ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ

ΓΕΝΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ, ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΥ ΚΡΥΣΤΑΛΛΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ

ΣΥΝΘΕΣΗ, ΔΟΜΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΚΑΙ ΠΡΩΤΟΝΙΑΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΥΒΡΙΔΙΚΩΝ ΥΛΙΚΩΝ ΜΟΝΟΣΘΕΝΩΝ ΜΕΤΑΛΛΩΝ ΚΑΙ ΤΕΤΡΑΦΩΣΦΟΝΙΚΩΝ ΥΠΟΚΑΤΑΣΤΑΤΩΝ

Εισηγήτρια: Αντωνία Βασιλείου

Υπεύθυνος Καθηγητής: Κωνσταντίνος Δημάδης

HPAK/JEIO 2016

UNIVERSITY OF CRETE DEPARTMENT OF CHEMISTRY

GENERAL POSTGRADUATE PROGRAMME

CRYSTAL ENGINEERING, GROWTH AND DESIGN LABORATORY

Master Thesis

SYNTHESIS, STRUCTURAL CHARACTERIZATION AND PROTON CONDUCTIVITY OF HYBRID MATERIALS BASED ON MONOVALENT METALS AND TETRAPHOSPHONATE LINKERS

Presenter: Antonia Vasiliou

Master Thesis Supervisor: Konstantinos Demadis

HERAKLION 2016

' Η ευτυχία μπορεί να βρεθεί, ακόμα και στους πιό σκοτεινούς καιρούς, αρκεί κάποιος να θυμηθεί να ανάψει το φώς ''

Εξεταστική Επιτροπή

Κωνσταντίνος Δημάδης

Καθηγητής (Επιβλέπων)

Κωνσταντίνος Μήλιος Μόνιμος Επίκουρος Καθηγητής

Απόστολος Σπύρος Μόνιμος Επίκουρος Καθηγητής

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία εκπονήθηκε στο Εργαστήριο Μηχανικής, Ανάπτυξης και Σχεδιασμού Κρυστάλλων στον Τομέα Ανόργανης Χημείας του Τμήματος Χημείας του Πανεπιστημίου Κρήτης κατά την χρονική περίοδο 2013-2015, στα πλαίσια του Γενικού Μεταπτυχιακού Προγράμματος.

Ένα από καρδιάς **ΕΥΧΑΡΙΣΤΩ** στην οικογένεια μου γιατί χωρίς την στήριξη και την αγάπη τους δεν θα ήμουν ο άνθρωπος που είμαι σήμερα.. και φυσικά στους φίλους μου που ήταν δίπλα μου σε κάθε δύσκολη και ευχάριστη στιγμή μου, όπως και τον άνθρωπο της ζωής μου για την αγάπη και την υποστήριξη του.

Ευχαριστώ τον επιβλέποντα καθηγητή μου κ. Κωνσταντίνο Δημάδη για την εμπιστοσύνη, την στήριξη, την καθοδήγησή του και το οικογενειακό περιβάλλον που μετέδωσε σε όλα τα μέλη τόσο εντός όσο και εκτός εργαστηρίου.

Ευχαριστω επίσης τον κ. Κωνσταντίνο Ι. Μήλιο και το εργαστήριο του για την βοήθεια και τον εργαστηριακό εξοπλισμό που μου παρείχε. Την Δρ. Μάγια Παπαδάκη για την βοήθεια, την στήριξη και το ενδιαφέρον της, το εργαστήριο του κ.Παντελή Τρικαλίτη για την βοήθεια στο XRD, το εργαστήριο του κ.Νικόλα Α. Χανιωτάκη για το FT-IR και τέλος όλα τα παιδιά από το εργαστήριό μου για το ευχάριστο περιβάλλον, την βοήθεια και την στήριξη τους.

Αντωνία Βασιλείου Ηράκλειο 2016

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ

Όνομα/Επίθετο: Αντωνία Βασιλείου Ημερομηνία Γέννησης: 10/12/1991 Τόπος Γέννησης: Πάφος-Κύπρος Αριθμός Ταυτότητας: 942487

2. ΣΤΟΙΧΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑΣ

Διεύθυνση: Καλοκαιρινού 110, Τ.Κ: 71202, Ηράκλειο Κρήτης Τηλέφωνο Επικοινωνίας: 6943975607 E-mail: <u>ant.0.n1a@hotmail.com</u>

3. ΕΚΠΑΙΔΕΥΣΗ

2013: Κάτοχος Πτυχίου Τμήματος Χημείας, Πανεπιστήμιο Κρήτης (Γενικός Βαθμός Πτυχίου: 7,01 – *Λίαν Καλώς*)

4. ΕΡΕΥΝΗΤΙΚΗ ΕΜΠΕΙΡΙΑ

2012-2013: Διπλωματική Εργασία στο Πανεπιστήμιο Κρήτης, Τμήμα Χημείας, στο εργαστήριο Ανόργανης Χημείας με τίτλο «Αλληλεπίδραση Φωσφονικών Υποκαταστατών με Οργανικά και Ανόργανα Κατιόντα»

2013-2014: Βοηθός στο προπτυχιακό εργαστήριο Ανόργανης Χημείας Ι-ΙΙ

5. ΕΡΓΟΔΟΤΗΣΗ

2012: Πρακτική Άσκηση στο Φορέα Γενικό Νοσοκομείο Πάφου, στην Κύπρο, στα Τμήματα Τράπεζας Αίματος - Ανοσολογίας, Βιοχημέιας, Μικροβιολογίας, Αιματολογίας (Διάστημα 1/7/12 – 30/9/12)

6. ΣΥΝΕΔΡΙΑ-ΣΕΜΙΝΑΡΙΑ

2011: Βεβαίωση Παρακολούθησης του Διήμερου Επιστημονικού Συνεδρίου «Διεθνής Έτος Χημείας 2011: Ημέρες Χημείας Τροφίμων» το οποίο πραγματοποιήθηκε από το Τμήμα Τροφίμων της Ένωσης Ελλήνων Χημικών στις 4 - 5/11/11 στην Αθήνα.

2011: Βεβαίωση Συμμετοχής στις Εργασίες του 21^{ου} Πανελληνίου Συνεδρίου Χημείας που διοργάνωσε η Ένωση Ελλήνων Χημικών και το Τμήμα Χημείας του Αριστοτέλειου Πανεπιστημίου Θεσσαλονίκης 9 - 12/12/11 στη Θεσσαλονίκη.

CURRICULUM VITAE

1. PERSONAL DETAILS

Name/Surname: Antonia Vasiliou Date of Birth: 10/12/1991 Place of Birth: Paphos-Cyprus ID number: 942487

2. CONTACT DETAILS

Residence: Kalokairinou 110, Heraklion Creta Phone number: 6943975607 E-mail: <u>ant.0.n1a@hotmail.com</u>

3. EDUCATION

2013: Chemistry diploma, University of Crete

4. RESEARCH EXPERIENCE

2012-2013: Thesis at the University of Crete, Department of Chemistry, Inorganic Chemistry workshop entitled "Interaction Phosphonate Ligands with Organic and Inorganic Cations".

2013-2014: Assistant to undergraduate laboratory Inorganic Chemistry I-II

5. EMPLOYMENT

2012: Practice in Paphos General Hospital, Cyprus, the Blood Bank Segments - Immunology, Biochemistry, Microbiology, Hematology (Period 07/01/12 to 09/30/12)

6. CONFERENCES SEMINARS

2011: Certificate of Attendance of Scientific Conference "International Year of Chemistry 2011: Days Food Chemistry" which was held by the Union of Greek Chemists Food Section 04/11/11- 05/11/11 Athens.

2011: Certificate of participation in the work of 21th Panhellenic Conference of Chemistry organized by the Association of Greek Chemists and Chemistry Department of the Aristotle University of Thessaloniki 09/12/11 - 12/12/11 Thessaloniki.

ΠΕΡΙΛΗΨΗ

Η έρευνα στα μεταλλοφωσφονικά υλικά έχει γνωρίσει μεγάλη ανάπτυξη την τελευταία δεκαπενταετία και η χημεία τους βρίσκει εφαρμογές στην επιστήμη, φαρμακευτική στην κατάλυση, στη φωτοκατάλυση, στη απορρόφηση μεταλλικών ιόντων, στην ιονανταλλαγή, στην απορρόφηση/αποθήκευση αερίων, στην παρένθεση (intercalation), στην πρωτονιακή αγωγιμότητα (proton conduction), στην ιατρική, στη βιοτεχνολογία, στη χημική επεξεργασία του νερού, κ.ά.

Στην παρούσα εργασία αρχικά περιγράφεται η σύνθεση μεταλλοφωσφονικών πολυμερών συναρμογής που σχηματίζει ο τετραφωσφονικός υποκαταστάτης HDTMP (hexamethylenediamine-*tetrakis*(methylenephosphonic acid) με τα μεταλλικά ιόντα αλκαλίων Li⁺, Na⁺, K⁺, Rb⁺, και Cs⁺, σε αναλογία μετάλλου/HDTMP 2/1. Τα υλικά αυτά χαρακτηρίζονται για την πρωτονιακή αγωγιμότητα τους.

Ακολούθως, περιγράφεται ο φυσικοχημικός χαρακτηρισμός και οι κρυσταλλικές δομές των πολυμερών συναρμογής που προέκυψαν, Li(HDTMP), Na(HDTMP), K(HDTMP), Rb(HDTMP), και Cs(HDTMP). Ο χαρακτηρισμός αυτός επιτεύχθηκε με τη χρήση περιθλασιμετρίας ακτίνων Χ σκόνης, κρυσταλλογραφίας ακτίνων Χ, και δονητικής φασματοσκοπίας FT-IR.

Τέλος, μελετήθηκε η πρωτονιακή αγωγιμότητα επιλεγμένων μεταλλοφωσφονικών υλικών.

Λέξεις Κλειδιά: φωσφονικό οξύ, μεταλλοφωσφονικά υλικά, HDTMP, μεταλλοργανικοί σκελετοί, αλκάλια, πρωτονιακή αγωγιμότητα.

ABSTRACT

Research on metal phosphonates materials has experienced strong growth in the last fifteen years and the chemistry finds applications in pharmaceutical science, catalysis, in photocatalysis, the absorption of metal ions in the ion exchange, the absorption / storage of gas, intercalation, the proton conductivity, medicine, biotechnology, chemical water treatment, etc.

This paper initially describes metallo-phosphonate polymers abutment forming composition tetra-phosphonate substituent HDTMP (hexamethylenediamine-tetrakis (methylenephosphonic acid) with alkali metal ions, Li⁺, Na⁺, K⁺, Rb⁺, and Cs⁺, metal / HDTMP ratio 2:1.These materials are characterized by their proton conductivity.

Next, described the physicochemical characterization and crystal structures of polymers assembly obtained, Li (HDTMP), Na (HDTMP), K (HDTMP), Rb (HDTMP), and Cs (HDTMP). This characterization was achieved using powder X-ray diffractometry, X-ray crystallography, and vibratory FT-IR spectroscopy.

Finally, we studied the proton conductivity of selected metal-phosphonate materials.

Keywords: phosphoric acid, metal phosphonates materials, HDTMP, metal organic frameworks, alkali metals, proton conductivity.

ΠΕΡΙΕΧΟΜΕΝΑ

Σελίδα

ΚΕΦΑΛΑΙΟ 1. Εισαγωγή

1.1.	Φωσφ	ρονικά Οξέα: Σύνθεση	14-15
1.2.	Μηχα	νισμός της αντίδρασης Michaelis-Arbuzov	15-16
1.3.	Μηχα	νισμός της αντίδρασης Mannich	17-18
1.4.	Φωσφ	ρονικά Οξέα: Ιδιότητες και Εφαρμογές	19-44
	1.4.1	Ιδιότητες	19-20
	1.4.2	Εφαρμογές	20-25
	1.4.3	Μεταλλοφωσφονικά Υλικά	25-26
	1.4.4	Ιστορία των μεταλλοφωσφονικών ενώσεων	26-27
	1.4.5	HDTMP (hexamethylenediamine-tetrakis(methylene	
		phosphonic acid)	28-34
	1.4.6	Μεταλλοφωσφονικές Ενώσεις με Μεταλλοϊόντα Αλκαλίω	VC
		(Li, Na, K, Rb, Cs)	35
	1.4.7	Παρουσίαση παραδειγμάτων από τη βιβλιογραφία	
		μεταλλοφωσφονικών που περιέχουν ιόντα αλκαλίων	35-42
	1.4.8	Πρωτονιακή Αγωγιμότητα	42-44

ΚΕΦΑΛΑΙΟ 2. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ: ΣΥΝΘΕΣΗ ΚΑΙ ΦΥΣΙΚΟΧΗΜΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ

2.1.	Χημικά Αντιδραστήρια	45	
2.2.	Όργανα – Τεχνικές	45-47	
2.3.	Σύνθεση μεταλλοφωσφονικών υλικών, με μέταλλα αλκαλίων και		
	τον τετραφωσφονικό υποκαταστάτη HDTMP	46	
	2.3.1. Σύνθεση Li-HDTMP	47	
	2.3.2. Σύνθεση Na-HDTMP	47	
	2.3.3. Σύνθεση Κ-ΗDTMP	48	
	2.3.4. Σύνθεση Rb-HDTMP	48	
	2.3.5. Σύνθεση Cs-HDTMP	49	

2.4.	Κρυσταλλογραφικά δεδομένα	50	
2.5.	.5. Χαρακτηρισμός των υλικών Μ-ΗDTMP με φασματισκοπία		
	FT-IR	51	
2.6.	Θερμοσταθμική Ανάλυση (TGA)	52-55	
2.7.	Περιθλασιμετρία ακτίνων Χ σκόνης (XRD)	55-58	

ΚΕΦΑΛΑΙΟ 3. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΚΡΥΣΤΑΛΛΙΚΩΝ ΔΟΜΩΝ

3.1. Κρυσταλλική δομή του Li-HDTMP	.59-65
3.2. Κρυσταλλική δομή Na-HDTMP	.65-72
3.3. Κρυσταλλική δομή K-HDTMP	.73-80
3.4. Κρυσταλλική δομή Rb-HDTMP	.81-86
3.5. Κρυσταλλική δομή Cs-HDTMP	.87-92

ΚΕΦΑΛΑΙΟ 4. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΩΤΟΝΙΑΚΗΣ ΑΓΩΓΙΜΟΤΗΤΑΣ

4.1. Διεργασίες αφυδάτωσης-ενυδάτωσης	93-99
4.2. Μελέτες πρωτονιακής αγωγιμότητας	99-104

ΚΕΦΑΛΑΙΟ 5. ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΡΟΟΠΤΙΚΕΣ......105-106

ΚΕΦΑΛΑΙΟ 6. ΒΙΒΛΙΟΓΡΑΦΙΑ.....107-110

ПАРАРТНМА	111-15 [,]	1

ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ

1.1. Φωσφονικά Οξέα: Σύνθεση

Ο μοριακός τύπος ενός μονοφωσφονικού οξέος είναι της μορφής RPO₃H₂, όπου R είναι ανθρακική (αλειφατική ή αρωματική) αλυσίδα. Η συμπεριφορά της όξινης ομάδας –PO₃H₂ εξαρτάται κατά κύριο λόγο από το pH. Επομένως, υπάρχουν δύο αποπρωτονιωμένες μορφές της φωσφονικής ομάδας R-PO₃H₂, η μονο-αποπρωτονιωμένη R-PO₃H⁻ και η δις-αποπρωτονιωμένη R-PO₃²⁻. Συνήθως το πρώτο πρωτόνιο είναι πολύ όξινο (και αποχωρεί σε pH < 2), ενώ το δεύτερο είναι πολύ λιγότερο όξινο (αποχωρεί σε pH > 7). Σταδιακή αύξηση του pH του διαλύματος επιφέρει και την σταδιακή αποπρωτονίωση του φωσφονικού οξέος.

Το βασικό δομικό χαρακτηριστικό των ενώσεων αυτών είναι η παρουσία μιας τουλάχιστον ομάδας –PO₃H₂ με απευθείας δεσμό φωσφόρου άνθρακα, σε αντίθεση με τους φωσφορικούς εστέρες που περιέχουν την ομάδα P-O-C αλλά δεν συγκαταλέγονται στους φωσφονικούς υποκαταστάτες. Τα φωσφονικά είναι ενώσεις οι οποίες είναι ανθεκτικές στη χημική υδρόλυση και στη θερμική διάσπαση λόγω του ισχυρού ομοιοπολικού δεσμού φωσφόρου-άνθρακα (Δ*H*_f = 513 kJ/mol) που περιέχουν.

Η βιομηχανική σύνθεση των πρώτων συνθετικών παραγώγων των φωσφονικών οξέων, έγινε δυνατή από το 1905, μετά την ανακάλυψη της αντίδρασης Arbuzov. Η αντίδραση αυτή χρησιμοποιεί βρωμο- ή ιωδοπαράγωγα.^{2,3}

$$\begin{array}{c} OR_1 \\ R_1O \xrightarrow{P} OR_1 \\ R_1O \xrightarrow{P} OR_1 \\ heat \end{array} \xrightarrow{R_2 - X} OH_1 \\ R_1O \xrightarrow{H} R_1O \xrightarrow{H} R_2 \\ OR_1 \\ OR_1 \\ Heat \\ OR_1 \\ Heat \\ OR_1 \\ Heat \\ Heat \\ OR_1 \\ Heat \\ H$$

Ανακαλύφθηκε από τους Michaelis και Kaehne, και αργότερα μελετήθηκε εκτεταμένα από τον Arbuzov.^{2,3}

Εικόνα 1.1. Οι τρεις μορφές της φωσφονικής ομάδας.1

1.2. Μηχανισμός της αντίδρασης Michaelis-Arbuzov

Όπως φαίνεται στην Εικόνα 1.2 η αντίδραση ξεκινά με μια S_N2 προσβολή μεταξύ ενός πυρηνόφιλου φωσφορώδους άλατος και ενός αλκυλαλογονιδίου.⁴ Η αντίδραση αυτή δίνει ένα phosphonium το οποίο αποτελεί και το ενδιάμεσο της συνολικής αντίδρασης. Στη συνέχεια το ελεύθερο ανιόν του αλογόνου αντιδρά μέσω μιας δεύτερης προσβολής S_N2 με το phosphonium δίνοντας τον επιθυμητό φωσφονικό εστέρα και ένα αλκυλαλογονίδιο. Όταν το ενδιάμεσο phosphonium που παράγεται είναι χειρόμορφο τότε η υποκατάσταση του αλογόνου πραγματοποιείται με αναστροφή της διάταξης του μορίου όπως εξάλλου αναμένεται για αντιδράσεις S_N2. Απαιτούνται θερμοκρασίες της τάξης των 150-200 °C, εξαρτώμενες από την ομάδα R'.

Εικόνα 1.2. Προτεινόμενος μηχανισμός της αντίδρασης Michaelis-Arbuzov. Ελήφθη από την παραπομπή 3.

Η φωσφονική ομάδα μπορεί να συνυπάρξει με άλλες λειτουργικές ομάδες στο ίδιο μόριο, για παράδειγμα καρβοξυλάτο-, υδρόξυλο-, σουλφονο-, αμινο-, κτλ.

Μια κατηγορία φωσφονικών οξέων είναι τα αμινοφωσφονικά οξέα με μοριακό τύπο [RN(CH₂PO₃H₂)₂], στην ανθρακική αλυσίδα των οποίων περιέχονται ένα ή περισσότερα άτομα αζώτου (ουσιαστικά μια τριτοταγής αμινομάδα). Λόγω της βασικότητας αυτής της αμινομάδας, το άτομο N βρίσκεται πρωτονιωμένο (συνήθως μέσω μιας ενδομορικής πρωτονίωσης από την όξινη φωσφωνο ομάδα), με αποτέλεσμα προσδίδει ένα θετικό φορτίο στο μόριο. Όπως και στη περίπτωση των απλών φωσφονικών έτσι και στα αμινοφωσφονικά η συμπεριφορά τους εξαρτάται από το pH. Εξ' αιτίας της υψηλής βασικότητας του N, οι αμινομάδες τους αποπρωτονιώνονται σε τιμές pH μεγαλύτερες του 10.

1.3. Μηχανισμός της αντίδρασης Mannich

Η σύνθεση των αμινοφωσφονικών οξέων γίνεται μέσω μιας αντίδρασης τύπου Mannich μεταξύ φωσφορώδους οξέος, φορμαλδεύδης και αμίνης (πρωτοταγούς ή δευτεροταγούς).^{5,6,7,8} Ο μηχανισμός της αντίδρασης Mannich παρουσιάζεται στην Εικόνα 1.3.

 $R_{3-n}NH_n + nHCHO + nH_3PO_3 \longrightarrow R_{3-n}N[CH_2P(O)(OH)_2]_n + nH_2O$

Το υδρογόνο που είναι συνδεδεμένο στο άτομο φωσφόρου του φωσφορώδους οξέος, είναι όξινο και απαιτείται για αυτήν την αντίδραση, η οποία παρουσία υδροχλωρικού οξέος έχει μεγαλύτερη απόδοση. Η χρήση αμμωνίας, πρωτοταγών ή δευτεροταγών αμινών, πολυαμινών καθώς και υποκατεστημένων αμινών δίνει τη δυνατότητα σύνθεσης μεγάλου αριθμού αμινοφωσφονικών οξέων.

Εικόνα 1.3. Προτεινόμενος μηχανισμός της αντίδρασης Mannich. Ελήφθη από την παραπομπή 3.

Επίσης τα αμινοφωσφονικά αποτελούν εξαιρετικούς υποκαταστάτες για τη μεταλλοϊόντων και συνεπώς χρησιμοποιούνται συναρμογή για тην απομόνωση ιόντων σιδήρου, χαλκού, νικελίου και ουρανίου κατά την χημική επεξεργασία των υδάτων. Τα οξέα αυτά έχουν την ιδιότητα να σχηματίζουν υμένια σε μεταλλικές επιφάνειες, συνεπώς αποτελούν αποτελεσματικά αντιδιαβρωτικά υλικά. Αμινοφωσφονικά οξέα μπορούν επίσης να συμμετάσχουν στο σχηματισμό μεταλλοργανικών υβριδικών υλικών (Metal-Organic Frameworks, MOF). Τέλος βρίσκουν εφαρμογές στην τροποποίηση ανόργανων επιφανειών, στον "εμπλουτισμό" (grafting) ανόργανων επιφανειών με οργανικές ενώσεις, καθώς στην κατάλυση και στον ευρύτερο τομέα της νανοτεχνολογίας. Στην Εικόνα 1.4 παρουσιάζεται μια πληθώρα ποικίλων δομών φωσφονικών οξέων.

Εικόνα 1.4. Σχηματικές δομές μονο-και πολυ-φωσφονικών οξέων.

1.4. Φωσφονικά Οξέα: Ιδιότητες και Εφαρμογές

1.4.1. Ιδιότητες

Η φωσφονική ομάδα αποπρωτονιώνεται σε δύο στάδια, ανάλογα με το pH του διαλύματος, ενώ η καρβοξυλική αποπρωτονιώνεται σε ένα στάδιο, όπως φαίνεται στην Εικόνα 1.5. Οι δύο αποπρωτονιωμένες μορφές του R-PO₃H₂, είναι οι R-PO₃H⁻ (μονο-ανιόν) και R-PO₃²⁻ (δις-ανιόν). Έτσι, αλλάζοντας το φορτίο του υποκαταστάτη μπορούν να προκύψουν εντελώς διαφορετικά προϊόντα σε αντιδράσεις με μεταλλικά κέντρα, παρόλο που η μοριακή αναλογία των αντιδρώντων παραμένει η ίδια.¹

Phosphonate-based Building Units

Εικόνα 1.5. Η αποπρωτονίωση της καρβοξυλικής και της φωσφονικής ομάδας. Ελήφθη από την παραπομπή 1.

 Στη φωσφονική ομάδα το άτομο φωσφόρου είναι συνδεδεμένο με τρία άτομα οξυγόνου, ενώ στην καρβοξυλική το άτομο άνθρακα είναι συνδεδεμένο με δύο άτομα οξυγόνου. Η φωσφονική ομάδα είναι ισχυρά ανιοντική, με αποτέλεσμα να δημιουργεί ισχυρούς δεσμούς με μεταλλικά ιόντα Mⁿ⁺ (n = 1-4).⁹

- Οι μέθοδοι για τη σύνθεση των μεταλλοφωσφονικών είναι ποικίλες και εξαρτώνται από τη θερμοκρασία, την πίεση, τις αναλογίες των αντιδρώντων, το pH, το φορτίο του μεταλλικού ιόντος και τους διαλύτες που χρησιμοποιούνται.
- Η φωσφονική ομάδα έχει τη δυνατότητα να εστεροποιηθεί μία ή δύο φορές,¹⁰ σε αντίθεση με την καρβοξυλική στην οποία μπορεί να γίνει μία μόνο εστεροποίηση, με αποτέλεσμα την ενίσχυση της διαλυτότητας και τη δομική ποικιλομορφία των τελικών υλικών.

1.4.2. Εφαρμογές

Η έρευνα για τα μικρο- και μεσοπορώδη υλικά για προσρόφηση και ανταλλαγή ιόντων προέρχεται από τους ζεόλιθους, οι οποίοι αποτελούν αρχέτυπα αντιπροσωπευτικά παραδείγματα ανόργανων μικροπορωδών υλικών. Οι ζεόλιθοι έχουν ένα μεγάλο όγκο πόρων που συνήθως καταλαμβάνεται από διάφορα κατιόντα και μόρια νερού. Τα παγιδευμένα κατιόντα και τα μόρια του νερού μπορουν να αντικατασταθούν από ορισμένα άλατα, ανάλογα με τους τύπους των ζεολίθων. Ωστόσο, οι περιορισμοί των ζεολίθων είναι ότι τα κανάλια και τα μεγέθη των πόρων τους δεν είναι μεγαλύτερα από ~ 10 Å και είναι ασταθή ως προς τις όξινες συνθήκες. Μια νέα κατεύθυνση που εφαρμόστηκε στην έρευνα ήταν η σύνθεση ένυδρων οξειδίων μετάλλων και οργανικών ρητινών για προσρόφηση και ανταλλαγή ιόντων, η οποία σύντομα κυριάρχησε το πεδίο. Ορισμένες μεταλλοργανικές ενώσεις με ανοικτό πλαίσιο (open framework materals), με βάση καρβοξυλικούς, ή και φωσφονικούς «συνδετήρες» είναι εξαιρετικοί προσροφητές και ιοναντανταλλάκτες.¹¹ Επίσης, η ικανότητά τους αυτή μπορεί να τροποποιηθεί ανάλογα με συγκεκριμένες μεταβλητές που εφαρμόζονται στη σχεδιασμένη σύνθεσή τους.

 Χαρακτηριστικό παράδειγμα εφαρμογής στο τομέα της Φαρμακευτικής Χημείας είναι τα διφωσφονικά οξέα.^{12,13,14} Είναι δομικά ανάλογα των ενδογενών πυροφωσφορικών, στα οποία ένα άτομο άνθρακα αντικαθιστά το κεντρικό γεφυρωτικό άτομο οξυγόνου. Έχει παρατηρηθεί ότι αυξάνουν την οστική μάζα και επιφέρουν μείωση κατά το ήμισυ στο ρυθμό διάσπασης της σπονδυλικής στήλης, του ισχίου καθώς και άλλων σημείων που προσβάλλονται από την οστεοπόρωση. Η χημική τους δομή (Εικόνα 1.6) περιλαμβάνει δύο φωσφονικές ομάδες συνδεδεμένες απευθείας με το κεντρικό άτομο άνθρακα δια μέσου δεσμού C-P, που είναι ανθεκτικός στην υδρόλυση. Το κεντρικό άτομο άνθρακα μπορεί να δημιουργήσει δύο επιπλέον ομοιοπολικούς δεσμούς με δύο πλευρικές ομάδες R₁ και R₂ αντίστοιχα.

Εικόνα 1.6. Η βασική δομή των διφωσφονικών οξέων με τις πλευρικές αλυσίδες R1 και R2.

Με βάση την παραπάνω δομή, έχει συντεθεί μεγάλος αριθμός διφωσφονικών οξέων. Στην Εικόνα 1.7 παρουσιάζονται κάποια αντιπροσωπευτικά παραδείγματα διφωσφονικών στα οποία η μία πλευρική ομάδα είναι το υδροξύλιο (-OH), ενώ η δεύτερη πλευρική ομάδα ποικίλει και μπορεί να είναι αλειφατική, αρωματική, ή ετεροκυκλική. Τα φωσφονικά της Εικόνας 1.7 χρησιμοποιούνται σαν ενεργά συστατικά σε φαρμακευτικά σκευάσματα κατά της οστεοπόρωσης.^{15,16,17}

Bisphosphonate structures

Εικόνα 1.7. Παραδείγματα διφωσφονικών φαρμάκων.

- Οργανικά φωσφονικά χρησιμοποιούνται εκτενώς σε ένα ευρύ φάσμα τεχνολογικών περιοχών και εφαρμογές. Αυτές κυμαίνονται από βιομηχανικά σημαντικές διεργασίες, όπως χημική επεξεργασία του νερού, μέχρι και σε βιολογικές και φαρμακευτικές χρήσεις, όπως η ρύθμιση του μεταβολισμού του ασβεστίου ή θεραπεία των διαταραχών που σχετίζονται με το ασβέστιο.^{15,16,17} Σε ιατρικές και φαρμακευτικές εφαρμογές, χρησιμοποιούνται εκτενώς ως ρυθμιστές του μεταβολισμού του φωσφορικού ασβεστίου, ιδιαίτερα σε σχέση με το υδροξυαπατίτη, το κύριο ανόργανο συστατικό των οστών. Χρησιμότητά τους στην υπερμοριακή χημεία και κρυσταλλική μηχανική έχει επίσης σημειωθεί στη βιβλιογραφία.
- Η παρουσία των μεταλλικών ιόντων στα βιολογικά υγρά καθώς και η ικανότητα δέσμευσης των ιόντων αυτών με αμινοξέα, οργανικά οξέα

καθώς και με τις φωσφορυλιωμένες μορφές αυτών, βρίσκει εφαρμογή και στη χημεία των φωσφονικών, καθώς μπορεί να μελετηθεί η συναρμογή με μεταλλικά ιόντα φωσφονικών αναλόγων των οργανικών βιομορίων, μέσα στον ανθρώπινο οργανισμό.¹⁸

- Στα βιολογικά υγρά τα μεταλλικά ιόντα μπορούν να δεσμευτούν με οργανικά οξέα, αμινοξέα, μικρά πεπτίδια και μόρια σαν αυτά, τα οποία έχουν και φωσφονικά τμήματα. Οι ομάδες αυτές χαρακτηρίζουν βιολογικές περιοχές σε μικρά μόρια και πρωτείνες ή ένζυμα με κεντρικούς ρόλους στη μεταγωγή σήματος, στην ενζυμική παρεμπόδιση, στη ρύθμιση ανάπτυξης φυτών, στην αντιβιωτική δράση.¹⁹ Τα φωσφονικά έχουν χαμηλή τοξικότητα για τους υδρόβιους οργανισμούς, ενώ είναι βιοαποικοδομήσιμα από μικροοργανισμούς οι οποίοι έχουν τη δυνατότητα να διασπούν το δεσμό C-P και να χρησιμοποιούν τα φωσφονικά ως πηγή φωσφόρου για την ανάπτυξη τους.
- Τα φωσφονικά προσροφώνται πολύ ισχυρά πάνω σε σχεδόν όλες τις ορυκτές επιφάνειες (mineral surfaces). Για παράδειγμα, προσροφώνται πάνω στον ασβεστίτη (CaCO₃), σε οξείδια αργιλίου, σιδήρου, ψευδαργύρου, στον υδροξυαπατίτη (φάση του φωσφορικού ασβεστίου) και στον βαρίτη (BaSO₄).²⁰
- Τα φωσφονικά βρίσκουν ευρεία εφαρμογή και στην μηχανική κρυστάλλων (crystal engineering), κυρίως λόγω της μεγάλης διαθεσιμότητα τους μέσω της οργανικής σύνθεσης (π.χ., Arbuzov ή αντιδράσεις Mannich). Τα μεταλλοφωσφονικά υλικά είναι συνήθως πολυμερή συναρμογής και περιστασιακά εμφανίζουν μικροπορώδεις ιδιότητες. Χαρακτηριστικά που αναζητούνται σε τέτοια λειτουργικά υλικά είναι παρεμβολή, κατάλυση, προσρόφηση και αποθήκευση, και ανταλλαγή ιόντων.^{21,22,23,24}
- Η επιλεκτική πρόσληψη ιόντων τρισθενούς σιδήρου από υδατικά διαλύματα είναι εξαιρετικά σημαντική λόγω του σημαντικού ρόλου της στους τομείς του περιβάλλοντος, της ιατρικής, της βιολογίας, καθώς στην ιονανταλλαγή του καταλύτη που περιέχει σίδηρο. Ιδιαίτερα στην κλινική

ιατρική, θαλασσαιμίες και γενετική αιμοχρωμάτωση είναι ασθένειες υπερφόρτωσης ιόντων σιδήρου,²⁵ η οποία μπορεί να αντιμετωπιστεί αποτελεσματικά με θεραπεία αποσιδήρωσης για την απομάκρυνση ιόντων τρισθενούς σιδήρου. Ωστόσο, οι φυσικές και συνθετικές κλινικά χηλικές ενώσεις σιδήρου θα μπορούσαν να επηρεάσουν τις βιολογικές διαδικασίες που περιλαμβάνουν σίδηρο και άλλα μεταλλικά ιόντα στην υγεία και την ασθένεια μελών. Αυτό το πρόβλημα υπογραμμίζει τις τρέχουσες προσπάθειες για την ανάπτυξη αποτελεσματικών υλικών για προσρόφηση και ανταλλαγή ιόντων με υψηλή εκλεκτικότητα για ιόντα τρισθενούς σιδήρου έναντι άλλων κοινών μεταλλικών ιόντων που υπάρχουν σε βιολογικά συστήματα. Για παράδειγμα ο Clearfield και συνεγάτες ανέφεραν ότι υλικά που περιέχουν ζιρκόνιο, φωσφορικά και φωσφονικά έχουν χρησιμοποιηθεί με επιτυχία σε διαδικασίες παρένθεσης (intercalation), ιοντική αγωγιμότητα, και για προσρόφηση και ανταλλαγή ιόντων. Αυτά τα μεταλλοφωσφονικά ανήκουν σε μια κατηγορία υλικών ιδανικών για προσρόφηση και ανταλλαγή ιόντων, ενώ παρουσιάζουν θερμική σταθερότητα. Εξίσου σημαντική ειναι η πολύ υψηλή εκλεκτικότητα του μεταλλοφωσφονικού για πολυσθενή κατιόντα, με αποτέλεσμα να επιτυγχάνεται καλύτερος αναλυτικός διαχωρισμός ή συγκέντρωση αυτών των κατιόντων.

Ως εκ τούτου, κάποιοι ερευνητές επικεντρώθηκαν στη σύνθεση τετραφωσφονικών οξέων { $(H_2O_3PCH_2)_2N$ -R-N(CH₂PO₃H₂)₂ [R =(CH₂)₂, (CH₂)₄, C₆H₄, etc.]} ως πολυτοπικά οργανικά δομικά στοιχεία για την δημιουργία μεταλλο-τετραφωσφονικών υλικών με νέα ανοιχτή και μικροπορώδη δομή, με σκοπό τη χρήση τους στην εκλεκτική προσρόφηση και ανταλλαγή ιόντων. Με την σωστή επιλογή της διασύνδεσης της οργανικής ομάδας, μπορούν να τροποποιηθούν και να προσαρμοστούν οι διαστάσεις των καναλιών στο εσωτερικό αυτών των δομών, έτσι ώστε μπορούν να φιλοξενούν ορισμένα ιόντα, όπως Fe³⁺. Χρήση του τετραφωσφονικού οξέος, [(H₂O₃PCH₂)₂N(CH₂)₂N(CH₂PO₃H₂)₂] (H₈EDTP), παρουσία ιόντων Pb²⁺ ή Zn²⁺ έδωσε δύο νέες δομές μεταλλοτετραφωσφονικών.²⁵ Η δομή του υλικού {[Pb₇(HEDTP)₂(H₂O)]·7H2O}_n διαθέτει ένα 3D μικροπορώδες δίκτυο με τις σήραγγες κατά μήκος των α και β άξονων, ενώ η δομή του υλικού {[Zn₂(H₄EDTP)]·2H₂O₁n, έχει σαν

24

βάση ένα τρισδιάστατο υπερμοριακό δίκτυο με μονοδιάστατα κανάλια κατά μήκος του άξονα α.Και οι δύο ενώσεις έχουν την ικανότητα για εξαιρετικά υψηλή επιλεκτική προσρόφηση και ανταλλαγή κατιόντων Fe³⁺ έναντι άλλων μεταλλικών ιόντων. Πιστεύεται ότι η επιλεκτική προσρόφηση ιόντων σιδήρου αυτών των ενώσεων μπορεί να προκύψει όχι μόνο από την ανταλλαγή ιόντων, αλλά και από τον ισχυρό δεσμό συναρμογής μεταξύ των ιόντων Fe³⁺ με τις φωσφονικές ομάδες.

1.4.3. Μεταλλοφωσφονικά Υλικά

Τα μεταλλικά ιόντα σχηματίζουν με τα φωσφονικά οξέα ανόργανα - οργανικά υβρίδια. Οι δομές των μεταλλοφωσφονικών υλικών που λαμβάνονται ως προϊόντα από μια αντίδραση μεταλλικού ιόντος και φωσφονικού οξέος εξαρτώνται από ποικίλους παράγοντες, όπως:

- Από τη φύση του μεταλλικού ιόντος
- Από τον αριθμό των φωσφονικών ομάδων του υποκαταστάτη
- Από την παρουσία άλλων λειτουργικών ομάδων στο μόριο (π.χ. καρβοξυλικές, σουλφονικές, αμινομάδες, υδροξυλομάδες, κτλ.)
- Από τις πειραματικές συνθήκες της αντίδρασης (πίεση, θερμοκρασία, pH, συγκέντρωση αντιδρώντων κλπ).

Οι «κλασσικές» συνθέσεις των μεταλλοφωσφονικών υλικών λαμβάνουν χώρα σε υδατικά διαλύματα ή σε μίγματα νερού και κάποιου πολικού οργανικού διαλύτη (π.χ. αλκοόλες, ακετόνη, διμεθυλοφορμαμίδιο). Ως εκ τούτου, αποτελεί σύνηθες φαινόμενο το νερό να βρίσκεται στο κρυσταλλικό πλέγμα του προϊόντος (είτε ως συναρμοσμένο στο μεταλλικό κέντρο, είτε «ελεύθερο» στο πλέγμα). Επίσης είναι σημαντικό να υπογραμμιστεί ότι τα μόρια νερού πολύ συχνά συμμετέχουν σε εκτενή δίκτυα δεσμών Η, που είναι υπεύθυνα για την σταθεροποίηση των υπερμοριακών αυτών δομών (1D, 2D, 3D).

Συνεπώς, με την επιλογή του αριθμού των φωσφονικών ομάδων, την παρουσία των λειτουργικών ομάδων στον υποκαταστάτη και τη φύση του μεταλλικού ιόντος είναι δυνατή η σύνθεση υλικών με ποικίλες φυσικοχημικές ιδιότητες. Οι δομές των μεταλλοφωσφονικών υλικών μπορεί να είναι 0D, 1D, 2D, ή 3D. Η δομή 0D (μονοπυρηνικό σύμπλοκο) είναι σχετικά σπάνια. Η δομή 1D είναι λιγότερο σπάνια, ενώ η δομή 2D είναι η πιο συνηθισμένη, ιδιαίτερα αν χρησιμοποιηθούν μονοφωσφονικά οξέα. Αυξάνοντας τον αριθμό των φωσφονικών ομάδων στον υποκαταστάτη, συνήθως αυξάνεται και η διάσταση της δομής, και έτσι μπορούν να ληφθούν 3D δομές.

1.4.4. Ιστορία των μεταλλοφωσφονικών ενώσεων

Το 1978 ο Giulio Alberti με τους συνεργάτες του, συνέθεσαν τα πρώτα μεταλλοφωσφονικά υλικά, αντιδρώντας απλά μονοφωσφονικά οξέα με ιόντα Zr⁴⁺.²⁶ Οι δομές των προϊόντων προτάθηκαν ως φυλλόμορφες, αλλά δεν προσδιορίστηκαν πειραματικά λόγω της περιορισμένης κρυσταλλικότητας των προϊόντων. Η παρασκευή τους έγινε σύμφωνα με την παρακάτω αντίδραση, όπου R αλκυλο- ή άρυλο- ομάδα.

$Zr^{4+} + 2RPO_3H_2 \rightarrow Zr(O_3PR)_2 + 4H^+$

Το 1993 (μετά από 15 χρόνια!) δημοσιεύτηκε από τον Clearfield και τους συνεργάτες του η πρώτη κρυσταλλική δομή αυτής της κατηγορίας υλικών (συγκεκριμένα το Zr(O₃PC₆H₅)₂), σε δείγμα που παρασκευάστηκε στο εργαστήριο του Alberti.²⁷ Το υλικό ήταν προιόν υδροθερμικής αντίδρασης διάρκειας 30 ημερών και σε θερμοκρασίες 190-200 °C, και είχε όντως φυλλόμορφη δομή, Εικόνα 1.8.

Εικόνα 1.8. Η φυλλόμορφη δομή του υλικού Zr(O₃PC₆H₅)₂.

Ο Dines με τους συνεργάτες του συνέθεσαν μεταλλοφωσφονικά υλικά με βάση διφωσφονικούς υποκαταστάτες και ιόντα Zr⁴⁺.²⁸ Οι δομές των υλικών αυτών ήταν φυλλόμορφες αλλά διέφεραν από τις πρώτες, καθώς οι υποκαταστάτες βρισκόταν σε κάθετη τοποθέτηση προς τα επίπεδα των ανόργανων στιβάδων, δημιουργώντας με αυτόν τον τρόπο χώρο μεταξύ των επιπέδων. Αυτά τα υλικά ήταν τα πρώτα παραδείγματα δισδιάστατων υποστηλωμένων δομών στη χημεία των μεταλλοφωσφονικών.

Ο Mallouk με τους συνεργάτες του, παρουσίασαν τις δομές των Mn, Zn, Co, Mg με φαίνυλο και άλκυλο φωσφονικούς υποκαταστάτες, οι οποίες ήταν όλες φυλλόμορφες.²⁹ Ο ίδιος συνέθεσε μεταλλοφωσφονικά υλικά χρησιμοποιώντας ιόντα λανθανιδών, LnH(O₃PMe)₂ των οποίων όμως οι δομές δεν προσδιορίστηκαν λόγω του σχήματος και του μεγέθους των κρυστάλλων. Οι δομές των φαινυλο παραγώγων με λανθάνιο, βρέθηκαν και ήταν φυλλόμορφες.

27

1.4.5. HDTMP (hexamethylenediamine-*tetrakis*(methylene phosphonic acid)

Ανήκει στην κατηγορία των αμινοφωσφονικών οξέων και είναι ένα τετραφωσφονικό οξύ. Έχει οκτώ όξινα υδρογόνα (δύο από κάθε φωσφονική ομάδα) ενώ τα άτομα αζώτου παραμένουν πρωτονιωμένα σε pH < 10. Στην Εικόνα 1.9 φαίνονται η σχηματική δομή του HDTMP και τα βήματα αποπρωτονίωσής του.

Εικόνα 1.9. Σχηματική δομή του HDTMP και τα βήματα αποπρωτονίωσης του HDTMP. Ελήφθη από την παραπομπή 30.

Σε τιμές 1 < pH < 4 κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη (συνολικό ανιοντικό φορτίο «-4»), ενώ οι δύο τριτοταγείς αμινομάδες είναι πρωτονιωμένες (συνολικό κατιοντικό φορτίο «+2»), με αποτέλεσμα το συνολικό φορτίο του υποκαταστάτη να είναι «-2».

Το HDTMP διατίθεται στο εμπόριο με την ονομασία Dequest 2054 (υδατικό διάλυμα του μετά K+ άλας του HDTMP, ~ 50 % w/w) και ως Dequest 2051 (λευκό στερεό, οξύ του HDTMP, 98 %). Το HDTMP χρησιμοποιείται στη βιομηχανία ως παρεμποδιστής κρυστάλλωσης των δυσδιαλύτων αλάτων CaSO₄·2H₂O (gypsum) και BaSO₄ (barite).

Στη βιβλιογραφία έχει αναφερθεί σχετικά μικρός αριθμός μεταλλοφωσφονικών υλικών με τον υποκαταστάτη HDTMP. Πιο συγκεκριμένα, έχει δημοσιευτεί από την Ομάδα μας η δομή του υποκαταστάτη HDTMP (στην δις-ανιοντική μορφή του) σαν οργανικό άλας με το δις-κατιόν αιθυλαινοδιαμμώνιο, (en)(HDTMP)·2H₂O, en = ethylenediamine. Η μοριακή του δομή καθώς και η 2D δομή πλέγματος δίδονται στην Εικόνα 1.10.³¹

Εικόνα 1.10. Μοριακή (επάνω) και κρυσταλλική (κάτω) του οργανικού άλατος (en)(HDTMP)·2H₂O. Ελήφθη από την παραπομπή 31.

Επίσης, πρόσφατα έχει δημοσιευτεί από την Ομάδα μας η κρυσταλλική δομήτουυλικούZn-HDTMP,μεμοριακότύπο ${Zn[(HO_3PCH_2)_2N(H)(CH_2)_6N(H)(CH_2PO_3H)_2]•H_2O},ηοποίαείναιτρισδιάστατη, Εικόνα 1.11.32$

Εικόνα 1.11. Κρυσταλλική δομή του υλικού ${Zn[(HO_3PCH_2)_2N(H)(CH_2)_6N(H)(CH_2PO_3H)_2] \cdot H_2O}$. Αριστερά φαίνεται το περιβάλλον συναρμογής του κέντρου Zn^{2+} , στο κέντρο το «διμερές» Zn-Zn, και δεξιά τμήμα της τρισδιάστατης δομής. Ελήφθη από την παραπομπή 32.

αντίθεση, Sr-HDTMP Σε δομές των υλικών OI {Sr[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂](H₂O)₆•2H₂O} (ισοδομικό με το καθώς Ba), του Cu-HDTMP, και $\{Cu[(HO_3PCH_2)_2N(H)(CH_2)_6N(H)(CH_2PO_3H)_2](H_2O)_4 \bullet 6H_2O\},\$ σχηματίζουν μονοδιάστατες αλυσίδες.³³ Τα υλικά M-HDTMP (M = Sr, Ba) εμφανίζουν δομές zig-zag (Εικόνα 1.12), ενώ στο υλικό Cu-HDTMP το μονοδιάστατο τμήμα ...-HDTMP-Cu-HDTMP-Cu-HDTMP-... είναι μια τέλεια ευθεία, Εικόνα 1.13.

30

Εικόνα 1.12. Κρυσταλλική δομή των ισοδομικών υλικών ${M[(HO_3PCH_2)_2N(H)(CH_2)_6N(H)(CH_2PO_3H)_2](H_2O)_6 \cdot 2H_2O}), M = Sr, Ba. Πάνω φαίνεται η βασική μονάδα της δομής zig-zag, και κάτω το περιβάλλον συναρμογής του μετάλλου. Ελήφθη από την παραπομπή 33.$

Εικόνα 1.13. Κρυσταλλική δομή του υλικού {Cu[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂](H₂O)₄•6H₂O}. Επάνω και κάτω δεξιά φαίνεται η βασική μονάδα της μονοδιαστατης αλυσιδας ευθείας δομής 1D, και κάτω αριστερά το περιβάλλον συναρμογής του Cu²⁺. Ελήφθη από την παραπομπή 33.

Αλληλεπίδραση του υποκαταστάτη HDTMP με ιόντα Ca²⁺ σε pH ~ 2,5 οδήγησε στην απομόνωση/κρυστάλλωση του προϊόντος {Ca[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂]•2H₂O}, του οποίου η κρυσταλλική δομή είναι 2D φυλλόμορφη, με το τετραφωσφονικό διανιόν HDTMP να βρίσκεται ενσωματωμένο στα «φύλλα» της δομής, Εικόνα 1.14.³⁴ Το υλικό {Ca[(HO3PCH₂)2N(H)(CH₂)6N(H)(CH₂PO₃H)₂]•2H₂O}n έχει την ικανότητα να απορροφά ατμούς αμμωνίας.³⁴

Εικόνα 1.14. Κρυσταλλική δομή του υλικού {Ca[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂]•2H₂O}. Τα «φύλλα» της 2D δομής είναι κάθετα στο οπτικό πεδίο του αναγνώστη. Ελήφθη από την παραπομπή 34.

Όταν χρησιμοποιηθεί Co²⁺ ως πηγή του μεταλλικού ιόντος το προϊόν που λαμβάνεται δεν είναι πολυμερές συναρμογής, αλλά ένα «σύνθετο» σύμπλοκο με

[Co(H₂O)₆][Co(H₂O)₄[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂]₂]•12H₂O.³⁵ Η δομή του απαρτίζεται από ένα οκταεδρικό κέντρο Co²⁺ συναρμοσμένο με έξι μόρια H₂O, και από ένα δεύτερο κέντρο Co²⁺ συναρμοσμένο με τέσσερα μόρια H₂O (σε ισημερινές θέσεις) και δύο άτομα Ο προερχόμενα από δύο μόρια HDTMP, Εικόνα 1.15.³⁵ Την δομή συμπληρώνουν δώδεκα μόρια H₂O πλέγματος.

Εικόνα 1.15. Κρυσταλλική δομή του «σύνθετου» συμπλόκου [Co(H₂O)₆][Co(H₂O)₄[(HO₃PCH₂)₂N(H)(CH₂)₆N(H)(CH₂PO₃H)₂]₂]•12H₂O. Ελήφθη από την παραπομπή 35.

Η ερευνητική Ομάδα του Vivani δημοσίευσε πρόσφατα μια δεύτερη δομή με Cu²⁺ και HDTMP, με μοριακό τύπο {Cu₂(H₂O)₂[(HO₃PCH₂)(O₃PCH₂)N(H)-(CH₂)₆N(H)(CH₂PO₃)(CH₂PO₃H)]•Cu(H₂O)₆•2H₂O} η οποία είναι φυλλόμορφη, Εικόνα 1.16.³⁶ Όπως και στην περίπτωση του Co-HDTMP, υπάρχουν δύο είδη κέντρων Cu. Ένα «ελεύθερο» κατιόν Cu(H₂O)₆²⁺ που δρα σαν αντισταθμιστικό ιόν στο πλέγμα Cu-HDTMP, και ένα πεντασυναρμοσμένο ιόν Cu (2 άτομα O από φωσφονικές ομάδες, 1 άτομο N από το HDTMP και 2 μόρια νερού).

Εικόνα 1.16. Κρυσταλλική δομή του $\{Cu_2(H_2O)_{2[}(HO_3PCH_2)(O_3PCH_2)N(H)-(CH_2)_6N(H)(CH_2PO_3)(CH_2PO_3H)]$ •Cu $(H_2O)_6$ •2H₂O}. Ελήφθη από την παραπομπή 36.

Να σημειωθεί ότι τα υλικά Ba και Sr-HDTMP μελετήθηκαν για την ικανότητά τους να σχηματίζουν αντιδιαβρωτικά υμένια πάνω σε μεταλλικές επιφάνειες, παρεμποδίζοντας έτσι διαβρωτικές διαδικασίες.³³ Βρέθηκε ÓΤΙ тα σχηματιζόμενα υμένια σε pH = 2.2, όπου ήταν και το pH σύνθεσης των ισοδομικών πολυμερών, δεν προστατεύουν από τη διάβρωση τα δείγματα χάλυβα που χρησιμοποιήθηκαν στη μελέτη, λόγω του ότι το HDTMP σχηματίζει σύμπλοκο με τα ιόντα Fe³⁺ στην επιφάνεια του χάλυβα. Αντιδιαβρωτική ικανότητα παρουσιάστηκε σε pH = 7, όπου σχηματίστηκαν σύμπλοκα Sr-HDTMP, Ba-HDTMP διαφορετικά από τα πολυμερή που συντέθηκαν σε pH = 2.2 και χαρακτηρίστηκαν με πληθώρα πειραματικών τεχνικών.

1.4.6. Μεταλλοφωσφονικές Ενώσεις με Μεταλλοϊόντα Αλκαλίων (Li, Na, K, Rb, Cs)

Η ανακάλυψη και η διεξαγόμενη έρευνα των ανόργανων-οργανικών πλαισίων που περιέχουν ιόντα λιθίου (Li⁺)³⁷,είναι σημαντική για δύο βασικούς λόγους. Πρώτον, τα πορώδη ανόργανα-οργανικά πλαίσια είναι δυναμικά νέα υλικά αποθήκευσης αερίων, κάτι που οφείλεται στην ικανότητά τους να αλλάζουν συστηματικά μέγεθος πόρων και χημεία πλαισίου, το οποίο οδηγεί σε χαρακτηριστικά ρόφησης αερίου.³⁸ Η πρόσληψη αερίου έχει βελτιωμένα δειχθεί ότι ενισχύεται περαιτέρω με εισαγωγή του λιθίου μέσα στους πόρους³⁹ και έτσι φαίνεται λογικό, ότι η ενσωμάτωση του λιθίου ως δομικό στοιχείο εντός του πλαισίου η ίδια, μπορεί να οδηγήσει σε καλύτερες ιδιότητες ρόφησης και επίσης επειδή το λίθιο είναι το ελαφρύτερο μέταλλο, να οδηγήσει σε πλαίσια τα οποία θα έιναι πιό σταθερά. Δεύτερον, η έρευνα για τις επαναφορτιζόμενες μπαταρίες έχει επικεντρωθεί σε μεγάλο βαθμό στα υλικά που περιέχουν λίθιο επειδή το λίθιο έχει το μεγαλύτερο πρότυπο δυναμικό ηλεκτροδίου από όλα τα μέταλλα και είναι το ελαφρύτερο μέταλλο, ως εκ τούτου έχει δυνατότητες να προσφέρει απαράμιλλης πυκνότητας ενέργεια.

1.4.7. Παρουσίαση παραδειγμάτων από τη βιβλιογραφία μεταλλοφωσφονικών που περιέχουν ιόντα αλκαλίων

Οι Ayi και συνεργάτες συνέθεσαν υλικό που περιέχει ιόντα Na⁺ και τον διςφωσφονικό υποκαταστάτη 1,4-Benzenediphosphonic acid (H₄bdp). Η δομή του υλικού Na[H₃bdp] που παρουσιάστηκε ήταν φυλλόμορφη-υποστηλωμένη, Εικόνα 1.17.Το ιόν Na⁺ βρίσκεται σε οκταεδρικό περιβάλλον.⁴⁰

Εικόνα 1.17. Τμήμα της φυλλόμορφης δομής του υλικού Na[H₃bdp] που δείχνει την οκταεδρική δομή του Na. Ελήφθη από την παραπομπή 40.

Ο Clearfield παρουσίασε δομές του υποκαταστάτη biphenylenebisphosphonate με όλη τη σειρά των αλκαλίων (Li, Na, K, Rb, Cs). Όλες οι δομές είναι δισδιάστατες υποστηλωμένες (Εικόνα 1.18).⁴¹ Η βασική διαφορά μεταξύ των δομών είναι οι διαφορετικοί αριθμοί συναρμογής για κάθε μεταλλικό κέντρο [4 (Li⁺), 6 (Na⁺), 6 (K⁺), 7 (Rb⁺), 8 (Cs⁺)]. Οι δομές αυτές είναι παρόμοιες με αυτή της Εικόνας 1.17, με διαφορές που σχετίζονται με το μήκος του υποκαταστάτη και το περιβάλλον συναρμογής του μεταλλικού κέντρου.

Εικόνα 1.18. Οι υποστηλωμένες δομές των υλικών M⁺ με τον υποκαταστάτη biphenylenebisphosphonate. Ελήφθη από την παραπομπή 41.

Ο Lis δημοσίευσε σειρά δομών με ιόντα αλκαλίων και τον υποκαταστάτη phosphonoacetic acid (H₃AP, ο αριθμός 3 υποδεικνύει τον αριθμό των όξινων πρωτονίων στο μόριο): KH₂AP·H₂O, LiH₂AP, NaH₂AP·H₂O, K₂HAP, Na₂HAP·2H₂O, και Na₃AP·10H₂O.⁴² Τα υλικά αυτά παρασκευάστηκαν σε υδατικά διαλύματα που περιείχαν τις κατάλληλες στοιχειομετρικές ποσότητες. Στις διάφορες δομές το ιόν αλκαλίου βρίσκεται συναρμοσμένο με τα καρβοξυλικά και τα φωσφονικά οξυγόνα, καθώς και με μόρια νερού. Οι αριθμοί συναρμογής ποικίλουν αναλόγως της ιοντικής ακτίνας του αλκαλικού ιόντος: 8 (K⁺), 4 (Li⁺), 6 (Na⁺). Μια αντιπροσωπευτική δομή του LiH₂AP φαίνεται στην Εικόνα 1.19.

Εικόνα 1.19. Αντιπροσωπευτική δομή του LiH₂AP. Ελήφθη από την παραπομπή 42.

Οι Mermer και Starynowicz δημοσίευσαν την φυλλόμορφη δομή του υλικού που αποτελείται από ιόντα Li⁺ και τον μονοφωσφονικό υποκαταστάτη methylphosphonic acid, Li(CH₃PO₃H).⁴³ Το περιβάλλον του Li είναι τετραεδρικό και περιβάλλεται με άτομα οξυγόνου προερχόμενα από την φωσφονική ομάδα.

Οι Cheng και Lin δημοσίευσαν τη δομή υλικού που περιέχει Li⁺ και τον υποκαταστάτη ethylenediphosphonic acid ([Li(C₂H₇O₆P₂)]_n).⁴⁴ Η δομή φαίνεται στην Εικόνα 1.20. Χαρακτηριστικό της είναι ότι το τετραεδρικό κέντρο Li⁺ συναρμόζεται με το φωσφορύλ- οξυγόνο (P=O) και όχι όπως συνήθως παρατηρείται με το P-O⁻.

Εικόνα 1.20. Τμήμα της δομής του υλικού [Li(C₂H₇O₆P₂)]_n. Ελήφθη από την παραπομπή 44.

Οι Vega και συνεργάτες χρησιμοποίησαν το δις-φωσφονικό OLP (OLP = olpadronic acid, 3-(dimethylammonio)-1-hydroxy-1,1-propanediyldiphosphonicacid) TOU για тη σύνθεση πολυμερούς συναρμογής [Na(OLP)·H₂O]_n, Εικόνα 1.21.⁴⁵ Να σημειωθεί ότι το OLP περιέχει μια δευτεροταγή αμινομάδα (-N(CH₃)₂), η οποία στη δομή του [Na(OLP)·H₂O]_n είναι πρωτονιωμένη (-NH(CH₃)₂+). Το ιόν του Να κατέχει οκταεδρική γεωμετρία και βρίσκεται συναρμοσμένο αποκλειστικά με Ο από τις φωσφονικές ομάδες.

Εικόνα 1.21. Τμήμα της δομής του υλικού [Na(OLP)·H₂O]_nπου δείχνει την οκταεδρική δομή του Na. Ελήφθη από την παραπομπή 45.

Οι Aranda και συνεργάτες δημοσίευσαν την ένωση Na-AMP, sodium nitrilotris(methylenephosphonate), Na₂[(HO₃PCH₂)₃NH]·1.5H₂O (AMP = nitrilotris(methylenephosphonic acid)). Η δομή επιλύθηκε με μεθόδους *ab initio*, και είναι φυλλόμορφη-υποστηλωμένη, βλ. Εικόνα 1.22.⁴⁶ Δύο από τις φωσφονικές ομάδες του AMP συμμετέχουν στη δημιουργία της δις-διάστατης στιβάδας, ενώ η τρίτη γεφυρώνει γειτονικές στιβάδες. Το ιόν Na⁺ βρίσκεται σε οκταεδρικό περιβάλλον.

Εικόνα 1.22. Η κρυσταλλική δομή του Na₂[(HO₃PCH₂)₃NH]·1.5H₂O. Τα συνορεύοντα πολύεδρα Na₄O₁₆ φαίνονται σαν γκρι οκτάεδρα. Ελήφθη από την παραπομπή 46.

Οι Vega και συνεργάτες συνέθεσαν και έλυσαν τη δομή της ένωσης [Na(H₄ALE)(H₂O)].H₂O (H₅ALE = alendronic acid) Εικόνα 1.23.⁴⁷ Η ένωση αυτή δεν είναι πολυμερές συναρμογής, αλλά μονοπυρηνικό σύμπλοκο, που περιέχει οκταεδρικό Na. Η αμινομάδα είναι πρωτονιωμένη (-NH₃⁺).

Εικόνα 1.23. Δομή του μονοπυρηνικού συμπλόκου [Na(H₄ALE)(H₂O)].H₂O που δείχνει την οκταεδρική δομή του Na. Ελήφθη από την παραπομπή 47.

Οι Deacon και συνεργάτες δημοσίευσαν τη δομή του Li(H₄ALE)(H₂O)₂ (H₅ALE = alendronic acid, H₂N(CH₂)₃C(OH)(PO₃H₂)₂), Εικόνα 1.24.⁴⁸ Η ένωση αυτή δεν είναι πολυμερές συναρμογής, αλλά μονοπυρηνικό σύμπλοκο, που περιέχει τετραεδρικό Li. Η αμινομάδα είναι πρωτονιωμένη (-NH₃⁺).

Εικόνα 1.24. Δομή του μονοπυρηνικού συμπλόκου Li(H₄ALE)(H₂O)₂ που δείχνει την τετραεδρική δομή του Li. Ελήφθη από την παραπομπή 48.

Οι Gossman και συνεργάτες δημοσίευσαν τη δομή του μονοπυρηνικού συμπλόκου [Na(H₄ZOL)(H₂O)₃]·H₂O (H₅ZOL = zolendronic acid, βλ. Εικόνα 1.7), Εικόνα 1.25.⁴⁹ Και σε αυτή την περίπτωση το ιόν Na στη δομή είναι οκταεδρικό, και η ένωση είναι σύμπλοκη και όχι πολυμερές συναρμογής.

Εικόνα 1.25. Δομή του μονοπυρηνικού συμπλόκου [Na(H₄ZOL)(H₂O)₃]·H₂Oπου δείχνει την οκταεδρική δομή του Na. Ελήφθη από την παραπομπή 49.

1.4.8. Πρωτονιακή Αγωγιμότητα

Το φαινόμενο της πρωτονιακής αγωγιμότητας μπορεί να περιγραφεί από δύο είδη μηχανισμών μεταφοράς πρωτονίων: τον μηχανισμό «οχήματος» (vehicle mechanism)⁵⁰ και τον μηχανισμό Grotthuss.⁵¹

Ο μηχανισμός «οχήματος» αναφέρεται στη διάχυση ενυδατωμένων πρωτονίων ή ομάδων που περιέχουν πρωτόνια (π.χ. H₃O⁺, NH₄⁺), σε ένα μέσο χαμηλού ιξώδους και υψηλού συντελεστή διάδοσης όπως για παράδειγμα το νερό. Καθώς οι δεσμοί υδρογόνου είναι χαρακτηριστικό σε αυτό το μέσο, είναι το κλειδί της μεταφοράς πρωτονίων σε μεγάλες αποστάσεις.

Ο μηχανισμός Grotthuss που ονομάζεται επίσης διάχυση δομής ή ενδογενής αγωγιμότητα πρωτονίων, αναφέρεται στη διάχυση εγγενών πρωτονιακών μεταφορέων. Τα πρωτόνια έχουν μια ασυνήθιστη υψηλή κινητικότητα στο νερό, η οποία είναι σε συνθήκες περιβάλλοντος εννέα φορές μεγαλύτερη από αυτή του Li⁺ και πέντε φορές μεγαλύτερη από αυτή του K⁺. Σύμφωνα με τον De Grotthuss, ο μηχανισμός αναφέρεται στο συνεταιρισμό μεταφοράς πρωτονίων μέσω δύο γειτονικών μορίων νερού, μέσω του σχηματισμού δεσμών υδρογόνου.

Τα μεταλλοφωσφονικά υλικά είναι μια ενδιαφέρουσα περίπτωση υλικών που εμφανίζουν πρωτονιακή αγωγιμότητα. Н μπορεί να πλήρως αποπρωτονιωμένη φωσφονική ομάδα (-PO32-) διαθέτει τρία άτομα οξυγόνου και αυτά μπορούν να δράσουν ως περαιτέρω δέκτες δεσμών υδρογόνου. Αυτές οι ομάδες μπορούν να χρησιμεύσουν για την αγκύλωση μορίων φορέων ή να μεταφέρουν πρωτόνια σε μια διαδικασία πρωτονιακής αγωγιμότητας.⁵² Στην περίπτωση που η φωσφονική ομάδα είναι μερικώς αποπρωτονιωμένη (-PO₃H-), μπορεί να προσφέρει όξινο πρωτόνιο (-P-O-H). Τα μεταλλοφωσφονικά προσφέρουν κρυσταλλικές αρχιτεκτονικές οι οποίες μπορούν να διευκολύνουν τη βαθύτερη κατανόηση των μηχανισμών μεταφοράς πρωτονίων.53

Η ενέργεια ενεργοποίησης που αποδίδεται σε έναν Grotthuss μηχανισμό μεταφοράς, μέσω μορίων νερού είναι 0.1-0.4 eV.⁵⁴

Συγκεκριμένα, για το υλικό $Zr(O_3P-(CH_2)_n-COOH)_2$ (n = 1-5) οι τιμές πρωτονιακής αγωγιμότητας κυμαίνονται από 10^{-10} S.cm⁻¹ για τις άρτιες τιμές του n έως 10^{-7} S.cm⁻¹ για τις περιττές τιμές του n, ενώ για το υλικό $Ce(O_3PC_6H_4SO_3H)_2$ η πρωτονιακή αγωγιμότητα βρέθηκε να είναι 10^{-2} S.cm⁻¹ στους $100^{\circ}C$ και σε σχετική υγρασία $100 \%.^{55,56}$

Πιο συγκεκριμένα, έχει δημοσιευτεί από την Ομάδα μας η δομή των Μ-ΗΡΑΑ (M = Li, Na, K και Cs). Τα ισχυρά δίκτυα με δεσμούς υδρογόνου που δημιουργούνται ακόμη και αν δεν υπάρχει νερό, όπως συμβαίνει σε Cs-HPAA. Ως αποτέλεσμα, όλες οι ενώσεις δείχνουν αγωγιμότητα πρωτονίων στην περιοχή 3,5×10⁻⁵ S.cm⁻¹ (Cs-HPAA) σε 5,6×10⁻³ S.cm⁻¹ (Na-HPAA) σε 98% RH και T = 24°. Οι διαφορές στους μηχανισμούς πρωτονίων αγωγιμότητας, Grotthuss (Na⁺ και Cs⁺) ή το όχημα (Li⁺ και K⁺), αποδίδονται στους διαφορετικούς ρόλους που διαδραματίζουν τα μόρια του νερού ή/και των οδών μεταφοράς πρωτονίων μεταξύ φωσφονικού και καρβοξυλικών ομάδων του HPAA.⁵⁷

43

Εικόνα 1.26. Το διάγραμμα Log σ πρός 1000/Τ για τις ενώσεις Μ-ΗΡΑΑ (M = Li, Na, K και Cs). Ελήφθη από την παραπομπή 57.

Οι Fu και συνεργάτες δημοσίευσαν τη δομή του Ag₄(O₃PCH₂CH₂PO₃) η οποία έχει αγωγιμότητα όπως των ημιαγωγών, σύμφωνα με τον ορισμό του Kittel⁵⁸ που λέει πως η αγωγιμότητα των ημιαγωγών είναι 10⁻⁹ - 10² S·cm⁻¹, σε θερμοκρασία που κυμαίνεται από 100-170 °C. Οι ενέργειες ενεργοποίησης που συνδέονται με την αγωγιμότητα στο εσωτερικό των κόκκων είναι 0,70 και 0,67eV με βάση τη αύξηση και μείωση της θερμοκρασία, αντίστοιχα. Στο 170°C οι μέγιστες αγωγιμότητες ανήλθαν σε 6,5x10⁻⁷ και 7,3x10⁻⁷ S.cm⁻¹

Εικόνα 1.27. Η δομή Ag₄(O₃PCH₂CH₂PO₃) (αριστερά). Το διάγραμμα Log s πρός 1000/Τ για την ένωση Ag₄(O₃PCH₂CH₂PO₃) (δεξιά). Ελήφθη από την παραπομπή 58.

ΚΕΦΑΛΑΙΟ 2. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ: ΣΥΝΘΕΣΗ ΚΑΙ ΦΥΣΙΚΟΧΗΜΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ

2.1. Χημικά Αντιδραστήρια

HMDTMP: (Dequest 2051), solid (acid form of Dequest 2054) hexamethylenediamine-*tetrakis*(methylene phosphonic acid) MW = 492 g/mol (CAS # 38820-59-6).

LiOH·*H*₂*O*: CAS # 1310-65-2, EINECS: 215-183-4, MW = 41.96 g/mol, Riedel-de Haen.

NaOH: CAS # 1310-73-2, EINECS: 215-185-5, MW = 40.00 g/mol, Sigma-Aldrich.

KOH: CAS # 1310-58-3, EINECS: 215-181-3, MW = 56.11 g/mol, Riedel-de Haen.

CsCI: CAS # 7647-17-8, EINECS: 231-600-2, MW = 168.36 g/mol, Alfa Aesar.

*RbOH·H*₂*O:* CAS: 12026-05-0, EINECS: 215-186-0, MW = 102.48 g/mol, Alfa Aesar.

Αιθανόλη: Absolute, C₂H₆O, CAS # 64-17-5, MW: 46.07, d: 0.789 g/mL, Sigma-Aldrich.

2.2. Όργανα - Τεχνικές

Τα φάσματα FT-IR καταγράφηκαν σε όργανο Perkin – Elmer FT 1760. Όλα τα φάσματα καταγράφηκαν σε εύρος 4000 μέχρι 500 cm⁻¹, σε ανάλυση 4 cm⁻¹ και είχαν συσσωρευθεί 32 σαρώσεις.

Για την διαφορική θερμική ανάλυση (DifferentialThermalAnalysis, **DTA**) και την θερμοσταθμική ανάλυση (Thermogravimetric Analysis, **TGA**) χρησιμοποιήθηκε αναλυτής SDT-Q600 από την εταιρία TA Instruments. Τα διαγράμματα περιθλασιμετρίας ακτίνων X σκόνης ελήφθησαν σε όργανο της εταιρίας PANanalytical X'Pert Pro χρησιμοποιώντας τη διαμόρφωση περίθλασης Bragg-Brentano και χρησιμοποιώντας ως κύριο μονοχρωμάτωρα Ge(111) (Cu Kα1) και ανιχνευτή X'Celerator.

2.3. Σύνθεση μεταλλοφωσφονικών υλικών, με μέταλλα αλκαλίων και τον τετραφωσφονικό υποκαταστάτη HDTMP

Η γενική αντίδραση για τη σύνθεση των μεταλλοφωσφονικών υλικών φαίνεται στο παρακάτω σχήμα. Να σημειωθεί ότι σε «χαμηλές» τιμές pH (< 4), η κάθε φωσφονική ομάδα είναι μονο-απωπρωτονιωμένη και φέρει φορτίο «-1». Τα δύο άτομα Ν (τριτοταγείς αμινομάδες) βρίσκονται πρωτονιωμένες και φέρουν φορτίο «+1» η καθεμιά.

Σχήμα 2.1. Αντίδραση του HDTMP με μέταλλα, όπου m = 0-6 και n = 0-6 ανάλογα με το μεταλλοφωσφονικό προϊόν.

2.3.1. Σύνθεση Li-HDTMP

Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται 0.492 g (1 mmol) στερεού HDTMP σε 20 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα LiOH·H₂O (0.042 g (1 mmol) LiOH·H₂O σε 10 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, προστίθενται 20 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το γυάλινο ποτήρι ζέσεως κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης. Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 52 %. Στοιχειακή ανάλυση για τον μοριακό τύπο Li₂(P₄O₁₂N₂C₁₀H₂₆)·4H₂O (MW = 576.15 g/mol) Calculated: 20.82 % C, 5.95 % H, 4.86 % N. Found: 20.09 % C, 5.83 % H, 5.02 % N.

2.3.2. Σύνθεση Na-HDTMP

Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται 0.984 g (2 mmol) στερεού HDTMP σε 20 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα NaOH (0.16 g (4 mmol) NaOH σε 10 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, προστίθενται 50 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το γυάλινο ποτήρι ζέσεως κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης.Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 22 %. Στοιχειακή ανάλυση για τον μοριακό τύπο Na₃(P₄O₁₂N₂C₁₀H₂₅)·6H₂O (MW = 666.07 g/mol) Calculated: 18.02 % C, 5.59 % H, 4.20 % N. Found: 17.31 % C, 5.79 % H, 4.17 % N.

47

2.3.3. Σύνθεση K-HDTMP

Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται 0.984 g (2 mmol) στερεού HDTMP σε 20 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα KOH (0.224 g (4 mmol) KOH σε 10 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, προστίθενται 50 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το γυάλινο ποτήρι ζέσεως κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης. Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 20 %. Στοιχειακή ανάλυση για τον μοριακό τύπο K₂(P₄O₁₂N₂C₁₀H₂₄)·8H₂O (MW = 712.05 g/mol) Calculated: 16.85 % C, 5.94 % H, 3.93 % N. Found: 16.76 % C, 5.75 % H, 4.01 % N.

2.3.4. Σύνθεση Rb-HDTMP

Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται 0.098 g (0.2 mmol) στερεού HDTMP σε 10 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα RbOH (0.04 g (0.4 mmol) RbOH σε 5 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, 5mL από το υδατικό διάλυμα μεταφέρεται σε γυάλινο δοκιμαστικό σωλήνα. Έπειτα προστίθενται 30 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το στόμιο του δοκιμαστικού σωλήνα κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης. Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 5 %. Στοιχειακή ανάλυση για τον μοριακό τύπο Rb(P4O₁₂N₂C₁₀H₂₇)·4H₂O (MW = 648,00 g/mol) Calculated: 18.52 % C, 5.44 % H, 4.32 % N. Found: 17.08 % C, 5.01 % H, 4.10 % N.

2.3.5. Σύνθεση Cs-HDTMP

a) Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται στους υπέρηχους 0.164 g (0.3 mmol) στερεού HDTMP σε 20 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα CsCl (0.112 g (0.6 mmol) CsCl σε 5 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, 2.5mL από το υδατικό διάλυμα μεταφέρεται σε γυάλινο δοκιμαστικό σωλήνα. Έπειτα προστίθενται 35 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το στόμιο του δοκιμαστικού σωλήνα κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης. Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 3 %.

b) Σε ένα γυάλινο ποτήρι ζέσεως διαλύονται στους υπέρηχους 0.164 g (0.3 mmol) στερεού HDTMP σε 20 mL απιονισμένου νερού. Κατόπιν προστίθεται υπό ανάδευση υδατικό διάλυμα CsCl (0.112 g (0.6 mmol) CsCl σε 5 mL απιονισμένου νερού). Αφού αφαιρεθεί ο μαγνητικός αναδευτήρας, προστίθενται 60 mL αιθανόλης με χρήση πιπέτας Pasteur προσεκτικά στην επιφάνεια του υδατικού διαλύματος, σχηματίζοντας έτσι μια διπλοστιβάδα. Το γυάλινο ποτήρι ζέσεως κλείνεται με parafilm για να αποφευχθεί η εξάτμιση της αιθανόλης. Το τελικό διάλυμα αφήνεται σε θερμοκρασία δωματίου και μετά από 2 βδομάδες εμφανίζονται διαυγείς κρύσταλλοι. Μετά από 1 μήνα το προϊόν απομονώνεται με διήθηση, εκπλένεται με αιθανόλη και αφήνεται να ξηρανθεί στον αέρα. Απόδοση αντίδρασης: 50 %. Στοιχειακή ανάλυση για τον μοριακό τύπο Cs(P4O12N2C10H27)·4H2O (MW = 695.99 g/mol) Calculated: 17.24 % C, 5.07 % H, 4.02 % N. Found: 17.13 % C, 4.89 % H, 4.10 % N.

ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΚΑ ΔΕΔΟΜΕΝΑ	Li-HDTMP	Na-HDTMP	K-HDTMP	Rb-HDTMP	Cs-HDTMP
Μοριακός τύπος	CıaH₃µ⊔₂N₂OıaP₄	CınHæN₂Na₃OıaP₄	CiuH40K2N2O20P4	CinHasN₂RbOisP₄	C _{in} H ₃₈ N ₂ Cs O _{i8} P ₄
Μοριακό βάρος	578.15	666.07	712.22	648	695.99
Κρυσταλλικό σύστημα	Τρικλινές	Τρικλινές	Μονοκλινές	Μονοκλινές	Τρικλινές
Ομάδα χώρου συμμετρίας	P1	Pl	P 2,/c	C 2/c	Pl
a(Å)	5.9728(6)	7.66820(10)	7.71780(10)	6.0257(5)	6.0072 (2)
b(Å)	9.4557(9)	11.53350(10)	33.0373(4)	14.1011(7)	7.6864(2)
c(Å)	11.0182(11)	18.0768(2)	11.75770(10)	28.762(2)	14.8250(4)
(deg)	74.418(7)	97.3780(10)	90.00	00.00	86.677(2)
ß(deg)	76.170(7)	94.7920(10)	103.7090(10)	94.816(3)	78.906(2)
(deg)	84.313(7)	101.7050(10)	00.00	00.00	67.611(2)
V(ų)	581.622	1542.61	2912.52	2435.25	621.009
Z	-	2	4	4	+
Temperature (K)	296(2)	296(2)	296(2)	100(2)	297(2)
Χ ρώμα κρυστάλλου	Λευκοί κρύσταλλοι	Λευκοί κρύσταλλοι	Λευκοί κρύσταλλοι	Λευκοί κρύσταλλοι	Λευκοί κρύσταλλοι

2.4. Κρυσταλλογραφικά Δεδομένα

2.5. Χαρακτηρισμός των υλικών Μ-ΗDTMP με φασματισκοπία FT-IR

Στην Εικόνα 2.1 παρουσιάζονται τα φάσματα IR των ενώσεων Li(HDTMP), Na(HDTMP), K(HDTMP), Rb(HDTMP), και Cs(HDTMP).

Εικόνα 2.1 Φάσματα FT-IR των υλικών Li(HDTMP) (ανοιχτό πράσινο), Na(HDTMP) (κόκκινο), K(HDTMP) (μπλέ), Rb(HDTMP) (γαλάζιο), και Cs(HDTMP) (μώβ).

Στην περιοχή 890-940 cm⁻¹ εμφανίζονται έντονες κορυφές του δεσμού P-OH ενώ οι απορροφήσεις στα 1034 cm⁻¹ και 1247 cm⁻¹ αποδίδονται στην ασύμμετρη δόνηση τάσης του δεσμού P=O.

Η δόνηση έκτασης για την ομάδα POO⁻ εμφανίζεται με μία έντονη κορυφή στα 1085-1161 cm⁻¹, Εικόνα 2.1. Η δόνηση κάμψης για την ομάδα –PO₃ εμφανίζεται με κορυφές στην περιοχή 400-600 cm⁻¹. Η κορυφή στα 2367 cm⁻¹ αποδίδεται στη δόνηση τάσης του δεσμού PO-H.

Η ευρεία απορρόφηση στην περιοχή των 3402 cm⁻¹ οφείλεται στις δονήσεις τάσης του δεσμού Ο-Η του νερού ενώ η κορυφή στα 1640 cm⁻¹ αποδίδεται στη δόνηση κάμψης του H₂O. Η δόνηση κάμψης της ομάδας -CPO₃ διακρίνεται στα 775 cm⁻¹. Η δόνηση τάσης του δεσμού N-Η εμφανίζεται σαν ευρεία και ασθενής κορυφή περίπου στα ~ 2700 cm⁻¹.

2.6. Θερμοσταθμική Ανάλυση (TGA)

Στις Εικόνες 2.2 με 2.6 παρουσιάζονται τα διαγράμματα θερμοσταθμικής ανάλυσης (TGA) των ενώσεων Li(HDTMP), Na(HDTMP), K(HDTMP), Rb(HDTMP), και Cs(HDTMP).

Αρχίζοντας από το υλικό Li(HDTMP) στην Εικόνα 2.2, παρατηρείται απώλεια μάζας 14.67 % στο εύρος θερμοκρασιών 100 – 220 °C, η οποία αντιστοιχεί σε απομάκρυνση τεσσάρων μορίων νερού (υπολογιζόμενη απώλεια 12.5 %). Υπάρχει και δεύτερη απώλεια μάζας στις θερμοκρασίες 220 – 270 °C, η οποία μάλλον οφείλεται στην μερική αποδόμηση του υποκαταστάτη.

Εικόνα 2.2 Διάγραμμα θερμοσταθμικής ανάλυσης (TGA) της ένωσης Li(HDTMP).

Συνεχίζοντας με το υλικό Na(HDTMP) στην Εικόνα 2.3, παρατηρείται μια σταδιακή απώλεια μάζας χωρίς διακριτά στάδια, η οποία αρχίζει από θερμοκρασία ~ 70 °C και περατώνεται σε θερμοκρασία ~ 250 °C. Αυτή η απώλεια μάζας αντιστοιχεί στο 25.41 %. Η υπολογιζόμενη απώλεια μάζας εξ' αιτίας αποκλειστικά της αφυδάτωσης αντιστοιχεί στο 16.21 %, γεγονός που υποδεικνύει ότι στην απώλεια μάζας συντελεί και η αποσύνθεση του υποκαταστάτη, όπως και στην ένωση Li(HDTMP).

Εικόνα 2.3 Διάγραμμα θερμοσταθμικής ανάλυσης (TGA) της ένωσης Na(HDTMP).

Για το υλικό K(HDTMP) στην Εικόνα 2.4, παρατηρείται μια σταδιακή απώλεια μάζας με το πρώτο διακριτό στάδιο να ολοκληρώνεται στη θερμοκρασία ~ 160 °C. Αυτή η απώλεια μάζας αντιστοιχεί στο 20.22 %. Η υπολογιζόμενη απώλεια μάζας εξ' αιτίας αποκλειστικά της αφυδάτωσης με απομάκρυνση οκτώ μορίων νερού αντιστοιχεί στο 19.46 %. Το δεύτερο στάδιο απώλειας μάζας που λαμβάνει χώρα στο εύρος θερμοκρασιών 160 – 250 °C, μπορεί να οφείλεται στη μερική αποσύνθεση του υποκαταστάτη, όπως και στις προηγούμενες ενώσεις.

Εικόνα 2.4 Διάγραμμα θερμοσταθμικής ανάλυσης (TGA) της ένωσης Κ(HDTMP).

Για το υλικό Rb(HDTMP) στην Εικόνα 2.5, παρατηρείται μια σταδιακή απώλεια μάζας με το πρώτο διακριτό στάδιο να ολοκληρώνεται στη θερμοκρασία ~ 150 °C. Αυτή η απώλεια μάζας αντιστοιχεί στο 10.67 %. Η υπολογιζόμενη απώλεια μάζας εξ' αιτίας αποκλειστικά της αφυδάτωσης με απομάκρυνση και των τεσσάρων μορίων νερού αντιστοιχεί στο 11.11 %. Στη συνέχεια υπάρχουν κάποια στάδια συνεχούς απώλειας μάζας, τα οποία οφείλονται στη μερική αποσύνθεση του υποκαταστάτη, όπως και στις προηγούμενες ενώσεις.

Εικόνα 2.5 Διάγραμμα θερμοσταθμικής ανάλυσης (TGA) της ένωσης Rb(HDTMP).

Για το υλικό Cs(HDTMP) στην Εικόνα 2.6, παρατηρείται ένα ξεκάθαρο στάδιο απώλεια μάζας που ολοκληρώνεται στη θερμοκρασία ~ 120 °C. Αυτή η απώλεια μάζας αντιστοιχεί στο 9.34 %. Η υπολογιζόμενη απώλεια μάζας εξ' αιτίας αποκλειστικά της αφυδάτωσης με απομάκρυνση και των τεσσάρων μορίων νερού αντιστοιχεί στο 10.34 %. Στη συνέχεια υπάρχουν κάποια στάδια συνεχούς απώλειας μάζας, τα οποία οφείλονται στη μερική αποσύνθεση του υποκαταστάτη, όπως και στις προηγούμενες ενώσεις.

Εικόνα 2.6 Διάγραμμα θερμοσταθμικής ανάλυσης (TGA) της ένωσης Cs(HDTMP).

2.7. Περιθλασιμετρία ακτίνων Χ σκόνης (XRD)

Στις Εικόνες 2.7 με 2.11 παρουσιάζονται τα διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης για όλες τις ενώσεις. Για κάθε μία ένωση δίνεται επίσης και το υπολογιζόμενο (calculated) διάγραμμα, το οποίο προκύπτει από την επίλυσης της κρυσταλλικής δομής.

Σαν γενική παρατήρηση θα μπορούσε να λεχθεί ότι τα πειραματικά διαγράμματα συμφωνούν με τα θεωρητικά. Σε μερικές περιπτώσεις υπάρχουν μικρές προσμείξεις.

Εικόνα 2.7 Διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης της ένωσης Li(HDTMP): πειραματικό (κόκκινο, επάνω) και θεωρητικό (μπλε, κάτω).

Εικόνα 2.8 Διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης της ένωσης Na(HDTMP): πειραματικό (κόκκινο, επάνω) και θεωρητικό (μπλε, κάτω).

Εικόνα 2.9 Διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης της ένωσης Κ(HDTMP): πειραματικό (κόκκινο, επάνω) και θεωρητικό (μπλε, κάτω).

Εικόνα 2.10 Διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης της ένωσης Rb(HDTMP): πειραματικό (κόκκινο, επάνω) και θεωρητικό (μπλε, κάτω).

Εικόνα 2.11 Διαγράμματα περιθλασιμετρίας ακτίνων Χ σκόνης της ένωσης Rb(HDTMP): πειραματικό (κόκκινο, επάνω) και θεωρητικό (μπλε, κάτω).

ΚΕΦΑΛΑΙΟ 3. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΚΡΥΣΤΑΛΛΙΚΩΝ ΔΟΜΩΝ

3.1. Κρυσταλλική δομή του Li-HDTMP

To μεταλλοφωσφονικό πολυμερές Li-HDTMP έχει μοριακό τύπο $C_{10}H_{34}Li_2N_2O_{16}P_4$ και κρυσταλλώνει σε τρικλινές κρυσταλλικό σύστημα με $P\bar{1}$ ομάδα χώρου συμμετρίας. Οι διαστάσεις της μοναδιαίας κυψελίδας είναι a = 5.9728(6) Å, b = 9.4557(9) Å, c = 11.0182(11) Å, a = 74.418(7) (deg), β = 76.170(7) (deg), γ = 84.313(7) (deg), με όγκο V = 581.622 Å³ και Z = 1.

Η δομική της μονάδα περιλαμβάνει μισό υποκαταστάτη HDTMP και ένα κατιόν Li⁺, Εικόνα 3.1 Η κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη, άρα φέρει φορτίο "-1", καθιστώντας έτσι το συνολικό αρνητικό φορτίο «-4». Ταυτόχρονα, το κάθε άτομο N (τριτοταγής αμινομάδα) βρίσκεται πρωτονιωμένο, άρα το συνολικό θετικό φορτίο είναι «+2». Επομένως κάθε υποκαταστάτης HDTMP φέρει συνολικό φορτίο "-2" και συναρμόζει δύο κατιόντα Li⁺. Έτσι, επιτυγχάνεται ηλεκτρο-ουδετερότητα και ο μεταλλοργανικός σκελετός είναι ουδέτερος. Δεν υπάρχουν μόρια νερού πλέγματος, παρά μόνο συναρμοσμένα στα κέντρα Li⁺ (2 στο καθένα).

Εικόνα 3.1. Η ασύμμετρη μονάδα του πολυμερούς συναρμογής [Li(HDTMP)(H₂O)₄]_n.

Το μεταλλικό κέντρο του Li⁺ βρίσκεται σε ένα ελαφρώς παραμορφωμένο τετραεδρικό πεδίο (Εικόνα 3.1, κάνω) όπως φαίνεται και από τις γωνίες Ο–Li–O. Αντιπροσωπευτικά, δίνονται οι τιμές κάποιων γωνιών: O(6)-Li(1)-O(7) 109.00°, O(7)-Li(1)-O(8) 100.32° και O(6)-Li(1)-O(8) 108.41°. Το O6 προέρχεται από την φωσφονική ομάδα του HDTMP ενώ το O8 και το O7 προέρχονται από τα νερά που είναι συναρμοσμένα στο μέταλλο.

Το μεταλλικό κέντρο του Li⁺ είναι συναρμοσμένο με τα τέσσερα άτομα οξυγόνου, δύο από την ομάδα -PO₃H⁻, και δύο από μόρια H₂O (Εικόνα 3.1, κάτω). Οι αποστάσεις των δεσμών Li-O(-PO₃H⁻) είναι Li(1)-O(6) 1.909 Å και Li(1)-O(3) 1.948 Å. Οι δεσμοί Li-O(H₂O) είναι Li(1)-O(7) 2.012 Å και Li(1)-O(8) 1.942 Å.

Εικόνα 3.2. Περιβάλλον συναρμογής του κέντρου Li+.

Τα μήκη δεσμών στη φωσφονική ομάδα είναι ενδεικτικά του απεντοπισμού του αρνητικού φορτίου, Εικόνα 3.3. Συγκεκριμένα, οι αποστάσεις Ρ-Ο είναι Ρ(1)-Ο(1) 1.567 Å, Ρ(1)-Ο(2) 1.503 Å, Ρ(1)-Ο(3) 1.483 Å και για Ρ(2)-Ο(4) 1.504 Å, Ρ(2)-Ο(5) 1.583 Å και Ρ(2)-Ο(6) 1.473 Å.

Εικόνα 3.3. Τα μήκη δεσμών Ρ-Ο και Ρ-C.

Με βάση τα παραπάνω μήκη δεσμών δεν φαίνεται να υπάρχει έντονος απεντοπισμός φορτίου, αλλιώς οι αποστάσεις P(1)-O(1), P(1)-O(2), P(2)-O(4) και P(2)-O(5) θα έπρεπε να έχουν μικρή διαφορά μεταξύ τους.

Το πρωτονιωμένο τμήμα κάθε μορίου υποκαταστάτη (–P–O–H) και το φωσφορυλ- οξυγόνο δεν συναρμόζονται με τα κέντρα Li⁺. Τα P1 και P2 «προσεγγίζουν» το κεντρικό άτομο του Li⁺ μονοδοντικά μέσω ενός ατόμου οξυγόνου, ενώ τα άλλα δύο άτομα οξυγόνου παραμένουν μη συναρμοσμένα. Σε κάθε μόριο HDTMP οι φωσφονικές ομάδες διαχωρίζονται σε P = O, P–O⁻ και P–O–H. Όπως προαναφέρθηκε, το μήκος των δεσμών P–O–H κυμαίνεται στις τιμές 1.567 Å, 1.583 Å. Το μήκος των δεσμών P = O και P–O⁻ κυμαίνεται από 1.473 Å – 1.504 Å. Μόνο οι αποπρωτονιωμένες ομάδες P–O συναρμόζονται σε άτομα λιθίου, σε αντίθεση με τις ομάδες P–O–H που παραμένουν μη συναρμοσμένες. Κάθε υποκαταστάτης HDTMP, συνδέεται με τέσσερα μεταλλικά κέντρα, ενώ το μεταλλικό κέντρο Li1 συναρμόζεται με δύο διαφορετικά μόρια υποκαταστάτη, Εικόνα 3.4.

61

Εικόνα 3.4. Περιβάλλον συναρμογής του υποκαταστάτη HDTMP.

Το πακετάρισμα της δομής του Li-HDTMP κατά τους άξονες a, b και c φαίνεται στην Εικόνα 3.5. Από τις διάφορες απόψεις της κρυσταλλικής δομής μπορεί να εξαχθεί το συμπέρασμα ότι η δομή είναι μονοδιάστατη (1D).

Εικόνα 3.5. Η δομή του Li-HDTMP κατά μήκος του άξονα a (πάνω), b (μέση), και c (κάτω).

Θα μπορούσε πιο συγκεκριμένα να χαρακτηριστεί ως «ταινιωτή», αφού η επαναλαμβανόμενη μονοδιάστατη αλυσίδα είναι μια ταινία με «εύρος» περίπου 13.5 Å και «πάχος» 2.5 Å, και αποτελείται από τμήματα Li-HDTMP, βλ. Εικόνα 3.6.

Εικόνα 3.6. Η δομή της επαναλαμβανόμενης «ταινίας» Li-HDTMP.

Στη δομή σχηματίζεται ένα δίκτυο δεσμών υδρογόνου, στο οποίο συμμετέχουν τα οξυγόνα της φωσφονικής ομάδας του HDTMP και των συναρμοσμένων νερών στο Li.

Συγκεκριμένα, σχηματίζεται ένας «διπλός» δεσμός υδρογόνου στον οποίο συμμετέχουν δύο φωσφονικές ομάδες που ανήκουν στην ίδια μονοδιάστατη «ταινία», Εικόνα 3.7. Οι δεσμοί αυτοί είναι αρκετά ισχυροί, με απόσταση Ο····Ο 2.624 Å.

Εικόνα 3.7. Δεσμοί υδρογόνου στο φωσφονικό διμερές εντός της «ταινίας» Li-HDTMP.

Περαιτέρω, υπάρχουν δεσμοί υδρογόνου που συνδέουν γειτονικές ταινίες, και στους οποίους συμμετέχουν τα συναρμοσμένα στο Li μόρια νερού, αλλά και το πρωτονιωμένο Ο μίας φωσφονικής ομάδας. Εικόνα 3.8.

Εικόνα 3.8. Δεσμοί υδρογόνου μεταξύ γειτονικών ταινιών Li-HDTMP, στους οποίους συμμετέχουν μόρια νερού.

3.2. Κρυσταλλική δομή Na-HDTMP:

Το μεταλλοφωσφονικό πολυμερές Na-HDTMP έχει μοριακό τύπο $C_{10}H_{37}N_2Na_3O_{18}P_4$ και κρυσταλλώνει σε τρικλινές κρυσταλλικό σύστημα με $P\bar{1}$ ομάδα χώρου συμμετρίας. Οι διαστάσεις της μοναδιαίας κυψελίδας είναι a = 7.66820(10) Å, b = 11.53350(10) Å, c = 18.0768(2) Å, a = 97.3780(10) (deg), β = 94.7920(10) (deg), γ = 101.7050(10) (deg), V = 1542.61 Å³ και Z = 2.

Η δομική της μονάδα περιλαμβάνει από ένα υποκαταστάτη HDTMP και δύο κατιόντα Na⁺, Εικόνα 3.9. Η κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη, άρα φέρει φορτίο "-1", καθιστώντας έτσι το συνολικό αρνητικό φορτίο «-4». Ταυτόχρονα, το κάθε άτομο N (τριτοταγής αμινομάδα) βρίσκεται πρωτονιωμένο, άρα το συνολικό θετικό φορτίο είναι «+2». Επομένως κάθε υποκαταστάτης HDTMP φέρει συνολικό φορτίο "-2" και συναρμόζει δύο κατιόντα Na⁺. Έτσι, επιτυγχάνεται ηλεκτρο-ουδετερότητα και ο μεταλλοργανικός σκελετός είναι ουδέτερος. Υπάρχουν μόρια νερού πλέγματος, αλλά και συναρμοσμένα στα κέντρα Νατρίου (δύο στο Na1, τρία στο Na2 και τρία στο Na3).

Εικόνα 3.9. Η ασύμμετρη μονάδα του πολυμερούς συναρμογής [Na₂(HDTMP)(H₂O)₆]_n.

Το μεταλλικό κέντρο του Na1 βρίσκεται σε ένα ελαφρώς παραμορφωμένο οκταεδρικό πεδίο. (Εικόνα 3.10, κάτω) όπως φαίνεται και από τις γωνίες Ο–Na1–O. Οι τιμές των γωνιών: O(7)-Na(1)-O(13) 84,68°, O(7)-Na(1)-O(13) 95,32°, O(7)-Na(1)-O(14) 98,00°, O(7)-Na(1)-O(14) 82,00°, O(13)-Na(1)-O(14) 71,43° και O(13)-Na(1)-O(14) 108,57°. Το O7 προέρχεται από την φωσφονική ομάδα του HDTMP ενώ το O13 και το O14 προέρχονται από τα νερά που είναι συναρμοσμένα στα μέταλλα.

Το μεταλλικό κέντρο του Na1 είναι συναρμοσμένο με έξι άτομα οξυγόνου, δύο από την ομάδα -PO₃H⁻, 4 από μόρια H₂O (Σχήμα 3.6.). Οι αποστάσεις των δεσμών Na-O (-PO₃H⁻) είναι Na(1)-O(7) 2.542 Å. Οι δεσμοί Na-O (H₂O) είναι Na(1)-O(13) 2.312Å και Na(1)-O(14) 2.698Å.

Το μεταλλικό κέντρο του Na2 βρίσκεται σε ένα οκταεδρικό πεδίο. (Εικόνα 3.10, κάτω) όπως φαίνεται και από τις γωνίες Ο–Na2–O. Οι τιμές των γωνιών: O(14)-Na(2)-O(23) 75,14⁰, O(14)-Na(2)-O(14) 97,19⁰, O(14)-Na(2)-O(13) 92,67⁰, O(14)-Na(2)-O(15) 78,50⁰, O(15)-Na(2)-O(23) 86,68⁰, O(15)-Na(2)-O(7) 91,31⁰, O(15)-Na(2)-O(13) 110,96⁰, O(13)-Na(2)-O(7) 87,94⁰, O(13)-Na(2)-O(24) 76,75⁰, O(14)-Na(2)-O(23) 75,14⁰ καιO(14)-Na(2)-O(15) 171,16⁰.

Το μεταλλικό κέντρο του Na2 είναι συναρμοσμένο με έξι άτομα οξυγόνου, ένα από την ομάδα -PO₃H⁻, 5 από μόρια H₂O(Σχήμα 3.10.). Οι αποστάσεις των δεσμών Na-O (-PO₃H⁻) είναι Na(2)-O(7) 2.353 Å. Οι δεσμοί Na-O (H₂O) είναι Na(2)-O(13) 2.362Å ,Na(2)-O(14) 2.375Å , Na(2)-O(14) 2.794Å, Na(2)-O(15) 2.373Å και Na(2)-O(23) 2.317Å.

Στην ασύμμετρη μονάδα (Εικόνα 3.9.) το Na1 ενώνεται με ένα οξυγόνο απο την φωσφονική ομάδα του υποκαταστάτη και μέσω μίας γέφυρας οξυγόνου απο ένα μόριο νερού με το Na2. Οι αποστάσεις του δεσμού Na-O-Na είναι Na(1)-O(14) 2,698Å καιO(14)-Na(2) 2,375 Å. Η γωνία του δεσμού Na(1)-O(14)-Na(2) είναι 76,19⁰

Το μεταλλικό κέντρο του Na3 είναι συναρμοσμένο με έξι άτομα οξυγόνου από μόρια H₂O (Εικόνα 3.10). Οι αποστάσεις των δεσμών Na-O (H₂O) είναι Na(3)-O(16) 2.472Å ,Na(3)-O(17) 2.394Åκαι Na(3)-O(18) 2.424 Å.

Εικόνα 3.10. Περιβάλλον συναρμογής των κέντρων Νa⁺ στην κρυσταλλική δομή του Na-HDTMP.

Τα μήκη δεσμών στη φωσφονική ομάδα είναι ενδεικτικά του απεντοπισμού του αρνητικού φορτίου (ή της απουσίας αυτού), Εικόνα 3.11. Συγκεκριμένα, οι αποστάσεις P-O για το Na1 και Na2 είναι P(3)-O(7) 1.502 Å, P(3)-O(8) 1.574 Å, P(3)-O(9) 1.504 Å.

Εικόνα 3.11. Τα μήκη δεσμών Ρ-Ο και Ρ-C στην κρυσταλλική δομή του Να-HDTMP.

Με βάση τα παραπάνω μήκη δεσμών δεν φαίνεται να υπάρχει έντονος απεντοπισμός φορτίου, αλλιώς οι αποστάσεις P(1)-O(1), P(1)-O(2), P(2)-O(4) και P(2)-O(5) θα έπρεπε να έχουν μικρή διαφορά μεταξύ τους.

Το πρωτονιωμένο τμήμα κάθε μορίου υποκαταστάτη (–P–O–H) και το φωσφορυλ- οξυγόνο δεν συναρμόζονται με τα κέντρα Na⁺. Το P3 «προσεγγίζει» το κεντρικό άτομο του Na⁺ μέσω ενός ατόμου οξυγόνου, ενώ τα άλλα δύο άτομα οξυγόνου παραμένουν μη συναρμοσμένα. Σε κάθε μόριο HDTMP οι φωσφονικές ομάδες διαχωρίζονται σε P = O, P–O⁻ και P–O–H. Όπως προαναφέρθηκε, το μήκος των δεσμών P–O–H κυμαίνεται στις τιμές 1.558 Å, 1.574 Å. Το μήκος των δεσμών P = O και P–O⁻ κυμαίνεται από από 1.493 Å – 1.509 Å. Μόνο οι αποπρωτονιωμένες ομάδες Ρ–O συναρμόζονται σε άτομα νατρίου, σε αντίθεση με τις ομάδες Ρ–O–H που παραμένουν μη συναρμοσμένες. Κάθε υποκαταστάτης HDTMP, συνδέεται με δύο μεταλλικά κέντρα, ενώ το μεταλλικό κέντρο Na1 συναρμόζεται με δύο διαφορετικά μόρια υποκαταστάτη και 4 μόρια νερού και το μεταλλικό κέντρο Na2 συναρμόζεται με ένα μόριο υποκαταστάτη και 5 μόρια νερού, Εικόνα 3.12.

Εικόνα 3.12. Περιβάλλον συναρμογής του υποκαταστάτη HDTMP στη δομή του Na-HDTMP.

Το πακετάρισμα της δομής του Na-HDTMP κατά τους άξονες a, b και c φαίνεται στην Εικόνα 3.13. Από τις διάφορες απόψεις της κρυσταλλικής δομής μπορεί να εξαχθεί το συμπέρασμα ότι η δομή είναι μονοδιάστατη (1D).

Εικόνα 3.13. Η δομή του Na-HDTMP κατά μήκος του άξονα a (πάνω), b (μέση), και c (κάτω).

Θα μπορούσε πιο συγκεκριμένα να χαρακτηριστεί ως «αλυσιδωτή», αφού η αλυσίδα είναι μια ταινία με «εύρος» περίπου 31.9 Å και «πάχος» 6.9 Å, και αποτελείται από τμήματα Na-HDTMP, βλ. Εικόνα 3.14.

Εικόνα 3.14. Η δομή της επαναλαμβανόμενης «αλυσίδας» Na-HDTMP.

Στη δομή σχηματίζεται ένα δίκτυο δεσμών υδρογόνου, στο οποίο συμμετέχουν τα νερά πλέγματος που βρίσκονται στην δομή και των οξυγόνων από τις φωσφονικές ομάδες του HDTMP.

Συγκεκριμένα, σχηματίζεται ένας «διπλός» δεσμός υδρογόνου στον οποίο συμμετέχουν δύο φωσφονικές ομάδες που ανήκουν στην ίδια μονοδιάστατη «αλυσίδα», Εικόνα 3.15. Οι δεσμοί αυτοί είναι αρκετά ισχυροί, με απόσταση Ο…Ο 1.901 Å και 1.977 Å.

Εικόνα 3.15. Δεσμοί υδρογόνου στο φωσφονικό διμερές εντός της «αλυσίδας» Na-HDTMP.

Εικόνα 3.16. Δεσμοί υδρογόνου μεταξύ γειτονικών Na-HDTMP, στους οποίους συμμετέχουν μόρια νερού πλέγματος.
3.3. Κρυσταλλική δομή Κ-ΗDTMP:

To μεταλλοφωσφονικό πολυμερές K-HDTMP έχει μοριακό τύπο $C_{10}H_{40}K_2N_2O_{20}P_4$ και κρυσταλλώνει σε μονοκλινές κρυσταλλικό σύστημα με P $2_1/c$ ομάδα χώρου συμμετρίας. Οι διαστάσεις της μοναδιαίας κυψελίδας είναι a = 7.71780(10) Å, b = 33.0373(4) Å, c = 11.75770(10) Å, a = 90.00 (deg), β = 103.7090(10) (deg), γ = 90.00 (deg), V = 2912.52 Å³ και Z = 4, Z' = 0.

Η δομική της μονάδα περιλαμβάνει από ένα υποκαταστάτη HDTMP και δύο κατιόντα K⁺, Εικόνα 3.17. Η κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη, άρα φέρει φορτίο "-1", καθιστώντας έτσι το συνολικό αρνητικό φορτίο «-4». Ταυτόχρονα, το κάθε άτομο N (τριτοταγής αμινομάδα) βρίσκεται πρωτονιωμένο, άρα το συνολικό θετικό φορτίο είναι «+2». Επομένως κάθε υποκαταστάτης HDTMP φέρει συνολικό φορτίο "-2" και συναρμόζει δύο κατιόντα Na⁺. Έτσι, επιτυγχάνεται ηλεκτρο-ουδετερότητα και ο μεταλλοργανικός σκελετός είναι ουδέτερος. Υπάρχουν μόρια νερού πλέγματος και συναρμοσμένα στα κέντρα Καλίου (τρία στο K1, πέντε στο K2).

Εικόνα 3.17. Η ασύμμετρη μονάδα του πολυμερούς συναρμογής [K₂(HDTMP)(H₂O)₈]_n.

Το μεταλλικό κέντρο του K1 βρίσκεται σε περιβάλλον που θα μπορούσε να περιγραφεί ως τετραγωνικού αντιπρίσματος (Εικόνα 3.18) όπως φαίνεται και από τις γωνίες Ο–K1–O. Οι τιμές των γωνιών: O(1)-K(1)-O(2) 48,47°,O(1)-K(1)-O(17) 55,32°, O(1)-K(1)-O(13) 51,38°, O(2)-K(1)-O(13) 73,52°, O(2)-K(1)-O(13) 81,75°, O(13)-K(1)-O(14) 74,81°,O(2)-K(1)-O(14) 76,04°, O(14)-K(1)-O(9) 83,53°, O(15)-K(1)-O(9) 77,27°, O(15)-K(1)-O(17) 108,24° και O(14)-K(1)-O(15) 81,00°.

Το μεταλλικό κέντρο του K1 είναι συναρμοσμένο με οχτώ άτομα οξυγόνου, τρία από την ομάδα -PO₃H⁻, 5 από μόρια H₂O, Εικόνα 3.18. Οι αποστάσεις των δεσμών K-O (-PO₃H⁻) είναι K(1)-O(1) 3.080Å, K(1)-O(2) 3.162Åκαι K(1)-O(9) 2.678Å. Οι δεσμοί K-O (H₂O) είναι K(1)-O(13) 2.681Å, K(1)-O(13) 3.368Å, K(1)-O(14) 2.692Å, K(1)-O(15) 2.859Å και K(1)-O(17) 2.801Å.

Το μεταλλικό κέντρο του K2 βρίσκεται σε περιβάλλον που θα μπορούσε να περιγραφεί ως παραμορφωμένο οκτάεδρο (Εικόνα 3.18, κάτω) όπως φαίνεται και από τις γωνίες Ο–K2–Ο. Οι τιμές των γωνιών: O(2)-K(2)-O(13) 91,37⁰, O(2)-K(2)-O(18) 80,56⁰, O(2)-K(2)-O(14) 83,91⁰, O(2)-K(2)-O(17) 86,44⁰, O(18)-K(2)-O(17) 87,96⁰, O(18)-K(2)-O(13) 68,06⁰, O(18)-K(2)-O(16) 94,99⁰, O(17)-K(2)-O(16) 84,44⁰, O(17)-K(2)-O(14) 129,77⁰, O(13)-K(2)-O(16) 95,27⁰, O(16)-K(2)-O(14) 105,13⁰ καιO(13)-K(2)-O(14) 73,62⁰.

Το μεταλλικό κέντρο του K2 είναι συναρμοσμένο με έξι άτομα οξυγόνου, ένα από την ομάδα -PO₃H⁻, 5 από μόρια H₂O, (Εικόνα 3.18). Οι αποστάσεις των δεσμών K-O (-PO₃H⁻) είναι K(2)-O(2) 2.670 Å. Οι δεσμοί K-O (H₂O) είναι K(2)-O(13) 2.697 Å, K(2)-O(14) 2.750 Å, K(2)-O(16) 2.744 Å, K(2)-O(17) 2.692 Å και K(2)-O(18) 2.792 Å.

Στην ασύμμετρη μονάδα (Εικόνα 3.17) το K1 ενώνεται με το K2 από ένα οξυγόνο απο την φωσφονική ομάδα του υποκαταστάτη και μέσω δύο οξυγόνων απο δύο μόρια νερού τα οποία χρησιμέυουν σαν γέφυρες. Οι αποστάσεις του δεσμού K1-O-K2 είναι K(1)-O(2) 3,162 Å, O(2)-K(2) 2,670 Å, K(1)-O(13) 2,681 Å, O(13)-K(2) 2,697 Å, K(1)-O(14) 2,693 Å, O(14)-K(2) 2,750 Å. Οι γωνίες των δεσμών K1-O-K2 είναι K(1)-O(2)-K(2) 78,32⁰, K(1)-O(13)-K(2) 87,00⁰ και K(1)-O(14)-K(2) 85,72⁰.

Εικόνα 3.18. Περιβάλλον συναρμογής των κέντρων Κ⁺ στη δομή του Κ-HDTMP.

Τα μήκη δεσμών στη φωσφονική ομάδα είναι ενδεικτικά του απεντοπισμού του αρνητικού φορτίου, Εικόνα 3.19. Συγκεκριμένα, οι αποστάσεις P-O για το K1 και K2 είναι P(1)-O(1) 1.508Å, P(1)-O(2) 1.497Å, P(3)-O(9) 1.502Å.

Εικόνα 3.19. Τα μήκη δεσμών P-O και P-C στη δομή του K-HDTMP.

Με βάση τα παραπάνω μήκη δεσμών δεν φαίνεται να υπάρχει έντονος απεντοπισμός φορτίου, αλλιώς οι αποστάσεις P(1)-O(1), P(1)-O(2), P(2)-O(4) και P(2)-O(5) θα έπρεπε να έχουν μικρή διαφορά μεταξύ τους.

Το πρωτονιωμένο τμήμα κάθε μορίου υποκαταστάτη (–P–O–H) δεν συναρμόζεται με τα κέντρα K⁺. Το P1 «προσεγγίζει» το κεντρικό άτομο του K⁺ μέσω δύο ατόμων οξυγόνου. Σε κάθε μόριο HDTMP οι φωσφονικές ομάδες διαχωρίζονται σε P = O, P–O⁻ και P–O–H. Όπως προαναφέρθηκε, το μήκος των δεσμών P–O–H κυμαίνεται στις τιμές 1.562 Å, 1.574 Å. Το μήκος των δεσμών P = O και P–O⁻ κυμαίνεται από 1.496 Å –1.508 Å. Μόνο οι αποπρωτονιωμένες ομάδες P–O συναρμόζονται σε άτομα καλίου, σε αντίθεση με τις ομάδες P–O–H που παραμένουν μη συναρμοσμένες. Κάθε υποκαταστάτης HDTMP, συνδέεται με τρία μεταλλικά κέντρα, ενώ το μεταλλικό κέντρο K1 συναρμόζεται με δύο διαφορετικά μόρια υποκαταστάτη και 5 μόρια νερούκαι το μεταλλικό κέντρο K2 συναρμόζεται με ένα μόριο υποκαταστάτη και 5 μόρια νερού, Εικόνα 3.20.

Εικόνα 3.20. Περιβάλλον συναρμογής του υποκαταστάτη HDTMP στη δομή του K-HDTMP.

Το πακετάρισμα της δομής του K-HDTMP κατά τους άξονες a, b και c φαίνεται στην Εικόνα 3.21. Από τις διάφορες απόψεις της κρυσταλλικής δομής μπορεί να εξαχθεί το συμπέρασμα ότι η δομή είναι δισδιάστατη (2D) υποστηλωμένη.

Εικόνα 3.21. Η δομή του K-HDTMP κατά μήκος του άξονα a (πάνω), b (μέση), και c (κάτω).

Θα μπορούσε πιο συγκεκριμένα να χαρακτηριστεί ως «υποστηλωμένη», αφού η αλυσίδα είναι μια κολώνα με «εύρος» περίπου 14.72 Å και αποτελείται από τμήματα K-HDTMP, βλ. Εικόνα 3.22.

Εικόνα 3.22. Η δομή της επαναλαμβανόμενης «υποστήλωσης» K-HDTMP.

Στη δομή σχηματίζεται ένα δίκτυο δεσμών υδρογόνου, στο οποίο συμμετέχουν τα νερά πλέγματος που βρίσκονται στην δομή και των οξυγόνων από τις φωσφονικές ομάδες του HDTMP

Συγκεκριμένα, σχηματίζεται ένας «διπλός» δεσμός υδρογόνου στον οποίο συμμετέχουν δύο φωσφονικές ομάδες που ανήκουν στην ίδια δισδιάστατη «κολώνα», Εικόνα 3.23. Οι δεσμοί αυτοί είναι αρκετά ισχυροί, με απόσταση Ο…Ο 1.901 Å και 1.977 Å.

Εικόνα 3.23. Δεσμοί υδρογόνου στο φωσφονικό διμερές εντός της «υποστήλωσης» K-HDTMP.

3.4. Κρυσταλλική δομή Rb-HDTMP:

To μεταλλοφωσφονικό πολυμερές Rb-HDTMP έχει μοριακό τύπο $C_{10}H_{35}N_2RbO_{16}P_4$ και κρυσταλλώνει σε μονοκλινές κρυσταλλικό σύστημα με C 2/c ομάδα χώρου συμμετρίας. Οι διαστάσεις της μοναδιαίας κυψελίδας είναι a = 6.0257(5) Å, b =14.1011(7) Å, c = 28.762(2) Å, α = 90.00 (deg), β = 94.816(3) (deg), γ = 90.00 (deg), V = 2435.25 Å³ και Z = 4.

Η δομική της μονάδα περιλαμβάνει μισό υποκαταστάτη HDTMP και ένα κατιόν Rb⁺, Εικόνα 3.25. Η κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη, άρα φέρει φορτίο "-1", καθιστώντας έτσι το συνολικό αρνητικό φορτίο «-4». Ταυτόχρονα, το κάθε άτομο N (τριτοταγής αμινομάδα) βρίσκεται πρωτονιωμένο, άρα το συνολικό θετικό φορτίο είναι «+2». Επομένως κάθε υποκαταστάτης HDTMP φέρει συνολικό φορτίο "-2" και συναρμόζει δύο κατιόντα Rb⁺. Έτσι, επιτυγχάνεται ηλεκτρο-ουδετερότητα και ο μεταλλοργανικός σκελετός είναι ουδέτερος. Υπάρχουν μόρια νερού πλέγματος και δύο νερά συναρμοσμένα στα κέντρα Rb⁺.

Εικόνα 3.25. Η ασύμμετρη μονάδα του πολυμερούς συναρμογής [Rb(HDTMP)(H₂O)_{2.2}H₂O]_n.

Το μεταλλικό κέντρο του Rb⁺ βρίσκεται σε περιβάλλον τετραγωνικού αντιπρίσματος (Εικόνα 3.26, κάτω) όπως φαίνεται και από τις γωνίες Ο–Rb– Ο. Οι τιμές των γωνιών: O(2)-Rb(1)-O(7) 84,41⁰, O(2)-Rb(1)-O(7) 63,87⁰, O(2)-Rb(1)-O(6) 78,57⁰, O(2)-Rb(1)-O(2) 74,45⁰, O(6)-Rb(1)-O(3) 70,65⁰, O(6)-Rb(1)-O(7) 61,05⁰, O(6)-Rb(1)-O(3) 93,43⁰, O(6)-Rb(1)-O(7) 127,78⁰, O(7)-Rb(1)-O(3) 67,67⁰ και O(3)-Rb(1)-O(3) 89,07⁰.

Το μεταλλικό κέντρο του Rb⁺ είναι συναρμοσμένο με οχτώ άτομα οξυγόνου, έξι από την ομάδα -PO₃H⁻, 2 από μόρια H₂O (Εικόνα 3.26.).Οι αποστάσεις των δεσμών Rb-O (-PO₃H⁻) είναι Rb(1)-O(3) 3.037Å, Rb(1)-O(6) 3.132Å και Rb(1)-O(2) 2.955Å. Οι δεσμοί Rb-O (H₂O) είναι Rb(1)-O(7) 2.915Å.

Εικόνα 3.26. Περιβάλλον συναρμογής του κέντρου Rb⁺ στη δομή του Rb-HDTMP.

Τα μήκη δεσμών στη φωσφονική ομάδα είναι ενδεικτικά του απεντοπισμού του αρνητικού φορτίου, Εικόνα 3.27. Συγκεκριμένα, οι αποστάσεις P-O είναι P(1)-O(2) 1.485Å, P(1)-O(3) 1.529Å, P(2)-O(6) 1.504 Å.

Εικόνα 3.27. Τα μήκη δεσμών Ρ-Ο και Ρ-C στη δομή του Rb-HDTMP.

Με βάση τα παραπάνω μήκη δεσμών δεν φαίνεται να υπάρχει έντονος απεντοπισμός φορτίου, αλλιώς οι αποστάσεις P(1)-O(1), P(1)-O(2), P(2)-O(4) και P(2)-O(5) θα έπρεπε να έχουν μικρή διαφορά μεταξύ τους. Το τμήμα κάθε μορίου υποκαταστάτη (–Ρ–Ο–Η) πρωτονιωμένο δεν συναρμόζεται με τα κέντρα Rb⁺. Το P1 «προσεγγίζει» το κεντρικό άτομο του Rb+ μέσω ενός ατόμου οξυγόνου, ενώ τα άλλα δύο άτομα οξυγόνου παραμένουν μη συναρμοσμένα. Σε κάθε μόριο HDTMP οι φωσφονικές ομάδες διαχωρίζονται σε P = O, P-O⁻ και P-O-H. Όπως προαναφέρθηκε, το μήκος των δεσμών Ρ–Ο–Η κυμαίνεται στις τιμές 1.566 Å, 1.574 Å. Το μήκος των δεσμών P = O και P–O⁻ κυμαίνεται από 1.485 Å – 1.529 Å. Μόνο οι αποπρωτονιωμένες ομάδες Ρ-Ο συναρμόζονται σε άτομα ρουβιδίου, σε αντίθεση με τις ομάδες Ρ-Ο-Η που παραμένουν μη συναρμοσμένες. Κάθε υποκαταστάτης HDTMP, συνδέεται με τέσσερα μεταλλικά κέντρα, ενώ το μεταλλικό κέντρο Rb1 συναρμόζεται με τέσσερα διαφορετικά μόρια υποκαταστάτη και 2 μόρια νερού, Εικόνα 3.28.

Εικόνα 3.28. Περιβάλλον συναρμογής του υποκαταστάτη HDTMP στη δομή του Rb-HDTMP.

Το πακετάρισμα της δομής του Rb-HDTMP κατά τους άξονες a, b και c φαίνεται στην Εικόνα 3.29. Από τις διάφορες απόψεις της κρυσταλλικής δομής μπορεί να εξαχθεί το συμπέρασμα ότι η δομή είναι δισδιάστατη (2D) υποστηλωμένη.

Εικόνα 3.29. Η δομή του Rb-HDTMP κατά μήκος του άξονα a (πάνω), b (μέση), και c (κάτω).

Θα μπορούσε πιο συγκεκριμένα να χαρακτηριστεί ως «υποστηλωμένη», αφού η αλυσίδα είναι μια κολώνα με «εύρος» περίπου 19.2 Å και αποτελείται από τμήματα Rb-HDTMP, βλ. Εικόνα 3.30.

Εικόνα 3.30. Η δομή της επαναλαμβανόμενης «υποστήλωσης» Rb-HDTMP.

Στη δομή σχηματίζεται ένα δίκτυο δεσμών υδρογόνου, στο οποίο συμμετέχουν τα νερά πλέγματος που βρίσκονται στην δομή και των οξυγόνων από τις φωσφονικές ομάδες του HDTMP

Συγκεκριμένα, σχηματίζεται ένας «διπλός» δεσμός υδρογόνου στον οποίο συμμετέχουν δύο φωσφονικές ομάδες που ανήκουν στην ίδια δισδιάστατη «κολώνα», Εικόνα 3.31. Οι δεσμοί αυτοί είναι αρκετά ισχυροί, με απόσταση Ο…Ο 1.835 Å και 1.895 Å.

Εικόνα 3.31. Δεσμοί υδρογόνου στο φωσφονικό διμερές εντός της «υποστήλωσης» Rb-HDTMP.

Εικόνα 3.32. Δεσμοί υδρογόνου μεταξύ γειτονικών Rb-HDTMP, στους οποίους συμμετέχουν μόρια νερού πλέγματος.

3.5. Κρυσταλλική δομή Cs-HDTMP:

To μεταλλοφωσφονικό πολυμερές Rb-HDTMP έχει μοριακό τύπο $C_{10}H_{35}N_2CsO_{16}P_4$ και κρυσταλλώνει σε τρικλινές κρυσταλλικό σύστημα με $P\bar{1}$ ομάδα χώρου συμμετρίας. Οι διαστάσεις της μοναδιαίας κυψελίδας είναι είναι a = 6.0072 (2) Å, b = 7.6864(2) Å, c = 14.8250(4) Å, α = 86.677(2) (deg), β = 78.906(2) (deg), γ = 67.611(2) (deg), V = 621.009 Å³ και Z = 1.

Η δομική της μονάδα περιλαμβάνει μισό υποκαταστάτη HDTMP και ένα κατιόν Cs⁺, Εικόνα 3.33. Η κάθε φωσφονική ομάδα είναι μονοαποπρωτονιωμένη, άρα φέρει φορτίο "-1", καθιστώντας έτσι το συνολικό αρνητικό φορτίο «-4». Ταυτόχρονα, το κάθε άτομο N (τριτοταγής αμινομάδα) βρίσκεται πρωτονιωμένο, άρα το συνολικό θετικό φορτίο είναι «+2». Επομένως κάθε υποκαταστάτης HDTMP φέρει συνολικό φορτίο "-2" και συναρμόζει δύο κατιόντα Cs⁺. Έτσι, επιτυγχάνεται ηλεκτρο-ουδετερότητα και ο μεταλλοργανικός σκελετός είναι ουδέτερος. Υπάρχουν μόρια νερού πλέγματος και δύο νερά συναρμοσμένα στα κέντρα Cs⁺.

Εικόνα 3.33. Η ασύμμετρη μονάδα του πολυμερούς συναρμογής [Cs(HDTMP)(H₂O)_{2.2}H₂O]_n.

Το περιβάλλον συναρμογής του μεταλλικού κέντρου του Cs⁺ παρουσιάζεται στην Εικόνα 3.34, και θα μπορούσε να χαρακτηριστεί ως διςεπιστεγασμένο τετραγωνικό πρίσμα (bicapped tetragonal prism). Οι τιμές των γωνιών O–Rb–O είναι: O(5)-Cs(1)-O(1) 77,53⁰, O(5)-Cs(1)-O(1) 102,47⁰, O(5)-Cs(1)-O(4) 81,09⁰, O(5)-Cs(1)-O(4) 98,91⁰ O(5)-Cs(1)-O(5) 119,93⁰, O(5)-Cs(1)-O(5) 60,67⁰, O(5)-Cs(1)-O(7) 47,84⁰, O(1)-Cs(1)-O(5) 61,09⁰, O(1)-Cs(1)-O(4) 96,61⁰, O(1)-Cs(1)-O(5) 118,91⁰, O(1)-Cs(1)-O(4) 83,39⁰, O(1)-Cs(1)-O(7) 55,62⁰, O(1)-Cs(1)-O(5) 102,47⁰, O(1)-Cs(1)-O(4) 83,39⁰, O(4)-Cs(1)-O(7) 69,10⁰, O(4)-Cs(1)-O(5) 116,52⁰, O(4)-Cs(1)-O(7) 110,90⁰, O(4)-Cs(1)-O(5) 63,48⁰, O(7)-Cs(1)-O(5) 47,49⁰, O(7)-Cs(1)-O(1) 124,38⁰, O(7)-Cs(1)-O(5) 132,51⁰, O(7)-Cs(1)-O(5) 132,16⁰, O(7)-Cs(1)-O(1) 55,62⁰

Το μεταλλικό κέντρο του Cs⁺ είναι συναρμοσμένο με δέκα άτομα οξυγόνου, 8 από την ομάδα -PO₃H⁻, και δύο από μόρια H₂O (Σχήμα 3.23). Οι αποστάσεις των δεσμών Cs-O (-PO₃H⁻) είναι Cs(1)-O(1) 3.207Å, Cs(1)-O(4) 3.442Å, Cs(1)-O(5) 3.420Å και Cs(1)-O(5) 3.539Å . Οι δεσμοί Cs-O (H₂O) είναι Cs(1)-O(7) 3.432Å.

Εικόνα 3.34. Περιβάλλον συναρμογής του κέντρου Cs⁺ στη δομή του Cs-HDTMP.

Τα μήκη δεσμών στη φωσφονική ομάδα είναι ενδεικτικά του απεντοπισμού του αρνητικού φορτίου, Εικόνα 3.35. Συγκεκριμένα, οι αποστάσεις P-O είναι P(1)-O(1) 1.501Å, P(2)-O(4) 1.523Å, P(2)-O(5) 1.487Å.

Εικόνα 3.35. Τα μήκη δεσμών Ρ-Ο και Ρ-C στη δομή του Cs-HDTMP.

Με βάση τα παραπάνω μήκη δεσμών δεν φαίνεται να υπάρχει έντονος απεντοπισμός φορτίου, αλλιώς οι αποστάσεις P(1)-O(1), P(1)-O(2), P(2)-O(4) και P(2)-O(5) θα έπρεπε να έχουν μικρή διαφορά μεταξύ τους.

Το πρωτονιωμένο τμήμα κάθε μορίου υποκαταστάτη (–P–O–H) δεν συναρμόζεται με τα κέντρα Cs⁺. Το P1 «προσεγγίζει» το κεντρικό άτομο του Cs⁺ μέσω ενός ατόμου οξυγόνου, ενώ τα άλλα δύο άτομα οξυγόνου παραμένουν μη συναρμοσμένα ενώ το P2 «προσεγγίζει» το κεντρικό άτομο του Cs⁺ μέσω δύο ατόμων οξυγόνου. Σε κάθε μόριο HDTMP οι φωσφονικές ομάδες διαχωρίζονται σε P = O, P–O⁻ και P–O–H. Όπως προαναφέρθηκε, το μήκος των δεσμών P–O–H κυμαίνεται για την P1 είναι 1.559 Å ενώ για την P2 στα 1.523 Å - 1.547 Å. Το μήκος των δεσμών P = O και P–O⁻ κυμαίνεται από 1.487 Å – 1.501 Å. Μόνο οι αποπρωτονιωμένες ομάδες P–O συναρμόζονται σε άτομα ρουβιδίου, σε αντίθεση με τις ομάδες P–O–H που παραμένουν μη συναρμοσμένες. Κάθε υποκαταστάτης HDTMP, συνδέεται με τέσσερα μεταλλικά κέντρα, ενώ το μεταλλικό κέντρο Cs1 συναρμόζεται με τέσσερα διαφορετικά μόρια υποκαταστάτη και 2 μόρια νερού. Το Cs1 συναρμόζεται

ομάδας του ίδιου υποκαταστάτη δημιουργώντας ένα οκταμελή δακτύλιο, Εικόνα 3.36.

Εικόνα 3.36. Περιβάλλον συναρμογής του υποκαταστάτη HDTMP στη δομή του Cs-HDTMP.

Το πακετάρισμα της δομής του Cs-HDTMP κατά τους άξονες a, b και c φαίνεται στην Εικόνα 3.37. Από τις διάφορες απόψεις της κρυσταλλικής δομής μπορεί να εξαχθεί το συμπέρασμα ότι η δομή είναι δισδιάστατη (2D) υποστηλωμένη.

Εικόνα 3.37. Η δομή του Cs-HDTMP κατά μήκος του άξονα a (πάνω), b (μέση), και c (κάτω).

Θα μπορούσε πιο συγκεκριμένα να χαρακτηριστεί ως «υποστηλωμένη», αφού η αλυσίδα είναι μια κολώνα με «εύρος» περίπου 17.2 Å και αποτελείται από τμήματα Cs-HDTMP, βλ. Εικόνα 3.38.

Εικόνα 3.38. Η δομή της επαναλαμβανόμενης «υποστήλωσης» στη δομή του Cs-HDTMP.

Στη δομή σχηματίζεται ένα δίκτυο δεσμών υδρογόνου, στο οποίο συμμετέχουν τα νερά πλέγματος που βρίσκονται στην δομή και των οξυγόνων από τις φωσφονικές ομάδες του HDTMP, Εικόνα 3.39. Οι δεσμοί αυτοί είναι αρκετά ισχυροί, με απόσταση Ο···Ο 1.723 Å και 1.964 Å.

Εικόνα 3.39. Δεσμοί υδρογόνου μεταξύ γειτονικών Cs-HDTMP, στους οποίους συμμετέχουν μόρια νερού πλέγματος.

ΚΕΦΑΛΑΙΟ 4. ΠΡΟΚΑΤΑΡΚΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΩΤΟΝΙΑΚΗΣ ΑΓΩΓΙΜΟΤΗΤΑΣ

4.1. Διεργασίες αφυδάτωσης-ενυδάτωσης.

Στο πεδίο των μεταλλοφωσφονικών υλικών είναι σημαντική η μελέτη της απομάκρυνσης «μικρών μορίων» (συνήθως διαλύτη, στη συγκεκριμένη περίπτωση μορίων νερού) και των μερικώς αφυδατωμένων, ή εντελώς αφυδατωμένων υλικών που προκύπτουν. Η απομάκρυνση μορίων νερού (αφυδάτωση) επιτυγχάνεται θερμικά, σε συγκεκριμένη(ες) θερμοκρασία(ες), όπως αυτή(ές) προκύπτει(ουν) από το διάγραμμα TGA της υπό μελέτη ένωσης. Η πιθανή επαναπρόσληψη (ενυδάτωση) επιτυγχάνεται συνήθως με έκθεση της αφυδατωμένης ένωσης σε υγρασία. Η μετάβαση μιας ενυδατωμένης δομής στην αντίστοιχη αφυδατωμένη, και ιδανικά η αντίστροφή της πορεία, ονομάζεται τοποτακτική (αλληλο)μετατροπή. Η καταλληλότερη πειραματική μέθοδος μελέτης αυτών των διεργασιών είναι η περιθλασιμετρία ακτίνων X σκόνης, σε συνδιασμό με αύξηση/μείωση της θερμοκρασίας του δείγματος. Στο πλαίσιο αυτό, μελετήθηκαν οι ενώσεις M-HDTMP (M = Li, Na, K, Rb, Cs).

Αρχίζοντας από την ένωση Li-HDTMP, οι θερμοσταθμικές μετρήσεις έδειξαν ότι η ένωση είναι σταθερή μέχρι τη θερμοκρασία 120 °C. Επίσης, με βάση τις ίδιες μετρήσεις φαίνεται να υπάρχει κάποια δομική μεταβολή στο εύρος θερμοκρασιών 140 – 220 °C. Οι παρατηρήσεις αυτές επιβεβαιώθηκαν με μελέτες θερμοπεριθλασιμετρίας (thermodiffraction), και παρουσιάζονται στην Εικόνα 4.1. Πάνω από τη θερμοκρασία των 120 °C το διάγραμμα αλλάζει, αλλά ταυτόχρονα δείχνει ότι η νέα φάση που σχηματίζεται είναι κρυσταλλική, και σταθερή μέχρι τους 220 °C. Από το διάγραμμα που αντιστοιχεί στους 160 °C εξήχθη η μοναδιαία κυψελίδα της νέας φάσης, η οποία είναι:

a = 12.841 Å, b = 9.5417 Å, c= 5.9432 Å, α = 102.62°, β = 84.041°, γ = 133.50°, V = 514.2 Å³ Για σύγκριση, παραθέτουμε την μοναδιαία κυψελίδα της αρχικής ένωσης Li-HDTMP:

a = 5.9728 Å, b = 9.4557 Å, c= 11.0182 Å, α = 74.418°, β = 76.170°, γ = 84.313°, V= 581.62 Å³

Εικόνα 4.1. Μελέτες θερμοπεριθλασιμετρίας της ένωσης Li-HDTMP.

Η αφυδάτωση της φάσης LiHDTMP·4H₂O με βάση την τεχνική της θερμπεριθλασιμετρίας (thermodiffractometry, Εικόνα 4.1) αποκαλύπτει μερικές χρήσιμες παρατηρήσεις. Η φάση LiHDTMP·4H₂O είναι σταθερή μέχρι τους 120 °C. Μεταξύ των θερμοκρασιών 120° και 140 °C λαμβάνει χώρα μερική αφυδάτωση η οποία παράγει μια καινούργια φάση, την LiHDTMP·2H₂O, η οποία είναι σταθερή μέχρι τους 220 °C. Η πλήρης αφυδάτωση της φάσης LiHDTMP·4H₂O μεταξύ 220° και 250 °C (σε συμφωνία με τη μελέτη θερμοσταθμικής ανάλυσης) παράγει μια άμορφη φάση, η οποία δεν επανυδατώνεται, και δεν παράγει τις ενυδατωμένες μορφές του LiHDTMP.

Έχουν καταβληθεί προσπάθειες από τους συνεργάτες μας στο Universidad de Malaga να επιλυθεί η δομή της «ενδιάμεσης» φάσης LiHDTMP-2H₂O. Δεδομένα περιθλασιμετρίας σκόνης συλλεχθηκαν σε δείγμα που είχε

θερμανθεί στους 220 °C, οπότε και αντιστοιχεί στη φάση LiHDTMP·2H₂O. Σαν αρχικό μοντέλο χρησιμοποιήθηκε η πλήρως ενυδατωμένη ένωση LiHDTMP·4H₂O. Το τελικό Rietveld refinement παρουσιάζεται στην Εικόνα 4.2.

Εικόνα 4.2. Το τελικό Rietveld refinement της ένωσης LiHDTMP $2H_2O$.

Η επίλυση της δομής αποκαλύπτει μια φυλλόμορφη 2D διάταξη, Εικόνα 4.3. Ο υποκαταστάτης HDTMP είναι ενσωματωμένος μέσα στο δισδιάστατο «φύλλο». Επίσης, τα φύλλα βρίσκονται σε απόσταση περίπου ~ 3.7 Å μεταξύ τους (βλ. Εικόνα 4.3, κατά τον άξονα b). Η εν γένει κρυσταλλική δομή του μερικώς αφυδατωμένου υλικού LiHDTMP·2H₂O, είναι πολύ παρόμοια με αυτή του πλήρως ενυδατωμένου (as synthesized) αρχικού υλικού LiHDTMP·4H₂O.

Εικόνα 4.3. Η κρυσταλλική δομή της ένωσης LiHDTMP[.]2H₂O κατά μήκος των αξόνων a (επάνω), b (μέση) και c (κάτω).

Η βασική διαφορά μεταξύ των κρυσταλλικών δομών του μερικώς αφυδατωμένου υλικού LiHDTMP·2H₂O και του πλήρως ενυδατωμένου αρχικού υλικού LiHDTMP·4H₂O έγκειται στο περιβάλλον συναρμογής των

κέντρων Li. Ενώ στο υλικό LiHDTMP·4H₂O το καθένα Li είναι συναρμοσμένο με δύο τερματικά φωσφονικά οξυγόνα και δύο τερματικά μόρια νερού, στο υλικό LiHDTMP·2H₂O, το ένα κέντρο Li (Li1) είναι συναρμοσμένο με δύο τερματικά φωσφονικά οξυγόνα, ένα τερματικό μόριο νερού (Ow2) και ένα γεφυρωτικό μόριο νερού (Ow1), το οποίο γεφυρώνει το γειτονικό κέντρο Li (Li1b). Από την άλλη μεριά, το κέντρο Li1b συναρμόζεται χηλικά με μια φωσφονική ομάδα (O2b, O3b, σχηματίζοντας ένα τετραμελή δακτύλιο, με ένα τερματικό φωσφονικό οξυγόνο (O6b), και με το προαναφερθέν γεφυρωτικό μόριο νερού (Ow1). Αυτές οι παρατηρήσεις παρουσιάζονται στην Εικόνα 4.4.

Να σημειωθεί ότι η γεωμετρία των κέντρων Li είναι παραμορφωμένη τετραεδρική, αλλά η παραμόρφωση αυτή οφείλεται στην περιορισμένη ποιότητα των δεδομένων που συλλέχθησαν στο δείγμα.

Εικόνα 4.4. Το περιβάλλον συναρμογής των κέντρων Li στην ένωση LiHDTMP⁻2H₂O.

Η ένωση Na-HDTMP γίνεται άμορφη όταν θερμανθεί, οπότε δεν έγινε μελέτη θερμοπεριθλασιμετρίας σε αυτό το υλικό.

Η ένωση K-HDTMP γίνεται άμορφη με θέρμανση στους 150 °C, αλλά και σε υψηλότερες θερμοκρασίες μέχρι τους 250 °C (Εικόνα 4.5). Όταν το δείγμα επαναψυχθεί, υπάρχει μια επανεμφάνιση κρυσταλλικότητας (βλ. Εικόνα 4.5, κάτω).

Εικόνα 4.5. Μελέτες θερμοπεριθλασιμετρίας της ένωσης K-HDTMP.

Για την ένωση Rb-HDTMP, οι θερμοσταθμικές μετρήσεις έδειξαν ότι η ένωση είναι σταθερή μέχρι τη θερμοκρασία 80 °C. Οι παρατηρήσεις αυτές επιβεβαιώθηκαν με μελέτες θερμοπεριθλασιμετρίας, και παρουσιάζονται στην Εικόνα 4.6. Πέραν της θερμοκρασίας των 80 °C η ένωση είναι άμορφη.

Εικόνα 4.6. Μελέτες θερμοπεριθλασιμετρίας της ένωσης Rb-HDTMP.

Η ένωση Cs-HDTMP γίνεται άμορφη με θέρμανση στους 150 °C, οπότε δεν έγινε μελέτη θερμοπεριθλασιμετρίας σε αυτό το υλικό.

4.2. Μελέτες πρωτονιακής αγωγιμότητας

Δύο είδη μηχανισμών μεταφοράς πρωτονίων μπορούν να περιγράψουν το φαινόμενο της πρωτονιακής αγωγιμότητας. Ο μηχανισμός «οχήματος» (vehicle mechanism)⁵⁰ και μηχανισμός Grotthuss⁵¹.

Ο μηχανισμός «οχήματος» αναφέρεται στη διάχυση ενυδατωμένων πρωτονίων ή ομάδων που περιέχουν πρωτόνια (π.χ. H₃O⁺, NH₄⁺), σε ένα μέσο χαμηλού ιξώδους και υψηλού συντελεστή διάδοσης όπως για παράδειγμα το νερό. Καθώς οι δεσμοί υδρογόνου είναι χαρακτηριστικό σε αυτό το μέσο, είναι το κλειδί της μεταφοράς πρωτονίων σε μεγάλες αποστάσεις.

Ο μηχανισμός Grotthuss που ονομάζεται επίσης διάχυση δομής ή ενδογενής αγωγιμότητα πρωτονίων, αναφέρεται στη διάχυση εγγενών πρωτονιακών μεταφορέων. Τα πρωτόνια έχουν μια ασυνήθιστη υψηλή κινητικότητα στο νερό, η οποία είναι σε συνθήκες περιβάλλοντος εννέα φορές μεγαλύτερη από αυτή του Li⁺ και πέντε φορές μεγαλύτερη από αυτή του K⁺. Σύμφωνα με τον De Grotthuss, ο μηχανισμός αναφέρεται στο συνεταιρισμό μεταφοράς πρωτονίων μέσω δύο γειτονικών μορίων νερού, μέσω του σχηματισμού δεσμών υδρογόνου.

Μια ενδιαφέρουσα εφαρμογή των MOFs είναι η ύπαρξη πρωτονιακής αγωγιμότητας, η οποία εμφανίζεται μέσω της κίνησης των ιόντων μεταξύ ενεργητικά παρόμοιων περιοχών. Αυτό μπορεί να συμβεί μέσω της εγγενούς πρωτονιακής αγωγιμότητας η οποία εμφανίζεται στο υλικό ή μέσω ενός φορέα (H₃O⁺ για τα πρωτόνια), στους πόρους του υλικού. Στα MOFs ενεργοποιούνται και οι δύο τύποι μεταφοράς, καθώς έχει αποδειχθεί ότι τα πρωτόνια μπορούν να περάσουν μέσα από τον ίδιο το σκελετό της δομής ή μέσω φορέων, μόρια νερού τα οποία υπάρχουν στους πόρους. Τα μεταλλοφωσφονικά υλικά είναι μια ενδιαφέρουσα περίπτωση υλικών που Н μπορεί εμφανίζουν πρωτονιακή αγωγιμότητα. πλήρως να αποπρωτονιωμένη φωσφονική ομάδα (-PO₃²⁻) διαθέτει τρία άτομα οξυγόνου και αυτά μπορούν να δράσουν ως περαιτέρω δέκτες δεσμών υδρογόνου. Αυτές οι ομάδες μπορούν να χρησιμεύσουν για την αγκύλωση μορίων φορέων ή να μεταφέρουν πρωτόνια σε μια διαδικασία πρωτονιακής αγωγιμότητας.⁵² Στην περίπτωση που η φωσφονική ομάδα είναι μερικώς αποπρωτονιωμένη (-PO₃H⁻), μπορεί να προσφέρει όξινο πρωτόνιο (-P-O-H). Τα μεταλλοφωσφονικά προσφέρουν κρυσταλλικές αρχιτεκτονικές οι οποίες μπορούν να διευκολύνουν τη βαθύτερη κατανόηση των μηχανισμών μεταφοράς πρωτονίων.⁵³

Η επιτακτική ανάγκη για έλεγχο της μόλυνσης στα περισσότερα βιομηχανικά κράτη, οδήγησε σε ολοένα και περισσότερες προσπάθειες για κατασκευή μπαταριών και κυττάρων καυσίμων που μετατρέπουν άμμεσα τη χημική ενέργεια σε ηλεκτρική, ώστε να μειωθεί η παραγωγή επικίνδυνων αερίων. Η αρχή λειτουργίας των κυττάρων καυσίμων, βασίζεται στη λειτουργία των μεμβρανών ανταλλαγής πρωτονίων, οι οποίες χρησιμεύουν στην μεταφορά σήματος.

Μεταλλοφωσφονικά υλικά τα οποία εμφανίζουν πρωτονιακή αγωγιμότητα μπορούν να αποτελέσουν υποψήφια υλικά προς διερεύνηση πιθανών εφαρμογών στη λειτουργία των κυψελών καυσίμων (fuel cells). Η ανάπτυξη τέτοιων υλικών παραμένει δύσκολη επειδή η μεταφορά των πρωτονίων

100

πολλών υποσχόμενων υλικών, βασίζεται στις μικροδομές των μορίων του νερού, που φθείρονται σε θερμοκρασίες πάνω από το σημείο ζέσεως. Η τεχνολογία κυττάρων καυσίμων μετατροπής υδρογόνου απαιτεί πρωτονιακά αγώγιμα υλικά με υψηλή αγωγιμότητα σε ενδιάμεσες θερμοκρασίες έως 120 °C.⁵⁴

Στα πλαίσια της παρούσης εργασίας έγινε προσπάθεια να μελετηθεί η πρωτονιακή αγωγιμότητα της σειράς των υλικών M-HDTMP (M = Li, Na, K, Rb, Cs). Διαπιστώθηκε όμως ότι όλα, εκτός του Li-HDTMP, εφυδατώνονται πολύ γρήγορα, απορροφούν υγρασία και έτσι δεν κατέστη εφικτή η μελέτη τους ως πρωτονιακά αγώγιμα υλικά.

Στην Εικόνα 4.7 φαίνεται το πραγματικό (*Z*') και το φανταστικό (*Z*') μέρος από τα δεδομένα εμπέδησης για το υλικό LiHDTMP·4H₂O, σε διάφορες θερμοκρασίες.

Εικόνα 4.7. Δεδομένα εμπέδησης για το υλικό LiHDTMP-4H₂O με σχετική υγρασία 95 % και σε επτά διαφορετικές θερμοκρασίες: 353 °K (black), 343 °K (red), 333 °K (green), 323 °K (blue), 313 °K (cyan), 303 °K (magenta) and 298 °K (yellow).

Η προσαρμογή (fitting) του κυκλικού τόξου Cole-Cole έδωσε τιμή 4.1 × 10⁻⁵ S·cm⁻¹ για την πρωτονιακή αγωγιμότητα (σ) στους 80 °C και σε σχετική υγρασία 95 %, Εικόνα 4.8. Στην ίδια Εικόνα φαίνεται και η μελέτη εξάρτησης από τη θερμοκρασία. Το διάγραμμα Arrhenius δείχνει μια γραμμική

συμπεριφορά και ενέργεια ενεργοποίησης 0.34 eV. Αυτή η τιμή βρίσκεται εντός των τιμών που αποδίδονται σε έναν Grotthuss μηχανισμό μεταφοράς, μέσω μορίων νερού (0.1-0.5 eV).⁵¹

Εικόνα 4.8. Δεδομένα πρωτονιακής αγωγιμότητας (Arrhenius plot) του υλικού **LiHDTMP-4H**₂**O** με σχετική υγρασία 95 %.

Μετά τη μελέτη εμπέδησης, το δείγμα μελετήθηκε με θερμοσταθμική ανάλυση, η οποία επιβεβαίωσε ότι το δείγμα που εξετέθη σε σχετική υγρασία 95% επανενυδατώθηκε πλήρως (Εικόνα 4.9). Οι απώλειες μάζας βρέθηκαν αρκετά παραπλήσιες με αυτές ενός «αυθεντικού» δείγματος LiHDTMP-4H₂O (as prepared.

Εικόνα 4.9. Μελέτη θερμοσταθμικής ανάλυσης σε δείγμα του **LiHDTMP·4H**₂**O** μετά από τη μελέτη εμπέδησης, και έκθεση σε σχετική υγρασία 95%.

Τέλος, από μελέτη θερμοπεριθλασιμετρίας (Εικόνα 4.10) επιβεβαιώνεται ότι η κρυσταλλική δομή παραμένει ανέπαφη. Δείγμα του υλικού LiHDTMP-2H₂O (το οποίο παρασκευάστηκε με θέρμανση του LiHDTMP-4H₂O στους 160 °C για 2 ώρες) αφέθηκε σε ισορροπία στους 80 °C και σχετική υγρασία 95%. Το διάγραμμα περίθλασης είναι ίδιο με αυτό του υλικού LiHDTMP-4H₂O, γεγονός που επιβεβαιώνει την πλήρη επανυδάτωση του δείγματος σε συνθήκες υψηλής υγρασίας.

Εικόνα 4.10. Διαγράμματα περίθλασης σε δείγματα πριν και μετά τη μελέτη εμπέδησης.

ΚΕΦΑΛΑΙΟ 5. ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΡΟΟΠΤΙΚΕΣ

Στην εργασία παρουσιάστηκε η συστηματική συνθετική προσπάθεια για την πρόσβαση σε μεταλλοφωσφονικά πολυμερή συναρμογής που σχηματίζει ο τετραφωσφονικός υποκαταστάτης/συνδετήρας HDTMP με τα μονοσθενή μέταλλα των αλκαλίων (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺). Επίσης, περιγράφηκαν οι κρυσταλλικές δομές της οικογένειας των ενώσεων M-HDTMP, καθώς και ο φυσικοχημικός χαρακτηρισμός αυτών των ενώσεων με τεχνικές TGA, FT-IR, και powder X-ray diffraction. Εξ' αιτίας της υγροσκοπικής φύσης των ενώσεων αυτών, κατέστη δυνατή η μελέτη μόνο της ένωσης Li-HDTMP για πρωτονιακή αγωγιμότητα. Παρατίθενται παρακάτω τα κύρια συμπεράσματα που προήλθαν από την παρούσα εργασία.

- (1) Η δομή του Li-HDTMP δεν περιέχει νερά πλέγματος με αποτέλεσμα οι δεσμοί υδρογόνου που παρατηρούνται να σχηματίζονται απο τις φωσφονικές ομάδες του HDTMP στην «ταινία» Li-HDTMP και απο τα νερά που είναι συναρμοσμένα στα μεταλλικά κέντρα Li⁺ γειτονικών ταινιών Li-HDTMP.
- (2) Οι δομές των Να-ΗDTMP, Κ-ΗDTMP, Rb-HDTMP, Cs-HDTMP περιέχουν νερά πλέγματος τα οποία αναπτύσσουν δεσμούς υδρογόνου με γειτονικά μόρια υποκαταστάτη. Δεσμούς υδρογόνου όμως έχουμε και μεταξύ γειτονικών «ταινιών» M-HDTMP (M = Na⁺, K⁺, Rb⁺, Cs⁺) είτε ανάμεσα στις φωσφονικές ομάδες του υποκαταστάτη είτε απο τα οξυγόνα της φωσφονικής ομάδας και των νερών που είναι συναρμοσμένα στα μεταλλικά κέντρα.
- (3) Οι δομές των Li-HDTMP, Na-HDTMP είναι μονοδιάστατες (1D) ενώ οι δομές των K-HDTMP, Rb-HDTMP, Cs-HDTMP είναι δισδιάστατες (2D) υποστηλωμένες.
- (4) Η βασική διαφορά μεταξύ των δομών είναι οι διαφορετικοί αριθμοί συναρμογής για κάθε μεταλλικό κέντρο [4 (Li⁺), 6 (Na⁺), 6 και 8 (K⁺), 8 (Rb⁺), 10 (Cs⁺)]. Όπως βλέπουμε και στην Εικόνα 4.11(από κάτω), όσο αυξάνεται η ιοντική ακτίνα του μετάλλου αυξάνεται και η σφαίρα συναρμογής του.

Εικόνα 4.11. Εξάρτηση αριθμού συναρμογής του μεταλλικού ιόντος από την ιοντική ακτίνα του μεταλλικού ιόντος αλκαλίου.

- (5) Η θερμικώς επαγόμενη απώλεια μορίων νερού από τα υλικά M-HDTMP μελετήθηκε με θερμοσταθμική ανάλυση (TGA). Σε όλα τα υλικά παρατηρείται απώλεια μάζας που οφείλεται στην απομάκρυνση μορίων νερού. Όλα τα υλικά χάνουν την κρυσταλλικότητά τους σε συγκεκριμένες θερμοκρασίες, και το φαινόμενο αυτό συνοδεύεται με μερική αποικοδόμηση του υποκαταστάτη HDTMP.
- (6) Στην περιθλασιμετρία ακτίνων Χ σκόνης (XRD) που έχει γίνει στις ενώσεις μας, μία γενική παρατήρηση που θα μπορούσε να λεχθεί είναι ότι τα πειραματικά διαγράμματα συμφωνούν με τα θεωρητικά απλά σε μερικές περιπτώσεις υπάρχουν μικρές προσμείξεις.

Από τα περιγραφέντα υλικά, το πολυμερές συναρμογής Li-HDTMP, συγκεντρώνει μεγάλο ενδιαφέρον, διότι είναι ένας καλός υποψήφιος για μελέτη πρωτονιακής αγωγιμότητας. Αυτό δικαιολογείται με βάση μερικά ενδιαφέροντα δομικά χαρακτηριστικά που συγκεντρώνει: (α) στη δομή του συνυπάρχουν και πρωτόνια και ιόντα λιθίου, (β) χημικές ομάδες που θα μπορούσαν να δράσουν σαν μεταφορείς πρωτονίων (φωσφονικές, νερό) βρίσκονται σε γειτονία μεταξύ τους. Για το πολυμερές συναρμογής Li-HDTMP βρέθηκε τιμή πρωτονιακής αγωγιμότητας $\sigma = 4.1 \times 10^{-5}$ S·cm⁻¹ στους 80 °C και σε σχετική υγρασία 95 %, με ενέργεια ενεργοποίησης 0.34 eV. Αυτή η τιμή βρίσκεται εντός των τιμών που αποδίδονται σε έναν

ΚΕΦΑΛΑΙΟ 6. ΒΙΒΛΙΟΓΡΑΦΙΑ

- K. Popov, H. Rönkkömäki, L.H.J. Lajunen, Pure Appl. Chem. 2001, 73, 1641
- 2. Bhattacharya, A.K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415.
- Jon, J.; Garczarek, P.; Bialek, M. Synthesis of phosphonic acids and their esters as possible substrates for reticular chemistry, in *Metal phosphonate chemistry: From synthesis to applications,* Clearfield, A.; Demadis, K.D. Eds. The Royal Society of Chemistry: London 2012, Chapter 6, p. 170.
- 4. A. Clearfield, J. of Al. and Comp. 2006, 418, 128–138
- 5. Moedritzer, K.; Irani, R.R. J. Org. Chem, 1966, 31, 1603.
- 6. Carter, R.P. Jr.; Carroll, R.L.; Irani, R.R. Inorg. Chem. 1967, 6, 939.
- 7. Carter, R.P. Jr.; Crutchfield, M.M.; Irani, R.R. Inorg. Chem. 1967, 6, 943.
- 8. Carroll, R.L.; Irani, R.R. Inorg. Chem. 1967, 6, 1994.
- Demadis, K.D; Stavgianoudaki, N. in *Metal Phosphonate Chemistry: From* Synthesis to Applications, Clearfield, A.; Demadis, K.D. Eds; Royal Society of Chemistry, 2012 Chapter 14, pp. 438-492.
- 10. Demadis K.D.; Sallis J.S.; Raptis R.G.; Baran P. *J. Am. Chem. Soc.* 2001, 123, 10129. (b) Jokiniemi, J.; Peraniemi, S.; Vepsalainen, J.J.; Ahlgren, M. *CrystEngComm* 2008, 10, 1011.
- 11. Caskey S. Aldrich ChemFiles, 2009, 9.2, 19
- 12. Shane E.. "Evolving data about subtrochanteric fractures and bisphosphonates". N. Engl. J. Med. 2010, 362 (19): 1825–7
- **13.**Weinstein RS, Robertson PK, Manolagas SC, Giant osteoclast formation and long-term oral bisphosphonate therapy, *N Engl J Med* **2009**;360:53-62
- 14. Fleisch H (2002). "Development of bisphosphonates"
- 15. Hochberg MC (2002). Bisphosphonates. In SR Cummings et al., eds., Osteoporosis: An Evidence-Based Guide to Prevention and Management, pp. 181–195. Philadelphia: American College of Physicians–American Society of Internal Medicine.
- **16.**Woo S-B, et al. (**2006**). Systematic review: Bisphosphonates and osteonecrosis of the jaw. *Annals of Internal Medicine*, 144(10): 753–761.
- **17.**Black DM, et al. (**2005**). One year of alendronate after one year of parathyroid hormone (1-84) for osteoporosis. *N. England J. of Med*, 353(6): 555–565.
- 18. Sankovics H.; Daskalakis M.; Raptopoulou C. P.; Terzis A.; Tangoulis V.; Giapintzakis S.; Kiss T.; Salifoglou A. *Inorg. Chem.* 2002, *41*, 13.
- **19.**H. Sankovics, M. Daskalakis, C. P. Raptopoulou, A. Terzis, V. Tangoulis, S.Giapintzakis, T. Kiss, A. Salifoglou, *Inorganic Chemistry*, 2002, 41, 13.
- 20. (a)Nowack B. *Wat. Res.* 2003, *37*, 2533-2546. (b) Akyol E.; Oner M.; Barouda E.; Demadis K.D. *Cryst. Growth Des.* 2009, *9*, 5145-5154. (c) Barouda E.; Demadis K.D.; Freeman S.; Jones F.; Ogden M. I. *Cryst. Growth Des.* 2007, *7*, 321.
- **21.**Deng, M.; Ling, Y.; Xia, B.; Chen, Z.; Zhou, Y.; Liu, X.; Yue, B.; He, H. *Chem. Eur. J.* **2011**, *17*, 10323–10328.
- **22.**Plabst, M.; McCusker, L.B.; Bein, T. *J. Am. Chem. Soc.* **2009**, *131*, 18112-18118.
- 23.Bortun A.I.; Bortun L.N.; Clearfield A.; Khainakov S.A.; Garcia J.R. Solv. *Extr. Ion. Exch.* 1998, *16*, 615.
- 24. Pearce G.M. Synthesis, Adsorption and Catalysis of Large Pore Metal Phosphonates, A Thesis Submitted for the Degree of PhD at the University of St. Andrews, 2009.
- 25. Wu J.; Hou H.-W.; Han H.; Fan Y. Inorg. Chem. 2007, 46, 19.
- 26. Alberti G.; Costantino U.; Allulli S.; Tomassini N. J. Inorg. Nucl. Chem.1978, 40, 1113.
- **27.**Poojary, D.M.; Hu, H.-L.; Campbell, F.L.; Clearfield, A. *Acta Cryst.* **1993**, *B49*, 996.
- 28. DiGiacomo P.M.; Dines M.B. Polyhedron 1982, 1, 61.
- 29. Cao, G.; Lee, H.; Lynch, V.M.; Mallouk, T.E. Inorg. Chem. 1988, 27, 2781.
- **30.**Zaki, M.T.M.; Rizkalla, E.N. *Talanta* **1980**, *27*, 709-713
- 31. Demadis K.D.; Barouda E.; Raptis R.G.; Zhao, H.; Raptis R.G. *Polyhedron*2009, 28, 3361–3367
- **32.** Demadis K.D.; Mantzaridis C.; Raptis R.G.; Mezei G. *Inorg. Chem.* **2005**, *44*, 4469-4471.
- **33.**Demadis K.D.; Barouda E.; Raptis R.G.; Zhao H. *Inorg. Chem.* **2009**, *48*, 819-821.

- 34. Colodrero R.M.P.; Cabeza A.; Olivera-Pastor P.; Infantes-Molina A.; Barouda E.; Demadis K.D.; Aranda M.A.G. *Chem. Eur. J.* 2009, *15*, 6612-6618.
- 35. Zheng G.-L.; Ma J.-F.; Yang J. J. Chem. Res. 2004, 387-388
- **36.**Costantino F.; Bataille T.; Audebrand N.; Fur E. L.; Sangregorio C. *Cryst. Growth Des.* **2007**, *7*, 1881-1888.
- 37. (a) Liu, Y. Y.; Zhang, H.; Sun, L. X.; Xu, F.; You, W. S.; Zhao, Y. Inorg. Chem. Commun. 2008, 11, 396–399. (b) Liu, Y. Y.; Zhang, J.; Xu, F.; Sun, L. X.; Zhang, T.; You, W. S.; Zhao, Y.; Zeng, J. L.; Cao, Z.; Yang, D. W. Cryst. Growth Des. 2008, 8, 3127–3129. (c) Banerjee, D.; Kim, S. J.; Parise, J. B. Cryst. Growth Des. 2009, 9, 2500–2503. (d) Banerjee, D.; Kim, S. J.; Kim, S. J.; Borkowski, L. A.; Xu,W.; Parise, J. B. Cryst. Growth Des. 2009, 9, 2500–2503. (d) Banerjee, D.; Kim, S. J.; Borkowski, L. A.; Xu,W.; Parise, J. B. Cryst. Growth Des. 2009, 9, 2500–2503. (e) Abrahams, B. F.; Grannas, M. J.; Hudson, T. A.; Robson, R. Angew. Chem. Int. Ed. 2010, 49, 1087–1089.
- 38. (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469–472. (b) Kitagawa, S.; Kitaura, R.;Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.
- 39. (a) Han, S. S.; Goddard, W. A. *J. Am. Chem. Soc.* 2007, *129*, 8422. (b) Mulfort, K. L.; Hupp, J. T. *J. Am. Chem. Soc.* 2007, *129*, 9604. (c) Mulfort, K. L.; Farha, O. K.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T. *J. Am. Chem. Soc.* 2009, *131*, 3866. (d) Yang, S. H.; Lin, X.; Blake, A. J.; Walker, G. S.; Hubberstey, P.; Champness, N. R.; Schroder, M. *Nat. Chem.* 2009, *1*, 487–493.
- 40. Ayi, A.A.; Burrows, A.D.; Mahon, M.F.; Pop, V.M. J. Chem. Crystallogr.
 2011, 41, 1165-1168.
- **41.**Kinnibrugh, T.L.; Garcia, N.; Clearfield, A. *J. Solid State Chem.* **2012**, *187*, 149–158.
- 42. Lis, T. Acta Cryst. 1997, C53, 28-42.
- 43. Mermer, A.; Starynowicz, P. Acta Cryst. 2011, B67, 399–408.
- 44. Cheng, C.-Y.; Lin, K.-J. Acta Cryst. 2006, C62, m363-m365
- 45. Vega, D.; Baggio, R.; Piro, O. Acta Cryst. 1998, C54, 324-327
- 46. Martinez-Tapia, H. S.; Cabeza, A.; Bruque, S.; Pertierra, P.; Garcia-Granda, S.; Aranda, M. A. G. *J. Solid State Chem.* 2000, *151*, 122-129.
- 47. Vega, D.; Baggio, R.; Garland, M.T. Acta Cryst. 1996, C52, 2198-2201

- 48. Deacon, G.B. Greenhill, N.B.; Junk, P.C. Wiecko, M. J. Coord. Chem.
 2011, 64, 179–185.
- **49.**Gossman, W.L.; Wilson, S.R.; Oldfield, E. *Acta Cryst.* **2002**, *C58*, m599m600.
- **50.**Kreuer K. D.; Rabenau A.; Weppner W. *Angew. Chem. Int. Ed.* **1982**, *21*, 208.
- **51.**(α) Agmon N. *Chem. Phys. Lett.* **1995**, *244*, 456. (β) Colomban, P.; Novak, A.J. *Mol. Struct.* **1988**, *177*, 277.
- 52. Taylor, J.M.; Mah, R.K.; Moudrakovski, I.L.; Ratcliffe, C.I.; Vaidhyanathan, R.; Shimizu, G.K.H. J. Am. Chem. Soc. 2010, 132, 14055.
- 53. Shimizu G. K. H.; Taylor J. M. and Dawson K. W. in *Metal Phosphonate Chemistry: From Synthesis to Applications*, Royal Society of Chemistry, 2012, Chapter 15, pp. 493.
- **54.**Colomban P. *Chemistry of Solid State Materials*, Vol. 2, Cambridge University Press: Cambridge, U.K., **1992.**
- 55. Alberti G.; Costantino U.; Casciola M.; Vivani R.; Peraio A. Solid State Ionics 1991, 46, 61.
- 56. Jang M. Y.; Park Y. S.; Y. Yamazaki Y. Electrochemistry 2003, 8, 691.
- 57.García M.B.; Papadaki M.; Colodrero R.M.P.; Pastor P.O.; Losilla E. R.; Ortega B.N.; Aranda M.G.A.; Lazarte D.C.; Cabeza A.; and Demadis K.D. Chem. Mater. 2015, 27, 424–435.
- 58. Fu R.; Xia S.; Xiang S.; Hu S.; Wu X. Journal of Solid State Chemistry 1772004, 4626–4631

ΠΑΡΑΡΤΗΜΑ

Πίνακας 1. Μήκη δεσμών (Å) και γωνίες (º) του υλικού Li-HDTMP									
Numb	Number Atom1 Atom2 Type Polymeric Length SybylType								
1	P1	O1	Unknown	no	1.567(3)	1			
2	P1	O2	Unknown	no	1.503(3)	un			
3	P1	O3	Unknown	no	1.483(3)	un			
4	P1	C1	Unknown	no	1.829(4)	1			
5	P2	O4	Unknown	no	1.504(2)	un			
6	P2	O5	Unknown	no	1.583(3)	1			
7	P2	O6	Unknown	no	1.473(3)	un			
8	P2	C2	Unknown	no	1.828(5)	1			
9	O1	H1O	Unknown	no	0.82(3)		1		
10	O3	Li1	Unknown	yes	1.948(7)	un			
11	O5	H5O	Unknown	no	0.82(4)		1		
12	O6	Li1	Unknown	no	1.909(7)	un			
13	07	H7A	Unknown	no	0.81(5)		1		
14	07	H7B	Unknown	no	0.83(2)		1		
15	07	Li1	Unknown	no	2.012(7)	1			
16	O8	H8A	Unknown	no	0.83(5)		1		
17	O8	H8B	Unknown	no	0.82(3)		1		
18	O8	Li1	Unknown	no	1.942(9)	1			
19	N1	H1N	Unknown	no	0.87(2)		1		
20	N1	C1	Unknown	no	1.502(5)	1			
21	N1	C2	Unknown	no	1.503(4)	1			
22	N1	C3	Unknown	no	1.503(5)	1			
23	Li1	O3	Unknown	yes	1.948(7)	un			
24	C1	H1A	Unknown	no	0.970	1			
25	C1	H1B	Unknown	no	0.970	1			
26	C2	H2A	Unknown	no	0.970	1			
27	C2	H2B	Unknown	no	0.970	1			
28	C3	НЗА	Unknown	no	0.970	1			
29	C3	НЗВ	Unknown	no	0.970 1				
30	C3	C4	Unknown	no	1.508(5)	1			

31	C4	H4A	Unknown	no	0.970 1	
32	C4	H4B	Unknown	no	0.970 1	
33	C4	C5	Unknown	no	1.516(6)	1
34	C5	H5A	Unknown	no	0.969 1	
35	C5	H5B	Unknown	no	0.970 1	
36	C5	C5	Unknown	no	1.500(5)	1
37	P1	01	Unknown	no	1.567(3)	1
38	P1	O2	Unknown	no	1.503(3)	un
39	P1	O3	Unknown	no	1.483(3)	un
40	P1	C1	Unknown	no	1.829(4)	1
41	P2	O4	Unknown	no	1.504(2)	un
42	P2	O5	Unknown	no	1.583(3)	1
43	P2	O6	Unknown	no	1.473(3)	un
44	P2	C2	Unknown	no	1.828(5)	1
45	01	H1O	Unknown	no	0.82(3)	1
46	O3	Li1	Unknown	yes	1.948(7)	un
47	O5	H5O	Unknown	no	0.82(4)	1
48	O6	Li1	Unknown	no	1.909(7)	un
49	N1	H1N	Unknown	no	0.87(2)	1
50	N1	C1	Unknown	no	1.502(5)	1
51	N1	C2	Unknown	no	1.503(4)	1
52	N1	C3	Unknown	no	1.503(5)	1
53	C1	H1A	Unknown	no	0.970 1	
54	C1	H1B	Unknown	no	0.970 1	
55	C2	H2A	Unknown	no	0.970 1	
56	C2	H2B	Unknown	no	0.970 1	
57	C3	НЗА	Unknown	no	0.970 1	
58	C3	H3B	Unknown	no	0.970 1	
59	C3	C4	Unknown	no	1.508(5)	1
60	C4	H4A	Unknown	no	0.970 1	
61	C4	H4B	Unknown	no	0.970 1	
62	C4	C5	Unknown	no	1.516(6)	1
63	C5	H5A	Unknown	no	0.969 1	
64	C5	H5B	Unknown	no	0.970 1	

65	07	H7A	Unknown	no	0.81(5)	1	
66	07	H7B	Unknown	no	0.83(2)	1	
67	07	Li1	Unknown	no	2.012(7)	1	
68	O8	H8A	Unknown	no	0.83(5)	1	
69	08	H8B	Unknown	no	0.82(3)	1	
70	08	Li1	Unknown	no	1.942(9)	1	
71	Li1	O3	Unknown	yes	1.948(7)	un	

Number		Atom1	Atom2	Atom3 Angle
1	O1	P1	O2	111.5(2)
2	O1	P1	O3	108.0(2)
3	01	P1	C1	106.1(2)
4	02	P1	O3	118.0(2)
5	02	P1	C1	101.9(2)
6	O3	P1	C1	110.7(2)
7	O4	P2	O5	108.2(2)
8	O4	P2	O6	119.3(2)
9	O4	P2	C2	106.8(2)
10	O5	P2	O6	108.8(2)
11	O5	P2	C2	106.5(2)
12	O6	P2	C2	106.5(2)
13	P1	01	H1O	109(3)
14	P1	O3	Li1	145.9(3)
15	P2	O5	H5O	116(3)
16	P2	O6	Li1	138.4(3)
17	H7A	07	H7B	106(4)
18	H7A	07	Li1	116(3)
19	H7B	07	Li1	124(3)
20	H8A	08	H8B	106(4)
21	H8A	08	Li1	122(3)
22	H8B	08	Li1	127(3)
23	H1N	N1	C1	109(2)
24	H1N	N1	C2	100(2)
25	H1N	N1	C3	109(2)

26	C1	N1	C2	113.1(3)
27	C1	N1	C3	114.0(3)
28	C2	N1	C3	111.1(3)
29	O6	Li1	07	109.0(4)
30	O6	Li1	08	108.4(4)
31	O6	Li1	O3	121.5(4)
32	07	Li1	08	100.3(3)
33	07	Li1	O3	103.6(3)
34	08	Li1	O3	111.7(4)
35	P1	C1	N1	121.1(2)
36	P1	C1	H1A	107.1
37	P1	C1	H1B	107.1
38	N1	C1	H1A	107.1
39	N1	C1	H1B	107.0
40	H1A	C1	H1B	106.7

Πίνακας 2. Μήκη δεσμών (Å) και γωνίες (°) του υλικού Na-HDTMP

Numb	er Ator	m1 Atc	m2 Type Pol	ymeric	Length		SybylType
1	Na1	07	Unknown	no	2.542	un	
2	Na1	O13	Unknown	no	2.312	1	
3	Na1	O14	Unknown	no	2.698	1	
4	Na1	07	Unknown	no	2.542	un	
5	Na1	O13	Unknown	no	2.312	1	
6	Na1	O14	Unknown	yes	2.698	un	
7	Na2	O14	Unknown	no	2.375(2)		1
8	Na2	O15	Unknown	no	2.373(1)		1
9	Na2	O23	Unknown	no	2.317(1)		1
10	Na2	O14	Unknown	no	2.794(1)		1
11	Na2	07	Unknown	no	2.353(1)		un
12	Na2	O13	Unknown	no	2.362(1)		1
13	P1	01	Unknown	no	1.508(1)		un
14	P1	02	Unknown	no	1.500(1)		un
15	P1	O3	Unknown	no	1.558(1)		1
16	P1	C1	Unknown	no	1.821(2)		1

17	P2	O4	Unknown	no	1.509(1)	un
18	P2	O5	Unknown	no	1.559(1)	1
19	P2	O6	Unknown	no	1.499(1)	un
20	P2	C2	Unknown	no	1.823(2)	1
21	P3	07	Unknown	no	1.502(1)	un
22	P3	O8	Unknown	no	1.574(1)	1
23	P3	O9	Unknown	no	1.504(1)	un
24	P3	C3	Unknown	no	1.830(2)	1
25	P4	O10	Unknown	no	1.504(1)	un
26	P4	O11	Unknown	no	1.564(1)	1
27	P4	012	Unknown	no	1.493(1)	un
28	P4	C4	Unknown	no	1.823(2)	1
29	O3	H3O	Unknown	no	0.79(2)	1
30	O5	H5O	Unknown	no	0.81(2)	1
31	07	Na2	Unknown	yes	2.353(1)	un
32	O8	H8O	Unknown	no	0.80(2)	1
33	011	H11O	Unknown	no	0.80(2)	1
34	O13	H13A	Unknown	no	0.80(2)	1
35	O13	H13B	Unknown	no	0.83(2)	1
36	O13	Na2	Unknown	yes	2.362(1)	1
37	O14	H14A	Unknown	no	0.82(2)	1
38	O14	H14B	Unknown	no	0.82(2)	1
39	O14	Na2	Unknown	no	2.794(1)	1
40	O15	H15A	Unknown	no	0.79(2)	1
41	O15	H15B	Unknown	no	0.80(2)	1
42	O23	H23A	Unknown	no	0.83(2)	1
43	O23	H23B	Unknown	no	0.81(2)	1
44	N1	H1	Unknown	no	0.85(2)	1
45	N1	C1	Unknown	no	1.502(2)	1
46	N1	C2	Unknown	no	1.499(2)	1
47	N1	C5	Unknown	no	1.518(2)	1
48	N2	H2	Unknown	no	0.85(2)	1
49	N2	C3	Unknown	no	1.503(2)	1
50	N2	C4	Unknown	no	1.496(2)	1

51	N2	C10	Unknown	no	1.517(2)	1
52	C1	H1A	Unknown	no	0.970 1	
53	C1	H1B	Unknown	no	0.971 1	
54	C2	H2A	Unknown	no	0.970 1	
55	C2	H2B	Unknown	no	0.971 1	
56	C3	H3A	Unknown	no	0.970 1	
57	C3	H3B	Unknown	no	0.970 1	
58	C4	H4A	Unknown	no	0.969 1	
59	C4	H4B	Unknown	no	0.969 1	
60	C5	H5A	Unknown	no	0.970 1	
61	C5	H5B	Unknown	no	0.970 1	
62	C5	C6	Unknown	no	1.521(2)	1
63	C6	H6A	Unknown	no	0.970 1	
64	C6	H6B	Unknown	no	0.970 1	
65	C6	C7	Unknown	no	1.530(2)	1
66	C7	H7A	Unknown	no	0.970 1	
67	C7	H7B	Unknown	no	0.970 1	
68	C7	C8	Unknown	no	1.520(2)	1
69	C8	H8A	Unknown	no	0.970 1	
70	C8	H8B	Unknown	no	0.970 1	
71	C8	C9	Unknown	no	1.527(2)	1
72	C9	H9A	Unknown	no	0.970 1	
73	C9	H9B	Unknown	no	0.970 1	
74	C9	C10	Unknown	no	1.519(2)	1
75	C10	H10A	Unknown	no	0.970 1	
76	C10	H10B	Unknown	no	0.970 1	
77	Na2	O14	Unknown	no	2.375(2)	1
78	Na2	O15	Unknown	no	2.373(1)	1
79	Na2	O23	Unknown	no	2.317(1)	1
80	Na2	07	Unknown	yes	2.353(1)	un
81	Na2	O13	Unknown	yes	2.362(1)	un
82	O14	H14A	Unknown	no	0.82(2)	1
83	O14	H14B	Unknown	no	0.82(2)	1
84	O14	Na1	Unknown	yes	2.698 1	

85	O15	H15A	Unknown	no	0.79(2)	1
86	O15	H15B	Unknown	no	0.80(2)	1
87	O23	H23A	Unknown	no	0.83(2)	1
88	O23	H23B	Unknown	no	0.81(2)	1
89	P1	O1	Unknown	no	1.508(1)	un
90	P1	O2	Unknown	no	1.500(1)	un
91	P1	O3	Unknown	no	1.558(1)	1
92	P1	C1	Unknown	no	1.821(2)	1
93	P2	O4	Unknown	no	1.509(1)	un
94	P2	O5	Unknown	no	1.559(1)	1
95	P2	O6	Unknown	no	1.499(1)	un
96	P2	C2	Unknown	no	1.823(2)	1
97	P3	07	Unknown	no	1.502(1)	un
98	P3	O 8	Unknown	no	1.574(1)	1
99	P3	O9	Unknown	no	1.504(1)	un
100	P3	C3	Unknown	no	1.830(2)	1
101	P4	O10	Unknown	no	1.504(1)	un
102	P4	O11	Unknown	no	1.564(1)	1
103	P4	O12	Unknown	no	1.493(1)	un
104	P4	C4	Unknown	no	1.823(2)	1
105	O3	H3O	Unknown	no	0.79(2)	1
106	O5	H5O	Unknown	no	0.81(2)	1
107	O8	H8O	Unknown	no	0.80(2)	1
108	011	H110	Unknown	no	0.80(2)	1
109	N1	H1	Unknown	no	0.85(2)	1
110	N1	C1	Unknown	no	1.502(2)	1
111	N1	C2	Unknown	no	1.499(2)	1
112	N1	C5	Unknown	no	1.518(2)	1
113	N2	H2	Unknown	no	0.85(2)	1
114	N2	C3	Unknown	no	1.503(2)	1
115	N2	C4	Unknown	no	1.496(2)	1
116	N2	C10	Unknown	no	1.517(2)	1
117	C1	H1A	Unknown	no	0.970 1	
118	C1	H1B	Unknown	no	0.971 1	

119	C2	H2A	Unknown	no	0.970 1	
120	C2	H2B	Unknown	no	0.971 1	
121	C3	НЗА	Unknown	no	0.970 1	
122	C3	H3B	Unknown	no	0.970 1	
123	C4	H4A	Unknown	no	0.969 1	
124	C4	H4B	Unknown	no	0.969 1	
125	C5	H5A	Unknown	no	0.970 1	
126	C5	H5B	Unknown	no	0.970 1	
127	C5	C6	Unknown	no	1.521(2)	1
128	C6	H6A	Unknown	no	0.970 1	
129	C6	H6B	Unknown	no	0.970 1	
130	C6	C7	Unknown	no	1.530(2)	1
131	C7	H7A	Unknown	no	0.970 1	
132	C7	H7B	Unknown	no	0.970 1	
133	C7	C8	Unknown	no	1.520(2)	1
134	C8	H8A	Unknown	no	0.970 1	
135	C8	H8B	Unknown	no	0.970 1	
136	C8	C9	Unknown	no	1.527(2)	1
137	C9	H9A	Unknown	no	0.970 1	
138	C9	H9B	Unknown	no	0.970 1	
139	C9	C10	Unknown	no	1.519(2)	1
140	C10	H10A	Unknown	no	0.970 1	
141	C10	H10B	Unknown	no	0.970 1	
142	O13	H13A	Unknown	no	0.80(2)	1
143	O13	H13B	Unknown	no	0.83(2)	1
144	Na1	07	Unknown	yes	2.542 un	
145	Na1	O13	Unknown	yes	2.312 un	
146	Na2	O14	Unknown	yes	2.375(2)	un
147	Na3	O16	Unknown	no	2.472 1	
148	Na3	O17	Unknown	no	2.394 1	
149	Na3	O18	Unknown	no	2.424 1	
150	Na3	O16	Unknown	no	2.472 1	
151	Na3	O17	Unknown	no	2.394 1	
152	Na3	O18	Unknown	no	2.424 1	

153	O16	H16A Unknown	no	0.80(2)	1	
154	O16	H16B Unknown	no	0.83(2)	1	
155	O17	H17A Unknown	no	0.81(2)	1	
156	O17	H17B Unknown	no	0.83(2)	1	
157	O18	H18A Unknown	no	0.80(2)	1	
158	O18	H18B Unknown	no	0.83(2)	1	
159	O16	H16A Unknown	no	0.80(2)	1	
160	O16	H16B Unknown	no	0.83(2)	1	
161	O17	H17A Unknown	no	0.81(2)	1	
162	O17	H17B Unknown	no	0.83(2)	1	
163	O18	H18A Unknown	no	0.80(2)	1	
164	O18	H18B Unknown	no	0.83(2)	1	
165	O19	H19A Unknown	no	0.80(2)	1	
166	O19	H19B Unknown	no	0.80(2)	1	
167	O20	H20A Unknown	no	0.80(2)	1	
168	O20	H20B Unknown	no	0.82(2)	1	
169	O21	H21A Unknown	no	0.82(2)	1	
170	O21	H21B Unknown	no	0.81(2)	1	
171	O22	H22A Unknown	no	0.83(2)	1	
172	O22	H22B Unknown	no	0.83(2)	1	

Number		Atom	1 Atom	2 Atom3 Angle
1	07	Na1	013	84.68
2	07	Na1	O14	98.00
3	07	Na1	07	180.00
4	07	Na1	013	95.32
5	07	Na1	O14	82.00
6	O13	Na1	O14	108.57
7	O13	Na1	07	95.32
8	O13	Na1	O13	180.00
9	O13	Na1	O14	71.43
10	O14	Na1	07	82.00
11	O14	Na1	O13	71.43
12	014	Na1	014	180.00

13	07	Na1	013	84.68
14	07	Na1	O14	98.00
15	O13	Na1	O14	108.57
16	O14	Na2	O15	171.16(5)
17	014	Na2	O23	85.07(5)
18	O14	Na2	O14	97.19(5)
19	O14	Na2	07	93.34(5)
20	O14	Na2	O13	76.75(5)
21	O15	Na2	O23	86.68(5)
22	O15	Na2	O14	78.50(4)
23	O15	Na2	07	91.31(5)
24	O15	Na2	O13	110.96(5)
25	O23	Na2	O14	82.16(5)
26	O23	Na2	07	100.64(5)
27	O23	Na2	O13	160.36(5)
28	O14	Na2	07	169.31(5)
29	O14	Na2	O13	92.67(5)
30	07	Na2	O13	87.94(5)
31	01	P1	O2	117.19(7)
32	01	P1	O3	111.05(7)
33	01	P1	C1	106.21(7)
34	O2	P1	O3	109.19(7)
35	02	P1	C1	106.87(7)
36	O3	P1	C1	105.58(7)
37	O4	P2	O5	109.44(7)
38	O4	P2	O6	116.89(7)
39	O4	P2	C2	103.15(7)
40	O5	P2	O6	112.58(7)
41	O5	P2	C2	101.30(7)
42	O6	P2	C2	111.98(7)
43	07	P3	08	107.34(6)
44	07	P3	O9	117.82(7)
45	07	P3	C3	110.34(7)
46	O8	P3	O9	111.42(7)

47	08	P3	C3	104.86(7)
48	O9	P3	C3	104.32(7)
49	O10	P4	O11	110.23(6)
50	O10	P4	O12	116.28(6)
51	O10	P4	C4	104.16(7)
52	011	P4	O12	112.37(7)
53	011	P4	C4	99.25(7)
54	012	P4	C4	112.96(7)
55	P1	O3	H3O	113(1)
56	P2	O5	H5O	119(1)
57	Na1	07	P3	114.67
58	Na1	07	Na2	79.72
59	P3	07	Na2	144.57(7)
60	P3	08	H8O	116(1)
61	P4	O11	H110	119(1)
62	Na1	O13	H13A	112
63	Na1	O13	H13B	114
64	Na1	O13	Na2	84.41
65	H13A	O13	H13B	109(2)
66	H13A	O13	Na2	105(2)
67	H13B	O13	Na2	131(1)
68	Na1	O14	Na2	76.19
69	Na1	O14	H14A	80
70	Na1	O14	H14B	124
71	Na1	O14	Na2	133.35
72	Na2	O14	H14A	139(1)
73	Na2	O14	H14B	119(1)
74	Na2	O14	Na2	82.81(4)
75	H14A	O14	H14B	103(2)
76	H14A	O14	Na2	89(1)
77	H14B	O14	Na2	102(1)
78	Na2	O15	H15A	100(2)
79	Na2	O15	H15B	115(1)
80	H15A	O15	H15B	108(2)

81	Na2	O23	H23A	105(1)
82	Na2	O23	H23B	124(1)
83	H23A	O23	H23B	102(2)
84	H1	N1	C1	105(1)
85	H1	N1	C2	108(1)
86	H1	N1	C5	107(1)
87	C1	N1	C2	113.1(1)
88	C1	N1	C5	109.9(1)
89	C2	N1	C5	113.4(1)
90	H2	N2	C3	105(1)
91	H2	N2	C4	107(1)
92	H2	N2	C10	106(1)
93	C3	N2	C4	113.8(1)
94	C3	N2	C10	110.8(1)
95	C4	N2	C10	112.9(1)
96	P1	C1	N1	115.8(1)
97	P1	C1	H1A	108.3
98	P1	C1	H1B	108.3
99	N1	C1	H1A	108.3
100	N1	C1	H1B	108.3
101	H1A	C1	H1B	107.4
102	P2	C2	N1	112.6(1)
103	P2	C2	H2A	109.1
104	P2	C2	H2B	109.0
105	N1	C2	H2A	109.1
106	N1	C2	H2B	109.1
107	H2A	C2	H2B	107.8
108	P3	C3	N2	117.2(1)
109	P3	C3	НЗА	108.0
110	P3	C3	H3B	107.9
111	N2	C3	НЗА	108.0
112	N2	C3	H3B	108.0
113	НЗА	C3	H3B	107.2
114	P4	C4	N2	113.6(1)

115	P4	C4	H4A	108.8
116	P4	C4	H4B	108.9
117	N2	C4	H4A	108.9
118	N2	C4	H4B	108.8
119	H4A	C4	H4B	107.7
120	N1	C5	H5A	108.7
121	N1	C5	H5B	108.7
122	N1	C5	C6	114.2(1)
123	H5A	C5	H5B	107.6
124	H5A	C5	C6	108.7
125	H5B	C5	C6	108.7
126	C5	C6	H6A	109.6
127	C5	C6	H6B	109.6
128	C5	C6	C7	110.5(1)
129	H6A	C6	H6B	108.1
130	H6A	C6	C7	109.5
131	H6B	C6	C7	109.5
132	C6	C7	H7A	109.2
133	C6	C7	H7B	109.2
134	C6	C7	C8	111.9(1)
135	H7A	C7	H7B	107.9
136	H7A	C7	C8	109.3
137	H7B	C7	C8	109.2
138	C7	C8	H8A	109.1
139	C7	C8	H8B	109.0
140	C7	C8	C9	112.8(1)
141	H8A	C8	H8B	107.9
142	H8A	C8	C9	109.0
143	H8B	C8	C9	109.0
144	C8	C9	H9A	109.7
145	C8	C9	H9B	109.6
146	C8	C9	C10	109.9(1)
147	H9A	C9	H9B	108.2
148	H9A	C9	C10	109.7

149	H9B	C9	C10	109.7
150	N2	C10	C9	114.5(1)
151	N2	C10	H10A	108.6
152	N2	C10	H10B	108.7
153	C9	C10	H10A	108.7
154	C9	C10	H10B	108.6
155	H10A	C10	H10B	107.5
156	O14	Na2	O14	97.19(5)
157	O14	Na2	O15	78.50(4)
158	O14	Na2	O23	82.16(5)
159	O14	Na2	07	169.31(5)
160	O14	Na2	O13	92.67(5)
161	O14	Na2	O15	171.16(5)
162	O14	Na2	O23	85.07(5)
163	O14	Na2	07	93.34(5)
164	O14	Na2	O13	76.75(5)
165	O15	Na2	O23	86.68(5)
166	O15	Na2	07	91.31(5)
167	O15	Na2	O13	110.96(5)
168	O23	Na2	07	100.64(5)
169	O23	Na2	013	160.36(5)
170	07	Na2	O13	87.94(5)
171	Na2	O14	Na2	82.81(4)
172	Na2	O14	H14A	89(1)
173	Na2	O14	H14B	102(1)
174	Na2	O14	Na1	133.35
175	Na2	O14	H14A	139(1)
176	Na2	O14	H14B	119(1)
177	Na2	O14	Na1	76.19
178	H14A	O14	H14B	103(2)
179	H14A	O14	Na1	80
180	H14B	O14	Na1	124
181	Na2	O15	H15A	100(2)
182	Na2	O15	H15B	115(1)

183	H15A	O15	H15B	108(2)
184	Na2	O23	H23A	105(1)
185	Na2	O23	H23B	124(1)
186	H23A	O23	H23B	102(2)
187	01	P1	O2	117.19(7)
188	01	P1	O3	111.05(7)
189	01	P1	C1	106.21(7)
190	02	P1	O3	109.19(7)
191	O2	P1	C1	106.87(7)
192	O3	P1	C1	105.58(7)
193	O4	P2	O5	109.44(7)
194	O4	P2	O6	116.89(7)
195	O4	P2	C2	103.15(7)
196	O5	P2	O6	112.58(7)
197	O5	P2	C2	101.30(7)
198	O6	P2	C2	111.98(7)
199	07	P3	O 8	107.34(6)
200	07	P3	O9	117.82(7)
201	07	P3	C3	110.34(7)
202	08	P3	O9	111.42(7)
203	08	P3	C3	104.86(7)
204	O9	P3	C3	104.32(7)
205	O10	P4	O11	110.23(6)
206	O10	P4	O12	116.28(6)
207	O10	P4	C4	104.16(7)
208	011	P4	O12	112.37(7)
209	011	P4	C4	99.25(7)
210	012	P4	C4	112.96(7)
211	P1	O3	H3O	113(1)
212	P2	O5	H5O	119(1)
213	Na1	07	Na2	79.72
214	Na1	07	P3	114.67
215	Na2	07	P3	144.57(7)
216	P3	O8	H8O	116(1)

217	P4	011	H11O	119(1)
218	H1	N1	C1	105(1)
219	H1	N1	C2	108(1)
220	H1	N1	C5	107(1)
221	C1	N1	C2	113.1(1)
222	C1	N1	C5	109.9(1)
223	C2	N1	C5	113.4(1)
224	H2	N2	C3	105(1)
225	H2	N2	C4	107(1)
226	H2	N2	C10	106(1)
227	C3	N2	C4	113.8(1)
228	C3	N2	C10	110.8(1)
229	C4	N2	C10	112.9(1)
230	P1	C1	N1	115.8(1)
231	P1	C1	H1A	108.3
232	P1	C1	H1B	108.3
233	N1	C1	H1A	108.3
234	N1	C1	H1B	108.3
235	H1A	C1	H1B	107.4
236	P2	C2	N1	112.6(1)
237	P2	C2	H2A	109.1
238	P2	C2	H2B	109.0
239	N1	C2	H2A	109.1
240	N1	C2	H2B	109.1
241	H2A	C2	H2B	107.8
242	P3	C3	N2	117.2(1)
243	P3	C3	НЗА	108.0
244	P3	C3	H3B	107.9
245	N2	C3	НЗА	108.0
246	N2	C3	H3B	108.0
247	H3A	C3	H3B	107.2
248	P4	C4	N2	113.6(1)
249	P4	C4	H4A	108.8
250	P4	C4	H4B	108.9

251	N2	C4	H4A	108.9
252	N2	C4	H4B	108.8
253	H4A	C4	H4B	107.7
254	N1	C5	H5A	108.7
255	N1	C5	H5B	108.7
256	N1	C5	C6	114.2(1)
257	H5A	C5	H5B	107.6
258	H5A	C5	C6	108.7
259	H5B	C5	C6	108.7
260	C5	C6	H6A	109.6
261	C5	C6	H6B	109.6
262	C5	C6	C7	110.5(1)
263	H6A	C6	H6B	108.1
264	H6A	C6	C7	109.5
265	H6B	C6	C7	109.5
266	C6	C7	H7A	109.2
267	C6	C7	H7B	109.2
268	C6	C7	C8	111.9(1)
269	H7A	C7	H7B	107.9
270	H7A	C7	C8	109.3
271	H7B	C7	C8	109.2
272	C7	C8	H8A	109.1
273	C7	C8	H8B	109.0
274	C7	C8	C9	112.8(1)
275	H8A	C8	H8B	107.9
276	H8A	C8	C9	109.0
277	H8B	C8	C9	109.0
278	C8	C9	H9A	109.7
279	C8	C9	H9B	109.6
280	C8	C9	C10	109.9(1)
281	H9A	C9	H9B	108.2
282	H9A	C9	C10	109.7
283	H9B	C9	C10	109.7
284	N2	C10	C9	114.5(1)

285	N2	C10	H10A	108.6
286	N2	C10	H10B	108.7
287	C9	C10	H10A	108.7
288	C9	C10	H10B	108.6
289	H10A	C10	H10B	107.5
290	Na1	O13	Na2	84.41
291	Na1	O13	H13A	112
292	Na1	O13	H13B	114
293	Na2	O13	H13A	105(2)
294	Na2	O13	H13B	131(1)
295	H13A	O13	H13B	109(2)
296	O14	Na1	07	82.00
297	O14	Na1	013	71.43
298	07	Na1	013	84.68
299	07	Na2	O13	87.94(5)
300	07	Na2	O14	93.34(5)
301	O13	Na2	O14	76.75(5)
302	Na2	07	Na1	79.72
303	Na2	O13	Na1	84.41
304	Na1	O14	Na2	76.19
305	O16	Na3	O17	90.63
306	O16	Na3	O18	95.92
307	O16	Na3	O16	180.00
308	O16	Na3	017	89.37
309	O16	Na3	O18	84.08
310	017	Na3	O18	94.87
311	017	Na3	O16	89.37
312	017	Na3	017	180.00
313	017	Na3	O18	85.13
314	O18	Na3	O16	84.08
315	O18	Na3	017	85.13
316	O18	Na3	O18	180.00
317	O16	Na3	O17	90.63
318	O16	Na3	O18	95.92

319	O17	Na3	O18	94.87
320	Na3	O16	H16A	116
321	Na3	O16	H16B	115
322	H16A	O16	H16B	108(2)
323	Na3	017	H17A	117
324	Na3	017	H17B	126
325	H17A	017	H17B	97(2)
326	Na3	O18	H18A	109
327	Na3	O18	H18B	102
328	H18A	O18	H18B	99(2)
329	Na3	O16	H16A	116
330	Na3	O16	H16B	115
331	H16A	O16	H16B	108(2)
332	Na3	017	H17A	117
333	Na3	017	H17B	126
334	H17A	017	H17B	97(2)
335	Na3	O18	H18A	109
336	Na3	O18	H18B	102
337	H18A	O18	H18B	99(2)
338	H19A	O19	H19B	108(2)
339	H20A	O20	H20B	109(2)
340	H21A	O21	H21B	106(2)
341	H22A	O22	H22B	105(2)

Πίνακας 3. Μήκη δεσμών (Å) και γωνίες (°) του υλικού K-HDTMP

Number Atom1 Atom2 Type Polymeric Length SybylType

1	K1	O1	Unknown	no	3.080(1)	un
2	K1	02	Unknown	no	3.162(1)	un
3	K1	O13	Unknown	no	2.681(1)	1
4	K1	O14	Unknown	no	2.692(1)	1
5	K1	O15	Unknown	no	2.859(1)	1
6	K1	O9	Unknown	yes	2.678(1)	un
7	K1	O13	Unknown	yes	3.368(1)	un
8	K1	017	Unknown	yes	2.801(1)	un

9	K2	O2	Unknown	no	2.670(1)	un
10	K2	O13	Unknown	no	2.697(1)	1
11	K2	O14	Unknown	no	2.750(1)	1
12	K2	O16	Unknown	no	2.744(1)	1
13	K2	017	Unknown	no	2.692(1)	1
14	K2	O18	Unknown	no	2.792(1)	1
15	P1	O1	Unknown	no	1.508(1)	un
16	P1	O2	Unknown	no	1.497(1)	un
17	P1	O3	Unknown	no	1.5735(9)	1
18	P1	C1	Unknown	no	1.830(1)	1
19	P2	O4	Unknown	no	1.505(1)	un
20	P2	O5	Unknown	no	1.5618(9)	1
21	P2	O6	Unknown	no	1.496(1)	un
22	P2	C2	Unknown	no	1.825(1)	1
23	P3	07	Unknown	no	1.570(1)	1
24	P3	O 8	Unknown	no	1.503(1)	un
25	P3	O9	Unknown	no	1.502(1)	un
26	P3	C3	Unknown	no	1.829(1)	1
27	P4	O10	Unknown	no	1.506(1)	un
28	P4	O11	Unknown	no	1.5659(9)	1
29	P4	O12	Unknown	no	1.498(1)	un
30	P4	C4	Unknown	no	1.834(1)	1
31	O3	H3O	Unknown	no	0.80(2)	1
32	O5	H5O	Unknown	no	0.82(2)	1
33	07	H7O	Unknown	no	0.80(2)	1
34	O9	K1	Unknown	yes	2.678(1)	un
35	O11	H11O	Unknown	no	0.79(2)	1
36	O13	H13A	Unknown	no	0.83(2)	1
37	O13	H13B	Unknown	no	0.80(2)	1
38	O13	K1	Unknown	yes	3.368(1)	1
39	O14	H14A	Unknown	no	0.83(2)	1
40	O14	H14B	Unknown	no	0.83(1)	1
41	O15	H15A	Unknown	no	0.82(2)	1
42	O15	H15B	Unknown	no	0.79(2)	1

43	O16	H16A	Unknown	no	0.82(2)	1
44	O16	H16B	Unknown	no	0.82(2)	1
45	017	H17A	Unknown	no	0.81(2)	1
46	017	H17B	Unknown	no	0.83(2)	1
47	017	K1	Unknown	yes	2.801(1)	1
48	O18	H18A	Unknown	no	0.81(1)	1
49	O18	H18B	Unknown	no	0.79(2)	1
50	N1	H1N	Unknown	no	0.86(1)	1
51	N1	C1	Unknown	no	1.502(2)	1
52	N1	C2	Unknown	no	1.497(1)	1
53	N1	C5	Unknown	no	1.518(2)	1
54	N2	H2N	Unknown	no	0.86(2)	1
55	N2	C3	Unknown	no	1.502(2)	1
56	N2	C4	Unknown	no	1.498(1)	1
57	N2	C10	Unknown	no	1.513(2)	1
58	C1	H1A	Unknown	no	0.970 1	
59	C1	H1B	Unknown	no	0.969 1	
60	C2	H2A	Unknown	no	0.970 1	
61	C2	H2B	Unknown	no	0.971 1	
62	C3	НЗА	Unknown	no	0.971 1	
63	C3	H3B	Unknown	no	0.969 1	
64	C4	H4A	Unknown	no	0.969 1	
65	C4	H4B	Unknown	no	0.969 1	
66	C5	H5A	Unknown	no	0.970 1	
67	C5	H5B	Unknown	no	0.970 1	
68	C5	C6	Unknown	no	1.517(2)	1
69	C6	H6A	Unknown	no	0.969 1	
70	C6	H6B	Unknown	no	0.970 1	
71	C6	C7	Unknown	no	1.533(2)	1
72	C7	H7A	Unknown	no	0.970 1	
73	C7	H7B	Unknown	no	0.970 1	
74	C7	C8	Unknown	no	1.521(2)	1
75	C8	H8A	Unknown	no	0.969 1	
76	C8	H8B	Unknown	no	0.971 1	

77	C8	C9	Unknown	no	1.528(2)	1
78	C9	H9A	Unknown	no	0.970 1	
79	C9	H9B	Unknown	no	0.970 1	
80	C9	C10	Unknown	no	1.518(2)	1
81	C10	H10A	Unknown	no	0.970 1	
82	C10	H10B	Unknown	no	0.971 1	
83	O19	H19A	Unknown	no	0.80(2)	1
84	O19	H19B	Unknown	no	0.83(1)	1
85	O20	H20A	Unknown	no	0.82(2)	1
86	O20	H20B	Unknown	no	0.82(1)	1

Number		Atom	1 Atom	2 Atom3 Angle
1	O1	K1	O2	48.47(3)
2	O1	K1	O13	117.05(3)
3	01	K1	014	116.15(3)
4	01	K1	O15	162.27(3)
5	01	K1	O9	99.27(3)
6	01	K1	013	51.38(3)
7	01	K1	017	55.32(3)
8	02	K1	013	81.75(3)
9	O2	K1	O14	76.04(3)
10	O2	K1	O15	147.46(3)
11	O2	K1	O9	121.87(3)
12	O2	K1	O13	73.52(3)
13	O2	K1	017	93.03(3)
14	O13	K1	O14	74.81(3)
15	O13	K1	O15	70.08(3)
16	O13	K1	O9	143.03(3)
17	O13	K1	O13	153.17(3)
18	O13	K1	017	102.14(3)
19	O14	K1	O15	81.00(3)
20	O14	K1	O9	83.53(3)
21	O14	K1	O13	89.03(3)
22	O14	K1	O17	168.92(3)

23	O15	K1	O9	77.27(3)
24	O15	K1	013	129.20(3)
25	O15	K1	017	108.24(3)
26	O9	K1	O13	52.06(3)
27	O9	K1	017	104.20(3)
28	O13	K1	017	89.60(3)
29	O2	K2	O13	91.37(3)
30	O2	K2	O14	83.91(3)
31	O2	K2	O16	170.00(3)
32	O2	K2	017	86.44(3)
33	O2	K2	O18	80.56(3)
34	013	K2	O14	73.62(3)
35	O13	K2	O16	95.27(3)
36	O13	K2	017	155.93(3)
37	013	K2	O18	68.06(3)
38	O14	K2	O16	105.13(3)
39	O14	K2	017	129.77(3)
40	O14	K2	O18	138.01(3)
41	O16	K2	017	84.44(3)
42	O16	K2	O18	94.99(3)
43	017	K2	O18	87.96(3)
44	01	P1	O2	117.07(6)
45	01	P1	O3	110.28(5)
46	01	P1	C1	106.14(6)
47	02	P1	O3	109.22(5)
48	02	P1	C1	107.42(6)
49	O3	P1	C1	106.08(6)
50	O4	P2	O5	110.00(5)
51	O4	P2	O6	116.52(6)
52	O4	P2	C2	104.94(6)
53	O5	P2	O6	112.25(6)
54	O5	P2	C2	99.75(6)
55	O6	P2	C2	111.87(6)
56	07	P3	O8	110.73(6)

57	07	P3	O9	107.82(6)
58	07	P3	C3	104.92(6)
59	08	P3	O9	118.74(6)
60	08	P3	C3	105.28(6)
61	O9	P3	C3	108.47(6)
62	O10	P4	O11	108.90(5)
63	O10	P4	O12	117.13(6)
64	O10	P4	C4	105.33(6)
65	O11	P4	012	112.22(6)
66	O11	P4	C4	100.63(6)
67	012	P4	C4	111.17(6)
68	K1	01	P1	97.01(4)
69	K1	02	K2	78.32(3)
70	K1	O2	P1	93.98(4)
71	K2	O2	P1	159.31(6)
72	P1	O3	H3O	112(1)
73	P2	O5	H5O	120(1)
74	P3	07	H7O	115(1)
75	P3	O9	K1	140.07(6)
76	P4	O11	H11O	120(1)
77	K1	O13	K2	87.00(3)
78	K1	O13	H13A	114(1)
79	K1	O13	H13B	105(1)
80	K1	O13	K1	153.63(4)
81	K2	013	H13A	124(1)
82	K2	O13	H13B	113(1)
83	K2	O13	K1	119.22(3)
84	H13A	O13	H13B	110(2)
85	H13A	O13	K1	56(1)
86	H13B	013	K1	64(1)
87	K1	O14	K2	85.72(3)
88	K1	O14	H14A	106(1)
89	K1	O14	H14B	134(1)
90	K2	O14	H14A	129(1)

91	K2	O14	H14B	98(1)
92	H14A	O14	H14B	106(2)
93	K1	O15	H15A	93(1)
94	K1	O15	H15B	112(1)
95	H15A	O15	H15B	107(2)
96	K2	O16	H16A	92(1)
97	K2	O16	H16B	113(1)
98	H16A	O16	H16B	107(2)
99	K2	017	H17A	96(1)
100	K2	017	H17B	145(1)
101	K2	017	K1	104.84(4)
102	H17A	017	H17B	102(2)
103	H17A	017	K1	140(1)
104	H17B	017	K1	79(1)
105	K2	O18	H18A	109(1)
106	K2	O18	H18B	102(1)
107	H18A	O18	H18B	106(2)
108	H1N	N1	C1	106(1)
109	H1N	N1	C2	110(1)
110	H1N	N1	C5	103(1)
111	C1	N1	C2	112.0(1)
112	C1	N1	C5	111.08(9)
113	C2	N1	C5	113.34(9)
114	H2N	N2	C3	106(1)
115	H2N	N2	C4	108(1)
116	H2N	N2	C10	105(1)
117	C3	N2	C4	114.3(1)
118	C3	N2	C10	110.01(9)
119	C4	N2	C10	113.4(1)
120	P1	C1	N1	115.17(9)
121	P1	C1	H1A	108.4
122	P1	C1	H1B	108.4
123	N1	C1	H1A	108.5
124	N1	C1	H1B	108.5

125	H1A	C1	H1B	107.6
126	P2	C2	N1	114.84(8)
127	P2	C2	H2A	108.57
128	P2	C2	H2B	108.56
129	N1	C2	H2A	108.6
130	N1	C2	H2B	108.5
131	H2A	C2	H2B	107.5
132	P3	C3	N2	116.77(9)
133	P3	C3	H3A	108.1
134	P3	C3	H3B	108.2
135	N2	C3	H3A	108.1
136	N2	C3	H3B	108.1
137	H3A	C3	H3B	107.3
138	P4	C4	N2	113.91(9)
139	P4	C4	H4A	108.8
140	P4	C4	H4B	108.8
141	N2	C4	H4A	108.8
142	N2	C4	H4B	108.8
143	H4A	C4	H4B	107.6
144	N1	C5	H5A	108.5
145	N1	C5	H5B	108.6
146	N1	C5	C6	115.1(1)
147	H5A	C5	H5B	107.5
148	H5A	C5	C6	108.4
149	H5B	C5	C6	108.4
150	C5	C6	H6A	109.8
151	C5	C6	H6B	110.0
152	C5	C6	C7	109.1(1)
153	H6A	C6	H6B	108.2
154	H6A	C6	C7	109.9
155	H6B	C6	C7	109.8
156	C6	C7	H7A	109.1
157	C6	C7	H7B	109.1
158	C6	C7	C8	112.3(1)

159	H7A	C7	H7B	107.9
160	H7A	C7	C8	109.2
161	H7B	C7	C8	109.1
162	C7	C8	H8A	109.1
163	C7	C8	H8B	109.1
164	C7	C8	C9	112.4(1)
165	H8A	C8	H8B	107.8
166	H8A	C8	C9	109.2
167	H8B	C8	C9	109.1
168	C8	C9	H9A	109.6
169	C8	C9	H9B	109.6
170	C8	C9	C10	110.4(1)
171	H9A	C9	H9B	108.1
172	H9A	C9	C10	109.5
173	H9B	C9	C10	109.6
174	N2	C10	C9	114.6(1)
175	N2	C10	H10A	108.6
176	N2	C10	H10B	108.6
177	C9	C10	H10A	108.7
178	C9	C10	H10B	108.6
179	H10A	C10	H10B	107.5
180	H19A	O19	H19B	105(2)
181	H20A	O20	H20B	103(2)

Πίνακας 4. Μήκη δεσμών (Å) και γωνίες (°) του υλικού Rb-HDTMP

-			···· ()	•	-) ()	
Numb	per Ator	m1 Atc	m2 Type Pol	ymeric	Length	SybylType
1	C1	H1A	Unknown	no	0.989 1	
2	C1	H1B	Unknown	no	0.990 1	
3	C1	N1	Unknown	no	1.505(3)	1
4	C1	P1	Unknown	no	1.835(2)	1
5	N1	H1	Unknown	no	1.001 1	
6	N1	C2	Unknown	no	1.500(3)	1
7	N1	C3	Unknown	no	1.517(2)	1
8	O1	H1C	Unknown	no	0.841 1	

9	01	P1	Unknown	no	1.566(1)	1
10	P1	O2	Unknown	no	1.485(1)	un
11	P1	O3	Unknown	no	1.529(2)	un
12	C2	H2A	Unknown	no	0.990 1	
13	C2	H2B	Unknown	no	0.991 1	
14	C2	P2	Unknown	no	1.826(2)	1
15	O2	Rb1	Unknown	yes	2.955 un	
16	P2	O4	Unknown	no	1.574(1)	1
17	P2	O5	Unknown	no	1.503(2)	un
18	P2	O 6	Unknown	no	1.504(2)	un
19	C3	H3A	Unknown	no	0.990 1	
20	C3	H3B	Unknown	no	0.989 1	
21	C3	C4	Unknown	no	1.520(3)	1
22	O3	Rb1	Unknown	no	3.037 un	
23	C4	H4A	Unknown	no	0.991 1	
24	C4	H4B	Unknown	no	0.990 1	
25	C4	C5	Unknown	no	1.533(3)	1
26	O4	H4	Unknown	no	0.839 1	
27	C5	H5A	Unknown	no	0.990 1	
28	C5	H5B	Unknown	no	0.990 1	
29	C5	C5	Unknown	no	1.524(3)	1
30	O6	Rb1	Unknown	yes	3.132 un	
31	Rb1	07	Unknown	no	2.915 1	
32	Rb1	07	Unknown	no	2.915 1	
33	Rb1	02	Unknown	yes	2.955 un	
34	Rb1	O2	Unknown	yes	2.955 un	
35	Rb1	O3	Unknown	yes	3.037 un	
36	Rb1	O6	Unknown	yes	3.132 un	
37	Rb1	O 6	Unknown	yes	3.132 un	
38	07	H7A	Unknown	no	0.879 1	
39	07	H7B	Unknown	no	0.880 1	
40	C1	H1A	Unknown	no	0.989 1	
41	C1	H1B	Unknown	no	0.990 1	
42	C1	N1	Unknown	no	1.505(3)	1

43	C1	P1	Unknown	no	1.835(2)	1
44	N1	H1	Unknown	no	1.001 1	
45	N1	C2	Unknown	no	1.500(3)	1
46	N1	C3	Unknown	no	1.517(2)	1
47	01	H1C	Unknown	no	0.841 1	
48	01	P1	Unknown	no	1.566(1)	1
49	P1	O2	Unknown	no	1.485(1)	un
50	P1	O3	Unknown	no	1.529(2)	un
51	C2	H2A	Unknown	no	0.990 1	
52	C2	H2B	Unknown	no	0.991 1	
53	C2	P2	Unknown	no	1.826(2)	1
54	O2	Rb1	Unknown	yes	2.955 un	
55	P2	O4	Unknown	no	1.574(1)	1
56	P2	O5	Unknown	no	1.503(2)	un
57	P2	O6	Unknown	no	1.504(2)	un
58	C3	H3A	Unknown	no	0.990 1	
59	C3	H3B	Unknown	no	0.989 1	
60	C3	C4	Unknown	no	1.520(3)	1
61	O3	Rb1	Unknown	yes	3.037 un	
62	C4	H4A	Unknown	no	0.991 1	
63	C4	H4B	Unknown	no	0.990 1	
64	C4	C5	Unknown	no	1.533(3)	1
65	O4	H4	Unknown	no	0.839 1	
66	C5	H5A	Unknown	no	0.990 1	
67	C5	H5B	Unknown	no	0.990 1	
68	O6	Rb1	Unknown	yes	3.132 un	
69	07	H7A	Unknown	no	0.879 1	
70	07	H7B	Unknown	no	0.880 1	
71	08	H8A	Unknown	no	0.871 1	
72	08	H8B	Unknown	no	0.870 1	

Number		Atom1Atom2Atom3Angle				
1	H1A	C1	H1B	107.5		
2	H1A	C1	N1	108.7		

3	H1A	C1	P1	108.7
4	H1B	C1	N1	108.8
5	H1B	C1	P1	108.7
6	N1	C1	P1	114.3(1)
7	C1	N1	H1	106.2
8	C1	N1	C2	113.6(2)
9	C1	N1	C3	111.3(2)
10	H1	N1	C2	106.2
11	H1	N1	C3	106.2
12	C2	N1	C3	112.8(2)
13	H1C	01	P1	109.5
14	C1	P1	O1	106.39(8)
15	C1	P1	02	108.32(8)
16	C1	P1	O3	104.72(8)
17	01	P1	O2	110.09(8)
18	01	P1	O3	107.49(8)
19	02	P1	O3	119.05(8)
20	N1	C2	H2A	109.1
21	N1	C2	H2B	109.1
22	N1	C2	P2	112.6(1)
23	H2A	C2	H2B	107.8
24	H2A	C2	P2	109.1
25	H2B	C2	P2	109.0
26	P1	O2	Rb1	143.47
27	C2	P2	O4	101.21(8)
28	C2	P2	O5	110.94(9)
29	C2	P2	O 6	104.30(9)
30	O4	P2	O5	110.71(9)
31	O4	P2	O6	109.81(9)
32	O5	P2	O6	118.34(9)
33	N1	C3	НЗА	108.3
34	N1	C3	H3B	108.4
35	N1	C3	C4	115.7(2)
36	НЗА	C3	H3B	107.4

37	H3A	C3	C4	108.4
38	H3B	C3	C4	108.3
39	P1	O3	Rb1	123.12
40	C3	C4	H4A	110.0
41	C3	C4	H4B	110.0
42	C3	C4	C5	108.7(2)
43	H4A	C4	H4B	108.3
44	H4A	C4	C5	109.9
45	H4B	C4	C5	109.9
46	P2	O4	H4	109.5
47	C4	C5	H5A	109.2
48	C4	C5	H5B	109.2
49	C4	C5	C5	112.1(2)
50	H5A	C5	H5B	107.9
51	H5A	C5	C5	109.1
52	H5B	C5	C5	109.1
53	P2	O6	Rb1	137.97
54	O3	Rb1	07	67.67
55	O3	Rb1	07	149.48
56	O3	Rb1	02	145.63
57	O3	Rb1	02	108.05
58	O3	Rb1	O3	89.07
59	O3	Rb1	O6	70.65
60	O3	Rb1	O6	93.43
61	07	Rb1	07	140.52
62	07	Rb1	02	84.41
63	07	Rb1	02	63.87
64	07	Rb1	O3	149.48
65	07	Rb1	O6	61.05
66	07	Rb1	O6	127.78
67	07	Rb1	O2	63.87
68	07	Rb1	O2	84.41
69	07	Rb1	O3	67.67
70	07	Rb1	O6	127.78

71	07	Rb1	06	61.05
72	O2	Rb1	O2	74.45
73	O2	Rb1	O3	108.05
74	O2	Rb1	O6	78.57
75	O2	Rb1	O6	120.09
76	O2	Rb1	O3	145.63
77	O2	Rb1	O6	120.09
78	O2	Rb1	O6	78.57
79	O3	Rb1	O6	93.43
80	O3	Rb1	O6	70.65
81	O6	Rb1	O6	158.05
82	Rb1	07	H7A	109.5
83	Rb1	07	H7B	109.7
84	H7A	07	H7B	95.1
85	H1A	C1	H1B	107.5
86	H1A	C1	N1	108.7
87	H1A	C1	P1	108.7
88	H1B	C1	N1	108.8
89	H1B	C1	P1	108.7
90	N1	C1	P1	114.3(1)
91	C1	N1	H1	106.2
92	C1	N1	C2	113.6(2)
93	C1	N1	C3	111.3(2)
94	H1	N1	C2	106.2
95	H1	N1	C3	106.2
96	C2	N1	C3	112.8(2)
97	H1C	01	P1	109.5
98	C1	P1	O1	106.39(8)
99	C1	P1	O2	108.32(8)
100	C1	P1	O3	104.72(8)
101	O1	P1	O2	110.09(8)
102	O1	P1	O3	107.49(8)
103	O2	P1	O3	119.05(8)
104	N1	C2	H2A	109.1

105	N1	C2	H2B	109.1
106	N1	C2	P2	112.6(1)
107	H2A	C2	H2B	107.8
108	H2A	C2	P2	109.1
109	H2B	C2	P2	109.0
110	P1	O2	Rb1	143.47
111	C2	P2	O4	101.21(8)
112	C2	P2	O5	110.94(9)
113	C2	P2	O6	104.30(9)
114	O4	P2	O5	110.71(9)
115	O4	P2	O6	109.81(9)
116	O5	P2	O6	118.34(9)
117	N1	C3	НЗА	108.3
118	N1	C3	H3B	108.4
119	N1	C3	C4	115.7(2)
120	НЗА	C3	H3B	107.4
121	НЗА	C3	C4	108.4
122	H3B	C3	C4	108.3
123	P1	O3	Rb1	123.12
124	C3	C4	H4A	110.0
125	C3	C4	H4B	110.0
126	C3	C4	C5	108.7(2)
127	H4A	C4	H4B	108.3
128	H4A	C4	C5	109.9
129	H4B	C4	C5	109.9
130	P2	O4	H4	109.5
131	C5	C5	C4	112.1(2)
132	C5	C5	H5A	109.1
133	C5	C5	H5B	109.1
134	C4	C5	H5A	109.2
135	C4	C5	H5B	109.2
136	H5A	C5	H5B	107.9
137	P2	O6	Rb1	137.97
138	Rb1	07	H7A	109.5
139	Rb1	07	H7B	109.7
-----	-----	-----	-----	-------
140	H7A	07	H7B	95.1
141	02	Rb1	O6	78.57
142	02	Rb1	O6	78.57
143	H8A	O8	H8B	109.4

Πίνακας 5. Μήκη δεσμών (Å) και γωνίες (°) του υλικού Cs-HDTMP

Numb	per Ato	m1 Ato	om2 Type	Polymer	ic Len	gth	SybylType
1	Cs1	O1	Unknown	no	3.207(2)	un	
2	Cs1	O4	Unknown	no	3.442(2)	1	
3	Cs1	07	Unknown	no	3.432(3)	1	
4	Cs1	07	Unknown	no	3.432(3)	1	
5	Cs1	O1	Unknown	yes	3.207(2)	un	
6	Cs1	O4	Unknown	yes	3.442(2)	un	
7	Cs1	O5	Unknown	yes	3.539(2)	un	
8	Cs1	O5	Unknown	yes	3.420(2)	un	
9	Cs1	O5	Unknown	yes	3.420(2)	un	
10	Cs1	O5	Unknown	yes	3.539(2)	un	
11	P1	O1	Unknown	no	1.501(2)	un	
12	P1	O2	Unknown	no	1.559(2)	1	
13	P1	O3	Unknown	no	1.490(2)	un	
14	P1	C1	Unknown	no	1.821(2)	1	
15	P2	O4	Unknown	no	1.523(2)	1	
16	P2	O5	Unknown	no	1.487(2)	1	
17	P2	O6	Unknown	no	1.547(3)	1	
18	P2	C2	Unknown	no	1.805(3)	1	
19	O2	H2O	Unknown	no	0.83(3)	1	
20	O4	H4O	Unknown	no	0.82(4)	1	
21	O5	Cs1	Unknown	yes	3.420(2)	1	
22	O5	Cs1	Unknown	yes	3.539(2)	1	
23	O6	H6O	Unknown	no	0.82(2)	1	
24	07	H7A	Unknown	no	0.82(2)	1	
25	07	H7B	Unknown	no	0.82(2)	1	
26	N1	H1N	Unknown	no	0.86(2)	1	

27	N1	C1	Unknown	no	1.498(4)	1
28	N1	C2	Unknown	no	1.502(3)	1
29	N1	C3	Unknown	no	1.519(3)	1
30	C1	H1A	Unknown	no	0.970(2)	1
31	C1	H1B	Unknown	no	0.970(2)	1
32	C2	H2A	Unknown	no	0.970(3)	1
33	C2	H2B	Unknown	no	0.970(2)	1
34	C3	H3A	Unknown	no	0.970(2)	1
35	C3	H3B	Unknown	no	0.970(3)	1
36	C3	C4	Unknown	no	1.510(3)	1
37	C4	H4A	Unknown	no	0.970(3)	1
38	C4	H4B	Unknown	no	0.970(2)	1
39	C4	C5	Unknown	no	1.517(4)	1
40	C5	H5A	Unknown	no	0.970(2)	1
41	C5	H5B	Unknown	no	0.970(3)	1
42	C5	C5	Unknown	no	1.516(3)	1
43	P1	O1	Unknown	no	1.501(2)	un
44	P1	O2	Unknown	no	1.559(2)	1
45	P1	O3	Unknown	no	1.490(2)	un
46	P1	C1	Unknown	no	1.821(2)	1
47	P2	O4	Unknown	no	1.523(2)	1
48	P2	O5	Unknown	no	1.487(2)	1
49	P2	O6	Unknown	no	1.547(3)	1
50	P2	C2	Unknown	no	1.805(3)	1
51	O1	Cs1	Unknown	yes	3.207(2)	un
52	O2	H2O	Unknown	no	0.83(3)	1
53	O4	H4O	Unknown	no	0.82(4)	1
54	O4	Cs1	Unknown	yes	3.442(2)	1
55	O5	Cs1	Unknown	yes	3.539(2)	1
56	O5	Cs1	Unknown	yes	3.420(2)	1
57	O6	H6O	Unknown	no	0.82(2)	1
58	N1	H1N	Unknown	no	0.86(2)	1
59	N1	C1	Unknown	no	1.498(4)	1
60	N1	C2	Unknown	no	1.502(3)	1

61	N1	C3	Unknown	no	1.519(3)	1	
62	C1	H1A	Unknown	no	0.970(2)	1	
63	C1	H1B	Unknown	no	0.970(2)	1	
64	C2	H2A	Unknown	no	0.970(3)	1	
65	C2	H2B	Unknown	no	0.970(2)	1	
66	C3	H3A	Unknown	no	0.970(2)	1	
67	C3	H3B	Unknown	no	0.970(3)	1	
68	C3	C4	Unknown	no	1.510(3)	1	
69	C4	H4A	Unknown	no	0.970(3)	1	
70	C4	H4B	Unknown	no	0.970(2)	1	
71	C4	C5	Unknown	no	1.517(4)	1	
72	C5	H5A	Unknown	no	0.970(2)	1	
73	C5	H5B	Unknown	no	0.970(3)	1	
74	07	H7A	Unknown	no	0.82(2)	1	
75	07	H7B	Unknown	no	0.82(2)	1	
76	O8	H8A	Unknown	no	0.82(2)	1	
77	O 8	H8B	Unknown	no	0.82(2)	1	

Numb	er	Atom1	Atom2	Atom3Angle
1	01	Cs1	O4	83.39(5)
2	01	Cs1	07	55.62(5)
3	01	Cs1	07	124.38(5)
4	01	Cs1	01	180.00(5)
5	01	Cs1	O4	96.61(5)
6	01	Cs1	O5	61.09(4)
7	01	Cs1	O5	77.53(4)
8	01	Cs1	O5	102.47(4)
9	01	Cs1	O5	118.91(4)
10	O4	Cs1	07	69.10(5)
11	O4	Cs1	07	110.90(5)
12	O4	Cs1	01	96.61(5)
13	O4	Cs1	O4	180.00(5)
14	O4	Cs1	O5	116.52(4)
15	O4	Cs1	O5	98.91(4)

16	O4	Cs1	O5	81.09(4)
17	O4	Cs1	O5	63.48(4)
18	07	Cs1	07	180.00(5)
19	07	Cs1	O1	124.38(5)
20	07	Cs1	O4	110.90(5)
21	07	Cs1	O5	47.49(5)
22	07	Cs1	O5	132.16(5)
23	07	Cs1	O5	47.84(5)
24	07	Cs1	O5	132.51(5)
25	07	Cs1	01	55.62(5)
26	07	Cs1	O4	69.10(5)
27	07	Cs1	O5	132.51(5)
28	07	Cs1	O5	47.84(5)
29	07	Cs1	O5	132.16(5)
30	07	Cs1	O5	47.49(5)
31	O1	Cs1	O4	83.39(5)
32	O1	Cs1	O5	118.91(4)
33	O1	Cs1	O5	102.47(4)
34	O1	Cs1	O5	77.53(4)
35	O1	Cs1	O5	61.09(4)
36	O4	Cs1	O5	63.48(4)
37	O4	Cs1	O5	81.09(4)
38	O4	Cs1	O5	98.91(4)
39	O4	Cs1	O5	116.52(4)
40	O5	Cs1	O5	119.33(4)
41	O5	Cs1	O5	60.67(4)
42	O5	Cs1	O5	180.00(4)
43	O5	Cs1	O5	180.00(4)
44	O5	Cs1	O5	60.67(4)
45	O5	Cs1	O5	119.33(4)
46	O1	P1	02	109.5(1)
47	O1	P1	O3	117.6(1)
48	O1	P1	C1	103.2(1)
49	O2	P1	O3	111.2(1)

50	02	P1	C1	101.8(1)
51	O3	P1	C1	112.1(1)
52	O4	P2	O5	115.3(1)
53	04	P2	O6	107.9(1)
54	04	P2	C2	107.2(1)
55	O5	P2	O6	112.8(1)
56	O5	P2	C2	106.2(1)
57	O6	P2	C2	106.9(1)
58	Cs1	O1	P1	131.3(1)
59	P1	02	H2O	116(2)
60	Cs1	O4	P2	148.8(1)
61	Cs1	O4	H4O	98(4)
62	P2	O4	H4O	111(4)
63	P2	O5	Cs1	134.73(9)
64	P2	O5	Cs1	104.31(8)
65	Cs1	O5	Cs1	119.33(5)
66	P2	O6	H6O	115(2)
67	Cs1	07	H7A	77(2)
68	Cs1	07	H7B	66(2)
69	H7A	07	H7B	105(3)
70	H1N	N1	C1	111(2)
71	H1N	N1	C2	106(2)
72	H1N	N1	C3	101(2)
73	C1	N1	C2	115.4(2)
74	C1	N1	C3	113.4(2)
75	C2	N1	C3	109.1(2)
76	P1	C1	N1	113.7(2)
77	P1	C1	H1A	108.9(2)
78	P1	C1	H1B	108.8(2)
79	N1	C1	H1A	108.8(2)
80	N1	C1	H1B	108.8(2)
81	H1A	C1	H1B	107.7(2)
82	P2	C2	N1	119.4(2)
83	P2	C2	H2A	107.5(2)

84	P2	C2	H2B	107.4(2)
85	N1	C2	H2A	107.5(2)
86	N1	C2	H2B	107.5(2)
87	H2A	C2	H2B	106.9(2)
88	N1	C3	НЗА	108.4(2)
89	N1	C3	H3B	108.3(2)
90	N1	C3	C4	115.7(2)
91	H3A	C3	H3B	107.5(2)
92	H3A	C3	C4	108.3(2)
93	H3B	C3	C4	108.4(2)
94	C3	C4	H4A	109.7(2)
95	C3	C4	H4B	109.7(2)
96	C3	C4	C5	109.8(2)
97	H4A	C4	H4B	108.2(3)
98	H4A	C4	C5	109.7(2)
99	H4B	C4	C5	109.7(2)
100	C4	C5	H5A	108.9(2)
101	C4	C5	H5B	108.9(2)
102	C4	C5	C5	113.2(2)
103	H5A	C5	H5B	107.8(3)
104	H5A	C5	C5	108.9(2)
105	H5B	C5	C5	109.0(2)
106	01	P1	O2	109.5(1)
107	01	P1	O3	117.6(1)
108	01	P1	C1	103.2(1)
109	02	P1	O3	111.2(1)
110	02	P1	C1	101.8(1)
111	O3	P1	C1	112.1(1)
112	O4	P2	O5	115.3(1)
113	O4	P2	O6	107.9(1)
114	O4	P2	C2	107.2(1)
115	O5	P2	O6	112.8(1)
116	O5	P2	C2	106.2(1)
117	O6	P2	C2	106.9(1)

118	P1	01	Cs1	131.3(1)
119	P1	O2	H2O	116(2)
120	P2	O4	H4O	111(4)
121	P2	O4	Cs1	148.8(1)
122	H4O	O4	Cs1	98(4)
123	P2	O5	Cs1	104.31(8)
124	P2	O5	Cs1	134.73(9)
125	Cs1	O5	Cs1	119.33(5)
126	P2	O6	H6O	115(2)
127	H1N	N1	C1	111(2)
128	H1N	N1	C2	106(2)
129	H1N	N1	C3	101(2)
130	C1	N1	C2	115.4(2)
131	C1	N1	C3	113.4(2)
132	C2	N1	C3	109.1(2)
133	P1	C1	N1	113.7(2)
134	P1	C1	H1A	108.9(2)
135	P1	C1	H1B	108.8(2)
136	N1	C1	H1A	108.8(2)
137	N1	C1	H1B	108.8(2)
138	H1A	C1	H1B	107.7(2)
139	P2	C2	N1	119.4(2)
140	P2	C2	H2A	107.5(2)
141	P2	C2	H2B	107.4(2)
142	N1	C2	H2A	107.5(2)
143	N1	C2	H2B	107.5(2)
144	H2A	C2	H2B	106.9(2)
145	N1	C3	НЗА	108.4(2)
146	N1	C3	H3B	108.3(2)
147	N1	C3	C4	115.7(2)
148	H3A	C3	H3B	107.5(2)
149	H3A	C3	C4	108.3(2)
150	H3B	C3	C4	108.4(2)
151	C3	C4	H4A	109.7(2)

152	C3	C4	H4B	109.7(2)
153	C3	C4	C5	109.8(2)
154	H4A	C4	H4B	108.2(3)
155	H4A	C4	C5	109.7(2)
156	H4B	C4	C5	109.7(2)
157	C5	C5	C4	113.2(2)
158	C5	C5	H5A	108.9(2)
159	C5	C5	H5B	109.0(2)
160	C4	C5	H5A	108.9(2)
161	C4	C5	H5B	108.9(2)
162	H5A	C5	H5B	107.8(3)
163	Cs1	07	H7A	77(2)
164	Cs1	07	H7B	66(2)
165	H7A	07	H7B	105(3)
166	01	Cs1	O4	83.39(5)
167	H8A	O8	H8B	114(3)