anisotropic
stresses represented by Πab.

If we apply this energy-momentum tensor (4.3.5) to the general conservation law ∇bTab = 0,
using the MHD form of Maxwell’s equations, then the standard conservation law decomposes
into the following expressions that, respectively, describe the energy-density

ρ̇ = −(ρ+ p)Θ, (4.3.6)

and the momentum-density
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(ρ+ p+
2

3
B2)Aa = −Dap− εabcBbcurlBc − ΠabA

b. (4.3.7)

conservation.

We note the absence of magnetic terms in (4.3.6). This is due to the magnetic induction
equation (4.3.7), which guarantees that the magnetic energy is separately conserved. Also, if
there are no pressure gradients, (4.3.7) gives AaB

a = 0. Finally, the left-hand side of (4.3.7)
shows that the magnetic contribution of the B-field to the total inertial mass is 2B2/3.

If we contract (4.3.7) along Ba we find that the contribution of the B-field to the mo-
mentum density vanishes, thus reflecting the fact that the magnetic Lorentz force is always
normal to the field lines.

4.4 The magnetic lorentz force

Finally, the second term in the right-hand side of (4.3.7) decomposes as

εabcB
bcurlBc =

1

2
DaB

2 −BbDbBa . (4.4.1)

Equation (4.4.1) shows that the magnetic Lorentz force splits into two stresses. The first
term on the right-hand side of the above equation, is due to the magnetic pressure (see
equation (4.1.1), while the second term reflects the tension of the field lines. From the latter,
we see that if these two stresses balance each other the magnetic field reaches equilibrium
and no Lorentz force is present. In any other case, there exists a Lorentz force acting on the
particles of the magnetized fluid in a plane orthogonal to the field lines.

It can be proved that if we move along geodesics of the magnetic field Ba the second term
in the right-hand side of Equation (4.4.1) gives the constraint

BbDbBa = 0 , (4.4.2)

which shows that in this case any Lorentz force acting on the particles of the magnetized fluid
emerges only from the pressure term. This also reflects the fact that the tension component
of the Lorentz force appears when we try to deform the field lines from their equilibrium. In
other words, the magnetic tension expresses the reaction of the field lines to deformations.
These deformations can be caused for example by the kinematical behaviour of the fluid or
by charged particles trying to deform the field lines. Additionally, in the general relativistic
case such deformations can emerge from spacetime curvature distortions. In any case, the
field lines react to the cause of these deformations through magnetic tension.
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We will see in the coming sections that in the presence of a magnetic field all the effects
on vorticity emerge from the action of the Lorentz force. Decomposition (4.4.1) is extremely
important since from it we can each time examine the contribution of magnetic pressure or
tension on various effects (i.e on the vorticity evolution equation in this thesis).

5 Friedman models

Cosmic microwave background (CMB) radiation which fills the observable universe almost
uniformly as well as the cosmological principle which assumes that observers on Earth do
not occupy an unusual or privileged location within the universe as a whole, have eventually
led to the belief that the universe is both homogeneous and isotropic. FRW models advocate
this conviction and are the simplest cosmological solutions of the Einstein equations.

5.1 General properties

The Friedman models are described by the Robertson-Walker line element, which has the
form

ds2 = −dt2 + a2dl2 = −dt2 + a2
[
(1−Kr2)−1dr2 + r2(dθ2 + sin2 θdφ2)

]
. (5.1.1)

The second term a2dl2 in the righthand side of equation (5.1.1) is the line element of the
three dimensional space expressed in a spherical coordinate system (r, θ, φ) co-moving with
the expansion of the Universe. The latter is denoted by the scale factor a which due to the
homogeneity and isotropy of the model is only a function of time t a = a(t). Parameter K is
the curvature index and in this case is constant and takes the values K = 0,±1. Parameter
K determines the geometry of the three dimensional space. Specifically, K = 0 denotes an
Euclidean geometry, K = 1 a spherical and K = −1 a hyperbolic one. Based on the value
of the curvature index K FRW models are called flat,closed and open respectively.

The three dimensional line element ds̃2 = a2dl2 mentioned before denotes the actual dis-
tance ds̃ between two co-moving neighbouring observers. This distance can be written as
ds̃ = adl, with dl expressing the distance between two co-moving observers (which have no
self motion) and a indicating the expansion of the Universe. As a result, the velocity υ at
which two neighboring observers are moving away from each other due to the expansion of
the Universe is given by

υ =
ds̃

dt
= Hds̃, (5.1.2)
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where H = H(t) = ȧ/a is the Hubble parameter. Equation (5.1.2) is named Hubble’s law
and states that the expansion velocity between two neighbouring observers is proportional
to their mutual distance.

Friedman models are uniform since they satisfy both homogeneity and isotopy. Homogeneity
requires only time dependence for the model parameters while isotropy demands the existence
of only scalar variables. Thus, by definition in FRW models we have Aa = σab = ωab = 0.
This means that thE matter that can fitt in an FRW model are perfect fluids only.

These are described by the energy-momentum tensor we have discussed in paragraph 4.3

Tab = ρuaub + phab, (5.1.3)

where ρ is the matter energy density and p is the isotropic pressure of the fluid (equilibrium
pressure in this case). We note here that due to the aforementioned homogeneity of the
model ρ, p are only functions of time (ρ = ρ(t), p = p(t)).

We have seen in paragraph that in the case of perfect fluids the momentum density con-
servation law degenerates in a trivial identity while the ‘energy density conservation law is
written as

ρ̇ = −3H(ρ+ p), (5.1.4)

where Hubble’s parameter H satisfies by definition the relation H = Θ/3. It is worth noting
that the energy density conservation law does not include the curvature index (K) and is
identical in all FRW models.

The evolution of FRW models is described by Friedman equations which are given in para-
graph 5.2 below and have different solutions based on the type of matter that fills the
Universe. We are going to discuss two different types of conventional matter which include
non-relativistic matter (satisfying the condition kBT � mc2) with zero pressure p = 0 and
relativistic matter with p = ρ/3 (in this case it holds kBT � mc2). In cosmology, dust repre-
sents matter after the recombination while radiation dominates the the epoch after inflation
and before recombination (radiation era).

When dealing with zero-pressure matter, namely “dust”, the energy density conservation
law reduces to the continuity equation

ρ̇ = −3Hρ, (5.1.5)

which accepts the solution
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ρ = ρ0

(
a0

a

)3

, (5.1.6)

where ρ0 = ρ(a0). Thus, the matter density of ’dust’ ρ is inversely proportional to the volume
of the Universe expressed by a3.
However, things change when dealing with relativistic matter where the equation of state is
expressed by p = ρ/3 and the energy density conservation law becomes

ρ̇ = −4Hρ, (5.1.7)

with

ρ = ρ0

(
a0

a

)4

, (5.1.8)

which denotes that in case of relativistic matter energy density ρ decays faster due to the
expansion of the Universe than in the dust case.
Relations (5.1.6)(5.1.8) remain the same for all FRW models independent of the curvature
index K. Using these relations in the next section we are going to discuss evolution of FRW
models during the dust and the radiation epochs.

5.2 The Friedman equations

The Friedman models are the simplest solutions of the Einstein equations (2.4.1) we dis-
cussed in paragraph 2.4.

Using now the energy-momentum tensor (5.1.3) and the Robertson-Walker line element
(5.1.1) that apply in the case of FRW models we derive Friedman equations. The latter are
differential evolution equations of the scale factor a(t) :

(
ȧ

a

)2

=
1

3
κρ− K

a2
+

1

3
Λ (5.2.1)

ä

a
−
(
ȧ

a

)2

= −1

2
κ(ρ+ p) +

K

a2
, (5.2.2)

which can be combined in one equation known as Raychaudhuri equation

ä

a
= −1

6
κ(ρ+ 3p) +

1

3
Λ. (5.2.3)
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The above equation (5.2.1) can be derived also from the general Raychaudhuri equation
discussed in paragraph by applying the symmetries of FRW models which lead to

H2 =
1

3
κρ− K

a2
+

1

3
Λ. (5.2.4)

By taking the derivative of equation (5.2.4) owe are taking again equation (5.2.3)

Ḣ = −H2 − 1

6
κ(ρ+ 3p) +

1

3
Λ. (5.2.5)

We remind here that in equations (5.2.4),(5.2.5) H is the Hubble parameter satisfying H =
H(t) = Θ/3 = ȧ/a. Finally, combining equations (5.2.4),(5.2.5) one is led to the following
equation

Ḣ = −1

2
κ(ρ+ p) +

K

a2
, (5.2.6)

which is identical to equation (2.2.2).

5.3 The deceleration parameter

The acceleration or deceleration of the expanding Universe is determined by the second
derivative of the scale factor. This defines the deceleration parameter as

q = − äa
ȧ2

= −
(

1 +
Ḣ

H2

)
, (5.3.1)

where a positive sign denotes a decelerating expanding Universe and a negative sign indicates
an accelerating expanding Universe.
Rewriting Raychaudhuri equation (5.2.5) with the deceleration parameter one gets

qH2 =
1

6
κ(ρ+ 3p)− 1

3
Λ, (5.3.2)

where it clear that a positive cosmological constant tends to accelerate the expansion of the
Universe while conventional matter with ρ+ 3p < 0 leads to a deceleration in the expansion.
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5.4 The critical density

When we deal with a Euclidean space K = 0 considering a zero cosmological constant the
first Friedman equation (5.2.4) ia written as

H2 =
1

3
κρc, (5.4.1)

where ρc is the critical density for which K = 0.
We define now based on the critical density ρc the dimensionless density parameter as

Ω =
ρ

ρc
=

κρ

3H2
, (5.4.2)

from which we see that Ω = 1 when K = 0. Also, density ρlarger than the critical density
ρc means Ω > 1 and thus a positive curvature index K = +1 and a closed FRW model with
spherical geometry. On the other hand, Ω < 1 denotes an open FRW model with hyperbolic
geometry K = −1. There is actually a relation between the density parameter and the
geometry of Friedman models.
Taking the time derivative of equation (5.4.2) using the definition of deceleration parameter
(5.3.1) and Raychaudhuri equation in the form (5.3.2) one is led to the evolution equation
of the density parameter

Ω̇ = −(1 + 3w)(1− Ω)HΩ, (5.4.3)

where w = p/ρ is the barotropic index of the fluid which appears after we apply in the above
equation the energy density conservation law (5.1.4).
Equation (5.4.3) states that the density parameter remains constant when we have a flat
Universe with Ω = 1 or when we have matter with w = −1/3. In the first case, this actually
means that a flat Universe remains flat during it’s evolution. In the second case, it denotes
that due to the total gravitational energy ρ + 3p remaining 0 the curvature index remains
constant although generally non-zero. Finally, it is clear the conventional matter with ρ+3p >
0 leads to an increase in the curvature of the model.

5.5 Solutions to Friedman equations with K = 0

In this section we assume flat Euclidean three dimensional space with K = 0. We have al-
ready derived in a previous section the density relations (5.1.5),(5.1.7) for dust and radiation
respactively. We will use these relations to solve the Friedman equations in the case of dust
and radiation in a flat universe.
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5.5.1 The case of ’dust’ with p = 0

When dealing with dust, we consider non-relativistic particles of low energy where p = 0.
With this assumption and based on the fact that we consider a flat Universe with K = 0
Friedman equations (5.2.1), (5.2.2),(5.2.3) can be written based on equation (5.1.5) as :

(
ȧ

a

)2

=
1

3
κρ0

(
a0

a

)3

(5.5.1)

2
ä

a
+
(
ȧ

a

)2

= 0 (5.5.2)

ä

a
= −1

6
κρ0

(
a0

a

)3

. (5.5.3)

We can integrate equation (5.5.6) and get the relation of the scale factor with the time t in
the case of ’dust’ :

a = a0

(
t

t0

)2/3

. (5.5.4)

Thus, in the case of ’dust’ we have a spatial expansion as the time goes by due to the scale
factor increasing with the time. Finally, Hubble’s parameter is given in the case of p = 0 by
the relation

H =
ȧ

a
=

2

3t
. (5.5.5)

5.5.2 The radiation era with p = ρ/3

In radiation era the energy density of the Universe is dominated by radiation, which is
actually relativistic high-energy particles for which p = ρ/3. For this case we have derived
the density relation (5.1.7) based on which Friedman equations for a flat Universe can be
written as :

(
ȧ

a

)2

=
1

3
κρ0

(
a0

a

)4

(5.5.6)

2
ä

a
+
(
ȧ

a

)2

= −1

3
κρ0

(
a0

a

)4

(5.5.7)

ä

a
= −1

3
κρ0

(
a0

a

)4

. (5.5.8)
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Similarly, by integrating the first of the above equations we get the following scale factor
relation with time t :

a = a0

(
t

t0

)1/2

, (5.5.9)

and the relative relation for Hubble’s parameter

H =
ȧ

a
=

1

2t
. (5.5.10)

Comparing equations —(5.5.5),(5.5.10) it is clear that in radiation era the expansion of the
Universe is slower that in the dust era.
In the next section, we are going to perturbe a FRW model using as a background a FRW
model in the radiation era including some other characteristics that will be discussed below.
Thus, equations (5.5.9),(5.5.10) as well as Friedman equations as written for this era will be
very useful in the next sections.

6 Perturbed Friedman models

In the previous section, we have stated the basic characteristics of FRW models. The latter
describe in a simple way expanding universes that are homogeneous, isotropic and have
no initial vorticity. The main subject under discussion in this thesis is magnetic fields and
how they affect vorticity production and survival. In this section, we deal with a perturbed
magnetized FRW model. Specifically, we examine the case of a random magnetic field with
non-zero pressure in the background and a linear perturbation of it in the perturbed model.
As we want to examine the behaviour of the vorticity, we derive firstly the linear vorticity
propagation equation. Then, in the next section we discuss the effects of the presence of theB-
field on vorticity generation and survival as well as on the evolution of density perturbations.

6.1 Background setup

We assume as a background a FRW model in the radiation era p̄ = wρ̄, 3 with w being
the barotropic index of the fluid which in the radiation era is equal to 1/3. As we consider
both homogeneity and isotropy for the background model the density, the pressure and the
Hubble parameter of the model are only functions of time and have no spatial dependence :

ρ̄ = ρ̄(t), p̄ = p̄(t), H̄ = H̄(t) (6.1.1)

3 Bared variables denote background variables.
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In addition, we assume that in the background model we have a random magnetic field such
that

〈B̄a〉 = 0 (6.1.2)

〈B̄2〉 6= 0, (6.1.3)

where we consider that B̄2 is only a function of time t and is such that B̄2 � ρ. The latter
condition indicates the small contribution of the B-field to the total energy of the system.
As a result, the presence of the magnetic field does not influence the time evolution of the
system.

6.2 Alfven speed

We define as the Alfven speed the dimensionless following ratio

c2
a =

B2

ρ(1 + w)
, (6.2.1)

where based on the condition B2 � ρ we have c2
a � 1 (recall that we assumed c=1).

The Alfven speed actually describes how strong is the magnetic energy density B2 relative
to the matter energy density.

6.3 Linearization scheme

Before proceeding to the linearization of the equations given in the above sections, we will
describe in brief the linearization scheme.

Terms with nonzero background value are assigned zero perturbative order, while those
that vanish in the background are treated as first order perturbations. Finally, terms of per-
turbative order higher than one will be ignored. Based on all these, the parameters ρ̄, p̄, H̄
that have nonzero value in the unperturbed model are zero-order variables while the vorticity
and the 4-acceleration vector ωa, Aa which vanish in the background are treated as first-order
variables.

As we mentioned in paragraph 6.1 we are dealing with a magnetized FRW unperturbed
model during the radiation era, where we have allowed for a nonzero background random
magnetic field. Therefore, the energy density B̄2 of the background magnetic field is a zero
perturbative order variable. Given that all the magnetic terms in the equations are of order
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∝ B2, we will treat the energy density of the perturbed magnetic field B2 as first order
variable. This means that the linear perturbation of the magnetic vector Ba as well as its
spatial gradient DbBa are of 1/2-order. the magnetic pressure terms (both isotropic and
anisotropic) are first-order. The latter means that B2 and Πab have perturbative order one.
This linerization treatment guarantees the consistency of the linear equations where all the
magnetic effects are decribed by firts-order variables.

6.4 Linear equations

We have mentioned before the non-linear equation of the momentum-density conservation
law

ρ̇ = −(ρ+ p)Θ, (6.4.1)

the non-linear magnetic induction equation

Ḃ〈a〉 = (σab + εabcω
c − 2

3
Θhab)B

b , (6.4.2)

the non-linear evolution law for the energy density of the field

(B2). = −4

3
ΘB2 − 2σabΠ

ab , (6.4.3)

and the non linear equation of the energy-density conservation law

(ρ+ p+
2

3
B2)Aa = −Dap− εabcBbcurlBc − ΠabA

b. (6.4.4)

Finally, we have the non-linear form of the vorticity propagation equation

ω̇〈a〉 = −2

3
Θωa −

1

2
curlAa + σabω

b. (6.4.5)

We are going to linearize the above equations around the aforementioned background and
use the simpler equations 4

4 Under linearization we get ω̇〈a〉 = ω̇a
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ρ̇ = −3H̄(ρ+ p) (6.4.6)

(ρ̄+ p̄+
2

3
B̄2)Aa = −Dap−

1

2
DaB

2 +BbDbBa (6.4.7)

Ḃa = −2H̄Ba (6.4.8)

(B2). = −4H̄B2 (6.4.9)

ω̇a = −2H̄ωa −
1

2
curlAa (6.4.10)

where we defined the Hubble parameter H = Θ/3 and used the decomposition (4.4.1). We
note that the terms σabω

b,ΠabA
b are not included in the above equations as they are second-

order terms.
Taking the curl of both sides of equation (6.4.7) using the covariant commutation laws
described in Appendix C we get

β̄curlAa = 2 ˙̄pωa + (B̄2).ωa + εabcD
bBdDdB

c + εabcB
dDbDdB

c, (6.4.11)

where we have defined the parameter β̄ as β̄ = ρ̄+ p̄+ 2
3
B̄2. We note here that the magnetic

energy density B2/2 as well as the magnetic isotropic pressure B2/6 contribute to the total
inertial mass of the system as B2/2 +B2/6 = 2B2/3.

The third and forth terms of the equation (6.4.11) decompose as

εabcD
bBdDdB

c = −curlBbD(bBa) (6.4.12)

εabcB
dDbDdB

c = BdDdcurlBa + εbca RscdbB
dBs + 2H̄εbca ωbdB

dBc (6.4.13)

εbca RscdbB
dBs =

2

3
H̄B̄2ωa (6.4.14)

2H̄εbca ωbdB
dBc =

4

3
H̄B̄2ωa, (6.4.15)

where for the geometry term (6.4.14) we have used the linear part of the decomposition
derived in Appendix A

εa
bcRdcsbB

sBd = 2H̄B2ωa + 2H̄εbca B
dBbωcd. (6.4.16)

The decompositions (6.4.12)-(6.4.15) lead equation (6.4.11) to

curlAa =
2

β̄
˙̄pωa −

(B̄2).

β̄
ωa −

1

β̄
curlBbD(bBa) +

1

β̄
BdDdcurlBa +

2

β̄
H̄B̄2ωa. (6.4.17)
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We define now the square of the adiabatic sound speed as

c2
s =

(
∂p

∂ρ

)
s

= ṗ/ρ̇. (6.4.18)

We note now that the evolution equation for the barotropic index of the fluid is

ẇ = −3H(1 + w)(c2
s − w). (6.4.19)

From the above equation it is clear that in our case where the barotropic index of the fluid
is constant (w = 1/3) we get the relation w = c2

s.

Using the linear equation (6.4.6) for the energy density conservation law and based on the
relation we mentioned before between density and pressure is the radiation area p = c2

sρ, we
get for the evolution of pressure the following linear equation

ṗ = −3H̄c2
s(ρ+ p), (6.4.20)

The linear evolution law for the energy density of the magnetic field is (see equation (6.4.3))

(B2). = −4

3
ΘB2 (6.4.21)

Substituting equations (6.4.20) and (6.4.21) into equation (6.4.17) we get

curlAa = −6H̄
c2
s(ρ+ p)

β̄
ωa +

1

β̄
BdDdcurlBa − 2H̄

B̄2

β̄
ωa, (6.4.22)

where the term 1
β̄
curlBbD(bBa) does not still appear in the right hand side of equation

(6.4.25) regarding that the magnetic field is not so inhomogeneous.
We then calculate the following ratio appearing in equation (6.4.25) as

c2
s(ρ+ p)

β̄
= c2

s(1− 2c2
a/3) (6.4.23)

B̄2

β̄
' c2

a, (6.4.24)

where ca � 1 is the Alfven speed.
Using the above calculations (6.4.23) and (6.4.24) in equation (6.4.25) and then substituting
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the latter into the initial linear equation for the vorticity (6.4.10), we finally get the linear
vorticity propagation equation

ω̇a = −2H̄
[
1−

(
3

2
− c2

a

)
c2
s −

1

2
c2
a

]
ωa −

1

2β̄
BdDdcurlBa. (6.4.25)

7 Linear magnetized vorticity

We have finally derived the linear vorticity propagation equation (6.4.25) and we are going
to study various effects on vorticity generation and survival which are and the main subjects
under consideration. In particular, we will discuss if the magnetic field can act as a source
term for the vorticity. Also, we examine the role of the magnetic tension and pressure in vor-
ticity time evolution. Finally, by forming a second order differential equation for the vorticity
we calculate the solution ω = ω(t) and discuss the form of the latter. In the last paragraph,
we discuss the effect of the magnetic field on the evolution of density perturbations.

7.1 Vorticity generation

Equation (6.4.25) has on the righthand side two terms. The first of them includes vorticity
ωa and thus can not be a source term for vorticity. This means that having no initial vorticity
this term can not actually generate vorticity from zero. On the other hand, the second term
which comes specifically from the tension part of Lorentz force does not include vorticity and
can generate vorticity. Thus, we see that by inserting a magnetic field Ba in our background
model vorticity could be generated. The latter is not actually surprising since there is not the
first time that the presence of a magnetic field acts as a source term in vorticity production.

The second subject under discussion is what effect has this term on vorticity propagation.
From the physical point of view this term has to do with the spatial derivative of the curl of
the B field along the field lines. If the latter is positive this term acts against the vorticity
leading to its reduction. If it is negative it tends to enhance vorticity and if it is zero it has no
effect on vorticity. What is actually interesting in this case, is that in general relativity this
term emerges, as we stated, from the tension of the B-field, which describes the tendency
of the field lines to remain as “straight” as possible. Specifically, if the field lines are lines
or circles this terms becomes zero and does dot affect vorticity at all. Whatever tends to
deform the field lines from their equilibrium position (if this could be lines or circular field
lines) gives source to this term due to the tension of the field lines. Then, the latter has the
afovemetioned effect on vorticity based on its sign.
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7.2 The role of the matter and magnetic energy density

The first term on the righthand side of equation (6.4.25) consists of a part that relates to
the expansion of the fluid, a part that includes the adiabatic sound speed of the fluid (c2

s)
and a part relating to the Alfven speed (c2

a).
The first part has a negative sign which means that kinematic vorticies decay with the
expansion of the fluid.
The second part has to do with the adiabatic sound speed of the fluid and derives from
differences in the pressure of the fluid combined with the Ricci identities. This term indicates
that vorticity decays with the expansion of the universe unless the barotropic medium has
an equation of state “stiffer” than 2/3. In our case, this term has a positive and constant
value so that finally matter density tends to enhance vorticity acting against the result of
the expansion of the fluid.
The third part includes the Alfven speed and comes from both the tension and pressure
component of Lorentz force combined also with the Ricci identities. We note here that the
contribution of the pressure part of Lorentz force finally dominates against the contribution
of the tension part of Lorentz force and this term has finally a positive sign. This states that
this term has the same effect on vorticity as the matter density of the fluid helping vorticity
to survive.

7.3 The vorticity evolution equation

We define the following two parameters

A = 1− 3

2
c2
s −

1

2
c2
a + c2

sc
2
a (7.3.1)

B = 2(1 + w)
(

1 +
2

3
c2
a

)
. (7.3.2)

The above parameters are constant due to he fact that cs = w = 1/3 as well as to the fact
that in the radiation era we have B2 ∝ a−4 (see equation (6.4.3)) and ρ ∝ a−4 (see equation
(5.1.8)). The latter guarantee that the Alfven speed c2

a = B2/ρ(1 + w) = constant and thus
the aforementioned parameters A and B.

Based on the above parameters we can rewrite the vorticity evolution equation (6.4.25) as

ω̇a = −2H̄Aωa −
1

Bρ
BdDdcurlBa (7.3.3)
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We wish to rewrite equation (6.4.25) in a form that will not include directly the magnetic
terms. For this reason we take the second derivative of equation (6.4.25) and we get

ω̈a = −2A ˙̄Hωa − 2AH̄ω̇a +
1

Bρ2
˙̄ρBdDdcurlBa

− 1

Bρ
ḂdDdcurlBa −

1

Bρ
Bd(DdcurlBa)

. (7.3.4)

In order to continue we need the following linear evolution equations

˙̄H = −κ(ρ̄+ p̄)

2
+
K

a2
(7.3.5)

˙̄ρ = −3H̄(ρ̄+ p̄) (7.3.6)

Ḃd = −2H̄Bd, (7.3.7)

(7.3.8)

which are the linear expressions of Friedman equation, energy density conservation law equa-
tion and magnetic induction equation respectively.

In addition we need the time derivative of the terms curlBa, DdcurlBa which we compute
analytically in the Appendix B as

(curlBa)
. = −3H̄curlBa (7.3.9)

(DdcurlBa)
. = −4H̄DdcurlBa (7.3.10)

Finally we reapply the vorticity evolution equation (6.4.25) for ω̇a into equation (7.3.3) and
finally get the much simpler equation

ω̈a + 2H̄(1 + A)ω̇a −
2K

a2
ωa = 0, (7.3.11)

where we have used the Friedman equation

H̄2 =
κρ

3
− K

a2
. (7.3.12)
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7.4 Solutions

We investigate the solutions of equation (7.3.11) assuming Euclidean space in which the
curvature index is equal ro K = 0. Then, we get this form of the equation

ω̈a + 2H̄(1 + A)ω̇a = 0. (7.4.1)

We recall that in the radiation era H̄ = 1/2t. For w = 1/3, c2
a << 1 the constant A becomes

A = 1/2 and so we get

ω̈a +
3

2t
ω̇a = 0, (7.4.2)

which accepts the solution

ωa(t) = c1 + c2
1√
t
. (7.4.3)

We have mentioned in paragraph that in the radiation era we have the relation (see equation
5.5.9)

a ∝ t1/2, (7.4.4)

based on which equation 7.4.3 is written as

ωa = c1 + c2a
−1. (7.4.5)

Assuming that we have initial conditions ω0, ω̇0, a0 equation 7.4.5 can be written as

ωa = ω0 + a0ω̇0

(
1− a0

a

)
(7.4.6)

Equation (7.4.6) has two terms on the righthand side. One that is actually constant and one
that depends on the scale factor a.

Under time evolution the first term dominates unless there are initial conditions such that
condition ω0 + a0ω̇0 = 0 holds. This means that the presence of the magnetic field helps
vorticity to remain constant in comparison with the non-magnetized case where vorticity
reduces with the expansion of the Universe.
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Even before eventually vanished the second term in the righthand side of equation (7.4.6)
has a similar result on vorticity. As we see it is proportional to a−1. If we compare the latter
with the relation ωa ∝ t−4/3 ∝ a−2 (see equation (6.4.5)) that holds in the non-magnetized
case we see that the presence of magnetic field actually reduces the decay rate of vorticity
and finally helps vorticity to survive.

We note here that in the case of dust p = 0 linear perturbations in the magnetic field
around a Newtonian analogue of the Einstein-de Sitter universe leads to a relation of the
form

ωa ∝ t−1 ∝ a−3/2, (7.4.7)

which again compared with the relation that holds in the non-magnetized case ωa ∝ t−4/3 ∝
a−2 denotes that the magnetic field indeed help linear vorticity perturbations to remain alive
for a longer time interval.
In other words, in both cases there is more residual rotation in the magnetized universe than
in it’s non-magnetized counterpart.
However, in the radiation era there exists a constant term which surprisingly does not just
reduce the decay rate of vorticity but actually tends to keep it constant. This means that the
presence of a magnetic field in a FRW Universe both creates linear vorticity perturbations
and then help them remain constant.

7.5 Density vortices

In covariant formalism, spatial inhomogeneities in the distribution of a physical quantity are
described by the orthogonally projected gradient of the quantity. Based on the latter, the
fractional gradient in the matter energy density of a fluid is given by

∆a =
a

ρ
Daρ. (7.5.1)

The above relation actually determines how two neighbouring observers measure density
variations (local density variation). Since Daρ is zero in homogeneous spacetimes like FRW
models, ∆a is non-zero within perturbed FRW models like in our case.

There are three types of inhomogeneities. Density perturbations which are scalars, vortices
which are vectors and shape distortions which are a combination of scalars and vectors. All
of this information can emerge if we compute the spatial derivative of the fractional gradient
∆a (orthogonally projected). We then have the second-rand tensor ∆ab = aDb∆a which by
splitting into its irreducible parts becomes
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∆ab = ∆<ab> + ∆[ab] =
1

3
∆hab, (7.5.2)

where ∆<ab> = aD<b∆a>, ∆[ab] = aD[b∆a] and ∆ = aDa∆a. The first term in the right-hand
side of equation 7.5.2 describes variations in the anisotropy pattern of the gradient field, the
second vortex-like distortions and the third one scalar variations in matter energy density.

We are going to examine the behaviour of vortex-like distortions in the matter energy den-
sity described by the antisymmetric tensor ∆[ab]. The latter based on Frobenius Theorem
(Appendix C) can be written as

∆[ab] = aD[b∆a]

=
a2

ρ
D[bDa]ρ

=
a2

ρ
ωabρ̇

= −3a2(1 + w)Hωab, (7.5.3)

where we have used the energy density conservation law ρ̇ = −3H(1 + w)ρ.

Using the alternating tensor Levi-Civita εabc, one defines the vector ∆a as ∆a = εabc∆
bc/2

which finally is written as

∆a =
εabc∆

bc

2

= −3a2(1 + w)Hεabcω
bc

2
= −3a2(1 + w)Hωa, (7.5.4)

based on the similar relation ωa = εabcω
bc/2. Equations (7.5.3),(7.5.4) denote that linear

vorticity perturbations lead to linear vortex-like density perturbations.

In the radiation era we have the analogies H ∝ t−1 and a2 ∝ t. Based on the latter and
given that in the radiation era w is constant and equal to 1/3 we conclude that the factor
−3a2(1 +w)H in equations (7.5.3),(7.5.4) is constant. This means that vorticity and matter
energy density have the same perturbative behaviour.

It is worth noting also that although in general the presence of a B-field reduces the density
perturbations ∆, in the relativistic period tends to enhance them as it does to the vorticity
as well.
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8 Conclusions-Discussion

Since Einstein proposed his equations of gravitation in 1915, many people explored solutions
to them. These solutions contain a description of the geometry of the spacetime involved and
how this is produced by the distribution of mass and energy. Among of these solutions, many
describe rotating universes with the most famous one being the Godel’s rotating Universe
in 1949. Godel’s Universe was neither expanding nor contracting but instead rotating. In
this Universe, a non-rotating observer would see the whole Universe spinning around and
conclude that the Universe is rotating. Also, the distances between galaxies do not change
with time while a photon sent out would actually execute a wide turn like a boomerang due
to the global rotation. But the most amazing fact about Godel’s Universe is that he spin
Einstein’s theory to a new direction, that of time-travel, as it contains closed time-like curves.

Observational data like the expansion of the Universe or the fact that distant galaxies are not
rotating relative to the solar system giant gyroscope do not favor Godel’s Universe. However,
Godel’s Universe showed that time-travel is possible in principle.

There have been also other solutions involving rotating Universes as we stated in the Intro-
duction that were able to reproduce the current observational data, mainly that concerning
the CMB anisotropies and polarization. Given that we could as well assume that the Uni-
verse is rotating, it remains the question of what could have caused this rotation and to
which level. In this thesis, we examine a possible source of the global rotation, which is the
presence of a magnetic field in the Universe.

We treat the magnetic field as a perturbation around a FRW background model with random
magnetic field. We remind here that FRW models describe homogeneous, isotropic expanding
Universes that have no initial rotation. In these models, we have added a random magnetic
field with non-zero pressure (< B2 >6= 0, < Ba >= 0) in the background. Then, we per-
turbe that model adding a linear perturbation of the magnetic field (< Ba >6= 0). Our goal
is to examine the effects of this perturbation, i.e the effects of the presence of a magnetic
field, on vorticity generation and survival as well as on the evolution of density perturbations.

We begin considering a FRW model in the radiation era with the presence of a random
magnetic field. This field does not contribute significantly in the system’s total energy and
thus does not affect the time evolution of the system. In other words, the Alfven speed is
much less that one, as the magnetic energy density is much less that the matter energy
density. Treating the rotation and the acceleration vector as first order variables we proceed
with the linearizarion scheme and give the linear equations that describe the system. From
these equations we focus on the what is the main interest of this thesis, namely the vorticity
propagation equation.

We use that equation to study the effects of the magnetic field on vorticity generation
and survival. In particular, we examine if the magnetic field can source vorticity. It turns
out that indeed the magnetic field can generate vorticity, a fact that it is not surprising
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since it is a well-known fact that the latter can act as a source term for rotation. Then,
we study the effect of the field on the vorticity propagation. We find that the relative term
in the equation pertains to the spatial derivative of the curl of the field. This term stems
from the magnetic tension and specifically the more positive it is the more it acts against
vorticity and tend to reduce it. In other words, deforming the magnetic field lines from their
straight line position favored by the tension, leads to the decay of the vorticity. As long
as the matter and magnetic energy densities are concerned, we find that both of them en-
hance vorticity and help it to survive against the decay due to the expansion of the Universe.

Next, we study how the magnetic tension and pressure affect the time evolution of rota-
tion. To do this, we derive a second order differential equation for the vorticity that includes
only the magnetic terms and solve for ω(t). The form of the last expression includes two
terms. The first term shows that the presence of the magnetic field helps vorticity to survive.
This is because the decay rate of vorticity, due to the expansion of the Universe, in the case
of the presence of a magnetic field is less than that in the no-magnetic field case. In other
words, there is more residual rotation in a magnetized Universe than in its non-magnetized
counterpart. The other term is a constant term, which means that the field tends to keep
vorticity perturbations constant. In simple words, the magnetic field favors both vorticity
production and survival.

In the final section, we examine the effect of the magnetic field on the evolution of den-
sity perturbations. We find out a similar effect, where the presence of the field, although in
general reduces density perturbations, in the relativistic period tends to enhance them as it
does also, as we said, with the vorticity perturbations.

As a final comment it is worth mentioning here that apart from answering the fundamental
question of what could lead in a rotating Universe, this vorticity production and survival
could answer a lot of other questions too. Among them is the generation of the primordial
magnetic fields. Also, as we mentioned before, the relations between the angular momenta
of the various spinning objects and their masses could be also explained. It becomes then
clear that the subject of a rotating Universe or not is not just a philosophical question to be
answered but can explain specific observational data that we have in hand right now or we
will have in future.
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Appendices

A The geometry term

The irreducible decomposition of the projected Riemann tensor for a perfect magnetized
fluid can be written as

Rabcd =− εabqεcdsEqs +
1

3

(
ρ− 1

3
Θ2
)

(hachbd − hadhbc)

+
1

2
(hacΠbd + Πachbd − hadΠbc − Πadhbc)

− 1

3
Θ[hac(σbd + ωbd) + (σac + ωac)hbd − had(σbc + ωbc)− (σad + ωad)hbc]

− (σac + ωac)(σbd + ωbd) + (σad + ωad)(σbc + ωbc) , (A.1)

where Eab is the electric part of the Weyl tensor defined in §2.6 and Πab the magnetic
anisotropic tensor defined in §4.1.1.
We are going to compute the geometry term −εabcRdcsbB

sBd.

For the first term after substituting (A.1) to the geometry term we get

εa
bcεdcqεsbfB

sBdEqf = 0 , (A.2)

where we used the antisymmetry of the alternating tensors εabc and the symmetry of Eab.

The second term appearing gives

1

3

(
ρ− 1

3
Θ2
)
εa
bc(hdshbc − hdbhcs)BsBd =

1

3

(
ρ− 1

3
Θ2
)εabchcb︸ ︷︷ ︸

0

B2 − εabcBcBb︸ ︷︷ ︸
0


= 0 , (A.3)

where similarly we used the symmetry of hab and the antisymmetry of εabc.

For the third term we have
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1

2
εa
bc (hdsΠcb + Πdshcb − hdbΠcs − Πdbhcs)B

sBd =
1

2
(εa

bcΠcb︸ ︷︷ ︸
0

B2) +
1

2
(εa

bchcb︸ ︷︷ ︸
0

ΠdsB
sBd)

(−ΠcsB
sBb − ΠdbB

dBc︸ ︷︷ ︸
0

)

= 0 , (A.4)

where we used again the the symmetry of Πab and hab and the antisymmetry of εabc.

The fourth term can be written as

−1

3
Θεa

bchds(σcb + ωcb)B
sBd =− 1

3
Θ(εa

bcσcb︸ ︷︷ ︸
0

hdsB
sBd)

− 1

3
Θ(εa

bcωcb︸ ︷︷ ︸
−2ωa

hdsB
sBd)

=
2

3
ΘB2ωa . (A.5)

The fifth term leads to

−1

3
Θ εa

bchcb︸ ︷︷ ︸
0

(σds + ωds)B
sBd = 0 , (A.6)

for the same (anti)symmetry reasons stated above.

We continue with the sixth and the seventh term

1

3
Θεa

bchdb(σcs + ωcs)B
sBd =

1

3
Θεa

bc(σcs + ωcs)B
sBb , (A.7)

1

3
Θεa

bchcs(σdb + ωdb)B
sBd =

1

3
Θεa

bc(σdb + ωdb)B
dBc . (A.8)

Adding the expressions (A.7) and (A.8), these two terms together give
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1

3
Θ(εa

bcσcsB
sBc + εa

bcσdbB
dBc) =0 , (A.9)

and

1

3
Θ(εa

bcωcsB
sBc + εa

bcωdbB
dBc) =

2

3
Θεa

bcBdBbωcd . (A.10)

Next, the first of the last two terms lead to

−εabc(σds + ωds)(σcb + ωcb)B
sBd =− (εa

bcσcb︸ ︷︷ ︸
0

σdsB
sBd + εa

bcωcb︸ ︷︷ ︸
−2ωa

σdsB
sBd

+ εa
bcσcb︸ ︷︷ ︸
0

ωdsB
sBd + εa

bcωcb︸ ︷︷ ︸
−2ωa

ωdsB
sBd)

= −2(σds + ωds)B
sBdωa

= −2ωa

(
1

3
B2hsd − Πsd

)
(σds + ωds)

= −2ωa

1

3
B2 hsdσds︸ ︷︷ ︸

0

+
1

3
B2 hsdωds︸ ︷︷ ︸

0

−Πsdσds − Πsdωds︸ ︷︷ ︸
0


= −2Πsdσdsωa . (A.11)

For the second of the last two terms we have

εa
bcBsBdσdbσds︸ ︷︷ ︸

0

+ εa
bcBsBd(σdbωcs + σcsωdb)︸ ︷︷ ︸

2εabcσdbωcsBsBd

+εa
bcBsBdωdbσcs

= 2εa
bcσdbωcsB

sBd + εa
bcBsBdωdbσcs . (A.12)

Finally, putting all together the expressions (A.2), (A.7), (A.4), (A.5), (A.6), (A.9), (A.10)
we get the final non-linear decomposition of the geometry term discussed in paragraph 6.4

−εabcRdcsbB
sBd =− 2

3
ΘB2ωa + 2Πdsσdsωa −

2

3
Θεa

bcBdBbωcd − 2εa
bcBsBdσdbωcs

− εabcBsBdωdbωcs . (A.13)
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B Linear commutation laws

In general theory of relativity time and spatial convective derivatives do not commute. Then,
when dealing with convective derivatives instead of partial derivatives one needs to apply
the following linearized identity

(DaSb...)
. = DaṠb... − H̄DaSb, (B.1)

which actually gives the linear time evolution of the spatial derivative of a tensor.
Based on the above linear identity we get for the term (curlBa)

. to linear order

(curlBa)
. = (εabcD

bBc).

= εabc(D
bBc).

= εabc(D
bḂc − H̄DbBc)

= 2H̄εabcD
bBc − H̄εabcDbBc

= −3H̄εabcD
bBc

= −3H̄curlBa. (B.2)

Similarly,for the term (DdcurlBa)
. to linear order we get

(DdcurlBa)
. = Dd(−3H̄curlBa)− H̄DdcurlBa

= −3H̄DdcurlBa − H̄DdcurlBa

= −4H̄DdcurlBa. (B.3)

We note that the final relation B.3 denotes the time evolution of magnetized rotational
perturbations.

C Covariant commutation laws-Frobenius theorem

Following Frobenius theorem, when acting on a scalar quantity the orthogonally projected
covariant derivative operators commute according to

D[aDb]f = −ωabḟ . (C.1)
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The above is purely relativistic result and underlines the different behaviour of rotating
spacetimes within Einstein theory.

Similarly, the commutation law for the orthogonally projected derivatives of spacelike vectors
reads

D[aDb]vc = −ωabv̇<c> +
1

2
Rdcbav

d , (C.2)

where vav
a = 0 and Rabcd the Riemann tensor of the observer’s local rest-space. Note that

in the absence of rotation, Rabcd is the Riemann tensor of the 3-D hypersurfaces orthogonal
to ua-congruence.

47



References

[1] G.F.R Ellis 1973, E.Schatzman(Ed.), Cargese Lectures in Physics, pp. 1-60

[2] I. Wasserman 1978, Astrophys. J. 224,

[3] J.D. Barrow, R. Juszkiewicz and D.H. Sonoda 1985, Mon. Not. R. Astron. Soc. 213,917

[4] V.A. Korotky and Y.N. Obukhov 1996, Gravity Particles and Space-time, Ed. P. Pronin and G.
Sardanashvily (World Scientific,Sinagpore)p.421

[5] A. Kogut, G. Hinshaw and A.J. Banday, 1997, Phys. Rev. D 55,1901

[6] C.G. Tsagas and R. Maartens 2000, Phys. Rev. D 61,083519

[7] W.Godlowski, M. Szydlowski, P. Flin and M. Biernacka 2003, Gen. Rel. and Grav. 35,907

[8] T.R. Jaffe, A.J. Banday, H.K. Eriksen, K.M Gorski and F.K. Hansen 2005, Astrophys. J. 629,
L1

[9] A.J. Mee and A.Brandenburg 2006, Mon. Not. R. Astron. Soc. 370,415

[10] N.K Spyrou and C.G. Tsagas 2008, Mon. Not. R. Astron. Soc. 388, 187

[11] C.G. Tsagas, A. Challinor, R. Marteens 2008, Physical Reports 465, 61-147

[12] S.-C. Su and M.-C. Chu, 2009, Astrophys. J. 703,354

[13] A.J. Christopherson, K.A. Malik and D.R.M. Matravers 2009, Phys. Rev. D 79,123523

[14] A.J. Christopherson and K.A. Malik 2011, Class. Quantum Grav. 28,114004

[15] F. Del. Sordo and A. Brandenburg 2011, Astron. Astrophys. 528, A145

337

[16] G.F.R Ellis 2011, General Relativity and Cosmology, Ed. R.K. Sachs (Academic Press, New
York, 1971) p.1

[17] F. Dosopoulou,F. Del Sordo,C.G.Tsagas, and A. Brandernburg 2012, Phys. Rev. D 85, 063514

[18] Yuri N. Obukhov, Vladimir A. Korotky, and Friedrich W. Hehl, 1997, On the rotation of the
universe

[19] C Sivaram, Kenath Arun, Primordial Rotation of the Universe and Angular Momentum of a
wide range of Celestial Objects

[20] Abhik Basu, Jayanta K Bhattacharjee, 2011, Fluctuating hydrodynamics and turbulence in a
rotating fluid: Universal properties

[21] Anthony Challinor, 2012, Astrophysics from Antarctica Proceedings IAU Symposium No. 288

[22] Wlodzimierz God lowski, Marek Szyd lowski, Piotr Flin, Monika Biernacka Rotation of the
Universe and the angular momenta of celestial bodies

[23] D. PALLE, 2005, On the vorticity of the Universe

48



[24] George Chapline, Pawel O. Mazur 2005, Tommy Gold Revisited: Why Does Not The Universe
Rotate?

[25] Evangelos Chaliasos, THE ROTATING AND ACCELERATING UNIVERSE

[26] A. Kogut, G. Hinshaw, A.J. Banday, 1997, Physical Review D15 Limits to Global Rotation
and Shear From the COBE DMR 4-Year Sky Maps

[27] Vladimir A. Korotky, Yuri N. Obukhov, 1996, On cosmic rotation

[28] Antony Lewis, 2004, CMB anisotropies from primordial inhomogeneous magnetic fields

[29] T. R. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Gorski, and F. K. Hansen, 2005, The
Astrophysical Journal, 629:L1L4

[30] Felipe A. Asenjo, Swadesh M. Mahajan, and Asghar Qadir, 2012, Generating vorticity and
magnetic fields in plasmas in general relativity: spacetime curvature drive

[31] L. Herrera,. A. Di Prisco and J. Ibanez J.Carot 2012, VORTICITY AND ENTROPY
PRODUCTION IN TILTED SZEKERES SPACETIMES

[32] Adam J. Christopherson, Karim A. Malik, and David R. Matravers 2009, Vorticity generation
at second order in cosmological perturbation theory

[33] Adam J. Christopherson,Karim A. Malik, and David R. Matravers 2010, Estimating the amount
of vorticity generated by cosmological perturbations in the early universe

49


